ACORN
DESKTOP DEVELOPMENT

4

ENVIRONMENT

New Project
“File in: Name: |]

Tarast: | If
e 00087 Fc: 9900030
: ¢! {
[(Makef iTe][Cgagnggp:
I
AEITEIRIIY goaaaage: ebee27]

900808818: ofABAe1
. ARARRATA: ARARA??
RO area limit 3
PC = BBBB8AAR «_Livaneinas

Acorn©

ACORN
DESKTOP DEVELOPMENT
ENVIRONMENT

éill?ffc=
[MakeFile][C CE08800G: fbaBes
T
- Status: Init| 3988300C:
000863810: ef

Copyright © Acorn Computers Limited 1991
Published by Acorn Computers Technical Publications Department.

Neither the whole nor any part of the information contained in, nor the product
described in, this manual may be adapted or reproduced in any material form
except with the prior written approval of Acorn Computers Limited.

The product described in this manual and products for use with it are subject
to continuous development and improvement. All information of a technical
nature and particulars of the product and its use (including the information
and particulars in this manual) are given by Acorn Computers Limited in good
faith. However, Acorn Computers Limited cannot accept any liability for any
loss or damage arising from the use of any information or particulars in this
manual.

If you have any comments on this manual, please complete the form at the back
of the manual, and send it to the address given there.

Acorn supplies its products through an international dealer network. These
outlets are trained in the use and support of Acorn products and are available
to help resolve any queries you may have.

Within this publication, the term '‘BBC' is used as an abbreviation for ‘British
Broadcasting Corporation’.

ACORN, ARCHIMEDES and ECONET are trademarks of Acorn Computers
Limited.

UNIX is a trademark of ATET.

Published by Acorn Computers Limited
ISBN 1 85250 094 8

Part number 0470,501

Product number SKD37

Issue |, May1991

Contents

Contents iii

Introduction 1
About this guide 2
Conventions used 4

Part 1 - Getting started 5

Installing the DDE 7
Hardware requirement 7
The Install application 7
Running the Install application 8
Installing the DDE on a hard disc machine 10
Installing the DDE on a floppy disc machine 13
Installing the DDE on a network 14
Environment variables and the DDE 16

Working in the DDE 19
DDE tools 19
Booting the DDE 22
Working styles 23
New target support 27
Compatibility with previous Acorn language products 27
Where to go from here 27

iii

Contents

Part 2 - Interactive tools 29
Desktop debugging tool 31

Overview 31

About debuggers 32

Preparing your program 33

Starting a debugging session 35
Specifying program objects 38

Execution control 45

Program examination and modification 53
Options and other commands 58

An example debugging session 62

FormEd 71
Starting FormEd 71
Browser 72
Editing a window 73
Merging Templates files 75
Displaying sprites in template windows 75
Editing ROM utility templates 76
Example FormEd session 76

Make 79
Invoking Make 79
Using Make 80
Makefile format 89
An Example 90
Programmer interface 91

SrcEdit 93
Starting SrcEdit 93
SrcEdit menus 94
Printing a SrcEdit file 106

Contents

Laying out tables: the Tab key 106

Reading in text from another file 107

Bracket Matching 107

Throwback 107

Saving Options 108

Application menu 109

SrcEdit task windows 110

Some guidelines and suggestions for using task windows 112
Keystroke equivalents 112

Part 3 - Non-interactive tools 115

General features 117
The Application menu 118
The Setup box 120
Output 21

AMU 125
Starting AMU 125
The Application menu 127
Example output 128
Command line interface 128

Common 129
The SetUp dialogue box 129
The Application menu 130
Example output 131
Command line interface 132

DecAOF 133
The SetUp dialogue box 133
The Application menu 134
Example output 135
Command line interface 135

DecCF 137
The SetUp dialogue box 137
The Application menu 138
Example output 138
Command line interface 139

Diff 141
The SetUp dialogue box 141
The Application Menu 143
Example output 144
Command line interface 145

Find 147
The SetUp dialogue box 147
The Application menu 152
Example output 152
Command line interface 153

Link 155
The SetUp dialogue box 155
Output 157
Possible errors during a link stage 158
Libraries 159
Generating overlaid programs 159
Relocatable AIF images 163
Relocatable modules 164
Predefined linker symbols 165
Command line interface 166

LibFile 167
The SetUp dialogue box 167
Output 169
Command line interface 171

ObjSize 173
The SetUp dialogue box 173
The Application menu 174
Example output 174
Command line interface 175

Squeeze 177
The SetUp dialogue box 177
The Application menu 178
Example output 178
Command line interface 179

Contents

wC 181
The SetUp dialogue box 181
The Application menu 183
Example output 184
Command line interface 184

Extending the DDE 185
The FrontEnd module 185
Producing a complete WIMP application 186
The DDEUtils module 198
SrcEdit 198
Make 198

Appendices 199

Appendix A - Makefile syntax 201
Make and AMU 201
Makefile basics 202
Makefile structure 203
Advanced features 206
Makefiles constructed by Make 208
Miscellaneous features 210

Appendix B - FrontEnd protocols 211
Star Commands 211
EBNF Grammarof Description Format 211
WIMP Message returned after a *FrontEnd_SetUp 216

Appendix C - DDEUtils 217
Filename prefixing SWis 217
Filename prefixing *Commands 217
Long command line SWIs 218
Throwback SWis 219
Throwback WIMP messages 221

Appendix D - SrcEdit file formats 223
Language File Format 223
Help File Format 223

vii

viii

Appendix E - Code file formats 225

Terminology 225

Undefined Fields 226

Overall structure of AOF and ALF files 226
Chunk file format 226

AOF 229

Object file format 229

Linker defined symbols 239
Obsolescent and obsolete features 240

ALF 242

Library file format types 242
Library file chunks 242
LIB_DIRY 242

LIB_TIME 244

LIB_VSRN 244

LIB_DATA 244

Object code libraries 245

AIF 246

Properties of AIF 246
Layout of an AIF image 247
AIF header layout 248
Zero-initialisation code 249
Self relocation 250

ASD 254

Order of Debugging Data 254
Representation of Data Types 255
Representation of Source File Positions 256
Debugging Data Items in Detail 256

Appendix F - ARM procedure call standard 265

The purpose of APCS 265

Design criteria 266

The Procedure Call Standard 267

Defined bindings of the procedure call standard 274
Examples from Acorn language implementations 278

Index 283

Introduction

The Desktop Development Environment is an extendable set of RISC OS desktop
applications for programming. These tools interact in ways designed to help
your productivity and make the desktop a high quality environment for creating
RISC OS applications and relocatable modules from compiled languages or
assembler.

Since the development environment is designed to support more than one
programming language, all the tools not specific to a language are intended to be
included in more than one language product. The two products Acorn Desktop C
and Acorn Desktop Assembler can therefore be seen as subsets of the total
Desktop Development Environment developed by Acorn, each providing all the
tools relevant to programming in one language. The purchaser of both products
accumulates a complete environment for programming in both languages
(potentially mixing them in one application). It is anticipated that third parties
may wish to extend the environment with support for additional languages and
market other language products including DDE tools.

This user guide describes the non-language specific tools, and may itself be
distributed with several language products. It is included with both Acorn Desktop
C and Acorn Desktop Assembler.

The Desktop Development Environment consists of a large number of tools. This is
illustrated by the directory display showing their icons:

o — T
Hfifisn 1AMU ICC I1CHHG IConnon 10T EbecﬂﬂF
T 5 0 " o b
1DecCF IDiff IFind FornEd ILibFile ILink 1Make
I Ehi ll;n ! EELj SIIE ! S:weeze ! Slr‘nidit ! 1h:r!'l.l'ISI !..TO?CIC I THC I

With the exception of the Desktop Debugging Tool (DDT), all these tools are
multitasking RISC OS applications. DDT has to operate outside RISC OS in order to
stop it dead at any moment for breakpoints etc, so is windowed but not
multitasking. The DDE includes tools to:

e edit program source and other text files

search and examine text files mechanically
examine some types of binary file

compile and link programs

assemble assembly language programs

construct relocatable modules

construct programs efficiently under the control of makefiles, these being set
up from a simple desktop interface

squeeze finished program images to occupy less disk space
construct linkable libraries

debug RISC OS desktop applications interactively

construct template files for RISC OS desktop applications.

About this guide

This user guide tells you how to use the Desktop Development Environment tools
relevant for programming in more than one language, and is included in both the
products Acorn Desktop C and Acorn Desktop Assembler. It is accompanied by
additional user guide volumes covering the tools specific to each language — Acorn
ANSI C Release 4 in Acorn Desktop C, and Acorn Assembler Release 2 in Acorn Desktop
Assembler.

The majority of worked examples for the DDE products are described in the
accompanying language specific volumes, and those mentioned in this guide are
intended to make general points relevant to all the languages, although they
cannot be tried out on all different products.

This guide is not intended as an introduction to programming techniques,
languages or RISC OS. References are made to the RISC OS Programmer's Reference
manual available from Acorn.

This volume is organised into four parts:
® Part 1- Getting started

® Part 2 — Interactive tools

® Part 3— Non-interactive tools

@ Part 4 — Appendices

Part 1—- Getting started

This part of the guide describes how to set up the best working environment for
your purposes on your equipment using the standard DDE installation program,
and covers general methods of operating the DDE.

The chapters are:
@ |Installing the DDE
e Working in the DDE

Part 2 — Interactive tools

This has chapters covering each of the DDE tools which you use with constant
interaction as ‘foreground’ tasks. Each has its own distinctive icon and file type.
They are the debugger, template file editor, make and the source text editor.

The chapters are:

® Desktop debugging tool
e FormEd
® Make

® SrcEdit

Part 3 — Non-interactive tools

This covers the less interactive DDE tools which all have similar interfaces for
setting options and running, some performing operations which can be controlled
by Make. The first chapter in this part covers the general features common to all
the non-interactive tools. The next eleven chapters are ordered alphabetically and
each describes an individual tool. The last chapter describes how to extend the
DDE by integrating your own tools with it, including how to create your own
non-interactive tools.

The chapters are:

General features

AMU

Common

DecAOF

DecCF

Diff

Find

LibFile

Link

ObjSize

Squeeze

WC

Conventions used

® Extending the DDE

Part 4 — Appendices

As part of the strategy of making the DDE extendable and open, this part of the
guide contains specifications of file formats and other interfaces between tools as
necessary information for someone adding to the DDE. They also provide useful
references for others, for example those interworking assembler with a high level
language such as C.

The appendices are:

Appendix A - Makefile syntax

Appendix B - FrontEnd protocols

Appendix C - DDEUtils

Appendix D - SrcEdit file formats

Appendix E - Code file formats

Appendix F - ARM procedure call standard

Conventions used

Throughout this Guide, a fixed-width font is used for text that the user should type,
with an italic version representing classes of item that would be replaced in the
command by actual objects of the appropriate type. For example:

link options filenames

This means that you type link exactly as shown, and replace options and filenames
by specific examples.

A bold version of the same font is used for text that the computer responds with.

Hex integers are given in uppercase, and preceded by 0X, eg 0XFE1.
(Not preceded by &, as is the case with those of you more familiar with BBC Basic.)

The abbreviation DDE is used in later chapters to mean Desktop Development
Environment.

Part 1 - Getting started

2 Installing the DDE

nstalling the DDE means setting up a disc directory structure suitable for use for

future DDE sessions. You only need to perform this once to set up a suitable
structure for a given hardware configuration. Booting the DDE means setting up
your machine ready for starting work in the DDE, and is performed at the start of
each session (eg after re-booting your machine).

To use the DDE you will need to:

e install the DDE

e boot the DDE.

You will then be able to work within the DDE.

This chapter only describes installation. The chapter entitled Working in the DDE
explains how to boot and work within the DDE.

Hardware requirement

The minimum specification of RISC OS system recommended for serious use of the
DDE is a 2MB RAM machine with a hard disc drive.

You can use a 2MB or 4MB RAM machine with only floppy disc drives for
constructing smaller programs although this will cause you some inconvenience
due to disc swapping. This is because the DDE will not fit onto one floppy disc.

A IMB machine is not recommended, as the number of DDE tools that you can
load at the same time is limited

If you are using a floppy disc machine that has access to an Econet network, you
can avoid most of the disc swapping. See the section entitled lustalling the DDE on a
network on page 14. On a floppy disc plus Econet system, it is still recommended to
store your own program on a work floppy disc (for speed reasons) but this restricts
the size of program you can store.

The Install application

Before installing the DDE on your machine with the Install application, it is wise to
take a backup copy of each of the floppy discs supplied with the product.

Acorn Desktop C is supplied with four floppy discs; Acorn Desktop Assembler is
supplied with three. These are not intended for use before running Install, but if
you later wish to retrieve a file from them, it is useful to know their structure. They
are organised with names: Installation Disc, Boot Disc, Work Disc and Reference
Disc (not needed for Acorn Desktop Assembler). For diagrams showing their
precise directory structure, see the reference cards included with each product.

The discs supplied with the DDE products are arranged so that Install can
transform them reasonably easily into a working set of floppy discs during
installation on a machine without a hard disc. The Installation discs contain the
following:

e Install application

e reference material (which you will only use occasionally)

® programming examples,

The Boot discs contain the following:

@ DDE relocatable modules in a !System directory

e desktop tools.

The Work discs contain the following:

® DDE command line tools (called when the desktop tools are run)
® programming examples

e a scrap file directory !DDETmp.

The Reference disc supplied with Acorn Desktop C contains linkable libraries and
associated headers.

Running the Install application
Take the following steps to run the Install application:

1 Take the preparation steps described in the later section covering the type of
installation you wish to make.

2 Insert the disc labelled Installation Disc in your drive and click Select on the
drive icon to open its root directory.

3 Double click on !Install in the resulting directory display.

The Install application then reads your current filing system and disc name, and
displays an options dialogue box:

Install to: | adfs::Hardd |

[Z]Programning examples [ZZ]Force overurite
[C]Crunched headers []RAM disc (floppy only)

This dialogue box allows you to specify the filing system and disc name to install
to, and to set various options for the installation arrangement,

The Install to: slot is a writable icon containing the filing system name and disc
name forming the destination for Install to copy files to. It is initialised with the
current filing system and disc name; in the example above, the adfs filing system
and a hard disc called Hard4.

When installing on machines with floppy disc drives, there are two ways you can
construct work discs:

e containing programming examples to try
e |eaving the maximum space for your own code.

The Programming examples option allows you to make this choice. This option is
enabled by default — programming examples are included. When installing a hard
disc or network, this option controls the inclusion of these examples.

Enabling the Force overwrite option causes Install to overwrite existing files
whose names are duplicated by new ones. This is intended to ensure that files such
as tool binaries in your library directory are consistently updated, and is enabled
by default.

The Crunched headers option only exists in the C Install program, not the
Assembler Install. Two versions of the C #include headers for the RISC OS specific
library RISC_OSLib exist - the full commented version and the compact crunched
version for minimum disc usage and processing time. The Crunched headers
option specifies which version is installed. The full versions are on the Acorn
Desktop C Installation Disc, the crunched versions on the Reference Disc.

When working on a floppy disc only machine, your discs may be set up to load a
library of binaries into RAMFS at boot time. This leaves more space on your work
floppy disc for your own programs, but less space in RAM for operating DDE tools.
Enabling RAM disc results in Install setting up your working set of discs to use
RAMFS.

The options dialogue box contains three action buttons:

Run starts the installation process with the options as set.

Help displays text information in a scrollable read-only text window.
Cancel cancels the Install process.

If you are installing more than one DDE product, for example both Acorn Desktop
C and Acorn Desktop Assembler, merely run the Install process of each product in
turn, making sure the options dialogue box settings and so on are the same both
times.

After running Install, reset your machine, to make sure there are no problems
changing to new versions of relocatable modules supplied with the DDE.

Installing the DDE on a hard disc machine

10

To prepare for installation to your hard disc, first check and if necessary adjust the
ISystem application on your hard disc for correct interaction with Desktop C or
Desktop Assembler.

It is standard to have a !System application on an Archimedes hard disc. If you
have the standard directory Apps1 on your disc your !System is likely to be located
there. |System sets environment variables from its !Boot file executed when a
directory display is opened for the directory containing !System. It therefore may
be convenient to move your !System application to the root ($) directory of your
hard disc so that its !Boot file is executed every time you open the root directory of
your disc.

For the Desktop Development Environment to work properly on your hard disc
machine, your !System needs to set the environment variables SystemSPath,
Wimp$Scrap and WimpS$ScrapDir. Set up and use your !System before running
Install, as Install uses SystemSPath itself. To set up your !System, open a directory
display on the |System directory by double clicking Select with the shift key
depressed. Load the obey files !Boot and !Run into a text editor such as Edit (by
dragging them to the Edit icon bar icon) and inspect and alter the text if necessary.
To set the environment variables, the !Boot file should look like:

| !'Boot file for !System

IconSprites <QObey$Dir>.!Sprites

if “<System$Path>" = “* then Set System$Path <ObeyS$SDir>.

if “<Wimp$Scrap>" = "* then Set Wimp$Scrap <ObeyS$Dir>.ScrapFile
if “<Wimp$ScrapDir>" = “* then Set Wimp$ScrapDir <ObeyS$Dir>

and the !Run file should look like:

| 'Run file for !System

IconSprites <ObeyS$Dir>.!Sprites

Set System$Path <Obey$Dirs.

Set Wimp$Scrap <Obey$Dir>.ScrapFile
Set WimpS$ScrapDir <ObeyS$Dir>

Note that SystemSPath is set with a terminating '." character, unlike the other two
variables above. Note also that the above files are not identical to those supplied
on the Acorn Desktop C or Assembler distribution discs, which are intended for
floppy disc usage.

Save these files to your hard disc, then double click on !System to use it (execute
the IRun file and set the system variables).

If Install to: contains the filing system and disc name of your hard disc when you
run Install, the entire DDE directory and file structure is set up for use on your hard
disc.

11

Installing the DDE on a hard disc machine

12

The following directory structure is set up for you on your hard disc. It is created if
not present, or updated if it is already there:

$ ———— Acorn Desktop C only ————
I
[| |
[Library| |[user| [DDE| [!System] | cLib | RISC_OSLib
amu Program |Boot Modules h
common examples
debugaif in individual DDT
decaof directories IFormEd ANSILib RISC_OSLib
deccf IMake CLib OverMgr
diff ISrcEdit ~ Colour Stubs akbd magnify
find IAMU DDEUtils A mecs: |
link ICommon DDT bbe os
libfile IDecAOF FPEmulator colourmenu pointer
objsize IDecCF FrontEnd colménran print
3 cooras res
squeeze IDff Task | assert dbox respr
we IFind ctype g%xfile saveas
ILi ermo xque sprite
+ other language ILink float dooxicol© tamplate
specific command ILibFile kernel drawfdiag trace
tools 10bjSize :imﬂls gramferror txt
| ocale rawfobj txtedit
ivsv%"eeze math drawfty;;es txtopt
. pragmas drawmod txtscrap
+ other language setim glvem txt«;’fnt
iFi signa neicon a
specific tools stdarg flex 350‘6!&)!
stdio font werr
stdlib fontlist wimp
string fontselect wimpt
swis heap win
time help xferrecv
xfersend

An application !Boot is left in the directory $. DDE to assist you in booting the
DDE. If you want to execute this every time you reboot your machine, you can
insert a line such as:

*S.DDE. ! Boot. !Run

in your own machine !Boot file. A machine !Boot file is an obey file (created with a
text editor such as Edit) placed in your hard disc root directory, executed at
machine power-up or reset. It is analogous to the AutoExec.Bat file for DOS
machines. To set your machine to execute a machine boot file, type the line:

*Opt4d, 3

at the RISC OS command line.

Note that Install places a new version of the shared C library relocatable module in
<System$Path> Modules. If you have an older version of this module placed
somewhere else and loaded by your own !Boot file (or by one of the applications

loaded by your !Boot) delete the old module and alter any references to load the
new one.

Installing the DDE

Installing the DDE on a floppy disc machine

If Install to: contains a string such as adfs: : 0 oradfs: : UserWorkC when you
run Install, a working set of floppy discs is constructed from the distribution discs.

You will need a number of blank, previously-formatted RISC OS 800K floppy discs.
The recommended format to use is RISC OS E format. The number of blank discs
needed is the same as the number of distributed discs when making a working set
with RAM disc enabled, one less without RAM disc. Thus, for example, installing
Acorn Desktop C with RAM disc on requires four blank discs, whereas with RAM
disc off you only need three.

When you run Install, it prompts you to insert various distribution discs and fresh
discs in turn, so that each fresh disc can be named and files copied to it.

The arrangement of files on a working set of floppy discs is similar to that on a hard
disc, but split between the floppies. The arrangement of the three main discs
without RAM disc enabled is as follows:

Work disc Boot disc Reference disc
$ S $
| I l [| |
IDDETmp | Library User DDE ISystem CLib RISC_OSLib | | CHel
y P
I I [| I
amu Program !Boot | h I C
common examples
debugaif | in individual IDDT 'Boot
decaof directories IFormEd IRun éNSILib RISC_OSLib
decct IMake CLib 15pri verMgr
: ! Sprites ;
diff CLib | iScEdit Colour Stubs akbd magnify
find IAMU DDEUtils gam: e
; gs
link Conly 1Common DDT bbe 0s
libfile IDecAOF FPEmulator colourmenu pointer
objsize ﬂ DecCF FrontEnd colol.értran print
squeeze Sk IDiff Task R ggg; S Fggpr
we L WS | iFind ctype ggoﬂile saveas
i errmo oxquery sprite
iII:‘IE:'I float dboxtcol template
+ other language : {oFile kernel drawidiag trace
specific command 'ObjSize limits drawferror txt
tools [Squeeze locale draw’[Ob] txtedit
| math drawftypes txtopt
WC
pragmas drawmod txtscrap
+ other language sptjm[: fe'l\:aegén :;l";int
o signa ilei a
specific tools | stdarg flex vispdatay
stdio font werr
stdlib fontlist wimp
string fontselect wimpt
swis heap win
| time help xferrecv
xfersend

t———— Acorn Desktop C only .

13

Installing the DDE on a network

The reason an extra blank disc is required for installation with RAM disc is that an
extra Boot disc is created. This contains the Library and CLib directories of the
above Work disc. It loads the command line tools at boot time into RAMFS,
allowing them to operate faster and saving space on the Work disc, leaving more
disc room for your programs.

To use library binaries in RAMFS, you must make an addition to the RunSPath
RISC OS environment variable at boot time. You can place a line in the !Boot file
supplied on the RAM floppy disc to set this up, such as:

*get Run$Path ,adfs:%.,ram:%.

Installing the DDE on a network

14

In preparation for installation to a network, you must first log onto the target
network with system privilege, then set the current filing system to the network by
typing the line:

*net
at the RISC OS command line. Return to the desktop and run Install.

The Install to: field appears set to the network fileserver name, and when you run
Install, a directory and file structure is set up on the network and one floppy disc
from the distribution discs.

You will need one blank floppy disc per user, so format some to RISC OS E format,

Note: If more than one user is to share your network installation, a site license
must be purchased through your Acorn Authorised Dealer.

When you run Install, it prompts you to insert various distribution discs and the
fresh disc in turn, so that files can be copied.

The arrangement of files on the network is similar to that on a hard disc, but split
between different directories. The following is the installed arrangement:

? $
UserWorkC ‘

(UserWorkA for Assembler) DDETools

common examples

debugaif in individual IDDT
decaof directories IFormEd
decct IMake
diff ISrcEdit
find IAMU
link ICommon
libfile IDecAOF
objsize IDecCF
squeeze \Diff
we IFind
+ other language ILink
specific command ILibFile
tools ObjSize
ISqueeze
WC

|
IDDETmp [Library| [User| [DDE| [iSystem|
|

amu Program !Boot \

Boot
IRun
CLib 1Sprites
Colour
DDEUtils
DDT
FPEmulator
FrontEnd
Task

+ other language
specific tools

magnify
menu

pointer
print

res
respr
saveas
sprite
template
trace

txt
txtedit
txtopt
txtscrap
txh;in
typdat
visdelay
werr
wimp
wimpt |
win

ANSILib RISC_OSLib
OverMgr
Stubs akbd
alarm
baricon
bbc
colourmenu
colourtran
coords
assert dbox
ctype dboxfile
ermo dboxquery
float dboxtcol
kernel drawfdiag
limits drawferror
locale drawfobj
math drawftypes
pragmas drawmod
setjm event
signal fileicon
stdarg flex
stdio font
stdlib fontlist
string fontselect
swis heap
time help

- Acorn Desktop C only

xferrecv
xfersend

Each network user then requires a copy of the S.DDETools directory within their
own directory area, plus a copy of the work floppy disc. Each user requires a copy of
the DDETools directory because tools such as Make and SrcEdit write options files

into their application directories.

To make a work floppy disc, name a blank formatted disc UserWorkC (C) or
UserWorkA (Assembler) and copy the contents of the directory of the same name

on the net to the floppy disc.

15

Environment variables and the DDE

Environment variables and the DDE

16

Various DDE operations depend on the correct settings of environment variables. If
you carefully follow the instructions in this user guide for installing and booting
the DDE, they should be correctly set and you do not need the following
information. These details are summarised here as an aid for tracking down any
problems you may have.

Each DDE tool, when loaded, defines an environment variable of the sort
<toolname=$Dir. The purpose of these variables is to allow each tool access to
its application directory, for example, to store options. These are not likely to
become incorrectly set and cause problems. SrcEdit can be configured with
options from its desktop interface, and also from options variables, as described in
the chapter entitled SrcEdit later in this guide.

System$Path

Set by: The 'Run and !Boot files of the !System application.

Purpose: Used by Install to indicate the directory in which to place
relocatable modules. Used by the DDE applications as the place to
load relocatable modules from.

Problems: If the !System application has not been run or shown in a directory
display SystemSPath remains unset. Install then stops with an error
when run. DDE tools fail to load as they cannot locate required
modules.

Wimp$Scrap

Set by: The 'Run and !Boot files of the !System application.

Purpose: This specifies the filename of a temporary file for passing from one
desktop application to another (eg when saving a file from SrcEdit
directly to the icon bar icon of WC).

Problems: If the !System application has not been run or shown in a directory
display WimpSScrap remains unset. Direct saving of files from one
DDE tool to another then fails with an error.

Wimp$ScrapDir

Set by: On a hard disc the |Run and !Boot files of the !System application.
On a floppy disc or network, set by the |Run and !Boot files of the
IDDETmp application on the work disc.

Purpose:

Problems:

Run$Path
Set by:

Purpose:

Problems:

DDES$Path
Set by:

Purpose:

Problems:

This specifies the directory name in which to place temporary files.
DDE tools such as the C compiler and assemblers generate
temporary output files which you then rename to the file you want
when you drag an icon to a directory display.

If WimpSScrapDir is not set, non-interactive DDE tools such as the
C compiler and assemblers attempt to create temporary files in

$. tmp when run. If this fails (for example because this directory
doesn't exist) the tools fail to run, generating error messages about
being unable to open files in 5. tmp.

User constructed !boot obey file.

This specifies a list of directory names which the system searches to
find and execute image files. When the DDE non-interactive tools
are run, they execute command line tools from a library directory,
which is in the ramfs filing system if the RAMFS floppy disc option is
used.

If incorrectly set, command line tools may not be found and
non-interactive tools fail to run.

The !Run and !Boot files of the DDE !Boot application (set up by
Install).

This is set to the name of the directory containing the DDE tools,
and is used by Make to start tool interfaces for setting Tool options.

If DDESPath is unset, the Make Tool options facility fails with an
error mentioning DDE :

C$Path (Acorn Desktop C only)

Set by:

Purpose:

Problems:

The !Run and !Boot files of the DDE !Boot application (set up by C
Install).

This specifies a list of directory names for the C compiler to search
for libraries and their headers.

The !Boot application is created rather than just copied by Install. If
you perform your installation by copying rather than running Install,
you will produce a !Boot application which does not set CSPath. If

17

Environment variables and the DDE

unset, the C compiler will not be able to find #include headers such
as those of RISC_OSLib, either when used managed by Make or
unmanaged.

CSLibroot (Acorn Desktop C only)

Set by: The 'Run and !Boot files of the DDE !Boot application (set up by C
Install).
Purpose: This specifies a list of directory names for the C compiler to search

for #include headers. See the chapter entitled CC in the
accompanying Acorn ANSI C Release 4 user guide for more details.

18

DDE tools

Working in the DDE

This chapter describes how you boot the DDE to start each programming
session, and provides an overview of the most productive way to work with the
DDE to produce your programs. The chapter entitled Installing the DDE describes

how to prepare your working environment.

To use the DDE you will:

You

The

install the DDE
boot the DDE.

will then be able to work within the DDE.

DDE is formed from a number of RISC OS desktop programming tools. All DDE

language products include the following tools:

DDT - A new windowed debugger for debugging any executable image file,
including the 'Runimage file of a RISC OS application. DDT presents a
windowed interface with RISC OS style controls.

Note that as DDT has to be capable of stopping RISC OS dead at any point in a
program, for breakpoints, single stepping, etc, it cannot multitask under the
RISC OS desktop.

FormEd - An improved version of the FormEd application for producing the
Templates resource file of each RISC OS application.

Make — A new desktop application for constructing programs under the
management of ‘recipes’ stored in Makefiles, Various types of Makefile can be
rapidly constructed using the desktop controls of Make, as well as being
executed. This facility for constructing Makefiles is known as ‘project
management’ on some programming systems for other types of computer.

SrcEdit — A text editor derived from Edit with many new features for
constructing program sources and other text files.

AMU - A compact alternative to Make for using, but not constructing,
Makefiles.

Common — A utility to find the most common words in a text file.

DecAOF — A utility for examining AOF files output by language compilers or
assemblers,

19

3 Working in the DDE

This chapter describes how you boot the DDE to start each programming
session, and provides an overview of the most productive way to work with the
DDE to produce your programs. The chapter entitled Installing the DDE describes
how to prepare your working environment,

To use the DDE you will:
e install the DDE
e boot the DDE.

You will then be able to work within the DDE.

DDE tools

The DDE is formed from a number of RISC OS desktop programming tools. All DDE
language products include the following tools:

e DDT - A new windowed debugger for debugging any executable image file,
including the IRunimage file of a RISC OS application. DDT presents a
windowed interface with RISC OS style controls.

Note that as DDT has to be capable of stopping RISC OS dead at any point in a
program, for breakpoints, single stepping, etc, it cannot multitask under the
RISC OS desktop.

e FormEd - An improved version of the FormEd application for producing the
Templates resource file of each RISC OS application.

® Make - A new desktop application for constructing programs under the
management of ‘recipes’ stored in Makefiles. Various types of Makefile can be
rapidly constructed using the desktop controls of Make, as well as being
executed. This facility for constructing Makefiles is known as 'project
management’ on some programming systems for other types of computer.

e SrcEdit - A text editor derived from Edit with many new features for
constructing program sources and other text files.

® AMU - A compact alternative to Make for using, but not constructing,
Makefiles.

Common — A utility to find the most common words in a text file,

® DecAOF - A utility for examining AOF files output by language compilers or
assemblers.

19

20

DecCF — A utility for examining chunk files.
Diff — A text file comparison tool.
Find - A tool for finding text patterns in the names or contents of sets of files.

Link — A tool for constructing usable relocatable modules, program files, etc.,
from object files produced by language compilers and assemblers.

e LibFile — A utility for constructing linkable library files storing general purpose
routines for efficient re-use in more than one program.

ObjSize — A utility to measure object file size.

Squeeze - A tool which compacts finished program images so that they
occupy much less disc space and load faster.

e WC - A text file word and character counting utility.

In addition, each product contains language specific tools, such as the C compiler
CC forming part of Acorn Desktop C, and the assembler ObjAsm in Acorn Desktop
Assembler. Each of the tools listed above is described in more detail in its own
chapter later in this volume. The language specific tools are described in the
language user guides accompanying this manual.

As well as performing individual tasks, several of the DDE tools cooperate in ways
designed to enhance your productivity. An example of this is throwback. When a
language compiler or assembler detects an error in a program source file, it can
cause throwback — opening a SrcEdit window for immediate correction of the
offending program line. Another example of cooperation is the ability to drag an
output file from one DDE tool to the input of another appropriate DDE tool.

Interactive and non-interactive tools

The DDE tools are divided into two categories — interactive and non-interactive,
The non-interactive tools are those that have options set and then are run, without
any further interaction with you until the task completes or is halted. The
interactive tools are those that operate with constant interaction with you, such as
the source editor SrcEdit.

In the list of tools above, the first four (DDT, FormEd, Make and SrcEdit) are
interactive tools, and the rest are all non-interactive, The chapters describing each
tool are organised into parts of this manual describing each category of tool. The
non-interactive tools all have similar user interfaces, and the features common to
all of them are described in the chapter entitled General features on page 117.

Working in the DDE

Entering filenames

Many of the DDE tools require you to specify file or directory names. The
interactive tools each have file types that they ‘own’, which you can double click on
in directory displays to start activities. These are:

® DebugAlIF — execution of one starts a DDT session. Files of this type are
displayed in directory displays with the icon:

e Template — double clicking on one starts a FormEd edit. Template files are
displayed in directory displays with the icon:

Eh

e Makefile - double clicking on one loads it into Make (and may start a Make
job). Files of the type Makefile are displayed in directory displays with the icon:

e Text - double clicking on one starts a SrcEdit edit.

None of the non-interactive DDE tools own a file type. Input files are specified to
these tools by dragging them to their icon bar icons from a directory display or by
typing their names into a writable icon in a dialogue box or menu field. When
typing filenames into a writable icon, enter absolute filenames such as:

adfs::Hard4.$.User. | Buggy.o.Buggy

21

Boolng the UUE

To reduce the amount of typing required, any writable icon on a dialogue box that
accepts a filename or directory name can be set by dragging a filename from a
directory display to it. For example, dragging a filename from a directory display to
the Files writable icon on the Link SetUp dialogue box adds it to the list of input
files already specified:

B8] Linker
Files: | adfs::Hard4.$,User, !Buggg.o.buggg_i_j

- Options
<& RIF < *Relocatable AIF []Debug

C>Module < >Binary [Jverbose
Run Cancel |

Many program source files and makefiles contain filenames, for example in an
assembler program line such as:

GET *.h.SWINames

RISC OS provides only one current directory, but many tasks (such as assembly
processes) can be multitasking, running at the same time. Thus while the previous
non-multitasking generation of Acorn language products could search for files
relative to a suitably set current directory, a new concept of work directory is
introduced for the DDE. This can be considered rather like a current directory for
each task, and file searching is performed relative to this. See the section on each
tool to see the way the work directory is set and used by that tool. Most of the
simpler tools do not require a work directory.

Booting the DDE

22

Booting the DDE at the start of a working session requires three steps:

e Ifworking from floppy disc with a RAM disc, load the library directory from the
RAMBoot floppy disc to RAMFS, using the !Boot obey file provided, ensuring
that your setting of the RISC OS variable RunSPath is such as:

,adfs:%.,ram:%.
so that the library binaries stored in RAMFS can be executed normally.
Double clicking Select on a DDE !Boot application (in the DDE directory).

Double clicking Select on the set of DDE tools you wish to use in the directory
display of the DDE directory.

Working styles

Working in the DDE

You are then ready to move to the User directory (on the UserWork disc) and
construct your own programs or the example programs provided. If you are working
on floppy discs double click on IDDETmp on your work disc to ensure that
WimpSScrapDir is set correctly.

The DDE !Eoot application is set up by the installation process as described in
chapter entitled Iustalling the DDE on page 7. Its location depends on the hardware
system you installed on. If you have a hard disc drive, the !|Boot application is
$.DDE. ! Boot, and you may set your own boot file to execute its !Run file when
your machine is started, removing the need for the first step above. If you have
installed on a network, the |Boot application is in the subdirectory DDE of each
user's copy of the DDETools directory. If you have a floppy disc only system, the
1Boot application is in the DDE directory of the Boot disc produced at installation.
See the directory diagrams in the chapter entitled Installing the DDE for the installed
locations of files.

The number of DDE tools that you can usefully load at Boot time ready for use is
determined by a number of factors: your machine RAM size; the space occupied by
other applications loaded; the size of files you wish to process with the DDE tools;
and the space on your icon bar.

The DDE tcols support two main styles of working — managed and unmanaged
development. These differ only in the way you construct your finished programs
from sources, not the way you write or debug them, and you can mix and match the
two styles as you wish.

Managed development makes use of makefiles to manage the construction of your
finished programs. A makefile is a ‘recipe’ for processing your sources and linking
the object files produced to form the usable program. The tools Make and AMU can
both execute the commands in a makefile running other tools to perform a make
job. The tool Make also constructs makefiles for you, avoiding the need for you to
understand their syntax, and making it quick and easy to do this. The main
advantages of managed development are: timestamps of files are examined during
a make job and no unnecessary reprocessing of unaltered program sources is
performed; programs are constructed consistently, following the same recipe each
time, even when run by different people. These advantages make managed
development the best style for the development of larger programs with source
split into several source files.

Unmanaged development makes use of each individual tool directly to process the
files as required to construct your programs. This can offer the quickest way of
constructing small programs.

23

24

When Booting for unmanaged development you have to load each tool that you
wish to use, but when Booting for managed development you only need to load
Make (or AMU).

When working in either style, it is recommended you place each program project in
a separate subdirectory, in the same way that the program examples are arranged.
You may find it convenient to place your own project in User, like the examples.
You can place the source, header and object files in suitable subdirectories of the
project directory. See the chapters on the language compilers or assemblers in the
accompanying language specific user guide for more details of subdirectory
conventions. Source may be placed elsewhere, but this can make it more difficult
to rename or move whole projects to other directories or filing systems.

Two ways of constructing the !Automata example

An illustration of managed and unmanaged development is the way that the
program example !Automata (supplied with both Acorn Desktop C and Acorn
Desktop Assembler) can be constructed from its sources in both working styles.

All the necessary resource files of !Automata are supplied ready made except for
the main program file IRunimage. !Runimage is constructed from a C source file
c.Automata and an assembler file s. autoprocs, linking with two C libraries
Stubs and RISC_OSLib. In Acorn Desktop Assembler there is no C compiler
supplied, so the C file is included ready compiled and linked to the libraries to
form an object file 0. Automata. In Acorn Desktop C no assembler is supplied so
the assembiler file is distributed ready assembled as o.autoprocs.

Constructing !Automata in an unmanaged style

To construct !Runlmage in an unmanaged style, compile/assemble and link with
the following steps:

I At boot time load Link, and either CC (Acorn Desktop C) or ObjAsm (Acorn
Desktop Assembler) by double clicking Select on their names in the DDE
directory.

2 Open adirectory display on the |Automata application directory by double
clicking Select with the shift key pressed, pointing to !Automata in the User
directory.

3a If using Acorn Desktop C, compile the file ¢ . Aut omata to produce the object
file o. Automata. To do this, open the c subdirectory and drag the Automata
text file to the CC icon bar icon. The CC setup dialogue box appears with the
Source writable icon set to the name of the file you dragged. Enable the
Compile only option by clicking on it, then click on Run to start the compiler.
The CC Run and then Save dialogue boxes appear. Open the o subdirectory
and drag the CC output file to it from the save box.

Working in the DDE

3b If using Acorn Desktop Assembler, assemble the file s.autoprocs to
produce the obiject file 0. autoprocs. To do this, open the s subdirectory
and drag the autoprocs text file to the ObjAsm icon bar icon. The ObjAsm
Setup dialogue box appears with the Source writable icon set to the name of
the file you dragged. Click on Run to start the assembler. The ObjAsm Run and
then Save dialogue boxes appear. Open the o subdirectory and drag the
ObjAsm output file to it from the save box.

4 Link the object files to form the !Runimage AIF file. To do this, open the o
subdirectory and drag o. Automata to the Link icon bar icon. The Link setup
dialogue box appears with the Files writable icon set to the name of the file
you dragged. Drag the 0. autoprocs file to the Files writable icon so that its
name is added to the list to be linked. If using Acorn Desktop C you also need
to drag the library files $.RISC_0SLib.o.RISC_0SLib and
$.CLib.o.Stubs to the Files writable icon to include them in the link.
Ensure that the AIF radio button is selected and click on Run to start the link.
The Link Run then Save windows appear. Click on OK to save the AIF file
produced with the default name, which is 'Runlmage in the application
directory.

Constructing !Automata in a managed style

To construct 'Runlmage in a managed style, build and use a Makefile with the
following steps:

I At boot time load Make by double clicking Select on its name in the DDE
directory.

2 Open adirectory display on the !Automata application directory by double
clicking Select with the shift key pressed, pointing to !Automata in the User
directory.

3 Click Select on the Make icon on the icon bar to show the New Project dialogue
box.

4 Fill in the Name writable icon with a short name of your choice (10 or fewer
alphanumeric characters), the Target writable icon with !Runimage (this is the
file you wish to produce) and the Tool writable icon with Link, as this is the
tool which finally outputs the target.

5 Drag the Makefile from the dialogue box to the !Automata directory to create
the new Makefile (project). A Project dialogue box now appears for your new
Makefile.

25

26

6a If using Acorn Desktop C, open the c directory and drag c. Automata to the
Insert writable icon, followed by o.autoprocs, $.CLib.o.Stubs and
$.RISC_OSLib.o.RISC_0OSLib. Click on OK to the right of the Insert
writable icon. This is the way you specify a set of input files to be processed by
the Make job.

6b If using Acorn Desktop Assembler, open the s directory and drag
s.autoprocs to the Insert writable icon, followed by o . Automata. Click on
OK to the right of the Insert writable icon. This is the way you specify a set of
input files to be processed by the Make job.

7 Run a Make job to construct 'Runimage from the input files specified by
clicking on the Make button.

To repeat construction of !Runimage following your instructions stored in the
makefile, open a project dialogue box for your project again, and simply repeat
step 7 above, or alternatively double click on the Makefile in the directory display.

The file IRunlmage is then constructed following your instructions stored in the
makefile.

For more details about operating the individual tools, see the chapter about each
tool.

For several worked examples illustrating general use of the DDE see the chapter
entitled C tools and the DDE or the chapter entitled Assemblers and the DDE in the
accompanying language specific user guide forming part of Acorn Desktop C or
Acorn Desktop Assembler.

Working with the DDE on small machines

As described in the chapter entitled Installing the DDE on page 7, the minimum
Archimedes system recommended for serious use of the DDE is a 2MB RAM
machine with a hard disc drive.

Working without a hard disc drive causes the DDE to be split between a set of
floppy discs or between one floppy disc and the network. This means you waste
time changing discs, and accessing files from a network can be relatively slow. The
size of program you can easily develop is also restricted by the space for your files
on an 800K work disc (with some extra effort a project could be split between two
work discs). RISC OS provides help to desktop programs using files from more than
one disc by including filing system and disc names in absolute filenames as used
by the DDE tools. It is therefore possible, for example, to use Link to link object
files from more than one disc. The disc containing each file must be inserted both
when the filename is dragged from a directory display to the tool dialogue box, and
later when the tool is run and wants to read the file. This results in several disc
changes.

Working in the DDE

New target support

The emphasis of earlier sections of this chapter has been on how to use the DDE
tools productively on your host machine, but the DDE products also include
improved support for your programs running on their target machines, giving you
new options in designing your software.

Acorn Desktop C RISC_OSLib has been slightly extended, with new headers
fontlist, help, fontselect, print and txtscrap.

The DDE non-interactive tools all have RISC OS desktop interfaces provided by the
FrontEnd relocatable module. You can use this module to implement your own
non-interactive tools, for programming or any other purpose, without having to
build any handling of the RISC OS desktop into your programs. See the chapter
entitled Extending the DDE on page 185 for more details.

Compatibility with previous Acorn language products

There should be few problems in moving from processing your program sources
with previous Acorn language products to processing them with DDE products.

0Old makefiles, written to be used with the command line tool amu supplied with
ANSI C Release 3 can still be used by Make or AMU, though Make cannot be used
to alter them. You will have to edit an old makefile if it did not operate with the
current directory set as the directory containing it.

Where to go from here

If you have studied this chapter in detail you now understand how to construct a
simple runnable program from text sources. You may now wish to load various
DDE tools and experiment with their use, and there are further chapters that may
provide useful general information.

Each DDE tool, such as the text editor SrcEdit and debugger DDT, has a chapter
describing it, either in this user guide or the accompanying language specific
manual. If you intend to make much use of any particular tool, its chapter may
prove useful reading next.

A large number of the DDE tools are classified as ‘non-interactive’, and have
similar interfaces. Examples are the Link, CC and ObjAsm tools used in the earlier
Automata section. The chapter entitled General features later in this volume covers
the interface features of this class of tool.

Since program examples are inherently specific to one programming language,
most included with Acorn Desktop C and Assembler are described in their
language specific manuals. Each of these manuals contains an early chapter

27

28

demonstrating some of the DDE features with worked examples. The C chapter is
called C tools and the DDE, the assembler equivalent is called Assemblers and the DDE.
Other C program examples are described in the CC chapter.

Each language specific manual has a section called Developing software for RISC OS
which contains chapters giving general advice on how to approach typical projects.
Two such chapters are How to write desktop applications in C and Writing relocatable
modules in assembler.

Part 2 - Interactive tools

29

30

Overview

Desktop debugging tool Y

his chapter describes the desktop debugging tool (DDT). DDT is an interactive

aid to debugging desktop or non-desktop programs written in compiled
languages such as C, Pascal or Fortran. DDT can also be used to debug programs
written in ARM assembler using ObjAsm. It can be used on any of the Archimedes
range of computers running RISC OS 2.00 or later.

Although DDT can be used to debug desktop programs, and provides a windowed
interface, it is not a true multitasking desktop program. This is because DDT has to
be able to halt the RISC OS desktop at any point for single stepping, breakpoints
etc. This means that its interaction with other RISC OS applications is limited in
certain ways:

e When the debugger is active (ie when a program is halted under control of the
debugger) all other tasks are halted until execution of the program is resumed.

Note: You can always tell when the debugger is active, because the pointer will
change to a No Entry sign if you move it outside the debugger's windows:

—

e Only one application may be running under the debugger at any given time.

The windowed interface of DDT is designed to be easily understood by RISC OS
desktop users, and to facilitate this it duplicates many RISC OS features. However,
it uses visual details such as unusual colours to act as reminders that it is not
operating as a true desktop multitasking program.

Topics covered in this chapter:

e section entitled About debuggers introduces the concept of debuggers in general
and describes the facilities provided by DDT.

@ section entitled Preparing your program describes how to prepare your program
for use with DDT.

e section entitled Starting a debugging session describes how to invoke the
debugger on your program.

31

ADOUL gepuggers

e section entitled Specifying program objects describes the way in which various
objects in the program you are debugging, such as variable names, procedure
names and line numbers are specified.

e section entitled Execution control describes how to control execution of a
program running under the debugger.

® section entitled Program examination and modification describes the debugger's
facilities for displaying various objects in the program being debugged and the
facilities for changing variable, register and memory contents.

e section entitled Options and other commands describes the options in the options
dialogue box and other commands which are not covered by any of the
previous topics.

About debuggers

32

This section is aimed mainly at readers who haven't used a program debugger of
any sort before. However, others may find it useful reading, as it introduces some
of the facilities provided by DDT.

Anyone who has written a program more than about ten lines long has had
recourse to debugging techniques: the tracking down and removal of errors. The
form this takes depends on many things, not least the language in which the
program is written.

Some languages provide primitive debugging facilities of their own. For example
ANSI C provides the assert macro which can be used to ensure a condition is
true, as in the following example:

assert (i >= 0); /* Ensure following loop is finite */
while (i--) { ... }

Some language implementations provide additional debugging facilities. A
description of the debugging facilities provided by Acorn’s release of ANSI C may
be found in Acorn ANSI C Release 4.

Often, however, it is left to the programmer to plant trace information in the
program itself. For example you might trace the value of the index variable in a
while loop as follows:

while (i--) { fprintf(tracefile, "i = %d\n"); ... }

Such additions to the program can be useful, but are tedious to use in compiled
languages, because every time you want to change the debugging statements, the
program has to be recompiled. There is also the possibility that the debugging
statements themselves have undesirable side-effects which contribute to the
ill-health of the program.

Planting trace information in assembly language programs is more difficult. For
example, displaying the contents of all ARM registers is a non-trivial code fragment
in ARM assembler.

A debugger enables you to execute your program in a controlled environment
where you can stop execution, examine and alter variables, set breakpoints, single
step through a program and ‘watch’ particular variables for changes.

DDT provides the following debugging facilities:

e Start program execution and continue after program execution has been
stopped

Single step program execution, by source statement or ARM instruction
Stop program execution at a specified program location

Stop program execution when a specified variable changes its value
Stop program execution at any time on request

Trace program execution continuously

Trace procedure calls

Trace changes to a specified variable or memory location

Display source text, symbolic disassembly, variables, registers, memory
contents and stack backtrace information

Alter variable values, register contents or memory contents

Protect sensitive areas of memory against being accidentally overwritten by
your program.

Preparing your program

This section describes how to prepare your program for use with DDT. DDT uses
special information in the program being debugged, which provides DDT with
information about the source code that generated the program. This information is
not automatically included in the output of the compiler. This is mainly for reasons
of efficiency: programs which contain debugging information are larger, take longer
to compile, and run more slowly than those with no debugging information.

Compiling
You enable the generation of debugging information with the Debug option on the
compiler SetUp menu. If you are using the compiler from the command line use
the -g flag to enable debugging information with the Acorn ANSI C compiler
(other compilers may use different flags, though -g is common across a wide range
of compilers. Refer to your compiler manual for details).

33

Preparing your program

34

Because each module of a program can be compiled with its own debugging
information, you need only specify debugging for suspect modules. Well-proven
modules in which you have complete faith can be compiled with no debugging
information, whereas newer, less reliable code can have debugging information
enabled.

Turning on debugging inhibits optimisation, and reduces the speed of execution of
your program even when you are not debugging it. This of course does not matter
when you are using the debugger, but for maximum speed, programs should be
compiled without debugging information, especially for production builds.

Note that if you are using an automated program construction tool, such as the
Make utility provided with Acorn’'s Desktop Development Environment, you may
have to delete the object files of the modules you wish to compile with debugging
information when you enable the Debug option. This is because the modules are
not recompiled until the object files are either absent, or out of date with respect
to the source files, so you must delete the object files to force recompilation.

Linking

When linking a program to be debugged, you must instruct the linker to include the
debugging information generated by the compiler. To do this, enable the Debug
option on the link menu, or, if you are using the linker from the command line, by
using the -debug flag.

If you are using Acorn’s ANSI C compiler to perform the link stage (ie without the
Compile only option enabled on the compiler menu, or without the -c flag from
the command line) the compiler will automatically instruct the linker to include
debugging information if the compiler's debugging option is enabled.

The linker also generates its own debugging information. This debugging
information is used by DDT to provide low-level or symbolic debugging facilities. If
you do not wish to use source level debugging facilities, you can enable the Debug
option on the linker without enabling the Debug option on the compiler.

Note that |Runimage files compiled or assembled and then linked with Debug
enabled are much larger than those produced without debug information. This
may require an increase in the WimpSlot size specified in your !Run file, otherwise
the following error may be produced at run time:

No writable memory at this address

If you are writing in assembler using ObjAsm you may wish to use the KEEP
directive, which instructs the assembler to keep information about local symbols
in the symbol table. These will be included in the program when linked with
debugging enabled.

Desktop debugging tool

You might like to try preparing the following small program for use with the
debugger, using the methods described above.

1 #include <stdio.h>

2

3 int main({void)

4 {

5 int world;

6

7 for (world = 0; world < 100; world++)

8 printf("Hello, World %d\n", world);
9 return 0;

10 }

Starting a debugging session

You can start a debugging session in one of the following ways:

Double click the t DDT application. This will place the debugger’s icon on the
icon bar. Then drag the program to be debugged to the debugger’s icon. You
can drag either an program image or an application directory. If you drag an
application directory, the program image within that directory must be called
either ' Run or ! RunImage.

Choose Debug from the debugger application menu. This will produce a
dialogue box with two writable icons, one for the name of the application to be
debugged, the second for any arguments the application may take. You can
specify the program name by dragging an application to the writable icon.
When the writable icons have been filled, clicking the OK button will invoke
the debugger.

Enter the following *Command:

*DebugAlF program [arguments]

where program is the name of the program to be debugged, and
arguments are any command line arguments that program may take. You
can enter this command from the supervisor prompt (outside the desktop),
from the Shell CLI prompt (obtained by choosing the *Commands option on
the task manager menu) or from a task window CLI prompt.

Try invoking the debugger on the sample program shown at the end of the last
section.

35

36

Once you have started a debugging session in one of the above ways, two debugger
windows will be displayed as follows:

DDT: adfs::HardDisc5.$,ddt.man.hello

£b8888A8 blnv
fbAAAGAG blnv
eb8BABAc bl
eb888ase bl Stub$$Code ; 280888154
efBeBell swi 05_Exit
B8BAA6ed andeq r@,r8,rd,ror #R8d

88e64 andeq r@,r8,rd,ror H#iic
B881e78 andeq rl,rd,r8,ror Ir
20808000 dcd 8

Initialisation

The upper window is the Context window. The title bar contains the name of the
program being debugged. The Context window displays the source text or symbolic
disassembly associated with the current Context or PC location.

When you start a debugging session, the Context window initially displays a
symbolic disassembly, like that shown above. This is a disassembly of the run-time
system initialisation code. The arrow symbol (=) to the left of the window shows
the current PC location. The debugger does not display your source code at this
stage because the program has not started executing your code, it still has to
execute the initialisation code. Once execution reaches your code (ie the first
instruction of main) your source code will be displayed.

The lower window is the Status window. The title bar contains the current status of
the program being debugged. The Status window displays error and informational
messages, in addition to any data displayed by the debugger's display, trace and
watchpoint facilities. The Status display scrolls when any new information is
displayed. You can use the scroll bar to examine earlier contents of the status
display.

Some messages that may appear in the Status window at this stage are:

No debugging information available

This means that you are debugging a program which has not been linked with
debugging information. No source-level or symbolic debugging facilities are
available, and debugging is limited to machine-level debugging (ie everything
must be specified in terms of machine addresses). If you have forgotten to link the
program with debugging information you should quit the debugging session, relink
the program with debugging enabled and start the debugging session again.

No source level debugging information

This means that you are debugging a program which has been compiled without
debugging enabled. No source-level debugging facilities are available, symbolic
debugging facilities are available (ie objects can be specified in terms of link time
symbols). If you have forgotten to compile the program with debugging
information, quit the debugging session and recompile the program with
debugging enabled.

RO area limit not on page boundary, last page not protected

This message occurs when memory protection is enabled (as it is by default) and
the last past of the code or read only area is not page aligned. This means that the
last page of the read only area cannot be protected against accidental writes, since
writing to data, or a read/write area which immediately follows the code area,
would cause an erroneous data abort. You can ignore this message. Future
versions of the linker may align the areas on page boundaries when linking with
debugging enabled.

Can't set breakpoint on procedure main

When a debugging session is started the debugger automatically tries to set a
breakpoint on main if the Stop at entry option is enabled (as it is by default). If the
address of main cannot be determined, because, for example, the module
containing the procedure main has not been compiled with debugging information
enabled, or, the program is not written in C, then the above message will be
displayed.

Try moving the pointer completely outside the debugger's windows. The pointer
will change into a No Entry pointer, indicating that the debugger is active and you
cannot select anything outside the debugger's windows. Moving the pointer back
inside the debugger's windows changes it back to the usual arrow pointer.

37

Specifying program objects

Clicking Menu on either debugger window produces the following menu:

Continue “C
Single step "§
Call
Return
Breakpoint
Hatchpoint
Trace
Context
Display
Change

09
Find
Options
*(onmands
Help

Quit

3
=

3
=
Lo 500 800D

2
=

Continue, Single step, Call, Return, Breakpoint and Watchpoint are explained in
the section entitled Execution control on page 45.

Trace, Context, Display and Change are explained in the section entitled Program
examination and modification on page 53.

Log, Find, Options and *Commands are explained in the section entitled Options
and other commands on page 58.

Specifying program objects
Once the debugger is running, the program can be executed, single stepped, have
its variables examined or altered and so on. All of these facilities are described in
the following sections. However, before you can use these facilities, you must know
how to refer to certain program objects. Variable names, line numbers, procedure
names and memory addresses all have a syntax which must be used if you are to
reference the desired object.

The following notation will be used in describing the syntax:

® Anitem in square brackets ([]) is an optional item which can be omitted if
desired.

® Anitem in braces ({}) is an optional item which can be repeated as many
times as desired.

® Anitem in italicised text is a non-terminal item, ie an item which must be
replaced by a suitable string of characters.

38

Desktop debugging tool

For example, an optional, comma-separated list of numbers would be denoted by:

[number{ , number}]

Procedure names

Procedure names are used, for example, when setting a breakpoint on entry to a
procedure. The syntax for a procedure name is:

[module:] {procedure:}procedure

where module is the name of a program module and procedure is a procedure
name within that module. Each procedure name in the list of procedure names
refers to a successive procedure in the textual nesting of procedures. The module
name is the leaf filename of the compiled source file. For example, consider the
following program fragment stored in file pas. test.

program raytrace (input, output);
var count : integer; ...

procedure pixel(x, y : integer);

var colour : integer; ...

function reflect(x, y : integer; angle : real) :
integer;

begin (* body of reflect *) end;
begin (* body of pixel *) end;
begin (* body of raytrace *) end;

The full name for function reflect would be:
test:raytrace:pixel:reflect

that is, procedure reflect contained in procedure pixel contained in
procedure raytrace (the debugger treats the entire pascal program as one large
procedure) contained in module test (module names do not generally make
much sense for Pascal, since standard Pascal has no facilities for separate
compilation, but many Pascal implementations, including Acorn’s ISO Pascal, have
extensions to allow separate compilation).

Note: Some Pascal implementations on the Archimedes do not represent
procedure names in the manner described above. Instead, they generate a new
procedure name at the outermost level by concatenating enclosing procedure
names to the current procedure name separated by a dot. Also, they do not
generate a pseudo-procedure for the whole program. Thus, with such an
implementation, the full name for function reflect would be
test:pixel.reflect

39

Specifying program objects

40

You do not need to type the full name every time you wish to refer to a procedure:
Since the prefixed module name and procedure names are optional they can be
omitted, and the procedure referred to by its name alone (eg reflect or
pixel.reflect inthe above example). Sometimes it will be necessary to enter
a longer version of the procedure if there are two of more procedures with the same
name.

Suppose in the above example there was a procedure:
test:raytrace: line:reflect

reflect on its own would be ambiguous, so you would have to enter
pixel:reflect or line:reflect to specify which one you meant. Note that
it is still not necessary to enter the test : raytrace prefix, since the 1ine or
pixel prefixes are sufficient to render the procedure name unambiguous.

Similarly, suppose you had two C modules called quickdraw and slowdraw,
each containing a static function circle. In this case you would need to enter either
quickdraw:circle or slowdraw:circle to indicate which circle function
you were referring to.

Even if two procedures have the same name, it may not be necessary to enter more
than the procedure name on its own. When looking at a procedure specification,
the debugger searches back along the dynamic call chain (ie the chain of
procedures called to reach this point in the program) to find a procedure name
which matches the first name in the procedure specification. Having found this, it
matches the rest of the procedure specification against textually nested
procedures contained within the first procedure found.

For instance, in the above example with two reflect procedures, if the program was
stopped (at a breakpoint, perhaps) at some point in pixel:reflect, then
reflect on its own would refer to pixel : reflect, since on looking at the
dynamic call chain the debugger would find that it was in a procedure called
reflect, and would match that against the procedure specification reflect.

Variable names

Variable names are used, for example, when setting a watchpoint. The syntax for a
variable name is.

[procedure-specification:] [line number:]variable

where procedure-specificationisa procedure specification as described in
the section above, 1ine numberisa line number in a source file and variable
is the name of a variable.

As in the case of a procedure specification, the debugger tries its best to match a
variable name given to it, by first searching back along the dynamic call chain, and
then searching the global variables, so it is usually not necessary to specify more
than the variable name on its own.

In the raytrace example above, if the program was stopped at some point in the
function reflect then x, v and angle would refer to the arguments in function
reflect, colour on its own would refer to the local variable colour in
procedure pixel (since the debugger searches back the call chain and finds
procedure pixel containing a variable colour). The variable count would refer
to the global variable count in program raytrace.

In some cases, however, it may be necessary to specify more information about the
variable, suppose, for example, you wanted to examine the arguments x and y to
the procedure pixel. Specifying x or v on its own would display the x ory
argument in function reflect so you must specify pixel:x orpixel:y.

There may still be some ambiguity in languages other than Pascal. In Pascal you

cannot declare local variables within a program block (ie between a

begin. . .end pair), however C allows declarations in local blocks. Consider for
example the following code fragment as it would be displayed in the debugger's

source window:

DDT: adfs::HardDise5. %, ddt.man.eval

ig }nt logical(int a, int b, int op)

ig int tap; /% tmp used in calculating a op b #/

119 if (op == OPGT Il op == OP_GE) { /%) or)= &/

%g int tmp;

122 op = op == OP_6T 7 OP_LE : OP_LT; /# Change to (= or { #/
%2 tmp = a; a=Dh; b = thp; /% and swap arguments %/

The are two declarations of tmp in logical, so tmp or logical : tmp may be
ambiguous. In this case you must specify a line number before the variable name
to remove the ambiguity.

For example, to refer to the tmp variable in the outer scope (ie at the function
level) you could enter:

117 :tmp
or

logical:117:tmp

41

Specifying program objects

42

To refer to the tmp variable in the inner block, use:
120:tmp

or

logical:120:tmp

The line number should be the line number of the declaration of the variable (in
this case 117 or 120). The line numbers are displayed in the source window, so it is
quite easy to find the line number of the declaration.

The syntax described above is sufficient to refer to all textually nested variables.
However, variables in earlier instances of a recursive or mutually recursive
procedure cannot be accessed. For example:

void hanoi (int src, int dest, int wvia, int n)
{
iE (= 1) 4
hanoi (src, via, dest, n - 1);
hanoi (src, dest, wvia, 1);
hanoi (via, dest, src, n - 1);
} else
printf ("Move disc from peg %d to peg %d\n", src,
dest) ;
}

Suppose this function is called with n = 3 and that it recurses until it hits a
breakpoint on the print f when n = I. There is no direct way to refer to the
variables src, dest and via in an outer call when n = 2 or 3 since any reference
to these variables will refer to the variables in the call with n = 1. What you can do
is, use the Context option on the debugger's main menu (described in the section
entitled Program examination and modification on page 53) to change the context to an
outer call on the stack. Since the debugger searches from the current context
outwards, you can now specify the variable as per normal. The debugger will ignore
the variables in inner calls and use the variable in the current context.

Expressions

Several DDT commands (for example Display Expression) may take arbitrary
expressions. The syntax for these expressions is based on that found in C.

The following table summarises the operators available along with the precedence
of each operator,

Desktop debugging tool

1 () grouping, eg a* (b+c)
[1] subscript, eg isprime[n], matrix[1] [2]
record selection, eg rec.field, a.b.c
-> indirect selection, eg rec->next is (*rec) .next

2 ! logical not, eg ! finished
~ bitwise not, eg ~mask
- negation, eg -a

* indirection, eg *ptr
& address, eg &var
3 * multiplication, eg a*b
/ division, eg c/d
% remainder, eg a%b is a-b* (a/b)
4 + addition, eg a+1
- subtraction, eg b-d
5 >> right shift, eg k>>2
<< left shift, eg 2<<n
6 < less than, eg a greater than, egn>10
o= less than or equal to, eg c<=d
>= greater than or equal to, eg k>=5
7 == equal to, eg n==
= not equal to, eg count !=1limit
8 & bitwise and, eg i & mask
9 ” bitwise xor,ega ™ b
10 | bitwise or,egml | 0X100
11 && logical and, eg a==1 && b!=0
12 Il logical or,ega>1im || finished

The lower the number, the higher the precedence of the operator. Note the syntax
for subscripting and record selection. The object to which subscripting is applied
must be a pointer or array name. The debugger will check both the number of
subscripts and their bounds in languages which support such checking. A warning
will be issued for out-of-bound array accesses. As in C, the name of an array may be
used without subscripting to yield the address of the first element.

The prefix indirection operator * is used to dereference pointer values, in the same
way as Pascal's postfix operator ~. Thus if pt r is a pointer type, *ptr will yield the
object it points to (like ptxr~ in Pascal).

43

44

To access the fields of a record through a pointer, you can either use
(*recp) .field, or the C 'shorthand’ notation, recp->field.

If the lefthand operand of a right shift is a signed variable, then the shift will be an
arithmetic one (ie the sign bit is preserved). If the operand is unsigned, the shift is
a logical one, and zero is shifted into the most significant bit.

If incompatible types are used during expression evaluation, the debugger will
print a warning message, but evaluation will continue.

Constants may be integers (to the base specified in the Base option), hex integers
(preceded by 0X or &) character constants, strings or floating point numbers. The
following show examples of each.

32768 Integer in the currently selected base
0X8000 Hex integer

3.2768e4 Floating point number

LT Character constant

"Hello, World\n" String

String constants can contain escapes following the standard C syntax:

\a alert

\b backspace

A\ form feed

\n new line (cursor to start of next line)
\r carriage return (cursor to start of current line)
\t horizontal tab

W vertical tab

\ single quote character

\’ double quote character

\? question mark character

A\ backslash character

‘x<hexadecimal number>
\<octal number>

Integer base

The base in which DDT interprets constants entered by you, such as 32768, and in
which it displays integer values, is determined by DDT defaults, the setting of the
Base writable icon on the Options dialogue box (see Options and other commands on
page 58) and the similar item on the Display box.

If the Display box Base writable icon is set, the specified base is used to display
integer values. If the Options box Base writable icon is set, the specified base is
used for input and output, unless overridden for Display output from the Display

Desktop debugging tool

box. Note that this means that you can change a variable to a value in the Options
base, then display it in another base specified on the Display box, for example
changing a variable to 153 (base 10) then displaying it as 99 (base 16). If the
Options box Base writable icon is not set, default bases are used.

Addresses & low-level expressions

This section describes the syntax for low-level expressions. It is directed mainly at
assembly language programmers. You can skip this if you will only be using the
high level language debugging facilities.

The syntax for a low-level expression (as used, for example, when setting a
breakpoint on a memory address or displaying a disassembly or memory dump) is
as follows (an understanding of BNF is assumed):

expr ::= value + expr | value | expr
value ::= '&' hex-number | number | symbol

where hex-number is a hexadecimal number, number is a number in the default
base (hexadecimal if no default base specified) which must start with a digit in
range 0...9 and symbol is a low level symbol in the debugging information
produced by the linker.

Examples:

main Address of function main.

main + &14 Five words into main.

8000 Start of image (assuming the image has not been relocated

and the default base is hex.)

Tmage$$ROSSBase Preferred way of specifying base of program.

Execution control

This section describes how you can control the way in which the debugger executes
your program.

Continue

Continue starts or restarts execution of the program. Execution continues until
one of the following events occurs:

e® a watchpoint changes or is cancelled
e the program runs to completion

® an error or abort condition occurs.

45

46

You can interrupt execution of the program at any time by pressing Shift-F12. Note
that if another task is executing when you press Shift-F12 you may need to
generate an event to force execution to return to the program before the Shift-F12
interrupt will be noticed. The simplest way to do this, usually, is to click on the
program'’s icon on the icon bar, or click on one of its windows.

As the debugger sets a breakpoint on procedure main, you can usually use
Continue to start execution of the program and get to the first line of your source
text. You cannot do this if

e you have disabled the Stop at entry option, or

e theCan’'t set breakpoint on main message appeared when you
started the debugging session.

Note that if you have any watchpoints set, the instructions are single stepped
instead of executed and the watchpoints are checked after each instruction. If any
have changed, the single stepping is stopped at that point. This will be completely
transparent, except that the program runs more slowly than normal.

You can use Ctrl-C as a short cut for Continue.

Single step

Single step allows you to step execution through one or more source statements
or ARM instructions. Choosing Single step produces the following dialogue box:

(6~ Singlestep |
[z]Stee into procedures
4> 5tep by source statement
"»Step by ARM instruction

Ho. of steps: [E

No. of steps allows you to enter the number of statements or instructions to be
executed. The Step by source statement and Step by ARM instruction radio
icons allow you to specify whether the contents of No. of steps should be treated
as a source statement count or an ARM instruction count.

The Step into procedures option icon selects whether procedure calls should be
treated as a single source statement / ARM instruction or whether single stepping

should continue into the procedure call.

Note that the debugger cannot detect certain types of procedure calls, for example,
calls via function variables in C. In these cases the debugger will continue stepping
into the procedure, regardless of the setting of the Step into procedures option.

Call

Desktop debugging tool

Note for assembly language programmers: The debugger treats BL instructions as
procedure calls, so if some other instruction is used to call a procedure, this will
not be detected by the debugger. For instance, consider the following example,
which might be produced by the C compiler when calling via a function variable.

MOV 1lr, pc ; Set up link. PC = current instruction + 8
LDR pc, [sp, #o_fn] : Load PC from function variable on stack
; Returns here

You complete the Single step dialogue by clicking on OK or pressing Return. The
specified number of statements or instructions are then executed.

Note that if you are currently stopped at an ARM instruction for which there is no
source information, stepping one source statement will step ARM instructions
until an instruction for which source information is available is reached. This can
be used when you initially start a debugging session, and wish to step to the first
source statement to be executed. This is usually the first instruction of main for C
programs, but need not necessarily be so, if, for example, the module containing
main was not compiled with debugging information.

You can use Ctrl-S as a short cut for single stepping | instruction or source
statement. The Step into procedures and Step by source statement / Step by
ARM instruction are determined by the current settings in the Single step
dialogue box (ie the settings when the dialogue box was last displayed).

Call allows you to call a named procedure. Choosing Call produces the following
dialogue box:

A T € R R Y
[| (O]

The writable icon allows you to specify the name of the procedure to be called. You
can specify arguments to the procedure in a comma-separated list in round
brackets after the procedure name.

The arguments must be word-sized objects (eg integers or pointers) or
floating-point values. Floating-point arguments occupy the next two adjacent ARM
registers or stack words as described in the Arm Procedure Call Standard (ie
floating-point arguments are not passed in floating-point registers).

Complete the dialogue by clicking on OK or pressing Return. The specified
procedure is called with the arguments on the program’s stack, and in ARM
registers RO - R3.

47

Execution control

48

Note that the program’s stack pointer must be initialised before attempting to call
a procedure: calling a procedure without a valid stack pointer may result in a Data
abort or Address exception. Therefore, if you are debugging a program written in C,
you must ensure you have executed the run-time system initialisation code using
Continue or Single step as described above. If you are debugging a program
written in assembler, you must ensure that you have executed your own
initialisation code, which must initialise the stack pointer.

Return

Return allows you to return from the current procedure. Choosing Return
produces the following dialogue box:

Value: [| [0K]

You can enter a value to be returned from the procedure in the value writable icon.
This may be either an integer or floating-point value. If you do not specify a value a
default value of 0 (or 0.0 for floating-point values) is used.

Note that the Return option returns from the procedure in the current context. If
you used the Context option to change the current context to an outer context on
the stack n on the debugger's menu, the Return option will return from the
procedure in the selected context, rather than the currently executing procedure.

Breakpoint

Breakpoint is used to add and remove breakpoints. Choosing Breakpoint
produces the following dialogue box:

|

| at Procedure || at Line || at Address |

[on SWL | lon Wimp event 9|| Remove |

Chewove a1

———are e e oy am =

Choosing one of the at Procedure, at Line or at Address buttons sets a
breakpoint at the procedure, source line number or memory address entered in the
associated writable icon. The syntax for specifying these objects is described in the
section entitled Specifying program objects on page 38.

Choosing the on SWI button causes the debugger to stop when the named SW1 is
called by the debuggee. SWI names are specified as in the RISC OS Programmers
Reference Manual except that a leading ‘X' is ignored and case is ignored when
matching SWI names.

Choosing the on Wimp event leads to the following dialogue box:

S EeleE

— Event selection:
[Hull [C]Redraw Window []Scroll Request
[Jopen Window []Close Window [IMouse Click
[JPointer Leaving Hindow [Juser Drag Box
[JPointer Entering Window [IKey Pressed
[JLose Caret [J6ain Caret [JMenu Selection
[JUser Message [|Message Recorded [|Message Ack

Select the set of Wimp events you are interested in and click OK. The debugger will
stop execution of the debuggee when it receives one of the specified events and
will display a message describing the event received.

For example:
Event = User message, action = 0 (Quit)

Choosing Remove removes the breakpoint specified in the associated writable
icon. The breakpoint may be specified as a breakpoint number, as given in the list
breakpoints command, preceded by a hash (#) or it may be specified exactly as
specified when setting the breakpoint.

List displays a list of all currently set breakpoints with breakpoint numbers which
can be used when removing individual breakpoints.

Remove all removes all current breakpoints.

You can use Ctrl-B as a short cut to produce the Breakpoint dialogue box.

49

Execution control

Breakpoints may also be set or cleared by clicking on a line in a source or
disassembly display. Clicking on a line sets a breakpoint on the line. The
breakpoint is shown by the breakpoint marker (a filled in circle) to the left of the
line. Clicking on a line which already has a breakpoint removes the breakpoint.

Watchpoint

50

Choose Watchpoint to detect when a variable or memory location changes its
value. When a watchpoint is in force, instructions in the program are single
stepped instead of being executed and the values of the variables being watched
are checked after each instruction or source statement executed. Watchpoints may
be set on simple variables such as integers or more complex variables such as
structs and arrays. Setting a watchpoint on a whole array can be very useful if, for
example, you are debugging a sort routine; you can track all changes to the array as
it is sorted.

Since the debugger is single stepping, execution can be quite slow, typically
between 4 and 10 times as slow as normal execution. If this is too slow to be
practical, the best approach is to try to isolate the section of code under suspicion,
set a breakpoint on entry to this section of code, and only set the watchpoint(s)
when the program stops at the breakpoint.

Choosing Watchpoint produces the following dialogue box:

[Watchpoint Sl

[
[on Variable | ["on Memory |

|' st | | Remove all |

Selecting on Variable or on Memory sets a watchpoint on the variable or memory
location specified in the associated writable icon. The syntax for specifying
variables or memory addresses is described in the section entitled Specifying
program objects on page 38.

Remove removes the watchpoint specified in the associated writable icon. As with
breakpoints the watchpoint to remove may be specified as a watchpoint number
preceded with a hash (#) or exactly as specified when setting the watchpoint.

List displays a list of watchpoints currently in force. Remove all removes all
watchpoints.

Trace

Desktop debugging tool

Note that if you are watching a local variable (ie a variable stored on the stack) the
watchpoint will become invalid on exit from the procedure containing the variable
being watched. The debugger detects this and stops execution with the message:

Watchpoint watchpoint discarded on exit from procedure
where watchpoint is the name of the variable being watched.

Also note that when you are watching a variable which is stored in a register, the
debugger may erroneously report a change in the variable's value. This is because
the C compiler does not allocate registers to variables over the whole range of a
procedure. Instead, it allocates the registers over the lifetimes of variables (ie the
range of the procedure in which the variable is actually used). Outside this range a
register may be used for other purposes (such as temporary values in calculations).
It may even be allocated to another variable, if the lifetimes of the variables do not
overlap. Thus the debugger may report a change in the variable when it sees the
register changing, but of course the register is no longer being used to store the
variable.

You can use Ctrl-W as a short cut to produce the Watchpoint dialogue box.

Trace allows you to select a set of actions about which you wish to be informed.
When one of these actions occurs a message to this effect is displayed in the
debugger's status window. For certain actions the source / disassembly display is
updated to show where the action occurred.

The actions which you can trace are as follows:

Execution

The source / disassembly display is updated for every ARM instruction or source
statement executed (ARM instruction if Machine-level debugging is enabled,
source statements otherwise). The effect is to produce a continuous execution
display in the context window.

Breakpoints

When a breakpoint occurs, instead of stopping execution, a message is displayed
in the Status window:

Break at breakpoint

where breakpoint is the location of the breakpoint. The source / disassembly
display is updated to show where the breakpoint occurred. Execution then
continues after the breakpoint.

51

52

Watchpoints
When a watchpoint changes, a message of the following form is displayed:
Watchpoint watchpoint changed at location

where watchpoint is the name of the variable being watched, and Iocationis
the program location where the watchpoint was changed. If, for example, you are
debugging a sort routine and have a watchpoint on the array being sorted, you can
select watchpoint tracing to provide a continuous update of all changes to the
array.

Procedures

When procedure tracing is enabled, a message of the following form is displayed:
Entered procedure procedure name

This can be useful if you wish to quickly locate the procedure where a fault is
occurring.

Event breaks

When a Wimp event break occurs execution is not halted. Instead of stopping at
the breakpoint a decoded form of the event data is displayed and execution
continues.

SWI breaks
When a SWI break occurs execution is not halted, a message is displayed:
Break at SWI SWI Name
The SWI is then executed and execution continues after the SWI breakpoint.
Choosing Trace from the debugger's menu produces the following dialogue box:
[JExecution
[]Breakpoints
[Juatchpoints
[]Procedures

DEvent breaks
DSKI breaks

Desktop debugging tool

Select the set of actions you are interested in tracing and click on OK. A message
confirming your selection will be displayed. You won’t notice the effects of
enabling procedure tracing until execution of the debuggee is resumed.

Program examination and modification

Display

This option allows you to display information about the program being debugged.
You can examine source text, instruction disassembly, variable contents, memory
contents, stack backtrace information, register contents and low-level symbol
values. Choosing Display produces the following dialogue box:

e e S MeRlae
[]Update Base: [:]
|

| Seurce || Expression || Sumbols |
| Disassembly || Memory 3

[frquments]| Registers]{ Locals }
[Backtrace |[FP Registers]

You can use Ctrl-D as a short cut to produce this display.

Select the item you want information about. The Source, Expression, Symbols,
Disassembly and Memory icons use the contents of the writable icon to
determine what to display. Each icon is described in turn below.

Source

Displays the specified source file in the debugger Context window. You can specify
a source line number at which to start the display. The syntax for the filename and
line number is:

filename[:1line]

(that is, a valid RISC OS filename optionally followed by a colon (:) and a line
number). The line number defaults to 1 if not specified. The filename does not have
to be a source file used to generate the program you are debugging: you can
display any file you like.

53

Program examination and modification

54

Expression

The writable icon should contain an expression name. The syntax for entering
expression names is described in the section entitled Specifying program objects on
page 38. The expression is displayed in the debugger Status window.

Complex expressions such as C structs or arrays are displayed in structured format,
nested substructures are indented to indicated the level of nesting. Character
pointers and arrays are displayed as strings if a terminating 0 is found within the
first 80 characters and there are no intervening non-graphic characters apart from
newline and carriage return, which are displayed as \n and \ r. For example, the
following structure:

struct ProcedureLoc {
struct Procedureloc *nextproc;
struct SourcePos {
char *filename;
int line, chpos;
} location;
char procname([32];
}thisproc;

would be displayed as:

Status: Stopped at Breakpoint .
thisproc = struct {
nextproc = 800680008,
location = struct {
filename = string "c.debug",
line = 1152, -
chpos = @

pf‘ncnaue = arrayld..31] "start_debug"

1310

Arguments

Arguments displays all the arguments to the current procedure. The arguments are
displayed as if each individual argument had been displayed using the Display
Expression facility described above.

If you want to examine the arguments in an outer scope (ie in the procedure which
called this procedure or the procedure which called that ...) you can use the
Context item on the main menu to change the current context to that of one of the
calling procedures, and then select Arguments to display the arguments of that
procedure.

Desktop debugging tool

Locals

Locals is very similar to Arguments. It displays all local variables (including the
arguments) in the current procedure.

Backtrace

Backtrace displays a list of procedures in the call chain from the current
procedure back to the program entry point.

Procedures which have been compiled with debugging information are displayed
in the following form:

procedure, line line of file

Those which have been compiled or assembled without debugging information
look like this:

PC = address (procedure + offset)

A typical backtrace might look something like this:

Status: Stopped at Breakpoint

halloc, line 3598 of c.link
addarea, line 1318 of ¢, link
loadi line 1678 of c¢.link
main, line 4341 of c.link
PC = 88019514 {_main + 4)
Pt #001d3de (kernel Calll

e

+8)
B3

The last two entries in this backtrace are procedures in the C library initialisation
code, the C library does not contain debugging information. Note that because the
program used in the above example has been linked with debugging enabled, the
procedure names still show in the C library. If the program had been linked without
debugging information, even these would not be available, and the last entry, for
example, would just read PC = 00011358,

Symbols

Symbols displays low-level symbols generated by the linker when linking with
debugging enabled. The writable icon gives a comma-separated list of symbols to
be displayed. The symbols and their addresses are displayed in the debugger’s
Status window.

You can use the following wildcard characters in symbol names:
@ Astar (*) matches 0 or more characters
e A hash (#) matches any single character.

55

Program examination and modification

56

For example, _kernel_* would list all the kernel routines (eg _kernel_swi)
and *$$*$$* would list all the linker generated symbols (eg Image$$ROSSBase
and C$Scode$SBase).

Disassembly

This displays a symbolic instruction disassembly in the debugger's Context
window. The writable icon should contain a low-level expression which evaluates
to a memory address indicating where the disassembly should start. The syntax for
low-level expressions is described in the section entitled Specifying program objects on
page 38.

Memory

This displays a memory dump in the debugger's Context window. The writable icon
should contain a low-level expression giving the memory address.

Registers

This displays the contents of ARM user registers 0 - 15 and the flags in R15.

FP Registers

This displays the contents of floating-point registers 0 - 7 and the flags in the
floating-point processor status word.

The Base writable icon gives the numeric base to be used when displaying
Variables, Arguments, Locals, Symbols and ARM registers. If this writable icon is
left blank a default of decimal or hexadecimal is used depending on what is being
displayed.

The Update box applies to Variables, Locals, Arguments, Backtrace, Registers and
FP Registers. When Update is selected and one of these items is displayed, the
item is added to a list of items to be displayed whenever the debugger stops
execution (for example, at a breakpoint). There is no way to remove items from this
list once they have been added to it.

LesKIop debugging 0ol

Change

Change allows you to alter variable, registers or memory contents. Choosing
Change produces the following dialogue box:

<>Variable < »Register < Hemory

Name: ||

|
New contents: [[

The Variable, Register and Memory radio buttons indicate what is to be changed.
The Name writable icon indicates which variable, register or set of memory
locations is to be changed. The New contents writable icon gives the new
contents. Clicking OK makes the change.

Variable

The Name writable icon should contain a variable name as described in the
section entitled Specifying program objects on page 38. Only simple variables such as
integers and pointers or floating-point variables may be changed. The New
Contents writable icon should contain the new value for the variable,
floating-point values are specified in normal C floating-point format.

Register

The Name writable icon should contain a register name. Valid register names are
RO - R15, SL, FP, IP, SP, LR, PC and FO - F7. The New Contents writable icon should
contain a low-level expression or floating-pont constant, depending on the type of
register being changed. Low-level expressions are described in the section entitled
Specifying program objects on page 38.

Memory contents

The Name writable icon should contain a low-level expression which evaluates to
a memory address. The New Contents writable icon should contain a
comma-separated list of low-level expressions, which are placed in successive
memory words starting at the memory word specified in the name writable icon.
The syntax for low-level expressions is described in the section entitled Specifying
program objects on page 38.

57

Options and other commands

Options and other commands

58

The Options item on the debugger main menu produces the following dialogue
box:

= e e
[%]Source level [z2] Source line nunbers

[z2] Machine level [ZZ]Stop at entry

[] Memory protection

<$>Risc0S bindings »Arthur bindings
Command line: [adfs::HardDiscy.$.ddt.man.hello [|
Source tree: [adfs::HardDiscs.$.ddt.man |

Base: D

Source-level debugging

This option enables the display of source information in the debugger Context
window. If this option is deselected, a disassembly of the ARM instructions
corresponding to the source text will be displayed.

Machine-level debugging

This option enables the tracing of ARM instructions when trace execution is
selected.

Memory protection

This option enables or disables protection of sensitive areas of memory. When this
option is enabled zero page (0 - &7fff) is protected against writing and the
debuggee’s code area is protected against writing.

Source line numbers

This option enables or disables the display of line numbers in source text displays.

Stop at entry

When this option is enabled, the debugger automatically tries to set a a breakpoint
on procedure main when a debugging session is started. This allows you to use
Continue on the debugger main menu to get rapidly to the start of your source
code.

— i raa S I AL

RISC OS bindings / Arthur bindings

The ARM Procedure Call Standard (APCS) has two variants:

@ APCS_A, which was used in the Arthur operating systems and earlier operating
systems for the ARM processors

® APCS_R, which is used in RISC OS.

Older compilers, such as Acorn’s ISO Pascal and Fortran 77, and versions of the C
compiler prior to 3.00, generate APCS_A code. APCS_A code can still be used
under RISC OS, although machine language veneers may have to be written to
interface with libraries such as RISC_OSLib. The variants differ in the bindings of
the registers such as the stack pointer and frame pointer. The bindings are as
follows:

® RISCOS:SL=RI10, FP=RII, IP=RI12,SP=RI13
e Arthur: FP=RI0,IP=RII1, SP=RI12, SL=RI3

The debugger automatically determines which bindings are in force at any instant
when displaying stack backtraces or examined stack variables. However, when
displaying disassembly or register values, it cannot determine which bindings are
being used. This pair of radio icons allow you to tell the debugger which bindings
are in force.

It is not essential that you tell the debugger which bindings are being used, the
option only determines the way the register names are printed in disassembly and
register displays. For example the instruction

STMDB R13!, {R10, R11, R12, R13}
would appear as:

STMDB sp!, {sl, fp., ip. sp}

with RISC OS bindings, and as:

STMDB sl!, {fp., ip. sp, sl}

with Arthur bindings.

Command line

This writable icon allows you to change the command line passed to the debuggee.
The existing command line is displayed in the icon and may be edited. Note that
the first word of the command line should be the program name.

Base

The Base writable icon gives the default numeric base when displaying or entering
numbers.

59

wpnons ana awer cornrnarnas

60

Log

Find

Source tree

Compilers such as Acorn’s ANSI C may put relative filenames in the debugging
information (eg c.display or ~.mip.c.aetree). The debugger needs to know
where these files can be found. By default it assumes the source files reside in the
directory from which the program image was loaded. This writable icon allows you
to change this default. It accepts a comma-separated list of directory names, each
one ending in a full stop (immediately before the comma).

Log allows you to record any information output to the debugger Status window to
a text file. Choosing Log produces the following dialogue box:

S SRR TR S
Filename: []

Enter the name of the file into which you wish to log output. The file will be opened
as a new log file. Any previous contents of the log file will be overwritten. If a log
file was previously open it will be closed when the new log file is opened.

Find allows you to find a sequence of bytes, words or characters in the application
workspace. Choosing Find produces the following dialogue box:

ST e
[|
[Byte | [Word | [String |

Word or Byte

The writable icon should contain a comma separated list of low-level expressions
giving the word or byte values to be found.

String

The writable icon should contain the sequence of characters to be found, the
sequence should be entered without quotation marks of any kind.

Desktop debugging tool

All occurrences of the byte, word or character sequence in the application space
are reported in the debugger Status window.

*Commands

Help

*Commands allows you to access the RISC OS CLI from within the debugger.
Choosing *Commands will lead to the following dialogue box:

[JLOK]

Enter the command you wish to execute in the dialogue box and press Return or
click OK. If you are debugging a Wimp task (ie a task which has called
Wimp_Initialise) you should precede the command with the WimpTask command,
otherwise the output of any command executed may be displayed in graphics
mode.

If you wish to enter several commands you can enter the Gos command or the
ShellCLI command in the dialogue box.

Help gives interactive help on the debugger. Choosing Help will produce this
initial help window:

This is the Desktop Debugging Tool (DDT). A

debugging session may be started in one of the
following ways,

Link an agplication with the -debug flags and
execute it as per normal.

Drop an image onto the debugger icon on the
icon bar.

From a task window or the desktog cli (from the
task manager menu) type "debugaif (image) {args)"

— Topic:

Continue | Single step | Call _[Return [
[race][Context]
Display Change | Log]| Find I

il
i

61

An example debugging session

Quit

Choose the icon corresponding to the topic on which you want help. The help will
be display in the help box above the topic buttons.

This quits the debugger and returns to the calling environment (generally the
RISC OS desktop).

You can use Ctrl-Q as a short cut for Quit.

An example debugging session

The following example debugging session shows how DDT might be used to fix a
rather bug-ridden file sorting tool written in C. The source is given here with line
numbers for reference later in the chapter. The source, along with the other files to
make the application, can be found in the ! Sort directory, which is in the
examples directory User.

62

W ~1 W W

o

B B0 BD DO PO B DD R e e e e e
G N = W= O W <O U e WD

27
28
29

=
el =]

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>

#include "kernel.h"

#define READATTR 5
#define READFILE 16
#define WRITEFILE 0

#define FILEFOUND 1

static void fail(char *errmsg, ...)
{
va_list ap;

va_start (ap, errmsg);
viprintf (stderr, errmsg, ap);
va_end({ap) ;

exit(1l);

}

/* See Sedgewick: Algorithms 2nd edition P 108 */
static void sortstrings(char *a[], int n)
{

int h; i, 3;

char *v;

30
Al
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
5
54
55
56
57
58

59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74

Desktop debugging tool

Hise e
do
h=h=*3 4+ 1;
while (h <= n);
do {
N =k /"3y
for (i = h + 1; i <= n; i++) {
v = alil;
j=1i;
while (j > h && strcmp(alj-hl, v) = 0)
aljl = alj-hl;
j -= h;
}
alil = v;
}
} while (h > 1);
}
void sortfile(char *infile, char *outfile)

{
_kernel_osfile_block finfo;
int size;
char *finbuff, *foutbuff;
char *cp;
int 1, linestart;
char **1buff;
int 1i;

if (_kernel_osfile(READATTR, infile, &finfo) !=

FILEFOUND)
fail ("Error opening %s\n", infile);
size = finfo.start;

if (! (finbuff = malloc(size + 1)) || ! (foutbuff

malloc(size + 1)))
fail("Out of memory\n");
finfo.load = (int) finbuff;
finfo.exec = 0;

if (_kernel_osfile(READFILE, infile, &finfo) < 0)

fail ("Error reading $%s\n", infile);
1l =03
cp = finbuff;
linestart = 1;

for (i = 0; i < size; i++)
if (linestart) {
1+4;

linestart = 0;

63

An example debugging session

75 if l*ep |l *eb == \ait) 4

76 *cp = 0;

77 linestart = 1;

78 }

79 Cp++;

80 }

81 *(finbuff + size) = 0;

82 if (!(lbuff = malloc(l * sizeof(char *))))
83 fail("Cut of memory\n");

84 cp = finbuff;

85 for (i = 0; 1 < 1; i++) {

86 lbuff[i] = cp;

87 cp += strlen(cp);

88 }

89 sortstrings(lbuff, 1);

90 cp = foutbuff;

91 for (i = 0; 1 < 1; i++) {

92 strcpy (cp, lbuffl[i]);

93 cp += strlen(cp);

94 *cp++ = ‘\n’;

95 }

96 finfo.start = (int) foutbuff;

97 finfo.end = (int) foutbuff + size;

98 if (_kernel_osfile(WRITEFILE, outfile, &finfo) < 0)
99 fail ("Error writing %s\n", outfile);
100 free(finbuff) ;

101 free(foutbuff) ;

102 free(lbuff);

103 }

104
105 int main(int argc, char *argvl[])

106 {
107 if (arge != 3)

108 fail ("Usage: Sort <infile> <outfile>");
109 sortfile(argv([1l], argv([2]);

110 return 0;

111 }

The debugging session
Follow the steps below to debug the example program.

1 Compile and link the program using !Make with the Makefile provided in the
! Sort directory.

Now try running the program:

2 Doubleclickon the ! Sort application directory. The Sort tool icon will appear
on the icon bar,

64

Drag the example input file infile on to the Sort tool icon.
This should sort the input file and display a Save as dialogue box, to allow you
to save the sorted result. Unfortunately it doesn't, instead it produces a
display similar to the following:
Illegal address (eg wildly outside array bounds)
Postmortem requested

Arg2: 0x0000000c 12

Argl: 0x000176ac 95916
9dc8 in function sortstrings

Arg2: 0x00015962 88418

Argl: 0x0001594b 88395
83bc in function sortfile

Arg2: 0x00015914 88340

Argl: 0x00000003 3
84bc in function main

Arg2: 0x00008488 33928 -> [0xela0c00d 0xe92dd833

Oxe24chb004 0xel5d000a]

Argl: 0x000154c4 87236 c4c8 in function _main
This is called a symbolic backtrace.
The first line gives a general indication of what might be wrong with your
program. In this case it's an illegal address; the program tried to access
memory which is outside the addressing range of your computer.
Each line of the form address in function name represents a procedure
call frame on the stack. The first frame on the stack is function sortstrings;
this is where the illegal address was referenced.
This doesn’t look too promising, so try running it under DDT to get more clues
as to what might be wronag:

Quit the Sort tool.

Construct a debug version of Sort with Make. To do this, first open the Make
project dialogue box for Sort, click Menu on it and Select on the Link item of
the Tool options submenu. Next, enable the Linker Debug option and click on
OK to alter the Makefile. Use the Make Touch facility to touch all source
members by clicking on All in the Touch option. Finally, click on the Make
button to remake Sort.

Start the debugger if you haven't started it already and drag the ! Sort
application directory on to the debugger's icon.

Drag the sample input file infile on to the Sort icon on the icon bar. The
debugger's Context and Status windows should now be displayed.

The program actually crashed in the function sortstrings. Since you want
the program to stop before making the illegal access, you want it to stop at the
beginning of function sortstrings. So:

65

An example debugging session

66

10

11

Set a breakpoint on procedure sortstrings:

Bring up the breakpoint dialogue box. Enter the name sortstrings, and
choose at Procedure.

As a general rule this is the best way to start a debugging session. By placing a
breakpoint just before the section of code you think is wrong (or after the code
you know to be correct) you can examine the program state to ensure it is
correct and the step through the incorrect code to find exactly where the error
is occurring.

Tell DDT to start executing your program:

Choose the Continue option from the debugger's menu. The debugger will
stop with the following message:

Break at main, line 107 of c.sort

The debugger always stops on entry to main. However you want it to continue
until it reaches sortstrings, so

Choose Continue from the main menu again.

This time the debugger displays the following message:

Break at sortstrings, line 27 of c.sort

The Source window should contain the source for the start of function
sortstrings, with the execution location indicator (=>) pointing to the first
source line of the function sortstrings.

Now you want to examine the program state to ensure it is correct before
continuing. In this case, the most important state information is the function’s
arguments. You can examine them as follows:

Choose Display on the debugger’'s menu (or use the short cut Ctrl-D) and click
on the Arguments button in the Display dialogue box.

The debugger will display the following in the Status window:

a = 000176ac

n =12

The two arguments to sortstrings are:

n is the number of strings to sort, in this case 12. This is correct, since there
were 12 names in the input file.

a isa pointer to an array of char *s or strings. The debugger displays the
value of this pointer, ie the address of the array.

Note: You may get a different address when you try running this example
depending on the version of the C compiler and library you are using.

Next, examine the individual elements of the array:

12

13

14

15

16
17

18
19

Enter the array element as it would appear on the left hand side of an
assignment in C in the Display dialogue box, and click on the Expression
button.

To examine element 0, enter a[0]. To examine element |, entera[1]. The
debugger will display the array elements as follows:

al0] = string "Noel"

al[l] = string ""

The first element was correct: it contained the string Noel, which is the first
name in the input file. However, the second element is a null string. This is
wrong: it should contain the string Edward. This means that the arguments to
sortstrings were wrong. The error therefore occurred earlier, so you want
to try re-running the program under the debugger and setting the breakpoint
earlier:

Quit the debugging session and drag the sample input file infile to the Sort
icon to start a new debugging session.

Now follow the instructions in step 8 to set the breakpoint at function
sortfile instead of function sortstrings, and continue execution until
the program hits the breakpoint at function sortfile.

The variable 1buff is passed as the first argument (a) to sortstrings.
1buff is initialised in the loop just before the call to sortstrings.
Therefore you want to set a breakpoint at the start of the initialisation loop:
Scroll the Source window up until the initialisation loop comes into view,

From the line numbers in the Source display you can see that the initialisation
loop starts at line 84, with the initialisation of cp. So, set a breakpoint on line
84:

Enter 84 in the Breakpoint dialogue box and click on at Line.

Now choose Continue from the main menu.

The program will continue executing until it reaches line 84, where it will stop
at the breakpoint. You want to examine each element of the array as it is
initialised, since the array is initialised from the pointer cp. Set a watchpoint
on cp:

Enter cp in the Watchpoint dialogue box and click on on Variable.

Choose Continue again. The debugger will stop with the message:

Watchpoint on cp changed at sortfile, line 85 of c.sort
New contents: string "Noel"

This is correct, so:

67

An example debugging session

68

20

21
22

23

24

25
26
27

28

Choose Continue again. The debugger will respond with:

Watchpoint on cp changed at sortfile, line 87 of c.sort
New contents: string ""

This is wrong: it should contain the string Edward. Look at the line which
updated the value of cp:

87 cp += strlen(cp);

This is supposed to update cp to point to the next string in the list of strings
to be sorted. It does this by adding the size of the string pointed to by cp into
cp. Unfortunately, it miscalculates the size of the string by omitting to take
into account the 0 byte at the end of the string. This means that the second
and all subsequent strings are treated as null strings, because they are
pointing to the 0 byte at the end of the previous string instead of the start of
the string.

To fix this:

Quit the debugger and the Sort tool frontEnd.

Edit the file c. sort and change lire 87 to read:

87 cp += strlen(cp) + 1;

Recompile c. sort using the Make utility.

Now try re-running the program:

Double click on the ! Sort application directory and drag the file infile to
the Sort tool icon, then choose Continue twice on the DDT menu to run Sort.

The result is the same as when you first tried running it: you get the same
exception, although this time trapped by DDT rather than generating a
backtrace, so obviously the fix applied to line 87 didn't fix the problem. So, try
running it under the debugger again:

Quit the Sort tool frontend.
Drag infile to the Sort tool icon.

Set a breakpoint on function sortstrings and choose Continue.
The debugger will stop when it reaches main.

Choose Continue again, and the debugger will stop at the start of

sortstrings.
Examine the arguments. All being well they should look something like this:

a = 000176b0
n = 12

29

30

31

32

33

34

Desktop debugging tool

Display the individual elements of a by entering a[0] etc., in the Display
dialogue box and choosing Expression.

Do the same for a[1] and a|11]. The display should look like this:

a[0] = string "Noel"

al[l] = string "Edward"

al[ll] = string "Martin"

They're correct now, so something must be wrong with the sort algorithm. So,
try setting a breakpoint on the inner while loop:

Scroll the source display to find the line number; it should be line 39. Enter 39
in the Breakpoint dialogue box and click on at Line and continue execution.
The debugger should display:

Break at sortstrings, line 39 of c.sort

Examine a few variables:

Enter i in the Display dialogue box and choose Expression; then do the same
for h. The debugger should display:

O = &

h = 4

These are both correct, so look at the contents of a[§-h]:

Entera[1] inthe Display dialogue box and choose Expression. The debugger
should display:

all]l] = string "Edward"

The shellsort algorithm should be comparing against the first string (ie Noel).

It is not, so this is wrong. Looking closely at the algorithm you can see that it
has been written assuming array indices start at 1, whereas in C they start at 0.

To fix this, you could subtract 1 from each array index. However you just want
a quick fix to see if it works, so:

Add the following line at the start of the function after line 29:

30 a--; /* Quick hack to make array 1 origin */

Compile the program, this time disabling the Debug option of Link using
Make (see step 5), and try running the result.

All being well, the program should run to completion and produce a Save as
dialogue box for the output. You can just click the OK button to save it, or you may
like to drag it to the editor icon to load it into the editor to check that it has been
sorted correctly.

69

70

5 FormEd %

ormEd is the tool used to construct the Templates resource file of a RISC OS

desktop application. The template editor FormEd is an application which
allows you to define windows on the screen, and save the definitions in a
Templates file ready for loading by your application. This is the approach used to
construct Acorn’s own applications. FormEd is a single document editor, and thus
can only edit one template file at a time.

FormEd is supplied with DDE language products. To use it, you first need to
understand the program interface of the window system, as described in the

RISC OS Programmer’s Reference manual. Refer, in particular, to the descriptions of the
SWIs Wimp_CreateWindow and Wimp_Createlcon, in the Window manager
chapter. The account that follows also assumes an understanding of template files;
these are described in the same chapter. For a guide to window styles refer to the
Acorn RISC OS Style Guide.

Starting FormEd

Start FormEd in a similar way to other RISC OS applications, by double-clicking
Select or Adjust on !FormEd in a directory display, or on a template file. Provided
that FormEd has been ‘'seen’ by the system the template file will be loaded along
with FormEd. If a template file does not appear to load properly, give more memory
to FormEd before it starts, using the Task Manager. The FormEd icon appears on
the icon bar.

If you start FormEd by double clicking on a template file, the FormEd Browser
appears, listing the windows defined in the template file. FormEd, as a RISC OS
application, has a template file defining its own windows. The appearance of the
Browser for ! FormEd. Templates is:

" Fin_workarea . HjInfo

M save_tenp Elbrowser Eldefault

71

Browser

72

If you start FormEd without an existing template file, you can open a new template
by clicking on the FormEd icon on the icon bar. An empty Browser will appear:

The FormEd Browser is the central display of a template file edit. It lists all the
windows defined by the template file being edited in a way similar to the way a
directory display lists the files in a directory. From this list you select which
individual windows you want to be displayed for editing. The Browser is a new
feature of the version of FormEd distributed as part of the DDE, previous versions
merely displaying all defined windows on the screen at once, often resulting in an
overcrowded screen.

The appearance of a typical FormEd Browser window is shown below. It has a title
bar displaying the title of the currently edited template file (or <unt it leds if
none) and a **’ after the title if the template file has been modified (this occurs
even if a window has been moved). In this example, the template file has not been
altered:

EConfigur Iproglnfo Fldboxfile_db |

An empty Browser appears when you click on the FormEd icon on the icon bar or
select the New Templates option on the menu. An empty Browser window has the
title <cuntitleds.

There are two types of windows: scrollable windows and dialogue boxes. A
scrollable window is a window which has one or two scroll bars, whereas a
dialogue box is a window with no scroll bars. In the work area of the Browser, each
window listed is accompanied by one of two icons. These icons indicate whether
the window is scrollable or a dialogue box.

FormEd

Clicking Menu on the Browser brings up the Browser menu, from which you can
save the template file being edited, or create or remove windows:

Sel.'progInfo’
New window

The Save option leads to a standard Save as dialogue box from which you control
saving the template file being edited in the normal way.

When one or more window names are selected in the Browser in the same way that
file names are selected in a directory display, the Sel. or Selection option leads to
a submenu:

Save

Sl 'progInfo' NIFTIINE
Hew window 9 Rename o

Delete

From this menu you can copy a single selected window to form a new window with
another name, rename a single selected window or delete all selected windows.
Since you can only copy or rename a single window, the Copy and Rename options
are shaded out if two or more windows are selected. The Selection item is shaded
out if no windows are selected.

The New window option allows you to add a simple scrollable window to the set

defined by the template file being edited. To create a dialogue box you first create
a scrollable window and then remove the scroll bars — this causes the icon in the

Browser to change to a dialogue box icon.

Single clicking Select and Adjust on window names selects one or more windows,
like selection of files in a directory display. Double clicking Select on a window
name causes that window to be displayed for editing, or brings it to the front if it is
already displayed.

Editing a window

When you load an application’s template file into FormEd, all the windows used by
that application are listed in the Browser window. Double clicking on a window
name in the Browser displays that window for editing.

73

Editing a window

74

When FormEd displays a window defined by a template file, most of the window
areas can be regarded as pictures of the real window you will see when running the
application. For example, try loading the template file for the Configure
application (make a copy before you do this!). The main Configure window will
appear in the Browser as a scrollable window with the name of Configure.
Double clicking on that window name makes the configure window appear, but you
will not be able to use it to, for example, set the mouse speed.

While most parts of the border of a displayed window {(title bar, scroll bars, back
icon, etc) have their normal actions, the Close icon is used to close the display of
that window. This can be reversed by double clicking on the window name in the
Browser.

Clicking Menu on a displayed window produces a top-level menu:

Create icon
Amend icon #8 o
Renunber #8 o
Copy icon 9
Move icon P
Delete icon

Hindow flags 9
Colours %
Work area L
Identifier &
Close window

This is the menu from which to change most window and icon properties, eg add or
remove scroll bars, change icon wording. The upper half of this menu relates to
icon properties, and the bottom half to window properties. Which of these features
is selectable (not shaded out) depends on exactly where the pointer was when you
clicked Menu: if it was on an icon, you will be able to amend or renumber the icon
as well as the window itself. If the pointer was not on an icon, you will still be able
to create a new icon.

Each of the window and icon properties in the menu and its submenus maps
directly onto bitfields listed in the Wimp_CreateWindow and Wimp_Createlcon
descriptions in the RISC OS Programmer’s Reference manual. However, you should also
note the following points:

e® Each window within a template file has a name or identifier which is unique to

that template file. The identifier is used when the window definition is loaded
by a call to SWI Wimp_LoadTemplate.

e The icons you add to a window are numbered in sequence, starting at 0. If two
icons are placed so that they overlap, the window manager uses the
numbering to determine which should obscure the other: higher numbers are
displayed obscuring lower numbers. You may therefore need to change the
number allocated to an icon: do this by swapping over two icon numbers. Click
Menu over the icon you wish to renumber and select Renumber. Type in the
number of the icon you want to swap with the currently selected icon, and the
two will switch numbers.

To add a new window to a template file, use the Browser menu.

Because of the way the icon flag bitfield is organised, you cannot use
anti-aliased text within a filled icon. Setting the Anti-aliased option in the
Icon flags menu will make the background and foreground colour
unselectable.

e The V centred (vertically centred) option applies only to sprites, not to text.

Merging Templates files

To merge the window definitions of two Templates files into one file, load one
Templates file into FormEd, then drag the other from a directory display to the
displayed FormEd browser. The browser then shows that its file has been modified,
and adds to the window list any new windows added by the merge.

Any window defined by the second Templates file with an identifier not used in the
first file is added to the merged file. If both original Templates files define a
window with the same identifier, the ‘duplicate’ window from the second
Templates file is ignored.

The RISC OS desktop limits the number of windows that can be defined in a
Templates file, so combinations of large Templates files which together would
define too many windows cannot be merged.

Displaying sprites in template windows

Windows defined by template files often have icons in which sprites are displayed.
Such common items as radio buttons and option boxes are examples.

To display a sprite, you first specify its name in the writable submenu of the Sprite
option in the Icon flags submenu (reached by following Amend icon on the top
menu). If a sprite of the name entered is defined in the FormEd default sprite file
(as is the case for standard icons such as radio buttons) the sprite then appears. If
a sprite of the specified name is not in the FormEd file default, to display it you

75

have to drag a sprite file containing it to the FormEd icon bar icon. You can move
sprite icons within templates, and delete them. To edit a sprite, use the Paint
application.

When you run a finished program, standard icons such as radio buttons are found
in the wimp sprite area shared between all applications. When you display the
Templates file of your application using FormEd, as described above such icons are
instead found in the sprites file called default in the FormEd application
directory, or a sprites file dragged to the FormEd icon. The default file is a copy of
the wimp sprite pool forming part of RISC OS 2.00. To view the sprites stored in the
default file, open the FormEd application directory by double clicking Select on
IFormEd in the DDE directory while pressing the Shift key, then double click on the
file default toload it into Paint. To dump the wimp sprite pool of your machine
to a file on disc called WSprites (which will probably create a file identical to
default if you have RISC OS 2.00) type in and run the following 2 line Basic
program:

SYS "Wimp_BaseQOfSprites" TO rom
SYS "0OS_SpriteOp", &10C, rom, "WSprites"

Editing ROM utility templates

It is possible to update the template files used by ROM utilities. These reside in
the deskfs: filing system in the ROM. You access them via the environment
variable Wimp$Path, so by updating this to search a directory of your own first
where your updated template files reside, you can replace the window templates
used by the utilities in the ROM.

Example FormEd session

76

This example uses the template file for the Palette utility, which demonstrates
some of the points described above.

I Make a copy of the template file from the ROM by typing the following at the
Command line prompt:
*adfs
*dir
*cdir templates
*copy deskfs:templates.palette templates.palette
2 Add the following to the !Boot file for your machine:
*set Wimp$Path adfs::4.$.,deskfs:

This assumes that you have a hard disc. If you don’t, amend the line above as
appropriate, depending on the location of your templates file.

FormEd

Now return to the desktop and double-click on your copy of the templates file.

The FormEd Browser will appear, showing that two dialogue boxes are defined:
the palette’s main tool window and the Save box.

Double click Select in the Browser on each window name in turn to bring them
up for editing.

The main tool window appears covered in cross-hatching: this indicates that
the application (in this case, the palette utility code) is involved in redrawing
the window.

You can move the windows around the screen by dragging on its title bar in the
normal way. Move the main window to another position, noticing the star (*)
appearing in the Browser title to show that you have modified the template
file.

Save the modified file using the save box on the menu that appears when you
press Menu over the FormEd Browser.

Now reset the machine.

You will find that the palette utility appears in the new position — where you
dragged its window in the template file.

Double-click on the template file again, then the main window name in the
Browser, to re-enter FormEd and display the main window.

Press Menu over the palette template window.

The menu that appears is divided into two parts. The upper half affects
whatever icon you were pointing at when you pressed Menu; the lower half
affects the window as a whole.

By entering the Window flags, Colours, and Work area submenus, you can
see which bits within the window description are set and which are clear:
compare this with the Wimp_CreateWindow section in the RISC OS
Programmer's Reference manual. By clicking or typing on entries within these
submenus you can affect such things as the title text and the colours of the
window.

Some changes you might make will prevent the code from working properly, as
they actually change the behaviour of the window in the program that operates
it. Others, such as colour changes, are reasonable ways of setting your own
choices for how the palette utility should appear.

Point at the black colour selection button and press Menu.

Each of the sixteen colour selection buttons is an icon. You can see that it is
icon number 16 in this window.

By working through the Amend icon #16 submenu, you can inspect and
change every aspect of this icon in exactly the same way as with the whole
window.

7

78

To move or resize an icon, take the following steps:

1 Ensure that its button type (within the Amend submenu) is set to Click/drag,
so that it responds to dragging events.

2 Drag the icon with Select to move it.
3 Drag the icon with Adjust to change its size.

You can move the icon a pixel at a time or to specific coordinates using the Move
icon submenu. Using other top-level submenus, you can make a copy of an icon, or
renumber it.

Invoking Make

Make

he Make application aids the programmer in the construction and maintenance

of multiple-file programs, which can be combined to form any number of final
targets (for example, libraries, modules, and application programs). The set of final
targets and the files from which they are constructed are known as a project (see
later for a more detailed description of this term). The facilities provided for a
project include

@ automatic construction of makefiles;

e automatic maintenance of makefiles to track changes made to sources and the
addition/deletion of source and object files to or from a project;

e setting options using dialogue boxes for the tools used to convert source files
to object files (eg C compiler or ObjAsm options);

e® pre-emptive multitasking of the Make process when constructing final targets,
including the ability to pause, continue, or abort it at any time;

e display of the output of tools used to make a final target, in a scrollable,
saveable window.

Make can be invoked in two ways; by double-clicking on the Make icon from a
directory display, or by double-clicking on a file of type Makefile (0XFEL). In the
latter case this will also run the Acorn Make Utility (AMU) tool to make the first
target found in the chosen Makefile.

Clicking Menu on the Make icon gives the menu as shown below:

Info shows the normal information box about the application.
Options allows the setting of auto-run and display options.

Open is used to open a dialogue box for a given project.

79

At A IV ILT

Using Make

Quit quits Make.

These are described more fully in later sections.

To use Make efficiently it is necessary first to understand how to create and
maintain a project.

Projects

80

A project is made up of a collection of source and object files, which combine to
form a number of final targets. The life cycle of a project will typically involve the
creation and maintenance of the project, the production of final results, and finally,
if required, the removal of the project from Make’s control. The details of these
steps are more fully described in later sections, but here we give an overview of
their operation.

When a new project is created, you give it a unique name, and save its associated
Makefile to disc. The persistent state of a project is held in a Makefile, which is
automatically maintained by Make, with the option that it can be textually edited
for customisation to a particular projects’ requirements. To achieve this automatic
maintenance, the Makefile is divided into sections which are delimited by active
comments (ie lines beginning with a (#), which are otherwise ignored by the AMU
program).

The files which make up the project can reside anywhere on disc (or on a network)
and can be added to, and removed from, the project by dragging their filer icons
onto a dialogue box representing that project.

Final targets for the project are created by clicking on Make in the dialogue box
relating to that project; the targets will be saved in the same directory as the
Makefile for the project.

Under the desktop the concept of current directory has no sensible meaning, Make
therefore uses the work directory in which the Makefile for a project has been saved
as a prefix for all filenames used in the project. This prefix is denoted by the at
symbol (@).

Make

Clicking Menu on a project dialogue box gives the menu shown below, which is
used to further tailor the project. References to this menu are made in a later

section on maintaining projects.

ﬂ Héke options

Touch

List nembers
fdd target
Remove target
Remove project

Tool options o

9

Creating new projects

In order to create a new project, you should click Select on the Make icon on the
icon bar. This will display the New Project dialogue box as shown below, which
allows you to enter information for the new project:

]EI@E

[fakeFiTe] 0K]

New Project
Hane: | Exanple |
Target: | IRunInage]
Tool: | Link 1

There are three writable icons in the New Project dialogue box which you must fill
in before a new project can be created. These are:

Name

Target

Tool

you should fill this in with the name of the project. This name will be
used to identify the project in the Open menu as described later.

you should fill this in with the name of the main target to be created
from this project. For example, if you were creating an application the
target name would be !Runimage, if you were creating a module the
target name would be the module’s name (eg FrontEnd).

you should fill this in with the name of the tool used to construct the
main target. For an application this could be Link, or in the case of a
library this could be Libfile.

81

uUsiny iviahe

82

Having filled in these three boxes, you must then save the Makefile which will be
used to hold all information for this project. This is accomplished either by
dragging the Makefile icon to a directory viewer (having optionally changed the
leafname from the default Makefile), or by typing in a full pathname and clicking
OK. The directory in which the Makefile is saved is important. This directory is
where the final targets for the project will be created, since each target will be
saved in the @ work directory (see the section entitled Creating a final target for a
project on page 87 for an explanation of this). The sources for the project can be
stored anywhere, since they will always be referenced relative to @. If any of the
Name, Target or Tool icons have not been correctly filled in then an error is
reported, and the Makefile is not created.

When this process has been completed, the newly created project becomes one of
those maintained by Make, until it is explicitly removed (see the section entitled
Removing projects on page 86 for how this is done). The dialogue box which is used to
maintain this project then appears, with the project's name in its title bar. The
project can then be maintained as described below.

Maintaining projects

To maintain a project it is necessary to understand how to open and close projects,
and how to specify the targets for a project.

Opening a project

Make keeps a list of all projects which it is maintaining at any one time. This list is
shown when you enter the Open submenu from Make's application menu. When
no projects are known about, this menu item is unselectable.

FrontEnd
DDEUtils

The list of project names is shown with the most recently registered project at the
bottom. Clicking on a project name in this list will open a dialogue box for that
project, with the name of the project in its title bar; if the project was already open,

then the dialogue box is brought to the front of the WIMP's window stack. If the
project is being opened for the first time, then the directory containing the
Makefile for this project is also opened. The dialogue box is shown below:

Insert: [e] [0K]
Renove: [| (o]
Target: !Run__It_nége _l

L |

This dialogue box can be used to add new members to the project, remove
members which are no longer required, make final targets, and select the current
final target to which these operations refer. These are described in more detail in
later sections.

Adding and removing members

When you have written a new source file or created a new object file which you wish
to include in a project, you should drag the filer icon for that file to the icon marked
Insert in the project’s dialogue box menu. Typically, the only object files which you
will need to insert in a project are external libraries. Any number of files can be
dragged in this way to Insert, where their full pathnames are displayed, provided
that the number of characters displayed does not exceed the buffer for the icon
(4096 characters by default, but this can be changed by editing the templates file
using !FormEd).

Once you are satisfied that this is a list of all the files to be added to the project,
click on OK to the right of Insert. The insertion will then take place. An asterisk
appears in the title bar of the project dialogue box to indicate that this project has
been modified since its Makefile was last saved.

If you wish to remove members from a project, follow the same procedure as that
described for insertion, but drag file icons to the Remove icon instead, and click on
OK to the right of Remove. Again an asterisk will appear in the project’s title bar, to
indicate that a modification has been made.

Note that insertion and removal applies only to the currently selected target when
used in conjunction with multiple-target projects (see the section entitled Multiple
targets on page 84 for more details).

Make uses the following rule for dealing with files dragged to Insert: if the filename
has, as its last but one component, a string (usually just one character) which
corresponds to one of those registered by a translation tool, then it is assumed to

83

84

be a program source file and a rule is constructed to make it into an object file;
otherwise it is assumed to be an object file (such as a library) and will just be
inserted into the list of objects which go to make up the current final target.

Listing members

A list of the members which have been added to a project (and not subsequently
removed) can be obtained in a scrolling text window by selecting the List
members option from that project’s dialogue box menu. The filenames in this list
are expanded to full pathnames, whereas they will appear relative to @ in the
Makefile for the project.

Touching members

You can force a member of the project to be time-stamped using the Touch option
in a project’s dialogue box menu:

i

Make options
Touch

List. members

Add target 9
Remove target
Remove project
Tool options &

In the Touch dialogue box, you can type (or drag to it) the filename(s) of the file(s)
to be touched (either relative to @ as it appears in the Makefile, or as a full
pathname), and then click on OK. If you wish to touch all source members of the
project, then click on All; in this case any filename in Files is ignored.

Multiple targets

When a project is first created, it has just one final target - the one whose name is
entered in the Target icon in the New Project dialogue box. This name will also
appear in the Target icon in a project’s dialogue box when that project has been
opened. This target is referred to as the current target, and it is the target which will

Make

be made when you click the Make icon. The current target is also the one to which
members are added or removed when you enter filenames in the Insert and
Remove icons from a project’s dialogue box.

Make options @
Touch

List menbers !T.ﬁl New target
fAdd target Target:| MyLibrary

|
Remove target Tool: | LibFile] |
Remove project

Tool options o

In order to add a new target, you should use the Add target option from a project’s
dialogue box. In the Add target dialogue box you must enter a name for the new
target, and the name of the tool which is used to construct that target (eg
MyLibrary and Libfile), as shown above.

Targets created in this fashion can be removed by choosing Remove target in the
project menu. Remove target always applies to the current target.

When a project has its dialogue box open, the list of final targets can be traversed
using the up and down arrow icons (next to the Target icon). You will notice that
any targets which you manually insert in the user-editable section of the Makefile
will also appear in the project dialogue box. This is so that you can select them as
the target to be made when clicking on the Make icon.

This can be used to create a ‘squeezed’ image by doing the following:

e When you first create the project use a final target name such as ! RunImageU
for the unsqueezed binary. Insert all your sources and library files to this
target.

e Then add a target (called, for example, ! RunImage) with its ‘tool’ set to
Squeeze.

e Insertthe @. !|RunImageU as the only member for this target.

If you used the example names above, and you now make the target ! RunTmage,
you will get a squeezed final binary.

Setting tool options

In order to make final targets and object files which will combine to make those

final targets, a number of tools such as compilers, assemblers, linkers and library
constructors will be used. These tools will typically have a set of options which are
normally specified from a dialogue box when using the tools under the control of

85

86

the FrontEnd module. It is possible to set the options for a particular tool's use
under Make (for a given project) by following the Tool options submenu from the
project’s dialogue box menu.

Make options o

Touch

List menbers

Add target %

Renove target

Remove project 13
Biool options D
Link
0bjAsn
CHHG
LibFile
Squeeze

This will show a list of all the tools which have registered themselves for use with
Make (for example, Cc, ObjAsm, Aasm, Link etc). Clicking Select or Adjust on a
tool’s name in this list will result in the options dialogue box for that tool being
displayed. This dialogue box can then.be used to set the options for the tool: these
will be translated into command-line options and entered into the toolflags
section of the Makefile for the project.

Removing projects

A project can be removed from the list of projects maintained by Make by choosing
Remove project from the project’s dialogue box menu. This simply means that it is
removed from the list of projects which can be opened from Make's Open
submenu; the Makefile for the project is still retained.

You will also be asked if you want to remove the files which store the toolflags for
the project. If you intend never to reinstate this project as one maintained by Make,
then answer Yes to this query. If you are just temporarily removing this project
from the list, then answer No, so that the toolflags state for this project is saved.

If you later wish to reinstate a removed project, this can be done by dragging the
Makefile for the project onto the Make icon.

Creating a final target for a project
There are two ways of creating a final target for a project:

e If you click on Make in a project’s dialogue box, Make will make the target
which is currently showing in the Target icon. An alternative target can be
selected by clicking the up and down arrow icons to move through the list of
possible final targets.

e If you double click on a filer icon of type Makefile (OXFE1), and you have
enabled the Auto Run options from Make’s Options menu, then Make will
make the first target that it finds in the Makefile (which will be the target
specified when the project was created).

In both of the above cases, the amu program is run pre-emptively using the
TaskWindow module to make the chosen target. The space available to load and
start up amu is determined by the Wimp Next slot. If you get errors such as:

No writable memory at this address
when you run a Make job, try adjusting the Next slot.

The output from this process appears by default in a scrollable, saveable text
window (or in a summary dialogue box if this option is selected in the Display
submenu):

¢c -¢ test2.c _
Norcroft RISC 0S5 ARM C vsn 4.88

This window is read-only, you can scroll up and down to view progress, but you
cannot edit the text without exporting it to an editor. To indicate this, clicking
Select on the scrollable part of this window has no effect.

Clicking Adjust on the close icon of the output window switches to the output
summary dialogue box:

Run at: 10:49:19

91 Lines of output

87

Using Make

88

This box presents a reminder of the tool running (Make), the status of the task
(Running, Paused, Completed or Aborted), the time when the task was started and
the number of lines of output that have been generated (ie those that are displayed
by the output window). Clicking Adjust on the close icon of the summary box
returns to the output window.

Both the above output displays follow the standard pattern of all the
non-interactive DDE tools. The common features of the non-interactive DDE tools
are covered in more detail in the chapter entitled General features. Both output
displays, and the menus brought up by clicking Menu on them, offer the standard
features allowing you to abort, pause, or continue execution, save output text to a
file, or repeat execution.

Saving a project without Making it

If you have made changes to a project, and wish these to be written back to the
project’'s Makefile without actually making a target, then click on Save in the
dialogue box.

Setting Make main options

The Options submenu from the Make icon bar menu allows you to set two options:
Auto Run and Display.

Info |
m<>
LT Display R Text
Quit w

Selecting Auto Run means that when you double-click a file of type Makefile
(0XFE1) from a directory display, the AMU program is immediately invoked to
make the first target found in the Makefile; if you do not select Auto Run, then
double-clicking a Makefile merely adds the project to Make's list of maintained
projects (if it is not already there), and opens the dialogue box for that project
(bringing it to the front of the WIMP's window stack if it is already open).

In the Display submenu, you can choose whether the output of all Make processes
is displayed in a scrolling text window or in a summary dialogue box.

Text-editing Makefiles

You can use a text editor to customise a project's Makefile. There is a section of the
Makefile, following the active comment User-editable dependencies,
which is left untouched by Make. All other sections of the Makefile will be

Make

over-written and so should not be edited using a text editor (unless you are
thoroughly familiar with the operation of Make). The full format of a Makefile is
described later in the section entitled Makefile format.

A good example of how this could be used, is to create a rule which removes an
application’s binary image and the object files used to create it, so that the next
‘make’ will remake all objects. This is done by entering in the user-editable section
the following lines:

clean:; remove !RunImage
wipe o.* ~cf

Using conventional Makefiles

If a file of type Makefile, which does not comply to the Makefile format, is
double-clicked, or if a file of type Text or Data is dragged onto the Make icon, it is
not registered as a project. Instead Make runs the AMU program with this file as its
input Makefile. This allows the use of Makefiles from other systems, and ones
which do not fit into the project-oriented way of working required by Make.

Makefile format

The Makefile which is used to maintain a project is a file of type 0XFE1
(Makefile), and contains normal ASCII text. This text is arranged into a number
of sections which are separated by active comments. For a detailed description of
Makefile syntax see Appendix A - Makefile syntax.

Below, we describe each of these sections, beginning with their respective active
comments:

Project project_name
This gives a name to be used for the project in the Open
submenu.

Toolflags This section has a set of default flags for each of the tools
which have registered themselves with Make, for
automatic inclusion in a Makefile. The tool will have
done this by writing lines (described in the section
entitled Programmer interface on page 91) into
<Makes$Dir>.choices.tools.

Each macro in the Makefile will be of the type:
toolflags =...

eg ccflags = -c

89

An Example

An Example

90

Final targets This section contains the rules for making the final
targets of the project (eg ! RunImage:1link
S (linkflags). This information is obtained when the
project was created (from the Name and Tool icons in
the New Project dialogue box).

User-editable This section is left untouched by Make, and can freely be
dependencies edited by the user. This allows rules to be added which
are specific to a particular project; for example, it may
copy sources from a file server to your local Winchester,
before doing a compilation.

Static This section contains rules for making an object file from
dependencies its corresponding source. It does not refer to include
files etc (described in Dynamic dependencies).
Dynamic This section contains the rules which are created by Make
dependencies by running the relevant tool on a source file to ascertain

its dependencies (eg cc -depend).

In order to demonstrate using Make, you can manage the desktop example
program Automata (which is formed from more than one source module). This
example can be found in the User directory in the subdirectory Automata.

On the release discs there is initially no project for Aut omata, so that you can use
this as an example of creating a project from scratch. If you follow the instructions
below, you should be able to create and manipulate a project for Aut omata.

1 Double-click Select on the !Make icon from a directory display to install the
Make application on the icon bar. By clicking Select on the Make icon (the one
with the brick wall and trowel) you will get the dialogue box used to create a
new project.

2 Inthe New Project dialogue box you will need to fill in a name for the project
(for example Automata) the name of the final target (which you should type as
!RunTImage since this is an application) and the name of the tool used to
create the final target (in this case you should enter 1ink).

3 When you have filled in the New Project dialogue box you can then save the
project to a directory display by dragging out the Makefile icon. It is best if you
drag this icon to the directory viewer for User. ! Automata. This now
becomes the Automata project, and you will see the dialogue box for the
project pop up to replace the New Project box. In its title bar this dialogue box
will have the name of the project. Also, the project name will appear in the
Open list from Make's main menu.

You will now need to add the members of the project. Do this by dragging the
source and object files from the User. ! Automata directory onto the Insert
icon in the project’s dialogue box, and then clicking OK. For Acorn Desktop C
you will also need to insert the stubs obiject file (or ANSILib) and RISC_OSLib
into the project. In order to see the members which you have added, you can
click Menu on the project’s dialogue box, and select List members. Note that
the exact mixture of source and object files depends on which DDE product
you are using (eg Acorn Desktop C or Acorn Desktop Assembler).

Set the options for the tools used to construct the example program. For
instance, if you have the Acorn Desktop C product, then you must add the
RISC_OS Lib headers to the C compiler's include path, using the Include icon
in the C compiler’s dialogue box. Such options can be set for a particular tool
by clicking Menu on the project’s dialogue box, then selecting the tool's name
in the Tool options menu entry.

You can make the final binary for !Automata by clicking on Make in the
project’s dialogue box, or by double-clicking the project’'s Makefile from a
directory display.

Programmer interface

The following information is given for programmers wishing to add new tools to be
used with the DDE Make application.

If you wish to use a tool with Make, which does not come with the DDE, you can
use either of the following two methods:

Write a description file for the tool for use by the FrontEnd module and
register it with Make as described below in the section entitled Registering
command-line tools with Make.

Write a WIMP frontend for the tool which complies with the details given
below in the section entitled Message-passing interface for setting tool options.

Registering command-line tools with Make

A command-line tool which will be run under the control of the FrontEnd module
(for setting its options in a Makefile), will need to append lines of the following
format to the file <Make$Dir>.choices.tools:

toolname Name of tool.

string Extension.

flags Default flags for use by Make.

rule Rule for converting sources to objects.

pathname Full pathname of file containing application description.

91

Programmer interface

All the above lines should be terminated by the C newline character \n.

For typical examples see the entries in <Make$Dir>.choices.tools after
installing the DDE.

Message-passing interface for setting tool options

92

When the user selects a tool name from the Tool options submenu, Make issues a
star command to get the frontend module to start up a wimp frontend for the
chosen tool (without an icon appearing on the icon bar). The setup dialogue box
for that tool is then displayed, with the Run icon replaced by an OK box.

The user can then set options for that tool. A suitable set of command-line options
is returned by the generalised frontend, to be used as that tool's toolf1lags entry
in the makefile.

If the star command fails (presumably because the frontend module is not active or
because there is no description for the chosen tool), then Make broadcasts a WIMP
message (recorded delivery), to see if any application can deal with the request.
This is to allow expansion of the system to incorporate other WIMP-based
compilers, assemblers, etc., which other parties wish to provide for use under the
control of Make.

The WIMP message has the format:

Byte offset Contents

+16 DDE_CommandLineRequest (reason code) (&81401)
+20 Make’s internal handle

+24 .. nul-terminated application name.

If you have written an application which needs to respond to this message, then
your application should:

1 Acknowledge the WIMP message. You must also store the taskhandle of Make.

2 Display a dialogue box to allow the user of your application to set options
appropriately.

3 When the user has chosen the options, send back a WIMP message to Make,
with the following format:

Byte offset Contents

+16 DDE_CommandLineResponse (reason code) (£81400)
+20 Application's handle

+24 to +36 Application’s name

+36 ... nul-terminated command-line options

7 SrcEdit

rcEdit is a text editor, based on the RISC OS editor (Edit), with extra features to
make it more suitable to create and edit program sources.

You can control SrcEdit from a menu tree, which is described fully in this chapter.
However, many menu choices are available directly from the keyboard; once you
are familiar with SrcEdit, you may find that you prefer this method. These keystroke
equivalents are listed later in this chapter.

Starting SrcEdit

You can load SrcEdit either by double-clicking on the !SrcEdit icon from a directory
display, or by double-clicking on a file of type Text (&0fff). You will then see an
icon similar to that of Edit on the iconbar (a pen and program listing).

Typing in text

When you first open a new SrcEdit window, an I-shaped bar — the caret — appears at
the top left of the window. This is where text will appear when you start typing. You
can open more SrcEdit windows, but only one of them will have a caret in it: this is
called the current window. It is also identified by the fact that parts of its border
appear in cream rather than grey. You can type only in the current window.

If you type in some text without putting in any carriage returns, and using the
system font (the default font) you will find that the window scrolls sideways. This is
because the default SrcEdit window is not as wide as the screen. You can break
your text into lines by pressing Return. Alternatively, click on the Toggle Size icon
to extend the window to the full screen and avoid having to scroll sideways. There
is another way of getting all your text into the window, using the Format
command; this is described later.

As you type, you will notice that SrcEdit fills the current line and then carries on to
the next line, often breaking words in the middle. Ignore this for the moment, as
there is a menu option (Wordwrap) that will take care of it, and this will be
described later.

93

Inserting and deleting text

If you need to insert or delete text, position the caret where you want to make the
alteration by moving the pointer there and pressing Select. You can insert text
simply by typing. If you want to delete a character, position the caret immediately
after it and press either Backspace or Delete; hold the key down and the
auto-repeat will come into effect, deleting more characters.

SrcEdit menus

The top level menu for text windows contains the following options:

The Misc menu

Misc
Save

Edit

This menu offers six options:

Info tells you about SrcEdit, including the version number of your copy of the

program.

File gives information about the file you are working on, in particular:

Select

Display

L
F3 o
@
9
%

Info
File
New view

Colunn tab {F3
Overwrite ¢F1
Wordwrap "F3

=
°
has one, is also shown):
®
its size, in number of characters;
°

date when it was first created).

94

whether it has been modified since you last saved it;
what type of file it is: for example, a Text File or a Command file (its icon, if it

its name, including the full directory pathname:

the time and date it was last saved (or if you have not saved it yet, the time and

SrcEdit

New view opens a second window on the same text. This allows you to look at two
parts of the same document, and makes many actions such as copying from one
part of a document to another much easier. Remember that you are looking at one
document, not at two separate copies of it: to illustrate this, try looking at the
same part of a document in two views (not the way you will normally use New
view!); enter some changes in the first view and you will see the same changes
appearing in the second view. This is particularly useful with large documents.

Column tabs switches on a different type of tab insertion; for more detail see the
section entitled Laying out tables: the Tab key on page 106. When this option is on, it
is ticked in the Misc menu and ColTab appears in the Title bar.

In SrcEdit the default state is to have Column tabs on.

Overwrite, means that each character you type replaces the character at the cursor,
instead of pushing the cursor aside and inserting the new character. When this
option is on, it is ticked in the Misc menu and Overwrite appears in the Title bar.

Wordwrap prevents words being split over line-ends as you type. When this option
is on, it is ticked in the Misc menu and Wordwrap appears in the Title bar. Do not
confuse this option with Wrap, selected from the Display submenu. Wordwrap,
unlike Wrap, inserts a newline character (which is there although you cannot see it
on the screen) when the cursor moves to a new line.

Saving text: the Save menu

The Save menu allows you to save a complete file; you can also save part of a file
using the Select menu, described below.

TextFilel |[0K]

In order to save a file in the easiest way, you need to have on the screen the
directory display for the directory where you want to save the file. Move to Save,
and a box appears, containing an icon, the current filename, and an OK box. If the
file has not been saved before, SrcEdit offers you a default filename of TextFile.
If you want a different name, use Backspace or Delete (or press Ctrl-U) to delete
TextFile, then type in the name you want. Place the pointer on the icon in the
menu and drag the icon into the directory display where you want to keep the new
file. An icon for the file then appears in the directory window.

95

96

This action assigns a full pathname to the file, as you will see from the Title bar of
the SrcEdit window. When you have made some changes to the text and want to
save the file a second time, use the Save option again, but this time, provided you
want to use the same filename, you can save the file by clicking the OK box.

Manipulating blocks of text — the Select menu

You can select blocks of text, then manipulate them.

The simplest way to select a block is to position the pointer where you want the
block to start and, using the Select button, drag the pointer to the end of the block
and release the button. The selected block of text is highlighted.

If necessary, you can then use Adjust to ‘adjust’ the ends of the block. Position the
pointer exactly where you want the block to start or finish, click Adjust and the
block lengthens or shrinks accordingly. This is particularly useful when you want to
select a block that extends beyond the part of the text you can see in the window.
Select a few words or lines at the start of the block, scroll until you can see the
point where you want the block to end, place the cursor there and click Adjust.

To select a single word, position the pointer anywhere within the word and
double-click Select; select a single line by triple-clicking. Double-clicking with
Adjust will extend the block to include the whole of the current word at the pointer,
triple-clicking with Adjust extends it to the current line.

Once selected, text can be saved, copied, moved, deleted, deselected (cleared),
indented, searched for programming help in an information library or treated as a
filename to load by choosing Load from the Select menu:

Misc 9

Save F3¢ '
Select EETTT d
Edit 9 Copy °C
Display & Move "V
Delete "%
Clear "2
Indent o
Help F1
Load "L

To save a selected block, move to Save from the Select menu, and follow the
standard saving procedure. Use this option to copy a selection into another
SrcEdit window: open a new window and drag the icon into it. The copied block will
appear at the end of any text that is already in the destination window.

SrcEdit

To make a copy of a selected block of text, first position the caret where you want
the copy inserted, then call up the Select submenu and choose Copy; the original
block remains selected. Keep clicking on Copy to make as many copies as you
want,

If the caret is already at the position where you want the copied block to appear,
press and hold Ctrl while making the selection in the usual way. Still holding Ctrl,
press C, and the block will be copied to the caret position.

If you copy to a position inside a selected block, both the original and the new copy
remain selected. If you then make multiple copies you will get double the number
you indicate. This may happen accidentally if you position the caret immediately to
the right of a selected block ending in a carriage return: because the carriage return
does not appear on the screen it is not highlighted, but is still part of the selected
block. To undo an action, choose Undo from the Edit menu (see later).

To move a selected block of text, place the caret where you want the text moved to,
then click on Move.

If the caret is already where you want the block to end up, press and hold Ctrl while
making the selection in the usual way. Still holding Ctrl, press V, and the block will
be moved to the caret position.

To delete a selected block of text, click on Delete. The marked block then
disappears.

Undo - in the Edit menu — allows you to reverse any changes or deletions made in
the Select menu.

To clear (or deselect) a block of text you have previously marked, click on Clear. The
marked block reverts to the normal display and the block is no longer selected.

Indent allows you to indent a selected block of text. The indent is defined in
character spaces. You can also use Indent to add a text prefix to the beginning of a
block.

To indent a selected block of text, call up the Indent submenu, then type in a
number.
® A positive number gives you an indent of the specified width,

e A negative number, eg -5, removes the specified number of spaces or
characters from the beginning of the block line; use this to cancel an indent.

® Youcan also type in text: IGNORE, or NB, for example. This will then appear at
the beginning of every line in the selected block. You can remove this text by
indenting with a negative number.

97

98

By selecting some text and choosing the Help submenu, some language-specific
help can be given on that selection. This help is supplied by a language package,
which will have registered a help file containing typically a list of help messages for
keywords of a programming language (eg the C print f function).

The Load submenu allows you to load a file into the editor, whose name is given by
the current selection. The rule used to determine the name of the file to be loaded
(assuming the current selection is in a file whose name has the form
DirectoryPath.LanguageExtension.foo) is as follows:

1 Trytoload file Selection.

2 If (1) fails try to load file:
DirectoryPath.LanguageExtension.Selection

3 Trytoload file DirectoryPath.Selection.

If (3) fails try the comma-separated list of directories entered by the user from
the Search Path entry in the Options submenu of SrcEdit's icon bar menu,
with Selection appended as a leafname.

5 If (3) and (4) fail, try the comma-separated list of directories which are
registered for the current language (see the section entitled Application menu on
page 109 for details of how to set the current language).

For example, you may have a C source file with a line #include “defs.h”. By
selecting defs . h and typing Ctrl-L the header file defs . h will be loaded into
SrcEdit (providing it can be found on one of the search paths).

The Edit menu

The first option in the Edit menu is Find. At its simplest, this allows you to locate
any character(s) in your file. You can also use it to replace text with other text. To
make sure that the search is complete, always position the caret at the start of the
file before giving the Find command. In the following description, the text being
searched for is referred to as a string; it may consist of any sequence of letters,
numbers, spaces or other characters.

SrcEdit

To use Find without doing anything with the found strings, choose Find in the Edit
submenu: the Find text dialogue box appears, with the caret in the Find box. Type
in the string you want to locate and press Return. The caret then moves to the
Replace with box.

Mise 9
Save F3¢
Select
[Edit 0

Display &

Case sensitive -
Magic characters <C-Hildearded expressions

CR{-DLF "F8
Expand tabs
Fornat "F69

To start a search, click on Go, press Return or press F1.

Edit finds the first occurrence after the caret of the word in your file, then displays
the Text found dialogue box, indicating the operations available:

iy

Stop | Continue || Replace i
Last Replace|End of file Replace

Found

To look for the next occurrence of your string, click on Continue. To abandon the
search, click on Stop, or press Return or Escape.

To use Find for replacing a string with a new string, go to the Find text dialogue
box as before, but this time, insert the new string into the Replace with box. Then
press Return, and the Text found dialogue box appears.

Click on Replace to substitute the new string for the old string; if you do not want
to change this particular occurrence of the old string, click on Continue and Edit
moves on to the next one.

If you click Last Replace, Edit replaces the currently found instance of the string,
but does not search for further occurrences.

If you click End of file Replace, SrcEdit finds and replaces all occurrences of the
string from the present one forward to the end of the file, without stopping at each
one for instructions.

Clicking on Undo takes you back to the last string replaced and returns it to the
original version; click reDo to change it back again.

99

100

The display at the bottom of the menu keeps you informed of the state of the
search; if Edit cannot find the word you have specified it displays the message
Not Found.

Besides using the Select button, you can control all these options by pressing keys:;
the particular keys are indicated by the capital letters in the dialogue box. Press S
and the search stops, press C and it continues, D and it will redo, and so on.

Pressing Escape or Return will stop the search and remove the Text found window.

Note that you can use Find to delete strings in a text, by entering nothing in the
Replace with box, and clicking on Replace in the Text found dialogue box, thus
replacing the found string with nothing: deleting it, in effect.

There are several other useful facilities, accessed in the Find text dialogue box:

® You can carry out the last Find and Replace operation again, by clicking
Previous or pressing F2.

® You can specify a string and ask Edit to count the number of times it occurs in
your file (from the caret position to the end of the file) by clicking on Count or
pressing F3.

You can match case by selecting Case sensitive or pressing F4. By default, Find
makes no distinction between upper and lower case characters - He1 1o will match
to both HELLO and hello, or for that matter, hE1Lo. If you ask SrcEdit to match
case, Hello will only match Hello. Case sensitivity remains selected until you
deselect it by clicking again.

- Fin: ,
Replace with: [
[Jcase sensitive '
<é>Magic characters <>Mildcarded expressions

\.=any char \azany letter or digit \d=any digit

\xXX=hex char \n=newline \eX=ctl-¥ \\=\
\#=any string \&=found string

e Inorder to remain backwards compatible with versions of the RISC OS Edit,
SrcEdit supports the Magic Characters facilities, which can be accessed by
clicking on the Magic Characters in the Find dialogue box. You will notice
that the dialogue box expands to show the meaning of characters which have a
special use. They operate as follows:

*

\a

\d

\n

\eX

\ &

\A

\ XXX

SrcEdit

matches any string (including a string consisting of no characters at all).
This is really only useful in the middle of a search string. For example,
jo*n matches jon, johnson, and jonathan.

matches any single alphabetic or digit character. So t \ap matches tip,
tap, and top, but not trap.

matches any digit.

matches any character at all, including spaces and non-alphabetic
characters.

matches the newline character (remember that to the computer, this is a
character just like any other).

matches Ctrl-X, where X is any character.

is used in the Replace with box to represent the found string: the string
matched in the search. This is useful when you have used magic characters
in the Find string. For example, if you have searched for t \ap, and you
want to add an s to the end of all the strings found, \ &s in the Replace
with box will replace tip, tap and top by tips, taps and tops.

enables you to search for a string actually containing the backslash
character \ while using magic characters. To search for the strings cat \a
or cot\a, enter c\at\\a.

matches characters by their ASCII number, expressed in hexadecimal.
Thus \x61 matches lower-case a. This is principally useful for finding
characters that are not in the normal printable range.

aaa s

[TR
' Find: |

Replace with: [
[Jcase sensitive

<>Magic characters <& MWildcarded expressions

finy . Newline $ |Rlphanum @] Digit #
_Etr! | Hormal Setl 1Set

Hot * ﬂgr more tqur more "| Most %

To - Found & | Field# 7 | Hex & |

101

In SrcEdit there is also a facility for specifying wildcarded expressions in search
strings, providing the power of an editor like Twin. In order to use this facility, click
on Wildcarded Expressions in the Find dialogue box. A number of action icons
show the features which are available. These are:

Action

icon Expression Action

Any : matches any single character.

Newline $ matches the newline character (LineFeed).

Alphanum @ matches any alphanumeric character a-z, A-z, 0-9 or _.

Digit i matches any digit 0-9.

Ctrl I c or | C will match the character Ctrl-C.

Normal \ \ ¢ will match the character c even if ¢ is a special character.
eg \ . means the dot character not any single character.

Set|/Set)| [] [abc] matches any one of the characters a, b, c.

Note that a set is always case-sensitive.

Not ~ ~c matches any other character than ¢, where ¢ is any of the
simple character patterns listed above.

0 or more * *c matches 0 or more occurrences of ¢, where ¢ is any of the
simple character patterns listed above.

1 or more & Ac matches | or more occurrences of ¢, where ¢ is any of the
simple character patterns listed above.

Most % %c matches the most contiguous characters matching c,
where c is any of the simple character patterns (except Any)
listed above.

To - [c1-c2] matches any character in the ASCII character set
between c1 and ¢2 inclusive.

Found & refers to the whole of the found string.

(only to be used in the Replace with string)
Field# ? if a pattern was found which matched the search string, then

?n refers to the part of the found string which matched the
n'th ambiguous part of the search string, where n is a digit 0
to 9. Ambiguous parts are those which could not be exactly
specified in the search string; eg in the search string
$#fred*s there are two ambiguous parts, $# and *$, which

102

Hex

The
™

SrcEdit

are 20 and ?1 respectively. Ambiguous parts are numbered
from left to right.
(only to be used in the Replace with string)

i #inn matches the character whose ASCII number is nn, where
nn is a two-digit hex number.

full power of this facility can be illustrated by a few examples.
To count how many lower case letters appear in a text:
Find: [a-z]

and click on Count.

To count how many words are in a text:

Find: %@

and Click on Count.

To surround all words in a text by brackets:

Find: %@
Replace with: (&)
and click on GO, then on End of File Replace in the Found dialogue box

To change all occurrences of strings like #include h.foointo #include
foo.h:

Find: \#include ‘h\.%@’
Replace with: #include "?0.h’

and click on GO, then on End of File Replace in the Found dialogue box
To remove all non-printing ASCII characters (other than newline) from a file:

Find: ~[-\~$]

Replace with:

and click on GO, then on End of File Replace in the Found dialogue box (ie
find all characters outside the set from the space character to the ~ character,
and newline, and replace them with nothing). In fact this could be written

without the \, since ~ would not make sense in this context if it had its special
meaning of Not, ie:

Find: ~[-~8]

103

104

Returning to the Edit menu

To send the caret to a specific line of text, use the Goto option. Call up the Goto
submenu and Edit displays a dialogue box:

current line: 1
current char: 8

6o to ltne.:I:l-

Type in the line number you want to move to, then click on OK. The dialogue box
disappears, and the screen displays the caret, positioned at the beginning of the
line you have just specified. Note that this option understands ‘line’ to mean the
string of characters between two presses of Return. If you have not formatted your
text, a line in this sense may run over more than one display line,

Undo allows you to step backwards through the most recent changes you have
made to the text. The number of changes you can reverse in this way varies
according to the operations involved.

Redo allows you to remake the changes you reversed with Undo.

CR&LF allows you to convert the line feeds in your text to carriage returns and
back again.

If you convert from linefeeds to carriage returns, the file will be converted to one
continuous line, with carriage return characters inserted where linefeeds have been
removed. Though it is possible to edit a file in this state, you may find that
updating the screen takes a long time. This facility is useful when importing text
from other text editors, which may use carriage return where SrcEdit uses the line
feed character.

Expand Tabs converts tab characters to the equivalent number of spaces, since
some printers can interpret spaces more easily than the tab character,

Format text allows you to reformat a paragraph of text — from the caret to the next
blank line or line starting with a space — so that the lines fill the screen and break
correctly at the ends of words. It is useful for tidying up text after editing. Position
the caret at the beginning of the paragraph, choose Format text in the Edit menu
and enter the number of characters per line you want your text to have in the
Format width dialogue box. Then move the pointer back over the Edit menu and
click on Format text to format the paragraph.

The setting in the Format width dialogue box also controls the length of lines
when you are entering text with Word wrap switched on.

SrcEdit

The Display menu

Display allows you to change the way your text looks on the screen: you can
experiment with fonts, colours, line spacing and margins. However, the features
you select do not form part of the text when you save it.

For example, if you choose New view in the Misc menu, you will have a second
window on your text. If you wish, the Display features in these two windows can be
different; this will not affect the text as such.

Misc 9
Save F39
Select @
Edit
Font 9

Line spacing &
Margin &
Invert
Hindow wrap
Foreground o
Background ¢

¥ Hork Area ¢

Font offers you a choice of fonts (typefaces). System Font is the default style, and
has a fixed character width. For further information on fonts, see the RISC OS User
Guide.

You can use Font size to set the point size (height and width) of the characters
displayed on the screen. Either select one of the sizes indicated or position the
pointer on the bottom (blank) line of the menu; you can then type in another size.

Font height allows you to set the height of the characters displayed on the screen
leaving their width unchanged.

Line spacing increases or decreases the space between lines. Its units are pixels
(the smallest unit the screen uses in its current mode). The selected font size
assigns a suitable line spacing; this option is therefore used only to increase (or if
you type a negative number, to decrease) the given spacing.

Margin sets the left margin, again in pixels.

Invert swaps foreground and background colours, so that black text on white
becomes white text on black, and so on.

105

Printing a SrcEdit file

By default, SrcEdit assumes a text width of 76 characters, but the default window is
not as wide as the full screen. You can of course change the number of characters
per line (by choosing Format text in the Edit menu) or enlarge the window to the
full screen by clicking on the Toggle Size icon. Alternatively, clicking Window wrap
makes your text fit the size of the window. When Window wrap is on, you can
change the window to any size, and the width of the text will change accordingly.
You can revert to the default by selecting Window wrap again.

Foreground allows you to set the text to any one of the sixteen colours, by clicking
on the selected colour square from the palette displayed.

Background allows you to set the window's background colour, as above.

Work Area allows you to set the extent of your SrcEdit windows so that you can
have windows which are wider than the current screen mode. Normally SrcEdit
restricts the maximum horizontal extent of a window to the size of the screen in the
current mode, but you can specify a wider window in terms of System Font
characters in the Work Area submenu (the size of System Font characters is used
even if the current font used is a fancy font). This is particularly useful if you have
sources which, for example, are 80 or 132 characters wide and you are viewing them
in mode 12. The maximum size of window width which can be specified in this
manner is 192 System Font characters.

Printing a SrcEdit file

There are two ways of printing a SrcEdit file; however, to use either, you first need
to load a printer driver.

If the file you want to print is already loaded into SrcEdit, call up the Save as
dialogue box and drag the icon onto the printer driver icon on the icon bar. This
will print the current version of the file, whether or not it has been saved.

If the file is not loaded into SrcEdit, you can simply drag the files's icon from its
directory display onto the printer driver icon. You can also do this if the file is
loaded, but if you have made any changes to it since you last saved it, they will not
appear in the printed copy; only what has been saved will be printed by this
method.

Laying out tables: the Tab key

106

To set out a table, type in the first line — the column headings, for example — as you
want it to appear, using spaces to separate the text in the columns. Then press
Return. If Column tabs is turned off then pressing Tab on the next line will make
the cursor jump to the position underneath the start of the next word in the line
above.

SrcEdit

If you want your table to have columns regularly spaced eight characters apart,
click on Column tabs in the Misc menu. The word ColTab will appear in the
window’s Title bar to remind you that you have done this. Pressing Tab will then
cause the cursor to jump to the next tab position.

Reading in text from another file

If you want to add all the text from another file into the file you are currently
editing, position the caret at the point where the inserted text is to appear. Call up
the directory display for the incoming file, and drag its icon into the text window.
The entire contents of the source file are then copied into the destination file at the
caret position. The caret will appear at the end of the text you have inserted.

Bracket Matching

Throwback

SrcEdit has a useful bracket-matching facility. If you place the caret to the left of an
opening bracket (any of the set (, [, or {) and press Ctrl-), the corresponding
closing bracket will become the current selection; similarly by placing the caret to
the left of a closing bracket (any of the set), 1, or }) and pressing Ctrl-(, the
corresponding opening bracket will be selected. If there is no matching bracket an
error message is generated. This is a particularly useful feature in heavily bracketed
expressions and blocks of code which extend over a large amount of source code,
and is useful in conjunction with the Ctrl-F7 feature (toggle caret and selection),
thus moving the selection between matching brackets.

The purpose of throwback is to allow translators (compilers/assemblers) to signal
the editor when they have detected source errors. On receiving such a signal,
SrcEdit displays a window which shows the name of the file which was being
processed when the error(s) were found, the name of the file in which the error(s)
were found, and the relevant line number together with the text of the error
message. Also displayed is the severity level of the error(s): Serious Error, Error, or
Warning. The complete list of errors is shown in a scrollable window. We shall refer
to a single line of this window as an error line. You can scroll through these as with
any normal text window, using the vertical and horizontal scroll bars.

107

Saving Options

Saving Options

108

Processing File: adfs::Mork.%.Example.s,cistromp

~ Serious Error Unknoun _o_g ode
__Serious Error Bad register name symbol

Double-clicking Select on an error line opens an edit window on the appropriate
file (if it is not already open), and highlights the line containing the selected error.
The selected error line is also highlighted in the scrollable error window. Clicking
Adjust on an error line removes it from the list (presumably you have either
corrected the error or have chosen to ignore it). Note that error line numbers refer
to the original source when it was processed. You may, in the course of correcting
errors, insert or delete lines; the position in the source where errors were detected
remains correct despite your edits (provided that the edits are made as a
consequence of throwback).

‘Informational’ throwback is also supported for tools like !Find. The functionality of
such a throwback window is the same as for ‘error’ throwback.

To retain the same set of options whenever you use SrcEdit, set the menu and
dialogue box entries to the required configuration and then choose Save options
from the SrcEdit icon bar menu. The options you have chosen are then saved in
two files:

<SrcEdit$Dir>.choices.options
<SrcEdit$Dir>.choices.liboptions

These files are read when SrcEdit starts up. The options saved are:

Feature Default
Foreground Colour black
Background Colour white

Font Width 10

Font Height 10

Left Margin in pixels 0

Extra spacing between lines 0

Window wrap off

Font name System font

SrcEdit

Window work area width Screen width
Column tab on
Overwrite off
Wordwrap off

Warn multiple edits on

Current language none

Search path none

Application menu

Pressing Menu on the SrcEdit icon on the icon bar produces a menu with the
following options:

Info gives you some information about the version of SrcEdit you are using.
Save All saves all modified buffers, and closes all open windows.

Save Options saves the current settings of all SrcEdit options to file, so that there
is no need to set the environment variables used to maintain these options.

The Options submenu allows you to set the following options:

" Info 9
Save all #F9
Save options

24 Column tab
Create | Overwrite
Ruit Hordwrap
4 Warn multiple edits
Langquage 9
Search path g

Column tab, Overwrite and Wordwrap are similar to the options on the Misc
submenu in the section entitled The Misc menu on page 94. They are used to set
the default options for all windows opened by SrcEdit.

Warn multiple edits, if enabled, will warn you when you attempt to load a file
which is already loaded in a modified SrcEdit buffer. This reduces the chance
of you accidentally editing two copies of the same file, and then saving one
over the other. In such a case you will be presented with a dialogue box, giving
you the choice of having a read-only copy of the file, a normal editable copy, or
to cancel the load of the file. If you choose to have a read-only copy, then the
SrcEdit window for the document will have Read-0On1y in its Title bar and you
will be prevented from making any edits to the contents of the document.

109

SrcEdit task windows

The Language submenu gives you a list of any language packages which have
registered themselves with SrcEdit. You can select which of these languages is
current, and this will determine what Help text is available, and also the
default search path used when loading from a selection.

Search path - If you load from a selection (ie when you have chosen Load
from the Select submenu), SrcEdit will look in a number of places for the file to
be loaded. You may set a comma-separated list of paths to search by typing
them into the Search path writable icon (described in (2) in the Load
submenu in the section entitled SrcEdit menus on page 94). Note that each such
path should either be a path variable or be explicitly terminated by a dot.

Create leads to a submenu which enables you to open windows for specific types
of file: Text, Data, Command, Obey and Make files.

In addition, the Create submenu allows you to set up SrcEdit Task windows, these
are described in the next section.

Finally, Quit stops SrcEdit and removes it from the computer's memory, first
presenting you with a dialogue box for confirmation if there are any current files
you have not saved.

SrcEdit task windows

110

SrcEdit task windows allow you to use Command Line mode in a window. To open
a task window, choose Task window from the SrcEdit application menu. You can

have more than one task window open. When you open a task window, you will see
a * prompt. You can now enter commands in the window just as if you were using
Command Line mode.

The major advantages in entering commands in a task window instead of at the
Command Line prompt are that:

e Other applications continue to run in their own windows while you run the
task (this does mean, though, that the task may run more slowly than it would
using other methods of reaching the Command Line).

e Commands that you type, plus the output (if any), appear in a conventional
Edit window, and may therefore easily be examined by scrolling up and down
in the usual way. When you type into the window, or when a command
produces output, the window immediately scrolls to the bottom of the text.
Anything you type in is passed to the task, and has the same effect as typing
whilst in Command Line mode. You can change this by unlinking the window:
in this case, anything you type in alters the contents of the window in the same
way as any other Edit window, even while a task is running. Any output from
the task is appended to the end.

SrcEdit

You can also supply input to a task window by selecting some text from another
text file and choosing TaskInput from the task window menu. The selection may be
in any Edit window.

You cannot use graphics in a task window. The output of any commands that use
graphics will appear as screen control codes in the task window.

The menu for a task window contains the following options:

Kill

Suspend

Unlink
?ag aput

4 Ignore Ctl
Edit &

Kill stops and destroys the task running in the window.

Reconnect starts a new task in the window, allocating memory to the task from the
Task Manager's Next slot.

Suspend temporarily halts the task running in the window.
Resume restarts a suspended task.

Unlink prevents the sending of typed-in characters to the task. Instead, they are
processed as if the task window were a normal Edit text window.

Link reverses the effect of Unlink.
TaskInput reads task input from the currently selected block.

Ignore Ctl, when selected, prevents any control characters generated by the
program from being sent to the screen.

Edit leads to the normal Edit menu. Although this makes available most of Edit's
features, you cannot use facilities such as the cursor keys or keys such as Page Up
and Home while you are using a Task window.

111

Some guidelines and suggestions for using task windows

Some guidelines and suggestions for using task windows

In order to use a task window, you will need to be familiar with Command Line
mode. There are some commands which you will find are more useful in a task
window than they are directly from the Command Line. In particular:

*wimpslot min [max] can be used to adjust the amount of memory available
to the task, which will otherwise start up using the Next space allocation. If you
want to remove all the memory allocated to a task without closing its window or
destroying the task, use the command *wimpslot 0 0.

*filer_opendir pathopens a new directory display for the directory with the
given path. The path must start with a filing system name, but need not be a full
pathname. For example, adfs: : @ will open a display for the current directory.

The command *Spool should not be used from a task window. Because its effect
is to write everything that appears on the screen to the spool file, using *Spool
from the desktop will produce unusable files full of screen control characters.
There is, in any case, no point in using *Spool, since the output from the task
appears in the window, and can be saved using SrcEdit as normal.

When you run a command in a task window, the computer divides its time between
the task window and other activities running in the desktop. You should note that
some time-consuming commands, for example, a *Copy of a large file, may
prevent access to the filing system that they use until the command is complete.

Note that Command Line concepts such as current directory become relevant
when you are using Task Windows.

Keystroke equivalents

112

On occasions, it can be convenient to use the keyboard instead of the mouse,
especially once you are familiar with SrcEdit through its menus.

When editing

I T 0 | Move caret one character left, right, up or down.
Shift-«, Shift-— Move caret one word left or right.

Shift-T, Shift- Move caret one windowful up or down.

Ctrl-T Move caret to start of file.

ctrl-d Move caret to end of file.

Ctrl-&, Ctrl-— Move caret to start or end of line.

Ctrl-shift-T, Ctrl-Shift- Scroll file without moving caret.

Ctrl-Shift—«
Ctrl-Shift-—

Copy

Shift-Copy

Ctrl-Copy

Home

Insert

Page Up/Page Down
Shift-Page Up/Page Down
Ctrl-Page Up/Page Down
Shift-F3

Shift-F1

Ctrl-F5

Ctrl-F7

SrcEdit

Scroll all documents up by one line.

Scroll all documents down by one line.
Delete character to right of caret.

Delete word at current caret position.
Delete line at caret.

Place caret at top of document.

Insert space to right of caret.

Scroll up or down one windowful.

Move caret up or down one line without scrolling.
Move caret and scroll up or down one line.
Toggle column tabs on or off.

Toggle overwrite mode on or off.

Toggle word wrap on or off.

Make where the caret is the current selection, and
move the caret to where the selection was (ie toggle
caret and selection).

Keystroke equivalents in the Select menu

Ctrl-Z
Ctrl-X
Ctrl-C
Ctrl-v
Fl

Ctrl-L

Clear selection.

Delete selection.

Copy selection to caret.

Move selection to caret.
Request language-specific help.

Load file whose leafname is given by selection.

Keystroke equivalents in the Edit menu

F4
Ctrl-F4
F5
F6

Display Find dialogue box.
Indent text block.
Display GoTo dialogue box.

If no block is selected, select the single character
after the caret. If a block is selected, and the caret is
outside it, extend the selection up to the caret. If a

113

Keystroke equivalents

block is selected and the caret is inside it, cut the
block from the caret position to the nearest end of

the block.
Shift-Fé Clear the current selection.
F7 Copy the selected block at the current caret position.
Shift-F7 Move the current selection to the caret position.
F8 Undo last action.
F9 Redo last action.
Ctrl-F6 Format text block.
Ctrl-F8 Toggle between CR and LF versions of the file.
Ctrl-Shift-F1 Expand tabs.

Keystroke equivalents in the Find menu

Note: these keystroke definitions only come into play once the Find dialogue box
has been displayed (eg by typing F4).

T.4 Find / replace text string.

Fl Display Text found dialogue box.

F2 Use previous find and replace strings.
F3 Count occurrences of find string.

F4 Toggle case sensitive switch.

F5 Toggle magic characters switch.

F6 Toggle wildcarded expressions switch.

Keystroke File options

F2 Open a dialogue box enabling you to load an existing
Edit file into a new window.

Shift-F2 Open a dialogue box enabling you to insert an
existing SrcEdit file at the caret position.

F3 Save the file in the current window. This is a shortcut
to the normal Save as dialogue box.

114

Part 3 - Non-interactive tools

115

116

General features

his chapter describes those features common to all the DDE non-interactive
tools.

As described in the chapter entitled Working in the DDE on page 19, the large
number of programming tools forming the Desktop Development Environment can
be divided into two categories: interactive and non-interactive. The non-interactive
tools are those which you set options for and then run, not interacting further until
the task completes or is halted. An example of a non-interactive tool is the linker
Link, whereas the editor SrcEdit is an interactive tool. The chapters following this
each describe an individual non-interactive DDE tool. Further chapters in the
accompanying language user guides describe non-interactive tools specific to
programming in particular languages; for example, the language compilers and
assemblers themselves.

The non-interactive tools can be further divided into two sub-categories: filters and
non-filters. The filter tools are those that take a set of input files and process them
to produce output files, examples being Link, Libfile, Squeeze and the language
processors. The non-filter tools all perform some immediate action, such as
examining text files and presenting you with information as text output. The filter
tools are intended to be used both managed and unmanaged by Make (an
interactive tool described earlier in this user guide), whereas the non-filter tools
are normally just used for unmanaged work.

To start unmanaged use of any of the non-interactive tools, you first double click
Select on a tool application name in a directory display. This loads the tool, putting
its application icon on the icon bar (just like any other RISC OS application). The
interactive DDE tools all have different icons, but the application icons of the
non-interactive tools are all similar:

application sprite

-

HPPHBME -« application name

The icon shows a spanner and screwdriver (representing an application tool), with
the name of the application beneath.

117

The Application menu

When using the filter type of non-interactive tool managed by Make, there is no
need to start each tool and put its icon on the icon bar.

All the non-interactive DDE tools are implemented as command line programs
provided with RISC OS desktop interfaces by the FrontEnd relocatable module, but
you do not need to be aware of this when using them, as command lines are
automatically generated from your settings of the desktop interface of each tool,
making the tools appear to be standard RISC OS applications.

The interface of each non-interactive tool can be summarised as follows:

e Clicking Menu on the application icon brings up a standard application main
menu (for unmanaged use only).

e Clicking Select on the application icon displays the SetUp dialogue box. This
allows the user to set options and specify input files etc. A menu is available
within the dialogue box enabling other options to be set. Tool SetUp boxes are
displayed by Make for managed development.

e Messages generated are output to a Text window or a Summary window. You
can toggle between these windows and save the output to a file.

@ A processed output file from a filter tool is either saved in a work directory or is
saved by you from a standard Save as dialogue box which appears when the
task has completed without error (unmanaged use only).

The Application menu

118

Clicking Menu on the application icon gives the following main menu:

Info g
Save options
Dptions Lt
Help

Ruit

Info returns information about the application.

Save options causes the options in the SetUp box, and all submenu options
(meta-options) from this main menu, to be saved in a file for later use as defaults
when the tool is restarted.

The Options submenu allows you to set the following options:

o

iﬁfn

Help
Quit

Save options

9 Auto Run'
Auto Save
Display o

General features

Auto Run will cause the command-line command to be run immediately when
a file is dragged onto the icon on the icon bar, without first displaying the

SetUp dialogue box. Options remain as they are currently set.

Auto Save suppresses the Save as dialogue box of filter tools if a sensible
pathname is available to save the output to. For more details on pathnames
see the METAOPTIONS section on page 191. Note that ‘output” here is used to
describe a single file which is produced by running the command-line tool.

The Display submenu allows the user to choose whether the tool outputs by
default into a text window or a summary window.

Help displays a help file in a scrollable text window, for example:

bifE 0
Purpose: File comparer
Setup: : .
Icon fiction/Meaning Default
Pathl) Hames of files or directories to nil
Path2) be diff'ed
. . (typed or dragged)
Case insensitive Ignore case of f
Expand tabs Expand tabs to 8 spaces . off
Remove spaces %guoue all spaces before comparing off
ines
Squash spaces Squash sequences of spaces to one of f

Space

Henu: i :
Entry fiction/Meaning Default
Dir. structure show only the directory of f j

Quit quits the application.

119

The Setup box

The Setup box

120

When working in the unmanaged way, ie with the tool application icon on the icon
bar, clicking Select on this icon or dragging the name of an input file to this icon
displays the SetUp dialogue box. If the SetUp box was displayed by a filename
drag, this filename is displayed in the relevant writable icon. Options appear with
the previous settings used, making it easy to repeat the last run of a tool.

When working managed by Make, you specify a ‘recipe’ of tasks to be followed to
construct a program from its sources. This recipe is stored as a makefile, and can
be used later. You specify the recipe in terms of what goes in (source files, libraries,
etc.), what comes out (eg an executable !Runimage file) and the processes
followed. The processes followed include specifying the options to be set for the
filter tools when they are used. To set these options you follow the Tool options
menu item of Make to a list of tools, then Select on the name of the relevant tool.
This brings up the SetUp dialogue box of the relevant tool, whether its application
icon is on the icon bar or not. The SetUp box appears with options set to helpful
default states for managed use.

A typical SetUp dialogue box is that of the application Common:

L1 I s

CFirst

| CORecognise digits

The SetUp box for each application is different, but for unmanaged use they all
offer the following two action buttons:

Run runs the tool with the options as set, starting a multitasking task performing
the non-interactive job specified. This multitasking depends on the presence of the
TaskWindow relocatable module.

Clicking Select on Run removes the dialogue box, clicking Adjust on Run leaves the
dialogue box on your screen.

Cancel discards any changes made to the options and closes the SetUp box.

Output

General features

The SetUp menu

Clicking Menu on the SetUp dialogue box produces a menu with the style of:

Command line &
Other options
Other options

Command line leads to a dialogue box showing the command line equivalent of
the options set in the SetUp dialogue box, and any extra options set from the
Other options part of the above menu.

Other options are a set of options specific to the particular application.

Two types of output window are available for generated messages; Text and
Summary.

The Text window

If Text has been chosen from the Display submenu then a scrollable, saveable text
window appears when the tool is running. All textual output sent to the screen by
the program appears in the text window. This window can be closed at any time,
thus aborting the command-line program. The Title bar of this window shows the
name of the tool and the state of the text running, ie Running, Completed, or
Paused. An example of a Text window using the application Common is:

121

Clicking Menu on a text window displays the following menu:

Info 9
Cmd Line o

Save 9

“aUseg

Info gives information about the program being run.

Cmd Line shows the command line generated and used to run the tool.
Save allows the textual output to be saved in a file.

Abort aborts a running program.

Pause pauses a running program.

Continue continues a paused program.

The Summary window

If Summary has been chosen from the Display submenu then a small summary
window, similar to the following, appears when the tool is running:

Run at: 89:56:358
267 Lines of output

This summary window displays the sprite of the application and the time at which
the command was run. The Title bar is the same as for the text window. There are

two action buttons, Abort and either Pause or Continue, which allow the program
to be aborted, paused, and continued in an identical fashion to the menu on the

Text window.

122

General features

Clicking Menu on the summary dialogue box displays a menu similar to the
following:

Info gives information about the program being run.
Cmd Line shows the command line generated to be used to run the tool.

Save allows the textual output to be saved in a file.

Toggling between the Text and Summary windows

To toggle between the Text and Summary windows click Adjust on the output
window's close icon.

Processed file output from filter tools

The numbers and types of files output varies between each filter tool, so for more
details see the chapter on the tool in question.

During managed development the saving of processed files is specified by the
makefile, which can be constructed for you by Make.

For unmanaged development, processed files are either saved in positions relative
to the work directory, or saved by you from a Save as dialogue box which appears
when a job has completed without errors. This box does not appear if you have
enabled the Auto save option on the application menu.

123

Qutput

124

Starting AMU

AMU

he Acorn Make Utility (AMU), is a tool managing the construction of executable

program images, libraries, and so on using operations specified in a makefile.
All the facilities provided by AMU are also provided by Make, which in addition
assists you in constructing your makefiles. It is therefore recommended that you
use Make rather than AMU, except where extreme memory shortage makes the
larger size of Make a problem and the extra facilities are not needed.

Since use of AMU is deprecated, the description in this chapter is brief. For details
of makefile syntax, see Appendix A - Makefile syntax. Some details described in the
chapter entitled Make on page 79 may also be useful references for AMU, as the
command line tool amu, which performs the management of program
construction, is the same tool used by Make.

Each time that AMU is run, a work directory is set up for that job as the directory
containing the makefile. For the effect of the work directory on each tool, see the
chapters on individual tools such as the language processors CC and ObjAsm in
this and accompanying user guides.

AMU is one of the non-interactive DDE tools, its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter entitled
General features on page 117.

Since AMU is an alternative tool providing construction management like Make, it
is normally used controlled directly from its desktop interface. To start AMU, first
double click on !AMU in a directory display to put its icon on the icon bar.

125

Starting AMU

Clicking Select on this icon or dragging the name of a make file (text or
Makefile file type) from a directory display to the icon brings up the AMU SetUp
dialogue box, from which you control the running of AMU:

A ANU

Makefile:|dfs::Hard4,%,User Dhrystone,Makefile
Targets: | |
Options

[JContinue after errors [|Don't execute
[[J1gnore return codes [|Silent

Makefile contains the name of the makefile to be used when AMU is run. If you
brought up the SetUp dialogue box by clicking on the AMU icon bar icon, this
writable icon contains the previous makefile used (if any), otherwise it displays the
name of the file you dragged to the icon. Dragging another file to this writable icon
replaces its contents with the new name.

Targets contains a space-separated list of the names of the targets in the makefile
to be constructed, and macro predefinitions of the type name=string, If this
writable icon is empty (default) the first target in the makefile will be made.

The Continue after errors option causes the make job to continue after one of the
commands issued by it has returned a bad return code (signalling an error). When
the job continues, only those branches of the make job which don't depend on the
failed command are executed.

The Ignore return codes option causes the make job to continue after one of the
commands issued by it has returned a bad return code (signalling an error). When
the job continues, all subsequent branches of the make job are executed, as if the
return code was good.

The Don’t execute option stops any commands being executed, instead just
printing them to the output window with dependency reasons for each one.

The Silent option stops printing of executed commands in the output window.

126

AMU

Clicking Menu on the SetUp dialogue box brings up the AMU SetUp menu,
containing a few additional options:

-
Command line &
Stamp

Command file o

The Command line option on the above menu has the standard purpose for
non-interactive DDE tools as described in chapter entitled General features on
page | 17.

The Stamp option stops construction of the target, instead causing sources and
target to be stamped with current time so that the target appears up to date. This
only works if all sources are present.

The Command file option leads to a writable icon where you specify the name of a
file to be written containing commands generated. If you specify a relative
filename, this is used relative to the work directory (the location of the makefile).
The commands are written to this file but not executed.

The Application menu

Clicking Menu on the AMU application icon on the icon bar gives access to the
following options:

T e
Info g
Save options | 5§

[THTIEE: | futo Run

Help :

Quit Display 1

Summary

For a description of each option in the application menu see chapter entitled
General features on page 117.

127

Example output

Example output

Command line i

128

Running AMU displays any error messages in the standard text output window for
non-interactive tools. If all goes well this window contains no error messages, for
example:

c eﬁen .eBen adts: :Hardd .5,
Horcroft RISC 05 ARM C vsn 4,88 [Dec 14 19981

]
ink -0 @, !RunImage @,°,",CLib,o,Stubs @,"," ,RISC_O

nterface

For normal use you do not need to understand the syntax of the AMU command
line, as it is generated automatically for you from the SetUp dialogue box and
menu settings before it is used.

The syntax of the AMU command line is:

amu [options] [targetl{ targetl2...}]

Options:

-f makefile Makefile name (makefile defaults to Makefile if
omitted)

-1 Ignore return codes

-k Continue after errors

-n Don't execute

-0 commandfile Specify Command file as on SetUp menu
-8 Silent
-t Equivalent to Stamp on the SetUp menu

targetl {targetz}

This is a space-separated list of targets to be made or macro pre-definitions of the
form name=string. Targets are made in the order given. If no targets are given,
the first target found in makefile is used.

10 Common

Conmon

his application tool counts the frequency of words in a file. It allows you to
choose between:

e displaying the number of times every word in a file occurs (default);
e displaying the number of times only the most common words in a file occur.

You can also choose whether or not to treat numerics as words.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file (text) from a
directory display to the icon brings up the SetUp dialogue box:

B8] Common
Files: | [
Options

[JFirst i words
[IRecognise digits

The Files writable icon allows you to specify the names of files to be processed
(typed in or dragged from a directory display).

SetUp options

First allows you to display only the most common words in a file. You can specify
how many of the most common words are to be displayed by:

e using the adjacent arrow icons to increase or decrease the number of words
appearing in the words box;

e editing the words box by clicking Select inside it and typing in a number.

129

If First has been chosen and several different words occur the same number of
times in a file, then Common will display the frequency of each of the different
words but, for the purposes of words, treat them all as if they were only one word.

The default is off (ie consider every word in the file).
Recognise digit, if chosen, will force Common to count numerics as words.

The default is off (ie ignore digits).

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

% . 1
Command line &

For a description of the Common Command line option see the section entitled
Command line interface on page 132.

The Application menu

Clicking Menu on the Common application icon gives the following options:

Save options
[T futo Run
Help it

Ruit Display GFRETC

Sumnary

For a description of each option in the application menu see the chapter entitled
General features on page 117.

Note that the Auto Save facility is not available for this application.

130

Common

Example output

The output of Common appears in one of the standard non-interactive tool output
windows. For more details of these see the section entitled Output on page 121.

The following is an example of a large text file analysed by Common and displayed
in an output text window:

Common always returns the following information in the output text window:

e The total number of different words. This is shown at the top of the output text
window, eg:

Total number of different words: 771

e A list of all the words (or, if First has been chosen, only the most common
words) ranked in order of frequency. In the file analysed above the most
common word is the, occurring 334 times.

In the above example the words which and and both occur 55 times; if the First
option had been set these two words would be considered as one word.

131

Command line interface

For normal use you do not need to understand the syntax of the Common
command line, as it is automatically generated for you from the SetUp dialogue
box settings. The Command Line syntax for Common is:

Common [-f nwords] [-n*] filename

-f if present Common will only look at the number of word counts
specified by nwords.

-nt if present then
- = lignore numerics.
+ = treat numerics as words.

filename a valid pathname specifying a file.

For example:

e |[f First (- f) and Recognise digits (-n) are not chosen:

Common adfs::Username.Testfile

e If First and Recognise digits are chosen, and nwords set to 50:

Common -f 50 -n+ adfs::Username.Testfile

132

11 DecAOF

DecAOF decodes one or more object files and returns information about each

area within the files.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file from a

directory display to the icon brings up the SetUp dialogue box:

LIE]

DecROF

Files: |

|

~ Options

[Jonly area declarations

Print

[5Z]Symbol table [5Z]String table [:%]Debug
[#]Area contents []Area declarations
[5Z]Relocation directives

The Files writable icon allows you to specify the name of one or more files to be
processed (typed in or dragged from a directory display). These files must be Acorn

Object Format (AOF) files.

SetUp options

Only area declarations prints a short summary of details about each area in the
object file. If this option is selected no other details are printed.

The options offered under the heading of Print are all set on by default. Choosing
one or more of them will set the remaining options to off.

Symbol table prints the contents of the symbol table.
String table prints the contents of the string table.

Debug prints the debug areas in a readable format.

133

Area contents prints the area contents in hex.
Area declarations prints the area declarations.

Relocation directives prints linker relocation directives.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

==
Command line

For a description of the DecAOF Command line option see the section entitled
Command line interface on page 135

The Application menu

Clicking Menu on the DecAOF application icon gives the following options:

Info | P

Save options

2 Auto Run

Help
fuit

=N ext
Summary

Display

For a description of each option in the application menu see the chapter entitled
General features on page 117.

Note that Auto Save is not available for this application.

134

Example output

DecAOF

The output of DecAOF appears in one of the standard non-interactive tool output
windows. For more details of these see the section entitled Output on page 121.

The following window shows an example of the output from DecAOF:

*% frea [$$code l:Ennent 4, Slze 168 (BxB8a8), 7 relocations
Attributes: Code: Read only

#% Symbol Table:-

: External reference
: Lacal, Relative, offset 8x0888 in area "C$Scode"
i Local, Relative, offset BxBB8B in area "($%data"
M : Global, Relative, offset 8x8818 in area "C$%code"
: Sstaek_wer‘flnu ! External reference
: External reference
:+ External reference
i External reference

tritine
i External reference

| printf

#% String Table:-
Bffset String-name

i C$3code
mﬁata :

Command line interface

For normal use you do not need to understand the syntax of the DecAOF command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The Command Line syntax for DecAOF is:

DecAOF [options] filename [filename...]

Options

Print only the area declarations

Print area contents in hex (implies -d)
print area declarations

print relocation directives (implies -d)

print debug areas

135

Command line interface

-s print symbol table
-t print string table

filename avalid pathname specifying an AOF file

136

12 DecCF

DecCF analyses one or more object or library files and returns information
about the chunks in each file.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file from a
directory display to the icon brings up the SetUp dialogue box:

B Decef
Files: | ! I

—_— ———

The Files writable icon allows you to specify the name of one or more files to be
processed (typed in or dragged from a directory display). These files must be Acorn
Library Format (ALF) or Arm Object Format (AOF) files.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

s
Command line &

For a description of the DecCF Command line option see the section entitled
Command line interface on page 139.

137

The Application menu

The Application menu

Clicking Menu on the DecCF application icon gives the following options:

Info
Save options | S
[TRTIEE futo Run
Help ;

Ruit m .

Sunmary

For a description of each option in the application menu see the chapter entitled
General features on page 117.

Note that Auto Save is not available for this application.

Example output

The output of DecCF appears in one of the standard non-interactive tool output
windows. For more details of these see the section entitled Output on page 121.

The following window shows an example of the output from DecCF:

.

Chunk file adfs::DHarris.$.date, max chunks = 5, used chunks = 5

0BJ_HERD offset = 644 size = 44
OBJ_ARER offset = 92 size = 224
0BJ_IDFN offset = 316 size = b4
0BJ_SYMT offset = 388 size = 144
0BISTRT offset = 524 size= 1M

For each file in the Files writable icon DecCF will return:
e the maximum number of permissible chunks:

e the number of used chunks:

e the offset and size of each chunk.

138

DecCF

Command line interface

For normal use you do not need to understand the syntax of the DecCF command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The Command Line syntax for DecCF is:

DecCF filename [filename...]

filename avalid pathname specifying an ALF or AOF file

139

140

Diff

Diff displays the textual differences between two files on a line-by-line basis. To
compare files more usefully various options allow you to display only those

differences of specific interest.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file from a
directory display to the icon brings up the SetUp dialogue box:

LIE

Diff

Pathl: |

Path2: |

E

Options

[JCase insensitive {}kemue ﬁacﬁs: _
DExpagd.taﬁs i

{»Sauash spaces

Path1 and Path2 allow you to specify the names of files to be processed (typed in

or dragged from a directory display).

SetUp options

Case insensitive instructs Diff to ignore the case of letters; for example,
Variable and variable would be considered as identical if this option was

chosen.

Expand tabs substitutes tabs by multiples of eight spaces.

Remove spaces removes all spaces before comparing lines. This is useful if you
wish to examine two files you have been editing but are not interested in any extra

spaces you may have introduced.

Squash spaces replaces all instances of two or more spaces by one space.

141

The SetUp dialogue box

142

Note: If you are using Diff to display the differences between two source files where
spaces can be critical, eg assembler code, and you want to display lines where
spaces have been deleted or added, it is essential to ensure that neither Remove
spaces or Squash spaces have been chosen.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

Command line &
Dir. structure
Equate CR/LF
Fast

Large files
Squidge

Expand tabs 9

Command line enables you to examine or edit the actual command line. For more
information on this option see the section entitled Command line interface on page
145.

Dir. structure displays only the directory structure of the two files. It does not
display any differences between the files.

Equate CR/LF instructs Diff to treat the linefeed and carriage return characters as
identical. This is especially helpful when analysing files created by different editors
where sometimes linefeeds and sometimes carriage returns are used as end of line
terminators.

Fast performs a speedy analysis of two files. It reports only whether there are
differences between the two files, not what the differences are.

Large files is helpful where very large files are being compared. It sometimes
happens that two files differ completely over a large section of text because, for
instance, you may have edited in several paragraphs or even several pages of text.
Ordinarily Diff would not be able to detect this and would report every line from
this point forward as different. However, if Large files has been chosen Diff
performs a more detailed analysis (thereby taking longer) and can detect this
situation. It will then pick up where the two files converge again and display only

valid differences from that point onward.

Squidge removes all spaces, except between alphanumerics, where multiple
spaces are replaced by one space.

Expand tabs allows you to replace tabs by multiples of any number of spaces you
wish.

The Application Menu

Clicking Menu on the Diff application icon gives the following options:

Info '
Save options

Help
fuit

Summary

For a description of each option in the application menu see the chapter entitled
General features on page 117.

Note that Auto Run and Auto Save are not available for this application.

143

Example output

Example output

144

The output of Diff appears in one of the standard non-interactive tool output
windows. For more details of these see the section entitled Output on page 121,

The following two windows show examples of the output from Diff:

lff files 'adfs::DHarris,$.Filesysl' and 'adfs::DHarris.$. Fllesgsi'
hange adfs: :DHarris. . Fllesqsl, ine 2 to 2

line 2: that you will have to perforn to maintain
to adfs:: Harrls.$ Filesys2, line 2 to 2

line that you will 1 have to perfors to maintain
ichange adfs::DHarris.$ Filesysl, line 6 to

line hec progran) and also keeping your filesysten
line H reueUIng unnecessaru files that are

to adfs:: 15.5 ilesys?, line 6
line check pregran) and also keepln? your Filesysten
1i tidy b hat are

o

3 R ¢ T 5
] = ___ Diff (Conp . .

5 'adfs::DHarris,$.Filesysl' and 'adfs::DHarris.$.Filesys2'
0 fs::DHa rrls $. Fxlesgsl ine 7 to 7
line 7: tidy ? renovlng unnecessary files that are
to adfs::DHarrls.s ilesys2, line 7 to
line 7: tidy by removing unnecesary files that are

In the first example two text files have been analysed by Diff without any options
being set. Three differences have been found:

@ on line 2 of the second file there are two extra spaces before the word
perform.
e on line 6 of the second file Filesystem has been spelt with a capital F.

® online 7 of the second file unnecessary has been spelt with only one s.
In the second example the same two files are compared but the Case insensitive

and Remove spaces options have been chosen. The result is that only the different
spelling of the word unnecessary has been displayed.

Command line interface

For normal use you do not need to understand the syntax of the Diff command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The Command Line syntax for Diff is:

Diff [options] filenamel filename2

Options
-d Show only the directory structure, do not display any differences
-e Equate CR and LF
-f Perform a fast Diff, all options except -d ignored, do not display any
differences
-1 Handle large files more effectively (but more slowly)
-n Ignore case sensitivity when comparing letters
-r Remove all spaces before comparing lines
-8 Squash sequences of spaces to one space
-t As for -, but -s when between two alphanumeric characters
-X Expand tabs to spaces (tab stops at multiples of 8)
-Xn Expand tabs to spaces (tab stops at multiples of n)

145

Command line interface

146

14 Find

R
= :
[= S

Find searches both the names and the contents of one or more files for text
patterns. It includes options allowing you:

e to control whether the case of letters should be considered:;
e to use wildcard expressions to specify several filenames;

e toinsert wildcard expressions in the pattern string so that digits, control
characters, alphanumerics and particular sets of characters can be searched

for;
e to start SrcEdit displaying found text using Throwback.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file from a
directory display to the icon brings up the SetUp dialogue box:

1R Find

Patterns: | l |
Files:[” 1
Options
{Line count only [JCase insensitive
<">Filenanes only [“]Verbose [Throwback

> Wildcards
Run

The Patterns writable icon allows you to type in the patterns to be searched for.

If a single pattern includes spaces, the pattern must be enclosed in double quotes,
for example:

non Prthe text wonon
Double quote characters in a search pattern must be preceded by a backslash.

The Files writable icon allows you to specify the name of one or more files (typed
in or dragged from a directory display) to do the searching in.

147

The SetUp dialogue box

148

SetUp options

Line count only prints only a count of the number of lines matching the pattern
from the specified files.

Filenames only lists only the names of files matching the pattern.

Case insensitive will ignore the case of letters; for example, normal and Normal
would be considered as identical if this option was chosen.

Verbose lists the name of each file before searching it for pattern matches.
Throwback enables SrcEdit throwback when text selections are found.

Clicking on Wildcards displays a further set of options:

<> Wildeards
~File Wildcards

Filename ch. # |BorMore filename chs, *
Sub-directories ...[0r { [} Op
BorMore () BorMore

-Pattern Wildcards

finy . Newline $ | Alphanun @
Digit # Ctel | Normal
Setl 15et Not “
Bormre * | 1ormore °

Pattern wildcards

The options listed under Pattern Wildcards allow you to specify wildcarded
expressions in your search string. Clicking on one of these options will insert a
special character into the Patterns writable icon immediately before the caret.

Any . Matches any single character. For example:

Fr.d will match Fred and Frid, but not Fried.
Newline $§ Matches the newline character (LineFeed).
Alphanum @ Matches any alphanumeric character a-z, A-z, 0-9 or __

Digit # Matches any digit 0-9.

Ctrl |

Normal \

Set |
] Set

Not ~

0 or more *

1 or more #

Find

Matches Ctrl-c, where c is any character between @ and _. For
example:

| % matches Ctrl-x
Note: There are two special cases:
| ? matches the Delete character.

| !c matches Ctrl-c’ where ¢ is the character c with its
top bit set.

Matches the following character even if that character is a special
character. For example;

\. matches the dot character (not any single
character).
\¢c matches lowercase c.

Inserts a left square bracket immediately before the caret.
Inserts a right square bracket immediately before the caret.

The preceding two options insert opening and closing square
brackets into the Patterns writable icon. You can then manually
insert one or more characters between these brackets and Find
will match any one of the characters you put inside the brackets.
For example:

t [aei]n matches tan, ten and tin, but not ton.
Note that a set is always case-sensitive.

Matches any character other than the following character, where
the following character is any of the simple character patterns
listed above. For example:

la~ne matches late, lace and lake, but not 1ane.

Matches 0 or more occurrences of the following character, where
the following character is any of the simple character patterns
listed above. For example:

ca*n matches can, cannot and cat.

Matches | or more occurrences of the following character, where
the following character is any of the simple character patterns
listed above. For example:

ca’™n matches can and cannot, but not cat.

149

The SetUp dialogue box

150

File wildcards

The options offered under File Wildcards insert special characters into the Files
writable icon which allow you to specify files in a variety of ways. Several of these
options require you to manually insert additional text next to or inside these
special characters:

Filename ch. # inserts a hash character immediately before the caret. This
character will match any single filename character except .

For example:

Find adfs::Fred# will search files Fredl and Freda, but not
Fredl3, Frederick etc.

Find adfs::Fr#d will search files Fred and Fr2d, but not Freld,
Freed etc.

OorMore filename chs. * inserts an asterisk immediately before the caret. This
character will match any sequence of filename characters except ., {, and }.

For example:
Find adfs::Fred* will search files Fredl and Freda, and also
Fredl3, Frederick etc.
Find adfs::Fr*d will search files Fred and Fr2d, and also Frqd,

Freed, Fr123d etc.

Sub-directories ... inserts three dots immediately before the caret. It must be
positioned immediately after a directory name. Find will then search all nominated
files in that directory and in any subdirectories in that structure.

For example:
Find adfs::Amy.$.Receipts...monthly

will search all files called monthly in the directory Receipts and also in any
subdirectories of Receipts.

Or { inserts a left brace immediately before the caret,
Or } inserts a right brace immediately before the caret.

The preceding two options insert opening and closing braces into the Files
writable icon. You can then manually insert one or more filename characters
between these braces, separating each filename with a comma. Find will then
search all filenames inside the braces.

For example:

Find adfs::W.rel.{atype,btype, ctype}

Find

would search all three files inside the braces, ie atype, btype and ctype.
OorMore (inserts a left bracket immediately before the caret.
) OorMore inserts a right bracket immediately before the caret.

The preceding two options insert opening and closing brackets into the Files
writable icon. You can then manually insert one or more filename characters
between these brackets and Find will search any files with none, one or more
occurrences of the characters you put inside the brackets.

For example:

Find adfs::Fr(e)d will searchfiles Frd, Fred and Freed, but not
Frid.

Find adfs::Fr(ie)d will search files Frd, Fried and Frieied, but
not Frid, Frieed or Fred.
The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

Bommahd line &
Allow '-' o
Grep style

For a description of the Find Command line option see the section entitled
Command line interface on page 153.

The Allow '~ option enables you to specify a second pattern which will be matched
even if it begins with a —. This second pattern will be searched for in conjunction
with the pattern you have inserted into the Patterns writable icon.

Grep style enables you to specify patterns using the syntax of the UNIX grep tool.
This option is provided for users familiar with UNIX.

151

The Application menu

The Application menu

Clicking Menu on the Find application icon gives the following options:

. B
Info g
Save options | OPEIORE.

%

Help

uit Display TAERITY

Summary

For a description of each option in the application menu see the chapter entitled
General features on page 117.

Note that Auto Run and Auto Save are not available for this application.

Example output

The output of Find appears in one of the standard non-interactive tool output
windows. For more details of these see the section entitled Output on page 121.

The following window shows an example of the output from Find:

Lﬁtpa ?mﬁw:(ﬂfﬁ w%;nmhb ngg
arris.s, *, line i rd, pbv Iy
“adfs::DHarris.$.Util", line 124: r@, #n ?:n dv
"adfs::DHarris.$.Util", line 127: rf, #n_fscontroly
"adfs: :DHarris.$.Util", line 138: r8, #n_module_clain
:aggsz:gﬂarr s.if.gjz ", line %gé l‘3, %56

nidfs: iDHarris. . Uti1" Tine 262: ?&i b

“adfs::DHarris. $.Uti1", line 266: , 4o
"adfs::DHarris.$.Util", line 274: pc, Ir
"adfs::DHarris.$.Util", line 278: pe, lr

adfs: :DHarris, .Ut ine 288: ¢, Ip B
"adfs::DH $.Util" 288 MOUCSS 1 3
* S S S reroremsessvonew g iﬂ

In the above example the pattern MOV [CV] was specified in the Patterns writable
icon in order to list only those instructions beginning with MOVV or MOVC in an
assembler source file. Instructions where the fourth letter was not a C or V, such as
MOVS, MOVNE and MOVEQS, were, therefore, not listed. The Throwback option was
not enabled in the above example. With Throwback enabled, a SrcEdit Throwback
browser would also have appeared allowing the file Ut i1 to be edited, starting at
the found lines.

152

Find

Command line interface

For normal use you do not need to understand the syntax of the Find command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The Command Line syntax for Find is:

Find

Options

=€
-
-1
-V
-u
—e

Pattern

[options] [pattern{ pattern}] -f filepattern{ filepattern}

list only a count of the number of lines matching from each file.
ignore the case of letters when making comparisons.

list only the names of files matching patterns.

list the name of each file before searching it for matches.
accept UNIX grep/egrep-style patterns.

allow the following pattern arguments to begin with a —

matches any single character.

matches the newline character (LineFeed).

matches any alphanumeric character.

matches any digit.

| ¢ matches Ctrl-c, where c is any character between @ and _.

matches the following character even if that character is a special character.
matches any character inside the square brackets.

matches any character other than the following character.

matches 0 or more occurrences of the following character.

matches 1 or more occurrences of the following character.

marks the end of multiple patterns and the start of filepatterns.

matches any filename character except .

matches 0 or more filename characters other than .

searches files in that directory and any subdirectories in that directory.
searches files contained within braces (filenames separated by

commas).

search any file with none, one or more occurrences of the characters inside
the brackets.

153

Command line interface

154

15 Link

he purpose of Link is to combine the contents of one or more object files (the
output of a compiler or Assembler) with selected parts of one or more
libraryfiles to produce an executable program.

Load the Link application by double-clicking on the !Link icon.

The SetUp dialogue box
Click Select on the application icon. This displays the SetUp dialogue box:

< »Binary

LI Linker
Files: | I |
Options
@ AIF {»Relocatable AIF []Debug
<> Module

[JVerbose

This allows you to set the following options:

The Files writable icon allows you to enter the list of object and library files to be
linked. You can do this in two ways:

e Type in a space-separated list of the files to be linked. You can use wildcards (*
to match zero or more characters, and # to match a single character).

e Drag the icons of the files to be linked onto the Files writable icon. Dragging a
directory to the icon (eg an o directory) links all the files in that directory.

Note: When linking libraries, you must take care to link them in the correct order.
See the section entitled Libraries on page 159.

AIF generates Application Image Format (AIF) output. This is the default image
used for building an application. You should only choose other image types if AIF
is not suitable for some reason. The format of AIF files is described in Appendix E.

Module generates Relocatable Module Format (RMF) output. Refer to the
RISC OS Programmer's Reference manual, ANSI C Release 4, and the section entitled
Relocatable modules on page 164 for more details on relocatable modules.

155

The SetUp dialogue box

156

Relocatable AIF links an image so that it can be run at any address, usually
specified in conjunction with the Workspace option on the SetUp menu. See the
section entitled Relocatable AIF images on page 163 for more details.

Binary generates a plain binary image (without an image header or any specific
image format). Generally it is only used when writing completely in assembler.
Programs written entirely or partly in C or other high level languages cannot
usually use this format.

Debug allows you to debug a program with the desktop debugger DDT. See the
chapter entitled Desktop debugging tool on page 31 for more details on preparing a
program for use with the debugger. This option is not suitable for use with the
module option. This option is switched off by default.

Verbose gives progress reports in the Output window while linking. See the
section entitled Output on page 157 for an example of this output. This option is
switched off by default.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

Command line
Link map
&-Ref
Overlay
Horkspace
Entry
Base

Ho Case
Via file 5

& 0 O 2

Command line allows you to specify the command line to be presented to the
underlying Link command line tool. Refer to the section entitled Command line
interface on page 166 for more details.

Link map displays the base address and size of every code, data and debugging
information area, and displays total sizes for the code, data and debugging
information in the output window. See the section entitled Link map option on page
162 for more information. For details on linker areas, see the section entitled AOF
in Appendix E - Code file formats.

Output

X-Ref displays a list of inter-area references. This option is most useful when trying
to reduce dependencies between library elements, so that you only need include
the minimum set of library elements. It is also useful when using overlays. See the
section entitled X-Ref option on page 162 for more details.

Overlay generates an overlaid image using the specified overlay description file.
For details of overlay description files, see the section entitled Overlay description files
on page 161. This option is not suitable for use when generating Module or Binary
output.

Workspace, when used in conjunction with the Relocatable AIF option, generates
an auto-relocatable image which will relocate itself to the top of its application
space. This leaves the specified amount of workspace above the image free for the
use of the program being linked. The effect of this option is not currently defined
when generating image types other than relocatable AIF.

Entry specifies the entry point of an image if none of the object files themselves
specify an entry point. Generally, you should only use it when writing completely in
assembler without using the assembler's ENTRY directive.

Base specifies the base address at which the image should be linked. By default
this is &8000 for AIF images and 0 for binary images. You should always load
non-relocatable AIF images at their base address.

No case causes a case insensitive comparison to be used when comparing
symbols. You will not generally want to use this option with C (which is case
sensitive). However, you may need to use it with other language systems (such as
Pascal and Fortran) which are case insensitive, especially if you are trying to
interwork with C and one of these languages.

Via file allows you to set up a list of object files to be linked in one file called a Via
file. Instead of having to drag all the files to the Files list on the SetUp dialogue
box, just enter the name of the Via file in the submenu.

Note: The Base, Workspace and Entry options require a numeric argument to be
entered in the associated submenu. You can prefix this argument by & or 0X to
specify a hexadecimal value. You can postfix it by k for 2410 and m for 2220,

The Output window displays information printed when you have selected the
Verbose, Link map or X-Ref options. It also displays any error messages
generated while linking.

The following windows show examples of the Verbose and Link map output. You
will find an example of the X-Ref output in the section entitled X-Ref option on page
162.

157

Possible errors during a link stage

Verbose output:

min L
1 nE Loading objec)
¢
b

- - . w&
.0, 1magetile,
ed asd o.interact.
eﬁ asd.o,lib,
d.asd.0. lowievel ,
ed,asd,o.progran,
ed.asd.o.readexpr,
ed.asd.o.respond.

0
Loading ob)]
Loading ob] e
Loading object file
Loading object file
Loading object file
Loading object file
Load ng object file $,ned.asd.o,source,

Xamining 1brarg $.clib.o.Ansilib for referenced nodules,
Loading clib to resolve x$stack_overflow,
Loading str:n? to resolve strrche,
Loading kernel to resolve _kernel escape_seen.
Loading printf to resolve _sprintf,

—_—

I'|
n
ne
ne
ne
n
ne
1

ii

($$data from armsys
($4data from error
K$3Data from kernel
[$$zidata from hash
($$zidata from Interact
[$$zidata from lowlevel
($$zidata from program
C$$zidata from readexpr

Possible errors during a link stage

Two common errors which can occur during a link stage are caused by unresolved
and multiple references.

In the case of unresolved references, a symbol has been referenced from an object
file, but there is no corresponding definition for the symbol. Link will generate an
error message giving the name of the undefined symbol. This is usually caused by
the omission of a required object or library file from the file list, or the misspelling
of an external identifier in the original source program.

Multiple references are caused by a clash of names. For example, a procedure
might have been defined with the same name as a library procedure, or as a
procedure in another object file.

158

Libraries

Libraries differ from object files in the way Link uses them. First, all the object files
are linked together. Then, for each library in turn, Link searches for symbol
definitions which match unsatisfied symbol references. When such a symbol
definition is found, the module defining that symbol is loaded.

When a library module is loaded, new unsatisfied symbol references may be
created, so the library is re-searched until no more members are loaded from it.
Note that each library is processed in turn, so references between libraries must be
ordered.

A reference from a member of a library later in the file list to a member earlier in
the file list will not be resolved. Therefore you must drag libraries to the file list in
the correct order.

For example, if you are using the libraries RISC_OSLib and ANSILib, you must drag
RISC_OSLib first and then ANSILib to ensure they appear in the right order. If you
are using the shared C library stubs instead of ANSILib the order is unimportant,
since the shared C library stubs is an object file which defines all of the symbols in
the shared C library. Also note that, because of the ordering constraints, libraries
containing circular references cannot easily be linked.

Usually, at least one library file will be specified in the list of files to be linked. This
will typically be the run-time library for the language you are using. When writing in
C, you can use either the shared library (in which case you will need to link with the
shared library stubs, $.clib.o.stubs) or the unshared library,
$.clib.o.ansilib. Use the unshared library when linking a program for use
with the desktop debugger, or when linking a program which you intend to
distribute to people who may not have the shared C library.

You can call the procedures in the library for one language from programs written
in another, provided:

e both libraries conform to the ARM Procedure Call Standard (APCS) described
in Appendix F - ARM procedure call standard

e thelibrary's initialisation routines have been called.

Refer to the chapter entitled Machine-specific features in ANSI C Release 4 for details on
how to initialise the common run-time kernel distributed with the C library.

Generating overlaid programs

An introduction to overlays is given in ANSI C Release 4. If you are not familiar with
the concept of overlays, you should read the chapter on overlays in that manual
first. This section only describes how to use Link to create an overlaid application.

159

aerieiatny vvenaid piuyiainiis

160

A simple, 2-dimensional, static overlay scheme is supported. There is one root
segment, and as many memory partitions as you specify (called 1_N, 2_N, etc).
Within each partition, some number of overlay segments (called 1_1, 1_2, etc)
share the same area of memory. You specify the contents of each overlay segment
and Link calculates the size of each partition, allowing sufficient space for the
largest segment in it. All addresses are calculated at link time: overlaid programs
are not relocatable.

A hypothetical example of the memory map for an overlaid program might be:

high
address
21 2.2 2.3
2 N
1.1 1.2 153 1.4
1N
root segment
low
address
Segments 1_1, 1_2, 1_3 and 1_4 share the same area of application workspace.

Only one of these segments can be in memory at any given instant; the remainder
must be on disc.

Similarly segments 2_1, 2_2 and 2_3 share the 2_N area of memory, which is
entirely separate from the 1_N partition.

Link assigns AOF AREAs to overlay segments under user control. Usually, a
compiler produces one code AREA and one data AREA for each source file (called
CScode and C$sdata when generated by the C compiler). The C compiler
option -zo (described in ANSI C Release 4) allows each separate function to be
compiled into a separate code AREA. This gives finer control of the assignment of
functions to overlay segments (but at the cost of slightly enlarged code and
enlarged object files). You control the overlay structure by describing the
assignment of certain AREAs to overlay segments.

For all remaining code AREAs, Link will act as follows:

If all references to the AREA are from the same overlay segment, the AREA is
included in that segment; otherwise, the AREA is included in the root
segment.

This strategy can never make an overlaid program use more memory than if Link
put all remaining AREAs in the root segment, but it can sometimes make it
smaller.

By default, only code AREAs are included in overlay segments. Data AREAs can be
forcibly included, but it is the user's responsibility to ensure that doing so is
meaningful and safe.

On disc, an overlaid program is organised as a RISC OS application. The
components of the application (the !Runimage and the various overlay segments)
must reside in the application directory. Link creates the following components in
the application directory:

I|RunImage The root segment, an AIF image (which may be squeezed).

1_1 Overlay segments, which are plain binary images, linked at
absolute 1_2 addresses. Overlay segments may not be
squeezed.

2_1

Overlay description files

The overlay description file, specified in the overlay submenu, describes the
required overlay structure. It is a sequence of logical lines:

@ A backslash (\) immediately before the end of a physical line continues the
logical line on the next physical line.

® Any text from a semicolon (;) to the end of the logical line inclusive is a
comment (for documentation purposes) which is ignored by Link.

Each logical line has the following structure:

segment_name module _name [(list_of ARFA_names)] module_name ...
For example:

1_1 editl edit2 editdata(CScode,C%édata) sort

The 1ist_of_ AREA_names is a comma-separated list of names as they appear
when displayed by the DecAOF tool. If omitted, all code AREAs are included.

A module_name is either the name of an object file (with all leading pathname
segments removed) or the name of a library member (again, with all leading
pathname segments removed).

161

Generating overlaid programs

X-Ref option

To help the user-partition between overlay segments, Link can generate a list of
inter-AREA references. To do this, choose the X-Ref option on the SetUp menu.
The following window shows an example of the output from X-Ref:

Link (Completed)
contro reters to lowleve code)
control (C$3DATA) refers to control (C4$CODE)
control (C$$CODE) refers to control (C$SDATA)
control (C$$CODE) refers to lowlevel(C$%zidata)
control (C$$CODE) refers to lowlevel (C$$data)
decode(C$$code) refers to string(C$$code)
decode(C8%code) refers to clib{($%code)
decode(C$$code) refers to hash(C$$code)
$3code) refers to hash(C$$zidata)

e(C

decuceEE$§code) refers to respond(C$%data)
e

e(l

e

-

$$code) refers to 1ib(C$$code)
$$code) refers to clnh(Cﬁsdata): z

e

R

In general, if area A references area B (for example because x in area A calls y in

area B) then A and B should not share the same area of memory. Otherwise, every
time x calls y or y returns to x, there will be an overlay swap.

Link map option

The Link map option displays the base address and size of every area in the output

program. It is useful for determining how AREAs might be packed most efficiently
into overlay segments.

Linking with the overlay manager

The overlay manager is responsible for loading overlay segments when:

® an inter-segment reference occurs to a segment which is not loaded, or

e a procedure return occurs to a segment which is no longer loaded.

In general, referencing a datum cannot cause an overlay segment to be loaded.
One exception to this is an indirect procedure call via a function pointer which will
cause an overlay segment to be loaded (Link cannot distinguish this from a normal
procedure call, since Link just sees a word relocation to an overlaid procedure).
Note that the pointer itself must not be overlaid.

162

If Link detects a data reference to a non co-resident or potentially non co-resident
segment it will issue one of the following messages:

Non co-resident data reference in module_name (area_name)

Possible non co-resident data reference in
module_name (area_name)

Certain types of data reference cannot be detected by Link. This happens when
read-only data is placed in a code segment. The C compiler places string literals in
code areas. This will cause problems if you have external string literals, since Link
cannot distinguish between a string literal and a procedure in the code segment.
Hence it indirects the string through the Procedure Call Indirection Table (PCIT).
So, when your program reads the contents of the string, it will in fact end up
reading the contents of the PCIT.

The C compiler option - fw (described in ANSI C Release 4) causes the compiler to
place string literals in data areas. You should use this option on modules which
may contain external string literals.

The overlay manager must be included in the link stage. You will find the overlay
manager in the object file $.c1ib.o.overmgr. You should drag this object file
to the Files icon when linking an overlaid program.

Note: The overlay manager is also contained in the non-shared library ANSILib, so,
if you are using ANSILib, you do not need to drag the overlay manager to the Files
icon. The shared C library does not contain a copy of the overlay manager.

Relocatable AIF images

Usually, when an image file is produced, it will execute correctly only at the
specified base address (or the default of £&8000 if a base is not specified). This is
because the program will contain references to absolute addresses within itself.
However if you tell Link to generate a relocatable AIF image, you can load and
execute the program at any address. Link also inserts a branch in the image header,
so that the relocation code is automatically called when you run the program.

This is achieved by adding the following to the end of the image:
e arelocation table
e asmall routine to perform the relocation.

The relocation table is a list of offsets from the start of the program to words which
need relocating. These words are adjusted by the difference between the base
address of the program and the address where it was loaded. Once the relocation
has been performed, the program proper starts executing.

163

Relocatable modules

However, although this can be used to make a program statically relocatable, it
does not confer true position-independence on the program. That is, the program
cannot be moved in memory once it has started, and still be expected to work.

If a Workspace value is specified on the SetUp menu, Link inserts the value in the
image header. The relocation code examines this value and, if the value is
non-zero, relocates the application to the top of application space, leaving the
specified amount of workspace between the end of the application and the top of
application space for stack and heap usage.

Utilities

Utility or transient programs (filetype FFC) can be linked as relocatable AIF
images. Use the SetType command to set the filetype correctly after linking:

*SetType 1mage Utility

Notes: The C library cannot be used when linking a utility. Utility programs must
not be squeezed. For more details on utilities, refer to the RISC OS Programmer’s
Reference manual.

Relocatable modules

164

When linking a relocatable module, Link performs a similar task as when linking a
relocatable AIF image, adding a relocation table and a relocation routine to the
end of the module image.

However, the mechanism by which the relocation routine is called is different in a
relocatable module: A module must be multiply relocatable, since it may move
about in the Relocatable Module Area (RMA) when, for example, the RMA is tidied
with the *RMTidy command. The module must call the relocation routine in its
initialisation {or re-initialisation) code.

When using the C Module Header Generator (CMHG) tool you need not worry
about this, since CMHG automatically generates a module header which includes
a call to the relocation routine in its initialisation code.

If you are constructing the module header in assembler, you must make this call
yourself. Use the IMPORT directive to import the external symbol __RelocCode
and place a BL to this symbol in your initialisation code.

IMPORT |__ RelocCode]|
init

BL |___RelocCode|

Note: any code executed before the call to the relocation routine must be
position-independent.

When creating a module header in assembler, the AREA containing the header
should have the attributes CODE and READONLY. The AREA name should be
chosen so that the AREA will be the first AREA in the module. Link sorts AREAs
first by attribute, then by AREA name, so you should choose an AREA name which
is lexicographically less than all other AREA names in your module. The CMHG
tool uses an AREA name of ! ! |Module$SHeader, but this is not obligatory.

Predefined linker symbols
All symbols containing the substring $$ are reserved by Acorn for use by Link.
For each AREA in the output file formed by coalescing one or more areas of the
same name (eg CScode) Link generates two symbols:
area_name$$Base Address of the start of the area.
area_name$$Limit Address of the byte beyond the end of the area.

area_name is the name of the area in the output file. You can
use these symbols in your programs to refer to the
Base and Limit of areas in your programs.

In addition, Link creates four conceptual areas in the output, and defines Base and

Limit symbols for them.
Image$$R0OSSBase Address of the start of the read-only (code) area.
Image$SROSSLimit Address of the byte beyond the end of the code area.
Image$SRWSSBase Address of the start of the read/write (data) area.
Image$SRWSSLimit Address of the byte beyond the end of the data area.
Image$$ZISsBase Address of the start of the zero-initialised (bss) area.
Tmage$SZISSLimit Address of the byte beyond the end of the bss area.
Image$SRWO0SSBase Address of the start of the debugging tables.

Image$SRWOSSLimit Address of the byte beyond the end of the debugging
tables.

Although it will often be the case, there is no guarantee that the end of the
read-only area corresponds to the start of the read/write area. You should not
therefore rely on this being true.

The read/write (data) area may contain code, as programs are sometimes
self-modifying. Similarly, the read-only (code) area may contain read-only data (eg
strings, floating-point constants etc).

165

Command line interface

Command line interface

The format of the Link command is:

166

Link options file list

Options
-h
-0 image_file

-d

-ov overlay file

-bin
-w n
-e n

-b n

-map

-X
-V
-via via_file

-5 symbol_file

Display a screen of help text
Place output in named image_file

Include debugging tables in the output image suitable for
use by the desktop debugger

Generate an overlaid application as directed by commands
inoverlay_file

Generate relocatable module output
Generate relocatable AIF output
Generate normal AIF output (default)

Generate partially linked AOF output suitable for inclusion
in a subsequent link step

Generate a plain binary image

Reserve n bytes of workspace for a relocatable image
Set the image entry point to the address specified by n
Set the image base to the address specified by n

Make matching of symbols case insensitive

Generate a map of the base and size of each AREA and
display totals for code, data, zero-init and debugging
AREAs

Display a list of references between linker areas

Display messages indicating progress of the link operation
Take further input file names from via_file

Produce a symbol table dump in symbol_file

16 LibFile 1

LibFile

LibFiIe creates and maintains library archives. It can be used to create archives of
files for backup and distribution purposes, for example. A special form of
library archive containing AOF files can be created for use with Link. The format of
library archive files is described in Appendix E - Code file formats.

LibFile supersedes the ObjLib tool previously distributed with the Software
Developers Toolkit. Refer to the section entitled Command line interface on page 171
for more details.

The SetUp dialogue box
Click Select on the application icon. This displays the SetUp dialogue box:

6[8] LibFile
Library: -
File List: | | 1

Options

@ Create >Delete 1
L
<> Insert < >Extract [JList librarg

Each of the options in the SetUp dialogue box is described overleaf.

The SetUp options
Library is the name of the library to be processed. If a library is being created this
will be shaded. A Save as dialogue box will be presented when the library is
created.

File List, when used with Create or Insert, contains the list of files to be placed in
the library. When used with Delete or Extract it contains a list of files in the library
which are to be extracted or deleted. You can use wildcard characters in the File
List (* to match zero or more characters, and # to match a single character).

Create creates a new library containing the files in File List. This is the default
option.

167

The SetUp dialogue box

168

Delete removes the files in File List from the specified library.

Insert adds the files in File List to the specified library. Files of the same name in
the library will be replaced.

Extract copies the files in File List from the specified library to disc. The files are
not deleted from the library.

List library lists the files contained in the specified library. By default, this option
is off.

The SetUp menu

Click Menu on the SetUp dialogue box. This displays the LibFile SetUp menu:

e gia
Command line 9
¥ Symbol table
List symbol table
Via file 9

Command line allows you to specify the command line to be presented to the
underlying LibFile command line tool. You should take care when modifying the
command line. The effect of certain arguments depends on the order in which they
appear in the command line. Changing this order may have unanticipated effects.
Refer to the section entitled Command line interface on page 171.

Symbol table adds an external symbol table, as used by Link, to the library.
External symbols in any object files in the library are placed in the symbol table.
Non object filés are ignored. By default, this option is on.

List symbol table lists the symbols in the external symbol table along with the
name of the AOF file which generated each symbol. This option is off by default.

Via file allows you to set up a list of files to be used in one file called a Via file.
When creating or maintaining libraries with a large number of files it may become
tedious having to drag all the files to the File List every time, especially if they are
in different directories. Enter the name of the Via file in the submenu and press
Return.

Output

LibFile

The Output window displays the list of files in the library and/or the list of external
symbols when the List library or List symbol table options are selected. The
following windows show examples of each.

DDT.c.inst
D] .e.heiil
DT.c.evaluate
DT.c.errors
DT.c.display
T1.¢.debug
i

T.Tenplates
DDT. !Run

IBoot

Inage$$overlay_init from overmgr
Inage$$load_seq from overmar
nenmoye from memcpy
ngm;g from memcpy
difftime from time
nkt ime from time
aschime fronm tine
ctime from tine
localtime fron tine
gnt ime from time

Notes:

Any directories in the File List to be archived will be recursively archived (ie all
files in the specified directory will be archived and any directories in the
specified directory will themselves be recursively archived). This can be useful
if, for example, you are backing up an entire source tree on which you are

currently working.

When extracting files, LibFile places absolute filenames from the libraries
index in their corresponding absolute filenames on disc. Relative filenames (ie
those not containing a colon (:) a dollar ($) or an at sign (@)) are placed in a
temporary directory and, when the extraction is finished, a Save as dialogue

169

Output

170

box is presented. This allows you to drag the extracted files to a suitable place
on your disc. The temporary directory is then renamed to the correct place on
your disc, or copied and subsequently deleted if you drag to a different device
or filing system.

When creating libraries for distribution purposes, you should not use absolute
filenames in the File List. If, for example, you created a library with a File List
of adfs: :Edward.$.PDUt11s, it would not be very useful to someone
called lan or to someone using an Econet network. Instead, set your current
directory (from the command line with the *Dir command) to
adfs::Edward. $ and use the File List PDUt11s.

When creating libraries for backup purposes, you can use absolute filenames,
since you will always be restoring to your own disc. You should not, however,
mix absolute and relative filenames in the same library. LibFile will handle this
as described in the note on extracting files above, but the behaviour may be
confusing to anyone trying to extract files.

When creating a library, LibFile builds the library in memory. This means that
you cannot create a library bigger than the available memory on your machine.
When altering an existing library (using Insert or Delete) Libfile requires
memory space for the new and old libraries. If there is not enough memory for
this you can get around the problem by extracting all the files and recreating
the library including the files to be inserted, or omitting the files to be deleted.

When the Object library option is selected, LibFile always updates the
external symbol table regardless of the operation being performed. This is
correct for Create, Insert and Delete. For Extract this is usually not very
useful, so you should generally ensure the Object library option is deselected
when using Extract.

If the Object library option is not selected, LibFile deletes the external symbol
table when used with Insert or Delete. This prevents a potential problem
whereby the external symbol table could become out of date with respect to
the object modules in the library.

Convergence testing is a testing method whereby a binary file (such as an
object library) is rebuilt using itself, and the new and old binaries are
compared to ensure that they are the same. This can be difficult with tools
(such as LibFile) which timestamp files placed in the library, because the new
and old libraries will be built at different times, and will always differ.

LibFile provides the Null timestamps option to circumvent this problem. The
Null timestamps option uses timestamps of all bits 0, which corresponds to a
dateof 00:00:00 01-Jan-1990. Thus, libraries built at different times can
be compared using a binary comparison utility, without the timestamps
causing extraneous differences to appear.

LibFile

9 Wildcard matching, when applied to library members (when using Extract or
Delete) applies the wildcard across the complete filename. When applied to
files (Create or Insert) wildcards apply to single components of the filename.
Thus, the wildcard specification a#c would match a.b and abc when using
Extract or Delete, but would only match abc when using Create or Insert.

Command line interface

For normal use you do not need to understand the syntax of the LibFile command
line, as it is automatically-generated for you from the SetUp dialogue box settings.

The format of the LibFile command is:
Libfile options library [file list]

Wildcards * and # may be used in file_list.

Options
-h Display a screen of help text.
-c Create a new library containing files in file_list.
-1 Insert files in £ile 1ist, replace existing members.
-d Delete the membersin file list.
-e Extract members in file_ 1ist placing in files of the same name.
-0 ‘Add an external symbol table to an object library.
-1 List library, may be specified with any other option.
-5 List symbol table, may be specified with any other option.
-t Use timestamps of all bits 0 when creating or updating library.

v file Take additional arguments from file.
—csd dir Place relative filenames in dir when extracting file.

Notes:

1 Multiple options may be specified on a single options argument. For example,
-clso is equivalentto -c -1 -s -o.

171

Command line interface

172

Examples

Most of the above options should be familiar from the description of the
desktop interface. One possible exception to this is the -csd option. This
option means “behave as though the directory specified after the -csd option
were the current working directory (as set by the dir command)”.

When extracting files with relative pathnames, LibFile creates this directory if
it does not already exist and prefixes the relative pathnames with the specified
directory. Note, that you should not add a full stop (.) to the end of the
directory specification, LibFile adds this itself.

The -csd option is used by the desktop interface (since the desktop has no
notion of a current working directory) to tell LibFile where to put files with
relative pathname (generally <Wimp$ScrapDir>Tmp_name where
Tmp_name is a name invented by the desktop interface). This directory is then
renamed, or copied to a user-specified directory.

For compatibility with previous versions of LibFile, specifying -¢ with -o with
a null file list does not create an empty library. Instead, it ignores the -c
option and adds a symbol table to an existing library.

LibFile supersedes the ObjLib tool previously distributed with Software
Developer's Toolkit. If you have makefiles which depend on the use of ObjLib,
you can use the following alias to define an ObjLib command:

Set Alias$0ObjLib LibFile -o %*0

This will work provided you do not use the ~-List or -File options with
ObijLib. If you de use these options, edit the makefile and use the appropriate
LibFile command.

LibFile -c¢ srclib *

Create a library called src1ib in the current directory from all the files in the
current directory (including the files contained in any directories in the current
directory).

LibFile -co adfs::Edward.$.clib.o.2AnsiLib o

Create the object library AnsiLib from the object files contained in directory o in
the current directory.

Libfile -e -csd :Ian.$.PDUtils :0.PDLib *

Extract all the files from : 0. PDLib and put them in the directory
:Ian.$.PDUtils.

17 ObjSize

biSize analyses one or more object or library files and returns the code-size,
data-size and debug-size of each file.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file from a
directory display to the icon brings up the SetUp dialogue box:

B0 0bjSize
Files: | [|

The Files field allows you to specify the name of one or more files to be processed
(typed in or dragged from a directory display). These files must be ALF or AOF fjles.
The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

Command line 9

For a description of the ObjSize Command line option see the section entitled
Command line interface on page 175.

173

The Application menu

The Application menu

Clicking Menu on the ObjSize application icon gives the following options:

Info

9
Save options | I

Help g
Quit

General features on page 117.

Note that Auto Save is not available for this application, and that Auto Run is

enabled by default.

Example output

The output of ObjSize appears in one of the standard non-interactive tool output
windows. For more details of these see the section entitled Output on page 121.

[FITIEEE: - Auto Run

ﬁisﬁlag

4 Text
Sumnary

For a description of each option in the application menu see the chapter entitled

The following window shows an example of the output from ObjSize:

Object file code-size
adfs: :DHarris.$, Stubs 1484

4b¥ect Fila: code-size
adfs::DHarris.$.date 168

otal {of all files): ' 1652

data-size
3724

data-size
8

3724

The three object sizes displayed by ObjSize are:

code-size The size of the object code.

data-size The total size of all areas in the AOF file which have the attribute

dataorzero-Init.

174

debug-sise
debug-size
]

objSize

debug-size The total size of all areas in the AOF file (compiled with the debug
option set) which have the attribute debug.

If a library file is being analysed ObjSize displays the above three object sizes for
each individual member of the library file and then displays the overall totals of
these to provide a set of totals for the entire library.

Command line interface

For normal use you do not need to understand the syntax of the ObjSize command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The Command Line syntax for ObjSize is:

ObjSize filename [filename...]

filename a valid pathname specifying an ALF or AOF file.

175

Command line interface

176

18 Squeeze

Squeeze

queeze compresses an executable ARM-code program, saving disc space and
often making the program load faster.

Relocatable modules can be squeezed but must be run rather than RMLoaded.

Squeeze converts a module to a program, which installs the module in the RMA
when run. This program contains a binary image of the module within itself.
Squeeze compresses this program.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file from a
directory display to the icon brings up the SetUp dialogue box:

LI Squeeze

Input: | | |
Options

I-UT_rg harder []verbose

™ Run L EBTTTER

The Input writable icon allows you to specify the name of a file to be processed
(typed in or dragged from a directory display). This file must be an AIF file.

Try harder will force Squeeze to compress the file even if the file is considered by
Squeeze to be too small to warrant compression.

Verbose outputs messages and compression statistics.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

Comnand line '

For a description of the Squeeze Command line option see the section entitled
Command line interface on page 179.

177

The Application menu

Clicking Menu on the Squeeze application icon gives the following options:

Info
Save options
(Options @
Help
Ruit

v

¥ fluto Run

Summary

When Auto save is enabled, a squeezed file is saved to a suitable place
automatically without producing a save dialogue box for you to drag the file from.
Auto save is off by default, whereas Auto Run is on by default.

For a description of each option in the application menu see the chapter entitled
General features on page 117.

Example output

The output of Squeeze appears in one of the standard non-interactive tool output
windows. For more details of these see the section entitled OQutput on page 121.

The following window shows an example of the output from Squeeze, together with
a standard save dialogue box (which appears if Auto Save is not enabled):

-- squeezing 'adfs:: DE.Binaries.exanples, TR '
-- encoding stats (8,1 4) 132 694 287 8% =
-- compressed size 2 &355 is 497 of 47468

-~ compression took 161 csec, 29694 bytes/cpusec

178

Command line interface

Squeeze

For normal use you do not need to understand the syntax of the Squeeze command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The command line syntax for Squeeze is:

Squeeze [options]

Options
-f
=k
unsqueezed-file

squeezed-file

unsqueezed-file [squeezed-file]

compress file regardless of size.
output messages and compression statistics.

a valid pathname specifying an input AIF file.

a valid pathname specifying an output AlF file.

179

Command line interface

180

19 WC

C analyses one or more files and returns the number of lines, words,
alphanumerics and characters in each file.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file from a
directory display to the icon brings up the SetUp dialogue box:

[AE W

Files: [[]
r Options

[]Allow binary files
r Wildeards

Filename ch, # [BorMore filename chs, #
Sub-directories ...|0r { [} Or |
BorMore ([) BorMore |

The Files writable icon allows you to specify the name of a file to be processed
(typed in or dragged from a directory display).

SetUp options

Allow binary files enables WC to analyse binary files (ignored by default).

The options offered under the heading of Wildcards insert special characters into
the Files writable icon which allow you to specify files in a variety of ways. Several
of these options require you to manually insert additional text next to or inside

these special characters.

181

The SetUp dialogue box

182

Filename ch. # inserts the # characterimmediately before the caret. This character
will match any single filename character except dot (.).

For example:

WC adfs::Fred# will search files Fredl and Freda, but not Fred13,
Frederick etc.

WC adfs::Fr#d will search files Fred and Fr2d, but not Freld,
Freed etc.

OorMore filename chs. * inserts the * character immediately before the caret.
This character will match any sequence of filename characters except dot(.) or
braces ({})

For example:
WC adfs::Fred* will search files Fredl and Freda, and also
Fredl3, Frederick etc.
WC adfs::Fr*d will search files Fred and Fr24d, and also Freed,

Frl23detc.

Sub-directories ... inserts three dots immediately before the caret. It must be
positioned immediately after a directory name. WC will then search all nominated
files in that directory and in any subdirectories in that structure.

For example:
WC adfs::Amy.$.Receipts...monthly

will search all files called monthly in the directory Receipts and also in any
subdirectories of Receipts.

Or { inserts a left brace immediately before the caret.
Or } inserts a right brace immediately before the caret.

The preceding two options insert opening and closing curly brackets into the Files
writable icon. You can then manually insert one or more filename characters
between these brackets, separating each filename with a comma. Find will search
all filenames inside the brackets.

For example:
Find adfs::W.rel. {atype,btype, ctype}

would search all three files inside the brackets, ie atype, btype and ctype.

wc

OorMore (inserts an opening bracket immediately before the caret.
) OorMore inserts a closing bracket immediately before the caret.

The preceding two options insert opening and closing brackets into the Files
writable icon. You can then manually insert one or more filename characters
between these brackets and WC will search any files with none, one or more

occurrences of the characters you put inside the brackets.

For example:
WC adfs::Fr(e)d will search files Frd, Fred and Freed, but not Frid.

WC adfs::Fr(ie)d will search files Frd, Fried and Frieied, but not
Frid, Frieed or Fred.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

. gﬁ o

Command line

For a description of the WC Command line option see the section entitled
Command line interface on page 184.

The Application menu

Clicking Menu on the WC application icon gives the following options:

= ®
Info @
Save options | Options
¢ Auto Run

Help

fuit Display G

Summnary

For a description of each option in the application menu see the chapter entitled
General features on page 117.

Note that Auto Save is not available for this application.

183

Example output

Example output

The output of WC appears in one of the standard non-interactive tool output
windows. For more details of these see the section entitled Output on page 121.

The following window shows an example of the output from WC:

count o 1lesys _
Lines: 9, Hm*ds ?2 Hiphanungms ?3 Characters: 483,

word count of 'adfs: Dliams $.diftf . Filesys2':

Lines; ?, Hords: 53, Rlphanumerics: 55 Eharacters. 356,

word count of 'adfs: :DHarris, $. diff. test.Fllesgsz o

Lines: 3, Hords: 39, ﬂlphanﬂmws' 41, tharaeters' 264,

files counted
Lh:tal Lines: 21, Words: 164, Rlphanumerics: 169, Characters: 1183,

Command line interface

For normal use you do not need to understand the syntax of the WC command line,
as it is automatically generated for you from the SetUp dialogue box settings. The
command line syntax for WC is;

WC [options] filepattern [filepattern...]

Options

-b Do not ignore binary files.

Filepattern
Match any filename character except dot (.)
* Match 0 or more filename characters other than dot (.) or braces ({ }).
Look in all sub-directories beneath the specified directory.
{(,} Searches files contained within braces (filenames separated by commas).

() Search any file with none, one or more occurrences of the characters
inside the brackets.

184

20

Extending the DDE

he components of the DDE have been designed in a way which allows third

parties to add tools and applications, provided that they follow a number of
rules and conventions which are given in this section. Unless you are a software
developer, intending to use components of the DDE in your products, or intending
to add further tools to the DBE, then you can skip this section. (Of course you may
just be interested in how it all works, in which case read on!).

The FrontEnd module will act as a generic application, as described in the chapter
entitled General features on page 117. It is assumed here that you are familiar with
this chapter, and that you have a feel for how the non-interactive tools operate.
The extensions you can make fall roughly into the following categories:

e Adding a compiler for another language — this will require all of the
information given below;

e Adding a utility that you wish to run under the desktop, with the same look and
feel as the other DDE non-interactive tools. For instance you may like to port
the UNIX sed stream editor to RISC OS, with a WIMP front end — this only
requires knowledge of how to describe an application to the FrontEnd module;

@ Creating your own project management tool, similar to Make —this will require
knowledge of the message-passing protocols used with the FrontEnd module,
and also the format of a makefile used to maintain a project.

In this chapter you will find further technical information on the following
components of the DDE:

e The FrontEnd module

® The DDEUtils module

® The SrcEdit editor

e The Make project management tool

The FrontEnd module

Overview

The purpose of the FrontEnd module is to ease the job of putting consistent WIMP
frontends onto a number of simple tools which are normally driven from the
command line (eg Link, CC, ObjAsm etc). A WIMP application can then be made by

185

supplying a formal description of the mapping between the WIMP interface and
command line options, a templates file, !Run !Sprites and !Boot files, a messages
file, and a !help file (also a !SetUp file if this is to be used by Make - see later for
more details).

To give you a feel for how the FrontEnd module interacts with your command line
tool, here is a brief description of how it works. The FrontEnd module understands
two star commands:

*FrontEnd_Start
*FrontEnd_SetUp

The former of these is used to invoke a WIMP front end for a tool, with an icon on
the icon bar; the latter is used to allow Make options for the tool to be set using a
WIMP interface.

When the FrontEnd module gets a *FrontEnd_Start command it creates a new
instantiation of itself called Front End% t ool name where toolname is the name
of the tool invoked; it then enters that instantiation as the current application, and
does a SWI Wimplnitialise to become a Wimp task. Because this task stops the
WIMP from mapping out its application workspace, by responding to service call
0X11, the task appears in the applications task list of the Task Manager display.
From this point on, the behaviour of the WIMP task is governed by the formal
description file which was initially passed to the *FrontEnd_Start command.

The *FrontEnd_SetUp command is similar, except it calls its new instantiation
FrontEnd$Mtoolname, and does not produce an icon on the icon bar. The
templates for windows used by the application must be provided by you, and they
must follow the conventions laid down later in the section entitled Template files on
page 188.

When the user causes the command line tool to be run (for example by clicking on
the Run icon in the application’s dialogue box), the FrontEnd module starts up a
task called toolname_task running under the control of the task window
module; thus the tool is pre-emptively multitasked, and any output the tool
produces is stored and will be displayed in a window, if this is what the user
wishes. When the user quits the application, the FrontEnd module ensures that
the relevant instantiation is also removed from the RISC OS module list.

Producing a complete WIMP application

186

In order to produce a complete WIMP application you will need to provide the
following:

@ Run, !Boot and (possibly) !SetUp files

@ a !|Sprites file

a Templates file
a Description file
a Messages file (optional)

a !Help file (optional).

These are described in more detail below.

'Run, !Boot and !SetUp files

Your !Boot file will be the same as for normal applications, including doing things
like setting file types, and performing *IconSprites commands on your sprites.

Atypical 'Run file will look like any of those supplied with the DDE non-interactive
tools, like !Link, !Find, or | Diff. The size of wimpslot does not depend in any way on
the size of the command-line tool which is running under the FrontEnd module,
but instead refers to the application workspace used by the module, when starting
up as a Wimp task (currently a minimum of 16k). You should ensure that you have
a command of the following form:

*Set toolnameSDir <Obey$Dirs>

so that your resource files can be found. Having made sure that the FrontEnd and
Task Window modules are loaded (by using *RMEnsure) you then issue the
*FrontEnd_Start command with application name and full pathname of the
description file as parameters. You may need the facilities provided by the
DDEUtils module, in which case you should *RMEnsure it in your !Run file

For example for IDiff, the !Run file is:

*Tf "<System$Path>" = "" Then Error 0 System resources cannot be found
*WimpSlot -Min 128k -Max 128k

*IconSprites <Obey$Dir>.!Sprites

*Set Diff$Dir <ObeySDirs

*RMEnsure FPEmulator 0 RMLoad System:modules.fpemulator

*RMEnsure FPEmulator 2.80 Error You need FPEmulator 2.80 to run !Diff
*RMEnsure SharedCLibrary 0 System:modules.clib

*RMEnsure SharedCLibrary 3.70 Error You need Clib 3.70 to run !Diff
*RMEnsure FrontEnd 0 System:modules.frontend

*RMEnsure Frontend 1.07 Error You need version 1.07 of the FrontEnd
module torun !Diff

*RMEnsure TaskWindow 0 System:modules.task

*RMEnsure TaskWindow 0.29 Error You need version 0.29 of the taskwindow
module to run !Diff

*RMEnsure DDEUtils 0 System:modules.ddeutils

*RMEnsure DDEUtils 1.30 Error You need version 1.30 of the DDEUtils
module to run !Diff

*WimpSlot -Min 32k -Max 32k

*FrontEnd_Start -app Diff -desc <Diff$Dir=.desc

187

A typical !SetUp file is very similar to a IRun file, but will be used when the
FrontEnd module gets a request from Make to start,up the WIMP front end for a
tool, to allow the user to set options from a dialogue box. This file should only

need to do the following:

® *Wimpslot -min 16K -max 16K

® *Set toolnamesDir <ObeyS$SDir>

® *RMEnsure FrontEnd

® *FrontEnd_Setup -app %0 -desc %1 -task %2 -handle %3

Again, examples of a !SetUp file can be found in the set of non-interactive DDE

tools.

ISprites file

The !Sprites file will contain the sprite for the application icon on the icon bar, and
also optionally a small sprite, both of which should comply with RISC OS style. The
name of the large sprite should be the same as the application (eg !Link, !Find etc).

Template files

The set of window templates which you should supply in a file called Templates

is as follows:
Window name. Status

proginfo Mandatory

SetUp Mandatory

188

Details

Should be as standard Acorn applications
information boxes.

Icon #] must be indirected text, with a buffer
size large enough to accept the application
name.

lcon #4 must be indirected text, with a buffer
size large enough to accept the version
string.

This dialogue box is used to set the most
common options for the command line tool.
Rarer options can be set from a menu by the
user pressing the Menu button on this
dialogue box. The title bar must be
indirected text, and have a buffer size large
enough to accept the application name, plus
a space and the string (Completed).

CmdLine

Help

query

Mandatory

Optional

Mandatory

Extending the DDE

Icon #0 must be indirected text (buffer size
12 bytes), and have a button type of Menu
icon and an ESG of |, and should contain
the text Run. It is used to invoke the
command line tool with the chosen options.

Icon #1 must be text, and have a button type
of Menu icon andan ESG of 1, and should
contain the text Cancel. It is used to close
the Options dialogue box, and revert to the
options settings as they were when the
dialogue box was last opened.

Other icons are of your choice, and can be
used to map to command line options. You
must, however, follow the conventions
described in the section entitled Writing an
application description on page 190.

This dialogue box is used to show the
command line equivalent of the options
which the user has chosen. The title bar
should contain some explanatory text like
Command Line:.

Icon #0 must be indirected text with buffer*
size 12 bytes, with button type Menu icon
and ESG of 1, and containing the text Run. It
is used to invoke the command line tool
with the shown command line.

Icon #1 must be indirected text with buffer
size typically at least 256 bytes, and with a
button type of Writeable.

Used to display help text when the user
selects Help from the application’s main
menu. The title bar should contain some
appropriate text. The window should not
have its Auto-redraw flag set.

Used to ask the user if they really want to kill
off a task which is running.

Icon #0 must be text, button type Menu
icon, an ESG of I, and is used to reply Yes.

Icon #1 must be indirected text, buffer size
256 bytes.

189

Producing a complete WIMP application

190

Icon #2 must be text, button type Menu
icon, an ESG of 1, and is used to reply No.

Output Optional Used to display in a scrolling window, the
textual output of the command line tool.
The window's Aut o-redraw flag must not
be set.

Summary Optional Used to give a summary of the textual
output produced by the command line tool.
Icon #2 must be text, with button type Menu
icon, ESG of 1, containing the text Abort.
It is used to abort the task.
Icon #3 must be indirected text, with a buffer
size large enough to hold strings Pause and
Cont inue, button type Menu icon, ESG
of 1. It is used to pause and continue the
task.

xfer_send Mandatory if ~ Used both as a save dialogue box for the
user is able to textual output of a tool, and to save the
save anything result file generated by running the tool.
Icon #0 must be text, with button type Menu
icon, ESG of I, containing the text OK.
Icon #2 must be indirected text, with a buffer
size of 256, and button type writeable.
Icon #3 must be indirected text.

save Optional As for xfer_send, but is used to save the
result file generated by running the tool. It
should also have a close icon.

Writing an application description

As previously mentioned, your application running under the FrontEnd module is
driven by a formal description written in a language whose EBNF grammar is given
in Appendix B - FrontEnd protocols on page 211. This section gives an explanation of
the semantics of the language, and hence explains how to write your own
description.

As can be seen from the EBNF rule in Appendix B - FrontEnd protocols for an
application, the description file consists of 10 sections, with only the first section
being mandatory (TOOLDETAILS). Each of these sections is described separately
below.

TOOLDETAILS section

The tool details section is the only section which you must have in the description.
The section starts with the name of the tool, which must be the same as the string
passed as the —app parameter to *FrontEnd_Start. This name will be used in
window and menu title bars to identify the application.

Normally the tool will reside in your current library directory, and hence the
command will be invoked using only the tool name. If you wish to change this you
can specify a command_is entry, which gives a pathname for the tool. For example
if you have an application called example, but the executable image for this
application is held in |Runimage in the application directory, then you should have
a line in the description file saying:

command_1is "<example$Dir>.!RunImage";

The version entry will typically be a version number and date for the tool. These
will be used in the Program Information dialogue box (proginfo).

If your tool understands a particular file-type, then this can be entered using the
keyword filetype. This is used when the user double-clicks on a file of this type
in a directory display. The effect is as if the user has dragged the file icon to your
icon on the icon bar.

By default the tool is run in a Wimpslot of 640k, under the Task Window module. If
you want this value to be different, then use the Wimpslot command in the
description.

Since the limit on RISC OS command lines is 256 characters, you may find this to
be an unnecessarily strict limit when passing a potentially large list of full
pathnames to a tool on its command line. If you use the

has_extended_cmdl ine keyword in the description, then the FrontEnd
module will request space from the DDEUtils module to place the command line
arguments in. If the tool is written in C (or runs under any other run-time
environment which cooperates with DDEULils) the tool will pick up the arguments
from DDEULils. Using this option, your command line is limited only by the size of
the writable icons in your dialogue boxes. If written in C, the tool must have been
linked with the DDE stubs or ANSILib to use this feature,

METAOPTIONS section
The METAOPTIONS section refers to non-application-specific options.

If the has_auto_run keyword is used, the application’s main menu option Auto
Run will not be greyed out. In addition, if you include the keyword on, then this
option will be enabled by default. Auto Run means that if a file is dragged to the
application icon, then the tool will immediately be run, rather than first displaying
the Options dialogue box.

191

Producing a complete WIMP application

192

The has_auto_save keyword refers to the Auto Save option in the application’s
main menu, and the keyword on turns this option on by default. If this option is on,
then rather than producing a Save as dialogue box to save the file output of the
tool, the tool is run to directly write to the desired output place. The location where
output should be sent is given following the has_auto_save keyword; in order
to specify this location, you must first give an icon number in the Options dialogue
box, whose first entry will be used to determine the directory where the output will
go (using the from icn <integer> keywords).

For example, if you have the line:

has_auto_save ~."!RunImage" from icn 3;

and icon 3 of the options dialogue box contains the text:
adfs::4.5.0objects.filel adfs::4.5.objects.file2

then the filename adfs::4.$.objects. filel will be used to form the output
filename. First the leafname filel is stripped off to leave the directory name
adfs::4.5%.0bjects which will form the stub of the output filename. This stub
is then manipulated by the string which is specified between the keyword
has_auto_save and the keyword from. You can indicate parent directories
using any (reasonable) number of A s and can refer to the original leafname using
the keyword 1eafname (in this example leafname would map to £ile1l). This
leafname can have literal strings prepended or appended to it

If the application is to have textual output, then you can specify that you want text
and/or summary window(s) by using the keywords has_text_window and
has_summary_window. Beware that if you don’t have any output windows at all,
then the user has no way of pausing/aborting/examining the running task. The
default display mode is text, but this can be explicitly stated as text or summary
using the keyword display_dft_is.

FILEOUTPUT section

The FILEQUTPUT section deals with the production and saving of a single output
object. To enable the user to then save this output, it is sent to a temporary file,
which is then copied to a permanent file when the corresponding icon is dragged
to a directory display — the icon can also be dragged to another application.

By default it is assumed that the output filename for a tool is that which appears
last on the command line with no special preceding flag. If your command line tool
requires a flag such as -o to go before the output filename, then this is specified
using the output_option_is keyword.

Also by default, the name which appears in the Save as dialogue box is the string
Output, assuming that no Auto Save string has been specified. This can be
changed using the output_dft_string keyword.

Extending the DDE

Certain tools produce an output file, or not, depending on the combination of
options on their command line. By using the output_dft_is keyword, you can
specify whether the default mode of operation is to produce output or not. This
state will then be changed as the user chooses options from the options dialogue
box and menu which either turn output production on or off (see the DBOX section
and the MENU section).

DBOX section

The DBOX section describes the properties of the main dialogue box used to set
options for the command line tool.

The purpose of the icon definitions is to show how icon clicks and drags etc map
onto command line option strings, and how these affect the state of other icons
and menu entries. Essentially, icon numbers correspond to those numbers used in
the template for the dialogue box (designed using an application such as FormEd).

There are four types of icon definition:

1 those that map directly onto command line strings

2 those that increase or decrease the numeric value of another icon
3 those that cause a string to be inserted in a writable icon

4 those that extend and contract the dialogue box.

The most complex of these is the icon which maps to a command line string. Such
an icon can be of two WIMP types:

@ a writable indirected text icon

e aclickicon.

The former of these contributes to the command line, if it contains any text, and is
generally used for specifying filenames to the command line tool. The latter is
generally used to turn flags on and off, and contributes to the command line if it is
selected. The mapping onto the command line is given after the keyword
maps_to; this may begin with an optional string literal (eg - £), optionally
followed by keywords st ring or number. These latter keywords are used for
writable indirected text icons, and refer to their contents. If you want each item in
the writable text icon to be preceded by a particular string, this can be specified
using the prefix_by keyword.

You can also specify that selecting this icon causes the values of other icons to be
used in the command line, by using the followed_by keyword. These items will
be separated by the entry given after the separator_is keyword. As discussed in
the FILEOUTPUT section, it is possible to specify whether a tool produces output
by default; each icon can be made to toggle this state using the keywords

193

Producing a complete WIMP application

194

produces_no_output and produces_output. The not_saved keyword
should be used if the value of the particular icon should not be saved when the
user picks the Save options entry from the application’s main menu.

Some examples should make this clearer:
icn 3 maps_to "-c¢';

This would be used for a click icon, which when selected will result in —c being
inserted into the command line.

icn 6 maps_to "-f " string not_saved;

This would be used for a writable indirected text icon, whose string contents
should follow the literal - £ on the command line. It would typically be used for
specifying input filename(s). The contents of icon 6 would not be saved when the
user chose the Save options menu entry.

Using the increases or decreases keyword is typically used for arrow icons,
used to increase and decrease the numeric value of another icon. The default
amount by which the increase or decrease is made is 1, but this can be changed
using the keyword by. Minimum and maximum values can also be specified. The
button type of such an arrow icon should be click or auto-repeat.

If an icon should just be used to insert a useful string in another writable
indirected text icon, then this is specified using the keyword inserts. Whenever
such an icon is clicked, the given string literal is inserted into the keyboard buffer,
if the options dialogue box currently has the input focus. Its button type should be
Menu icon.

The extends keyword is used for an icon which is used to toggle the options
dialogue box, from large to small and vice versa. The from icon number is the icon
which is used to mark the bottom of the dialogue box when small; the to icon
number is the icon which is used to mark the bottom of the dialogue box when
large.

The list of icon definitions can optionally be followed by a list of icon default
values, using the keyword defaults. Each icon can be listed with the keywords
on and of f for click icons, or a string or numeric literal value for writable
indirected text icons, These defaults refer to those used when the tool is invoked
via *FrontEnd_Start; if the tool has different options by default-when invoked from
Make, these are listed using the make_defaults keyword.

Following this in the description is an optional specification of what happens when
drags occur, from the filer or from other applications. After the keyword
imports_start, which begins this part of the description, you can optionally
specify a wildcard string, which is used whenever a directory is dragged to your
application. Typically this wildcard will be *. Hence a directory adfs::4.%. foo

dragged onto the application will expand to adfs::4.$.foo.*. There then
follows a list of drag_to specifications, each of which gives either a specific icon
number in the dialogue box, or the keywords any or iconbar; the icon list
following the word inserts is where the filenames of the dragged files will be
inserted, with an optional separator string. If no separator string is given then a
drag will overwrite the previous contents of the writable indirected text icon. Here
are some examples:

drag_to icn 3 inserts icn 3;

This means that a drag onto icon 3, will insert the filename into icon 3, and
subsequent drags to this icon will overwrite it.

drag_to icn 6 inserts icn 6 separator_is " ";
drag_to any inserts icn 6 separator_is " ";
drag_to iconbar inserts icn 6;

These means that a drag to icon 6, or anywhere else on the dialogue box, or to the
icon bar will insert the filename of the dragged icon in icon number 6. In the case
of the iconbar, the contents of icon 6 will be overwritten.

MENU section

The MENU section is similar to the DBOX section, except that it is used to specify
the way that menu entries on the menu attached to the options dialogue box map
to command line option strings. This menu is typically used for less commonly
used options.

Each entry in the menu entry list begins with a literal string, which is used to give
the text that will appear in that merfu entry. This is followed, after the keyword
maps_to, by string literal (which may be null) to which that menu entry maps in
the command line. This is optionally followed by the keyword sub_menu, in which
case this menu entry will be given a writable submenu with the given string literal
as its title, and with a buffer size given by the supplied integer value. If you want
each item in the submenu buffer to be preceded by a particular string, this can be
specified using the prefix_by keyword. The produces_output,
produces_no_output and not_saved keywords are as described above for
the DBOX section.

Menu default values can be set in a similar manner to those for the dialogue box
icons. This is done using the defaults keyword, and then following each menu
entry with the keyword on or of £ depending on the desired default state of that
entry. If the entry has a writable submenu, this can also be given a default string or
integer value. Also a separate set of option defaults can be set for when the
FrontEnd module is invoked from Make. Menu entries are numbered from 1
(ignoring the command line equivalent entry).

195

Producing a complete WIMP application

196

For example:

menu_start
"First option" maps_to "-a";
"Second option" maps_to "-b " sub_menu "Value: " 8;

defaults

menu 1 off,

menu 2 on sub_menu "42";
menu_end

will result in a menu with two entries (other than the command line equivalent,
which is always the first entry). By default First option will not be ticked. but
Second option will be ticked and its writable submenu will contain the value 42.

DESELECTIONS section

The DESLECTIONS section allows you to state which Options when enabled
should disable other options. This can be done for both icons in the main options
dialogue box and for entries in its attached menu. For example:

icn 3 deselects icn 4, icn 5, menu 3;
means that if icon 3 is selected, then icons 4 and 5 and menu entry 3 will be
deselected.
EXCLUSIONS section

The EXCLUSIONS section is similar to the DESELECTIONS section, except that the
listed icons and menu entries are made unselectable (greyed out). When the icon
or menu which caused this exclusion is deselected, then the excluded items
become selectable again.

MAKE_EXCLUSIONS section

Certain tools require that some options are made unselectable when the FrontEnd
module is invoked from Make. The MAKE_EXCLUSIONS section allows these icons
and menu entries to be listed.

ORDER section

By default the command line for the tool is constructed in the following order:
1 the dialogue box icons in the order given in the DBOX section
2 the menu entries in the order given in the MENU section

3 the output option if appropriate.

Extending the DDE

If this ordering is not satisfactory, you can give another ordering by using the
order_is keyword followed by a list of icon numbers, menu entries and string
literals. This mechanism can be used to insert string literals which always appear
on the command line.

MAKE_ORDER section

The MAKE_ORDER section is similar to the ORDER section, except that it gives a
way of specifying an alternative command line ordering, when invoked from Make.

Messages files

There are a number of textual messages (warnings and errors and the like), which
the FrontEnd module issues. The purpose of the messages file for an application is
to allow internationalisation of the messages. A messages file is supplied with
each of the non-interactive tools, which you can use for your application; it should
be in a file called <toolname$Dir>.Messages. If no such file is present, then
FrontEnd’s internal default English messages are used.

Providing interactive Help

Responses to interactive help requests are handled by the FrontEnd module. In
each of the DDE non-interactive tools directories you will find a Messages file for
the tool. In this file are help messages for the various dialogue boxes of the tools.’
In general a message whose tag field is the name of the dialogue box, is used when
the pointer is not over an icon; when the pointer is over an icon, the icon number
is used to distinguish the help message.

For example, an entry in the messages file of:
SETUP3:This is where vou specify the input filenames
will result in the message
This is where you specify the input filenames
appearing in Help’s interactive help window, when the pointer is over icon number
3 of the SetUp dialogue box.
IChoices file

When the user selects Save choices from the application’s main menu, the current
setting of options is saved in a file <toolname$Dir>. ! choices.

197

The DDEUtils module

SrcEdit

Make

198

The DDEUtils module is intended for three purposes:

e torelax the 256 byte command line limit

® to solve the problem of ‘current directory’ under the desktop
® to provide throwback to the editor on finding source errors.

Further details are given in Appendix C - DDEULils.

Resource files

A language compiler needs to supply three lines of information about itself to
SrcEdit when it is installed. It does this by appending these three lines to the file
<SrcEdit$Dir>.choices.languages of the form shown in Appendix D -
SrcEdit file formats.

The language help file is used when the user selects a portion of his text and
requests language help on this. The format of entries in the help file is shown in
Appendix D - SrcEdit file formats.

You will have noticed that when the user selects Menu on a project in Make, it is

possible to select options for a tool, by picking the name of that tool from the Tool
options menu. This is done by Make issuing the star command *FrontEnd_SetUp;
the FrontEnd module then replies with a WIMP message (details of which are given
in Appendix B - FrontEnd protocols on page 211) containing the desired command line.

In order to achieve this, a tool which is being added to the DDE must append six
lines to the file <Make$Dir>.choices.tools of the form:

tool_name

extension (the string used to identify a source written in this
language, eg ¢ for the C language)

make_defaults (the default options for this tool when in a makefile)

conversion_rule (ie how to convert source files to object files)

description_file (full pathname of file containing application
description)

setup_file (full pathname of file containing SetUp actions for

when tool is invoked via Make).

Appendices

199

21

Make and AMU

Appendix A - Makefile syntax

his appendix covers the syntax of makefiles understood by amu, and the way

they are arranged by Make. If all you need to do is construct and use simple
makefiles with Make, you do not need to study this information. It is included for
those wishing to study, modify or construct makefiles manually.

Makefiles may be constructed by hand, using a text editor such as SrcEdit, or
semi-automatically using Make. For more details of operating Make, see the earlier
chapter entitled Make. Makefiles may be used to run a make job using either Make
or AMU. In both cases, make jobs operate by the command line tool amu
interpreting the Makefile text and issuing command lines to other tools. The
command line tool amu is installed in your library directory.

Command execution

Amu executes commands by calling the C library function system, once for each
command to be executed. In turn, system issues an OS_CLI SWI to execute the
command. Before calling OS_CLI, system copies its caller to the top end of
application workspace and sets the workspace limit just below the copied program.
Any command executed by amu therefore has less memory to execute in than amu
had initially (the difference being the size of amu plus the size of amu’s working
space).

When the command returns, amu will be copied back to its original location and
will continue, unless, of course, the command set a bad (non-0) value in the
environment variable SysSReturnCode (the C library automatically sets
SysSReturnCode to the value returned by main () or passed to exit ()). If you
have limited memory on your computer, or you are trying to run amu in a limited
wimp slot under the desktop, and a program (such as the C compiler) to be run by
amu needs more memory than is left, you can instruct amu not to execute
commands directly, but to write them to an output window to be saved and
executed later (see the Don't execute option of Make and AMU). Of course, in this
case, execution is not terminated or modified by a non-0 return code from a
command.

201

Makefile basics

Makefile basics

202

Finally, note that there is a RISC OS command length limit of 255 characters. The
DDE tools such as the linker and C compiler cooperate with the DDEUtils module
to allow much longer command lines, but care must be taken to avoid generating
long command lines for other operations, such as wipe, etc.

In its simplest form, a makefile consists of a sequence of entries which describe
e what each component of a system depends on;

e what commands to execute to make an up-to-date version of that component.

Everything else that you can express in a makefile is designed to make the job of
description easier for you.

Amu performs two functions for you. Firstly, it expands your description into the
simple form just described: a sequence of explicit rules about how to make each
component of a system. Then it decides which rules need to be applied to make a
completely up-to-date, consistent system. This it does by deciding which
components are older than any of the files they depend on. It then executes the
commands associated with those entries, in an appropriate order.

An example will make all this clear, so let's look at part of the makefile for amu
itself:

amu : o.amu $.301.clx.o0.clxlib
link -o amu o.amu $.CLib.o.Stubs
sqgueeze amu

O.amu: c.amy §.:301.clx.0.dlx]lib
cc -I$.301.clx c.amu

install:

copy amu %.amu ~cfqg
remove amu
remove oO.amu

Each entry consists of

e a target, followed by a colon character, followed by

e alist of files on which the target depends, followed by

e a list of commands to execute to make the target up to date.

Each command line begins with some white space (if you want your makefile to be

portable to UNIX systems you should begin these lines with a Tab character). For
example, amu itself is made from o.amu, the compiled amu program, and a

Appendix A - Makefile syntax

proprietary library called $.301.clx.0.clxlib. If either of these files is newer
than amu, or if amu does not yet exist, then the commands 1ink -o amu ...
followed by squeeze amu, should be executed.

But what if 0. amu doesn't yet exist or is not itself up to date? Amu will check this
for you and will not use o. amu without first making it up to date. To do this it will
execute the command(s) associated with the o.amu entry.

Thus amu might well execute for you:

cc -15$.301.clx c.amu
link -0 amu o.amu $.CLib.o.Stubs
squeeze amu

As you can see, if you do this more than once — for example, because you are
developing the program being managed by amu — it will save you many keystrokes.
Now suppose you don't have $.301.clx.o.clxlib. What then? Well, the
makefile doesn't instruct amu how to make this so it can do no more than tell you
so. Either you must modify the makefile to say how to make it or, more likely,
obtain a copy ready-made.

Makefile structure

Makefiles contain normal ASCII text, and are of type 0XFE1 (Makefile). For
backwards compatibility they may also be used with text (0XFFF) file type, though
these cannot be adjusted automatically by Make.

A makefile consists of a sequence of logical lines. A logical line may be continued
over several physical lines provided each but the last line ends with a \. For
example:

This 1s a comment line \
continued on the next physical line \
and on the next, but not thereafter.

A comment is introduced by a hash character # and runs to the end of the logical
line. The active comment line:

i Dyhamic dependencies

is interpreted by amu as a marker for the start of dependencies to be kept up to
date during a'make job (see the later section entitled Makefiles constructed by Make).
All other comment lines are ignored by amu.

Otherwise there are four kinds of non-empty logical lines in a makefile:

e dependency lines
e command lines

203

Makefile structure

204

@ macro definition lines
e rule and other special lines.

Dependency lines have the form:
space-separated-list-of-targets COLON space-separated-list-of-prereguisites
For example:

amu : o.amu $.301.clx.o.clxlib
0.d35 0.d36 0.d37: h.util

A dependency line cannot begin with white space. Spaces before the colon are
optional, but some white space must follow to distinguish a colon separating
targets and prerequisites from a colon as part of a RISC OS filename.

For example:
adfs::4.$.1library.amu: o.amu

(Although a space after the colon is not required by UNIX's make utility, omission
of it is rare in UNIX makefiles).

A line with multiple targets is shorthand for several lines, each with one target and
the same right-hand side (and the same associated commands, if any). Multiple
dependency lines referring to the same target accumulate, though only one such
line may have commands associated with it (amu would not know in what order to
execute the commands otherwise). For example:

amu: Oo.amu
amu: $.301.clx.o.clxlib

is exactly equivalent to the single line form given earlier. In general, the single line
form is easier for you to write whereas the multi-line form is more readily
generated by a program (for example, Make will generate a list of lines of the form
o.foo: h.thing, one for each #include thing.h in c¢. foo). Command lines
immediately follow a dependency line and begin with white space.

For maximum compatibility with UNIX makefiles ensure that the first character of
every command line is a Tab. Otherwise one or more spaces will do. A semi-colon
may be used instead of a new line to introduce commands. This is often used when
there are no prerequisites and only a single command associated with a target. For
example:

clean:; wipe o.* ~cfqg

Note that, in this case, no white space need follow the colon.

Macro definition lines are lines of the form:
macro-name = some text to the end of the logical line
For example:

e = nag

CFLAGS = -fah -c¢ -I$.clib

LD = link

LIB = $.CLib.o.clxlib $.CLib.o.Stubs
CL%. = 5:30):elx

The = can be surrounded with white space, or not, to taste. Thereafter, wherever
${name} or $ (name) is encountered, if name is the name of a macro then the
whole of $ { name} is replaced by its definition. A reference to an undefined macro
simply vanishes. An example which uses the above macro definitions, and which is
taken from the makefile for amu itself, is:

amu : amu-.o $(CLX).o.clxlib
$(LD) -o amu S${LFLAGS} o.amu ${LIB}

which expands to

amu: amu.o $.301l.clx.o0.clxlib
link -o amu o.amu $.CLib.o.clxlib $.CLib.o.Stubs

Note that $ { LFLAGS} expands to nothing.

By using macros intelligently, you can minimise the effort needed to move
makefiles from computer to computer; for example, dealing with varying locations
for prerequisites, or centralising what would otherwise be distributed through
many lines of text. It is obviously much easier to add -g to a CFLAGS= line to
make a debuggable version of the compiler than it is to add -g to 28 separate cc
commands. Similarly, using $ (CC) and CC=cc, rather than just cc, makes it very
easy to use a different version of cc; just change the definition of the macro. Whilst
this may not seem very useful in a small makefile, it is common practice when
describing larger systems such as the C compiler. Macros are used extensively in
makefiles constructed by Make.

205

Advanced features

Advanced features

File naming

VPATH

206

To help you move MS-DOS and UNIX makefiles to RISC OS, or to develop makefiles
under RISC OS for export to MS-DOS or UNIX, both amu and the C compiler accept
three styles of file naming:

RISC OS native: $.301.cfe.c.pp ~.include.h.defs
UNIX-like: /301/cfe/pp.c ../include/defs.h
MS-DOS-like: \301\cfe\pp.c ..\include\defs.h

(All three of these examples refer to the same two RISC OS files.)

The linker offers more limited support; in essence, it recognises thing. o and
o.thing as referring to the same RISC OS file (0. thing). In practice, object files
almost always live locally (that's the only place the RISC OS and UNIX C compilers
will put one) so this support is fairly complete.

Amu will even accept a mixture of naming styles, though this practice should be
discouraged.

The mapping between different naming styles cannot be complete (consider the
UNIX analogueof adfs::0.$.Libraryornet#1.251:src.amu). However, it
is usually sufficient to take much of the hard work out of moving reasonably
portable makefiles.

Usually, amu looks for files relative to the work directory or in places implicit in the
filename. The example given earlier contains the line:

amu: amu.o $.301.clx.o.clxlib
which refers to:
@.o.amu(in@.o)and $.301.clx.0.clxlib(in $.301.clx.0)

Sometimes, particularly when dealing with multiple versions of large systems, it is
convenient to have a complete set of object files locally, a few sources locally, but
most sources in a central place shared between versions. For example, we can
build different versions of the C compiler this way. If the macro VPATH is defined,
then amu will look in the list of places defined in it for any files it can’t find in the
places implicit in their names. For example, we might have compiler sources in
somewhere.arm, somewhere.mip, somewhere.cfe and put the compiler
makefile in somewhere.ccriscos. It might contain the following VPATH
definition:

Appendix A - Makefile syntax

VPATH=".arm ~.mip ~.cfe # note that UNIX VPATHs
separate path elements
with colons, not spaces

and then dependency lines like:

o

o.pp: c.pp # "“.cfe.c.pp, via VPATH

o.cg: c.cg # “.mip.c.cg, via VPATH

Rule patterns, .SUFFIXES, $@, $*, $< and $?

All the examples given so far have been written out longhand, with explicit rules for
making targets. In fact, amu can make inferences if you supply the appropriate rule
patterns. These are specified using special target names consisting of the
concatenation of two suffixes from the pseudo-dependency . SUFFIXES. This
sounds very complicated, but is actually quite simple. For example:

.SUFFIXES: PRt AR o
amu : O.amu
PR e o o S(CC) $(CFLAGS) -o 5@ c.§*

(Note the order here: . c.o makes a . o-like thing from a . c-like thing).

The rule pattern . ¢ . o describes how to make . o-like things from . c-like things. If,
as in the above fragment, there is no explicit entry describing how to make a

. o-like thing (o . amu, in the above example) amu will apply the first rule it has for
making . o-like things. Here, order is determined by order in the . SUFFIXES
pseudo- dependency. For example, suppose . SUFFIXES were defined as

.o .c .f andthat there were tworules, .c.o:...and .f.o:... Thenamu
would choose the . c.o rule because . c precedes . f in the . SUFFIXES
dependency. In applying the . c.o rule, amu infers a dependence on the
corresponding . c-like thing - here ¢ . amu. So, in effect, it infers:

o.amu: c.amu
$(CC) $(CFLAGS) -0 o.amu c.amu

Note that, in the commands, 3@ is replaced by the name of the target and $* by
the name of the target with the ‘extension’ deleted from it. In a similar fashion, $<
refers to the list of inferred prerequisites. So the above example could be rewritten
using the rule:

.C.Oz; $(CC) $(CFLAGS) -o $@ S<

However, if a VPATH were being used, this second form is obligatory. Consider, for
example, the fragment:

207

Makefiles constructed by Make

VPATH=".arm ~.mip ".cfe
cc: veee O.PP v
.C.O:; $(CC) $(CFLAGS) -o $@ $<

There is no explicit rule for making o. pp, so amu will apply the rule pattern
.c.o:?. This might expand to:

o.pp: ~.cfe.c.pp
$(CC) $(CFLAGS) -o o.pp “.cfe.c.pp

which has a much more useful effect than:
$(CC) $(CFLAGS) -0 0.pp C.pp

Finally, $? can be used in any command to stand for the list of prerequisites with
respect to which the target is out of date (which may be only some of the
prerequisites).

Use of : :

If you use : : to separate targets from prerequisites, rather than :, the right-hand
sides of dependencies which refer to the same targets are not merged.
Furthermore, each such dependency can have separate commands associated with
it. Consider, for example:

o.tls; a.tl h.tl
cc -g -c c.tl # executed if o.tl is out of
date wrt c.tl or h.tl
o.kLl: - et h.E2
& = gkl # executed if o.tl is out of

date wrt c.tl or h.t2

These features are used extensively in makefiles constructed by Make.

Prefix$Dir

The DDEUtils module provides an environment variable Prefix$Dir set to the
work directory. This is previded to allow you to execute binaries placed in the work
directory, since Run$Path cannot otherwise specify the work directory.

Makefiles constructed by Make

A makefile constructed by Make, ie used to maintain a project, is a file of type
0XFE1 (Makefile).This textisarranged into a number of sections which are
separated by active comments.

208

Appendix A - Makefile syntax

When maintaining a project the meta-symbol @ is used to stand for the pathname
of the work directory. This overcomes the problem of a current directory not being
appropriate under the RISC OS desktop. If the absolute filename of a makefile is:

adfs::4.$.any.thing.makefile
then all filenames for the project can use @ to replace adfs::4.$.any.thing.
For example:
adfs::4.%.any.thing.c. foo
becomes denoted by
@.c.foo
Amu is invoked with the ~desktop flag to indicate that @ should be expanded.

Tools like cc and objasm which must produce dependency information are invoked
with a flag ~depend !Depend.

Below, we describe each of the makefile sections, beginning with their
corresponding active comments:

Project project_name
This gives a name to be used for the project in the Open
submenu.

Toolflags This section has a set of default flags for each of the tools
which have registered themselves with IMake, for
automatic inclusion in a makefile. Each rule would be of
the type:

toolFLAGS =

Final targets This section contains the rules for making the final
targets of the project. For example:

‘RunImage: link ${linkflags) -o !RunImage -via objects)

User-editable This section is left untouched by !Make, and can freely

dependencies be edited by the user using a text editor.
Static This section contains rules for making an object file from
dependencies its corresponding source. It does not refer to include

files and the like (described below in the section
Dynamic dependencies).

Dynamic This section contains the rules which are created by
dependencies IMake by running the relevant tool on a source file to
ascertain its dependencies (eg cc -depend).

209

PRI AT P I 1L]

Miscellaneous features

210

The special pseudo-target . SILENT tells amu not to echo commands to be
executed to your screen. Its effect is as if you used the Make or AMU option Silent.

The special pseudo-target . IGNORE tells amu to ignore the return code from the
commands it executes. Its effect is as if you used the Make or AMU option Ignore
return codes.

A command line in a makefile, the first non-white-space character of which is @, is
locally silent; just that command is not echoed. This is only rarely useful.

A command line, the first non-white-space character of which is - has its return
code ignored when it is executed. This is extremely useful in makefiles which use
commands such as diff which cannot set the return code conventionally.

The special macro MFLAGS is given the value of the command line arguments
passed to amu. This is most useful when a makefile itself contains amu commands
(for example, when a system consists of a collection of subsystems, each described
by its own makefile). MFLAGS allows the same command line arguments to be
passed to every invocation of amu, even the recursive ones. For example, you
might invoke amu like this:

* amu -k LIB=$.experiment.new.lib.grafix
and the makefile might contain entries like:

subsys_1: S (COMMON) $ (HDRS1) ...
dir subsysl
amu $ (MFLAGS)
back

22 Appendix B - FrontEnd protocols

Star Commands
Two star commands are supported:

*FrontEnd_Start -app-<application name>
-desc <description_filename>

*FrontEnd_SetUp -app <application_name>
-desc <description_filenames
-task <task-id_of_caller>
-handle <app-specific_handle>
-toolflags <filename>

The application specific handle can be used by the caller to identify return
messages, if many *FrontEnd_SetUp commands have been made.

EBNF Grammar of Description Format
The following is an EBNF grammar for an’application description:
Note: Blank lines and characters following # (up to newline) are ignored.

APPLICATION ::= TOOLDETAILS
[METAQPTIONS]
[FILEOUTPUT]
[DBOX]

[MENU]
[DESELECTIONS]
[EXCLUSIONS]
[MAKE_EXCLUSIONS]
[ORDER]
[MAKE_ORDER]
<EOF>

TOOLDETAILS::= tool_details_start
name <string> ";"
[command_is <string>;]
version <number_and_optional_date>

21

filetype <jdigit_hexnumber> Wiz w]

[wimpslot <integer>k ";"]

[has_extended_cmdline ";"]
tool_details_end

METAOPTIONS::= metaoptions_start
[has_auto_run [on] ";"]
[has_auto_save [on]
{"~."}[<string>] [leafname]
[<string>] from icn <integer> ";"]
[has_text_window ";"]
[has_summary_window ";"]
[display_dft_is text|summary ";"]
metaoptions_end

FILEOUTPUT ::= fileoutput_start
[output_option_is <string> ";"]
[output_dft_string <string> ";"]
[output_dft_is (produces_output |
produces_no_output) ";"]
fileoutput_end

DBOX ::= dbox_start ICONS
[ICONDEFAULTS]
[IMPORTS]
dbox_end

MENU ::= menu_start
MENULIST
[MENUDEFAULTS]
menu_end

MENULIST ::= { MENUENTRY }

MENUENTRY ::= <string> maps_to <string>
[sub_menu <string> <integer> [prefix_by
<string>]]
[produces_no_output |
produces_output]
[not_saved] ";"

MENUDEFAULTS: : = defaults
menu <integer> on | off [sub_menu
<string>
| <integer>

212

Appendix B - FrontEnd protocols

{ "," menu <integer> on | off [sub_menu
<string>
| <integer>

L
’

[make_defaults

menu <integer> on | off [sub_menu
<string>
| <integer>

" "
’

menu <integer> on | off [sub_menu
<string>
| <integer>

ICONLIST ::= icn <integer> { "," icn <integers> }
ENTRYLIST = menu <integer> { "," menu <integer:> }
ICON_ENTRYLIS: :=menulicn <integer> { "," menulicn

<integer> }
ICONS = icons_start

ICONDEFLIST

icons_end
ICONDEFLIST::= { ICONDEF }
ICONDEF ::= icn <integer> (maps_to ([<string>]

[CONVERSION])
[prefix_by <string>]
[followed_by [spaces] OPTLIST]
[separator_is <string>
[produces_no_output
|produces_output]
[not_saved])
| (increases|decreases icn <integer>
[by] <integer> [max <integer>]

[min <integers>])

213

L T] st R U T

214

| inserts <string> ";"
| extends from icn <integer>
to icn <integer> ";"

OPTLIST ::= OPTENTRY { "," OPTENTRY }

OPTENTRY := icn <integer>

CONVERSION ::= string|number

ICONDEFAULTS: : = defaults
icn <integer> on | off | <string>
| <integer>
{ "," icn <integer> on | off
<string> | <integer>

}

L
'

[make_defaults
icn <integer> on | off | <string>
| <integer>
{ "," icn <integer> on | off
<string> | <integer> }

DESELECTIONS: : = deselections_start
DESELECTIONLIST
deselections_end

DESELECTIONLIST: :={ DESELECT }

DESELECT ::= 1icn <integer> deselects
ICON_ENTRYLIST ";"
| menu <integer> deselects
ICON_ENTRYLIST " ;"

EXCLUSIONS ::= exclusions_start
EXCLUSIONLIST
exclusions_end

EXCLUSIONLIST::={ EXCLUDE }

Appendix B - FrontEnd protocols

EXCLUDE ::=. ilcn <integer> excludes
ICON_ENTRYLIST ";"
| menu <integer> excludes
ICON_ENTRYLIST ";"

MAKE_EXLUSIONS: :=make_excludes ICON_ENTRYLIST ";*"

ORDER ::= order_is (menulicn <integer>)
| <string>
| output { "," (menulicn <integer>)

| <string> | output}

MAKE_ORDER ::= make_order_is
(menulicn <integer>) | <string> |
output
{ "," (menulicn <integer>)

<string> | output}

IMPORTS ::= imports_start
[wild_card_is <string> ";"]
IMPORTLIST
imports_end

IMPORTLIST ::= { IMPORT }

IMPORT ::= drag_to
(icn <integer>|any|iconbar)
inserts
ICONLIST
[separator_is <string>] ";"

215

WIMP Message returned after a *FrontEnd_SetUp

When an application like Make does a *FrontEnd_SetUp command, the FrontEnd
module replies to that application when the user has chosen his options with a
WIMP message of the format:

Byte offset Contents

+16 reason code 0x00081400

+20 Handle which was passed to *FrontEnd_SetUp
+24 to +36 Application name

¥30 wouu null-terminated command-line options

216

23 Appendix C - DDEULtils

he DDEULtils module performs three functions. These functions have been
combined in one module for convenience:

e Filename prefixing. This allows a unique current working directory to be set
for each task running under RISC OS.

e Long command lines. A mechanism for passing long command lines (> 255
characters) between programs (eg between AMU and Link).

e Throwback. Throwback allows a language processor (eg CC or ObjAsm) to
inform an editor that an error has occurred while processing a source file. The
editor can then display the source file at the location of the error.

These functions are described individually in the rest of the chapter.

Filename prefixing SWis
DDEUtils_Prefix (&42580)

Entry: RO = Pointer to 0 terminated directory name, or R0 =0

Exit: All registers preserved

Error: None

Use: This sets a directory name to be prefixed to all relative filenames

used by this task. If RO = 0 this removes any previously set prefix.
If you use this SWI within a program to set a directory prefix you
should call it again with RO = 0 immediately before exiting your
program.

Filename prefixing *Commands
*Prefix [directory]

This sets the specified directory name to be prefixed to all relative filenames used
by this task. *Prefix with no arguments removes any previously set prefix.

The system variable <PrefixSDir> is set to the prefix used for the currently
executing task. This can be set by you, and this will have the same effect as *Prefix.

24 g

Long command line SWis

Long command line SWis

These SWIs are used to pass long command lines between programs. Typically they
will be called by library veneers. For example, the C run-time library initialisation
calls DDEUtils_GetCLSize and DDEUtils_GetCL to fetch any long
command lines set up by a calling program and calls DDEUt i1s_SetCLSize and
DDEUtils_SetCl in the system library call.

DDEUtils_SetCLSize (&42581)

Entry: RO = Length of command line buffer required

Exit: RO destroyed

Error: None

Use: This SWI should be called by a program when it has a long

command line which it wishes to pass to another program. The
SWI should be called with the length of the command line in RO.
A buffer of suitable size is allocated in the RMA.

DDEUtils_SetCL (&42582)

Entry: RO = Pointer to zero terminated command line tail
Exit: All registers preserved
Error: Possible errors are

CLI buffer not set

This error is generated if the program has not previously called
DDEUtils_SetCLSize to establish the size of the command
line.

Use: This should be called after calling DDEUt i1s_SetCLSize toset
the size of the command line buffer. RO contains a pointer to the
command tail (ie the command line without the name of the
program to be run).

DDEUtils_GetCLSize (&42583)

Entry: don't care

Exit: RO = Size of command line

Error: None

Use: This is called by a program which may have been run with a long

command line. The size of the command line is returned in R0O. 0
is returned if no command line has been set.

218

Appendix C - DDEUtils

DDEUtils_GetCL (&42584)

Entry:
Exit:
Error:

Use:

Throwback SWis

RO = Pointer to buffer to receive command line
All registers preserved
None

This SWI is called to fetch the command line. The command line
is copied into the buffer pointed to by RO.

DDEUtils_ThrowbackRegister (&42585)

Entry:
Exit:

Error:

Use:

RO = task handle of caller
All registers preserved
Possible errors are:

Another task is registered for throwback
Throwback not available outside the desktop

This registers a task which is capable of dealing with throwback
messages, with the throwback module. The task handle will be
used in passing wimp messages to the caller, when they are
generated by an appljcation.

DDEUti1ls_ThrowbackUnRegister (&42586)

Entry:
Exit:

Error:

Use:

RO = task handle of caller
All registers preserved
Possible errors are:

Task not registered for throwback
Throwback not available outside the desktop

This call should be made when the wimp task which registered
itself for throwback is about to exit.

DDEUtils_ThrowbackStart (&42587)

Entry:
Exit:

Error:

don't care
All registers preserved
Possible errors are:

No task registered for throwback
Throwback not available outside the desktop

219

Throwback SWis

Use:

When a non-desktop tool detects errors in the source(s) it is
processing, and throwback is enabled, the tool should make this
SWI to start a throwback session.

Throwback_Send (&42588)

Entry:

Exit:

Error:

Use:

220

RO = reason code
R2-R5 = depends on reason code (see below)

RO = 0 (Throwback_ReasonProcessing)
R2 = pointer to nul-terminated full pathname of file being

processed.

RO = | (Throwback_ReasonErrorDetails)

R2 = pointer to nul-terminated full pathname of file being
processed.

R3 = line number of error

R4 = severity of error
= () for warning
= | for error
= 2 for serious error

R5 = pointer to nul-terminated description of error

RO = 2 (Throwback_ReasonInfoDetails)

R2 = pointer to nul-terminated full pathname of file being
processed.

R3 = line number to which ‘informational’ message refers,

R4 = must be 0.

R5 = pointer to nul-terminated ‘informational’ message.

RO-R4 preserved
Possible errors are:

No task registered for throwback
Throwback not available outside the desktop

This SWI should be called with reason
Throwback_ReasonProcessing

once, when the first error when processing a file was found. Then
it should be called once for each error found, with the reason

Throwback_ReasonErrorDetails

Appenaix v - UUEUINS

DDEUtils_ThrowbackEnd (&42589)
Exit: all registers preserved
Error: Possible errors are:

No task registered for throwback
Throwback not available outside the desktop

Throwback WIMP messages

These messages are sent by the DDEUtils module to an editor that has registered
itself for throwback using the SWI DDEUtils_ThrowbackRegister. You only
need to know about them if you want to write your own editor.

Byte Offset Contents
+16 DDEUtils_ThrowbackStart (&42580)

The translator then passes messages giving full information on each error, or each
‘informational’ message, to the editor.

A complete series of messages sent by the translator to the editor is described by
the grammar below. Items in <..> are individual wimp messages, identified by their
reason code.

ErrorDialogue ::= <DDEUtils_ThrowbackStart>
ErrorsWhileProcessing
{ErrorsWhileProcessing}
<DDEUtils_ThrowbackEnd>

ErrorsWhileProcessing ::= <DDEUtils_ProcessingFile>
ErrorFoundIn {ErrorFoundIn}

ErrorFoundIn ::= <DDEUtils_ErrorIn>
<DDEUtils_ErrorDetails>

InfoDialogue = <DDEUtils_ThrowbackStart>
InfoDetails{InfoDetails}
<DDEUtils_ThrowbackEnd>

InfoDetails ::= <DDEUtils_InfoforFile>

<DDEUtils_InfoDetails>

221

Throwback WIMP messages

The format of such wimp messages is as follows:

Byte Offset

+16
+20

Byte Offset

+16
+20

Byte Offset

+16
+20
+28

+32
Byte Offset
+16
Byte Offset

+16
+20

Byte Offset

+16
+20
+28
+32

Contents

DDEUtils,ProcessingFile
Nul-terminated filename

Contents

DDEUtils_ErrorsIn (&42582)
Nul-terminated filename

Contents

DDEUtils_ErrorDetails (&42583)
Line number
Severity

= 0 for warning

= 1 for error

= 2 for serious error

Nul-terminated description
Contents
DDEUtils_ThrowbackEnd (&42584)
Contents

DDEUtils_InfoforFile (&42585)
Nul-terminated filename

Contents

DDEUtils_InfoDetails (&42586)
Line number

must be 0

Nul-terminated ‘informational’

(&42581)

message

24 Appendix D - SrcEdit file formats

Language File Format

language name

searchpath

helppath

searchpath

helppath

Help File Format

F<keyword>

<line
<line
<line
<line

etec

1

2
3
4

of
of
of
of

this line can be blank.
this line can be blank.

is a comma-separated list of full pathnames for default search
path when loading from a selection. Note that each item in this
list should either be a path variable (eg C:), or be terminated by a
dot.

is the full pathname of language help file.

help text>
help text>
help text>

help text>

There is no limit on the number of help lines for a given keyword.

223

Help File Format

224

25

Terminology

Appendix E - Code file formats

his appendix defines three file formats used by DDE tools to store processed
code and the format of debugging data used by DDT:

® AOF - Arm Object Format

® ALF- Acorn Library Format

@ AIF - RISC OS Application Image Format
e ASD-ARM Symbolic Debugging Format.

DDE language processors such as CC and ObjAsm generate processed code output
as AOF files. An ALF file is a collection of AOF files constructed from a set of AOF
files by the LibFile tool. The Link tool accepts a set of AOF and ALF files as input,
and by default produces an executable program file as output in AIF

Throughout this appendix the terms byte, half word, word, and string are used to mean
the following:

Byte: 8 bits, considered unsigned unless otherwise stated, usually used to store flag
bits or characters.

Half word: 16 bits, or 2 bytes, usually unsigned. The least significant byte has the
lowest address (DEC/Intel byte sex, sometimes called little endian). The address of a
half word (ie of its least significant byte) must be divisible by 2.

Word: 32 bits, or 4 bytes, usually used to store a non-negative value. The least
significant byte has the lowest address (DEC/Intel byte sex, sometimes called little
endian). The address of a word (ie of its least significant byte) must be divisible by
4,

String: A sequence of bytes terminated by a NUL (0X00) byte. The NUL is part of the
string but is not counted in the string’s length. Strings may be aligned on any byte
boundary.

For emphasis: a word consists of 32 bits, 4-byte aligned; within a word, the least
significant byte has the lowest address. This is DEC/Intel, or little endian, byte sex,
not IBM/Motorola byte sex.

225

Undefined Fields

Undefined Fields

Fields not explicitly defined by this appendix are implicitly reserved to Acorn. It is
required that all such fields be zeroed. Acorn may ascribe meaning to such fields at
any time, but will usually do so in a manner which gives no new meaning to zeroes.

Overall structure of AOF and ALF files

An object or library file contains a number of separate but related pieces of data. In
order to simplify access to these data, and to provide for a degree of extensibility,
the object and library file formats are themselves layered on another format called
Chunk File Format, which provides a simple and efficient means of accessing and
updating distinct chunks of data within a single file. The object file format defines
five chunks:

header
areas
identification

symbol table

string table.

The library file format defines four chunks:
e directory

e time-stamp

® version

e data.

There may be many data chunks in a library.

The minimum size of a piece of data in both formats is four bytes or one word. Each
word is stored in a file in little-endian format; that is the least significant byte of
the word is stored first.

Chunk file format

226

A chunk is accessed via a header at the start of the file. The header contains the
number, size, location and identity of each chunk in the file. The size of the header
may vary between different chunk files but is fixed for each file. Not all entries in a
header need be used, thus limited expansion of the number of chunks is permitted
without a wholesale copy. A chunk file can be copied without knowledge of the
contents of the individual chunks.

Graphically, the layout of a chunk file is as follows:

ChunkFileld

maxChunks

numChunks 3 words

entry1 4 words per entry

entry2

entry "maxChunks" End of header (3 + 4*MaxChunks) words
Start of data chunks

chunk 1

chunk "numChunks"

ChunkFileId marks the file as a chunk file. Its value is C3CBC6CS5 hex. The
maxChunks field defines the number of the entries in the header, fixed when the
file is created. The numChunks field defines how many chunks are currently used
in the file, which can vary from 0 to maxChunks. The value of numChunks is
redundant as it can be found by scanning the entries.

Each entry in the header comprises four words in the following order:
chunkId a two word field identifying what data the chunk file contains

Offset a one word field defining the byte offset within the file of the
chunk (which must be divisible by four); an entry of zero indicates
that the corresponding chunk is unused

size a one word field defining the exact byte size of the chunk (which
need not be a multiple of four).

The chunk1d field provides a conventional way of identifying what type of data a
chunk contains. It is split into two parts. The first four characters (in the first word)
contain a universally unique name allocated by a central authority (Acorn). The

227

Chunk file format

remaining four characters (in the second word) can be used to identify component
chunks within this universal domain. In each part, the first character of the name is
stored first in the file, and so on.

For AOF files, the first part of each chunk's name is OBJ_: the second components
are defined later. For ALF files, the first part is LIE_.

228

Appendix E - Code file formats

AOF

ARM object format files are output by language processors such as CC and
ObjAsm.

Object file format

Each piece of an object file is stored in a separate, identifiable, chunk. AOF defines
five chunks as follows:

Chunk Chunk Name
Header OBJ_HEAD
Areas OBJ_AREA
Identification OBJ_IDFN
Symbol Table OBJ_SYMT
String Table OBJ_STRT

Only the header and areas chunks must be present, but a typical object file will
contain all five of the above chunks.

A feature of chunk file format is that chunks may appear in any order in the file.
However, language processors which must also generate other object formats —
such as Unix’s a. out format — should use this flexibility cautiously.

A language translator or other system utility may add additional chunks to an
object file, for example a language-specific symbol table or language-specific
debugging data, so it is conventional to allow space in the chunk header for
additional chunks; space for eight chunks is conventional when the AOF file is
produced by a language processor which generates all five chunks described here.

The header chunk should not be confused with the chunk file's header.

Format of the AOF header chunk

The AOF header is logically in two parts, though these appear contiguously in the
header chunk. The first part is of fixed size and describes the contents and nature
of the object file. The second part is variable in length (specified in the fixed part)
and is a sequence of area declarations defining the code and data areas within
the OBJ_AREA chunk.

229

Object file format

The AOF header chunk has the following format:

.Object file type

Version Id

Number of areas

Number of Symbols

Entry Address area

Entry Address Offset

1st Area Header

2nd Area Header

nth Area Header

Object file type

6 words in the fixed part

5 words per area header

(6 + 5"Number of Areas) words in
the AOF header

C5E2D080 (hex) marks an object file as being in relocatable object format

Version ID

This word encodes the version of AOF to which the object file complies: AOF | .xx is
denoted by 150 decimal; AOF 2.xx by 200 decimal.

Number of areas

The code and data of the object file is presented as a number of separate areas, in
the OBJ_AREA chunk, each with a name and some attributes (see below). Each
area is declared in the (variable-length) part of the header which immediately
follows the fixed part. The value of the Number of Areas field defines the
number of areas in the file and consequently the number of area declarations
which follow the fixed part of the header.

Number of symbols

If the object file contains a symbol table chunk OB|_SYMT, then this field defines
the number of symbols in the symbol table.

230

Appendix E - Code file formats

Entry address area/ entry address offset

One of the areas in an object file may be designated as containing the start address
for any program which is linked to include this file. If so, the entry address is
specified as an <area-index, offset> pair, where area-index isinthe
range | to Number of Areas, specifying the nth area declared in the area
declarations part of the header. The entry address is defined to be the base address
of this area plus of fset.

Avalue of 0 for area-index signifies that no program entry address is defined by
this AOF file.

Format of area headers

The area headers follow the fixed part of the AOF header. Each area header has the
following form:

Area name (offset into string variable)
zeros AT AL

Area size

Number of relocations

Unused - must be zero 5 words in total

Area name

AL

Each name in an object file is encoded as an offset into the string table, which
stored in the OBJ_STRT chunk. This allows the variable-length characteristics of
names to be factored out from primary data formats. Each area within an object file
must be given a name which is unique amongst all the areas in that object file.

This byte must be set to 2; all other values are reserved to Acorn.

AT (Area attributes)

Each area has a set of attributes encoded in the AT byte, The least-significant bit of
AT is numbered 0.

Link orders areas in a generated image first by attributes, then by the
(case-significant) lexicographic order of area names, then by position of the
containing object module in the link-list. The position in the link-list of an object
module loaded from a library is not predictable.

231

232

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

When ordered by attributes, Read-Only areas precede Read-Write areas which
precede Debug areas; within Read-Only and Read-Write Areas, Code precedes Data
which precedes Zero-Initialised data. Zero-Initialised data may not have the
Read-Only attribute.

This bit must be set to 0.

If this bit is set, the area contains code, otherwise it contains data.

Bit 2 specifies that the area is a common block definition.

Bit 3 defines the area to be a (reference to a) common block and precludes the area
having initialising data (see Bit 4, below). In effect, the setting of Bit 3 implies the
setting of Bit 4.

Common areas with the same name are overlaid on each other by Link. The Size
field of a common definition defines the size of a common block. All other
references to this common block must specify a size which is smaller or equal to
the definition size. In a link step there may be at most one area of the given name
with bit 2 set. If none of these have bit 2 set, the actual size of the common area will
be size of the largest common block reference (see also the section entitled Linker
defined symbols on page 239).

This bit specifies that the area has no initialising data in this object file and that
the area contents are missing from the OB|_AREA chunk. This bit is typically used
to denote large uninitialised data areas. When an uninitialised area is included in
an image, Link either includes a read-write area of binary zeroes of appropriate size
or maps a read-write area of appropriate size that will be zeroed at image start-up
time. This attribute is incompatible with the read-only attribute (see the section on
Bit 5, below).

Note: Whether or not a zero-initialised area is re-zeroed if the image is re-entered
is a property of Link and the relevant image format. The definition of AOF neither
requires nor precludes re-zeroing.

Bit 5

Bit 6

Bit7

Appendix E - Code file formats

This bit specifies that the area is read-only. Link groups read-only areas together so
that they may be write protected at run-time, hardware permitting. Code areas and
debugging tables should have this bit set. The setting of this bit is incompatible
with the setting of bit 4.

This bit must be set to 0.

This bit specifies that the area contains symbolic debugging tables. Link groups
these areas together so they can be accessed as a single contiguous chunk at
run-time. It is usual for debugging tables to be read-only and, therefore, to have bit
5 set too. If bit 7 is set, bit | is ignored.

Area size

This field specifies the size of the area in bytes, which must be a multiple of 4.
Unless the Not Initialised bit (bit 4) is set in the area attributes, there must
be this number of bytes for this area in the OBJ_AREA chunk.

Number of relocations

This specifies the number of relocation records which apply to this area.

Format of the areas chunk

The areas chunk (OBJ]_AREA) contains the actual areas (code, data, zero- initialised
data, debugging data, etc.) plus any associated relocation information. Its chunkid
is OB]_AREA. Both an area’s contents and its relocation data must be
word-aligned. Graphically, an area’s layout is:

Area 1

Area 1 relocation

Area n

Area n relocation

An area is simply a sequence of byte values, the order following that of the
addressing rules of the ARM, that is the least significant byte of a word is first. An
area is followed by its associated relocation table (if any). An area is either

233

Object file format

completely initialised by the values from the file or not initialised at all (ie it is
initialised to zero in any loaded program image, as specified by bit 4 of the area
attributes).

Relocation directives

If no relocation is specified, the value of a byte/halfword/word in the preceding area
is exactly the value that will appear in the final image.

Bytes and halfwords may only be relocated by constant values of suitably small
size. They may not be relocated by an area’s base address.

A field may be subject to more than one relocation.

There are 2 types of relocation directive, termed here type-1 and type-2. Type-2
relocation directives occur only in AOF versions 1.50 and later.

Relocation can take two basic forms: Additive and PCRelative.

Additive relocation specifies the modification of a byte/halfword/word, typically
containing a data value (ie constant or address).

PCRelative relocation always specifies the modification of a branch (or branch with
link) instruction and involves the generation of a program- counter-relative,
signed, 24-bit word-displacement.

Additive relocation directives and type-2 PC-relative relocation directives have two
variants: Internal and Symbol.

Additive internal relocation involves adding the allocated base address of an area
to the field to be relocated. With Type-1 internal relocation directives, the value by
which a location is relocated is always the base of the area with which the
relocation directive is associated (the Symbol IDentification field (SID) is ignored).
In a type-2 relocation directive, the SID field specifies the index of the area relative
to which relocation is to be performed. These relocation directives are analogous
to the TEXT-, DATA- and BSS-relative relocation directives found in the a.out object
format.

Symbol relocation involves adding the value of the symbol quoted.

A type-1 PCRelative relocation directive always references a symbol. The relocation
offset added to any pre-existing in the instruction is the offset of the target symbol
from the PC current at the instruction making the PCRelative reference. Link takes
into account the fact that the PC is eight bytes beyond that instruction.

In a type-2 PC-relative relocation directive (only in AOF version 1.50 and later) the
offset bits of the instruction are initialised to the offset from the base of the area of
the PC value current at the instruction making the reference — thus the language

234

Appendix E - Code file formats

translator, not Link, compensates for the difference between the address of the
instruction and the PC value current at it. This variant is introduced in direct
support of compilers that must also generate Unix's a.out format.

For a type-2 PC-relative symbol-type relocation directive, the offset added into the
instruction making the PC-relative reference is the offset of the target symbol from
the base of the area containing the instruction. For a type-2, PC-relative, internal
relocation directive, the offset added into the instruction is the offset of the base of
the area identified by the SID field from the base of the area containing the
instruction.

Link itself may generate type-2, PC-relative, internal relocation directives during
the process of partially linking a set of object modules.

Format of Type 1 relocation directives

Diagrammatically:

Offset
O |A|[R]| FT SID

Offset
Offset is the byte offset in the preceding area of the field to be relocated.
SID

If a symbol is involved in the relocation, this 16-bit field specifies the index within
the symbol table (see below) of the symbol in question.

FT (Field Type)
This 2-bit field (bits 16 — 17) specifies the size of the field to be relocated:

00 byte

01 halfword
10 word

11 illegal value

R (relocation type)
This field (bit 18) has the following interpretation:

0 Additive relocation
1 PC-Relative relocation

235

Object file format

A (Additive type)

In a type-1 relocation directive, this 1-bit field (bit 19) is only interpreted if bit 18 is
a ZETO.

A=0 specifies Internal relocation, meaning that the base address of the area (with
which this relocation directive is associated) is added into the field to be relocated.
A=1 specifies Symbol relocation, meaning that the value of the given symbol is
added to the field being relocated.

Bits 20 - 31

Bits 20-31 are reserved by Acorn and should be written as zeroes.

Format of Type 2 relocation directives

These are available from AOF 1.50 onwards.

Offset
1000 A|R| FT 24-bit SID

The interpretation of Offset, FT and SID is exactly the same as for type-1 relocation
directives except that SID is increased from 16 to 24 bits and has a different
meaning — described below — if A=0).

The second word of a type-2 relocation directive contains 1 in its most significant
bit; bits 28..30 must be written as 0, as shown.

The different interpretation of the R bit in type-2 directives has already been
described in the section entitled Relocation directives on page 234.

If A=0 (internal relocation type) then SID is the index of the area, in the OB]_AREA
chunk, relative to which the value at Offset in the current area is to be relocated.
Areas are indexed from 0.

Format of the symbol table chunk

236

The Number of Symbols field in the header defines how many entries there are
in the symbol table. Each symbol table entry has the following format:

Name

AT

Value

Area name

Name

This value is an index into the string table (in chunk OBJ_STRT) and thus locates
the character string representing the symbol.

AT

This is a 7 bit field specifying the attributes of a symbol as follows:

Bits 1 and 0
(10 means bit | set, bit 0 unset).

01 The symbol is defined in this object file and has scope limited to this
obiject file (when resolving symbol references, Link will only match this
symbol to references from other areas within the same object file).

10 The symbol is a reference to a symbol defined in another area or another
object file. If no defining instance of the symbol is found then Link
attempts to match the name of the symbol to the names of common
blocks. If a match is found it is as if there were defined an
identically-named symbol of global scope, having as value the base
address of the common area.

11 The symbol is defined in this object file and has global scope (ie when
attempting to resolve unresolved references, Link will match this symbol
to references from other object files).

00 Reserved by Acorn.

Bit 2

This attribute is only meaningful if the symbol is a defining occurrence (bit 0 set).
It specifies that the symbol has an absolute value, for example, a constant.
Otherwise its value is relative to the base address of the area defined by the Area
Name field of the symbol table entry.

Bit 3

This bit is only meaningful if bit 0 is unset (that is, the symbol is an external
reference). Bit 3 denotes that the reference is case-insensitive. When attempting to
resolve such an external reference, Link will ignore character case when performing
the match.

Bit 4

This bit is only meaningful if the symbol is an external reference (bits 1,0 = 10). It
denotes that the reference is weak, that is that it is acceptable for the reference to
remain unsatisfied and for any fields relocated via it to remain unrelocated.

237

Object file format

238

Note: A weak reference still causes a library module satisfying that reference to be
auto-loaded.

Bit 5

This bit is only meaningful if the symbol is a defining, external occurrence (ie if bits
1,0 = 11). It denotes that the definition is strong and, in turn, this is only
meaningful if there is a non-strong, external definition of the same symbol in
another object file. In this scenario, all references to the symbol from outside of
the file containing the strong definition are resolved to the strong definition.
Within the file containing the strong definition, references to the symbol resolve to
the non-strong definition.

This attribute allows a kind of link-time indirection to be enforced. Usually, strong
definitions will be absolute and will be used to implement an operating system'’s
entry vector which must have the forever binary property.

Bit 6

This bit is only meaningful if bits 1,0 = 10. Bit 6 denotes that the symbol is a
common symbol — in effect, a reference to a common area with the symbol's name.
The length of the common area is given by the symbol's value field (see below).
Link treats common symbols much as it treats areas having the common reference
bit set — all symbols with the same name are assigned the same base address and
the length allocated is the maximum of all specified lengths.

If the name of a common symbol matches the name of a common area then these
are merge and symbol identifies the base of the area.

All common symbols for which there is no matching common area (reference or
definition) are collected into an anonymous linker pseudo-area.

Value

This field is only meaningful if the symbol is a defining occurrence (ie bit 0 of AT
set) or a common symbol (ie bit 6 of AT set). If the symbol is absolute (bit 2 of AT
set), this field contains the value of the symbol. Otherwise, it is interpreted as an
offset from the base address of the area defined by Area Name, which must be an
area defined in this object file.

Area name

This field is only meaningful if the symbol is not absolute (ie if bit 2 of AT is unset)
and the symbol is a defining occurrence (ie bit 0 of AT is set). In this case it gives
the index into the string table of the character string name of the (logical) area
relative to which the symbol is defined.

Appendix E - Code file formats

String table chunk (OBJ_STRT)

The string table chunk contains all the print names referred to within the areas and
symbol table chunks. The separation is made to factor out the variable length
characteristic of print names. A print name is stored in the string table as a
sequence of ISO8859 non-control characters terminated by a NUL (0) byte and is
identified by an offset from the table's beginning. The first 4 bytes of the string
table contain its length (including the length word — so no valid offset into the
table is less than 4 and no table has length less than 4). The length stored at the
start of the string table itself is identically the length stored in the OBJ_STRT chunk
header.

Identification chunk (OBJ_IDFN)

This chunk should contain a printable character string (characters in the range
[32..126]), terminated by a NUL (0) byte, giving information about the name and
version of the language translator which generated the object file.

Linker defined symbols

Though not part of the definition of AOF, the definitions of symbols which the AOF
linker defines during the generation of an image file are collected here. These may
be referenced from AOF obiject files, but must not be redefined.

Linker pre-defined symbols

The pre-defined symbols occur in Base/Limit pairs. A Base value gives the address
of the first byte in a region and the corresponding Limit value gives the address of
the first byte beyond the end of the region. All pre-defined symbols begin
ImagesSs$ and the space of all such names is reserved by Acorn.

None of these symbols may be redefined. The pre-defined symbols are:
Image$SROSSBase Address and limit of the Read-Only section
Image$$ROS$SLimit of the image.

ImageS$SRWSSBase Address and limit of the Read-Write section
Image$SRWSSLimit of the image.

Image$$ZI$SBase Address and limit of the Zero-initialised data

TmageSSZISSLimit section of the image (created from areas having
bit 4 of their area attributes set and from
common symbols which match no area name).

If a section is absent, the Base and Limit values are equal but unpredictable,

239

Obsolescent and obsolete features

Image$$ROSSBase includes any image header prepended by Link.

Tmage$SRWSSLimit includes (at the end of the RW section) any
zero-initialised data created at run-time.

The Image$$xx5$(Base,Limit} values are intended to be used by language
run-time systems. Other values which are needed by a debugger or by part of the
pre-run-time code associated with a particular image format are deposited into the
relevant image header by Link.

Common area symbols

For each common area, Link defines a global symbol having the same name as the
area, except where this would clash with the name of an existing global symbol
definition (thus a symbol reference may match a common area).

Obsolescent and obsolete features

The following subsections describe features that were part of revision 1.xx of AOF
and/or that were supported by the 59x releases of the AOF linker, which are no
longer supported. In each case, a brief rationale for the change is given.

Obiject file type

AOF used to define three image types as well as a relocatable object file type.
Image types 2 and 3 were never used under Arthur/RISC OS and are now obsolete.
Image type | is used only by the obsolete Dbug (DDT has Dbug's functionality and
uses Application Image Format).

AOF Image type | C5E2D081 hex (obsolescent)
AOF Image type 2 C5E2D083 hex (obsolete)
AOF Image type 3 C5E2D087 hex (obsolete)

AL (Area alignment)

AOF used to allow the alignment of an area to be any specified power of 2 between
2 and 16. By convention, relocatable object code areas always used minimal
alignment (AL=2) and only the obsolete image formats, types 2 and 3, specified
values other than 2. From now on, all values other than 2 are reserved by Acorn.

AT (Area attributes)

Two attributes have been withdrawn: the Absolute attribute (bit 0 of AT) and the
Position Independent attribute (bit 6 of AT).

240

The Absolute attribute was not supported by the RISC OS linker and therefore had
no utility. Link in any case allows the effect of the Absolute attribute to be
simulated.

The Position Independent bit used to specify that a code area was position
independent, meaning that its base address could change at run-time without any
change being required to its contents. Such an area could only contain internal,
PC-relative relocations and must make all external references through registers.
Thus only code and pure data (containing no address values) could be
position-independent.

Few language processors generated the Pl bit which was only significant to the
generation of the obsolete image types 2 and 3 (in which it affected AREA
placement). Accordingly, its definition has been withdrawn.

Fragmented areas

The concept of fragmented areas was introduced in release 0.04 of AOF, tentatively
in support of Fortran compilers. To the best of our knowledge, fragmented areas
were never used. (Two warnings against use were given with the original definition
on the grounds of: structural incompatibility with Unix's a. out format; and likely
inefficient handling by Link. And use was hedged around with curious restrictions).
Accordingly, the definition of fragmented areas is withdrawn.

241

ALF

ALF

ALF is the format of linkable libraries (such as the C RISC OS library RISC_OSLib).

Library file format types

There are two library file formats described here, termed new-style and old-style. Link
can read both formats, though no tool will actually generate an old-style library.

Currently, only the Acorn/Topexpress Fortran-77 compiler generates old-style
libraries (which it does instead of generating AOF object files). Link handles these
libraries specially, including every member in the output image unless explicitly
instructed otherwise.

Old-style libraries are obsolescent and should no longer be generated.

Library file chunks

LIB_DIRY

242

Each piece of a library file is stored in a separate, identifiable, chunk, named as
follows:

Chunk Chunk Name

Directory LIB_DIRY

Time-stamp LIB_TIME

Version LIB_VSRN — new-style libraries only
Data LIB_DATA

Symbol table OFL_SYMT — object code libraries only
Time-stamp OFL_TIME — object code libraries only

There may be many LIB_DATA chunks in a library, one for each library member.

The LIB_DIRY chunk contains a directory of all modules in the library each of which
is-stored in a LIB_DATA chunk. The directory size is fixed when the library is
created. The directory consists of a sequence of variable length entries, each an
integral number of words long. The number of directory entries is determined by
the size of the LIB_DIRY chunk.

Appendix E - Code file formats

This is shown pictorially in the following diagram:

Chunkindex
— EntryLength
Integral
number Datalength
of words

In old-style library,
: Data : may be an odd
| number of bytes

—

Padding

Chunkindex

The Chunkindex is a 0 origin index within the chunk file header of the
corresponding LIB_DATA chunk. The LIB_DATA chunk entry gives the offset and
size of the library module in the library file. A Chunkindex of 0 means the directory
entry is not in use.

EntryLength
The number of bytes in this LIB_DIRY entry, always a multiple of 4.

DataLength

The number of bytes used in the Data section of this LIB_DIRY entry. This need not
be a multiple of 4, though it always is in new-style libraries.

Data

The data section consists of a 0 terminated string.followed by any other
information relevant to the library module. Strings should contain only ISO-8859
non-control characters (ie codes [0-31], 127 and 128+]0-31] are excluded). The
string is the name used by the library management tools to identify this library
module. Typically this is the name of the file from which the library member was
created.

In new-style libraries, an 8-byte, word-aligned time-stamp follows the member
name. The format of this time-stamp is described in the section entitled LIB_TIME
on page 244. Its value is (an encoded version of) the time-stamp (ie the last
modified time) of the file from which the library member was created.

243

LIB_ 1 1VIE

LIB_TIME

LIB_VSRN

LIB_DATA

244

Applications which create libraries or library members should ensure that the
LIB_DIRY entries they create contain valid time-stamps. Applications which read
LIB_DIRY entries should not rely on any data beyond the end of the name-string
being present unless the difference between the DataLength field and the
name-string length allows for it Even then, the contents of a time-stamp should be
treated cautiously and not assumed to be sensible.

Applications which write LIB_DIRY or OFL_SYMT entries should ensure that
padding is done with NUL (0} bytes; applications which read LIB_DIRY or
OFL_SYMT entries should make no assumptions about the values of padding bytes
beyond the first, string-terminating NUL byte.

The LIB_TIME chunk contains a 64 bit time-stamp recording when the library was
last modified, in the following format:

High-address byte Low-address byte

TimeStamp

I— 2 byte microsecond count, usually 0

6 bytes of centi-seconds since
1/1/1900 00:00 GMT

In. new-style libraries, this chunk contains a 4-byte version number. The current
version number is 1. Old-style libraries do not contain this chunk.

A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY
chunk. No interpretation is placed on the contents of a member by the library
management tools. A member could itself be a file in chunk file format or even
another library.

Object code libraries

An object code library is a library file whose members are files in AOF. All libraries
you are likely to use with the DDE are object code libraries.

Additional information is stored in two extra chunks, OFL_SYMT and OFL_TIME.

OFL_SYMT contains an entry for each external symbol defined by members of the
library, together with the index of the chunk containing the member defining that
symbol.

The OFL_SYMT chunk has exactly the same format as the LIB_DIRY chunk except
that the Data section of each entry contains only a string, the name of an external
symbol (and between | and 4 bytes of NUL padding). OFL_SYMT entries do not
contain time-stamps.

The OFL_TIME chunk records when the OFL_SYMT chunk was last modified and
has the same format as the LIB_TIME chunk (see above).

245

AlF

AlF

Properties of AIF

246

AIF is the format of executable program files produced by linking AOF files.
Example AIF files are |Runimage files of applications coded in C or assembler.

An AlF image is loaded into memory at its load address and entered at its first
word (compatible with old-style Arthur/Brazil ADFS images).

An AIF image may be compressed and can be self-decompressing (to support
faster loading from floppy discs, and better use of floppy-disc space).

If created with suitable linker options, an AIF image may relocate itself at load
time. Self-relocation is supported in two, distinct senses:-

e One-time Position-Independence: A relocatable image can be loaded at
any address (not just its load address) and will execute there (compatible
with version 0.03 of AIF).

e Specified Working Space Relocation: A suitably created relocatable image
will copy itself from where it is loaded to the high address end of
applications memory, leaving space above the copied image as noted in
the AIF header (see below).

In addition, similar relocation code and similar linker options support

many-time position independence of RISC OS Relocatable Modules.

AIF images support being debugged by the Desktop Debugging Tool (DDT), for
C, assembler and other languages. Version 0.04 of AIF (and later) supports
debugging at the symbolic assembler level (hitherto done by Dbug). Low-level
and source-level debugging support are orthogonal (capabilities of debuggers
notwithstanding, both, either, or neither kind of debugging support may be
present in an AIF image).

Debugging tables have the property that all references from them to code and
data (if any) are in the form of relocatable addresses. After loading an image at
its load address these values are effectively absolute. All references between
debugger table entries are in the form of offsets from the beginning of the
debugging data area. Thus, following relocation of a whole image, the
debugging data area itself is position independent and can be copied by the
debugger.

Layout of an AIF image

The layout of an AIF image is as follows:

Header

Compressed image

Decompression data

Decompression code

Appendix E - Code file formats

This data is position-independent

This code is position-independent

The header is small, fixed in size, and described below. In a compressed AIF image,

the header is NOT compressed.

Once an image has been decompressed — or if it is uncompressed in the first place

— it has the following layout:

Header

Read-only area

Read-write area

Debugging data

Self-relocation code

Relocation list

(optional)

Must be position-independent

List of words to relocate, terminated by -1

Debugging data are absent unless the image has been linked appropriately and, in
the case of source-level debugging, unless the constituent components of the
image have been compiled appropriately.

The relocation list is a list of byte offsets from the beginning of the AIF header, of
words to be relocated, followed by a word containing —1. The relocation of

non-word values is not supported.

247

AlF header layout

After the execution of the self-relocation code — or if the image is not
self-relocating — the image has the following layout:

Header

Read-only area

Read-write area

Debugging data (optional)

At this stage a debugger is expected to copy the debugging data (if present)
somewhere safe, otherwise they will be overwritten by the zero-initialised data
and/or the heap/stack data of the program. A debugger can seize control at the
appropriate moment by copying, then modifying, the third word of the AIF header
(see below).

AIF header layout

BL DecompressedCode BLNV 0 if the image is not compressed
BL SelfRelocCode BLNV 0 if the image is not self-relocating
BL ZerolnitCode BLNV 0 if the image has none

BL ImageEntryPoint BL to make header addressable via R14
SWI OS_Exit Just in case silly enough to return

Includes header size and any padding

Image ReadOnly size Exact size - a multiple of 4 bytes

Image ReadWrite size Exact size - a multiple of 4 bytes
Image Debug size Exact size - a multiple of 4 bytes
Image zero-init size Exact size - a multiple of 4 bytes
Image debug type 0,1,2 or 3 (see below)

Image base Address of the AIF header - set by link

a self-moving relocatable image

Work space Min work space - in bytes - to be reserved by

Four reserved words (0)

Zero-init code (16 words) Header is 32 words long

248

Appendix E - Code file formats

BL is used everywhere to make the header addressable via R14 (but beware the
PSR bits) in a position-independent manner and to ensure that the header will be
position-independent.

It is required that an image be re-enterable at its first instruction. Therefore, after
decompression, the decompression code must reset the first word of the header to
BLNV 0. Similarly, following self-relocation, the second word of the header must be
reset to BLNV 0. This causes no additional problems with the read-only nature of
the code segment — both decompression and relocation code must write to it
anyway. So, on systems with memory protection, both the decompression code
and the self-relocation code must be bracketed by system calls to change the
access status of the read-only section (first to writeable, then back to read-only).

The image debug type has the following meaning:
0: No debugging data are present.
L: Low-level debugging data are present.
2: Source level (ASD) debugging data are present.
3: | and 2 are present together.

All other values are reserved by Acorn.

Zero-initialisation code

The Zero-initialisation code is as follows:

BIC IP; LR, #&FC000003 ; clear status bits -»> header + &C
ADD 1P, 1P, _#8 ; -> Image ReadOnly size
LDMTA LE; {RO,R1,R2,R3} ; various sizes
CMPES R3, #0
MOVLES PC, LR ; nothing to do
SUB 1P, 1P, #5814 ; image base
ADD Ie, 1P, RO : + RO size
ADD 1P, 1P, Rl : + RW size = base of 0-init area
MOV RO, #0
MOV R1, #0
MOV R2Z'; #0
MOV R4, #0
ZeroLoop
STMIA LBy {RO,R1,R2,R4}
SUBS R3, R3, #16
BGT ZeroLoop
MOVS BC, LR ; 16 words in total.

249

Self relocation

Relationship between header sizes and linker pre-defined symbols

Self relocation

250

AIFHeader.ImageBase

Imége$$RO$$Base

ATlFHeader.ImageBase +

AlFHeader.ROSize ImageSSRWSSBRase

ATIFHeader.ImageBase +
AlFHeader.ROSize +

AlFHeader.RWSize ImageSSZISSBase

AlFHeader.ImageBase +

AIFHeader.ROSize +
AlFHeader.RWSize +
AIFHeader.ZerolInitSize = Image$SRWSSLimit

Two kinds of self-relocation are supported by AIF and one by AMF; for
completeness, all three are described here.

One-time position independence is supported by relocatable AIF images.
Many-time position independence is required for AMF Relocatable Modules. And
only AIF images can self-move to a location which leaves a requested amount of
workspace.

Why are there three different kinds of self-relocation?

The rules for constructing RISC OS applications do not forbid acquired
position-dependence. Once an application has begun to run, it is not, in
general, possible to move it, as it isn’t possible to find all the data locations
which are being used as position-dependent pointers. So, AIF images can be
relocated only once. Afterwards, the relocation table is over-written by the
application’s zero-initialised data, heap, or stack.

In contrast, the rules for constructing a RISC OS Relocatable Modules (RM)
require that it be prepared to shut itself down, be moved in memory, and start
itself up again. Shut-down and start-up are notified to a RM by special service
calls to it. Clearly, a RM must be relocatable many times so its relocation table
is not overwritten after first use.

Relocatable Modules are loaded under the control of a Relocatable Module
Area (RMA) manager which decides where to load a module initially and where
to move each module to whenever the RMA is reorganised. In contrast, an
application is loaded at its load address and is then on its own until it exits or
faults. An application can only be moved by itself (and then only once, before
it begins execution proper).

Appendix E - Code file formats

Self-relocation code for relocatable modules

In this case there is no AIF header, the code must be executable many times, and it
must be symbolically addressable from the Relocatable Module header. The code
below must be the last area of the RMF image, following the relocation list. Note

that it is best thought of as an additional area.

When the following code is executed, the module image has already been loaded
at/moved to its target address. It only remains to relocate location-dependent
addresses. The list of offsets to be relocated, terminated by (=1), immediately
follows End. Note that the address values here (eg | __RelocCode |) will appear
in the list of places to be relocated, allowing the code to be re-executed.

IMPORT |Image$55ROSS5Base]| ; where the image is linked at...
EXPORT |__RelocCodel ; referenced from the RM header
| __RelocCode|
LDR R1, RelocCode ; value of __RelocCode (before relocaticon)
SUB 1P, BC, #12 ; value of _ RelocCode now
SURBS R1, IP, Rl ; relocation offset
MOVEQS PC, LR : relocate by 0 so nothing to do
LDR IP; ImageBase ; image base prior to relocation...
ADD 1P, 1P, Rl ;i ...where the image really is
ADR RZ, End
RelocLoop
LDR RO, [R2], #4
CMNS RO, #1 ; got list terminator?
MOVLES PC, LR ;i Yes => return
LDR R3, [IP, RO] ; word to relocate
ADD R3, R3, R1 ; relocate it
STR R3, [IP, RO] ; store it back
B ‘RelocLoop ; and do the next one
RelocCode DCD | __RelocCodel
ImageBase DCD | ImageSROSSBase |
End ; the list of locations to relocate

; starts here (each is an offset from the

; base of the module) and is terminated

i by =1.
Note that this code, and the associated list of locations to relocate, is added
automatically to a relocatable module image by Link (as a consequence of using
Link with the SetUp option Module enabled).

Self-move and self-relocation code for AIF

This code is added to the end of an AIF image by Link, immediately before the list
of relocations (terminated by —1). Note that the code is entered via a BL from the
second word of the AIF header so, on entry, R14 points to AIFHeader + 8.

251

RelocCode ROUT

BIC 1P, LR, B&FCO00003 ;clear flag bits; -> AIF header + &08
SUB IpP, 1P, #a - ; -> header address
MOV RO, #&FBOOOODO ; BLNV #0
STR RO, [IP, #4] ; won't be called again on image re-entry
jdoes the code need to be moved?
LDR RY, [IP, #&2C]) ;i min free space reguirement
CMPS R9, #0 ;i 0 => no move, just relocate
BEQ RelocateOnly
;jcalculate the amount to move by...
LDR RO, [IP, #&20] ; image zero-init size
ADD R9, R9, RO ; space to leave = min free + zero init
SWI GetEnv ;i MemLimit -» R1
ADR R2, End ; —-> End
01 LDR RO, [R2], #4 ; load relocation offset, increment R2
CMNS RO, #1 ; terminator?
BNE %B01 ; No, so loop again
SUB R3, R1, R9 ; MemLimit - freeSpace
SUBS RO, R3, R2 ; amount to move by
BLE RelocateOnly ; not enough space to move...
BIC RO, RO, #15 ; a multiple of 16...
ADD R3, R2, RO ; End + shift
ADR RE, 3F01 ; intermediate limit for copy-up

copy everything up memory, in descending address order, branching
to the copied copy loop as soon as it has been copied.

02 LDMDE R2!, {R4-R7}

STMDB R3!, {R4-R7}

CMP RZ, ' RB ; copied the copy loop?

BGT $B0O2 ; not yet

ADD R4, PC; RO

MOV PC, R4 i Jjump to copied copy code
03 LDMDB R2!, {R4-R7}

STMDB R3!, {R4-R7}

CMP R2,. IP i copied everything?

BGT $B03 ; not yet

ADD 1P, 1P, RO ; load address of code

ADD LR, LR, RO ; relocated return address
RelocateOnly

LDR R1, [IB, #&28] ; header + &28 = code base set by Link

SUBS R1, IP, Rl ; relocation offset

MOVEQ EC, LR ; relocate by 0 so nothing to do

STR 1P, [IP, #&28] ; new image base = actual load address

ADR R2, End ; start of reloc list

252

RelocLoop
LDR
CMNS
MOVEQS
LDR
ADD
STR
B
End

relocate

RO, R21,
RO, #1
PC, LR
B3y [IP,
R3, R3,
R3, [1p,
RelocLoop

#4

RO]
R1
RO]

offset of wor
terminator?
yes => return
word to reloc
relocate it
store it back

d to relocate

ate

and do the next one

The list of offsets of locations to

starts here;

terminated by -1.

253

ASD

ASD

Acknowledgement: This design is based on work originally done for Acorn
Computers by Topexpress Ltd.

This section describes the format of symbolic debugging data generated by ARM
compilers and assemblers running under RISC OS and used by the desktop
debugger DDT.

For each separate compilation unit (called a section) the compiler produces
debugging data an a special AREA of the object code (see the section entitled AOF
on page 229 for an explanation of AREAs and their attributes). Debugging data are
position independent, containing only relative references to other debugging data
within the same section and relocatable references to other compiler-generated
AREAs.

Debugging data AREAs are combined by the linker into a single contiguous section
of a program image (see the section entitled AIF on page 246 for a description of
Application Image Format). Because the debugging section is
position-independent, the debugger can move it to a safe location before the
image starts executing. If the image is not executed under debugger control the
debugging data is simply overwritten.

The format of debugging data allows for a variable amount of detail. This
potentially allows the user to trade off among memory used, disc space used,
execution time, and debugging detail.

Assembly-language level debugging is also supported, though in this case the
debugging tables are generated by the linker, not by language processors. These
low-level debugging tables appear in an extra section item, as if generated by an
independent compilation. Low-level and high-level debugging are orthogonal
facilities, though DDT allows the user to move smoothly between levels if both sets
of debugging data are present in an image.

Order of Debugging Data

254

A debug data AREA consists of a series of items. The arrangement of these items
mimics the structure of the high-level language program itself.

For each debug AREA, the first item is a section item, giving global information
about the compilation, including a code identifying the language and flags
indicating the amount of detail included in the debugging tables,

Each data, function, procedure, etc., definition in the source program has a
corresponding debug data item and these items appear in an order corresponding
to the order of definitions in the source. This means that any nested structure in

Appendix E - Code file formats

the source program is preserved in the debugging data and the debugger can use
this structure to make deductions about the scope of various source-level objects.
Of course, for procedure definitions, two debug items are needed: a procedure
item to mark the definition itself and an endproc item to mark the end of the
procedure’s body and the end of any nested definitions. If procedure definitions
are nested then the procedure - endproc brackets are also nested. Variable and
type definitions made at the outermost level, of course, appear outside of all
procedure/endproc items.

Information about the relationship between the executable code and source files is
collected together and appears as a fileinfo item, which is always the final item in
a debugging AREA. Because of the C language’s #include facility, the executable
code produced from an outer-level source file may be separated into disjoint
pieces interspersed with that produced from the included files. Therefore, source
files are considered to be collections of ‘fragments’, each corresponding to a
contiguous area of executable code and the fileinfo item is a list with an entry for
each file, each in turn containing a list with an entry for each fragment. The fileinfo
field in the section item addresses the fileinfo item itself. In each procedure item
there is a ‘fileentry’ field which refers to the file-list entry for the source file
containing the procedure’s start; there is a separate one in the endproc item
because it may possibly not be in the same source file.

Representation of Data Types

Several of the debugging data items (eg procedure and variable) have a type word
field to identify their data type. This field contains, in the most significant 3 bytes,
a code to identify a base type and, in the least significant byte, a pointer count: 0 to
denote the type itself; 1 to denote a pointer to the type; 2 to denote a pointer to a
pointer to...; etc.

For simple types the code is a positive integer as follows:

void 0 (all codes are decimal)
signed integers

single byte 10

half-word 11

word 12

unsigned integers

single byte 20
half-word 21
word 22

255

floating point

float 30

double 31

long double 32
complex

single complex 41

double complex 42
functions

function 100

For compound types (arrays, structures, etc.) there is a special kind of debug data
item (array, struct, etc.) to give details of the type such as array bounds and field
types. The type code for such types is negative being the negation of the (byte)
offset of the special item from the start of the debugging AREA.

If a type has been given a name in a source program, it will give rise to a type
debugging data item which contains the name and a type word as defined above. If
necessary, there will also be a debugging data item such as an array or struct to
define the type itself. In that case, the type word will refer to this item.

Enumerated types in C and scalars in Pascal are treated simply as integer
sub-ranges of an appropriate size, the name information is not available in the this
version of the debugging format. Set types in Pascal are not treated in detail: the
only information recorder for them is the total size occupied by the object in bytes.

Fortran character types are supported by a special kind of debugging data item the
format of which is yet to be defined.

Representation of Source File Positions

Several of the debugging data items have a sourcepos field to identify a position in
the source file. This field contains a line number and character position within the
line packed into a single word. The most significant 10 bits encode the character
offset (0-based) from the start of the line and the least- significant 22 bits give the
line number.

Debugging Data Items in Detail

256

The first word of each debugging data item contains the byte length of the item
(encoded in the most significant 16 bits) and a code identifying the kind of item (in
the least significant 16 bits). The following codes are defined:-

section
procedure
endproc
variable
type
struct
array
subrange
set

0 fileinfo

— O 00 =1 OB W N —

The meaning of the second and subsequent words of each item is defined below.

Where items include a string field, the string is packed into successive bytes
beginning with a length byte, and padded at the end to a word boundary (the
padding value is immaterial, but NUL or ' " is preferred). The length of a string is in
the range [0..255| bytes.

Where an item contains a field giving an offset in the debugging data area (usually
to address another item), this means a byte offset from the start of the debugging
data for the whole section (in other words, from the start of the section item).

Section

A section item is the first item of each section of the debugging data.

language:8 one byte code identifying the source language

debuglines:| 1 => tables contain line numbers

debugvars:1 1 => tables contain data about local vars

spare:14

debugversion:8 one byte version number of the debugging data

codeaddr pointer to start of executable code in this section

dataaddr pointer to start of static data for this section

codesize byte size of executable code in this section

datasize byte size of the static data in this section

fileinfo offset in the debugging data of the file information for
this section (or 0 if no fileinfo is present)

debugsize total byte length of debugging data for this section

name or nsyms string or integer

The name field contains the program name for Pascal and Fortran programs. For C
programs it contains a name derived by the compiler from the main file name
(notionally a module name). Its syntax is similar to that for a variable name in the
source language. For a low-level debugging section (language = 0) the field is
treated as a 4 byte integer giving the number of symbols following.

257

Debugging Data Items in Detail

258

The following language byte codes are defined:-

0 Low-level debugging data (notionally, assembler)
1 C

2 Pascal

3 Fortran77

other reserved to Acorn,

The fileinfo field is 0 if no source file information is present.

The debugversion field was defined to be 1; the new debugversion for the extended
debugging data format (encompassing low-level debugging data) is 2. For low-level
debugging data, other fields have the following values:-

language 0

codeaddr ImageSSROSSBase

dataaddr ImageSSRWSSBase

codesize Image$SSROSSLimit - ImageSSROSSBase

datasize ImageSSRWSSLimit - ImageSSRWSSBase

fileinfo 0

nsyms number of symbols within the following debugging data
debugsize total size of the low-level debugging data including the

size of the section item

The section item is immediately followed by nsyms symbols, each having the
following format:-

stridx:24 byte offset in string table of symbol name
flags:8 (see below)
value the value of the symbol

The flags field has the following values:-

0/1 the symbol is a local/global symbol
+ (there may be many local symbols with the same name)
0/2/4/6 symbol names an absolute/code/data/zero-init value

Note that the linker reduces all symbol values to absolute values. The flags field
records the history, or origin, of the symbol in the image.

The string table is in standard AOF format. It consists of a length word followed by
the strings themselves, each terminated by a NUL (0). The length word includes the
length of the length word, so no offset into the string table is less than 4. The end
of the string table is padded to the next word boundary.

Appendix E - Code file formats

Procedure

A procedure item appears once for each procedure or function definition in the
source program. Any definitions with the procedure have their related debugging
data items between the procedure item and the matching endproc item. The
format of procedure items is as follows:-

type the return type if this is a function, else 0

args the number of arguments

sourcepos a word encoding the source position of the start of the
procedure

startaddr pointer to the first instruction of the procedure .

bodyaddr pointer to the first instruction of the procedure body (see
below)

endproc offset of the related endproc item

fileentry offset of the file list entry for the source file

name string

The bodyaddr field points to the first instruction after the procedure entry
sequence, that is the first address at which a high-level breakpoint could sensibly
be set. The startaddr field points to the beginning of the entry sequence, that is the
address at which control actually arrives when the procedure is called.

A label in a source program is represented by a special procedure item with no
matching endproc (the endproc field is 0 to denote this). Pascal and Fortran
numerical labels are converted by the compiler into strings prefixed by ‘$n’.

For Fortran77, multiple entry points to the same procedure each give rise to a
separate procedure item but they all have the same endproc offset referring to a
single endproc item.

Endproc

This item marks the end of the debugging data items belonging to a particular
procedure. It also contains information relating to the procedure’s return. Its
format is as follows:-

sourcepos a word encoding the position in the source file of the end
of the procedure

endaddi a pointer to the code byte AFTER the compiled code for
the procedure

filentry offset of the file-list entry for the procedure’'s end

nreturns number of procedure return points (may be 0)

retaddrs... pointers to the procedure-return code

259

260

If the procedure body is an infinite loop, there will be'no return point so nreturns
will be 0. Otherwise the retaddrs should each point to a suitable location at which
a breakpoint may be set ‘at the exit of the procedure’. When execution reaches this
point, the current stack frame should still be in this procedure.

Variable

Type

This item contains debugging data relating to a source program variable or a
formal argument to a procedure (the first variable items in a procedure always
describe its arguments). Its format is as follows:-

type a type word

sourcepos a word encoding the source position of the variable
class a word encoding the variable's storage class
location see explanation below

name string

The following codes define the storage classes of variables:-

external variables (or Fortran common)
static variables private to one section
automatic variables

register variables

Pascal var arguments

Fortran arguments

Fortran character arguments

~N OV B W N —

The meaning of the location field of a variable item depends on the storage class:
it contains an absolute address for static and external variables (relocated by the
linker); a stack offset (ie an offset from the frame- pointer) for automatic and
var-type arguments; an offset into the argument list for Fortran arguments; and a
register number for register variables (the 8 floating point registers are numbered
16..23).

No account is taken of variables which ought to be addressed by +ve offsets from
the stack-pointer rather than -ve offsets from the frame-pointer.

The sourcepos field is used by the debugger to distinguish between different
definitions having the same name (eg identically named variables in disjoint
source-level naming scopes such as nested block in C).

This item is used to describe a named type in the source language (eg a typedef in
C). The format is as follows:-

type a type word (described earlier)
name string

Struct

Array

This item is used to describe a structured data type (eg a struct in C or a record in
Pascal). Its format is as follows:-

fields the number of fields in the structure

size total byte size of the structure

fieldtable... a table of fields entries in the following format:-
offset byte offset of this field within the structure
type a type word (interpretation as described earlier)
name string

Union types are described by struct items in which all fields have 0 offsets.

C bit fields are not treated in full detail: a bit field is simply represented by an
integer starting on the appropriate word boundary (so that the word contains the
whole field).

This item is used to describe a one-dimensional array. Multi-dimensional arrays
are described as arrays of arrays. Which dimension comes first is dependent on the
source language (different for C and Fortran). The format is as follows:-

size total byte size of each element
arrayflags (see below)

basetype a type word

lowerbound constant value or stack offset of variable
upperbound constant value or stack offset of variable

If the size field is zero, debugger operations affecting the whole array, rather than
individual elements of it, are forbidden.

The following bit numbers in the arrayflags field are defined:-

0 lower bound is undefined
] lower bound is a constant
2 upper bound is undefined

upper bound is a constant

od

If a bound is defined and not constart then it is an integer variable on the stack
and the boundvalue field contains the stack offset of the variable (from the
frame-pointer).

261

Debugging Dala ltems in Detail

Subrange

This item is used to describe subrange typed in Pascal. It also serves to describe
enumerated types in C and scalars in Pascal (in which case the base type is
understood to be an unsigned integer of appropriate size). Its format is as follows:-

size half-word: 1, 2, or 4 to indicate byte size of object
typecode half-word: simple type code
lwb lower bound of subrange
upb upper bound of subrange
Set _
This item is used to describe a Pascal set type. Currently, the description is only
partial. The format is:-
size byte size of the object
Fileinfo

This item appears once per section after all other debugging data items. The half of
the header word which would usually give the item length is not required and
should be set to 0.

Each source file is described by a sequence of ‘fragments’, each of which describes
a contiguous region of the file within which the addresses of compiled code
increase monatonically with source-file position. The order in which fragments
appear in the sequence is not necessarily related to the source file positions to
which they refer.

Note that for compilations that make no use of the #include facility, the list of
fragments will have only one entry and all line-number information will be
contiguous.

The item is a list of entries each with the following format:-

length length of this entry in bytes (0 marks the final entry)
date date and time when the file was last modified
filename string (or null if the name is not known)
n number of fragments following
fragments... n fragments with the following structure...
fragmentsize length of this entry in bytes
firstline linenumber
lastline linenumber
codeaddr pointer to the start of the fragment’s executable code
codesize byte size of the code in the fragment
lineinfo... a variable number of line number data

262

Appendix E - Code file formats

There is one lineinfo half-word for each statement of the source file fragment which
gives rise to executable code. Exactly what constitutes an executable statement
may be defined by the language implementation; the definition may for instance
include some declarations. The half-word can be regarded as 2 bytes: the first
contains the number of bytes of code generated from the statement and cannot be
zero; the second contains the number of source lines occupied by the statement (ie
the difference between the line number of the start of the statement and the line
number of the next statement). This may be zero if there are multiple statements
on the same source line.

If the whole half-word is zero, this indicates that one of the quantities is too large
to fit into a byte and that the following 2 half-words contain (in order) the number
of lines followed by the number of bytes of code generated from the statement.

263

264

26

Appendix F - ARM procedure call
standard

This Appendix relates to the implementation of compiler code-generators and
language run-time library kernels for the Advanced RISC Machine (ARM) but is
also a useful reference when interworking assembly language with high level
language code.

The reader should be familiar with the ARM's instruction set, floating-point
instruction set and assembler syntax before attempting to use this information to
implement a code-generator. In order to write a run-time kernel for a language
implementation, additional information specific to the relevant ARM operating
system will be needed (some information is given in the sections describing the
standard register bindings for this procedure-call standard).

The main topics covered in this Appendix are the procedure call and stack
disciplines. These disciplines are observed by Acorn’s C language implementation
for the ARM and, eventually, will be observed by other high level language
compilers too. Because C is the first-choite implementation language for RISC OS
applications and the implementation language of Acorn’s UNIX product RISC iX,
the utility of a new language implementation for the ARM will be related to its
compatibility with Acorn’s implementation of C.

At the end of this document are several examples of the usage of this standard,
together with suggestions for generating effective code for the ARM.

The purpose of APCS

The ARM Procedure Call Standard is a set of rules, designed:

e to facilitate calls between program fragments compiled from different source
languages (eg to make subroutine libraries accessible to all compiled
languages)

e to give compilers a chance to optimise procedure call, procedure entry and
procedure exit (following the reduced instruction set philosophy of the ARM).
This standard defines the use of registers, the passing of arguments at an
external procedure call, and the format of a data structure that can be used by
stack backtracing programs to reconstruct a sequence of outstanding calls. It
does so in terms of abstract register names. The binding of some register names to

265

Design criteria

Design criteria

266

register numbers and the precise meaning of some aspects of the standard are
somewhat dependent on the host operating system and are described in
separate sections.

Formally, this standard only defines what happens when an external procedure call
occurs. Language implementors may choose to use other mechanisms for internal
calls and are not required to follow the register conventions described in this
document except at the instant of an external call or return. However, other
system-specific invariants may have to be maintained if it is required, for example,
to deliver reliably an asynchronous interrupt (eg a SIGINT) or give a stack
backtrace upon an abort (eg when dereferencing an invalid pointer). More is said
on this subject in later sections.

This procedure call standard was defined after a great deal of experimentation,
measurement, and study of other architectures. It is believed to be the best
compromise between the following important requirements:

@ Procedure call must be extremely fast.

e The call sequence must be as compact as possible. (In typical compiled code,
calls outnumber entries by a factor in the range 2:1 to 5:1.)

e Extensible stacks and multiple stacks must be accommodated. (The standard
permits a stack to be extended in a non-contiguous manner, in stack chunks.
The size of the stack does not have to be fixed when it is created, avoiding a
fixed partition of the available data space between stack and heap. The same
mechanism supports multiple stacks for multiple threads of control.)

e The standard should encourage the production of re-entrant programs, with
writable data separated from code.

e The standard must support variation of the procedure call sequence, other
than by conventional return from procedure (eg in support of C's longimp,
Pascal's goto-out-of-block, Modula-2+'s exceptions, UNIX's signals, etc)
and tracing of the stack by debuggers and run-time error handlers. Enough is
defined about the stack’s structure to ensure that implementations of these
are possible (within limits discussed later).

The Procedure Call Standard

This section defines the standard.

Register names

The ARM has 16 visible general registers and 8 floating-point registers. In interrupt
modes some general registers are shadowed and not all floating-point operations
are available, depending on how the floating-point operations are implemented.

Appendix F - ARM procedure call standard

This standard is written in terms of the register names defined in this section. The
binding of certain register names (the call frame registers) to register numbers is
discussed separately. We do this so that:

® Diverse needs can be more easily accommodated, as can conflicting historical
usage of register numbers, yet the underlying structure of the procedure call
standard — on which compilers depend critically — remains fixed.

e Run-time support code written in assembly language can be made portable
between different register bindings, if it obeys the rules given in the section
entitled Defined bindings of the procedure call standard on page 274.

The register names and fixed bindings are given immediately below.

General Registers

First, the four argument registers:

al
az
a3
ad

RN
RN
RN
RN

0

1
2
3

i
f
’

argument
argument
argument
argument

Then the six ‘variable’ registers:

vl
V2
v3
vd
v5
Ve

RN
RN
RN
RN
RN
RN

@ <] o

9

register
register
register
register
register
register

1/integer result
2
3
4

variable
variable
variable
variable
variable
variable

Then the call-frame registers, the bindings of which vary (see the section entitled
Defined bindings of the procedure call standard on page 274 for details):

sl
fp
ip

sp

13

stack limit / stack chunk handle
frame poihter

temporary workspace, used in
procedure entry

lower end of current stack frame

267

Finally, 1r and pc, which are determined by the ARM's hardware:

lr RN 14 ; link address on calls/temporary workspace
pc RN 15 ; program counter and processor status

In the obsolete APCS-A register bindings described below, sp is bound to r12; in
all other APCS bindings, sp is bound to r13.

Notes

Literal register names are given in lower case, eg v1, sp, 1r. In the text that
follows, symbolic values denoting ‘some register’ or 'some offset” are given in
upper case, eg R, R+N.

References to 'the stack’ denoted by sp assume a stack that grows from high
memory to low memory, with sp pointing at the top or front (ie lowest addressed
word) of the stack.

At the instant of an external procedure call there must be nothing of value to the
caller stored below the current stack pointer, between sp and the (possibly
implicit, possibly explicit) stack (chunk) limit. Whether there is a single stack chunk
or multiple chunks, an explicit stack limit (in s1) or an implicit stack limit, is
determined by the register bindings and conventions of the target operating
system.

Here and in the text that follows, for any register R, the phrase ‘in R’ refers to the
contents of R; the phrase ‘at [R]" or‘at [R, #N]' refers to the word pointed at by
R or R+N, in line with ARM assembly language notation.

Floating-point Registers

The floating-point registers are divided into two sets, analogous to the subsets
al-a4 and v1-v6 of the general registers. Registers £0-£3 need not be
preserved by a called procedure; £0 is used as the floating-point result register. In
certain restricted circumstances (noted below), £0-£3 may be used to hold the
first four floating-point arguments. Registers £4—£7, the so called ‘variable’
registers, must be preserved by callees.

The floating-point registers are:

£0 FN 0 ; floating point result (or lst FP argument)

f1 FN 1 ; floating point scratch register (or 2nd FP arg)
f2 FN 2 ; floating point scratch register (or 3rd FP arg)
£3 FN 3 ; floating point scratch register (or 4th FP arg)
f£4 FN 4 ; floating point preserved register

ES FN 5 ; flecating point preserved register

f6 FN 6 ; fleoating point preserved register

£7 FN 7 ; fleoating point preserved register

268

Data representation and argument passing

The APCS is defined in terms of N (>= 0) word-sized arguments being passed from
the caller to the callee, and a single word or floating-point result passed back by
the callee. The standard does not describe the layout in store of records, arrays and
so forth, used by ARM-targeted compilers for C, Pascal, Fortran-77, and so on. In
other words, the mapping from language-level objects to APCS words is defined by
each language’s implementation, not by APCS, and, indeed, there is no formal
reason why two implementations of, say, Pascal for the ARM should not use
different mappings and, hence, not be cross-callable.

Obviously, it would be very unhelpful for a language implementor to stand by this
formal position and implementors are strongly encouraged to adopt not just the
letter of APCS but also the obviously natural mappings of source language objects
into argument words. Strong hints are given about this in later sections which
discuss (some) language specifics.

Register usage and argument passing to external procedures

Control Arrival

We consider the passing ot N (>= 0) actual argument words to a procedure which
expects to receive either exactly N argument words or a variable number V (>= 1) of
argument words (it is assumed that there is at least one argument word which
indicates in a language-implementation-dependent manner how many actual
argument words there are: for example, by using a format string argument, a count
argument, or an argument-list terminator).

At the instant when control arrives at the target procedure, the following shall be
true (for any M, if a statement is made about argM, and M > N, the statement can
be ignored):

argl is in al
arg2 is in a2
arg3 is in a3
argd is in ad
for all I >= 5, argl is at [sp, #4*(I-5)]

fp contains 0 or points to a stack backtrace structure (as described in the next
section).

The values in sp, s1, f£p are all multiples of four.

1r contains the pc+psw value that should be restored into r15 on exit from the
procedure. This is known as the return link value for this procedure call.

pc contains the entry address of the target procedure.

269

The Procedure Call Standard

270

Now, let us call the lower limit to which sp may point in this stack chunk SP_LWM
(Stack-Pointer Low Water Mark). Remember, it is unspecified whether there is one
stack chunk or many, and whether SP_LwM is implicit, or explicitly derived from
s1; these are binding-specific details. Then:

Space between sp and SP_LWM shall be (or shall be on demand) readable,
writable memory which can be used by the called procedure as temporary
workspace and overwritten with any values before the procedure returns.

sp >= SP_LWM + 256.

This condition guarantees that a stack extension procedure, if used, will have a
reasonable amount — 256 bytes — of work space available to it, probably sufficient
to call two or three procedure invocations further.

Control Return

At the instant when the return link value for a procedure call is placed in the
pc+psw, the following statements shall be true:

fp, sp, sl, vl-v6, and f4-£7 shall contain the same values as they did at the
instant of the call. If the procedure returns a word-sized result, R, which is not a
floating-point value, then R shall be in al. If the procedure returns a floating-point
result, FPR, then FPR shall be in £0.

Notes
The definition of control return means that this is a ‘callee saves’ standard.

The requirement to pass a variable number of arguments to a procedure (as in
old-style C) precludes the passing of floating-point arguments in floating-point
registers (as the ARM’s fixed point registers are disjoint from its floating-point
registers). However, if a callee is defined to accept a fixed number K of arguments
and its interface description declares it to accept exactly K arguments of matching
types, then it is permissible to pass the first four floating-point arguments in
floating-point registers £0-f£3. However, Acorn’s C compiler for the ARM does not
yet exploit this latitude.

The values of a2-a4, ip, 1r and £1-£3 are not defined at the instant of return.

The z, N, C and V flags are set from the corresponding bits in the return link value
on procedure return. For procedures called using a BL instruction, these flag
values will be preserved across the call.

The flag values from 1r at the instant of entry must be restored; it is not sufficient
merely to preserve the flag values across the call. (Consider a procedure ProcA
which has been ‘tail-call optimised’ and does: CMPS al, #0; MOVLT a2,

Appendix F - ARM procedure call standard

#255; MOVGE a2, #0; B ProcB.If ProcB merely preserves the flags it sees
on entry, rather than restoring those from 1r, the wrong flags may be set when
ProcB returns direct to ProcA’s caller).

This standard does not define the values of fp, sp and s1 at arbitrary moments
during a procedure’s execution, but only at the instants of (external) call and
return. Further standards and restrictions may apply under particular operating
systems, to aid event handling or debugging. In general, you are strongly
encouraged to preserve fp, sp and s1, at all times.

The minimum amount of stack defined to be available is not particularly large, and
as a general rule a language implementation should not expect much more, unless
the conventions of the target operating system indicate otherwise. For example,
code generated by the Arthur/RISC OS C compiler is able, if there is inadequate
local workspace, to allocate more stack space from the C heap before continuing.
Any language unable to do this may have its interaction with C impaired. That s1
contains a stack chunk handle is important in achieving this. (See the section
entitled Defined bindings of the procedure call standard on page 274 for further details).

The statements about sp and SP_LWM are designed to optimise the testing of the
one against the other. For example, in the RISC OS user-mode binding of APCS, s1
contains SL_LWM+512, allowing a procedure’s entry sequence to include
something like:

CMP sp, sl
BLLT |xS$stack_overflow]

where x$stack_overflow is a part of the run-time system for the relevant
language. If this test fails, and x$stack_overflow is not called, there are at
least 512 bytes free on the stack.

This procedure should only call other procedures when sp has been dropped by
256 bytes or less, guaranteeing that there is enough space for the called
procedure’s entry sequence (and, if needed, the stack extender) to work in.

If 256 bytes are not enough, the entry sequence has to drop sp before comparing it
with =1 in order to force stack extension (see later sections on implementation
specifics for details of how the RISC OS C compiler handles this problem).

The stack backtrace data structure

At the instant of an external procedure call, the value in fp is zero or it points to a
data structure that gives information about the sequence of outstanding procedure
calls. This structure is in the format shown below:

271

272

fp points to here: save mask pointer [fp]

return link value [fp, #-4]
return sp value [fp, #-8]
fp value [fp, #-12]

saved vé wvalue

saved v5 value

saved v4 value

saved v3 wvalue

saved v2 value

saved vl value

Optional < saved ad value
values

saved a3 value

saved a2 value

saved al value

saved £7 value three words
saved f6 wvalue three words
saved f5 value three words
saved f4 wvalue three words

This picture shows between four and 26 words of store, with those words higher on
the page being at higher addresses in memory. The presence of any of the optional
values does not imply the presence of any other. The floating-point values are in
extended format and occupy three words each.

At the instant of procedure call, all of the following statements about this structure
shall be true

e The return fp value is either 0 or contains a pointer to another stack backtrace
data structure of the same form. Each of these corresponds to an active,
outstanding procedure invocation. The statements listed here are also true of
this next stack backtrace data structure and, indeed, hold true for each
structure in the chain.

e The save mask pointer value, when bits 0, 1, 26, 27, 28, 29, 30, 31 have been
cleared, points twelve bytes beyond a word known as the return data save
instruction.

Appendix F - ARM procedure call standard

The return data save instruction is a word that corresponds to an ARM
instruction of the following form:

STMDB sp!, {(lall, [a2], [a3], [a4],

[vil, [v2), [v31, [v4], [v5], [v6],

fp, ip. 1lr, pc}
Note the square brackets in the above denote optional parts: thus, there are 12
x 1024 possible values for the return data save instruction, corresponding to
the following bit patterns:

1110 1001 0010 1101 1101 10xx xXxXXX XXXX APCS-R, APCS-U

o 1 ! !

1110 1001 0010 1100 1100 11xx XxXXX XXXX APCS-A (obsolete)
The least significant 10 bits represent argument and variable registers: if bit N
is set, then register N will be transferred.
The optional parts al, a2, a3, a4, vl, v2, v3, v4, v5 and v6 in this
instruction correspond to those optional parts of the stack backtrace data
structure that are present such that: for all M, if vM or aM is present then so is
saved vM valueorsaved aM value, and if vMor aMis absent then so is
saved vM value or saved aM value. This is as if the stack backtrace data
structure were formed by the execution of this instruction, following the
loading of ip from sp (as is very probably the case).

The sequence of up to four instructions following the return data save
instruction determines whether saved floating-point registers are present in
the backtrace structure. The four optional instructions allowed in this
sequence are:

STFE £7, [sp, #-12]!'; 1110 1101 0110 1101 0111 0001 0000 0011
STFE f6, [sp, #-121! ; 1110 1101 0110 1101 0110 0001 0000 0011
STFE f5, [sp, #-121!¢ ; 1110 1101 0110 1101 0101 0001 0000 0011
STFE f4, [sp., #-121! ; 1110 1101 0110 1101 0100 00C1 0000 0011

Any or all of these instructions may be missing, and any deviation from this
order or any other instruction terminates the sequence.

(A historical bug in the C compiler (now fixed) inserted a single arithmetic
instruction between the return data save instruction and the first STFE. Some
Acorn software allows for this.)

The bit patterns given are for APCS-R/APCS-U register bindings. In the
obsolete APCS-A bindings, the bit indicated by ! is 0.

The optional instructions saving £4, £5, £6 and £7 correspond to those
optional parts of the stack backtrace data structure that are present such that:
for all M, if STFE £M is present then so is saved fM value;if STFE fMis
absent then so is saved fM value.

273

Defined bindings of the procedure call standard

e At the instant when procedure A calls procedure B, the stack backtrace data
structure pointed at by fp contains exactly those elements v1, v2, v3, v4, v5,
v6, £4, f5, £6, £7, fp, sp and pc which must be restored into the
corresponding ARM registers in order to cause a correct exit from procedure A,
albeit with an incorrect result.

Notes

The following example suggests what the entry and exit sequences for a procedure
are likely to look like (though entry and exit are not defined in terms of these
instruction sequences because that would be too restrictive; a good compiler can
often do better than is suggested here):

entry MOV ip, sp
STMDB sp!, {argRegs, workRegs, fp, ip, lr, pc}
SUB fp, ip, #4

exit LDMDR fp, {workRegs, fp, sp, pc}”

Many apparent idiosyncrasies in the standard may be explained by efforts to make
the entry sequence work smoothly. The example above is neither complete (no
stack limit checking) nor mandatory (making arguments contiguous for C, for
instance, requires a slightly different entry sequence; and storing argRegs on the
stack may be unnecessary).

The workRegs registers mentioned above correspond to as many of v1 to v6 as
this procedure needs in order to work smoothly. At the instant when procedure A
calls any other, those workspace registers not mentioned in 2's return data save
instruction will contain the values they contained at the instant A was entered.
Additionally, the registers f4-£7 not mentioned in the floating-point save
sequence following the return data save instruction will also contain the values
they contained at the instant A was entered.

This standard does not require anything of the values found in the optional parts
al, a2, a3, a4 of a stack backtrace data structure. They are likely, if present, to
contain the saved arguments to this procedure call; but this is not required and
should not be relied upon.

Defined bindings of the procedure call standard

APCS-R and APCS-U: The RISC OS and RISC iX PCSs

These bindings of the APCS are used by:

® RISC OS applications running in ARM user-mode

e compiled code for RISC OS modules and handlers running in ARM SVC-mode
® RISCiX applications (which make no use of s1) running in ARM user mode

Appendix F - ARM procedure call standard

@ RISCiX kernels running in ARM SVC mode.

The call-frame register bindings are:

sl RN 10 ; stack limit / stack chunk handle
; unused by RISC iX applications

fp RN 11 ; frame pointer

ip RN 12 : used as temporary workspace

sp RN 13 ; lower end of current stack frame

Although not formally required by this standard, it is considered good taste for
compiled code to preserve the value of s1 everywhere.

The invariants sp > ip > fp have been preserved, in common with the obsolete
APCS-A (described below), allowing symbolic assembly code (and compiler
code-generators) written in terms of register names to be ported between APCS-R,
APCS-U and APCS-A merely by relabelling the call-frame registers provided:

e When call-frame registers appear in LDM, LDR, STM and STR instructions they
are named symbolically, never by register numbers or register ranges. :

@ No use is made of the ordering of the four call-frame registers (eg in order to
load/save fp or sp from a full register save).

APCS-R: Constraints on s1 (For RISC OS applications and modules)

In SVC and IRQ modes (collectively called module mode) SL_LWM is implicit in sp:
it is the next-megabyte boundary below sp. Even though the SVC-mode and
IRQ-mode stacks are not extensible, s1 still points 512 bytes above a skeleton
stack-chunk descriptor (stored just above the megabyte boundary). This is done for
compatibility with use by applications running in ARM user-mode and to facilitate
module-mode stack-overflow detection. In other words:

sl = SL_LWM + 512.

When used in user-mode, the stack is segmented and is extended on demand.
Acorn’s language-independent run-time kernel allows language run-time systems
to implement stack extension in a manner which is compatible with other Acorn
languages. s1 points 512 bytes above a full stack-chunk structure and, again:

sl = SL_LWM.+ 512.

Mode-dependent stack-overflow handling code in the language-independent
run-time kernel faults an overflow in module mode and extends the stack in
application mode. This allows library code, including the run-time kernel, to be
shared between all applications and modules written in C.

In both modes, the value of s1 must be valid immediately before each external call
and each return from an external call.

275

276

Deallocation of a stack chunk may be performed by intercepting returns from the
procedure that caused it to be allocated. Tail-call optimisation complicates the
relationship, so, in general, s1 is required to be valid immediately before every
return from external call.

APCS-U: Constraints on sl (For RISC iX applications and RISC iX kernels)

In this binding of the APCS the user-mode stack auto-extends on demand so s1 is
unused and there is no stack-limit checking.

In kernel mode, s1 is reserved by Acorn.

APCS-A: The obsolete Arthur application PCS

This obsolete binding of the procedure-call standard is used by Arthur applications
running in ARM user-mode. The applicable call-frame register bindings are as
follows:

sl RN 13 ; stack limit/stack chunk handle
fp RN 10 ; frame pointer

ip RN 11 ; used as temporary workspace

sp RN 12 ; lower end of current stack frame

(Use of r12 as sp, rather than the architecturally more natural r13, is historical
and predates both Arthur and RISC 0S.)

In this binding of the APCS, the stack is segmented and is extended on demand.
Acorn’s language-independent run-time kernel allows language run-time systems
to implement stack extension in a manner which is compatible with other Acorn
languages.

The stack limit register, s1, points 512 bytes above a stack-chunk descriptor, itself
located at the low-address end of a stack chunk. In other words:

sl = SL_LWM + 512.

The value of s1 must be valid immediately before each external call and each
return from an external call.

Although not formally required by this standard, it is considered good taste for
compiled code to preserve the value of s1 everywhere,

Notes on APCS bindings

Invariants and APCS-M

In all future supported bindings of APCS sp shall be bound to 13 In all
supported bindings of APCS the invariant sp > ip = fp shall hold. This means
that the only other possible binding of APCS is APCS-M:

sl RN 12 ; stack limit/stack chunk handle

fp RN 10 ; frame pointer
ip RN 11 ; used as temporary workspace
sp RN 13 ; lower end of current stack frame

This binding of APCS is unlikely to be used (by Acorn).

Further Restrictions in SVC Mode and IRQ Mode

There are some consequences of the ARM's architecture which, while not formally
acknowledged by the ARM Procedure Call Standard, need to be understood by
implementors of code intended to run in the ARM's SVC and IRQ modes.

An IRQ corrupts r14_irq, so IRQ-mode code must run with IRQs off until
r14_irqg has been saved. Acorn's preferred solution to this problem is to enter
and exit IRQ handlers written in high-level languages via hand-crafted ‘wrappers’
which on entry save r14_irg, change mode to SVC, and enable IRQs and on exit
return to the saved r14_1irg (which also restores IRQ mode and the [RQ-enable
state). Thus the handlers themselves run in SVC mode, avoiding this problem in
compiled code.

Both SWis and aborts corrupt r14_svec. This means that care has to be taken
when calling SWIs or causing aborts in SVC mode.

In high-level languages, SWis are usually called out of line so it suffices to save and
restore r14 in the calling veneer around the SWI. If a compiler can generate in-line
SWis, then it should, of course, also generate code to save and restore r14 in-line,
around the SWI, unless it is known that the code will not be executed in SVC mode.

An abort in SVC mode may be symptomatic of a fatal error or it may be caused by
page faulting in SVC mode. Acorn expects SVC-mode code to be correct, so these
are the only options. Page faulting can occur because an instruction needs to be
fetched from a missing page (causing a prefetch abort) or because of an attempted
data access to a missing page (causing a data abort). The latter may occur even if
the SVC-mode code is not itself paged (consider an unpaged kernel accessing a
paged user-space).

A data abort is completely recoverable provided r14 contains nothing of value at
the instant of the abort. This can be ensured by:

e saving R14 on entry to every procedure and restoring it on exit

@ not using R14 as a temporary register in any procedure

e avoiding page faults (stack faults) in procedure entry sequences.

A prefetch abort is harder to recover from and an aborting BL instruction cannot be

recovered, so special action has to be taken to protect page faulting procedure
calls.

277

Examples from Acorn language implementations

For Acorn C, R14 is saved in the second or third instruction of an entry sequence.
Aligning all procedures at addresses which are 0 or 4 modulo 16 ensures that the
critical part of the entry sequence cannot prefetch-abort. A compiler can do this by
padding all code sections to a multiple of 16 bytes in length and being careful
about the alignment of procedures within code sections.

Data-aborts early in procedure entry sequences can be avoided by using a software
stack-limit check like that used in APCS-R.

Finally, the recommended way to protect BL instructions from prefetch-abort
corruption is to precede each BL by aMOV ip, pcinstruction. If the BL faults, the
prefetch abort handler can safely overwrite r14 with ip before resuming execution
at the target of the BL. If the prefetch abort is not caused by a BL then this action
is harmless, as R14 has been corrupted anyway (and, by design, contained nothing
of value at any instant a prefetch abort could occur).

Examples from Acorn language implementations

278

Example procedure calls in C

Here is some sample assembly code as it might be produced by the C compiler:

i gggg is a function of 2 args that needs one register.variable (vl)

gggg MOV ip, sp
STMFD spt, {al, a2, vi1, fp, ip, lr, pc}
SUB fp, ip, #4 ; points at saved PC
CMPS sp; sl
BLLT |xSstack_overflowl ; handler procedure
MOV P s ; use a register wvariable
BL fEFE
MOV I | ; rely on its value after ffff()

Within the body of the procedure, arguments are used from registers, if possible;
otherwise they must be addressed relative to fp. In the two argument case shown
above, arglisat [fp, #-24] and arg2 isat [fp, #-20]. But as discussed
below, arguments are sometimes stacked with positive offsets relative to fp.

Local variables are never addressed offset from £p; they always have positive
offsets relative to sp. In code that changes sp this means that the offsets used may
vary from place to place in the code. The reason for this is that it permits the
procedure x$stack_overflow to recover by setting sp (and s1) to some new
stack segment. As part of this mechanism, x$stack_over f1low may alter
memory offset from fp by negative amounts, eg [fp, #-64] and downwards,
provided that it adjusts sp to provide workspace for the called routine.

Appendix F - ARM procedure call standard

If the function is going to use more than 256 bytes of stack it must do:

SUB ip, sp, #<my stack size>
CMPS ip, sl
BLLT | xSstack_overflow_1|

instead of the two-instruction test shown above.

If a function expects no more than four arguments it can push all of them onto the
stack at the same time as saving its old fp and its return address (see the example
above); arguments are then saved contiguously in memory with arg1 having the

lowest address. A function that expects more than four arguments has code at its
head as follows:

MOV ip, sp

STMFD sp!, {al, a2, a3, ad)} ; put argl-4 below stacked args
STMFD sp!, {vl, v2, fp, ip, lr, pc} ; vl-vé saved as necessary

SUB fp, ip, #20 ; point at newly created call-frame
CMPS sp, sl

BLLT |x$stack_overflowl

LDMEA fp, {vi, v2, fp, sp, pcl”™ ; restore register vars & return

The store of the argument registers shown here is not mandated by APCS and can
often be omitted. It is useful in support of debuggers and run-time trace-back code
and required if the address of an argument is taken.

The entry sequence arranges that arguments (however many there are) lie in
consecutive words of memory and that on return sp is always the lowest address
on the stack that still contains useful data.

The time taken for a call, enter and return, with no arguments and no registers
saved, is about 22 S-cycles.

Although not required by this standard, the values in fp, sp and s1 are
maintained while executing code produced by the C compiler. This makes it much
easier to debug compiled code.

Multi-word results other than double precision reals in C programs are
represented as an implicit first argument to the call, which points to where the
caller would like the result placed. It is the first, rather than the last, so that it works
with a C function that is not given enough arguments.

279

Procedure calls in other language implementations

Assembler

The procedure call standard is reasonably easy and natural for assembler
programmers to use. The following rules should be followed:

e Call-frame registers should always be referred to explicitly by symbolic name,
never by register number or implicitly as part of a register range.

e The offsets of the call-frame registers within a register dump should not be
wired into code. Always use a symbolic offset so that you can easily change the
register bindings.

Fortran

The Acorn/TopExpress Arthur/RISC OS Fortran-77 compiler violates the APCS in a
number of ways that preclude inter-working with C, except via assembler veneers.
This may be changed in future releases of the Fortran-77 product.

Pascal

The Acorn/3L Arthur/RISC OS ISO-Pascal compiler violates the APCS in a number
of ways that preclude inter-working with C, except via assembler veneers. This may
be changed in future releases of the ISO-Pascal product.

Lisp, BCPL and BASIC

These languages have their own special requirements which make it inappropriate
to use a procedure call of the form described here. Naturally, all are capable of
making external calls of the given form, through a small amount of assembler ‘glue’
code.

General

Note that there is no requirement specified by the standard concerning the
production of re-entrant code, as this would place an intolerable strain on the
conventional programming practices used in C and Fortran. The behaviour of a
procedure in the face of multiple overlapping invocations is part of the
specification of that procedure.

Various lessons

This document is not intended as a general guide to the writing of
code-generators, but it is worth highlighting various optimisations that appear
particularly relevant to the ARM and to this standard.

280

The use of a callee-saving standard, instead of a caller-saving one, reduces the size
of large code images by about 10% (with compilers that do little or no
interprocedural optimisation).

In order to make effective use of the APCS, compilers must compile code a
procedure at a time. Line-at-a-time compilation is insufficient.

The preservation of condition codes over a procedure call is often useful because
any short sequence of instructions (including calls) that forms the body of a short
TF statement can be executed without a branch instruction. For example:

if (a < 0) b = fool();
can compile into:

CMP a, #0
BLLT foo
MOVLT b, al

In the case of a leaf or fast procedure — one that calls no other procedures -much
of the standard entry sequence can be omitted. In very small procedures, such as
are frequently used in data abstraction modules, the cost of the procedure can be
very small indeed. For instance, consider:

typedef struct {...; int a; ...} foo;
int get_a(foo* f) {return(f-=a);}

The procedure get_a can compile to jus}:

LDR al, [al, #aOffset]
MOVS pc, 1r

This is also useful in procedures with a conditional as the top level statement,
where one or other arm of the conditional is fast (ie calls no procedures). In this
case there is no need to form a stack frame there. For example. using this, the C
program:

int sum(int i)

{
if (i <= 1)
return(i) ;
else
return(i + sum(i-1));
}

could be compiled into:

281

Examples from Acorn language implementations

282

sum CMP al, #1 ; try fast case
MOVSLE pc, lr ; and if appropriate, handle quickly!
; else, form a stack frame and handle the rest as normal code.

MOV ip, sp

STMDB sp!, {vl, fp, ip. 1lr, pc}

CMP sp, sl

BLLT overflow

MOV vl, al ; register to hold i

SUB al, al, #1 i set up argument for call
BL sum ; do the call

ADD al, al, vi ; perform the addition
LDMEA fp, {vl, fp, sp, pc}™ ; and return

This is only worthwhile if the test can be compiled using only ip, and any spare of
al-ad, as scratch registers. This technique can significantly speed up certain
speed-critical routines, such as read and write character. At the present time, this
optimisation is not performed by the C compiler.

Finally, it is often worth applying the tail call optimisation, especially to
procedures which need to save no registers. For example, the code fragment:
extern void *malloc(size_t n)
{

return primitive_alloc (NOTGCABLEBIT, BYTESTOWORDS (n));
}

is compiled by the C compiler into:

malloc ADD al, al, #3 1S
MOV a2, al, LSR #2 18
MOV al, #1073741824 R I
B primitive_alloc ; 1IN+2S = 48

This avoids saving and restoring the call-frame registers and minimises the cost of
interface ‘sugaring’ procedures. This saves five instructions and, on a 4/8MHz ARM,
reduces the cost of the malloc sugar from 24S to 7S.

Index

Symbols

IBoot file, for new WIMP application 187
IDDT 35
IRun file, for new WIMP application 187
ISetUp file, for new WIMP application 187
*DebuglAF 35
*filer_opendir 112
*FrontEnd_SetUp 186, 198
*FrontEnd_Start 186, 187, 194

invoking using command_is 191
*lconSprites 187 '
*Prefix 217
*RMEnsure 187
*RMTidy 164
*Spool 112
*wimpSlot 112

A

a.out format 229
Acorn Library Format see ALF
Acorn Make Utility see AMU
adding applications to the DDE 185
adding compilers to the DDE 185
AlIF 155, 225, 246
header layout 248
image debugging 246
layout of an image 247
layout of uncompressed image 247
relocation 246
self relocation 250
zero-initialisation code 249
ALF 225, 242
Chunkindex 243
DataLength 243

EntryLength 243

LIB_DIRY 242

library file chunks 242
library file format types 242
object code libraries 245
overall structure 226

AMU 125-128

Application menu 127

command line 128

controlling operation 126

SetUp dialogue box 126

SetUp menu 127

specifying makefile to be used 126
specifying targets 126

amu command line tool 125
AQF 225

area attributes 231
area name 231
area size 233

AREAs 160
attributes 165
packing 162

entry address area/ entry address offset 231
files 167

format of the areas chunk 233

format of the symbol table chunk 236
format of type 1 relocation directives 235
format of type 2 relocation directives 236
header chunk format 229

identification chunk (OBJ_IDFN) 239
internal relocation directives 234
number of areas 230

number of relocations 233

obsolete features 240

overall structure 226

relocation directives 234

string table chunk (OBJ_STRT) 239

283

Index

symbol table 230 B

AOF and ALF files
chunk names 228 base/limit pairs 239
structure 226 breakpoints

APCS 159, 265 - 282 setting 39
argument passing 269 - 270 on addresses and low-level
bindings 274 - 278 expressions 45
control arrival 269 - 270 on procedure names 39
control return 270 byte
design criteria 266 definition 225
examples 278 - 282 sex 225

purpose 265 - 266
stack backtrace 271 - 274

application image format see AIF C
applications
porting to RISC OS 185 C module header generator (CMHG) 164
Arm Obiject Format see AOF chunk file
ARM Procedure Call Standard see APCS chunkld 227
ASD 254 format 226
AREAs header entries 227
items 254 layout 227
data items library file format 226
Array 261 object file format 226
Endproc 259 offset 227
Fileinfo 262 command line interface 121
order of 254 Common 132
Procedure 259 DecAOF 135
Section 257 DecCF 139
Set 262 Diff 145
source file position 256 Find 153
Struct 261 LibFile 171
Subrange 262 Link 166
Type 260 ObjSize 175
Variable 260 Squeeze 179
WC 184

data types 255
sourcepos field 256
Auto Run option

command lines
passing long command lines see DDEUtils

enabling 191 module
Auto Save option Common
enabling 192 Application menu 130

command line interface 132
menu options
Command line 130

284

Output window 131
SetUp
dialogue box 129
menu 130
SetUp options
Files 129
First 129
Recognise digits 130

common area symbols 240
compiler

adding to DDE 185

compiling a program

with debugging information 33

Context window 36
controlling DDT execution 45

DDE

adding applications to 185
adding compilers to 185
application description
arrow icons 194
DBOX section 193
FILEQUTPUT section 192
icon default values 194
icon types 193
METAOPTIONS section 191
toggling dialogue box size 194
TOOLDETAILS section 191
Boot discs 8
Booting 22
compatibility with older products 27
configuration options 9
directory structure on a networked
machine 15
directory structure on floppy disc
machine 13
directory structure on hard disc machine 12
extending 185
hardware requirement 7
install application 7
installing 7-15

installing multiple products 10
installing on a network 14

installing on floppy disc machine 13
Reference disc 8

using on smaller machines 26

work directory 22

Work discs 8

DDEUtils module 185, 198, 217
DDT 31 -69

accessing nested variables 42
breakpoints

on addresses and low-level

expressions 45

on procedure names 39
Context window 36
debug data items see ASD data items
debugging AIF images 246
enabling debugging 33
error messages 36
example session 62
execution control 45
limitations 31
linking a program 34
main menu 38
menu options

*Commands 61

Breakpoint 48

Call 47

Change 57

Continue 45

Debug 35

Display 53

Find 60

Help 61

Log 60

Options 58

Quit 62

Single step 46

Trace 51

Watchpoint 50
menu shortcuts

Breakpoint 49

Continue 46, 62

285

Index

Display 53

Single step 47

Watchpoint 51
preparing a program 33

program examination and modification 53

specifying program objects 38

starting a debugging session 35

Status window 36
watchpoints
on variable names 40
debugging
format of symbolic data 254
source-level 34

debugging see also DDT (desktop debugging tool)

DecAOF
Application menu 134
command line interface 135
menu options
Command line 134
Output window 135

SetUp
dialogue box 133
menu 134

SetUp options
Area contents 134
Area declarations 134
Debug 133
Files 133
Only area declarations 133
Relocation directives 134
String table 133
Symbol table 133
DecCF
Application menu 138
command line interface 139
menu options
Command line 137
Output window 138
SetUp
dialogue box 137
menu 137
SetUp options
Files 137

286

desktop utility
adding to DDE 185
Diff

Application menu 143

command line interface 145

menu options
Command line 142
Dir. structure 142
Equate CR/LF 142
Expand tabs 143
Fast 142
Large files 142
Squidge 142

Output window 144

SetUp
dialogue box 141
menu 142

SetUp options
Case insensitive 14]
Expand tabs 141
Remove spaces 141
Squash spaces 141

E

EBNF rule, for application 190
Econet 7
editing templates see FormEd
Entry points see Link menu options
entry vector 238
environment variables 16
CSLibroot 18
CSPath 17
DDESPath 17
RunSPath 17
SystemSPath 16
WimpSScrap 16
WimpSScrapDir 16
error messages
DDT 36
error throwback 219
Errors

linking a program 158
extending the DDE 185 - 198
extracting files

LibFile 169

F

file formats
AIF 246 - 253
ALF 242 - 245
AQF 229 - 241
layering 226
SrcEdit 223
filename prefixing see DDEUtils module
Find
Application menu 152
command line interface 153
menu options

Allow 151

Command line 151

Grep style 151
Output window 152
SetUp

dialogue box 147

menu 151

SetUp options
Case insensitive 148
Filenames only 148
Files 147
Line count only 148
Patterns 147
Throwback 148
Verbose 148
Wildcards 148

SetUp wildcard filenames
OorMore 151
OorMore filename chs. 150
Filename ch. 150
Or 150
Sub-directories 150

SetUp wildcard patterns
0 or more 149

Index

1 or more 149
Alphanum 148
Any 148
Ctrl 149
Digit 148
Newline 148
Normal 149
Not 149
Set 149
floating-point
registers 268
fonts see SrcEdit (fonts)
format of area headers 231
FormEd 71 -78
adding icons to window 75
adding new window to template file 75
Browser 71
menu 73
changing number allocated to an icon 75
closing a displayed window 74
dialogue boxes 72
displaying an application window for
editing 73
displaying sprites in template windows 75
editing ROM utility templates 76
example session 76
listing defined windows 72
merging template files 75
scrollable windows 72
starting 71
top-level menu 74
window identifiers 74
FrontEnd module 185, 185 - 197
operation when command line tool is
run 186

H

half word
definition 225
hardware requirement for DDE 7

287

Index

IMPORT directive 164
install application 7
invoking a WIMP frontend for a tool 186

K

KEEP directive 34

L

language processors — output format 225
LIB_
name of ALF files 228
LIB_DATA 244
LIB_DIRY 242
LIB_VSRN 244
LibFile 167 -172
command line interface 171
extracting files 169
limitations when creating libraries 170
menu options
Command line 168
List symbol table 168
Null timestamps 170
Via file 168
Output window 169
SetUp
dialogue box 167
menu 168
SetUp options
Create 167
Delete 168
Extract 168
File list 167
Insert 168
Library 167
List library 168
Obiject library 168
libraries
linking 159

288

symbol references 159
library archives
AOF files 167
Link 155 - 166
AlF 155
command line interface 156, 166
errors 158
IMPORT directive 164
inter-area references 162
libraries 159
linking with the overlay manager 162
loading 155
menu options
Base 157
Command line 156
Debug 156
Entry 157
Link map 156, 158, 162
No case 157
Qverlay 157, 161
Relocatable AIF 157
Verbose 158
Via file 157
Workspace 156, 157, 164
X-Ref 157, 162
Output window 157
overlaying programs 159
predefined symbols 165
relocatable AIF images 163
relocatable module format (RMF) 155
relocatable modules 164
SetUp
dialogue box 155
menu 156
SetUp options
AlF 155
Binary 156
Files 155
Module 155
Relocatable AIF 156
specifying files to be linked 155
utility programs 164
linker pre-defined symbols 239

linking
preparing to debug a program 34, 156
little endian 225

M

Make 23,125, 198
command execution 201 - 202
command line tools 91
invoking 79
Makefiles
conventional Makefiles 89
editing 88
file naming 206
format 89
specifying 126
structure 203
menu options
Info 79
Open 79
Options 79
MFLAGS macro 210
Output window 87
programmer interface 91
projects 80
adding a member 83
adding a target 85
creating a final target 87
creating a new project 81
final targets 80
listing members 84
opening a project 82
removing a member 83
removing a project 86
setting tool options 85
touching members 84
rule patterns 207 - 208
tool options, message passing 92
VPATH macro 206
WIMP message format 92
Make project management tool 185
module headers

creating in assembler 165

multi-tasking

N

pre-emptive multi-tasking 186

nested variables

accessing in DDT 42

new-style libraries see ALF

O

OBJ
OBJ

OBJ
OBJ

‘name of AOF files 228
_AREA
areas chunk 233

_IDFN 239

_STRT 239

ObjAsm

KEEP directive 34

object file

Obj

format 229
chunk names 229
type 230
Size
Application menu 174

command line interface 175

menu options
Command line 173
Output window 174
SetUp
dialogue box 173
menu 173
SetUp options
Files 173

OFL_SYMT 244, 245
OFL_TIME 245

old-style libraries see ALF
output formats in Link 157

AIF 155
binary 156

289

Index

RMF 155
Output window
Common 131

DecAOF 135
DecCF 138
Diff 144
Find 152
LibFile 169
Link® 157
ObjSize 174
Squeeze 178
WC 184

overlay description files 161
overlay manager

linking 162
overlaying programs 159

P

packing

AREAs 162
parent directories

indicating with A. 192
porting applications to RISC OS 185
predefined linker symbols 165
PrefixSDir 208
procedure names

setting breakpoints in DDT 39
program objects

specifying in DDT 38
project management tool

creating 185
.projects see MAKE

R

register names 267 - 268

relocatable AIF images 163
relocatable module area (RMA) 164
relocatable module format (RMF) 155
relocatable modules 164

290

relocating applications on the stack

the Workspace option 164
relocation

Additive and PCRelative 234
resource files in SrcEdit 198

RISC OS Application Image Format see AIF

S

saving single output object 192
source-level debugging 34
Squeeze
Application menu 178
command line interface 179
menu options
Command line 177
Output window 178
SetUp
dialogue box 177
menu 177
SetUp options
Input 177
Try harder 177
Verbose 177
SrcEdit 198
Application menu options
Create 110
Options 109
Save All 109
Save Options 108, 109
block operations 96
bracket-matching 107
carriage return 104
colours 105
entering text 93
file formats 223
finding text 98
case sensitivity 100
counting text 100
fonts 105
formatting text 104
inserting/deleting text 94

Index

keystroke equivalents 112 to libraries 159
line spacing 105 symbols
linefeed 104 predefined linker symbols 165
magic characters 101
margin 105
menu options T
Display 105
Edit 98 targets
Misc 94 specifying to AMU 126
Save 95 Task Manager
Select 96 allocating memory to FormEd 71
printing a file 106 Templates file
reading text from another file 107 CmdLine 189
replacing text 99 Output 190
resource files 198 proginfo 188
signalling errors via throwback 107 query 189
starting 93 save 190
tabs 104 SetUp 188
task windows 110 Summary 190
text wrap 106 Window name 188
throwback 198 xfer_send 190
undoing changes 104 Throwback
window 93 SWis 219
string throwback 20
definition 225 protocol 219
SWI SrcEdit 107
DDEUtils_GetCLSize 218 throwback see also DDEUtils module
DDEUtils_Prefix 217 tool output, specifying default 193
DDEUtils_SetCL 218 tools
DDEUtils_SetCLSize 218 adding to the DDE 185
DDEUtils_ThrowbackEnd 221 defaults when invoking from Make 194
DDEUtils_ThrowbackRegister 219 tools, interactive 20, 117
DDEUtils_ThrowbackStart 219 DDT 31
DDEUtils_ThrowbackUnRegister 219 entering filenames 21
Throwback_ReasonErrorin 220 FormEd 71
Throwback_ReasonProcessing 220 Make 79
Throwback_Send 220 SrcEdit 93
Wimp_Createlcon 74 tools, non-interactive 20, 117
Wimp_CreateWindow 74 AMU 125
Wimp_LoadTemplate 74 Application menu 118
Wimplnitialise 186 Common 129
SWIDDEUtils_GetCL 219 DecAOF 133
symbol references DecCF 137

291

Index

Diff 141 dialogue box 181
entering filenames 21 menu 183"
file output 123 SetUp options
Find 147 OorMore 183
LibFile 167 OorMore filename chs 182
Link 155 Allow binary files 181
ObijSize 173 Filename ch 182
Output windows 121 Files 181

Summary 122 Or 182

Text 121 Sub-directories 182

toggling between 123 WIMP
SetUp dialogue box 120 description file 186
SetUp menu 121 frontend, adding to tools 185
Squeeze 177 invoking frontend for a tool 186
starting 117 producing complete WIMP application 186
WC 181 setting MAKE options 186

wimpslot
default 191

U size 187

writing an application description 190
utility programs 164

V

variable names

setting watchpoints in DDT 40
version ID 230
via file

use in LibFile 168

use in Link 157

W

watchpoints
setting 40

WC
Application menu 183
command line interface 184
menu options

Command line 183

Output window 184
SetUp

292

Reader's Comment Form

Acorn Desktop Development Environment

We would greatly appreciate your comments about this Manual, which will be taken into account for the
next issue:

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

How would you classify your experience with computers?

[] L]

Used computers before Experienced User Programmer Experienced Programmer

Cut out (or photocopy) and post to: Your name and address:
Dept RC, Technical Publications
Acorn Computers Limited

645 Newmarket Road

Cambridge CB5 8PB This information will only be used to get in touch with you in case we wish to explore your
England comments further

proe

- i
Acorn®

