
< .. Opy!: :.;::1c Acorn Comp-..:: e:·s Ltd. 1994 1303, 009/FS Is sue 1 

Slac,.: Paint Functional Specifica:ion 

History 

Drawing No 
Issue 
Date 

Author 
Sheets 

Last Issue: 

1303/009 /FS/3 P95 
1 /3P95 
27/07/94 
Jonathan Coxhead 

None 

1.00 MRC 21/3/95 Updated for Developer pack. 

Contents 

History 
Contents 
Introduction 
Background 
User interface 

Deep sprite support 
JPEG suppor t 

Robustness 
Test strategy 
Acceptance tests 
External dependencies 

Introduction 

Paint will be extended to edit 32K or 16M co lour sprites and to allow 
J PEG files to be imported as sprites. The Black Spr ite Extend will supply 
the engine to do the latter: it provides JPEG rendering and decompressing 
SWI's. No fac ilities are provided to allow a sprite to be compressed back 
into JPEG using Pain t, so this conversion is strictly a one way process. 

Background 

It is desirable that Paint should track the new facilities introduced 
into the operating system. For Black these are: 

rounding off the functionality provided in Sprite Extend and 
ColourTrans for deep (15- and 24-bit) sprites; 

adding OS support f or JPEG files. 

Therefore , Paint will be extended to edit deep sprites, and to allow the 
import of J PEG files. 

User interface 

Deep sprite support 

·:!J•! M•:.>dusa rclrc>dS~ of !'cti:lt '-''ill be extended so that deep sprit es are 

.: 
supported fully. Alth~ Jh this provides many new facilites to the ~~er, and 
is a significant increase in the functionality of the prograr~~e. it has a 
very simple specification: all Paint tools will work fully with all 
combinations of deep and shallow spr ites. Wherever possible, no attempt wil l 
be made in Paint to disallow combinations that are illegal or have been 
illegal under older operating systems (e g, adding a palette to a deep 
sprite, shearing a new format sprite): instead, the error detection will be 
left to the underlying calls so t hat Paint can support these features as 
they are added. 

The colours window of deep sprites will be represented by a 
•toolbox•-style colour picker dbox. 

Th is will mean that the same version of Paint will continue to run under 
all operating systems, as at present. For a list of the facilities that this 
will make obvious to the user, the reader should refer to the Black Video 
Software Functional Specification 1303,005/FS; however, in brief they are: 

sprite operations on new-format sprites with masks (including 
insertion/deletion of columns and rows); 

support for palettes on these sprites; 
support for wide translation tables, as produced by ColourTrans. 

JPEG support 

Paint will provide the new facility of a JPEG to sprite converter. 

The double-click action of a JPEG file will not be modified by Paint. If 
ChangeFSI has been seen, it will be loaded and the i mage displayed; if not, 
the usual error message will be displayed. 

If a JPEG file is dragged to Paint's icon, it wi l l be converted to a 
sprite file and opened. In order to reduce the compl exity of Paint's user 
interface in this case, a further change will be made: when a single-sprite 
file is loaded into Paint, in addition to the sprite file viewer, a sprite 
window will be opened containing the sprite in the file (along with its 
colours window, if required). So in particular, the effect of dragging a 
JPEG to Paint will be that the image is immediately displayed in an editable 
form. 

The JPEG generated will be converted as follows: the sprite produced will 
be in the current mode, and its size will be the same as the size of the 
JPEG (in OS units): this uses the assumption that JPEG pixels are 20SU 
squares. It will have no gamma correction. 

There will be no facilities to export JPEG images. 

Robustness 

The following input verification will be made to any sprite when it is 
loaded into Paint. (There is no need to do this on output, since Paint 
maintains the correctness of a sprite as it manipulates it, faults 
excepted.) The code for the following is to be implemented in Sprite Extend: 
Paint will call it from there. 

The offset to the first sprite must lie within the "used" part of the 
sprite area 

The offset to the free area must lie within the sprite area 
FOR each sprite 
DO the offset to the next sprite must lie within the •used" part of 

the sprite area 
the first bit used must be in the range [0; 32) (0 for a new 



OD 

format sprite) 
the last bit mu£t lie in the range (0; 32] 
the offset to the image must lie within this sprite 
the offset to the mask must lie within this sprite 
the size of an image with this many bpp and this width and 

height must fit within the space allowed for the image 
the size of a mask with this many bpp (1 for new format) and 

this width and height must fit within the space allowed 
for themask 

: 
Also, all offsets must be multiples of 4 - everything is word aligned. 
Although offsets are also normally positive, it is assumed they are unsigned 
numbers, and no upper bound is imposed. 

If any of these tests fail, the image will not be loaded. Note that the mode 
number is not checked: sprites with illegal modes are explicitly allowed, 
since they can usefully occur in sprite files. An illegal mode number will 
be assumed to have lbpp for the purposes of the image and mask size checks. 
These checks do not include facts which are •usually true• for sprites, but 
are not guaranteed by the sprite file definition: in particular, they allow 
an extension area, and they allow palettes of any size. 

Development testing 

Two standard files are used for developement testing, which contain each 
combination of depth and palette presence/absence, and each combination of x 
and y resolution. These will be used to ensure that each code path is 
exercised before the code is released. 

Acceptance tests 

The version of Paint produced by this work should be no slower than the 
Medusa release in all areas that are shared, i e, in the absence of JPEG 
objects. The size of the new code should be less than lOK squeezed. 

External dependencies 

None of the above can be tested properly until the Sprite Extend module 
is enhanced to provide the OSJPEG SWI's. A lot of the user-interface code 
can be written before then, however. 


