
User Interface Toolbox

User Interface Toolbox

Acornl

ii

Copyright © 1994 Acorn Computers Limited. Al l rights reserved.

Published by Acorn Computers Technical Publications Department

No part of this publication may be reproduced or transmitted. in any form or by
any means. electronic. mechanica l. photocopying. recording or otherwise. or
stored in any retrieval system of any nature. without the written permission of the
copyright holder and the publisher. application for which shall be made to the
publisher

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement All information of a technica l nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
Acorn Computers Limited in good fai th However. Acorn Computers I imited
cannot accept any liability for any loss or damage arising from the use of any
information or particu lars in this manual.

If you have any comments on this manual. please complete the form at the back of
the manual and send it to the address given there

Acorn supplies its products through an internationa l distribution network. Your
supplier is available to help resolve any queries you might have

ACORN, the ACORN logo. ARCH IMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd.

All other trademarks are acknowledged .

Published by Acorn Computers Limited
ISBN I 852'50 165 0
Part number 0484.231
Issue I . December 1994

Contents

Introduction to the Toolbox 1
Introduction I

Toolbox Application Model 4

Toolbox objects 6

Event handling 12

Resource files 15

Task initiali sation and run-time information 16

Message Lexts and national isation 16

An Example object 17

Toolbox SWis 20

SWI Toolbox_CreateObject (0x44ec0) 20

SWI Toolbox_DeleteObject (0x44ec I) 21

SWI Toolbox_ShowObject (0x44ec3) 22

SWI Toolbox_HideObject (Ox44ec4) 23

SWI Toolbox_GetObjectState (0x44ec5) 24

SWI Toolbox_ObjectMiscOp (0x44ec6) 25

SWI Toolbox_SetCiientHandle (0x44ec7) 26

SWI Toolbox GetCiientHandle (0x44ec8) 26

SWI Toolbox_GetObjectCiass (0x44ec9) 27

SWI Toolbox_GetParent (Ox44eca) 28

SWI Toolbox GetAncestor (0x44ecb) 29

SWI Toolbox_GctTemplateNamc (0x44ecc) 30

SWI Toolbox_RaiseToolboxEvent (0x44ecd) 31

SWI Toolbox. GetSyslnfo (0x44ece) 32

SWI Toolbox_lnitialise (0x44ecf) 33

SWI Toolbox_LoadResources (0x44ed0) 35

SWI Toolbox_ TemplateLookUp (0x44efb) 36

Toolbox events 37

Building an application 39
Guide To Hyper 39

How 'Hyper was designed 41

How 'Hyper was implemented 43

HyperCard ConLrol Language 6'3

iii

Contents

iv

Colour Dialogue box class 65
User interface 65
Application Program Interface 66
Colour Dialogue methods 69
Colour Dialogue events 76
Colour Dia logue templates 78

Colour Menu class 79
User interface 79
Application Program In terface 80
Colour Menu methods 82
Colour Menu events 86
Colour Menu templates 87
Colour Menu Wimp event hand ling 88

Discard/Cancel/Save Dialogue box class 89
User interface 89
Application Program Interface 90
DCS methods 92
DCS events 97
DCS templates I 00
DCS Wimp even l handling 101

File Info Dialogue box class 103
User interface I 03
Appl icalion Program Interface I 04
File Info methods 106
File Info events 115
File Info templates I 16
File Info Wimp event hand ling 117

Font Dialogue box class 119
User interface I 19
Application Program Interface 120
Font Dialogue methods 123
Font Dialogue events 131
Font Dialogue Templates 133
Font Dia logue Wimp event hand ling 135

..

Font Menu class 137
User interface 137

Application Program Interface 138

Font Menu methods 140

Font Menu events 142

Font Menu templates 143

Font Menu Wimp event handling 144

lconbar icon class 145
User interface 14 5

Application Program Interface 146

lconbar icon methods 150
lconbar icon events 162

lconbar icon templates 163

lconbar icon Wimp event handling 164

Menu class 165
User interface 165
Application Program Interface 166

Menu methods 173

Menu events 197

Menu Templates 199

Menu Wimp event handling 200

Print Dialogue box class 201
User interface 20 1

Application Program Interface 202

Print Dialogue Methods 206

Print Dialogue events 213

Print Dialogue templates 218

Print Dialogue Wimp event handling 220

Prog Info Dialogue box class 221
User interface 22 1

Application Program Interface 222

Prog Info methods 224

Prog Info events 230

Prog Info templates 23 1

Prog Info Wimp event handling 232

Contents

v

Contents

vi

Quit Dialogue box class 233
User interface 233
Application Program Interface 234
Quit methods 236
Quit events 241
Quit templates 243
Quit Wimp event handling 244

SaveAs Dialogue box class 245
User interface 245
Application Program Interface 246
Save As methods 254
Save As events 265
Save As templates 268
Save As Wimp event handling 269

Scale Dialogue box class 271
User interface 27 I
Application Program Interface 272
Scale methods 276
Scale events 282
Scale templates 284
Scale Wimp event handling 285

Window class 287
User interface 287
Application Program Interface 288

Window methods 295

Other SWis '31 '3

Window events 316

Window templates 317

Window Wimp event handling 320

Toolbars 322

User interface 322
Application program interface 32'3

Toolbar methods 324

Gadgets 325
Application Program Interface 325

Generic gadget methods 330

Gadget Wimp event handling 338

Action buttons 339
Adjuster arrows 347

Button gadget 348

Display fields 355

Draggable gadgets 358

Labels 366
Labelled boxes 367

Number ranges 368

Option buttons 376

Pop-up menus 38'3

Radio buttons 387

Sliders 395
String sets 403

Writable fields 41 I

Contents

vii

Contents

vi ii

ResEd 417
Starting ResEd 420
The object prototypes window 421
The resource fi le display 422
Fditing object templates in general 426
Editing the Menu class 429
Example menu 434
Editing a Window object template and gadgets 438
Gadgets 448
Editing other clas~cs 472
Exporting and importing messages 484
Keystroke equivalents 485
Mouse behaviour 486

ResTest 489
The event log window 491

DrawFile 493
SWI DrawFile_Render 494
SWI DrawFile_BBox 495
SWI DrawFi le_DeclareFonts 496

Resource File Formats 497
Resource file format 498

Support for RISC OS 3.10 503

Index 505

1

Introduction

Introduction to the Toolbox

T his chapter IS intended to give the r<.'ader an overview of the RJSC OS Toolbox.

and to introduce the concepts u~ed throughout the rest of thi~ manu<~l

The Toolbox was designed with the following goa ls:

• to faci litate writing consistent. high-quali ty desktop appl ica tions under

RISC OS 3. 10 and later

• to encourage the writing of applications whose user interface compl ies with

the RISC OS 3 Style Guide

• to be easy to lc<Jrn

• to be language-independent

• to make it no harder to do operations which can currently be done using the

Wimp

The Toolbox has the following characteristics

• it is structured as a set of RISC OS reloca table modules

• it will only run on RISC OS 3. 10 or later

• it does not d1rectly ca ll back to code 1n the client application

• it is SWJ-driven

• it can be used from C. C++. BASIC or Assembler with equal ease

• communication back to the client application is via events

• the client application does not have direct access to data structures
maintained by the Too lbox

• it uses a new resource file format to hold templates for the user intt'rface

objects which the application will use at run-Lime

Note. The appendix Support for RISC OS '3 I 0 on page 503 describes support for

RISC OS '3 10 machine~

Installing C/C++

The in~truct1ons for installing Acorn C/C++ arc in the chapter Installing Act~rn CIC++
on page 7 of the Desktop Tools manual

1

Introduction

2

Terminology

The following terms are used throughout this manual :

Term Meaning

Clac;s A data type, together with a definition of the
operations which can be performed on that data type

Client application A piece of software which uses the Toolbox

Colours Refers either to desktop colou rs (in Lhe range 0-1 5), or
to an RG B colour (represented by one word as
Oxbbggrr00)

Dialogue box A window which contains gadgets. and which is
typically used to carry out a 'dia logue' with the user.
end ing in the user either cancell ing the d ialogue. or
confirming that they want to apply the options
indicated by the current dialogue state

Method One of the operations defined for a class (it can be
though t of as a ·function')

Persistent dialogue box One wh1ch remains on the screen even when the
menu tree is closed down It must be explicitly
removed by cancelling it. or by pressmg Escape

Resource fi le Described in Resource r:i/e Formats on page 497. It is a
file containing a sequence of templates from which to
build ob(ects

String A NUL-terminated 5equence of ASCII characters

Textual name (name) Can be formed of any sequence of alphanumeric
characters and underscores('_'). It must begin with an
alphabetic character Special names used by the
Toolbox can begin with the underscore character ('_' I
A name cannot be longer than l 2 characters.
including the NUL terminator character.

Transient dialogue box One which appears on the screen, and is removed
when the current menu tree is closed down

User The human user of a client application

Term

User Interface Object
[object)

Word

General notes

Introduction to the Toolbox

M eaning

A fundamental bui lding block for windowed
appl ications (e.g. a menu) All ob jects share a set of

common methods wh ich can be appl ied to them. An
object consists of a fixed size header fo llowed
immediately in memory by a variable size body

A 4-byte entity. aligned at a 4-byte address.

• Where a buffer holds a string. this string will be NUL-terminated on exit from a
SWI or when delivered in an event block. Strings which are given as 1nput
parameters to a SWI should be terminated by a control character (i e. in the
range0-31 inclusive).

• Where the size of a buffer is specified. this includes any terminating chdracter.
If the size of buffer supplied for a string is not large enough an error is not

returned. instead the buffer is filled (including a terminating NUL). and the
returned number of bytes ·written to the buffer will be the size of buffer wh1ch
would be required Thus you may wish to check that the number of bytes
written to the buffer is less than or equal to the supplied buffer size

• Note that all SWis have a flags word in RO Al l undefined bits in th1s flags word
shou ld be 0

• Unless otherwise stated, changes to objects which are visible on the screen are
immediate.

3

Toolbox Application Model

~wxx..-••••••••••••aw••••••

Toolbox Application Model

4

The Toolbox is intended to provide a layer of abstraction between an applicat ion
and the Wimp. In a manner analogous to the use of High Level Programming
Languages. the Toolbox allows the programmer to think more in terms of the
problem to be solved rather than the detai led mechanics of how to achieve a
solution .

Traditional desktop application

In a traditiona l desktop appl ication. the programmer writes code which interfacec;
d irectly Lo the Window Manager (Wimp) through Wimp SWis. Such an application
uses a Templates· file to define templates from which it can create wtndows at
run-time. but must create other user-interface objects from withtn 1ts code rc g
menus) . The events which are delivered to a Wimp applica tion refer to low-level
Wimp operations like mouse cl icks

Figurt' I Wimp application modl'l

Client application

WimpSWis

Wimp events

Wimp

Template file

Window
descriptions

Introduction to the Toolbox

Toolbox application

In a Toolbox desktop application. the programmer writes code which interfaces

mainly to the Toolbox through Toolbox ·methods', only occasiona lly resorting to

making low-level Wimp SWI calls. A Toolbox application uses a 'Resources file to

define templates from which it can create a large number of user-interface objects

including windows, menus and icon bar icons. Events which are delivered to a

Toolbox appl ication arc at a higher level of abstraction than Wimp events

I
I

I

/
I

--

\
WimpSWis

W1mp \
SWis '-

Figurr 1.2 Too/[JOX application model

cr;ent appUcaUon 1 ~ [Reso,<ee me

\ 'object'
\ Wimp descriptions

Toolbox l events

events J
I

Toolbox

Wimp events

'_,. Wimp

Wimp events

The application will genera lly see all Wimp events. with the following exceptions

ColourDbox

Window object

will not see red raw events.

Where it has input focus you wi l l not see keypress events

will not see Open Window Request or Close Window

Request events if the window is marked as being
auto-open or auto-close respectively

5

Toolbox objects

Toolbox objects

6

An object is essentially one part o f the user interface of a desktop appl ication: for
example. a window or a menu or an icon on the icon bar

At run-t1me. each object is identified by an object id which is allocated when the
object is created. An object id is a 32-bit integer. wh ich should not be interpreted
by the cl ient appli cation An object id of 0 is used to ind icate 'no object'

Object classes

The type of an object is ca lled its ·class·. wh ich identifies its attri butes and the set
of opera lions which can be performed on it at run-time

It is possible to determine the class of an ob1ect at run-time, using
SWI Toolbox_GetObjectClass.

The set of classes which are supported in this release of the Toolbox are

Class name Meaning

Colour Menu a menu for selecting a desktop colour

Colour Dbox a dialogue box for selecting any colour

DCS a dia logue box for discard/cancel/save for unsaved data

File Info a dia logue box showing information on a given file

Font Dbox a dialogue box for selecting font characteristiCs

font ME'nu a menu for se>lccting a font

Icon bar Icon an icon on the left or right of the icon bar

Menu a Wimp menu

Prin t Dbox a d ialogue box tor selecting prin t options

Prog Info a dialogue box for showing program information

Quit a dialogue box for handlmg quit with unsaved data

SaveAs a d ialogue box for saving data by icon drag

Scale View a dialogue box for selecting a scale factor

Window a Wimp window

page

79

65

89

103

119

137

145

165

201

221

233

245

271

287

The Toolbox is designed to be extensible. so this set of classes will be increased in
future releases. and can also be increased by third party developers

Introduction to the Toolbox

Object components

An object 'component' defines one of a set of distinct parts which make up an

object, for example a menu entry is a component of a Menu object. and a gadget

(see later) is a component of a Window object A component is allocated a

component id by wh1ch to identify 1t un1quely within its containing object: this

component id is chosen by the cl ient application when the component is created

For menus it can have a va lue in the range 0 to Oxfffffffd, and for windows a va lue

in the range 0 to Ox7fffff Al l higher component ids are reserved for internal Toolbox

usc. A component id of Oxffffffff is used to indicate ·no component'.

Object Methods

At run-time. the client application manipulates its objects by using ·methods',

which are in fact implemented via Toolbox SWis. The Toolbox will dispatch these

methods to the appropriate module which implements the class of object to which

the method is being appl ied

Creating an object

An object is created using SWI Toolbox CreateObject (see page 201. The client

application supplies either the name of a template for the object. or the address of

a block of memory con taining such a template If a name is provided, then the

Toolbox will look for the template in the application's Resource file (see later) The

cl ient application will be passed back an object id for the newly-created object if

successfu I.

When an object which has ·attached' objects is created. then the attached ob1ects

are also created. See Alladted objects on page II for a fuller description of th1s

process

Given its object id. it is possible to find out the name of the template used to

create an object using SWJ Toolbox GetTemplateName

Deleting an object

An object is deleted using SWI Toolbox_DeleteObject (see page 21). If the ob1ect is

visible on the screen and it is deleted. then the Toolbox first hides the object.

When an object which has attached objects is deleted, then unless the

·non-recursive· bit is set in this SWI's llags word. all its attached objects are also

deleted See Attadl!'d objects on page I I for a fuller description of this process

Showing an object

An object is shown on the screen using SWI Toolbox_ShowObject (see page 22)

7

Toolbox objects

By setting bits in the SWI's flags word. the client may choose to show the object
with either SWI Wimp CreateMenu semantics or SWI Wimp_CreatcSubMenu
semantics. This is general ly referred to as showing the object 'transiently', and can
be used. for example. to show transient dialogue boxes. By default. an object IS
shown 'persistently'. 1n other words it must be explicitly dismissed from the
screen. Not all objects support both sets of <;cmantics

When an object is shown. the client appl ication chooses where the object will
appear on the screen by specifymg one of three 'show types.

• A 'default' show type means that the object will be shown at a place
determined by the module which implements the object's class For example.
a Menu object will be shown by default at a place 64 OS units to the left of the
mouse pointer's position. to comply with the RISC OS 3 Style Guide

• A 'top left' show type means that the cl1cnt appl icalion supplies the
coordinates of the Lop lefthr1nd corner of where the object should be shown

• A ·tull specification· show type means that the client application supplies a
buffer which contains all the information needed to position the ob1ect on the
screen. the contents of this buffer is separately defined for each object cla<>s.

Hiding an object

An object 1s hidden using SWI Toolbox_HideObject (page 23) If the object was not
visible on the screen. then this method has no effect.

Object-specific methods

Each object class provides a number of methods which arc specific to that class
!for example. a Window object's tit le can be set using the Window_SctTitle
method) These methods are all accessed using SWI Toolbox_ObJectMiscOp (sec
page 251 w1th an appropriate reason code

Shared objects

8

It is often useful in C:Jn application for many objects to refer to one single instance
of another object A typical example is a multi-document editor. where a
potentially large number of Windows all refer to a single shared Menu structure

A shared object is specified as such in its template description Whenever an
attempt 1s made to create an object from such a template. the Toolbox first checks
to see If there is already a copy of the object m existence. and in wh1ch case the id
of this object is returned.

Introduction to the Toolbox

Reference counts are maintained for Shared ob1ects. When the client tnes to create
such an object the reference count is incremented. and it is decremented when the
client attempts to delete the object. The Shared object is only really deleted when
its reference count reaches zero.

Shared objects can also be used effectively in conjunction with attached objects
which are described on page 11 .

Note: Shared ness ic; inherited by attached objects

Client handles

Each object can have associated with it a one-word value called its client handle
The value of this handle is specified entirely by the client application and IS not
interpreted by the Toolbox. This mechan ism is intended to allow a sla te to be
associated with an object by the client applica tion (e.g. in a multi-document ed itor
a Window object's cl ient handle might be a pointer to the data which must be

displayed in the Window).

An object's Client Handle is set and read using SWis Toolbox_SetCiientHandle
(see page 26) and Toolbox_GetCiientHandle (see page 261 respectively

Parent and ancestor objects

When an object is shown (using SWI Toolbox .. ShowObject). there Clre two other
objects which may be useful for the client application: these are the parent and

ancestor objects.

Parent objects

The parent of an object is defined as the object (and optionally a component ot
that object) wh1ch caused the object to be shown This is represented by the parent
object id and parent component id. For example if a Window object has been
displayed as the result of a Menu selection. then that Window object has a parent
with an object id given by the Menu's id. and a parent component id given by the
component id of the entry which was se lected

When SWI Toolbox ShowObject is called explicilly by the client. the parent object
and component ids must be specified. When this SWI is ca lled on the client's
behalf (for example. when a Menu is shown automatically for a Window). then the
Toolbox fills this value in for the client.

Ancestor objects

It is always poss1ble to trace the 'parentage· of an object by recursively requesting
the Parent of that object thus moving 'up' the invocation hierarchy of objects
which have been displayed. Since this is a common operation. an object can be

9

Toolbox objects

10

designated as a potential so-called 'Ancestor'. When an object is shown, it
normally inherits the ancestor of its parent object. however. if the parent is marked
as a potential ancestor. then the ancestor of the shown object is set to the id of the
parent object.

Take the case where a multi -document editor has a document Window which has a
Menu. which has a SaveAs dialogue box as a submenu When an event occurs for
the dialogue box. the client is probably most interested in getting the id of the
document Window (to get at its data and save it). By designating the document
Window as an ancestor. the client can ensure thai its id is avai lable when events
occur on the SaveAs dia logue box

window designated as ancestor

The processes in the above example are as follows:

When the user presses Menu over the window. a Toolbox_ShowObject is raised
on the Menu with the window as parent. As the window has been designated
as ancestor. the Menu's ancestor will be the window.

2 When the user moves the pointer over the Save submenu arrow, the Menu
module will show the SaveAs d ialogue with itself (i .e. the Menu) as the parent
object, and the Save component as the parent component The SaveAs
d1alogue will inherit the Menu's ancestor (in this case the wmdow)

3 Any event now raised on the SaveAs dialogue box will have the id block filled
in with the Menu as the parent and the window as the ancestor.

The parent and ancestor of an object can be obtained by calling the SWis
Toolbox_GetParent and Toolbox_CetAncestor Normally this will not be necessary,
since (as shown in Tfte id block on page 13) these values are made available on every
return from Wimp_Poll.

Introduction to the Toolbox

Auto-create and Auto-show objects

In order to save on coding required. it is possible to get the Toolbox to create an
object from its template as soon as the resource file containing the template is
loaded by the appl ication This is achieved by setting the Auto-create bit in the
object template's nags word (see the chapter ResEd on page 417 to see how to do
this). When such an object is created. the Toolbox raises a
Toolbox_ObjectAutoCreated event. to al low the application to ascertain and store
the object id of the newly-created object. the name of the template used to create
the object is reported in this event

It is also possible to specify that as soon as an object is created. it should be
'shown' on the screen This is achieved by setting the Auto-show bit in the ob1ect
template's flags word (see the chapter Rf'sF.d on page 417 to see how to do this)
When such an object is created, it is shown using SWI Toolbox_ShowObject in its

default place. and with no parent given

It is also possible for an object to be auto-show but not auto-create.

Attached objects

Certain objects allow other objects to be attached to them. When an ob1ect is
created. all of its attached objects are also created. and a
Toolbox. ObjectAutoCreated event is raised for each such attached object

An example of an attached object is the object which will be shown when a user
clicks the Select mouse button on an lconbar Icon object. This attached object is
created when the Icon bar Icon object is crea ted.

Such side-effects of creating a given object are described in the Application Program

Interface section in the chapter on each object class

When an object w1th attached objects is deleted using SWI Toolbox_ObjectDelete.
unless the non-recursive delete bit has been set. all attached objects are also
deleted.

Attached objects can also usefully be combined with Shared objects For example.
if an application wishes the same Window to be displayed when the usc clicks
Select and Adjust on an lconbar object, this can be achieved by specifying the
same Window template name as the attached object to show for each of these

mouse clicks, and marking the Window object as shared. so that the same object id
is used for both cases

It is important to note this side-effect of creating an object. For example. a Window

object which has a complex menu tree attached to it with many submenus and
dialogue boxes. will have considerable side-effects when it is created .

11

Event handling

Event handling

-----·--····-···-· • •

Thus. in mdny cases. tt is only necessary to create expliCitly the 'topmost' object.
and to allow the Toolbox to create the entire tree of attached objects

An important part of managing the user interface using the Toolbox is the concept
of a Toolbox event

A Toolbox event is a Wimp event (not a message) which is delivered to the client
application with an event code of Wimp_ToolboxEvent (0x200). Each Toolbox
event has its own event code, which is a 32-bit integer detined in a similar manner
to Wimp message numbers.

Toolbox events are essentially an abstraction on Wimp events. and are generated
by the Toolbox modules in response to user interaction with Toolbox objects. and
also in response to client application operations. Toolbox events arc also used to
warn the client application that a particular action has been taken by the Toolbox .

For example, if a client application creates and shows a Print Dialogue Box. when
the user clicks on the Print button. a Toolbox event will be delivered to the
application indicating that a Print operation has been requested. and giving the
number of pages to be printed the scale factor to use during printing etc

Note that underlying events wi ll also be received by the client.

Toolbox event Codes

12

Event codes are allocated by Acorn Events which are delivered by a Toolbox
module wi II have codes wh ich start at the SWI chunk base of the module.

The allocations are as follows: event codes are in the range 0- Ox9ffff

Event codes

OxOOOO I - OxOffff

Ox I 0000 - Ox3ffff

Ox40000 - Ox9ffff

Use

Avai lable for use by the client

Reserved for inter-application protocols

Reserved for Toolbox module events

Introduction to the Toolbox

Format of a Toolbox event

When a Toolbox event is delivered to an application. the Wimp Poll block ha~ the

following format

Offset

+0

-+ 4

+8

+12

-1 16 ...

Contents

size of Toolbox event block
(16 - 236 in a multiple o f four bytes; i.e. words)

unique reference number

Toolbox event code

flags

Event-specific data

Unless otherwise stated flags wi ll be Lero.

The id block

Whenever the chent application calls SWI Wimp_Poll, the Toolbox fills in a 6·word

block of memory known as the id block. to indicate which object an event has

occurred on. However. as Wimp messages do not typically occur on an object the id

block will not be updated for a Wimp message.

This block is laid out as follows·

+0 self id
Ancestor

+4 self component

+8 parent id
Parent

+12 parent component

+16 ancestor id I Self
+20 ancestor component

When a Toolbox event occurs, the object id of the object on which this event

occurred is placed in the 'self id' field o f the id block. and the ·self component' field

is also filled in if the event has occurred for a particular component of that object

For example. a mouse click on an action button gadget within a Window object will

result in an ActionButton_Selected Toolbox event being ra ised, with the Window

object's id in the self id field of the id block. and the component id of the action

button in the se lf component field.

13

Event handling

The parent id and ·parent component' fields are filled in by the Toolbox using the
values which were last passed to SWI Toolbox_ShowObject. The ·ancestor id' and
·ancestor component' fields are filled in accordingly (being the ancestor of the
parent)

The Toolbox uses a value of 0 as an object id to indicate ·no object', and a value of
-I as a component id to ind icate ·no component'.

When a Wimp event happens on an object. then the setting of the contents of the
id block is object-specific. and is described in the object events section in the
chapter on each object class.

The address of the 6-word block of client memory used as the applicalion's id
Block is passed to the Toolbox when the application registers itself using
SWI Toolbox_lnitialise (see page 'B).

Note that Toolbox events are del ivered to the object to which they are most
appropriate. so for example a SaveAs object wi II receive
SaveAs_DialogueCompleted events. whereas mouse cliCks on a SaveAs object's
underlying Window will be seen as being delivered to the Window object.

This behaviour can best be seen by taking some example Resource Files and
dragging them to ! ResTest. and monitoring the contents of the id Block as shown
in !ResTest's log window. as events occur on the objects created from the Resource
File.

Raising a Toolbox event

14

A Toolbox event is raised using SWI Toolbox RaiseToolboxEvent. Normally a client
application wi ll not need to use th is SWI directly; the cl ien t simply quotes the
Toolbox event code (or number). and associates it with a particular user action in
1ts description of an object in the resource file For example. one of the attributes
of a Menu object. is the Toolbox even t which is raised when a particular Menu entry
is selected by the user. The Toolbox wi ll raise this Toolbox event on rhe
application's behalf. whenever a Menu Select ion event is returned for that menu
entry.

Resource files

Introduction to the Toolbox

A resource file contains templates for the objects which a client application wil l

create at run-time

Loading resource files

An application can load a resource fi le at run-t ime using SWI

Toolbox_LoadResources. This is done on the application's behalf for a fi le called

·res' when the application calls SWI Toolbox_lnitialise as described in Task
initialisation and run-time iltformation on page 16. SWI Toolbox LoadResources could

then be called after task start-up to load any further Resource Files which it needs

to use

Resource file format

Resource fi les replace Wimp template fi les as the means to define templates for

the user interface objects which an application will create at run-time. Whereas

Wimp template files only allowed window descriptions to be given. a resource file

will contain templates for any kind of Toolbox object.

A resource file consists of a fixed size header, followed by a contiguous sequence of

object templates. where each template has a fixed size header. followed by an

object body.

A resource file format is similar to a Drawfile, and can be represented

diagrammatically as follows:

File Header 3 words

sequence of object templates

EOF

Each template has a textual name which can have no more than 12 characters

(including the terminating NUL). This name is used by the application when using

a template in a call to SWI Toolbox_CreateObject

If a resource file is loaded which has named templates whose names clash with

earlier loaded templates. the latest loaded template will be used. and the earlier

template wil l no longer be accessible

For a fu ll description of the resource fi le format see the append ix Resource File
Formats on page 497

15

Task initialisation and run-time information

Task initialisation and run-time information
Before it can use the Toolbox. a client applicat ion must first ca ll SWI
Toolbox_lnitialise to register itself as a Toolbox task This has several side-effects
• If there is a file called res 1n the applications resource directory then it is

loaded using SWI Toolbox_LoadResourccs; if such a file is not found, then the
Toolbox tries a file ca lled res<n>. where n is the currently configured country
number. to allow for national variants

• The application directory is searched for a Sprites file called Sprites.
Sprites22, Sprites23 or Sprites24 depending on the current screen
mode This file is then loaded into a block of memory and will be used as the
applications spr1te area

• The application d1rectory is sedrched for a file called Messages. which is then
loaded and registered with MessageTrans. If no such fi le is found. then a file
called Message<n> is searched for, where n is the currently configured
country number The minimum requirement is that the Messages file should
contain a message whose tag IS _TaskName, giving the name of the
application.

• SWI Wimp_lnitialise is then called on behalf of the application

When a Toolbox task has been registered with the Toolbox, the client application
can obtain the following information by calling SWI Toolbox_GetSyslnfo:
• the task's name {as given by the _TaskName message in the Messages filel.
• the 4·word message file desoiptor returned when the task was initialised
• the applications directory n<:lme

• the application's Wimp task handle.

• a pointer to the sprite area used to load the application's Sprites file.

Important. Since the Toolbox uses Wimp messages, a client aplication shou ld not
call SWI Wimp_AddMessages or SWI Wimp l~emoveMessages.

Message texts and nationalisation

16

When using the Toolbox. the writer of a client application should be aware of where
textual messages are held, which will need translating if the client is to be
·nationailsed for a particular RISC OS territory

All of the modules contained in the Toolbox have a defau lt set of messages and
object templates which they will use when displaying windows. reporting errors
displaymg menus etc These are registered with ResourceFS and arc looked up
using MessageTrans So in order to produce a nationalised Toolbox. these
messages and templrltcs will ne<'d replacing.

Introduction to the Toolbox

In a resource file. textual messages are held in Messages Tables. and objects
created at run time will contain pointers to these messages. These message~ are
the ones which have been specified by the client of the Toolbox to be used when
creating objects. and will often consist o f alternative text to use instead of the

defaults provided by the Toolbox modules themselves. These messages arc not

tagged messages looked up using MessageTrans. but are actual strings

The client application will also have a file ca lled Messages in its application
directory This file is automatically loaded by the Toolbox when the client calls SWI
Toolbox_lnitialise The Messages file will contain at least the name of the
application (in a message whose tag is _TaskName). and any other messages which
the application wishes to look up using MessageTrans at run-time This will
typically contain error messages. and ones which are not associated with ob)ects
After calling SWI Toolbox_lnitialise. the client will have a MessageTrans file
descriptor to use when looking up these Messages.

This means that in order to nationali se an applica tion. the writer will need to
provide new Messages and new resource file messages (using Export messages in
Res Ed)

An Example object

Let us look at an example of a Toolbox object. to illustrate some of the features
detailed in earlier sections.

An lconbar Icon object is used to place an application icon sprite (and optiona lly
some text) on the RISC OS icon bar. The template for such an object has the
following fields. which can be set using ! Res Ed (the Resource Editor)

Field

position

priority

sprite name

max sprite name

text

max text length

Meaning

a negative integer giving the position of the Icon on the
lconbar (as specified in SWI Wimp_CreatelconJ

the priority of this Icon on the lconbar (as specified in
SWI Wimp_Create lcon)

the name of the sprite to use for this Icon bar Icon

the maximum length of sprite name to be used

an optional string which will be used for a Text&Sprite
lconbar Icon (ie the text that will appear underneath the
Icon on the lconbar)

if the lconbar Icon has text. then this field g1ves the
maximum length of a text string which will be used for it

17

An Example object

18

Field

menu

select event

adjust event

select show

adjust show

help message

max help

Meaning

the name of the template to use to create a Menu object
for this Icon bar Icon

the Toolbox event code to be raised when the user clicks
Select on the Icon bar Icon (if 0 then lconbar_Ciicked is
raised)

the Toolbox event code to be raised when the user clicks
Adjust on the Icon bar Icon (if 0 then lconba r_Ciicked is
raised)

the name of a template to use to show an object when the
user clickc:; Select on the lconbar Icon

the name o f a temp late to use to show an object when the
user clicks Adjust on the lconbar Icon

the mesc:;age to respond to a help request with. instead of
the default

the max imum length of help message to be used

The client application will create an lconbar Icon object by calling SWI
Toolbox_CreateObject. supplying a template which gives values for all of the above
fields

As a side-effect of this creation. the lconbar Icon's attached objects are also
created (if their templates have been provided) i e. menu. select show and adjust
show The object ids of these attached objects are then held within the Toolbox
mterna l data structure which represents the lconba r Icon.

When the application ca lls SWI Toolbox_ShowObject on an lconbar Icon. it will be
shown in a Style Guide compl iant place on the lconbar. When SWI
Toolbox_HideObject is called. the Icon will be removed from the lconbar

When a HelpRequest message is rece1ved. the supplied help message will
automatica lly be returned to the sender of the message.

When the user clicks the Select or Ad just mouse buttons on the Icon bar Icon. then
if the names of suitable object Templates have been supplied . these objects wi ll be
shown automatically by the Toolbox

When the user clicks the Menu button on the Icon bar Icon. then if the name of a
suitable Menu object Template has been supplied. it wi ll be shown in a RISC OS 3
Style Guide compliant place (i .e. 96 OS units above the bottom of the screen}.

Introduction to the Toolbox

There are a number of methods which have been defined for an Icon bar Icon to
allow the client application to manipulate it at run-time: for example if it wishes to
change the sprite used on the Icon bar for this Icon. then the lconbar_SetSprite
method will be used; if it wishes to provide a new Menu object which will be

displayed when the Menu button is clicked on the lconbar Icon. then the
lconbar_SetMenu method will be used.

19

Toolbox SW/s

.... ---
Toolbox SWis

SWI Toolbox_CreateObject (Ox44ec0)

20

On entry

RO = nags (bit 0 set means create from memory)
R I = pointer to name of template

(R I pointer to description block if bit 0 of nags word set)

On exit

Use

RO = id of created object
R I-R9 preserved

This SWI creates an object either from a named template description which has
been loaded from the resources file or from a template description block in
memory. The exact format of the description block depends on the class of the
object.

If the client application wishes to use the description block form of this SWI. then
the block should begin with a standard object header, and the body of the object
should be as specified in the Templates section of the chapter for that object. Any
StringReferences MsgReferences. and SpriteAreaReferences should hold ·real
pointers, and should not require relocation , also the 'body offset' field should
contain a real pointer to the object body.

C veneer
extern _kernel_oserror *toolbox_create_object (unsigned int flags,

void *name_or_ template,
Objectld *id

);

Introduction to the Toolbox

SWI Toolbox_DeleteObject (Ox44ec1)

On entry

RO- Aags (bit 0 set means do not delete recursively)
R I = object id

On exit

R I - R9 preserved

Use
This SWI deletes a given object.

By defau lt, any objects 'attached' to this object are also deleted. If bit 0 ot Lhe Aags
word is set, then this does not happen.

If it is a Shared object. this will result in its reference count being decremented.

and it will on ly be really deleted when this reaches 0.

The Toolbox raises a Toolbox_ObjectDeleted event when the object's reference

count reaches zero

C veneer
extern _kernel oeorror *toolbox_delete object (unsigned int flags,

Objectid id
);

21

SWI Toolbox_ShowObject (Ox44ec3)

SWI Toolbox_ShowObject (Ox44ec3)

22

On entry

RO =flags
bit 0 set means show using the semantics of Wimp CreateMenu
bit I set means show using the semantics of Wimp_CreateSubMenu

R l = object id
R2 = show 'type'

Type value

0

2

R3 = 0

Meaning
show in the 'defau lt' place. This has a different meaning
depending on the type of object shown
R3 points to a buffer giving full details of how to show
the object

R3 points to a 2-word buffer giving the screen coordinates
of the top left corner of the object to be displayed

or pointer to buffer giving object-specific data for showing this object
or pointer to 2-word buffer giving coordinates of top left corner of object

R4 = Parent object id
R5 = Parent component id

On exit

Use

R I-R9 preserved

This SWI shows the given object on the screen

R2 gives the type of 'show· operation which is being performed. Not all types of
show operation wi ll be appropriate to all objects.

The buffer pointed at by R3 may hold data specific to this class of object . including
mformallon as to where the obJeCt should appear on the screen The exact format
of the buffer is specified separately for each object class. For example for a Window
object. the buffer wi ll hold a block of data which can be passed to SWI
Wimp_OpenWindow

Note: some objects support a b1t in their flags word specifying that a warning
should be ra ised before the object is shown. In this case, the SWI
Toolbox .. ShowObjecl will return but the object will not yet be visible on the
screen The object will be visible (at the earliest) after the next call to Wimp_Poll
after the warning is delivered.

Introduction to the Toolbox

C veneer
extern _ kernel_oserror *toolbox_show object (unsigned int flags ,

Objectid id,

SWI Toolbox_HideObject (Ox44ec4)

On entry

RO =nags
R 1 = object id

On exit

R I -R9 preserved

Use

);

int show_ type,
void *type,
Objectld parent,
Componentld parent_component

Th is SWI removes the given object from the screen. if it is currently being shown.

C veneer
extern _kernel oserror *toolbox_hide object (unsigned int flags,

Objectld id
);

23

SWI Toolbox_ GetObjectState (Ox44ec5)

········-··················
SWI Toolbox_GetObjectState (Ox44ec5)

24

On entry

RO = flags
R I = obJeCt id

On exit

Use

RO = object state

This SWI returns mformation regarding the current state of an object The state is
indicated by bits in the value returned in RO Bits 0-7 refer to all objects and bits
8-31 are used to indicate object-specific state.

The generic state bits are:

Bit Meaning when set
0 object is currently showing

C veneer
extern kernel_oserror *toolbox get_object state (unsigned int flags,

Objectid id,
unsigned int •state

);

Introduction to the Toolbox

SWI Toolbox_ ObjectMiscOp (Ox44ec6)

On entry

RO = flags
R 1 = object id
R2 = method code
R3-R9 contain method-specific data

On exit

Use

R I -R9 preserved

The exact operation of this SWI depends on the class of the object being
manipulated. and on the reason code supplied

Each object class implements a number of methods which are specific to that
object (e.g a Window class may implement a method for adding/removing

keyboard short-cuts for a Window object) .

25

SWI Toolbox_SetCiientHandle (Ox44ec7)

·-- :Jt".O:IJL* ·-·

SWI Toolbox_SetCiientHandle (Ox44ec7)

On entry

RO = flags
I~ I = ObiCCl id
R2 = client hand le

On exit

R l-R9 preserved

Use

This SWI sets the value of the client handle for this ob1ect

C veneer
extern _kernel_oserror *toolbox_set_client_handle (unsigned int flags,

Objectld id,
void *client_handle

);

SWI Toolbox_ GetCiientHandle (Ox44ec8)

26

On entry

RO = flags
R I = object id

On exit

RO = client handle for this object

Use

This SWI returns the value of the client handle for this object

C veneer
extern _kernel_oserror *toolbox get_client_ handle (unsigned int flags,

Objectld id,
void *client_handle

);

Introduction to the Toolbox

SWI Toolbox_ GetObjectCiass (Ox44ec9)

On entry

RO = flags
Rl object id

On exit

Use

RO = object class

This SWI returns the class of the specified object. Thi s is a 32-bit integer. which
identifies a given class; al location of class identifiers is hand led by Acorn.

C veneer
extern _kernel_oserror •toolbox get object class (unsigned int flags,

Object.Id id,
ObjectClass *object_class

);

27

SWI Toolbox_ Get Parent (Ox44eca)

SWI Toolbox_GetParent (Ox44eca)

28

On entry

RO = rlags
R I = object id

On exit

Use

RO = Parent id
R I - Parent component id

This ret urns the value of the object id which was passed as the parent in a SWI
Toolbox ShowObj cct ca ll (even if the parent has !>ubsequent ly been deleted) The
component id is for cases where the parent has a subcomponent like a Menu with
a Menu entry An object which has not yet been shown will have a parent object id
of 0 and a component 1d of - I

C veneer
extern _ kernel oserror *toolbox get_parent (unsigned int flags,

Objectid id,
Objectid •parent,
Componentid *parent_component

);

Introduction to the Toolbox

SWI Toolbox_ GetAncestor (Ox44ecb)

On entry

RO = flags
R I = object id

On exit

Use

RO = Ancestor id
R I = Ancestor component id

This returns the id of the Ancestor of the given object (and its component id, in the
case of an ancestor which has subcomponents like a Menu with a Menu entry).
Note that the Ancestor may have been deleted, since this object was shown. An
object wh ich has not yet been shown will have an ancestor object id of 0 and a
component id of -I.

C veneer
extern kernel_oserror *toolbox_get_ancestor (unsigned int flags,

Objectld id,
Objectld *ancestor,
Cornponentld •ancestor_cornponent

);

29

SWI Toolbox_ GetTemplateName (Ox44ecc)

SWI Toolbox_ GetTemplateName (Ox44ecc)

30

On entry

RO =nags
R 1 = object id
R2 = pointer to buffer to hold template name
R3 = length of buffer

On exit

Use

R3 = length of buffer required (if 1~2 was zero)
else buffer pointed at by R2 holds template name
R3 holds number of bytes written to buffer

This SWI returns the name of the template used to create the obJect whose id is
passed in R I.

C veneer
extern _ kernel_oserror *toolbox_get_ template_name (unsigned int flags,

Objectid id ,
char *buffer ,
int buff_size,
int *nbytes

) ;

Introduction to the Toolbox

SWI Toolbox_RaiseToolboxEvent (Ox44ecd)

On entry

RO = nags
R I = object id
R2 component id
R3 = pointer to Toolbox event block

On exit

Use

R I -R9 preserved

This SWI ra ises the given Toolbox event. The block pointed at by R'3 shou ld have

the formal described in Format of a ToolfJOx event on page 13. The Toolbox wi II put the
unique reference number into the block before exit from this SWI. The object id

and loptionall component id will be those filled in on return from Wimp_Poll, they

refer to the object on which the Toolbox event IS being raised: the Toolbox does not

check the validity of these values

C veneer
extern kernel _oserror *toolbox raise toolbox_event unsigned int flags,

Objectld id,
Componentld component,
ToolboxEvent •event

);

31

SWI Toolbox_ GetSyslnfo (Ox44ece)

SWI Toolbox_ GetSyslnfo (Ox44ece)

32

On entry

RO nags

RO Value

0
I
2
3
4

Meaning

return task name
return 4-word messages file descriptor
return name of directory passed to Toolbox_lnitia l ise
return task's Wimp task hand le
return pointer to sprite area used

Rl. R2 depends on entry value of RO (see below)

On exit

RO

Use

On entry

0

2

3

4

On exit

R2 holds size or buffer required (if R I was 01
else buffer pointed at by R I ho lds task name
buffer pointed al by Rl contains a 4-word messages file
descriptor

R2 holds size of burfer required (if Rl was 01
else buffer pointed at by R I holds directory name passed Lo
Toolbox_ In itia I i sc

RO conta ins task hand le
RO contains sprite area pomter

This SWI is used to get information for the client application The nature of the
information required is indicated by RO

C veneer
extern kernel_oserror *toolbox_gct sys_ info (unsigned int reason_codc,

_kernel_swi_regs *regs
);

Introduction to the Toolbox

SWI Toolbox_lnitialise (Ox44ecf)

On entry

RO = flags
Rl = last Wimp version number known to task • I 00 (must be :2:31 0)
R2 = pointer to list of Wimp message numbers which the client wishes to re<..eive.

terminated by a 0 word
If R2 points to just a 0 word. then all messages are delivered

If R2 = 0. then no messages are delivered (apart from the Quit message)
R3 = pomter to Hst of Toolbox event codes wh1ch the client wishes to rece1ve.

terminated by a 0 word
If R3 points to just a 0 word, then all Toolbox events are delivered
If R3 0. then no Toolbox events are delivered

R4 =pointer to Directory name in which to find resources
R5 = pointer to 4-word buffer to receive messages file descriptor
R6 =pointer to buffer to hold object ids on return from Wimp_Poll (the id block)

On exit

Use

RO =current W1mp version number • 100
R I - Wimp task handle for this client
R2 = Pointer to Sprite area used
Buffer pointed to by R5 is filled in with a MessageTrans file descriptor for the
messages file to be used

This SWI is used by the client application before any other Toolbox SWis

First the Toolbox tries to load a file called res in the directory given by the '>Iring

pointed to by R4 : this 1s done by calling SWI Toolbox_LoadResources

If a file called res 1s not found then the Toolbox tries res<n> where n is the
currently configured country number

The application directory is searched for a Sprites file appropriate for the current

mode (i .e. ca lled Sprites. Sprites22, or Sprites23) and if such a fi le exists.

a sprite area is al located. and the file loaded into this area. A pointer to the area is

returned in R2 (or I is returned if there was no such file found. and so the Wimp

Sprite pool is used for Sprite references in the client application)

This SWI registers a file c.alled 'Messages· found in the given directory with
MessageTrans and passes back a 4-word MessageTrans file descriptor for use by

the client SWI Wimp Initialise is called on the client's behalf. using the Wimp
version number passed in R I. and the messages list pointed at by R2

33

SWI Toolbox_lnitialise {Ox44ecf)

34

If a file called Messages is not found. then the Toolbox tnes Message<n> where
n is the cu rrently configured country number

The task name passed to SWI Wirnp_lnitialisc must be given in the client's
messages file. it should be an entry with tag '_TaskName·

The buffer pointed at by R6 will be used on each call to Wimp_Pollto inform the
client which object an event occurred on, and that object's parent C:md ancestor
objects On return from Wimp_f'oll this block will be filled in as follows

C veneer

R6 + 0

R6 -t 4
R6 + 8
R6 + 12
1~6 + 16
R6 + 20

ancestor ob1ect 1d
ancestor component id
parent object id
parent component id
·self' object id
'self' component id

extern kernel_oserror *toolbox initialise { unsigned int flags,
int wimp version,
int *wimp messages,
int *toolbox_events ,
char *directory,
MessagesFD *mfd,
IdBlock •idb,
int *current_wimp version,
int *task,
int *sprite_area

);

Introduction to the Toolbox

SWI Toolbox_LoadResources (Ox44ed0)

On entry

RO = flags
R I = pointer to resource filename

On exit

Use

R I - R9 preserved

This SWI lodds the given resource file. and creates any objects which hdve the
auto-create bit set When such an object is created, the Toolbox raises a
Toolbox_ObjcctAutoCreated Toolbox evcnl.

The filename of the resource file should be a rull path name

After this SWI has been called. any tcmpldtes from the resource file can be used to
create objects by quoting the template name.

C veneer
extern _kernel_oserror •toolbox_load resources (unsigned int flags,

char *resources
);

35

SWI Toolbox_ TemplateLookUp (Ox44efb)

SWI Toolbox_ Template lookUp (Ox44efb)

On entry

RO = flags
R I = pointer to template name (Ctrl terminated)

On exit

RO = pointer to descnption block

Use

This SWI returns a pointer to a block suitable to pass to Toolbox. CreateObject or
Window _ExtractGadget.

C veneer
extern _kernel_oserror *toolbox template lookup

36

(unsigned int flags,
char *name,
void **id ,

);

Introduction to the Toolbox

Toolbox events

Toolbox_Error (Ox44ec0)

Block

+ 8 Ox44ec0
+ 16 error number
-+ 20... error text

Use

All Toolbox SWis may return direct errors with the V bit set If any part of the

Toolbox detects an error. whilst it is not processing a SWI, it will raise a

Toolbox_Error event which the client can report when he next ca lls Wimp_Poll.

For example, if a cl ient uses Toolbox_ShowObject on an object which has the bit

'>et to warn the client before the object is shown, the Toolbox will wait until the

next call to Wimp Poll before actually showing the object. if there is an error when

it tries to do the show. then this will be reported through a Toolbox_Error event.

smce the SWI Toolbox .ShowObject will have already returned with no error

indicated.

C data type

typedef struct
{

ToolboxEventHeader hdr;
int
char

} ToolboxErrorEvent;

errnum;
errmess [256-20-sizeof(ToolboxEventHeader}

-s izeof (Objectld)
-sizeof(Componentid)
-sizeof (i nt)];

37

Toolbox events

38

Toolbox_ ObjectAutoCreated (Ox44ec1)

Block

+ 8 Ox44ecl
+ 16 Name of template from wh1ch object was created

Use

This Toolbox event 1s raised by the Toolbox after it creates objects from templates
which have their auto-create bit set. when the application's resource hie is loaded.
Th is allows the cl ient dpplication to get th e ids of such objects for later usc.

This event is also raised when an attached object is created as a s1dc-effect of
creating the object to which it is atached

The client can establ ish the object's id by looking at the ·self' he ld of the id block
which it passed to Toolbox_lnitialise (see Iaten

C data type

typedef struct
{

ToolboxEventHeader hdr;
char template_name

[256- 20-sizeof(ToolboxEventHeader)-sizeof(Objectid) - sizeof(Componentld)];
} ToolboxObjectAutoCreat edEvent;

Toolbox_ ObjectDeleted (Ox44ec2)

Block

+ 8 Ox44ec2

Use

This Toolbox event i<> raised by 1 he Toolbox after it deletes an object lt is usefu l
when a ·recursive· delete is done. resulting 1n other ob1ects being deleted

The client can establi<>h the object's id by looking at the ·self' held of the id block
wh ich it passed to Toolbox_lnit iali sc.

C data type

typedef struct
{

ToolboxEvent Header hdr;
ToolboxObjectOeletedEvent;

2

Guide To Hyper

Building an application

This chapter de<>cribes how an appliciltion (!Hyper. which can be found in the

L:xamples directory) was designed with Acorn C/C 1 1 In narticular it

demonstrates how using !ResEd and IResTest can lead to very short design times.

The first section describes how to use ! llyper. and the second section is a

description of how it was designed and implemented

! llyper is a multi-document viewer ror HCL files (see H!JperCard Conlroi Language on

page 63 for the syntax) HCL files define stacks of cards allowing multiple Draw

objects to be linked such that a user may click on active areas (called flat spots I of <1

viewer to navigate between different cords Only one card from a stack is vtsible at

any time in a viewer. although being mult1-document ! Hyper may display several

views onto the same stack. each of wh1ch may be displaying <l different card

! llyper is sta rted by double-clicking on ils application icon or by double clicking on

an HCL file (but on ly after !Hyper has been seen by the Fi ler\

Application icon menu

Clicking Menu over the application 1con will display the following menu

"
Show stack ''
Delete stack ,.,

Oult

info leads to a standard program information dialogue box

Show stack allows any closed viewers to be reopened or brings to the top an

already opened one

Delete stack will remove it from memory

Note that if no stacks have been load<'d then the shov.· stack/delete stack will be

greyed out.

Quit will exit the application.

39

Guide To Hyper

40

Once a <>tack has been loaded. ! llypcr will open a viewer displaying the ·Home
Card of that stack ~or example

T P e

About Acorn CIC++

The Toolbox

I
~

develop

1SetPaths oocs examples lbrar1es tools

Previous I Home J lOaded
'i
IIJ

The user can move from one card to another by clicking on hotspots Hot Spots will
usually be identifiable in some way. though !llyper will change the pointer shape
whibt it is over one It is also possible to jump lo the Home Card or back to the
previous card by clicking on the action buttons in the status area at the bottom of
the window.

Pressing menu over a viewer window will display lhe following menu

Fole Info "F1 ,.
Scale View F11 1

Fond Keyword F4 r-
Pnnt Pmt

./ S1atus Lone "S

This al lows various operations to be performed on the stack being displayed

File Info displays mformation about the file

Scale View leads to a standard -;calc dialogue box which lets the user zoom in and
out on a card.

Find Keyword allows searching for keywords that are stored in the stack Thi~
allows an index type search to be dpplied.

Print... allows the current card to be printed.

Building an application

Status line controls whether or not the status area is to be displayed at the
bottom of the viewer window

Keyboard Short-cuts

Clicking in a viewer gives it the keyboard input focus Th1s then allows various
keyboard short-cuts to work. The standard keys for Find Keyword Scale View.
File Info and Print ... all work (as can be seen from the menu. PICtured above) as
well as p and h for previous and home.

How !Hyper was designed
It is worth having !Hyper at hand whilst reading this section. Load ing its resource
file into !ResEd and IResTest will make it eas ier to see the va rious linkages
between objects and observe the events that are raised when in teracting with the
user interface. The chapters later in this manual give full informa tion on each of
the classes involved.

Requirements

Before designing the structu re of! Hyper we had to decide what it must be able to
do We wanted to des ign a HyperCard-type application with the following features

• mult i-document capability

• navigation between cards (based around Draw files) using hotspots

• home/previous facility

• keyboard driven option

• suitable for range of screen modes/scalable output

• easily extendible

• easy to make a demo version

• find capability

• abil ity to print a card

• maintain history of all loaded ca rds.

41

How !Hyper was designed

42

Design decisions

From the required feCJtures. we made the following design decisions

Shared objects and client handles

The multi ·document support suggested the use of shared objects and the use of
client handles for maintaining what file the viewer was showing By doing this we
would reduce memory usage (by just having one copy of the shared menus and
dialogues) without complicating the association between events on a menu and
the viewer that it was opened from

Event driven interface

Given that we wanted to extend and modify the mterface easily, we decided to
make it event driven as opposed to object driven In other words when registering
event handlers, we register for specific event numbers. rather than a generic event
(C g ActionButton_Selected) on a specific component of an ob1ect In this way we
are able to modify the interface (e .g reorder a menu or even move menu entries off
onto a submenu) without having to change the code

AboutToBeShown events

We also decided to take advantage of a number of features offered by the toolbox
such as the 'About To Be Shown' events These made it possible to set up dialogue
boxes as they were bemg shown. dnd not have to update them constantly as other
parts of the application altered data A less obvious benefi t of this mechanism is
that since the toolbox tells us the object id of what is being shown. we do not have
to remember this ourselves. and in tact it is possible to let the toolbox
autom<:ltically create such objects

A good example of th1s is the Program Information box This is crL'ated by the
toolbox as a side effect of creating the iconbar (wh ich is created on init ial isation
due to it having its AutoCreate bit sen We then just need to register for the
Proglnfo_AboutToBeShownEvent and in our h<:lndler set the version string from
our message file

Standard objects

To be Style Guide compliant (and lo make less work for ourselves) we can usc the
standdrd PrintDbox. Scale. Proglnfo and Filelnfo obrect templates supplied by the
Toolbox

Keyboard short~cuts

As we want ! Hyper to be keyboard drivable. we can make use ot the Toolbox's
keyboard short -cuts fe~cility

Building an application

How !Hyper was implemented

The rest of thrs chapter takes you through the stages involved in implementing
!Hyper It breaks down into the following sections

• Crt•atillg a11d tt•sling a simple resource file {or !Hyper (below]

• File loading on page 48 - coping with Filer_Open messages on HCL files

• Hamtli~rg views on page 49- extending our simple resource flle. redraw handlers.
implementing hotspots. linking data structures. showing and hiding views.
adding keyboard short-cuts etc.

• Modlflli~rg lire interface on page 58- changing the interface by editing the
resource file.

• Client Events on page 62 - a list of client events used in ! Hyper.

• Summary on page 62- features ot the toolbox demonstrated in this chapter.

Creating and testing a simple resource file for !Hyper

The first stage in implementing lllyper was to create and test a very simple
resource file consisting of an Icon Bar object template. a Menu object template for
the rconbar icon. and a Proglnfo object template.

Creating a basic resource file

We began by starting the resource file editor (ResLd- described in the chapter
Rt'sEd on page 4171. and then opened a new resource file display Next we
opened an object prototypes window and dragged an Icon Bar ob1ect template.
menu and Proglnfo object template to our empty resource file

lij K Q)lect proiDtypes

Ia ~ JTI ~ LEJ g the three -_ FontCbox
ject prototypes ColourObox Colour~oo- OCS FJielnto

the empty .. ---- r.
dra
ob
to
res ource file display I / 1E1 l .

FontMenu \:oor Menu
1!11 ~

~l!o Pr•ntObo• __
n51.~ Untitled1 • ~ J rgj- b]- bl
~ t [!] ~ 1oo1 As Scale Tool bar Window

' loonber Menu Proglnto ~

rename this object template to IbarMenu

-
~

' ill

43

How !Hyper was implemented

44

2 Next we double-clicked on the Proglnfo object template in the resource fi le
display This opened its properties box and we entered the informat ion we
wanted to appear in this box We also switched on Deliver event Before
showing

7rC Progtnto· f>rQglnto
Tile

.) Oe·a"ft (i om., 1 Hyper' I Lan¢10 ..;.

Purpol'el Toolbox demonstratiOn I
AUlhorl "· Acorn Computers Ltd. 199<4 I

Verstonl I
_jlnclude "lrcence· Licence type l Pl.tfiC~

Oeklerelll!'nt

[7 Be'ore shov.•ng _j When hodoe n

_j Use alternati\18 window

cancel 1 r OK J
3 Then we edited the Menu object template in the resource file display and

renamed it to IbarMenu. Next we double-clicked on IbarMenu and created
two menu entries. The first entry we named Info. and the !>ccond entry Quit

The Info ent ry we edited to include a submenu option to display the Proglnfo
object template

1 open IbarMenu and create
an Info menu entry

I

2 open the properties box for
this menu entry and switch
on Has submenu

, c SCSI ·OHarm: S Hvoer HvlX'r1

L] §] U1
l tlarMenu loon Bar Proglnro

)SVlto

J lid<«l (7 Haos..t>._,u .J~Ided
/~ 0 ~]lr1i>xt '--------! Length • (),.

Cld'act•on
O..iverowrt

, Sr>ooo oqea

SLbmenu aca>n

Dlth•"' t wnt; O..fautt <e Nono J Oth"'
I 17 Show obiect LO!§into J

t -~' ~
3 drag the Proglnfo object to the

Show object option

Building an application

The Quit entry was edited to return a particular event:

~ Menu entry ~rtoes oompenent 80 on menu lbarMeno

Cot'lpOnent 10 I 80]

Contents

li reKt QJ., 1 KeyD LengthD '(-"•

;J SproiP.

.Jl ocked .JHas submenu _jFeded

17 Help text I I Length [_j I~

1 ~ Click adioo
Oellvere,..nt .) Oetaul li Qher j &82a9t I

_j Show o~ct ow as tallloent

Submenu act10n

Oel011er event Oefa 11 • lltlne OOer

SOO\No~ct

Cancel j I OK

j
I

As we could choose our own events. the choice of 82a91 may seem strange

llowever. th is is the same event that is generated by the Quit d ialogue class.

hence if we added editor features and required a quit confirma tion. we cou ld

still use the same handles.

4 Finally we edited the leon bar object template. We set up the sprite name.

inserted some Help text. and dragged IbarMenu to the Menu button option:

kiOniir con loonBar

[D~ Pnont; o

.,_I ____ 'H..:..:ype~ I LengthO lla

Lengthl:.J (~
Select bUI.lon

Oe!Ner &IIE'nt J Oetauft li lltlne () Qher

DeliYm ewnl before &holmg

'4ust button

De lover event ...) Oefauk (i NoneJ Ckher

Trru lent

Delovtr 8V<lnt befcre shcw111g

17 Menu blf.IDO Show mtn<J I lbatMenu I
J7 '*•~elf.t I Ttis is the IH~J* appllactiOn iCXJn I Leogth~ (

Cancel ll OK I J

drag IbarMenu to the Show object option

45

How !Hyper was implemented

46

Using ResTest to check the resource file

To test out this initia l design we dragged the resou rce file from !ResEd to
!ResTest's iconbar icon (ResTest is described on page 4X9l As we had set the
AutoCreate and AutoShow opt1ons For the 1conbar object template, it appeared
immediately on the iconbar. Pressing Menu over the icon opened our menu
(IbarMenu) with the Quit and lnro options. Slid ing the mouse pointer over thE'
submenu arrow opened the Proglnfo box:

Name Res Test

Purpose f ~oolbox demo;:;St'rabon
~~-Author ~ Acorn Computers Ltd. 1994

VerSion

Clicking on ! ResTest's icon bar icon opened its Event Log win do\\ We could now
see what events were being ra1sed when we tested the mterface

fF.t I Res Test event log '" - :·· ldBlock is: (so =lx1188CE61 sc =lxFFFFFFFF po =lxllBBCDBI pc =lxFFFFFFFF
EventCode: <client event lx88188151) (flags = lxl8111888)
ldBlock is: (so =8x8188CE68 sc =lxFFFFFFFF po =8x8188CDB8 pc =lxFFFFFFFF
EventCode: Menu_RboutloBeShown (flags = 8x88888888)
ldBlock is: <so =8x818BDE78 sc =BxFFFFFFFF po =8x8188CE68 pc =8x88888181
EventCode: Proglnfo_RboutloBeSho~ (flags = lxl8181888)
ldBlock is: <so =lx8188DE11 sc =lxFFFFFFFF po =8xl8181818 pc =8x88881888
EventCode: Nindow_NindoWHasBeenHidden (flags = lx81818188)
·~ · ~

Coding

We could now start writing some code. Being event driven. we decided to use
eventl ib. Our in itia l code mere ly consisted or initiali sing the Toolbox and eventlib
and then registering our handlers At this point we just needed some quit handlers
(for the event generated by the Quit menu opt1on and For the Wimp messages) and
a handler to fill in the version string on the Proglnfo box.

Note the use of wimplib to provide easy access to the Wimp SWis.

Building an application

(from main.c)

static void app init(void)

I* initialise as a toolbox task *I
kernel oserror *e;

if ((e=toolbox_initialise(0,310, messages, tbcodes,
"<hyper$dir>",&mbl, &idblk,O,O,O)) l" NULL) {

wimp report_error(e,O,O,O,O,O);
exit(l);

I• initialise event lib •I

event_initialise(&idblk);

I* not interested in nulls or keypresses- the toolbox
handles all our keyboard shortcuts *I

event_set mask(l+256);

I* register events *I

event_register message_handler(Wimp_MQuit,quit_handler,O);
event_register toolbox_handler(-l,Quit Quit,

tbquit handler,NULL);

(from handler.c)

int tbquit handler(int event_code, ToolboxEvent *event,
IdBlock *id block, void *handle)

IGNORE (event) ;
IGNORE(event code);
IGNORE(handle);
IGNORE(id block);

quit =1;
return 1;

int quit_handler(WimpMessage •message, void *handle)

IGNORE(message);
IGNORE (handle) ;

quit =1;
return 1;

47

How !Hyper was implemented

48

-
int proginfo_show(int event_code, ToolboxEvent *event,

IdBlock *id_block, void *handle)

IGNORE(handle);
IGNORE(event);
IGNORE(event_code);

proginfo_set_version(O,id_ block->sel f _id ,
lookup_token("Version"));

return 1;

File loading

Next we turned our attention to file loading This involved coping with Filer_Opcn
messages on HCL files and files that are dragged to Lh e icon bar icon To do this we
registered some more Wimp message handlers

(from main.c)

event_register_message_handler(Wimp_MDataOpen,file_loader,O);
event_register_message_handler(Wimp_MDataLoad,file loader,O);

(from file.c)

int file loader(WimpMessage *message, void *handle)

I* only interested in HCL files */
WimpMessage msg;
IGNORE(handle);

if (message->data.data open.file type != Oxfac) return 0;

msg = *message;

msg.hdr.your_ref = msg.hdr.my_ref;

load_hcl_file(msg.data.data_load_ack.leaf name);

if (message->hdr.action code == Wimp_MDataLoad)
msg.hdr.action_code = Wimp_MDataLoadAck;
wimp_send_message(Wimp_EUserMessage,&msg, msg.hdr.sender,O,O);

return 1;

Building an application

Handling views

Now it was time to open a viewer onto a file This involved going back to our

resource file and add ing some more object templates:

• a window object template to view the files in, which we called HyperViewer

• a menu to be shown on the viewer. which we cal led ViewerMenu

• attached to this menu a Filelnfo box, a Scale box and a PrintDbox obrect
template

The dialogue box for Fllelnfo we filled in as follows (note that we switched on
Deliver event Before showing) .

..) Other

17 Filename HyperStac~
~~~~~~----~ 

FHetype I &FAC {&tac) 

Deliver event 

j7 Before show1ng _jWhen tldOen 

Cancel lj OK 

The dialogue box for Print we filled in as follows: 

Print dia 

OptiOnal features 
.-----:---, 17 Cop!eS 11 

17 Scale tador 

_j Page range 

l7 Onentat10n 

17 Draft button 

_jSetup button 

100 1% 
• /loJ f-rom 

~· Upnght -.) Sideways 

JOn (i' 011 

Show window 

to 1 

[ ~ {( E 1e nt before show•ng 

_J USe altemabve wmow 

Cancel II OK j 

49 



How !Hyper was implemented 

50 

We changed the default values in the dialogue box for Scale as follows· 

Title 

(i Default .J Other Length • 

Values 

Mn1mum~ Mivl1murn ~ Step StzeCCJ 

Preset values 

~% QD% 
_j Include "Scale to Ill" button 

Deliver event 

..JBetore sllowing _jWherl h1dden 

_J Use alternative w1ndow 

Cancel II OK 

We then ed ited ViewerMenu. dragging the above three object templates to the 
Show object options in the appropriate Menu entry properties boxes. 

For example. the Scale View Menu entry propertte~ box: 

nent &0 Ill menu V.ewerMenu 

Component 10 I &0 

Contents 
(i Text Scale Vif!W: I Key~ Length[] f~ 
.J Sprite 

_jTjd(ed rv Has submenu _jFaoed 

l7 Help text Length[] /_j. 

Click action 

Deliver event fi Default -....)Other 

._ J Show o~ct ':i!low as lrans.ent 

Submenu action 
Deliver event .J Defau~ ti None ,) Other 

I Scale I 
Cancel 11 OK 

Having filled in all three menu entries. we then edited the HyperViewer window 
object template. We dragged ViewerMenu to the Show menu field and filled tn 
the other window properties boxe<> as appropnate 



Building an application 

--------------------An----~----------- --
Note that, to receive redraw events, we switched off the Auto-redraw flag in the 
Other properties dialogue in the HyperViewer window. This will affect the 
appearance in !ResTest and so, for the purposes of this demonstration. is left on. 

Our resource file display now looked like Lhis 

I@J.;ii(J SCSI::DHarris.$.Hvcer.Hvcer2 ~ 
f 

~ 6] tTI ~ "" - I 
File Into HyperVi&wer lbarMenu Icon Bar I" 

liJ ~ rgJ u - ; 
PnntDbox Pmglnfo Scale ViewerMenu ~ 

After connecting them we dragged the resource file to ! ResTest. Our icon appeared 
on the icon bar as before, but now when we pressed Menu over !ResTest's icon and 
looked at the Create submenu. we saw all the new object templates that we added. 

Scale 
ViewerMenu 

lbarMenu 
Icon Bar 
Proglofo 

PrintDbox 
Fllelnfo 
HyperViewer 

We then clicked on HyperViewer to create a viewer. This also unfaded the Show 
option and allowed us to go into the Show submenu and see all the object ids that 
had been created: 

&187CEFO: "HyperViewer· 
&1S7FACO: "Filelnto• 
&1886140· "Scale• 
&19070CO: •PrintDbox" 
&1870900: "ViewerMenu• 

The Show submenu has three columns: 

• Lhe first indicates (via a tick) whether the object is showing 

• the second is the unique identifier for a particular object- called the object id 

• the third is the name of the template from which it was created. 

51 



How !Hyper was implemented 

52 

When we cl icked on the HyperVicwer entry in the Show submenu the viewer Wds 
displayed on the screen. As a side effect of the creation the menu tree for the 
viewer was created as well. Pressing Menu over the viewer displayed the menu as 
one would expect: 

IDI.ll:J, - 11 . HyperVIIIW ! •I ·~r. fj 

; 

~c ·,,r 'HYDer 
F•le Into "F1 ~ 
Scale View F11 ,... 
Pnnt ... Pmt 

\i ... . ,,;.. ,..,_ 
"'ffi 

Moving the pointer over the submenu drrows displayed the File Info and Scale 
View dialogue boxes 

• Modified? l No -
T)-pe I HycaL {tac>-

HyperStack 

f!i.'J Scale View 

w.l 75o;. l 
Scale I too! I /~ "1. :::-1-·· 

~ 150o/oj 

StZe I 1024 
Date I 1 o 49 5317--Ma--y---1-9..._94 _ __.1 Cancel Scale 

Clicking on Print ... displayed the Print dia logue persistently 

IIQI LWII NTX 

Copiesw , ~ 
Scale~ /~% 

ti L\)nght ..j Sideways 

_jOralt 

Cancel I I Pnnt J 



Building an application 

The code to support these new features can be found in the C files under the 

!Hyper dtrectory of the examples As with the code fragments above they take the 

form of regtstering a handler for a specific event in app_init (e.g. 

Filelnfo AboutToBeShown) and then handling the event elsewhere Note that the 

print code is an essentia lly standard print job/render loop. differing only in that it 

uses the Draw File module to do the rendering. See print.c for more 1 nformation on 

this 

For the v1ewer (see vtew c) we create a WIndow object from a template ~called 

HyperVicw. as seen in the! ResT est menu) and attach various hand lers Lo cope with 

RedrawRequests and CloseWindow r0quests. Note that there is no need to register 

for Open Window requests as this is done on our behalf by the toolbox (as we set 

the AutoOpen bit of the window's template) . We also register for mouse click 

events on the window The relevant handler (click_viewer} sets input focus to the 

window and if applicable jumps to a new card. 

Redraw handler 

The redraw handler ~in draw c) is a standard Wimp redraw handler that uses the 

DrawFile module to render into the wtndow. Note that the DrawFile module is cJ 

generic renderer (i.e not Wimp specifk} and so needs absolute coordinates and a 
transformation matrix We use the lilller in the simplest sense- just as a way of 

scaling the Draw files 

Scaling 

The sca ling is set whenever the user cl icks sca le on the Scale box. If you have the 
1ResTest Event Jog window open with the Resource fi le loaded. you will see that a 

·scale_ApplyFactor' event is generated We use this in a handler (in draw c) to 

adjust the transformation matrix 

OC IS: SO : X SC : X PO : X 

E11entCode: RctionButton_Seltcted (flags = 8dl888124) 
Idllock is : (so =lx818£2'81 sc =lx882CI886 po ~lx88811881 pc =ldlll8111 ~o =hllllllll ac =hi 
EnntCode : flctlonButton_Selechd (fh•s = h8811188C> 
IdBiock 1s: <so =hi18£2UI sc =lxFFFFFFFF po =hllllllll pc =hiHIIIII ao =hllllllll ac =lx 
EventCodt: Nindow_Minclt~~hsBtenHiddtn (fhgs = 8x11188111l 
IdBiock is : (so =lx81886141 sc =h882CIII6 po =8xi187D9D8 pc •lx81111881 ao =8dl87CEF8 ac =8xF 
E11tntCode: Sc~le_ftpphfactor (flags = lx88818888) ~ 

factor = 75 % 

ancestor object id 

The object id for the ancestor of the Scale_Applyractor event in this example is 

& 187CEr'O This equates to the object id of HyperViewer (as shown in the Show 

submenu on page 51) This is because the viewer is the ancestor of this menu The 

usefulness of this becomes apparent when more than one viewer object is shown 

53 



How !Hyper was implemented 

54 

::::;;o;;a;w:wwwwwwa:xxx -- --- -
Implementing hotspots 

To implement the hotspots on a view, we add gadgets (components of a Window 
Object) to our viewer window. We use the simplest gadget type. a button gadget. 
which is quite close in functionality to a Wimp icon (see button. c) Rather than 
hard code the definition of the gadget into the code, Window_ExtractCadgetlnfo is 
used to get the basic gadget definition from a window template ca lled 'Properties'. 

Unking the data structures 

Not surprisingly, we link all the data structures for the loaded files together on a 
linked list. However. we do not need to search down this list every Lime an event 
happens by using client handles (see view. c) we can attach the address of the 
relevant structure to an object In this way. when we get a redra~Ao event. we just find 
out the client handle of the viewer on which it happened and can determine what 
Draw files are to be rendered 

This also works for the menu tree. even though we are sharing the menu tree 
amongst all the open views. the ldBiock that initialised the toolbox is filled in w1th 
the ancestor of the tree. In Hyper. that will be a viewer (we set the Ancestor bit of 
the HyperView template). So, for example, when we receive a Scale_ApplyFactor 
event (as in Scalii1fl on page 53). the ancestor is the viewer that leads to the scale 
object being shown This also applies to PrintDboxes. even though they are shown 
persistently. 

Showing and hiding views 

As we want a history of all views. we build a 'Views· submenu whiCh will be off the 
icon bar menu. In common with other applications we want the abil ity to show a 
view and remove one from memory. In both cases the list of views is the same This 
allows us to take advantage of shared objects again We just need one menu that 
we build up entry by entry and make this a submenu of the 'Remove View· and 
'Show View' entries that are added to the iconbar menu. When an event happens 
on this menu. we just need to find out the parent component (from the ldBiockl to 
determine whether we are removing or showing a view We can also use another 
useful toolbox feature. in that 1t is the client that chooses the component ids This 
means we can choose the address of the structure that defines a view as its 
component id - allowing very easy association between the menu entry and the 
view it refers to. Note that by having an about to be shown event enabled for the 
iconbar menu. it was possible to fade or unfade the ·show view and 'Remove view· 
entries as required (simply by checking whether our linked list was NULL). 



Building an application 

Adding keyboard short~cuts 

With the interface beginning to stabilise. il was possible to start adding some of 

the keyboard short-cuts. These were t;cncra l ly decided by the Style Guide (e.g. Fl l 

for scale). though some aspects of the interface requ ired keys specific to l lypcr 

(e.g. previous and home) to generate events. Al l this was hand led through !l~e<>ld 

(using the keyboard short-cuts option from the window object template menu) 

without any additional code requirement. 

f;i 

Ked Key code I 
_J Deliver event 

_jShow object Trans1ent 

~!8 Oeleto I 
Cancel II OK 

Adding a status bar 

A status bar wa<> also provided by creating a Tool bar conta ining a button gadget: 

jeutton 1 
This Tool bar object template was then dragged to the Toolbars dialogue box from 

the HyperV1ewer window 

1~ 1 TOOibars HvoerV1ewer 

I Internal 

_jTop left 

f7 Bottom left I Statu~ I 
External 

_jTop left 
I 

_j Bottom left . 
Cancel II OK J 

55 



How !Hyper was Implemented 

56 

···- *¥HC:c:& * MMI* ·-
By using an internal bottom left toolbar. the pa rent window could be resized whilst 
still allow1ng the status to be visible. Previous and home action buttons were 
added (generating the same event codes as the keyboard short-cuts. so no 
additional code was required) as well. 

l P11Mous J __!!'~ J leu110n 

To control the visibility of the status bar. a menu entry jand appropriate keyboard 
short-cut) was added that would tick according to whether the status was showing. 
The handler for this IS in handler c Note that since the status is on a per-viewer 
basis. we need to know when the viewer menu is openecljand over what viewer) to 
determine whether the option shou ld be ticked or not 

Adding a find capability 

Finally, to provide a find capabi lity, a custom dialogue was designed using !ResEd 
sta rting from a basic Window and adding gadgets from the gadgets window 

label labelled box writable field 
I I 

10.1 I Find KevW<ll'd 1 
' I Keyword! 

Search From ·- ] (i' Home Card J Current Card 

" # 

'\. / Cancel I Ne~t I ' -
' .. • 

radio buttons action buttons 

= ~ ~~ 
: 49 .. 99 ~~ 111] B 
..--- - +.:>1 m Button 1 Strtng set 1!J Oraggable 

gadgets window 

The properties dialogues for the two action buttons were 

Component 10 ~ 01 WWldcw fFi'dDbO•-

Text! earc:e( 1 LAn!I'IO t ~ 
.J~ oq.ct Show ~ 

Oelwt< ewnt 
(i Otlaut 

eunon 
_!Oeta.t 

_jHtlp le\1 

_jFadtd 

<.) Other 

~_j~ OK 

Col!'pon&ntiO ~ ol WWldcw I FindObo• 

r.,,, Nm I LAngtho /,l 
_jShoo. or,.a ShOw as""""""'' 

Sulton 

(7o.'llut 

..JHttp Uo>l 

I _jFadecl 

OK 

leaving the Local options switched off results in the Toolbox 
automatically closing the dialogue box when clicked on 



Building an application 

The Next action button was made the default and assigned a specific event code 

The Home Card radio button properties dialogue was filled in as follows (this 
radio button was speci fied as the selected radio button) : 

Radio button 

Component 10 I &6 I of window I Fif'ldObox 

in group J 1 

TeKt .--,---lt>-me-Car-~-:------.1 LengthO f ~ 

Delrver event 

..,) Default (i None 

17 Selected 

_jHelpteKt 

_j Faded 

lengthD 10. 

_ Cancel J I OK 

The Current Card radio button properties dialogue was edited to be similar to the 
Home Card radio button, except that it was not specified as the selected radio 
button 

The Keyword writable field properties dialogue was filled in as follows 

rrJ Wntable held 

Component 10 I &3 of window I Fif'ldDbox 

TeKtjL__ __ __!.,. ____ ~...Jilength~ f ~ 
Justify -

(i'Left ..) Centre 

_jSpecify allowed characters 

a 7 "-'1 

_j Password behaviour 

j 
link to gadgets 

_j Before _j After 

_j Deliver events when value changes 

_j Help text lengthD t .A 
_jFaded 

After choosing suitable components and event codes. the handler code can be 
written in a self contained unit. 

57 



How !Hyper was implemented 

'Ill' 

58 

Modifying the interface 

One of the original requirements was that it shou ld be easy to modify the interface 
to 1 Hyper By taking an event driven approach it is possible to make significant 
changes to the User Interface. without altering the code Alternatively when 
adding new functionality, this can be done in a modular fashion by adding the 
required handlers and registering them when required 

Adding an export DrawFile facility 

As an example. consider adding an export DrawFile facility. This would allow saving 
away the Draw files that make up the ca rd on show in the viewer The best way to 
implement this would be· 

• add a new submenu to the main menu. and call this new submenu File 
• create two menu entries in this submenu; the first entry will replace the 

Filelnfo menu entry currently on the main menu: the second entry would 
provide an export facility (implemented using a simple SaveAs dialogue) 

This can be achieved easily by some very s1mple editing of the resource file 
Drag a Menu object template from the Object prototype window to the 
resource file. and rename the object template to FileMenu 

2 Edit ViewerMenu and add a new menu entry to it. 

lf'.J]~" Miitlu· V•ewerMenu r.. 

~· 7c ~ 
Filelnlo "F1 1> 

ScaJeV•ew F11"' 
Find Keyword F4 II" 
Print Print 

~ Status Line "S - - v .... I"' r.~l 

...._ Mllllr; ~· I 
Fie lnlo "F1 r-

Scale Vtew F11 ,.. 
Find Keyw(l(d F4 · 
Pnnt Pnnt 

.; Status Lin& "S 



Building an application 

Now ed it the new menu entry and rename it to File. Then drag the new menu 

object template FileMenu to the Show object option 

I &5 at ,_,II Vle_.,..nu 

(7 Has submer1u _jFaded 

LengthLJ /.A 

Deliver ev'ent (i' Otfaul ..) Olhec 

hew ill ITallSIOIIt 

Submenu actron 

Oehller event r. Default J t«>ne ..) Othec 

rv' ShOw object I File Menu J 

3 Next double-click on the FileMenu obJect template Rename the title File. 

and then Shift-drag the File Info menu entry from ViewerMenu to it. To make 

the copied menu entry Style Guide compl iant rename it to Info 

igr '-'"' ' ' l:''1f• 
Frle Into ·' 1 

File ~>-

Scale Wrw F11 ,. 

Fllld KeywOI'd F• .,.. 

Pmt Pnnt 
Status line 'S 

shift-drag the 
File Info menu 
entry to the new 
submenu and rename 
the entry Info 

Moving the File Info menu entry from ViewerMenu to the new File submenu is 

a very simple way of relocating this menu option from one menu to another As 

we rely on the Filelnfo_AboutToBeShown event. it doesn't matter where it is in 

the interface; it will still work 

59 



How !Hyper was implemented -

60 

4 Now drag a SaveAs object template from the ObJeCt prototype window to the 
resource file. Edit Lhis object template to specify that the filetype should be 
Draw File: 

T1tle 

(i Default ,..) Other 

Filename! lkllld~ 
Filetype~wf1le (&aft) :J 

_j Include ·se1ect1on· button 

_j Client participatE's S~ts RAM transfers 

Deliver event 

_jBefore showing _]When hidden 

_j Use alternative window 

cancel II a< i 
5 Finally return to Lhc File menu and create an Export menu entry (by renaming 

the default entry title Menu Entry to Export) edit this entry and drag the 
SaveAs object template to the Show object opt ion 

oont &0 m menu F1leMenu 

~xport I KeyD LAnglhD l..l 
0 Sprite 

_j TICked 17 Hos sublnenu _jFadrld 

_jHe,ptM LAng1ho l..l 

Od<adlon 
Deliver event (e Oetautt .) Other 

_.j Show o~ct Show a ransl(ln! 

Sub'nenu actiOn 

Oe~vtf event v Oefaut !e None J Ottler 

p Show object [ Save As! _) 

Cancel 'j OK 



Building an application 

The final submenu shou ld now appear as follows 

Into 'F1'" 
Export ,.. 

The code for the export facility would consist of registering for the various toolbox 

events and then handling them in a separate area of the code 

If you now dragged the resource file to ResTest. you would see 

Modified? r -• NO 

Type ~HyCaL (fac) 

HyperStack 

·s Size 

Date 

Other possible modifications 

By this time the viewer menu could begm to get cluttered It would then be very 

easy to drag off some of the entries to a separate 'Utilities' submenu. Again. being 

event driven and remembering that the handlers operate on the Ancestor of the 

menu tree. they wil l continue to work without code alteration. 

Making a demo version of Hyper could be achieved by removing or fading parts of 

the interface with ! Res Ed 

61 



How !Hyper was implemented 

62 

Client Events 

A number of events were used in Hyper that were 'Client specified' These are listed 
here to help understand properties and output m !ResEd and !ResTest. 

Event 
number 

&101 

&103 

&1'50 

&151 

&900 

&90 1 

Usage 

Go to Home card 

Go to previous card 

Start find operation 

lconbar menu is about to be shown 

Viewer menu is about to be shown 

Toggle status ba r 

Other standard events were enabled for dialogues being shown. Print etc 

Summary 

Th is chapter has demonstrated the following features of the toolbox: 

Toolbox feature see section/file 

shared objects and client handles Sftared ob,ects and clrent ftandles on page 42 

About to be shown events AboutToBrSfwwn events on page 42 

add ing and removing gadgeb button.c 
at run-time (see Implementing fwtspots on page 54} 

creating objects from a template view c (see page 53) 

auto creation AboulToBeShown eve~rts on page 42 

the Draw file renderer draw.c (see page 53) 

event handling with eventlib Coding on page 46 

Menu handling Creating a basic resource file on page 43 

keyboard short-cuts Adding keyboard short-cuts on page 55 

clrent specified events and Sfrowing and hiding views on page 54 
component ids 



Bwlding an application 

HyperCard Control Language 

HyperCard Control Language (HCll is used by 'Hyper to control wh1ch draw files 

are displayed to the user and when tumps should be made to new cards. lt is 

beyond the scope of this example to describe an ed itor, so the foll owing section is 

provided to describe the commands that are used. 

HCL commands 

All card definitions are enclosed within start and end directives 

! ! start name 

! !end 

where name is cardXXXXXXXX, XXXXXXXX being an 8 digit hex number. 

Other commands are as follows: 

Command 

button bbox name 

clear 

colour n 

gosub name 

goto name 

keyword s tring 

load file 

overlay file 

stack s t ring 

status string 

title s tring 

Action 

sets up a hotspot at the given position and sets 

its behaviour to go to the named card when 

clicked on 

removes all buttons and Draw flies from the 
viewer window 

sets the background colour to the given 
decimal va lue 

allows ·inclusion' of common functionality 

allows common ending of cards 

sets kcyword(s) for this card allows sea rching 

with the find dialogue box 

loads a file into the bottom layer- overlay will 

do this if it follows a clear 

loads a draw file into the next r:lVailable layer 

sets the name of this stack to the given string. 

This will appear in the iconbar menu 

changes the status line to the g1ven string 

sets the ti tle bar to the given string 

There are also a number of commands that are only used by an editor These are 

not described here as they are not required by !Hyper 

63 



64 



3 

User interface 

Colour Dialogue box class 

A Colour Dialogue box object allows the user to specify a colour using a variety 

of colour models. 

The colour selection window can be described as follows 

Fill oolour 
colour model 
radio buttons ..... l'i' RGB .) CMVK ,.) HSV 

colour model 

spec;fic area 1 

colour patch 

ri 0 Red 1 30slt ~ .,. 

II ,_)Green~ I % 

(i Blue j10o.o1 I \% 

None button action buttons 

• At the top is a row of radio buttons- these select which colour model is being 

used 

• In the middle is an area defined by the current colour model- detarls of th1s 

are described overleaf. 

• /\L the bottom of t he window is 1 he colour patch. an optiona l None button 

which controls transparency. and the window's action buttons. 

65 



Application Program Interface 

Application Program Interface 

66 

Attributes 

A Colour D1alogue object has the following attributes which are speofied 111 its 
object template and can be manipulated at run-t ime by the client application 

Attributes 

flags 

Description 

Bit 

0 

Meaning 

when set. this bit indicates that a 
ColourDbox_AboutTobeShown event should be 
raised when SWI Toolbox_ShowObject is called for 
this object 

when set. th is bit indicates that a 
ColourDbox_Dia logueComplcted event shou ld be 
raised when the Colour Dialogue object has been 
removed from the screen 

2 when set. include a None button in the dialogue 
box 

3 when ~ct . select the None button when the 
d ialogue box is created 

title th is gives an alternative string to use instead o f the st ri ng 
·colour Choice· in the title bar of the dialogue box 
(0 means use default) 

max ti tle length this gives the maximum length in bytes of ti tle text which 
will be used for this object 

colour an RGB v<J iuc for the initial colou r va lue 

Note that it is possible to set and read whether a Colour Dialogue has a None entry 
at run-time using the following methods (described on page 751: 

ColourDbox SetNoneAvailable 
ColourDbox GetNoneAvai lable 

Manipulating a Colour Dialogue object 

Creating and deleting a Colour Dialogue object 

A Colour Dialogue object is created using SWI Toolbox. CreateObject 

When this object is created it has no attached object<; (sec page II). 



Colour Dialogue box class 

A Colour Dialogue object is deleted usmg SWI Toolbox_DeleteObject 

The setting of the non-recursive delete bit does not have a meaning for Colour 
Dialogue objects 

Showing a Colour Dialogue object 

When a Colour Dialogue object is displayed on the screen using SWI 
Toolbox_ShowObject it has the following behaviour 

Position Show type 

0 (ddaultt the underlying window is shown at the last place shown 
on the screen. or the coordinates given in its template. if 
it has not already been shown 

2 (toplertl R3 + 0 visible area minimum x coordinate 
R3 + 4 vi sible area minimum y coordinate 

For most appl ications it will not be necessary to make these calls explicit ly, but 
instead to mark the templates with their auto-create bit set. so that a Colour 

Dialogue object is created on start-up. 

Before the dialogue box is shown 

When the client ca ll s Too lbox_ShowObjecl. a ColourDbox_AboutToBeShown 
Toolbox event is raised (if the approprinl<' flags bit is set). allowing the cl ient to 
take any last minute action. Typically, n cl ient will indicate which of the colours 
shou ld be shown as the currently selected one. when it receives thi s evenl. 

Setting and reading the colour used in a Colour Dialogue box 

It is possible for the colour which is currently selected in the dialogue box to be set 
by the client application This is independent of the colour model being used. 
since the colour IS specified as an RGB colour value The client passes a ·colour 
block' to the Colour Dia logue module which has a one-word RGB value as its first 
word; the rema1nder of the block is intended to support any future colour models 
other than RGB, CMYK and HSV. It has a size fi eld followed by 
colour-model-specific data. For cl ients not requiring this extensibility. the size field 

shou ld be set to 0 The method for setting the colour thus used in a Colour 
Dialogue is ColourDbox_SetColour 

The current colour (and colour model data) can be read using the 
ColourDbox. GetColour method (descnbed on page 72) 

67 



Application Program Interface 

68 

Setting and reading the colour model used in a Colour Dialogue 

The colou r model used in a Colour Dialogue is normally chosen by the user by 
clicking on the appropriate radio button. The client can however set this at 
run-time using the ColourDbox_ScLColourModel method. passing a colour 
number ( RGB=O. CMYK= I. HSV=2). If any other colour model is required. then 
further colour-model-specific data must also be passed to this method (none arc 
currently supported) 

The cu rrent colour model used can be read using the 
ColourDbox_GetColourModel method. 

Reacting to colour selections 

When the user has round the correct colour he wants. he will click the OK button m 
the Colour Dialogue box. The Colour Dialogue module delivers a 
ColourDbox_ColourSe lected Too lbox event to the client at this point giving the 
RGB value of the colour chosen 

Completion of a Colour Dialogue 

When the Colour Dia logue module has hidden its dia logue box at the end of a 
dialogue. it delivers a ColourDbox_Dia logueCompleted Toolbox event to the 
client. with an indication of whether a colour selection occurred during the 
dialogue. 



Colour Dialogue box class 

Colour Dialogue methods 

The followmg methods are all invoked by calling SWI Toolbox_MiscOp with · 

RO hold ing a flags word 
R I being a Colour Dialogue id 
R2 being the method code which distinguishes this method 

R3-R9 potentially holding method-specific data 

ColourDbox_GetWimpHandle 0 

On entry 

RO = flags 
R l = Colour Dbox object id 
R2 = 0 

On exit 

RO = Wimp window handle of underlying window 

Use 

This method returns the Wimp window handle of the window used by the 

underlymg Colour Picker module to implement the Colour dialogue The value 

returned is only valid when the Colour dialogue box is showing 

C veneer 

extern kernel_oserror *colourdbox_get wirnp_ handle ( unsigned int flags, 
Objectid colourdbox, 
int •wimp handle 

) ; 

69 



Colour Dialogue methods 

70 

ColourDbox_GetDialogueHandle 1 

On entry 

RO llags 
R I =Colour Dbox object id 
R2 = I 

On exit 

RO ColourPicker dia logue hancil c o f underlying dialogue box 

Usage 

Th1s method returns the handle of the dialogue box used by the underlying Colour 
Picker module to reference the Colour dialogue. The value returned is only va lid 
when the Colour dia logue box is showing. 

C veneer 

extern _ kernel_oserror •colourdbox get_dialogue_handle ( unsigned int flags, 
Objectld colourdbox, 
int *dialogue_handle 

); 



Colour Dialogue box class 

ColourDbox SetColour 2 

On entry 

RO =nags 
bit 0 set ===- select the None option 

R I - Colour Dbox object id 
R2 2 
1~3 = pointer to colour block 

On exit 

R I-R9 preserved 

Use 

This method sets the colour curren tly d isplayed in the Colour Dialogue (adjusti ng 

the colour slice shown. the sliders, and the writable fields appropriately) 

The colour block is defined as follows 

+0 0 
+I blue value (0, . . , &FF) 
+2 green va lue 
+'3 red value 
+4 size of the remainder of this block (which may be 0) 

+8 colour model number 
t I 2 other model-dependent data 

Currently there arc no extra colour models supported. so the size field at byte 

offset 4 should be set to 0 

If bit 0 of the nags word is set (select the None option) then 1~3 may be 0 

C veneer 

extern _kernel_oserror *colourdbox_set_colour ( unsigned int flags, 
Objectld colourdbox, 
int •colour block 

); 

71 



Colour Dialogue methods 

72 

ColourDbox GetColour 3 

On entry 

RO fl ags 
R I Colour Dbox object id 
R2 3 
R'3 - pointer to buffer for colour block 
R4 size of buffer 

On exit 

if bit 0 of RO is set => None is selected 

R4 = size of buffer required (if R3 was 0) 
(currently fixed because no extra colour models are supported) 
else buffer pointed at by 1<3 conta ins colour information 
R4 holds number of bytes written to buffer 

Use 

This method retu rn s the colour cu rrenlly displayed in the Colour Dialogue 

The colour block is defined as follows 

+0 0 
+I blue value (0, . . , &FF) 
+2 green value 
+3 red value 
+4 size of the remainder of this block (which may be Ol 
+8 colour model number 
+I 2 other model dependent data 

C veneer 

extern _kernel oserror •colourdbox get_colour ( unsigned int flags, 
Objectid colourdbox, 
int •buffer, 
int buff size , 
int •nbytes 

); 



Colour Dialogue box class 

ColourDbox_ SetColourModel 4 

On entry 

RO- flags 
R I = Colour Dbox object id 
R2 = 4 
R'~ = pointer to colour model block 

On exit 

R I-R9 preserved 

Use 

This method sets the colour model currently used in the Colour Dialogue. The 

colour which is being displayed will now be shown using the new colour model. 

and the layout of the dialogue box will change accordingly. 

The colour model block is defined as follows 

+0 size of the remainder of this block (currently only 4) 

t-4 colour model number 
+8 . other model-dependent data 

The current va lid colour model numbers are: 

0 RGB 
CMYK 

2 HSV 

Currently there arc no extra colour models supported. so the size field at byte 

offset 0 should be set to 4 (i.e. just d colour model number). 

C veneer 

extern _kernel oserror *colourdbox set colour_model ( unsigned int flags, 
Objectld colourdbox, 
int •colour_model. block 

); 

73 



Colour Dialogue methods 

74 

ColourDbox GetColourModel 5 

On entry 

RO =flags 
R I = Colour Dbox object id 
R2 '5 

R3 = pointer to buffer for colour block 
R4 = size of bulfer 

On exit 

Ril =size of buffer required (if R3 was 01 
(currently fixed because no extrd colour models are supported 1 
else buffer pointed at by R3 conta 1ns colour information 
R4 holds number of bytes written to buffer 

Use 

This method returns the number of the colour model currently used in the Colour 
Dialogue 

The colour model block is defined as follows· 

+0 size of the remainder of this block 
+4 colour model number (currently 0 = RGB. I = CMYK and 2 = HSV) 
+8. other model-dependent data 

C veneer 

extern _kernel oserror *colourdbox get_colour_model ( unsigned int flags, 
Objectld colourdbox, 
int *buffer, 
int buff_size, 
int •nbytes 

); 



Colour Dialogue box class 

ColourDbox SetNoneAvailable 6 

On entry 

RO =flags 
R I = Colour Dbox object id 
R2- 6 
R3 non-zero means None is avai lable 

On exit 

R 1-1~9 preserved 

Use 

This method sets whether a None option appears in the Colour Dialogue. 

C veneer 

extern _kernel_oserror *colourdbox_set none_available unsigned int flags, 
Objectld colourdbox, 

ColourDbox GetNoneAvailable 7 

On entry 

RO flags 
R I - Colour Dbox object id 
1~2 7 

On exit 

if bit 0 of RO is set. then None is available 

Use 

int none 
); 

This method returns whether the None option appears in a Colour Dialogue 

C veneer 

extern _kernel_ oserror *colourdbox get none_available ( unsigned int flags, 
Objectld colourdbox, 
int *out_flags 

); 

75 



Colour Dialogue events 

Colour Dialogue events 

76 

There are a number of Toolbox events which are generated by the Colour Dialogue 
module. 

ColourDbox_AboutToBeShown (Ox829c0) 

Block 

+ 8 Ox829c0 
+ 12 Oags (as passed in to Toolbox_ShowObjecL) 
+ 16 value which will be passed in R2 to TooiBox_ShowObject 
+ 20 block which will be passed in R3 to TooiBox_ShowObject for the 

underlying dialogue box 

Use 

This Toolbox event is raised when SWI Toolbox ShowObject has been called for a 
Colour Dialogue object It gives the application the opportunity to set fields in the 
dialogue box before it actually appears on the screen 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int show type; 
union 

TopLeft pos; 
WindowShowObjectBlock full; 
info; 

ColourDboxAboutToBeShownEvent; 



Colour Dialogue box class 

ColourDbox _ DialogueCompleted (Ox829c1) 

Block 

+ 8 Ox829c l 
+ 12 nags 

bit 0 set means that a colour selection was done during this dialogue 

Use 

Th is Toolbox event is ra ised after the Colour Dialogue object has been hidden. 

either by a Cancel click. or after an OK click, or by the user pressing Escape. It 

allows the client to tidy up its own state associated with this dialogue 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
} ColourDboxDialogueCompletedEvent; 

ColourDbox_ColourSelected (Ox829c2) 

Block 

+ 8 Ox829c2 
+ 12 nags bit 0 set means None was chosen 

+ 16 colou r block chosen 

Use 

This Toolbox event is ra1sed when the user clicks OK in the dialogue box The 

colour block has the same format shown in the ColourDbox_SetColour method 

Note that event if the None button is set. a colour va lue is sti ll returned. renect ing 

the current state of the dialogue box 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
unsigned int colour_block[(212/4)]; 

ColourDboxColourSelectedEvent; 

77 



Colour Dialogue templates 

• 

Colour Dialogue templates 

78 

The layout of a Colour Dialogue template is shown below. Fields which have types 
MsgReference and StringReference are those which will require relocation when 
they are loaded from a resource file If the template is being constructed in 
memory, then these fields should be real pointers (ie they do not require 
relocation) . 

For more details on relocation . sec appendix Resource File Formats on page 497 

Field Size in bytes Type 

flags 4 word 

title 4 MsgReference 

max title 4 word 

colour 4 word 



4 

User interface 

Colour Menu class 

A Colour Menu object is used to show a menu grvmg the 16 desktop colours 

(and an optional None entry), and to allow the user to select one of these 

colours by clicking on its menu entry 

The Colour Menu allows the user to select from the set of available desktop 

colours (and an optional None entry wh ich appears at the bottom) The menu is 

displayed showing the 16 desktop colours. Optiona lly any one of the colours can 

be shown as selected (with a tick agarnst itl 

When a hit is received for the Colour Menu. a Toolbox event is returned to the 

client. This contains the colour number of the selected colour. The selected colour 

is shown as ticked in the Colour Menu. when the menu is next shown (or 

immediately if Adjust is held down) 

79 



Application Program Interface 

·- ----········-----·- ------·-·· we 

Application Program Interface 

80 

Attributes 

A Colour Menu object has the following attributes which are specified in its object 
template and can be manipulated at run-time by the client application: 

Attribute 

flags word 

menu title 

max title 
length 

colour 

Description 

Bit Meaning 

0 when set. this bit indicates that a 
ColourMenu_AboutToBeShown event should be ra ised 
when SWI Toolbox. _ShowObject is called for this Colour 
Menu 

when set, this bit indicates that a 
ColourMenu_HasBeenHidden event should be raised 
when the Menu has been removed from the screen 

2 when set. include a None entry in the menu (will appear 
with None as its last entry) 

this gives an alternative string to use instead of the string 
'Colour in the title bar of the menu 

this gives the maximum length in bytes of Litle text which 
wil l be used for this Colour Menu 

this is an indication o f which colour is selected when the 
Colour Menu is first created. Possible values are 
0- 1 '5 for the desktop colours 
16 for ·None' 
-I to indicate that no colour should be selected 

Manipulating a Colour Menu object 

Creating and deleting a Colour Menu 

A Colour Menu object is created using SWI Toolbox_CreateObject 

When this object is created it has no attached objects (see page II). 

A Colour Menu object is deleted using SWI Toolbox_DeleteObject 

The setting of the non-recursive delete bit docs not have a meaning [or Colour 
menus 



Colour Menu class 

Showing a Colour Menu 

When a Colour menu is displayed on the screen using SWI Toolbox_ShowObject it 

has the following behaviour 

Show type 

0 (default) 

Position 

64 OS units to the left of the mouse pointer 

I (fu ll spec) R3 + 0 gives x coordinate of top-left corner of Menu 
R3 + 4 gives y coord inate of top-left corner of Menu 

2 (topleft) R3 + 0 gives x coordinate of top-left corner of Menu 
R3 + 4 gives y coordinate of top-left corner of Menu 

Before the menu Is shown 

When the client cal ls Toolbox_ShowObject. a ColourMenu AboutToBeShown 

Toolbox event is raised (if the appropriate flags bit is set). allowing the client to 

take any last minute action. Typically, a client will indicate which of the colours 

should be shown as the currently selected one. when it receives this event 

Setting and getting the selected colour 

For a Colour Menu. one of the colour entries can be designated the se lected colou r 

(indicated by a tick against it in the menu) Colours within the menu are numbered 

like the Wimp colours from 0- I 5 (with 16 meaning 'None·. and -1 meaning ·nothing 

selected') 

The currently selected colour entry can be set and read dynamtcally using the 

ColourMenu_SetColour/ColourMenu_GetColour methods 

Note that when the user clicks on a colour en try, that wi ll become the selected 

colour automatica lly without calling ColourMenu_SetColour As wil l be seen later. 

a user click results in a Toolbox event being delivered to the client. indicating 

which colour was selected 

The client can dynamically set whether a None entry is given, by using the 

ColourMenu_SetNoneAvai lable method (and read whether il is available using the 

Co lou rMen u_GetNoneAva i lable method). 

Processing a colour selection 

Whenever the user clicks on a colour entry a ColourMenu_Selection Toolbox event 

is rat sed to indicate which colour was chosen (one of 0-15. or I 6 to indicate 

'None'). 

81 



Colour Menu methods 

Getting the underlying menu object ld 

The object id of the underlying menu object used to implement a Colour Menu can 
be obtained using the ColourMenu_GetMenuiD method (normally you would not 
need to do this) 

Colour Menu methods 

82 

The following methods are all invoked by ca lling SWI Toolbox_MiscOp with 

RO 
Rl 

holding a flags word 
being a Colour Menu id 

R2 
R3·R9 

being the method code wh1ch distinguishes this method 
potentially holding method-specific data. 

ColourMenu_SetColour 0 

On entry 

RO = flags 
R I = Colour Menu object id 
1<2 = 0 
R3 = Wimp colour (0· 15. or 16 for 'None·. or -I for 'noth ing selected') 

On exit 

R I-R9 preserved 

Use 

This method selects a colour as being the currently selected one for this Colour 
Menu. and places a lick next to it Note that this change will only be visible when 
the Colour Menu is next shown 

C veneer 

extern _kernel_oserror •colourmenu_set colour ( unsigned int flags, 
Objectid colourmenu, 
int wimp colour 

); 



Colour Menu class 

ColourMenu GetColour 1 

On entry 

RO =nags 
R I - Colour Menu ob1ect id 
R2 I 

Exit 

RO - Wimp colour selected (0-15. or 16 for 'None·. or -I for 'nothing selected') 

Use 

This method returns the Wimp colour which is currently selected for this Colour 

Menu. 

C veneer 

extern _kernel_oserror *colourmenu_get_colour ( unsigned int flags, 
Objectld colourmenu, 

ColourMenu_ SetNoneAvailable 2 

On entry 

RO flags 
R I = Colour Menu object id 
R2- 2 
R3 = non-zero means allow a 'None· entry 

On exit 

R I-R9 preserved 

Use 

int *wimp_colour 
); 

This method sets whether there is a 'None· entry for this Colour Menu. 

C veneer 

extern _kernel oserror *colourmenu_set_none_available unsigned int flags, 
Objectld colourmenu, 
int none 

); 

83 



Colour Menu methods 

84 

ColourMenu GetNoneAvailable 3 

On entry 

RO flags 
R I Co lour Menu object id 
R2"" 3 

On exit 

RO "" non-zero means there is a 'None· entry 

Use 

This method returns whether this Colour Menu has a 'None· entry 

C veneer 

extern _kernel oserror •colourmenu get_none available ( unsigned int flags, 
Objectld colourmenu, 

ColourMenu SetTitle 4 

On entry 

RO"" Oags 
R I "" Colour Menu object id 
R2 4 
R3 "" pointer to text string to use 

Exit 

I~ I -R9 preserved 

Use 

1.nt •none 
); 

Th1s method sets the text which is to be used in the title bar of the given Colour 
Menu 

C veneer 

extern _kernel_oserror •colourrnenu set_title unsigned int flags, 
Objectld colourmenu, 
char •title 

); 



Colour Menu class 

ColourMenu GetTitle 5 

On entry 

RO - nags 
R I = Colour Menu object id 
R2 = '5 
R3 pointer to buffer to return the text in (or Ol 
R4 size of bu ffer 

Exit 

R4 - s1ze of buffer requ1red to hold the text (If R3 was Ol 
else Buffer pointed to by R3 contains title text 
R4 holds number of bytes writlcn to buffer 

Use 

This method returns the text string used in a Colour Menu's title bar 

C veneer 

extern _kernel_oserror *colourmenu get_ title ( unsigned int flags, 
Objectld colourmenu, 
char *buffer, 
int bu!f_size, 
int *nbytes 

); 

85 



Colour Menu events 

Colour Menu events 

86 

There are a number of Toolbox Events which are generated by the Colour Menu 
module: 

ColourMenu_AboutToBeShown (Ox82980) 

Block 

+ 8 Ox82980 
+ 12 flags (as passed in to Toolbox_ShowObject) 
+ 16 value which wi II be passed in R2 to Tool Box_ShowObject 
+ 20.. block which will be passed in R3 to TooiBox_ShowObject for the 

underlying Menu object 

Use 

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for a 
Colour Menu object It gives the application the opportunity to set the selected 
colour before the menu actually appears on the screen. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int show_type; 
TopLeft pos; 
ColourMenuAboutToBeShownEvent ; 

ColourMenu _ HasBeenHidden (Ox82981) 

Block 

+ 8 Ox82981 

Use 

This Toolbox Event is raised by the Toolbox when Toolbox_HideObject is called on 
a Colour Menu which has the appropriate bit set in its template flags word. ll 
enables a client application to clear up after a menu has been closed. It is also 
raised when clicking outside a menu or hitting Escape 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
} ColourMenuHasBeenHiddenEvent; 



Colour Menu class 

ColourMenu Selection (Ox82982) 

Block 

+ 8 Ox82982 
+ 16 Wimp colour selected (0-1 '5 or 16 for 'None') 

Use 

This Toolbox event is raised when the user has clicked on one of the Colour entries 

in the Colour Menu The colour value returned is in the range 0-15 for the desktop 

colours. or 16 for 'None· 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int colour; 
ColourMenuSelectionEvent; 

Colour Menu templates 

The layout of a Colour Menu template is shown below. Fields which have types 

MsgReference and StringReference are those which will require relocation when 

they are loaded from a resource file If the template is being constructed in 
memory, then these fields should be real pointers (i e. they do not require 

relocation) 

For more details on relocation. see appendix Resource File Formats on page 497 

Field Size in bytes Type 

flags 4 word 

title 4 MsgReference 

max-title 4 word 

colou r 4 word 

87 



Colour Menu Wimp event handling 

Colour Menu Wimp event handling 
The Colour Menu class responds to certain Wimp events and takes the actions as 
described below: 

88 

Wimp event 

Menu Selection 

User Msg 

Action 

The colou r number corresponding to the menu 
selection is sent back to the client via a 
ColourMenu_Selection event. 
If Ad just is held down. then the currently open 
menu is re-opened in the same place 

Message_HelpRequest 
(while the pointer is over a Colour Menu object) 
If a help message is attached to this Colour Menu. 
then a reply is sent on the application's behalf 



5 

User interface 

Discard/Cancel/Save Dialogue 
box class 

ADiscard/Cancei/Save ( DCSl Dialogue box is used by the client application when 

the user attempts to close a window containing modified and unsaved data 

A DCS dialogue object is used to allow the user to save data whtch has been 

modified usually before a document window is closed 

The dialogue box which appears on the screen has a number of components: 

title bar ) :.. Edt 

message ---- rhis file has been modified 

[)scard J Cancel I 
... 

Discard button Cancel button Save button 

• a title bar (by default containing the name of the application i £> the message 

whose tag is '_TaskName') 

• a message stating (by default) th<lt there is unsaved data 

• three Action Buttons Discard. Cancel and Save (defau lt action button). 

The user sees the followmg behavtour (note that a click with the ad)ust button is 

treated in the same way as a select clickt 

• if they click on Discard, the box is closed, the parent window is closed. and its 

(new) contents discarded 

• if they click outside the dialogue box (and it was opened transiently, ie with 

Menu semantics). or click on Cancel the box is closed. and the close on the 

parent window is cancelled 

• if they click on Save or press Return. the box 1s closed. and either the data is 

saved without further interaction (if a suitable full pathname is ava ilable). or a 

SaveAs dialogue appears allowing an icon to be dragged to where the data 

should be saved When the save is complete, the parent window is closed 

89 



Application Program Interlace 

Application Program Interface 

90 

When a DCS object is created. it has a number of optiona l compon<'nts: 

• an alternative title bar string instead of the client's name 

• an alternative me~sage to use 1n the d1alogue box 

• the name of an alternative template to use for the underlying Window obj<'cl. 

lust before the DCS dialogue box is shown on the screen. the client is delivered a 
DCS_AboutToBeShown Toolbox event if enabled by the nags word 

Once the dialogue box is displayed on the screen. the DCS modu le handles events 
for it. and raises a number of Toolbox Events to indicate what choice the user has 
made These are DCS Discard. DCS_Cancel and DCS .Save respectively If the 
dialogue is closed. then the client receives a DCS_DialogueCompleted event if 
enabled by the appropriate bit in the nags word (see below). 

Attributes 

A DCS ob1ect has the following attributes which are specified in its ob1ect template 
and can be manipulated at ru n-time by the client appl ica tion 

Attributes 

nags 

DCS title 

max title length 

message 

max message 
length 

window 

Description 

Bit 

0 

Meaning 

when set. this bit indicates that a 
DCS_AboutTobeShown event should be raised 
when SWI Toolbox_ShowObject is called for this 
object 

when set. this bit ind icates that a 
DCS_DialogueCompleted event should be raised 
when the DCS object has been removed from the 
screen. 

an alternative string for the title bar other than the client's 
name (0 means use application name) 

this gives the maximum length 1n bytes or title text which 
wi ll be used for this object 

an alternative message to use in the DCS dialogue box 
(other than 'This file has been modified') 

this gives the maximum length in bytes of the message 
which will be used for this object 

an alternative window template to use instead of the 
defau lt one (o means use defau lt) 



Discard/Cancel/Save Dialogue box class 

Manipulating a DCS object 

Creating and deleting a DCS object 

A DCS object is created using SWI Toolbox_CreateObject. 

When this object is created it has no attached objects (see page I I ). 

A DCS object is deleted using SWI Toolbox DeleteObject. 

The setting of the non-recursive delete bit does not have a meaning for DCS 

objects 

Showing a DCS object 

When a DCS object is displayed on the screen using SWI Toolbox_ShowObject it 

has the follow ing behaviour: 

Show type 

0 (default) 

I (full spec) 

Position 

close to the po1nter 

R3 + 0 
R3 + 4 

R3 + 8 

visible area mmimum x coordinate 
visible area minimum y coordinate 
visible area maximum x coordinate 

R3 + 12 visible area maximum y coordinate 
R3 + 16 scroll x oHset relative to work area 
R3 + 20 scrol l y offset relative to work area 
R3 + 24 Wimp window hand le of window to open beh ind 

-I means Lop of stack 
-2 means bottom of stack 
- '3 means the window behind the Wimp's 

backwindow 

2 (topleft) R3 + 0 visible area minimum x coordinate 
R3 + 4 visible area minimum y coordinate 

Changing the DCS dialogue's message 

When a DCS dia logue object is created il has a default message warning the user 

that he has unsaved data which will be lost if he closes the window. 

This can be set and read dynamically using the DCS_SetMessage and 
DCS_GetMessage methods (described on page 93). 

Getting the ld of the underlying window for a DCS object 

The window ob1ect id of the Window object used to implement the DCS Dialogue 

can be obtained by using the DCS GetWindowiD method. 

91 



DCS methods 

DCS methods 

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with 

RO holding a flags word (which is zero un less otherwise stated) 
I~ I being a DCS Dialogue object id 
R2 being the method code which distinguishes this method 
R3-R9 potentially holding method-specific data 

DCS GetWindowiD 0 

92 

On entry 

RO = flags 
R I ..., DCS object 1d 
R2 ..: 0 

On exit 

RO \Vmdow object id for this DCS object 

Use 

This method returns the id of the underlying Window object used to implement 
this DCS object 

C veneer 

extern kerne l _oserror *dcs _get_window_ i d ( unsigned i nt flags , 
Objectld des , 
Objectld *window 

); 



Discard/Cancel/Save Dialogue box class 

DCS _ SetMessage 1 

On entry 

RO- flags 
R I = DCS object id 

R2 = I 
R3 = pointer to butter holding new message (Ctrl-terminated l 

On exit 

R 1-R9 preserved 

Use 

Th is method sets the message used in the DCS dialogue's window. 

C veneer 

extern _kernel_oserror •dcs_set_message ( unsigned int flags, 
Objectid des, 
char •message 

); 

93 



DCSmethods 

DCS _ GetMessage 2 

94 

On entry 

RO =nags 
I~ I - DCS object id 
R2 = 2 
R3 pointer to buffer to hold message 
R4 - size of buffer to hold messdge 

On exit 

R4 size of buffer required to hold message (if R3 was 0) 
else buffer pointed at by R3 holds message 
R4 holds number of bytes wntten to buffer 

Use 

This method returns the current message used in a DCS object 

C veneer 

extern kernel_oserror •dcs_get message ( unsigned i nt flags, 
Objectid des, 
char •buffer, 
int buff size, 
int *nbytes 

); 



Discard/Cancel/Save Dialogue box class 

DCS _Set Title 3 

On entry 

RO = flags 
R I = DCS object id 
R2 = 3 
R3 = pointer to text string to use 

On exit 

R I -R9 preserved 

Use 

This method sets the text which is to be used in the title bar of the given IKS 
dia logue. 

C veneer 

extern _kernel_oserror *dcs_set_title unsigned int flags, 
Objectld des, 
char *t1.tle 

); 

95 



DCS methods 

DCS GetTitle 4 

96 

On entry 

RO ndg~ 

R I = DCS object id 
R2 = 4 
R3 =pointer to buffer to return the text in (or 0) 
R4 = size of buffer 

On exit 

R4 = size of buffer required to hold the text (if R3 was Ol 
else Buffer pomted to by R3 contains title text 
R4 holds number of bytes written to butler 

Use 

This method returns the text string used 1n a DCS dialogue's t1tle bdr 

C veneer 

extern _ kernel_oserror •dcs_get title ( unsigned int flags, 
Objectid des, 
char •buffer, 
int buff_size, 
int •nbytes 

); 



Discard/Cancel/Save Dialogue box class 

DCS events 

The DCS module generales the following Toolbox events: 

DCS _ AboutToBeShown (Ox82a80) 

Block 

+ 8 Ox82a80 

+ 12 value wh1ch will be passed in 1~0 to Toolbox_ShowObject 
1 i e show nags. such as 'Sho\\· as menu· l 

+ 16 value wh1ch will be passed in R2 to TooiBox_ShowObject 
+ 20. . block wh1ch will be passed in R3 to TooiBox_ShowObject for the 

u ndcrl yi ng d ia Iogue box. 

Use 

This Toolbox event is raised just before the DCS modu le is going to show its 

underlying Window object 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int show_type; 
union 

TopLeft pos; 
WindowShowObjectBlock full; 
info; 

DCSAboutToBeShownEvent; 

97 



DCSevents 

98 

DCS_Discard (Ox82a81) 

Block 

+ 8 Ox82a8 1 

Use 

Th1s Toolbox event is raised when the user clicks on the Discard button. 

C data type 

typedef str uct 
{ 

ToolboxEventHeader hdr; 

OCSDiscardEvent; 

DCS _Save (Ox82a82) 

Block 

+ 8 Ox82a82 

Use 

Th1s Toolbox event is raised when the user clicks on the Save Button or presses 
Return It is then the client's responsibility to either save the data directly to [ile. or 
to display a SaveAs Dialogue object 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 

DCSSaveEvent; 



Discard/Cancel/Save Dialogue box class 

DCS_DialogueCompleted (Ox82a83) 

Block 

+ 8 Ox82il8'~ 

Use 

This Toolbox event is raised after the DCS object has been hidden. either by a 
Cancel click. a Save click or a Discard click. or by the user clicking outside the 

dialogue box (if opened transiently) or pressing Escape lt allows the client to tidy 
up its own state associated with this dialogue 

C data type 

typedef struct 
{ 

ToolboxEventlleader hdr; 

DCSDialogueCompletedEvent; 

DCS _Cancel (Ox82a84) 

Block 

+ 8 Ox82a84 

Use 

Th is Toolbox even t is rai sed when the user clicks on the Cancel button or presses 
the Escape key 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr ; 

DCSCancelEvent; 

99 



OCS templates 

DCS templates 

The layout of a DCS template is shown below Fields which have types 
Msgl~eterence and StringReferencc are those which will require relocation when 
they are loaded from a resource file. If the template is being constructed in 
memory. then these fields should be real pointers (i.e they do not require 
relocation). 

For more details on relocation . sec appendix Rl'source Fill' Formats on page 497 

Field 

flags 

title 

max t itle 

message 

max_message 

window 

Size in bytes 

4 

4 

4 

4 

4 

4 

Type 

word 

MsgReference 

word 

MsgReference 

word 

Stringl~eference 

Underlying window template 

100 

The window object used to implement a DCS d1alogue. has the following 
characteristics. These must be reproduced if the Window is replaced by a 
client-specified alternative Window template: 

Title bar must be indirected. 

Gadgets 

Component ids are derived by adding to Ox82a800 

Component id 

0 

2 

Details 

button gadget 

action button (Discard ) 

action button (Cancel ) 
must be marked as a ·cancel' action button 

action button (Savel 
must be marked as a Default' action button 



DCS Wimp event handling 

Wimp event 

Mouse Click 

Key Pressed 

' if enabled 

Discard/Cancel/Save Dialogue box class 

Action 

on Discard button raise DCS_Discard Toolbox event. then 

a DCS_DialogueCompleted Toolbox event• 

on Cancel button raise DCS_Cancel Toolbox event. 
then a DCS DialogucCompleted Toolbox event* 

on Save button raise DCS_Save Toolbox event. 

then a DCS_DialogueCompleted Toolbox event' 

on Return ra1sc DCS_Save Toolbox event. 
then a DCS DialogueCompleted Toolbox event • 

on Escape then act as if Cancel had been clicked 

Note that if opened 1 ra nsiently, DCS DI<JiogueCompleted may be raised without 

any of DCS_Cancel DCS_Discard or DCS_Save being raised This could arise from 

the user clicking on the backdrop or opening a menu. 

101 



102 



6 

User interface 

File Info Dialogue box class 

A File Info dialogue object is used to display information about a hie (or a 
directory or application) in a dialogue box 

A File Info d ialogue has the follow ing information held in its dialogue box 

-· AboUt this r• ·R modified 

e Modified? 1 NO _ .. 
Type I Text (Iff) 

button gadget 
~ type of file 

file size SCSI OHarns $ StOI)' 

SIZe I 1024 

·I Date j 10495317-May-1994 
filename 

file date .. 

• an indication of whether the file is modified (a textual display field w1th the 
text 'YCS' or 'NO') 

• a sprite representing the file type (i .e. a sprite named fil e_xxx whert' xxx ic; the 
hex representation of the file type I If the fi letype is Ox I 000 a directory sprite is 
used. and if Ox2000 an application sprite is used 

• the type of the flle (a textual display field with the textual filetype followed by 
its hex value in brackets) 

• the full path name of the file or '<untitled>' (a display field) 

• the si.::e of the file in bytes (a display field giving the size of the filet 

• th e date the file was last written to (a textual display field showing the date in 
·•umc· format) . 

103 



Application Program Interface 

Application Program Interface 

104 

Attributes 

A rile Info object has the following attributes which arc specified in its object 
template and can be manipulated at run-time by the client applicatiOn 

Attributes 

flags 

Description 

Bit 

0 

M eaning 

when set. this bit indicates that d 

Filelnto_AboulToBcShown event should be raised 
when SWI Toolbox_ShowObjcct is ca lled tor this 
object 

when set, this bit indicates thc1t a 
Filelnfo Dialo~ueCompleted event '>hould be 
raised when the File Info object has been removed 
from the screen. 

File Info title alternative title to use instead of 'About thb file' 
(0 means use default title I 

max title length this gives the maximum length 1n bytes of title text which 
will be used for this object 

modified an indication as to whether the hie 1s to be marked as 
modified from creation 

file type 

filename 

filcsize 

date 

window 

a word giving the RISC OS filetype 

the initial filename to use in the dia logue box tit this field 
is 0, then the strin~ '<untitled>' is used 

size of the hie in bytes 

a 5-byte UTC time 

the name of an alternative window template to use 
instead of the default one [0 means use default) 



File Info Dialogue box class 

Manipulating a File Info object 

Creating and deleting a File Info object 

A Fik Info ob1ect 1s created using SWI Toolbox_CreateObject 

When th1s ob1ect is created it has no attached objects (see page I I) 

A rile Info object is deleted using SWI Toolbox_DeleteObject 

The selling of the non-recursive delete bit does not have a mean in~ for File Info 
objects. 

Showing a File Info object 

When d File Info object is displayed on the screen using SWI Toolbox ShowObject 
il hns the tollowi ng behaviour: 

Show type 

0 (default) 

I (full spec) 

2 (toplcft) 

Position 

the underlying window is shown at the last place shown 
on the screen. or the coord inates given in its template. if 
it has not already been shown 

R3 + 0 
R3 + 4 
R3 + 8 

visible <:HeCI minimum x coordinate 
visible area minimum y coordinate 
visible area maximum x coordinate 

R3 + 12 v1s1ble area maximum y coordinate 
R3 + 16 scroll x offset relative to work area 
R3 + 20 scroll y offset relative to work area 
R3 + 24 Wimp window handle of wmdow to open behind 

-I means top of stack 
-2 means bottom of stack 
- '3 means the window behind the Wimp's 

backwindow 

R3 + 0 visible area minimum x coordirwte 
R3 + 4 visible area minimum y coord inate 

Before the File Info dialogue box is shown 

When SWI Toolbox_ShowObject is called. a Fi lelnfo_AboutToBeShown Toolbox 
event is raised, if the appropriate bit is set in the File Info dialogue object's flags 
word This enables the client to set any of the dialogue box's field<; before it is 
displayed 

105 



File Info methods 

Setting and reading the fields of the File Info dialogue 

All of the display fields in a File Info dialogue can be set and read dynamically at 
run-time. The sprite displayed in the dia logue box depends on the value of the 
filetype field. 

The methods used to do this are 

Filelnfo_SetModified 
Filelnfo_Set File Type 
Filelnfo_SetFi leName 
Fi lei nfo_SetFi leSize 
Fi lei nfo_SetDate 

I ilelnfo_GetModified 
I ilelnfo_GetFileType 
Filelnfo_GetFi leName 
Filelnfo_Getri leSize 
Fi lei nfo_Get Dale 

File Info methods 

106 

The tollowing methods are all invoked by ca lling SWI Toolbox_ObjectMiscOp with : 

RO holdtng a flags word 
R I being a File Info Dialogue object id 
R2 being the method code which distinguishes thts method 
R3-R9 potential ly hold ing method-specific data 

Filelnfo GetWindowiD 0 

On entry 

RO flags 
R I File Info object id 
R2 = 0 

On exit 

RO = window object id for this File Into object 

Use 

Thts method returns the id of the underlying window object used to implement 
this Fi le Info object 

C veneer 

extern kernel_oserror *fileinfo get_window_id ( unsigned int flags, 
Objectld fileinfo, 
Objectld *window 

); 



File Info Dialogue box class 

Filelnfo SetModified 1 

On entry 

RO- fldgs 
R I = File Info object id 
R2 =I 
R'3 =value 

On exit 

R I· R9 preserved 

Use 

This method sets whether the file is to be indicated as modified o r nol. If the va lue 
passed in R3 is 0, this indicates that the file is not mod ified: any other value in R3 
means the file is modified. 

C veneer 

extern _kernel oserror *fileinfo set_modified unsigned int flags, 
Objectld fileinfo, 
int modified 

Filelnfo GetModified 2 

On entry 

RO = Oags 
R I = File Info object id 
IU - 2 

On exit 

); 

RO modified state (0 =unmodified, non-0 =modified I 

Use 

Th is method returns whether the file is indicated as modified or not. 

C veneer 

extern kernel oserror *fileinfo_get_modified ( unsigned int flags, 
Objectrd fileinfo, 
int *modified 

); 

107 



File Info methods 

108 

Filelnfo_SetFileType 3 

On entry 

RO = flags 
R I = File Info object id 
R2 - '3 
R3 = file type 

On exit 

R I R9 preserved 

Use 

This method sets the file type lobe indicated in the dialogue box. 

C veneer 

extern _kernel_oserror •fileinfo_set_ file type ( unsigned int flags, 
Objectld fileinfo, 
int file_type 

Filelnfo_GetFileType 4 

On entry 

RO flags 
R I = File Info object id 
R2 = 4 

On exit 

1~0 = file type 

Use 

); 

This method returns the file type shown in the dialogue box. 

C veneer 

extern kernel oserror *fileinfo_gel file type ( unsigned int flags, 
Objectld fileinfo, 
int •file_type 

); 



File Info Dialogue box class 

Filelnfo SetFileName 5 

On entry 

RO "' flags 
R I "' File Info object id 
R2 = 5 
R3- pointer to buffer holding filename 

On exit 

R I-R9 preserved 

Use 

This method sets the filename used in the File Info dialogue's Window There is a 

limit of 256 characters on the filename length. 

C veneer 

extern _kernel oserror *fileinfo set file_name unsigned int flags, 
Objectld fileinfo, 
char *file name 

); 

109 



File Info methods 

Filelnfo GetFileName 6 

110 

On entry 

RO = nags 
R I "" rile Info object id 
R2 = 6 
R3 = pointer to buffer to hold filename 
R4 size of buffer to hold filename 

On exit 

R4 - size of buffer required to hold filename {If R3 was 0) 
else buffer pointed at by R3 holds filename 
R4 holds number of bytes written to buffer 

Use 

This method returns the current filename used 1n a File Info object 

C veneer 

extern kernel oserror *fileinfo get fi l e name ( unsigned int flags , 
Objectid fileinfo, 
char *buffer, 
int buff_size, 
int •nbytes 

); 



File Info Dialogue box class 

Filelnfo SetfileSize 7 

On entry 

RO = flags 
Rl =File In fo object id 
R2 = 7 
R3 - file size 

On exit 

R I-R9 preserved 

Use 

This method sets the file size to be indicated in the dialogue box 

C veneer 

extern kernel oserror *fileinfo set_ file_size unsigned int flags, 
Objectld fileinfo, 

Filelnfo _ GetfileSize 8 

On entry 

RO =flags 
Rl =File Info object id 
R2 = 8 

On exit 

RO = file size 

Use 

int file size 
); 

This method returns the file size shown in the dialogue box. 

C veneer 

extern kernel oserror *fil einfo get_ file_size ( unsigned int flags, 
Objectld fileinfo, 
int *file size 

); 

111 



File Info methods 

112 

Filelnfo SetDate 9 

On e ntry 

RO flags 
R I File Info object id 
R2 9 
R3 = pomter to 5·byte UTC t1me 

On exit 

R I R9 preserved 

Use 

This method sets the date string used in the File Info dialogues window. The 
Territory Manager is used to convert the UTC lime into a time string. 

C veneer 

extern _kernel oserror *fileinfo set_date unsigned int flags, 
Objectld fileinfo, 

Filelnfo GetDate 10 

On entry 

1~0 . tlags 
R I File Info object id 
R2 = 10 

); 

R3 = pointer to buffer to hold 5-bytc lJTC time 

On exit 

R 1-R<> preserved 

Use 

int •UTC 

This method returns the current UTC time used in a File Info object 

C veneer 

extern kernel_oserror •fileinto_get date ( unsigned int flags, 
Objectld fileinfo, 
int •uTC 

); 



File Info Dialogue box class 

Filelnfo SetTitle 11 

On entry 

RO = flags 
R I = File Info objecl id 
R2 = II 
R3 = pointer to text string to use 

On exit 

R 1-R9 preserved 

Use 

Th is method sets the text which is to be used in the title bar of the given File Info 

dia logue. 

C veneer 

extern _kernel_oserror *fileinfo set_title unsigned int flags, 
Objectld fileinfo, 
char •title 

); 

113 



File Info methods 

Filelnfo_GetTitle 12 

114 

On entry 

RO = nags 
Rl =File Info object id 
R2 12 
R3 = pointer to buffer to return the text in (or OJ 
R4 = size of buffer 

On exit 

R4 = size of buffer required to hold the text (if R3 was 0) 
else Buffer pomted to by R3 contains title text 
R4 holds number of bytes written to buffer 

Use 

Th1s method returns the text string used in a File Info dialogue's title bar. 

C veneer 

extern _kernel oserror *fileinfo get titl e ( unsigned int flags , 
Objectld fileinfo, 
char *buffer, 
int buff_size, 
int *nbytes 

); 



File Info Dialogue box class 

File Info events 

The File Info module generates the following Toolbox events: 

Filelnfo_AboutToBeShown (Ox82ac0) 

Block 

+ 8 Ox82ac0 
+ 12 flags (as passed in to Toolbox_ShowObject 
+ 16 value which will be passed 1n R2 to TooiBox_ShowObject 
+ 20 block which will be passed m R3 to TooiBox_ShowObject for the 

underlying dialogue box 

Use 

This Toolbox evenl is raised just before lhe l'i le Info module is going to show its 
underlying Window object. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int show_type; 
union 

TopLefl pos; 
WindowShowObjectBlock full; 
info; 

FileinfoAboutToBeShownEvent; 

115 



File Into templates 

Filelnfo _DialogueCompleted (Ox82ac1) 

Block 

+ H Ox82acl 
+ 12 nags 

I none yet defined) 

Use 

This Toolbox event is ra ised after the File Info object has been hidden. either by the 
user clicking oulsidc the dialogue box or pressing Escape. It allows the client to 
tidy up its own state associated with this dialogue 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
} FileinfoDialogueCompletedEvent; 

File Info templates 

116 

The layout of a File Info template is shown below. Fields which have type<; 
MsgReference and StringReference are those which will require relocation when 
they are loaded from a resource file If the template is being constructed 1n 
memory, then Lhese fields should be real poinLers (i.e they do not require 
relocntion ). 

For more details on relocation. see appendix Resource File Formals on page 497. 

Field Size in bytes Type 

nags 4 word 

title 4 MsgReference 

modified 4 word 

filetype 4 word 

filename 4 MsgReference 

filesize 4 word 

date 8 2 words 

window 4 St ri ngReference 



File Info Dialogue box class 

Underlying window template 

The window object used to implement a File Info dialogue has the following 
characteristics These must be reproduced if the Window is replaced by a 
client-specified alternative Window template: 

Title bar must be indirected. 

Gadgets 

Component ids are derived by adding to Ox82ac00 

Component ld 

0 

Details 

Display Field (date) 

Display Field (size in bytes) 

Display Field (fil ename) 

Display Field tfiletype) 

Display Field (modified field) 

2 

'3 

4 

5 Button gadget (indirected sprite used to display icon for 
file type) 

6 

7 

8 

9 

File Info Wimp event handling 

Wimp event 

Open Window 

Key Click 

User Message 

Label (date) 

Label (size) 

Label (modified) 

Label (type) 

Action 

Request show the dialogue box 

if Escape, then cancel this dialogue. 

Window_HasBeen lliddcn 
hide the dialogue box 

117 



118 



7 

User interface 

Font Dialogue box class 

A Font Dialogue box shows font. weight and style of the currently selected font. 
together with a chosen height and aspect ratio. The dialogue box also has a 

writable field in which a test string in the chosen font is displayed. 

The Font Dialogue box can be broken down into the following components: 

string sets 

labels 

"" Font I Trinity 

Weight I Medium 

Style I (Plain) 

...!2'.J The quick brown fox JUIIlp5 "'er the lazy <log. writable field 

;' ~---~--nc_e_l----------~~~-Y------~ 

/ 

Try button Cancel button Apply button 

• A boxed area for setting the font. which contains three labels giving the font's 
name. weight and style; with three accompanying string sets (each string set 
contains a display field and a pop-up menu. which gives viable values for these 
fields. based on the list of currently available fonts) . The pop-up menus are 
built and processed by the Toolbox. and do not require (or allow) any client 
intervention. The Toolbox deals with ensuring that only valid font id's are 
available to be chosen. 

• Another boxed area. in which the user can set the height and aspect ratio used 
to plot the selected font. There are a number of standard sizes which can be 
chosen by clicking action buttons. and a number range into which a 
non-standard size can be entered. The aspect ratio used is specified by the 
contents of another number range. 

11 9 



Application Program Interface 

• At the bottom of the dialogue box, there is a wri table field wh ich by default 
contains the string, 'The qu ick brown fox jumps over the lazy dog' When the 
user clicks on the Try button this string is rendered in the selected font (and 
height and aspect ratio) The try stnng is limited to 64 characters long. 

• The user can cancel the dialogue by clicking on the Cancel action button or 
can apply the font selection by clicking on Apply 

Note that the stri ngs which appear in the font. weight and style display fi elds may 
be loca lised for the cu rrent territory, bu t the strings used to communicate font 
selections between the client and the Toolbox are always the ·real' font id of the 
font (e.g. Corpu~ Hold.Obliquet 

Application Program Interface 

120 

Attributes 

A Font Dialogue object has the following attributes which are specified in its object 
template and can be manipulated at run-time by the client application 

Attributes 

nags word 

Description 

Bit M eaning 

0 when set, this bit ind icates that a 
FontDbox_AboutToBeShown event should be 
ra1sed when SWI Toolbox_ShowObject 1s Gtlled for 
this ob(ect 

when set, this bit indicates that a 
Font Dbox_Dia logueCompleted event should be 
raised when the Font Din Iogue object h<1s been 
removed from the screen 

2 when set. 1nclude a System font entry in the list of 
fonts 

title an alternotivc t1tle for the dia logue box instead of Type 
style' (0 means use defau lt title) 

max t itle lengt h the maximum length in bytes of tit le text which wil l be 
used for th1s object 

initial font the font 1d to be displayed in the dialogue box as the 
selected font . on creation If 0 the default is to display the 
first font in the list of currently available fonts 

in it ial height the in itial height value when the dialogue box is created 



Font Dialogue box class 

Attributes 

initial aspect 

Description 

the initial aspect ratio value when the dialogue box is 
created 

try string an alternative string to use in the Try wntable field. 
instead of The quick brown fox jumps over the lazy dog' 

window an alternative window template to use instead of the 
default one. 

Manipulating a Font Dialogue object 

Creating and deleting a font Dialogue object 

A Font Dia logue object is created using SWI Toolbox_CreateObject 

When th is object is created it has no attached objects (see page II). 

A Font Dialogue object is deleted using SWI Toolbox_DeleteObjecl 

The setting of th2 non-recursive delete bit does not have a meaning for Font 
Dialogue objects. 

Showing a Font Dialogue object 

When a Font Dialogue object is displayed on the screen using SWI 
Toolbox_ShowObject it has the following behaviour: 

Position Show type 

0 (default) the underlying window is shown at the last place shown 
on the screen. or the coordinates given in its template. if 
it has not already been shown 

I (full spec) R3 + 0 visible area minimum x coordinate 
R3 + 4 
R3 + 8 

visible area minimum y coord inate 
visible area maximum x coordinate 

R3 + 12 visible area maximum y coordinate 
R3 + I 6 scroll x offset relative to work area 
R3 + 20 scro ll y offset relative to work area 
R3 + 24 Wimp window handle of window to open behind 

-I means top of slack 
-2 means bottom of stack 
- 3 means the window behind the Wimp's 

backwindow 

121 



Application Program Interface 

122 

Show type 

2 (topleft) 

Position 

R3 + 0 visible area minimum x coordinate 
1~3 + 4 visible area minimum y coordinate 

Before the Font Dialogue box is shown 

When the client calls Toolbox_ShowObject. a FontDbox_AboutToBeShown 
Toolbox event is raised (if the appropriate flags bit is set). allowing the client to 
take any last minute action. Typica lly. a client will indicate wh ich of the fonts 
should be shown as the current ly selected one. when it receives this event 

Setting and getting the current selection 

The currently selected font id can be set and read at run-time using the 
FontDbox_SetFonL and FontDbox GetFont methods. These use a font id wh ich 
assumes a <name>.<weight>.<style> structure (i.e. the first component appears in 
the Font field. the second in the Weight field. and the third in the Style field) 

The size (both height and aspect ratio components) are set and read using the 
FontDbox_SetSize/FontDbox_GetSize methods respectively 

The Try string can be set and read using the FontDbox_SetTryString and 
FontDbox_GetTryString methods 

Receiving a font selection 

When the user cl icks the Apply button (or presses the Return key when the Font 
Dialogue box has the input focus). the client application is sent n 
FontDbox_ApplyFont Toolbox event This event gives the font id of the currently 
selected font 

Completing a Font Dialogue 

When the dialogue box is closed. either because Apply or Cancel has been clicked. 
or Escape has been pressed. a FontDbox_DialogueCompleted Toolbox event rs 
raised for the client. with an indication of whether a font was selected during the 
dialogue. 



Font Dialogue box class 

Font Dialogue methods 

The following methods are all invoked by ca lling SWI Toolbox_MiscOp with 

RO holding a nags word 
R I being a Font Dia logue Box id 
R2 being the method code which distinguishes this method 
R3-R9 potentially holding method-specific data 

FontDbox_GetWindowiD 0 

On entry 

RO = flags 
R I = FontDbox object id 
R2 = 0 

On exit 

RO = Window object id for this FontDbox object 

Use 

This method returns the id of the underlymg Window object used to implement 
this FontDbox object. 

C veneer 

extern _kernel oserror *fontdbox_get_window id( unsigned int flags, 
Objectld fontdbox, 
Objectld *window 

); 

123 



Font Dialogue methods 

124 

FontDbox SetFont 1 

On entry 

RO = flags 
R l = Font Dbox object id 
R2 l 
R3 = pointer to font id of font to select (0 means none) 

On exit 

R I-R9 preserved 

Use 

This method selects a font as being the currently selected one for th is Font 
Dia logue box. and displays its name appropriately in the Font/Weight/Style 
display fields 

The special font id ·system Font' is used to indicate that the System entry should 
be selected. 

C veneer 

extern _kernel_oserror *fontdbox_se t _ font ( unsigned int flags, 
Objectld fontdbox, 
char •font id 

); 



Font Dialogue box class 

FontDbox_ GetFont 2 

On entry 

RO = tl ags 
R I = Fonl Dbox object id 
R2 = 2 
R3 = pointer to buffer to hold font id 
R4 = buffer size for font id 

On exit 

R4 =size of buffer required (if R3 was 0) 

Use 

else buffer pointed at by R3 holds font id 
R4 holds number of bytes written to buffer 

This method returns the font id for the font which was last specified in a 
FontDbox_SetFont call. or was last chosen by a user choice from a pop-up menu. 

The special font id ·system Font' is used to indicate that the System entry IS 

selected 

C veneer 

extern _kernel oserror *fontdbox_get font ( unsigned int flags, 
Objectld fontdbox, 
char *buffer, 
int buff_size, 
int *nbytes 

); 

125 



Font Dialogue methods 

126 

FontDbox_SetSize 3 

On entry 

RO = flags 
bit 0 set means change the height value 
bit I set means change the aspect ratio 

R l = Font Dbox object id 
R2 = 3 
R3 = he1ght value 
R4 = aspect ratio value 

On exit 

R I-R9 preserved 

Use 

This method sets the height value and/or the aspect ratio displayed in the Font 
Dialogue box. 

C veneer 

extern kernel_oserror *fontdbox_set_size unsigned int flags, 
Objectld fontdbox, 
int height , 
int aspect_ rat io 

); 



Font Dialogue box class 

FontDbox GetSize 4 

On entry 

RO = flags 
R I = Font Dbox object id 
R2 = 4 

On exit 

RO = height value 
R 1 = aspect ratio 

Use 

This method returns the height va lue and/or aspect ratio currently displayed in the 

Font Dia logue box. 

C veneer 

extern _kernel. oserror *fontdbox get size unsigned int flags, 
Objectid fontdbox, 
J.nt *height, 

FontDbox_SetTryString 5 

On entry 

RO - flags 
R 1 = Font Dbox object id 
R2 = 5 
R3 = pomter to 'try' string to usc 

On exit 

R 1-R9 preserved 

Use 

int •aspect_ratio 
); 

This method sets the string used in the Try writable field of a Font Dialogue box If 

the string is longer than 64 characters. an error is returned. 

C veneer 

extern kernel_oserror *fontdbox_set_try string ( unsigned int flags, 
Objectid fontdbox, 
char •try_string 

); 

127 



Font Dialogue methods 

128 

FontDbox_ GetTryString 6 

On entry 

RO = flags 
R 1 = Font Dbox object id 
R2 = 6 
R3 = pointer to buffer to hold try string 
R4 = buffer size for try string 

On exit 

R4 = size of buffer required (if R3 wac; 0) 

Use 

else buffer pointed at by R3 holds try string 
R4 holds number of bytes written to buffer 

This method returns the string currently displayed in the Try writable field of the 
Font Dialogue box. 

C veneer 

extern _kernel_oserror *fontdbox_get_try_string ( unsigned int flags, 
Objectld fontdbox, 
char •buffer , 
int buff_size, 
int *nbytes 

); 



Font Dialogue box class 

FontDbox SetTitle 7 

On entry 

RO = flags 
R I = Font Dbox object id 
R2 = 7 

----------·--

R3 = pointer to text string to use 

On exit 

R l -R9 preserved 

Use 

This method sets the text which is to be used in the title bar of the given Font 
dia logue box . 

C veneer 

extern _kernel oserror *fontdbox_set_title unsigned int flags, 
Objectid fontdbox, 
char *title 

); 

129 



Font Dialogue methods 

130 

FontDbox GetTitle 8 

On entry 

RO = nags 
R I = Font Dbox object id 
R2 = 8 
R3 = pointer to buffer to return the text1n (or 0) 
R4 =size of bufFer 

On exit 

R4 = the size of buffer required to hold the text (if R3 was 0) 
else Buffer pointed to by R3 contains title text 
R4 ho lds number of bytes written to buffer 

Use 

This method retu rns the text string used in a Font dialogue's title bar 

C veneer 

extern _ kernel oserror *fontdbox_get title ( unsigned int flags, 
Objectid fontdbox, 
char *buffer, 
int buff_ size, 
int *nbytes 

); 



Font Dialogue box class 

Font Dialogue events 

There are <l number of Toolbox events which are generated by the Font Dialogue 
box module 

FontDbox_AboutToBeShown (Ox82a00) 

Block 

+ 8 Ox82a00 
+ 12 flags (as passed in to Toolbox_Shmv0b)ect l 
+ I (J Vdlue which will be passed in R2 to ToolBox Show0b)ect 
+ 20 block which will be passed in R3 to Too1Box_Show0b)ect lor the 

underlying dialogue box 

Use 

This Toolbox Event is raised when SWI Toolbox ShowObject hns been ca lled for a 
f.'on t Dialogue Box object. It gives the application the opportunity to ~ctthc 
<>elected font before the dialogue box actua lly appears on the screen 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int show_type; 
union 

TopLeft pos; 
W1ndowShowObjectBlock full; 
info ; 

FontDboxAboutToBeShownEvent; 

131 



Font Dialogue events 

132 

FontDbox _ DialogueCompleted (Ox82a01) 

Block 

+ 8 Ox82a0 1 
+ 12 flags 

Use 

This Toolbox Event is raised a her the Font Dialogue object has been hidden, either 
by a Cancel cl ick, o r by a cl ick on Apply It al lows the cl ient to t idy up its own stale 
associated with this dia logue. 

Note that if the dialogue was cancelled. a font selection may still have been made. 
for example if the user clicked Adjust on Apply, and then cancelled the dialogue 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
} FontDboxDialogueCompletedEvent; 

FontDbox_ApplyFont (Ox82a02) 

Block 

+ 8 Ox82a02 
+ 16 font height 
+ 20 aspect ratio 
+ 24 font id 

Use 

This Toolbox Event informs the client that a Font Dialogue box selection has been 
made. 

The special font id System Font is used to indiCate that the System entry is 
selected. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr ; 
unsigned i nt height; 
unsigned int aspect; 
char font[208); 
FontDboxApplyFontEvent ; 



Font Dialogue box class 

Font Dialogue Templates 

The layout of a Font Dialogue box template is shown below. Fields which have 
types MsgRefercncc and StringReference arc those wh ich wi ll requ ire reloca tion 
when they are loaded from a resource fi le. If the template is being consrructed in 
memory, then these fields should be rea l poin ters (ie. they do no t requ ire 
relocation) 

For more details on relocation. see appendix Resource File Formals on page 497 

f ield Size in bytes 

flags 4 

title 4 

max - tit le 4 

initial_font 4 

initial height 4 

initia l_aspect 4 

try_string 4 

window 4 

Underlying Window template 

Type 

word 

MsgRcference 

word 

St ri ng l~e ference 

word 

word 

MsgReference 

Stn ngReference 

The Window object used to implement a J'ont Dialogue has the fol lowing 
characteri sti cs These must be reproduced i f the Window is replaced by a 
cl ient-specified alternati ve Window template 

Title bar must be indirected. 

Gadgets 

Component ids arc derived by adding to Ox82a000 

Details Component ld 

0 action button (Apply) must be marked as the 'default' 
action button 

2 

action button (Cancel) must be marked as the ·cancel' 
action button 

action button (Try! must be marked as a 'local' 
action button 

133 



Font Dtalogue Templates 

Component id Details 

3 writable field buffer must be 64 bytes 
(Try strin~) 

4 number r,mge 
(Aspect ratio) 

5 number rr~nge (Height) 

6- 15 dCtion buttons these should all be locd l action 
(Standard sizes) buttons contai ning I he text 8. I 0 

12, 14, 18, 24, 28, '3(>, 48 72 
respectively 

16 string scl (Style) non-wrltdble. with pop-up menu 

17 string set (Weight) non-writable. with pop-up menu 

18 string set (Font) non-writable, with pop-up menu 

19 label box (Font) 

20 label box (Stylel 

21 label (Height ) 

22 label (Aspect ) 

n label (%1 

24 label (Font) 

25 label (Weight) 

26 label tStyle l 

134 



Font Dialogue box class 

Font Dialogue Wimp event handling 

The Font Dialogue box class responds to certain Wimp events and takes the 
actions as described below: 

Wimp event 

Mouse Click 

Key Pressed 

Action 

on Apply, deliver a FontDbox_ApplyFont event 

on Cancel, deliver a l'ontDbox_DialogueCompleted event 

on one of the pop-up menu buttons. a menu is displayed 

on one of the ·standard sizes·. this size is entered into the 
Height writable field 

on one of the arrow keys, increment/decrement the value of 
its associated writable field (either height or aspect ratio) 

if Return then act as if Apply button had been clicked 

if Escape, then act as if Cancel button had been clicked 

135 



Font Dialogue Wimp event handling 

136 



8 

User interface 

Font Menu class 

A Font Menu is a menu which shows the currently selected fon t. and al lows the 
user to set this from a list of font names. and submenus which give styles and 

weights 

A typica l Font Menu might look as follows 

Margtn 
Invert 
Window wrap 

Foreground 

Bad<ground 
Work area 

font menu 

submenu 

When a hit is received for the Font Menu. it IS decoded by the Font Menu module. 
and a Toolbox event is returned to the client Th is contains the font id of the 

selected font (see SWI Font_DecodeMcnu 1 The chosen font is shown as ticked in 
the font menu when the menu is next shown (or immediately if Adjust is held 
down] 

137 



Application Program Interlace 

Application Program Interface 

138 

The RISC OS Font manager provides a facility of building a font menu from the 
current fontlist. 

A Font Menu object is an abstraction on this faci lity. A Font Menu is built for the 
cl ient using the Font manager. 

Attributes 

A Font Menu object has the following attributes which are speci fied in its object 
template and can be manipulated at run-time by the client application 

Attributes 

flags word 

ticked_font 

Description 

Bit Meaning 

0 when set. this bit indicates that a 
FontMenu_AboutToBeShown event should be 
raised when SWI Toolbox ShowObject is called for 
this object 

when set. this bit indicates that a 
FontMenu_HasBeenHidden event should be 
rai sed when the Font Menu object has been 
removed from the screen 

2 when set. include a System font entry at head of 
menu 

font id of the font to tick in the Font Menu when it is first 
created 

The special font id ·system Font' is used to indicate that 
the System entry shou ld be ticked. 

Manipulating a Font Menu object 

Creating and deleting a Font Menu object 

A Font Menu object is created using SWI Toolbox_CreateObject 

When this object is created it has no attached objects (see page II). 

A Font Menu object is deleted using SWI Toolbox_DeleteObject. 

The setting of the non-recursive delete bit does not have a meaning for Font Menu 
objects. 



Font Menu class 

Showing a Font Menu object 

When a Font Menu object is displayed on the screen using 
SWI Toolbox_ShowObject it has the following behav1our 

Show type 

0 (default) 

I (full spec) 

'2 (toplcftl 

Position 

64 OS units to the left of the mouse pointer 

R3 + 0 gives x coordinate of top-left corner of Menu 
R3 + 4 gives y coordinate of top-left corner of Menu 

R3 + 0 gives x coordinate of top-left corner of Menu 
R3 + 4 gives y coordinate of top-left corner of Menu 

Before the Font Menu is shown 

When the cl ient ca lls Toolbox_ShowObject. a FontMenu_J\boutToBeShown 
Toolbox event is raised (if the appropriate nags bit is set). allowing I he client to 
take nny last minute action. Typical ly. a client wil l indicate which of the fonts 
should be shown as the currently selected one. when it receives I his event 

Selecting a font 

The currently selected font is shown ticked in the Font Menu The selected font can 
be set using FontMenu_SetFont. and can be read using r·ontMcnu_GctFont Note 
that the string passed to these methods is the font id. not the translated string 

Receiving a font selection 

When the user makes a Font selection from the Font Menu. a 
FontMenu_FontSelection Toolbox event is raised This gives the font id of the font 
which has been chosen from the Font Menu 

139 



Font Menu methods 

Font Menu methods 

140 

The following methods are all invoked by calling SWI Toolbox_MiscOp with 

RO 
Rl 

hold ing a flags word 
being a Font Menu id 

R2 
R3-R9 

being the method code which distinguishes this method 
potentially holding method-specific data 

FontMenu_SetFont 0 

On entry 

RO- flags 
R l = Font Menu object id 
R2 = 0 
R3 = pointer to font id o f font to select (0 means none) 

On exit 

R I-R9 preserved 

Use 

This method selects a font as being the currently selected one for this Font Menu. 
and places a tick next to it. The special font id ·system Font is used to indicate that 
the System entry shou ld be ticked 

C veneer 

extern kernel_oserror *fontmenu_ set_font ( unsigned int flags, 
Objectld fontmenu, 
char *font_id 

); 



Font Menu class 

FontMenu GetFont 1 

On entry 

RO = flags 
R I = Font Menu object id 
R2 = I 
R3 = pointer to buffer to hold font id 
R4 = buffer size for font id 

On exit 

R4 = size of buffer required (if R3 was 0) 
else buffer pointed at by R3 holds font id 
R4 holds number of bytes written to buffer 

Use 

This method returns the font id for the font which was last specified in a 
FontMenu_SetFont ca ll. or was last chosen by a user mouse click (i e the one 
which is ticked) The special font id ·system Font' is used to indicate that the 

System entry was last chosen. 

C veneer 

extern _kernel. oserror *fontmenu_get font ( unsigned int flags, 
Objectld fontmenu, 
char *buffer, 
int buff_size , 
int *nbytes 

) ; 

14 1 



Font Menu events 

Font Menu events 

142 

There are a number of Toolbox events which are generated by the Font Menu 
module: 

FontMenu _ AboutToBeShown (Ox82a40) 

Block 

+ 8 Ox82a40 
+ I 2 flags (as passed in lo Toolbox_ShowObjcclJ 
+ 16 value which will be p<Jssed in R2 to Tool£3ox_Show0b)ect 
+ 20 block which will be passed in R3 to TooiBox_ShowObjcct for the 

underlymg Menu Object 

Use 

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for a 
Font Menu object. It gives the application the opportunity to set the selected font 
before the Menu actually appears on the screen 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int show type; 
TopLeft pos ; 
FontMenuAboutToBeShownEvent; 

FontMenu_HasBeenHidden (Ox82a41) 

Block 

+ 8 Ox82a41 

Use 

This Toolbox Event is raised by the Toolbox when Toolbox_HideObject is called on 
<J Font Menu wh ich has the appropria te bi t set in its template flags word. It enables 
a client appl ication to clear up a her <J menu hac; been closed It is also raised when 
clicking outside a menu or hitting Esc<Jpe 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
} FontMenuHasBeenHiddenEvent; 



Font Menu class 

FontMenu_FontSelection (Ox82a42) 

Block 

+ 8 Ox82a42 
+ 16 font id 

Use 

This Toolbox Event informs the client that a Font Menu selection has been made 

The special font id 'System Font' is used to indicate that the System entry was last 

chosen. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
char font_id[216f; 
FontMenuSelectionEvent; 

Font Menu templates 

The layout of a Font Menu template is shown below. Fields which have types 

MsgReference and StringReference are those which wil l require relocation when 

they are loaded from a resource file If the template is being constructed in 

memory. then these fields should be real pointers (i e they do not require 

relocation). 

For more details on relocation. see appendix Resource File formats on page 497. 

Field 

nags 

ticked_font 

Size in bytes 

4 

4 

Type 

word 

StringReference 

143 



Font Menu Wimp event handling 

... ~---······---= •••••a•a••ww••••c•w 

Font Menu Wimp event handling 

144 

The Pont Menu class responds to certain Wimp events and takes the actions as 
described below: 

Wimp event 

Menu Se lect ion 

User Msg 

Action 

The font id corresponding to the menu selection is sent 
back to the client via a PontMenu_PontSelection event 
If Adjust is held down. then the currently open Menu is 
re-opened in the same place. 

Message HelpRequest (while the pointer is over a Pont 
Menu obJeCt) A reply is sent on the application's behalf 



9 

User interface 

lconbar icon class 

0 b1ects of the lconbar icon class are used to display an application icon on the 
lconbar 

An lconbar object is normally used to show that an application is running. by 
placing an icon on the RISC OS lconbar. 

SrcEdit ... Info ,.. lconbar icon's menu 

Save all llF9 
Save opt1011s 
Options ... 
Create ... 

- Ouit r-

lconbar icon ~ .111 r/J ~I 
An lconbar object can either be a sprite icon or a text&sprite icon. It does not 
appear on the lconbar until the application has called Toolbox_ShowObJeCt or if 
the auto-show bit has been set in its flags word When the Toolbox places the icon 
on the lconbar. it positions the icon in a Style Guide compliant manner, including 
placement of the text in a text&sprite icon. The bounding box used for the icon is 
taken from the sprite used for that icon. also taking into consideration the text 
used, if the icon bar object is text&sprite. If the application supports many icons on 
the lconbar this can be achieved by creating many Icon bar objects. 

The Toolbox supports hand ling of a Menu click over the icon, Select and Adjust 
clicks. 

145 



Application Program Interface 

Application Program Interface 

Attributes 

An Icon bar icon object has the fo llowing attri butes wh ich are specified in its object 
template and can be manipulated at run -time by the client applica tion· 

146 

Attributes 

nags 

position 

priority 

sprite name 

max sprite name 

text 

Description 

Bit 

0 

Meaning 

when set. generate an 
lconbar_Se lectAboutToBeShown event before 
the object which has been associated with a 
Select cl ick is shown 
when set. generate an 
lconbar_AdjustAboutToBeShown event before 
the object wh ich has been associated wi th an 
Adjust click IS shown 

2 when set . show the select .. show object as a 
transient 
(i .e. with the semantics of Wimp_CreateMenu) 

3 when set. show the adjust_show object as a 
transient 
(i e. with the semantics of Wlmp_CreateMenu) 

4 reserved 
5 when set. generate an lconbar_Ciicked (or 

cl ient-specified) event when Select is clicked 
6 when set. generate an lconbar_Ciicked (or 

cl ient-specified) event when Ad just is clicked 

a nega tive integer giving the position of the icon on the 
lconbar (as specified in SWI Wimp Createlcon) 

gives pnority of this ICon on the Icon bar (as specified in 
SWI Wimp_Createlcon) 

the name of the sprite to use for th is lconbar icon 

the maximum length of sprite name to be used 

an optiona l string which will be used for a Text&Sprite 
l conbe~ r icon (i .e. the text that will appear underneath 
the icon on the lconbar) 



Attributes 

max text length 

menu 

select event 

adjust event 

select show 

adjust show 

help message 

max help 

lconbar icon class 

Description 

if the Icon bar icon has text, then this is a Text&Sprite 
Icon bar icon, and this field gives the maximum length 
of a text string which wi II be used for it 

the name of the template to use to create a Menu object 
for this Icon bar icon 

the Toolbox Event code to be raised when the user 
clicks Select on the lconbar icon 
(if 0 then lconbar Clicked 1s raised) 

the Toolbox event code to be raised when the user cl1cks 
Adjust on the Icon bar icon 
(if 0 then Icon bar Cl icked is ra ised) 

the name of a template to use to show an object when 
the user clicks Select on the lconbar icon 

the name of a template to use to show an ob1ect when 
the user clicks Adjust on the lconbar icon 

the message to respond to a help request with , instead 
of the default 

the maximum length of help message to be used 

Manipulating an lconbar icon object 

Creating and deleting an Icon bar Icon object 

An Icon bar icon object is created using SWI Toolbox_CreateObject 

When an lconbar Icon Object is created. the following attached objects (see 
page I I 1 will be created (if specified) 

• menu 

• select show 

• ad just show. 

See the attributes table above for an explanation of what these objects are. 

An lconbar object is deleted using SWI Toolbox DeleteObject. If it has any 
attached objects (see above). these are also deleted. unless the non-recursive bit 

is set for this SWI 

147 



Application Program Interface 

148 

Showing an lconbar icon object 

When a lconbar icon object is displayed on the screen using SWI 
Toolbox_ShowObject it has the following behaviour· 

Show type 

0 (default ) 

1 (ful l spec) 

Position 

disp lay on the Icon bar in a place specified by the object's 
template's posit ion and priority fields 

R3 + 0 icon handle of icon to show icon to the left (- 31 
or right (- 4) o f its position. 

If the lconbar icon's position is any other value than - 3 or - 4 . then R3 should 1ust 
be 0 

An lconbar icon is hidden by using SWI Toolbox_HideObject 

The Icon bar icon's position and priority 

An lconbar icon is created with a position and a priority. These are integer values 
as specified in SWI Wimp_Createlcon. Note that these values are fixed at 
create-t ime. but are only used when the lconbar icon is 'shown·, either by explicitly 
calling Toolbox_ShowObject. or by setting the auto-show bit in the object 
template's flags. 

The semantics o f posit ion and priority are as documented in Wimp_Createlcon 
Applications will mostly just use a position o f - 1 for the right of the iconbar. 

Note that positions of - 3 and - 4 cannot be used in conjunction with the 
auto-show bit . Such an lconbar icon must be explicitly shown using 
Toolbox_ShowObject to allow the cl ient to pass the Wimp handle of the icon to 
whose left/right this icon should be placed 

An lconbar icon's position and priori ty cannot be changed at run-Lime. 

The lconbar icon's menu 

Each lconbar object can optionally have attached to it a Menu object. The Icon bar 
object holds the object id of th is Menu object. 

Whenever the user of the appl icalion presses the Menu mouse button over an 
Icon bar icon. the Icon bar class module opens its attached Menu object. by making 
a SWI Toolbox_ShowObject passing the attached Menu's id. 

If the application wishes to perform some operations on the Menu before it is 
opened (ticki ng some ent ries for example). then by setti ng the appropriate bit in 
the Menu's flags word. the application can request that a special Toolbox event 
(Menu_AboutToBeShown) is delivered to it before the Menu is actually shown The 



lconbar icon class 

precise details of this Toolbox event are described on page 197. On receipt of such 
a Toolbox event. the client application is expected to make any changes it wants to 

the Menu object. and then return to its SWI Wimp_Pollloop 

When an lconba r icon is created. if the cl ient has specified the name of a Menu 
template for that lconbar icon. then a Menu object is created from that template. 
and the id of that Menu is held in the Icon bar object. This id will be used to show 
the Menu when the user presses the Menu button over the lconbar icon 

In most cases a Menu is attached to the lconbar icon at resource editing time by 

entering the name of the template to use for this lconbar icon's Menu If the 
application wishes to dynamically attach and detach the Menu for a given lconbar 
icon. then this can be done using the lconbar_SetMenu method described on 
page 151. 

The id of the Menu attached to an lconbar icon can be read by using the 
Jconbar_GetMenu method. 

Select and Adjust click events 

The client application can specify a Toolbox event to be raised when the user clicks 

Select and/or one to be raised when the user clicks Adjust on the Icon bar icon 

This event will only be raised i f the appropriate nags bits have been set for Select 

and Adjust clicks 

Normally this is specified in the application's resource file. but it can be set and 
read using the lconbar_SetEvent/lconbar_Gcl Event methods. 

Help messages 

Each Icon bar object can optionally have attached to it a Help Message 

Whenever the Wimp delivers a HelpRequest message to the client applicatton for 
this Icon bar icon. the attached Help Message is sent back automatically by the 

Toolbox 

In most cases a help message is attached to the lconbar object at resource editing 
time. An lconbar icon's Help Message can be set dynamically using the 
lconbar_Setl lelpMessage method described on page 156. 

The text of the Help Message can be read using the lconbar_GetHelpMessage 

method. 

149 



lconbar icon methods 

lconbar icon methods 

150 

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with 

RO holding a flags word 
R I being an Icon bar object id 
R2 being the method code which distinguishes this method 
R3-R9 potentially holding method-specific data 

lconbar GetlconHandle 0 

On entry 

RO = flags 
R I = Icon bar object id 
R2 = 0 

On exit 

RO =Wimp icon handle for this Icon bar object 

Use 

This method returns the handle of the underlying Wimp icon used to implement 
th1s lconbar object 

C veneer 

extern _kernel_oserror •iconbar_get _icon_handle ( unsigned int flags, 
Objectid iconbar , 
int •icon handle 

); 



lconbar SetMenu 1 

On entry 

RO = flags 
R l = Icon bar object id 
R2 = l 
R3 =menu id 

On exit 

R I-R9 preserved 

Use 

lconbar icon class 

This method is used Lo set the menu which will be displayed when the Menu 
button is pressed over th is Icon bar object. The Toolbox hand les open ing the menu 

for you. 

If R3 is 0. then lhe menu for this Icon bar object is detached. 

C veneer 

extern kernel_oserror *iconbar set_menu ( unsigned int flags, 
Objectid iconbar, 

lconbar_GetMenu 2 

On entry 

RO =flags 
R I = Icon bar object id 
R2 = 2 

On exit 

RO =Menu id 

Use 

Objectid menu_ id 
); 

This method is used to get the id of the menu which will be displayed when the 
Menu button is pressed over this lconbar object. 

C veneer 

extern _kernel_oserror *iconbar_get menu ( unsigned int flags, 
Objectid iconbar, 
Objectld *menu_id 

); 

151 



/conbar icon methods 

lconbar SetEvent 3 

152 

On entry 

RO flags 
bit 0 set means raise the event code specified in R3 when Select is clicked 
bit l set means raise the event code specified in R4 when Adjust is clicked 

R I = Icon bar object id 
R2 = 3 
R3 - Toolbox Event code to raise for Select 
R4 = Toolbox Event code to rais<' for Adjust 

On exit 

R J-1~9 preserved 

Use 

Th1s method specifies a Toolbox event to be raised when the user clicks Select 
and/or Adjust on the lconbar icon 

If R'3 or R4 is 0, then an lconBar_Ciicked Toolbox event will be raised instead. 

C veneer 

extern _kernel_oserror *iconbar_set_event unsigned int flags, 
Objectld iconbar, 
int select_event, 
int adjust event 

); 



lconbar icon class 

lconbar GetEvent 4 

On entry 

RO =nags 
bit 0 set means return the event code which will be raised 

when Select is clicked 
bit I set means return the event code which will be raised 

when Adjusl is clicked 
I~ I = Icon bar object id 
R2 - 4 

On exit 

1~0 = Toolbox event code raised when Select is clicked on the Icon bar icon 
R I Toolbox event code raised when Adjust is clicked on the Icon bar icon 

Use 

Th1s method reads the Toolbox Event to be raised when the user clicks Select or 

Adjust on the lconbar icon. 

C veneer 

extern _kernel_oserror *iconbar_ get_event ( unsigned int flags, 
Objectid iconbar, 
int *select event, 
int •adjust event 

); 

153 



lconbar icon methods 

lconbar SetShow 5 

154 

On entry 

RO = flags 
bit 0 set means show the object whose id is given in R3 

when Select is clicked 
bit t set means show the obtect whose id is given in R4 

when Adjust is clicked 
Rl = lconbarobject id 
R2 = 5 
R3 id of object to show for Select 
R4- id of object to show for AdJUSt 

On exit 

R l -R9 preserved 

Use 

This method specifies an object to be shown when the user clicks Select and/or 
Adjust on the lconbar icon. 

tf R3 or R4 is 0. then no object wi ll be shown 

C veneer 

extern kernel_oserror •iconbar_set_show ( unsigned int flags, 
Objectid iconbar, 
Objectid select, 
Objectrd adjust 

) ; 



lconbar_GetShow 6 

On entry 

RO = flags 
bit 0 set means return the id of the object which will be 

shown when Select is clicked 
bit 1 set means return the id of the object which will be 

shown when Adjust is clicked 
R 1 = 1conbar object id 
R2 = 6 

On exit 

lconbar icon class 

RO = id of object which will be shown when Select is cl icked on the Jconbar icon. 

R 1 = id of object which will be shown when Ad just is clicked on the Icon bar icon 

Use 

This method reads the ids of the objects to be shown when the user clicks Select or 

Adjust on the lconbar icon 

C veneer 

extern _kernel oserror *iconbar_get_show ( unsigned int flags, 
Objectld iconbar, 
Objectld *select, 
Objectid *adjust 

); 

155 



lconbar icon methods 

Icon bar_ SetHelpMessage 7 

156 

On entry 

RO = flags 
R I = Icon bar object id 
R2 = 7 
R3 = pointer to message text 

On exit 

R 1-R9 preserved 

Use 

This method is used to set the help message which wil l be returned when a Help 
Request message is received for this Icon bar object The Toolbox hand les the reply 
message for you . 

If R3 is 0, then the Help Message for this lconbar object is detached. 

C veneer 

extern _kernel oserror •iconbar_set_help message ( unsigned int flags, 
Objectid iconbar, 
char •message_text 

); 



lconbar icon class 

Icon bar_ GetHelpMessage 8 

On entry 

1~0 =nags 
R I = Icon bar object id 
R2 = 8 
R3 = pointer to buffer (Or 0) 
R4 size of buffer to hold message text 

On exit 

R4 holds size of buffer required for messa~e text (if R'3 was 0) 
else Buffer pointed at by R3 holds message text 
1~4 holds number of bytes written to buffer 

Use 

This method is used to read the help message which wi ll be returned when a Help 
Request message is received for th is Icon bar object. 

C veneer 
extern kernel_oserror *iconbar_get_ help message ( unsigned int flags, 

Objectid iconbar, 
char *buffer, 
int buff_size, 
int *nbytes 

); 

157 



lconbar icon methods 

Icon bar SetText 9 

158 

On entry 

RO = flags 
R I = Icon bar objecl id 
R2 = 9 
R3 = pointer to text stri ng to use 

On exit 

R I-R9 preserved 

Use 

This method sets the text which is to be used in a Lext&sprite Icon bar objecl. If the 
text is longer than the maximum size specified when the lconbar icon was crealed, 
then an error is returned. 

C veneer 

extern _kernel_oserror *iconbar set text ( unsigned int flags, 
Objectld iconbar, 
char *text 

); 



lconbar icon class 

Icon bar GetText 10 

On entry 

RO = flags 
Rl = lconbarobject id 
R2 = 10 
R3 = pointer to buffer to return the text in (or 0) 
R4 = size of buffer 

On exit 

R4 = the size of buffer required to hold the text (if R3 was 0) 
else Buffer pointed to by R3 contains icon's text 
R4 holds number of bytes written to buffer 

Use 

This method is used for a text&sprite Icon bar object. It returns the text string 
displayed for that object 

C veneer 

extern _kernel oserror *iconbar_get text ( unsigned int flags, 
Objectld iconbar, 
char *buffer, 
int buff_size, 
int *nbytes 

); 

159 



lconbar icon methods 

Icon bar_ SetSprite 11 

160 

On entry 

RO = flags 
R I Icon bar object id 
R2 = II 
R3- pointer to name of sprite to usc 

On exit 

R I -R9 preserved 

Use 

This method sets the sprite which is to be used in the Icon bar object. 

C veneer 

extern _kernel_oserror *iconbar set sprite ( unsigned int flags, 
Objectld iconbar, 
char •sprite_name 

); 



lconbar icon class 

Icon bar_ GetSprite 12 

On entry 

RO = flags 
R l = leon bar object id 
R2 = 12 
R3 =pointer to buffer to return the sprite name in (or 0) 

R4 = size of buffer 

On exit 

R4 = holds 'iize of buffer required for spnte name ( tf R3 was Ol 
else Buffer pointed at by R3 holds sprite name 
R4 holds number of bytes written to buffer 

Use 

This method returns the name of the sprite used for the lconbar object 

C veneer 

extern _kernel oserror *iconbar get sprite ( unsigned int flags, 
Objectld iconbar, 
char *buffer, 
int buff_len, 
int *nbytes 

); 

161 



lconbar icon events 

lconbar icon events 

162 

Icon bar_ Clicked (Ox82900) 

Blocl< 

+ 8 Ox82900 
+ 12 flags 

bits 0. I and 2 show how I he activation was done 
bit 0 set means Adjust was clicked 
bit I reserved 
bit 2 set means Select was clicked 

Use 

This Toolbox event is raised when the user clicks Select or Ad just on an Icon bar 
object. and the client application has not associated any other Toolbox event with 
this event 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
IconbarClickedEvent; 

lconbar SelectAboutToBeShown (Ox82901) 

Block 

+ 8 Ox82901 
+ 16 object id of the object which will be shown 

[note that the ·self' field in the id block will be for the lconba r object) . 

Use 

Th1s Toolbox event is raised just before Toolbox_ShowObject is called for the 
object to be shown on a Select click Note that on receipt of th1s event. the client 
cou ld ca l l Jconbar_SctShow to give the object id of a different object to be shown. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr ; 
Objectid id ; 
IconbarAboutToBeShownEvent; 



lconbar icon class 

Icon bar_ AdjustAboutToBeShown (Ox82902) 

Block 

+ 8 OxR2902 
+ 16 object id of the object which wi II be shown 

(note that the ·self' field in the id block will be for the lconbar object I 

Use 

This Toolbox event is raised just before Toolbox_ShowObject is called for the 

object to be shown on a Adjust click Note that on receipt of this event. the client 

could calllconbar ,SetShow to give the object id of a different object to be shown 

Note This event and the lconbar_SelcctAboutToBeShown event both share the 

same typedcf 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
Objectld id; 
IconbarAboutToBeShownEvent; 

lconbar icon templates 

The layout ot an lconbar icon template is shown below. Fields which helve type'> 
MsgReference and StringReference arc those which will require relocat ion when 

they are loaded from a resource file If 1 he template is being constructed in 

memory, then these fields should be real pointers (i e they do nor require 

relocation 1 

For more details on relocation , see append1x Rt•scl!UCt' Fr/e Formats on page 497 

Field Size in bytes Type 

nags 4 word 

position 4 word 

priority 4 word 

sprite_narne 4 Stri ngReference 

max_sprite_namc 4 word 

text 4 MsgReference 

max - text_len 4 word 

163 



lconbar icon Wimp event handling 

Field 

menu 

select_ even t 

cld i ust_even t 

sclect_show 

adjust_show 

hclp_message 

max help 

Size in b ytes 

4 

4 

4 

4 

4 

4 

4 

Type 

StnngReference 

word 

word 

St ri ngReference 

Stri ngReference 

MsgReference 

word 

lconbar icon Wimp event handling 

164 

Certain Wimp events for an Icon bar icon are fielded by the Icon bar class. and either 
acted upon for the client. or result in a Toolbox event being ra1sed Such events are 
listed below 

Wimp event 

Mouse Click 

User Msg 

Action 

If the Menu button has been pressed and there is a Menu 
object attached to this Icon bar icon then the Menu is 
shown usmg Toolbox_ShowObject 
If the Select or Ad just buttons have been pressed and this 
lconbar icon has a Toolbox event associated with this. 
then that Toolbox event is raised. and any attached object 
is also shown using Toolbox_Show0b(ect 

Message. llelpRequest (for this lconbar icon) 
If a help message is attached to th is lconba r icon. then a 
reply is sent on the application's behalf 



10 

User interface 

Menu class 

A me.nu allows the user to select an item from a list of choices using the mouse 
pomter 

A menu should appear on the screen either when the user clicks the Menu mouse 

button. or clicks on a Pop-up menu button. The menu will disappear again when 

the user cl icks outside the menu or presses Escape (or the client application hides 

it or the user opens another menu) . 

When the user clicks on a menu entry the client application wil l typica lly perform 

some task. The menu will then disappear. unless the selection was made using the 

Adjust button in which case it will pers1s1 on the screen. 

• A menu has a title bar with black (Wimp colour 71 text on a grey (Wimp colou r 
2) background 

• Menu entries which contain text are black (7) on a white (Ol background. a 
menu entry may alternatively contain a sprite. 

• Menu entries may optional ly be scpare1ted by a dotted line. to group related 
items. 

• A menu entry may lead to further menus. or a dia logue box. in which case C1 

submenu arrow is displayed at the right hand edge of the entry When a menu 
entry is unavailable it is displayed as 'shaded' (ie its text is displayed in light 
grey) 

Artist 
Styles ... Brusn 

1=1111· ' Width ,.. 
loom Colour ,... 

./VISible Type _:: 
---------------

Special effects ,.. 

165 



Application Program Interface 

Application Program Interface 

166 

When a Menu ob1ect is created. the Toolbox deals with ensuring that the colours 
used lor the Menu are Style Guide compliant. Foch menu entry is set with d height 
of 44 OS units (or 68 if it has a dotted line sep<Hdlor). and the width of the menu is 
ca lculated from details of its entries on the application's behalf 

The Menu module deals with kecpmg the menu tree displayed \~hen a selection 1s 
made with Adjust 

Attributes 

Menu attributes 

A Menu object has the following attributes wh1ch dre specified 111 its object 
template and can be manipulated al run-time by the client appl ication: 

Attribute 

flags word 

menu title 

max title lengl h 

help message 

max help length 

Description 

Bit 

0 

Meaning 

when set. this bit indicates thi:lt an event shou ld 
be raised when SWI Toolbox ShowObjccl is 
cd lled for this Menu. 

when set th1s bit indicates thdt an event should 
be raised when the Menu has been removed 
lrom the screen 

gives a text string which will appear in the menu\ title 
bar 

(0 means no title. an empty string means no tit Iebar) 

gives the maximum length in bytes of Litle text which 
will be used for this Menu. 

when d HclpRequest message is received on this menu. 
then thi.., text message is sent in a He!pReply messdge 
Note th<.~l this help message is only sent if the menu 
entry for which the request was rec<' ivcd has not got d 

help message of its own. 

gives 1 he maximum length in bytes of help text wh1ch 
will be used for this Menu. 



Attribute 

show event 

hide event 

Menu entry attributes 

Menu class 

Description 

this is a Toolbox event code which will be raised when 
SWI Toolbox_ShowObject 1s called for this menu 

If its value is -I . then the default 
Menu_AboutToBeShown event is raised An event is 
only raised if the appropriate bit is set in the menu's 
flags word. 

this is a Toolbox event code which will bt- raised when 
this menu has been removed from the screen (either as 
a result of an explicit call to SWI Toolbox. llideObject or 
because the Wimp has removed the menu). 

If its value is -I , then the defau lt 
Menu_HasBeenH idden event is raised. An event is only 
raised if the appropriate bit is set in the menu's nags 
word . 

A Menu also has a list of ·entries'. Each entry has its own component id wh ich 
un1quely identifies it within this menu. An entry has the following attributes 

Attribute 

flags 

Description 

Bit Meaning 

0 when set this entry is ticked 

when set. this entry has a dotted line immediately 
after it 

2-7 must be 0 

8 when set. this entry is faded 

9 when set. this entry is a sprite (default is d text 
menu entry). 

10 when set. this entry has a submenu (ie a 
submenu arrow appears next to the entry) 

11 when set. an event (either Menu SubMenu or 
client-specified) is raised when the user traverses 
this entry's submenu arrow with the mouse 
pointer(ifbit 10issetl 

12 when set , if there ban object to be shown when 
this entry is selected, then 11 will be shown with 
Wimp CreateMenu semantiCS The default is to 
show persistently 

167 



Application Program Interface 

168 

Attribute 

component id 

text 

max length 

click show 

submenu show 

submenu event 

cl ick event 

help message 

max help length 

Description 

identifies this entry uniquely within this menu. 
- I and -2 are invalid component ids 

depending on whether this is a text or sprite entry (as 
indicated by bit 9 of the flags word). this is either 

• a text string which will appear in the menu entry 

• the name of the sprite which will appear in the Menu 
entry 

gives the maximum length in bytes of entry text or 
sprite name 

the name ol 1 he template for an object to show. when 
the user cl icks on th is entry. 
0 means there is no object to be shown 

the name of the template for an object to show. when 
the user moves the pointer over the submenu arrow (if 
the entry has a submenu). 

0 means there is no object to be shown 

a Toolbox event code wh ich wi ll be raised when the user 
moves the pointer over the submenu arrow {if the entry 
has a submenu and bit II of the flags word is sell 
if its value IS 0 then the default Menu_Submenu event is 
raised 

a Toolbox event code which wi ll be raised when the user 
clicks on this entry 

if its value is 0 then the default Menu_Selection event is 
raised 

when a HelpRequest message is received on th1s entry 
of this menu then this text string is sent in a HelpR0ply 
message 

0 means that the help message for the menu wi ll be 
sent 1 if such exists) 

gives the maximum length in bytes of the entry's help 
message 



Menu class 

Manipulating a Menu object 

Since there can on ly be one Menu visible on the screen at any one lime. it is usual 
for the cli ent app lication to mark Menu templates as 'shared' so that only one copy 
wil l exist in memory. The application receives a Menu_AboutToBeShown Toolbox 

event just before the Menu is shown, to allow it to set any attributes l ike ticks and 
fades, which may differ depending on where the Menu is being shown; for example, 

in a multi-document ed itor a single menu can be maintained for all document 
Windows. when the Toolbox receives a Menu button click event from the Wimp. it 
will show the Menu associated with the Window over which the mouse chck 

occurred: when the applicat ion receives the Menu_AboutToBeShown Toolbox 
event, it can lick and fade entries in the Menu depending on the state of the 

document Window 

Another alternative for supporting multi -document editors is to create a Menu 
object for each Window object In this case it will not be necessary to use the 
Menu_AboutToBeShown Toolbox event to make last minute changes to the menu. 
since these can be made on a per-window basis as the changes occur. Whether this 
method is used. or the above 'shared' scheme is really one of personal taste. and 
memory usage 

It is possible to associate a client handle with a Menu using the 
Toolbox_SetCiientHand le method. but normally an application will simply wish to 
use the client hand le of the object to which a Menu is attached (via the parent_id 
or the ancestor id in the id block) 

Creating and deleting a menu 

A Menu object is created using SWI Toolbox_CreateObject. 

When a Menu object is created, the fol lowing attached objects (see page Ill are 
also created for each menu entry for which they are defined: 

• submenu show 

• click show 

The Mr~ru rrrtry attributes table on page 167 describes these objects 

Attached objects are also created when a menu entry is added to the Menu. if they 
are referenced by the menu entry (and deleted when the menu entry is removed!. 

A Menu object is deleted using SWI Toolbox DeleteObject. If it has any attached 
objects these arc also deleted. unless the non-recursive bit is set for this SWI 

Note Menus must not be mutually recursive (r e in a menu hierarchy. a menu 
entry may not have. as a submenu. a menu further up the hierarchy) The menu 
module does not check for such a case sort is the client application's 
responsibility to check for correctness 

169 



Application Program Interface 
r ., 

170 

Showing a menu 

When a menu is displayed on the screen using SWI Toolbox_ShowObject it has the 
following behaviour: 

Show type 

0 (default) 

I (full spec) 

2 (topleft) 

Position 

64 OS units to the left of the mouse pointer 

R3 + 0 gives x coordinate or top-left corner of Menu 
R3 + 4 gives y coord inate of top-left corner of Menu 

R3 1 0 gives x coordinate or top-left corner of Menu 
R3 + 4 gives y coordinate of top-left corner of Menu 

The client application shou ld not need to make this cal l. since it is made 
automatically by the Window and Icon bar modules for objects which have a Menu 
attached to them.The Window module will display the menu in ils defau lt place 
when the Menu button is clicked. or in the case of a pop-up menu directly to the 
right of the pop-up icon: the Icon bar module displays the menu with its base 96 OS 
units from the bottom of the screen. and 64 OS units to the right of the mouse 
pointer 

Adding and removing menu entries 

Normally the set of entries in a Menu wi ll be specified in the application's resource 
file. If. however, the application wishes to add and remove Menu entries 
dynamically at run-time. this is done using the Menu_AddEntry and 
Menu_RemoveEntry methods 

Changing a Menu entry 

A given Menu entry can either contain text or a spri te. Normally these will be fixed 
when the menu is created. but they can be set and read dynamically using the 
Menu_SeLEntryTexl, Menu_GetEnLryText. Menu_SetEntrySprite, and 
Menu_GetEntrySprite methods 

Ticking or fading a Menu entry 

Each Menu entry can be optionally 'ticked' (ie. have a tick displayed to the left of 
itJ . and/or ·faded' (i e displayed in light grey. and unselectable) 

A given Menu entry can be ticked/unticked. faded/unfaded using the 
Men u_Sel Tick/Men u_SetF'ade mel hods. 

The client can determine the state of a particular entry using the 
Menu_GetTick!Menu GetFade methods. 



Menu class 

Attaching a submenu dynamically 

Normally an application's Menu structure is fully specified statically in Jts resource 
fi le. but occasionally an application may wish to build a submenu at run· time. and 
attach it at a particular point in the Menu tree. 

This is achieved by creating the submenu object. and using the 
Menu_SetSubMenuShow method already mentioned (and detailed on page 1811 

Dealing with Menu hits 

Each Menu entry can have a specified Toolbox event which will be raised when a 
menu selection is made on that entry (i e. the Wimp has returned a Menu Selection 
event to the application) . 

Normall y this Toolbox event is specified in the client application's resource fi le. 
but i t can be read and set dynamica ll y using the Menu_SetCi ickEvent and 
Menu_ CetCI ickEvent methods. 

The client can also specify the name of a template of an object which should be 
shown when the menu hit happens. The main use for this is to supply the name of 
the template of a persistent dialogue box. on a Menu entry with an ellipsis( .. ). The 
ob1ect is only shown after the 'Menu hit event' has been delivered to the client. The 
show type value passed in R2 to Toolbox_ShowObject will be 0 (default place) 

It is possible to specify at run-time the object 1d of an object which should be 
shown when a Menu hit happens, using the Menu_SetClickShow method (and the 
object id can be read using the Menu_CetCiickShow method) 

If neither of the above is specified. then the Toolbox raises the Menu .Selection 
Toolbox event. as described on page 198 This Toolbox event reports which entry 
was selected 

Dealing with Adjust clicks on a Menu 

When the user of the client application cl1cks AdJUSt on a Menu entry or on a 
Gadget in a dialogue box which has been opened from a Menu, it is conventional 
for the Menu tree to remain on the screen 

The Toolbox handles this automatica ll y on behalf of the application. so the client 
does not have to look for Ad just cl icks: the client's code just responds to the 
Toolbox events raised by the user's interaction with the Menu 

Note that the Toolbox ·re-shows' the Menu when the application next calls SWI 
Wimp_Poll . atter the Menu selection. so any ticking/fading etc of Menu entries. 
must be done in response to the Toolbox event which was raised when a menu 
selection was made. 

171 



Application Program Interface 

172 

Dealing with traversal of a submenu arrow 

Each Menu entry can have a specified Toolbox event which will be raised when the 
user moves the mouse pointer over the submenu arrow. which is displayed on all 
Menu entries which have a submenu 

Normally this Toolbox event is specified in the client application's resource file 
but it can be read and set dynamically using the Menu_SeLSubMenuEvent and 
Menu_GetSubMenuEvent methods. 

The client can also specify the name of a template of an object which should be 
shown when the user moves the mouse pointer over the submenu arrow The main 
use for this is to supply the name of the template of a transient dialogue box or a 
submenu. The object is only shown after the Menu_SubMenu event has been 
delivered to the client. 

lt is possible to specify at run-time the object id of an object which shou ld be 
shown when the user moves the pointer over the submenu arrow using the 
Menu_SetSubMenuShow method (and the object id can be read using the 
Menu_GetSubMenuShow method) 

lf neither of the above is specified. then the Toolbox raises the Menu_SubMenu 
Toolbox event. This Toolbox event reports the entry over which the mouse pointer 
has moved. 

Interactive help on Menus 

Each Menu has an optional Help Message associated with it When the client 
application rece1ves a HelpRequest for the Menu, the Toolbox replies 
automatically with this Help Message 

Norma lly the Menu's Help Message will be specified in the application's resource 
file. however the cl ient can set and read the message dynamically using the 
Menu_SetHelpMessage/Menu_GetllelpMessage methods 

l:..ach Menu entry can also have a Help Message. lf no such message is specified . 
then the Toolbox will return the Menus ltelp Message instead. Normally. again an 
entry's Help Message will have been specified in the resource file but it can be 
read and set using the Menu_Setl:..ntryl lelpMessage and 
Menu_GetEntryllelpMessage methods (described on page 191 ). 



Menu class 

Menu methods 

Writable menu entries 

Writable menu entries as seen in older applications are not supported by the 
Toolbox as these are not Style Guide compliant Instead you should use small 
dialogues. For example: 

Rename to 

NewNamel 

The following methods are all invoked by ca ll ing SWI Toolbox_MiscOp with : 

RO holding a flags word 
R 1 being a Menu id 
R2 being the method code which distinguishes th is method 
f~3 - R9 potentially holding method-specific data 

Menu_SetTick 0 

On entry 

RO = flags 
R I =Menu object id 
R2- 0 
R3 = component id of entry 
R4 =value 

0 means ·untick' 
non ·zero means 'tick' 

On exit 

r~ I -R9 preserved 

Use 

This method affects the tick state of a Menu entry. 

C veneer 

extern kernel_oserror *rnenu_set tick unsigned int flags, 
Objectld menu, 
Cornponentld entry, 
int tick 

); 

173 



Menu methods 

Menu GetTick 1 

174 

On entry 

RO"' nags 
R I = Menu obJeCt id 
R2 = 0 
R'~ component id of entry 

On exit 

RO tick state 

Use 

non-zero means t1cked 
0 means unticked 

This method returns the tick stale of a Menu entry. 

C veneer 

extern _kernel_oserror *menu_get_ tick ( unsigned int flags, 
Objectid menu, 
Componentid entry, 
int *ticked 

); 



Menu_SetFade 2 

On entry 

RO nags 
R I =Menu object id 
R2 = 2 
R3 = component id of entry 
R4 value 

0 means unfade 
non-zero means fade 

On exit 

R I -R9 preserved 

Use 

This method affects the fade state of a Menu entry. 

C veneer 

extern kernel oserror *menu_set_fade unsigned int flags, 
Objectld menu, 
Componentld entry, 
int fade 

); 

Menu class 

175 



Menu methods 

Menu GetFade 3 

176 

On entry 

RO flags 
R I - Menu object icl 
R2 3 
R3 component id of entry 

On exit 

RO = fade state 

Use 

0 means unfaded 
non-zero means faded 

This method returns the fade state o f a Menu entry. 

C veneer 

extern _ kernel osorror •menu_get. fade ( unsigned int flags, 
Object!d menu , 
Component!d entry, 
int *faded 

); 



Menu class 

Menu_SetEntryText 4 

On entry 

RO =nags 
R I =Menu objecl id 
R2 = 4 
R3 = component id of entry 
R4 = pointer to text string to use 

On exit 

R I-R9 preserved 

Use 

This method sets the text which is to be used in the named text Menu entry. 

An error is returned if the entry's text buffer is not large enough to hold the 
supplied text 

An error is returned if this SWI is called on an entry which is a sprite 

C veneer 

extern _kernel oserror •menu_set_entry text ( unsigned int flags, 
Objectld menu, 
Componentld entry, 
char •text 

); 

177 



Menu methods 

Menu_GetEntryText 5 

178 

On entry 

RO = flags 
R I = Menu object id 
R2 = 5 
R3 = component 1d of entry 
R4 pointer to bulfer to return the text in (or 0) 
R5 size of buffer 

On exit 

R5 the size of buffer required to hold the text (ir R4 was Ol 
else Buffer pointed to by R4 contains entry text 
R5 holds number of bytes written to buffer 

Use 

This method is used for a text Menu entry. It retu rns the text string displayed for 
that entry. 

C veneer 

extern kernel_oserror *menu_get entry_text ( unsigned int flags, 
Objectld menu, 
Componentld entry, 
char *buffer, 
int buff_size, 
int *nbytes 

); 



Menu_SetEntrySprite 6 

On entry 

RO = flags 
R I = Menu object id 
R2 = 6 
R3 = component id of entry 
R4 = pointer to name of sprite to use 

On exit 

R I-R9 preserved 

Use 

Menu class 

This method sets the sprite which is to be used in the named sprite Menu entry. 

An error is returned if the entry's sprite name buffer is not large enough to hold the 

supplied sprite name 

An error is returned if this SWI is called on a text entry 

C veneer 

extern kernel oserror *rnenu_set entry sprite ( unsigned int flags, 
Objectid menu, 
Componentid entry, 
char *sprite name 

); 

179 



Menu methods 

Menu_ GetEntrySprite 7 

180 

On entry 

RO = flags 
R I Menu object id 
R2 7 
R3 = component id of entry 
R4 pointer to bulfer to return the sprite name in (or 01 
R5 = size o f buffer 

On exit 

R5 = the size of burter required to hold the sprite name (if R4 was 0) 
else Buffer pointed to by R4 contains sprite name 
R5 holds number of bytes written to buffer 

Use 

Th1s method is used for a sprite Menu entry It returns the name of the sprite 
displayed for that entry. 

C veneer 

extern _ kernel oserror *menu get_entry_sprite ( unsigned int flags, 
Objectld menu, 

); 

Componentid entry, 
char *buffer, 
int buff_size , 
i nt *nbytes 



Menu class 

Menu_SetSubMenuShow 8 

On entry 

RO- flags 
R I =Menu object id 
R2- 8 
R3 = component id of entry where submenu should be attached 
R4 object id of the submenu (or 0) 

On exit 

R I -R9 preserved 

Use 

This method al lows the cl ient to specify the object id of an object to show when the 
user moves the pointer over the submenu arrow. 

If R4 is 0. then no object shou ld be shown. 

Calling this SWI also causes the submenu to be shown or hidden as appropriate. 

C veneer 
extern _kernel_oserror *menu_set_sub_menu_show unsigned int flags, 

Objectld menu, 
Componentld entry, 
Objectld sub menu 

); 

181 



Menu methods 

Menu_GetSubMenuShow 9 

182 

On entry 

RO =nags 
R I = Menu object id 
R2 = 9 
R3 = component id 

On exJt 

RO "" id of object to be shown 

Use 

This method returns the object id of the object which will be shown when the user 
moves the pointer over the submenu arrow. 

C veneer 

extern _kernel oserror •menu_get_sub_menu_show ( unsigned int flags, 
Objectld menu, 
Componentld entry, 
Objectld •sub_menu 

); 



Menu class 

Menu SetSubMenuEvent 10 

On entry 

RO- flags 
R I = Menu object id 
IU = 10 
1n = component id of entry 
R4 = Toolbox event code to raise 

On exit 

R I -R9 preserved 

Use 

This method specifies a Toolbox event to be raised when the user moves the 
mouse over th is entry's submenu arrow. 

If R4 is 0. then a Menu_SubMenu Toolbox event wi ll be raised instead. 

Calling this SWI also causes the submenu to be shown or hidden as appropriate. 

C veneer 

extern _kernel_oserror *menu_set_sub_menu_event unsigned int flags, 
Objectld menu, 
Componentld entry, 
int toolbox_event 

); 

183 



Menu methods 

Menu GetSubMenuEvent 11 

184 

On entry 

RO = flags 
R I =Menu object id 
R2 = II 
R3 = component id of entry 

On exit 

R4 = Toolbox event code 

Use 

This method reads the Toolbox event to be raised when the user moves the mouse 
over th is entry's submenu arrow. 

If no event has been specified. then 0 is returned. 

C veneer 

extern _kernel oserror •menu_get sub menu_event unsigned int flags, 
Objectid menu, 
Componentid entry , 
int •toolbox_event 

); 



Menu_SetCiickShow 12 

On entry 

RO = flags 
Rl = Menu object id 
R2 = 12 
R3 = component id of entry 
R4 = object id to show 
R5 = show nags bit 0 

if clear show persistently 
if set show transiently 

On exit 

R l -R9 pre~erved 

Use 

Menu class 

This method allows the client to specify the object id of an object to show when the 
user selects this Menu entry. By setting bit 0 of R5 it is possible to control whether 
the show is persistent or not. 

lf R4 is 0. then no object should be shown 

C veneer 

extern kernel_oserror *menu_set_click show ( unsigned int flags, 
Objectid menu, 
Componentid entry, 
Objectld object, 
int show_flags 

); 

185 



Menu methods 

Menu_ GetCiickShow 13 

186 

On entry 

RO =nags 
R I =Menu object id 
R2 = 13 
R3 = component id 

On exit 

RO = id of object to be shown 
R I = show Oags 

Use 

This method returns the object id of the object wh ich wi ll be shown when the user 
selects this Menu entry. If bit 0 of R I is set on exit. it means that the object will be 
shown transiently 

If no object has been specified, then 0 is returned in RO. 

C veneer 

extern kernel_oserror *menu_get_click_show ( unsigned int flags , 
Objectl d menu, 
Componentld entry, 
Objectld •object, 
int •show_flags 

); 



Menu SetCiickEvent 14 

On entry 

RO = flags 
R l = Menu object id 
R2 = 14 
R3 = component id of entry 
R4 = Toolbox event code to raise 

On exit 

RI-R9 preserved 

Use 

Menu class 

Th is method specifies a Toolbox event to be ra ised when the user selects the given 

Menu entry. 

If R4 is 0. then a Menu_Selection Toolbox event will be raised instead . 

C veneer 

extern _kernel oserror •menu_set_click event unsigned int flags, 
Objectld menu, 
Componentld entry, 
int toolbox_event 

); 

187 



Menu methods 

Menu GetCiickEvent 15 

188 

On entry 

RO = flags 
R I =Menu object id 
R2 = 15 
R3 = component id of entry 

On exit 

R4 = Toolbox event code 

Use 

This method reads the Toolbox event to be raised when the user selects the given 
Menu entry. 

If no event has been specified. then 0 is returned. 

C veneer 

extern kernel_oserror •menu_get_click_event ( unsigned int flags, 
Objectld menu, 
Componentld entry, 
int •toolbox_event 

); 



Menu_SetHelpMessage 16 

On entry 

RO = flags 
R I = Menu object id 
R2 16 
R3 po inter to message text 

On exit 

R I-R9 preserved 

Use 

Menu class 

This method is used to set the help message which wil l be retu rned when a Help 
Request message is received for this Menu object. The Toolbox handles the reply 
message for you . 

If R3 is 0, then the Help Message for this Menu is detached. 

C veneer 

extern _kernel_oserror *menu_set_help_message ( unsigned int f l ags, 
Objectld menu, 
char *help message 

); 

189 



Menu methods 

Menu_GetHelpMessage 17 

190 

On entry 

R I = Menu object id 
R2 = 17 
R3 = pointer to buffer 
R4 = size of buffer to hold message text 

On exit 

R4 =size of buffer required for message text (if R3 was 0) 
else Buffer pointed at by R3 holds message text 
R4 holds number of bytes written to buffer 

Use 

This method is used to read the help message which will be returned when a llelp 
Request message is received for this Menu object. 

C veneer 

extern _kernel oserror •menu_get help message ( unsigned int flags, 
Objectid menu, 
char •buffer, 
int buff size, 
int *nbytes 

); 



Menu class 

Menu_ SetEntryHelpMessage 18 

On entry 

RO = flags 
R l = Menu object id 
R2 = 18 
R3 = component id of entry 
R4 = pointer to message text 

On exit 

R l-R9 preserved 

Use 

This method is used to set the help message which will be returned when a Help 
Request message is received for this Menu entry. The Toolbox handles the reply 
message for you. 

If R4 is 0, then the Help Message for th is Menu entry is detached. 

C veneer 

extern _kernel_oserror *menu_set_entry_help_message ( unsigned int flags, 
Objectld menu, 
Componentld entry, 
char *help_message 

); 

191 



Menu methods 

Menu_ GetEntryHelpMessage 19 

192 

On entry 

RO flags 
R I :;; Menu object id 
R2 = 19 
R3 = component id of entry 
R4 = pointer to buffer 
R5 - size of buffer to ho ld message text 

On exit 

R5 = size of buffer required for message text (if R4 was 0) 
else Buffer pointed at by R4 holds message text 
R5 holds number of bytes written to buffer 

Use 

Th1s method is used to read the help message which will be returned when a llelp 
Request message is received for this Menu object 

C veneer 

extern _kernel oserror *menu_get entry_help_message ( unsigned int flags, 
Objectld menu, 
Componentld entry, 
char *buffer, 
int buff_size , 
int *nbytes 

) ; 



Menu_AddEntry 20 

On entry 

RO = nags (bit 0 set means add the entry before the specified entry) 
R I = Menu object id 
R2 20 
R3 =component id of entry after/before which to add this entry 

(or -I to mean at the beginning, -2 to mean at the end) 
1~4 = pointer to buffer containing a description of the new entry 

On exit 

1~0 = component id of added entry 
I~ 1 - 1~9 preserved 

Use 

Menu class 

Th is method adds a new Menu entry at the specified place in the Menu. The 
description of the Menu entry shou ld have a format as specified under the Menu 
Templates section. 

By default the entry is added after the specified entry whose id is p<tssed in R'3. but 
the client can specify that it is added before that entry by setting bit 0 of the flags 
word 

If the component id in the template of the Menu entry was specified as -I , then the 
Toolbox uses the lowest numbered component id available for this Menu 

C veneer 

extern _kernel_oserror •menu add entry ( unsigned int flags, 

); 

Object.Id menu, 
componentid at entry, 
char •entry description, 
Componentid •new entry 

193 



Menu methods 

194 

Menu_RemoveEntry 21 

On entry 

RO = flags 
R I - Menu object id 
R2 = 21 
R3 = component id o f the entry 

On exit 

R I-R9 preserved 

Use 

This method removes a Menu entry 

C veneer 

extern _kernel_oserror *menu_remove entry ( unsigned int flags, 
Objectld menu, 
Componentld entry 

Menu_GetHeight 22 

On entry 

RO = flags 
R I = Menu object id 
R2 "" 22 

On exit 

RO = height of menu work area in OS Units 
R I-R9 preserved 

Use 

); 

This method returns the height of the work area of the given Menu (in OS Units) It 
takes into account whether items in the Menu have dashed line separators. This 
can be used to accurately position the Menu in a ca ll to Toolbox_ShowObject. 

C veneer 

extern _ kernel oserror *menu_get_ height ( unsigned int flags, 
Objectld menu, 
int *height 

); 



Menu GetWidth 23 

On entry 

RO flag~ 

R I Menu object id 
R2 = 23 

On exit 

1~0 = width of menu work area in OS Units 
I~ 1-R9 prc~erved 

Use 

Menu class 

Th is method returns the width of t he work area of the given Menu (in OS Units). 

C veneer 

extern kernel_oserror *menu_get_width ( unsigned int flags , 
Objectld me nu, 

Menu SetTitle 24 

On entry 

RO flags 
I~ I = Menu object id 
IU = 24 
R3 = pointer to text string to use 

On exit 

R t-R9 preserved 

Use 

int •width 
); 

This method sets the text which is to be used in the tillc bar of the given Menu. 
Note that this has no immediate etfect if the Menu is currently being d i~played. 

C veneer 

extern _kernel oserror •menu_set_title ( unsigned int flags, 
Objectld menu, 
char •title 

); 

195 



Menu methods 

Menu_GetTitle 25 

196 

On entry 

RO = flags 
R I = Menu object id 
R2 = 25 
R3 =pointer to buller to return the text in (or 0) 
R4 = size of buffer 

On exit 

R4 = the size or buffer required to hold the text (if R3 was 0) 
else Buffer pointed to by R3 contains title text 
R4 holds number of bytes writt en to buffer 

Use 

This method returns the text string used in a Menu's title bar. 

C veneer 

extern _kernel_oserror •menu_get title ( unsigned int flags, 
Ob j ectld menu , 
c har • buffer, 
int buff_size , 
int •nbytes 

); 



Menu class 

Menu events 

Menu_AboutToBeShown (Ox828c0) 

Block 

+ 8 Ox828c0 (or client specified event- see Me11u Templates on page 199) 
+ 12 flags (as passed in to Toolbox_ShowObject) 
t- 16 va lue as passed in R2 to TooiBox_ShowObject 
+ 20. block as passed in R3 to TooiBox_ShowObject 

Use 

Th is Toolbox event is raised due to a ca ll to SWI Toolbox ShowObject on a Menu 
object which has bit 0 o f its flags word set. It gives the appl ication the opportunity 
to Li ck, fade or change the text/sprite of any Menu en tri es before the Menu actually 
appears on the screen. 

Thi~ is useful where a shared Menu is being used by many Window objects. each of 
which has a state which is reflected in the Menu state. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int show_type; 
TopLeft pos; 
MenuAboutToBeShownEvent; 

Menu_HasBeenHidden (Ox828c1) 

Block 

+ 8 Ox82Rc 1 (or client specified event- see Mnru Templates on page 1991 

Use 

Th is Toolbox event is raised by the Toolbox when Toolbox_l l ideObject is ca lled on 
a Menu which has the appropriate bit set in its template flags word. It enables a 
client application to clea r up after a menu has been closed. It is also raised when 
clicking outside a menu or hitting Escape. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
} MenuHasaeenHiddenEvent; 

197 



Menu events 

198 

Menu_SubMenu (Ox828c2) 

Block 

+ 8 Ox828c2 
+ 16 x coordinate where the submenu will be shown 
+ 20 y coordinate where the submenu will be shown 

Use 

This Toolbox evenl is raised when Lhc user moves the mouse over a Menu entry's 
submenu arrow. and the client application h<Js not associated any other Toolbox 
event with this event The event is only delivered if the appropriate bit is set in the 
menu entry's flags word. 

This Toolbox event is raised by the Menu class. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
TopLeft pos; 
MenuSubMenuEvent; 

Menu_ Selection (Ox828c3) 

Block: 

+ 8 Ox82~c3 

Use 

This Toolbox event is raised when the user makes a selection on a Menu object. 
and the client application has not associated any other Toolbox event with this 
event 

Th1s Toolbox event is ra1sed by the Menu class 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
MenuSelectionEvent; 



Menu class 

Menu Templates 

The layout of a Menu template is shown below. Fields which have types 
MsgReference and StringReference are those which will require relocation when 
they are loaded from a resource file If the template is being constructed m 
memory. then these fields should be real pointers (i e they do not require 
relocation) 

The current version for Menu templates is I 02 . 

For more details on relocation, see appendix Resource File Formats on page 497. 

Field Size in bytes Type 

nags 4 word 

t it le 4 MsgRcferencc 

max_title 4 word 

help message 4 MsgReference 

max_hclp 4 word 

show event 4 word 

hide_event 4 word 

num entries 4 word 

Followed by a list of menu entries. where each entry is: 

Field Size in bytes Type 

nags 4 word 

component_id 4 word 

text 4 MsgReference or StringReference 

max text 4 word 

click_show 4 St ri ngReference 

submenu_show 4 Str i ng l~eference 

submenu_ event 4 word 

click_cvcnt 4 word 

help_message 4 MsgRcfcrence 

max_entry_help 4 word 

199 



Menu Wimp event handling 

Menu Wimp event handling 

The Menu class responds to certain Wimp events and takes the actions as 
described below 

200 

Wimp event 

Menu Selection 

Mouse Click 

User Msg 

Action 

If there is a click event associated with the given Menu 
entry, then that Toolbox event is raised; 

if there is an object to be shown for this entry then 
show it. 

if neither of the above then the Menu_Selection 
Toolbox event is raised 

If Adjust is held down, then the cu rrently open Menu is 
re-opened in the same place. 

(on a dialogue box attached to the Menu) 
If Adjust is held down, then the currently open Menu is 
re-opened in the same place 

Message_HclpRequest 
(while the pointer is over a Menu object) If a help 
message is attached to this Menu or Menu entry. then a 
reply is :;ent on the applications behalf. 

Message_MenuWarning 
If a submenu event is associated with the given Menu 
entry, then th1s Toolbox event is raised: 

if a submenu object has been speci fied for this Menu 
entry. then it is shown by the Toolbox. 

if neither of the above. then a Menu_SubMcnu 
Toolbox event is raised. 

Message MenusDeleted 
The Menu which was being shown is marked as h1dden 
(as if Toolbox HideObject had been called). 



11 

User interface 

Print Dialogue box class 

APrint dialogue object is used to allow the user to set a number of print options 
(e g number of pages. number of copies etc). and then to request that a 

document be prin ted given these options. 

When a Print d ialogue is created. it has the fo l lowing componen ts 

radio groups -

--~=.--------~L~W~II~N~T=X~-------

~ ~1 ~ ., ,JAil l'i' From ~ to ~ 
___ ,. 

(i' Upright 

Copies[]] /~ ~ 
Sc'ala ~ !};). % _.-

...) Sideways LJ [)aft .... 

Save I Cancel II Pnnt 

writable fields 

number ranges 

Draft button 

Print button 

• a set of buttons and writable fields giving a page range to print (optional) 

• a number range giving the number of copies to print (optional) 

• a radio group consisting of two buttons. indicating whether the printing is to 
be done Upright or Sideways (optional). 

• an action button Save which saves the current print options (optiona l) 

• an action button Set Up ... which brings up a d ialogue box al lowing further 
print options to be set (optional) 

• an acti on button Cancel which closes the dia logue box without printing 

• a defau lt action button Print which ca uses a print operation to take place 
using these print options 

• an option button Draft indicating that draft standard printing is to be used 

• o number range giving a percentage sca le factor to apply during printing 
(optional) 

Pressing Escape cancels the dialogue (as well as clicking on the Cancel button) 

The title bar of the dialogue box displays the name of the currently selected printer 
or Unknown printer' if there is no such printer. 

201 



Application Program Interface 

Application Program Interface 

202 

All process ing of the d ialogue box is handled by the Print module, and the cl ient is 
informed of any user actions via Toolbox events (PrintDbox_Print. 
PrintDbox_SetUp. PrintDbox_DialogueCompleted and PrintDbox_Save). 

Attributes 

A Print Dialogue object has the following attributes which are specified in its 
object template and can be manipulated at run-time by the client application 

Attributes Description 

flags word Bit Meaning 

0 when set. this bit indicates that a 
Pri ntDbox_AboutToBeShown event should be ra ised 
when SWI Toolbox_ShowObject is called for this 
object. 

when set. this bit indicates that a 
PrinlDbox_DialogueCompleted event should be 
raised when the Print Dia logue object has been 
removed from the screen 

2 when set. this bit indicates generate 
PrintDbox_SetUpAboutToBeShown event before the 
underlying SetUp object is shown 

3 when set. dialogue box has the AIVFrom!To Page 
Range options 

4 when set, dialogue box has the Copies writable field 
5 when set, dialogue box has the Scale writable field 
6 when set. dialogue box has the Orientation options 

(i .e. Upright and Sideways) 
7 when set. dialogue box has Save action button 
8 when set. dialogue box has Set Up ... action button 
9 when set. dialogue box has Draft option button 
10 when set, dialogue box has From/to set from 

AIVFrom/to 

II when set. dialogue box has Sideways (and not 
Upright) selected 

12 when set. dialogue box has Draft selected 

from initial value to put in the From writable field 

to initial value to put in the to writable field 



Print Dialogue box class 

Attributes 

copies 

scale 

Description 

initial value to put in the Copies number range 

in itial va lue to put in the Scale number range 

further options name of the template for a Window object to be displayed 

when Setup ... is clicked 

window name of the template for an alternative window to use 
instead of the default one 10 means use default) 

Manipulating a Print Dialogue object 

Creating and deleting a Print Dialogue object 

A Print Dialogue object is created using SWI Toolbox_CreateObject. 

When a Print Dialogue object is created. the following attached object (see 
page I I) will be created (if specified) 

• further options 

A Print Dialogue object is deleted using SWI Toolbox_DeleteObject If it has any 
attached objects (see above). these are also deleted. unless the non-recursive bit 
is set for this SW I. 

The setting of the non-recursive delete bit means that the SetUp dialogue box will 
not be deleted. 

Showing a Print Dialogue object 

When a Print Dialogue object is displayed on the screen using SWI 
Toolbox_ShowObject it has the following behaviour: 

Position Show type 

0 (default) the underlying window is shown at the last place shown 
on the screen. or the coordinates given in its template. if 
it has not already been shown 

203 



Application Program Interface 

204 

Show type 

I (full spec) 

2 (topleft) 

Position 

R3 + 0 visible area minimum x coordinate 
R3 + 4 
R3 + 8 

visible area minimum y coordinate 
vis ible area maximum x coordinate 

R3 + 12 visible area maximum y coordinate 
R3 + 16 scroll x offset relative to work area 
R3 + 20 scroll y offset relative to work area 
R3 + 24 Wimp window hand le of window to open behind 

-I means top of stack 
-2 means bottom of stack 
-3 means the window behind the Wimp's 

backwindow 

R3 + 0 visible area minimum x coordinate 
R3 + 4 visible area minimum y coordinate 

Before the Print Dialogue box is shown 

When the cl ient (or the Toolbox) calls Toolbox_ShowObject on a Print Dialogue 
object. a Prin tDbox_AboutToBcShown Too lbox event is raised before the d ialogue 
box becomes visib le on the screen (if the appropriate flags bit is set). 

This allows the client to set up the contents of the dialogue box appropriately 

Getting and setting printing options 

A Print dialogue box contains many fields which are either options or writable 
fields These are· 

• page range 

• number of copies 

• scale factor 

• orientation 

• draft. 

Each of these components can be read and set dynamica ll y us ing the following 
methods: 

PrintDbox_SetPageRange 
Pri ntDbox_SetCopies 
Pri ntDbox_SetScale 
Pri ntDbox_SetOrienta tion 
Print Dbox_SetDra ft 

PrintDbox_GetPageRange 
PrintDbox_GetCopies 
Print Dbox_ Get Seale 
Pri ntDbox_GetOrientation 
PrintDbox GetDraft 



Print Dialogue box class 

Responding to action button clicks 

When the user clicks a particular action button (or presses Return or Escape). the 
client receives one of the following Toolbox events: 

• PrintDbox_Save if Save has been clicked. 

• PrintDbox_Print if Print has been clicked or Retu rn has been pressed 

• PrintDbox. SetUp i f Set Up ... has been clicked and there is no specified 

Window to be shown. 

Getting the Print Dialogue's title 

The string appearing in the Print Dialogue's title bar is the currently selected 
printer (or ·unknown printer' if there is no such printer). This string can be read 
using the PrintDbox_GetTitle method. 

If the Print Dialogue is persistent, and the currently selected Printer is changed. 
then the Title Bar wi l l change to rencctth is. 

Getting the id of the underlying Window object 

The object id of the Window used to implement a Print Dialogue can be obtained 
using the PrintDbox_GetWindowiD method 

The SetUp Window 

it is possible to specify the name of a template to be used for showing an object 
when the SetUp ... button is pressed. This object is shown in its defau lt place 
persistently. 

205 



Print Dialogue Methods 

Print Dialogue Methods 

206 

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with · 

RO holding a nags word 
R I being a Pri nt Dialogue object id 
R2 being the method code which distinguishes this method 
R3-R9 potentially holding method-specific data 

PrintDbox GetWindowiD 0 

On entry 

RO =nags 
R I Print Dbox object id 
R2 = 0 

On exit 

RO = Window object id for this Print object 

Use 

This method returns the id of the underlying Window object used to implement 
this Print object 

C veneer 

extern _kernel_oserror *printdbox_get_window id ( unsigned int flags, 
Objectid printdbox, 
Objectid •window 

); 



Print Dialogue box class 

PrintDbox _ SetPageRange 1 

On entry 

RO =flags 
R I = Prin t Dbox object id 
R2 = I 
R3 = start of page range 
R4 = end of page range 

On exit 

R l-R9 preserved 

Use 

Th is method is used to set the page range for a Print Dialogue. 
A ·start' value of -I means 'All' . 

C veneer 

extern kernel oserror *printdbox set_page_range ( unsigned int flags, 
Objectld printdbox, 
int start, 

PrintDbox_GetPageRange 2 

On entry 

RO = flags 
R l = Print Dbox object id 
R2 = 2 

On exit 

int end 
); 

RO = start of page range (a ·start· value of -I means 'All') 
R I = end of page range 

Use 

This method is used to return the page range for a Print Dialogue. 

C veneer 

extern _kernel_oserror *printdbox_get_page range ( unsigned int flags, 

); 

Objectld printdbox, 
int •start, 
int *end 

207 



Print Dialogue Methods 

208 

PrintDbox_SetCopies 3 

On entry 

RO = flags 
R I - Print Dbox object id 
R2 = 3 
R3 = number of copies 

On exit 

R 1-R9 preserved 

Use 

This method is used to set the number of copies field for a Print Dia logue 

C veneer 

extern _kernel_oserror *printdbox set_copies ( unsi9ned int fla9s, 
Objectld printdbox, 

PrintDbox_GetCopies 4 

On entry 

RO = flags 
R I = Print Dbox object id 
R2 = 4 

On exit 

RO = number of copies to be printed 

Use 

int copies 
); 

This method returns the value of the Copies field for a Print Dialogue 

C veneer 

extern _kernel oserror *printdbox 9et copies ( unsigned int flags, 
Objectld printdbox, 
int •copies 

); 



Print Dialogue box class 

PrintDbox SetScale 5 

On entry 

RO = flags 
Rl =Print Dbox object id 
R2 = 5 
R3 = percentage value to scale by 

On exit 

R I-R9 preserved 

Use 

This method is used to set the scale facto r tor a Print Dialogue 

C veneer 

extern kernel oserror *printdbox_set scale ( unsigned int flags, 
Objectld printdbox, 
int scale factor 

PrintDbox GetScale 6 

On entry 

RO =flags 
R I = Print Dbox object id 
R2 = 6 

On exit 

RO = percentage scale factor 

Use 

); 

This method returns the value of the scale factor for a Print Dialogue 

C veneer 

extern _kernel oserror *printdbox get scale ( unsigned int flags , 
Objectld printdbox, 
int •scale_factor 

); 

209 



Print Dialogue Methods 

210 

PrintDbox SetOrientation 7 

On entry 

RO =nags 
Rl = Pnnt Dbox ob)ect id 
R2 = 7 
R3 = non-zero means Sideways. 0 means Upright 

On exit 

R I -R9 preserved 

Use 

This method is used to set the orientation for a Print Dialogue 

C veneer 

extern _kernel_oserror *printdbox_set_orientation ( unsigned int flags, 
Objectid printdbox, 
int orientation 

PrintDbox GetOrientation 8 

On entry 

RO =nags 
R I = Pnnt Dbox object id 
R2 = R 

On exit 

); 

RO = onentation non zero means Sideways. 0 means Upright 

Use 

This method returns the orientation for a Print Dialogue 

C veneer 

extern kernel_oserror *printdbox_get_orientation ( unsigned int flags, 
Objectid printdbox, 
int *orientation 

); 



Print Dialogue box class 

PrintDbox GetTitle 9 

On entry 

RO =nags 
R 1 = Pnnt Dbox object id 
R2 = 9 
R3 =pointer to buffer to hold title string 
R4 = size of buffer to hold t itle string 

On exit 

R4 size of buffer required to hold title string (if R3 was 0) 
else buffer pointed at by R3 holds titl e string 
R4 holds number of bytes written to buffer 

Use 

This method returns the current string used in a Print object's title bar. 

C veneer 
extern _kernel_oserror *printdbox_get_title ( unsigned int Clags, 

Objectid printdbox, 
char •buffer, 
int buff size, 
int •nbytes 

); 

211 



Print Dialogue Methods 

212 

PrintDbox Set Draft 1 0 

On entry 

RO = flags 
R I = Print Dbox object id 
R2 = 10 
R3 = non-zero means Draft. 0 means ·non-draft' 

On exit 

R l -R9 preserved 

Use 

This method is used to set whether draft printing is used for a Print Dialogue. 

C veneer 

extern kernel_oserror *printdbox_set draft ( unsigned int flags, 
Objectld printdbox, 

PrintDbox_GetDraft 11 

On entry 

RO = flags 
Rl = Pnnt Dbox object id 
R2 = I I 

On exit 

int draft 
); 

RO = draft non-zero means Draft. 0 means ·non-draft' 

Use 

This method returns whether draft printing is used for a Print Dialogue. 

C veneer 

extern _ kernel_oserror *printdbox_get_draft ( unsigned int flags, 
Objectld printdbox, 
int •draft 

); 



Print Dialogue box class 

Print Dialogue events 

The Print module generates the following Toolbox events: 

PrintDbox_AboutToBeShown (Ox82b00) 

Block 

+ 8 Ox82b00 
+ 12 flags (as passed in to Toolbox_ShowObject) 
+ 16 value which will be passed in R2 to TooiBox_ShowObject 
+ 20.. block which will be passed in R3 to TooiBox_ShowObject for the 

underlying dialogue box 

Use 

This Toolbox event is raised just before the Print module is going to show its 
underlying Window object. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int show_type; 
union 

TopLeft pos; 
WindowShowObjectBlock full; 
info; 

PrintDboxAboutToBeShownEvent; 

213 



Print Dialogue events 

PrintDbox _ DialogueCompleted (Ox82b01) 

214 

Block 

+ 8 Ox82b01 
+ 12 flags 

Use 

Thi~ Toolbox event is raised after the Print object has been hidden. either by a 
Cancel click. or arLer a successrul print. o r by the user cl icking ouLside the dialogue 
box (iritis transienl) or pressing Escape. It allows the client to tidy up its own state 
associated with this dialogue 

C data type 

typedef s t ruct 
{ 

ToolboxEventHeader hdr; 
} PrintDboxDialogueCompletedEvent; 



Print Dialogue box class 

PrintDbox_SetUpAboutToBeShown (Ox82b02) 

Block 

+ 8 Ox82b02 
+ 16 obtect id of the object about to be shown 

(note that the ·self' id in the id block will be for the Print D1alogue object. 
not the object which will be shown) 

+ 20 value which will be passed in R2 to TooiBox_ShowObject 
-1 24 block which will be passed in R3 to TooiBox_ShowObject for the 

underlying dialogue box 

Use 

This Toolbox event is raised just before the Print module is going to show its 
underlying Window object. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
Objectld object_id; 
int show_type; 
union 

TopLeft pos; 
WindowShoWObjectBlock ful l ; 
info; 

Prin tDboxSetUpAboutToBeShownEvent; 

215 



Print Dialogue events 

216 

PrintDbox _Save (Ox82b03) 

Block 

+ 8 Ox82b03 
+ 12 flags 

bit 0 set means print Sideways (default is Upright) 
bit I set means print Draft (default is non-draft) 

+ 16 pagerangestart( -1 meansAII) 
+ 20 page range end 
+ 24 number of copies 
+ 28 value to scale by (a percentage) 

Use 

Th is Toolbox event is ra ised when the user cl icks on the Save button. The client 
shou ld save any options associated with this Print Dialogue 1 usually in a 
document which is being edited) 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int start_page; 
int finish_page; 
int copies; 
int scale_factor; 
PrintDboxSaveEvent; 

PrintDbox_SetUp (Ox82b04) 

Block 

+ 8 Ox82b04 

Use 

This Toolbox event is raised when the user clicks on the Set Up ... button. if there is 
no dia logue box associated with this button. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
} PrintDboxSetUpEvent; 



PrintDbox_Print (Ox82b05) 

Block 

+ 8 Ox82b05 
+ 12 flags 

bit 0 set means pri nt Sideways (defau lt is Upright) 
bit I set means print Draft (defau lt is non-draft) 

+ 16 pagerangestart(-1 meansAII) 
+ 20 page range end 
+ 24 number of copies 
+ 28 value to scale by (a percentage) 

Use 

Print Dialogue box class 

This Toolbox event is raised when the user clicks on the Print button or presses 

Return. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int start_page; 
int fini sh_page; 
int copies; 
int scale_factor; 
PrintDboxPrintEvent; 

217 



Print Dialogue templates 

Print Dialogue templates 

218 

The layout of a Pri nt template is shown below. Fields which have types 
MsgReference and StringReference are those which will require relocation when 
they are loaded from a resource file If the template is being constructed in 
memory. then these fields should be real pointers (i.e. they do not require 
relocation 1 

For more details on relocation. see appendix Resource File Formats on page 497 

Field Size in bytes Type 

nags 4 word 

from 4 word 

to 4 word 

copies 4 word 

scale 4 word 

further_options 4 Stri ngReference 

window 4 Stri ngReference 

Underlying window template 

The Window object used to implement a Print dialogue has the following 
charactenstics. These must be reproduced if the Window is replaced by a 
client-specified alternative Window template. 

Title bar must be indirected. 

Gadgets 

Component ids are derived by adding to Ox82b000. 

Component id 

0 

2 

3 

Details 

action button 1 Print ) 

action button (Save) 

action button (Cancel) 

this should be marked as the 
'defau lt' action button 

this should be marked as a 
'local' action button 

th is shou ld be marked as the 
·cancel' action button 

radto button (From/To) thts is selected to allow page 
ranges to be printed 



Print Dialogue box class 

Component id Details 

4 radio button (All) selected for all page print 

5&6 writable field (From) these are used by the user to 
writable field (To) enter a page range 

7 number range (Copies) these are used by the user to 
enter the number of copies 

8 number range (Scale) these are used by the user to 
specify a scale 

9 radio button (Upright) selected for portrait 

!0 radio button (Sideways) selected for landscape 

I I option button (Draft) se lected for draft 

12 action button (SetUp ... ) this is used to bring up a 
Window of further options 

13 label (To ) 

14 label (Copies) 

15 label (Scale) 

)6 label(%) 

219 



Print Dialogue Wimp event handling 

Print Dialogue Wimp event handling 

220 

Wimp event 

Mouse Click 

Key Pressed 

User Message 

Action 

on Print button then raise PrintDbox_Print Toolbox event 
on Cancel bulton then raise 

PrintDbox DialogueCompleted Toolbox event 
on Save button then raise PrintDbox_Save Toolbox event 
on Setup ... then raise a 

PrintDbox_SetUpAboutToBeShown. 
then show the specified Window object. or raise a 
PrintDbox_SetUp Toolbox event if there is no such 
Window 

on All (pages) and All is off then 
set All on 
set From off 
and shade the writable fields 

on From and From is off then 
set From on 
set All to off 
and unshade the writable fields 

on Copies or Scale up/down arrows then 
increment/decrement values 

on Upright then set Upright on and Sideways off 
on Sideways then set Sideways on and Upright off 
on Draft then toggle state of option button 

if key is Return raise PrintDbox_Print Toolbox event 
if key is Escape act as if Cancel has been clicked 

Window_HasBeenHidden Toolbox event 
hide the dialogue box. and raise a 
PrintDbox DialogueCompleted Toolbox event 
Message. llelpRequest 
return he lp message to sender 



12 

User interface 

Prog Info Dialogue box class 

A Prog Info dialogue object is used to display information about the client 
application in a dialogue box. 

A Prog Info Dialogue has the following information held in its dialogue box: 

name ..... 

purpose -
author ..... 

licence type --.. 

version ..... 

HaM I 
Purposer-- Tex-t editor 
Ruthorf1)iiCOrnTo.-ut.rs ltd, tf93 

Umcel SingleUser- ----
Uersion 1.45 (89-Jul-93) 

• the name of the application (taken from the message whose tag is 
·_ TaskName·) 

• the purpose of the application 

• the author of the application 

• the licence type of the application (optional) 

• the version of the application 

All of the above are display field gadgets 

The last of these fields can be set dynamically by the client at run-time. 

This gives the simplest of Prog Info Dialogue boxes. If the cl ient wishes to use 
further fie lds. or wishes to customise the dialogue box, then there is a faci li ty for 
including the name of a different template to use rather than the standard Prog 
Info one. 

221 



Application Program Interface 

Application Program Interface 

Attributes 

222 

A Prog Info object has the following attributes which are specified in its object 
template and can be manipulated at run-time by the client application: 

Attributes 

flags word 

Description 

Bit Meaning 

0 when set. this bit indicates that a 
Proglnfo_AboutTobeShown event should be 
raised when SWI Toolbox ,ShowObject is called for 
this object 
when set, this bit indicates that a 
Proglnfo_Dia logueCompleted event should be 
raised when the Proglnfo object has been removed 
from the screen. 

2 when set. include a licence type field in the 
dialogue box 

title alternative ti t le bar string to 'About this program· 
(0 means use default title) 

max title length this gives the maximum length in bytes of t itle text which 
will be used for this Prog Info dialogue's title bar 

purpose a string giving the purpose of this application 

author a string giving the author of this application 

licence type an integer giving the licence type of the application 

vers1on a string giving version information for this application 

window the name of an alternative window template to use 
instead of the default one (0 means use default) 

Manipulating a Prog Info object 

Creating and deleting a Prog Info object 

A Prog Info object is created usmg SWI Toolbox_CreateObject 

When this object is created it has no attached objects (see page II). 

A Prog Info object is deleted using SWI Toolbox_DeleteObject. 

The settmg of the non-recursive delete bit does not have a meaning for Prog Info 
objects. 



Prog Info Dialogue box class 

Showing a Prog Info object 

When a Prog Info object is displayed on the screen using SWI Toolbox_ShowObject 
it has the fol lowing behaviour: 

Position Show type 

0 (default) the underlyi ng window is shown at the last place shown 
on the screen, or the coordinates given in its template. if 
it has not already been shown 

I (full spec) R3 + 0 visible area mmimum x coordinate 
visible area minimum y coordinate 
visible area maximum x coordinate 
visible area maximum y coordinate 
scroll x offset relative to work area 
scroll y offset relative to work area 

R3 + 4 

R3 + 8 
R3 + 12 
R3 + 16 
R3 + 20 
R3 + 24 Wimp window handle of window to open behind 

-I means top of stack 
-2 means bottom of stack 
- 3 means the window behind the Wimp's 

backwindow 

2 {topleft) R3 + 0 visible area minimum x coordinate 
R3 + 4 visible area minimum y coordinate 

Changing the version string 

Most of the fields in a Prog Info object will remain unchanged at run-lime. 

The client may wish to set and read the version string field at run-time. This is done 
using the Proglnfo_SetVersion/Proglnfo_GetVersion methods 

Setting the licence type 

If the client wishes to set and read the licence type displayed in the Prog Info 
dialogue box. then it can use the Proglnfo_SetLicenceType and 
Proglnfo_GctLicenceType methods (described on page 227). 

Licence types are one of: 

• public domain 

• single user 

• single machmc 

• site 

• network 

• authority . 

223 



Prog Info methods -
Prog Info methods 

224 

The fol lowing methods are all invoked by ca lling SWI Toolbox_ObjcctMiscOp with 

RO holding a flags word 
R I being a Prog Info Dialogue object id 
R2 being the method code which distinguishes this method 
R3-R9 potentially holding method-specific data 

Proglnfo_GetWindowiD 0 

On entry 

RO = flags 
R I = Prog Info object id 
R2 = 0 

On exit 

RO = Window object id for this Prog Info object 

Use 

This method returns the id of the underlying Window object used to implement 
this Prog Info object. 

C veneer 

extern _ kernel_oserror *proginfo_get_window_id ( unsigned int flags, 
Objectid proginfo , 
Objectld •window 

); 



Prog Info Dialogue box class 

Proglnfo_SetVersion 1 

On entry 

RO =nags 
R I = Prog Info object id 
R2 = I 
R3 = pointer to buffer holding version string (Ctrl-terminated) 

On exit 

R 1-R9 preserved 

Use 

This method sets the version string used in the Prog Info Dialogue's Window. 

C veneer 

extern _kernel .oserror *proginfo_set_version ( unsigned int flags, 
Objectid proginfo, 
char •version_string 

); 

225 



Prog Info methods 

Proglnfo _ GetVersion 2 

226 

On entry 

RO =flags 
R I = Prog Info ob1ect id 
R2 = 2 
R3 = pointer to buffer to hold version string 
R4 = size of buffer to hold version string 

On exit 

R4 =size of buffer required to hold version string (if R3 was 0) 
else buffer pointed at by R3 holds version string 
R4 holds number of bytes written to buffer 

Use 

This method returns the current version string used in a Prog Info object. 

C veneer 

extern _ kernel_oserror *proginfo_get_version ( unsigned int flags, 

); 

Objectid proginfo, 
char *buffer, 
int buff_size, 
int *nbytes 



Prog Info Dialogue box class 

Proglnfo _ Setlicence Type 3 

On entry 

RO = flags 
R I = Prog Info object id 
R2 = 3 
R3 = licence type 

0 =>public domain 
I => single user 
2 =>single machine 
3 =>site 
4 =>network 
5 =>authority 

On exJt 

R l -R9 preserved 

Use 

This method sets the licence type used in the Prog Info Dialogue's Window. 

C veneer 

extern _kernel oserror *proginfo_set licence type ( unsigned int flags , 
Objectld proginfo , 
int licencc_typo 

) ; 

227 



Prog Info methods 

Proglnfo_GetlicenceType 4 

228 

On entry 

I<O flags 
R I Prog Info object id 
R2 4 

On exit 

RO I ice nee type ol applica tion 
0 =public domain 

Use 

I =single user 
2 =single mach me 
3 =site 
4 =network 
'>=authority 

This method returns the current licence type used in a Prog Info object 

C veneer 

extern kernel_oserror *proginfo get licence type ( unsigned int flags, 
Objectld proginfo, 
int *licence_type 

); 



Prog Info Dialogue box class 

Proglnfo_SetTitle 5 

On entry 

RO =flags 
R I = Prog Info object id 
R2 = 5 
R'3 = pointer to text string to use 

On exit 

R 1-R9 preserved 

Use 

Th is method sets the text which is to be U'i(' ci in the title bar of the given Prog Info 

d ialogue. 

C veneer 

extern _kernel oserror *proginfo set. title ( unsigned int flags, 
Objectld proginfo, 
char *title 

Proglnfo_GetTitle 6 

On entry 

RO = flags 6 

); 

R3 = pointer to buffer to return the text in (or 0) 

R4 = size of buffer 

On exit 

R4 =size of buFfer required to hold the text (if R3 was Ol 
else Buffer pointed to by R3 contains title text 
R4 holds number of bytes written to buffer 

Use 

This method returns the text string used in a Prog Info dia logue's title bar. 

C veneer 

extern _kernel oserror *proginfo get_ title ( unsigned int flags, 
Objectld proginfo, 
char *buffer, 
int buff_size, 
int *nbytes 

); 

229 



Prog Info events 

Prog Info events 

230 

The Prog Info module generates the following Toolbox events: 

Proglnfo _AboutToBeShown (Ox82b40) 

Block 

+ 8 Ox82b40 
+ 12 flags (as passed in to Toolbox_ShowObject) 
+ 16 value which will be passed in R2 to TooiBox_ShowObject 
+ 20.. block which wi ll be passed in R'3 to TooiBox_ShowObject for the 

underlying dialogue box 

Use 

Th is Toolbox event is ra ised just before the Prog Info module is going to show its 
underlying Window object. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int show_type; 
union 

TopLeft pos; 
WindowShowObjectBlock full; 
info; 

ProginfoAboutToBeShownEvent; 



Prog Info Dialogue box class 

Proglnfo _DialogueCompleted (Ox82b41) 

Block 

+ 8 Ox82b4 1 
+ 12 flags 

(none yet defined) 

Use 

This Toolbox event is raised after the Prog Info object has been hidden. either by 

the user clicking outside the dialogue box or pressing Escape. It allows the client 
to tidy up its own state associated with this dtalogue. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
ProginfoDialogueCompletedEvent; 

Prog Info templates 

The layout of a Prog Info template is shown below. Fields which have types 

MsgReference and StringReference are those which will require relocation when 

they are loaded from a resource file If the template is being constructed in 
memory, then these fields should be real pointers (i.e. they do not require 
re location l 

For more detai Is on relocation. see append ix Resource File Formats on page 497 

Field Size in bytes Type 

flags 4 word 

title 4 MsgReference 

max-title 4 word 

purpose 4 MsgReference 

author 4 MsgRererence 

licence type 4 word 

version 4 MsgReference 

window 4 String Reference 

231 



Prog Info Wimp event handling 

Underlying window template 

The Window object used to implement a Prog Info d ialogue, has the fol lowing 
characteristics. These must be reproduced if the Window is replaced by a 
client-specified alternative Window template 

Title bar must be indirected. 

Gadgets 

Component ids are derived by adding to Ox82b400. 

Component ld 

0 

2 

3 

4 

5 

6 

7 

8 

9 

Details 

display field (Name of Application) 

display field 1 Purpose) 

display field (Author) 

display field (Licence Type) 

display field (Version) 

label (name) 

label(purpose) 

label(author) 

label (licence) 

label (version) 

Prog Info Wimp event handling 

232 

Wimp event 

Open Window 

Key Click 

User Message 

Action 

request show the dialogue box 

if Escape then cancel dialogue 

Message_MenusDeleted 
hide the dialogue box 



13 

User interface 

Quit Dialogue box class 

A Quit Dialogue box is used by the client application when the user attempts to 
quit the application or shut down the computer whilst there is still unsaved 

data . 

A Quit Dialogue object is used to warn the user o f quilling without saving unsaved 
data. 

The dialogue box which appears on the screen has a number of components: 

title bar 

message ---1-----<--..~ 2 Files modified 

leancetl 
... 

Quit button Cancel button 

• a title bar (by default containing the name of the application. 1.e the message 
whose tag is '_TaskName') 

• a message stating (by default) that there is unsaved data 

• two action buttons: 

• a Cancel button (default action button) 

• a Quit button. 

The user sees the following behaviour: 

• if they click on Quit, the application quits 

• if they click on Cancel (or press Return or Escape). the application returns to 
normal operation. 

233 



Application Program Interface 

Application Program Interface 

234 

When a Quit object is created. 1t has a number of optional components. 

• an alternative title bar string instead of the client's name 

• an alternative message to use in the dialogue box 

• the name of an alternative template to use for the underlying Window object. 

If the dialogue box is opened as a transient dialogue box. then 1t closes when the 
user clicks outside the box. 

Just before the Quit dialogue box is shown on the screen. the client is delivered a 
Quit_AboutToBeShown Toolbox event (if enabled by the appropriate bit in the 
nags) 

Once the dialogue box is displayed on the screen. the Quit module handles events 
for it. and raises a number of Toolbox events to ind icate what choice the user has 
made. These are Quit_DialogueCompleted. Quit_Cancel and Quit_Quit 
(respectively). 

Attributes 

A Quit object has the fol lowing attributes which are specified in its object template 
and can be manipulated at run-time by the client application 

Attributes 

nags word 

Description 

Bit M eaning 

0 when set. this bit indicates that a 
Quit_AboutToBeShown event should be raised 
when SWI Toolbox_ShowObject is called for this 
object 

when set. this bit indicates that a 
Quit_DialogueCompleted event should be raised 
when the Quit object has been removed from the 
screen. 

title alternative title to use instead of client's name 
(0 means defau lt title) 

max title length this gives the maximum length in bytes of title text which 
will be used for this object 

message the string to use as the message in the Quit dialogue box 
(0 means default message) 



Attributes 

max message 

window 

Quit Dialogue box class 

---=· ... 
Description 

maximum length of string used in dialogue's message 
field 

alternative window template to use instead of the default 
one 

Manipulating a Quit object 

Creating and deleting a Quit object 

A Quit object is created using SWI Toolbox_CreateObject. 

When this object is created it has no attached objects (see page I I ). 

A Quit object is deleted using SWI Toolbox_DeleteObject 

The setting of the non-recursive delete bit does not have a meaning for Quit 
objects. 

Showing a Quit object 

When a Quit object is displayed on the screen using SWI Toolbox_ShowObject it 
has the following behaviour: 

Show type 

0 (default) 

I (full spec) 

2 (topleft) 

Position 

the underlying window is shown at the last place shown 
on the screen. or the coord inates given in its template. if 
it has not already been shown 

R3 + 0 visible area minimum x coordinate 
visible area minimum y coordinate 
visible area maximum x coordinate 
visible area maximum y coordinate 
scroll x offset relative to work area 
scroll y offset relative to work area 

R3 + 4 

R3 + 8 
R3 + 12 
R3 + 16 
R3 + 20 
R3 + 24 Wimp window handle of window to open behind 

-I means top of stack 
-2 means bottom of stack 
-3 means the window behind the Wimp's 

backwindow 

R3 + 0 visible area minimum x coordinate 
R3 + 4 visible area minimum y coordinate 

235 



Quit methods 

Quit methods 

Changing the Quit Dialogue's message 

When a Quit Dialogue object is created it has a default message warning the user 
that he has unsaved data which will be lost if he quits the application . 

This can be set and read dynamically using the Quit_SetMessage and 
Quit_GetMessage methods. 

Getting the id of the underlying window for a Quit Dialogue 

The Window object id of the Window object used to implement the Quit Dialogue 
can be obtained by using the Quit. GetWindowiD method 

The following methods are all invoked by ca ll ing SWI Toolbox ObjectMiscOp with. 

RO 
Rl 
R2 
R3-R9 

holding a flags word (which is zero un less otherwise stared 1 
being a Quit Dialogue object id 
being the method code which distinguishes this method 
potentially holding method-specific data 

Quit_ GetWindowiD 0 

236 

On entry 

RO = flags 
R I = Quit object id 
R2 = 0 

On exit 

RO =Window object id for this Quit object 

Use 

This method returns the id of the underlying Window object used to implement 
this Quit object 

C veneer 

extern _kernel_oserror *quit_gct_window_id ( unsigned int flags, 
Objectld quit, 
Objectld *window 

); 



Quit Dialogue box class 

Quit_ SetMessage 1 

On entry 

RO flags 
R I = Quit object id 
R2 =I 
R3 - pointer to buffer holding new message (Ctrl-terminated) 

On exit 

R l -R9 preserved 

Use 

Thi~ method sets the message used in the Quit Dialogue's Window. 

C veneer 

extern kernel oserror *quit_set_message ( unsigned int flags, 
Objectid quit , 
char *message 

); 

237 



Quit methods 

238 

Quit_ GetMessage 2 

On entry 

RO =flags 
R I = Quit object id 
R2 = 2 
R3 = pointer to buffer to hold message 
R4 = size of buffer to hold message 

On exit 

R4 = size of buffer required to hold message (if R3 was Ol 
else buffer pointed at by R3 holds message 
R4 holds number of bytes wri tten to buffer 

Use 

This method returns the current message used in a Quit object 

C veneer 

extern kernel_oserror *quit_get message ( unsigned int flags, 
Objectld quit, 
char *buffer, 
int buff size , 
int • nbytes 

); 



Quit Dialogue box class 

Quit SetTitle 3 

On entry 

RO = flags 
R I = Quit object id 
R2 = 3 
R3 = pointer to text string to use 

On exit 

R I -R9 preserved 

Use 

This method sets the text which is to be used in the title bar of the given Quit 
dia logue. 

C veneer 
extern _kernel oserror *qui t_set_title ( unsigned int flags, 

Objectid quit, 
char •title 

); 

239 



Quit methods 

240 

Quit_ GetTitle 4 

On entry 

RO =nags 
R I = Quit object id 
R2 = 4 
R3 pointer to buffer to return the text in (or 0) 
R4 = size of buffer 

On exit 

R4 = size of buffer required to hold the text (if R3 was 0) 
else Buffer pointed to by R3 contains title text 
R4 holds number of bytes written to buffer 

Use 

This method returns the text string used in a Quit dialogue's title bar 

C veneer 

extern _kernel_oserror *quit_get title ( unsigne d int f l ags, 
Objectid quit , 
char •buffer, 
int buff_size, 
int •nbytes 

) ; 



Quit Dialogue box class 

Quit events 

The Quit module generates the following Toolbox events 

Quit_AboutToBeShown (Ox82a90) 

Block 

+8 
+ 12 
+ 16 
-l 20 ... 

Use 

Ox82a90 
!lags (as passed in to Toolbox_ShowObject) 
value which will be passed in R2 to TooiBox_ShowObject 
block which will be passed in R3 to TooiBox_ShowObject for the 
underlying dialogue box 

This Toolbox event is raised just before the Quit module is going to show its 
underlying Window object. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int show_ type; 
union 

TopLeft pos; 
WindowShoWObjectBlock f ull; 
info; 

QuitAboutToBeShownEvent ; 

241 



Quit events 

242 

Quit_ Quit (Ox82a91) 

Block 

+ 8 Ox82a9 1 

Use 

This Toolbox event is raised when the user clicks on the Quit Button. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 

QuitQuitEvent; 

Quit_DialogueCompleted (Ox82a92) 

Block 

+ 8 Ox82a92 
+I 2 nags 

(none yet defined) 

Use 

This Toolbox event is raised after the Quit object has been hidden, either by a 
Cancel click. or a Quit cl ick. or by the user clicking outside the d ialogue box (if it 
was opened transiently) or pressing Escape It allows the client to tidy up its own 
state associated with this dialogue 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 

QuitDialogueCompletedEvent; 



Quit Dialogue box class 

Quit_ Cancel (Ox82a93) 

Quit templates 

Block 

+ 8 Ox82a93 

Use 

This Toolbox event is raised when the user clicks on the Cancel button or presses 
Return or Escape. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 

QuitCancelEvent ; 

The layout of a Quit template is shown below. Fields which have types 
MsgReference and StringReference are those which will require relocation when 
they are loaded from a resource file. If the template is being constructed in 
memory. then these fields should be real pointers (i.e they do not require 
relocation) 

For more details on relocation. see appendix Resource File Formats on page 497 

Field Size in bytes Type 

nags 4 word 

title 4 MsgReference 

max - tit le 4 word 

message 4 MsgReference 

max_message 4 word 

window 4 StringReference 

243 



Quit Wimp event handling 

Underlying window template 

The Window ob)ect used to implement a Quit D1alogue. has the following 
characteristics. These must be reproduced if the Window is replaced by a 
client-specified alternative Window template. 

Title bar must be indirected. 

Gadgets 

Component Ids are derived by add ing Ox82a900: 

Component ld 

0 

2 

Details 

button 

action button (Qu i t) 

action button (Cancel) must be marked as defau lt 
and Cancel action button 

Quit Wimp event handling 

244 

Wimp event 

Mouse Click 

Key Pressed 

Action 

on Quit button raise Quit_Quit and 
Quit_DialogueCompleted (if enabled) Toolbox event 
on cancel button raise Quit_ Cancel and 
Qu it_Dia logueCompleted (if enabled) Toolbox event 

if key is Return raise Quit. Cancel Toolbox event 
if key is Escape act as if Cancel had been pressed 



14 

User interface 

SaveAs Dialogue box class 

0 bjects of the Save As Dialogue class are used to display a standard (or 

customised) Save As dialogue box. and to handle the drag of the 'file icon' to 
its destination. and to request the client application to do the save operation 

Most of the Wimp message protocol is hidden from the client. 

A Save As Dialogue object is used to al low the user to drag an icon representing a 

document from a d ialogue box to another applica tion or to a directory display. 

When a Save As Dialogue object is created. it has a number of components 

Selection button 
(optiona l) 

Cancel button 

It is possible to specify the following 

• default filetype 

• default filename 

Save button 

• a default filename to use in the Save As dta logue box 

• a default filetype to use in the Save As dialogue box 

• a string to use in the dialogue box's title bar. instead of ·save as· 

• the name of a Window template to use instead of the Save As module's 
interna l Window template 

The default Save As dialogue box. has a draggable sprite to represent the data to 
be saved, a writable field giving the name to save the data under, a Save (defau lt) 
action button, a Cancel action button. and an option button saying whether the 
whole data or just a selection should be saved If the client wishes to customtse 

the dialogue box. then the above components must be present in that dialogue 
box. and must have the same component ids 

If the dialogue box is opened as a transient dialogue box, then it closes when the 
user clicks outside the box. 

245 



Application Program Interface 

The user can interact with the Save As dialogue box in the following ways 

• clicking Cancel or pressing Escape will close the dialogue box. and cancel the 
Save. 

• cl icking Save (or pressing Return) wi ll save the data in a fi le whose name is 
given by the contents of the Writable Field (if it is a full pathname). 

• dragging the sprite to its destination will save the data to that destination. 
with the 'leaf' part of its name. 

When the Selection option button is clicked on, then the filename will change to 
the string 'Selection' . 

Application Program Interface 

246 

Once the Save As dialogue box is on display, the Save As modu le handles much of 
the messaging protocols associated with saving to another application or to a 
directory display. The clien t no longer deals in the normal Wimp protocols for data 
transfer. but instead responds to Toolbox events raised by the Save As module In 
fact in the very simplest of cases. the client does no more than just provide a 
pointer to the data to be saved, and leaves the rest up to the Save As module. 

Attributes 

A Save As object has the following attributes which are specified in its object 
template and can be manipulated at run-time by the client application· 

Attributes 

nags 

Description 

Bit Meaning 

0 when set, this bit indicates that a 
SaveAs_AboutToBeShown event should be raised 
when SWI Toolbox_ShowObject is ca l led for this 
object 

when set. this bit indicates that a 
SaveAs_DialogueCompleted event should be 
raised when the Save As object has been removed 
from the screen. 

2 when set. do not include the Selection option 
button in the dialogue box This is used by clients 
where there is no concept of a current selection. 

3 when set. handle the SaveAs operation entirely in 
the SaveAs module, from the supplied buffer 

4 when set. client is willing to support RAM 
transfers 



SaveAs Dialogue box class 

Attributes Description 

filename a message string which gives the default filename to use 
in the writable field 

filetype an integer giving the RISC OS type of the file being saved 

title a string to use for the Save As dialogue box title bar. 
instead of ·save as· (0 means use the default string) 

max title length this gives the maximum length in bytes of title text which 
will be used for this object 

window an alternative window template to use instead of the 
defau lt one (null implies defau lt) 

Manipulating a SaveAs object 

Creating and deleting a SaveAs object 

A SaveAs object is created using SWI Toolbox_CreateObject. 

When this object is created it has no attached objects (see page I I) 

A SaveAs object is deleted using SWI Toolbox_DeleteObject 

The setting of the non-recursive delete bit does not have a meaning for SaveAs 
objects. 

Showing a SaveAs object 

When a SaveAs object is displayed on the screen using SWI Toolbox_ShowObject it 
has the following behaviour· 

Show type 

0 (default) 

Position 

the underlying window is shown at the last place shown 
on the screen. or the coordinates given in its template, if 
it has not already been shown 

247 



Application Program Interface 

248 

Show type 

I (full spec) 

2 (topleft) 

Position 

R3 + 0 visible area minimum x coordinate 
R3 + 4 
R3 + 8 
R3 + 12 
R3 + 16 
R3 + 20 
R3 + 24 

visible area minimum y coordinate 
visible area maximum x coordinate 
visible area maximum y coordinate 
scroll x offset relative to work area 
scroll y offset relative to work area 
Wimp window handle of window to open behind 
- I means top of stack 
- 2 means bottom of stack 
- 3 means the window behmd the Wimp's 

backwindow 

R3 + 0 visible area minimum x coord inate 
R3 + 4 visible area minimum y coord inate 

Setting the SaveAs Dialogue box's filename and flletype 

When a SaveAs Dialogue object is created. it is given the filename from its 
template to use in its writable field. and a fi letype which will be used to look up 
and use a sprite (from the Wimp sprite pool) whose name is file_HHH. where 
HHH is a 3-digit hex representation of the filetype If such a sprite does not exist 
then a sprite ca lled file_xxx is used instead For saving directories and 
applications the filetype values Ox I 000 and Ox2000 should be U5ed. In the latter 
case. the standard 'App' sprite is used. 

Both of these attributes can be set and read dynamica lly using the 
SaveAs_SetFileName/SaveAs_GetFileName and SaveAs_SetFileType/ 
SaveAs_GetFileType methods. 

Summary of how to save data from a Toolbox client 

There are essentially three sorts of application· 

• Type I -an application which will allow the Toolbox to do data saving entirely 
on its behalf. 

• Type 2 - an application which needs to do the data saving ilself. but is nol 
willing to support RAM transfers. 

• Type 3- an application which needs to do the data saving itself. and is willing 
to support RAM transfers. 



SaveAs Dialogue box class 

Let us look at how a client should react to each Toolbox event which it will receive. 
Notice that these are the only events which the client needs to watch for to achieve 
the SaveAs operation: there is no need to watch for user drags and window events, 
and no need to watch for Message_RAMFetch events The following is some 
pseudo-C showing how a client might process Toolbox events delivered to it· 

Type I 

switch(toolbox_event_code) 
{ 

case SaveAs_AboutToBeShown : 
I• call SaveAs_SetFileSize , SaveAs SetFileName, SaveAs _SetFileType 

and SaveAs_SelectionAvailable if necessary. 
Also call SaveAs_SetDataAddress to tell the Toolbox 
the address and size of data to be saved. 

•I 
break; 

case SaveAs_SaveCompleted : 
I• maybe mark a document as 'unmodified' *I 
break; 

case SaveAs_OialogueCompleted: 
I• do any tidying up 

maybe delete the SaveAs object if desired 
•I 
break; 

default: 
break; 

Type 2 

switch(toolbox_event_code) 
{ 

case SaveAs_AboutToBeShown: 
I* call SaveAs_SetFileSize, SaveAs_SetFileName, SaveAs SetFileType 

and SaveAs_SelectionAvailable if necessary 
*I 
break; 

case SaveAs SaveToFile: 
I* save the data to the given filename 

and call SaveAs_ FileSaveCompleted 
•I 
break; 

249 



Application Program Interface 

250 

-------- ***W**'i ¥*¥&** * **¥*'"' 

case SaveAs_SaveCompleted: 
I• maybe mark a document as 'unmodified' *I 
break ; 

case SaveAs_oialogueCompleted: 
I • do any tidying up 

maybe delete the SaveAs object if desired 
•I 
break; 

default: 
break; 

Type 3 

switch(toolbox_event_code) 
{ 

case SaveAs_AboutToBeShown: 
I• SaveAs_SetFileSize, call SaveAs_SetFileName, SaveAs_SetFileType 

and SaveAs SelectionAvailable if necessary 
• I 
break; 

case SaveAs_SaveToFile: 
I• save the data to the given filename 

and call SaveAs_Fi leSaveCompleted 
• I 
break; 

case SaveAs_ FillBuffer: 
I* if (address of buffer == 0) 

allocate a buffer for RAM transfer 
if (more data to go) 

• I 
break; 

fill buffer with data 
call SaveAs_BufferFilled 

case SaveAs_SaveCompleted: 
I* maybe mark a document as 'unmodified' • I 
break; 

case SaveAs_oialogueCompleted: 
I• do any tidying up 

maybe delete the SaveAs object if desired 
* I 
break; 

default: 
break; 



SaveAs Dialogue box class 

Setting the File Size for the SaveAs Dialogue 

In the file transfer protocol under RISC OS. the sender of a fi le must specify an 

estimated size in bytes of the file being saved. This should be set using the 

SaveAs_SetFileSize method. and can be read using the SaveAs_GetFileSize 

method. This value will be used in the initial Message_DataSave message which 

will be sent by the SaveAs module when the file icon is dragged to its destination 

Enabling/disabling the Selection option button 

In the dialogue box used to implement the SaveAs Dialogue object. there is an 

opt1on button which IS used to show whether the Save operation is to be done on 

the whole file or just a selection Handling this button is done entirely by the 

SaveAs module It is. however. the responsibility of the client to either enable or 

disable this option button. depending on whether there is a selection currently in 

existence. This will cause the button to appear greyed out when no selection 

exists 

The SaveAs module provides the method SaveAs_SelectionAvailable for this use. 

The client should typically use this method in response to the 

SaveAs_AboutToBeShown Toolbox event. 

Before the SaveAs Dialogue box Is shown 

Once a SaveAs dialogue has been started by using Toolbox_ShowObject on a 

SaveAs Dialogue object. a SaveAs dialogue box will appear on the screen By 

setting an appropriate bit in the SaveAs Dialogue object's flags word. the client will 

be sent a SaveAs .. AboutToBeShown Toolbox event before the dialogue box 

appears. This allows the client to set any relevant state like a different filename. or 

fi letype etc. 

Cancelling the dialogue 

If the user clicks on the Cancel button or presses Escape (or clicks outside the 

SaveAs dialogue box if it was transient) then the SaveAs module delivers a 

SaveAs_DialogueCompleted Toolbox event to the client application (if enabled) 

This allows the client to update any of its data structures and to clean up any state 

associated with this d ialogue. 

Saving handled entirely by the SaveAs module 

If the client is able to supply the data to be saved in a contiguous block of memory 

(I e. client type I). then by setting bit 3 in the SaveAs objects flags word. the client 

can request that the SaveAs module handles the entire Save operation itself To do 

this, the client must supply the address of the data (and its size). using the 

SaveAs_SetDataAddress method. Typically the client wi ll do this when it receives 

the SaveAs_AboutToBeShown Toolbox event. 

251 



Application Program Interface 

252 

The SaveAs module wi ll then conduct the rest of the d ialogue If it receives a 
Message_RAMFetch message from the receiver. it will do a RAM transfer on behalf 
of the client; otherwi se it will do a scrap transfer (or save directly to file if the 
destination is a filing system) All o f this is transparent to the client if bit 3 is set in 
the SaveAs object's flags word 

Saving to a fl le 

If bit 3 of the SaveAs object's flags word is not set (thus ind icating that the Toolbox 
cannot do a save operation on the cl ient's behalf). then when the SaveAs modu le 
wants the application to save to a file. it will deliver a SaveAs SaveToFile Toolbox 
event. On receipt of th is event. the client (type 2 always and type 3 when necessary) 
should save its data into the file whose name is given in the event block The client 
should then use the SaveAs. FileSaveCompleted method to inform the SaveAs 
modu le whether the Save was successfu l or not. This must be done before the next 
call to SWI Wimp_Poll . since the SaveAs module will assume this. 

The SaveAs SaveTol Jle event will be delivered if 

• the user cl icks on Save 

• a WimpSScrap transfer is being used 

• the user has dragged the fi le icon onto a d irectory display 

Saving via RAM transfer 

If bit 3 of the SaveAs object's nags word is not set (thus indicating that the Toolbox 
cannot do a save operation on the client's behalf). then the client (type 3 only) may 
wish to help support RAM t ransfers if they are requested by the receiving task Th is 
is ind icated by setting bit 4 of the SaveAs object's flags word 

The client must supply a buffer. into which it places data ready for transmission to 
the receiving task. 

The SaveAs module will deal with all subsequent RAM Fetch requests. and will call 
SWI Wimp_TransferBiock to do the data transfer. and will reply to the receiver using 
Message_RAMTransmit 

The client will receive SaveAs_FiiiBuffer Toolbox events when the buffer has been 
transmitted. and on receipt o f such events should fi ll the buffer and ca ll the 
SavcAs_BufferFi lled method If the field in the SaveAs_FiiiBurfer event giving the 
address of the buffer is 0. then the client has not yet supplied a buffer. and they 
should allocate one. Each SaveAs_FiiiBuffer Toolbox event conta ins an ind icalion 
of how many bytes have been transmitted so far during the transfer. As soon as the 
number or bytes which the cl ient wri tes into the buffer is less than the size of the 
buffer. the SaveAs module assumes that the transfer is complete 



SaveAs Dialogue box class 

Successful completion of a Save operation 

When a Save operation has been successfully completed (i e. the data has been 
saved) the SaveAs module will send a SaveAs_SaveCompleted Toolbox event to 
the client and will hide the SaveAs object. unless the user has clicked Adjust on 
the Save button 

One field in the event block passed back to the client is a one-word indication of 
whether the destination was a ·safe' place (like a filing system) or unsafe· (like 
another application). The client may choose to use this value to dec1de whether to 
mark the data as 'un-modified', if the client is an editor 

If the original save operation was started by the user dragging the file icon from the 
SaveAs dia logue box, then t he SaveAs_SaveCompleted event block also contains 
1 he Wimp message reference number of the Message_DataSave sent by the SaveAs 
modu le. to allow the client to use in conjunclion with any Mcssagc_DataSaved 
repl ies. 

Completion of the SaveAs dialogue 

When the SavcAs module has hidden its dia logue box at the end of a dialogue. it 
delivers a SaveAs_DialogueCompleted Toolbox event to the client. with an 
indication of whether a successful save occurred during the dialogue. 

Error handling 

Any errors referring to the SaveAs dialogue box itself will be reported to the user by 
the SaveAs module. For example. if there is only a leafname in the writable field. 
and the user clicks on Save. then the SaveAs module wlll display an error box 
saying 'To save. drag the icon to a directory display' 

The SaveAs module will also report any errors which occur while it is carrying out a 
Save operation. 

The client should report (via SWI Wimp_ReportError), any errors which occur if it is 
requested to save to a given filename. 

253 



Save As methods 

Save As methods 

254 

The following methods are all1nvoked by calling SWI Toolbox_ObjectMiscOp with: 

RO holding a flags word 
R I being a Save As Dia logue object id 
R2 being the method code which distinguishes th is method 
R3-R9 potentially holding method-specific data 

SaveAs GetWindowiD 0 

On entry 

RO = flags 
R I = Save As object id 
R2 = 0 

On exit 

RO Window object id for this Save As object 

Use 

This method retu rns the id of the underlying Window object used to implement 
this Save As object 

C veneer 

extern _kernel oserror *saveas get_window_id ( unsigned i nl flags, 
Objectld saveas , 
Objectld •window 

); 



SaveAs Dialogue box class 

SaveAs SetTitle 1 

On entry 

RO = flags 
R I = Save As object id 
R2 = I 
R3 = pointer to text string to use 

On exit 

R I-R9 preserved 

Use 

This method sets the text which is to be used in the tit le bar of the given Save As 
dialogue. 

C veneer 

extern kernel_oserror *saveas_set_ title ( unsigned int flags, 
Objectld saveas, 
char *title 

); 

255 



Save As methods 

SaveAs GetTitle 2 

256 

On entry 

RO =nags 
R I = Save As object id 
R2 = 2 
R3 = pointer to buffer to return the text in (or 0) 
R4 = size of buffer 

On exit 

R4 =size of buffer required to hold the text (if R3 was 0) 
else Bufrer pointed to by R3 contains title text 
R4 holds number of bytes written to buffer 

Use 

This method returns the text string used in a Save As dialogue·s Litle bar. 

C veneer 

extern kernel_oserror *saveas get_title ( unsigned int flags, 
Objectld saveas, 
char •buffer, 
int buff size, 
int *nbytes 

); 



SaveAs Dialogue box class 

SaveAs SetFileName 3 

On entry 

RO = nags 
R I = Save As object id 
R2 = 3 
R3 = pointer to filename to use in writable field 

On exit 

R I-R9 preserved 

Use 

Th is method sets the filename wh ich is to be used in the Save As object's writable 

fie ld. 

C veneer 

extern kernel_oserror •saveas_ set_ file_ name unsigned int flags, 
Objectld saveas, 
char •file name 

); 

257 



Save As methods 

+ + + M #** w M M & &:;_====z::o====':JI'"'I!:I•IIr:«a:lliWr:JMII:JIMtJIWI!:I--!IIIIMdW ______ bW 

SaveAs GetFileName 4 

258 

On entry 

RO = flags 
R 1 = Save As object id 
R2 = -1 
R '3 = pointer to buffer to return the filename in (or Ol R4 =size of buffer 

On exit 

R4 =size of bufter required to ho ld the filename (if R3 was 0} 
else Buffer pointed to by W3 conta ins filename 
R4 holds number of bytes written to buffer 

Use 

This method returns the filename displayed in this Save As objects writable field. 

C veneer 

extern kernel oserror *saveas get_filc name ( unsigned int flags, 
Objectid saveas, 
char •buffer, 
int buff size, 
int *nbytes 

); 



SaveAs Dialogue box class 

SaveAs_SetFileType 5 

On entry 

RO =nags 
R I = Save As object id 

R2 = 5 
R3 = filetype 

On exit 

R I-R9 preserved 

Use 

This method is used to set the filetype for this Save As object, and hence the sprite 

which wil l be d isplayed in the dialogue box. 

C veneer 

extern •. kernel_oserror *saveas_set_ file_type ( unsigned int flags, 
Objectid saveas, 
int file_type 

SaveAs_GetFileType 6 

On entry 

RO = flags 
R I = Save As object id 
R2 = 6 

On exit 

RO = filetype 

Use 

); 

This method is used to get the filclype of this Save As object. 

C veneer 

extern .kernel_oserror *saveas_get file_type ( unsigned int flags, 
Objectid saveas, 
int *file_type 

); 

259 



Save As methods 

260 

···········---------
SaveAs_SetFileSize 7 

On entry 

RO flags 
I~ I - Save As object id 
R2 7 
R3 = file ~1ze in bytes 

On exit 

R 1-R9 preserved 

Use 

Th1s method is used to set Lhe estimated file size 1n bytes for this Save As 
Diillogue. This will be used in a Message DataSave message when the file icon is 
dragged to its deslination. 

C veneer 

extern kernel_oserror *saveas set_filc size ( unsigned int flags, 
Objectid saveas, 
int file _size 

SaveAs _ GetFileSize 8 

On entry 

RO flags 
R I Save As object id 
R2 = 8 

On exit 

1~0 = file Si7C 

Use 

); 

This method is used to gel the Hie size of th is Save As object. 

C veneer 

extern _ kernel_oserror *savcas get_file size unsigned int flags , 
Objectid saveas, 
int *file size 

); 



SaveAs SelectionAvailable 9 

On entry 

RO =nags 
R I "' Save As object id 
R2 9 

SaveAs Dialogue box class 

R3 non-zero means selection is available. otherwise it is not available 

On exit 

I~ I -R9 preserved 

Use 

This method is used to indicate to the Save As module whether there is a current 
selection in existence. If there is a selection. then the Selection option button wi l l 
be enabled ( ie. the user can click on it). if not the Selection option button wi l l be 
greyed out. I 

If the Save As object has no Selection option button then an error is returned. 

C veneer 

extern _kernel_oserror •saveas_selection_available unsigned int flags, 
Objectid saveas, 
int selection 

); 

261 



Save As methods 

SaveAs SetDataAddress 10 

262 

On entry 

RO = flags 
R I - Save As object id 
R2 = 10 
R'3 = address of contiguous block of data which is to be saved 
R4 = size of data 
R5 = address of contiguous block of data. which is the current selection 
R6 = size of selection 

On exit 

I~ I -R9 preserved 

Use 

Th1s method indicates to the Save As module the address of a contiguous block of 
memory containing the data to be saved. It is used if the client wishes the entire 
Save operation to be carried out by the Save As module. It is typica lly cal led in 
response to a SaveAs_SaveAboutToBeShown Toolbox event. If there is a current 
selection. then its address and size should also be passed to this method 

Note· This method is only suitable For Type I clients. 

C veneer 

extern _kernel oserror *saveas set data_address unsigned int flags, 
Objectld saveas, 

); 

void *data, 
int data_size, 
void •selection, 
int selection_size 



SaveAs Dialogue box class 

SaveAs BufferFilled 11 

On entry 

RO =nags 
R I = Save As object id 
R2 = II 
R3 = address of buffer which has been filled 
R4 = number of bytes written into buffer 

On exit 

R t-R9 preserved 

Use 

This method is used to respond to a SaveAs_Fi iiBuffer Toolbox event; it confi rms 

that the requested buffer fil l has taken place. and states the number of bytes 
written to the buffer. 

C veneer 

extern _kernel_oserror •saveas_buffer_filled unsigned int flags, 
Objectld saveas, 
void *buffer, 
int bytes_written 

); 

263 



Save As methods 

SaveAs _FileSaveCompleted 12 

264 

On entry 

RO = flags bit 0 set means that the save was successful 
R I = Save As object id 
R2 = 12 
R3 = filename where the client tried to save the data 

On exit 

R I -R9 preserved 

Use 

This method is used by the client to report whether an attempt to save the data to 
file as a result of a SaveAs_SaveToFile Toolbox event was successfu l or not 

If this SWI is called with bit 0 of RO clear. then it will return an error 

Note. This method is only suitable for Type 2 and Type 3 clients. 

C veneer 

extern kernel_oserror •saveas file_save completed ( unsigned int flags, 
Objectld saveas , 
char •filename 

); 



SaveAs Dialogue box class 

Save As events 

The Save As module generates the following Toolbox events: 

SaveAs _AboutToBeShown (Ox82bc0) 

Block 

+8 
+12 
+ 16 
+ 20 ... 

Use 

Ox82bc0 
flags (as passed in to Toolbox_ShowObject) 
value which will be passed in R2 to TooiBox_ShowObject 
block which will be passed in R3 to TooiBox_ShowObject for the 
underlying dialogue box 

This Toolbox event is raised just before the Save As module is going to show its 

underlying Window object. to enable the client to set its filename and fi letype 
appropriately. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int show_type; 
union 

TopLeft pos ; 
WindowShowObjectBlock full; 
info; 

SaveAsAboutToBeShownEvent; 

265 



Save As events 

266 

SaveAs _DialogueCompleted (Ox82bc1) 

Block 

+ 8 Ox82bcl 
+ 12 flags 

bit 0 set means that a successfu l save was done duri ng this dialogue 

Use 

This Toolbox event is raised after the Save As object has been hidden. either by a 
Cancel cl ick, or afler a successful save. or by Lhe user cl icking outside the dialogue 
box or pressing Escape. It allows the client to tidy up its own state associated with 
this dialogue. 

Note that if the dialogue was cancelled. a successful save may still have been done, 
for example if the user clicked Adjust on Save, and then cancelled the dialogue. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
SaveAsDialogueCompletedEvent; 

SaveAs_SaveToFile (Ox82bc2) 

Block 

+ 8 Ox82bc2 
+ 12 flags bit 0 set means save only the current selection 
+ 16 nul-terminated filename to which the data shou ld be saved 

Use 

This Toolbox event is ra ised by the Save As module Lo request that the clienl 
should save its data to the given filename If bit 0 of the flags word is set. then only 
the current selection should be saved. 

C data type 

typede£ struct 
{ 

ToolboxEventHeader hdr; 
char filename [21 2 ); 
SaveAsSaveToFileEvent; 



SaveAs Dialogue box class 

SaveAs _Fill Buffer (Ox82bc3) 

Block 

+ 8 Ox82bc3 
+ 12 nags 

bit 0 set means a selection is being saved 
+ 16 size of buffer being used 
+ 20 address of buffer 
+ 24 number of bytes already transmitted 

Use 

This Toolbox event is raised by the Save As module to request that the client 

should fill the given buffer (which is the one which the client will have allocated). 

If the address returned by this event is 0, then the client application needs to do 

one of the following: 

• reserve memory for buffering and return its address using SWI BufferFilled 

• maintain a pointer to the current location in the data to be transferred 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int size ; 
char *address; 
int no_bytes; 
SaveAsFillBufferEvent; 

267 



Save As templates 

w•• -------·····---- -
Save As_ SaveCompleted {Ox82bc4) 

Block 

+ 8 Ox82bc4 
+ 12 flags 

bit 0 set means a selection was saved 
bit I set means the destination was safe (e.g. a filing system) 

+ 16 Wimp message number of original Message_DataSave 
(or 0 if the save operation was not started via a drag) 

+ 20.. if bit I is set in the flags word (i.e. safe save). Lhen th is field indicates lhe 
full pathname of the place where the save was done. 

Use 

This Toolbox event is raised when the Save is successfully completed Bit 0 of the 
flags word indicates whether just a selection was saved: bit I means that the Save 
was to a place where the data is safe (e g it is in a real file. on a filing system) 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int wimp_ message_ no; 
char f ilename [ 208]; 
SaveAsSaveCompletedEvent; 

Save As templates 

268 

The layout of a Save As template is shown below. Fields which have types 
MsgReference and StringReference are those which will require relocation when 
they are loaded from a resource file. If the template is being constructed in 
memory, then these fields shou ld be rea l pointers (i.e. they do not require 
relocation). 

For more details on relocation. see appendix Resource File Formals on page 497 

Field Size In bytes Type 

flags 4 word 

filename 4 MsgReference 

filetype 4 word 

title 4 MsgReference 



SaveAs Dialogue box class 

Field 

max_title 

window 

Size in bytes 

4 

Type 

word 

StringReference 4 

Underlying Window template 

The Window object used to implement a Save As dialogue, has the following 
characteristics. These must be reproduced if the Window is replaced by a 
client-specified alternative Window template. 

Tille bar must be indirected. 

Gadgets 

Component ids are derived by adding to Ox82bc00. 

Component id 

0 

2 

3 

4 (if required) 

Save As Wimp event handling 

Wimp event 

Mouse Click 

Act1on Button_Selected 

Draggable_DragEnded 
(Toolbox event) 

Details 

draggable (file icon) 

writable field (filename) 

action button (Cancel) 

action button (Save) 

option button (Selection) 

Action 

must be sprite only 

must be marked as a 
Cancel action button 

must be marked as the 
Default action button 

if th is is a drag event on the fi le icon. then set up an 
appropriate Wimp drag box 

on the Save button then start save operation 

on the Cancel button then hide the d ialogue box, and 
raise a SaveAs_Dia logueComplcted Toolbox event 

start save operation to the destination of the drag (i.e. 
send a Message_DataSave to the destination 
window/icon pair. 

269 



Save As Wimp event handling 

270 

Wimp event 

Key Pressed 

User Message 

User Message Recorded 

Action 

if dialogue box has the input focus. and the key pressed 
is Return. then the Save Button is activated. and a save 
operation is started 

if key is Escape act as if Cancel had been pressed 

Message_DataSaveAck 
if (a SaveAs dialogue is in progress) 

} 

if (the save can be done entirely 
by the SaveAs module) 

do the save 
send Message_DataLoad to destination 

else 

raise a SaveAs_SaveToFile Toolbox event 

Message_Data LoadAck 
if (a SaveAs dialogue is in progress) 
{ 

raise a SaveAs_SaveCompleted Toolbox event 
If (not an Adjust click on OK) 
( 

hide the dialogue box 
raise a SaveAs_DialogueCompleted 
Toolbox event 

Message_RAM Fetch 
if (a SaveAs dialogue is in progress) 

transfer current buffer contents 
send Message_RAMTransmit to destination 
if (save cannot be done entirely by the Toolbox 

module) 
raise SaveAs_FillBuffer Toolbox event 

Message_MenusDeleted 
If (a SaveAs dialogue is in progress) 
{ 

raise a SaveAs DialogueCompleted Toolbox event 



15 

User interface 

Scale Dialogue box class 

A Scale Dialogue object is used to present the user with a dialogue box from 

which he can set the scale factors for a view on a document. This scale is given 
as a percentage of the original size of the document 

The Scale class provides a dialogue box from which a scale factor can be chosen 

title bar string 

number range 

~ ~~a-----~~~~----~ 

Scale@!D !.'.. % ]~ Sl% I } local action buttons 
----- 11~%J ~ 

Caner! l Scal e I 

Cancel button Scale button 

The default Sca le dialogue box has the following attributes: 

• a tit le bar string 

• a writable number range with up/down arrows and a percentage sign to the 
right of the up/down arrows 

• four 'standard' size action buttons with the values: 33%. 80°k, 100%. 120% as 
their text plus an optional Scale to Fit action button 

• a Cancel action button 

• a Scale action button. 

The user can: 

• type an integra l value in the writable field between its lower and upper bounds 
or use the up/down arrows to adjust the value currently in the field 

• use one of the standard size action buttons to set the scale factor Clicking on 
these buttons only ca uses a va lue to be inserted in the writable field. it does 
not apply the scale factors 

• click outside the dialogue box (if it is transient) or click on Cancel to cancel 
the dialogue 

• click on Scale or press Return to apply the sca le factors 

271 



Application Program Interface 

• if there is a Scale to Fit button. then clicking on it will have 
application-defined behaviour (e.g. Scale to Fit window) 

Application Program Interface 

272 

When a Scale object is created it has the following components 

• an optional Scale To Fit button. 

• an alternative title to use instead of the default. 

• alternative bounds and step size for the writable field 

• an optional list of different standard size action buttons where each gtves a 
percentage value to insert into the Writable Field. These wtll be positioned 
appropriately by the Scale module in place of the default standard size 
buttons. When a Scale object is shown, the client will be delivered a 
Scale_DialogueAboutToBeShown Toolbox event (if enabled). just before the 
dialogue box becomes visible on the screen 

When the Scale dialogue is showing, the Scale module deals with all relevant 
Wimp events and reports user actions back to the client via Toolbox events. If there 
are any standard size action buttons in the d ialogue box. then the Scale module 
deals with clicks on them. and inserts the correct percentage value into the 
writable field. 

The client is guaranteed to receive a Scale_DialogueCompleted Toolbox event 
when the dialogue is over (i.e. the user has clicked on Cancel, or clicked outside 
the dialogue box (if it were transient). or clicked on Sca le. or on Sca le To Fit) 

Attributes 

A Scale object has the following attributes which are specified in its object 
template and can be manipulated at run-time by the cl ient application: 

Attributes 

flags 

Description 

Bit 

0 

Meaning 

when set. this bit indicates that a 
Sca le_AboutToBeShown event shou ld be raised 
when SWI Toolbox_ShowObject is called for this 
object. 

when set, this bit indicates that a 
Scale_DialogueCompleted event should be raised 
when the Scale object has been removed from the 
screen. 

2 when set. dialogue box has a Scale To Fit button 



Scale Dialogue box class 

Attributes Description 

min val alternative minimum value for the writable field 

max va l alternative maximum va lue for the writable field 

step size alternative step size for up/down arrows 

Scale title alternative title for the dialogue rather than ·scale View· 
(0 means use default) 

max title length this gives the maximum length in bytes of title text which 
will be used for this object 

window the name of an alternative window template to use 
instead of the default one (0 means use default) 

std I value value of first std sca le button 

std2 value value of second std scale button 

std3 value value of third std scale button 

std4 value value of fourth std scale button 

Manipulating a Scale object 

Creating and deleting a Scale object 

A Sca le object is created using SWI Toolbox_CreateObject. 

When this object is created it has no attached objects (see page II). 

A Scale object is deleted using SWI Toolbox DeleteObject. 

The setting of the non-recursive delete bit does not have a meaning for Scale 
objects 

273 



Application Program Interface 

274 

Showing a Scale object 

When a Scale object is displayed on the screen using SWI Toolbox_ShowObtect it 
has the following behaviour 

Show type 

0 (default) 

l (full spec) 

2 (topleft) 

Position 

the underlying window is shown at the last place shown 
on the screen, or the coordinates given in its template. if 
it has not already been shown 

R3 + 0 
R3 + 4 

R3 + 8 

visible area minimum x coordinate 
visible area minimum y coordinate 
visible area maximum x coordinate 

R3 + 12 visible area maximum y coordinate 
R3 + 16 scroll x offset relative to work area 
R3 + 20 scro ll y offset relative to work area 
R3 + 24 Wimp window handle of window to open behind 

-I means top of stack 
- 2 means bottom of stack 
- 3 means the window behind the Wimp's 

backwindow 

R3 + 0 visible area minimum x coordinate 
R3 + 4 visible area minimum y coordinate 

Before the Scale Dialogue box Is shown 

When SWI Toolbox_ShowObject is cal led on a Sca le object. the Scale Class raises a 
Scale_AboutToBeShown Toolbox event (if enabled). just before it shows the 
underlying Window object which implements this dialogue This wil l allow the 
client to set an initial suitable va lue in the Scale dialogue's Writable Field. 

Applying a Scale factor 

When the user clicks on the Scale button. or on the Scale To Fit button if it is 
present, the Scale module delivers a Scale_ApplyFactor to the client. giving the 
percentage factor to apply. A special va lue of Oxffffffff is delivered if the Scale To 
Fit button is clicked. 

Cancelling a Scale dialogue 

If the user clicks on the Cancel Button (or clicks outside the Scale dialogue box), 
then the Sca le module delivers a Sca le_DialogueCompleted Toolbox event to the 
client application. This allows the client to update any of its data structures and to 
clean up any state associated with this dialogue 



Scale Dialogue box class 

Completion of a Scale dialogue 

When the Sca le module has hidden its dialogue box at the end of a dialogue. it 

delivers a Sca le_DialogueCompleted Toolbox event to the client (if enabled), with 
an ind ication of whether a scale factor was reported to the cl ient during the 

dialogue. 

Reading and setting the writable field 

Normally a client wil l only need to respond to the Scale_ApplyFactor Toolbox 

event in order to allow the user to set scale factors. If. however. the client w1shes to 
read the current value in the writable field. or to set it explicitly (to a suitable start 

value when the dialogue box is first shown). then it can use the 
Scale_SetVa I ue/Sca le_GetVal ue methods 

Reading and setting the bounds of the writable field and step size 

Normally a client will specify the bounds and step size of the writabl e field in the 

template description for the Scale object 

These can however be read and set dynamically using the Scale_SetBounds/ 
Scale_getBounds and Scale_GetStepSize/Scale_SetStepSize methods 

275 



Scale methods 

Scale methods 

The following methods are all invoked by ca ll ing SWI Toolbox_ObjcctMiscOp with: 

RO holding a flags word 
R I being a Scale Dialogue object id 
R2 being the method code which distinguishes this method 
R3-R9 potentially holding method-speci fic data 

Scale_GetWindowiD 0 

276 

On entry 

RO = flags 
R I = Scale object id 
R2 = 0 

On exit 

RO =Window object id for this Sca le object 

Use 

This method returns the id of the underlymg Window object used to implement 
this Scale object. 

C veneer 

extern _kernel_oserror *scale get_window id ( unsigned int flags, 
Objectid scale, 
Objectid *window 

); 



Scale Dialogue box class 

Scale SetValue 1 

On entry 

RO =nags 
R I - Scale object id 
R2 I 
R3 =value 

On exit 

R 1 - 1~9 preserved 

Use 

Th is method is used to set the value displayed in the writable field for this Sca le 
object. 

C veneer 

extern kernel_oserror *scale_se t _value unsigned int flags , 
Objectid scale , 

Scale_GetValue 2 

On entry 

RO =nags 
R I =Scale object id 
R2 = 2 

On exit 

RO =value 

Use 

int value 
); 

This method returns the value in the writable field of this Scale object. 

C veneer 

extern kernel_oserror •scale_get_value ( unsigned int flags , 
Objectld scale , 
int *value 

); 

277 



Scale methods ............... -·· -- ...... 

Scale SetBounds 3 

278 

On entry 

RO = nags 
bit 0 set means set the lower bound to the given value 
bit I set means set the upper bound to the given va lue 
bit 2 set means set step size 

R I = Scale object id 
R2 = 3 
R3 =value of the lower bound 
R4 =value of the upper bound 
R5 = step size 

On exit 

R I-R9 preserved 

Use 

This method sets the lower and upper bounds and step size of the writable field in 
the Scale object. 

Cveneer 

extern kernel oserror *scale_set_bounds unsigned int flags, 
Objectld scale, 

); 

int lower_bound, 
int upper_bound, 
int step size 



Scale Dialogue box class 

Scale GetBounds 4 

On entry 

RO = flags 
bit 0 set means return the lower bound 
bit I set means return the upper bound 
bit 2 set means return step size 

R I = Scale object id 
R2 = 4 

On exit 

RO = value of the lower bound 
R I = value of the upper bound 
R2 =value of the step size 

Use 

This method returns either the lower and upper bounds and step size of the 
writable field in the Scale object. 

C veneer 

extern _kernel oserror •scale_get bounds ( unsigned int flags, 
Objectid scale, 

); 

i nt *lower_bound, 
int *upper_bound, 
int •step_size 

279 



Scale methods 

Scale SetTitle 5 

280 

On entry 

RO =flags 
R I = Scale object id 
R2 = 5 
R3 = pointer to texl string to usc 

On exit 

R I-R9 preserved 

Use 

This method sets the text which is to be used in the title bar of the given Scale 
dialogue. 

C veneer 

extern _kernel_oserror *scale set_title unsigned int flags, 
Objectid scale, 
char *title 

) ; 



Scale Dialogue box class 

Scale GetTitle 6 

On entry 

RO =flags 
R I = Seale object id 
R2 = 6 
R3 = pointer to buffer to return the text in (or 01 
R4 = size of buffer 

On exit 

R4 = size of buffer required to hold the text (if R3 was 0) 
else Buffer pointed to by R3 contains title text 
R4 holds number of bytes written to buffer 

Use 

This method returns the text string used in a Scale dialogue's title bar. 

C veneer 

extern _kernel oserror •scale_get_title ( unsigned int flags, 
Objectld scale, 
char •buffer, 
int buff_size, 
int *nbytes 

); 

281 



Scale events 

... 

Scale events 

The Sca le module generates the following Toolbox events: 

Scale_ AboutToBeShown (Ox82c00) 

282 

Block 

+ 8 Ox82c00 
+ 12 flags (as passed in to Toolbox_ShowObject) 
+ 16 value which will be passed in R2 Lo ToolBox ShowObject 
+ 20. . block which will be passed in R3 to TooiBox_ShowObject for the 

underlying dialogue box 

Use 

This Toolbox event is raised just before the Sca le module is going to show its 
underlying Window object. to enable the client to set its initial value appropnately. 

C data type 

typedef struct 
( 

ToolboxEventHeader hdr; 
int show type; 
union 

TopLeft pos; 
WindowShowObjectBlock full; 
info; 

ScaleAboutToBeShownEvent; 



Scale Dialogue box class 

Scale_DialogueCompleted (Ox82c01) 

Block 

+ 8 Ox82c01 
+ 12 nags 

Use 

This Toolbox event is raised after the Scale object has been hidden either by a 
Cancel click. or by a click on Scale or Scale To fit, or by the user clickmg outside 
the dialogue box (if it is transient) It allows the client to tidy up its own state 
associated with this dialogue. 

Note that if the dialogue was cancelled. a sca le factor may still have been applied. 
for example if the user clicked Ad just on Scale. and then cancelled the dia logue 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
} ScaleDialogueCompletedEvent; 

Scale_ Applyfactor (Ox82c02) 

Block 

+ 8 Ox82c02 
+ 16 unsigned integer scale factor to apply 

Use 

This Toolbox event is raised when the user clicks on the Scale button or the Scale 
To Fit button (if present). or presses Return 

The scale factor to apply is a percentage; Oxffffffff means Scale To Fit 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
unsigned int factor; 
ScaleApplyFactorEvent; 

283 



Scale templates 

Scale templates 

284 

The layout of a Scale template IS shown below Fields which have types 
MsgReference and StringReference are those which will requirC' relocation when 
they are loaded from a resource fi le. If the template is being constructed in 
memory, then these fields should be real pointers (i.e they do not require 
relocation). 

For more details on relocation. ~ee appendix Resourcl' File formals on page 497 

Field Size in bytes Type 

flags 4 word 

min_ val 4 word 

max_ val 4 word 

srep_size 4 word 

title 4 MsgReference 

mCJx_title 4 word 

window 4 Stri ngReference 

std !_value 4 word 

std2_value 4 word 

std3_va luc 4 word 

std4_value 4 word 

Underlying window template 

The Window object used to implement a Sca le d ialogue, has the fol lowing 
characteristics. These must be reproduced if the Window is replaced by a 
client -specified alternative Window template 

Title bar must be indirected. 



Scale Dialogue box class 

Gadgets 

Component ids are derived by adding to Ox82c000. 

Component ld 

0 

1-4 

6 

7 

8 

9 

Scale Wimp event handling 

Wimp event 

Mouse Click 

Key Pressed 

User Message 

Details 

number range tSca le) must have adjuster arrows. 
and be writable 

action buttons 
(standard scale factors) 

action button (Cancel J 

action button (Scale) 

label (0
.{, ) 

label (Scale) 

action button (Scale to fill 

Action 

these should have the text 
33%. 80%. I OO'X. and 120% 

this must be marked as a 
Cancel action button 

this must be marked as Lhe 
defau lt action button 

on Scale or Scale to Fit buttons, then del iver a 
Scale_/\pplyFactor Toolbox event 

on a standard Sile button then enter its value 
into the Writable Field 

on Cancel button then hide the dialogue box. 
and deliver a Scale_DialogueCompleted Toolbox 
event. 

if key is Return then act as if Scale button hi:ld 
been clicked 

if key is Escape then act as i f Cancel button had 
been clicked. 

Messagc_MenusDeleted 

User Message Recorded deliver a Scale. DialogueCompleted Toolbox 
event 

285 



286 



16 

User interface 

Window class 

0 bjects of the Window class are used by the client application to display its 
document windows. dialogue boxes etc 

A Window is essentially an extension of a Wimp window (in fact part of the Window 
object definition is a Wimp window definition) 

Back icon Close icon Title bar Toggle size icon 

' 
, • • lf.J "I <t.lntitled> IE 

I~' 
I ~ Slider 

~ Scroll bar 

Scroll arrow 
lt"l 

Adjust size icon 

Many Wimp events which are delivered to Lhis Window are dealt with automatically 
by the Toolbox. based on the attributes of Lhe Window. In this chapter we give 
further details of exaclly what a Window consists of. and the semantics attached to 
Wimp events for a Window. 

The cl ient application is always able to get the Wimp window handle of the 
underlying Wimp window used to implement this Window object. and can perform 
all the usual Wimp SWis on that window (within reason . e:g. deleling an icon 
belonging to a gadget may have undesirable efects) 

287 



Application Program Interlace -
Application Program Interface 

Attributes 

A Window object has the following attributes which are specified in its object 
template and can be manipulated at run-time by the client application: 

288 

Attribute 

nags word 

help message 

max help 

pointer shape 

max pointer shape 

Description 

Bit Meaning 

0 when set. generate a 
Window_AboutToBeShown event before 
showing the underlying Wimp window 
when set, automatically open this 
Window when a Wimp 
OpenWindowRequest is received 
(when set the client will not see the 
underlying Wimp requests) 

2 when set. automatica lly close th is 
Window when a Wimp 
CloseWindowRequest is received 
(when set the client will not see the 
underlying Wimp requests) 

3 when set, generate a 
Window_HasBeenHidden Event after 
hiding the underlying Wimp window 

4 when set. ind icates that this template is 
of a toolbar (see Toolbars on page 322) 

when a HelpRequest is received for this 
Window. then this text is sent in a HelpReply 
message. Note that th is Help message is on ly 
sent if the gadget (see later) for which the 
request was received has not got a Help 
message of its own. or if the pointer is not over 
any gadget. 

maximum length in bytes of help message 

this gives the name of a sprite to use as the 
pointer shape, when a Pointer Entering Window 
event is received for this Window (0 means do 
not change the pointer shape) 

maximum length in bytes of sprite name 



Attribute 

pointer x hot 
poin ter y hot 

menu 

num keyboard shortcuts 

keyboard shortcuts 

num gadgets 

gadgets 

default focus 

window 

internal_bl 

i nterna l_tl 

external_bl 

Window class 

Description 

the x andy coordinates of the pointer's hot spot 
These are relative pixels from the top left corner 
of the sprite. 

the name of the template to use to create a 
Menu object for this Window 

the number of keyboard short-cuts which are 
associated with this Window 

the pointer to the l ist of keyboard short-cuts for 
this Window 

the number of gadgets which are to appear in 
thi s Window 

the pointer to the li st of gadgets for this 
Window. 

the Component ld of the gadget which is given 
input focus when the window is shown. 

If this field is -I then no gadget will be given 
input focus 

if - 2 then window wil l be given input focus (but 
no ca ret) allowing keyboard short-cuts to work 
without having any writables 

88-byte structure is the standard block which is 
passed to Wimp_CreateWindow The window is 
shown to contain no icons. since these are 
implemented by gadgets. 

the window template to be used for thts tool bar. 
Anchored to the bottom left corner tnside the 
window t 

the window template to be used for th is tool bar. 
Anchored to the top left corner inside the 
window. t 

the window template to be used for this toolbar. 
Anchored to the bottom left corner outside the 
window t 

289 



Application Program Interface 

290 

Attribute 

externa l_tl 

show_event 

hide_event 

Description 

the window template to be used for this tool bar 
Anchored to the top left corner outside the 
window. t 

the event code to be raised when the window is 
shown 

the event code to be raised after the window has 
been hidden. 

t these templates must have the Toolbar bit set. 

Keyboard short-cut 

The attributes of a Keyboard short-cut are as follows: 

Attributes 

flags word 

wimp key code 

key event 

key show 

Description 

Bit Meaning 

0 when set. show attached object as 'transient' 

the key code returned by the Wimp in a Key Pressed 
event block. for this keyboard short-cut 

this is the Toolbox event to be raised when the Wimp 
delivers a Key Pressed event with this Wimp key code 
0 means deliver no event 

the name of the template for an object to create and 
show when the Wimp delivers a Key Pressed event with 
this Wimp key code 
0 means show no object 

Note that because keyboard short-cuts work on Wimp key codes. certain key 
combinations (such as Shift-Ctrl-PJ will require the client to provide extra code 

Gadget 

All gadgets have a common header. followed immediately by a body which is 
gadget-specific. The header is described on page 326. and the gadget-specific 
bodies are described in their own sections. 



Window class 

Manipulating a Window object 

Creating and deleting a Window object 

A Window object is created using SWI Toolbox_CreateObject. 

When a Window object is created. the following attached objects (see page II) will 

be created (if specified): 

• menu 

• key show (for each keyboard short-cut) 

• Toolbars. 

See the attributes table above for an explanation of what these objects are 

There are also attached objects which are associated with gadgets in a Window 

(see later) : 

• click show (for an action button) 

• menu (for a Pop-up menu). 

These attached objects are also created when such a gadget is added to the 
Window. and deleted when the gadget is removed. 

A Window object is deleted using SWI Toolbox_DeleteObject. If it has any attached 

objects (see above). these are also deleted. unless the non-recursive bit is set for 

this SWI. 

Showing a Window 

When a Window object is displayed on the screen using SWI Toolbox_ShowObject 

it has the following behaviour: 

Show type 

0 (default) 

Position 

the underlying window is shown at the last place shown 
on the screen. or the coordinates given in its template. if 
it has not already been shown 

291 



Application Program Interface ---

292 

Show type 

I (fu l l spec) 

2 (topleft) 

The Window's menu 

Position 

R3 + 0 visible area minimum x coordinate 
R3 + 4 
R3 + 8 
R3 + 12 
R3 + 16 
R3 + 20 
R3 + 24 

visible area minimum y coordinate 
visible area maximum x coordinate 
visible area maximum y coordinate 
scroll x offset relative to work area 
scroll y offset relative to work area 
Wimp window handle of window to open behmd 
-I means top of stack 
-2 means bottom of stack 
- 3 means the window behind the Wimp's 

backwindow 

R3 + 0 visible area minimum x coordinare 
R3 + 4 visible area minimum y coordinate 

Each Window object can optiona lly have attached to it a Menu object. The Window 
object holds the unique id of this Menu object. 

When a Window is created. if the client has specified the name of a Menu template 
for that Window, then a Menu object is created from that template. and the id of 
that Menu is held in the Window object. Thi s id will be used to show the Menu 
when the user presses the Menu button over the Window 

Whenever the user of the application presses the Menu mouse button over a 
Window. the Window class module opens its attached Menu object, by making a 
SWI Toolbox_ShowObject passing the attached Menu's id. 

If the application wishes to perform some operations on the Menu before it is 
opened (ticking some entries for example). then by setting the appropriate bit in 
the Menu's flags word. the appl ica lion can request that a special Toolbox event 
(Menu_AboutToBeShown) is delivered to it before the Menu is actually shown The 
precise details of this Toolbox event are described in Menu eve11ts on page 197 On 
receipt of such a Toolbox event. the client application is expected to make any 
changes it wants to the Menu object. and then return to its SWI Wimp_Poll loop 

In most cases a Menu is attached to the Window at resource editing time by 
entering the name of the template to use for this Window's Menu. If the application 
wishes dynamically to attach and detach the menu for a given Window (maybe 
based on a mode of operation which is defined by the appl ication. e.g. display 
mode or editing mode). then this can be done using the Window_SetMenu method 
described on page 298. 



The id of the Menu attached to a Window can be read by using the 
Window_GetMenu method. 

Window class 

Window_SetMenu can on ly be used when a menu is not already being shown for 
this Window. 

Gadgets in a window 

A Window object can optionally contain a number of gadgets. Typically this is used 
to create dialogue boxes 

There are many kinds of gadget The Toolbox provides facilities to allow the client 
application to manipulate a particular gadget in a manner which is appropriate to 
that gadget. rather than in 'low-level' terms like setting the state of a Wimp 1con. 
The set of gadgets is defined to fit in with the RlSC OS 3 Style Guide. and thus to 
encourage a standard look and feel across dialogue boxes. 

Gadgets are normally specified as part of a Window object template. but they can 
be added to and removed from Window's dynamically at run-time using the 
Window_AddGadget and Window_RemoveGadget methods respectively 

Each gadget type defines its own set of methods. and many will have a number of 
Toolbox events associated with them. This allows the application to receive 
Toolbox events from user actions. rather than having to deal with mouse clicks and 

drags on Wimp icons. Much of the low-level Wimp operations are handled 
automatically by the Toolbox. 

Gadgets are described in Gadgets on page 325. 

Keyboard short~cuts 

Each Window object can optionally define a set of mappings from Wimp key codes 
to Toolbox events This is particularly useful in allowing the client application to 
respond identically to a keystroke or an equivalent menu hit. by giving both the 
same Toolbox event When a given keystroke is returned by the Wimp for the 
Window object. the corresponding Toolbox event is raised. 

Note that Shift-Ctrl-letter combinations are not allowed. 

It is also possible Lo provide the name of a template for an object which will be 
created and shown, when a particular keystroke happens. For example the client 
may wish to display a dialogue box when F4 is pressed. If bit 0 of the keyboard 
short-cut's nags word is set. then the object is shown with the 'Show with Wimp 
CreateMenu semantics' bit set in the RO passed to Toolbox_ShowObject 

293 



Application Program Interface 

294 

--
Sets of Keyboard short-cuts will normally be defined by the client application m its 
resource file. but they can also be added and removed dynamically using the 
Window AddKeyboardShortcuts (page 303) and 
Window_RemoveKeyboardShortcuts (page 304) methods. passing as an argument 
an array of mappings. 

Pointer shapes 

Each Window object can optionally have a pointer shape defined. giving the name 
of a sprite to use and its hot spot. 

Whenever the Wimp pointer enters this Window. causing a PointerEnteringWindow 
event. the Toolbox changes the pointer shape appropriately. 

In most cases a pointer shape is attached to the Window at resource editing t1me 
by entering the name of the sprite to be used. and the pointer's hot spot. If the 
application wishes dynamically to change the pointer for a given Window (maybe 
based on a mode of operation which is defined by the application. e.g display 
mode or editing mode). then this can be done using the Window SetPointer 
method described in Window_SetPointer 5 on page 299. 

The name of the sprite used for the Window's pointer shape and its hot spot can be 
read by using the Window_GetPointer method described in Window GetPoinler 6 on 
page 300 

Help messages 

Each Window object can optionally have attached to it a Help message. 

Whenever the Wimp delivers a HelpRequest message to the client application for 
this Window. the attached Help message is sent back automatical ly by the Toolbox. 

In most cases a help message is attached to the Window at resource edit ing lime. 
A Window's Help message can be set dynamically using the 
Window_SeLHe/pMessage 7 described on page 30 I. 

The text of the Help message can be read using the Window_GetHelpMessage 
method 

Changing a window's title 

One of the attributes of a Window which is specified in the template for that 
Window is the text which appears in its title bar. 

A Window's title can be changed dynamically at run-time using the 
Window_SetTitle method. 

The current title string can be read using the Window_GetTitle method. 



Window class 

Getting and setting a Window's client handle 

The client handle for a Window is set and read using SWI Toolbox_SetClientHandle 
and SWI Toolbox_GetCiientHandle respectively 

A typical use of this client handle would be to hold a pointer to a data structure 
conta ining the state of a document which is being displayed in th1s Window in a 
multi-document editor. 

Window methods 
The following methods are all invoked by ca lling SWI Toolbox_MiscOp with: 

RO 
Rl 
1~2 

1<3-R9 

holding a flags word 
being a Window id 
being the method code which distinguishes this method 
potentially holding method-specific data 

Window_ GetWimpHandle 0 

On entry 

RO =- flags 
R I < Window object id 
R2 = 0 

On exit 

RO =Wimp window handle for this window 

Use 

This method returns the handle of the underlying Wimp window used to 
implement this Window object. 

C veneer 
extern kernel_oserror *window_get_wimp_handle ( unsigned int flags, 

Objectid window, 
inl *window handle 

); 

295 



Window methods 

Window_AddGadget 1 

296 

On entry 

RO = flags 
R I = Window object id 
R2 = I 
R3 = pointer to description block for gadget 

On exit 

RO = component id 
R l-R9 preserved 

Use 

This method adds a gadget to the list of gadgets for this Window object. The format 
of the description block depends on the type of gadget being added 

If the Window is cu rrently open on the screen. then the gadget wil l immediately be 
visible in the Window. 

If the gadget's component id is specified as -1 . then the Toolbox wil allocate an 
unused component 1d 

C veneer 

extern _kernel_oserror *window add_gadget ( unsigned int flags, 
Objectid window, 
Gadget *gadget, 
Componentld *gadget component 

); 



Window_RemoveGadget 2 

On entry 

RO = flags 
R l = Window object id 
R2 = 2 
R3 = component id 

On exit 

R l-R9 preserved 

Use 

Window class 

This method removes a gadget from a Window object. If the Window is currently 

displayed on the screen, then this removal resu lts in a redraw ofthe Window by the 

Toolbox. 

C veneer 

extern _kernel_oserror *window remove_gadget ( unsigned int flags, 
Objectld window, 
Componentld gadget 

); 

297 



Window methods 

298 

*t* WWW*WW W*' rw=r MH*'*WW *W *MWWW* 

Window SetMenu 3 

On entry 

RO = flags 
R I = Window object id 
R2 = 3 
R3 = menu object id 

On exit 

R l-R9 preserved 

Use 

·--

This method is used to set the Menu which will be displayed when the Menu 
button is pressed over this Window object. The Toolbox handles open ing the Menu 
for you 

If R3 is 0. then the Menu for th1 s Window is detached. 

C veneer 

extern _ kernel_oserror •window_set_menu unsigned int flags, 
Objectid window, 
Objectid menu_ id 

Window GetMenu 4 

On entry 

RO = flags 
R I = Wmdow object id 
R2 = 4 

On exit 

RO =Menu id 

Use 

) ; 

This method is used to get the id of the Menu which will be displayed when the 
Menu button is pressed over th1s Window object. 

C veneer 

extern kernel_oserror •window get_menu ( unsigned int flags, 
Objectid window, 
Objectid *menu id 

); 



Window SetPointer 5 

On entry 

RO = nags 
R I = Window object id 
R2 = 5 
R3 = pointer to name of sprite to use for pointer 
R4 = x hot spot 
R5 = y hot spot 

On exit 

R I -R9 preserved 

Use 

Window class 

Th is method is used to set the Pointer shape which wi ll be used when the pointer 

enters this Window object. The Toolbox hand les sett ing the Wimp Pointer shape 

for you . 

If R3 is 0. then the Pointer for this Window is detached 

C veneer 

extern _kernel_oserror *window_set_pointer ( unsigned int flags, 
Objectid window, 
char *sprite_name , 
int x_hot_spot , 
int y hot_spot 

); 

299 



Window methods 

Window GetPointer 6 

300 

On entry 

RO = flags 
R I = Window object id 
R2 = 6 
R3 = pointer to buffer 
R4 = size of buffer to hold sprite name 
R5 = x hot spot 
R6 = y hot spot 

On exit 

R4 = size of buffer requi red for sprite name (if R3 was 0) 
else buffer pointed at by R3 holds sprite name 
R4 holds number of bytes wrillen to buffer 

Use 

This method is used to get the name of the sprite which will be used when the 
pointer enters this Window object. and to get the pointer"s hot spot. 

C veneer 

extern kernel_oserror *window get _pointer (unsigned int flags, 
Objectid window, 
char *buffer, 

); 

int buff_size, 
int *nbytes, 
int *x_hot_spot, 
int *y_hot_spot 



Window class 

Window_SetHelpMessage 7 

On entry 

RO =flags 
Rl =Window object id 

R2 = 7 
R3 = pointer to message text 

On exit 

R 1-R9 preserved 

Use 

This method is used to set the help message which will be returned when a Help 

Request message is received for this Window object. The Toolbox handles lhe reply 

message for you 

If R3 is 0. then the Help Message for lhis Window is removed . 

C veneer 

extern _kernel_oeerror •window_set_help_message ( unsigned int flags, 
Objectld window, 
char *message_text 

); 

301 



Window methods 

... ..... ---------- ...... 
Window_GetHelpMessage 8 

302 

On entry 

RO =flags 
R I = Window object id 
R2 = 8 
R3 = pointer to buffer 
R4 = size or buffer to hold message text 

On exit 

R4 =size of buffer required for message text (if R3 was 0) 
else Buffer pointed at by R3 holds message text 
R4 holds number of bytes written to buffer 

Use 

This method is used to read the help message which will be returned when a Help 
Request message is received for this Window object 

C veneer 

extern _kernel_oserror *window_get _help_message ( unsigned int flags, 
Objectid window, 
char *buffer, 
int buff_ len, 
int •nbytes 

); 



Window_AddKeyboardShortcuts 9 

On entry 

RO nags 
R l = Window object id 
R2 = 9 
R3 number of short-cuts to add 

Window class 

R4 pointer to memory block containing an array of description blocks for the 

keyboard short-cuts Each block is laid out in memory as described in 

Window templates on page 317 

On exit 

R I -R9 preserved 

Use 

This method adds a number of keyboard short-cuts to the list of keyboard 

short-cuts for this Window object When a Key Pressed event is received for this 

Window, the given Toolbox event is raised as the next Wimp event for the client 

application. 

If any of the keyboard short-cuts are already defined for this Window, then they are 

replaced by the new short-cuts. 

C veneer 

extern _kernel oserror •window_add keyboard_shortcuts unsigned int flags, 
Objcctld window, 

); 

int no ~shortcuts , 

KeyboardShortcut •shortcuts 

303 



Window methods 

Window_RemoveKeyboardShortcuts 10 

304 

On entry 

RO = flag5 
R I =Window object id 
R2 = 10 
R3 = -I means remove all keyboard short-culs 

or R3 =number of short-cuts to remove 
R4 = pointer to an array of key short-cuts to be removed 

(number given in R3) 

On exit 

R I-R9 preserved 

Use 

This method removes a number of keyboard short-cuts which have been 
associated with this Window using the Window_AddKeyboardShortcuts method 

C veneer 

extern _kernel_oserror •window_ remove_keyboard_shortcuts unsigned int flags, 
Objectid window, 

); 

int no _remove, 
KeyboardShortcut *shortcuts 



Window SetTitle 11 

On entry 

RO flags 
R I = Window object id 
R2 = II 
R3 pointer to new text for title bar 

On exit 

R I-R9 preserved 

Use 

Window class 

This method changes the text in a Window's title bar. If the string is too long for the 

title bar's buffer, an error is returned. 

C veneer 

extern _kernel_oserror *window_set_title unsigned int flags, 
Objectid window, 
char *title 

); 

305 



Window methods 

Window GetTitle 12 

306 

On entry 

RO = flags 
R l = Window object id 
R2 = 12 
R3 = pointer to buffer to hold title text (or 0) 
R4 = size of buffer 

On exit 

R4 = size of buffer required (if R3 was 0) 
else Buffer pointed at by R3 holds title text 
R4 holds number of bytes written to buffer 

Use 

This method returns the string currently used in a Window's title bar. 

C veneer 

extern _kernel. oserror *window_get_title ( unsigned int flags, 
Objectld window, 
char •buffer, 
int buff size, 
int *nbytes 

); 



Window class 

Window SetDefaultFocus 13 

On entry 

RO nags 
R I = Window object id 
R2 = 13 
R3 =component id 

On exit 

R I-R9 preserved 

Use 

This method sets the default focus component for a window. As with the template. 

a value of -I means no default focus. and -2 means put Lhc focus in the window. 

Note that this sets the default. i.e. only takes effect when next shown. 

C veneer 

extern _kernel_oserror •window_set dcfault_focus unsigned int flags, 
Objectld window, 
Componentid focus 

Window GetDefaultFocus 14 

On entry 

1~0 = nags 
R I = Window object id 
R2 = 14 

On exit 

RO = component id 
R I -R9 preserved 

Use 

); 

This method returns the default focus component of a window. 

C veneer 

extern _kernel_oserror •window_get default_ focus ( unsigned int flags, 
Objectld window, 
Componentld *focus 

) ; 

307 



Window methods 

Window SetExtent 15 

308 

On entry 

RO = flags 
R I - Window object id 
R2 = 15 
R3 = pointer to extent bounding box: 

+0 minimum x coordinate 
+4 minimum y coordinate 
+8 maximum x coordinate 
+ 12 maximum y coordinate 

On exit 

R I· R9 preserved 

Use 

Th1s method changes the extent of the underlying Wimp window. 

C veneer 

extern _kernel oserror *window set extent ( unsigned int flags, 
Objectid window, 
BBox *extent 

); 



Window GetExtent 16 

On entry 

RO - flags 
R I = Window object id 

R2 = 16 
R3 = pointer to four word block to hold extent 

On exit 

R I -R9 preserved and block pointed to by R3 updated: 

+0 minimum x coordinate 

+4 minimum y coordinate 

+8 maximum x coordinate 

+ 12 maximum y coord inate 

Use 

This method returns the extent of the underlying Wimp window. 

C veneer 

extern _ kernel oserror •window_get_extent ( unsigned int flags , 
Objectid window, 
BBox •extent 

); 

Window class 

309 



Window methods 

Window ForceRedraw 17 

310 

On entry 

RO = flags 
R l = Window object id 
R2- 17 
R3 pointer to area to redraw 

+0 minimum x coordinate 
+4 minimum y coordinate 
+8 maximum x coordinate 
+12 rnaximumycoordinalc 

On exit 

R I· R9 preserved 

Use 

This method forces a redraw on the area o f the window given by the work area 
coord inates pointed to by R3 

C veneer 

extern _kernel_oserror •window force redraw unsigned int flags, 
Objectld window, 
BBox *redraw_box 

); 



.•. ....... , •.....•... . ··-
Window_SetTooiBars 18 

On entry 

RO =mask 
bit 0 set means set internal bl toolbar 
bit I set means set interna l t l tool bar 
bit 2 set means set external bl toolbar 

bit 3 set means set external tl toolbar 

R3 = object id of internal bl toolbar 
R4 = object id of interna l t l toolbar 
R5 = object id of external bl tool bar 

R6 = object id of external tl toolbar 

Use 

Window class 

This method sets the object ids of the toolbars that are attached to a particular 

window object If the object is showing then the new tool bars will be shown. and 

any toolbars of the same type will be hidden (it is not possible to have more than 

one toolbar of each type). The mask allows selective setting of toolbars. 

Passing an ld of zero means that there is no toolbar of that type. 

C veneer 

extern _ kernel_oserror •window sct_ tool_bars uns i gned int flags, 

Objectid window, 

Objectld ibl, 
Objectld itl, 
Objectid ebl, 
Objectid etl 

); 

311 



Window methods 

Window GetTooiBars 19 

312 

On entry 

RO =mask 
bil 0 set means return internal bl toolbar 
bit I set means return internal tl toolbar 
bit 2 set means return external bl toolbar 
bit '3 set means return external tl toolbar 

On exit 

RO object id of internal bl tool bar 
R I object id of internal tl toolbar 
R2 object id of external bl toolbar 
R3 object id of externa l tl tool bar 

Use 

This method returns the object ids of the tool bars that are attached to a window 
object By setting the mask it is possible to control which ids are returned. 

C veneer 

extern kernel_oserror *window_get tool_bars unsigned int flags, 
Objectid window, 
Objectid *ibl, 
Objectid •it.l, 
Objectid •ebl, 
Objectid *etl 

); 



Window class 

Other SWis 

SWI Window_ GetPointerlnfo (Ox82883) 

On entry 

RO - llags 

On exit 

RO - x position 
R I = y position 
R2 = buttons 

bit set 
0 ad just 

menu 
2 select 
8 not over a toolbox window 

R3- Window id. or Wimp window handle if bit 8 set in R2 

R4 - component id. or icon handle if bit 8 of R2 set 

Use 

This SWI is analogous to Wimp_GetPointerlnfo. but returns Object ids and 

Component ids if the pointer is over a toolbox window. 

C veneer 

extern kernel_oserror *window get_pointer info ( unsigned int flags, 
int •x pos , 

); 

int •y_ pos, 
int •buttons , 
Objectld *window, 
Componentid *component 

313 



OtherSW/s 

314 

SWI Window_WimpToToolbox (Ox82884) 

On e ntry 

RO = fiags 
R I Wimp window handle 
R2 ;; icon handle 

On exit 

RO toolbox object handle for window 
R I component id 

Use 

This SWI returns the object handle and component id that contains the specified 
icon. 

If the Wimp handle is not known by the toolbox. then the returned object id is 0 

Note that this only applies to Window objects 

C veneer 

extern kernel_oserror *window_wimp_to_toolbox unsigned int flags, 
int window handle, 

); 

int icon .handle, 
Objectid *object, 
Componentid •component 



Window class 

SWI Window_ExtractGadgetlnfo (Ox828be) 

On entry 

RO flags 
R I pointer window template 
R2 = component id to match 

On exit 

RO- pointer to Gadget 
R I - size of gadget 

Use 

Th i~ SWI returns a po inter to a block of memory suitable for passing to 

Window_AddGadget. It is typical ly used in con junction with 

Toolbox_LookupTemplatc and intended to be used for dynamic windows such ilS 

the Print dialogue box. or a task manager type application 

Note that the returned area should be copied as it cannot be guaranteed to persist 

for the duration of the task 

Sec Implementing f10tspots on page 54 for an example of using this SWI. 

C veneer 

extern _kernel_oserror •window_extract gadget_info ( unsigned int flags, 
ObjectTemplateHeader •templ, 
Componentld gadget, 
void ••desc, 
i nt *size 
); 

315 



Window events 

Window events 

The Window class generates the following Toolbox events 

Window_AboutToBeShown (Ox82880) 

316 

Block 

+ 8 Ox82880 
+ 12 flags (as passed in to Toolbox_ShowObject) 
+ 16 va lue as passed in R2 to TooiBox_ShowObject 
+ 20 block as passed in R3 to TooiBox_ShowObject 

Use 

This Toolbox event is ra ised by the Toolbox when Toolbox_ShowObject is ca lled on 
a Window which has the appropriate bit set in its template flags word. IL enables a 
client application to set any appropriate attributes of the Window. before it 
appears on the screen. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int show_type ; 
union 

TopLeft top_left; 
WindowShowObjectBlock full_s pec; 
i nfo; 

WindowAboutToBeShownEvent; 



Window class 

Window_HasBeenHidden (Ox82890) 

Block 

+ 8 Ox82890 

Use 

This Toolbox event is raised by the Toolbox when Toolbox_HideObject is called on 

a Window which has the appropri ate bit set in its template flags word. It enables a 

client application to clear up after a window has been closed It is also raised when 

clicking a non-local action button or clicking outside a window that was opened 

with 'CreateMcnu' semantics. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
} WindowHasBeenHiddenEvent; 

Window templates 

The layout of a Window template is shown below. Fields which have type~ 

MsgReference and String Reference are those which wi II require relocation when 

they are loaded from a resource file If the template is being constructed in 

memory, then these fields should be real pointers (i.e. they do not require 

relocalion) Note that the version in the object header should be 102. 

For more details on relocation. see appendix Resource File Formals on page 497. 

Field Size in bytes Type 

llags 4 word 

help_message 4 MsgReference 

max_help 4 word 

pointer_shape 4 StringRefcrence 

max_poi nter _shape 4 word 

po1nter_x hot 4 word 

pointer_y_hot 4 word 

menu 4 StringReference 

n u m_keyboard_shortcu ts 4 word 

317 



Window templates 

Field Size in bytes Type 
keyboard shortcuts 4 ObjectOffset 

num_gadgets 4 word 

gadgets 4 ObjectOffset 

defau lt_focus 4 word 

show_event 4 word 

internal bl 4 Stn ngReference 

interna l t l 4 StringRefcrence 

external_bl 4 StringReference 

external tl 4 SLringRefcrence 

hide_event 4 word 

window 88 WimpWindow 

ddt a variable array of bytes 

A WimpWindow is an 88-byte structure with the fol lowing fields 

Field Size in bytes Type 
vis_xmin 4 word 

vis_ymi n 4 word 

vis_xmax 4 word 

vis_ymax 4 word 

scroll_x 4 word 

scroll_y 4 word 

behind 4 word 

window_flags 4 word 

title_fore byte 

title_back byte 

work_ fore byte 

work_bdck byte 

scroll_outer byte 

318 



Window class 

Field Size in bytes Type 

scroll inner byte 

li lle_i npu tfocus byte 

filler byte (must be 0) 

work_xmin 4 word 

work_ymin 4 word 

work_xmax 4 word 

work_ymax 4 word 

title_flags 4 word 

button_type 4 word 

sprite_ area 4 SpriteArea Reference 

min_ width 2 half-word 

min_heighl 2 half-word 

title_text 4 MsgReference 

title_ validation 4 Slri ngReference 

title_buflen 4 word 

num_icons 4 word (must be zero) 

Keyboard short-cut 

Field Size in bytes Type 

flags 4 word 

wimp_key_code 4 word 

key_event 4 word 

key_show 4 StringReference 

Gadget 

Field Size in bytes Type 

flags 4 word 

type/size 4 word 

319 



Window Wimp event handling 

Field 

xmin 

ymin 

xmax 

ymax 

component_id 

help_text 

max_help 

data 

Size In bytes 

4 

4 

4 

4 

4 

4 

4 

varidblc 

Type 

word 

word 

word 

word 

word 

MsgReference 

word 

array of byte~ 

Window Wimp event handling 

320 

Certain Wimp events for a Window are handled by the Window class, and either 
acted upon for you. or result in the roising of a Toolbox event Such events are 
listed below 

Wimp event 

Open Window Request 

Close Window Request 

Pointer Leaving Window 

Pointer Entering Window 

Mouse Click 

Action 

if the ·auto-open bit is set for this Window 
object, then Toolbox_ShowObject IS called for 
this Window 

if the ·auto-close· bit is set for this Window 
object. then Toolbox_HideObject is ca lled for 
this Window 

if there is a pointer shape defined for this 
Window, then the pointer is set back to its 
defau lt shape 

if there is a po1nter shape defined for this 
Window, then the pointer is set to that shape 

if the Menu button has been pressed. and there 
is a Menu object attached to this Window. then 
the Menu is shown using Toolbox. ShowObject 



Wimp event 

Key Pressed 

User Msg 

Window class 

Action 

if a keyboard short-cut for the given Wimp key 

code is attached to this Window, then its 

Toolbox event is raised as the next Wimp event 

for the client application 

Message_HelpRequest 

if a help message is attached to this Window, 

then a reply is sent on the application's behalf 

321 



Too/bars 

Tool bars 

User interface 

322 

Toolbars are attachments to windows. and are used mainly as tool boxes and 
status lines. They cannot exist purely by themselves. By using the toolbars 
supplied by the Window module. applications will have a consistent mechan ism 
for displaying/accessing such functionality It is not intended that they be used for 
anything beyond this 

A tool bar is a restricted window object- it cannot have any window furniture (such 
as a t itle bar). nor does it have an absolute position when shown on the screen It 
is anchored either to the bottom left or to the top left of the parent's visible area. 
i.e. it does not move or scroll when the parent scro lls its work area. 

external top left internal top left 

~· 
,, ·l .... Window obiect . i J "j' ~ ·~ 12 

~ 

-

'--

I~ 
I Vi 

internal bottom 

~ lc-..!. 

external bottom left 

A toolbar can be considered to be either internal (in which case its size will be 
clipped when the parent resizes) or external (i.e. lying entirely outside the parent's 
visible area). On moving a window with an externa l toolbar close to the extremities 
of the screen . the bar will 'bounce· over the window until the window itself moves 
off screen. 



Window class 

Toolbars are displayed in a definite order 

• external toolbars will always be displayed above internal ones 

• top left toolbars wi ll always be displayed above bottom left ones. 

Usually, this will only be noticed when reducing the size of a window 

For example. when moving a window to the left of the screen. the external toolbar 

will be displayed above any tool bar inside the window. 

Use of tool bars 

Application tool box 

It is anticipated that the top left variety of toolbars will be used as application tool 

boxes. i.e. they will consist of gadgets that are used to control the behaviour of the 

application. The decision as to whether an interna l or externa l one is used wou ld 

typically depend on the number of 'tools' that are required. 

Status lines 

Internal bottom left tool bars are usually for status lines. For example: 

The data is loading, 50% complete 

and external bottom left toolbars for toolboxes that require width (e g because 

they contain a writable) but are unlikely to be as wide as the work area (in which 

case they would leave an irregular work space). 

Note that if a toolbar contains a non-local action button then clicking on it will 

hide that toolbar. 

Application program interface 

Attributes 
Toolbar object attributes are described m the window attributes section on 

page 288. 

Note that a toolbar shou ld not have toolbars itself. 

323 



Too/bar methods 

Manipulating a toolbar 

Creating and deleting a tool bar object 

Tool bar objects are created and deleted using the standard Toolbox_CreateObject 
and Toolbox_DeleteObject methods. 

Showing and Hiding 

A toolbar can only be shown whilst its parent is showing. The on ly defined show 
type is ShowAsDefau lt. This will make the window modu le show the tool bar in the 
place appropriate for its type. It is possible to hide a toolbar without hiding its 
parent If a toolbar is hidden. then this is 'remembered' such that hiding then 
showing the parent will result in the toolbar still being hidden 

When a tool bar object is displayed on the screen using SWI Toolbox_ShowObject it 
behaves in the same way as shown in User interface on page 322. 

Toolbar methods 

324 

Tool bars use the same methods as windows (see Window methods on page 295) . 
llowever. the behaviour of the following methods are undefined: 

Window_SetTitle 
Window_GetTitle 
Window_SetTooiBars 
Window_GetTooiBars 
Window _Add Key boa rdShortcuts 
Window_RemoveKeyboardShortcuts 

Getting and setting the toolbars associated with a window object are described in 
Window_GetTooiBars 19 on page 312 and Window_SetTooiBars 18 on page 311. 

Normally this wou ld be done using ResEd. 



Window class 

Gadgets 

Application Program Interface 

Gadgets are not objects in their own right. but exist only as a component of a 

Window object Within that object they have unique component 1ds. 

A gadget is essentia lly a part of a Window which provides functional ity (for 

example. a button or a slider). and is usually implemented using Wimp icons The 

use of icons is transparent to the client, who manipulates the gadgets using 

higher-level. abstract methods which are appropriate to the particular gadget type. 

Wherever a gadget is implemented as a set of Wimp icons. the client can access 

these using low-level Wimp SWis. but in the vast majority of cases this should not 

prove necessary. 

Some gadgets are 'Composite' in that they consist of gadgets themselves These 

are identifiable by the client as they have a NULL icon list The client will receive 

toolbox events on both the composite gadget and the gadgets that make them up, 

but will generally only be interested in the former. Certain gadgets have methods 

for accessing the component ids of the gadgets that make them up e.g 

NumberRange_GetComponents. 

Some gadgets support anti-aliased fonts in place of the system font (which may 

itself be an outline font on RISC OS 3 (version 3 5). When this is the case. the 

Window modu le handles mode changes and losing fonts on the cl ient's beha lf. 

The window module reserves all component ids greater than Oxffffff Standard 

dialogues use the range Ox800000 to Oxffffff, leaving 0 to Ox7fffff free for the client 

There are many kinds o f gadget. The Toolbox provides facilities to allow the client 

application to manipu late a particular gadget in a manner which is appropriate to 

that gadget. rather than in 'low-level' terms like setting the state of a Wimp icon. 

The set of gadgets is defined to fit in with the RISC OS 3 Style Guide. and thus to 

encourage a standard look and feel across dialogue boxes. 

The available set of gadgets is currently: 

Gadget See page 

Action buttons 339 

Adjuster arrows 347 

Bu!lon gadget 348 

Display fields 355 

325 



Application Program Interface 

326 

Gadget See page 

Draggable gadgets 3'58 

LAbels 366 

Labelled boxes 367 

Number ranges 368 

Opllon buttons 376 

Pop-up menus '383 

Radio bultons 387 

Sliders 39'5 

String sets t103 

Writable fields 411 

Attributes 

All gadgets have the following attributes which are specified in a window template. 
and most can be manipulated at run-time by the client application 

Attribute 

nags word 

type/size 

xmin 

ym in 

xmax 

ymax 

component id 

Description 

Bit Meaning 

30 when set. gadget is at the back. i.e. created first 
31 when set, gadget is 'faded' 

this holds the size of the gadget's template {including its 
header) tn its top two bytes. and the type of the gadget 
in its lower two bytes. The list of currently known gadget 
types is given below. 

the mtnimum x coordinate of the gadget's bounding box 
(in window work area coordinates). 

the minimum y coordinate of the gadget's bounding box 
(in window work area coordinates). 

the maximum x coord inate or the gadget's bounding box 
(in window work area coordinates). 

the maximum y coordinate of the gadget's bounding box 
(in window work area coordinates). 

this identifies the gadget uniquely within this Window 



Window class 

MMW MMMMMMMMMMp+W ..... 

Attribute 

help message 

max help 

Description 

when a HelpRequest message is received for this 

gadget. then this string is sent back in a HelpReply 

message. If 0. then the help message for the Window will 

be sent. 

maximum length in bytes of the gadget's help message 

Note that for the gadgets listed below. the size is 'built in' to the Window module. 

and so the size ca n be set to zero though gadgets.h defines gadget_ Type which 

includes the siLe. 

The type of a gadget is one of: 

Gadget type Type field 

Action Button 128 

Option Button 192 

Labelled Box 256 

Label '320 

Radio Button '384 

Display Field 448 

Writable Field 512 

Slider 576 

Draggable 640 

PopUp Menu 704 

Adjuster Arrow 768 

Number Range 8'32 

String Set 896 

Button 960 

Manipulating a Gadget 

Each gadget type defines its own set of methods, and many will have a number o f 

Toolbox events associated with them This allows the application to receive 

Toolbox events from user actions. rather than having to deal with mouse clicks and 

drags on Wimp icons. Most of the low-level Wimp operations are handled 

auLomatically by the Toolbox. 

327 



Application Program Interface --

328 

Normally all of the gadgets in a particular Window object will be specified in the 
template for that Window in the resource file, but the Toolbox provides two 
methods for adding and removing gadgets from a Window object dynamically. 
namely Window_AddGadget and Window_RemoveGadget 

All gadgets have standard attributes. which give the gadget's component id m this 
Window, the gadget's bounding box. and the help message to be associated with 
this gadget. These attributes are normally specified in the application's resource 
file. the Help messages can be changed and read using the methods 
Gadget_SetHelpMessage/Gadget_GetHelpMessage Sending back a help message 
is automatically handled by the Toolbox. 

Each gadget has a nags word which defines the behaviour of that gadget. the exact 
list of bit settings in this flags word depends on the type of gadget The client can 
read and set this word using the Gadget GetFiags and Gadget. SetFiags methods. 
The top 8 bits of this flags word are generic flags of relevance to all gadgets The 
other 24 bits are used to hold Gadget-specific flags Currently the defined generic 
flags are 

Bit 

30 

31 

Meaning when set 

Gadget is at the back. i e. created first 

Gadget is 'faded' 

There is a gadget method which returns a list o f Wimp icon numbers for the icons 
used to implement the gadget The details of this list and the way in which 1con 
numbers map to the individual components of the gadget are specific to each 
gadget. and this mapping is documented below for each gadget type. The method 
is called Gadget_GellconList. 

This is implementation spec1fic and subject to change in future releases of the 
window module: 

Gadget type Number of icon Icon list 
numbers returned 

action button the icon for the act ion button 

option button 2 the icon for the sprite 
the icon for the text 

labelled box 2 the icon for the label 
the icon for the box 

label the icon for the label 



Gadget type 

radio button 

display field 

writable field 

slider 

draggable 

pop-up menu 

adjuster arrow 

number range 

slring scl 

button 

Number of icon 
numbers returned 

2 

'3 

0 

0 

Icon list 

the icon for the sprite 
the icon for the text 

Window class 

the icon for the display field 

the icon for the writable field 

the icon for the ·well' 
the icon for the 'background' 
the icon for the 'bar' 

the 1con for the draggable 

the icon for the PopUp's button 

the icon for the arrow 

composite 

composite 

Composite gadgets have speci fic methods to get the component ids of their 

constituent gadgets In this way run time methods (e.g. the colour of a slider in a 

number range) may be applied to the underlying gadgets. It is unlikely however 

that this will be particularly useful and could in fact affect the behaviour of the 

toolbox. 

329 



Generic gadget methods 

Generic gadget methods 

330 

In all of the methods on gadgets 

r~o is used as a flags word 
R I holds the object id of this gadget's parent Window object 
R2 holds the method code 
R3 holds the component id for this gadget 
R4-R9 potentially hold ing method-specific data 

The following methods can be applied to all gadgets. 

Gadget_ GetFiags 64 

On e ntry 

RO = 0 
Rl =Window object id 
R2 = 64 
R3 = Gadget component id 

On exit 

RO = flags settings for this gadget 

Use 

This method returns the flags word for the given gadget. 

C veneer 

extern _kernel_oserror *gadget get_flags ( unsigned int flags, 
Objectld window, 
Componentld gadget, 
unsigned int *flags_settings 

); 



- Window class - --- ·-- -- -------···-
Gadget_ SetFiags 65 

On e ntry 

R I - Window object id 

R2 65 
R3 = Gadget component id 
R4 = new flags selti ngs 

On exit 

R 1 - 1~9 preserved 

Use 

This method sets the flags word for the given gadget The only flags that can 

usefully be changed are the faded bits Modifying other bits is undefined 

C veneer 

extern _ kernel_oserror •gadget_set_flags ( unsigned int flags, 
Objectid window, 
Componentld gadget, 
unsigned int new_flags settings 

); 

331 



Generic gadget methods 

332 

Gadget_SetHelpMessage 66 

On entry 

RO = fl ags 
R I = Window object id 
R2 = 66 
R3 = Gadget component id 
R4 = pointer to help message text 

On exit 

R 1-R9 preserved 

Use 

Th is method sets the help message wh ich wil l be returned. when a help request is 
received for this gadget. 

C veneer 

extern _kernel_oserror *gadget set hel p_rnessage ( unsigned int flags, 
Objectld window, 
Cornponentld gadget, 
char •message text 

); 



Window class 

Gadget_ GetHelpMessage 67 

On entry 

RO nags 
R I = Window object id 

R2 = 67 
R3 = Gadget component id 
R4 pointer to buffer 

R'5 size of buffer 

On exit 

R'5 size of buffer required to hold help text (if R4 was 0) 

else buffer pointed at by R4 holds help text 

R'5 gives number of byles written lo buffer 

Use 

This method returns the help message which wi II be returned. when a help request 

is received for this gadget. 

C veneer 

extern _kernel_oserror *gadget_get_help_message ( unsigned int flags, 
Objectld window, 
Componentld gadget, 
char •buffer, 
int buff_size, 
int *nbytes 

); 

333 



Generic gadget methods 

334 

Gadget_ GetlconList 68 

On entry 

RO = Oags 
R 1 = Window object id 
R2 = 68 
R3 = Gadget component id 
R4 = pointer to buffer 
R5 = size of buffer 

On exit 

R5 = size of buffer required to hold icon li st (if R4 was 0) 

Use 

else buffer pointed at by R4 holds l ist of Wimp icon numbers for this gadget 
R5 ho lds number of bytes written to buffer 

This method returns a list of Wimp icon numbers (integers) for the icons used to 
implement this gadget For a composite gadget the size returned wi ll be zero. 

C veneer 

extern _kernel_oserror • gadget_get_icon_list unsigned int flags, 
Objectid window, 
Componentid gadget, 
int •buffer, 
int buff_size, 
int *nbytes 

); 

The client should not cache the results of this call . since these values may change 
at a later date. 



Gadget_ SetFocus 69 

On entry 

RO =flags 

On exit 

R I-R9 preserved 

Use 

Window class 

This method sets the input focus to the given component of a window Note that 

such a component must be a writable field. or a composite gadget which 1ncludes 

a wntable field such as a number range. 

C veneer 

extern _kernel oserror *gadget_set focus ( unsigned int flags, 
Objectid window, 

Gadget_ GetType 70 

On entry 

RO = 0 
R I = Window obtect id 
R2- 70 
R3 =- Gadget component id 

On exit 

RO = type of this Gadget 

Use 

Usage. 

Componentid component 
); 

This method returns the type of the given gadget. 

C veneer 

extern _kernel. oserror *gadget_get type ( unsigned int flags, 
Objectid window, 
Componentid gadget, 
int *type 

); 

335 



Generic gadget methods 

336 

Gadget_MoveGadget 71 

On entry 

RO =flags 
R I = Window object id 
R2 = 71 
R3 = Gadget component id 
R4 = pointer to new bounding box 

On exit 

R I-R9 preserved 

Use 

This method moves an already created gadget with in a window. Note that as a new 
bounding box is given. it allows the gadget to be resized as well though the exact 
behaviour of this featu re will depend on the gadget type 

C veneer 

extern _kernel_oserror *gadget_move gadget ( unsigned int flags, 
Objectld window, 
Componentld gadget, 
BBox •new_bbox 

); 



··········· ·············-···· 

Gadget_ GetBBox 72 

On entry 

RO = flags 
R 1 Window object id 

R2 = 72 
R3 = Gadget component id 

R4 = pointer to 4 word bufrer 

On exit 

R I-R9 preserved 

Use 

Window class 

•••• 

This method copies the bounding box of a gadget into the supplied bu ffer. 

C veneer 

extern _kernel_oserror *gadget_get_bbox ( unsigned int flags, 
Objcctid window, 
Componentid gadget, 
BBox *box 

); 

337 



Gadget Wimp event handling 

Gadget Wimp event handling 

338 

Wimp event 

Mouse Click 

Key Pressed 

User Message 

Action 

if Select or Adjust on an action button. option button or 
radio button member. then if a Toolbox event is 
associated with th is event. it is raised. Otherwise the 
appropriate default Toolbox event is raised 
if on a pop-up menu button. then the associated Menu is 
shown 

if on a draggable then a 
Draggable_Ciick!Draggable_DoubleCi ick is reported 

This depends on the type of gadget. 
For a writable field. if the keystroke is a down or up arrow. 
then the caret is placed in the next or previous writable 
field (using the field's 'before' and ·after va lues). 
If return is pressed. then the Default action button is 
activated (if present) . 

Messagc_HelpRequest 
if a help message is attached to the gadget. then a reply is 
sent on the application's behalf. 



Action buttons 

Window class 

An action button is normally used to invoke an operation which is avai lable from a 

dialogue box (e.g. a Cancel button or an OK button): 

Grid 
Spacing Q!l I M 

17 Show _j Lock 

Cincel I ~ T 

action buttons 

Such a gadget contains a text string, which is specified when the gadget is created 

The above all ributes can be set and read using l he methods 

ActionButton_SetText I Act1onButton_GetText 

Whenever the user clicks the Select or Adjust buttons on an action button an 

Action Button_Selected event is raised with the flags word indicating which mouse 

button was used The client can supply an alternative Toolbox event code in the 

template descnption for the action button. and can set and read this event code at 

run-time using the ActionButton_SetEvent and Action Button GetEvent methods. 

The client can also specify an object which is to be shown when the action button 

is cl1cked on usmg the Select or Adjust buttons The name of this object can be 

given in the action button template or manipulated at run -t1me using the 

Act ion Button_SetCI ickShow and Acl ion Button_GetCI ickShow methods. 

In a dialogue box, one action button can be chosen as the Default action button. 

Th1s button is displayed w1th a distinctive border. and is activated when Return is 

pressed An action button is marked as Default by setting a bit in the nags word for 

the gadget. 

One action button can also be marked as the Cancel action button. by setting a bit 

1n 1ts flags word. This action button IS also activated when its parent dialogue box 

has the input focus, and the user presses Escape. 

By default, when an action button is clicked using Select. its parent dialogue box is 

closed. Th1s behaviour can be over-ridden by setting a bit in the action button's 

flags word. to indicate that it is a 'local' button. whose effect is only to raise its 

associated Toolbox event. Th is facility is generally used for buttons which only 

have a local effect on the state of the dialogue box itself (e g a Try button in a font 

selector) 

339 



Action buttons 

Clicking Adjust on an action button , raises its Toolbox event and keeps its parent 
dialogue box open (if it is marked as a Cancel action button. then the contents of 
any Gadgets are returned to how they were when the parent window was last 
shown) The Toolbox does not do this for you 

Bits in the flags word for an action button have the following meaning: 

Bit 

0 

2 

3 

M eaning 

this is the Default action button 

this is the Cancel act ion button 

this is a local action button 

if set. then the 'cl ick show' object will be shown 
transiently (i .e with Wimp_CreateMenu 
semantics - defau It is to show persistently) 

Action button methods 

340 

ActionButton_SetText 128 

On entry 

RO = flags 
R I = Window object id 
R2 = 128 
R3 = Gadget component id 
R4 = pointer to text to appear in button 

On exit 

R I-R9 preserved 

Use 

This method sets the text which will be displayed in this action button. 

C veneer 

extern _kernel_oserror *actionbutton_set_ text ( unsigned int flags, 
Objectid window, 
Componentid action_button, 
char •text 

); 



Wmdowclass 

••••w•aw•ww•••••ww ••••ww••••••••••MW****MW* ---

ActionButton GetText 129 

On entry 

RO = flags 
R 1 - Window object id 

R2 = 129 
R3 = Gadget component id 
R4 = pointer to buffer 
R'5 = size of buffer 

On exit 

R'5 =size of buffer required to hold text (if R4 was OJ 

else buffer pointed at by R4 holds text 

R5 ho lds number of bytes written to buffer 

Use 

This method returns the text which is currenlly displayed in this action button. 

C veneer 

extern _kernel oserror •actionbutton_get_text ( unsigned int flags, 
Objectld window, 
Componentld action_button, 
char *buffer, 
int buff size, 
int •nbytes 

); 

341 



Action buttons 

============:::::.=·~-- MMW CAM W W M WWM5* ••• pwa ••• 

ActionButton SetEvent 130 

342 

On entry 

RO = flags 
R I = Wmdow object 1d 
R2 = 130 
R3 = Gadget component id 
R4 = Toolbox event code 

On exit 

R l -R9 preserved 

Use 

This method sets the Toolbox event code which wil l be raised when this action 
button is clicked The rest of the Toolbox event block remains the same as in 
ActionButton_Selected . 

C veneer 

extern kernel_oserror •actionbutton_set event unsigned int flags, 
Objectld WLndow, 
Componentld action_button, 
int event 

); 



•••ww• ----------- -
ActionButton GetEvent 131 

On entry 

RO =nags 
R I = Window object id 

R2 = 131 
R3:: Gadget component id 

On exit 

RO holds Toolbox event code 

Use 

Wmdowc/ass -

This method returns the Toolbox event code which will be raised when this action 

button is clicked. 

C veneer 

extern _kernel_oserror •actionbutton get_event ( unsigned int flags, 
Objectld window, 
Componentld action button, 
int • event 

); 

343 



Action buttons 

ActionButton SetCiickShow 132 

344 

On entry 

RO flags 
R I Window object id 
R2 = 132 
R3 = Gadget component id 
R4 = object id of the object to show (or 0) 
R5 = show nags: bit 0 

On exit 

if clear show persisten tly 
if set show transiently 

R I -R9 preserved 

Use 

This method allows the client to specify the object to show when the user clicks 
Select or Adjust on the action button. By setting bit 0 of R5 it is possible to control 
whether the show is persistent or not. 

If R4 is 0. then no object should be shown. 

C veneer 

extern _kernel_oserror •actionbutton_set click_show unsigned int flags, 
Objectid window, 
Componentid action button, 
Objectld object, 
int show flags 

); 



• •••ww•a•••w &&•••••••c••••••aaa 

ActionButton GetCiickShow 133 

On entry 

RO - flags 
R I = Window object id 

R2 = 133 
R'3 Gadget component id 

On exit 

RO - id of object to be shown 
R I show flags 

Use 

Window class 

This method returns the object id of the object which wil l be shown when the user 

clicks Select or Adjust on the action button If bit 0 of R I is set on ex1t it means 

that the object will be shown transiently 

C veneer 

extern _kernel oserror *actionbutton gct_click show ( unsigned int flags, 
Objectld window, 
Componentld action button, 
Objectld •object, -
int • shO\•_ flage 

); 

345 



Action buttons 

-------------------·--·---·-·---··------
Action button Toolbox events 

ActionButton_Selected (Ox82881) 

Block 

+ 8 Ox8288 1 
+ 12 flags 

Use 

bits 0. I and 2 show how the activation was done. 
bit 0 set means Adjust was held down 
bit I reserved 
bit 2 set means Select was held down 
If bits 0-2 are all 0. then Return was pressed on a default action 
button. or Escape was pressed activating the cancel action button 

bits 3, 4 and 5 indicate what type of button it is: 
bit 3 set means that this is a Defau lt action button 
bit 4 set means that this is a Cancel action button 
bit 5 set means that this is a local action button ( ic its parent window 

has not been closed) 

This Toolbox event 1s raised when the user clicks on an action button (or in the 
case of a default action button presses Return). and the client has not specified 
their own event to be associated with this button (by setting the event in the 
template to non-zero) 

The returned flags word indicates whether the action button is a defau lt and/or a 
cance l button. and also which mouse button was used to select the button 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
} ActionButtonSelectedEvent; 

Action button templates 

346 

Field 

text 

max text_len 

click_show 

event 

Size in bytes 

4 

4 

4 

4 

Type 

MsgRefercnce 

word 

St ri ngReference 

word 



Window class 

Adjuster arrows 

An adjuster arrow gadget will be displayed as an up down. left or right arrow icon, 

and clicki ng on the arrow wi l l raise an Adjuster_Ci icked Toolbox event. wi th an 

i nd icalion ot whether the change is up or down 

Font Ciche ~ 
adjuster arrows 

The adjuster arrow's flags word indi ci-l tes whether the Adjuster is an 111( rementor or 

decrementor There is also a bit to indi cate whether this is part o f clll 'up/down· or 

'left/right pair 

Bits in the flags word for an adjuster arrow have the following meaning 

Bit 

0 

Meaning 

set==> 'increment' 
clea r ==> 'decrement' 

set ==> one of an ·up/down· pair 
clea r one of a '!ell / right' pair 

Adjuster arrows Toolbox events 

Adjuster_ Clicked (Ox8288c) 

Block 

+ 8 Ox8288c 

+ 16 10 ==>down I ==>up) 

Use 

This Toolbox event is raised when the user clicks the mouse on an adJU<:>ter arrow 

(Adjust clicks on a down arrow are reported as ·up', on an up arrow as 'down') 

C data type 

type def struct 
{ 

ToolboxEventHe ader hdr; 
int direction ; 

AdjusterC lickedEve nt ; 

Adjuster arrow templates 

There are no extra fields than those in the gadget hedder. 

347 



Button gadget 

Button gadget 

The Button gadget is similar to a Wimp icon. The main differences are that a 
Button will always have indirected data and that not all icon flags are settable 
• A Sutton created as sprite on ly cannot be made into any sort of text Bullon. 
• A Button created as text only cannot be made into a sprite only Button . 

• A sprite only Button can only refer to sprites by name and these must be in the 
Wimp sprite pool or the task's sprite area. 

Bits in the flags word for a Button gadget have the following mci'lnings 

Bit M eaning 

0 Use the task's sprite area (requires the window to have client 
sprite areal for sprite on ly buttons else usc the Wimp sprite pool 

return menu clicks 

Button methods 

348 

Button_GetFiags 960 

On entry 

RO = flags 
R I Window object id 
R2 960 

R'3- Gadget component id 

On exit 

RO icon flags 
R I -R9 preserved 

Use 

This method returns 1 he flags of the given button gadget. The bits have the same 
mei'lning as those of a Wimp Icon 

C veneer 

extern _kernel oserror *button gel flags unsigned int flags, 
Objectld window, 
Componentld button, 
int •icon_flags 

); 



Button_SetFiags 961 

On entry 

RO = flags 
R 1 = Window object id 
R2 = 961 
R3 = Gadget component id 
R4 = clear word 
R5 = EOR word 

On exit 

R 1-R9 preserved 

Use 

Window class 

This method sets the fldgS of a button The effect ot the clear word and the EOR 

word are analogous to those of Wimp_SetlconStatc except that as described 

above. not all combindtlons are settable. 

C veneer 

extern _kernel_oserror •button_set flags ( unsigned int flags, 
Objectld window, 
Componentld button, 
int clear word, 
int EOR word 

); 

349 



Button gadget 

Button_SetValue 962 

350 

On entry 

RO- flags 
R I = Window object 1d 
R2 = 962 
R3 = Gadget component id 
f~4 = new va lue 

On exit 

R I-R9 preserved 

Use 

Th is method sets the value (i .e. text or sprite name) or a 1:3utton. 

C veneer 

extern _kernel oserror *button set_value unsigned int flags, 
Objectrd window, 
Componentld button, 
char *value 

); 



Button GetValue 963 

On entry 

RO = Aags 
R I = Window object id 
R2 = 963 
R3 = Gadget component id 
R4 = pointer to buffer to hold string 
R5 = size of buffer 

On exit 

R5 = size of buffer required (if R4 was 0) 
else buffer pointed at by R4 holds string 
R5 holds number of bytes written Lo buffer 

Use 

This method returns the value of a l3utton 

C veneer 

extern _kernel oserror *button get_value ( unsigned int flags, 
Objectld window, 

); 

Componentld button, 
char *buffer, 
int buff_size , 
int *nbytes 

Window class 

351 



Button gadget 

Button SetValidation 964 

352 

On entry 

RO ;:: nags 
R 1 Window object id 
R2 = 964 
R3 ;:: Gadget component id 
R4 - new value 

On exit 

R 1 R9 preserved 

Use 

This method sets the va lidation string (e.g. sprite name) of a Button. 

C veneer 

extern _kernel oserror •button_set_validation unsigned int flags, 
Objectid window, 
Cornponentid button, 
char •value 

); 



Window class 

Button GetValidation 965 

On entry 

RO =nags 
R I = Window object id 
R2 = 965 

R3 = Gadget component id 
R4 = pointer to buffer to hold string 
R5 = size of buffer 

On exit 

R5 =size of buffer required (if R4 was 0) 

Use 

else buffer pointed at by R4 holds string 
R5 holds number of bytes written to buffer 

This method returns the validation ~tring of a Button. 

C veneer 

extern _kernel oserror *button_get validation ( unsigned int flags, 
Objectld window, 
Cornponentld button, 
char *buffer, 
int buff_size, 
int *nbytes 

); 

353 



Button gadget 

Button Setfont 966 

On entry 

RO =flags 
R I =Window object id 
R2 = 966 
R3 = Gadget component id 
R4 = pomter to font name to use 
R5 =width in 16ths of a point 
R6 = height in I 6ths of a point 

On exJt 

R I-R9 preserved 

Use 

This method makes the Button use an anti-aliased font If the font name is NULL. 
then the field will use system font. 

C veneer 

extern _kernel_oserror *button_set_font unsigned int flags, 
Objectid window, 
Cornponentid button, 
char *font name, 
int width, 
int height 

); 

Button toolbox events 
The button gadget does not have any toolbox events. All click or key presses are 
returned as Wimp events but with the component and window id of the tasks 
id block updated. 

Button templates 

354 

Field 

button_nags 

value 

max_ value 

validation 

max val idation 

Size in bytes 

4 

4 

4 

4 

4 

Type 

Word 

MsgRefercnce 

word 

StringReference 

word 



Window class 

Display fields 

A display field gadgel is used to display information in a ·read-only' manner: 

Author ! © Acorn Co-MPuters ltd, 1993 

The display field has a 'slabbed in' boxed display area in which a text string is 
displayed. The contents of the display area can be set and read using the 
DisplayField SetValue and DisplayField GetValue methods. 

Bits in the flags word for a Label have the following meaning 

Bit 

1-2 

Meaning 

justi fication: 

0 =>left-justified 
l =>right-justified 
2 =>centred 

Display field methods 

DisplayField_SetValue 448 

On entry 

RO = flags 
R l = Window object id 
R2 = 448 
R3 =Gadget component id 
R4 = pointer to text string to use 

On exit 

R l-R9 preserved 

Use 

This method sets Lhe text string shown in a display field. The change is 
immediately visible if the parent dialogue box is currently on the screen. 

C veneer 

extern kernel_oserror •displayfield_set_value ( unsigned int flags, 
Objectld window, 
Componentld display field, 
char *text 

); 

355 



Display fields 

356 

DisplayField_GetValue 449 

On entry 

RO = nags 
R I - Window object id 
R2 - 449 
R3 = Gadget component id 
R4 = pointer to buffer 
R5 = size of buffer 

On exit 

R5 5Jze of buffer required else (if R4 was 0) 
buffer pointed at by R4 contains text 
R5 holds number of bytes written to buffer 

Use 

This method returns the text string shown in a display field 

C veneer 

extern _kernel_oserror *displayf ield_get_value ( unsigned int flags, 
Objectld window, 
Componentld display_field, 
char *buffer, 
int buff size, 
int *nbytes 

); 



Window class 

DisplayField _ SetFont 450 

On entry 

RO = flags 
R l = Window object id 
R2 = 4'50 
R3 = Gadget component id 
R4 = pointer to font name to use 
R'5 =width in l6ths of a point 
R6 = height in l6ths of a point 

On exit 

R l-R9 preserved 

Use 

This method makes the display field usc an anti-aliased font. If the font name is 

NULL. then the field will use system font 

C veneer 

extern _kernel oserror *displayfield set font ( unsigned int flags, 
Objectid window, 
Componentid display_ field, 
char *font_name, 
int width , 
int height 

); 

Display field templates 

Field Size in bytes Type 

text 4 MsgReference 

max_text_len 4 word 

357 



Draggable gadgets 

Draggable gadgets 

358 

A draggable gadget consists of a sprite, text or text&sprite wh ich appears in a 
dialogue box, and can be dragged using the mouse. When the drag occurs. if this is 
a sprite or text&sprite draggable then the Toolbox will use the standard CMOS bit 
to decide whether to do a ·solid' drag or a 'dotted line· drag 

Solid dragging makes use of the DragAnObject module allowing both text and 
sprite to be dragged (un like DragASprite) 

If it is a sprite draggable gadget. then the sprite used can be set and read 
dynamically using the Draggable_SetSpri te/Draggable_GetSpri tc methods. 

If it is a text draggable gadget. then the text used can be set and read dynamically 
using the Draggable_SetText/Draggable_GetText methods 

With a draggable of type cl ick or doubleclick. a clicks or double cl ick on the gadget 
will be returned as a Wimp mouse click event. but the toolbox id block will be 
updated to reflect the component and window (i .e no special toolbox event is 
returned) 

When the user begins to drag a <.lraggable, the cl ient can choose to receive a 
Draggable_DragStarted Toolbox event. When the drag ends. the client will always 
receive a Draggable_DragEnded Toolbox event. 

Bits in the flags word for a draggable have the following meaning: 

Bit 

0 

2 

3-5 

6 

7 

8 

Meaning 

warn of drag start using Draggable. DragStarted 

draggable contains a sprite 

draggable contains text 

Draggable type: 

0 ~drag on ly 
I ~click . drag. doubleclick 
2 ~click selects. doubleclick. drag 

de liver drag ended events as Toolbox id's rather than Wimp 
windows (if possible) 

dragged obtect has a drop shadow (if solid) 

dragged object is not dithered (if solid ) 



Window class 

Draggable methods 

Draggable _ SetSprite 640 

On entry 

RO = flags 
R l = Window object id 
R2 = 640 

R3 = Gadget component id 
R4 = pointer to sprite name to use 

On exit 

R l -R9 preserved 

Use 

This method sets the name of the sprite which will be used for this draggable 

C veneer 

extern _kernel_oserror *draggable set_sprite ( unsigned int flags, 
Objectld window, 
Componentld draggable , 
char *sprite_name 

); 

359 



Draggable gadgets 

Draggable _ GetSprite 641 

360 

On entry 

RO = flags 
R I = Window ob)ect id 
R2 = 641 
R3 = Gadget component id 
R4 = pointer to buffer (or 0) 
R5 = size of buffer to hold sprite name 

On exit 

R5 = size of buffer required for message text (if R4 was 0) 
else buffer pointed at by R4 ho lds sprite name 
R5 holds number of bytes written to buffer 

Use 

This method returns the name of the sprite which is currently being used for this 
draggable 

C veneer 

extern _kernel oserror *draggable_get_sprite ( unsigned int flags, 
Objectld window, 
Componentld draggable, 
char *buffer, 
int buff size, 
int *nbytes 

); 



Draggable _Set Text 642 

On entry 

RO = flags 
R l = Window object id 
R2 = 642 
R3 = Gadget component id 
R4 = pointer to text to use 

On exit 

R l -R9 preserved 

Use 

This method sets the text which wi ll be displayed in t his draggable. 

C veneer 

extern _kernel oserror *draggable_set text ( unsigned int flags, 
Objectld window, 

Window class 

Componentld draggable, 
char •text 

); 

361 



Draggable gadgets 

Draggable _ GetText 643 

362 

On entry 

RO =nags 
R I = Window object id 
R2 = 643 
R3 = Gadget component id 
R4 = pointer to bufrer 
R5 = size of buffer 

On exit 

R5 = size of buffer required ( 1f R4 was 0) 
else buffer pointed at by R4 holds text 
R5 ho lds number of bytes written lo buffer 

Use 

This method returns the texl which is currently being used for this draggablc. 

C veneer 
extern _ kernel_oserror *draggable_get text ( unsigned int flags, 

); 

Objectld window, 
Componentld draggable, 
char *buffer, 
int buff_size, 
int *nbytes 



Window class 

Draggable _SetS tate 644 

On entry 

RO = flags 
Rl =Window object id 
R2 = 644 
R3 = Gadget component id 
R4 = state (0 ~deselected. I ~selected). 

On exit 

RI-R9 preserved 

Use 

Th is method sets the Draggable's sta le Lo either selected or deselected. 

C veneer 

extern _kernel oserror *draggable_set state ( unsigned int flags, 
Objectid window, 

Draggable _ GetState 645 

On entry 

RO = flags 
R I = Window object id 
R2 = 645 
R3 =Gadget component id 

On exit 

RO =state 

Use 

Componentid draggable, 
int state 

); 

Th is method returns the Draggables' stale (0 ~deselected. I ~selected) 

C veneer 

extern _kernel_oserror *draggable_get_state ( unsigned int flags, 
Objectid window, 
Componentid draggable, 
int •state 

); 

363 



Draggable gadgets -
Draggable Toolbox events 

364 

Draggable _ DragStarted (Ox82887) 

Block 

+ 8 Ox82887 
+ 12 flags 

Use 

bil 0 means Adjust is held down 
bit I will be 0 
bit 2 means Select is held down 
bit 3 means Shift is held down 
bit 4 means Ctrl is held down 

This Toolbox event is raised when the user starts a drag of a draggable gadget 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
} DraggableDragStartedEvent; 



Window class 

Draggable _Drag Ended (Ox82888) 

Block 

+ 8 Ox82888 
+ 12 flags: 

bit 0 clea r then 
+ I 6 Wimp window handle of end of drag 
+ 20 Wimp icon handle of end of drag 
or bit 0 set 
+ 16 Window id of end of drag 
+20 component id of end of drag 

+24 destination x coordinate o f mouse pointer 
+28 destination y coordinate of mouse pointer 

Use 

This Toolbox event is raised when the user ends a drag of a draggable gadget. By 
setting bit 6 when the draggable is created it is possible to receive events in terms 
of window object ids and gadget component ids If the drag ended over a 

non-toolbox wtndow (or bit 6 was zero) then W1mp handles are returned . 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
i n t window_ ha ndle; 
i n t icon_handle; 
int x; 
i nt y; 
DraggableDragEndedEvent; 

Draggable templates 

Field Size in bytes 

text 4 

max_text len 4 

sprite 4 

max_sprite_len 4 

Type 

MsgReference 

word 

StringReference 

word 

365 



Labels 

Labels 

- -····· ........... . . ... 
A label consists of some explana lory text which appears in a dialogue box. The 
client application can choose whether the bounding box of the label is shown by a 
visible box or not. 

• a label contains text. which is unchangeable at run-time 

• a label can be right-justified. left-justified. or centred. as indicated by its flags 
word 

Bits in the nags word for a label have the following meaning: 

Bit Meaning 

0 omit bounding box 

1-2 i usti ficat ion: 
0 = left -justified 
I =right-justified 
2 =centred 

Label templates 

Field Size in bytes Type 

label 4 MsgReference 

366 



Labelled boxes 

Window class 

A labelled box gadget is used for collecting together a set of related items 

...) None Ci Pirillel 
Printer port J 

I.:J_S:rial .) N•t 

The box has a label which can be either text or a sprite. and this label will appear at 

the top leh hand corner of the box (a bit in the flags word for the gadget indicates 

whether text or a sprite is to be used}. Res Ed creates labelled boxes with bit '30 set 

so that they are created behind other gadgets 

There are no Toolbox events or methods associated with a labelled box. 

Bits in the flags word for a labelled box have the following meaning: 

Bit 

0 

M eaning 

labelled box has a sprite label (default is text} 

in the case of a sprite label . the icon is fi lled if this bit is set. 

otherwise it is unfilled. This is because certain sprites wi ll 

sufficiently obscure the border. and may be masked so 
shou ld allow the tile sprite to show through 

Labelled box templates 

Field 

label 

Size in bytes 

4 

Type 

MsgReference or StringReference 

367 



Number ranges 

Number ranges 

368 

A number range is a gadget used to display one of a range of possible integer or 
fixed point values. The value is shown in a display area. which can either be 
writable (in which case a writable field is used) or not writable (in which ca5c a 
display field is used). It is also possible to create a Number Range where there is 
no display area. 

The value which the client give& to a Number Range Gadget (and which it receives 
back) is a signed integer. to which a ·precision· will be applied The precision is 
essentia l ly the power of 10 by which the value shou ld be divided. and the number 
of places which will be shown after the decimal point. For example to get the value 
3 42 displayed in a Number Range the client would pass the value 342 w1th a 
precision of 2. Normally the precision of a Number Range is specified when the 
Gadget is created. but it can be set and read at run-time using the 
NumberRange_SetBounds and NumberRange_GetBounds methods. A Number 
Range can be made to display merely integer values by specifying a precision of 0 
The maximum precision is I 0 1 e there can be up to ten dig1ts after the decimal 
point 

The value displayed in a number range gadget is set using the 
NumberRange_SetValue method The value passed is an integer which will be 
divided by IO"precision and will have precision digits after the decimal point The 
value of a number range is read using the NumberRange_CetValue method. this 
value is an integer which should be divided by I O"precision to get its real 
equ ivalent. A number range has a lower and upper bound wh ich constra ins the 
values to which it can be set: these bounds are in 'integer' terms (i.e. before the 
precision has been applied) For example if a number range gadget has a precision 
o f 3. and the client w1shes to have a lower bound of 1.000 and an upper bound of 
4 999, then the lower and upper bounds of the gadget should be set to I 000 and 
4999 respectively. 

A number range can also be given a step size The step size is expressed in integer 
terms (i e. before the precision is applied! For example if a number range gadget 
has a precision of 2. then settmg a step size of '5 will result in a ·real' step size of 
0.05. The bounds and step size can be set and read using the 
NumberRange_SetBounds and NumberRange_GetBounds methods. 

A number range can also have a pa1r of adjuster arrows placed 8OS Units to the 
nght of its display area (either the writable or display field! When the user cl1cks 
on these arrows. 1 he value of the number range is either decremented or 
incremented by its step size. subject to its lower and upper bounds (and displayed 
using its precision). 



Window class 

A number range can also have an associated slider. The slider is like a slider 

gadget. except that it can on ly be positioned relative to the Number Range·s 

display area. The possible positionings are 

• a horizontal slider 8OS Units to the right of the d isplay area 

• a horizontal slider 8OS Units to the left of the display area. 

When both a slider and adjusters are requested. then the adjusters appear at either 

end of the slider. rather than the positioning outlined above. 

If the Number Range is writable. then the underlymg Writable Field is g1ven a 

validation string which will only perm1t input of numeric digits (0-91. the decimal 

point character for the current territory (unless the precision field is 0) and where 

applicable the minus sign. It also has 'before· and ·after' values which are used to 

move the caret in the same way as described for Writable Fields. Another Writable 

may reference the component id of a Number Range in its before and after fields. 

Whenever the value changes in a number range gadget, the client is informed of 

the change via an NumberRange_ValueChanged Toolbox event. if it has set the 

appropriate bit in the gadget's flags word 

Included in the definition of the number range is the length of the display field in 

OS Units (display_length as shown in Number range templates on page 375) . This is 

ignored if there IS no slider. 

Bits in the flags word for a number range gadget have the following meanings 

Bit 

0 

2 

3 

4 

5-7 

8-9 

Meaning when set 

inform client of va lue changes using 
NumberRange_ValueChanged 

writable (default is read only display) 

no display area 

has adjuster arrows 

sl ider type 
value meaning 

0 ==:> no slider 
==:> slider to the right o f the display area 

2 ==:> slider to the left of the display area 

justification· 

0 ==:>left-justified 
I ==:>right-justified 
2 =centred 

369 



Number ranges 

Bit 

12- 15 

16- 19 

Meaning when set 

desktop colour of slider bar 

desktop colour of slider background 

Note· slider colours are in the same flag position as a Slider Gadget 

Number range methods 

370 

NumberRange_SetValue 832 

On entry 

RO = flags 
R 1 = Window object id 
R2 832 
R3 = Gadget component id 
R4 = new value 

On exit 

R I -R9 preserved 

Use 

This method sets the value d isplayed in the number range's display area. subject to 
its bound constraints. The va lue will be displayed taking into account its precision. 

C veneer 

extern _kernel_oserror •numberrange set_value unsigned int flags, 
Objectld window, 
Componentld number_range, 
int value 

); 



NumberRange_GetValue 833 

On entry 

RO = flags 
R I = Window object id 
R2 = 8'3'3 

R3 = Gadget component id 

On exit 

RO holds current value 

Use 

Window class 

This method returns the value of the number range. Note that this is the in teger 
form of what is actual ly displayed in the display area (ie. not taking 'precision· into 

account) 

C veneer 

extern _kernel_oserror •numberrange_get_value ( unsigned int flags, 

); 

ObJectid window, 
Componentld number_range, 
int *value 

371 



Number ranges - -- ... -------·-········ ....... •• 

NumberRange_SetBounds 834 

372 

On entry 

RO = flags 
bit 0 set means change the lower bound 
bil I set means change the upper bound 
bit 2 set means change the step size 
bit 3 set means change the precision 

R I =Window object id 
R2 = 834 
R3 = Gadget component id 
R4 = new lower bound 
R5 = new upper bound 
R6 = new step size 
R7 = precision 

On exit 

R I-R9 preserved 

Use 

This method is used to set the lower and upper bounds, the step siLe and the 
precision of the number range. Note that the bounds and step size are expressed in 
terms of an integer before they are transformed using the precision value. 

C veneer 

extern kernel_oserror *numberrange_set bounds ( unsigned int flags , 
Objectld window, 

); 

Componentld number_range, 
int lower_bound, 
int upper_bound, 
int step_size, 
int precision 



Window class 

NumberRange _Get Bounds 835 

On entry 

RO = flags 
bit 0 set means return the lower bound 
bit I scl means return the upper bound 
bit 2 set means return the step size 
bit 3 set means return the precision 

R I = Window ObJeCt id 
R2 = 835 
R3 = Gadget component id 

On exit 

RO = lower bound 
R I = upper bound 
R2 = step size 
R3 = precision 

Use 

This method returns the lower and upper bounds. the step size and the prec1s1on of 

the number range, depending on the setting of the appropriate flags bits. Note that 

the bounds and step size are expressed in terms of an integer before they are 
transformed using the precision va lue. 

C veneer 

extern _kernel_oserror *numberrange_get bounds ( unsigned int flags, 
Objectld window, 
Componentld number_range, 
int *lower_bound, 
int *upper_bound, 
int *step_size, 
int *precision 

); 

373 



Number ranges 

NumberRange _ GetComponents 836 

374 

On entry 

1~0 flags 
bil 0 set means return the numerical field 
bit l set means return the left adjuster 
bit 2 set means return the nght adjuster 
bit 3 set means return the slider 

R I = Window object id 
R2 = 836 
R3 =Gadget component id 

On exit 

RO numeric id 
R I left adjuster id 
R2 = nght adjuster id 
R3 =slider id 

Use 

This method returns the component ids of the gadgets that make up the number 
range depending on which flag b1ts are set. Note that the numeric id will be the 
component id of the Display Field or Writable. dependent on how the Gadget was 
created. 

C veneer 

extern kernel_oserror *numberrange_get components ( unsigned i nt flags, 

); 

Objectld window, 
Componentld number range, 
Componentld •numeric_fiold, 
Cornponentid *left adjuster , 
Cornponentld •right adjuster, 
Cornponentid •slider 



Number range Toolbox events 

NumberRange_ValueChanged (Ox8288d) 

Block 

+ 8 Ox8288d 
+ 16 new va lue shown in d isplay area 

Use 

Window class 

This Toolbox event is raised when the value of the Number Range has changed. 

C data type 

typede f struct 
{ 

ToolboxEve ntHeader hdr ; 
int new_ value; 
NumberRangeValueChangedEvent; 

Number range templates 

Field Size in bytes Type 

lower_bound 4 word 

upper_bound 4 word 

step_size 4 word 

in itial_value 4 word 

precision 4 word 

before 4 word 

after 4 word 

display_length 4 word 

375 



Option buttons 

Option buttons 

376 

An option button IS used to indicate whether a particular option has been chosen 
or not (e.g. case-sensitive in a Find dialogue box). It has two states- on and off: 

i7 Horizontal scroll 
_j Uerticil scroll 

Such a gadget is d isplayed with a sldndard option icon. together with a textual 
label. the textual label can be read and set at run-time using the 
OptionButton_SetLabel and OptionButton_GetLabel methods 

The on/off state of the option button can be set and read using 1 he 
Option Button_SetState/Option Butt on_GetState methods. 

If bit zero of the flags is set. then whenever the sta te of the Option Button changes. 
an Option Button StateChanged event is raised. with the flags word indicating 
wh1ch mouse button was used The client can supply an al ternative Toolbox event 
code in the template description for the Option Button. and can set and read this 
event code at run-time using Lhe Option Button SetEvent and 
OplionButton_GetEvent methods 

Bits in the flags word for Option Button have the following meaning: 

Bit 

0 

2 

Meaning 

generate a OptionButton_StateChanged when user clicks 

when set this means that the Option Button is 'On when 
first created 



Option button methods 

OptionButton_Setlabel192 

On entry 

RO = flags 
R I = Window object id 
R2 = 192 
R'3 = Gadget component id 
R4 = pointer to stnng giving label to use 

On exit 

R I-R9 preserved 

Use 

Window class 

This method sets the label which wil l be used for this option button. 

C veneer 

extern _kernel_oserror *optionbutton_set label ( unsigned int flags, 

); 

Objectld window, 
Componentld option button, 
char *label 

377 



OptiOn buttons 

Option Button_ Getlabel 193 

378 

On entry 

RO- Oags 
R I = Window object id 
R2 = 19'3 
R3 = Gadget component id 
R4 - pointer to buffer 
R5 = size of buffer 

On exit 

R5 = s1ze of buffer required to hold label (if R4 was 01 
else buffer pointed at by R4 holds label 
R5 holds number o f bytes wri tten to buffer 

Use 

This method returns the label which is currently displayed for this option button. 

C veneer 

extern _kernel_oserror •optionbutton get_label ( unsigned int flags, 
Objectld window, 
Componentid option_button, 
char •buffer, 
int buff_size, 
int •nbytes 

); 



Option Button_ SetEvent 194 

On entry 

RO = tl ags 
R I = Window object id 
R2 = 194 
R3 = Gadget component 1d 
R4 = Toolbox event code 

On exit 

R l -R9 preserved 

Use 

Window class 

This method sets the Toolbox event which wil l be raised when the stat <' oil his 

option button changes The rest of the Toolbox event block remains 1 he '>cJme as in 

OptionBullon_StateChanged. 

C veneer 

extern _kernel_oserror •optionbutton_set _event ( unsigned int flags, 
Objectld window, 
componentld option button, 
int event 

); 

379 



Option buNons 

380 

OptionButton_GetEvent 195 

On entry 

RO = flags 
R I = Wmdow object id 
R2 = 195 
R'3 = Gadget component id 

On exit 

RO ho lds Toolbox event code. 

Use 

This method returns the Toolbox event which will be raised when this option 
button's slate changes. 

C veneer 

extern kernel_oserror *optionbutton_get_event ( unsigned int flags, 
Objectid window , 
Componentid option_button, 
int •event 

Option Button_ SetState 196 

On entry 

RO = tlags 
R I =Window object id 
R2 = 196 
R'3 = Gadget component id 
R4 =state (0 =off. I= on) 

On exit 

R I-R9 preserved 

Use 

); 

This method sets the option bull on's state to on or ofF 

C veneer 

extern kernel_oserror •optionbutton set state ( unsigned int flags, 

); 

Objectid window, 
componentid option_button, 
int state 



Option Button_ GetState 197 

On entry 

RO = flags 
R I = Window object id 
R2 = 197 
R3 = Gadget component id 

On exit 

RO = state 

Use 

This method returns the option button's state (0 =off. I =on) 

C veneer 

Window class 

extern kernel_oserror *optionbutton_get_ state ( unsigned int flags, 
Objectld window, 
Componentld option_button, 
int *state 

); 

381 



Option buttons 

Option button Toolbox events 

Option Button_ StateChanged (Ox82882) 

Block 

+R Ox82RR2 
+ I 2 I lags 

bits 0. I and 2 show how the activation was done 
bit 0 set mea no.; Adjust was held down 
bil I reserved 
bit 2 set means Select was held down 

+ 16 new state (0 =>off. I =>on) 

Use 

This Toolbox event is raised when the state of an option button changes and the 
client has not specified an event to be associated with this change 

The returned nags word indicates which mouse button was used to select the 
bullon. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int new_state; 
OptionButtonStateChangedEvent ; 

Option button templates 

382 

Field 

flags 

label 

max label len 

event 

Size in bytes 

4 

4 

4 

4 

Type 

word 

MsgRcference 

word 

word 



Pop-up menus 

Window class 

A pop-up menu gadget will be displayed as a 'menu-arrow' icon, and its associated 

Menu object will be displayed when a mouse button is clicked over this icon: 

Paper I R4 <Gener~DP>--
~ 

pop-up menu icon 

A2 <Generic DP> 
A3 <Generic DP> 

.f A4 <Generic DP> 
Fanfold (Generic DP> 

t 
associated menu object 

The Menu to be d isplayed can be scl and read dynamica lly at run-t ime using the 

PopUp_SetMenu and PopUp_GetMenu methods. It can also be done with ResEd. 

If the appropriate bit is set in the flags word. then a PopUp_AboutToBeShown 
Toolbox event is delivered before the associated pop-up Menu is shown This 
allows the client to build a new Menu object and associate it with the pop-up using 

PopUp_SetMen u 

Note that Menu 'hits' will be reported for the Menu object. and not for the pop-up 

gadget. The Menu will have as its parent, the dia logue box in which the pop-up 

exists. and the pop-up itself as the parent component. Note also that the 
associated pop-up Menu may also have its flags word bit set which requests a 
warning before it is shown; this event wi ll be delivered after the 
PopUp_AboutToBeShown event. 

Bits in the flags word for a pop-up Menu have the fo llowing meaning 

Bit 

0 

Meaning 

warn using PopUp_AboutToBeShown before the associated 
menu is shown. 

383 



Pop-up menus 

Pop-up menu methods 

384 

PopUp_SetMenu 704 

On entry 

RO = flags 
R l = Window object id 
R2 = 704 
R3 = Gadget component id 
R4 = object id of Menu to use 

On exit 

R I· R9 preserved 

Use 

This method sets the Menu ob1ect which will be shown when the pop-up button 1s 
clicked on. 

C veneer 

extern kernel_oserror *popup set_menu ( unsigned int flags, 
Objectid window, 
Componentid popup , 
Objectid menu 

); 



Window class 

PopUp_GetMenu 705 

On entry 

RO = flags 
R I = Window object id 
R2 = 705 
R3 = Gadget component id 

On exit 

RO = Menu ObJeCt id 

Use 

This method returns the object id of the Menu which wi ll be shown when the 
pop-up buLLon is cl icked on. 

C veneer 

extern _kernel_oserror *popup_ get_menu ( unsigned int flags, 
Objectld window, 
Componentld popup, 
Objectld *menu 

); 

385 



Pop-up menus 

Pop-up menu Toolbox events 

PopUp_AboutToBeShown (Ox8288b) 

Block 

+ 8 Ox8288b 
+ 16 object id of Menu object which will be shown 

(note that the ·self' id and component fields will refer to the 
parent Window's object id and the PopUp's component id respectively] 

Use 

This Toolbox event is raised when the user has clicked on a pop-up button The 
Menu is actually shown on the next call to Wimp_Poll 

C data type 

typedef struct 
{ 

Tool boxEventHeader hdr; 
Objectid menu_ id; 

}PopUpAboutToBeShownEvent; 

Pop-up menu templates 

Field 

menu 

386 

Size in bytes 

4 

Type 

Stri ngReference 



Radio buttons 

Window class 

A radio button is used for making a single choice from a set of options. and a 
number of rad io buttons are normally used in a ·group' . The group to which a rad io 
button belongs is determined by the radio button's ·group number' . 

A radio button is displayed as a standard rad io icon, together with a text label. The 

label for a radio button can be set and read using the RadioButton_SetLabel and 
RadioButton GetLabel methods. 

A radio button has two states: ·on· and ·orf Only one radio button in a group is in 
the on state at any one time. When the user cl1cks on a radio button its state is set 

to on 

f1 Quiet beep .) Loud beep 

Whenever the slate of a radio button changes. a RadioButton_StateChanged event 

is raised, with the flags word indicating which mouse button was used, if the 
appropriate bit was set in the flags word for the radio button. requesting that a 
RadioButton_StateChanged event is generated The client can supply an 
alternative Toolbox event code in the template description for the radio button, 
and can set and read this event code at run-time using the RadioButton _SetEven t 
and Rad ioButton_GetEvent methods. 

Bits in the flags word for a rad io button have the fo llowing meaning: 

Bit 

0 

2 

Meaning 

generate a RadioButton StateChanged when user clicks 

when set. means that the radio button is On when first 
created 

387 



Radio buttons 

·--=======~==============~==========----------------------

Radio button methods 

388 

RadioButton_Setlabel384 

On entry 

RO = flags 
Rl =Window object id 
R2 = 384 
R3 = Gadget component id 
R4 = pointer to string giving label to use 

On exit 

R l-R9 preserved 

Use 

This method sets the label which will be used for this radio button 

C veneer 

extern _ kernel_oserror •radiobutton_set label ( unsigned int flags, 

); 

Objectld window, 
Componentld radio button, 
char *label 



Window class 

RadioButton Getlabel 385 

On entry 

RO = fl ags 
R I = Window object id 
R2 = 385 
R3 = Gadget component id 
R4 = pointer to buffer 
R5 = size of buffer 

On exit 

R5 =size of buffer required to hold label (if R4 was 0) 
else buffer pointed at by R4 holds label 
R5 holds number of bytes written to buffer 

Use 

This method returns the label which is currently displayed for this radio button 

C veneer 

extern _kernel oserror •radiobutton_get label ( unsigned int flags, 

); 

Objectld window, 
Componentld radio_button, 
char *buffer, 
int buff_size , 
int •nbytes 

389 



Radio buttons 

----------------- --
RadioButton SetEvent 386 

390 

On entry 

RO = flags 
Rl =Window object id 
R2 = 386 
R3 = Gadget component id 
R4 =Toolbox event code 

On exit 

Rl-R9 preserved 

Use 

This method sets the Toolbox event which wi ll be raised when the state of the radio 
button changes The rest of the Toolbox event block will be the same as for the 
RadioButton_StateChanged Toolbox event. 

C veneer 

extern _kernel_oserror •radiobutton_set_event unsigned int flags, 
Objectld window, 
Componentid radio_button, 
int event 

); 



Window class 

Radio Button GetEvent 387 

On entry 

RO = flags 
Rl =Window object id 
R2 = 387 
R3 = Gadget component id 

On exit 

RO holds Toolbox event code 

Use 

This melhod relurns the Toolbox evcnl which wil l be raised when this radio 

button's stale changes. 

C veneer 

extern _ kernel_oserror •radiobutton_get_event ( unsigned int flags, 
Objectld window, 
Componentld radio button, 
int *event 

); 

391 



Radio buttons 

RadioButton_SetState 388 

392 

On entry 

RO =nags 
R I Window object id 
R2 = 388 
R3 =Gadget component id 
R4 state (0 =>Off. I =>On) 

On exit 

R l-R9 preserved 

Use 

Th is method sets the slate of the radio button to On or Off. When a button which is 
Off is set to On. the button which was previously On is set to Off If by setting the 
radio button to Off. this would result in no button being On in the group. then an 
error is returned . 

C veneer 

extern kernel oserror *radiobutton_set_state unsigned int flags, 

); 

Objectld window, 
Componentld radio_ button, 
int state 



Window class 

RadioButton GetState 389 

On entry 

RO =nags 
R I = Window object id 
R2 = '3R9 
R3 = Gadget component id 

On exit 

RO =state (0 =Off. I =On) 
R I =component id of radio button which is On in the group 

Use 

This method returns the state of the given radio bu t ton. 

The client cdn determine which radio button is On in a group by calling this 

method for any one button in the group, since the component id of the On button 

is also returned (in R I l 

C veneer 

extern _kernel oserror *radiobutton get. state ( unsigned int flags, 
Objectld window, 
Cornponentld radio button, 
int *state, 
Component Id *selected 

); 

393 



Radio buttons 

Radio button Toolbox events 

Radio Button_ StateChanged (Ox82883) 

Block 

+ 8 Ox82883 
+ 12 flags 

bits 0. I and 2 show how the activation was done: 
bit 0 set means Adjust was held down 
bit 1 is reserved 
bit 2 set means Select was held down 

+16 state (0 =Off I= Onl 
+20 component id of the radio button within the group which 

was On before th is stale change 

Use 

This Toolbox event is raised when the state of a radio button changes. and the 
cl ient has not specified an event to be associated with th is change. 

The returned nags word indicates which mouse button was used to select the radio 
button . 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
int state; 
Componentid old on button; 
RadioButtonStateChangedEvent; 

Radio button templates 

394 

Field 

group_number 

label 

max_label_len 

event 

Siz.e In bytes Type 

4 word 

4 MsgRefercnce 

4 word 

4 word 



Sliders 

Window class 

A slider gadget is used to display a 'bar . which may be draggable by the user. 
displayed in a 'well' . Whether the slider is draggable or not is indicated by its flags 
word: 

Uo l UIW ""-~ r-iiiiiiiiiiii(....-......-

By setting a bit in the slider's flags word the client can request that all changes in 

the slider's va lue are returned as the bar is dragged Alternatively it may request to 
receive value changes only when the bar dragg1ng stops (i.e. when the user 
releases the mouse button) Such changes are reported via the 
Slider_ValueChangcd Toolbox event. 

A sl ider is specified as either being ·vertica l' or 'horizontal'. 

A slider has associated with it an initial value. a minimum value. a maximum value. 
and a step size If the slider is draggable (indicated by a flags bit). then when the 
user drags the bar with the mouse. the bar moves a number of pixels 
commensurate with the step size. and the bounding box of the slider 

The maximum and minimum values and the step size can be set and read 
dynamically using the Slider_SetBound/Siider CetBound methods 

A Slider also has associated with it, the colour used for its 'bar'- this is a Desktop 
colour. This is normally specified in the resource file. but can be set and read 
dynamica lly using the Sl ider_SetColour/Siider_CetColour methods 

The current value of the slider can be set and read using the 
Slider_SetValue/Siider_CetValue methods 

Bits in the flags word for a slider have the following meaning. 

Bit 

0 

Meaning 

if set then deliver value changes when user clicks/drags 

if set then deliver value changes constantly whilst dragging 
else just at starllcnd 

'3 

4 

12-15 

16-19 

if set means slider is vertical (default is horizontal) 

if set then bar is draggable/clickable 

the desktop colour of the bar 

the desktop colour or the background 

395 



Sliders 

.. 

Slider methods 

Slider SetValue 576 

396 

On entry 

RO = flags 
R 1 = Window object id 
R2 = 576 
R3 = Gadget component id 
R4 = integer value 

On exit 

R l-R9 preserved 

Use 

This method sets the value of a slider. The slider's bar is changed accordingly 

C veneer 

extern kernel oserror •slider set_value unsigned int flags, 
Objectld window, 
Cornponentld slider, 
int value 

); 



Slider_ GetValue 577 

On entry 

RO =nags 
R I =Window ob1ect id 
R2 577 
R'3 Gadget component id 

On exit 

1~0 = sl ider's value 

Use 

This method returns the va lue of a slider. 

C veneer 

extern kernel oserror •slider_get_value ( unsigned int flags, 
Objectid window, 
Componentld slider, 
int •value 

); 

Window class 

397 



Sliders 

398 

Slider_ SetBound ~ "5l3 

On entry 

1~0 flags 
bit 0 set means set upper bound {'\ 
bit I set means set lower bound ~ 
bit 2 set means set step size 

R 1 = Window obJect id 
R2 = 57R 
R3 = Gadget component id 
R4 = upper bound 11 

tov-Xr 
R5 = lower bound d 
R6 step size 

On exit 

R 1-R9 preserved 

Use 

This method sets 1 he lower bound, upper bound and step size of a slider gadget. 

C veneer 

extern kernel_oserror *slider set_ boun~( unsigned int flags, 
Objectld window, 
Compone ntid slider, 
int upper_bound, ./' 
int lower_bound,'v/ 
int step_size 

); 



Window class 

Slider GetBound 579 

On entry 

RO = flags 
bit 0 set means return upper boundl) 
bit I set means return lower bound~ 
bit 2 set means return step size 

R I = Window object id 
R2 = 579 
R3 = Gadget componenl id 

On exit 

RO = upper bound r"', 
R I = lower bound t::. 
R2 = step size 

Use 

This method returns the lower bound. upper bound and step size of a slider 
gadget. 

C veneer 

extern kernel_oserror *slider_get_bound ( unsigned int flags, 
Objectld window, 
Componentld slider, 

); 

int •upper_bound, ~ 
int *lower_bound, 
int *step_size 

.. 

399 



Sliders 

400 

Slider_SetColour 580 

On entry 

RO = flags 
R I =Window object id 
R2 = 580 
R3 = Gadget component id 
R4- Desktop colour value for bar 
R5 = Desktop colour value for background 

On exit 

R I-R9 preserved 

Use 

This method sets the Desktop colour used in a slider 

C veneer 

extern kernel_oserror *s lider set colour unsigned int f lags, 
Objectld window, 
Componentld slider, 
int bar colour, 
int back colour 

); 



. 
········----~ = 

Slider_ GetColour 581 

On entry 

RO = flags 

==== 

R I = Window object id 

R2 581 
R'~ - Gadget component ici 

On exit 

== 

RO Desktop colour value for bar 

R I = Desktop colour value for background 

Use 

This method returns the Desktop colour used in a slider 

C veneer 

extern _kernel oserror •slider_get colour ( unsigned int flags , 
Objectld window, 
Componentld slider, 
int *bar_colour, 
int *back_colour 

); 

Window class 

401 



Sliders 

Slider Toolbox events 

Slider_ ValueChanged (Ox82886) 

Block 

+ 8 Ox82886 
+ 12 flags: 

bite; 0 -2: 
0 means ·start of drag or just click' 
I means 'drag still in progress· 
2 means 'drag has ended' 

+ 16 newvalueofslider. 

Use 

This Toolbox event is raised when the value of the slider has changed. This may be 
due to an update caused by a user action te.g. dragging the bar) 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
i n t new_value; 
SliderValueChangedEvent; 

Slider templates 

Field 

lower_bound 

upper_bound 

step_size 

initial_ value 

402 

Size in bytes 

4 

4 

4 

4 

Type 

word 

word 

word 

word 



String sets 

Window class 

A string set is a gadget used to display one of an ordered set of text strings 

The string which is shown in the display area is known as the ·selected string'. The 

display area can be either writable (in wh ich case a writable field is used) or not 

writable (in which case a display field is used). 

A string set has a pop-up Menu placed 8OS Units to the right of the display area 

The client supplies a set of available strings. and the Toolbox will display the 

selected string in the string set's d isplay area. The Toolbox will build a Menu on the 

client's behalf and display it when the pop-up menu button is clicked The 

selected string will be shown as ticked tn the Menu. and hits on the Menu will 

result in the string corresponding to the Menu entry text becoming the selected 

string. 

If the string set is writable. then if the user enters a string which is not in the string 

set. no entry would be shown as ticked in an associated pop-up Menu 

The set of available strings can be set at run-time usmg the StringSet_SetAvailable 

method The selected stnng is set and read using the StringSet .. SetSelected and 

StringSet GetSelected methods. 

Whenever the selected string changes in a string set gadget. the client is informed 

of the change via a StnngSet_ ValueChclnged Toolbox event if it hcls set the 

appropriate bit in the gadget's flags word. 

If a string set is writable, it can also have a set of allowable characters which the 

user can type into the display area. This is identical to the ·a· directive used in a 

Wimp icon's validation string. 

The set of allowable characters can be set at run-time using the 

StringSet .. SetAIIowable method. 

In the template description for a writable string set. the client specifies the 

component ids of any writable fields which come before and after it These are 

used to move the caret between writable fields when the user presses the arrow 

and tab keys. A special value of -I indicates that there is no writable field before or 

after this one. 

Bits in the llags word for a string set gadget have the following meanings: 

Bit 

0 

Meaning 

inform client of changes to the selected string using 

St ringSet_ Va luC'Changed 

writable (default is read-only display) 

403 



String sets 

Bit 

3 

4 

5-6 

Meaning 

inform client just before showing the menu 

does not have any display field or writable 

justification 

0 =>left-justified 
I=> right-justified 
2 =>centred 

String set methods 

404 

String Set_ SetAvailable 896 

On entry 

RO = flags 
R I = Window object id 
R2 = 896 
R3 = Gadget component id 
1~4 = pointer to block of contiguous strings wh ich are Lobe used as the 

avai lable set of strings 

On exit 

R I-R9 preserved 

Use 

This method is used to set the avai lable set of strings in a string set. and a pop-up 
menu will be built from them. Strings are separated using a comma(',') a comma 
must be escaped using the\ character. if the client wishes it to appear in the 
display area To get the '\' character itself \\' should be used. 

Note that there is no StringSet_GctAvailable. 

C veneer 

extern _kernel oserror *stringset set available ( unsigned int flags, 

); 

Objectld window, 
Componentid string_set, 
char •strings 



Window class 

StringSet_ SetSelected 898 

On entry 

RO = nags 
bit 0 set means index of string is supplied in R4 

clear means the string itself IS supplied 

R I = Window object id 

R2 = 898 
R3 = Gadget component id 
R4 = pointer to string to be selected or R4 =index of string to be selected 

On exit 

R I-R9 preserved 

Use 

This method sets which string in the string set is selected. The string can either be 

specified as a text strmg or as an index mto the array of available stnngs 

(depending on the setting of bit 0 in the flags word). The selected stnng is shown 

in the string set's display area. and wi ll be ticked in the associated pop-up Menu 

C veneer 

extern kernel_oserror •stringset_set_selected ( unsigned int flags, 
Objectid window, 
Componentid string_set, 
char *string to_select 

); 

405 



String sets 

406 

StringSet_ GetSelected 899 

On entry 

RO = fl ags 
bit 0 set means return index of selected string 

clear means the string Itself is returned 
R I Window obJeCt id 
R2 899 
R3 Gadget component id 
R4 index of selected string or l~tl =pointer to buffer to hold selected string 
R5 . size of buffer 

On exit 

RO index of selected string (if bil 0 of flags word was setJ 
<'ise 

Use 

if R4 was 0 then R5 holds size of buffer required 
else 

buffer pointed at by R4 holds selected stnng 
RS holds number of bytes written to buffer 

Th1s method returns the currently selected string for this string set (i.e the one 
shown in the display areal. This may be either an index into the set of available 
strings or a buffer conta ining the stri ng itself. If the selected string is not in the 
available set (e.g. it has been typed into a writable string set I. then the value -I is 
returned if an index is requested !by setting bit 0 of the flags word for this call l 

C veneer 

extern kernel oserror *stringset get_selected ( unsigned int flags, 
Objectid window, 
Componentld string_set, 

); 



Window class 

StringSet_SetAIIowable 900 

On entry 

RO = flags 
R l =Window object id 
R2 = 900 
R3 = Gadget component id 
R4 = pointer to string giving new set of allowable characters 

On exit 

R l-R9 preserved 

Use 

This method defines the set of allowable characters which can be typed into a 

writable c;tring set. The set is specified in the same way as a Wimp ·a· validation 

string directive (without including the letter ·a'J 

C veneer 

extern _ kernel_oserror •stringset set allowable ( unsigned int flags, 
Objectid window, 
Componentid string set, 
char *allowable 

); 

407 



String sets 

408 

StringSet_ GetComponents 902 

On entry 

RO = flcJgs 
bit 0 set means return the alphanumerical field 
bit I set means return the popup menu 

R I Window object itl 
R2 = 902 
R'3 = Gadget component id 

On exit 

RO dlphanumeric id 
Rl popup id 

Use 

This method returns the component ids of the gadgets that make up the string set 
depending on which flag bib are set Note that the alphanumeric id will be the 
component id of the Display l'ield or Writable, dependent on how the Gadget was 
created 

C veneer 

extern kernel oserror *stringset get_components ( unsigned int flags, 
Objecti d window, 
Componentid string_set , 
Componentid •alphanumeric field , 
Componentid *popup menu 

); 



Wtndow class 

String set Toolbox events 

String Set_ ValueChanged (Ox8288e) 

Block 

+ H Ox82RHe 
+ 12 flags 

if bit 0 IS set. then the text stnng was too long to fit into the event block 

+ 16 text stnng shown in string set's display area (or null string if too long to fit) 

Use 

This Toolbox event is raised when the value of the string set has changed If the text 

string was too long to fit mto the event block. then bit 0 of the flags word 1s set. 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
char 

string(sizeof(ToolboxEvent) - sizeof(ToolboxEventHeader)); 

} StringSetValueChangedEvent; 

StringSet_AboutToBeShown (Ox8288f) 

Block 

·I H Ox82HHf 

Use 

This Toolbox event is raised just before the stnng set's menu 1s to be shown Th1s 

allows the client to make changes Lot he string set just when 1t is used, rather than 

continually 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
StringSetAboutToBeShownEvent; 

409 



String sets 

String set templates 

410 

Field 

string_sel 

in i tial_selected_slring 

max_selected_st ri ng_len 

allowable 

max_allowable 

before 

after 

Size in bytes 

" 
4 

4 

4 

4 

" 
4 

Type 

MsgReference 

MsgReference 

word 

Msgl~efercnce 

word 

word 

word 



Writable fields 

Window class 

The wntable field has a boxed display area in which a text string is displayed and 

can be edited by the user The contents of the display area can be set and read 

using the WritableField_SetValue and WritableField_GetValue methods. The user 

can click the mouse in a writable field and enter its value from the keyboard 

Default screen 110de LJLJ 

Whenever the value in a writable field is changed. the cl ient receives a 
WritableField_ ValueChanged Toolbox event. if it has set the appropn'lte bit in the 

flags word . This will happen when the user presses a key whilst the caret is in it 

Note that it is possible to get d ifferent values from Writable_GetValue on 

subsequent ca ll s. without receiving a ValueChanged Cvent in between. This is 

because the value represents what is actually visible in the gadget 

A writable field can also have a set of allowable characters which the user can type 

into the display area. This is identical to the ·a· directive used in a Wimp icon's 

validation string. 

The set of al lowable characters can be set at run-time using the 

Writablerield_SetAIIowable method To allow all characters. this attribute should 

be NULl. 

In the template description for a writable field. the client specifies the 

component ids of writable fi elds which come 'before' and ·after' it These are used 

to move the caret between writable fields when the user presses the nrrow and tab 

keys A speoal value of -I indicates that there is no writable field before or ·after 

this one. The exact semantics for the keys are as follows 

up-arrow or shift-TAB 

down-arrow or TAB 

:::. move the caret to the writabl e field before 
the one which currently has the caret 

= move the caret to the writable held after the 

one which currently has the caret 

411 



Writable fields 

Bits in the flags word for a writable field have the following mean ing: 

Bit 

0 

2-3 

4 

Meaning 

mform of value changes using WritableField_ ValueChanged 

justification 

0 ~ left-justified 
I ~ right-justified 
2 ~centred 

do not display text. use·- · for each character (password 
support! 

Writable field methods 

412 

WritableField SetValue 512 

On entry 

RO- nags 
R I = Window object id 
R2 = 512 
R3 = Gadget component id 
R4 = pointer to text c,tring to use 

On exit 

R I-R9 preserved 

Use 

This method sets the text string shown in a writable field The change is 
immediately visible if the parent dialogue box is currently on the screen 

C veneer 

extern _kernel oserror *writabl efield set_value unsigned int flags, 
Objcctid window, 
Componcntid writable, 
char •text 

); 



Window class 

WritableField GetValue 513 

On entry 

RO = nags 
R I = Window object id 
R2 = 513 
R'3 = Gadget component id 
R4 =pointer to buffer 
1~ 5 = siLe o f buffer 

On exit 

R5 = SILe of buffer required (if R4 was 01 

Use 

else buffer pointed at by R4 contnins text 

R5 holds number of bytes written ro buffer 

This method returns the text st ri ng shown in a writable field. 

C veneer 

extern kernel oserror •writablefield get_value ( unsigned int flags, 
Objectld window, 

); 

Componentld writable, 
char •buffer, 
int buff size, 
int *nbytes 

413 



Writable fields 

Writablefield _ SetAIIowable 514 

414 

On entry 

RO = flags 
R I = Window object id 
R2 = 514 
1<3 = Gadget component id 
1~4 = pointer to siring giving new set o f allowable characters 

On exit 

R I-R9 preserved 

Use 

This method defines the set of al lowable characters which can be typed into a 
writable field . The set is specified in the same way as a Wimp ·a· validation string 
directive (without mcluding the letter 'a') If the string is NULL. then all characters 
are allowable. 

C veneer 

extern _kernel oserror *writablefield_set _all owable unsigned int flags, 
Objectid window, 
Cornponentid writable, 
char *allowed 

); 



WritableField SetFont 516 

On entry 

RO = fla€s 
R 1 Window object id 
R2 516 
R3 = Gadget component id 
R4 = pointer to font name to use 

R5 = width in 16ths of a point 

R6 = heigh t in 16ths of a point 

On exit 

R 1-R9 preserved 

Use 

Window class 

Th1s method makes the writable field use an anti-aliased font If the font name is 

NULL. then the field wi ll usc system fonl. 

C veneer 

extern _kernel oserror •writablefield set_font unsigned int flags, 
Objectld window, 
Cornponentid writable field , 

); 

char *font_narne, 
int width, 
int height 

415 



Writable ftelds 

Writable field Toolbox events 

Writablefield_ ValueChanged (Ox82885) 

Block 

t X Ox8288'5 
+ 12 nags 

if bit 0 is set. then the text string was too long to fit into the event block 
+ 16.. . text string shown in writable field 

Use 

Th1s Toolbox event IS raised when the value of the writable field has changed The 
text string is copied into the event block. and is nu l-terminated If the text string 
was too long to fit into the event block. then bit 0 of the flags word is set and a nu l l 
string is supplied 

C data type 

typedef struct 
{ 

ToolboxEventHeader hdr; 
char 

string[sizeof(ToolboxEvent)-sizeof(ToolboxEventHeader)); 
} WritableFieldValueChangedEvent; 

Writable field templates 

416 

Field 

text 

max text_len 

allowable 

rnax_allowable len 

before 

c1fter 

Size in bytes 

4 

4 

4 

4 

4 

4 

Type 

MsgReterencc 

word 

MsgReference 

word 

word 

word 



•&a&& I WW** 

17 
··-··-···----···········----- w ······---· 

Res Ed 

R esEd is the tool used to construct and edit Toolbox resource files It provides 

the followmg 

• A display of the object templates present in the resource file (called the 

resource file display), each object template being represented by a named 

icon. You can drag these icons to move and copy object templates between 

resource file displays (and other co-operating applicationsl 

• A selection of pre defined object templates for you to drag into a resource file 

display (this is the standard way to populate a resource file display with object 

templates) 

• A speoalised editor to allow you to edit all the various classes of object 

templates. 

To use this chapter you should have a basic understanding of the Toolbox and 

obJects 

Overview 

The process for creating, editing, and saving a resource file can be summarised as 

follows: 

Start ResEd. 

2 Open a new resource file display 

3 Open an object prototypes display containing pre-defined object templates 

4 Drag the object templates you require from the object prototypes window into 

the resource file display 

5 Double click on an ObJeCt template to open an editing window for it 

6 Edit the ObJect templates. 

7 Save the edited object templates into a resource file 

The following section. Creating and t'ctiting a Too/bo)( resource file, gives a detailed 

description of the above process. 

417 



Creating and editing a Toolbox resource file 

AesEd 
Into P-,,, 
Prototypes 
Oult 

418 

Start ResEd in a similar way to other RISC OS applications. by double-clicking 
on its application icon. It loads and insta l l<, c1n icon on the iconbar. 

2 Open a new resource file display by clicking Select on the RcsEd iconbar icon 
or choosing New from the ResEd menu. A new. untitled resource file display 
wtll appear on the screen. 

3 The object prototypes window allows you to drag any prototype ob1ect 
template into the resource file d isplay. To open the object prototypes window 
click Adjust on the iconba r icon or choose Prototypes ... from the ResEd menu. 

a a rrl ~ LEJ 
CoiOur0boK CotourMenu ocs File Info FontObox 

tE [!ill t:1 ~ ~ 
Font Menu k:onbar l.ltnu PmtObox Proglnlo 

w 00 l91 
Ourt Save A& Sc.~le 

4 Drag one or more object templates from the object prototypes window into the 
resource file display. 

ll>ID< ·-.,; ~ II'OtoMltS 
.~, 

Ia ~ E] ~ LEJ 
~ 

ColourOllo~ CotourMenu ocs File Into FontObox 
t.l lt l Untitled! • Jt.. 

El tJ ~ L1 ~ Ul . 
looOOar ,...,u PriniObox Proglnlo ocs l.lenu 

~ rgj b1 .... 
[jJ 6] • i 

~ \ Save As Scalt TOOibQr Window 
PrintObox W•n<lOW 



ResEd 

5 To edit a Window object template double-click on its icon in the resource file 

display An ed iting window will appear showing the object template in full: 

double click on an 
object template icon ... .. . an editing window for that template is displayed 

~· Wnd<M 0b1ect . - !""' 

\ ' I 

\ , ';;-
\ I 

~ LE1 
Fr~elnfo FontO:m 

!OIXIf ~tit tQ] ~ 
~ '\ PrintDbox Prootnlo 

cx:s \ 
\ 

, l""f" b] u rm 'Ill s~ ~ t ~ • • Toolbor W!ridow 

PrlntDbox W:ooow 
:. 

6 When you have finished editing a window object template. close the ed iting 

window using the close icon (some object templates are displayed for edi ting 

in dialogue boxes. and you close these by clicking on the OK button) 

>; Windowob I 

t.tm.lled boK 

J Aacio 

ti~ Ad! on 

rtJ r:o~SiiiY 
_jOptton 

1 4999 11;. Act~_j ..)Aadoo 
cx:s J Wntable J r: 
lGj 

I Stnng set ll I 4999 '{A 

:ill ~ EJ 
PriniObox 

f SITing set t'l Draggable 

7 When you have finished editing all the object templates you can save them 

using the Save option from the resource file display menu. This leads to a Save 

as dialogue box. which allows you to save some or all of your object templates. 

rr >: Ulblledl • 

m tj 
cx:s Menu 

(iJ blJ 
PrfliObo~ Window 

419 



Starting ResEd 

Starting ResEd 

= = ;g l (M --·---- ---
Start Res Ed in a similar way to other RISC OS applications, by double-clicking on 
its application icon It loads and installs an icon on the iconbar It may also be 
loaded by double-clicking on a file of type Resour ce. 1n which case the file 1s 
loaded and displayed 

Each resource file is displayed in its own resource file display If you load a file 
which is already loaded. that file·s window is raised to the top of the window stack 

Whenever a resource file is loaded. a corresponding Sprites file is sought in the 
same directory. If one is found its sprites are loaded with *iconspriles and used 
when displaying the resources in the resource file display Sprite files may also be 
loaded by dragging to the icon bar icon 

The iconbar icon 

420 

The icon bar icon responds to the mouse in the following ways: 

• clicking Select on the icon opens an empty resource file display 

• clicking Menu on the icon opens the ResCd Menu 

• clicking Adjust on the icon opens the object prototypes window 

Empty resource files are opened with incrementally-unique names (Untitled!, 
Untitled2 etc) Each one is opened in a sl ightly d ifferent position to the last. 

The object prototypes window contains prototype object templates of each class . 
You can drag these into the resource file display in order to populate it with ob)ect 
templates The object prototypes window is fully descnbed in Tf1r obkct prototypes 
window on page 421 . 

The iconbar menu 

Clicking Menu on the 1conbar icon displays the following menu: 

Info displays an Info dialogue box. 

A& sEd 
Info ~ 

N&w 
Prototypes 
Clult 

New opens an empty, untitled resource file display 

Prototypes ... opens the object prototypes window (described on page 4211. 

Quit exits the program. 



Res Ed 

The object prototypes window 

Resource hie displays may be populated with object templates by dragging them 

in from the object prototypes window The templates are named <Jfter the classes 

they represent You can copy them into your resource file display by drag and drop, 

rename them as desired. and then view and edit them by double clicking on their 

icons. 

I[,J,;.J ObJect prototypes --p 

a ~ EEl ~ lFj 
ColourDbo• ColourMenu DCS Fie Info FontDbox 

[E) ~ u [!] ~ 
Font Menu loonbar Menu PrintDbox Proglnfo 

I' 

CZJ 00 [gJ 6l 6] ~ 
<:Nit Save As Scale Tool bar Wind Oil m 

The following object templates are available: 

Colour Dbox Colour menu DCS Dbox File Info Dbox 

F-ont Dbox Font menu lconbar icon Menu 

Print Dbox Prog Into Dbox Quit Dbox Save As Dbox 

Scale Dbox Tool bar Wtndow 

To open or raise the object prototypes wmdow. choose Prototypes ... from the 

icon bar menu or click Ad just on the icon bar icon The object prototypes window is 

very similar to an ordinary resource file display, but attempts to move. rename. 

modify or delete object templates within it are ignored It is not po<;<;ible to edit an 

object template within the object prototypes window. instead you must hrst drag 

the object template into a resource hie display. The object prototypes window 

does not have a menu and only Ctri-Z CJnd Ctri-A kcyboCJrd short-cuts are available 

421 



The resource ftfe display 

The resource file display 

422 

The resource file display is Filer-like. in that it contains a grid of icons. one per 
object template held in the resource file. The sprite associated with each icon is a 
pictoria l clue as to the type of object template that icon represents; each class of 
object template has its own sprite The text associated with each icon is the name 
ass1gned to that object template 

IPIXol lkltltled1 • 

w ~ [j 
ocs File Info Menu 

~ [gJ 6] 
PnotObox Scale WindOW 

Icons may be selected. deselected and dragged from one resource file display to 
another (as in the Filer). 

Editing an object template 

To edit an object template. double-click on its icon A window will then open for 
that object template Some common features of editing object templates are 
described in Editing object templates in qmeral on page 426 

For details of editing the individual types of object templates see 

• Editing the Menu class on page 429 

• f:..diting a Window o{Jjecl template and gadgets on page 438 

• Edlling other classi.'S on page 472. 

Copying object templates 

You can copy object templates between resource file displays by dragging their 
icons You can also make a copy of an object template within one resource file 
display by using Shift-Drag Select. 

Moving object templates 

You can move an object template from one resource file display to another using 
Sh1ft-Drag Select This will remove the object template from the source window 

Note. Copy or move operation~ that would result in duplicate names are resolved 
by the new object templates· names being automatica lly d isambiguated by the 
addition of a unique numeric suffix (you will be warned if this happens). 



ResEd 

If you drag a seleclion into a different application. the result is the exporting of a 

resource lile containing just the selected object templates. This file is named 

Selection. 

If the resource file display is the target of a drag and drop or DataSave interaction 

from another application. it checks the file type and rejects the file if not of type 

Resource or Text (for more information on text files see Exporting and importing 

messages on page 484). Resource files are imported into the resource fi le display 

and object template names are disambigua ted if necessary, as described above. 

Importing a file does not alter the filename of the destination resource file display 

the name of the incoming file is simply ignored. 

The resource file display menu 

Clicking Menu on the resource file display shows the ResEd menu: 

'·· ResEd 

File "' 
Edot .,.. 

Prototypes .•. 

The File menu 

Info leads to a rile In fo dialogue box. 

Save leads to a Save as dialogue box. which includes a Selection button for saving 

only the selected object templates 

Export messages leads to a Save as dialogue box allowing you to produce a text 

file containing all the user-visible messages for the file (or selection . if Save 

selection is set). The messages may then be ed ited (typically, translated into a 

different language) and then re-imported by dropping the rile back into the 

resource file display 

For more mformation about exporting and importing messages see Exporting and 

importing messages on page 484. 

423 



The resource file display 

Edit 
Copy t-

Rename t-

Delate 'K 
Object nags '0. 

Select all •A 
Clear selecbOn •z 

424 

The Edit menu 

Copy (which is sh<Jded unless only one object template is selectedlleads to the 
following d1alogue box 

I NewName: I 
~r~ 

The name field is filled in with the name of the selected object template To make 
a copy of the object template 1n the same file. alter the name and clld. Copy 

Rename lead'> to a dialogue box with a writable icon lor entering a new name for 
the selected obJect template and d Rename button to accept the change 

Rename to 
C NewNamel 

.£!.~~ 
The writable icon IS initially filled in with the current name When Rename 1s 
pressed, the ob1ect template is renamed unless a name clash would occur. 1n which 
case an error message is issued instead. 

You can also change an object template's name by clicking Alt-Select inside 
the icon's name. editing the string and pressing Return 

:ji] iiC J l)lbtJedl • 
.-

I 

u L9J ~ 

i Me~u Scale 

click Alt-select inside the icon's name ... .. ed1t the name and press Return 

Pressmg Escape or clicking outside the writable icon cancels the rename. 

Delete deletes all the selected object templates 

Object flags allows you to edit the settings of the object nags for the selected 
object templates . See The Object f/aqs dialogue box on page 425 for more details. 

Select all selects all the object templates in a resource hie display 

Clear selection deselects all the selected object templates . 

Prototypes ... 

This option displays the object prototypes window 



ResEd 

The Object flags dialogue box 

You can edit most object template data by double-clicking on its icon There is. 

however. a 32-bit flags field in the object header. These flags are applicable to all 

classes of object, and you may view the flags of an individual object template by 

selecting it and entering the Object flags dialogue box. It has the following 

appearance 

Shared object 

.J Yes (i' No 

OK 

To summarise. the flags are: 

Bit 

0 

2 

3 

M eaning when set 

create object when resource file is loaded 

show object as soon as it is created 

object is shared 

mark this as an Ancestor object 

If there is one object template selected, or multiple object templates which have 

identica l flag values. the buttons will be set to Yes or No as appropriate. If there are 

multiple selected object templates with d ifferent flag settings. then the flags which 

differ will be set to As Is. indicating to the user that the flag value differs across the 

object templates. 

You may ad just the settings as required , and on pressing OK the new flag values 

will be applied to the selected object templates. Any flags which are set to As Is 

will not be applied to the selected object templates. each object template will 

retain its existing value for those flags So. for example. you could change a 

number of object templates to be 'Shared' without altering their other flags. 

425 



Editing object templates in general 

Editing object templates in general 

426 

Once you have dragged an object template from the Objects prototype window 
into the resource file display you can edit it by double-clicking on its icon You can 
then edit a properties box for that object template specifymg how you want it to 
appear and behave All the object properties boxes share the following features 

Length fields 

Help messages 

The Window and Menu object templates. and all gadget templates. mclude the 
facility to specify a help message: 

_jHelp text LengthO /~ 

If you switch on the Help text option you are then able to enter a help message 
into the associated message field 

[7 Help text .___ ___ He~lp,;,-...,mes,....,.....sa..::.ge_t_ex-'-~ _ _,I Leng1h 0 /.). 
By default an asterisk is displayed in the Length field. This asterisk ensures that. 
whatever string you enter into the message field. the exact length of that string 
(including its terminator) will be passed to the Toolbox 

Alternatively you can manually change the size of the Length field to be greater 
than the length of the help message itself This is useful if you wish to alter the 
help message dt run-time. If you type a number into the Length field directly, then. 
when you click on OK. the size of the Length field will be set to the length of the 
string you entered ~ I (unless the number you entered is greater than the length of 
the string, in which case the number will remain as you entered it). 

The following are some points to bear in mind when entering help text 

• If you sw1tch off the Help text opt1on then any help message you entered in 
the associated message field will be removed. 

• If you sw itch on the Help text option, but leave the associated message field 
empty, then the Interactive help window will go blank when the user moves the 
pointer over the relevant object 

Other length fields 

Some other options in object properties boxes behave in a similar manner to the 
above; for example. editing the Titles of objects 



Res Ed 

The selection model 

ResEd supports some new selection techniques to improve the way you can 

manipulate objects and object templates. 

Selection highlighting 

ResEd provides two levels of selection with two corresponding types of highlight 

• a full highlight for a selection within a window that has the input focus 

• a partial highlight for the previous selection in a deselected window. 

For example. when you select one or more object templates in the object 

prototypes window and drag them to a resource file display, the original object 

templates remain partially highlighted This allows you to return lo the object 

prototypes window and, by clicking on any of the object templates wi th in the 

origina l selection , automatica lly select all of the original selection . for example: 

-.. 

a 
ColourObo• 

rE 
FontMeou 

• EJ 
Il l 

Quit 

\ 
object templates fully highlighted 
in resource file display 

.. -. Oblect lln)fDiyl)8$ 

~ m • LEJ 
CoiOurMenu ocs Ale Info FontObox 

4 

• 18 /LMI r1l 
loonbar \. Menu I PmtObOx Proglnlo 

b] bJl ~ ~\· I SaveAs Scale j Toolbw W111dow 

'\ ' i 
object temp.lates remain partially 
highlighted in previous window 

.. 
!.:.. 

~ 

You can use th is additional selection technique throughout ResEd: for example, 

you can select menu entries when ed iting a Menu object template. and sti ll reta in 

them as a selection if you temporarily need to edit a different window 

!Gii"l Menu OoodleMenu -

1!£ 

Pen "' 
Sty1es .. 
Group IIF3 

v. 
r 

Window has input focus two menu entries selected 
within the window 

Pen "' 
StytH .. ~ 

Group IIF3 

menu entries still selected 
when the window no longer 
hastheinputfocus 

427 



Editing object templates in general 

428 

Box selection 

if you use the mouse to drag a Select box around a group of object templates. you 
can control whether all t he objects (even those partly) within the box are selected. 
or just the ones wholly within the box 

il; 
.•. i 

-- -•-•-
Select box 

rill 
Scale 

dragging a box around a group 
of object templates will select any 
object template partly or wholly 
within the Select box 

dragging a box around a group 
of object templates while holding 
down Shift will select only objects 
wholly within the Select box 

Groups of gadgets (in the Window editor) o r groups of menu entries (in the Menu 
editor) can be selected in a similar way. 

Cancel and OK 

Cancel 

Clicki ng Cancel (or pressing Escape) wi ll close the dia logue box without making 
any changes 

Clicking Ad just Cancel (or pressing Shift-Escape) will leave the dialogue box 
d isplayed but will remove any changes made since opening the box. 

OK 

Clicking OK (or pressing Return ) wi ll close the dia logue box and include any 
changes in the object template 

Clicking Adjust OK (or pressing Shift-Return) will leave the d ialogue box displayed 
and update all changes made since open ing the box (e.g. if you increased the 
contents of a help message fi eld. t he Length field would then be increased 
automatica lly). 



ResEd 

Editing the Menu class 

Edt 

Double-clicking on a menu object template in the resource file display will display 

a Menu editing window with the following appearance: 

T:i! ] ~ Menu: Menu Pf 

1!11111·~- ;.., 
I Menu Entry J ~ 

• :lL 
~ I~ 

click Menu inside the editing window to 
display the top-level menu 

double-click on the menu title to display the 
Menu properties dialogue for the menu 

double-click on a menu entry to open the 
Menu entry properties dialogue for that entry 

The editing window displays the menu as it will appear when displayed by the 

Toolbox 

The Menu editor 

Cl icking Menu inside the editing window displays the rollowing menu: 

Eat .,.. 

Properties "M 

Menu entnes ... 

Edit leads to the Edit submenu 

Delete deletes the selected menu entries. 

Properties ... opens the Menu en I ry properties dialogue box ror 1 he selected 

menu entry (see Editing a Menu entry on page 430) 

Select all selects all the menu entries in the menu 

Clear selection deselects all the menu entries in the menu 

Properties ... displays the Menu properties dialogue box. described in Editing thl' 

Menu on page 432. 

Menu entries ... displays the Menu entries window. described in lnserlilla a nt>u• 

Menu l'tttry on page 433 

429 



Editing the Menu class 

430 

Editing a Menu entry 

The Menu entry properties dialogue box 

This is a dialogue box for viewing and editing the characteristics or a menu entry 
You can open it by selecting a menu entry in the editing window and then selecting 
Properties ... from the Edit menu (or by double-cl icking on a menu entry I 

nent &0 in menu Menu 

_]Has submenu _]Faded 

Length O I~ 

Deliver event 

jShow o!Jtect 

Submenu action 

Deliver event Default • None Other 

c ""?L~ . 

Cancel II 01< 

Component ID is a text field containing the hexadecimal component identifier of 
this menu entry. Norma lly there is no need for you to edit this field as the 
component identifiers are automatica lly assigned. If you wish to assign identifiers 
yourself. you must ensure that they are unique within each menu. 

Note: Clicking OK while any component ids are the same will elicit an error 
message and the dialogue box will stay open until this is sorted out 

Text and Sprite determine the contents of the menu entry. 

If you select Text, you can then enter the text and keyboard short-cut to be 
displayed. and the maximum permissible length for the entry's text to be set to 
at run-time 

If you want to enter a keyboard short-cut into the Key field manually, you may 
have to use !Chars to display short-cuts such as Shift F3. It is more advisable 
to create a keyboard short-cut first (in the Keyboards shortcut dialogue box). 
and then drag this short-cut to the menu entry properties d ialogue box. 
Th is process is fu lly described in Using a keyboard sfwrt-cut entry La 'fill in' a menu 
entry on page 446. 



Res Ed 

If you select Sprite. you may then enter the name of a sprite to be displayed 

Ticked displays a tick next to this entry 

Has Submenu controls whether the entry has a submenu arrow. 

Faded displays this entry in grey: when the menu is shown by an application the 

entry will be unselectable 

The writable field next to Help text allows you to supply a suitable interactive help 

string for the Toolbox to send to ! Help when the mouse pointer is over this menu. 

If Help text is switched off. the Toolbox will instead supply any help text 

associated with the menu as a whole- see Editing tflt> Menu on page 432) 

The Click action section specifies what happens when the user selects this menu 

entry. The first thing that will happen is that the application will receive an event 

Selecting Default specifies that you will receive the defau lt event 

( Menu_Selection). 

Selecttng Other allows you to receive whichever event you specify in the 

associated writable field (the event can be entered as a hex number. e.g. 

'&34'5', or as a decimal number) . 

After the event has been delivered. you can specify whether an object will be shown 

automatically You can do this by turning on the Show object option and entering 

the name of the object to be shown in the associated writable field 

The Submenu action section is very similar. and specifies what should happen 

when the user traverses the submenu arrow of thi s ent ry. (The section is faded 

unless the Has Submenu option has been selected ) The text fields have the same 

meanmgs as for menu selection. The default event in this case is Menu_Submenu 

The two Show object name fields may be filled in by dragging an object template's 

icon from the resource fi le display into the appropriate text entry field (or onto the 

corresponding option icon if the text entry field is shaded). 

431 



Editing the Menu class 

432 

Editing the Menu 

The Menu properties dialogue box 

This is a dialogue box for editing the top-level characteristics of a menu. It is 
opened from the Ed it menu or by double-clicking on the menu's title 

Menu r rties Menu 

New Ment4 I Lengtl1 0 f j. 
Deliver event before showing 

(i None ...) Default .) Other 

OelivEK e\18nt when hidden 

(i None .) Default 

_jHelptext LengthO I~ 
Cancel lj OK j 

The Title field contains the text shown at the head of the menu 

Note: If a Menu with no title is shown, the Wimp will not display a title bar. This is 
not Style Guide compliant. but the Menu editor allows this so that you can set a 
title at run-time 

Deliver event before showing controls the following: 

• None specifies that no even t should be returned. 

• Default speci fies that the default event (Menu_AboutTobeShown) should 
be returned immediately before showing the window 

• Other allows you to specify a different event to be delivered to the 
application. The associated field displays the event code in hex; you may 
enter event codes in either decimal or hex (by prefixing with'&'). 

Deliver event when hidden controls the fol lowing 

• None specifies that no event should be returned. 

• Default specifies that the default event (Menu_HasBeenHidden) shou ld 
be returned immediately after the window is hidden. 

• Other allows you to specify a different event to be delivered to the 
application The associated field displays the event code in hex. you may 
enter event codes in either decimal or hex (by prefixing with '&') 

The writable field next to Help text allows you to supply a su itable interactive help 
string for the Toolbox to send to !Help when the mouse pointer is over this menu 
(if Help text is switched off. the Toolbox will not reply to such HelpRequest 
messages) 



ResEd 

Inserting a new Menu entry 

You can insert new menu entries into the menu using the Menu entries window 

The Menu entries window is opened by selecting Menu entries ... from the 

top-level menu 

The Menu entries window contains a dotted line separator and three prototype 

menu entries: 

• a basic menu entry 

• a menu entry with a submenu arrow 

• a t1cked menu entry 

The menu entries in the Menu entries window may be dragged with the mouse and 

dropped over the menu area to insert new menu entries and separators. The new 

entry is placed between two existing entries accord ing to the vertica l position of 

the drop point. If the mouse pointer is within the menu's title. it is inserted after 

the title: if it is dropped after the final entry it is appended at the bottom. 

Manipulating menu entries 

Copying menu entries 

You can copy a menu entry from one part of a menu to another using Shift-Drag 

Select. The insertion point is determined as for inserting a new item. New menu 

entries are automatically assigned unique component ids within the menu 

You can also use Drag Select to copy menu entries between editing windows 

Moving menu entries between different editing windows 

You can move menu entries between different Menu editing windows using 

Shift-Drag Select. The selected entries are deleted from the source window 

Re-ordering menu entries 

You can re-order menu entries using Drag Select. The insertion point is determined 

as for inserting a new item. 

Note: If a copy or move operation results in a menu containing two entries with the 

same component id. the ed itor forces the newly inserted one to have a unique id 

433 



Example menu 

Example menu 
This example shows you how you might create the three menu entries in the 
following typica l menu: 

1101 '<I Menu· DoodleMenu Ci 

.,..... 
Pen ... 
Styles 
Group "'F3 

~ 
.... I"';Ei 

Creating a submenu 

434 

The first menu entry in the above example (Pen) has an associated submenu. so 
the Menu entry properties box could be filled in as follows: 

nent &0 Ill menu Doodle Menu 

Component 10 I &0 

Contents 

(i Text Pen I KeyD Length[] I~ 
...) Sprite 

_jTid<ed 17 Has submenu _j Faded 

jHelptext Length[] /~ 

Cl1ck action 

Deliver event ~ Default ...) Other 

ShOw as lranslent 

Submenu acbon 

Deliver e..ent J Default <i None ....) Other 

rv Show oqect I PenMenu! I 

--~~~ ,_OK_ j 

The minimum sections to edit in the Menu entry properties box are 

• Text - give the menu entry a unique name (e g. 'Pen'). 

• Has submenu -switch it on 

• Show object (in the Submenu action area)- switch it on and specify the name 
of the object to show if the user traverses the submenu arrow (e g Pen Menu') 

You would then create another menu object template and give it the name 
'Pen Menu This object would be d isplayed when the user traverses the submenu 
arrow. 



Displaying a dialogue box 

The second menu entry in the above example (Styles ... ) has an associated 

dialogue box. so the Menu entry properties box could be filled in as rollows: 

Contents 

(i" Text 

...)Spnte 

_j Td<ed 

_.:Help text 

CI1Ck action 

nent & 1 in menu OoodeMenu 

&1 

Styles I I KeyO Length[] I}:. 

_j Has submenu _j Fadea 

length[] I~ 

Deliver event (i' Default ,)Other 

17 Show object I StylesBox _j Show as transient 

Submenu acbon 

Default • None Other 

Cancel II OK 

ResEd 

The minimum sections to edit in the Menu ent ry properties box are as fol lows: 

• Text - give lhc menu entry a unique name (e.g. 'Styles'). In thi s particu lar 
example the ellipsis ( ... )signifies to the user that the dialogue box 1 hat wi II be 
displayed is a persistent dialogue box (so 1 he Show as transient option 
should not be selected) 

• Show obJect ( m the Click action areal -switch it on and specify the name of 
the object to c;how if the user clicks on this entry (e g. 'StylesBox') 

You would then create a window object template for the dialogue box and give 1t 

the name 'StylesBox' This object would be displayed when the user clicks on 

Styles ... 

Note: Any object (e.g. submenus and dia logue boxes) can also be built 
dynamically at run-lime by the client application (see Attaching a submenu 
dynamically on page 171 l 

435 



Example menu 

Creating a keyboard short-cut 

436 

The third menu entry in the above example (Group fi F3 ) returns an event if the 
user clicks on the entry or uses a keyboard short-cut (Shift F31. this would allow the 
chent application to perform an appropriate action on receipt of the event 

Creating this keyboard short-cut requ ires two stages: 

• defining the keyboard short-cut within the window object template i tself. 

• dragging this keyboard short-cut to the Menu entry properties box 

Defining the keyboard short-cut 

The first stage IS to define the keyboard short-cut within the window obJeCt 
template itself. For example: 

li'i l Keyboard shOftcuts: Window 
Key &193 (llF3) ->Event &345 ) 

f\: 

Key~3 ' Key oode I &193 I 
(7 Deliver event I &345] I 
_j ShaN oqect Trantucnt 

t.,pdate I Delete I 
Cancel J j OK I 

Click Select on the Key field and press Shift F3; Lhe corresponding code (& 1931 
is automatica lly entered in to the Key code field 

2 Specify the event code in the Deliver event box (c g. '&345'). 

3 Click on Update to add the new keyboard short-cut to the scrolling list 

4 Click on OK to add the new keyboard short-cut to the Window object template. 

For more information on keyboard short-cuts see Keyboard short-atls on page 445. 



Res Ed 

Filling In the Menu entry properties box 

The next 5tage is to open the third menu entry and give it a unique name (i e 

'G roup'). and then drag the keyboard short-cut toil. This will automatically fill in 

• the Key short-cut (e.g. Shift F3) in the Key fie ld 

• the event code to return if the user clicks on this entry (e.g. '&345'1: 

Group, ~ Kevi 11F31 Length O /.l 

_j Has submenu 

~ Submenu action 

Deltver event 

Interactive help for menu entries 

~ Olher I &345 

The Help window gives you information about the Menu window and also displays 

the component id of an individual menu entry: 

fi'JMI Menu DoocleMenu'l5 

If the pointer is over a menu entry ·':I j 

" 
the component id of that entry will ~ 

Pen ... 
be displayed in the help window ~ ...... Styles ... 

I 
' Group 1lF3 

\': 

1~ 1 1!"-;B 

r 1 -1 "'*ractMt help :: r ' ~ ., ·; ~- d 

This is a menu entry w1th 10 • &2. 

Dl'ag SELECT to move selection. 
Dl'ag llSELECT to copy selection. 
OICk ADJUST to deselect ~ 
Double-elick SELECT to edit ~parties IT! 

437 



Editing a Wmdow object template and gadgets 

Editing a Window object template and gadgets 

Double-clicking on a window object template in the resource file display will 
display an editing window. This window displays the window ob1ect template as it 
wil l appear (complete with gadgets) when displayed by the Toolbox It has the 
following appearance 

..... 

double-click Select on 
the window background 
to display the Main 
properties dialogue box 

The Window menu 

Info 

Edot 
Main properbN 'W 
Olher proper11M 

Colours 
Extent. •E 
Key shorlculll OK 
Toolbars •r 

,.. 
,.. 

God ra ~ 
GadgeiS 'G 

aose •F2 

438 

Info leads to an Info box showing the object template's name. 

Edit leads to the Edit submenu tor the selected gadget(s) 
See Tfte Edit submmu on page 451 

Main properties ... opens the Mam window properties dialogue box. This box 
allows you to specify those properties. 
See The Main properties dialogue box on page 4'39 for more details . 

Other properties ... opens the Other window properties dialogue box This box 
allows you to edit those properties of a window object template that you would 
normally only specify once. 
See Tlie Otf1er propPrtii'S dialogue box on page 441 for more deta i Is 

Colours ... opens the Window Colours dialogue box 
See Windou• Colours on page 444 for more details 

Extent ... opens the Window Extent dialogue box. 
See Window Extent on page 444 for more detai ls. 

Key shortcuts ... opens the Keyboard short-cuts dialogue box This allows you to 
define keyboard short-cuts for use inside the window 
See Ke~Jboard sliort-cuts on page 445 for more details. 

Toolbars ... allows you to attach tool bar object templates to this window. See 
Toolbar object template on page 455 tor more details 



Res Ed 

Grid leads to the Grid dialogue box. Th is allows you to display an optional grid of 

alignment points to ass1st in the uniform placement of gadgets 

See Tfre Grid on page 447 for more detai ls 

Gadgets ... opens. or brings to the front. the gadgets window. This is a selection of 

gadgets which may be dragged into a Window object template to populate it with 

gadgets See Tfte gadgets u•i11dow on page 448 for more details. 

Close closes the window and incorporates any changes. 

The Main properties dialogue box 

lnlo 

Edt 

Wfldow 

Other properties 
ColOurs 
EJC!IIrt 
Key Sho11Cuts 

Toolbars 
Gnd 

'E 
K 

•T 
rG t 

::~·: ...... :: J 

This dialogue box allows you to edit the main properties of a window object 

template The name of the window ob1ect template that the dialogue box refers to 

is d isplayed in the tit lebar. Choose Main properties ... from the Window menu or 

double-click Select on the window background to d isplay this box: 

Just1fy lltle J Left (i' Centre .,) R1ght j 
17 Back 17 Cl~e 17 Toggle 17 Hsaoll rv-· Vscroll 17 Size 

SI10it menu 

Default 1nput focus 

(i None .,) lnvisii:Jie caret 

17 Autoopen 17 Auto-close 

Deliver event before show'w'lg 

,_) Default (i None 

Deliver event when hidden 

J Default (i' None 

_jHelptext 

.,) In gadget 

) Other 

Lengtho 1..1 

Cancel II OK I 

439 



Editing a Window object template and gadgets 

440 

Icons controls the following features 

loons 

f7 Title 1 window~ 1 LeogthD 1 ~ 
1 Justify title J Left (i' Centre .J Right 

17 Back 17 Close 17 Toggle jv Hscroll f7 Vscroll [7 Stze 

Title allows you to enter the title of the window within the title bar. If you 
switch this option off the window will not have a tit le bar. 
Note: The window title is always a vertically-centred, indirected text icon in 
system font; there is no facility to set a validation string 

Justify title allows you to specify the justification of the title within the t1tle 
bar. 

The Back. Close, Toggle. Hscroll . Vscroll and Size option buttons control 
whether the Back icon. Close icon. Toggle Size icon. Horizontal scroll bar 
Vertical scroll bar and Adjust size icons are displayed. 

Show Menu is an option button that controls whether the window has a menu 
attached to it If th is is switched on. the associated writable fi eld is unshaded for 
the menu objecttemplate's name to be entered Alternatively the field can be filled 
in by dropping a menu object template onto it (or onto the corresponding option 
icon if the field itself IS shaded). 

Default Input focus allows you to set the characteristics of the default lnput focus 
for the window. 

J Invisible caret l) In gadget 

None specifies that the window has no input focus and no caret 
Invisible caret specifies that the window has input focus. but no caret is 
displayed until the user clicks in an appropriate area. 
In gadget specifies that the window has input focus and the caret is displayed 
inside a gadget. You can enter the component id of the gadget in the ad joining 
field or drag a gadget to the field (or to the corresponding radio button if the 
field itself is shaded). 

Auto-open controls whether the Window module automatically (re-Jopens the 
window when a Wimp_OpenWindowRequest event is received. 

Auto-close controls whether the Window module automatica lly closes the window 
when a Wimp_CioseWindowRequest event is received 



Colours 
Exttrc ·e 
Key Sllortwts <>I( 

Tool bars •T 

Gild no ,.. 

Gadgets. 

Oose 'F2 

ResEd 

Deliver event before showing controb the following: 

• Default specifies that the defdult event (Window_AboutTobeShown) 

should be returned immediately before showing the window. 

• None specifies that no event should be returned 

• Other allows you to specify d different event to be delivered to the 

application. The associated field displays the event code in hex: you may 

enter event codes in either decimal or hex (by prefixing with ·&'). 

Deliver event when hidden controls the following 

• Default specifies that the default event (Window_HasBeenHidden) 

should be returned immediately after the window is hidden 

• None specifies that no event should be returned 

• Other allows you to specify a d itferent event to be delivered to the 

application The associated field d isplays the event code in hex; you rndy 

enter event codes in either decimal or hex (by prefixing with '&'l 

The writable field next to Help text allows you to supply a suitable interactive help 

stnng for the Toolbox to send to !Help when the mouse pointer ts over this window 

(if Help text is switched off. the Toolbox will not reply to such HelpRequest 

messages). 

The above controls arc described in the Window Manager chapter in Volume '3 of 1 he 

J~ISC OS 3 Programm!'r's Re[erenc!' Manual. clnd in the chapter Window class on 

page 287 

The Other properties dialogue box 

This d ialogue box al lows you to ed it those properties of a window object templare 

that you wou ld normal ly only specify once. You can on ly display this box by 

choosing Other properties ... from the Window menu· 

Flags 

_j Pane l7 Moveable _.Backdrop _j Allow Olf ween 

_jHot keys l7 Auto·redraw _jReal oolours _jForce on-l>Creen 

Button type r-o--1Jl _j Extendable X _jExtendable V 

User SO'OI 

(i' Off J Auto-repeat ) De bounced 

Sprite area 

li W1mp .) Chent 

POinter 

_jShape Length 0 { 11 Hotspot X J V ,. 

Cancel I r. OK 

441 



Editing a Window object template and gadgets 

442 

Flags controls the following features : 

Flags 

..J Pane p Moveable _j Backdrop _jAIIow off-screen 

_j Hot keys P" Auto-redraw _j Real oolour6 _j Force on-screen 

Pane specifics that the window is a pane 

Moveable determines if the window is moveable i.e it can be dragged by the 
user 

Backdrop, if selected. does not allow any other windows to be opened below 
this one 

Allow offscreen allows the window to be opened or dragged outs ide the 
screen drea (regardless of the Configure option settings). 

Hot keys al lows events to be generated for hot keys 

Auto~redraw specifies that the window can be redrawn entirely by the Wimp, 
1.e there are no user graph ics in the work area 

Real colours spec1fies that the window colours should be treated as GCOL 
numbers rnstead of standard Wimp colours . 

Force on~screen forces the window to stay on screen. 

Note: Old-style window flags are not supported (i.e bit 31 of the window flags word 
is always set) 

Button type determines how the Wimp will deal with mouse movements and cl icks 
over the window's background There are 16 possible types which can be selected 
from the Pop-up menu (See the RISC OS 3 Programmer's Referencl' Manual entry for 
Wimp Createlcon on page 3·96 for more details) 

Extendable X ignores the right-hand extent if the Adjust size icon of the window is 
dragged 

Extendable V ignores the lower extent if the Ad just size icon of the window is 
dragged. 

User scroll controls the Scroii_Requesl event 

User scroll 

(i'·· Off ..) Auto repeat _) Debounced 

Off does not return a Scroii_Rcquest event 



Res Ed 

Autorepeat returns a Scroii_Request event when a mouse button is clicked on 

one of the arrow icons (with auto-repeat) or in the outer scroll bar region 1no 

auto-repeat). 

Debounced returns a Scroii_Request even t when a mouse button is cl icked on 

one of the arrow icons (but with no au to-repeat) or in the outer scrol l bar 

region (no auto-repeat). 

Sprite area controls whether sprites are located in the client area or the Wimp 

sprite area 

Shape is an option button that controls whether the mouse pointer should change 
shape when it is over the window. If this is switched on. the associated writable 

fields are unshaded for the pointer sprite's name. its length. and the coordinates of 

its hotspot to be entered. 

Manipulating the window 

You can use the icons around the window object template to manipulate the 

window's size. position and scroll offsets This information is saved with the 

template. The stacking position is not saved. all templates are saved with a 
stacking pOSitiOn of -I (top of stack] unless the window's Backdrop nag is set. in 

which case the position is - 2 (bottom of the stack! 

Re-sizing the window 

You can resize windows which have no scrollbar using Ctri-Shift-Drag Adjust The 

window can on ly be res ized subject to th<' constraints or its cu rrent work area 

extent. 

Moving the window 

You can move w1ndows which have no title bar using Ctri-Shift-Drag Select 

Closing the window 

The window's Close icon. if present. may be used to close the window The window 

may also be closed by using the Close menu option. o r by the keyboard short-cut 

Ctri-F2. 

443 



Editing a Window object template and gadgets 

Window Colours 

Window 
Info ,.. 
Edt ,.. 
Main propetlles •w 
Olher propet1Jes 

Extent ... •E 
Key Shortcuts ., tK 
TOOl bars,. •r 
Gild no 

~ --- ----- ----
OadgeiS •G 

-- ----- - - -----1 
Oose 'F2 

This dialogue box allows you to edit the colours of a window: 

Idle bar 

Foreground .. llJ 
t~t tocus rT 1dJ 

The display fields contain the Wimp co lour number of the chosen colour. and have 
their backgrounds set to that colour The menu buttons invoke a pop-up menu 
offering a choice of the 16 Wimp colours The menus for Tltlebar: Foreground and 
Work area: Background also offer the choice Transparent 

An alternative form of this dialogue box is displayed if the window object's Real 
colours nag has been set (see The Other properties dialogue box on page 44 1). In this 
case the pop-up menus are not ava ilable and the colou r display fields arc replaced 
by writable icons; va lues in the range 0 to 255 may be entered. 

Window Extent 

Window 
Into t· 

Edrt t· 

Main properties .. •w 
Other properlles . 
Colours., . 

Key shortcuts 'IK 
TOOl barS 'T 
Gild 'IG .,. 

----------- --
Gadgets. .. •o 
Oose •F2 

444 

This dialogue box allows you to edit the extent (work area size) of a window: 

?.. E1tent: Window 

~ Minimum size 

Width [§_] 

Work area 

~ ~ a;j+ .. 
lower-left corner x[!JvJ-1024j 

upper-right corner 

adjuster arrows 
for altering the 
corner coordinates 

The Work area is represented by Lwo pairs of x.y coord inates for the lower-left and 
upper-right corners. You may adjust Lhese coordinates by typing into the ad jo ining 
writable fields. or using the adjuster nrrows on the ·adjustable square· 



ResEd 

Clicking on the Clip button causes the size of the work area to be made equal to 

the window's current visible area on your screen. 

Width and Height allow you to enter the size below which the window may not go 

Keyboard short-cuts 

Ma1n proper11e$ 'W 

Ottler properi~M 
Colours ... 
Extent. 'E 
" P• c:ho 'cu'<' ~ 

Toolbars •T 

Gnd nG,. 

GadgeiS 

Close 'F2 

Each window may have a list of keyboard short-cuts associated with it These are 

programmable mappings from Wimp key codes to Toolbox events. When a 

keystroke event is delivered. the Window module checks to see if it is in the list of 

short-cuts for the window containing the caret. If so. it delivers the associated 

event to the application. Alternatively (or additionally). a keyboard short-cut may 

be associated with an object template which specifies an object to be shown when 

the keystroke happens 

The keyboard short-cuts assigned to a window may be created and modified using 

the Keyboard shortcuts dialogue box The name of the window that the d ialogue 

box refers to is displayed in the titlebar. 

~ Ktvboatd sllOi'tcuts Window ·-r._t; ~;, 

" 

'\' 

Key Key code j 
.J DtiNer eW~nt 

_j'3how object lrarnuent 

Update J Delete 

eare'!..JJ OK i 
Exist ing keyboard short-cuts are displayed in the scrolling area. Double-cl ick on 

one of them to load its details into the icons below for editing. alternatively simply 

type in the details of the new one 

Key is a specia l icon which allows you to define a key code by pressing the 

corresponding key(s) on the keyboard First click Select on the icon to activate it 

and then press the key combination The corresponding code appears in the Key 

code field. and a description of the key appears in the Key field. Note that 

Shift-Ctrl-letter combinations are not allowed. 

Key code is the Wimp keycode for the event as described in the RISC OS 3 

Programmer's ReferetlCR Manual entry for Wimp_Poll (see page 3-115). This code is 

displayed automatica lly when you enter a key press into the Key field, or you may 

specify it yourself as a decimal number or a hex number (by preceding it with&) 

445 



Editing a Window object template and gadgets 

446 

·-----·········-············ 
Deliver event selects whether the keystroke will generate an event The associated 
wri table field allows you to enter the event code as a decimal or hex number. 

Show object selects whether the keystroke should show an object The associated 
writable field allows you to specify the name of the object template to be shown 

Transient ca uses the object to be shown wi th transient behaviour. 

Update adds the new keyboard short-cut to the scro lling list. replacing any 
short-cut for the same key already present 

Delete deletes the se lected short-cuts from the list. The short-cuts l isted in the 
scrolling list can be selected for deleting by clicking on them (Ad just toggles 
whether the short-cut is selected or not) 

OK accepts the updated l ist of ~hort-cuts and closes the window 

Cancel closes the window, discn rding any changes 

Using a keyboard short-cut entry to 'fill in' a menu entry 

You can fill in the Key field and Click action fields (Deliver event. Show object 
and Show as transient) in a menu entry by dragging a keyboa rd short-cut entry 
from the Keyboard shortcuts scrolling area and dropping it into a Menu entry 
propert1es dia logue box in the Menu editor 

drag the required keyboard 
short-cut to the Menu entry 
Properties dialogue box -
the Key field and Click action 
fields and options will be filled in 

_jHa5 submenu 

•••••••••••e••o ll:'oO" 8\/tnt J! • None ~her 

Ker r~ Key rode [& 197 .=J 
I l7 Deliver event c:£345 .~ 

17 Show object I SholpeMe~ I ~~ Transoent 

I 

~te I Delete 

L. --~~___::..:::=ea:::noe:::' ='I f. ~ 

object 

Cenctl II OK 



Res Ed 

····· ······· ······· ·······----··· 
The Grid 

Wi00011t 
Into ,. 
Edll ,. 
Mlon properlle$ ·w 
aher propert.es .. 

Colours 
Extent. ·e 
Key shOrtcuts ~K 

Toolbars 

t ::~ n 

•G 

-~ 

The Grid d ialogue box can d isplay an optional grid o f alignment points Lo assist in 

the uni form placement o f gadgets 

. 1 

_j ShOw g no _j Lock to gnd 

Grid spacing 

Horizontal [I] /..lOS units 

Verttcal CO Ill OS units I 
. ...1 

Cane~~ OK 

The grid is represented by a matrix of dots which overlay the contents of the 

window. The grid spacing is specified as a number o f OS Units between w id points. 

th is being con figurable independen tl y for di fferent windows 

Show grid controls whether the grid is currently d1splayed for this window 

If Lock to grid is selected, gadgets may only be moved or resized in uni ts of grid 

spacing This means that if you have a group of gadgets then you can move (or 

resize) them. either horizontally or vertically. in multiples of the selected grid 

spacing. and they will keep their relative posit ions. 

No te· If you drag gadgets into a window. the gadgets wi ll not be locked to the grid 

in the window unti l you use the Snap to grid opt ion (see page 452) 

Grid spacing controls the spacing of the grid For maximum compatibility across 

d ifferent RISC OS modes you are advised to set grid spacings to exact multiples of 

8 and to this end the ad juster arrows alter the grid spacing in steps of 8 Va lues 

that are not a multiple of 8 may be entered from the keyboard but will be forced to 

be exact multiples of 4 For example 

WtndOW 

f7 Show goo _jLocktognd 

Grtd spacing 

HonzontaiO!J I_:, OS untts 

Verbcal ~ f OS un.ts 

There is also an option that allows you to snap gadgets to grid points . This is 

described in S11ap to grid on page 452 . 

447 



Gadgets 

Gadgets 

W!Odow 
Info 

Edit 
Mam properties 
Other properties 

Colours 
Extent 
Key shortcuts 
Toolbars 

G--od 

The gadgets window 

~ 

•w 

·e 
K 

'T 
·o ~ 

You can populate a window with gadgets by dragging them in from the gadgets 
window. This is a read-only window containing a typical example of each 
supported gadget type. You can display the gadgets window by choosing the 
Gadgets ... option from a Window menu (or by pressing Ctri-C): 

..................................... Adloo J 
_jOption 

448 

fli'"sPiay -
-..)Radio 

I Writable I r-==:-::-~"":' 

f49'99 I ~ B 
~- - crl r;:g Button 
I Stnng set ..=!I Oraggable 

The gadgets in the gadgets window may not be moved or deleted. The gadgets 
window does not have a menu, and only the keyboard short-cuts /\A and /\7. are 
available. 

Positioning and moving gadgets 

You can drag any of the gadgeb from the gadgets window into your window object 
template and drop them wherever is appropriate 

_j Option , I 
..)Ra<io .1ll 
r-
~ lsuttonl 

Draggable 

drag a gadget from the 
' \ Gadgets window into the 

Window object template 



Res Ed 

Repositioning and copying 

You can reposition one or more gadgets in your window by first selecting them and 

then using Drag-Select with the pointer over one of the selected gadgets If Lock to 

grid rs on. the gadgets are moved by the nearest multiple of the grid spacing If you 

hold down Shift. a copy of the gadgets is made. 

Accurate positioning 

There are three ways to position a gadget accurately: 

• specify its coordinates in the window's work-area coordinate system 
(see The Coordinates dialogue on page 453) 

• align it with one or more other gadgets using the Align menu (see page 454) 

• move the gadget (or selection of gadgets) using the cursor keys. This can be 

done by selecting a gadget, ho lding down the Select button (as if dragging). 

and then pressing any of the four cursor keys. 

Auto-scrolling 

If you want to move a gadget beyond the visible area of the window on the screen 

you must drag the gadget very slowly towards one of the sides of the window. 

Auto-scroll ing of the window will occur when the mouse pointer comes close to a 

side of the window; scroll ing is faster the closer the pointer is to the edge. 

Window object 

Moving gadgets between windows 

I 

drag a gadget slowly to any side of 
the window to start auto-scrolling 

You can copy gadgets between windows by dragging them from one window object 

template to another (to avoid auto-scrolling you should not drag a gadget too 

slowly when dragging between windows) 

If you hold down Shift the gadgets are deleted from the source window. 

449 



Gadgets 

Moving a gadget in one direction only 

You can move a gadget in one direction only usmg Drag-Adjust on the top. bottom, 
left or right resize handles (if Lock to grid is switched on. the gddgets are moved 
by the nearest muiLiple of the grid spacing) 

move vertically only 

t 
move horizontally only ---• ~-~ ~..,._ ___ move horizontally only 

t 
move vertically only 

Changing the size of a gadget 
You can change the size of a gadget using Drag-Select on a resize hand le (if Lock to 
Grid is on the change in size of the gadget (or selection of gadgets) is always a 
mult1ple of the grid spacing) 

You can also change the size of one gadget, or of a selection of gadgets. using the 
Width and Height options in the Coord inates dia logue box (see page 453). 

Stacking 

Gadgets are not intended to be stacked; so there are no facilities for placing one 
gadget 'above· another. Gadgets whose bounding boxes overlap wi ll stack in an 
arbitrary order; there is no way you can guarantee that this order will remain 
unchanged. The exception to this rule is the labelled box gadget which is always 
placed beneath all other gadgets 

Moving the caret between writable gadgets 

Ec;t 
Oel&te 'K 
PropertieS 'P 
Sreptogrld '5 
•..;a~<.• radiO qrc p • fl 

Coordinates ,C 11> 

Align 11> 

450 

You can define the order in which the ca ret is moved between writable gadgets 1 in 
response to the Tab. Shift-Tab, up-arrow and down -arrow keys) by filling in the 
Before and After fields of the gadget properties dialogues 

r Unk to gadgets 

I .JBetore _jArter 

These fields contain the component ids of the two gadgets before· and 'after" the 
gadget To help you fill these in. you can drag gadgets into them. or more typically 
you can use the Link writables option in the Edit submenu. This automatical ly 
fills in these fields for all the selected gadgets that support caret movement 
(writable fields, string sets and number ranges) The ordering imposed is 
left-to-right and top-to-bottom (as if you were reading a page of textl 



ResEd 

The Edit submenu 

Edt 
Delete "K 

P<<>f' ,rt>es 

Snap to grid •s 
.... OoO ,, l'll 
Lwlkwrcables 

Coor<inares 
Align 

Select Oil 

Select 
aear selectJOn 

llit'xt Wtltable 

Prw•o.JS wntao" 
Detaul writable 

Detaun adlon 

Cancel action 

'L 
cc ... ,. 
•A .. 
•z 

If you select one or more gadgets then depending on the gadgets selected. some 

of the following edit options in the Edit submenu will be available. 

Delete deletes the selection of gadgets 

Properties ... opens the gadget properties dialogue box for the selected gadget An 

alternative way to open this dialogue box is to double-click Select on the gadget 

itself 

Snap to grid snaps selected gadgets to the window grid (see Snap lo grid on 

page 4'52) Note that this option is independent of the Lock to grid setting, and 1s 

operative even when the grid points are not displayed 

Make radio group makes any selected radio buttons into a radio group (see 

Manipulating radio groups on page 452 l 

Link wrltables links the selected writable gadgets together so that they can be 

traversed w1th Tab. Shift-Tab. up arrow and down arrow keys (see Moving the caret 

between writable gadgets on page 450) 

Coordinates al lows gadget coord inates to be entered from the keyboard for 

precise positioning (see Tlie Coordinalt's dialogue on page 45'3) 

Align allows you to align gadgets with one another (see Tfte Align menu on 

page 454) 

Select all selects all the gadgets in I he window. 

Select leads to the Select submenu 

Radio group selects all the radio buttons in the radio group to which the 

selected radio button belongs (see Manipulating radio groups on page 452) 

Next writable selects the gadget that is linked after the selected gadget 

Previous writable selects the gadget that is linked before the selected gadget 

Default writable selects any gadget that is assigned as the 'default input 

focus' for the window 

Default action selects any action button that is assigned as the default action 

button. 

Cancel action selects any action button that is assigned as the cancel action 

button 

Clear selection deselects all the gadgets in the window. 

451 



Gadgets 

Snap to grid 

: ... f l. II '0 QIU1 '" 

Mt•t r tC~ g'OUil 'fl 
Link wntobles •L 
Coordnatee r.c ,. 
A 

Stlecul 'A 
Seled 
Oear setectJOn • z 

The Snap to grid operation on the Edit submenu makes each selected gadget 
move so that its alignment point is on the nearest gridpoint 

The 'a lignment point' of a gadget is as rollows· 

• theY-coordinate is always the centre of the gadget 

• the X-coordinate is normally the left hand side of the gadget 
(the only exception is the label gadget: where the alignment point is on the 
lefthand side if the label is left-justified. on the righthand side H the label is 
right justified. and in the centre 1f the label is centre-justified) 

Snap to grid snaps each selected gadget independently (when the selection is 
moved under grid-lock. the relative positions of the gadgets are preserved). 

If you drag a selection of gadgets into a window they will not be snapped Lo the 
grid in that window (even if Lock to grid were switched on) If they were snapped 
automatically to the grid it would alter their relative positions to each other. and 
this might not be desired. The gadgets remain selected when dragged into a 
window. so if you do want to snap them to the grid then you can just press Ctri-S 
(for Snap to grid) 

Manipulating radio groups 

Delete 
PrOtll-lrl;rl.., 

Snap to grid 

l• ~ wr hi 

Coordinates 
A 

r·s.~·~;···· 
Seled 
Qear aelectlon 

452 

'L 
~c ,.. 

'A .. 
·z 

When you drag radio buttons into a Window object template from the gadgets 
window. each one ends up in its own new rad io group. You must then select and 
group them cxplici lly using the Mal<e radio group option in the Ed it menu. 

The Make radio group option is faded unless the window's selection consists 
entirely or radio buttons. When you choose this menu entry. the selected radio 
buttons are placed into a single new radio group 

To select all members of a radio group, press Menu over one of them and choose 
Radio group from the Select submenu in the Edit menu. This enables you to see 
instantly the grouping relationship between radio buttons. 

When a radio button is copied within a window by use of Shift-Drag. the copy is put 
into the same group as the original. So the easiest method to create a radio group 
is to drag a single radio button into the Window object template and make 
multiple copies of it using Shift-Drag Select. 

Dragging a group of radio buttons between window templates 

Adding rad1o buttons to a window never adds them to a pre-existing group, but any 
radio groups added to a window remain as groups 



ResEd 

The Coordinates dialogue 

Delete 'K 
This dialogue box allows you to pos ilion or size selected gadgets by entering 

coord inates (in the window's work-area coordinate system) from the keyboard: 

lf.il 
Pootion 

17 X [22[] 17 Y 

s· 
rv a;{Klth [§] 17 HeiQhl ~ [

1 

Cancel J I OK I 

When a single gadget is selected, all four option buttons are switched on and the 

fou r writable fields arc filled in with its position and size. 

If you select more than one gadget . they are checked to see if they have common 

values for any of the four att ribute<> Those attributes with common values are filled 

in, and the correspond ing option buttons switched on. Those attributes with 

differing values are faded, and the corresponding option buttons switched off You 

may toggle the option buttons to alter the settings of any of the latter attributes 

When you click OK. the attributes are set from those fields with the option buttons 

swi tched on. The attributes that have their option buttons off are left alone. Thus, 

it is possible to set several gadgets lo have the same X position withou t altering 

their Y positions. and dt the same time equalise the width of the selected gadgetc; 

selecting the four 
gadgets below, and 
setting Position and 
Size as opposite ... 

Acllon I 

1-

SIZe 

[7"Width ["2ill_jHeight 

Cancel II OK T 
. .. would result in this 

,, 

)Radio 

Acbon ,_ 

453 



Gadgets 

The Align menu 

Edt 
Delete 'K 

•p 

Snaptognd ·s 
Make raoo group 'R 

• ... e~ l 
Co()(dnates nc ,.. 
Ahgn ,.. 

~led aH •A 

~led ,.. 
a ear setactJon 'z 

The Align menu allows you to align a group of selected gadgets in a window 

I select one or more gadgets 

2 decide which gadget you want to align the other gadgets to and press Menu 
over it (this gadget does not need to be part of the selection 1 

3 go into the Align menu and click on the required type of al ignment: 

Align 

Top edges 
Centre lines 
Bottom edges 

Left edges 
Centre hnes 
Right edges 

The gadgets are then moved to align with the nominated gadget 

If you press Menu when the pointer is not over a gadget the Align menu will be 
faded Lock to grid is ignored when aligning. 

Alig ning gadgets from top to bottom 

The top three options control how the gadgets will be al igned from top to bottom. 
In the following example the gadgets are aligned with the slider gadget 

~ 
Oraggable ~ 

Draggable ~I 
Before aligning Top edges Centre lines Bottom edges 

Aligning gadgets from left to rig ht 

The bottom three options control how the gadgets will be aligned from left to right. 
In the following example the gadgets are aligned wilh the Labelled box gadget: 



Res Ed 

Toolbar object template 

Wi'ldow 1' ii 

Info 

Edit r-
Maln propertieS • ·w 
Olher properties 
Colour$ 

Extent 'E 
Key shortcuts. nK 

Todbarr.. ·l 

nG .. 

Gadgets. •G 

The tool bar object prototype is a window object template Double-clicking on it 

inside d resource file display will displdy a blank edit1ng window 

You can then edit this window. move il round the screen (using Ctri-Shift-Drag 

Select). change its size (using Ctri-Shift-Drag Adjust) and colour. drag gadgets into 

it etc in exactly the same way as you would edit a wmdow object template. 

Positioning the toolbar within a window 

Once you have finished designing your toolbar you can open a window object 

template. go into the window menu tor that template. and select the Toolbars ... 

option. This will display the following box 

cancel ()I( 

You can enter a toolbar object template name into a writable field after switching 

on the corresponding option icon (e.g. to the right of Top left). or drop a toolbar 

object template onto the writable field (or onto the associated option icon if the 

writable field is faded) 

455 



Gadgets 

456 

Interactive help for gadgets 

The Help window d isplays the id. size and position of a gadget in a window 

In the following example, a window has been customised as a Find dialogue box 
and the pointer has been moved over two of the gadgets in Lhe window: 

A.><l ~,... '~-9~! - -<r.• "i~' r. 
Ths IS a writable field with ID • &3 at (196,-20}. size (532,52) ~ Drag SELECT to reposition. ~ 
Drag 1tSELECT to copy, 

~ aid< SELECT to select, dick ADJUST to add to selection 

~ [)out:j&-ellck SELECT to edt ~0pert1es . 

Help displays the id, size and position 
of the writable field gadget 

n1 Find Keyword 

Keyword L I 
Search From --. 
(i Home Card () Current Card ·- - c" 

_ca~l · Next I 

Help displays the id, size and position 
of the radio button gadget 

lf';l "'l ~hill> 'f 't c• -~~ ~ 
This is a radio button wilh LD • &6 at(32.-128), size (312.4-4) ~ Drag SELECT to reposition. 

~ Drag 11SELECT to copy. 
Clic:k SELECT to select. dick ADJUST to add to selection. ~ 
Double-<:lick SELECT to edit ~operties . "it 

The custom ised window shown above is described in Adding a find capabiliiiJ on 
page 56 in the User Interface Toolbox manual. 



Res Ed 

Common features in gadget properties boxes 

Some features are common to several or all gadget properties boxes. These are 

de<>cribed here rather than repeating their descriptions in each gadget section. 

Component ID 

Text field 

Deliver 
event 

Help text 

Faded 
option 

.- Deliv8f event 

fi Default 

Button 

_jDetault 

._ _j Help !ext 

r _jFaded 

title bar 

Show as lranstent 

_j cancel .J Local 

LengthD ,~ 

OK and Cancel buttons 

name of 
window 

Length field 

• The title bar contains a string describing the type of gadget being edited. 

• The first field is always a writable icon containing the gadget's Component 10 

Normally you do not have to enter <Jnything tnto this field as a untque number 

is automc.-ltically assigned to it If you need to. you can change a gadget's id by 

typing a new id into this icon. When OK is pressed. the gadget wil l be 

renumbered Duplicate component ids are not allowed within a window. any 

attempt to set a component id to one already used by a gadget in the same 

window w11l be faulted New gadgets dragged in from the gadgets window have 

a new unique component id chosen automat ica lly. 

• Next to the component td is a dtsplay field showing the name of the window 

object template that the gadget belongs to 

• Many of I he dialogues have a Text field allowing you to type in a string which 

appears in the gadget 

• All gadgets have a Help text field This is a writable icon for you to supply a 

suitable interactive help string for the Toolbox to send to ! Help when the 

mouse pointer is over the gadget. If the Help text option icon is not selected. 

the underlying window will respond to ! Help instead 

• All gadgets have a Faded option button. Setting this fades the gadget and 

makes it inactive to mouse clicks . 

457 



Gadgets 

458 

• Some string entry fields ( mcluding Help and Text) have an associated Length 
field . This is a writable number range which specifies the length of the buffer 
used to hold the text For more details on how this field works see Help messages 
on page 426 

• Several of the d1alogues feature a Deliver event section Th1s section allows 
you to specify whether or not you want an event to be returned. and what that 
event should be 

• Default specifies that the default event should be returned 

• None (if present) specifies that no event shou ld be returned. 
• Other is used to specify a user event you may enter event codes in either 

decimal or hex (by prefixing with '&'l 

• Every gadget properties dialogue has OK and Cancel buttons (see page 42R 
for more detai ls) 

Opening a gadget properties box 

You can open the properties d1alogue box for a gadget by double clicking on the 
gadget in the Window editor. 

The following sections describe in detail the layout and extra controls of each type 
of gadget properties dialogue 

Gadget see page 

Action button properties 459 
Adjuster arrow properties 460 

Button properties 460 
Display field properties 462 

Draggable properties 462 
Label properties 463 

Labelled box properties 463 

Number range properties 464 

Option button properties 466 
Pop-up menu properties 466 
Radio button properties 467 

Slider properties 468 

String set properties 469 

Wntable neld properties 471 



Res Ed 

Action button properties 

The action button properties box is displayed as follows: 

Action button 

&0 of window l Window 

Acbo~ I LengthO I~ 

!>. . - t.l- ;'It 

..) Other 

_jCancel 

_2~~ OK 

The Show object option controls whether pressing this button should cause 

another object to be shown automatically. You can enter the object template's 

name into the associated writable field. or drag the object template into this field 

(Or onto the associated option icon if the field IS faded). This mechanism may be 

used to make nested dialogues. 

Show as transient selects whether the object wi II be shown as a transient or nol. 

The Button section allows you to specify the operation of the action button 

Default controls whether this button is the default for the window it is in. If 

you select it. the button is given a highlighted border and is activated by any 

presses of the Return key within its window 

Cancel controls whether this button is the cancel button for the window it is 

in . If this is selected. all clicks on the button ca use the window to be closed. 

Also any Escape key presses when the parent window has the caret cause the 

Cancel button to be activated 

When you make an action button into the Default or Cancel button for its 

window. that attribute is removed from the button that previously had it. 

If you drag an action button into another window. the editor checks that the 

strictures regarding Default and Cancel buttons are not violated (that there 

must be al most one of each). If necessary the previous 'owners' of these 

attributes are made into normal action buttons. 

Whenever the Default attribute is added to an action button. its boundmg box 

is automatically enlarged to include the special border. and when the attribute 

is removed. the bound ing box is made correspondingly sma ller. 

459 



Gadgets 

l s~ton l 

460 

Local makes an action button mto a local action button Unlike a normal 
act1on button, activating it will not cause the parent window to be closed 

Adjuster arrow properties 

The adJUSter arrow properties box is displayed as follows 

Adiuster ArrrJN 

Component 10 j &0 I of w1ndow I Wndow 
Ouec.too 

_)Left 

_jHelp text 

_jFaded 

li R1ght JUp __)Down 

Cancel Jl OK 

The Direction radio buttons control the direction that the arrow button is pointing 
in. and hence whether the button will return ·up· or 'down events 

Button properties 

The Button gadget exposes most of the underlying Wimp icon. allowing you to 
create custom controls The Button propert1es box is displayed as follows 

rnt Button 

Window Component 10 I &0 I of w1nd0w I 
'---r==--------.;.--...:..., 17 Text j Spnte Botto~ I LengmQJ I~ 

...:--..!:=======~ Volioat1on I I LengmQJ /..l 
_jUse c•enrs sprite 1\fta _j Return menu c~cks 

Bullon type J 0 D ESG0 I ..l 
C'.oiOurs 

Foreground •••• l]J 

Icon flag~ 

[7Border 

_jAdjust 

_jHelptext 

_jfaded 

' 

7 H-centred 

_jHallsize 

Background j 0 I 111 

IV V -centred 

_j NeedS help 

_]Filled 

_jRighl JUStified I 

Length[] /..l 

cancel II OK 

Text and Sprite arc option buttons controlling the contents of the icon. By 
switchmg the two buttons on or off or just switching one of them on, you can 
produce four combtnations. The effects of these various combinations are 
described in the RISC OS 3 Proqrammer's Reference Manual on page 3 I 0 I If necessary 



ResEd 

you can then specify a va lidation string in the Validation field. Note, however. that 

if you on ly switch on Sprite. then the pointer must be to a sprite name. 

Use client's sprite area specifies that the Toolbox should first check on those 

areas set up by Toolbox. Initialise. rather than using the default Wimp Sprite area 

Return menu clicks spectfies that a Menu click is returned to the client 

application (instead of being processed and acted upon by the Toolbox). 

Button Type is a string set offering the sixteen possible Wimp button types 

0 Never 8 Double/Drag 
I Always 9 Menu icon 

2 Auto-repeat 10 Double/Click/drag 

'3 Click II Radio 
4 Release 12 Type 12 

5 Double click 13 'type 13 

6 Click/Drag 14 Write/Click/Drag 
7 Release/Drag 15 Writeable 

ESG is a writeable held for the input of the icon's Exclusive Selection Group 

number This number is constrained to be between 0 and 31 

Foreground and Background offer the choice of the sixteen standard Wimp 

colours from a pop-up menu. The associated display field shows the chosen 

colour. as well as the Wimp colour number in a contrasting colour 

The option buttons under Icon flags are used to set the remaining icon flag bits 

that are not implicitly defined by the above settings. The correspondence between 

buttons and icon flag bits is as follows (sec the RlSC OS 3 Programmer's Reference 
Manual entry for Wimp Createlcon on page·~ 96 for more details): 

Button Bit 
Border 2 
H-centred 3 

V-centred 4 
Filled 5 

Adjust 10 
lla lf size 11 

Needs help 7 
Right justified 9 

There are three icon flag btts that are pre-set which you cannot change: 

Bit Set to 

6 always set to system font 

8 always indirected 

21 always unselected when first displayed 

461 



Gadgets 

Display 

~ 
Draggable 

462 

Display field properties 

The display field properties box is displayed as follows 

Display field 

Component 10 I &0 I of window I Wllldow 

Text._l ___ DI_sp...;._la.:...yj __ ----'1 LengthO { ~ 
Justify 

1 
..) Left ti' Centre .) Right [ 

LengthD /~ 

---==Ca=nc=el~l [ OK_] 
The Justify radi o buttons are used to choose whether the contents arc positioned 
to the left. right or centre of the gndgct 

Draggable properties 

The draggable properties box 1s displayed as follows 

IGI Draaoable 

Component ID I 
[7Te~t I 
l7 Spnte I 

&0 I of window r Window ............. 

DraggatieJ I Length 0 I ..l 

lile_tae I LengthO /..l 
_j Deliver event at stast of crag 

_jUse Toolbox IDs 

Oragtype 
l'i Drag ..) Double/Click 

'! 0 Oouble.!Select . j! 

:7 Has drop shadow 

_jHelptext 

_jFaded 

PI Dithered 

Leog1ho ~~ 

eance~ 1 r OK l 
The Draggablc gadget may have o writable text st ring. a sprite. or both. as chosen 
by relevant option buttons. At least one of these must be on. 

The Deliver event at start of drag option allows you to control delivery of the 
Draggable_DragStarted event. 

Use Toolbox IDs allows you to specify that object/component id pairs of the drag 
destination will be reported. rather than Wimp window handle/icon hand le pairs. 



Label 

Res Ed 

The Drag type radio buttons allow you to select the behaviour of the draggable 

Drag provides drag behaviour equivalent to dragging a standard Save As box. 

Double/Click is equivalent to Icon button type I 0. 

Double/Select is equivalent to Icon button type 8. 

Has drop shadow allows you to specify whether the draggable has a grey drop 

shadow when dragged 

Dithered allows you to specify whether the draggable 1s displayed as 

semi -transparent when dragged. 

Label properties 

The label properties box is displayed as fol lows 

ICll Label 

Component 10 j &0 I ot w•ndow I Window 

Text I~_ ___________ Label_"'----------' 

Justify 

,JLett ...) Centre (i Rght 

c.J Oi splay border 

_jHelptext 

:._jFaded 

Length[] /~ 

_ Cancel J I OK 

-----------------
The Justify radio buttons are used to choose whether the contents arc poc.,ilioned 

to the left. right or cen tre of the gadget 

Display border controls whether the gadget's bounding box is drawn or not 

Labelled box properties 

The labelled box properties box is displayed as follows 

Component 10 I 
Label 

Labelled box 

&0 I of w•ndow Window 

!'i Text LI _ __ _:.La:..;b.:..eh...:.ed..:....:..bo;....;)(l~---1 1 
...) Spnte F•ed 

Cancel II OK 

463 



Gadgets 

464 

The labelled box can have either a textual or sprite label. but not both. Thts ts 
chosen using the Text and Sprite radio buttons The text entry field next to the 
unselccted radio button is faded 

Filled allows you to specify that the background to the sprite is set to grey 

Number range properties 

The number range properties box ts displayed as follows 

Number Ran e 

Component 10 I &0 I of Window ' WindOW 

_jOellver events when value changes 
Values 

Min1mum [D Max1mum !10000 I lnittall 4999 ] 

Preosion ~ Step size~ 

17 Has numencal dosplay l'i Display ...)Wntable 

Mtlfy 
)Left .) Centre te Right 

_jHass~der 

Display width 

• Left 
Slider colour 

aarl Background I 
l.Jnk to gaOgets 

11G 

_jHelptext 

_JFaded 

LengthO ~~ 

Cancel IC~ 

Deliver events when value changes controls whether the application receives 
NumberRange_ ValueChanged events when the contents of the writable change 

Initial. Minimum. Maximum and Step Size are writable fields tn which you specify 
the main parameters of the number range. They are always specified as integers. 

Precision controls the display of a decimal point, its value b the number of digits 
to be displayed to the right of the point (thus if precision is 2. the va lue 2 34 is 
specified as 2341 To display integers. set Precision to 0. 

Has numerical display controls whether any numbers are dtsplayed. 

Display and Writable select whether the display area may be typed into. If 
Writable is on. the link to gadgets section allows you to specify which 
gadgets the caret should be moved to when the Tab. Shift Tab up-arrow and 
down-arrow keys are pressed If you drag a gadget into the Before or After 



ResEd 

writable fields (or their associated option icons) its component 1d is entered 

into the field automatica lly. NormC:tlly, however. you would use the Link 

wrltables option in the Edit menu to determine the path taken by the caret 

See Moving tf1e caret between writablt' gadgets on page 450 for more detai ls. 

The Justify radio buttons are used to choose whether the numeric va lue is 

positioned to the left. right or centre of the numerical display field 

Display width allows you to specify the width (in multiples of 4 OS units) of the 

field that displays the number (only 1f Has slider is switched on). 

Has adjusters contro ls whether adjuster arrows are displayed: if selected. they will 

appear as a pair of buttons to the right of the display area tor. if there 1s a slider. at 

either end of the slider) . 

Has slider controls the presence and positioning of t he gadget's associated slider 

The slider is always placed 8OS units away from the d isplay area. and may be to 

the left or right of it The slider will be interactive on ly if the writable radio button 

is selected 

The Slider colour section allows you to specify the colours of the slider: 

Bar is a display field showing the colour of the slider's bar. The colour is set by 

specifying a Wimp colou r number from the attached pop-up menu 

Background is a display field showing the background colour of the slider's 

bar. The colour is set by specifying a Wimp colour number from the attached 

pop-up menu. 

Altering the size of the numerical fleld 

As well as the normal eight resize handles. number range gadgets which display a 

sl ider and numerical d1splay have an additional handle. You can drag this handle 

to the left or right to ad just the size of the numerica l display field: 

1- ~ 4999 

, _ / j 4999 

drag the handle to the right 
to shorten the numerical field 

i( 499~ 

1- -~ \ 4999 

drag the handle to the left 
to lengthen the numerical field 

Note You can only alter the size of the numerical field on one number range 

gadget at a time If you try and resize this field on a selection of number range 

gadgets on ly the gadget you are actually resizing will be resized 

465 



Gadgets 

_]Option 

466 

; .. .................... , ........ . 
Option button properties 

The option button properties box is displayed as follows 

Component 10 I &0 

Text I Option 

Deliver event 

Ootion button 

I of window 11 Window 

I Length[] 

.) Default (i' None J Other 

1..1 

_ Jselected 

_jHelptext 

_jFaded 

Length[]{~ 

Cancel I[ ~ 

Selected chooses whether this button is initially sw1tched on or not 

Pop-up menu properties 

The pop-up menu properties box is displayed as follows 

POPUP Menu 

Component 10 I &0 I of window 

Show menu ._I --'--...J 

J Deliver event before show•ng 

jHelp text 

.....]Faded 

Cancel J I 

Window 

OK 

Show menu controls whether a menu wil l be automatically shown when the menu 
button is clicked The template name of the menu to be attached may be filled m 
by draggmg a Menu object template to this field. If no Menu obJeCt template 1s 
supplied, the application wi ll be expected to create it at run-time in response to 
the PopUp_MenuAboutToBeShown event. 

Deliver event before showing controls whether the client application will receive 
a PopUp_MenuAboutToBeShown event when the object IS about to be shown 



Radio button properties 

The radio button properties box is displayed as follows· 

fr':l Radio button 

Component ID I &0 I of w1ndow I Wondow 

Text '-1 _ ___ _ RadloJ 

Deliver event 

) Default 

[7 Selected 

_jHelptext 

_j Faded 

(i' None 

In group j 2 

ILengthl:J 

Jaher 

ResEd 

/J. 
., 

Each radio button is a separate gadget and belongs to a ' radio group' . this group 

bemg the set of radio buttons with which it is mutually exclusive The radio group 

is Implemented by means of a ·croup Number' (see Radio buttons on page 387) in 

the Toolbox data structu re that describes rhe gadget; the group number is not the 

same as the Wimp's FSC (which the Toolbox does not use). You cannot specify Lhe 

group number explicitly. instead you must use the Make radio group option in 

the Edit menu. however, the group number assigned by RcsCd is always displayed 

in the in group field 

Selected chooses whether the button IS 1nttially on or off. only one button in the 

group may be on at once. and switch1ng another on will turn off the previously-on 

button 

467 



Gadgets 

1-

468 

Slider properties 

I 
The slider properties box is displdyed as follows: 

Slider 

&0 of window I Wrroow 

) Display 

Onentation 

(i Vertical 

Badlground I 0 

-.)Continuously 0 At end ol drag 

Initial ._I __ so _ __, 

Maxmuml 
::==~ 

Step size I.__ __ _.,.. 
.J Help text Length 0 I ..l 
_jFaded 

Cancel I C OK - I 

The Type radio buttons select between a read/write slider and a read-only one 

The Orientation radio buttons select whether the slider is horizontal or vertical 
When a slider's orientation is changed, it is rotated through 90 degrees about its 
centre point. 

Slider colour Bar is a display field showing the colour of the slider's bar. The 
colour is set by specify ing a Wimp colour number from the attached pop-up menu 

Slider colour Background is a display field showing the background colour of the 
slider The colour is set by specify1ng a Wimp colour number from the attached 
pop-up menu 

The Deliver events buttons control when the application wil l receive 
Slider_ ValueChanged events. 

Minimum and Maximum are the signed integer bounds of the slider's range 

The Initial value and Step size are constrained to be valid given the current 
minimum and maximum settings. 



String set properties 

1 Stmg set - ~ The string set properties box is displayed as fo llows 

r- s Set 

Component 10 I &0 I of WII'I<IOW Window 

p Title Item~ 
~====--~~==~==----====~ 

Strings 
?=======----====~--~--.-~ 

lnttoal 
L---------~------~ 

17 Has dosplay fieki 

Ju~bfy 

Jleft (i· Centre 

Deliver events _jValue Changed 

Sr lc y allOwed c 1. cters 

Allowed characters 

2 o-9 

...) Right 

_j About To Be Shown 

Length • 

Other 

After 

_jHelp text 

._jFaded 

LengthD 1..1 

cancel J l OK 

ResEd 

To set up a string set. enter the list of available strings into the Strings wntable 

field The list is comma-separated: to include a comma in one of the strings, 

precede it with a backslash. To include a literal backslash. usc two backslashes. 

The Initial writable fi eld is for entering the string whose value will be used as the 

initial contents of the string set. This string does not have to be one of the list of 

available strings 

Has display field controls whether any text is displayed. 

Display and Writable select whether the display area may be typed into If 

Writable is switched on. the di splay nrea of the string set will be writable and 

the user may enter any desired string into it- not just one of the 
predetermined choices. Switching on Writable also enables you to fill in the 

Specify allowed characters section 

The Justify radio buttons are used to (boose whether the contents are positioned 

to the left. right or centre of the display area. 

Deliver events Value Changed controls whether the application receives 

StringSet_ ValucChanged events when the contents of the writable change 

469 



Gadgets 

470 

Deliver events About To Be Shown controls whether the client application will 
receive a StringSet_AboutToBeShown event when the object is about to be shown 

The Specify allowed characters <;e>Ction allow" you to specify what characters may 
be typed into the d isplay area. If you do not switch on th is option any character wi II 
be accepted (before you can fill in the Specify allowed characters section you 
must first switch on Writable ) 

Length determrnes the s1ze of buffer allocated to the validation string 

Allowed characters accepts a pattern for the cha racters that should be 
allowed in the gadget. 

• The three option buttons marked a-z. A-Z and 0-9 enable you to specify 
the lower-case letters a-z. the upper-case letters A-Z and the digits 0-9 

• The Other option al lows you to enter a pattern as for the Wimp's icon 
val idation string'!\ command (for more informa tion on the A command 
see the RISC OS 3 Programmer's Reference Manual entry tor Wimp_Creatclcon 
on page 3-102). 

For example. if you wanted to specify that the only characters allowed were the 
digits 0-9 and the lower-case letters a-z. except for 'd'. 'p' and ·u·. you would fil l 
th is section in as follows: 

7 Speci!y allowed characters length OJ I~ 
Alow&d characters 

7 a-z _jA Z [7 09 [7 Other L dpu==:J 

The Link to gadgets section allows you to specify which gadgets the caret should 
be moved to when the Tab. Shift Tab up-arrow and down-arrow keys are pressed. If 
you drag a gadget into the Before or After writable fields (or into the assoCiated 
option icon if the writable field is faded) its component id is entered into the field 
automatically. Normally, however. you would use the Link writables option in the 
Edit menu to determine the path taken by the caret See Movmq tfll' caret betwe('tl 
writable gadgets on page 450 for more details . 



Writable 

Writable field properties 

The writable field properties box is displayed as follows 

Wntable fJeld 

Component 10 I &0 of window j W1ndow 

Textl Writable, I LengthD I~ 
Justify 

_)Left <i Centre .)Right 

_j Spec•fy allowed characters LengthD ( 

Allowed characters 

z A-Z 1)-9 0tnet 

_j Atter 

_j Deliver events when value changes 

_j Help text Lengm[J I~ 
_jFadeO 

Cancel lj_...;OK;....;...---J 

Res Ed 

The Justify radio buttons are used to choose whether the contents are positioned 

to the leh. right or centre of the gadget. 

The Specify allowed characters section allows you to specify what characters may 

be typed into the display area Length determines the size of buffer allocated to 

the validation string. Allowed characters accepts a pattern for the characters thot 

should be al lowed in the gadget as for the Wimp's icon va lidation string 'A' 

command. For a full description of allowed characters see the section on al lowed 

characters on the previous page 

If Password behaviour 1s switched on. then any characters entered will be 

displayed as minus s1gns. 

The Link to gadgets section allows you to specify wh ich gadgets the caret shou ld 

be moved to when the Tab, Shift Tab. up-arrow and down-arrow keys are pressed If 

you drag a gadget into the Before or After writable fields (or into the associated 

option icon if the writable field is faded) Its component id 1s entered into the field 

automatically. Normally. however you would use the Link writables option in the 

Ld1t menu to determine the path taken by the caret. See Movwg tf1t> caret bell!'t't''' 

wnlable gadgets on page 4'50 for more details 

Deliver events when value changes controls whether the appl ication receives 

WritableField_Va lucChanged events when the contents oft he writable change 

471 



Editing other classes 

Editing other classes 

472 

There are three stages in editing ony of the remaining obJect templates. 

Display the object prototypes window and drag the requ ired object templdtes 
from the object prototypes window into your resource file display 

(i'.; ) lq Ob~e<:t orototvoes Ill 

~ a E1 ~ lEj 
l!_ 

" / ColourDbox ColourMenu ocs F1lelnfo FontDbox 
I 

i 

~ ~ [1!J ~ ro1n .o. U111tled1. .... 
)P_ 

. 

a ~ loonbar Menu PnntObox Proglnfo 

ColourDbox loonbar r:!J [9j bJ c s. 
~ Fi] Save As Scale Tool bar Wll"ldow I"'.. 

lR Proglnfo Save As ~ drag the requtred object templates 
to your resource ftle display 

2 Edit each object template by double-clicking on its icon in the resource file 
display An editing window for that object template will then be opened 
ror example. the File Info object template 

Title 

....) Other 

- Deliver event 
_j Before showing 

.JUsealtemallve Wll'ldow 

Length • 

..Jwhen hidden 

Cancel Jj OK 

In general the ed iting dialogue boxes for these remaining object templates are 
not WYSIWYG representations of the underlying objects 

3 Close the ed1Ung window w1th the OK button to confirm the changes you have 
made. If you close the editing window with the Cancel button. the modified 
data is di scarded. 



r•w:w• 

ResEd 

****W*WMWW acwwwa•••••e•r••••••••& 

Common features in standard dialogue boxes and menus 

Some features arc common to severa l or all standard dialogue boxes or standard 

menus. These are described here rather than repeat ing their descriptions in each 

individual section: 

Title 
0 0ther Length 

_j Filename 

Deliver 
event 

Filetype f&OOO (&000) l!J 

Use 
alternative 
window 

_j When hidden 

_ea~~ OK _j 
~ ~ 

OK and Cancel buttons 

• Title is the title string to appear in the title bar of the dialogue box or menu If 

this is set to Default. the module will provide a suitable default If it is set to 

Other. the accompanying writable fields arc unfaded for you to specify an 

in itia l tit le and its maximum length. 

• Deliver event controls the followmg 

Before showing controls whether the client appliCation will rece1ve a 

DialogueAboutToBeShown event when the object is about to be shown 

When hidden specifies that the client application will receive c1 

DialogueCompleted event when the ob1ect is hidden 

• Use alternative window is an option button which coni rols the availability of 

the writable field next to it If Lhc option is swi tched on, you may enter the 

name of a Window object template to be used as the prototype for creating the 

relevant object template. instead of the standard one !alternatively you can 

drag a window object template 1con from the resource hie display mto the 

writable fi eld- or into the associated option icon if the wri table field is faded l 

This enables any standard dialogue or menu to be given a custom appearance 

The custom window must contam gadgets s1mllar to those used 1n the default 

module w1ndow; see the relevant chapter on the particular module for details 

• Every d ialogue box and menu has OK and Cancel buttons. 

473 



Editmg other classes 

474 

Colour Dialogue class 

The Colour Dialogue object template is d isplayed as fo llows 

Colour dtalooue: CololXObox 
T1tle 

<i Default -..) Other Length 
I 

.J Include 'None' button Select Nooc" button ..----ll'lltl3l ex>lour &00000000 :El 
Deliver event 

_ j Before showing .J When hidden 

' 
Cancel I[ OK J 

Include " None" button is an option button that decides whether the d ialogue wi ll 
allow the choice of ·no· colour 

Select " None" button specllics that the None button i<; selected by default 

Initial colour is a display field that shows the RGB va lue of t he selected colour 
Next to it 1s a pop-up button which summons a colou r picker from which the in itial 
colour may be chosen . 

Colour Menu class 
The Colour Menu object template is displayed as follows 

.J Ocher Length 

_ j lnclude 'None' entry 

fj- lnitial colour .-I --0- .1] 
Deliver event 

_j Before showing _jWhen hidden 

_ Cancel J I 
Include "None" entry is an opt1on button that controls the presence of an entry 
for 'no colour' (i e None) on the menu. 

The Initial colour display field shows the in itia lly-ticked colou r. and the pop-up 
menu to the right of it is itself a colour menu enabling the initidl colour to be 
chosen The option 1con coni rols whether <Jny va lue is t1cked or not 



ResEd 

DCS class 

The DCS (Discard. Cancel. Save) object template is displayed as follows 

DCS DCS 

T1tle 
(i Default .) OCher Length 

Mes~gt> 

(i Default ,.) Olh« Length 

_jWhen h1dden 

_j Use altematwe INJndow 

Cancel I [_ 0< _j 

Message is a writable field for entering the message to be displayed in the centre 

of the window Its behaviour is similar to that of the Title held 

File Info class 

&000\ I 

The File Info object template is disployed as follows: 

f%1 Fllelnfo: Filelnfo 

T1tle 

(i Default .) O!her Length 
I 

_;Filenal'le 

Foletype r "'&iiO(} (&000)- JJ) 
OelivereYent 

j _j Befor~ showmg 

_jUse altemaiiW WindOW 

_ Ca1~t;!_j 1- OK j 
~--------------------

Filename is a writable field containing the initial contents of the filename displa" 

Flletype is a display field showing the initial filetype's name and hex value Next to 

it is a pop-up menu button wh ich displays a li st of filetypes for you to choose from 

If you want to specify a filetype not on this list you can go to the Filetype dialogue 

box (via the Other menu option) and fill tn the writable field with any filetype name 

or number. The number must be in decimal unless preceded with &'.The two 

special filetypes 'directory· \&1000) ond 'application· (&2000) may also be entered 

Note that no interface is provided tor setting the 'filesize. ·modified and 'date 

fields of the File Info object template because these cannot be known when the 

template is being created. They must be fi lled in by the application at run-time 

475 



Editing other classes 

Font Dialogue class 

476 

The ront Dialogue object template is d isplayed as follows 

Font dia ue: FontObox 

Title -
(i' Default J Other Length 

flrwtial font ...... 
Font height I 1 ~ I_\ Aspect rabo [§] I ' 

[7 Sample stnng ~e quick brown fOK JUmps CNer the lazy dog I 
_jAIIow system font 

_j Use altemabve wnoow 
Deliver e~~&nt 

_jBefore showing :Jwhen h1dden 

cancel lj~ J 
Initial font is a writable field for you to type in the in itial font name to be put into 
the font dia logue. Alternatively. you can select a font from the pop-up menu next 
to the writable field Note that il is possible that the initial font will not be 
available at run-time if so, a default wil l be substituted by the module las will be 
the case if the option icon is not switched on) 

Font height is a number range giving the initial contents of the object's font height 
sett ing. You can change the integer value using the ad juster arrows. or type a new 
value in yourself 

Aspect ratio is a number range giving the initial contents of the object's aspect 
ratro setting. You can change the integer value using the adjuster arrows, or type a 
new value in yourself. 

Sample string is a writable field that lets you specify the test string to be displayed 
when the Font Dialogue's Try bullon is pressed If the option icon is not switched 
on. the module will substitute a default. 

The Allow system font option button controls whether System Font will be 
selectable using the Font Dialogue object. 



Font Menu class 

The Font Menu object template is displayed as follows: 

101 Font menu· FontMenu 

_j Initial font 

_jAJow 1ystem font 

Del111ere~nt 

_]Before showing _jWhen htdden 

Cancel Jl OK 

ResEd 

Initial font is a writable field for you to type in the initial font name Alternatively, 

you can select a font from the popup menu next to the writable field. Note that it is 

possible that the initial font will not be available at run-lime; if so, a default wi ll be 

substituted by the module (as will be the case if the option icon is not switched 

on) 

The Allow system font option button controls whether System Font wil l be on the 

menu. If you switch this option on. the Initial font menu has System Font on it too. 

477 



Editing other classes 

lconbar icon class 

478 

The lconbar icon ob1ect template 1s displayed as follows. 

I~ 

IJ. 
~~~n - , 
Deliver event J Default ,) None(i Other 1 __ &_o _ __,l'

_j Show object Transient

Deliver event before !ShawW~g

AdJust button - -
Deliver ev&nt ,) Default ,J None(i Other ~0 ___=]

__jShow obje~ T•

Deliver event be1ore shoWing

_jMenu button Show menu

_jHelptext LengthO I~

Cancel l1- 0+<

Position and Priority control where on the iconba r the icon will appear. You ca n
select the posilion from the adjoining pop-up menu or enter a value directly into
the writable Field

Value
-1
-2
-3
-4
-5
-6
-7
-8

- - Posation
-./ ~ght Side of ~<:onbar

Lett Side of JConbar
Left of specified icon
~ght ol SpeCified icon

Left Side. scam•ng from left
Left Side. scann1ng from nght
Right Side. scann1ng from left

Right side. scanning from nght

• Types - 3 and -4 require a Wimp icon handle to be passed into the call to
Toolbox_ShowObject to specity which icon the position is relative to
They are also incompatible w1th the object's auto-show bit being set. as they
depend on a Wimp icon hand le being specified in the ca ll to
Toolbox_ShowObject. The editor does not force this bit to be clear in the~c
cases· the effect of setting it i~ undefined

Res Ed

• Types -5 -6. -7 and -8 require an 1nteger Priority to be specified in the

wntable field provided. The priority level is as documented in the RISC OS 3

Proqmrnmer's Reference Manual entry for Wimp Createlcon on page ~-96 The

Priority field is faded when Position is not set to one of - 5 through -8. Priority

is normally a decimal integer. but il hex value may be entered by preceding it

with an'&'

Sprite name is a writable held where you can enter the name of the sprite to be

displayed in the icon If the icon is to di~play text as well. you should switch on the

Text option button. This unfades the two writable fields next to it. enabling you to

enter the initial string and maximum length. Switching this option button on set~

bit 0 of the object's !lags word.

Grouped under Select button and Adjust button are the controls for specifying

what should happen when the user clicks on the icon with the appropriate mouse

buttons.

Deliver event is a writable held for the input of an event code to be delivered

to the application

Show object is a writable field that takes the name of an object template to be

shown. You can enter the name ott he object template by typing or by dragging

an object template into the writable field (or into the associated option icon if

the writable held IS faded) It is possible to ask for both an event to be

delivered and an object to be shown

The Transient option selects whether the object wi ll be shown as a transient

or not

Deliver event before showing controls whether the client application will

rece1ve an lconbar D1alogueAboutToBeShown event when the object is about

to be shown.

Show menu is a writable field for you to specify the name of a menu to be shown

when the user clicks in the icon with the Menu mouse button If the associated

option button is turned off. the field is faded and no menu will be shown You can

enter the name of the menu by dragging a Menu ob1ect template from the resource

file display into the writable field 1 or into the associated option icon 1f the writdbl<'

field is faded).

The writable field next to Help text allows you to supply a suitabk• interactive help

string for the Toolbox to send to ~Help when the mouse pointer is over the object

If Help text is switched off then no help text will be sent.

479

Editing other classes

Print Dialogue class

480

The Print Dialogue object template is displayed as follows

lj'!", Print dia ue PrintObox

Optional features

f7 Copes .----::,!-----.
f7 Scale factor

17 Page range

17 Ottentation

r7 Draft button

_J Setup button

p- Save button

Deliver event

_jBefore showing

100 l•t.
li All j From to 1

(i Upright _) Sideways

.JOn (i Off

Show window

D'E' liver tlvrnt before showing

_]When hidden

_]Use alternative WindOW

Cancel I [OK

Lio,tcd under Optional features are a number of option buttons that select which
of the optional controls will be present on the dialogue box. Some of these option
buttons control the availability of further parameters.

Copies selects whether the dialogue box will allow the user to specify the number
of cop1es to be printed. If this IS selected. the wntable field to its right is unfaded
tor the initial value of the number of copies to be specified.

Scale factor selects whether the dia logue box will allow the user to specify a sca le
factor for the print job lfthis is selected. the writable field to tts right is unfaded for
the tnltial value of the scale factor to be spec1fied

Page range selects whether the dialogue box will allow the user to spec1fy the
range o f pages to be printed. If you switch this option on. the two radio buttons to
its right are unfaded for you to specify the defau It page range Selecting All means
that the default will be for all pages to be printed Selecting From means that only
a specified range of pages will be printed; this range is speCified using the two
writable fields (which are faded until From is selected.)

Orientation selects whether the Print dialogue box will include a choice of Upright
(portrait) or Sideways (landscape) mode The radio buttons to the right of it are
faded unless you switch on thts option. and enable you to choose what the default
orientation will be.

Res Ed

Draft button selects whether the Print dialogue box has a Draft option button or

not. The associated radio buttons choose the initial state of the Draft button.

Setup button selects whether the dialogue box has a Setup button If you switch

th1s option on. the fields underneath and to the right are unfaded to enable the

specification of the following parameters:

Show window is the name of the Window object template to be used for the

Setup dialogue. You can enter this by typing. or by dragging a Window object

template into the writable field (or into the associated option icon if the

writable field is faded)

Deliver event before showing is an option button that controls whether a

Print_SetUpAboutToBeShown event will be delivered before the Setup

dialogue is shown

Save button selects whether the Print dialogue box has a Save action button for

saving the current printing setup

Prog Info class

The Prog Info object template is displayed as follows

C Aoom Computers Ud, 1994

Version I 0.01 (dd-tnmm-yy)
~------~-r~====~

U Include "L.ICeOCe" licence type

Delrver &ll$nt

.J Before showing ~When hidden j

OK

Purpose, Author and Version are writable fields that allow you to speci fy the

contents of the corresponding parts of the Prog Info dialogue box

Include "Licence" is an option button which controls whether the Prog Info

dia logue box has a Licence type field. If you switch on this option , you ca n select

the licence type from the pop-up menu next to the writable field. The licence types

available are Public domain. Single user. Single machine. Site, Network and

Authority.

481

Editing other classes

482

•••••••••WMA••••••••waww••w

Quit Dialogue class

The Quit Dialogue object template is displayed as follows·

.) Other

Message.

li Default 0 Other

O!oliver ewnt

_j Bef()(e showing

..J Use alternative w1ndow

OUit OUit

Length

Length

._j When hidden

CancGI I [OK j

Message is a writable field that allows you to enter the message to be displayed in
the centre of the window. Its behaviour is sim ilar to that of the Title held.

Save As class

The Save As object template 1s displayed as follows

SaveAs· SaveAs

FMoomel~----------~--~----------~
F1tetypej&ooo (&OOO}

_j Include "Selecbon" button

_ja~ent participal8s S~ RAM translers

iJ When hidden

~Use attemalive w1ndow

L_----~----==Ca=~~l[~
Filename is a writable field for you to enter the default filename to be displayed tn
the dialogue

Filetype is a display field showing the current filetype's name and hex value. Next
to it is a pop-up menu button which displays a list of filetypes for you to choose
from. If you want to specify a flletype not on this list you can go to the Filetype
dialogue box (via the Other menu option~ and fill in the writable field with dny

- - •
ResEd

aw•••••••••wwca•••a•

filetype name or number The number must be in decimal unless preceded with

'&'.The two specia l filetypes 'directory' 1&1000) and 'application' (&2000) may also

be entered.

Include "Selection" Button is an option button that allows you to control the

presence or absence of the Save Ac; dialogue's Selection option

If the Client participates option button

• is off. the Save As module will1tself handle dll data saving on behalf of the

client, and the Supports RAM transfers option button remains faded.

• is on. the Save As module wi ll involve the client in data saving. using the RAM

transfer protocol only when the Supports RAM transfers option button is on

Scale Dialogue class

The Scale Dialogue object template is displayed as follows:

Scale: Scale

.) Other

_j Include "Scale to fit" button

Deliver event

_j Before showtng

_j Use altemabve window

_ Can~e.!...J I OK

Minimum, Maximum and Step size are writable mteger fields for entering the

constraints to be placed on user-specified scale factors.

Preset values is a list of four writable fields allowing you to specify the sca le

factors on the preset size local action buttons

Include "Scale to fit " button is an option button that allows you to control the

presence or absence of a Scale to Ht action button in the Sca le Dialogue object.

483

Exporting and importing messages ..
Exporting and importing messages

484

For some purposes. especially inLernationa l isation. you may want Lo edit the
user-visible messages held in a resource file en masse Rather than manually
stepping through every object template in the file, it is useful to be able to edit all
the messages in one place. You can do this using the Export messages menu item
(see page 423). This menu item leads to a Save as box containing a Textfi le icon If
you drag this icon into a Filer window or a text editor ResEd generates a file of
messages in MessageTrans format (see the RISC OS 3 Program,ner's Reference Manual
for details)

The file produced contains the messages from each object template in turn .
Because these do not have specific tags. a unique tag is generated automatically
for each message These tags take the form

<object name> l<number>:

where

<object name>
<number>

is the name of the object template
is the number of the message within that object

You can then edit the resulting message file. and drag it back into the resource file
display A warning IS displayed, and you must click on Import to proceed

The messages are matched to their respective objects by use of the information
stored in the tags. So. for example. the message

SetColoursiS : This is the setcolours dialogue

will replace the fifth message in the object template whose name is ·setcolours'.
This means that you should take extra care when editing a resource file after its
messages have been exported. and before they have been imported back agam
Objects should not be renamed. and gadgets within window object templates
must not be deleted. On the other hand it is safe to add new templates. or to add
new gadgets. or move existing gadgets within a window

Note: 1t IS Important that you do not alter any of the tags while editing the
messages

When revised messages are imported. to an object that is currently being edited it
is forcibly re-loaded to ensure that its editor is kept up-to-date with the changes
Thus there 1s potent1al for you to lose changes made while editing. so care should
be exercised when importing message files. Indeed. it is best. before exporting or
importing messages. to ensure that there are no unconfirmed changes in any
dialogue boxes associated with the file

ResEd

Keystroke equivalents

On occasions. it can be quicker when you are working in Res Ed to use the keyboard

instead of the mouse especially when you are familiar with Res Ed

In the resource file display

Keystroke

Ctrl-0

F3

In the Window editor

Keystroke

Ctri-W

Ctrl-E

Shirt-K

Ctrl T

Ctri-G

Ctri-P

Shift-C

Sl11ft-G

Ctri-S

Ctri-R

Ctri-L

Ctri-F2

Shift-R

In the Menu editor

Keystroke

Ctrl M

Ctrl-r

Effect

open the Object flags dialogue box for the selected objects

display a Save As dialogue box

Effect

open the Main properties dialogue box

open the Extents dialogue box

open the Keyboard shortcuts dialogue box

open the Toolbars dialogue box

open the Gadgets dialogue box

open the properties dialogue box for the selected gadget

open the Coordinates dialogue box for the selected gadget

open the Grid d1alogue box

snap the selected gadgets to the grid

make the selected radio buttons into a radio group

link the selected writable gadgets together

close this window

show all members of the radio group to which the selected

radio button belongs

Effect

open the Menu properties dialogue box for editing the
top-level characteristics of a menu

open the Menu entry properties dialogue box for the

selected menu entry

485

Mouse behaviour

When editing in general

Keystroke

Ctri -A

Clri-K

Ctri-Z

Effect

select all entries. gadgets or objects

delete selected entries. gadgets or objects

clear current selection

Mouse behaviour

486

The following mouse actions work on individual menu entries. gadgets or object
templates or select1ons of the same

Object prototype windows. gadget windows and menu entry windows behave in
the same manner as described below. except that. as they are no n-editing
windows. they do not allow operations such as deletion or repositioning

In the Window editor

Mouse action

Double-d ick

Drag Select

Drag Adjust

Shift-Drag Select

Effect

o n a gadget to open its properties din Iogue
box

on a gadget to move 1t around the window

or to copy it from one window to another

Page

458

449

or on the resize handle of a gadget to resize it 450

on the resize handle of a gadget to move it in
one direction on ly

on a gadget to make a copy of it within the
window

or move it from one window to another
(deletes the original)

450

449

Ctri -Shift-Drag Select on a window (with o r without a titlcba r) to 443
move it around the screen

Ctri-Shift-Drag Adjust on a wmdow (with or without an Adjust size 443
icon) to change its size

In the Menu editor window

Mouse action

Double-click

Drag Select

Shitt-Drag Select

In the resource file display

Mouse action

Double-click

Drag Select

Shift-Drag Select

Box selection

Effect

on a menu entry to open its properties
dialogue box

on a menu entry to reposition it within the
list of menu entries

o r to copy it trom one menu to CJnother

on a menu entry to make a copy of it within
the list of menu entries

or move it from one menu to another
(deletes the origina l)

Effect

on a window. tool bar or menu object
template to open its editor

on any other object template to open its
properties did Iogue box

on an object template to copy 1t from one
resource file d1splay to another

on an objcc.t template to make a copy of it
within the resource file display

or move it from one resource file display to
another (deletes the original)

The mouse can be used in two ways to select a group of object templates:

Res Ed

Page

430

<133

Page

422

422

<122

• Dragging a box around a group or object templates will select any object

template partly or wholly within the Select box.

• Dragging a box around a group of ob)ect templates while holding down Shift

will select only object templates wholly within the Select box.

Groups of gadgets (in the Window editor) or groups of menu entries (in the Menu

editor) can be selected in a sim ilar w<Jy

487

488

18 ResT est
•ssaws••••••••••wew••••• ••••w•••w•c•w•••ww•ww••t*~$»&&¥•~

ltSTHt
Info ~

Create "'
Show "'
Delete ,..
Choices
Quit

Having constructed a resource file you may wish to experiment with the

interface to ensure that the proper links have been made between the

different objects in the file The resource file test application (ResTestl allows you

LO

• check the appearance and behaviour of all the objects in your resource file

• monitor the flow of Toolbox and Wimp event codes inside an event log wmdow

and, if required, save this event log to a file

Starting ResTest

Start ResTest 1n a similar way to other RISC OS applications, by double-clicking on

its application icon. Then drag your resource fi le (or a selection of object templates

from ResEd) to the ResTcst iconbar icon.

ResTest will read the resource file and register 1t with the Toolbox. If your resource

file contains any objects marked as auto-create they will be created automatically;

any objects marked as auto-create and auto-show will be created and displayed

Thus certain objects in the resource file may appear immediately (e.g. iconbar

icons) If these objects are linked to other objects. they will also be created. and

these will be shown when you perform the appropriate action. For example. if an

icon bar icon is l inked to a menu. the menu wi ll be shown when you press Lhe Menu

button on the icon. Then if the menu itself is linked to submenus. these will be

shown when you traverse the submenu arrows

The iconbar menu

Once you have dragged your resource file to the ResTest icon then you can click

Menu on the iconbar icon and the ResTest menu will be displayed

Info displays an Info d ialogue box.

Create displays all the ob)ect template names in the resource file. Choosmg an

entry calls Toolbox_CreateObject on that template and creates the ob1ect Shared

objects which have already been created are shaded to indicate that they cannot

be created more than once

489

490

Show displays all the objects that have been created from the object templates. If
you go to this submenu immediately after dragging your resource file to ResTest.
only two types of object will be displayed:

• those objects marked auto-create

• other objects referenced from those objects (see Attad1ed objects on page I l).

So for example. if the only ob)ect marked auto-create was an 1conbar icon obJect.
then that object would be displayed. plus the menu object referenced by the
icon bar icon object. plus any objects referenced by that menu object Other
objects are added to the Show list as you create them from the Create submenu.

Each entry shows the run-time generated object id and the name. or the obJect
template from which it was created For example

currently
showing

object id

~ Show --;;;
&1912600: "Proglnto• ~

& 1912880: ·1barMenu·
~ .t & 19129AO: ·Icon Bar•

.t &187B2EO: "HyperVoewe,.
&190FCFO: "Filelnto•
& 190E400: "Scale·

~ & 1900030: "PnntObox"
& 190FF10: "ViewerMenu·

object
template name

Entries which are currently showing are ticked You can cause an unshown object
to be shown by clicking Select on its entry, and cause a shown object to be
unshown by unticking. Click with the Adjust button causes an object to be shown
transiently, and the menu tree will not stay open.

Delete displays all the objects that have been created . You can call
Toolbox_DeleteObject on an object by clicking on its entry. If the object has
unshared children then they are deleted too (a shared object will on ly be deleted
when all its uses are deleted- see Deleting an object on page 7)

Note· If you delete one or more objects created by a menu object (i.e. attached to
the menu object). and then try and delete the menu object itself. you may see the
following ResTest error displayed (you should not worry about this error)

Invalid Object Id (object id)

object id is the object id of the attached object that was deleted before the
menu object was deleted

So, in the example displayed of a Show menu (taken from the example application
constructed in the chapter Building an application on page 39). if the Scale object
were deleted. and then ViewerMenu were deleted (ViewerMenu is the menu object
that created the Scale object). then the above error message would be displayed
and the object 1d would be that of the Scale object.

Res Test

Choices displays the following dialogue box:

Displa~ d!tails on
f7 Toolbox ntnt code (7 E11tnt block

f7 Toolbox id block

Sm J ~~~ ' ~~ J
This box allows you to select what information is displayed in the event log

window. The options are fully described in the fo llowing seclion Tlie even! log window

Quit shuts down ResTest. removes all its windows from the screen. and deletes any

objects that were created in that session.

The event log window

If you click Select on the ResTest icon bar icon. the event log window is drsplayed

Th is window contains a log of the events received from the Toolbox. You can use

this to verify that the proper assignment of events to user actions has been made.

The output in the log window displays four sets of information. depending on what

options you have selected from the Choices box in the ResTest menu:

lltn o e: nu_ ou o t o~ ags = x
EvtntCodt: Mfnu_Selection (flags = lxllllllll)
EYtntCodt: <client eYent Bxiiiii2B2> (flags = lxllllllll)
ldBlock is: (so =lxi196DF8C sc =BxFFFFFFFF po =8xi196DE4C pc =lxFFFFFFFF ao =8x8196
ldBlock is: <so =lxi196DF8C sc =lxl8181884 po =lxi196DE4C pc =lxFFFFFFFF ao =8x8196
ldllock is: (so =8x8196D7CC sc =lxiiiiiBIE po =lx8196DF8C pc =Bxllll1884 ao =lxl196

window handle = Bxi187D6BS
icon handlt = -1
X : 851
y = 461

MIMP eYent: Pointer_Entering_Nindow
NIMP event: Pointtr_LtaYing_Nindow

Toolbox event code

This displays the event code (including client-specified events) and the flags value

of the event block. It is always preceded by 'EventCode ·

EventCode: Henu_AboutToBtShown (flags = 8x88888181)
EYentCodr: Menu_Stlection (flags = 8x88888888)
E11entCode: (client tYtnt lx81888282 > (flags = Bx88888888)

491

The event log window

Pointer out
Pointer in
Mouse click
Key pressed

492

---- - -·- a e 1 p **¥*¥ *¥ pm:

Toolbox id block

Th is d isplays the contents of Lhe id block. It is always preceded by 'ldBiock ·

ldBlock is : (so =lxi196DF8C sc =lxFFFFFFFF po =lxi196DE4C pc =lxFFFFFFFF ao =lxl196l
IdBlock is : (so =lxi196DF8C sc =lxllll1114 po =lxi196DE4C pc =lxFFFFFFFF ao =lxl1961
ldBlock is : (so =lxi196D7CC sc =lxiRIRIRIE po =lx1196DF8C pc =Rxlllllll4 ao =lxl196t

where

so = self object

sc = self component
po = parent object
pc = parent component
ao ancestor object
ac ancestor component

Event block

Once an event has occurred (e.g. DragEnded). information about that event is
returned in the event block. Th is information is always displayed indented by eight
spaces (how much information is displayed depends on the event)

WIMP events

window handlr = lxi187D615
icon handle = -1
X : 851
y = 461

This option allows you to select various types of Wimp events from the attached
pop-up menu. The information displayed is always preceded by 'WIMP event·

The fol lowing example shows the Wimp events reporled when Pointer in and
Pointer out have been selected from the pop-up menu:

NIMP eYent : Pointer_Entering_Nindow
WIMP eYent: Pointer_LeaYing_Nindow

The ResTest menu

If you cl ick Menu in the log window the ResTest menu is displayed

Save leads to a Save as dialogue allowing you to save the text in the log window
to a file

Clear removes any text in the log window.

19 DrawFile

o rawFile is a module that renders Draw files.

Differences between DrawFile output and !Draw output

The following are some small differences between the output of the DrawFile

module and !Draw.

Text

A text line that uses a font which can 't be found will be rendered (in system font) at

a size to fit its bounding box.

Transformed text

Transformed text lines in system font are supported A transformed text line that

uses a font which can't be found will be rendered (in system font) at Cl size to fit its

bounding box. The transformation will be ignored.

Text areas

In a text area. if you change (for example) the margin size (\M command). the

change doesn't take effect until the next output line In Draw this refers to

printable characters: but in DrawFile. it includes colour and font change

commands as well (this is because DrawFile uses the Font Manager to remember

the current font and colours) This means that line breaks can happen at slightly

different places when using DrawFile

The following commands cause output to occur:

B c u v <d igits>

The following do not:

!;A DFLMP

By preceding the former with the latter, the problem can be avoided

Sprite colours

For a sprite without a palette. the colours used are the WIMP colours. found by

using Wimp ReadPalette.

493

SWI DrawFile_Render

SWI DrawFile Render

494

On entry

RO = flags:
bit 0 set means render bounding boxes (as dotted red rectangles)
bit I set means do not render the objects themselves
bit 2 set means R5 is used as the flatness parameter

R I -= pointer to Draw file data
R2 = size of Draw fi le in bytes
R3 =pointer to transformation matrix

0 .-use identity
R4 = pointer to clipping rectangle m OS units

0 .- no clipping rectangle set up
R5 = flatness with which to render lines (if bit 2 of RO set)

On exit

Use

All registers preserved

This SWI renders a Draw file at a given screen position where that position is
defined as screen position 0. 0 with the x- andy-translations as specified in the
transformation matrix Hence to render a non-rotated I: I Draw file at x. y (screen
coordinates in OS units) the transformation matrix is:

(
1 <: 16

256*X

1 <: 16)
256*y

The effects of calling the module with the matrix not of the form

(wh1ch is a translation and a magnification)lf R3 = 0. then unit transformation
matrix is assumed (i .e the Draw file is rendered with its bottom left corner at
screen coordinates (0. OJJ

DrawFile -
The clipping rectangle is typically a redraw rectangle returned by the Wimp on a

redraw window request. If R4 = 0, lhen the whol e Draw file is rendered. If non-zero.

only objects which intersect the clipping rectangle are rendered.

C veneer
extern _kernel_oserror *drawfile render (int flags, void *data ,

int size, Transform *trfm,
BBox *clip,int flatness);

SWI DrawFile BBox

On entry

RO = flags (must be 0)
R I - pointer to Draw file data

R2 - size of Draw file in bytes
R3 = pointer to transformation matrix

0 .. use identity
R4 = pointer to 4-word buffer to ho ld the bounding box o f the Draw file

(xO. yO. xI . y I) in Draw units

On exit

Use

All registers preserved

Buffer pointed at by R4 ho lds the bounding box of the Draw file (xO. yO. xI. y I) in

Draw units

This SWI is used to determine the bounding box (in Draw units) of the given Draw

file, as if it were plotted with the transformation given.

C veneer
extern _kernel_oserror *drawfile_bbox (int flags , void *data,

int size, Transform *trfm,
BBox *box);

495

SWI DrawFile DeclareFonts

SWI DrawFile DeclareFonts

496

On entry

RO = flags
b it 0 set means do not download font (passed to PDriver_DeclareFont)

R I = pointer to Draw file data
R2 = size of Draw file in bytes

On exit

Use

All registers preserved

All fonts used by the document have been declared

If a printer requires font declarations. this SWI must be called for each Draw file to
be printed. between the cal ls to PDriver_Select]ob and PDriver_DrawPage.

Al l fonts are declared as "kern ed' . since this includes the non-kerncd case.

C veneer
extern _kernel_oserror *drawfile_declare_fonts (int flags, void *data,

int size);

Appendix A: Resource File Formats

T his appendix describes the resource n le format. which is intended to replace

the Wimp Template file format, allowing you to specify the appearance of no t

on ly window definition~. but also menu defin itions and dialogue boxes.

Terminology

The following terms are used throughout this appendix:

Term

word

resource file

string

message

M eaning

4 bytes stored in a file in 'little-endian· format; that is the

least significant byte of the word is stored first

consists of a fixed size header. followed by a contiguous
set o f user interface object templates or 'objects·. An
object consists of a fixed size header followed by the
variable size 'body' o f the object, fo llowed by 3 tables

string table
message table
relocations table

All object headers arc word-aligned . Unless otherwise
explicit ly stated all occurrences of a ·word' in this
appendix are assumed also to be aligned on a 4-byte

address.

is a sequence of ASCII characters tcrm1nated by a NUL
character. There is one table per object which holds all
such strings

A 'string reference· is given by its byte offset from the start
of the strings table

A null string reference is represented by -I.
typedef int StringReference;

is some textual information which is visible to the user.
All such messages for an object are held 1n its Messages
Table.

A null message reference is represented by -I.
typedef int MsgReference;

497

Resource file format

Resource file format

Diagrammatic representation

Diagrammatically. a resource file IS as rollows:

File Header
3 words

sequence of object templates

EOF

where the file header is:

Resource File ID 'RESF' 1 word

Version Number 1 word

Objects Offset 1 word

498

Resource File Formats

A resource file contain ing no objects has an objects Offset o f - I where an object

template is:

....
Q)
~ co
Q)

I
.......
u
Q)

E
0

.......
u >-
Q)~ ·- o
.0(()
0

(/)
Q)

.0

~

'

'f
[
~

String Table Offset

Messages Table Offset

Relocation Table Offset

Object Class

Flags

Version

Name

Object Size (in bytes)

Body Offset

Body Size (in bytes)

Body

(nul padded) /000

String Table

Messages Table

nrelocs
Relocations Table

1 word

1 word I 1 I
1 word

1 word

1 word 1
'

1 word

' 3 words

1 word

1 word

1 word ' 'f

r 1

1

A String Table Offset of -I is used to denote an Object Template which has no

String Table.

A Messages Table Offset o f -I is used to denote an Object Template which has no

Messages Table.

A Relocation Table Offset of - I is used to denote an Object Template which has no

Relocation Table. and hence the nrelocs must always be> 0. if the Relocation Table

eXIStS

When the Resource Pi le is loaded by the Toolbox, the body o ffset field is always

reloca ted to be a rea l pointer (but thi s is not specified as a relocation in the

relocation table)

499

Resource file format

Resource File Format Description

500

A resou rce file begins with a standard fixed size header which has the format:

'RESF'
Version number
Objects Offset

The current version number is I 0 I

1 word
1 word
1 word

(* 100. e g. 109 means 1.09)

The objects Offset gives the byte offset from the beginning o f the file where the
object templates begin.

typedef struct
{

int
int
int

file_id;
version_ number;
objects_offset ;

} ResF_FileHeader;

The rest of the file sta rts with a contiguous sequence of object templates where
each template has 3 words giving the byte offsets from the beginning of the
template of each of the string, messages and relocations tables. followed by a
standard fixed size header. followed by the body of the object followed by its
tables All object headers are word-aligned

Where the object header is:

Field

Class of object

Flags

Version of the class module requi red

Object name

Total size of object in bytes

Offset of object body from start of object header

Tota l size of object body in bytes

Type

I word

I word

I word

3 words

I word

I word

I word

Note that the name of an object is limited to 12 bytes including a terminating NUL
character.

'Tota l size' of object refers to the total size of the object header. 1 he object body
and the string and message tables.

'Body size· refers only to the size of the object's body (i.e. without its string and
message tables)

typedef struct
{

int
int
int
char
int
int
int

} ObjectTemplateHeader ;

typedef struct
{

int
int
int
ObjectTemplateHeader

class ;
flags;
version;
name[12];
total_size;
body_offset ;
body_size;

Resource File Formats

string_table_offset;
messages_ table_offset ;
relocat i ons_table_offset;
hdr ;

} ResourceFileObjectTemplateHeader;

The use of a body_offc;et field is to allow expansion in the header without losing

backwards compat ibility

Relocations at Load Time

When the resource file is loaded into memory, the relocations table for each object

is used to relocate any string. message. spri te area references and object offset<;

which appear in the ob1ecrs body

This means that the fi le can be loaded in one operation into memory, and when

relocation has been done. the memory can be used directly to crea te an object

Table Formats

There are three tables which optionally appear at the end of an object template

strings table. messages table. and relocations table.

Strings table

The string table contains all st rings which are not visible to the user which are

referenced elsewhere in the object A string is a sequence of ASCI I characters

term inated by a NULL character.

501

Resource file format

502

Messages Table

The messages table contains a list of strings conSISting of text stnngs which will be
visible to the user at run-time, and which are referred to by the object template

Relocations Table

The first word of the relocations table gives the number of relocations in the table.

The relocations table contains entries which give the byte offset of a word in the
object wh ich should be relocated at load t ime: this is an offset from the base or the
object's body. Each entry is two words long: the byte offset. and a relocation
directive. Possible relocation directives are

Relocation Directive

String Reference

MsgReference

SpriteArea Reference

ObjectOffset

Value

2

4

Meaning

add the address of 1 he base of the
strings table to this word

add the address of the base of the
messages table to this word

enter the address of the Sprite area
into wh ich the cl ien t's Sprites file
has been loaded

add the address of the object's body
to this word

Appendix B: Support for RISC OS 3.1 0
'* W* w:rw «*'*************a;w -··········- --------·--··

T his appendix describes the support provided for RISC OS 3.1 0.

RISC OS 3 10 support is located in System. Modules . 310Support:

f' 1· I SCSI::DHams.$.lSY&tam MoclMa.31 [[

RISC OS 3.10 has the following restrictions which would afrect Toolbox

applications·

• basic 3 I 0 does not have 3D icons as standard (e.g option buttons and radio

buttons)

• Fading icons on 3.10 is not always consistent (e.g. text label will gain a white

box behind the text)

• deleting a window while a 'slabbed' button is pressed m will cause a crash

The ThreeTen module addresses the above restrictions. It is automatically loaded

by the Window module when running on a RISC OS 3.10 machine. and also looks

for a new version of DragASprite and BorderUtils. It is able to co-exist with New

Look.

•

503

•a --- MMWMWWMM&WWMMWMMMMMMMMMM -----------··--· --···

504

Index

A
c~ction buttons 339-346

editing 459
events

ActionButton_Selected 346

methods
ActionButton_CctCiickShow 345

ActionButton_CetEvent 343

Action Button_ Get Text 341

Act1onButton_SetCiickShow 344

ActionButton_SetEvent 342

Act ion Bu tton_SetText 340

templates '346

adjuster arrows 347

editing 460
events

Adjuster Clicked 347

templates 347

ancc<>tor objects 9
attached objects II
auto-create I I
duto-show I I

8
button gadget '348-354

editing 460

events 354

methods
Button CetFiags '348
Button CetValidation 35'3

Button CetValue '35 1
Button SetFiags '349
Button SetFont 354
Button_SetValidation '352

c

Button_SctValue 350

templates 354

clr~ss. definition 2
client application . definition 2
client handle

returning value of 26
settmg and readmg 9

Colour Dialogue box class 65-78

Application Program Interface 66

attributes 66
before dialogue box is shown 67

colour selections 68
completing a colour dialogue 68
creating and deleting 66
editing 474

events
Colou rDbox_AboutToBeShown 76
ColourDbox_ColourSelected 77
ColourDbox DialogueCompleted 77

methods
ColourDbox CetColour 72
ColourDbox. CetColourModel 74

ColourDbox. CetDialoguellandle 70

ColourDbox CetNoneAvallable 75

ColourDbox CetWindowllandle 69

ColourDbox_SetColour 71

ColourDbox_SetColourModel 73

ColourDbox SetNoneAvailable 75

setting and readmg colour model 68

setting and reading colours 67
showing 67
templates 78
user interface 65

505

Index

Colour Menu Class
editing 474

Colour Menu class 79-88
Application Program Interface 80
attribules 80
before menu is shown 81
colour selection processing 81
creating and deleting 80
events

ColourMenu_AboutToBeShown 86
ColourMenu ColourSelection 87
ColourMenu_HasBeenHidden 86

getting underlying Object ID 82
methods

ColourMenu_GetColour 83
ColourMenu_GetNoneAvai lable 84
ColourMenu GetTitle 85
ColourMenu_SetColour 82
ColourMenu_SetNoneAva ilable 83
ColourMenu_SetTitle 84

setting and getting selected colour 8 1
showing 81
templates 87
user interface 79
Wimp event hand ling 88

colours. definition 2
component 7

D
dialogue box. definition 2
Discard/Cancel/Save Dialogue box class 89-10 I

Application Program Interface 90
attribules 90
changing the DCS message 91
creating and deleting 91
editing 475
events

506

DCS_AboutToBeShown 97
DCS_Cancel 99
DCS_Dia logueCompleted 99
DCS_Discard 98

DCS_Save 98
getting the underlying w1ndow ID 91
methods

DCS_GeLMessage 94
DCS_GetTitle 96
DCS_GetWindowiD ()2
DCS_SetMessage 93
DCS_SetTitle 95

showing 9 1
templates I 00
user interface 89
Wimp event handling 101
window definition I 00

display fields 355-357
editing 462
methods

DisplayField_GetValue 356
DisplayField_SetFont 357
DisplayField_SetValue 355

templates 357
draggable gadgets 358-365

editing 462
events

Draggable_DragEnded 365
Draggable_DragSLarLed 364

methods
Draggable_GetSprite 360
Draggable_GetState 363
Draggable_GetText 362
Draggable_SetSpriLc 359
Draggable_SetState 363
Draggable_SetText 361

templates 365
DrawFile 493-496

example 53
specifying 60
SWis

Drawr ile_BBox 495
DrawFile_DeclareFonts 496
DrawFile_Render 494

, ---···-----------·····--- --
E
events see Toolbox event 42
example application S1't' Hyper example 39

F
rile Info Dialogue box class 1 0'3 117

Application Program Interlace I 04
attributes I 04
before File In fo box is shown 105
creati ng and deleting I 05
ed iting IJ75
events

r'ilelnfo_AboutToBeShown 115
Fi lelnfo Dia logueCompleted 116

methods

current selection 122
editing 476
events

Index

FontDbox .AboutToBeShown 131
FontDbox Apply! ont 132
FontDbox_DialogueCompleted 132

font selection 122
methods

FontDbox_GetFont 125
FontDbox_GetSize 127
FontDbox GetTitle 130
FontDbox GetTryString 128
FontDbox_GetWindowiD 12'3
FontDbox_SetFonl 124
FontDbox SetSize 126
FonLDbox .SeLTitlc 129
FontDbox_SetTryString 127

showing 121
templates 133
user interface I 19
Wimp event handling 13'5
Window definition 133

rilelnto GetDate 11 2
Fi lelnfo Getr:ileName 110
Filelnfo GetrileSize Ill
Filelnfo. GetFileType 108
Filelnfo GetModified 107
Filelnfo. GetTitle 114
Filelnfo GetWindowiD 106
Filelnfo_SetDate I 12
Filelnfo_SetllleName 109
Filelnfo SetrileSize Ill
Filelnfo_SetFilcType 108
Filelnfo_SetModified 107
Filelnfo_SetTitle II '3

Font Menu class 137-144

sett ing and reading fields 106
showing 10'5
templates I 16
user interface 10'3
Wimp event handling 117
window delinilion I 17

Font Dialogue box class 11 9- 135
Application Program Interface 120
attributes 120
before Font box is shown 122
completing a 1·ont dialogue 122
creating and deleting 121

Application Program Interface 138
attributes 138
before Font Menu is shown 139
creating and deleting 138
editing 477
events

Font Menu _AboutToBeShown 14 2
FontMenu_FontSelection 14 '3
Font Men u_Has Been Hidden 142

font selection I '39
receiving 139

methods
FontMenu_Getront 141
FontMenu _SetFonl 140

showing 139
templates 143
user interface 137
Wimp event handling 144

507

Index

G
Gadgets 293. 325-338

H

Application Program Interface 325
attribu1 es 326
creating and deleting '328
flags '328
hot5pots 54
methods 330

Gadget_GetFiags '330
Gadget_GetHelpMessage 3'33
Cadget_Getlconlisl 334
Gadget_GetType 335
Gadget_MoveGadget 336
Gadget_SetFiags '33 I
Gadget_SetHelpMessage 332

Wimp event handling 338

Hyper example 39-63
client events 62
client handle

example of 42
cod ing 46. 53
component id 54
creating a basic resource file 43
description of 'Hyper 39
design requ iremen ts 41
design ing 41
Drawrile 53
event driven interface 42
exporting a drawfile 58
fi le loading 48
find box 56
handlers 46
handlmg views 49
HCL files 39. 63
hotspots 54
keyboard short-cuts 55
linking data structure<> 54
object 1d 53

508

redraw handler 53
ResTest 46
scaling 53
shared objects 42
status bar 5'5

lconbar icon cla!->s 145-164
Adjust cl ick events 149
Application Program Interface 146
att ribute<> 146
creating and delet ing 147. 169.291
ed iting 478
events

lconbar_AdjustAboutToBeShown 163
lconbar_Ciicked 162
Jconbar_SelectAboutToBeShown 162

Help messages 149
menu 148
methods

lconbar_GetEvent 153
lconbar_GetHelpMcssage 157
Jconbar_Getlconllandle 150
lconbar GetMenu 151
lconbar GetShow 155
lconbar_GetSprite 161
lconbar_GetText 159
lconba r SetEvent 152
lconbar_SetHelpMessage 156
lconbar_SetMenu 151
lconbar ,SetShow 154
lconbar_SetSprite 160
lconbar_SetText 158

posit ion and prio ri ty 148
Select click events 149
showing 148
templates I 63
user interface 145
Wimp event hand ling 164

id block 13

L
labelled boxes 367

editing 46'3
temp lates 367

labels 366

M

editing 463
templates 366

Menu cldss 165-200
adding menu entries 170

Adjust clicks on a Menu 171
Applicat ion Program Interface 166
attaching a submenu dynamicdlly 171

dttributes 166
changing a Menu entry 170

creating and deleting 169

events
Menu .AboutToBeShown 197

Menu_HasBeenHidden 197

Menu .Selection 198
Menu SubMenu 198

fading a Menu en try 170

interactive help 172
menu attributes 166
menu entry attributes 167
Menu hits 171
methods

Menu_AddEntry 19'3
Mcnu_GetCiickEvent 188

Menu_ GetCI ickShow 186
Menu_GetEntryHelpMessagc 192

Menu GetEntrySprite 180
Menu GetEntryText 178
Menu_GetFade 176
Menu_GetHeight 194
Menu GetHelpMessage 190

Menu GetSubMenuEvent 184
Menu_GetSubMenuShow 182
Menu GetTick 174

Menu_GetTitle 196
Menu_GetWidth 195
Menu RemoveEntry 194
Mcnu_SetCiickEvent I R7
Menu_SetCiickShow 185

Menu_SetEntryHelpMessage 191

Mcnu_SetEntrySprite 179

Menu SetEntryText 177
Menu_SetFade 175

Menu SetHelpMessage 189

Menu_SetSubMenuEvent 18'3
Menu_SetSubMenuShow I X I
Menu_SetTick 173
Menu .SctTitle 195

removing menu entries 170

showing 170
submenu arrows 172
templates 199
ticking a Menu entry 170
user interface 165
Wimp event handling 200

messages 16
exporting 4M
importing 484
messages table 502

method, definition 2
methods of objects 7

N
number ranges 368-'375

editing 464
events

Index

NumberRange_ ValueChanged 375

methods
NumbcrRange_GetBounds 37'3
NumberRange_GetValue 371

NumberRange_SetBounds 372
NumberRange_SetValue 370

templates 375

509

Index

0
object

ancestor 9
returning 29

attached objects II
auto -create I I
auto show II
classes 6
component 7
creating 7. 20

side erfects I I
customising a dialogue box 56
definition 3
deleting 7, 21
example 17
getting class of 6
getllng the template name 30
hiding 8. 23
id 6
methods 7
miscellaneous operation 25
parent 9

returning 28
returning class of 27
returning information on 24
returning value of client handle 26
setting value of client handle 26
shared 8, 42
show types 8
showing 7
showing on screen 22
template nags 425

object id 6
example 53

option buttons 376-382
editing 466
events

Opt1on Button_StateChanged 382
methods

510

Opt ion Button GetCvent 380
OptionButton_GetLabel 378
OptionButton_GetState 381

p

OptionButton_SeU:.vent 379
OptionButton_SetLabel 377
OptionButton_SetState 380

templates 382

parent objects 9
persistent dialogue box. definition 2
pop-up menus 383-386

editing 466
events

PopUp_AboutToBeShown 386
methods

PopUp_GetMenu 385
PopUp_SetMenu 384

templates 386
Print Dialogue box class 201-220

action button clicks 205
Application Program Interface 202
attributes 202
before Prmt box is shown 204
creating and deleting 203
ed iting 480
events

Print_AboutToBeShown 213
Print_DialogueCompleted 214
Print_Print 217
Print_Save 216
Print_SetUp 216
Print_SetUpAboulToBeShown 215

getting and setting printing options 204
getting Print Dialogue's title 205
getting underlying object I D 205
methods

Print_GetCopies 208
Print_GetDraft 212
Print_GetOrientation 210
Print_GetPageRangc 207
Print_GetScale 209
Print_GetTitle 211
Print. GetWindowiD 206

Print_SetCopies 208

Print_SetDraft 212
Pri nL. SetOri entation 210

Print .. Set Page Range 207
Print_SetScale 209

printing oplions 204

SetUp window 205
showing 203
Lcm plates 218

user interface 20 I
Wimp event handling 220
Window defin ition 218

Prog Info Dialogue box class 221-232

Application Program Interface 222

attributes 222
creating and deleting 222

editing 481
events

Progl nfo_AboutToBeShown 230

Proglnfo_DialogueCompleted 23 1

licence type 223
methods

Prog lnfo_GetLicenceType 228

Proglnfo_GetTitle 229

Proglnfo_GetVersion 226

Progln fo_GetWindowiD 224

Proglnfo_SetLicenceType 227

Proglnfo_SetTitle 229

Proglnfo_SetVersion 225

showing 223
template<; 231
user interface 22 1
version string 223
Wimp event handling 232

Window definition 232

Q
Quit Dia logue box class 233-244

Application Program Interface 234

attributes 234

Index

changing the Qu it Dia logue's message 236

cre,Hing and deleting 235

R

editing 482
events

Quit_AboutToBeShown 241
Quit_Cancel 243

Quit_DialogueCompleted 242

Quit_Quit 242

getting ID of underlying window 236

methods
Quit_GetMessage 238
Quit_GetTitle 240
Quit_GetWindowiD 236

Quit_SetMessage 237

Quit_SetTit le 239

showing 235
templates 243
user interface 233
Wimp event handling 244

Window definition 244

radio buttons 387-394
editing 467
events

RadioButton_SetLabel 388

RadioButton_StateChanged 394

methods
RadioButton_GeLEvent 39 1

RadioButton_GetLabel 389

Rad ioButton_GctState 393

RadioButton_SetEvent 390

RadioButton_SetState 392

templates 394
relocations table 50 1-502

511

Index

l~esEd
acl1on button properties 459
adJuster arrow properties 460
aligning gadgets 454

I<Hi<'d menu 454
button properties 460

Cancel box 428
colour dialogue template 4 74
colour menu template 474
common lcatu res in gadgcL properties 4'57
common features in standard dialogue

boxes and menus 473
creatmg a resource file 417
DCS template 47'5
dialogue boxes and str1ndard

menus 472-483
common features 473
editing 472
example 435. 472

displr~y licld propertie<> 462
draggablc properties 462
editing an object template 422
example application 4'3
exporting messages 484
file info template 47'5
font dialogue template 476
font menu template 477
gadgets 448-471

Align menu 454
auto scrolling 449
common features 457
coordinates dialogue box 45'3
l.:.ci1t menu 451
inserting into a wmdow 448
moving the caret between gadgets 4 50
positioning and moving 448
rad1o groups 4'52
re-sizing 4'50
snap to grid 452
stacking 4'50

grid in window templute 447
Help

for gadgets 456

512

on menu entries 437 456
help messCiges 426
iconbar icon template 478
importing messages 484
keyboard short-cuts 445

example 55 436-4'37
label properties 463
labelled box properties 463
length fi elds 426
Menu CliiSS 429-435

copying menu entries 433
Edit menu 429
example 434
inserting a new menu entry 433
menu entry properties 430
menu properties 432
moving menu entries 433
re-ordering menu entries 433

messages
export i ng 484
import ing 484

number range properties 464
object flags 425
object prototypes window 421
object templates

box selection 428
Cancel box 428
help messages 426
Length fields 426
OK box 428
selection model 427

OK box 428
opt ion button properties 466
pop-up menu properties 466
print dia logue template 480
prog info template 481
quit dialogue template 482
radio button properties 467
radio groups 452
ResEd iconba r icon 420
ResEd iconbar menu 420
resource file display 422 ·425

copying object templates 422

Edit menu 424
rile menu 423
moving object templates 422
Object flags 425
saving a resource file 423

save as template 482
sca le dialogue template 483
selection mode l for object templates 427
slider properties 468
snap to grid 452
starting ResEd 420
string set properties 469
toolbar example 55
too lbar template t155
window objects 438-447

closing the window 443
colours in a window 444
extent of a window 444
grid 447
main properties 4'39
moving the window 443
other properties 441
re-sizing the window 443
Window menu 438

writable field properties 4 71
resource file

definition 2, 15
format 15
load ing 15. 35

resource file formals 1'197-502
description 500
diagrammatic representation 498
messages table 502
relocations at load time 50 I
relocations table 502
strings table 50 I

ResTest 489-492
event log window

clear text in log window 492
event block 492
save text in log window 492
Toolbox event code 491
Toolbox id block 492

WIMP events 492
example session 46
iconbar menu 489

Choices 491
Create 489
Delete 490
Show 490

object ids 53
starting ResTest 489

RISC OS 3 I 0 support 503

s
SaveAs Dialogue box class 245-270

Application Program Interface 246
attributes 246
before dialogue box is shown 251
cancelling the dialogue 251
creating and deleting 247
d ialogue completed 253
edi ting 482
error handling 253
events

SaveAs_AboutToBeShown 265
SaveAs_Dia logueCompleted 266
SaveAs_Fi II Buffer 26 7
SaveAs_SaveCompleted 268
SaveAs_SaveTo l~ i le 266

file size. setting 25 1
filename and filetype, setting 248
methods

SaveAs_Bufferrilled 263
SaveAs_FileSaveCompleted 264
SaveAs_GetFileName 258
SaveAs_GetFileSize 260
SaveAs_GetFileType 259
SaveAs_GetTitle 256
SaveAs_GetWindowiD 254
SaveAs_Selection/\vailable 261
SaveAs_SetDataAddress 262
SaveAs_SetFil eName 257
SaveAs_SetFileSize 260

Index

513

Index

SaveAs_Set Fi leType 2 59
SaveAs_SctTitle 255

save completed successfully 253
saving by the module 251
saving data from a Toolbox client 248
saving to a file 252
saving via RAM transfer 252
Selection option button 251
setting file size 25 1
setting filename and filetype 248
showing 247
templates 268
user interface 245
Wimp event hand ling 269
Window definition 269

Scale Dialogue box class 271-285
Application Program Interface 272
attributes 272
before Scale box is shown 274
cancell ing a Scale dialogue 274
completion of a Sca le dialogue 275
creating and deleting 273
editing 483
events

Scale_AboutToBeShown 282
Scale_ApplyFactor 283
Scale. DialogueCompleted 283

methods
Scale_GetBounds 279
Scale GetTitle 28 1
Scale_GetValue 277
Scale_GetWindowiD 276
Scale_SetBounds 278
Scale_SetTitle 280
Sca le_SeLValue 277

reading and setting the writable field 275
reading and setting writable field

parameters 275
scale factor 274
showing 274
templates 284
user interface 27 1
Wimp event handling 285

514

Window definition 284
shared objects 8
sliders 395-402

editing 468
events

Slider_ ValueChanged 402
methods

Slider_GetBound 399
Slider_GetColour 40 I
Slider_GetValue 397
Slider_SetBound 398
Slider_SetColour 400
Slider_SetValue 396

templates 402
string sets 403-410

editing 469
events

StringSet_AboutToBeShown 409
StringSet_ ValueChanged 409

methods
StringSet GetSelected 406
Stri ngSet_SetAllowa ble 407
StringSet_SetAva i !able 404
StringSet_SetSelected 405

templates 410
stnng. definition 2
strings table 50 I
support for RISC OS 3.10 50'3

T
task initialisation 16
template flags 425
templates

gett ing a template name 30
terminology used in this manual 2
textual name (name). definition 2
title. changing 294
toolbar 455

editing 455
example 55
positioning 455

Toolbox
application model 4
get information for client application 32
initialising 16. 33
loading given resource file 35

messages 16
SWis

Toolbox_CreateObject 20
Toolbox_DeleteObject 21
Toolbox_GetAncestor 29
Toolbox_GetClientHandle 26
Toolbox_GetObjectClass 27
Toolbox_GetObjecllnfo 24
Toolbox_GetParent 28
Toolbox GetSyslnfo 32
Toolbox. GetTemplateName 30
Toolbox_HideObject 23
Toolbox_lnitialise 33
Toolbox_LoadResources 35
Toolbox_ObjectMiscOp 25
Toolbox_RaiseToolboxEvent 31

Toolbox_SetClientHandle 26
Toolbox_ShowObject 22

Toolbox event 12- 14
AboutToBeShown 42
definition 12
event codes 12
events

Toolbox_Error 37
Toolbox_ObjectAutoCreated 38
Toolbox_ObjectDeleted 38

format of 13
id block 13
raising an event 14
raising given event 31
redraw 54

transient dialogue box. definition 2

u
User Interface Object (object). definition 3
user. definition 2

Index

w
Wimp

events 5
Window class 287-321

Application Program Interface 288
attributes 288
changing the title 294
events

Window_AboutToBeShown 316
Window_HasBeenHidden 317

gadgets
in a window 293
see also Gadgets

getting and setting a client handle 295
Help messages 294
keyboard short-cuts 290 293. 319
menu 292
methods

Window_AddGadget 296
Window_AddKeyboardShortcuts 303
Window_GetHelpMessage 302
Window GetMenu 298
Window_GetPointer 300
Window_GetTitle 306
Window_GetWimpHandle 295
Window_RemoveGadget 297
Window_RemoveKeyboardShortcuts 30

4
Window_SetHelpMessage 301
Window_SetMenu 298
Window_SetPointer 299
Window_SetTitle 305

pointer shapes 294
showing 29 1
templates 317
user interface 287
Wimp event handling 320

word. definition 3
writable fields 41 1·4 16

ed iting 471
events

WritableField_ ValueChanged 416

515

Index
.__

1 ... ---------·--
••••

methods
Writablerield_CetVa luc 4 I 3
WrilableField_SetAIIowable 414
WritableField_SetFonl 4 I 5
WritableField_SetValue 4 I 2

templates 4 I 6

516

••

Reader's Comment Form
User interface Toolbox. issue I

0484,23 i

We would greatly appreciate your comments about this Mdnual. which will be taken into account for the

next issue

Did you find the Information you wanted?

Do you like the way the Information is presented?

I General comments:

If there is not enough room for your comments, please continue overleaf

How would you classify your experience with computers?

Used computers before

Cut out (or pf1otocopfj} and post to

Dept RC. Technical Publications

Acorn Computers Limited
Acorn House. Vision Park

Htston. Cambridge CB4 4AE
England

_j
Experienced User Programmer Experienced Programmer

Your name and address:

I Th1s .nformallon will only be used to get in touch w1th you in case we w1sh to explore your I
comments further

Notes

Notes

Notes

