
I I

ACORN
ASSEMBLER RELEASE 2

Obi As"'
Source: I adfs: :Hard4.$.User.Bu ~
Options
~Throw

-·-··--·-·-RB = 7d538d36
R4 = 88888888
RB = 88888888

~DDT: adfs::Hard4.$.
29 ; Now for the ~
31
31 ENTRY
32
33
34
35
36 --

SWI
MOU
BL -·

ip = 88888888 SP = 888a8888 Ir

Acorn~

II

ACORN
ASSEMBLER RELEASE 2

Sou~ce: adf s: : Hard4. $.User. Bu~
Options
~Thro"

IL&;Aa

ENTRY
SWI
MOU

I~

Acorn~

ii

Copyright© Acorn Computers Limited I 99 I

Published by Acorn Computers Technical Publications Department

Neither the whole nor any part of the information contained in, nor the product

described in , this manual may be adapted or reproduced in any material form
except with the prior written approval of Acorn Computers Limited.

The product described in this manual and products for use with it are subject
to continuous development and improvement. All information of a technical
nature and particulars of the product and its use (including the information
and particulars in this manual) are given by Acorn Computers Limited in good
faith . However, Acorn Computers Limited cannot accept any liability for any
loss or damage arising from the use of any information or particulars in this
manual.

If you have any comments on this manual, please complete the form at the back
of the manual. and send it to the address given there.

Acorn supplies its products through an international dealer network. These
outlets are trained in the use and support of Acorn products and are available
to help resolve any queries you may have.

Within this publication, the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation '.

ACORN, ARCHIMEDES and ECONET are trademarks of Acorn Computers
Limited.

UNIX is a trademark of AT&T

Published by Acorn Computers Limited

Release 2
ISBN I 85250 096 4
Part number 0470,589
Product number SKD36
Issue I , May I99I

Contents

Contents iii

Introduction 1
Assembler tools

This user guide 2
Conventions used in this manual 3

Part 1 - Using the assemblers 5

Assemblers and the ODE 7
Using the assemblers through Make 7

Editor throwback 8
DDT debugging 11

Using FrontEnd on your programs 15
Making your own linkable libraries 16

AAsm 19
Starting AAsm 20
AAsm Setup options 21
AAsm output 25

AAsm icon bar menu 26
Example AAsm session 27
AAsm managed by Make 28
AAsm command lines 28

ObjAsm 31
Starting ObjAsm 31
ObjAsm SetUp options 33
ObjAsm output 37
ObjAsm icon bar menu 38
Example ObjAsm session 39
ObjAsm command lines 40

iii

Contents

iv

Part 2 - Assembly language details 43

The ARM cpu 45
Registers 46

FIO fast interrupt request 48

IRQ interrupt request 49

Address exception trap 49
Abort 50
Software interrupt 51
Undefined instruction trap 51
Reset 52

Vector summary 52
Modes of operation 52

Assembler language 55
Assembler language syntax 55
Symbols and labels 56
Expressions 57
Numeric constants 59
String constants 59
Boolean constants 59

Assembler operators 60

?Label 63
Operator summary 64

CPU instruction set 65
Conditional execution 65

Instruction timing 66

The barrel shifter 68

Shift types 70

Branch instructions 72

Data processing 73
Data processing instruction syntax 74
Data processing instruction summary 79

Single data transfer 79

Single data transfer instruction syntax 80
Block data transfer 8 I

Block data transfer instruction syntax 82
Stacking 84

Block data transfer: special points 88
Single data swap 89
Single data swap instruction syntax 90
Multiply and multiply-accumulate 90

Multiply instruction syntax 9 I
Supervisor calls 92
Supervisor ca ll s instruction syntax 92

Coprocessor instructions 93
Coprocessor data operations 93
Coprocessor data operation instruction syntax 94
Coprocessor/memory transfers 94

Coprocessor/memory transfer instruction syntax 95
Coprocessor/register transfers 95
Coprocessor/register transfers instruction syntax 96
Summary of assembler mnemonic combinations 96
Further instructions 98

Floating point instructions 101
Programmer's model I 0 I
Floating point status register I 07
Floating Point Control Register 112
Assembler directives and syntax 114
The instruction set I 15

Finding out more .. 121

Contents

v

Contents

vi

Directives 123
Number equating directives: */EOU 123

Register equating: RN 123

Coprocessor equating: CP 124

Coprocessor register equating: CN 124

Store-loading 124

ALIGN 125
LTORG 126

Laying out storage areas 126

Variables 128
Routines and local labels 130
Error handling 132

ORG 133
LEADR 133
END 133

GET 134

LNK 135
Objasm directives 135

Conditional and repetitive assembly 139
Conditional assembly 139
Repetitive assembly 141

Macros 143
Syntax 144

Local variables 145.
MEXIT directive 146
Default values 146
Macro substitution method 14 7
Nesting macros 148
A division macro 148

Part 3 - Developing software for RISC OS 151

Writing relocatable modules in assembler 153
Assembler directives 154
Examples 155

Interworking assembler with C 157
Examples 157

Using memory efficiently 161
Guidelines 161
Recovery from lack of memory 161

Avoiding permanent loss of memory 162
Avoiding memory wastage 163
Using heap_alloc and heap_free 171

Part 4 - Appendices 173

Appendix A - Error messages 175

Appendix B - Directives syntax table 183

Appendix C - Example assembler fragments 185
Using the conditional instructions 185

Pseudo-random binary sequence generator 186
Multiplication by a constant 187
Loading a word from an unknown alignment 188
Sign/zero extension of a half word 188

Return setting condition codes 188
Full multiply 189

Contents

vii

viii

Appendix D - ARM datasheet 191
Description of signals 195

Programmers' Model 199
Introduction 199
Registers l 99

Exceptions 20 l

Instruction Set 208
The condition field 208
Branch and branch with link (B, BL) 209
Data processing 2 l I
Multiply and multiply-accumulate (ML) 218

Single data transfer (LOR, STR) 221
Block data transfer (LDM, STM) 226

Software interrupt 233
Co-Processor data operations 235
Co-Processor data transfers 237
Co-Processor register transfers 240
Undefined instructions 242

Instruction set summary 243
Instruction Speeds 243

Index 245

1 Introduction

A corn Desktop Assembler is a development environment for producing RISC OS
.l"l. desktop applications and relocatable modules written in ARM assembly
language. It consists of a number of programming tools which are RISC OS desktop
applications. These tools interact in ways designed to help your productivity,
forming an extendable environment integrated by the RISC OS desktop Acorn
Desktop Assembler may be used with its sister product, Acorn Desktop C, to
provide an environment for mixed C and assembler development

Acorn Desktop Assembler includes tools to:

• edit program source and other text files

• search and examine text files

• examine some binary files

• assemble small assembly language programs

• assemble and construct more complex programs under the contro l of
makefiles, these being set up from a simple desktop interface

• squeeze finished program images to occupy less disk space

• construct linkable libraries

• debug RISC OS desktop applications interactively

• construct template files for RISC OS desktop applications.

Most of the tools in Acorn Desktop Assembler are also of genera l use for
constructing applications in other programming languages, and are, for example,
supplied with Acorn Desktop C. These non-language-specific tools are described in
the accompanying Acorn Desktop Development Environment user guide

Installation

Installation of Acorn Desktop Assembler is described in the accompanying Acorn
Desktop Development Environment user guide.

Assembler tools

The assemblers provided include the following features

• full support of the ARM instruction set

• global and local label capability

1

This user guide

• powerful macro processing

• comprehensive expression handling

• conditional assembly

• repetitive assembly

• comprehensive symbol table printouts

• pseudo-opcodes to control .printout

AAsm and Objasm

This user guide

The Assembler AAsm produces binary image files which can be executed
immediately, for example using a* imagefile command. A variant of AAsm,
ObjAsm, creates object files which cannot be executed directly, but must first be
linked using the Link tool. It is often most efficient to construct larger programs
from several portions, assembling each portion with ObjAsm before linking them
all together with Link. Object files linked with those produced by ObjAsm may be
produced from some programming language other than assembler, for example C.

The Link tool is described in the accompanying Acorn Desktop Development
Environment user guide, in the non-interactive tool section.

This document is a reference guide to the Assemblers working as part of the
Development Environment of Acorn Desktop Assembler. These assemblers are the
only tools in the Acorn Desktop Assembler product which are not used for
programming in other languages; the others are described in the accompanying
Acorn Desktop Development Environment user guide. It is assumed that you are familiar
with other relevant Archimedes documentation, such as the:

• Archimedes Welcome guide

• Archimedes User guide

• Programmer's reference manual

A good introduction to writing programs in Assembler on Archimedes is ARM
Assembly Language Programming by PJ Cockerell, (Computer Concepts/ MTC, 1987)

Note on program examples

2

Both general and specific examples of syntax and screen output are given but there
are occasions where the full syntax of an instruction and its accompanying screen
appearance would obscure the specific points being made. It follows, therefore,
that not all the examples given in the text can be used directly since they are
incomplete.

Introduction

Conventions used in this manual

The Assembler has its own interpretat ions of the punctuation symbols and special
symbols which are available from the keyboard. These are :

$ % & A @

+

I < > ?

In order to distinguish between characters used in syntax and descriptive or
explanatory characters, typewriter style typeface is used to indicate both text which
appears on the screen and text which can be typed on the keyboa rd This is so that
the position of relevant spaces is clearly indicated.

The fol lowing typograph ica l conventions are used throughout this manua l:

Convention

filename

& IC

{instruction}

ALIGN

Meaning

Text that you must replace with the name of a fi le,
register, variable or whatever is indicated.

Hexadecimal numbers are preceded with an ampersand .

Curly brackets { J enclose opt iona l items in the syntax.

For example, the Assembler AAsm accepts a three fie ld
source line which may be expressed in the form

{instruction} {l abel} { ; comment}

Text that you type exactl y as it appears in t he manua l. For
example :

L32 1 ADD Ra , Ra , Ra ,LSL #1 ;mult i p l y by 3

The abbreviation 'ODE' is used in later chapters to mean 'Desktop Development
Environment' .

3

4

Part 1 - Using the assemblers

5

6

2 Assemblers and the DOE

The two versions of the ARM macro assembler, AAsm and ObjAsm, are the only
tools included in Acorn Desktop Assembler which are specific to programming

in assembly language, hence are described in this volume. All other tools, such as
the editor and debugger, are described in detail in the accompanying Acorn Desktop
Development Environment user guide.

AAsm and ObjAsm both fit into the non-interactive class of DDE tools, which
means that, once you have started an assembly process and chosen a set of
options, you cannot interact with it to modify its behaviour, except to view output
and pause or stop it (interactive DDE tools, such as the DDT debugger, do allow
interaction). All non-interactive DDE tools have several features in common. These
are described in detail in the chapter entitled General features in the accompanyi ng
Acorn Desktop Development Environment user guide.

To load AAsm or ObjAsm onto the desktop, open a directory display on the DDE
directory of your work disk and double click on !AAsm or !ObjAsm The AAsm or
ObjAsm icon then appears on the icon bar. These have the standard screwdriver
and spanner appearance of all the non-interactive DOE tools:

From these icons you have access to the interface to set options and start
assembly tasks unmanaged by Make. For more details of these interfaces and their
use, see the chapters entitled AAsm and Objasm later in this volume.

Using the assemblers through Make
The DDE Make tool is designed to manage the efficient construction of programs
and libraries, usually from several source files. It avoids needless re-processing of
unaltered source files and ensures consistent construction by a method specified
in a Makefile. For more Make details see the chapter entitled Make in the
accompanying Acorn Desktop Development Environment user guide.

7

Editor throwback

ObjAsm and AAsm, like the other non-interactive DOE tools, can be used by Make
to process files. When managed by Make the assemblers are controlled by
command lines issued by Make, and their icons need not be present on the icon
bar. You don 't need to double click on !ObjAsm or !AAsm before starting a Make
job using these tools. The command lines issued by Make to the assemblers are
calculated from the contents of the Makefile controlling the job in progress The
command lines understood by ObjAsm and AAsm are described in the chapters
entitled ObjAsm and AAsm later in this volume.

If you have a machine with two megabytes or more you do not need to understand
the details of the command lines contained in your Makefiles; you can adjust them
using the same desktop interface as that avai lable from each tool 's icon . To do this
you follow the Make Tool options menu item and click on the name of the tool
concerned.

Editor throwback

8

During development of a program you may well find that you spend a high
proportion of your time repeatedly editing, assembling, and testing programs This
development cycle can be speeded up by using Throwback to the SrcEdit editor to
assist in removing assembly errors from your sources.

If SrcEdit and the DDEUtils module are loaded and you choose the assembler
Throwback option, then perform an assembly of a file causing an assembly error, a
browser window is presented by the editor Double clicking Select on an error line
in this browser window makes the editor open an edit window displaying the
source file causing the error, with the offending line in view and highlighted, ready
for correction. This facility can be used whether assembly is being performed
managed by Make or by using the assembler icon bar interfaces.

Example throwback session

First double click on !SrcEdit, !ObjAsm and !Link in a directory display to load
them as applications with icons on the icon bar. Next open a directory display on
the subdirectory User. AssemErr . s to show the text file AssemErr containing
the source of the program example of that name.

AssemErr is a simple assembly language program which when run prints Hello
World on the screen. It is written to be assembled to an object file by ObjAsm
then linked to form an executable image file with Link. Its source contains a simple
error which will be detected by ObjAsm when you try to assemble it

Assemblers and the DOE

Drag the source file AssemErr to the ObjAsm icon. The ObjAsm Setup dia logue
box will appear with the Source filename initialised to the absolute file name.
Ensure that the Throwback option is enabled: t he correct dialogue box
appearance is:

~ I t3 I ObiAs111
Source: ~D i sc4.$.User.Asse111Err.s.Asse111Er~ l Options

_§]Throwback 0 Debug I
I Run I I Cancel I

Click Menu on the dialogue box and ensure that the Work directory item on the
menu displayed has the default setting of ' 1"- Next click on Run on the dia logue
box to start assembly. This has the normal effect of removing the dialogue box and
putting the ObjAsm output display on the screen, but almost immediately
afterwards the assembler will produce an error and request SrcEdit to display a
throwback error browser:

Line
31

9

Editor throwback

10

Double click Select on the assembler error message Unexpected operand in
the browser. SrcEdit will display the source file with the line that caused the error
clearly highlighted:

Examining this line closely shows that a comma is missing after the close quote.
Insert this comma in SrcEdit and save the file . Click Select on the ObjAsm icon and
click the Run icon to repeat the last assembly. If you have changed the AssemErr
source correctly, the assembly shou ld now complete with no errors and without
bringing back the SrcEdit browser.

When the ObjAsm save dialogue box appears, click on the OK icon to save the
object file produced in the o subd irectory next to the s subdirectory containing the
source. Drag this object file to the Link icon on the icon bar. The Link SetUp
dialogue box appears:

~lf;31 Linker
Files: ~s::HardDisc4.$.User.RsseMErr.o.RsseMEr~

Options
4).RIF 0Relocahble RIF 0Debug
0Module 0Binary ouerbose

I Run I I Cancel I

DDT debugging

Assemblers and the DOE

On this dialogue box and its associated menu ensure that the defau lt output type

of AIF is chosen, then click on the Run action icon. Save the resultant output file in

a suitable directory such as the AssemErr subdirectory, then double click Select on

its name. The image file should now run, printing the Hello World message in a

RISC OS run window:

Run adfs::HardDisc4.$.User.AsseMErr.!RunlMage
Hello World

Press SPACE or click Mouse to continue

If you wish to debug your constructed program with the DDT debugger, you shou ld

use on ly the ObjAsm assembler, as AAsm does not provide sufficient symbol

information in its output files to al low more than a few DDT features to work.

DDT can debug assembly language programs at machine level (ie displaying the

current execution position on a disassembly of memory) or at source level (ie

displaying the current execution position as a source file line) If you wish to debug

at source level, the Debug option of ObjAsm must be enabled during assembly

Insert the ObjAsm KEEP directive (without a following symbol name) in each

source file to make this assembler output all symbol information . Your link

operation to produce the executable image file to debug with DDT must have the

Debug option se lected. See the chapter entit led Directives for more details of KEEP

Executing a binary produced in the above way, or dragging it from a directory

display to the DDT icon, starts a DDT debugging session on it See the chapter

entitled Desktop debugging tool in the accompanying Acorn Desktop Development
Environment user guide for more details of DDT

Example DDT session

This session demonstrates machine level debugging of assembly language with

DDT (see above for the meaning of machine level)

11

DDT debugging

12

First double click on ! DDT, !ObjAsm and ! Link in a directory display to load them as
applications with icons on the icon bar. Next open a directory display on the
subdirectory User . Buggy. s to show the text file Buggy (containing the source of
the program example of that name)

Buggy is a small assembly language program which when run is designed to print a
list of four hexadecimal random numbers on the screen . It is first assembled with
ObjAsm to an object file , then this object is linked with the PrintLib library in
User. PrintLib. o to form an executable image file. A fault has been
deliberately put in Buggy to illustrate the use of the DDT debugger. The directive
KEEP is in the Buggy source file to retain symbol names so that they appear in DDT
displays

Drag the text source file of Buggy to the ObjAsm icon on the icon bar to bring up
the Ob jAsm SetUp dialogue box, then click Run to start assembly Save the object
file produced, then drag it to the Link icon . The Link SetUp box wi ll appear. To link
with the PrintLib library, drag this file from User . PrintLib . o to Input files.
Ensure that the output format is AIF on the SetUp box, and click Run. Save the
executable image file in a suitable place, then double click Select on it The
program should run, but incorrect ly display on ly one random number:

Run adfs::HardDisc4.$.User.Buggy,!Runl~age
Four hexadeci~al rando~ nu~bers follow:
6F62A954

Press SPACE or click ~ouse to continue

Now we can determine what the problem is using DDT A quick inspection of the
source code in a SrcEdit window shows that the program is clearly intended to
display four random numbers. You may be able to spot the fault in the program
text. but here's a way of doing it with DDT

Repeat the link step by clicking Select on the Link icon bar icon, this time selecting
the Debug option on the SetUp box before clicking on Run. This produces a file
with an associated icon which has a black bug displayed on it. Double clicking on
this (or dragging it to the DDT icon) loads it into DDT. The two main DDT windows
appear:

Clicking Menu on either DDT window displays the DDT menu, from which you gain
access to its many features. For a detailed description of these see the chapter
entitled Desktop .debugging tool in the accompanying Acorn Desktop Development
Environment user guide. Click Select on the Single step item to bring up the single
step dialogue box:

1n9 e s ep .

Set this as above to step into procedures by ARM instruction. Click once or twice
on the OK icon and watch the program execution step forward. For the first few
instructions you will not recognise the code executed, it is initialisation code

13

DDT debugging

14

added by Link. Carry on until you reach I c $$code I - the Buggy code you
assembled. Now return to the DDT menu, Select Display, and start an updated
display of the ARM registers:

Dis la :

Continue single stepping, watching the registers change in the display window. An
example pair of main windows is:

When you reach the main top level printing loop, you should see what the problem
is .

The procedures ran d_word and prin t _hex obey the ARM Procedure Call
Standard as applied to leaf procedures (those that call no others) This standard
permits called procedures to alter rO to r3 (any return integer being in rO). The main

Assemblers and the DOE

top level printing loop incorrectly uses rl as an index. which is then altered by
print_hex to a negative number, terminating the loop. Change the register used
for this index to r4 . and all will be well:

...... ·: Run 'adfS:: HardDisc4. l.User ·: euaau~· !Runbaae
Four hexadeciMal randoM nufllhers follow:
51611466
B9F6E1AC
32E183F8
824F59D8

Press SPACE or click Mouse to continue

Using FrontEnd on your programs

FrontEnd is a relocatable module supplied as part of the Acorn Desktop Assembler
product which provides RISC OS desktop interfaces for non-interactive command
line programs. The DDE non-interactive tools (such as AAsm and ObjAsm) are
each command line programs supported in RISC OS by FrontEnd. This converts
each tool into a fully multitasking windowed RISC OS application For more details
of non-interactive DDE tools see the chapters entitled Working in tfie DDE and
General features in the accompanying Acorn Desktop Development Environment user guide.

You can use the power of FrontEnd to produce your own RISC OS applications. To
do this you need to construct

• a suitable command line program;

• a Templates file (constructed with FormEd) ;

• a Sprites file (constructed with Paint);

• a !Run file ;

• a ! Help text file containing a short description of your program ;

• a Messages text file ;

• a Desc front end description fil e.

To be suitable. your command line program has to be non-interactive; ie started
with a command line. then running to error or completi on wi thout any further user
interaction, and outputting reports as screen text. An assembler such as ObjAsm
fits this description, and an ed itor such as SrcEdit does not.

15

The Desc front end description file contains a specification of the appearance and
function of the desktop interface to be provided for your program by FrontEnd. It is
written in a specia l description language understood by FrontEnd. For more details
of how to produce this file see the chapter entitled Extending the DDE in the
accompanying Acorn Desktop Development Environment user guide. You may find it
easier to make this file by altering a description belonging to one of the
non-interactive tools rather than writing your own from scratch.

The Scramble example in your User directory is an example of a simple command
line program written in assembler and provided with a desktop interface by
Front End.

User. ! Scramble . scramble is the command line tool, with the corresponding
assembly language source in User . ! Scramble. s. It is a very basic command
line program, knowing nothing of RISC OS windows or multitasking. It scrambles
the contents of a text file to an unreadable jumble for security purposes. Repeating
a scramble of a file with an identical code string unscrambles the file. The
command line syntax of scramble is:

*scramble filename -code code_ text

The Sprites file of Scramble has been adapted (by simply renaming the appropriate
sprite to !Scramble) from that of one of the non-interactive DOE tools, so the
Scramble icon bar icon has the familiar spanner and screwdriver appearance, but
there is no need for your programs to have icons like this ; just produce your own
Sprites file with Paint

After assembling s . scramble , double click on !Scramble in the User directory
display to run it Double click on !Scramble with the Shift key down to inspect the
files which produce this effect The Scramble SetUp dialogue box appears as

~I C3 I Scra111ble
File: I I I
Code: I text I

Run Cancel I

Making your own linkable libraries

16

Linkable libraries , which are usually filed in o subdirectories like object files, are
co llections of many object files stored in one file. When presented to Link as an
input file, the referenced object files within a library are linked into the output file,
but those not needed are left out A linkable library is therefore a recommended

Assemblers and the DOE

way of storing a selection of useful procedures for re-use in a number of programs.
You may find that this facility can save you a lot of time by avoid ing continually
'reinventing the wheel'.

The tool used to construct and modify linkable libraries is LibFile. The tool DecCF
can also be used to decode some information about an existing library.

The programming example PrintLib, which you can find in User.PrintLib, consists
of three potentially useful procedures written in assembler which are intended to
be assembled to object files using ObjAsm and then formed into a library with
LibFile . They illustrate various programming points as well as how to construct a
library.

If you examine the assembler source files in User. PrintLib . s you will see that
the procedure exported by each file obeys the ARM Procedure Call Standard. This
ensures that they, and hence the PrintLib library, can be linked with other
languages such as C. It is essential that procedures placed in a library have
consistent register conventions, so that they can be re-used later without
consulting their source text.

The PrintLib example is provided with both its assembly language source and the
finished library. The facilities provided by thi s library are used in other
programming examples. The procedures it exports are :

print_string

print_hex

print_double

Print a null terminated string pointed to by rO.

Print in hexadecimal an integer contained in rO.

Print in scientific format a double precision floating point
number contained in rO ,rl .

To reconstruct PrintLib from its sources. first double click on !ObjAsm and ! LibFile
in a directory display to load them as applications with icons on the icon bar Then
assembles. PrintStr, s . PrintHex ands. PrintDble to corresponding
object files by dragging each source file to the ObjAsm icon and savi ng the output

17

Making your own linkable libraries

18

object files in the default places, ie o. PrintStr, o. PrintHex and
o . PrintDble. Next drag o. PrintStr to the Libfile icon to make the LibFile
SetUp dialogue box appear:

~ l(:J I LibFile
Library: :1 :

File List:. lc4.$.User.Printlib.o.PrintSt~
.·•.

Options
*Create <)Delete

oust library
<)Insert <)Extract

fo

I Run I I Cancel I

Ensure that the Create option is chosen as above. Drag the other two object files
to File List, then click on Run. Finally save the library file produced: it is now ready
to use.

The assembly language source file User . PrintLib . s . Test is an example
program making use of the procedures exported by PrintLib. To use it:

Double click on the !Link application to load it

2 Assembles. Test too. Test with ObjAsm.

3 Linko. Test with the finished PrintLib library to produce an executable AIF
image file.

Running the test program by double clicking on it should result in text output into
a RISC OS output window:

Run adfs::HardDisc4.$.User.Printlib.!RunI~age
Hello World
89ABCDEF
-1. 2346E-2

Press SPACE or click ~ouse to continue

3 AAsm

AAsm is one of the two ARM assemblers forming part of the Acorn Desktop
.l"'l. Assembler product. It processes a text file containing program source written
in ARM assembly language into an executable image file or relocatable module.
AAsm multitasks under the RISC OS desktop, allowing other tasks to proceed while
it operates.

An example use of AAsm is to construct a binary image file !Runlmage in a RISC OS
desktop application from a source file s . myprog. AAsm processes the source file
directly to form !Runlmage without the use of Link.

AAsm should not be used to assemble programs to be debugged using the DDT
debugger - use ObjAsm instead . AAsm provides the most direct way of processing
assembly language source into a runnable image file, and can be convenient for
assembling small programs working unmanaged by the Make tool. The other
assembler, ObjAsm, is more suitable for processing complex programs, as AAsm
forces you to assemble a program in one chunk, using directives GET and LNK to
join source files together at assembly time . This me<rns that everything has to be
reassembled if you make a change to one source file. ObjAsm has to be used if you
wish to construct a program from a mixture of assembly language and a high level
language such as C.

The controls of AAsm are similar to those of other non-interactive DOE tools (for a
description of the common features of these tools see the chapter entitled General
features in the accompanying Acorn Desktop Development Environment user guide). You
adjust options for the next assembly operation on a setup dialogue box and menu
which by default appear when you click Select on the main tool icon or drag a
source file to it. Once you have set the required options you click on Run and the
assembly starts. Output and text messages from the assembler can be displayed in
one of two windows and menu options allow you to pause or stop the job at any
time .

There is no file type to double click on to start AAsm - AAsm owns no filetype
unlike, for example, Draw.

19

Starting AAsm

20

Like other non-interactive DDE tools, AAsm can be used under the management of
Make, with its assembly options specified by the makefile passed to Make. For such
managed use, AAsm is started automatically by Make, you don't have to load AAsm
onto the icon bar.

To use AAsm directly, unmanaged by Make, first open a directory display on the
DDE directory, then double click Select on !AAsm. The AAsm main icon appears on
the icon bar.

Clicking Select on this icon or dragging an assembly language source file from a
directory display to this icon brings up the AAsm SetUp dialogue box:

~I (31 RRs111
Source: I I I r Options

I

,,,,

..:[§]Throwback

I Run I I Cancel I

Source will appear containing the name of the last filename entered there, or
empty if there isn't one.

Dragging a file on to the icon will bring up the dialogue box and automatically
insert the dragged filename as the Source file.

Clicking Menu on the SetUp dialogue box brings up the AAsm SetUp menu:

Co111111and line ¢

.J Sta111p
Cross reference
Print
No Terse
Width ¢

Length ¢

Module
.J NoCache
.J Work directory ¢

Max Cache it>
C strings

The SetUp dialogue box and menu specify the next assembly job to be done. You
start the next job by clicking Run on the dialogue box (or Command line menu
dialogue box). Clicking Cancel removes the SetUp dialogue box and clears any
changes you have just made to the options settings back to the state before you
brought up the SetUp box. The options last until you adjust them again or !AAsm
is reloaded . You can also save them for future use with an option from the main
icon menu.

AAsm Setup options
When the SetUp dialogue box is displayed the Source writable icon contains the
name of the sourcefile to be assembled. The sourcefile can be specified in two
ways:

• If the SetUp box is obtained by clicking on the main AAsm icon, it comes up
with the sourcefile from the previous setting. This helps you repeat a previous
assembly, as clicking on the Run action button repeats the last job if there was
one.

• If the SetUp box appears as a result of dragging a source file containing
assembly language text to the main icon, the source file will be the same as
the dragged source file.

When the SetUp box appears the Source icon has input focus, and can be edited in
the normal RISC.OS fashion . If a further source file is selected in a directory display
and dragged to Source, its name replaces the one already there.

Setup dialogue box options

The Throwback option switches editor throwback on or off. When enabled, if the
DDEUtils module and SrcEdit are loaded, any assembly errors cause the editor to
display an error browser. Double clicking Select on an error line in this browser
makes the editor display the source file containing the error, with the offending
line highlighted. See the chapter entitled SrcEdit in the accompanying Acorn Desktop
Development Environment user guide for more details.

Throwback is on by default.

21

... ·-··· ----,- -,--·-··-

Setup menu options

22

The AAsm RISC OS desktop interface works by driving an AAsm tool underneath
with a command line constructed from your SetUp options . The Command line
item at the top of the Set Up menu leads to a sma ll dialogue box in which the
command line equivalent of the current SetUp opt ions is displayed:

» .C.ofllflland Line:

4 sta~p
¢ ModeEx. ~. Mod~E~~ . -Thro~Back . -St a~p :N~Ca.~h~

Cross reference
Print
No Terse
Width
Length
Module

4 NoCache
4 Work directory ¢

MaxCache ¢
C strings

I Run l

Clicking on Run in this dialogue box starts assembly in the same way as clicking on
Run in the main SetUp box. Pressing Return in the writable icon in this box has the
same effect. Before starting assembly from the command line box, you can edit the
command line textually, although this is not normally useful.

Stamp causes any output image files to have up to date timestamps.

Stamp is on by default.

When Cross reference is enabled (with a tick next to it) an alphabetica lly sorted
cross reference of all symbols encountered is output after assembly. Note that the
text output may be very large for a big program and so this option may not function
on a machine with restricted memory.

Cross reference is off by default.

The Print option enables assembler sou rce code to be viewed directly from the
SrcEdit editor or from within the Assembler. This option turns on the Assembler
screen listing, and during assembly the source code, object code, memory
addresses and reference line numbers will be printed on the screen .

Print is off by default.

NoTerse modifies the effect of the Print option. If NoTerse is not enabled , Print
only outputs the conditionally assembled parts of your program, but with NoTerse
enabled (accompanied by a tick), conditionally non-assembled parts are listed as
well.

NoTerse is off by default.

Width allows you to specify assembler output width :

Cofllflland
.J Stafllp

Cross reference
Print
Ho Terse
Width
Length
Module

.J HoCache

.J Work directory ¢

MaxCache ¢
C strings

AAsm

This should be specified as an integer between I and 254. A width of 76 is suitable

for a Mode 12 RISC OS window.

The default width is 13 1.

Length allows yqu to specify the number of lines per page for printer output. At the

end of each page the assembler inserts a form feed characte r.

The default length is 60.

Enabling the Module option is the way to produce a re locatable module as an

AAsm output file rather than an executable imagefile . This opt ion is present with

AAsm but not ObjAsm, since ObjAsm always produces linkable object files as its

output, and producing a relocatable modu le from object fi les is enabled with t he

options of the Link tool.

Module is off by default.

When NoCache is switched off cacheing is enabled. AAsm is a two pass assembler

- it examines each source file twice. To avoid reading each sou rce fi le twice from

disk the assembler can cache the source in memory, reading it from disk for the

first pass, then storing it in RAM for the second.

Cacheing is a very heavy user of memory, making it unsuitable for smaller
machines.

NoCache is by default on - cacheing off.

23

AAsm SetUp options

24

Work directory allows you to specify the work directory:

Co~~and line ¢
-1 sta~p

Cross reference
Print
No Terse
Width ¢
Length ¢
Module

./ NoCache

./ Work di re ct Ot'Y

MaxCache
C strings

The GET and LNK directives both result in the assembler loading sou rce files
specified with the directive. The work directory is the place where these source files
are to be found . An example is a source fi le adf s : : 4. $.user . s . foo containing
the line

GET s.macros

If the work directory is /\ then the fi le loaded is:

adfs : :4.$.user .s. A . s .macros
(ie adfs: : 4. $.user. s .macros)

The work directory must be given relative to the posit ion of the source file
conta ining the GET or LNK, without a t rai l ing dot

The defau lt work directory is A_

MaxCache allows you to specify the maximum amount of RAM to be used for
cacheing source files (when NoCache is off) The maximum cache is specified in
megabytes.

The defaul t MaxCache is 8Mb - effectively un li mited .

C strings, when enabled, allows the assembler to accept C style string escapes
such as '\n'. C strings is not enabled by default. as it results in '\' characters in
string constants being interpreted in a different way compared to previous Acorn
assemblers.

AAsm output
Msm outputs text messages as it proceeds. These include source listings and
symbol cross references (described in the previous section). By default any such
text is directed into a scrollable output window:

This window is read-only: you can scroll up and down to view progress, but you
cannot edit the text without first saving it. To indicate this, clicking Select on the
scrollable part of this window has no effect.

The contents of the window illustrated above are typical of those you see from a
successful assembly; the title line of the assembler with version number, followed
by no error messages.

Clicking Adjust on the close icon of the output window switches to the output
summary dialogue box. This presents a reminder of the tool running (Msm), the
status of the task (Running, Paused, Completed or Aborted), the time when the
task was started and the number of lines of output that have been generated (ie
those that are displayed by the output window)

Clicking Adjust on the close icon of the summary box returns to the output
window.

Both the above Msm output displays follow the standard pattern of those of all
the non-interactive ODE tools. The common features of the non-interactive ODE
tools are covered in more detail in the chapter entitled General features in the
accompanying Acorn Desktop Development Environment user guide. Both Msm output

25

AAsm icon bar menu

displays and the menus brought up by clicking Menu on them offer the standard
features allowing you to abort, pause or continue execution (if the execution hasn't
completed), and to save output text to a file or repeat execution.

AAsm error messages appear in the· output viewer. with copies in the editor error
browser when throwback is working. Appendix A - Error messages at the end of this
manual contains a list of all the AAsm error messages together with brief
explanations.

Assembly listings and cross references appearing in the output window are often
very large for assemblies of complex source files. The scrolling of the output
window is useful to view them, and to investigate them with the full facilities of the
source editor. You can save the output text straight into the editor by dragging the
output file icon to the SrcEdit main icon on the icon bar

AAsm icon bar menu

26

The AAsm main icon bar menu follows the standard pattern for non-interactive
DOE tools:

Info ¢

Saue options
~¢
Help
Quit

Save options saves all the current AAsm options, including both those set from
the SetUp dialogue box and from the Options item on this menu. When AAsm is
restarted it is initialised with these options rather than the defaults.

The Options submenu allows you to set the following options:

Display specifies the output display as either a text window (default) or as a
summary box.

If Auto run is enabled, dragging a source file to the AAsm main icon
immediately starts an assembly with the current options rather than
displaying the SetUp box first

If Auto save is enabled output image files are saved to suitable places
automatically without producing a save dialogue box for you to drag the file

from .

Both Auto run and Auto save are off by default

AAsm

Clicking on Help on the main AAsm menu displays a short text summary of the

various SetUp options, in a scrollable read-only window:

Purpose: .Bbso lute asmlb l er

Setup:
Icon RctiontMeaning

Source

Throuback

Menu:
Entry

Sta

Example AAsm session

Na111e of file to be asselllbled
(either typed or dragged)
Re(lort errors and warnings to the
editor

RctiontMeaning
--------------Ti 111est a the ob"ect roduced

Default

nil

on

Default
on Oi1

~ ·1!1

The programming example ModeEx is a relocatable module written in assembly

language processed from text source to usable module with AAsm . The ModeEx

relocatable module, when rmloaded, provides an extra screen mode, mode 29.

Unless you alter the parameters in the source file , mode 29 is similar to mode 12 in

having 16 colours. but has no borders. allowing 96 by 36 characters on the screen

instead of 80 by 32. You may well find this mode a useful one in which to work with

the ODE, as it offers a useful compromise between character size and information

visible.

To construct this module, first double click on !AAsm to load it as an application

with an icon on the icon bar. The source of ModeEx is in the subdirectory

User . ModeEx . s. Drag the text source file to the AAsm icon to make the AAsm
SetUp box appear:

~IOI Affsfll

Source: I: HardDi sc4, $,User, ModeEx, s, ModeEx] I Options
_ [ili] Tht•owback I
I Run I I Cancel I

Set the Module option on the SetUp menu to on, then click on Run . The module

will then assemble, so you can save it and use it.

27

AAsm managed by Make

AAsm managed by Make

When Acorn Desktop Assembler is installed on your system , Make understands

ObjAsm, not AAsm , as the tool tci process assembly language source from s

subdirectories.

To use AAsm managed by Make, ie driven by a recipe stored in a Makefile created

by Make, store your source in a directory not having the recognised names . When

first creating your project in the New project dialogue box. specify AAsm as the

tool creating the final target. Drag your top level source file to the Insert field of

your Project dialogue box and set AAsm tool options in the normal way.

For general details of the operation of Make. see the chapter entitled Make in the

accompanying Acorn Desktop Development Environment user guide.

AAsm command lines

28

AAsm, in common with the other non-interactive DOE tools. can be driven with a

text command line without its RISC OS desktop interface appearing. This enables

AAsm to be driven by Make as specified in textual makefiles.

You can use AAsm outside the RISC OS desktop from its command line. in the

same way that it could be used in the previous Acornsoft Archimedes Assembler

product. However. as all the useful AAsm features can now be more conveniently

used from the RISC OS desktop there is little reason for you to do this. The desktop

removes the need for you to understand the command line syntax.

The AAsm RISC OS desktop interface drives the AAsm tool underneath by issuing a

command line constructed from your SetUp options. The Command line SetUp

menu option allows you to view the command line constructed in this way.

If you have a machine with more than I Mb of RAM, the Make tool allows you to

construct makefiles with assembly operations specified using the AAsm desktop

interface (by following the Tool options item of Make). You can therefore construct

makefiles without understanding the command line syntax of AAsm .

The command line syntax of AAsm is documented here as a reference.

A command line just consisting of the tool name AAsm causes the assembler to

drop into an obsolescent interactive mode. within which you issue commands with

the assembler resident in memory. It is not recommended to use this mode, but its

syntax is revealed by typing he l p once it is entered. Interactive mode is left by

entering Qui t (or Q for short) . This mode of use is not covered further here.

The AAsm command line consists of the AAsm tool name followed by a series of

keywords, some of which are followed by associated arguments. Each keyword

starts with a minus sign (-) and is case independent, but is listed below with its

minimum abbreviation in capital letters:

-FRom filename

-TO filename

-Stamp

-THrowback

-Xref

-Print

-NOTerse

-Width number

-Length number

-Module

-NoCache

-Desktop dirname

-Maxcache number

-Quit

-Closeexec

-Esc

Specifies the source file (the Source item of the SetUp
box).

Specifies the output image or module file name.

Time stamps the output image or module file (the
SetUp box Stamp Output option)

Enables source editor throwback when available (the
SetUp box Throwback option).

When combined with -Quit outputs a sorted cross
reference (the SetUp menu Cross reference option).

Enables source file listing (the SetUp menu Print
option)

Enlarges source listing (the SetUp menu NoTerse
option).

Sets output width to an integer number of characters.

Sets output page length to an integer number of lines.

Sets output file type to relocatable module (the SetUp
menu Module option).

Do not cache source files (the SetUp menu NoCache
option)

Specifies the work directory in which to find GET or
LNK files (the SetUp menu Work directory option)

Specifies the maximum cache size as an integer
number of megabytes.

Avoids entering interactive mode after assembly -
recommended

Closes any open exec files if assembly fail s.

Enable C style string escapes (the SetUp menu

C strings option).

29

AAsm command lines

30

-FRom and -TO have no effect unless both are specified . If both are specified, an
assembly is performed immediately using the specified files. The parameters
belonging to - FRom and -TO may be specified in this order without using the
keywords

4 ObjAsm

ObjAsm is one of the two ARM assemblers forming part of the Acorn Desktop

Assembler product. It processes text files containing program source written

in ARM assembly language into linkable object files. Object files can be linked by

the Link tool with each other or with libraries of object files to form executable

image files or relocatable modules. ObjAsm multitasks under the RISC OS

desktop, allowing other tasks to proceed while it operates.

ObjAsm must be used to assemble programs to be debugged using the DDT

debugger. It is more suitable than AAsm for the construction of large programs, as

for ObjAsm the sources can be split into several files and only re-assembled to

object files when you have altered them .

An example use of ObjAsm is to construct a binary image file !Runlmage in a

RISC OS desktop application from the two source files s . interface and

s. portable. ObjAsm processes the source files to form o . interface and

o . portable, which the Link tool processes to form ! Runlmage.

The controls of ObjAsm are similar to those of other non-interactive DOE tools,

with the common features described in the chapter entitled General features in the

accompanying Acorn Desktop Development Environment user guide. You adjust options

for the next assembly operation on a setup dialogue box and menu which by

default appear when you click Select on the main icon or drag a source file to it.

Once you have set options you click on a Run action icon and the assembly starts.

While the assembly is running output windows display any text messages from the

assembler and allow you to stop the job if you wish.

There is no file type to double click on to start ObjAsm - ObjAsm owns no file type

unlike, for example, Draw.

Starting ObjAsm
Like other non-interactive DOE tools, ObjAsm can be used under the management

of Make, with its assembly options specified by the makefile passed to Make. For

such managed use, ObjAsm is started automatically by Make, you don't have to
load ObjAsm onto the icon bar.

To use ObjAsm directly, unmanaged by Make, first open a directory display on the

DOE directory, then double click Select on !ObjAsm . The ObjAsm main icon

appears on the icon bar.

31

Starting ObjAsm

32

Clicking Select on this icon or dragging an assembly language source file from a
directory display to this icon brings up the ObjAsm SetUp dialogue box:

'11 f;) I ObiAsfll

ODebug
T

I Run I Cancel

Source will appear containing the name of the last filename entered there, or
empty if there isn't one.

Dragging a file on to the icon will bring up the dialogue box and automatically
insert the dragged filename as the Source file .

Clicking Menu on the SetUp dialogue box brings up the ObjAsm SetUp menu

Cofllflland I ine ¢

4 StafllP
Cross reference
Print
Ho Terse
Width ¢

Length ¢

4 HoCache
4 Work directory ¢

MaxCache ¢

C strings

The Setup dialogue box and menu specify the next assembly job to be done. You
start the next job by clicking Run on the dialogue box (or Command line menu
dialogue box). Clicking Cancel removes the SetUp dialogue box and clears any
changes you have just made to the options sett ings back to the state before you
brought up the SetUp box. The options last until you adjust them again or
!ObjAsm is reloaded . You can also save them for future use with an opt ion from the
main icon menu.

ObjAsm

ObjAsm SetUp options

When the SetUp dialogue box is displayed the Source writable icon contains the

name of the source file to be assembled . The sourcefi le can be specified in two

ways:

• If the SetUp box is obtained by clicking on the main ObjAsm icon, it comes up

with the sourcefile from the previous setting. This helps you repeat a previous

assembly, as clicking on the Run action icon repeats the last job if there was

one.

• If the SetUp box appears as a result of dragging a source file containing

assembly language text to the main icon . the source file will be the same as

the dragged source file .

When the SetUp box appears the Source icon has input focus. and can be edited in

the normal RISC OS fashion If a further source file is selected in a directory display

and dragged to Source. its name replaces the one already there.

Setup dialogue box options

The Throwback option switches editor throwback on or off. When enabled. if the

DDEUtils module and SrcEdit are loaded. any assembly errors cause the editor to

display an error browser. Double clicking Select on an error line in this browser

makes the editor display the source file containing the error, with the offending

line highlighted See the chapter entitled SrcEdit in the accompanying Acorn Desktop

Development Environment user guide for more details.

Throwback is on by default.

The Debug option switches on or off the production of debugging tables . When

enabled, extra information is included in the output object file which enables

source level debugging of the linked image (as long as the Link Debug option is

also enabled) by the DDT debugger. If this option is disabled, any image file finally

produced can only be debugged at machine level. Source level debugging allows

the current execution position to be indicated as a displayed line of your source ,

whereas machine level debugging only shows the position on a disassembly of

memory.

33

uo1~sm ;:,erup opuons

34

Setup menu options

The ObjAsm RISC OS desktop interface works by driving an ObjAsm tool
underneath with a command line constructed from your SetUp options. The
Command line item at the top of the SetUp menu leads to a small dialogue box in
which the command line equivalent of the current SetUp options is displayed:

J Sta111p
Cross reference
Print
No Terse
Width ¢
Length ¢

J NoCache
J Work directory ¢

Max Cache ¢
C strings

The Run action icon in this dialogue box starts assembly in the same way as that in
the main SetUp box. Pressing Return in the writable icon in this box has the same
effect. Before starting assembly from the command line box, you can edit the
command line textually, although this is not normally useful.

Stamp causes any output object files to have up to date timestamps

Stamp output is on by default.

When Cross reference is enabled (with a tick next to it) an alphabetically sorted
cross reference of all symbols encountered is output after assembly. Note that the
text output may be very large for a big program and so thi s option may not function
on a machine with restricted memory.

Cross reference is off by default .

The Print option enables assembler source code to be viewed directly from the
SrcEdit editor or from within the Assembler. This option turns on the Assembler
screen listing, and during assembly the source code, ob ject code, memory
addresses and reference line numbers will be printed on the screen .

Print is off by default.

NoTerse modifies the effect of the Print option Without NoTerse enabled . Print
only outputs the conditionally assembled parts of your program , but with NoTerse
enabled (accompanied by a tick), conditionally non-assembled parts are listed as
well.

NoTerse is off by default.

Width allows you to specify assembler output width:

Cross reference
Print
No Terse
Width
Length

.J NoCache

.J Work directory ¢

MaxCache ¢
C strings

Ob}Asm

This should be specified as an integer between I and 254. A width of 76 is suitable

for a Mode 12 RISC OS window.

The default width is 131.

Length allows you to specify the number of lines per page for printer output. At the

end of each page the assembler inserts a form feed character

The default length is 60.

When NoCache is switched off cacheing is enabled. Ob jAsm is a two pass

assembler - it examines each source file twice. To avoid reading each source file

twice from disk the assembler can cache the source in memory, reading it from disk

for the first pass. then storing it in RAM for the second.

Cacheing is a very heavy user of memory, making it unsuitable for smaller

machines.

NoCache is by default on - cacheing off.

35

36

Work directory allows you to specify the work directory:

Co~~and line ¢
.J Sta~p

Cross reference
Print
Ho Terse
Width ¢
Length ¢

.J HoCache

.J Work dire ct ory
Max Cache
C strings

The GET and LNK directives both result in the assembler loading source files
specified with the directive. The work directory is the place where these source files
are to be found. An example is a source file adfs: : 4. $.user. s. foo containing
the line

GET s.macros

If the work directory is /\ then the file loaded is

adfs: :4.$.user.s . A. s . macros
(ie adfs :: 4. $.user. s .macros)

The work directory must be given relative to the position of the source fil e
containing the GET or LNK, without a trailing dot.

The default work directory is A_

MaxCache allows you to specify the maximum amount of RAM to be used for
cacheing source files (when NoCache is off) . The maximum cache is specified in
megabytes.

The default maximum cache is 8Mb - effectively unlimited .

C strings, when enabled, al lows the assembler to accept C style string escapes
such as '\n'. C strings is not enabled by default, as it results in' \' cha racters in
string constants being interpreted in a different way compared to previous Acorn
assemblers.

ObjAsm output

ObjAsm

ObjAsm outputs text messages as it proceeds. These include source l istings and

symbol cross references (as described in the previous sections). By default any

such text is directed into a scrollable output window:

This window is read-only: you can scroll up and down to view progress. but you

cannot edit the text without fi rst saving it. To indicate this clicking Select on the

scrollable part of this window has no effect.

The contents of the window i l lustrated above are typical of those you see from a

successful assembly; the title line of the assembler with version number. followed

by no error messages.

Clicking Adjust ·on the close icon of the output window switches to the output

summary dialogue box. Thi s presents a reminder of the tool running (ObjAsm). the

status of the task (Running, Paused, Completed or Aborted), the time when the

task was started and the number of lines of output that have been generated (ie

those that are displayed by the output window)

Clicking Adjust on the close icon of the summary box returns to the output

window.

Both the above ObjAsm output displays follow the standard pattern o f those o f all

the non-interactive DDE tools . The common features of the non-interactive DDE

tools are covered in more detail in the chapter entitled General features in the

accompanying Acorn Desktop Development Environment user guide. Both ObjAsm

37

output displays and the menus brought up by clicking Menu on them offer the
standard features allowing you to abort, pause or conti nue execution (if the
execution hasn't completed) and to save output text to a file or repeat execution .

ObjAsm error messages appear in the output viewer, with copies in the editor error
browser when throwback is working. Appendix A - Error messages at the end of this
manual contains a li st of all ObjAsm error messages together with brief
explanations.

Assembly l istings and cross references appearing in the output window are often
very large for assembl ies of complex source files. The scrolling of the output
window is useful to view them. and to investigate them with the full facilities of the
source editor. you can save the output text straight into t he editor by dragging the
output file icon to the SrcEdit main icon on the icon bar

ObjAsm icon bar menu

38

The ObjAsm main icon bar menu follows the standard pattern fo r non-interactive
DOE tools:

Info ¢
Save options
~¢
Help
Quit

Save options saves all th e current Ob jAsm options. including both those set from
the Set Up dialogue box and from the Options item on this menu . When ObjAsm is
restarted it is initiali sed with these options rather than the defaults .

The Options submenu allows you to set the following options:

Display specifies the output display as either a text window (defau lt) or as a
summary box.

If Auto run is enabled . dragging a source fil e to the ObjAsm main icon
immediately sta rts an assembly with the current options rather than
displaying the SetUp box first.

If Auto save is enabled output image fi les are saved to suitable places
automatically without producing a save dialogue box for you to drag the fil e
from.

Both Auto run and Auto save are off by default.

ObjAsm

Clicking on Help on the main ObjAsm menu displays a short text summary of the

various SetUp options, in a scrollable read-only window:

··~

Purpose: ARM asselllbler outputting object files

Setup:
Ieon Rcfi on/Meaning Defau It

Source Ha111e of file to be assefllbled nil

<either typed or dragged>
lhrollback Report errors and riarnings to the on

editor

Menu :
Entry Rct ion1Mean ing Default

--------------Sta T i111esta the ob"ect roduced on

Example ObjAsm session

The programming example User . ! Scramble is a non-desktop free stand ing

command line program written in assembly language and given a RISC OS desktop

interface (ie made into an application) by the FrontEnd module supplied as part of

the DOE. Its purpose is to scramble the contents of text files for security. Repeating

a scramble of a file with the same code text unscrambles it.

For more details of its support by the FrontEnd module , see the section entitled

Using FrontEnd on your programs on page 15.

The assembly language source for scramble is in the subdirectory

User . ! Scramble . s. The code demonstrates the fo llowing points:

• ObjAsm directives needed fo r a free standing program;

• processing command lines from assembly language;

• random number generation;

• simple file handling;

• register usage by procedures .

39

To assemble scramble, first double click on !Objasm and ! Link in a di rectory
display to load them . Drag t he scramble sou rce text fi le to the ObjAsm icon. The
SetUp dialogue box of ObjAsm appears Check that the defaul t SetUp opt ions are
enabled:

" I f:l I ObiAslll
Source: ~isc4.$.User. ! Scrafllble.s.scrafllbl~ I Options

<'",.;o'-

ODebug I _Im Throwback

I Run I I Cancel I
Click on Run to proceed, and save the object file produced in ! Scramble. o. Drag
the object file to the Link icon, and Run Link to produce an AIF executable image
file, the link having the scramble object file as its only input file . The command line
program is now ready for use.

Try copying the source file for scramble up into the subdi rectory
User . ! Scramble as Test. and move out of t he desktop to the command l ine by
pressing Fl 2. The command line syntax of scramble is :

*scramble filename -code code_ text

As an experiment. try typing

*dir $. User. !Scramble
*scramble Test -code DDEisFriendly

Now re-enter the desktop by leaving the command line (by pressing Return) , and
examine the text file Test with SrcEdit. It will be completely scrambled. Repeat the
scramble from the command l ine with the same code text to unscramble the file.

ObjAsm command lines

40

ObjAsm, in common with the other non-interactive DDE tools, can be driven with a
text command line without its RISC OS desktop interface appearing. This enables
ObjAsm to be driven by Make as specified in textual makefiles .

You can use ObjAsm outside the RISC OS desktop from its command line, in the
same way that it could be used in the previous Acornsoft Archimedes Assembler
product . However, as all the useful ObjAsm features can now be more conveniently
used from the RISC OS desktop there is litt le reason for you to do this. The desktop
removes the need for you to understand the command line syntax.

ObjAsm

The ObjAsm RISC OS desktop interface drives the ObjAsm tool underneath by
issuing a command line constructed from your SetUp options. The Command line
SetUp menu option allows you to view the command line constructed in this way.

If you have a machine with more than 1 Mb of RAM, the Make tool allows you to
construct makefiles with assembly operations specified using the ObjAsm desktop
interface (by following the Tool options item of Make). You can therefore construct
makefiles without understanding the command line syntax of Objasm.

The command line syntax of ObjAsm is documented here as a reference.

A command line just consisting of the tool name ObjAsm causes the assembler to
drop into an obsolescent interactive mode, within which you issue commands with
the assembler resident in memory. It is not recommended to use this mode, but its
syntax is revealed by typing help once it is entered. Interactive mode is left by
entering Quit (or Q for short). This mode of use is not covered further here.

The ObjAsm command line consists of the ObjAsm tool name followed by a series
of keywords, some of which are followed by associated arguments Each keyword
starts with a minus sign (-)and is case independent, but is listed below with its
minimum abbreviation in capital letters:

- FRom filename Specifies the source file (the Source item of the SetUp
box)

-TO filename Specifies the output object file name.

-Stamp Time stamps the output object file (the SetUp box Stamp
Output option)

-THrowback Enables source editor throwback when available (the
Setup box Throwback option)

-Xref When combined with -Quit outputs a sorted cross
reference (the SetUp menu Cross reference option).

-Print Enables source file listing (the SetUp menu Print
option)

-NOTerse Enlarges sou rce listing (the Setup menu NoTerse
option)

-Width number Sets output width to an integer number of characters.

-Length number Sets output page length to an integer number of lines.

-NoCache Do not cache source files (the SetUp menu NoCache
option)

-Desktop dirname Specifies the work directory in which to find GET or LNK
files (the SetUp menu Work directory option)

41

ObjAsm command lines

42

-Maxcache number Specifies the maximum cache size as an integer number
of megabytes

-Quit Avoids entering interactive mode after assembly -
recommended.

-Closeexec Closes any open exec files if assembly fails.

- FRom and -TO have no effect unless both are specified. If both are specified, an
assembly is performed immediately using the specified files. The parameters
belonging to -FRom and -TO may be specified in this order without using the
keywords.

Part 2 - Assembly language
details

43

44

5 The ARM cpu

The ARM (Advanced Rise Machine) is a 32-bit single chip microprocessor which
has a reduced instruction set architecture. There are nine classes of

instruction:

• branches

• data operations between registers

• single register data transfers

• multiple register data transfers

• supervisor calls

• multiplies

• coprocessor data operations

• coprocessor/memory transfers

• coprocessor/register transfers

The ARM has a 32-bit data bus and a 26-bit address bus . A 3-stage instruction
pipeline allows an instruction to be executed while the next instruction is being
decoded and the one after that is being fetched.

All instructions are designed to fit into one 32-bit word and all instructions can be
made conditional. The processor can access two types of data:

• bytes (8 bits)

• words (32 bits)

The program counter (PC) is 24 bits wide and counts to &FFFFFF However, two
low-order bits (both zeros) are appended to the PC value and a 26-bit value is put
on the address bus, thus quadrupling the total count to &3FFFFFC. The memory
capacity of the ARM processor is 64 Mbytes, or l 6 Mwords.

The PC is always a multiple of four because of the two appended zeros, and so it
follows that instructions must be aligned to a multiple of four bytes The
instructions are given in one word and data operations are only performed on word
quantities. Load and store operations can operate on either bytes or words and
these instructions can put a full 26-bit address, with bits O and I set as required, on

to the address bus.

45

Registers

Registers

46

The ARM normally operates in a mode of operation ca lled User Mode, and in this
environment the programmer sees a bank of sixteen 32-bit registers , RO to RI 5.
Eleven other registers exist and they are used when the ARM is in Interrupt Mode,
Fast Interrupt Mode, or Supervisor Mode (see The four modes of operation below)

Of the sixteen registers RO-R 15 , on ly R 14 and R 15 are regarded as having specific
purposes:

Register R15

RI 5 contains 24 bits of program counter (PC) and 8 bits of processor status register
(PSR)

Special bits in some instructions allow the PC and PSR to be treated together, or
separately, as required Allocation of bits within register R l 5 on page 4 7 shows the
allocation of the bits within the register RI 5.

User mode I SVC mode I IRQ mode I . FIQ mode

RO
R1
R2
R3
R4
RS
R6
R7

R8 I R8_fiq
R9 I R9_fiq

R10 I R10_fiq
R11 I R11_fiq
R12 I R12_fiq

R13 I R13_svc I R13_irq I R13_fiq
R14 I R14_svc I R14_i rq I R14_fiq

R 1 S(PC/PSR)

Figure 5.1 The four modes of operation

31 30 29 28 27 26 25 2 1 0

IN I z I c Iv I 1 IF I PROGRAM COUNTER (PC) IM1 !Mo l

Processor mode

00
01

IO

User mode
FIO mode
IRO mode

11 Supervisor mode

FIO Disable

0 Enable
Disable

I
Processor mode

Program counter

FIQ Disable

IRQ Disable

Overflow

Carry/Not Borrow/
·Rotate extend

Zero

Negative/
Signed Less Than

IRO Disable

0 Enable
Disable

Figure 5.2 Allocation of bits within register R 15

Register R14

R 14 is used as the subroutine Link register, and rece ives a copy of the return PC

and PSR when a Branch and Link instruction is executed. It may be t reated as a

general purpose register at all other times . Simi larly, R l 4_svc, R l 4_irq and R l 4_fiq

are used to hold the return va lues of R 15 when interrupts and exceptions arise. or

when Branch and Link instructions are executed with in supervisor or interrupt

routines .

47

In addition:

• FIO processing state has seven private registers mapped to R8 to Rl4 (R8_fiq
to Rl4_fiq)

• !RO processing state has two private registers mapped to RI 3 and RI 4
(RI 3_irq and Rl4_irq).

• SVC processing state has two private registers mapped to RI 3 and RI 4
(Rl3_svcand Rl4_svc)

The two private registers allow the !RO and supervisor modes each to have a
private stack pointer and link register. Supervisor and !RO mode programs are
expected to save the User state on their respective stacks and then use the
User registers, remembering to restore the User state before returning.

• The PSR contains four condition flags:

N Negative flag
Z Zero flag
C Carry flag
V overflow flag

The condition flags may be altered in user mode. The l, F. and mode flags can only
be changed directly in supervisor and interrupt modes; they are also modified
when exceptions occur or SW! instructions are executed.

FIQ fast interrupt request

48

Note The following sections on the ARM processor are mainly of interest to
operating systems programmers, for example, when constructing relocatable
modules. If you are writing applications, you can skip forward to the chapter
entitled Assembler language on page 55.

The Fast Interrupt request (FIO) exception is externally generated by pulling the
FIO pin LOW This input can accept asynchronous transitions, and is delayed by
one clock cycle for synchronisation before it can affect processor execution. It is
designed tci support a data transfer or channel process. and has sufficient private
registers to remove the need for register saving in such applications, so that the
overhead of context switching is minimised.

The FIO exception may be disabled by setting the F flag in the PSR (but note that
this is not possible from user mode) . If the F flag is clear ARM checks for a LOW
level on the output of the FIO synchroniser at the end of each instruction.

When ARM is FlOed it will

save RI 5 in Rl4_fiq

2 force MO, MI to FIO mode and set the F and I bits in the PC word

3 force the PC to fetch the next instruction from address & IC

To return normally from FIO use:

SUBS PC,R l 4_fiq,#4

This will resume execution of the interrupted code sequence, and restore the
original mode and interrupt enable state.

IRQ interrupt request
The Interrupt Request (IRQ) exception is externally generated by pulling the IRO
pin low. This input can accept asynchronous transitions, and is delayed by one
clock cycle for synchronisation before it can affect processor execution. It has a
lower priority than FIO, and is masked out when a FIO sequence is entered. Its
effect may be masked out at any time by setting the I bit in the PC (but note that
this is not possible from user mode) If the I flag is clear ARM checks for a LOW
level on the output of the IRO synchroniser at the end of each instruction . When
successfully IROed ARM will:

I save RI 5 in Rl4_irq

2 force MO,M I to IRO mode and set the I bit in the PC word

3 force the PC to fetch the next instruction from address & 18.

To return normally from IRO use:

SUBS PC,Rl4_irq,#4

Address exception trap

An address exception arises whenever a data transfer is attempted with a
calculated address above &3FFFFFF The ARM address bus is 26 bits wide, but an
address calculation has a 32-bit result If this result has a logic' I' in any of the top
6 bits it is assumed that the address overflow is an error, and the address exception
trap is taken.

Note that a branch cannot cause an address exception, and a block data transfer
instruction which starts in the legal area but increments into the illegal area will
not trap (it wraps round to address 0 instead). The check is performed only on the
address of the first word to be transferred

When an address exception is seen ARM will:

if the data transfer was a store, force it to load. (This protects the memory from
spurious writing)

49

Abort

Abort

50

2 complete the instruction, but prevent internal state changes where possible.
The state changes are the same as if the instruction had aborted on the data
transfer.

3 save RI 5 in R l 4_svc

4 force MO,M I to supervisor mode and set the I bit in the PC word

5 force the PC to fetch the next instruction from address &14 .

Normally an address exception is ca used by erroneous code, and it is
inappropriate to resume execution. If a return is required from this trap, use SUBS
PC, R14 _ svc, #4. This will return to the instruction after the one causing the
trap.

The Abort signa l comes from an external Memory Management system, and
indicates that the current memory access cannot be completed. For instance. in a
virtual memory system the data corresponding to the current address may have
been moved out o f memory onto a disc, and considerable processor activity may
be required to recover the data before the access can be performed successfully.
ARM checks for an Abort at the end of the first phase of each bus cycle When
successfully Aborted ARM will respond in one of three ways .

Abort during an internal cycle

The ARM ignores aborts signalled during internal cycles.

Abort during instruction prefetch

If abort is signalled during an instruction prefetch (a Prefetch abort), the
prefetched instruction is marked as inva lid ; when it comes to execution, it is
reinterpreted as below. (If the instruction is not executed, for example as a result of
a branch being taken while it is in the pipeline, the abort will have no effect)

Then ARM will:

save Rl5 in Rl4_svc

2 force MO, MI to supervisor mode and set the I bit in the PC word

3 force the PC to fetch the next instruction from address &OC.

To continue after a Prefetch abort use SUBS PC, R14_ svc , #4. The ARM will then
re-execute the aborting instruction , so you shou ld ensure that you have removed
the cause of the original abort

TheARMcpu

Abort during data access

If the abort command occurs during a data access (a Data Abort). the action
depends on the instruction type.

• Single data transfer instructions (LOR, STR) are aborted as though the
instruction had not executed.

• Block data transfer (LDM and STM) instructions complete, and if writeback is
set. the base is updated. If the instruction would normally have overwritten the
base with data (ie LDM with the base in the transfer list), this overwriting is
prevented All register overwriting is prevented after the Abort is indicated,
which means in particular that RI 5 (which is always last to be transferred) is
preserved in an aborted LDM instruction .

Then ARM will

save Rl5 in Rl4_svc

2 force MO, MI to supervisor mode and set the I bit in the PC word

3 force the PC to fetch the next instruction from address & I 0.

To continue after a data abort. remove the cause of the abort. then reverse any
auto-indexing that the original instruction may have done, then-return to the
original instruction with SUBS PC , R14_svc , #8 .

Software interrupt

The software interrupt instruction is used for getting into supervisor mode, usually
to request a particular supervisor function. ARM will:

save RI 5 in Rl4_svc

2 force MO, MI to supervisor mode and set the I bit in the PC word

3 force the PC to fetch the next instruction from address &8.

To return from a SWI , use MOVS PC , R14 _ svc. This returns to the instruction
following the SW!.

Undefined instruction trap
The undefined instruction trap may be used for software emulation of a
coprocessor or for general purpose instruction set extension by software
emulation (the floating point instruction set is implemented in software this way)
If an undefined instruction or coprocessor instruction is encountered and is not
claimed by any coprocessor, ARM will :

save Rl5 in Rl4_svc

2 force MO, MI to supervisor mode and set the I bit in the PC word

51

Reset

Reset

3 force the PC to fetch the next instruction from address &4.

To return from this trap (after performing a suitable emulat ion of the required

function), use MOVS PC , R14_svc. This will return to the instruction following the

undefined instruct ion.

ARM can be reset by pulling its RESET pin HIGH. If this happens, ARM will :

I stop the currently executing instruction and start executing no-ops. When
RESET goes low again , it will :

2 save Rl5 in Rl4_svc

3 force MO,M I to supervisor mode and set the F and I bits in the PC word

4 force the PC to fetch the next instruction from address &O.

Vector summary

The first eight words of store normally contain branch instructions pointing to the

relevant routines. The FIO routine may reside at &00000 IC onwards, and thereby

avoid the need fo r (and execution time of) a branch instruction.

Address Definition

&0000000 Reset
&0000004 Undefined instN.Jction
&0000008 Software interrupt
&OOOOOOC Abort (prefetch)
&00000 10 Abort (data)
&0000014 Add ress reception
&0000018 !RO
&OOOOO IC FlO

Modes of operation

There are four modes of operat ion:

• user mode

• fast interrupt mode

• interrupt mode

• supervisor mode.

52

TheARMcpu

The mode in which the processor runs is determined by the state of bits 0 and I in
the Processor Status Register. The processor has 27 physical registers, but the state
of the mode bits determines which 16 registers. RO-RI 5, will be seen by the
programmer. The four modes available are described below and shown in The four
modes of operation on page 46.

Mode 0: User mode

User mode is the normal program execution state. Registers RO-R 15 exist directly,
and in this mode, only the N, Z, C and V bits of the PSR may be changed

Mode 1: Fast interrupt mode

The FIO processing state has seven private registers mapped to R8-Rl4
(R8_fiq-R l 4_fiq) and a fast interrupt will not destroy anything in R8-R 14. Most FIO
programs, particularly those used for data transfer, will not need to use RO-R7, but
if they do, then RO-R7 can be saved in memory using a multiple register data
transfer instruction.

Mode 2: Interrupt mode

The IRO processing state has two private registers mapped to R 13 and R 14
(RI 3_irq and Rl4_irq) If other registers are needed, their contents shou ld be saved
in memory using one of the multiple register data transfer instructions available
for this purpose·.

Mode 3: Supervisor mode

Supervisor mode (entered on SVC ca lls and other traps) also has two private
registers mapped to RI 3 and R 14 (R l 3_svc and RI 4_svc) . If other registers are
needed, they must be saved in memory.

Non-user modes

Non-user modes are privileged and allow trusted software to take control in a
suitably protected system

Changing operating modes

In the Assembler, the suffix Padded to a CMN, CMP, TEO orTST instruction causes
the instruction to change the PSR directly. Such instructions can be used to change
the ARM's mode, for example :

TEQP R15 , #2 changes to !RO mode
TEQP Rl 5 , # O changes to user mode.

53

Modes of operation

The action is to Exclusive QR the first operand with a supplied immediate field.
R 15 is the first operand. Whenever RI 5 is presented to the processor as the first
operand, 24 bits are presented; the PSR bits are supplied as zero. The TEO causes
the immediate field value to be written into the register, and the P causes the PSR
bits (now altered by the immediate field value) to be written back into RI 5. Since
two of the PSR bits are the mode control bits, the processor assumes its new
mode.

As the mode control bits cannot be set in user mode, this technique will not work
in user mode. There are, however, two ways to pass from user mode to other
modes:

• by receiving an external interrupt

• by making use of the SW! instruction.

Note: For more details of instructions executed immediately following a mode
change see the section entitled Forcing transfer of the user bank on page 229 and the
section entitled Writing to R 15 on page 216.

Further information

54

An explanation of the ARM interrupt capability and of its operation modes is given
in Appendix D - ARM datasheet.

6 Assembler language

This chapter describes the language syntax, symbols, labels, expressions,
constants, and operators available in the Archimedes' Assemblers.

Assembler language syntax

Whenever the Assembler is required to generate opcodes representing program
instructions, the general style of a three field line is used.

{label} {instruction} { ; comment}

The label and instruction fields are separated by one or more spaces; however, if
the line starts with a space, the label is absent

{label} if present. this defines a symbol which is set equal to the
address of the instruction assembled. If the instruction is
absent , then the address used is the current value of the
instruction location pointer. This may not be word-a ligned, for
example, when the last directive was one of the store-loading
directives detailed in the section entit led Store-loading on page
124. However, using a label with an instruction ensures that the
address generated is word-a ligned

(Symbols are described in the section entitled SJjmbols and labels
below.)

{instruction} if present, this defines the instruction to be assembled.

(See the chapter entitled CPU instruction set)

{ ; comment} if present. the comment is started by the first semi-colon on the
line (ignoring semi-colons inside string constants) The
semi-colon and the rest of the line are ignored by the
Assembler.

A speci fi c example of the three fields taken from an assembly listing is :

L321 ADD Ra , Ra , Ra , LSL #1 ; multiply by 3

{label} L32 1

{instruction} ADD Ra , Ra , Ra , LSL #1

{ ; comment} ; multiply by 3

55

It is worth noting two special cases of this syntax, both of which are ignored by the
Assembler:

• a completely blank line is valid , and may be used to make the text more
readable

• a line may start with a semi-colon in which case the entire line is treated as
comment.

The Assemblers AAsm and ObjAsm treat a tab character (&09) in a source file as a
space (&20). and will accept both linefeeds (&OA) and carriage returns (&OD) as
line terminators. The combinations &OA &OD and &OD &OA are treated as a single
line terminator.

Symbols and labels

56

A symbol is a group of alphanumeric characters which represents a number, logical
value or string value . The values are assigned immediately by Assembler directives.

Symbols have the following characteristics:

• All symbols must start with a letter, A-Z or a-z. Lower-case letters may be used
and will be treated as different from their upper-case counterparts .

• Numeric characters and the underscore character·_· may be embedded in the
symbol.

• Symbols may also be the same as mnemonics, although this is not
recommended, as it is likely to be confusing to the programmer. However, the
Assembler will distinguish between a symbol and a mnemonic by their relative
positions on the program line.

• Symbols can be any length (but the line length may not be more than 255
characters).

• All characters are significant.

A special syntax using enclosing I bars allows any character to be placed in a
symbol. This allows the use of labels which are compatible with the output of
compilers, which may use other characters within their symbols. The enclosing
bars are not seen as part of the symbol. For example:

I C$$Codel

is one such symbol or label.

Labels

Expressions

Assembler language

A label is a special type of symbol which the Assembler recognises by its position
on the line , ie the first character of the label occupies the first column of the line.
The number represented by the label is not always immediately known to either
the programmer or the Assembler, but is generated as the assembly takes place.

Expressions are combinations of simple values, unary and binary operators, and
brackets .

Evaluating expressions

The order of evaluation of expressions is determined by:

bracket ing

2 precedence rules

3 in the absence of brackets or precedence rules, evaluation is from left to right.

(For information on the precedence rules see the section entitled Operator summary
on page 64.)

So:

• A bracketed sub-expression is always evaluated before being used as an
operand to an operator.

• An operand with a binary operator on both sides is always used as an operand
to the higher precedence operator, or if they have equal precedence, to the
lefthand operator.

Types of operands

Every simple value has a type associated with it. as does every operand produced
at any stage of the expression evaluation, including the expression result. The
types of operand are:

• numeric values

• string va lues

• logical values

• program-relative values

• register-relative values.

For an expression to be syntact ica lly correct, every operator must be provided with
operands of the correct types .

57

58

Numeric values

Numeric values are unsigned integers in the range 0 to &FFFFFFFF Overflow is

ignored when doing calculations with numeric values (for example, - I evaluates to

&FFFFFFFF).

Comparisons are always unsigned comparisons, which may have counter-intuitive

results in some cases (for example, - I > I evaluates to 'true'). In a few places, this

manual contains such statements as:

'The immediate value must lie in the range -4095 to 4095'.

The values are presented in this way for clarity, but the accurate interpretation of

this example is:

'The immediate value must lie in the range 0 to &FFF, or &FFFFFOOI to &FFFFFFFF' .

String values

String values are strings of 0 to 256 bytes, each of which may take any value in the

range 0 to 255. The byte values are usually ASCll printable characters. The

Assembler will convert a string of length I into a numeric value if necessary. See

the section entit led Numeric constants on page 59 for further information on string

conversion.

Program-relative values

Program-relative values are simply offsets from the program origin. All labels on

instructions and stand-alone la~els are therefore program-relative values. In the

case where the program has a fixed origin, the distinction between numeric values

and program-relative values disappears.

Register-relative values

Register-relative values are offsets from a base register, therefore the difference

between two such values (having the same base register) is a numeric va lue.

• Simple register-relative values can be defined using the two operand form of

the " and# directives (see the section ent itled Laying out storage areas on page

126)

• Within the evaluation of an expression a register-relative va lue may acquire a

base of a signed sum of registers, but by the time the evaluation of the

expression is complete this must have collapsed to either a numeric value or

an offset from a single register.

Note: This is a technicality which probably need not worry the programmer.

• Register-relative values for which the base register is the program counter are

always converted into program-relative values.

Assembler language

Numeric constants

The Assembler can accept numbers given to it in any of three forms:

Value

123456
&A1F40
n_xxxx

Type of constant

decimal constants
hexadecimal constants
number in the form base n

eg 2_101 is binary IOI
n may be between 2 and 9

It will also evaluate a quoted ASCII character (for example, the character A) to a
number if necessary.

Note that quoted ASCII characters are evaluated to their ASCII values, for example,
'O' is evaluated to 48, not 0.

String constants

A string constant consists of an opening set of quotes, characters and closing
quotes. The string can also contain embedded spaces, leading or trailing spaces,
for example:

n a default string n

If the string needs to contain double quotes, then pairs of double quotes are used
to represent these double quotes. For example:

"She said ""Hello ""."

This represents the characters: She said "Hello".

$character

The$ character may be used in a string, provided that it is represented by a pair of
$characters, for example:

"the price is $$$etc "

The SS will be interpreted as a real$, and then $etc will be correctly interpreted as
a parameter. See the section entitled Variable substitution using$ on page I 29.

Boolean constants

The logical values 'true' and 'false' can be input to the Assembler as the logical
constants {TRUE} and {FALSE}

59

Assembler operators

Assembler operators

60

The Assembler provides an extensive set of operators for use in expressions. Many
of these operators resemble their counterparts in high level languages

Binary operators

Binary operators act on two operands and are placed between the operands. For
example:

VALUE - 2
l:SHL : EXPONENT

Unary operators

Unary operators act on one operand and are placed before it. For example

- VALUE
:LNOT:FLAG
:DEF:LABEL

Arithmetic operators

+

*
I

add/unary+
subtract/unary -
multiply
divide

:MOD: remainder after division

binary or unary
binary or unary
binary
binary
binary

For the purposes of divi sion, remainder and comparisons all va lues are treated as
32-bit unsigned integers in the range 0 - 232 - I . The operators + and - act on
numeric, program-relative and register-relative expressions, the others act on ly on
numeric expressions.

Boolean logical operators

:LAND: Logical AND binary
:LOR: Logical OR binary
:LEOR: Logical Exclusive OR binary
:LNOT: Logical NOT unary

These perform the normal logical operations. Thus:

• exprl : LOR : expr2 gives TRU E if either expression is TRUE

• exprl : LEOR: expr2 gives TRUE if one of the expressions is TRUE but not
both

Assembler language

• exprl : LAND: expr2 gives TRUE if both expressions are TRUE and FALSE
otherwise

• : LNOT: expression gives TRUE if the expression is FALSE, and vice versa.

Bitwise logical operators

:AND: bitwise AND
:OR: bitwise OR
:EOR: bitwise Exclusive OR
NOT: bitwise NOT

binary
binary
binary
unary

These act on numeric expressions. The operation is done independently on each
bit of the binary expansion(s) of the operand(s) to produce the binary expansion of
the result.

The C language operator - can optionally be used in place of :NOT: .

Shift operators

:ROL: ROtate Left
:ROR: Rotate Right
:SHL: SHift Left
SHR: SHift Right

binary
binary
binary
binary

These act on numeric expressions. The first operand is shifted or rotated by an
amount given by the second operand . The shifts are logical rather than arithmetic,
for example, -1: S HR: 1 = & 7FFFFFFF.

The C language operators<< and >> ca n opti onally be used in place of :SHL: and
:SHR: respecti ve ly.

Relational operators

>
>=
<
<=
<>
I=

equal ·
greater than
greater than or equal
less than
less than or equal
not equal
not equal

binary
binary
binary
binary
binary
binary
binary

These act between two operands of the same type . The allowable types are:

• numeric

• program-relative

• register-relative

61

Assembler operators

• string.

They produce a logical value.

When strings are used as operands in string comparisons, a lexical or dictionary

ordering is used. The ordering of characters is the ASCII ordering. String a is less
than or equal to string b if either string a is a leading substring of string b, or at the
leftmost character position at which the two strings differ the character in string a
is less than the corresponding character in string b. For example:

"A" <
"A" <=
"B" <=
"Label!" <=

"B''
"AB"
"A"

"Label2 "

is TRUE
is TRUE
is FALSE
is TRUE

String operators

62

Concatenation
(binary)

Slicing (binary)

Length (unary)

:CC: joins (concatenates) two strings .

expressionl :CC:expression2

where expressionl and expression2 are strings.

For example:

"ABCD " : cc : "EFGH" gives "ABC DEFGH"

expressionl :LEFT : expression2
expressionl :RIGHT: expressionl

where expressionl is a string and expression2 is
numeric.

"sssss " : LEFT : n

returns then left-most characters from the string "sssss ".

"sssss " : RIGHT : n

returns then right-most characters from the string
"sssss ".

For example:

" EGBDF " : LEFT : 1 returns "E"
" EGBDF " : RIGHT: 1 return s "F"

:LEN: expression

returns the length of a string expression .

Conversion (unary) : CHR : expression

?Label

:BASE: (unary)

:DEF: LABEL

:INDEX: (unary)

Assembler language

returns a string of length I having ASCII code expression . The
expression must be numeric.

: STR: expression

returns an eight-digit hexadecimal string corresponding to an
expression if the expression is numeric, or returns the string T
or F if the expression is logical

:BASE : register-relativeor
PC- relative expression

gives the number of the register.

:DEF:label

is used to determine if label is already defined as an
assembly-time variable (by GBLL, GBLA or GBLS) It is a
unary logical operator returning TRUE if label is so defined or
FALSE if otherwise. An error is generated if label is used for
another purpose.

:INDEX: register - relativeor
PC-relative expression

gives the offset.

? label is used to find out how many bytes of code were produced on the label 's
defining line. For a label on a line containing an opcode mnemonic, the length is
four; for a label on an other\vise blank line, the length is zero. For DCD, DCW, DCB,
DCFS, DCFD and% directiyes, the length is the combined length of all the
operands. For example: ·

STORE &
STORELENGTH *

1 , 2 , 3 , 4 , 5 ; 5 words into STORE
?STORE ; ?STORE evaluates to 20

63

Operator summary

Operator summary

64

The precedence or relative binding of an operator is given as a number from I to 7,
where 7 indicates the highest binding power. Note that unary operators are
evaluated from right to left.

? 7 ?A Amount of code generated by line defining A
+ 7 +A Unary plus

7 - A Unary negate
LNOT 7 :LNOT:A Logical complement of A
NOT 7 :NOT:A Bitwise complement of A
DEF 7 :DEF:A Tests whether A is a defined assembly-time variable
LEN 7 :LEN:A Length of string A
CHR 7 :CHR:A ASCH string of A
STR 7 :STR:A Hexadecimal string of A

6 A*B Multiply
I 6 NB Divide
MOD 6 A:MOD:B A modulo B

LEFT 5 A:LEFT:B the left-most B characters of A
RIGHT 5 A:RIGHT:B the right-most B characters of A
cc 5 A:CC:B B concatenated on to the end of A

ROL 4 A:ROL:B Rotate A left B bits
ROR 4 A:ROR:B Rotate A right B bits
SHL 4 A:SHL:B Shift A left B bits
SHR 4 A:SHR:B Shift A right B bits

+ 3 A+B Add Aand B
3 A-B Subtract B from A

AND 3 A:AND:B Bitwise AND on A and B
OR 3 A:OR:B Bitwise OR on A and B
EOR 3 A:EOR:B Bitwise exclusive OR on A and B

2 A=B A equal to B
> 2 A>B A greater than B
>= 2 A>=B A greater than or equal to B
< 2 A<B A less than B
<= 2 A<=B A less than or equa l to B
I= 2 N=B A not equal to B
<> 2 A<>B A not equa l to B

LAND A:LAND:B Logical AND on A and B
LOR A:LOR:B Logical OR on A and B
LEOR A:LEOR:B Logical EXCLUSIVE OR on A and B

7 CPU instruction set

This chapter describes the CPU instructions avai lable in the Archimedes'
Assemblers.

Conditional execution
Every ARM instruction is conditiona l so it will on ly be executed if the N, Z, C and V
flags are in the correct state. The default condition is 'a lways execute' but other
conditions can be requested by adding a two-character condition mnemonic to the
standard fo rm :

Mnemonic Condition

EO
NE
cs
cc
Ml
PL
vs

EOual
Not Equal
Carry Set I unsigned higher or same
Carry Clear I unsigned lower than
negative (Minus)
positive (PLus)
overflow Set

Condition of flag(s)

Z set
Z clear

C set
C clear

N set
N clear

V set
VC overflow Clear V clear
HI Higher unsigned C set and Z clear
LS Lower or Same unsigned C clear or Z set
GE Greater or Equal (N set and V set) or (N clear and V clear)
LT Less Than (N set and V clear) or (N clear and V set)
GT Greater Than ((N set and V set) or (N clear and V clea r)) and Z clear
LE Less or Equal (N set and V clear) or (N clear and V set) or Z set
AL AL ways any
NV Ne Ver none

Note that the Assembler implements HS (Higher or Same) and LO (LOwer than) as
synonymous with CS and CC respectively, giving a total of 18 mnemonics.

Conditional instruction sequence

Branches which are taken cause breaks in the pipel ine. For this reason they often

waste time, and can somet imes be replaced by a suitable conditiona l instruction
sequence.

65

Instruction timing

As an example, the coding of IF A=4 THEN B:=A ELSE C:=D+E might be
conventionally achieved using five ARM instructions:

CMP RS , #4 ;test "A=4"
BNE LABEL ;if not equal goto LABEL
MOV R6,R5 ;do "B:=A"
B LAB2 ;jump around the ELSE clause

LABEL ADD RO , Rl,R2 ;do "C:=D+E"
LAB2 ;finish

whereas, using the condition testing instructions, the same effect may be achieved
using three instructions:

CMP 5 , #4
MOVEQ R6,R5
ADDNE RO ,Rl,R2

;test "A=4"
;if so do "B:=A"
;else do "C:=D+E ".

If the condition tested is true, the instruction is performed. If it is false, the
instruction is skipped and the PC is advanced to the next memory word. This takes
one S-cycle of processor time. The first of the examples above takes about twice as
long as the second.

After the instruction is obeyed, the arithmetic logic unit (ALU) will output
appropriate signals on the flag lines. On certain instructions, the flags set the
condition code bits in the PSR; for other instructions, the flags in the PSR are only
altered if the programmer permits them to be updated.

Instruction timing

66

All instruction timings are defined in terms of four types of processor cycle

• sequential cycles

• non-sequential cycles

• coprocessor cycles

• internal cycles.

Sequential cycles (or S-cycles) are used when the processor needs to access a
memory location that is the same as or one word after the memory location
accessed in the previous cycle. On a typical 8MHz ARM2 Archimedes machine, they
usually take O. l 25 microseconds. They take longer (0 250 microseconds) if a four
word boundary is crossed.

Non-sequential cycles (or N-cycles) are used when the processor needs to access a
memory location that is unrelated to the memory address used in the previous
cycle. On a typical 8MHz ARM2 Archimedes machine, they take 0.250
microseconds.

CPU instruction set

Coprocessor cycles (or C-cycles) are used when the processor needs to access a
coprocessor. On a typical 8MHz ARM2 Archimedes machine, they take 0 125
microseconds.

Internal cycles (or I-cycles) are used when the processor does not need to access
either memory or a coprocessor. On a typica l 8MHz ARM2 Archimedes machine,
they take 0 125 microseconds.

An instruction that is not executed because its condition has not been met always
executes in one S-cycle If the condition is met, the following table gives minimum
instruction timings in terms of cycles and microseconds on a current Archimedes
machine. However, programmers are advised to note the following facts :

• Instructions involving S-cycles will take longer than indicated if a four word
boundary is crossed.

• Instructions involving coprocessors may take longer than indicated if the
requested coprocessor is busy. For more details, refer to the documentation
for the specific coprocessor.

• Programs are likely to take longer than indicated because of interrupts, VDU
memory accesses and similar effects. This means that delay loops and simila r
devices should not in general be used, instead use the appropriate operating
system routines. These timings should only be used for such purposes as
deciding which is the fastest of a number of possible code fragments

• Programs may run in less time than indicated on machines with greater
processing power, for example a machine fitted with ARM3.

67

Instruction

Data processing
instructions

LOR

STR
LDM (of n registers)

STM (of n registers)
B, BL or SW!
MUL or MLA

CDP

Cycles used

IS
+ IS for a register-controlled shift
+ IS+ IN if RI 5 is written

IS+ IN+ II
+IS+ iN if RI5 is loaded
2N
nS +IN+ II
+IS+ IN if R15 is loaded
(n-I)S+2N
2S +IN
IS+ nl, where n depends on the
value of the third operand as
follows:

Operand

0 or I
2 to 7

8 to 3 I

2"(2x-3) to 2"(2x-l)-I

&8000000 to & I FFFFFFF
&20000000 to &FFFFFFFF

IS
LDC or STC (n words) (n-1)S + 2N
MRC IS+ IC
MCR IS+ II+ IC

n

2
3

x

15
16

Minimum timing
(microseconds)

O. I25
+ 0.125
+ 0.375
0.500
+ 0.375
0.500
0.125(n+3)
+0.375
0.125(n+3)
0.500
0.125(n+I)

0125
O 125(n+3)
0.250
0.375

The barrel shifter

68

The arithmetic logic unit has a 32-bit barrel sh ifter capable of various shift and

rotate operations. Data involved in the data processing group of instructions

(detailed in the section entitled Data processing on page 73) may pass through the

barrel shifter, either as a direct consequence of the programmer's actions, or in

other cases, as a result of the internal computations of the Assembler. The barrel

shifter also affects the index for the single data transfer instructions (detailed in

the section entitled Single data transfer on page 79) .

CPU instruction set

The shift mechanism can produce the following types of operand:

Unshifted register

Syntax: register
For example: RO

Register shifted by a constant amount

A register shifted by a constant amount. in the range 0-31, 1-31 or 1-32 (depending
on shift type).

Syntax: register , shift - type #amount
For example: RO , LSR # 1

Value resulting from rotating register and carry bit one bit right

A value which is the result of rotating a register and the carry bit one bit right
Because the ca rry is included in the shi ft. 33 bits (rather than 32 bits) are affected.
The shift type is always rotate right

Syntax: reg is t er,RRX

For example: RO, RRX

Register shifted by .n bits

A register shifted by n bits , where n is the least significant byte of a register. This
form is not va lid as an index in a single register transfer.

Syntax: regi.ster, shift - type register
For example: Rl , LSL R2

8-bit constant rotated right by n * 2 bits

A constant constructed by rotating an 8-bit constant right by n • 2 bits, where n is
a 4-bit constant The sh ift type is always rotate right This form is not va lid as an
index in a single register transfer.

Syntax: #expression
For example: #&3FC

Note that the rotation is invisible to the programmer, who should merely supply an
immediate va lue for the data processing instruction to use.

The Assembler will evaluate the expression and reject any number which can not be
expressed as a rotation by an even amount of a number in the range 0-255 . If
possible , the Assembler always constructs it as an unrotated val ue, even if there
are other possibilities

69

Shift types

Examples of valid immediate constants are:

#1
#&FF
#&3FC ;Thi s is &FF rotated right by 30
#&80000000 ; This is 2 rotated right by 2
#&FC000003 ;This is &FF rotated right by 6 .

Examples of invalid constants are:

#&101
#&lFE

cannot be obtained by rotating an 8-bit value
an 8-bit value rotated by an odd amount but not an 8-bit value
rotated by an even amount.

8-bit constant rotated right by n * 2 bits and specified explicitly

Shift types

70

A constant constructed as in the point above, but specified explicitly. This fo rm is
not valid as an index in a single register transfer.

Syntax: #constant, rotate amount
For example: #4 , 2

The shift amount should be an even number in the range 0-30. This can be
important for setting the carry flag on an operation which would otherwise not
update it.

For example:

MOVS RO , #4 , 2 produces the same result as

MOVS RO, #1

but because the first instruction does a rotate right of two bits the carry flag is
cleared , whereas it is not altered by the second instruction .

There are four shift types. These are:

LSL Logical Shift Left
LSR Logical Shift Right
ASR Arithmetic Shift Right
ROR Rotate Right

The mnemonic ASL (arithmetic shift left) may be freely interchanged with LSL

(logical shift left)

CPU instruction set

Logical shift left

c <- - bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb < - - 0

Rm,LSL #n
Rm,LSL Rs

Shift contents of Rm left by n which may be 0 to 31 bits .

Shift contents of Rm left by the least significant byte of Rs.

If the shift amount is zero, no shift is performed and the carry flag is not altered. If

the sh ift amount lies in the range I to 32, the carry flag is set to b(32-n) . If the shift

amount is greater than 32 , the carry flag is set to zero.

Logical shift right

0 - - > bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb - - > c

Rm,LSR #n
Rm,LSR Rs

Shift contents of Rm right by n which may be I to 32 bits.

Shift contents of Rm right by the least significant byte of Rs.

If the shift amount is zero, no shift is performed and the carry flag is not altered. If

the shift amount lies in the range I to 32, the carry flag is set to b(n-1). If the shift

amount is greater than 32 , the carry flag is set to zero.

Arithmetic shift right

- - - >xbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb - - > C
I I - - - - - - - - - - - >

<- - -

Rm,ASR #n
Rm,ASR Rs

Shift contents of Rm right by n which may be I to 32 bits.
Shift contents of Rm right by the least significant byte of Rs.

Then most sign ificant bits become equal to b3 I (that is, on every single shift , bit

31 is duplicated)

If the shift amount is zero, no shift is performed and the carry flag is not altered. If
the shift amount lies in the range I to 32, the carry flag is set to b(n-1). If the shift

amount is greater than 32, the carry flag is set to b3 I .

Rotate right

- -<- - - - - - - - - - -<- - -

- -> bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb - - - >C

Rm,ROR #n
Rm,ROR Rs

Rotate contents of Rm right by n which may be I to 31 bits.

Rotate contents of Rm right by the least significant byte of Rs.

lf the LSB of Rs evaluates to zero, then no rotation is performed and the carry bit is

not altered . Otherwise , the ca rry is set to the last bit rotated into b3 I .

71

Branch instructions

Rotate right with extend

- - - - -<- - - - - - - - - - - - - <-

- -> bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb ->C

Rm, RRX Rotate right the contents of Rm and the carry flag by I bit only

Branch instructions

72

The branch instruction takes a 24-bit word offset (equivalent to a 26 bit byte offset),
allowing forward jumps of up to +&2000004 and backward jumps of up to
-&I FFFFF8 to be made. This is sufficient to address the entire memory map as the
calculation 'wraps round' between the top and bottom of memory. The
programmer should provide a label from which the Assembler will calculate a
24-bit offset

Branch

The instruction syntax is:

B{condition} expression

{condition} One of the condition codes specified in the section entitled
Conditional execution on page 65.

expression A program-relative expression describing the branch
destination

For example:

B LABEL ;branch to LABEL
BNE LABELl ; if not equal goto LABELl

Note that in the absence of the condition mnemonic, the branch is always
performed

The ARM Assembler automatically handles the effects of pipelining and
prefetching within the CPU. For example, the calculated jump offset in the
following piece of code is 000000 even though the jump is to a label two PC
locat ions ahead.

code generated

EAOOOOOO
xxxxxxxx
xxxxxxxx

Label

LI

L2

Mnemonic

BEO

xxx
xxx

Destination

L2

CPU instruction set

Branch with link

The instruction syntax is:

BL{condition} expression

{condition} One of the condition codes specified in the section entitled
Conditional execution on page 65 .

expression A program-relative expression describing the branch
destination.

Whenever branch with link is specified , 4 is subtracted from the contents of R 15
(including the PSR) and the result is written to Rl4. Thus the value written into the
link register is the address of the instruction fo llowing the branch and link
instruction. Therefore, after branching to a subroutine, the program fl 'Ow can return
to the memory address immediately following the branch instruction by writ ing
back the R 14 value into RI 5. Subroutines can be ca lled by a BL instruction . The
subroutine should end with a

MOV PC , R14

if the link register has not been saved on a stack or

LDMxx Rn,{PC}

if the link register has been saved on a stack addressed by Rn. (xx is the stack type,
see the section entitled Block data transfer on page 81.)

These methods of returning do not restore the original PSR. If the PSR does need
to be restored then

MOV PC, R14 can be replaced by
or LDMxx Rn, { PC} by

MOVS PC , Rl4
LDMxx Rn , {PC}"

However, care should be taken when using these methods in modes other than
user mode, as they will also restore the mode and the interrupt bits. In particu lar,
restoring the interrupt bits may interfere unintentionally with the interrupt system.

Data processing
There are sixteen data processing instructions:

ADC ADd with Carry
ADD ADD
AND bitwise AND
BIC Bit Clear
CMN CoMpare Negated
CMP CoMPare
EOR bitwise Exclusive OR

73

Data processing instruction syntax

MOY MO Ve
MVN Move Not
ORR bitwise OR
RSB Reverse SuBtract
RSC Reverse Subtract with Carry
SBC SuBtract with Carry
SUB SUBtract
TEO Test EOuivalence
TST TeST and mask.

Except in the cases of MOY and MVN, the operation is performed between a source
register Rn and an operand. In the cases of MOY and MVN, only an operand is
needed. The source register can be any one of the 16 registers, and the operand can
be any operand that the barrel shifter can produce (see the section entitled Tfie
barrel snifter on page 68 for details) Note that any shifting is done before the
operation is performed. Some instructions use the bit held in the ALU's carry flag
and add it into the operation. The result of the operation is placed in the
destination register, which may be any one of the 16 registers.

Each of these instructions contains a one bit field called the S bit, standing for 'set
condition codes'. The result of the operation affects the N and Z flags, and may
also affect the C and V flags However, the ALU doesn't copy the contents of its
flags to the relevant parts of the PSR unless the S bit is set In the case of the four
instructions CMN, CMP, TEO and TST, the Assembler always sets the S bit since
these instructions would be meaningless if their results were not copied to the
PSR. In the case of the remaining 12 instructions, the programmer may request
that the ALU flags are copied to the PSR by including the letter Sin the source line.
This forces the PSR update.

For example:

ADDS R2 , RO , Rl ;Add the contents of Rl to the
; contents of RO , and put the result
; in R2. Modify flags N, Z , C and V.

Data processing instruction syntax

74

The data processing instructions use three different types of syntax, depending on
which opcode is being used:

MOVand MVN

opcode{condition}{S} destination,operand

{ condition} A two-character condition mnemonic. In the absence of the
condition mnemonic, AL is assumed.

CPU instruction set

{SJ optional it sets the S bit in the instruction. If Sis specified, N
and Z are set according to the value placed in the destination
register, and C is set to the last bit shifted out by the barrel
shifter or is unchanged if no shifting took place.Vis unchanged.

destination must be a register.

operand may be any of the operands that the barrel shifter can produce.

MOV causes the operand to be placed unchanged in the destination
register.

MVN causes the operand to be evaluated and its bitwise inverse to
be placed in the destination register.

For example:

MOV R0 , Rl,LSL#2

The contents of register I are shifted left by 2 bits and transferred to register 0.

MVN R2 , R3

Register 2 is set to the bitwise inverse of the contents of register 3.

ADD, ADC, SUB, SBC, RSB, RSC, AND, BIC, ORR, EOR

opcode{condition}{S} destination,operandl , operand2

{condition} A two-character condition mnemonic. In the absence of the
condition mnemonic, AL is assumed.

{SJ optional it sets the S bit in the instruction. If S is specified,
then the N and Z flags are set according to the value placed in
the destination register. For ADC, ADD, RSB, RSC, SBC and
SUB, the C and V flags are set according to the result of the
arithmetic operation For AND, BIC. EOR and ORR.Vis left
unchanged, and C is set to the last bit shifted out by the barrel
shifter or is unchanged if no shifting took place

destination must be a register.

operandl must be a register.

operand2 may be any of the operands that the barrel shifter can produce.

ADD addition is performed on operand I and operand2. The result is
stored in the destination register.

75

ADC

SUB

SBC

RSB

RSC

AND

BIC

ORR

EOR

76

addition is performed on operand I and operand2 and the carry
flag. The result is stored in the destination register. This
instruction can be used to implement multi-word additions. For
example a 64 bit ADD:

ADDS R4 , R2, RO

ADC RS, R3, Rl

Add least significant 32
bits updating carry
Add most significant 32
bits and carry from
previous

operand2 is subtracted from operand I. The result is stored in
the destination register.

if the carry flag is set, operand2 is subtracted from operand I . If
the carry flag is clear, operand I-operand2- I is calculated. The
result is stored in the destination register. This instruction can
be used to implement multi-word subtractions. For example:

SUBSR4,R2,RO

SBC RS , R3 , Rl

Do least significant
word of subtraction
Do most significant
word, taking account of
the borrow;

;This does the 64 bit subtraction;
; (RS,R4)=(R3,R2)-(Rl,RO)

The result is stored in the destination register.

operand I is subtracted from operand2 . The result is stored in
the destination register.

if the carry flag is set, operand I is subtracted from operand2 If
the carry flag is clear, operand2-operand I- I is calcu lated The
result is stored in the destination register.

a bitwise AND is performed on operand I and operand2 The
result is stored in the destination register.

bitwise inversion is performed on operand2, then a bitwise AND
is performed on operand I and the result of the inversion. The
result is stored in the destination register.

a bitwise OR is performed on operand I and operand2 The
result is stored in the destination register.

a bitwise Exel usive OR is performed on operand I and
operand2. The result is stored in the destination register.

For example:

ADD RO ,Rl,R2
ADDS RO,Rl,#1

CPU instruction set

;RO=Rl+R2
;RO=Rl +l and set N,Z,C,V

For ADD and ADC carry is generated if 32 bit overflow occurred. For SUB, SBC, RSB
and RSC carry is generated if and only if 32 bit underflow did not occur.

For ADD, ADC, SUB, SBC, RSB and RSC, the V flag is set if signed overflow
occurred, ie if the carry into bit 31 was not equal to the carry out of bit 31.

CMN, CMP, TEQ, TST

opcode{condition}{P} operandl , operand2

{ condition} a two-character condition mnemonic. In the absence of the
condition mnemonic, AL is assumed.

{P}

operandl

operand2

CMP

CMN

TEQ

TST

For example:

CMP RO,Rl
CMP R0,#&80

See below.

must be a register.

may be any of the operands that the barrel shifter can produce

There is no need to specify Sas it is assumed by the Assembler.
S may be specified in the syntax and it will be accepted
provided that P has not also been specified. For example,
CMPSP and CMPPS will not be accepted, but CMPS will be.

operand2 is subtracted from operand I. Flags N, Z, C and V are
altered.

operand2 is added to operand I. This allows a negative data
field to be created for a compare Flags N, Z, C and V are altered.

a bitwise exclusive OR is performed between operand I and
operand2.

a bitwise AND operation is performed between operand I and
operand2.

In the case of TEO and TST, the N and Z flags are altered
according to the result , V is unchanged, and C is set to the last
bit shifted out by the barrel shifter or is unchanged if no shifting
took place

; Compare the contents of RO with Rl
;Compare the contents of RO with &80

77

Data processing instruction syntax

78

{P} there are special forms for CMN , CMP. TEO and TST in which the
result of the operation is moved to the PSR even though the
instruction has no destination register. In user mode, the N, Z,
C and V flags are set from the top four bits of the result. In other
modes, the N, Z, C, V, I and F flags are set from the top six bits
of the result and the mode bits from its bottom two bits.

Invoking this special form is done by adding P to the
instruction. One reason for wanting to modify RI 5 in this way
would be to change modes.

For example:

TEQP Rl S , #O;change to user mode.

Note the treatment of RI 5 as the first operand, described in the
second point below. It is unlikely that most applications will
need to do this.

Using R15 as the destination or operand

Note that the CPU takes certain actions whenever the destination or any operand is
RI 5. These are as follows :

• if R 15 is the destination register, 24 bits are moved to R 15 if the S bit is not set.
These bits become the new PC. In user mode, 28 bits are moved to R 15 if the S
bit is set; these are the 24 PC bits and the N, Z, C and V flags . In other modes,
all 32 bits are moved to RI 5 if the S bit is set.

• if RI 5 is the first operand in a two operand instruction, RI 5 is presented to the
arithmetic logic unit (ALU) with the PSR bits set to zero.

• if the second or only operand is RI 5 (possibly shifted), RI 5 is presented to the
barrel shifter or ALU with the PSR bits unchanged

• if RI 5 is the rotation register, RI 5 is presented to the barrel shifter with the
PSR bits set to zero.

CPU instruction set

Data processing instruction summary

Flags
Mnemonic Meaning Operation Affected

ADC Add with Carry Rd:= Rn + operand + C N,Z,C,V
ADD Add Rd:= Rn+ operand N,Z,C,V
AND And Rd:= Rn AND operand N,Z,C
BIC Bit Clear Rd:= Rn AND N,Z,C

(NOT(operand))
CMN Compare Negated Rn+ operand N,Z,C,V
CMP Compare Rn - operand N,Z,C,V
EOR Exclusive Or Rd:= Rn EOR operand N,Z,C
MOV Move Rd:= operand N,Z,C
MVN Move Not Rd:= NOT operand N,Z,C
ORR Logical Or Rd:= Rn OR operand N,Z,C
RSB Reverse Subtract Rd:= operand-Rn N,Z,C,V
RSC Reverse Subtract with Carry Rd:= operand-Rn- I +C N,Z,C,V
SBC Subtract wi th Carry Rd:= Rn-operand- I +C N,Z,C,V
SUB Subtract Rd:= Rn-operand N,Z,C,V
TEO Test Equivalence Rn EOR operand N,Z,C
TST TeST and mask Rn AND operand N,Z,C

Note that Rd is the destination register; Rn is a source register.

Single data transfer
This group of instructions is used for moving data between registers and memory.
LDR (LoaD Register) loads a register from a memory location, while STR (STore
Register) stores a register to a memory location. Both instructions may use
pre-indexed or post-indexed addressing; in the case of pre-indexed addressing,
write back may be used. (Write back means that the base register is updated.) The
amount of data transferred may be either a word or a byte. Special versions of the
post-indexed instructions also exist which cause the TRANS pin of the ARM to be
active throughout the data transfer. These are useful for loading or storing user
data areas from the supervisor state in a memory-managed system.

For register to register transfers, see the section entitled Data processing on page 73
and the MOV instruction in particular.

79

Single data transfer instruction syntax

80

There are two types of single data transfer instruction syntax.

Pre-indexed instruction (possibly with write back)

opcode{condition}{B} register , [base{, index}] { ! }

Post-indexed instruction (always with write back)

opcode{condition}{B}{T} register, [ba se] {,index}

opcode may be LDR or STR, and must not be omitted.

{condition} may be any of the two-character condition mnemonics listed in
the section entitled Conditional execution on page 65. If omitted,
AL is assumed.

{BJ if present the transfer will be of just one byte. If omitted, a full
word is transferred. Note that transfers of words to or from
non-word-aligned addresses have non-obvious and unspecified
results. Note that a byte load will clear bits 8-31 of the
destination register.

{T}

register

base

{index}

if present, the TRANS pin will be active during the transfer. Note
that T is invalid for pre-indexed addressing.

destination of the load or the source of the store.

must be a register. For pre-indexed addressing, base+ index is
the address to load from or store to. For post-indexed
addressing, base is the address to load from or store to, and
base+ index is the va lue to write back to the base register.

index to be added to or subtracted from the base register. If
omitted, #0 is assumed. If used, it may have two forms:

#immediate value

The immediate va lue must lie in the range -4095 to 4095.

{-}index register{,shift}

The shift may be omitted , in which case no shifting is assumed.
The allowed shift types are those listed in the section entitled
Shift types on page 70, except that register controlled shifts are
not allowed. The minus, if specified, means that the index value
is to be subtracted.

CPU instruction set

An alternate form of the syntax where an expression provides the offset is:

opcode{condition}{B} register,expression{!}

The expression may be a program address (program-relative expression) or a
register-relative expression. The Assembler will attempt to generate an instruction
using the appropriate register as a base and an immediate offset to address the
location given by evaluating the expression. The offset value must lie in the range
-4095 to 4095, or the Assembler will signal an error.

{ ! } if present, write back will be done and the base register will
assume the value of base+ index, or base-index, as appropriate.
Note that this is always done for post-indexed addressing

If the contents of base are not destroyed by other instructions, the continued use
of LOR (or STR) with write back will continually move the base register through
memory in steps given by the index value. Note that ! is invalid for post-indexed
addressing, as write back is automatic in this case. For example:

STR

STR

STR

LDR

Rl , PLACE

Rl, [BASE, INDEX)!

Rl , [BASE) , INDEX

Rl, [BASE, #16]

; store to address PLACE using
;program-relative offset

;store Rl at BASE+INDEX (both
;register contents) and write
;back address to BASE

; store Rl at BASE and write
;back BASE+INDEX to BASE

;load Rl from contents of
;BASE+16. Don 't write back

LDR Rl , [BASE,INDEX,LSL #2] ;load Rl from contents of
; BASE+INDEX*4 .

Note: Base may be the PC. In this case write back and post-indexing should not
be used.

Block data transfer
This group of instructions is used for moving data between a number of registers
and memory. LDM (LoaD Multiple registers) loads one or more registers from a
block of memory, while STM (STore Multiple registers) stores one or more registers
to a block of memory. The action of storing or loading may be preceded or followed
by incrementing or decrementing the memory address. Write back to the base
register may also be specified.

81

Block data transfer instruction syntax

Block data transfer instruction syntax

opcode{condition}type ba.se{ ! }, {list}{" J

82

opcode may be STM or LDM.

{condition} any of the two-character conditional mnemonics listed in the

section entitled Conditional execution on page 65 . If omitted, AL is

assumed.

type two character mnemonic indicating one of eight instruction
types. It may not be omitted. The types are FD, ED, FA, EA, IA,

IB, DA and DB. The description of the eight instruction types
differs depending on whether they are appended to STM or
LDM:

STMDB
STMDA
STMIB
STMIA
LDMDB
LDMDA
LDMIB
LDMIA
STMFD

STMED

STMFA

STMEA

LDMFD

LDMED

LDMFA

LDMEA

Decrement Before the store
Decrement After the store
Increment Before the store
Increment After the store
Decrement Before the load
Decrement After the load
Increment Before the load
Increment After the load
Push registers to a Full stack, Descending
(Pre-Decrement)
Push registers to an Empty stack, Descending
(Post-Decrement)
Push registers to a Full stack, Ascending
(Pre-Increment)
Push registers to an Empty stack, Ascending
(Post-Increment)
Pop registers from a Full stack. Descending
(Post-Increment)
Pop registers from an Empty stack, Descending
(Pre-Increment)
Pop registers from a Full stack, Ascending
(Post-Decrement)
Pop registers from an Empty stack, Ascending
(Pre-Decrement)

• A full stack is one in which the stack pointer points to the last data item written

to it

• An empty stack is one in which the stack pointer points to the first free slot in

it

CPU instruction set

• A descending stack is one which grows from high memory addresses to low
ones.

• An ascending stack is one which grows from low memory addresses to high
ones.

Note that FD, ED, FA, EA are mnemonics that represent othe r instructions. In other
words, the IA, IB, DA and DB forms of the multiple/load store instructions can be
used to support all stack operations:

Stack instruction Equivalent instruction

LDMED
LDMFD
LDMEA
LDMFA

STMFA
STMEA
STMFD
STMED

base

{ ! }

list

{"}

LDMIB
LDMIA
LDMDB
LDMDA

STMIB
STMIA
STMDB
STMDA

any register. It contains the base address for the load or store. It
must be specified

will force base to assume the value of base+4*(number of
registers), or base-4*(number of registers) , as appropriate.

is a list of registers separated by commas, or a register range
indicated by a hyphen, or a combinat ion of both, for example

{Rl, R2 , PC}
{Rl -RlO}
{Rl - R9 , R1 2 ,PC }

The braces ({and}) around 1 is tare part of the assembler coding
and do not indicate that the list is optional Both the braces and
the list itself must be specified

has different effects for STM and LDM .

STM causes the user mode registers to be transferred,
whatever the current mode.

LDM if RI 5 is in the list of registers, only the 24 PC bits are
normally loaded. Coding/\ causes the N, z. C and V flags
to be loaded as well as the PC in user mode, or all 32 bits

83

Stacking

84

{ ! }

to be loaded in other modes. Thus. return from interrupt
or return from SW! using LDM will normally have the /\
coded. For example:

LDMFD SP! I {R13 I PC} A

Examples of LDM and STM are:

STMIA Rn,{R0,Rl,R2,R3}

or:

STMIA Rn,{RO-R3}

This instruction saves register RO at the address held in Rn and
registers RI, R2 and R3 in the following three words of memory

LDMIA Rn , {R0 ,Rl,R2,R3}

or:

LDMIA Rn , {R0-R3}

Provided that the contents of Rn and the relevant memory
locations have not been corrupted by another instruction, this
LDMIA instruction reverses the effect of the above STMIA and
recovers the contents of the four registers from memory.

may be used to update the pointer Rn, so that it remains pointing
to the memory location after the last update. For example:

STMIA Rn !, {R0,Rl,R2,R3}

This instruction saves registers RO to R3 as above, then
increments Rn by 16 so that it points to the next word above that
used to store R3.

To recover the register contents would now require:

LDMDB Rn !, {R0 ,Rl, R2 ,R3}

ARM registers can be saved to, and popped from, a stack.

Push to stack

Various forms of STM (store multiple registers) and LDM (load multiple registers)
may be used to save the ARM registers on a stack. The opcodes generated for the
various styles of stacking and unstacking are no different from those of the STMDB,

DA, 18, IA and LDMDB, DA, IB, IA instructions, but the syntax is different. (For
information on Block data transfer instructions types, see the section entitled Block
data transfer instruction syntax on page 82.)

There are four types of instruction which push register values on to a stack. They
are:

STMFD
STMED
STMFA
STMEA

Full stack, Descending
Empty stack, Descending
Full stack, Ascending
Empty stack, Ascending

Write back is almost always required in stacking applications, but it must be coded
explicitly

An example using STMEA is given below:

STMEA Rn!, {R6 ,R3 ,R7 ,R8}

which may also be written:

STMEA Rn !, {R6-R8 ,R3}

Prior to the instruction, it is assumed that a stack holding three values already
exists, and that Rn is ready to push more values on to it:

I<- Rn , which is empty
V3 I
V2 I
VI I stack base

The stack is ascending, and the location currently pointed to is deemed to be
empty. Then , after STMEA Rn ! , { R6 , R3 , R7 , R8} the stack grows.

I<- Rn
R8 I
R7 I
R6 I
R3 I
Y3 I
V2 I
VI I stack base

85

Stacking

86

Notice that register values are stacked in register order. This is always the case and
cannot be altered. The lowest-numbered register always occupies the lowest
memory location and registers are placed on or removed from the stack starting
with the lowest-numbered register. This can be seen in the next example which
shows the order of stacking following two full stack descending instructions.

An example using STMFD is given next:

STMFD Rn!, {R6,R3,R7,R8}
STMFD Rn!,{R0-R4}

Pop from stack

R8

R7

R6

I <- Rn before I st instruction

R3 I <- Rn after I st instruction
R4 I
R3 I
R2 I
RI I
RO I <- Rn after 2nd instruction

I

There are four types of instruction which pop register values from a stack. They are:

LDMEA
LDMFA
LDMED
LDMFD

Empty stack, Ascending
Full stack, Ascending
Empty stack, Descending
Full stack, Descending

A worked example of LDMEA is given below:

To pop all values from the following stack (set up by the earlier example STMEA
Rn! , {R6-R8 , R3}), use:

LDMEA Rn !, {Rl-R7}

I<- Rn
V7 I
V6 I
V5 I
V4 I
V3 I
V2 I
VI I stack base

The following transfer would take place:

VI -> RI
V2 -> R2
V3 -> R3
V4 -> R4
V5 -> R5
V6 -> R6
V7 -> R7
Rn = stack base

The following is an example of LDMFD:

To recover one set of the saved regi sters from the following stack (set up by the

earlier example: STMFD Rn!, {RO - R4}), use:

LDMFD Rn !, {RO-R4}

R8
R7
R6
R3 k- Lx
R4 I
R3 I
R2 I
RI I
RO k- Rn

I

After the pop operation, Rn will point to location Lx.

87

Block data transfer: special points

Block data transfer: special points

88

There are special cases to consider when using block data transfers.

When the base register is in the list of registers
• The base register may be stored and if write back is not in operation, no

problem wi ll occur.

• If write back is in operation, the STM is performed in the following order:

write lowest-numbered register to memory

2 perform the write back

3 write other registers to memory in ascending order.

Thus, if the base register is the lowest-numbered register in the list, its original
va lue is stored. Otherwise, its written back va lue is stored.

• If the base register is loaded the pop operation will continue successfully The
ent ire block transfer runs on an internal copy of the base, and will not be aware
that the base register has been loaded with a new va lue.

When R15, the PC register, is in the list of registers
• When RI 5 is stored, the PSR is saved as well .

• When RI 5 is loaded, the PSR is only included if the symbol " is coded
following the register list The part of the PSR included will in any case on ly be
that which may be modified in the current ly selected ARM mode. For example :

LDMFD SP! , {FP , PC}A

When the base register is R15
• When the PC is used as the base register, the PSR bits form part of the 32-bit

address. Unless all flags are zero and the interrupts enabled, an address
greater than &3FFFFFF will be formed. This wi ll cause an address exception
which wi ll cause contro l to be transferred to the address exception trap
address, as described in the section entitled Address exception trap on page 49 .

• Write back is switched off when the PC is the base register.

Other points
• The register list is always effectively sorted into ascending order. This means

that instruction sequences such as:

STMIA R0,{Rl , R2}
LDMIA RO , {R2 , Rl}

do not swap the contents of RI and R2 .

• In order to force the saving of the user mode registers when executing in a
different mode, /\ shou ld be coded following the register li st.

For example:

STMFD R0,{R0-R15}A

• Registers are transferred to or from the stack starting with the
lowest-numbered register (PC last) independent of stack type, so that if a data
abort occurs during the instruction the PC is preserved.

Single data swap
The SWP instruction is supported by the assembler, and is introd uced for the
ARM3 microprocessor. It is not supported by ARM2. When executed on a machine
containing an ARM2 it causes an undefined instruction trap, so you shou ld on ly
use SWP in code specifica lly intended for ARM3 machines, not in code written to
run on all Archimedes computers.

The data swap instruction is used to swap a byte or word quantity between a
register and externa l memory. The action of the SWP instruction is a memory read
and a memory write to the same address, with both transfers locked together (ie
the processor cannot be interrupted until both operations have completed) This
instruction is particularly useful for implementing software semaphores.

The on ly addressing mode supported is the swap address contained in a base
register. Two other registers are specified in the instruction - the destination and
source registers The destination register is set to the va lue read from memory, the
source register being written to memory. If the same regi ster is specified as both
source and destination, its contents are correct ly swapped with memory. ARM3 has
a memory cache which is updated by SWP, but data is always swapped directly with
external memory.

A byte swap (SWPB) places the selected byte from memory in the bottom 8 bits of
the destination register, and the remaining bits of the register are filled with zeros.

Using RI 5 is not recommended . If used as the base register, an address exception
will result unless all flags are clear and interrupts are enabled. If used as source,
both PC and PSR are saved, the pc being I 2 bytes on from the address of the SWP
instruction: If used as the destination, the PSR bits are not altered.

89

Single data swap instruction syntax

Single data swap instn,1ction syntax

SWP {condition} {BJ destination, source , [base]

{ condition} may be any of the two-character conditi on mnemonics listed in

the section entitled Conditional execu tion on page 65. If omitted, AL

is assumed.

{BJ if present then the transfers wi ll each be of one byte . If omitted, a

fu ll word is swapped. Note that swaps of words to or from
non-word-aligned addresses have non-obvious and unspecified
results.

destination must be a registe r.

source

base

must be a register.

must be a register.

Examples of SWP are:

SWP RO,Rl , [RlOJ ; load RO with the word pointed to by

SWPB

; RlO , and store Rl at the same address

R2 , R3 , [RlO] ; load R2 with the byt e pointed to by
; RlO , and store bits 0 to 7 of R3 at
; the same address

SWPEQ RO,RO , [RlO] ; conditional ly swap the word pointed
; to by RlO with the contents of RO

Multiply and multiply-accumulate

90

The multiply and multiply-accumulate instructions use a 2 bit Booth 's algorithm to

perform integer multiplication They give the least significant 32 bits of the product
of two 32 bit operands, and may be used to synthesize higher precision

multiplications.

The multiply form of the instructi on gives Rd := Rm *Rs whi le the multiply
accumu late form gives Rd :=Rm •Rs+ Rn , wh ich can save an explicit ADD instruction

in some circumstances.

Both form s of the instruction work on operands which may be considered as signed

(2's complement) or unsigned integers.

CPU instruction set

Operand restrictions

Owing to the way the Booth's algorithm has been implemented, certain

combinations of operand registers should be avoided. (The Assembler wi ll issue a

warning if these restrictions are overlooked.)

The destination register (Rd) should not be the same as the Rm operand register,

·as Rd is used to hold intermediate values and Rm is used repeatedly during the

multiply A MUL will give a zero result if Rm= Rd, and a MLA will give a meaningless

result.

The destination register (Rd) should also not be R 15 . R 15 is protected from

modification by these instructions, so the instruction will have no effect. except

that it will put meaningless values in the PSR flags if the S bit is set.

All other register combinations will give correct results , and Rd, Rn and Rs may use

the same register when required .

PSR flags

Setting the PSR flags is optional. and is controlled by the S bit in the instruction.

The N and Z flags are set correctly on the result (N is equal to bit 31 of the result, Z

is set if and only if the result is zero), the V flag is unaffected by the instruction (as

for logical data processing instructions), and the C flag is set to a meaningless

value.

Using R15 as an operand

R 15 may be used as one or more of the operands, though the result will rarely be

useful. When used as Rs the PC bits will be used without the PSR flags, and the PC

value will be 8 bytes on from the address of the multiply instruction. When used as

Rn, the PC bytes will be used along with the PSR flags and the PC will again be 8

bytes on from the address of the instruction. When used as Rm, the PC bits wi ll be

used together with the PSR flags, but the PC will be the address of the instruction

plus 12 bytes in this case.

Multiply instruction syntax

MUL {conditionJ {SJ Rd, Rrn , Rs

MLA{conditionJ {SJ Rd , Rrn ,Rs , Rn

{ condi tionJ two-character condition mnemonic.

{ SJ set condition codes if S present.

Rd , Rm , Rs , Rn must be registers . (Rd must not be R 15 and must not the same

as Rm .)

91

Supervisor calls

For example,

MUL Rl,R2,R3

MLAEQS Rl,R2,R3,R4

Rl :=R2 * R3

conditionally Rl :=R2 * R3 +R4,
setting condition codes

The multiply instruction may be used to synthesize higher precision
multiplications, for instance to multiply two 32 bit integers and generate a 64 bit
result:

mul64
MOV al,A , LSR #16; al: = top half of A
MOV D, B , LSR #16 ; D . - top half of B
BIC A,A,al,LSL #16 ; A . - bottom hal f o f A
BIC B,B , D, LSL #16; B . - bottom half of B
MUL C, A , B low section of result
MUL B , al , B ;) middle sections
MUL A,D,A ;) of result
MUL D, al, D ;) high section of result
ADDS A,B,A add middle sections

; (couldn't use MLA as we need C
: correct)

ADDCS D, D,#&10000 ; carry from above add
ADDS C,C,A,LSL #16; c is now bottom 32 bits of product
ADC D, D,A,LSR #16 ; D is top 32 bits

(A, Bare registers containing the 32 bit integers; C, Dare registers for the 64 bit
resu lt; al is a temporary register. A and Bare overwritten during the multiply.)

Supervisor calls

These instructions are used extensively in ARM-based systems to communicate
with the operating system and device drivers.

Supervisor calls instruction syntax

92

The syntax is: SWI expression

The CPU wi 11 save the contents of RI 5 less 4 in RI 4 of the SVC register set. then set
the PSR register mode bits to SVC mode and set flag I. The PC will then be loaded
with t he va lue 8 causing a jump to that add ress to be made.

The CPU will ignore the expression, but it may be decoded by other system
software and used to determine what action is to be taken. The expression may
have up to 24 bits (that is, take va lues 0-&FFFFFF) For example

CPU instruction set

SWI &1
"Hello world " ,10,13,0

ALIGN
. code
. continues . . .

This wi ll cause RISC OS to send the message "Hello world" to the output terminal.

The significance of t he Assembler direct ive ALIGN is explained in the chapter
entitled Directives.

Coprocessor instructions

The ARM can work with up to I 6 externa l coprocessors, which (if present) wi ll
execute the instructions listed below. If the requested coprocessor is absent, t hese
instructions will be regarded as undefined. The undefined instruct ion trap can then
take appropriate action (for example emu lating the requested instruction in
software or telling the user that the program won't run in a machine without the
coprocessor.)

Coprocessor number I is the floating point coprocessor. The floating point
emu lator works by t rapping and emu lating undefined instructions destined for
coprocessor I. The coprocessor I 5 instructions are used by ARM3 as instructions
to control cache operation.

The Assembler provides support for coprocessors at two leve ls. Firstly, it provides
a set of generic coprocessor instructions, detailed below. Secondly, it provides
specific floating point instructions; see the chapter entitled Floating point instructions
for details.

All the generic coprocessor operations include a coprocessor number symbol and
one or more coprocessor register symbols. These should be defined using the CP
and CN directives respectively. (See the chapter entitled Directives.)

All coprocessor instructions are conditional. Whether they are executed depends
on the ARM's condition flags, not on any coprocessor status register.

Coprocessor data operations
These instructions tell the coprocessor to perform some internal operation ARM
does not wait for the operation to complete, and no result is communicated back

to ARM .

The instruction syntax assumes that the coprocessor contains up to I 6 registers,
and that the operation can be specified by:

93

Coprocessor data operation instruction syntax

• a four bit coprocessor opcode

• three coprocessor registers

• three bits of additional information.

While the interpretation of these l 9 bits is pu rely up to the coprocessor, it is
recommended that coprocessors adhere to this standard as closely as possibly.

Coprocessor data operation instruction syntax
CDP{condition}coproc , operation , destination , operandl , operand2{ , info}

{condi ti on} two character condition mnemonic.

coproc is the number of the 9oprocessor which is to handle the
instruction. lt must bE[a symbol defined via the CP directive.

opera ti on is the operation requested. It should be a numeric expression in
the range 0-15.

des tina tion is the number of the coprocessor's destination register. It must
be a symbol defined via the CN directive.

operandl The number of the two coprocessor operand registers.

operand2 They must be symbols defined via the CN directive.

{ , info} is additional information to be passed to the coprocessor. It
should be a numeric expression in the range 0 - 7.

Coprocessor/memory transfers

94

These instructions transfer one or more words of data between memory and a
coprocessor.

The instruction syntax assumes that the coprocessor contains up to 16 registers
and that the register(s) to be t ransferred can be specified by a register number and
one bit of length information . Again, the interpretation of these five bits is up to
the coprocessor, but it should adhere to this interpretation as closely as possible.

These instructions have pre-indexed and post-indexed forms, with the fo rmer
having the option of writing back the new base register value (as with LOR and STR,
this always happens for the post-indexed form)

Coprocessor/memory transfer instruction syntax

There are two types of these transfer instructions.

CPU instruction set

Pre-indexed instruction (possibly with write back)

opcode{condition}{L }coproc , r e gister , [base{ , #o ffse t }] { ! }

Post-indexed instruction (always with write back)

opcode{condition}{L }coproc , register , [base] { , #offs e t}

opco de is LDC to load coprocessor register(s) from memory, or STC to

store coprocessor register(s) to memory.

{condition} is a two character condition mnemonic.

{L} if coded, this causes a bit to be set in the instruction telling the

coprocessor to do a 'long' load or store. How this is interpreted

is up to the individual coprocessor.

coproc is the coprocessor number, a symbol defined via the CP

directive.

register is the (first) coprocessor register to be transferred. It must be a

coprocessor register symbol defined via the CN directive.

base is an ARM register.

offse t is a value in the range -1020 to 1020. It must be divisible by 4.

{ ! J if coded, indicates that write back is to occur to the base

register.

The first word is transferred to or from the address base+ offset. The second word

(if it exists) then uses an address four higher, and so on . The number of words

transferred is part of the coprocessor specification .

lf R l 5 is specified as the base register, the value used is the PC without the PSR

flags The PC holds the address of the instruction plus 8 bytes

Coprocessor/register transfers

These instructions transfer a word from an ARM regi ster to a coprocessor, or vice

versa .

The instruction syntax assumes that the coprocessor contains up to 16 registers

and that the operation to be done can be specified by

95

• a three bit coprocessor opcode

• two coprocessor registers

• three bits of additional information.

As usual, coprocessors should adhere as closely as possible to this convention.

Coprocessor/register transfers instruction syntax
opcode{condition}coproc,operation , armreg,operandl,operand2{,info}

opcode

{condition}

coproc

operation

armreg

op erandl
operand2

{,i n fo}

shou ld be MRC to perform the requested operation on the
operands and transfer the result to the ARM register, or MCR to
transfer the ARM register to the operands in the way specified
by the operation and additional information .

is a two character condition mnemonic.

is the coprocessor number, a symbol defined via the CP
directive.

is the operation requested . It shou ld be a numeric expression in
the range 0 to 7.

is an ARM register.

are coprocessor registers. They must be
symbols defined via t he CN directive.

is additiona l information to be passed to the coprocessor. It
should be a numeric expression in t he range 0 to 7.

If armreg is RI 5 in a MRC instruction, bits 31, 30, 29 and 28 of the result are
transferred to the N, Z, C and V fl ags respectively. Bits 27 to 0 of the resu lt are
ignored.

If armreg is R 15 in a MCR instruction , both t he PC and PSR are transferred

Summary of assembler mnemonic combinations

96

The main AAsm and ObjAsm assembler mnemonic combinations are shown in the
table below. All the root instructions may be followed by one of the condition
codes listed in the section entitled Conditional execution on page 65 ; the condition
code is always placed after the root instruction and before any other suffixes.

Branch group

B Branch
BL Branch with Link

Data processing group

ADC Add with Carry
ADD Add
AND Bitwise And
SIC Bit Clear
CMN Compare Negated
CMP Compare
EOR Bitwise Exclusive Or
MOV Move
MVN Move Not
ORR Bitwise Or
RSB Reverse Subtract
RSC Reverse Subtract with Carry
SBC Subtract with Ca rry
SUB Subtract
TEO Test Equivalence
TST Test and Mask

S may follow these mnemonics
S: Set condition codes.

P may follow CMP, CMN, TST or TEO.
P: causes CMP, CMN, TEO and TST to set the PSR direct ly

S is included by the Assembler for CMP, CMN, TEO and TST.

Single register transfer group

LDR Load register from memory location
STR Store register from memory location

B or T may follow these mnemonics.
B: perform a byte transfer, not a word transfer.
T: Set the Translate bit

Multiple register transfer group

LDM Load multiple registers
STM Store multiple registers

Followed by one of the suffixes shown below:

DA Decrement after
DB Decrement before
IA Increment after
18 Increment before
EA Empty stack, ascending

CPU instruction set

97

Further instructions

ED Empty stack, descending
FA Full stack, ascending
FD Full stack, descending

Single data swap (from ARM3)

SWP Swap register and memory contents.

B may follow this mnemonic, implying byte transfer.

Multiplies

MUL Multiply
MLA Multiply and accumulate

S may follow these mnemonics
S: Set condition codes

Supervisor call

SWI Software interrupt

Coprocessor data operations

CDP Perform internal coprocessor operation

Coprocessor/memory transfer

LDC Load coprocessor register from memory location
STC Store coprocessor register to memory location

L may follow these mnemonics
L: Perform long transfer

Coprocessor/register transfers

MCR Move ARM register to coprocessor register
MRC Move coprocessor register to ARM register

Further instructions

98

The above completes the description of all the basic ARM instructions. However,
the Assembler understands a number of other instructions, which it translates into
appropriate basic ARM instructions.

CPU instruction set

Extended range immediate constants

In the case of an instruction such as

MOV RO , #VALUE

the Assembler wi ll evaluate the expression and produce a CPU instruction to load
the value into the destination register. This may not in fact be the machine level
instruction known as MOY, but the programmer need not be aware that an
alternative instruction has been substituted. A common example is

MOV Rn , #-1

which the CPU cannot handle directly (as -I is not a valid immediate constant). The
Assembler will accept this syntax, but wi ll convert it and generate object code for

MVN Rn, #0

which results in Rn containing -1. Such conversions also takes place between the
following pairs of instructions.

• BIC/AND

• ADD/SUB

e ADC/SBC

e CMP/CMN

The ADR instruction

Syntax: ADR{condition} register , expression

This produces an address in a register. ARM does not have an expl icit 'calculate
effective address' instruction, as this can general ly be done using ADD, SUB, MOY
or MYN. To ease the construction of such instructions, the Assemb ler provides an
ADR instruction.

The expression may be register-relative, program-relative or numeric.

register-relative

program-relative

ADD register , regis t er2 , #constant

or

SUB register , register2 , #constan t

will be produced, where reg ister2 is the register that
the expression is relative to.

ADD r egister , PC , #constant

or

SUB register , PC , #c o nst a nt

99

100

will be produced

numeric MOV register , #constant

or

MVN register , #constant

will be produced

In all three cases, an error will be generated if the immediate constant required is
out o f range .

If the program has a fixed origin (that is, if the ORG directive has been used) , the
distinction between program-relative and numeric va lues disappears In thi s case,
the Assembler will first try to treat such a value as program-relative. If this fails , it
wi ll try to treat it as numeri c. An error will only be generated if both attempts fail.

ADR {condition} L

This form o f ADR is provided by ADRL and allows a wider collection of effective
addresses to be produced. ADRL ca n be used in the same way as ADR, except that
the all owed range o f constants is any constant speci fied as an even rotation of a
va lue less t han & I 0000. Agai n program-relative, register relative and numeric
fo rm s exist . The result produced will always be two instructions, even if it could
have been done in one. An error wi ll be generated if the necessary immediate
constants cannot be produced .

Literals

Literals are intended to enable the programmer to load immediate values into a
register which might be out of range as MOV/MVN arguments

Syntax: LDR register, =expression

The Assembler wi ll then take certain actions . It will:

• if possible, replace the instruction wi th a MOV or MVN,

• otherwise, generate a program-relative LDR and if no such literal already exists
within the addressable range, place the literal in the next literal pool.

Program-relat ive expressions and imported symbo ls are also val id literals in
Ob jAsm See the sect ion entitled LTORG on page 126 for further information

Floating point instructions

The Assembler recognises a standard set of fl oat ing point instructions and
tran slates them into the appropriate coprocessor instructi ons. See the next
chapter entit led Floating point instructions for detai Is.

8 Floating point instructions

T he Acorn RISC machine has a general coprocessor interface. The first
coprocessor available is one which performs floating point calculations to the

IEEE standard. To ensure that programs using floating point arithmetic remain
compatible with all Archimedes machines, a standard ARM floating point
instruction set has been defined . This can be implemented invisibly to the
customer program by one of several systems offering various speed performances
at various costs. The current 'bundled' floating point system is the software only
floating point emulator module. Floating point instructions may be incorporated
into any assembler text. provided they are called from user mode. These
instructions are recognised by the Assembler and converted into the correct
coprocessor instructions.

Programmer's model
The ARM IEEE floating point system has eight 'high precision' fioating point registers,
FO to F7. The format in which numbers are stored in these registers is not specified.
Floating point formats only become visible when a number is transferred to
memory, using one of the formats described below.

There is also a fioating point status register (FPSR) which, like the ARM's combined PC
and PSR. holds all the necessary status and control information that an application
is intended to be able to access. It holds fiag s which indicate various error
conditions, such as overflow and division by zero. Each flag has a corresponding
trap enable bit, which can be used to enable or disable a 'trap' associated with the
error cond ition . Bits in the FPSR allow a client to distinguish between different
implementations of the floating point system.

There may also be a fioating point control register (FPCR); this is used to hold status
and control information that an application is not intended to access. For example,
there are privileged instructions to turn the fl oat ing point system on and off, to
permit efficient context changes Typically, hardware based systems have an FPCR,
whereas software based ones do not

101

Programmer's model

102

Available systems

Floating point systems may be built from software only, hardware only, or some
combination of software and hardware. The following terminology will be used to
differentiate between the various ARM floating point systems already in use or
planned:

System name

Old FPE

FPPC

New FPE

FPA

System components

Versions of the floating point emulator up to (but not
including) 4.00

Floating Point Protocol Convertor (interface chip between
ARM and WE32206), WE32206 (AT&T Math Acceleration Unit
chip), and support code

Versions of the floating point emulator from 4.00 onwards

ARM Floating Point Accelerator chip, and support code

The results look the same to the programmer. However, if clients are aware of
which system is in use, they may be able to extract better performance. For
example, compilers can be tuned to generate bunched FP instructions for the FPE
and dispersed FP instructions for the FPA, which will improve overall performance.

Precision

All basic floating point instructions operate as though the result were computed to
infinite precision and then rounded to the length, and in the way, specified by the
instruction. The rounding is selectable from:

• Round to nearest

• Round to +infinity (P)

• Round to -infinity (M)

• Round to zero (Z) .

The default is 'round to nearest'; in the event of a tie, this rounds to 'nearest even'.
If any of the others are required they must be given in the instruction.

The working precision of the system is 80 bits, comprising a 64 bit mantissa, a 15
bit exponent and a sign bit Specific instructions that work only with single
precision operands may provide higher performance in some implementations,
particularly the fully software based ones.

Floating point number formats

Like the ARM instructions, the floating point data processing operations refer to
registers rather than memory locations. Values may be stored into ARM memory in
one of five formats (only four of which are visible at any one time, since P and EP
are mutually exclusive):

Floating point instructions

IEEE Single Precision (S)

31 30 2322 0

I Sign I Exponent I msb Fraction

Figure 8. l Single precision format

• lf the exponent is 0 and the fraction is 0, the number represented is ±0.

• lf the exponent is 0 and the fraction is non-zero, the number represented is
±0 .fraction X TI 26

• lf the exponent is in the range l to 254, the number represented is
±I .fraction x 2 exponent - 127

• If the exponent is 255 and the fraction is 0, the number represented is ±oo.

• If the exponent is 255 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

IEEE Double Precision (D)

31 30 2019 0

Fraction lsb First word _Sign I Exponent I msb
1--~~~~~~~~~~~~~~~~~~~~~~~~

Second word msb Fraction lsb

Figure 8.2 Double precision format

• If the exponent is 0 and the fraction is 0, the number represented is ±0.

• If the exponent is 0 and the fraction is non-zero, the number represented is
±0.fraction ·x r 1022

• If the exponent is in the range I to 2046, the number represented is
±I .fraction X 2exponent - I 023

• If the exponent is 204 7 and the fraction is 0, the number represented is ±oo.

• If the exponent is 2047 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

103

Programmer's model

104

Double Extended Precision (E)

31 30

First word Sign zeros

Second word J msb

Third word msb

1514

I
Exponent

Fraction

Fraction

Figure 8. 3 Double extended precision format

0

lsb

lsb

• If the exponent is 0, J is 0, and the fraction is 0, the number represented is ±0.

• If the exponent is 0, J is 0, and the fraction is non-zero, the number represented
is ±0.fraction x r 16382

• If the exponent is in the range 0 to 32766, J is I, and the fraction is non-zero,
the number represented is ±I .fraction x 2exponent- !6383

• If the exponent is 32767, J is 0, and the fraction is 0, the number represented is
±oo.

• If the exponent is 32767 and the fraction is non-zero, a NaN (not-a-number) is
represented . If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

Other values are illegal and shall not be used (ie the exponent is in the range I to
32766 and J is 0; or the exponent is 32767, J is I, and the fraction is 0).

The FPPC system stores the sign bit in bit I 5 of the first word, rather than in bit 31.

Storing a floating point register in 'E' format is guaranteed to maintain precision
when loaded back by the same floating point system in this fo rmat. Note that in
the past the layout of E format has varied between floating point systems, so
software should not have been written to depend on it being readable by other
floating point systems. For example, no software shou ld have been written which
saves E format data to disc, potentially loaded into another system. In particular. E
format in the FPPC system varies from all other systems in its positioning of the
sign bit. However, for the FPA and the new FPE, the E format is now defined to be a
particular form of IEEE Double Extended Precision and will not vary in future

Floating point instructions

Packed Decimal (P)

31 0

First word Sign e3 e2 e1 eO d18 d17 d16

Second word d15 d14 d13 d12 d11 d10 d9 d8

Third word d7 d6 d5 d4 d3 d2 d1 dO

Figure 8.4 Packed decimal format

The sign nibble contains both the significand's sign (top bit) and the exponent's
sign (next bit); the other two bits are zero.

d I 8 is the most significant digit of the significand, and e3 of the exponent. The
significand has an assumed decimal point between d I 8 and d I 7, and is normalised
so that for a normal number I:::; d I 8:::; 9. The guaranteed ranges ford and e are I 7
and 3 digits respectively; dO, d I and e3 may always be zero in a particular system A
single precision number has 9 digits of significand and a maximum exponent of 53 ;
a double precision number has I 7 digits in the significand and a maximum
exponent of 340.

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation of ±oo or a NaN (see below).

• If the exponent's sign is 0, the exponent is 0, and the significand is 0, the
number represented is ±0.

Zero will always be output as +O, but either +O or -0 may be input .

• If the exponent is in the range 0 to 9999 and the sign ificand is in the range I to
9.999999999999999999, the number represented is ±d x 10±e

• If the exponent is &FFFF (ie all the bits in e3 - eO are set) and the significand is
· 0, the number represented is ±oo.

• If the exponent is &FFFF and dO - d I 7 are non-zero, a NaN (not-a-number) is
represented If the most significant bit of d 18 is set, it is a non-trapping NaN ;
otherwise it is a trapping NaN.

All other combinations are undefined.

105

Programmer's model

106

Expanded Packed Decimal (EP)

31

First word Sign e6

Second word d23 d22

Third word d15 d14

Fourth word d7 d6

e5 e4 e3 e2

d21 d20 d19 d18

d13 d12 d11 d10

d5 d4 d3 d2

Figure 8. 5 Expanded packed decimal format

0

e1 eO

d17 d16

d9 d8

d1 dO

The sign nibble contains both the significand's sign (top bit) and the exponent's
sign (next bit); the other two bits are zero.

d23 is the most significant digit of the significand, and e6 of the exponent. The
significand has an assumed decimal point between d23 and d22, and is normalised
so that for a normal number I :S: d23 :S: 9. The guaranteed ranges ford and e are 21
and 4 digits respectively; dO, d I, d2, e4, e5 and e6 may always be zero in a particular
system . A single precision number has 9 digits of significand and a maximum
exponent of 53 ; a double precision number has 17 digits in the significand and a
maximum exponent of 340.

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation of ±oo or a NaN (see below).

• If the exponent's sign is 0, the exponent is 0, and the significand is 0, the
number represented is ±0.

Zero will always be output as +O, but either +O or -0 may be input.

• If the exponent is in the range 0 to 9999999 and the significand is in the range
l to 9. 99999999999999999999999, the number represented is ±d x l o±e

• If the exponent is &FFFFFFF (ie all the bits in e6 - eO are set) and the
significand is 0, the number represented is ±00 .

• If the exponent is &FFFFFFF and dO - d22 are non-zero, a NaN (not-a-number)
is represented Ifthe most significant bit of d23 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

This format is not available in the old FPE or the FPPC. You should only use it if you
can guarantee that the floating point system you are using supports it.

Floating point instructions

Floating point status register
There is a fl oat ing point status register (FPSR) which, li ke ARM's comb ined PC and
PSR, has all the necessary status for the floating point system. The FPSR conta ins
the IEEE flags but not the result flags - these are on ly avai lable after fl oating point
compa re operat ions.

The FPSR consists of a system ID byte, an exception t rap enable byte, a system
control byte and a cumulative exception flags byte

31 2423 1615 87 0

FPSR System ID Trap Enable System Control Exception Flags

Figure 8.6 Floating point status register b1,1te usage

System ID byte

The System ID byte al lows a user or operating system to distinguish which floating
point system is in use. The top bit (bit 31 of the FPSR) is set for hardware (ie fast)
systems, and clear for software (ie slow) systems. Note that the System ID is
read-only.

The following Sysld's are currently defined

System

Old FPE
FPPC
New FPE
FPA

System ID

&00
&80
&01
&81

Exception Trap Enable Byte

Each bit of the exception trap enable byte corresponds to one type of floating point
exception, which are described in the section ent itled Cumulative Exception Flags B1,1te
on page 109.

23 22 21 20 19 18 17 16

FPSR I Reserved INX UFL OFL DVZ IVO

Figure 8.7 Exception trap enable b1,1te

If a bit in the cumulative exception flags byte is set as a resu lt of executing a
floating point instruction, and the corresponding bit is also set in the exception
trap enable byte, then that exception trap will be taken.

107

Floating point status register

108

Currently, the reserved bits shall be written as zeros and will return 0 when read.

System Control Byte

These control bits determine which features of the floating point system are in use.

15 14 13 12 11 10 9 8

FPSR I Reserved AC EP so NE ND

Figure 8.8 System control byte

By placing these control bits in the FPSR, their state will be preserved across
context switches, allowing different processes to use different features if necessary.
The following five control bits are defined for the FPA system and the new FPE:

ND No Denormalised Numbers
NE NaN Exception
SO Select Synchronous Operation of FPA
EP Use Expanded Packed Decimal Format
AC Use Alternative definition for C flag on compare operations

The old FPE and the FPPC system behave as if all these bits are clear.

Currently, the reserved bits shall be written as zeros and will return 0 when read.
Note that all bits (including bits 8 - 12) are reserved on FPPC and early FPE
systems.

ND - No Denormalised Numbers Bit

If this bit is set, then the software will force all denormalised numbers to zero to
prevent lengthy execution times when dealing with denormalised numbers. (Also
known as abrupt underflow or flush to zero.) This mode is not IEEE compatible but
may be required by some programs for performance reasons.

If this bit is clear, then denormalised numbers will be handled in the normal
IEEE-conformant way.

NE - NaN Exception Bit

If this bit is set. then an attempt to store a signalling NaN that involves a change of
format will cause an exception (for full IEEE compatibility)

If this bit is clear, then an attempt to store a signalling NaN that involves a change
of format will not cause an exception (for compatibility with programs designed to
work with the old FPE).

SO - Select Synchronous Operation of FPA

If this bit is set. then all floating point instructions will execute synchronously and
ARM will be made to busy-wait until the instruction has completed . This will allow
the precise address of an instruction ca using an exception to be reported, but at
the expense of increased execution time.

If this bit is clear, then that class of floating point instructions that can execute
asynchronously to ARM will do so. Exceptions that occur as a result of these
instructions may be raised some time after the instruction has started, by which
time the ARM may have executed a number of instructions following the one that
has failed . In such cases the address of the instruction that caused the exception
will be imprecise.

The state o f this bit is ignored by software-on ly implementat ions, which always
operate synchronously.

EP - Use Expanded Packed Decimal Format

If this bit is set, then the expanded (four word) format will be used for Packed
Decimal numbers. Use of t his expanded format allows conversion from extended
precision to packed decimal and back again to be carried out without loss of
accuracy.

If this bit is clear, then the standard (three word) fo rmat is used for Packed Decimal
numbers.

AC - Use Alternative definition for C flag on compare operations

If thi s bit is set. the ARM C flag, after a compare, is interpreted as 'Greater Than or
Equal or Unordered'. This interpretation allows more of the IEEE predicates to be
tested by means of single ARM conditional instructions than is possible using the
original interpretation of the C flag (as shown below).

If this bit is clear, the ARM C flag , after a compare, is interpreted as 'Greater Than or
Equa l'

Cumulative Exception Flags Byte

7 6 5 4 3 2 0

FPSR I Reserved INX UFL OFL DVZ IVO

Figure 8.9 Cumulative exception fiags byte

Whenever an exception condition arises, the appropriate cumulative exception flag
in bits 0 to 4 will be set to I . If the relevant trap enable bit is set. then an exception
is also delivered to the user's program in a manner speci fi c to the operating

109

Floating point status register

110

system. (Note that in the case of underflow, the state of the trap enable bit

determines under which conditions the underflow flag will be set) These fl ags can

on ly be cleared by a WFS instrw;:tion

Currently, the reserved bits sha ll be written as zeros and will return 0 when read.

IVO - invalid operation

The IYO flag is set when an operand is invalid for the operation to be performed.

Invalid operations are:

• Any operation on a trapping NaN (not-a-number)

• Magnitude subtraction of infinities, eg +oo + -oo

• Multiplication of 0 by ±oo

• Division of 0/0 or oo/oo

• x REM y where x = oo or y = 0

(REM is the 'remainder after floating point division' operator.)

• Square root of any number < 0 (but >/(-0) = -0)

• Conversion to integer or decimal when overflow, oo or a NaN operand make it

impossible

If overflow makes a conversion to integer imposs ible, then the largest positive

or negative integer is produced (depending on the sign of the operand) and

IYO is signalled

• Comparison with exceptions of Unordered operands

• ACS, ASN when argument's abso lute va lue is> I

• SIN, COS, TAN when argument is ±oo

• LOG, LGN when argument is::; 0

• POW when first operand is< 0 and second operand is not an integer, or first

operand is 0 and second operand is::; 0

• RPW when first operand is not an integer and second operand is< 0, or first

ope rand is::; 0 and second operand is 0.

DVZ - division by zero

The DYZ flag is set if the divisor is zero and the dividend a finite , non-zero number.

A correctly signed infinity is returned if the trap is disabled.

The flag is also set for LOG(O) and for LGN(O) Negative infinity is returned if the

trap is disabled.

Floating point instructions

OFL - overflow

The OFL flag is set whenever the destination format's largest number is exceeded
in magnitude by what the rounded result would have been were the exponent
range unbounded. As overflow is detected after rounding a result , whether
overflow occurs or not after some operations depends on the rounding mode.

If the trap is disabled either a correctly signed infinity is returned, or the format's
largest finite number. This depends on the rounding mode and floating point
system used.

UFL - underflow

Two correlated events contribute to underflow:

• Tininess - the creation of a tiny non-zero result smaller in magnitude than the
format's smallest normalised number.

• Loss of accuracy - a loss of accuracy due to denormalisation that may be greater
than would be caused by rounding alone.

The UFL flag is set in different ways depending on the value of the UFL trap enable
bit. If the trap is enabled , then the UFL flag is set when tininess is detected
regardless of loss of accuracy. If the trap is disabled, then the UFL flag is set when
both tininess and loss of accuracy are detected (in which case the INX flag is also
set); otherwise a correctly signed zero is returned.

As underflow is detected after rounding a result. whether underflow occurs or not
after some operations depends on the rounding mode.

INX - inexact

The INX flag is set if the rounded result of an operation is not exact (different from
the value computable with infinite precision). or overflow has occurred while the
OFL trap was disabled, or underflow has occurred while the UFL trap was disabled.
OFL or UFL traps take precedence over INX.

The INX flag is also set when computing SIN or COS, with the exceptions of SIN(O)
and COS(!).

The old FPE and the FPPC system may differ in their handling of the INX flag.
Because of this inconsistency we recommend that you do not enable the INX trap.

111

Floating Point Control Register

Floating Point Control Register

112

The Floating Point Control register (FPCR) may only be present in some

implementations it is there to control the hardware in an implementation specific

manner. for example to disable the floating point system. The user mode of the

ARM is not permitted to use this register (since the right is reserved to alter it

between implementations) and the WFC and RFC instructions will trap if tried in

user mode.

You are unlikely to need to access the FPCR; this information is principally given

for completeness .

The FPPC system

The FPCR bit allocation in the FPPC system is as shown below:

Bit

31-8
7
6
5
4

3
2
l
0

31

PR
SBd
SBn
SBm

AS
EX
DA

8 7 6 5 4 3

Figure 8.10 FPCR bit allocation in the FPPC system

Meaning

Reserved - always read as zero

2 0

Last RMF instruction produced a partial remainder
Use Supervisor Register Bank 'd'
Use Supervisor Register Bank 'n'
Use Supervisor Register Bank 'm'
Reserved - always read as zero
Last WE32206 exception was asynchronous
Floating point exception has occurred
Disable

Reserved bits are ignored during write operations (but should be zero for future

compatibility.) The reserved bits will return zero when read.

Floating point instructions

The FPA system

In the FPA, the FPCR will also be used to return status information required by the
support code when an instruction is bounced. You should not alter the register
unless you really know what you're doing. Note that the register will be read
sensitive; even reading the register may change its value, with disastrous
consequences.

The FPCR bit allocation in the FPA system is provisionally as follows

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPcRIRul
15 14

(cont'd) I OP I

Bit

31 RU
30
29
28 IE
27 MO
26 EO
25, 24
23-20 OP
19 PR
18-16 SI
15 OP
14-12 DS
11 SB
10 AB
9 RE

8 EN
7 PR
6, 5 RM
4 OP
3-0 S2

I 1E IMolEol OP 1-1
13 12 11 10 9 8 7 6 5 4 3

OS lsslAslREIENIPRI RM lop I
Figure 8.11 FPCR bit allocation in tfie FPA system

Meaning

Rounded Up Bit
Reserved
Reserved
Inexact bit
Mantissa overflow
Exponent overflow
Reserved
AU operation code
AU precision
AU source register I
AU operation code
AU destination register

81

2 0

82

Synchronous bounce: decode (Rl4) to get opcode
Asynchronous bounce: opcode supplied in rest of word
Rounding Exception : Asynchronous bounce occurred during

rounding stage and destination register was written
Enable FPA (default is off)
AU precision
AU rounding mode
AU operation code
AU source register 2 (bit 3 set denotes a constant)

Note that the SB and AB bits are cleared on a read of the FPCR. Only the EN bit is
. writable. All other bits shall be set to zero on a write.

113

Assembler directives and syntax

Assembler directives and syntax

114

The precision letter determines the format used to store the number in memory, as
follows:

Letter Precision Memory usage

s Single I word
D Double 2 words
E Extended 3 words
p Packed BCD 3 words
EP Extended Packed BCD 4 words

For details of these fo rmats see the section entit led Floating point number formats on
page 102.

Floating point number input

A floating point number recognised by the assemblers cons ists o f an optional sign,
fo llowed by an optional mantissa part fo llowed by an optional exponent part One
or other of the manti ssa part and the exponent part must be present The mantissa
part consists of a sequence of zero or more decimal digits , followed by an optional
decimal point fo llowed by a sequence of zero or more decimal digits. If present. the
mantissa must contain a non-zero number of d igits overall. The exponent part
begins with 'e' or 'E', followed by an optional sign, followed by a sequence of one
or more decimal digits .

Examples are:

1
0 . 2
5E9
E-2
-.7
+31 . 415926539E-1

The va lue generated represents the mantissa multiplied by ten to the power of the
exponent, where the mantissa is taken to be one if missing, and the exponent is
taken to be zero if missing. All reading is done to double precis ion, and is then
rounded to single precision as required. The required precision is determined by
the context as shown in the sections Floating point store loading directives and Floating
point literals below.

Floating point instructions

NOFP directive

If you know that your code should not use floating point instructions and want to
ensure that you don't accidentally include them , you can use the NOFP directive. It
must occur before any floating point instructions or directives.

Syntax: NOFP

Floating point register equating: FN

The directive FN is used to assign a floating point register number 0-7 to a symbol

Syntax: label FN numeric expression

Floating point register numbers are taken to be constants when included in
arbitrary expression, but only floating point register names are valid when a
floating point register is required.

Floating point store loading directives

Directives DCFS and DCFD are provided to load store with respectively single and
double precision floating point numbers. Single precision floating point numbers
occupy one word of store, double precision floating point numbers occupy two
words, but are not constrained to be double word aligned.

Syntax: label DCFx floating point number{, floating point number}

where the syntax of floating point numbers is defined in the section Floating point
number input above.

? label will have the value of the number of bytes of code generated by its
defining line in a way analogous to DCD.

The instruction set

Floating point coprocessor data transfer

op{condition}prec Fd , addr

op is LDF for load, STF for store

condition is one of the usual ARM conditions

prec is one of the usual floating point precisions

addr is [Rn] { , #offset} or [Rn, #offset] { ! }

({ ! J if present indicates that write-back is to take place)

Fd is a floating point register symbol (defined via the FN directive)

115

The instruction set

Load (LDF) or store (STF) the high precision value from or to memory, using one of
the five memory formats . On store, the value is rounded using the 'round to
nearest' rounding method to the destination precision, or is precise if the
destination has sufficient precision Thus other rounding methods may be used by
having previously applied some suitable floating point data operation ; this does
not compromise the requirement of 'rounding once only', since the store operation
introduces no additional rounding error.

The offset is in words from the address given by the ARM base register, and is in the
range -I 020 to+ I 020. In pre-indexed mode you must explicitly specify write-back
to add the offset to the base register; but in post-indexed mode the assembler
forces write-back for you, as without write back post-indexing is meaningless.

You should not use R 15 as the base register if write-back will take place.

Floating point literals

LDFS and LDFD can be given literal val ues instead of a register relative address,
and the Assembler will automatical ly place the required value in the next available
literal pool. In the case of LDFS a single precision va lue is placed , in the case of
LDFD a double precision va lue is placed. Because the allowed offset range within a
LDFS or LDFD instruction is less than that for a LDR instruction (-! 020 to+ I 020
instead of -4095 to +4095), it may be necessary to code LTORG directives more
frequently if floating point literals are being used than would otherwise be
necessary.

Syntax: LDFx Fn , = floating point number

where the syntax of floating point numbers is defined in the section entit led
Floating point number input on page 114.

Floating point coprocessor multiple data transfer

116

The LFM and SFM multiple data transfer instructions are supported by the
assemblers, but are not provided by the old FPE or the FPPC system Executing
these instructions on such systems will cause undefined instruction traps, so you
shou ld only use these instructions in software intended for machines you are
confident are using the new FPE or the FPA system.

The LFM and SFM instructions allow between I and 4 floating point registers to be
transferred from or to memory in a single operation; such a transfer otherwise
requires several LDF or STF operations. The multiple transfers are therefore useful
for efficient stacking on procedure entry/exit and context switch ing. These new
instructions are the preferred way to preserve exactly register contents within a
program.

Floating point instructions

The values transferred to memory by SFM occupy three words for each register, but
the data format used is not defined, and may vary between floating point systems.
The on ly legal operation that can be performed on this data is to load it back into
floating point registers using the LFM instruction. The data stored in memory by an
SFM instruction should not be used or modified by any user process

The registers transferred by a LFM or SFM instruction are specified by a base
floating point register and the number of registers to be transferred . This means
that a register set transferred has to have adjacent register numbers, unlike the
unconstrained set of ARM regi sters that can be loaded or saved using LDM and
STM. Floating point registers are transferred in ascending order, register numbers
wrapping round from 7 to 0: eg transferring 3registers with F6 as the base register
results in registers F6, F7 then FO being transferred .

The assembler supports two alternative forms of syntax, intended for genera l use
or just stack manipulation :

op{condition} Fd,count,addr

op{condition}stacktype Fd , count , [Rn]{ ! }

op

condition

Fd

count

addr

stacktype

is LFM for load, SFM for store.

is one of the usual ARM conditions.

is the base floating point register, specified as a fl oating point
register symbol (defined via the FN directive) .

is an integer from I to 4 specifying the number of registers to be
transferred.

is [Rn] {,#offset} or [Rn , #offset] { ! }

({ ! J if present indicates that write-back is to take place)

is FD or EA, standing for Full Descending or Empty Ascending, the
meanings as for LDM and STM .

The offset (on ly relevant for the first , general, syntax above) is in words from the
address giveri by the ARM base register, and is in the range -I 020 to+ I 020. In
pre-indexed mode you must explicitly specify write-back to add the offset to the
base register; but in post-indexed mode the assembler forces write-back for you, as
without write back post-indexing is meaningless.

You shou ld not use R 15 as the base register if write-back will take place

117

The instruction set

Examples:

SFMNE F6, 4, [RO]

LFMFD F4, 2 , [R13] !

LFM F4 , 2 , [R13] , #24

;if NE is true, transfer F6, F7 ,

;FO and Fl to the address

; contained in RO

; load F4 and FS from FD stack -
; equivalent to same instruction
; in general syntax

Floating point coprocessor register transfer

118

FLT{condition}prec{round}
FLT{condition}prec{round}
FIX{condition}{round}
WFS{condition}
RFS{condition}
WFC{condition}
RFC{condition}

Fn,Rd
Fn , #value
Rd,Fn
Rd
Rd
Rd
Rd

{round}
Rd

is the optional rounding mode: P, Mor Z; see below.

is an ARM register symbol.

Fn is a floating point register symbol.

The value may be of the following: 0, I , 2, 3, 4, 5, IO, 0.5 . Note that these va lues

must be written precisely as shown above, for instance '0.5' is correct but '. 5' is not.

FLT Integer to Floating Point
FIX Floating point to integer

WFS Write Floating Point Status

RFS Read Floating Point Status

WFC Write Floating Point Control
RFC Read Floating Point Control

The rounding modes are

Mode

Nearest
Plus infinity
Minus infinity
Zero

Letter

(no letter required)
p

M
z

Fn :=Rd
Rd= Fm
FPSR :=Rd
Rd := FPSR
FPC = R Supervisor Only
Rd := FPC Supervisor On.ly

Floating point instructions

Floating point coprocessor data operations

The formats of these instructions are:

binop{condition}prec{round}

binop{condition}prec{round}

unop{condition}prec{round}

unop{condition}prec{round}

Fd, Fn, Fm

Fd, Fn, #value

Fd, Fm

Fd, #value

bin op
unop
Fd

is one of the binary operations listed below
is one of the unary operations listed below
is the FPU destination register

Fn
Fm
#value

is the FPU source register (binops only)
is the FPU source register
is a constant, as an alternative to Fm. It must be 0, I, 2, 3, 4, 5, I 0 or
0.5, as above.

The binops are:

ADF Add Fd := Fn +Fm
MUF Multiply Fd := Fn x Fm
SUF Sub Fd := Fn-Fm
RSF Reverse Subtract Fd :=Fm - Fn
DVF Divide. Fd := Fn/Fm
RDF Reverse Divide Fd := Fm/Fn
POW Power Fd := Fn to the power of Fm
RPW Reverse Power Fd := Fm to the power of Fn
RMF Remainder Fd := remainder of Fn I Fm

(Fd := Fn - integer value of (Fn/Fm)*Fm)
FML Fast Multiply Fd := Fn x Fm
FDV Fast Divide Fd = Fn I Fm
FRO Fast Reverse Divide Fd :=Fm I Fn
POL Polar angle Fd :=polar angle of Fn, Fm

The unops are:

MVF Move Fd :=Fm
MNF Move Negated Fd :=-Fm
ABS Absolute value Fd :=ABS (Fm)
RND Round to integral value Fd := integer value of Fm
SOT Square root Fd :=square root of Fm
LOG Logarithm to base I 0 Fd :=log Fm
LGN Logarithm to base e Fd :=In Fm
EXP Exponent Fd := e to the power of Fm
SIN Sine Fd :=sine of Fm

119

120

cos
TAN
ASN
ACS
ATN
URD
NRM

Cosine ;.~ O! 5; Sr. ''I ~ j '
Tangent

.Fck:=;,:costne. of F.:rn ''· •
Fd :=tangent of Fm
Fd ~ · ar'csine of Fm Arc Sine

Arc .Cosine
Arc Tangent

Fd ·:= arccosine of Fm
Fd := arctangent of Fm

Unnormalised Round
Normalise

Fd :=integer value of Fm (may be abnormal)
Fd := normalised form of Fm

Note that wherever Fm is mentioned, one of the floating point constants 0, I. 2, 3,
4, 5, 10, or 0.5 can be used instead.

, I

FML, FRD and FDV are only defined to work with single precision operands. These
'fast' instructions are likely ,to be faster than the equivalent MUF, DVF and RDF
instructions, but this is not nee:essarily so for- any particular .implementation.

Rounding is done only, at tb'.e last stag~\>f a siN, COS etc - the calculations to
compute the value are done with 'round tb nearest' using the full working
precision.

The URD and NRM operations are only supported by the FPA and the new FPE.

Floating point coprocessor status transfer

op{condition}prec{round} Fm , ,Fn

op is one of the following:

CMF ·Compare floating
CNF Compare negated floating
CMFE Compare floating with exception
CNFE Compare negated floating with exception

{ condition} an ARM condition .

prec a precision letter

{round} · · an optional rounding mode: P, Mor Z

Fm

Fn

A floating point register symbol.

A floating point register symbol.

compare Fn with Fm
compare Fn with -Fm
compare Fn with Fm
compare Fn with -Fm

Compares are provided with and without the exception that could arise if the
numbers are 't.i-nordered (ie one qr both of the~ is not-a-number) To comply with
IEEE 754. the C¥F instruction should be used to test for equality (ie when a BEO
or BNE is used afterwards) or to test for unorderedness (in the V flag). The CMFE
instruction should be used for all other tests (BGT, BGE, BLT, BLE afterwards)

When the AC bit in the FPSR is clear, the ARM flags N, Z, C. V refer to the following
after compares:

N
z
c
v

Less than
Equal
Greater than or equal
Unordered

ie Fn less than Fm (or -Fm)

ie Fn greater than or equal to Fm (or -Fm)

Note that when two numbers are not equal. N and Care not necessarily opposites.
If the result is unordered they will both be clear.

When the AC bit in the FPSR is set. the ARM flags N, Z, C. V refer to the following
after compares:

N Less than
z Equal
C Greater than or equal or unordered
V Unordered

In this case, N and Care necessarily opposites

Finding out more ...

Further details of the floating point instructions (such as the format of the bitfields
within the instruction) can be found in the Acorn RISC Machine family Data Manual.
VLSI Technology Inc. (I 990) Prentice-Hall. Englewood Cliffs , NJ. USA
ISBN 0- I 3-78 I 618-9.

121

122

9 Directives

This chapter describes the various directives available in the Archimedes'
Assemblers.

Number equating directives: */EQU

Numeric values are assigned to symbols by the* or EOU directive.
Program-relative values can also be assigned in this way

Syntax: lab el * numeric or program - relati v e - expr ession

For example:

LINEFEED
MASK
FRAMESIZE

* &OA ; equate LINEFEED as &OA

LABEL
LABEL2

Register equating: RN

EQU
*

SWI
*

&FFOOFFF ; create a mask
4 * ((framebase+3) /4) ; calculate FRAMESIZE

; from framebase
16
LABEL-4

The directive RN is used to assign a register number 0- l 5 to a symbol

Syntax: label RN numeric ex pression

For example:

Reg2

TempStore

SL
sl

RN
RN

RN
RN

2

3
4
SL

A register name is taken to be a constant when included in an arbitrary expression,
but only register names are valid where a register is required.

All register names must be defined. Many examples in this manual assume that
PC. RO, R l, R2, and so on are va lid register names. To make this the case it is first
necessary to use the RN directive at the beginning of the source code, thus :

123

RO
RI
R2

Rl5
PC

RN
RN
RN

RN
RN

0
I
2

15
15

It is suggested that a separate source file of standard regi ster definitions be

produced and included in any assembly using the GET directive.

Coprocessor equating: CP

The directive CP is used to assign a coprocessor number 0-15 to a symbol.

Syntax: label CP numeric expression

Like register names, coprocessor names are taken to be constants when included

in arbitrary expression, but only coprocessor names are valid where a coprocessor

is required .

Coprocessor register equating: CN

Store-loading

124

The directive CN is used to assign a coprocessor register number 0-15 to a symbol.

Syntax: labe l CN numeric expression

Like register and coprocessor names. coprocessor register names are taken to be

constants when incl uded in arbit rary express ions , but only coprocessor register

names are valid where a coprocessor register is required.

There is al so a directive FN , for defining floating point registers See the chapter

entitled Floating point instructions for detai ls.

This p laces data in store at the current instruction locat ion and advances the

instruction location pointer.

Thelinetakesthegeneralform {label} directive expression list

ALIGN

Directives

directive Directive is either:

DCD or &

DCW

DCB or=

which defines one or more words (aligned)
which defines one or more half-words
(16-bit numbers)
which defines one or more bytes

Note that in AAsm, DCD can on ly take numeric expressions
but that in ObjAsm, DCD can take a program-relative or
external expression, even when the code does not have an
absolute origin.

expression list list of one or more numeric expressions separated by
commas. In the case of DCB or= , the list may also include
string expressions, which cause the characters of the string to
be loaded into consecutive bytes in store. For example:

TABLEl DCD VALUE1 , VALUE2 ; load 2 words into
TABLE2 1 , 2 , 3 , 4 , 5 , 6 ; load 6 bytes into
MESSAGE "Turn off motor"
ERR ORM 99 , "Error number 99 " ' 0
TABLE4 """ a sentence within quotes """
TABLES 1 , 2 , 3 ," a "," b ", 4 , 5 , 6
PROMPT 11 > 11 ; loads 62 into one byte of
PROMPT2 DCW 11 > 11 ; loads 62 , and then
PROMPT3 & " > " ; loads 62 , then 0 , 0 ,0

Loading memory with zeroes has its own directive:

Syntax: {label} % numeric expression

For example:

0 into
into

BLANKS % &400 ; store lK of zeroes

After using store-load ing directives such as:

%

" a long string "
1 , 2 , 3 , 4 , 5
VALUE4/SIZE

;messages
;a long list
;nul ls

4

Tablel
Table2

memory
2 bytes
bytes

the program counter doesn 't necessa rily point to a word boundary, which it must
do if the fil e is to continue with program instructions. The alignment of the
program counter to a word boundary is automatic if an instruction mnemonic is

125

LTORG

LTORG

encountered after the tables. The Assembler will insert up to three zero bytes to

achieve automatic alignment. However, there are occasions when alignment needs

to be forced.

The directive ALIGN on its own will set the instruction location to the next word

boundary. However, ALIGN can take two optional parameters:

Syntax: ALIGN {power -of-two} { ,offset-expression }

{power-of-two} defines the boundary

{,offset-expression) defines the offset from the boundary

4 is the power-of-two default and 0 is the offset-expression default, so ALIGN on its

own will increment the program counter to the next word boundary. Other values

will force the program counter to align to any particular boundary needed by the

programmer. These extra arguments will only rarel y be needed.

The directive LTORG (literal origin) is used to start a literal pool. an area in which

to place literals. (See the section entitled Further instructions on page 98) Literals are

addressed using PC relative addressing, so large programs may need several

LTORG directives.

The Assembler generates a default LTORG at every LNK or END directive in files

which are not part of a nested piece of assembly. See the sections END, GET and

LNK below.

Laying out storage areas

126

The A and # directives
I

/

The Assembler can lay out areas of memory, storage areas, or data structures. The

start address of such an area is given by the " directive.

Syntax: " expression

The origin of the storage area is set to expression, and a storage-area location

counter@ is also set to expression. The expression must be fully evaluable on

the first pass of the assembly, but may be program-relative. In the absence of a "
directive, the@ counter is set to zero .

Space in the storage area is reserved by the# directive.

Syntax: {label} # expression

For example:

LABELl #

....... code

...... . code

Directives

n ;reserve n bytes

LABEL2 # 4 ;reserve 4 bytes, attached to
;the end of LABELl's store

Every time# is encountered, the label is given the value of@ and then @ is
incremented by the number of bytes reserved. The@ counter may be set to another
value any number of times by the repeated use of/\ and so storage areas can be
easily established anywhere in memory

Extension to the /\ directive

A special extension of/\ allows a register to be attached to the base address of a
storage area:

Syntax: /\ expression, register

The register introduced by this extra parameter is taken to be implicit in all
symbols defined by any# directives which follow until cancelled by another A

directive. In this case, the expression must be an absolute va lue. For example:

SB RN 10 ; SB is register 10
0,SB ; @=0

Start # 0 ;ie [SB , #0]
Frame # 4 ;ie [SB,#0]
StaticBase # 4 ;ie [SB,#4]
StaticBase Offset * StaticBase-Start -

The subsequent# directives are, therefore, generating register-relative symbols.
This means that later in the source program, it becomes possible to quote any
symbol containing an implicit register name in a load or store instruction and the
pre-indexed form of opcode will be generated .

For example, the valid line

LDR RO [SB,#StaticBase_Offset]

can be replaced by the shorter line

LDR RO,StaticBase

and the same code will be generated by the Assembler.

127

Variables

Variables

128

Counter values

The current value of the Assembler's program location counter is referred to by the
dot symbol ·. ·. whi le the current va lue of the storage-area location counter is. as
has already been noted, the '@' symbol. Since these symbols are not particularly
obvious (especially when appearing in expressions), they may be replaced by {PC}
and {VAR} respectively

Symbols have a fixed value attached to them, deri ved from the first or second pass
of the assembly process. It is also possible to define symbols which have va lues
which change as the assembly proceeds. Such symbols are ca lled variables , and
the Assembler has two types :

• local variables

• globa l variables

Globa l variables can operate over the entire source fi le, whereas loca l variables are
only accessible within the confines of a macro expansion. Local variables are
described in chapter entitled Macros .

Declaring variables

Variab les must be declared before they are used. The three types of globa l va riable
are arithmetic, logical and string These are declared by the fol lowing directives

Directive

GBLA
GBLL
GBLS

Meaning

Define an arithmetic va riable
Define a logical variable
Define a string variable

These symbols may be used in expressions like normal symbols

Syntax: GBLx v ariable_ n ame

Altering the value of global and local variables

The directives SETA, SETL and SETS are provided to alter the va lues of both globa l
and local variables.

Directive

SETA
SETL
SETS

Meaning

Set the value of an arithmetic variable (global or local}
Set t he value of a logical variab le (globa l or local)
Set the va lue of a string variable (global or loca l)

Syntax: variable name SETx expression

For example:

count
message

SETA
SETS

count+l
"media error "

count and message can be used as required in the source file:

space
string

Variable substitution using $

count
message

Any attempt to use count and message as labels will, quite rightly, cause the syntax
checker to issue error messages. This is because they have been declared as global
variables and cannot, therefore, be accepted as labels. However, if the$ symbol is
prefixed to them, variable substitution will take place before the line is passed to
the syntax checker. Logical and arithmetic variables will be replaced by the result
of applying : STR: to them. String variables will be replaced by their value. For
example:

GBLS A
GBLA B
GBLL C

;three variable types declared
A SETS " Labname "
B

c
SETA
SETL

1
{TRUE}

;and duly set
;without $ they are rejected as labels
A ADD RO,RO , Rl ;syntax error!
;with $
$A

they are accepted
AND RO,Rl,#8

L$B AND R2,R3,#16
$C AND R4,R5,#32

After the Assembler has performed variable substitution , its own internal
conception of the last three lines of source can be considered as:

Labname
LOOOOOOOl
T

AND
AND
AND

RO , Rl,#8
R2,R3 , #16
R4,R5,#32

129

Routines and local labels

Other useful variables

{OPT}

There are five specia l variables. These are:

{PC}
{VAR}
{TRUE}
{FALSE}
{OPT}

current value of Assembler's program location counter
current value of the storage-area location counter
logical constant true
logical constant false
va lue of the currently set printer output option.

The variables {PC} and {VAR} have already been explained (see the section entit led
Counter values on page 128). The other three variables take the bracketed form of
{name)

A simple but extremely useful way of using {OPT} is to use it to store the current ly
set printer options, force a temporary change in printing mode, and then , later in
the source code, to restore the original value of {OPT}. For example:

AS_WAS
GBLA
SETA

AS_ WAS
{OPT}

; start of l ong section of code
;eg a macro

OPT 2 ;turn off listing!
..... lots of code
OPT AS_ WAS ;restore print option

; end of long section of code

Routines and local labels

130

Although labels may not begin with a digit. there is a special form of loca l label
which bears a number in the range 0-99. However, the scope of this type of local
label is limi ted by the ROUT directive.

Beginning a local label area

The syntax to begin a new local label area is:

{label} ROUT

in the label and instruction fields respectively. The start of the source is the start of
the first local label area. The extent of a local label area is from its ROUT directive
up to the next ROUT directive or end of assembly

Directives

Defining a local label

The local label definition syntax is:

number{rou tinename }

in the label field. The number must lie in the range 0-99. The parameter
routinename need not be present. but if it is, it will be checked against the label on
the last ROUT directive. If no label is present on the last ROUT directive, and yet a
routinename has been provided, an assembly error will be generated.

Referencing a local label

The syntax for the local label reference is:

%{x}{y}n{routinename}

%

{x}{y}

{x }

{y}

n

introduces a local label reference.% may be used anywhere
where an ordinary label reference is valid.

The optional letters x and y tell the Assembler the direction
and/or level for the search of the location of the local label.

any one of the following options:

absent look backwards and forwards through the
sourcefile for the label

B look backwards for the label
F look forwards for the label

Searches for a local label will never go outside the current local
label area; that is, they will never go either forwards or
backwards past a ROUT directive. The same local label may be
defined many times. The Assembler always uses the first
matching local label that it finds in its search.

any one of the following options

absent
A
T

look at this macro and outer nested levels
look at all macro levels
look only at this macro level.

The number n is the number given to the local label.

{routinename} its use makes the source listing more readable . If present. the
Assembler will check it against the routine's label.

131

Error handling

Error handling

132

For example:

NORMLABEL

00

01

ROUT ;The routine is between the ROUTs.
......... ;I ts name is NORMLABEL, but the
........ ;naming of the routine is
. ; opt ional

......... ;Local label 00

BEQ %00NORMLABEL ;Branch if equal to 00

......... ;Local label 01

NEXTROUTINE ROUT

Local labels can be used anywhere in the source file and are particularly useful for
solving the problem of unique macro labels. See the section entitled A division macro
on page 148.

As an aid to error trapping, the ASSERT directive is provided for use inside and
outside macros

Syntax: ASSERT logical expression

For example:

ASSERT TEMPl < TEMP

If the logical expression returns a true result then nothing happens but a false
result will generate an error during the second pass of the assembly. The error
message is "Assert failed at line xxxxxx".

A si milar directive ! is inspected on both passes of the Assembler. This time an
arithmetic expression is evaluated

! arithmetic expression, string expression

If the arithmetic expression is:

= 0 no act ion is taken on pass I and the string is printed out as a warning on
pass 2. No error is generated.

<> O an error is produced and assembly halts after pass I. The arithmetic
expression is evaluated on pass one, so forward referencing is not
permitted. The string expression is printed as an error.

ORG

LEAD

END

ORG is only intended for use with AAsm.

The program's starting point is determined by the ORG directive.

Syntax: ORG numeric_expression

For example :

ORG &100

Or:

START *
ORG

&100
START

Only one ORG directive is allowed in the entire source and no ARM instructions or

Assembler store directives can precede the ORG directive. In the absence of an

ORG directive, the program is considered to be relocatable and the program

location counter is initially set to 0.

Otherwise:

• ORG sets the program location counter, the symbol for which is ··or {PC}

• and also sets the load and execute address for the code file if you are using

AAsm.

AAsm (but not ObjAsm) has a directive called LEADR which sets the load and

execute address. Its purpose is to enable a default run address to be set for

relocatable binary output

LEADR can be used with or without the ORG directive to indicate the address at

which the program should load and run. If ORG is present. then LEADR will

override its effect on load and execute addresses.

Syntax: LEADR numeric_expression

For example:

LEADR &8000

The Assembler stops processing an input file on encountering the END directive

and any source code after END or LNK will be ignored by the Assembler Failing to

end a file with an END or LNK directive is an error.

133

GET

GET

134

The END directive and assembly

If the input file was part of a nested piece of assembly invoked by a GET directive,
then assembly will continue within the file containing the GET, at the line following
the GET directive. Otherwise, the current pass will stop.

If this was the first pass, and no errors have been generated, then assembly will
proceed to the second pass sta rting again in the original source file .

The GET directive in the source file is used to include a secondary source file within
the current assembly

Syntax: GET f i 1 ename

Once assembly of the secondary sou rce file is complete, assembly continues in the
origina l source file . The secondary source file must be terminated by ar. END or
LNK directive, and may include further GET directives.

In t he following example, the primary file is ca lled file_a:

SYMl * SYM2+100

.. file a code

GET file_ b

. more file_ a .. .

. code

END

This is the secondary file, file_b :

SYM2 * 200

END

Symbol SYM I takes the va lue 300. There are two points to notice in this examp le:

• file_b has no ORG statement and so the program counter merely continues to
increment as file_b is assembled. Had the secondary file been given an ORG of
its own, an error wou ld have been flagged.

• file_b must have an END directive, whereupon control passes back to file_a .

LNK

Directives

Syntax: LNK filename

During assembly, a secondary file can be called via the GET or LNK directives. In

order to prevent control passing back to the primary file once the secondary file

has been assembled, the LNK directive is used in place of GET

LNK is generally used to split large source files into sequences of smaller more

manageable ones.

Objasm directives

ObjAsm is the Assembler which creates Acorn Object Format code (AOF). It uses a

number of directives not used by AAsm. These are :

• AREA

• IMPORT

• EXPORT

• STRONG

• ENTRY

• KEEP

• AOF

• AOUT

ObjAsm also accepts more extensive operands to the DCD directive.

External expressions

An external expression is an imported symbol plus an optiona l numeric

expression, for example:

IMPORT
B

DCD

LinkSymbol
LinkSymbol + 4
LinkSymbol

Note that when using ObjAsm:

• external expressions and program-relative symbols not defined in the current
area are valid operands to the branch and branch and link instruct ions.

• external expressions and program-relative symbols not defined in the current

area are not va lid in general expressions

135

136

Using literals

AREA

Program-relative expressions and external expressions are also valid literals in
ObjAsm.

This directive gives a name plus optional attributes and alignment to the area in
which the code or data following the directive is to be put.

The basic form of the directive is AREA symbol The symbol is the name of an area
and, as such, it is an external symbol which can be used in the link phase of
processing. Other programs may import the symbol and make use of it. The value
of the symbol may be taken to be offset zero from the start of the area.

A list of attributes may follow the symbol. These are

AREA symbol{,attr}{,attr} { , ALIGN=expression}

The attributes. many of which are self-explanatory, are as follows

REL Relocatable: this area may be relocated by the Linker.

CODE This area contains code (and is therefore read only).

DATA This area contains read-write data.

READONLY This area may not be written.

COMDEF Common area definition (only used by Fortran 77).

COMDEF A common area (only used by Fortran 77)

NOINIT This is an initialised data area.

IMPORT
Syntax: IMPORT symbol {,WEAK}

IMPORT is followed by a symbol which is treated as a program address. It provides
the Assembler with a name which may be referred to but which is not defined
within this assembly. It must, therefore, be imported at link time from another
piece of the Acorn object format code, when its value will be ascertained and used.
If the option WEAK is coded, then the Linker will not fault an unresolved reference
to this symbol at link time.

EXPORT
Syntax: EXPORT symbol

EXPORT is also followed by a symbol. This time the symbol is being declared for
use by other Acorn object format files at link time.

Directives

STRONG

Syntax: STRONG symbol

STRONG is a variant of EXPORT Set the STRONG attribute on the symbol for
special interpretation by the Linker See the Link chapter in the accompanying
Desktop Development Environment user guide for more details.

ENTRY

KEEP

DCD

Syntax: ENTRY

The directive ENTRY causes the program's execution to start from this address. It
signals to the whole program (which is contained in the various Acorn object
format files) that the address computed for ENTRY (ie the value of the program
location counter when ENTRY is assembled) is the execute address for the entire
program.

Syntax: KEEP {symbol J

The Linker will not normally keep track of symbols it does not need. To force the
Linker to retain symbols it would otherwise consider unnecessary, the Link option
Debug should be selected. ObjAsm's own directive KEEP has the function of
declaring a symbol which is not needed by the Acorn object format, but which can
be maintained in the Acorn object format symbol table. If the symbol is not
specified, then all program relative symbols will be kept.

In this way symbols of use to the DDT debugger can be stored and will not be lost.

In ObjAsm, DCD or & will accept program-relative expressions and external
expressions for its operands, as well as the numeric expressions used by AAsm. For
example:

IMPORT

Label DCD

Fred
Fred+2

AOF and AOUT

If Objasm detects unix style assembler input it will output unix a.out format
linkable object files. AOUT forces a.out output. These features are only of use when
porting assembly language between ACorn RISC OS and RISC IX. Unix style
assembler is documented in the RISC IX Programmers' Reference Manual

137

Objasm directives

138

10 Conditional and repetitive
assembly

This chapter describes the features avai lable within the Assembler for
constructing conditional assembly statements and conditional looping

statements.

Conditional assembly
The I and I directives mark the start and finish of sect ions of the source file which
are to be assembled on ly if certain conditions are true. The basic construct ion is IF
.. THEN .. ENDIF, however, ELSE is also supported, giving the full IF . .THEN .
. ELSE ... ENDIF conditiona l assembly

The start of the section is

I logical expression

and is known as the IF directive.

is the ELSE directive and

is the ENDIF directive.

The two main ways of using these directives are:

[logical expression

....... code

The code wi ll on ly be assembled if the logical expression is true, it wi ll be skipped
if the logical expression is false

139

Conditional assembly

140

[logical expression

.. first piece of code ..

. . second piece of code.

If the logical expression is true, the first piece of code will be assembled and the
second skipped. If the expression is false, the first piece of code will be skipped and
the second assembled.

Conditional assembly and the TERSE command

Lines conditionally skipped by these directives are not listed if

• TERSE ON is given to the action prompt

• TERSE ON is given by default.

If -NOTERSE is given to the command line, or TERSE OFF is given to an action
prompt, then conditionally skipped code will be li sted.

Using ELSE, IF and ENDIF directives

A block, which is being conditiona lly assembled, can contain several [I J
directives; that is, conditional assembly can be nested. It is also valid to place
more than one ELSE directive within an IF block.

An example of a notional data storage routine is given below. This routine can
either use a disc or a tape data storage system. To assemble the code for tape
operation, the programmer prepares the system by altering just one line of code,
the label SWITCH.

DISC
TAPE
SWITCH

*
*
*

0
1

DISC

... code ...

[SWITCH=TAPE

... tape interface code ...

[SWITCH=DISC

... disc interface code ...

. . . code continues ...

or alternatively,

SWITCH=TAPE

... tape interface code ...

. . . disc interface code ...

. . . code continues ...

The IF construction can be used inside macro expansions as easily as it is used in
the main program.

Repetitive assembly

It is often useful for program segments and macros to produce tables. To do this ,
they must be able to have a conditional looping statement. The Assembler has the
WHILE ... WEND construction. This produces an assembly time (not runtime)
loop.

Syntax: WHILE logical expression

to start the repetitive block and

WEND

to end it

141

Repetitive assembly

142

For example:

GBLA counter
counter SETA 100

WHILE counter >0
DCD &$counter

counter SETA counter-1
WEND

produces the same result as the following (but is shorter and less prone to typi ng
errors):

DCD 100
DCD 99
DCD 98
DCD 97

DCD 2
DCD 1

Since the test for the WHILE condition is made at the top of the loop, it is possible
that the source within the loop will not generate any code at all.

Listing of conditionally skipped lines is as for conditional assembly

11 Macros

M acros give the programmer a means of placing a single instruction in his/her
source which will be expanded at assembly time to severa l assembler

instructions and directives, just as if these instructions and directives had been
written by the programmer within the source at that point.

For example, one might wish to define a TestAndBranch instruction. This would
normally take two ARM instructions. So we tell the Assembler, by means of a macro
definition, that whenever it meets the TestAndBranch instruct ion, it is to insert the
code we have given it in the macro definition. This is of course a convenience: we
could just as easily write the relevant instructions out each time, but instead we let
the Assembler do it for us.

The Assembler determines the destination of the branch with a macro parameter.
This is a piece of information specified each time the macro is coded: the macro
definition specifies how it is used. In the TestAndBranch example, we might also
make the register to be tested a parameter, and even the condition to be tested for.
Thus our macro definition might be:

MACRO
$label TestAndBranch $dest , $reg,$c ; this is called the macro prototype

; statement
$label CMP $reg , #0

B$cc $dest
MEND

A use of the maqo might be

Test TestAndBranch

Nonzero

;these two lines are the ones that
; will be substituted in the source.
;this says the macro definition is
; finished

NonZero,RO ,NE

The result. as far as the Assembler is concerned, is:

Test CMP
BNE

Nonzero

R0 , #0
Nonzero

143

Syntax

144

Syntax: MACRO

The fact that a macro is about to be defined is given by the directive MACRO in the
instruction field.

This is immediately followed by a macro prototype statement which takes the form:

{$label} macron ame{$parameter }{ , $parame ter}{ , $parameter} ..

{$label} if present. it is treated as an additional parameter.

{$parameter J Parameters are passed to the macro as strings and substituted
before syntax analysis . Any number of them may be given.

The purpose of the macro prototype statement is to tell the Assembler the name of
the macro being defined. The name of the macro is found in the opcode field of the
macro prototype statement.

The macro prototype statement also tells the Assembler the names of the
parameters, if any, of the macro. Parameters may occur in two places in the macro
prototype statement. A single optional parameter may occur in the label field ,
shown as $label above. This is normally used if the macro expansion is to contain
a program label, and is merely an aid to clarity, as can be seen in the
TestAndBranch example . Any number of parameters, separated by commas, may
occur in the operand field . All parameter names begin with the character$, to
distinguish them from ordinary program labels .

The macro prototype statement can also tell the Assembler the default values of
any of the parameters. This is done by following the parameter name by an equa ls
sign , and then giving the default value . If the default value is to begin or end with a
space then it should be placed within quotes. For example

$reg = RO
$string= " a string "

It is not possible to give a default value for the parameter in the label field .

Local variables

For example:

$label

$label

MACRO
MACRONAME $num ,$ string,$etc

.... lots of. .. .

. code

MEND

$num
$string
"the price is $etc"
0

Macros

• MACRO NAME is the name of this particular macro and $num, $string and $etc
are its parameters. Other macros may have many more parameters, or even
none at all.

• The body of the macro follows after MACRO NAME, with $label being optional
even if it was given in the macro prototype statement.

• $etc will be substituted into the string "the price is "when the macro is used.

• The macro ends with MEND.

The macro is called by using its name and any missing parameters are indicated by
commas, or may be omitted entirely if no more parameters are to follow. Thus,
MACRONAME may be called in various ways:

MACRONAME9, "dis c ", 7

or:

MACRONAME9

or:

MACRONAME, "di sc ",

Local variables are similar to global variables, but may only be referenced within
the macro expansion in which they were defined. They must be declared before
they are used. The three types of local variable are arithmetic, logical and string.
These are declared by:

145

MEXIT directive

Default values

146

Directive Local variable type Initial state

LCLA Arithmetic zero
LCLL Logical FALSE
LCLS String null stri ng.

New values for loca l variables are assigned in precisely t he same way as new
variables for globa l variables : that is, using the directives SETA. SETL and SETS.

Syntax: variable name SETx expression

Directive

SETA
SETL
SETS

Local variable type

Arithmetic
Logical
String

Normally, macro expansion terminates on encountering the MEND directive, at
which point there must be no unclosed WHILE/WEND loops or pieces of
conditional assembly Early termination of a macro expansion can be forced by
means of the MEXIT directive, and this may occur within WH ILE/WEND loops and
conditional assembly.

Macro parameters can be given default va lues at macro definition time. In the
example of the macro 'MACRONAME' already used:

MACRO
$label MACRONAME $num , $s tring, $etc

$labe l lots of
. code

MEND

$num
$string
"the price i s $etc "
0

it is possible to write $num= 10 in the macro prototype statement. Then , when

call ing the macro. a vertical bar character ' I ' wil l cause the defau lt val ue IO to be

used rather than the value Sn um.

Syntax: $parameter=defaul t value

For example:

MACRONAME I ," disc ", 7

will be equivalent to

MACRONAME 10,"disc",7

Macros

Note that this default is not used when the macro argument is omitted - the value
is then empty.

Macro substitution method

Each line of a macro is scanned so it can be built up in stages before being passed
to the syntax analyser. The first stage is to substitute macro parameters throughout
the macro and then to consider the variables. If string variables, logical variables
and arithmetic variables are prefixed by the$ symbol. they are replaced by a string
equivalent. Normal syntax checking is performed upon the line after these
substitutions have been performed.

An important exception to these va lues is that vertical bar characters (' I ')
prevent subst itution from taking place in some circumstances. To be specific, if a
line contains vertical bars, subst itution will be turned off after this first vertical bar,
on again after the second one, off aga in after the third, and so on. This allows the
use of dollar characters in labels (see the section entitled S!Jmbols and labels on page
56 for details)

In certain circumstances, it may be necessary to prefix a macro parameter or
variable to a label. In order to ensure that the Assembler can recognise the macro
parameter or variable, it can be terminated by a dot ' . ' The dot will be removed
during substitution.

For example:

$T33

$T33.L25

MACRO
MACRONAME

.... lots of

. code
MEND

If the dot had been omitted, the Assembler would not have related the $T33 part of
the label to the macro statement and would have accepted $T33L25 as a label in its

own right. which was not the intention .

147

Nesting macros

Nesting macros

The body of a macro can contain a ca ll to another macro; in other words, the
expansion of one macro can contain references to macros. Macro invocation may
be nested up to a depth of 255.

A division macro

148

As a final example, the following macro does an unsigned integer division :

A macro to do unsigned integer division . It takes four
parameters , each of which should be a reg i ster n ame :

$Div : The macro places t he quotient of t h e d i v i sion in
this register - ie $Div : = $Top DIV $Bot.
$Div may be omit t ed i f on ly t h e remainde r is
want ed .

$Top : Th e macro expects the divi dend in this regi ster
on entry and places the remainder i n it on exit -
ie $Top : = $Top MOD $Bot .

$Bot : The macro expects the divisor in this register on
entry . It does no t alter this register .

$Temp : The macro uses this register to hold intermediate
results . Its initial va l ue is ignored and its
final value is not useful.

$Top , $Bot , $Temp a n d (i f p r esen t) $Div must all be
distinc t regi sters. Th e macro does not check fo r division
by zero ; if there is a risk o f this happening , it should
be checked for outside the macro .

$Label
MACRO
DivMod
ASSERT
ASSERT
ASSERT
[

ASSERT
ASSERT
ASSERT
l

$Div , $Top , $Bot , $Temp
$Top <> $Bot

$Label

90

MOV
CMP
MOVLS
CMP

$Top <> $Temp
$Bot <> $Temp
11 $Div " /= 11

"

$Div <> $Top
$Div <> $Bot
$Div <> $Temp

$Temp,$Bot
$Temp , $Top , LSR #1
$Temp , $Temp , LSL #1
$Temp,$Top , LSR #1

; Produce an error if the
registers supplied are

; not all different .

; Put the divisor in $Temp.
; Then double it until
; 2 * $Temp > $Top .

BLS %b90
["$Div " /= ""

MOV $Div , #O ; Initialise the quotient .

91

BHS

l
CMP
SUBCS
[

ADC
l
MOV
CMP
%b91
MEND

The statement:

$Top , $Temp
$Top , $Top , $Temp
"$Div/= ""
$Div , $Div , $Div

$Temp , $Temp , LSR #1
$Temp , $Bot

; Can we subtract $Temp?
; If we can , do so.

; Double $Div & add new bit

; Halve $Temp .
; And loop until we ' ve gone
; past the original div i sor .

Di vide DivMod RO,R5,R4,R2

would be expanded to:

ASSERT RS <> R4
ASSERT RS <> R2
ASSERT R4 <> R2
ASSERT RO <> RS
ASSERT RO <> R4
ASSERT RO <> R2

Divide MOV R2 , R4
CMP . R2 , RS , LSR

90 MOVLS R2 , R2 , LSL
CMP R2,RS , LSR
BLS %b90
MOV R0 , #0

91 CMP RS,R2
SUBCS RS , RS , R2
ADC RO , RO , RO
MOV R2 , R2 , LSR
CMP R2 , R4
BHS %b91

Similarly, the statement:

#1
#1
#1

#1

Di vMod , R6 , R7 , R8

would be expanded to:

ASSERT R6 <> R7
ASSERT R6 <> RS
ASSERT R7 <> RS
MOV RS , R7

; Produce an error if the
registers supplied are

; not all different

; Put the divisor in R2 .
; Then double it until
; 2 * R2 > RS .

; Initialise the quotient .
; Can we subtract R2?
; If we can , do so .
; Double RO & add new bit .
; Halve R2 .
; And loop until we ' ve gone
; past the original divisor .

; Produce an error if the
; registers supplied are
; not all different .
; Put the divisor in RS .

149

A division macro

150

CMP RS,R6,LSR #1 ; Then double it until
90 MOVLS RS , RS , LSL #1 ; 2 * RS > R6 .

CMP RS,R6,LSR #1
BLS %b90

91 CMP R6 , RS ; Can we subtract RS?
SUBCS R6 , R6 , RS ; If we can , do so .
MOV RS , RS , LSR #1 ; Halve RS .
CMP RS , R7 ; And loop until we ' ve gone
BHS %b91 ; past the original divisor .

Note:

• Conditional assembly is used to reduce the size of the assembled code (and
increase its speed) in the case where only the remainder is wanted.

• Local labels are used to avoid multiply defined labels if DivMod is used more
than once in the assembler source.

• The letter 'b' is used in the local label references (indicating that the
Assembler should search backwards for the corresponding local labels) to
ensure that the correct local labels are found.

Part 3 - Developing software
for RISC OS

151

152

12 Writing relocatable modules in
assembler

Relocatable modules are the basic building blocks of RISC OS and the means by
which RISC OS can be extended by a user.

The relocatable module system provides mechanisms suitable for

• providing device drivers

• extending the set of RISC OS *commands

• providing shared services to applications (eg the shared C library)

• implementing 'terminate and stay resident' (TSR) applications.

All these projects require code either to be more persistent than standard RISC OS
applications or to be used by more than one application , hence resident in the
address space of more than one application. If your program does not have these
requirements it is not recommended to put it in modules , as relocatable modules
are more persistent consumers of system resources than appl ications. and are also
more difficult to debug The DDT debugger is not current ly able to debug
relocatable modules.

This chapter is not intended to provide a complete set of the technical detai ls you
need to know to construct any relocatable module. For more in formation on such
details, see the RISC OS Programmer's Reference Manual. The points covered here are
intended to provide help for constructing relocatable modules specifica lly in
assembly language.

For more detai ls of memory management in relocatable modules, see the chapter
entitled Using memory efficiently

Unlike the construction of relocatable modules in high level languages, no
substantia l standard portions o f code are supplied fo r you by the ODE tools. This
means that you have to construct the module header table, workspace routines,
etc. yourself.

Note that some of the relocatable module entry points are called in SVC mode.
Such routines may use SW!s implemented by other parts of RISC OS, but unlike
being in user mode, SWis corrupt rl 4, so this must be stored away. Floating point
instructions should not be used from SVC mode.

153

Assembler directives

Assembler directives

154

The two ARM assemblers, Msm and ObjAsm, can both be used to construct
modules but have different uses depending on the type of module required .

AAsm modules

Msm can be used to directly construct relocatable modules from source by
assembling with the Module setup menu option enabled. As no linking step
occurs, all the source files of your module must join themselves into one 'lump'
using the GET and LNK directives.

The code that assembles to the lowest address must contain your module header
table. This starts with a couple of lines containing the LEADR directive

Module_LoadAddr * &ff f ffaOO
LEADR Module_ LoadAddr

The table of entry points relative to the module base then follows. For example:

Module_ BaseAddr
DCD RM_Start -Module_BaseAddr
DCD RM_ Init -Module_BaseAddr
DCD RM_ Die -Module_BaseAddr
DCD RM_ Service -Module_ BaseAddr
DCD RM_Title -Module_BaseAddr
DCD RM_HelpStr -Module_ BaseAddr
DCD RM_HC_Table -Module_BaseAddr

ObjAsm modules

ObjAsm can be used to assemble a module from a set of source files, a link step
being required to join the output object files to form the usable module.

The separation of routines into separately assembled files has several advantages.
Since DDT cannot be used to debug modules, it can be useful to link routines into
test applications, debug them there with DDT, then link them into the module.

It can be a good idea to construct a module with the module header and the small
routines/data associated with it in one source file , to be linked with the code
forming the body of the module.

Such a module header file must be linked so that it is placed first in the module
binary To do this it should contain an AREA directive at its head such as

AREA I!! !Module$$Headerl, CODE, READONLY

Areas are sorted by type and name; a name beginning with '!' is placed before an
alphabetic name, so the above can be used to ensure first placing.

Examples

Writing relocatable modules in assembler

The module header source needs to contain IMPORT directives making available
any symbols referenced in the module body. In addition, the initialisation routine
should call _RelocCode, a routine added by the linker which relocates any
absolute references to symbols when the module is initialised. If the m,odule
header source contains the initialisation routine, it must use the IMPORT directive
to make RelocCode available.

The module header must be preceded by the ENTRY directive:

ENTRY

Module_BaseAddr
DCD RM_ Start -Modu le_BaseAddr
DCD RM_ Init -Module_BaseAddr
DCD RM_ Die -Module_BaseAddr
DCD RM_ Service -Module_ BaseAddr
DCD RM_Title -Module_BaseAddr
DCD RM_HelpStr -Module_BaseAddr

-Module_BaseAddr DCD RM_HC - Table

The Acorn Desktop Assembler product is supplied with two versions of the source
for an example relocatable module; one to be assembled with AAsm from one
source file; the other to be assembled with ObjAsm from two source files then
linked. The source of the AAsm example is in User, ModeEx. s, that of the
ObjAsm example in User . SkelRM. s.

Both versions of the source produce a relocatable module with exactly the same
function - providing an extra soft screen mode. This has to be done via service call
handling, and to be useful must be persistent, so providing a typical use of
relocatable modules. For more details of the function of Mode Ex, see the section
entitled Example AAsm session on page 27.

TheSkelRM version (assembled with ObjAsm) has its module header separated
from the main module body. User . SkelRM . s . SkelRM is the source file
producing the module header, and may be useful for you to copy and edit to form
headers for your own modules.

155

Examples

156

13

Examples

Interworking assembler with C

Interworking assembly language and C - writing programs with both assembly
language and C parts - requires using both the Acorn Desktop Assembler and

Acorn Desktop C products if you want to do more than just try the examples
supplied with Acorn Desktop Assembler.

Interworking assembly language and Callows you to const ruct top quality RISC OS
applications. Using this technique you can take advantage of many of the strong
points of both languages. Writing most of the bulk of your application in Callows
you to take advantage of the portability of C, the maintainability of a high level
language, and the power of the C libraries and language. Writing critical portions of
code in assembler allows you to take advantage of all the speed of the Archimedes
and all the features of the machine (eg the complete floating point instruction set) .

The key to interworking C and assembler is writing assembly language procedures
that obey the ARM Procedure Call Standard (APCS) This is a contract between two
procedures, one calling the other. The called procedure needs to know which ARM
and floating point registers it can freely change without restoring them before
returning, and the caller needs to know which registers it can rely on not being
corrupted over a procedure call. Additionally both procedures need to know which
registers contain input arguments and return arguments , and the arrangement of
the stack has to follow a pattern that debuggers, etc. can understand. For the
specification of the APCS, see Appendix F - ARM procedure call standard in the
accompanying Acorn Desktop Development Environment user guide.

The following programs have been provided to demonstrate how to write programs
combining assembly language and C.

Printlib

The linkable object library User . Pr i ntLib . o . Library contains three object
files , each containing a screen printing routine. The three procedures, each written
in assembly language with sources in User:. Print Lib . s, are p r i nt_ string,
print_hex and print_double. They print null terminated strings, integers in
hexadecimal. and double precision floating point numbers in scientific format
respectively. For more details on constructing this library, see the section entitled
Making your own linkable libraries on page 16.

157

Examples

158

Each routine is written to obey the APCS, so it can be called from assembler, C. or

any other high level language obeying the APCS. The sources for PrintLib illustrate

several aspects of the APCS, such as the distinction between leaf and non-leaf

procedures and how floating point arguments are passed into a procedure.

A small example C program using the routines in PrintLib is supplied with the

Acorn Desktop Assembler product. Its C source is in the file
User . PrintLib . c . hello. Since a C compi ler is not supplied with Acorn

Desktop Assembler. the object file User . Print Lib . o . hello produced by

compiling the C program is also supplied. To try this example, merely link

o . hello with o . PrintLib to produce an executable AIF file, then run this by

double clicking on its name in a directory display A standard RISC OS command

line output window appears containing text printed by the assembly language

library routines as a result of arguments passed from C:

OKSort

Run adf s:: HardDisc4. $,User. Printlib. ! Run!f!la11e
hello world
B9ABCDEF
-1.2346E-1
1.BBBBE1
-1.BBBBE-1
1. BBBBEB
e
1.BBBBE!BB

Press SPACE or click f!louse to continue

OKSort is a simple command line program which sorts words into alphabetic

order in a text file specified in its command line. It conta ins no knowledge of the
RISC OS desktop, being provided with a desktop interface by the FrontEnd module.

For more details of usi ng FrontEnd, see the section entit led Using FrontEnd 011 !JOur

programs on page 15 .

The command line syntax of OKSort is:

OKSort filename

Interworking assembler with C

The FrontEnd setup dialogue box of OKSort is :

~I[:) I OKSort

Run Cancel

Note that only an input filename is specified, the input file being overwritten by
the sorted output version.

The command line tool executable image file is constructed from a C file
containing the bulk of the program and an assembly language file containing code
for the routine cistrcmp, a routine particularly critical to the execution speed of
OKSort. Though this speed optimisation may not be very useful in this particular .
example, it serves to illustrate how interworking allows access to the most
important advantages of both C and assembler.

The source files are found in User.!OKSort.c and User.!OKSort.s respectively. Since
a C compiler is not supplied with Acorn Desktop Assembler, the object file
User. ! OKSort. o. OKSort is also supplied This is produced by compiling the C
source of OKSort and partially linking it with a C library One point illustrated in
the assembler file is the use of the AREA directive rather than the EXPORT
directive to provide a symbol for C to reference.

Automata

Automata is a complete RISC OS desktop application coded in both C and
assembler. The RISC OS desktop user interface of Automata is coded in C, making
use of the RISC_OSLib library facilities. The speed critical sprite construction
routines are written in assembly language.

The source files for Automata are found in User. ! Automata. c and
User. ! Automata . s respectively. Since a C compiler and associated libraries are
not supplied with Acorn Desktop Assembler, the object file
User. ! Automata. o. Automata is also supplied. This is produced by compiling
the C source of Automata and partially linking it with the ANSI C library and
RISC_OSLib library. To construct the executable image !Runimage of Automata,
assemble the assembler source of Automata with ObjAsm and link the resultant
object file with the supplied one.

159

Examples

160

Double clicking on !Automata in the User directory display starts the application,
putting its icon on the icon bar:

•
Clicking Select on the main icon brings up one or more scrollable windows
containing one dimensional cellular automata patterns:

14

Guidelines

Using memory efficiently

This chapter provides basic information on memory management by RISC OS
applications. It is intended to provide some specialist knowledge to help you

write efficient programs for RISC OS, and to provide some practical hints and tips

All the information in this chapter relating to programs written in C refers to the
Acorn Desktop C product.

Follow the guidelines in this section to make the best use of available memory The
guidelines are explained in more detail on the following pages

• Use recovery procedures - Your program should keep the machine
operational. Don't allow your program to lock up when memory runs out; your
program should indicate that it has run out of memory (with an error or
warning message) and only stop subsequent actions that use more memory.
Ideally, ensure that actions which free up memory have enough reserved
memory to run in.

• Return unwanted memory- You should return any memory you have no
further use for. Claiming memory then not returning it can tie up memory
unnecessarily until the machine is re-booted. RISC OS has no garbage
collection, so once you have asked for memory RISC OS assumes that you
want it until you explicitly return it, even if your program terminates execution.
Language libraries often provide you with protection from this, as long as
memory is claimed from them.

• Don't waste memory- You should avoid wasting memory. It is a finite
resource, often wasted in two ways:

• by permanently claiming memory for infrequent operations

• by fragmenting it, so that although there is enough unused memory, it is
either in the wrong place, or it is not in large enough blocks to use.

Recovery from lack of memory

An important consideration when designing programs for RISC OS is the recovery
process, not just from user errors. but also from lack of system resources.

161

Avoiding permanent loss of memory

An example of a technique that ca n be designed into an application is to make an

algorithm more di sc-based and less RAM-based on detection of lack of memory

This could allow you to continue using an application on a small machine

(especially one with a hard disc) at the expense of some speed.

When implementing your code, expect the unexpected and program defensively.

Be sure that when the system resources you need (memory, windows, files etc) are

not available , you r program can cope. Make sure that , when a document managed

by your program expands and memory runs out, the document is still valid and can

be saved. Don't just check that your main document expansion routines work;

check that all routines which require memory (or in fact any system resource) fail

gracefully when there is no more .

Centralising access to system resources can help: write your program as if every

operating system interface is likely to return an error.

Avoiding permanent loss of memory

Permanent loss of memory is mainly a problem for applications or modules written

entirely in assembly language. When interworking assembler routines with C or

another high level language you should use memory handed to you by the high

leve l language library (eg use malloc to get a memory area from C and pass a

pointer to it as an argument to your assembler routine). The language library

automat ically returns such areas to RISC OS on program exit. Additional types of

program requiring care to avoid memory loss are those expected to run for a long

time (eg a printer spooler) and those making use of RMA directly through SWI

ca lls .

When using the RMA for storage directly through SWI calls, especially for items in

linked li st s, consider using the first word as a check word containing four

characters of text to identify it as belonging to your program . When a block of RMA

is deallocated , the heap manager puts it back into a li st of free blocks, and in so

doing overwrites the first word of the block.

This technique therefore serves two purposes:

after your program has been run and exited, your check word ca n be sea rched

for, showing up any blocks you have failed to deallocate

2 it avoids problems when accidentally referencing deallocated memory.

A typical problem of referencing deallocated blocks results from using the first

word as a pointer to your program's next block, then accidentally referencing a wild

pointer when it is overwritten.

Using memory efficiently

You ca n use the following BASIC routine to search for any lost blocks:

100 REM > LostMemory checks for un-released blocks
110 RMA%=&01800000 : RMAEnd% = RMA% + (RMA% ! 12)
120 FOR PossibleBlock% = RMA%+20 TO RMAEnd%-12 STEP 16
130 REM Now loop looking for " Prag "
140 IF PossibleBlock%!0 = &676F7250 THEN
150 PRINT "Block found at &"; -PossibleBlock%
160 ENDIF
170 NEXT PossibleBlock%
180 END

When writing relocatable module ini t iali sation code you shou ld check that
memory and other system resources are returned if initialisat ion is unable to
complete and is going to return with V set. It is often useful to construct module
finali sat ion code as a mirror image of initialisation code so that it can be jumped
to when initialisation is going to return an error and cleaned up. A typical
algorithm is

Initialisation
Claim main workspace: If error then keep this error and goto Exit3
Claim secondary workspace: If error then keep this error and goto Exit2
Claim tertiary workspace: If error then keep this error and goto Exit I
Return

Finalisation

Exitl
Exit2
Exit3

Set kept error to null
Release tertiary workspace
Release secondary workspace
Release main workspace
Get kept error (if there was one)
Return

Avoiding memory wastage

The key factor in writing programs that use memory efficient ly and don't waste it is
understanding the following:

• how SWI XOS_Modu le and SWI XOS_Heap work if you are constructing a
relocatable module or are usi ng the RMA from an application

• how C flex and malloc work when writing a C program (parts of which may be
written in assembler) .

This understanding will lead you to writing programs that will work in harmony
with the storage all ocator. See the following section for a description of C memory
allocation

163

164

The C storage manager

Understanding the C storage manager may be useful to writers of assembly

language for two reasons: to assist in constructing part C and part assembler

programs; to assist in constructing their own memory allocation routines, both as

an example algorithm and as an allocator that may be running for other

applications at the same time as their own.

Normal C applications (ie those not running as modules) claim memory blocks in

two main ways:

• from rnalloc

• from flex.

The rnalloc heap storage manager is the standard interface from which to claim

sma ll areas of memory. It is tuned to give good performance to the widest variety of

programs.

In the following sections, the word heap refers to the section of memory currently

under the control of the storage manager (usually referred to as rnalloc, or the

rnalloc heap)

The flex facility is available as part of RISC_OSLib, and can be useful for claiming

large areas of data space. It manages a shifting set of areas, so its operation can be

slow, and address-dependent data cannot be stored in it. However, it has the

following advantages:

• it doesn 't waste memory by fragmenting free space

• it returns deallocated memory to RISC OS for use by other applications

Allocation of malloc blocks

All block sizes allocated are in bytes and are rounded up to a multiple of four bytes

All blocks returned to the user are word-aligned All blocks have an overhead of

eight bytes (two words). One word is used to hold the block's length and status, the

other contains a guard constant which is used to detect heap corrupt ions. The

guard word may not be present in future releases of the ANSI C library When the

stack needs to be extended, blocks are allocated from the rnalloc heap.

When an allocation request is received by the storage manager, it is categorised

into one of three sizes of blocks

• small

• medium

• large

0~64

65 ~ 512

513 ~ 16777216.

The storage manager keeps track of the free sections of the heap in two ways. The
medium and large sized blocks are chained together into a linked list (overflow list)
and small blocks of the same size are chained together into linked lists (bins). The
overflow list is ordered by ascending block address, while the bins have the most
recently freed block at the start of the list.

When a small block is requested, the bin which contains the blocks of the required
size is checked, and, if the bin is not empty, the first block in the list is returned to
the user. If there was not a block of the exact size available, the bin containing
blocks of the next size up is checked, and so on until a block is found. If a block is
not found in the bins, the last block (highest address) on the overflow list is taken.
If the block is large enough to be split into two blocks, and the remainder is a
usable size (> 12 including the overhead) then the block is split, the top section
returned to the user and the remainder, depending on its size, is either put in the
relevant bin at the front of the list or left in the overflow list.

When a medium block is requested, the search ignores the bins and starts with the
overflow list. This is searched in reverse order for a block of usable size, in the same
way as for small blocks.

When a large block is requested, the overflow list is searched in increasing address
order, and the first block in the list which is large enough is taken. If the block is
large enough to be split into two blocks, and the size of the remainder is larger
than a small block(> 64) then the block is split, the top section is returned to the
overflow list, and bottom section given to the user.

Should there not be a block of the right size available, the C storage manager has
two options:

Take all the free blocks on the heap and join adjacent free blocks together
(coalescing) in the hope that a block of the right size will be created which can
then be used

2 Ask the operating system for more heap, put the block returned in the overflow
list, and try again.

The heap will only be coalesced if there is at least enough free memory in it to
make it worthwhile (ie four times the size of the requested block, and at least one
sixth of the total heap size) or if the request for more heap was denied. Coalescing
causes the following:

• the bins and overflow list are emptied;

• the heap is scanned;

• adjacent free blocks are merged;

• the free blocks are scattered into the bins and overflow list in increasing
address order.

165

Avoiding memory wastage

166

Deallocation of malloc blocks

When a block is freed, if it will fit in a bin then it is put at the start of the relevant
bin list. otherwise it is just marked as being free and effectively taken out of the

heap until the next coalesce phase, when it wil l be put in the overflow list. This is
done because the overflow list is in ascending block address order, and it would
have to be scanned to be able to insert the freed block at the correct position.
Fragmentation is also reduced if the block is not reusable until after the next
coalesce phase. It is worth noting that deallocating a block and then reallocating a
block of the same size can not be relied upon to deliver the original block.

Reallocation of malloc blocks

You should be cautious when using realloc. Reallocating a block to a larger size
will usually require another block of memory to be used and the data to be copied
into it This means that you cannot use the whole of the heap as both blocks need
to be present at the same time.

If consecutive calls keep increasing the block size until all memory is used up, then
only about a third of the heap is likely to be available in one block. A typical course
of events is.:

The first block is present (block A).

2 It is extended to a larger sized block (block B) Block A must still be present
(see above)

3 It is again extended to a larger sized block (block C). Block B must still be
present (see above) However, block A also sti ll exists because it is too small to
use. and cannot be coalesced with another block because block B is in the way.

Wimp slots and the C flex system

A typical C application running under the Wimp has a single contiguous
application area (wimp slot) into which are placed the following

• program image

• static data

• stack

• malloc data.

The initial wimp slot size is set by the size of the Next slot (in the Task display
window) when the application is started , or by *WimpSlot commands in the !Run
file associated with the C application . If the mall oc heap is full , and the flex

system has not been initialised and the operating system has free memory, the
wimp slot grows, rai sing its highest address Once enlarged by malloc, the wimp
slot never reduces -again until program termination .

u::;1ny 111t::111u1y t::lltt;tt::1111y

The stack is allocated on the heap, in 4K (or as big as needed) chunks the ARM
procedure call standard means that disjoint extension of the stack is possible. The
on ly other use that the ANSI library makes of the mal loc heap is in allocating file
buffers, but even this usage can be prevented by making the appropriate ca lls to
the ANSI library buffer handling facilities (setvbuf). The operation of the
malloc heap is described above and is designed to provide good performance
under heavy use. Its design is such that sma ll blocks can be allocated and freed
rapidly

Any mal loc heap tends to fragment over time. This is particularly serious in the
following circumstances:

• no virtual memory

• multitasking - if memory is not in use, it should be handed to other
applications

• if a program runs out of memory it must not crash, but must recover and
continue.

These are just the conditions under which a desktop application operates!

Because of this, the flex facilities are available as part of RISC_ OS Lib (the
RISC OS-specific C library provided with Acorn Desktop C) These provide a shifting
heap, intended for the allocation of large blocks of memory which might otherwise
destroy the structure of a mal lac-style heap.

Flex works by increasing the size of the application area , using space above that
reserved for use by mal loc. Once the flex system is initialised the mal loc heap
cannot grow, unless you enable this (see later) The benefits of using flex can be
seen in Draw, Paint and Edit, which are all written in C using early versions of
RISC_OSLib. Their applicati on areas expand when new files are added, contract
when files are discarded , and do not suffer from needless incremental applicat ion
area growth over time.

The implementation of flex is quite simple. There is no free list as memory is
shifted whenever a block is destroyed or changed in size. New blocks are always
allocated at the top. When blocks are deallocated or resized, those above are
moved . This means that deallocating or changing the size of a block can take quite
a long time (proportional to the sum of the sizes of the blocks above it in memory)
Flex is also not recommended for allocation of small blocks. Its other limitation is
that as flex blocks can be shifted, you should not use them for address-dependent
data (eg pointers or indirected icon data) .

In addition to the facilities described above, RlSC_OSLib also provides an obsolete
malloc-like al locator of non-shifting blocks called heap

167

Avoiding memory wastage

168

Two facilities are provided. because no one storage manager can solve all
problems in the absence of Virtual Memory. A program which works adequately
with malloc should feel no compulsion to use anything else. The use of flex,
however, particularly in desktop applications such as editors (which are likely to be
resident on the desktop for a long period of time) can go a long way towards
improving their memory usage.

The model of a C application's memory layout is as follows

Ox8000 top of wimpslot

code statics stack/malloc-heap

If the application uses flex store as supported by RISC_OSLib, the model is:

original new
Ox8000 top of wimpslot top of wimpslot

code statics stack/malloc-heap flex store

To expand the mal loc heap when a flex store area is being used the flex area has
to be moved. To achieve this, mal loc calls a flex function to move the flex blocks.
The flex function called is registered with the C library, and may be a dummy
function which does not move flex. If a dummy function is registered or flex cannot
be successfully moved. then malloc itself returns a O to indicate failure

The Acorn Desktop C version of RISC_OSLib registers a dummy flex-moving
function during flex_init (),inhibiting malloc heap expansion after
flex_ ini t () has been called. This is registered with a call to the function
_kernel_register_slotextend()

A functional flex-moving function performs the relocation, sets a pointer to the
newly available space. and returns the size of the memory thus obtained (which
may be less than that requested by malloc).

Allowing mal loc heap expansion to move flex makes the use of pointers into flex
blocks potentially hazardous when the pointers are set before, but used after, the
following:

• calls to flex_alloc, flex_free, flex_ extend

• calls to malloc and kernel_alloc

• calls to any functions which may cause stack extension (since stack extension
uses the malloc-heap for this purpose)

Consider the following code fragment:

#define FLEX_ SIZE 1024 /* for example* I
#define OFFSET 4 2 I * for example * I

static void nonleaf_function(char *p)
{

I* declaration of local vars, and cal ls to other functions here * I
I * use of p happens here ... *I

static void access_flex_store(void)

char *message;

flex_all oc((flex_ptr)&message , FLEX_SIZE);
nonleaf_function(message+OFFSET);

Notice that when the value of the char pointer message+OFFSET is passed by
value to the function nonleaf_function (), use of pin this function may no
longer be valid, since stack extension may have happened during the function call ,
which may have caused the al located flex store to move.

Working in this Environment

If you have an existing binary, linked with a version of stubs pre-dating the 3. I b
intermediate release. such as that included with ANSI C Release 3, then you do
not get an extending wimpslot. and hence no new problems arise (the shared
C library 'knows' which stubs the application was linked with). You must make
your initial wimpslot large enough to accommodate your stack/heap needs.
This is important for old applications which rely on mal loc returning 0 when
the application's initial wimpslot is exhausted

2 If you link with the Acorn Desktop C version of stubs, but do not use the flex
functions in RISC_OSLib, you get a wimpslot extendable bymalloc , and have
no new problems. When more heap is required you r wimpslot may be
increased by the C library (but wi ll not shrink when free () is ca lled)

3 If you link with the Acorn Desktop C vers ion of stubs, and use the flex functions
in RISC_OSLib, then your malloc-heap wi ll (by default) not be allowed to grow
You must make your initial wimpslot large enough to accommodate your
stack/heap needs.

Note: flex_ ini t () makes the ca ll:

_kernel_register_ slotextend(flex_dont_budge) ;

169

Avoiding memory wastage

170

This means that when the C library attempts to acquire more wimpslot, the

extension will fail. This gives you the guarantee that flex store will on ly be

relocated due to flex_ alloc, flex_extend, and flex_free. Your

wimpslot will grow or shrink to satisfy flex requests , but your malloc-heap will

have a bound fixed by the size of your initial wimps lot.

4 If you link with the Acorn Desktop C version of stubs, and use the flex functions

in RISC_OSLib, and require malloc to extend the application's wimpslot. you

must be prepared to exist in a world where flex store may move as described in

the section above.

After calling flex_ ini t (),you can make the call:

_kernel_register_slotextend(flex_budge);

This registers a function which will relocate flex store whenever the C library

needs to grow its malloc-heap.

If you choose to do this, then the following guidelines will be of use to you

• Always pass flex_ptr's (void **'s) to your own functions, with an

integral offset.

Avoid passing direct flex block pointers .

• Direct calls to mal loc may cause the flex store to move in the sa me way

that calls to flex_alloc, flex_ extend and flex_free do.

• You can safely make SWI calls which require pointer arguments where

these arguments point into flex blocks, by using _kernel_swi (),since

kernel_swi cannot cause stack extension. This state must be

guaranteed by the C library, since flex_budge () uses

_kernel_swi () and may be called during stack extension.

• Using the Acorn Desktop C version of RISC_OSLib, you can also call any

SWI 'veneer' functions, with the knowledge that the stack will not be

extended. These functions have been compiled with stack checking turned

off. The functions (which are all in RISC_OSLib) are:

bbc.h
colourtran.h
drawmod.h
font.h
os.h
print.h
sprite h
visdelay.h
wimph

Using memory efficiently

• You can turn stack checking off in your own code using pragmas, thus:

#pragma no_stack_checks

I * functions defined after here are compiled without stack checks * I

#pragma stack_ checks

/ * functions defined after here are compiled with stack checks * I

Or for a whole source file by compiling using the flag -zpsl

Note that functions which are compiled with stack checking off have only
512 bytes of stack available to them , and any 'non-stack-check' function s
which they call

• You can toggle whether the malloc-heap is permitted to extend, using
calls to _kernel_register_ slotextend () with arguments
flex_budge or flex_dont_ budge. This can be used to surround
critica l regions of code, where you may wish to temporarily stop flex
blocks moving due to malloc-heap extension.

You can set the root stack segment size using:

int root stack_size = 16*1024 ; / *to get a 16kbstacksize * /

Using heap_alloc and heap_free
Since when malloc heap expansion is inhibited (as it is by default with the Acorn
Desktop C version of flex) the bottom flex block is static, it is valid to retain
pointers into it. and useful to manage a malloc style heap of fixed blocks within it
The heap_ al loc () and heap_ free () functions provide facilities to perform
thi s.

Using the heap functions to do memory allocation is sim ilar to mal loc () in that
a pointer to the block allocated is returned to the caller: the routine to do this is
called heap_alloc ().Memory may be released with heap_ free (). Before you
use heap, you must call heap_ini t (); if heap_ ini t () is ca lled with a r;i.on-zero
parameter, then the heap will be sh runk when it is possible to do so after a ca ll to
heap_free ().The ca ll to heap_init () must be made after flex has been
initialised with flex_in i t ().Since the heap functions support a heap in the first
flex block allocated, heap_ini t must be called before any ca ll s to flex allocation
function s, and you must not allow the Cheap to extend thus causing all flex blocks
to be relocated (ie you must not have registered flex_budge with
_ kernel_ slot_ extend())

171

Using heap_alloc and heap_free

172

Using memory from relocatable modules

Relocatable modules should use memory from three sources: the supervisor stack;
the RMA; and application workspace. Use of pc-relative written data should be
avoided as it makes a module unsuitable to ROM, unsuitable for multiple
instantiation, and permanently reserves space, possibly only for occasional use.

The supervisor stack is small and not extendable, so care must be taken to use this
resource very, economically.

The RMA is the standard source of workspace for any of the non-user mode
routines contained in a module, as described in the RISC OS Programmer's Reference
Manual. Care must be taken to deallocate unwanted blocks - the marker word hint
described earlier in this chapter may be useful C malloc uses RMA when called
from non-user tnode.

Application workspace only belongs to a module when referenced from module
user mode code running as the sole current application (with RISC OS desktop
multitasking halted) or when running as a RISC OS application having dealt with
the Service_Memory (&11) service call (sent round by the wimp when your
program issues SWI Wimp_Initialise) to keep application workspace.

Never access your application's workspace from an interrupt routine. During
interrupts, the state of the application area is effectively random. Since your
interrupt routine could execute at any time, it could happen while some other
application is switched in. If this did happen, and the interrupt routine updated
application space, then some other application could be affected. To get around
this problem, allocate some RMA space for your interrupt routine to use when it
needs to; this memory will be visible when your application is running. Remember
to free up the RMA space when you've finished with it.

Part 4 - Appendices

173

174

15 Appendix A - Error messages

• ADRL can ' t be used with PC
The destination register of an ADRL opcode cannot be PC.

• Area directive missing
An attempt has been made to generate code or data before the first AREA
directive.

• Area name missing
The name for the area has been omitted from an AREA directive.

• Bad alignment boundary
An alignment has been given which is not a power of two.

• Bad area attribute or alignment
Unknown attribute or alignment not in the range 2-12.

• Bad based number
A digit has been given in a based number which is not less than the base, for
example: 7 _8 .

• Bad exported name
The wording following the EXPORT directive is syntactically not a name.

• Bad exported symbol type
The exported symbol is not a program-relative symbol.

• Bad expression type
For example, a number was expected but a string was encountered.

• Bad floating point constant
The only allowed floating point constants are 0, I, 2, 3, 5, I 0 and 0.5. They must
be written in exactly these forms.

• Bad global name
An incorrect character appears in the global name.

• Bad hexadecimal number
The & introducing a hexadecimal number is not followed by a valid
hexadecimal digit

• Bad imported name
The wording following the IMPORT directive is syntactically not a name.

• Bad local label number
A local label number must be in the range 0-99.

175

176

• Bad local name
An incorrect character appears in the local name.

• Bad macro parameter default value

• Bad opcode symbol
A symbol has been encountered in the opcode field which is not a directive
and is syntactically not a label.

• Bad operand type
For example, a logical value was supplied where a string was required.

• Bad operator
The name between colons is not an operator name.

• Bad or unknown attribute
Faulty attribute on an IMPORT directive.

• Bad register list symbol
An expression used as a register set definition (eg in LDM or STM) was not
understood or of the wrong type.

• Bad register name symbol
A regi.ster name is wrong. Note that all register names must be defined using
the RN directive.

• Bad register range
A register range from a higher to a lower register has been given; for example,
R4-R2 has been typed .

• Bad rotator
The rotator value supplied must be even and in the range 0-30.

• Bad shift name
Syntax error in shift name.

• Bad string escape sequence
AC style escape character sequence (beginning with '\')within a string was
incorrect.

• Bad symbol
Syntax error in a symbol name.

• Bad symbol type
This will occur after a# or• directive and means that the symbol being defined
has already been assumed to be of a type which cannot be defined in this way.

• Branch offset out of range
The destination of a branch is not within the ARM address space.

• Code generated in data area
An opcode has been found in an area which is not a code area.

• Coprocessor number out of range

r1JJJJCil IUIA r1 - LI I VI 11 ICit:>t:>ayr;;;:,

• Coprocessor operation out of range

• Coprocessor register number out of range

• Data transfer offset out of range
The immediate value in a data transfer opcode must be in the range:
-4095 <= e <= +4095

• Decimal overflow
The number exceeds 32 bits .

• Division by zero

• Entry address already set
This is the second or subsequent ENTRY directive.

• Error in macro parameters
The macro parameters do not match the prototype statement in some way.

• Error on code file
An error occurred whi le writing the output file

• External area relocatable symbol used
A symbol which is an address in another area has been used in a non-trivia l
expression.

• Externals not valid in expressions
An imported symbol has been used in a non-trivial expression.

• Floating point register number out of range

• Floating point overflow

• Floating point number not found

• Global name already exists
This name has already been used in some other context.

• Hexadecimal overflow
The number exceeds 32 bits.

• Illegal combination of code and zero initialised
An object file area cannot be declared both to be code and zero initia'lised
data.

• Illegal label parameter start in macro prototype

• Illegal line start should be blank
A label has been found at the start of a line with a directive which ca nnot be
labelled.

• Irmnediate value out of range
An immediate value in a data processing instruction cannot be obtained by
rotating an 8-bit value by an even amount.

177

178

• Imported name already exists
The name has already been defined or used for something else.

• Incorrect routine name
The optional name following a branch to a local label or on a local label
definition does not match the routine's name.

• Invalid line start
A line may only start with a letter character (the first letter of a label). a digit
(the first character of a local label). a semi-colon or a space

• Invalid operand to branch instruction

• Label missing from line start
The absence of a label where one is required; for example, in the * directive.

• Local name already exists
A local name has been defined more than once.

• Locals not allowed outside macros
A local variable has been defined in the main body of the source file.

• MEND not allowed within conditionals
A MEND has been found amongst [I I or WHILE/WEND directives.

• Missing close bracket
A missing close bracket or too many opening brackets.

• Missing close quote
No closing quote at the end of a string constant.

• Missing close square bracket
A I is absent.

• Missing comma
Syntax error due to miss ing comma.

• Missing hash
The hash (#) preceding an immediate value has been forgotten

• Missing open bracket
A missing open bracket or too many closing brackets.

• Missing open square bracket

• Multiply or incompatibly defined symbol
A symbol has been defined more than once.

• Multiply destination equals first source

• No current macro expansion
A MEND, MEXIT or loca l variable has been encountered but there is no
corresponding MACRO.

• Non- zero data within uninitialised area

Appendix A - Error messages

• Numeric overflow
The number exceeds 32 bits.

• Origin illegal for a . out
Unix style source or AOUT directive resulted in the assembler producing a.out
unix style output, but this does not support fixed origins.

• Register occurs multiply in LDM/STM li st

• Register symbol already defined
A register symbol has been defined more than once.

• Register value out of range
Register va lues must be in the range 0-15.

• Shift option out of range
The range permitted is 0-3 I , I -32 or I-3 I depending on the shift type

• String overflow
Concatenation has produced a string of more than 256 characters.

• String too short for operation
An attempt has been made to manipulate a string using :LEFT: or :RIGHT:
which has insufficient characters in it

• STRONG directive not supported by a . out
Unix style source or AOUT directive resulted in the assembler producing a.out
unix style output, but this does not support STRONG.

• Structure mi smatch
Mismatch of] with I or I, or WEND and WHILE.

• Substituted line too long
During variable and macro parameter substitution the line length has
exceeded 256 characters.

• Symbol missing
An attempt has been made to reference the length attribute of a symbol but
the symbol was omitted or the name found was not recognised as a symbol.

• Syntax error following directive
An operand has been provided to a directive which cannot take one, for
example: the 'I' directive.

• Syntax error following labe l
A label can only be followed by spaces , a semi-co lon or the end-of-line
symbol.

• Syntax error following local label definition
A space, comment, or end-of-line did not immediately follow the loca l label.

• Too late to change output format
AOF or AOUT directives incorrect ly placed

179

180

• Too late to define symbol as register lis t
A register list was defined for a symbol already used for another purpose.

• Too late to ban floating point

• Too late to set origin now
The ORG must be set before the Assembler generates code.

• Too many actual parameters
A macro call is trying to pass too many parameters .

• Too many bss areas for a . out

• Too many code areas for a.out

• Too many data areas for a.out
Unix style source or AOUT directives resulted in the assembler producing a.out
unix style output, but this only supports one bss/code/data area.

• Translate not allowed in pre-indexed form
The translate option may not be specified in pre-indexed forms of LOR and
STR.

• Unable to close code file

• Unable to open code file

• Undefined exported symbol
The symbol exported is undefined.

• Undefined symbol
A symbol has not been given a value.

• Unexpected characters at end of line
The line is syntactically complete. but more information is present The
semi-colon prefixing comments may have been omitted .

• Unexpected operand
An operand has been found where a binary operator was expected.

• Unexpected operator
A non-unary operator has been found where an operand was expected .

• Unexpected unary operator
A unary operator has been found where a binary operator was expected.

• U~known opcode
A name in the opcode fi eld has been found which is not an opcode, a directive,
nor a macro.

• Unknown operand
An operand in the bracketed format {PC} {VAR} {OPT} {TRUE} {FALSE} is not of
the correct form.

• Unknown or wrong type of global/local symbol
Type mismatch, for example, attempting to set or reset the value of a local or
global symbol as logical , where it is a string va riable.

• Unknown shift name
Not one of the six legal shift mnemonics .

• Weak symbols not permitted in a . out
Unix style source or AOUT directive resulted in the assembler producing a.out
unix style output, but this does not support WEAK.

181

182

16 Appendix B - Directives syntax
table

The acceptable syntax for the various directives is shown in the following
table:

no label two expressions are expected
optional label an expression is expected
& (DCD) optional label an expression list is expected
% optional label an expression is expected
* (EOU) label an expression is expected
=(DCB) optional label an expression list is expected
I no label an expression is expected
I no label takes no expression
I no label takes no expression
/\ no label expression and optiona l register

expected
ALIGN no label one or two expressions are expected
AOF no label takes no expression
AOUT no label takes no expression
ASSERT no label an expression is expected
CN label an expression is expected
CP label an expression is expected
DCFD label floating point expression list
DCFS label floating point expression list
DCW optional label an expression list is expected
END no checking performed
FN label an expression is expected
GBLA no label a symbol is expected
GBLL no label a symbol is expected
GBLS no label a symbol is expected
GET no label a fi lename is expected
LCLA no label a symbol is expected
LCLL no label a symbol is expected
LCLS no label a symbol is expected
LEADR no label an expression is expected
LNK no checking performed a filename is expected
LTORG no label takes no expression

183

MACRO no label takes no expression
MEND no label takes no expression
MEXIT no label takes no expression
NOFP label takes no expression

OPT no label an expression is expected
ORG no label an expression is expected
RUST label a register list expression is expected

RN label an expression is expected
ROUT label takes no expression
SETA variable an expression is expected
SETL variable an expression is expected
SETS variable an expression is expected
SUBT no label takes an optional title
TTL no label takes an optional title
WEND no label takes no expression
WHILE no label an expression is expected

184

17 Appendix C - Example assembler
fragments

The following example assembly language fragments show ways in which the
basic ARM instructions can combine to give efficient code. None of the

techniques illustrated save a great deal of execution time (although they all save
some). mostly they just save code.

Note that. when optim ising code for execution speed, cons ideration to different
hardware bases should be given. Some changes which optim ise speed on one
machine may slow the code on another. An example is unrolling loops (eg divide
loops) which speeds execution on an ARM2. but can slow execution on an ARM3.
which has a cache.

Using the conditional instructions

Using conditionals for logical OR

CMP
BEQ
CMP
BEQ

Rn , #p
Label
Rm , #q
Labe l

can be replaced by:

CMP
CMPNE
BEQ

Absolute value

Rn , #p
Rm , #q
Label

TEQ Rn, #0
RSBMI Rn, Rn, #0

; IF Rn=p OR Rm=q THEN GOTO Label

;i f condition not satisfied try
; another test .

;test sign
; and 2's complement if necessary .

Combining discrete and range tests

TEQ Rc , #127 ;discrete test
CMPNE Re,#" "-1 ;range test
MOVLS Re , # "." ; IF Re<#" " OR Rc=CHR$127 THEN Re : = "."

185

Pseudo-random binary sequence generator

Division and remainder

; enter with dividend in Ra , divisor in Rb .
; Divisor must not be zero .

MOV Rd , Rb
CMP Rd,Ra,LSR

Divl MOVLS Rd , Rd , LSL
CMP Rd , Ra , LSR
BLS Divl
MOV Rc , #0

#1
;Pu t the divisor in Rd .
;Then double it until

#1 ; 2 * Rd > divisor .
#1

;Ini tialise the quotient
CMP Ra, Rd Div2 ; Can we subtract Rd?
SUBCS Ra, Ra , Rd
ADC Rc , Rc , Rc
MOV Rd , Rd , LSR
CMP Rd , Rb

; If we can , do so
; Double quotient and add new bit

#1 ; Halve Rd.
; And loop until we ' ve gone

BHS Div2 ; past the original divisor ,
; Now Ra holds remainder , Rb holds original divisor,
; Re holds quotient and Rd holds junk.

Pseudo-random binary sequence generator

186

It is often necessary to generate (pseudo-) random numbers , and the most efficient
algorithms are based on shift generators with a feedback rather like a cyclic
redundancy check generator. Unfortunately, the sequence of a 32-bit generator
needs more than one feedback tap to be maximal length (that is, 2"32-1 cycles
before repetition) . A 33-bit shift generator wi t h taps at b its 20 and 33 is required

The basic algorithm is

• newbit:=bit33 eor bit20

• shift left the 33 bit number

• put in newbit at the bottom.

• Repeat for all the 32 newbits needed.

All thi s can be done in five S cycles

; enter with seed in Ra (32 bits) , Rb (1 bit in Rb lsb)
; uses Re

TST Rb , Rb,LSR #1 ; top bit into carry
MOVS Rc,Ra , RRX ;33 bit rotate right
ADC Rb , Rb, Rb ;carry into lsb of Rb
EOR Rc , Rc , Ra , LSL#12 ; (involved!)
EOR Ra , Rc,Rc , LSR#20 ; (similarly involved!)

; new seed in Ra , Rb as before

Appendix C - Example assembler fragments

Multiplication by a constant

Multiplication by 2An (1 ,2,4,8, 16,32 ..)

MOV Ra , Ra , LSL #n ;

Multiplication by 2An+ 1 (3,5,9, 17 ..)

ADD Ra , Ra , Ra , LSL #n .

Multiplication by 2An-1 (3,7,15 ..)

RSB Ra , Ra , Ra , LSL #n

Multiplication by 6

ADD
MOV

Ra , Ra , Ra , LSL #1
Ra , Ra , LSL #1

; multip l y by 3
; and then by 2 .

Multiply by 1 O and add in extra number

; multiply by 5 AD
ADD

Ra , Ra , Ra , LSL #2
Ra , Rc , Ra , LSL #1 ;multiply by 2 and add in next digit

General recursive method for Rb := Ra*C, C a constant

If C even, say C = 2" n*D, Dodd:

D=l : MOV Rb , Ra , LSL #n
D<>l : {Rb : = Ra*D}

MOV Rb , Rb , LSL #n

If C MOD 4 = I , say C = 2" n*D+ I , D odd, n> I :

D=l : ADD Rb , Ra , Ra , LSL #n
D< > 1 : {Rb : = Ra* D}

ADD Rb , Ra , Rb , LSL #n.

If C MOD 4 = 3, say C = 2" n*D-I , Dodd, n> I :

D=l : RSB Rb , Ra , Ra , LSL #n
D<>l : {Rb : = Ra*D}

RSB Rb,Ra,Rb , LSL #n .

187

This is not quite optimal, but close . An example of its non-optimal use is multiply
by 45 which is done by:

RSB Rb , Ra , Ra ,LSL #2 ; multip l y by 3
RSB Rb,Ra,Rb,LSL #2 ;multiply by 4*3-1 = 11
ADD Rb , Ra,Rb,LSL #2 ;multiply by 4*11+1 = 45

rather than by:

ADD Rb , Ra , Ra , LSL #3 ;mul tiply by 9
ADD Rb,Rb,Rb,LSL #2 ;multiply by 5*9 45

Loading a word from an unknown alignment
There is no instruction to load a word from an unknown alignment. To do this
requires some code (which can be a macro) along the following lines:

;enter with 32-bit address in Ra
; uses Rb , Re ; result in Rd
; Note d must be less than c

BIC Rb , Ra , #3 ; get word- aligned a ddress
LDMIA Rb , {Rd , Re} ; get 64 bits containing answer
AND Rb , Ra , #3 ; correction factor in bytes
MOVS Rb , Rb , LSL #3 ; .. now in bits and test if aligned
MOVNE Rd , Rd,LSR Rb ;produce bottom of result

; word if not aligned
RSBNE Rb , Rb , #32 ; get other shi ft amount
ORRNE Rd , Rd , Re , LSL Rb ; combine two halves to get result

Sign/zero extension of a half word
MOV
MOV

Ra,Ra , LSL #16
Ra,Ra , LSR #16

; move to top
; and back to bottom
; use ASR to get
; s i gn extended version

Return setting condition codes

188

CF LAG * &20000000
BICS PC , Rl4 , #CFLAG ; returns clearing C flag

; from link register
ORRCCS PC , Rl4,#CFLAG ; conditionally returns

; setting C flag

Full multiply

This code should not be used except in user mode, since it will reset the interrupt
mode to the state which existed when the R 14 was set up. This rule generally
applies to non-user mode programming. For example in supervisor mode:

MOV PC , Rl 4

is safer than

MOVS PC , Rl4

However, note that MOVS PC,R 14 is required by the ARM Procedure Call Standard ,
used by code compiled from the high level languages C, Fortran 77, ISO-Pascal and
so on. Such code, of course, runs in user mode.

The ARM 's multiply instruction multiplies two 32-bit numbers together and
produces the least significant 32 bits of the result These 32 bits are the same
regardless of whether the numbers are signed or unsigned.

To produce the full 64 bits of a product of two unsigned 32-bit numbers, the
foll owing code can be used:

; En ter wit h two un sign ed number s i n Ra a n d Rb .
MOVS Rd , Ra , LSR #16 ; Rd is ms 1 6 bi t s of Ra
BIC Ra , Ra , Rd , LSL #16
MOV Re , Rb , LSR #16
BIC Rb , Rb , Re , LSL #16
MUL Rc , RA , Rb
MUL Rb , Rd , Rb
MUL Ra , Re , Ra
MULNE Rd , Re , Rd

ADDS Ra , Ra , Rb

ADDCS Rd , Rd, #&10000

ADDS Rc , Rc , Ra , LSL #16
ADC Rd , Rd , Ra , LSR #1 6

; Ra is ls 16 bits
; Re is ms 16 bits of Rb
; Rb is l s 16 bits
; Low partial product
; First middle partial product
; Second midd le partial product
; High part i al product - NE
; condition reduces time taken
; if Rd is zero
; Add middle partial products -
; could not use MLA because we
; need carry
; Add carry into high partial
; product
; Add middl e partial product

sum into low and high words
; of result

; Now Re holds the low word o f the product , Rd its high
; word , and Ra , Rb and Re hold junk .

189

Full multiply

190

18 Appendix D - ARM datasheet

This appendix contains relevant extracts from the Acorn datasheet for the ARM2
microprocessor. It is included as a reference document. The Programmers' Model

and Instruction Set sections are also accurate for the ARM3 microprocessor, except
that this chip also supports the SWP instruction.

If further hardware detail is required refer to THE VL86COIO 32-BIT RISC MPU AND
PERIPHERALS USERS MANUAL (VLSI Technology, Inc. , I 989)

The ARM (Advanced RISC Machine) is a general purpose 32-bit single-chip
microprocessor. The architecture is based on Reduced Instruction Set Computer
(RISC) principles, and the instruction set and related decode mechanism are
greatly simplified compared with microprogrammed Complex Instruction Set
Computers This simplification results in a high instruction throughput and a good
real-time interrupt response from a small and cost-effective chip.

The instruction set comprises nine basic instruction types. Two of these make use
of the on-chip arithmetic logic unit (ALU), barrel shifter and multiplier to perform
high-speed operations on the data in a bank of 27 registers, each 32 bits wide. Two
instruction types control the transfer o f data between main memory and the
register bank, one optimised for flexibility of addressing and the other for rapid
context switching. Two instructions contro l the flow and privilege level of
execution, and the remaining three types are dedicated to the contro l of external
Co-Processors which allow the functionality of the instruction set to be extended
off-chip in an open and uniform way.

The ARM instruction set has proved to be a good target for compi lers of many
different high-level languages. Where required for critical code segments,
assembly code programming is also straightforward, unlike some RISC processors
which depend on sophisticated compiler technology to manage complicated
instruction interdependencies.

Pipelining is employed so that all parts of the processing and memory systems can
operate continuously. Typica ll y, whil e one instruction is being executed, its
successor is being decoded, and a third instrµction is being fetched from memory.

The memory interface has been designed to allow the performance potential to be
realised without incurring high costs in the memory system . Speed critica l control
signa ls are pipel ined to allow system control functions to be implemented in

191

192

standard low-power logic, and these control signa ls facilitate the exploitation of

the fast local access modes offered by industry standard dynamic random access

memories (DRAMs) .

Features:

• 32-bit data bus

• 26-bit address bus giving a 64-MByte uniform address space

• Support for virtual memory systems

• Simple but powerful instruction set

• Co-Processor interface for instruction set extension

• Good high-level language compiler support

• Peak execution rate of I 0 million instructions per second (MIPS)

• Fast interrupt response for real -time applications

• Low power consumption (0.1 W typical) with a single +5 V supply

• 84-pin JEDEC B leadless chip carrier or plastic leaded chip carrier

ABE

ALE -

DBE

/

A
L
u

Appendix D - ARM datasheet

A[0:25]

ADDRESS REGISTER

p
c

ADDRESS
INCREMENTER

REGISTER BANK
(27 32-bit registers)

BOOTH'S
MULTIPLIER

WRITE DATA REGISTER

' .
m .

B/W R/W

INSTRUCTION
DECODER

&
CONTROL

LOGIC

INSTRUCTION PIPELINE
& READ DATA REGISTER

0[0:31) 0(0:31]

Figure l 8. l Block Diagram

PHI

PH2

IRQ

FIQ

RESET

ABORT

OPC

TRANS

M[o,11

MREQ

SEQ

CPI

CPA

CPB

193

1 Q.d.

Clocks [

Interrupts

Bus
Control

Power

[

[
[

PHl

PH2

IRQ

FIQ

RESET

ALE

ABE

DBE

VDD (3)

vss (3!

MREQ

SEQ

A[0:25]

v D[0:31) r-...
~

Rlw

-
B/W

OPC

ARM
TRANS

M[O,l]

ABORT

-

CPI

CPA

•
CPB ..

Figure 18.2 Functional Diagram

.

...

...

-

.

Memory
Interface

Memory
Management

Interface

Co-Processor
Interface

Appendix D - ARM datasheet

Description of signals
Name Pin Type Description

PH2 !Ck Phase two clock.

PHI 2 !Ck Phase one clock

R/w 3 oc Not read I write. When HIGH this signal indicates a
processor write cycle; when LOW, a read cycle. It
becomes valid during phase 2 of the cycle before that
to which it refers, and remains valid to the end of
phase I of the referenced cycle.

OPC 4 oc Not op-code fetch. When LOW this signal indicates
that the processor is fetching an instruction from
memory; when HIGH data (if anything) is being
transferred The signal becomes valid during phase 2
of the previous cycle, remaining va lid through phase
I of the referenced cycle.

MREO 5 oc Not memory request This signa l, when LOW,
indicates that the processor requires memory access
during the following cycle The signal becomes valid
during phase I, remaining va lid through phase 2 of
the cycle preceding that to which it refers .

ABORT 6 IT Memory abort This is an input which allows the
memory system to tell the processor that a
requested access is not allowed. The signa l must be
va l id before the end of phase I of the cycle during
which the memory transfer is attempted

IRO 7 IT Not interrupt request . This is an asynchronous
interrupt request to the processor which causes it to
be interrupted if taken LOW when the appropriate
enable in the processor is active. The signal is level
sensit ive and must be held LOW until a suitable
response is received from the processor.

FIO 8 IT Not fast interrupt request . As IRO, but with higher
priority. May be taken LOW asynchronously to
interrupt the processor when the appropriate enable
is active.

195

196

RESET 9 IT

TRANS 10 oc

Reset. This is a level sensitive input signal which is

used to start the processor from a known address. A

HIGH level will cause the instruction being executed

to terminate abnormally. When RESET becomes

LOW for at least one clock cycle, the processor will

re-start from address 0 RESET must remain HIGH

for at least two clock cycles, and during the HIGH

period the processor will perform dummy instruction

fetches with the address incrementing from the point

where reset was activated. The address value will

overflow to zero if RESET is held beyond the

maximum address limit.

Not memory translate. When this signal is LOW it
indicates that the processor is in user mode, or that

the supervisor is using a single transfer instruction

with the force translate bit active. It may be used to

tell memory management hardware when translation

of the addresses should be turned on, or as an

indicator of non-user mode activity.

VDD 11,32,55 PWR Supply.

VSS 33,54,75 PWR Supply.

M(l,0) 13, 14 oc

SEO 15 oc

Not processor mode. These are output signals which

are the inverses of the internal status bits indicating

the processor operation mode.

Sequential address. This is an output signa l. It wi ll

become HIGH when either:

• the address for the next cycle is being generated
in the address incrementer, so will be equal to
the present address (in bytes) plus 4, or

• during a cycle which did not use memory (MREO
inactive) , when the next cycle will use memory

and the address is the same as the current

address.

The signa l becomes va lid during phase I and
remains so through phase 2 of the cycle before the

cycle whose address it anticipates . It may be used, in

combination with the low-order address lines, to
indicate that the next cycle can use a fast memory

mode (for example DRAM page mode) and/or to

by-pass the address translation system.

Appendix D - ARM datasheet

ALE 16 lT Address latch enable. This input to the processor is
used to control transparent latches on the address
outputs. Normally the addresses change during
phase 2 to the value required during the next cycle,
but for direct interfacing to ROMs they are required
to be stable to the end of phase 2. Taking ALE LOW
until the end of phase 2 will ensure that this
happens. lf the system does not require address
lines to be held in this way, ALE may be held
permanently HlGH. The ALE latch is dynamic, and
ALE should not be held LOW indefinitely.

A(25:0] 17-31 , ocz Addresses . This is the processor address bus . lf ALE
34-44 (address latch enable) is HlGH, the addresses

become valid during phase 2 of the cycle before the
one to which they refer and remain so during phase l
of the referenced cycle . Their stable period may be
controlled by ALE as described above.

ABE 45 lC Address bus enable. This is an input signal which,
when LOW, puts the address bus drivers into a high
impedance state. ABE may be tied HIGH when there
is no system requirement to turn off the address
drivers.

D[0:31) 46-53: lOTZ Data Bus. These are bi-directional signal paths which
56-74, are used for data transfers between the processor
77-81 and external memory, as follows:

• during read cycles (when RJw = 0). the input
data must be valid before the end of phase 2 of
the transfer cycle

• during write cycles (when RJw = l), the output
data will become valid during phase l and
remain so throughout phase 2 of the transfer
cycle .

DBE 83 lT Data bus enable. This is an input signal which, when
LOW, forces data bus drivers into a high impedance
state. (The drivers will always be high impedance
except during write cycles, and DBE may be tied
HlGH in syster:ns which do not require the data bus
for OMA or similar activities)

197

Description of signals

198

B/W 84

82

CPB I 2

CPA 76

Key to Signal Types

oc

oc

IT

IT

Not byte I word. This is an output signal used by the
processor to indicate to the external memory system
when a data transfer of a byte length is required The
signal is HIGH for word transfers and LOW for byte
transfers and is va lid for both read and write cycles
The signal will become valid during phafe 2 of the
cycle before the one during which the transfer will
take place It will remain stable throughout phase I
of the transfer cycle.

Co-Processor instruction. When ARM executes a
Co-Processor instruction, it will take thi b output
LOW and wait for a response from the C,o-Processor.
The action taken will depend on this resp:ionse, which
the Co-Processor signals on the CPA and CPB
inputs

Co-Processor busy. A Co-Processor whioh is capable
of performing the operation which ARM is requesting
(by asserting CPI) , but cannot commit to sta rting it
immediately, should indicate this by letting CPB
float HIGH. When the Co-Processor is re~dy to start it
shou ld take CPB LOW ARM samples CPB at the end
of phase I of the cycle when CPI is LOW

Co-Processor absent. A Co-Processor which is
capable of performing the operation which ARM is
requesting (by asserting CPI) should take CPA LOW
immediately If CPA is HIGH at the end of phase I of
the cycle when CPI is LOW, ARM will abbrt the
Co-Processor handshake and take the uhdefined
instruction trap. If CPA is LOW and remains LOW.
ARM will busy-wait until CPB is LOW and then
complete the Co-Processor instruction. I

!Ck Unbuffered clock inputs
IT Input with TTL compatib le levels
OC Output with CMOS compatible levels

OCZ 3-state output with CMOS compatib le levels
IOTZ Bi -directional 3-state input/output with TTL compatible levels
PWR Power pins

Appendix D - ARM datasheet

Programmers' Model

Introduction

Registers

ARM has a 32 bit data bus and a 26 bit address bus . The data types the processor

supports are Bytes (8 bits) and Words (32 bits), where words must be aligned to

four byte boundaries. Instructions are exactly one word, and data operations (eg

ADD) are only performed on word quantities Load and store operations can

transfer either bytes or words.

ARM supports four modes of operation, including protected supervisor and

interrupt hand li ng modes.

The processor has 27 32-bit registers, 16 of which are visible to the programmer at

any time. The visible subset depends on the processor mode; special registers are

switched in to support interrupt and supervisor processing. The register bank

organisation is shown in the diagram entitled Register Organisation on page 200.

User mode is the normal program execution state; registers R0- 15 are directly

accessible.

All registers are general purpose and may be used to hold data or address values,

except that register R 15 contains the Program Counter (PC) and the Processor

Status Register (PSR) Special bits in some instructions allow the PC and PSR to be

treated together or separately as required . The allocation of bits within RI 5 is

shown in the diagram entitled The Program Counter (PC) and Process Status Register
(PSR) on page 202.

R14 is used as the subroutine Link register, and receives a copy of RI 5 when a

Branch and Link instruction is executed. It may be treated as a general purpose

register at all other times. Rl4_svc, Rl4_irq and Rl4_fiq are used similarly to hold

the return values of R 15 when interrupts and exceptions arise , or when Branch and

Link instructions are executed within supervisor or interrupt routines .

199

200

I user mode I svc mode I irq mode I fiq mode I

RO

R1

R2

R3

R4

RS

R6

R7

RB R8_fiq

R9 R9_fiq

R10 R10_fiq

R11 R11 _fiq

R12 R12_fiq

R13 R13_svc R13_irq R13_fiq

R14 R14_svc R14_irq R14_fiq

R15 (PC/PSR)

Figure 18. 3 Register Organisation

The FIO processing state (described in the section entit led Exceptions on page 20 I)
has seven private registers mapped to R8-14 (R8_fiq-R l4_fiq). Many FIO programs
wi ll not need to save any registers.

The !RO processing state has two private registers mapped to RI 3 and RI 4
(Rl3_irq and Rl4_irq)

Supervisor mode (entered on SW! instructions and other traps) has two private
registers mapped to Rl3 and Rl4 (Rl3_svcand Rl4_svc)

Exceptions

FIQ

Appendix D - ARM datasheet

The two private registers allow the IRG and supervisor modes each to have a
private stack pointer and link register. Supervisor and IRG mode programs are
expected to save the User state on their respective stacks and then use the User
registers, remembering to restore the User state before returning.

In User mode only the N, Z, C and V bits of the PSR may be changed. The I, F and
Mode flags will change only when an exception arises. In supervisor and interrupt
modes all flags may be manipulated directly.

Exceptions arise whenever there is a need for the normal flow of program
execution to be broken, so that (for instance) the processor can be diverted to
handle an interrupt from a peripheral. The processor state just prior to handling
the exception must be preserved so that the original program can be resumed
when the exception routine has completed . Many exceptions may arise at the same
time.

ARM handles exceptions by making use of the banked registers to save state. The
old PC and PSR are copied into the appropriate R 14, and the PC and processor
mode bits are forced to a value which depends on the exception. Interrupt disable
flags are set where required to prevent otherwise unmanageable nestings of
exceptions. In the case of a re-entrant interrupt handler, Rl4 shou ld be saved onto
a stack in main memory before re-enabling the interrupt When multiple
exceptions arise simultaneously a fixed priority determines the order in which they
are handled.

The FIG (Fast Interrupt reGuest) exception is externally generated by taking the
FIO pin LOW This input can accept asynchronous transitions, and is delayed by
one clock cycle for synchronisation before it can affect the processor execution
flow. It is designed to support a data transfer or channel process, and has su ffi cient
private registers to remove the need for register saving in such applications, so
that the overhead of context switching is minimised . The FIG exception may be
disabled by setting the F flag in the PSR (but note that this is not possible from
user mode) If the F flag is clear ARM checks for a LOW level on the output of the
FIG synchroniser at the end of each instruction. When ARM is FIGed it wi ll :

save RI 5 in Rl4_fiq;

2 force MO, MI to FIG mode and set the F and I bits in the PC word;

3 force the PC to fetch the next instruction from address I CH.

201

Exceptions

IRQ

202

To return normally from FIO use SUBS PC , R14 _ fiq , #4. This will resume
execution of the interrupted code sequence, and restore the original mode and

interrupt enable state.

N z c v F PROGRAM COUNTER (PC)

Processor Mode

OO=UserMode
01 = FIQ Mode
IO= IRQMode
11 =Supervisor Mode

Program Counter
(Word Aligned)

FIQ Disable
0 =Enable
I= Disable

IRQ Disable
0 =Enable
I =Disable

Overilow

Carry/Not Borrow/

Rotate Extend

Zero

Negative/

Signed Less Than

Figure 18.4 Tlie Program Counter (PC) and Process Status Register (PSR)

The IRO (Interrupt ReOuest) exception is a normal interrupt caused by a LOW level
on the IRO pin. It has a lower priority than FIO, and is masked out when a FIO
sequence is entered. Its effect may be masked out at any time by setting the l bit in
the PC (but note that this is not possible from user mode) If the I flag is clear ARM
checks for a LOW level on the output of the !RO synchroniser at the end of each
instruction . When successfully lROed ARM will:

save RI 5 in Rl4_irq;

2 force MO, MI to IRO mode and set the l bit in the PC word;

3 force the PC to fetch the next instruction from address 18H.

To return normally from IRO use SUBS PC, R14_ irq, #4. This will restore the
original processor state and thereby re-enable IRO.

Appendix D - ARM datasheet

Address exception trap

Abort

An address exception arises whenever a data transfer is attempted with a
calcu lated address above 3FFFFFFH. The ARM address bus is 26 bits wide, and an
address calculation will have a 32-bit result If this result has a logic" I " in any of
the top 6 bits it is assumed that the address overf1ow is an error, and the address
exception trap is taken.

Note that a branch cannot cause an address exception, and a block data transfer
instruction which starts in the legal area but increments into the illega l area will
not trap. The check is performed only on the address of the first word to be
transferred.

When an address exception is seen ARM will:

if the data transfer was a store, force it to load. (This protects the memory from
spurious writing)

2 complete the instruction, but prevent internal state changes where possible.
The state changes are the same as if the instruction had aborted on the data
transfer.

3 save RI 5 in RI4_svc;

4 force MO, MI to supervisor mode and set the I bit in the PC word;

5 force the PC to fetch the next instruction from address 14H.

Normally an address exception is caused by erroneous code, and it is
inappropriate to resume execution. If a return is required from th is trap, use SUBS

PC, R14_ svc , #4. This will return to the instruction after the one causing the trap

The Abort signal comes from an external Memory Management system, and
indicates that the current memory access cannot be completed. For instance, in a
virtual memory system the data corresponding to the current address may have
been moved out of memory onto a disc, and considerable processor activity may
be required to recover the data before the access can be performed successfully.
ARM checks for an Abort at the end of the first phase of each bus cycle When
successfully Aborted ARM will respond in one of three ways:

i) if the abort occurred during an instruction prefetch (a Prefetcfi Abort), the
prefetched instruction is marked as invalid ; when it comes to execution, it is
reinterpreted as below. (If the instruction is not executed, for example as a
result of a branch being taken while it is in the pipeline, the abort will have no
effect)

203

204

ii) if the abort occurred during a data access (a Data Abort). the action depends on

the instruction type. Data transfer instructions (LDR. STR) are aborted as

though the instruction had not executed. The LDM and STM instructions

complete, and if writeback is set, the base is updated. If the instruction would

normally have overwritten the base with data (ie LDM with the base in the

transfer list). this overwriting is prevented. All register overwriting is prevented

after the Abort is indicated, which means in particular that RI 5 (which is

always last to be transferred) is preserved in an aborted LDM instruction.

iii) if the abort occurred during an internal cycle it is ignored .

Then, in cases (i) and (ii):

save Rl5 in Rl4_svc;

2 force MO, MI to supervisor mode and set the I bit in the PC word;

3 force the PC to fetch the next instruction from address OCH for Prefetch Abort,

I OH for Data Abort.

To continue after a Prefetch Abort use SUBS PC , R14 _ svc , #4. This will attempt

to re-execute the aborting instruction (which will on ly be effective if action has

been taken to remove the cause of the original abort) . A Data Abort requires any

auto-indexing to be reversed before returning to re-execute the offending

instruction , the return being done by SUBS PC , R14_ svc, #8.

The abort mechanism allows a 'demand paged virtual memory system' to be

implemented when a suitable memory management unit (such as MEMC) is

available. The processor is allowed to generate arbitrary addresses, and when the

data at an address is unavailable the memory manager signals an abort. The

processor traps into system software which must work out the cause of the abort,

make the requested data available, and retry the aborted instruction. The

application program needs no knowledge of the amount of memory available to it,

nor is its state in any way affected by the abort.

Software interrupt

The software interrupt is used for getting into supervi sor mode, usually to request

a particular supervisor function . ARM will:

save R 15 in R l 4_svc ;

2 force MO, MI to supervisor mode and set the I bit in the PC word ;

3 force the PC to fetch the next instruction from address 08H.

To return from a SW! , use MOVS PC , R14_ svc. This returns to the instruction

following the SWI.

Appenatx u - AH/VI aacasneec

Undefined instruction trap

Reset

When ARM executes a Co-Processor instruction or an Undefined instruction, it
offers it to any Co-Processors which may be present. If a Co-Processor can perform
this instruction but is busy at that moment, ARM will wait until the Co-Processor is
ready. If no Co-Processor can handle the instruction ARM wi ll take the undefi ned
instruction trap.

The trap may be used for software emulation of a Co-Processor in a system which
does not have the Co-Processor hardware, or for general purpose instruction set
extension by software emulation.

When the undefined instruction trap is taken ARM wi ll :

save R 15 in RI 4_svc;

2 force MO, MI to supervisor mode and set the I bit in the PC word ;

3 force the PC to fetch the next instruction from address 04H .

To return from this trap (after performing a suitable emulation of the required
function), use MOVS PC , R14_ svc. This will return to the instruction following the
undefined instruction.

When Reset goes HIGH ARM will :

stop the currently executing instruction and start executing no-ops. When
Reset goes LOW again it will :

2 save RI 5 in Rl4_SVC;

3 force MO, MI to supervisor mode and set the F and I bits in the PC word ;

4 force the PC to fetch the next instruction from address OH.

Vector Summary

Address

0000000
0000004
0000008
ooooooc
0000010
0000014
0000018
OOOOOlC

Rese t
Undefined instruction
Software interrup t
Abort (prefetch)
Abort (data)
Address exception
IRQ
FIQ

205

Exceptions

206

These are byte addresses, and will normally contain a branch instruction pointing

to the relevant routine. The FIO routine might reside at 00000 I CH onwards, and

thereby avoid the need for (and execution time of) a branch instruction.

Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system

determines the order in which they wi ll be handled

Reset (highest priority)

2 Address exception, Data abort

3 FIO

4 IRO

5 Prefetch abort

6 Undefined Instruction, Software interrupt (lowest priority)

Note that not all exceptions can occur at once. Address exception and data abort

are mutually exclusive, since if an address is illegal the ARM will ignore the ABORT

input. Undefined instruction and software interrupt are also mutually exclusive

since they each correspond to particular (non-overlapping) decodings of the

current instruction .

If an address exception or data abort occurs at the same time as a FIO, and Fl Os are

enabled (ie the F flag in the PSR is clear), ARM will enter the address exception or

data abort handler and then immediately proceed to the FIO vector. A normal

return from FIO will cause the address exception or data abort handler to resume

execution. Placing address exception and data abort at a higher priority than FIO is

necessary to ensure that the transfer error does not escape detection , but the time

for thi s exception entry should be added to worst case FIO latency calculations.

Interrupt Latencies

The worst case latency for FIO, assuming that it is enabled, cons.ists of the longest

time the request can take to pass through the synchroniser (Tsyncmax), plus the

time for the longest instruction to complete (Tldm, the longest instruction is load

multiple registe.rs), plus the time for address exception or data abort entry (Texc),

plus the time for FIO entry (Tfiq) . At the end of this time ARM will be execut ing the

instruction at !CH .

Tsy ncmax is 2. 5 processor cycles, Tldm is 18 cycles, Texc is 3 cycles, and Tfiq is 2

cyc les. The total time is therefore 25.5 processor cycles, which is just over 2.5

microseconds in a system which uses a continuous I 0 MHz processor clock. In a

DRAM based system running at 4 and 8 MHz, for example using MEMC, this time

becomes 4.5 microseconds, and if bus bandwidth is being used to support video or

other OMA activity, the time will increase accordingly.

Appendix D - ARM datasheet

The maximum IRO latency calculation is similar, but must al low for the fact that

FIO has higher priority and could delay entry into the IRO handling routine for an

arbitrary length of time.

The minimum latency for FIO or !RO consists of the shortest time the request can

take through the synchroniser (Tsyncmin) plus Tfiq. This is 3.5 processor cycles.

207

Instruction Set

The condition field

208

31 28 27 0

Cond

Condition field

0000 EQ Z set (equal)
0001 NE Z clear (not equal)
0010 cs C set (unsigned higher or same)
0011 cc C clear (unsigned lower)
0100 Ml N set (negative)
0101 PL N clear (positive or zero)
0110 vs V set (overflow)
0111 vc V clear (no overflow)
1000 HI C set and Z clear (unsigned higher)
1001 LS C clear or Z set (unsigned lower or same)
1010 GE N set and V set, or N clear and V clear (greater or equal)
1011 LT N set and V clear, or N clear and V set (less than)
11 00 GT Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 LE Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 AL always
1111 NV never

Figure 18. 5 Tlie condition field

All ARM instructions are conditiona lly executed , which means that their execution
may or may not take place depending on the values of the N, Z, C and V fl ags in the
PSR at the end of the preceding instruction.

If the ALways condition is specified, the instruction will be executed irrespective of
the flags, and l ikewise the NeVer condition will ca use it not to be executed (it will
be a no-op, ie take one cycle and have no effect on t he processor state).

The other condition codes have meanings as detailed above, for instance code
0000 (EQual} causes the instruction to be executed on ly if the Z flag is set. Th is
would correspond to the case where a compare (CMP) instruction had found the
two operands to be equal. If the two operands were different, the compa re
instruction would have clea red the Z flag, and the instruction will not be executed.

1-1ppenmx u - f\HM aarasneer

Branch and branch with link (B, BL)

31 28 27 25 24 23 0

offset

L Link bit
O =Branch
1 "' Branch with link

Condition field

Figure 18.6 Branen and brancli witli link (B, BL)

The instruction is only executed if the condition specified in the condition field is
true (see the section entitled Tlie condition field on page 208).

All branches take a 24 bit offset. This is shifted left two bits and added to the PC,
with any overflow being ignored. The branch can therefore reach any word aligned
address within the address space The branch offset must take account of the
prefetch operation, which causes the PC to be 2 words ahead of the current
instruction .

The link bit

Branch with Link writes the old PC and PSR into R 14 of the current bank. The PC
value written into the link register (R 14) is adjusted to allow for the prefetch, and
contains the address of the instruction following the branch and link instruction .

To return and restore the PSR use MOVS PC,R 14 if the link register is sti ll valid or
LDM Rn! ,{PC}" if the link register has been saved onto a stack. To retu rn without
restoring the PSR use MOV PC,Rl4 if the link register is sti ll valid or LDM Rn! ,{PC}
if the link register has been saved onto a stack.

Assembler syntax

B{L} {cond} expression

{ L J is used to request the Branch with Link form of the instruction. If
absent, Rl4 will not be affected by the instruction.

{ cond} is a two-char mnemonic as shown in the section entit led Tlie
condition field on page 208 (EO, NE, VS etc). If absent then AL
(ALways) will be used.

expression is the destination. The assembler calculates the offset

Items in {} are optional.

209

Branch and branch with link (B, BL)

210

Examples

here BAL here ; assembles to EAFFFFFE
(note effect of PC offset)

B there

CMP Rl , #0
BEQ fred

ALways condition used as default

compare register 1 with zero
branch to fred if register 1 was zero
otherwise continue to next instruction

BL sub + ROM ; unconditionally call subroutine at
computed address

ADDS Rl , #1

BLCC sub

BLNV sub

add 1 to register 1 , setting PSR flags on
the result
call subroutine if the C f l ag is clear , which
will be the case unless Rl contained FFFFFFFFH
otherwise continue to next instruction

Never call subroutine (this is a NO-OP)

Data processing

31 28 27 26 25 24

Cond

I I

Appendix D - ARM datasheet

21 20 19 16 15 12 II

Operand 2

'l'L ~ Destination register
1st operand register

Set condition codes
0 = clo not alter condition codes
1 = set condilion codes

Operation Code
0000 = ANO - Ad:= Op1 AND Op2
0001 = EOA · Ad := Opt EOA Op2
0010 =SUB- Rd := Opl - Op2
0011: ASB- Ad:= Op2 - Opt
0100 =ADO- Ad:: Opl + Op2
0101 =ADC - Ad:: Opt+ Op2 + C
0110 =SBC- Rd:= Opl - Op2 + C
0111 =RSC- Ad:= Op2 · Op1 + C
1000 = TST- set condition codes on Opt AND Op2
1001 = TEO - set condition codes on Opl EOA Op2
1010 = CMP- set condition codes on Opl -Op2
1011 = CMN ·set condition codes on Opl + Op2
1100:: ORR - Ad:= Opt OR Op2
1101 = MOV- Ad := Op2
1110 = BIC - Rd:= Op t AND NOT Op2
1111 = MVN-Ad:= NOT0p2

Immediate Operand
11

0 = operand 2 is a register
4 3

Shift Rm

2nd operand register
shift applied to Rm

1 = operand 2 is an immediate value
8 7

Rotate Imm

I Unsigned 8 bit immediate value

shift applied to Imm

Condition field

Figure 18. 7 Data processing

The instruction is on ly executed if the cond ition is true. The various conditions are
defined in the section entitled The condition field on page 208.

The instruction produces a resu lt by performing a specified ari t hmetic or logica l
operation on one or two operands The first operand is always a register (Rn). The
second operand may be a shifted register (Rm) or a rotated 8 bit immediate va lue
(Imm) accord ing to the va lue of the I bit in the instruction The condition codes in
the PSR may be preserved or updated as a result of t hi s instruction, accord ing to
the value of the S bit in the instruct ion. Certain operations (TST. TEO, CMP, CMN)
do not write the result to Rd. They are used on ly to perform tests and to set t he

2 11

Data processing

212

condition codes on the result, and therefore should always have the S bit set. (The

assembler treats TST, TEO, CMP and CMN as TSTS, TEOS, CMPS and CMNS by

default.)

Operations

The operations supported are:

Assembler
Mnemonic Opcode

AND 0000
EOR 0001
SUB 0010
RSB 0011
ADD 0100
ADC 0101
SBC 0110
RSC 0111
TST 1000
TEQ 1001
CMP 1010
CMN 1011
ORR 1100
MOV 1101
BIC 1110

MVN 1111

PSR flags

Action

Bit-wise log ical AND of operands
Bit-wise log ical EOR o f operands
Subtract operand 2 from operand 1

Subtract operand 1 from operand 2
Add operands
Add operands plus carry (PSR C flag)

Subtract operand 2 from operand 1 plu s carry

Subtract operand 1 fr om operand 2 plus carry

as AND , but result is not written
as EOR , but result is not written
as SUB , but result is not written
as ADD , but result is not written
Bit - wise logical OR of operands
Move operand 2 (operand 1 is ignored)
Bit clear (bit-wise logical AND of operand 1

and NOT operand 2)
Move NOT operand 2 (operand 1 is ignored)

The operations may be classified as logical or arithmetic. The logical operations

(AND, EOR, TST, TEO, ORR, MOV, BIC, MVN) perform the logical action on all

corresponding bits of the operand or operands to produce the result. If the S bit is

set (and Rd is not R 15 , see below) the V flag in the PSR will be unaffected, the C flag

will be set to the ca rry out from the barrel shifter (or preserved when the shift

operati on is LSL #0), the Z flag will be set if and only if the resu lt is all zeroes. and

the N flag will be set to the logical va lue of bit 31 of the result.

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC. CMP, CMN) treat each

operana as a 32 bit integer (either unsigned or 2's complement signed, the two are

equivalent) If the S bit is set (and Rd is not RI 5) the V flag in the PSR will be set if

an ove rfl ow occurs into bit 31 of the result; this may be ignored if the operands

were considered unsigned, but warns of a possible error if the operands were 2's

complement signed The C flag will be set to the carry out of bit 31 of the ALU , the

Shifts

Z flag will be set if and only if the result was zero, and the N flag will be set to the
va lue of bit 31 of the result (indicating a negative result if the operands are
considered to be 2's complement signed) .

When the second operand is specified to be a shifted register, the opera tion of the
barrel shifter is controlled by the Shift field in the instruction . This field indicates
the type of shift to be performed (logical left or right, arithmetic right or rotate
ri ght). The amount by which the register should be shifted may be contained in an
immediate field in the instruction, or in the bottom byte of another register:

II 7 6 5 4 11 8 7 6 5 4

I I 1° I I Rs IO I I 1 I

L SShhi~ftft.at1~m~o~u1e1n1 t 01 =logical right
1 O "" arithmetic right
11 : rotate right

5 bit unsigned integer

L
Figure 18.8 Sh ifts

Instruction specified shift amount

Shift type
00 = logical left
01 "' logical right
1 o "' arithmetic right
11 = rotate right

Shift register
Shift amount specified in
bottom byte of Rs

When the shi ft amount is specified in the instruction, it is contained in a 5 bit field
which may take any val ue from 0 to 31. A logica l sh ift left (LSL) takes the contents
of Rm and moves each bit by the speci fi ed amount to a more significant position.
The least significant bits of the result are filled with zeroes, and the high bits of Rm
which do not map into the result are discarded, except that the least significant
discarded bit becomes the shi fter carry output which may be latched into the C bit
of the PSR when the ALU operat ion is in the logica l class (see above) For examp le,
the effect of LSL #5 is:

31 27 26

carr
I

contents of Rm

value of operand 2 oooool

213

Data processing

214

Note that LSL #0 is a special case, where the shifter ca rry out is the old value of the
PSR C flag The contents of Rm are used directly as the second operand

A logical shift right (LSR) is similar, but the contents o f Rm are moved to less
sign ificant positions in the result. LSR #5 has this effect

31 5 4

contents of Rm

~ ~out

looooo value of operand 2 I
The form of the shift field which might be expected to correspond to LSR #0 is used
to encode LSR #32 , which has a zero result with bit 31 of Rm as the ca rry output
Logical shift right zero is redundant as it is the same as logical shi ft left zero, so the
assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow
LSR #32 to be specified

An arithmetic shift right (ASR) is simi lar to logical shift right. except that the high
bits are filled with bit 31 of Rm instead of zeroes. This preserves the sign in 2's
complement notation. For example, ASR #5:

31 30 5 4 0

contents of Rm

~ ~out

I value of operand 2 I
The form of the sh ift field wh ich might be expected to give ASR #0 is used to
encode ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of
operand 2 is also equal to bit 31 of Rm. The resu lt is therefore all ones or all zeroes ,
according to the value of bit 31 of Rm .

Appendix D - ARM datasheet

Rotate right (ROR) operations reuse the bits which 'overshoot' in a logical shift

right operation by reintroducing them at the high end of the result. in place of the

zeroes used to fill the high end in logical right operations For example, ROR #5 :

31 5 4 0

contents of Rm

~arryout
value of operand 2

The form of the shift field which might be expected to give ROR #0 is used to

encode a special function of the barrel shifter, rotate right extended (RRX) . This is

a rotate right by one bit position of the 33 bit quantity formed by appending the

PSR C flag to the most significant end of the contents of Rm :

31

~\
I

Register specified shift amount

contents of Rm

value of operand 2

I 0

\ ~arry
\ out

Only the least significant byte of the contents of Rs is used to determine the shift

amount.

If this byte is zero, the unchanged contents of Rm will be used as the second

operand, and the old value of the PSR C flag will be passed on as the shifter carry

output.

If the byte has a value between l and 3 I , the shifted result wi ll exactly match that

of an instruction specified shift with the same va lue and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the

shifting processes described above: .numberpars * LSL by 32 has result zero, carry

out equal to bit O of Rm.

• LSL by more than 32 has result zero, carry out zero.

• LSR by 32 has result zero, carry out equal to bit 31 of Rm .

215

216

• LSR by more than 32 has result zero, carry out zero.

• ASR by 32 or more has result filled with and carry out equa l to bit 31 of Rm.

• ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm .

• ROR by n where n is greater than 32 wi ll give the same result and carry out as
ROR by n-32; therefore repeatedly subtract 32 from n until the amount is in the
range l to 32 and see above.

Note that the zero in bit 7 of an instruction with a register controlled shift is
compu lsory; a one in thi s bit wi ll cause the instruction to be a multiply or an
undefined instruction.

Immediate operand rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a
shift operation on the 8 bit immediate value. The immediate va lue is zero extended
to 32 bits, and then subject to a rotate right by twice the va lue in the rotate field
This enables many common constants to be generated, fo r example all powers of 2.
Another example is that the 8 bit constan t may be aligned with the PSR flags (bits
0, l , and 26 to 31). All the flags can thereby be initialised in one TEOP instruction .

Writing to R15

When Rd is a register other than R 15 , the condit ion code fl ags in the PSR may be
updated from the ALU flags as described above. When Rd is Rl 5 and the S flag in
the instruction is set, the PSR is overwritten by the corresponding bits in the ALU
result, so bit 31 of the result goes to the N flag , bit 30 to the Z flag, bit 29 to the C
flag and bit 28 to the V flag. ln user mode the other flags (l, F. Ml, MO) are protected
from direct change, but in non-user mpdes these will also be affected , accepting
copies of bits 27, 26, I and O of the resu lt respectively

When one of these instructions is used to change the processor mode (which is
only possible in a non-user mode), the following instruction should not access a
banked register (R8-R 14) during its first cycle A no-op should be inserted if the
next instrnction must access a banked register. Accesses to t he unbanked registers
(RO-R7 and R 15) are safe.

lf the S flag is clear when Rd is Rl 5, only the 24 PC bits of RI 5 wi ll be written.
Conversely, if the instruction is of a type which does not normally produce a result
(CMP, CMN, TST, TEO) but Rd is RI 5 and the S bit is set, the resu lt wi ll be used in
this case to update those PSR flags wh ich are not protected by vi rtue of the
processor mode.

Appendix D - ARM datasheet

Using R15 as an operand

If RI 5 is used as an operand in a data processing instruction it can present
different values depending on which operand position it occupies. It will always
contain the value of the PC. It may or may not contain the values of the PSR flags
as they were at the completion of the previous instruction .

When RI 5 appears in the Rm position it will give the value of the PC together with
the PSR flags to the barrel shifter.

When RI 5 appears in either of the Rn or Rs positions it will give the value of the PC
alone, with the PSR bits replaced by zeroes .

The PC value will be the address of the instruction, plus 8 or I 2 bytes due to
instruction prefetching. If the shift amount is specified in the instruction, the PC
will be 8 bytes ahead. If a register is used to specify the shift amount, the PC will be
8 bytes ahead when used as Rs, and 12 bytes ahead when used as Rn or Rm.

Assembler syntax
• • MOV,MVN - single operand instructions

opco de{cond }{S} Rd,Op2

• CMP,CMN ,TEO,TST - instructions which do not produce a resu lt.

opcode{cond}{P} Rn, Op 2

e AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC

opcode{cond}{S } Rd,Rn,Op2

where Op2 is Rm{ , shift} or , #express ion

{con d } two-character condition mnemonic.

{ S }

{P}

set condition codes if S present (implied for CMP, CMN, TEO, TST).

make Rd= RI 5 in instructions where Rd is not specified, otherwise
Rd will default to RO. (Used for changing the PSR directly from the
ALU result.)

Rd, Rn and Rm are expressions evaluating to a register number.

If #expression is used, the assembler will attempt to match the expression by
generating a shifted immediate 8-bit field If this is impossible, it will give an error.

shift is shiftname register or shi ftname # expression, or RRX (rotate
right one bit with extend)

shiftnamesare: ASL, LSL , LSR, ASR , ROR.

(ASL is a synonym for LSL, the two assemble to the same code.)

217

Multiply and multiply-accumulate (ML)

Examples

ADDEQ R2 , R4 , R5

TEQS R4 , #3

SUB R4 , R5 , R7 , LSR R2

TEQP Rl5 , #0

MOVNV RO , RO
MOV PC , Rl4

MOVS PC , Rl4

if the Z flag is set make R2 : =R4+R5

test R4 for equality with 3
(the S is in fact redundant as
the assemb ler inserts it
automatically)

logical right shift R7 by the n umber
in the bottom byte of R2 , subtract the
result from R5 , and put the answer
into R4

assume non- user mode here
Change to user mode and clear
N, Z , C, V, I , F
NB Rl5 is here in the Rn position , so
it comes without the PSR flags
no-op to avoid mode change hazard
return from sub routine (Rl4 is a banked
register)

return from subrout ine and restore the PSR

Multiply and multiply-accumulate (ML)

218

31 28 27

Cond I 000000

22 2 1 20 19 16 15 12 11 8 7

Rn Rs 1001

1

I
1

lli= o~~;,oo.,
Destination register
Set condition codes

O ... do not alter condition codes
1 "' set condilioo codes

Accumulate bit
o .. multiply
1 "' multiply and accumulate

Condition field

Figure 18.9 Multipl!J and multipl!J-accumulate

4 3

I Rm I

The instruct ion is on ly executed if the condition is true. The va rious conditions are
defined in the section entitled The condition field on page 208.

The multiply and multiply-accumulate instructions use a 2 bit Booth 's algorithm to
perform integer multiplication They give the least significa nt 32 bits of the product
of two 32 bit operands , and may be used to synthesize higher precision
multiplications

Appendix D - ARM datasheet

The multiply form of the instruction gives Rd =Rm *Rs. Rn is ignored, and should
be set to zero for compatibility with possible future upgrades to the instruction set

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit
ADD instruction in some circumstances.

Both forms of the instruction work on operands which may be considered as signed
(2's complement) or unsigned integers

Operand restrictions

Due to the way the Booth's algorithm has been implemented, certain
combinations of operand registers should be avoided. (The assembler wi ll issue a
warning if these restrictions are overlooked.)

The destination register (Rd) should not be the same as the Rm operand register,
as Rd is used to hold intermediate values and Rm is used repeatedly during the
multiply A MUL will give a zero result if Rm=Rd, and a MLA will give a meaningless
result

The destination register (Rd) should also not be R 15. R 15 is protected from
modification by these instructions, so the instruction will have no effect, except
that it will put meaningless values in the PSR flags if the S bit is set

All other register combinations will give correct results, and Rd, Rn and Rs may use
the same register when required.

PSR flags

Setting the PSR flags is optional, and is contro lled by the S bit in the instruction.
The N and Z flags are set correctly on the result (N is equal to bit 31 of the result, Z
is set if and only if the result is zero), the V flag is unaffected by the instruction (as
for logical data processing instructions), and the C flag is set to a meaningless
value.

Writing to R15

As mentioned above, RI 5 must not be used as the destination register (Rd). If it is
so used, the instruction will have no effect except possibly to scramble the PSR
flags

Using R15 as an operand

RI 5 may be used as one or more of the operands, though the result wil l rarely be
useful When used as Rs the PC bits will be used without the PSR flags, and the PC
va 1 ue wi II be 8 bytes on from the address of the multi ply instruction. When used as
Rn, the PC bits will be used along with the PSR flags, and the PC will aga in be 8 bits

219

Multiply and multiply-accumulate (ML)

220

on from the address of the instruction. When used as Rm, the PC bits will be used
together with the PSR flags , but the PC will be the address of the instruction plus
12 bytes in this case.

Assembler syntax

MUL{cond}{S} Rd ,Rm,Rs

MLA{cond}{S} Rd , Rm , Rs,Rn

{cond}

{SJ

two-character condition mnemonic (see the section entitled The
condition field on page 208).

set condition codes if S present.

Rd, Rm, Rs and Rn are expressions evaluating to a register number.

(Rd must not be RI 5 and must not be the same as Rm.)

Examples

MUL Rl,R2,R3

MLAEQS Rl , R2 , R3 , R4

; Rl :=R2*R3

; conditionally Rl: =R2*R3+R4 ,
; setting condition codes

The multiply instruction may be used to synthesize higher precision
multiplications, for instance to multiply two 32 bit integers and generate a 64 bit
result:

mul64
MOV al, A, LSR #16
MOV D, B, LSR #16
BIC A, A, al,LSL #16
BIC B, B, D, LSL #16
MUL C , A, B
MUL B, al,B
MUL A, D, A
MUL D, al , D
ADDS A, B, A

ADDCS D, D, #&10000
ADDS C , C , A, LSL #16
ADC D, D, A, LSR #16

al : = top half of A
D . - top half of B
A . - bottom half of A
B . - bottom half of B
low section of result
) middle sections
) of result
high section of result
add middle sections (couldn't use

MLA as we need C correct)
carry from above add
C is now bottom 32 bits of product
D is top 32 bits

(A, Bare registers containing the 32 bit integers; C, Dare registers for the 64 bit
result; al is a temporary register A and Bare overwritten during the multiply.)

Single data transfer (LOR, STR)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11

Offset

[QI L
1

Source/Destination register

Base register

Load/Store bit
o "' Store to memory
1 = Load from memory

Write-back bit
O "' no write·back
1 "' write address into base

Byte/Word bit
O z transler word quantity
1 = lranslerbytequantity

Up/Down bit
O " down: subtract offset lrom base
1 "' up; add offset to base

Pre/Post indexing bit
0 = posl; add otlset after transfer
1 • pre; add offset before transfer

Immediate offset
11 O "' offset is an immediate value

Immediate offset

Unsigned 12 bit immediate offset
1 =offset is a register

Shift Rm

shitt applied to Rm
Offset register

Condition field

Figure 18.10 Single data transfer

The instruction is only executed if the condition is true. The va rious cond itions are

defined in the sect ion entitled The condition field on page 208.

The single data transfer instructions are used to load or store single bytes or words

of data. The memory address used in the transfer is calcu lated by add ing an offset

to or subtract ing an offset from a base register. The result of thi s ca lculat ion may

be written back into the base register if 'auto-indexi ng' is required

221

222

Offsets and auto-indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in
the instruction, or a second register (possibly shifted in some way) The offset may
be added to (U= I) or subtracted from (U=O) the base register Rn. The offset
modification may be performed either before (pre-indexed, P= I) or after
(post-indexed, P=O) the base is used as the transfer add ress.

The W bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W= 1). or the old base value
may be kept (W=O) In the case of post-indexed addressing, the write back bit is
redundant. since the old base value can be retained by setting the offset to zero.
Therefore post-indexed data transfers always write back the modified base. The
only use of the W bit in a post-indexed data transfer is in non-user mode code,
where setting the W bit forces the TRANS pin to go LOW for the transfer, allowing
the operating system to generate a user address in a system where the memory
management hardware makes suitable use of this pin.

Shifted register offset

The 8 shift control bits are described in the section entitled Data processing on page
211, but the register specified shift amounts are not avai lable in this instruction
class.

Bytes and words

This instruction class may be used to transfer a byte (B= I) or a word (B=O) between
an ARM register and memory.

A byte load (LDRB) expects the data on bits Oto 7 if the supplied address is on a
word boundary, on bits 8 to 15 if it is a word address plus one byte , and so on . The
selected byte is placed in the bottom 8 bits of the destination register, and the
remaining bits of the register are filled with zeroes .

A byte store (STRB) repeats the bottom 8 bits of the source register four times
acrosd the data bus . The external memory system should activate the appropriate
byte subsystem to store the data.

A wor1 load (LOR) should generate a word al igned address. An address offset from
a wor boundary will cause the data to be rotated into the register so that the
addre sed byte occupies bits 0 to 7. Externa l hardware cou ld perform a double
acces to memory to allow non-aligned word loads, but existing systems do not
support this .

Appendix D - ARM datasheet

A word store (STR) should generate a word al igned address. The data presented to

the data bus are not affected if the address is not word aligned, so if support were

required for non-aligned stores external hardware would have to switch bytes

around on the bus.

Use of R15

These instructions will never cause the PSR to be modified, even when Rd or Rn is

Rl5.

If RI 5 is specified as the base register (Rn), the PC is used without the PSR flags

When using the PC as the base register one must remember that it contains an

address 8 bytes on from the address of the current instruction .

If R 15 is specified as the register offset (Rm), the value presented will be the PC

together with the PSR.

When R 15 is the source register (Rd) of a register store.(STR) instruction, the value

stored will be the PC together with the PSR. The stored value of the PC will be 12

bytes on from the address of the instruction . A load register (LOR) with R 15 as Rd

will change only the PC, and the PSR will be unchanged .

Address exceptions

If the address used for the transfer (ie the unmodified contents of the base register

for post-indexed addressing, or the base modified by the offset for pre-indexed

addressing) has a logic one in any of the bits 26 to 31, the transfer will not take

place and the address exception trap will be taken.

Note that it is only the address actua lly used for the transfer which is checked. A

base containing an address outside the lega l range may be used in a pre-indexed

transfer if the offset brings the address within the legal range, and likewise a base

within the legal range may be modified by post-indexing to outside the legal range

without causing an address exception.

Data Aborts

A transfer to or from a legal address may still cause problems for a memory

management system. For instance, in a system which uses virtual memory the

required data may be absent from main memory. The memory manager can signal

a problem by taking the processor ABORT pin HIGH, whereupon the data transfer

instruction will be prevented from changing the processor state and the Data Abort

trap will be taken . It is up to the system softwi')re to resolve the cause of the

problem , then the instruction can be restarted and the origina l program continued .

223

224

Assembler syntax

LDR I STR { cond} {B} {T} Rd .Address

LDR load from memory into a register.

store from a register into memory. STR

{ cond} two-character condition mnemonic (see the section entitled Tfie
condition field on page 208) .

{B}

{T}

Rd

if B is present then byte transfer, otherwise word transfer.

if T is present the W bit will be set in a post-indexed instruction,
causing the TRANS pin to go LOW for the transfer cycle. Tis not
allowed when a pre-indexed addressing mode is specified or
implied

is an expression eva luat ing to a valid register number.

Address - can be:

• An expression which generates an address :
expression

The assembler will attempt to generate an instruction using the PC as a base
and a corrected immediate offset to address the locat ion given by eva luating
the expression This will be a PC relative, pre-indexed address . If the address is
out of range, an error will be generated.

• A pre-indexed addressing specification:

[Rn J offset of zero
[Rn , #expression] { ! } offset of expression bytes

• [Rn, { + I - } Rm { , shift J J { ! } offset of+/- contents of index register, shifted
by shift.

• A post-indexed addressing specification :

[Rn) , #expression offset of expression bytes
[Rn) , {+ / -}Rm{ , shift} offsetof+/-contentsofindexregister,shiftedas
by shift.

Rn and Rm are expressions eva luating to a valid register number. Note if Rn is R 15
then the assembler will subtract 8 from the offset value to allow for ARM
pipelining

sh i ft is a general shift operation (see the section entitled Data processing on page
211) but note that the shift amount may not be specified by a register.

{ ! } write back the base register (set the W bit) if! is present.

Examples

STR Rl , [BASE , INDEX] !

STR Rl , [BASE] , INDEX

LDR Rl , [BASE , #16]

; store Rl at BASE+INDEX (both of
which are registers) a nd write

; back address to BASE

; store Rl at BASE and writeback
; BASE+INDEX to BASE

; load Rl from contents of BASE+16 .
; Don ' t write back

LDR Rl , [BASE , INDEX,LSL #2] ; load Rl from contents of
; BASE+INDEX *4

LDREQB Rl , [BASE , #5]

STR Rl , PLACE

PLACE

; conditionally load byte at BASE+S
i nto Rl bi t s 0 to 7 , f i lling bits

; 8 to 31 wi th zeroes

; generate PC relative offset to

; address PLACE

225

Block data transfer (LDM, STM)

Block data transfer (LDM, STM)

226

31 28 27

Cond 100

25 24 23 22 21 20 19 16 15

IPlulslwlLI Rn

11 I
I

Register list

Base register

Load/Store bit
O = Store to memory
1 = Load from memory

Write-back bit
O = no write-back
1 = write address into base

PSR & force user bit
O = do not load PSA or force user mode
1 "' load PSA or force user mode

Up/Down bit
O "' down; subtract offset from base
1 = up: add offset to base

Pre/Post indexing bit
O "' post: add offset after transfer
1 = pre: add offset before transfer

Condition field

Figure 18. I I Block data transfer

The instruction is only executed if the condition is true. The various conditions are
defined in the section entitled The condition field on page 208.

Block data transfer instructions are used to load (LDM) or store (STM) any subset
of the currently visible registers They support all possible stacking modes,
maintaining full or empty stacks which can grow up or down memory, and are very
efficient instructions for saving or restoring context, or for moving large blocks of
data around main memory

The register list

The instruction can cause the transfer of any registers in the current bank (and
non-user mode programs can also transfer to and from the user bank, see below).
The register list is a 16 bit field in the instruction, with each bit corresponding to a
register A 1 in bit 0 of the register field will cause RO to be transferred, a 0 will
cause it not to be transferred; similarly bit I controls the transfer of RI, and so on.

Any subset of the registers, or all the registers, may be specified. The only
restriction is that the register list should not be empty

Addressing modes

The transfer addresses are determined by the contents of the base register (Rn),
the pre/post bit (P) and the up/down bit (U). The registers are transferred in the
order lowest to highest, so RI 5 (if in the list) will always be transferred last The
lowest register also gets transferred to/from the lowest memory address. By way of

Appendix D - ARM datasheet

illustration, consider the transfer of R l, RS and R7 in the case where Rn= l OOOH and
write back of the modified base is required (W= l) The following figures show the
sequence of register transfers. the addresses used, and the value of Rn after the
instruction has completed.

(ln all cases, had write back of the modified base not been required (W=O), Rn
would have retained its initial value of l OOOH unless it was also in the transfer list
of a load multiple register instruction, when it would have been overwritten with
the loaded value.)

1-------l 100CH 100CH

Rn- 1000H ,__ ____ __. R1 1000H

OFF4H__ ____ __, OFF4H
'---------'

(1) (2)

100CH Rn- 100CH

R7

R5 R5

R1 1000H R1 1000H

OFF4H OFF4H

(3) (4)

Figure 18. l 2 Post-increment addressing

227

Block data transfer (LDM, STM)

100CH 100CH

R1
Rn ---;. 1000H 1000H

1---------1

OFF4H .._ _____ _. OFF4H

(1) (2)

100CH Rn - R7 100CH

R5 R5
R1 R1

1000H 1000H

OFF4H OFF4H

(3) (4)

Figure 18.1 3 Pre-increment addressing

100CH 100CH

Rn---;. 1000H 1000H

R1
.._ _____ __, OFF4H OFF4H

(1) (2)

100CH 100CH

1000H R7 1000H

R5 R5
R1 R1

OFF4H Rn---;. OFF4H

(3) (4)

Figure 18. l 4 Post-decrement addressing

228

100CH 100CH

Rn- 1000H
1--------l

1000H

R1 OFF4H
~----~

OFF4H

(1) (2)

100CH 100CH

1000H 1000H

R7
RS RS
R1 OFF4H Rn- R1 OFF4H

(3) (4)

Figure l 8.15 Pre-decrement addressing

Transfer of R15

Whenever R l 5 is stored to memory, the value transferred is the PC together with

the PSR flags. The stored value of the PC will be l 2 bytes on from the address of the

STM instruction.

If RI 5 is in the transfer list of a load multiple (LDM) instruction the PC is

overwritten, and the effect on the PSR is controlled by the S bit. If the S bit is 0 the

PSR is preserved unchanged, but if the S bit is l the PSR wi ll be overwritten by the
corresponding bits of the loaded value . In user mode, however, the I, F, MO and MI

bits are protected from change whatever the value of the S bit. The mode at the

start of the instruction determines whether these bits are protected, and the

supervisor may return to the user program, re-enabling interrupts and restoring

user mode with one LDM instruction.

Forcing transfer of the user bank

For STM instructions the S bit is redundant as the PSR is always stored with the PC

whenever R l 5 is in the transfer list. In user mode programs the S bit is ignored, but

in other modes it has a second interpretation. S= I used to force transfers to take

values from the user register bank instead of from the current register bank. This is

229

Block data transfer (LDM, STM)

230

useful for saving the user state on process switches. Note that when it is so used ,
write back of the base will also be to the user bank, though the base will be fetched
from the current bank. Therefore don't use write back when forcing user bank.

In LDM instructions the S bit is redundant if R 15 is not in the transfer list, and
aga in in user mode programs it is ignored in this case. In non-user mode programs
where R 15 is not in the transfer li st. S= I is used to force loaded va lues to go to the
user registers instead of the current register bank. When so used, ca re must be
taken not to read from a banked register during the fo ll owing cycle - if in doubt
insert a no-op. Again don't use write back when fo rcing user bank transfer

Use of R15 as the base

When the base is the PC, the PSR bits wi ll be used to fo rm the address as well, so
unless all interrupts are enabled and all flags are zero an address exception will
occur Also, write back is never allowed when the base is the PC (setting the W bit
will have no effect)

Inclusion of the base in the register list

When writeback is specified, the base is written back at the end of the second cycle
of the instruction. During a STM, the first register is written out at the start of the
second cycle A STM which includes storing the base, with the base as the first
register to be stored, will therefore store the unchanged va lue, whereas with the
base second or later in the transfer order, will store the modified va lue. An LDM
will always overwrite the updated base if the base is in the list

Address exceptions

When the address of t he first t ransfer falls outside the lega l address space (ie has a
I somewhere in bits 26 to 3 l). an address exception t rap will be taken. The
instruction will first complete in the usual number of cycles, though an STM will be
prevented from writ ing to memory. The processor state will be the same as if a data
abort had occurred on the first transfer cycle (see next sect ion) .

On ly the add ress of the first transfer is checked in this way; if subsequent
addresses over- or under-flow into illegal address space they will be truncated to
26 bits but will not ca use an address except ion trap

Data Aborts

Some legal addresses may be unacceptable to a memory management system, and
the memory manager can indicate a problem with an address by taking the ABORT
pin HIGH. This ca n happen on any transfer during a multiple register load or store,
and must be recoverable if ARM is to be used in a virtua l memory system.

Appendix D - ARM datasheet

Aborts during STM instructions

If the abort occurs during a store multiple instruction , ARM takes little action until
the instruction completes, whereupon it enters the data abort trap. The memory

manager is responsible for preventing erroneous writes to t he memory The only
change to the internal state of the processor wi ll be the modification of the base
register if write-back was specified, and this must be reversed by software (and the
ca use of the abort resolved) before the instruction may be retried .

Aborts during LDM instructions

When ARM detects a data abort during a load multiple instruction, it modifies the
operation of the instruction to ensu re that recovery is possible

• Overwriting of registers stops when the abort happens. The aborting load will
not take place, nor will the preceding one, but regi sters two or more positions
ahead of the abort (if any) will be loaded. (This guarantees that the PC will be
preserved, since it is always the last register to be overwritten .)

• The base register is restored, to its modified value if write-back was requested.
This ensures recoverability in the case where the base register is also in the
transfer list, and may have been overwritten before the abort occurred .

The data abort trap is taken when the load multiple has completed, and the system
software must undo any base modification (and resolve the cause of the abort)
before restarting the instruction.

Assembler syntax

LDMI STM{cond }FDIED IFAI EA IIA IIB IDA IDB Rn { ! } ,Rl ist{A}

{cond}

Rn

Rlist

(I)

{ " }

two character condition mnemonic (see the section entitled The
condition field on page 208) .

is an expression eva luating to a valid register number

can be either a list of registers and register ranges enclosed in{} (eg
{RO,R2-R7,RIO}), or an expression evaluating to the 16 bit operand

if present requests write-back (W= I), otherwise W=O.

if present set S bit to load the PSR with the PC, or force transfer of
user bank when in non-user mode.

231

Block data transfer (LDM, STM)

232

Addressing mode names

There are different assembler mnemonics for each of the addressing modes,
depending on whether the instruction is being used to support stacks or for other
purposes. The equivalencies between the names and the values of the bits in the
instruction are:

name stack other L bit p bit u bit

pre-increment load LDMED LDMIB 1 1 1
post - increment load LDMFD LDMIA 1 0 1
pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1
post-increment store STMEA STMIA 0 0 1
pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the
form of stack required . The F and E refer to a 'full' or 'empty' stack, ie whether a
pre-index has to be done (full) before storing to the stack. The A and D refer to
whether the stack is ascending or descending. If ascending, a STM will go up and
LDM down, if descending, vice-versa.

IA, 18, DA, DB allow control when LDM/STM are not being used for stacks and
simply mean Increment After, Increment Before, Decrement After, Decrement
Before.

Examples

LDMFD SP !, {R0 , Rl,R2}

STMIA BASE , {R0-R15}

unstack 3 r egisters

save all registers

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMED SP !, {R0 -R3,R14}

BL somewhere

save RO to R3 to use as
workspace and R14 for returning

this nested call will
overwrite R14

LDMED SP!, {RO-R3,R15}A restore workspace and return
(also restoring PSR flags)

Software interrupt

31 24 23

Cond 1111 Comment field (ignored by ARM)

Condition field

Figure 18.16 Software interrupt

The instruction is only executed if the condition is true. The various conditions are
defined in the section entitled Tfte condition field on page 208.

The software interrupt instruction is used to enter supervisor mode in a controlled
manner The instruction causes the software interrupt trap to be taken, which
effects the mode change but forces the PC to a fixed value (08H) If this address is
suitably protected (by external memory management hardware) from modification
by the user, a fully protected operating system may be constructed.

Return from the supervisor

The PC and PSR are saved in Rl4_svc upon entering the software interrupt trap,
with the PC adjusted to point to the word after the SWI instruction. MOVS
RI 5,Rl 4_svc will return to the user program, restore the user PSR and return the
processor to user mode.

Note that the link mechanism is not re-entrant. so if the supervisor code wishes to
use software interrupts within itself it must first save a copy of the return address.

Comment field

The bottom 24 bits of the instruction are ignored by ARM, and may be used to
communicate information to the supervisor code. For instance, the supervisor may
look at this field and use it to index into an array of entry points for routines which
perform the various supervisor functions .

Assembler syntax

SWI{cond} expression

{ cond} two character condition mnemonic (see the section entitled Tfte
condition field on page 208).

expression is evaluated and placed in the comment field (which is ignored by
ARM)

233

Software interrupt

Examples

234

SWI Read

SWI Wr iteI+"k "

SWINE 0

; get next char acter from read stream

; output a "k " to the write stream

; conditionally call supervisor
; with 0 in comment field

The above examples assume that suitable supervisor code exists , for instance:

08H B Supervisor

EntryTable
& ZeroRtn
& ReadCRtn
& WriteIRtn

Zero
Reade
Writer

* 0
* 256
* 512

Supervisor

; SWI entry point

; addresses of supervisor routines

SWI has routine required in bits 8-23 ,
data (if any) in bits 0-7.

Assumes R13_ svc points to a suitable stack

STMR13 , {RO-R2 , R14}
BICR0 , Rl4 , #&FC000003
LDRRO , [R0 , # - 4]
BICRO , RO , #&FFOOOOOO
MOVRl , RO , LSR #8
ADRR2,EntryTable
LDRR15 , [R2 , Rl,LSL #2]

WriteIRtn

LDM Rl3 , {R0-R2 , Rl5}A

save work registers and return address
clear PSR bits
get SWI instruction
clear top 8 bits
get routine offset
get start address of entry table
branch to appropriate routine

enter with character in RO bits 0-7

restore workspace and return .

Appendix D - ARM datasheet

Co-Processor data operations

31 28 27

Cond 1110

24 23 20 19 16 15

CP Ope CRn CRd

12 II 8 7 5 4 3

CP# CP lo I CRm

Co-Processor operand register
Co-Processor information

Co-Processor number
Co-Processor destination register

Co-Processor operand register
Co-Processor operation code

Condition field

Figure 18. l 7 Co-processor data operations

The instruction is only executed if the condition is true. The various conditions are
defined in the section entitled The condition field on page 208.

This class of instruct ion is used to tell a Co-Processor to perform some internal
operation No result is communicated back to ARM, and ARM will not wait for the
operation to complete The Co-Processor could contain a queue of such
instructions awaiting execution, and their execution can overlap other ARM activity
allowing the Co-Processor and ARM to perform independent tasks in parallel.

The Co-Processor fields

On ly bit 4 and bits 24 to 3 l are significant to ARM; the remaining bits are used by
Co-Processors. The above field names are used by convention, and particular
Co-Processors may redefine the use of all fi elds except CP# as appropriate. The
CP# field is used to contain an identifying number (in the range Oto l 5) for each
Co-Processor, and a Co-Processor will ignore any instruction which does not
contain its number in the CP# field.

The conventional interpretation of the instruction is that the Co-Processor shou ld
perform an operation specified in the CP Ope field (and possibly in the CP field) on
the contents of CRn and CRm, and place the result in CRd.

Assembler syntax

CDP{cond} CP# , expressionl , CRd , CRn , CRm{ , expression2}

{ cond}

CP#

two character condition mnemonic (see the section entitled The
condition field on page 208)

the unique number of the required Co-Processor.

235

236

expressionl evaluated to a constant and placed in the CP Ope field .

CRd, CRn, CRrn are expressions eva luating to a valid Co-Processor register
number.

expression2 where present is evaluated to a constant and placed in the CP
field

Examples

CDP l , 10 , CR1 , CR2 , CR3 request Co -Proc 1 to do operation 10
on CR2 and CR3 , and put the result
in CRl

CDPEQ 2 , 5 , CR1 , CR2 , CR3 , 2 ; if z flag is set request Co-Proc 2 to
do operation 5 (type 2) on CR2 and
CR3 , and p u t the result in CRl

Warning!

Current ARM chips have a fault in the implementation of CPDO which will cause a
Software Interrupt to take the Undefined Instruction trap if the SW! is the next
instruction after the CDP. This problem only arises when a hardware Co-Processor
is attached to the system, but if it is ever intended to add hardware to support a
CDP (rather than trapping to an emu lator) the sequence CDP SW! shou ld be
avoided.

Co-Processor data transfers

31 28 27 25 24 23 22 21 20 19

Cond

I I

Appendix D - ARM datasheet

16 15 12 11 8 7

CRd CP# Offset

1~ 11 1
L Unsigned 8 bit immediate offset

Co-Processor number
Co-Processor source/destination register
Base register
Load/Store bit

O = Store to memory
1 "' Load from memory

Write-back bit
O "' no write·back
1 = write address into base

Transfer length
Up/Down bit

O = down; subtract offset from base
1 :: up; add offset to base

Pre/Post indexing bit
O"' posl; add offset alter transfer
1 = pre; add offset belore lransler

Condition field

Figure 18. l 8 Co-processor data transfers

The instruction is on ly executed if the condit ion is true. The various condit ions are
defined in the section entitled The condition field on page 208.

This class of instruct ion is used to transfer one or more words of data between the
Co-Processor and main memory. ARM is respons ib le for supplying t he memory
address, and the Co-Processor supplies or accepts the data and controls t he
number o f words transferred .

The Co-Processor fields

The CP# field is used to identify the Co-Processor which is required to supply or
accept the data , and a Co-Processor will only respond if its number matches the
contents of this field

The CRd fie ld and the N bit contain information for the Co-Processor which may be
interpreted in d ifferent ways by different Co-Processors, but by convention CRd is
the register to be transferred (or the first register where more than one is to be
transferred), and the N bit is used to choose one of two t ransfer length opt ions. For
instance N=O could select the t ransfer of a single register, and N= l cou ld se lect t he
transfer of all the registers for context switching.

237

Co-Processor data transfers

238

Addressing modes

ARM is responsible for providing the address used by the memory system for the
transfer, and the addressing modes available are a subset of those used in single
data transfer instructions. Note, however, that the immediate offsets are 8 bits and
specify word offsets here, whereas they are 12 bits and specify byte offsets for
single data transfers.

An 8 bit unsigned immediate offset is scaled to words (ie shifted left 2 bits) and
added to (U= I) or subtracted from (U=O) a base register (Rn), either before (P= I) or
after (P=O) the base is used as the transfer address. The modified base value may
be overwritten back into the base register (if W= I), or the old value of the base may
be preserved (W=O) Note that post-indexed addressing modes require explicit
sett ing of the W bit, unlike LOR and STR which always write-back when
post-indexed

The value of the base register, modified by the offset in a pre-indexed instruction ,
is used as the address for the transfer of the first word. The second word (if more
than one is transferred) wi ll go to or come from an address one word (4 bytes)
higher than the first transfer, and the address will be incremented by one word for
each subsequent transfer.

Use of R15

If Rn is R 15, the va lue used will be the PC without the PSR flags, with the PC being
the address of this instruction plus 8 bytes. Write-back to the PC is inhibited, and
the W bit will be ignored

Address exceptions

If the address used for the first transfer is illegal the address exception mechanism
will be invoked. Instructions which transfer multiple words will only trap if the first
address is illega l; subsequent addresses will wrap around inside the 26 bit address
space.

Data aborts

If the address is legal but the memory manager generates an abort the data abort
trap will be taken. The writeback of the modified base will take place, but all other
processor state will be preserved. The Co-Processor is partly responsible for
ensuring resta rtabi lity, and must either detect the abort or ensure that any actions
consequent from this instruction can be repeated when the instruction is retried
after the cause o f the abort has been resolved.

Appendix D - ARM datasheet

Assembler syntax

LDCISTC{cond}{L} CP# , CRd , Address

LDC

STC

load from memory to Co-Processor (L= I).

store from Co-Processor to memory (L=O).

{L} when present perform long transfer (N= I) , otherwise perform short
transfer (N=O) .

two character condition mnemonic(.

the unique number of the required Co-Processor.

{cond}

CP#

CRd is an expression evaluating to a va lid Co-Processor register number.

Address ca n be:

• An expression which generates an address:

expression

The assembler will attempt to generate an instruction using the PC as a base
and a corrected immed iate offset to address the locati on given by evaluating
the expression. Thi s will be a PC relative, pre-indexed address . If the address is
out of range, an error will be generated.

• A pre-indexed addressing specification:

[Rn J offset of zero

[Rn , #expression] { ! } offset of expression bytes

• A post-indexed addressing specification:

[Rn] , #expression offset of expression bytes

Rn is an expression eva luating to a va lid ARM register number. Note if Rn is RI 5
then the assembler will subtract 8 from the offset va lue to allow for ARM
pipelining

{ ! J write back the base register (set the W bit) if ! is present.

239

Co-Processor register transfers

Examples

LDC l , CR2 , table load CR2 of Co-Proc 1 from address
table , using a PC relative address .

STCEQL 2 , CR3 , [RS , #24] !; conditionally store CR3 of Co-Proc 2
into an address 24 bytes up from RS ,
write this address back into RS , and
use long transfer option (probably to
store multiple words)

Note that though the address offset is expressed in bytes, the instruction offset
field is in words. The assembler wi ll adjust the offset appropriately.

Co-Processor register transfers

240

31

Cond

19 20 19 16 15

CRn I Rd

12 11 8 7 5 4 3 0

CP# CP I 1 I CRm I

Co-Processor operand register
Co-Processor information
Co-Processor number
ARM source/destination register
Co-Processor source/destination register
Load/Store bit

0 : Store to Co-Processor
1 " Load from Co-Processor

Co-Processor operation code
Condition field

Figure 18.19 Co-Processor register transfers

The instruction is on ly executed if the condition is true. The various conditions are
defined in section entitled The condition field on page 208.

This cl<lss of instruction is used to communicate information direct ly between
ARM and a Co-Processor. An example of an MCR instruction would be a FIX of a
float ing point value held in a Co-Processor, where the fl oating point number is
converted into a 32 bit integer within the Co-Processor, and the result is t hen
transferred to an ARM register. A FLOAT of a 32 bit val ue in an ARM register into a
floating point va lue within the Co-Processor illustrates the use of MRC.

An important use of this instruction is to communicate control information
directly from the Co-Processor into the ARM PSR flags. As an example, the result of
a comparison of two floating point values within a Co-Processor can be moved to
the PSR to control the subsequent fl ow of execution.

Appendix D - ARM datasheet

The Co-Processor fields

The CP# field is used, as for all Co-Processor instructions, to specify which
Co-Processor is being called upon to respond

The CP Ope, CRn , CP and CRm fields are used on ly by the Co-Processor, and the
interpretation presented here is derived from convention on ly. Other
interpretations are allowed where the Co-Processor functionality is incompatible
with this one. The conventional interpretation is that the CP Ope and CP fields
specify the operation the Co-Processor is required to perform, CRn is the
Co-Processor register which is the source or destination of the transferred
information, and CRm is a second Co-Processor register which may be invo lved in
some way which depends on the particular operation specified.

Transfers to R15

When a Co-Processor register transfer to ARM has RI 5 as the destination, bits 31,
30, 29 and 28 of the transferred word are copied into t he N, Z, C and V flags
respectively. The other bits of the transferred word are ignored, and the PC and
other PSR flags are unaffected by the transfer.

Transfers from R15

A Co-Processor register transfer from ARM with RI 5 as the source register will store
the PC together with the PSR flags

Assembler syntax

MCRIMRC{cond} CP# , expressionl ,Rd, CRn ,CRm {,expression2}

MCR

MRC

{cond}

CP#

move from Co-Processor to ARM register (L= I).

move from ARM register to Co-Processor (L=O) .

two character condition mnemonic (see the section ent itled The
condition field on page 208)

the unique number of the required Co-Processor.

expressionl evaluated to a constant and placed in the CP Ope field.

Rd

CRn, CRm

is an expression evaluating to a valid ARM register number.

expressions evaluating to a va lid Co-Processor register number.

expression2 where present is eva luated to a constant and placed in the CP
field

241

Examples

MRC 2 , 5 , R3 , CR5 ,CR6

MRCEQ 3 , 9 , R3 , CR5 , CR6 , 2

request Co-Proc 2 to perform
operation 5 on CR5 and CR6 , and
transfer the (single 32 bit word)
result back to R3

conditionally request Co-Proc 2 to
perform operation 9 (type 2) on
CR5 and CR6 , and transfer the
result back to R3

Undefined instructions

242

31 28 27 24 23 8 7 4 3 0

Cond 0001 I xxxxxxxxxxxxxxxx 1xx1 I xx xx I
31 28 27 25 24 5 4 3

Cond I 011 xxxxxxxxxxxxxxxxxxxx
1

1
I

xxxx

Figure 18.20 Undefined instructions

The instruction is on ly executed if the condition is true. The various conditions are
defined in .

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism invo lves offering these
instructions to any Co-Processors which may be present, and all Co-Processors
must refuse to accept them by letting CPA float HIGH.

Assembler syntax

At present the assembler has no mnemonics for generating these instructions. If
they are adopted in the future for some specified use, suitable mnemonics will be
added to the assembler. Until such time, these instructions should not be used.

Co-Processor register transfers

Examples

LDC 1, CR2 ' table load CR2 of Co-Proc 1 from address
table , using a PC relat i ve address .

STCEQL 2 , CR3 , [R5 , #24] !; conditionally store CR3 of Co-Proc 2
into an a ddress 24 bytes up from R5 ,
write this address back into R5 , and
u se long transfer option (probably to
store multiple words)

Note that though the address offset is expressed in bytes, the instruction offset
field is in words. The assembler will adjust the offset appropriately.

Co-Processor register transfers

Appendix D - ARM datasheet

Instruction set summary

JI 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 5 4 3

Cond 00 I 1 OpCode s Rn Rd Operand 2 Data Processing

Cond 000000 I A s Rd Rn Rs 1001 Rm Multiply

Cond 0001 xxxxxxxxxxxxxxxx 1xx1 xxxx Undefined

Cond 01 I 1 P ulslw L Rn Rd offset Single Data Transfer

Cond 011 xxxxxxxxxxxxxxxxxxxx 1 xxxx Undefined

Cond 100 P ulslw L Rn Register list Block Transfer

Cond 101 L offset Branch

Cond 110 P ulNlw L Rn CRd CP# offset Co-Proc Data Transfer

Cond 1110 CP Ope CRn CRd CP# CP 0 CRm Co-Proc Data Op

Cond 1110 CP Ope L CRn Rd CP# CP 1 CRm Co-Proc Register Transfer

Cond 1111 ignored by ARM Software Interrupt

Figure 18.2 1 Instruction set summary

(Note that some instruction codes are not defined but do not cause the Undefined
instruction trap to be taken, for instance a Multiply instruction with bit 5 or b it 6
changed to a I . These instructions should be avoided, as thei r action may change
in future ARM implementations)

Instruction Speeds
Due to the pipelined architecture of the CPU , instructions overlap considerably In
a typical cycle one instruction may be using the data path while the next is being
decoded and the one after that is being fetched . For this reason the following table
presents the incremental number of cycles required by an instruction, rather than
the total number of cycles for whi ch the instruction uses part of the processor.
Elapsed time (in cycles) for a rout ine may be ca lculated from these fi gures.

243

Instruction Speeds

244

If the condition is met the instructions take:

Data Processing 1 s + 1 s for SHIFT (Rs)
+ 1 s + 1 N if Rl5 written

LDR 1 s + 1 N + 1 I + 1 s + 1 N if Rl5 loaded
STR 2 N
LDM n S + 1 N + 1 I + 1 s + 1 N if Rl5 loaded
STM (n-1) s + 2 N
B, BL 2 s + 1 N
SWI , trap 2 s + 1 N
MUL , MLA 1 s + m I
CDP 1 s + b I
LDC , STC (n-1) s + 2 N + b I
MRC 1 s + b I + 1 c
MCR 1 s + (b+l)I + 1 c

n is the number of words transferred .

m is the number of cycles required by the multiply algorithm, which is
determined by the contents of Rs. Multiplication by any number between
2"(2m-3) and 2"(2m-l)-1 inclusive takes m cycles form> 1. Multiplication by 0
or 1 takes 1 cycle. The maximum value m can take is 16.

b is the number of cycles spent in the Co-Processor busy-wait loop.

If the condition is not met all instructions take one S cycle.

The four cycle types (N, S, I and C) correspond to data transfer activities:

• Non-sequential cycle. ARM requests a transfer to or from an address which is
unrelated to the address used in the preceding cycle.

• Sequential cycle. ARM requests a transfer to or from an address which is either
the same as the address in the preceding cycle, or is one word after the
preceding address.

• Internal cycle. ARM does not require a transfer, as it is performing an internal
function and no useful prefetching can be performed at the same time.

• Co-Processor register transfer. ARM wishes to use the data bus to
communicate with a Co-Processor, but does not require any action by the
memory system.

I and C cycles are the quickest. S cycles take the same or more time, and N cycles
take the same or more time than S cycles: I,C <= S <= N.

For an ARM2 system with MEMC or MEMClA a typica l relationship between the
I,C : S : N cycle times is 1 : 1.2 : 2.

Index

Symbols
! 81, 132
126
% 63
& 125
• 123
*Wimpslot 166
= 125
?label 63
/\ 126

extension to 127
use of 83 , 84

I, use of 56

Numerics
09 56
OA 56
OD 56
20 56
32-bit word 45

A
AAsm

options 21
starting 20

ABE 197
ABORT 195
abort 203

during data access 51
during instruction prefetch 50
signal 50

ABS 119

absolute val ue 185
ACS 120
ADC 75, 76
ADD 75
Add 97

see also ADD
with Carry 97

see also ADC
address

exception 49
set load and execution address 133

address bus 45
address TRAP 203
ADF 119
ADR 99
ADRL 100
ALE 197
alignment 125

automatic 125
AND 75, 76
AOF 135, 137
AOUT 137
application

access of workspace 172
AREA 136
Arithmetic Shift Right, see ASR
ARM 45
ASL 70
ASN 120
ASR 70, 71
assembly

conditiona l 139
repetitive 141

ASSERT 132
ATN 120

245

Index

B
B 72, 80
B/W 198
barrel shifter 68

shi ft types 70
BASIC

routine to search for lost memory
blocks 163

BIC 75 , 76
binary operations 119
bins (linked lists) 165
Bit Clear 97

see also BIC
Bitwise And 97

see also AND
Bitwise Exclusive Or 97

see also EOR
Bitwise Or 97

see also ORR
BL 73
blank line, use of 56
block data transfer 81, 226

force transfer of user bank 229
boolean constants 59
branch 72, 209

syntax 72
branch with link 73, 209

syntax 73

c
C storage manager 164
ca rriage return 56
Carry flag 48
cc 65
chaining memory blocks 165
changing modes 53
check words

using RMA 162
CMF 120
CMFE 120

246

CMN 77
CMP 77
CN 183
CNF 120
CNFE 120
CODE 136
COMDEF 136
comment field 233
Compare 97

see also CMP
Compare Negated 97

see also CMN
comparisons 58
condition

default 65
type 65

condition codes, return setting 188
condition field 208
conditional assembly 139
conditionals for logical OR 185
constant

boolean 59
decimal 59
hexadecimal 59
immediate 70
number in the form base n 59
string 59

conventions used in this manual 3
conversion 99
coprocessor cycles 67
cos 120
CP# 235 , 237, 241
CPA 198
CPS 198
CPDO, warning 236
CPI 198
cs 65

D
DA 82
DATA 136

data abort 51
and block transfer 51
and data transfer 51

data bus 45
data processing

instructi on summary 79
operations 2 l l
syntax 74

data swap 89
see also SWP

data types 45
DB 82
DBE 197
DCB 63 , 125
DCD 63, l 25, 137
DCFD 115
DCFS 11 5
DCW 63, 125
DDT debugger l l
decrement

after 97
see also DA

before 97
see also DB

directives l 23 - l 37
! 132
126
% 125
& 125
* l 23

125
A 126

extension l 27
use of 83, 84

align l 26
AREA 136
ASSERT l 32
DCB 125
DCD 125,1 37
DCW 125
ELSE l 39
END 133
ENDIF 139

ENTRY l 37
EOU 123
EXPORT 136
GBLA l 28
GBLL 128
GBLS 128
GET 134
IF l 39
IMPORT 136
KEEP l 37
LDR 100
LEADR 133
LNK l 35
LTORG 126
ORG l 33
RN 123
ROUT 130
SETA 128
SETL l 28
SETS l 28
STRONG 137
syntax 183

di screte and range tests 185
DVF 119

E
EA 82
ED 82
ELSE 139
empty stack

ascending 97
see also EA

descending 98
see also ED

END 13 3
ENDIF 139
ENTRY l 37
EOR 75, 76
EOU 123
error handling 132
exceptions 20 l

Index

247

Index

abort 203
address trap 203
FIO 201
interrupt latencies 206
!RO 202
priority system 206
reset 205
software interrupt 204
undefined instruction 205
vector summary 206

EXP I 19
EXPORT I36
expressions 57

eva luating 57

F
FA 82
(FALSE} 59, I 30
Fast Interrupt Mode 46, 53
FD 82
FDV I I 9
file buffers

allocation 167
FIO 48, 195, 201
FIX I 18
fixed origin 58
flex I64

advantages I 64
description I 67
limitations I67
shifting heaps I67

floating point
instruction set I I 5
literals II6
number input I I4
store loading directives I I 5

FLT I I8
FML I I9
FN I I5
Fortran 77 I 36
fragmentation I 66

248

of malloc heap I67
FRO I I9
FrontEnd 15
full Stack

descending 98
full stack

ascending 98
see also FA

descending
see also FD

G
GBLA I28
GBLL I28
GBLS I28
GET I9,I34
guard constant, in memory blocks I 64

H
heap

coalescing I65
HS 65

IA 82
lB 82
IF I 39, I4I
immediate constants 70
IMPORT I36
increment

after 97
see also IA

before 97
see also lB

installation I
instruction

pipeline 45
timing 66

instruction set summary 243
instruction speeds 243
instructions

block data transfer 81, 226
branch 72
branch with link 73
conditional 45, 65, 185
data processing summary 79
data processing syntax 80
single data transfer 79, 221
supervisor calls 92

internal cycles 67
interrupt latencies 206
interrupt mode 46, 53
!RO 48, 49, 195, 202

K
KEEP 137

L
label 57

instructions, stand-alone 58
interrogation of 63
local 130

language libraries
recovering memory 161

LCLA 146
LCLL 146
LCLS 146
LDF 115
LDFD 116
LDFS 116
LDM 226

abort during 23 l
LDMEA 86, 87
LDMED 83, 86
LDMFA 86
LDMFD 86, 87
LDR 100, 222

LDRB 222
LEADR 133
LFM 116
LGN 119
libraries, making your own 16
line terminators 56
linefeed 56
link register 47
literals 126
LNK 19, 135
LO 65
load and store operations 45
load multiple registers 97

see also LDM
load register from memory location 97

see also LDR
local label

areas 130
definition of 131
referencing 131

location counter
program 128
storage area 126, 127

LOG 119
logical shift

left, see LSL
right, see LSR

logical values 59
LSL 70
LSR 70
LTORG 126

M
MACRO 144
Make 7
malloc 164

deallocation of blocks 166
use when designing programs 162

malloc heap 164
MCR, example of 240
memory 45

249

Index

alignment 164
allocation in C 163
allocation of block sizes 164
allocation of file buffers 167
allocation with flex and malloc 164
attaching a base address to a storage

area 127
avoiding permanent loss 162
avoiding references to deallocated

blocks 162
avoiding wastage 163
BASIC routine to sea rch for lost blocks 163
coalescing blocks 165
efficient use 161
fragmentation 166
malloc allocation 164
reserving storage space 126
splitting blocks 165

memory management 161
memory, laying out areas of 126
MEND 145
MEXIT 146
MNF 119
MOV 74, 75
Move 97

see also MOV
Move Not 97

see also MVN
MREO 195
MUF 11 9
multiplication by a constant 187
multiply 91, 218
multiply-accumulate 90, 218
MVF 119
MVN 74, 75

N
Negative flag 48
NOFP 115
non-sequential cycles 66
non-user modes 53

250

nulls, loading memory with 125
numeric constants 59
numeric va lues 58

0
ObjAsm

directives 135
using branch destinations 135
using literals 136

offsets 222
OPC 195
operands produced by barrel shifter

8 bit constant 69
rotate & carry bit one bit right 69
shifted by a constant amount 69
shifted by n bits 69
unshifted 69

operands, type of 57
operating modes 52
operators 60

arithmetic 60
Binary 60
Bitwise logical 61
boolean logical 60
Relational 61
Shift 61
string (binary) 62
string BASE (unary) 63
string conversion (unary) 63
string INDEX (unary) 63
String length (unary) 62
string slicing (binary) 62
summary of 64
Unary 60

{OPT} 130
ORG 133
ORR 75, 76
Overflow flag 48

p
P suffix 53 , 78
{PC} 128, 130
PC 45,46
PHI 195
PH2 195
POL 119
pop from stack

empty stack, ascending 86
empty stack, descending 86
full stack, ascending 86
full stack, descending 86

POW 119
Prefetch abort 50
printer, storing printer options 130
Processor Status Register 46, 53
program counter 45, 46
program design

for efficient use of memory 161
program-relative values 58

assigning 123
pseudo-random numbers 186
PSR 46, 48, 66
PSR flags 91 , 212
push to stack 84

R

empty stack ascending 85
empty stack, descending 85
full stack, ascending 85
full stack, descending 85

R/W 195
Rl4 47
Rl4_fiq 47, 199
Rl4_irq 47, 199
R14_svc 47, 199
Rl5 46

destination register 78
operand 78, 91

RDF 119

READONLY 136
register names

defining 123
use of in expressions 123

Register RI 5 46
register-relative values 58
registers 46
REL 136
relocatable binary output 133
relocatable modules 153

memory usage I 72
using AAsm 154
using ObjAsm 154

repetitive assembly 141
RESET 196, 205
Reverse Subtract 97

see also RSB
Reverse Subtract with Carry 97

see also RSC
RFC 118
RFS 118
RUST 184
RMA 172

deallocation 162
using for storage though SW! calls 162

RMF 119
RN 123
RND 119
ROR 70, 71
Rotate Right 70

see also ROR
ROUT 130
RPW 119
RRX 72
RSB 75 , 76
RSC 75, 76
RSF 119

s
s bit 75
SBC 75, 76

251

Index

search
for allocated memory blocks 162

semi-colon , use of 56
SEO 196
sequential cycles 66
set load and execution address 133
SETA 128
SETL 128
SETS 128
setvbuf 167
SFM 116
shift 213

field 213
shift types 70

ASR 70
LSL 70
LSR 70
ROR 70

sign/zero extension of a half word 188
signals 195

A 197
ABE 197
ABORT 195
ALE 197
B/W 198
CPA 198
CPB 198
CPI 198
D 197
DBE 197
FIO 195
!RO 195
M 196
MREO 195
OPC 195
PHI 195
PH2 195
R/W 195
RESET 196
SEO 196
TRANS 196
VDD 196
vss 196

252

SIN 119
single data transfer 79, 221

syntax 80
software interrupt 51, 204, 233
SOT 119
SrcEdit 8
stack

allocation 167
extension 164, 169

stack extension 169
stacking 84

pop from stack 86
register list 88
using RI 5 88
using the base register 88
when the base register is R 15 88

stacks
decrement 82
increment 82
post-decrement 82
pre-decrement 82

start address 126
STF 115
STM 84, 226

abort during 231
STMEA 85
STMED 85
STMFA 85
STMFD 85 , 86
storage manager

description 165
storage-area location counter 126, 127
store

multiple registers 97
see also STM

register from memory location 97
see also STR

STR 97, 223
STRB 222
string

$ in 59
constant 59
conversion 58

quotes in 59
spaces in 59
va lues 58

strings , used as operands 62
STRONG 137
SUB 75 , 76
Subtract 97

see also SUB
Subtract with Carry 97

see also SBC
SUF 119
supervisor calls 92

syn tax 92
supervisor mode 46, 53
SW! 204, 233

XOS_Heap 163
XOS_Module 163

SWP 89, 98
symbol 56

externa l 136
symbol attributes

common area 136
comon area definition 136
read on ly area 136
read only code 136
read-write data 136
relocatable 136

symbols
assigning 123

syntax, label. instruct ion , command 55

T
tab character 56
TAN 120
TEO 53 , 77
TERSE 140
Test and Mask 97

see also TST
Test Equiva lence 97

see also TEO
Texc 206

Tfiq 206
Throwback 8
Tldm 206
TRANS 196

pin 79
T 80

{TRUE} 59, 130
TST 77
Tsyncmax 206

u
unary operati ons 119
undefined instruction trap 51 , 52, 205, 242
unsigned integers 58
user mode 46, 53

v
{VAR} 128, 130
variable types 128
variables 128

declaring 128
global 128
subst ituti on using$ 129

VDD 196
vectors

address and definitions 52
summary 206

vss 196

w
w bit 222
WEAK Linker opt ion 136
WEND 141
WFC 11 8
WFS 118
WHILE condit ion 142
wimp slot

contents 166

253

Index

Word, loading from an unknown alignment 188
write back, stacking application 85

z
Zero flag 48

254

0

Reader's Comment Form
Acorn Assembler Release 2

We would greatly appreciate your comments about this Manual , which will be taken into account for the

next issue:

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there 1s not enough room for your comments, please continue overleaf

How would you classify your experience with computers?

D D D
Used computers before Experienced User Programmer

Cut out (or photocopy) and post to: Your name and address:
Dept RC, Technical Publications
Acorn Computers Limited

D
Experienced Programmer

645 Newmarket Road
Cambridge CB5 8PB
England

This information will on ly be used to get in touch with you in case we wish to explore your
comments further

f:
r -

Acornl ··

