
I I

ACORN
DESKTOP DEVELOPMENT

ENVIRONMENT

NeM Pro ect

T: adfs::Hard4.$.Use

' ..

Acornl ·

New Pro ect

I

I
I I

Status: !nit

II Acorn~

ii

Copyright© Acorn Computers Limited 1991

Published by Acorn Computers Technical Publications Department

Neither the whole nor any part of the information contained in, nor the-product
described in, this manual may be adapted or reproduced in any materi<1l form
except with the prior written approval of Acorn Computers Limited . . ·· ·

The product described in this manual and products for use with it are subject
to continuous development and improvement. All information of a technical
nature and particulars of the product and its use (including the information
and particulars in this manual) are given by Acorn Computers Limited in good
faith . However, Acorn Computers Limited cannot accept any liability for any
loss or damage arising from the use of any information or particulars in this
manual.

If you have any comments on this manual. please complete the form at the back
of the manual. and send it to the address given there.

Acorn supplies its products through an international dealer network These
outlets are trained in the use and support of Acorn products and are available
to help resolve any queries you may have.

Within this publication, the term 'BBC is used as an abbreviation for 'British
Broadcasting Corporation·.

ACORN, ARCHIMEDES and ECON ET are trademarks of Acorn Computers
Limited.

UNIX is a trademark of AT&T

Published by Acorn Computers Limited
ISBN l 85250 094 8
Part number 0470,501
Product number SKD37
Issue l , Mayl99l

Contents

Contents iii

Introduction 1
About this guide 2
Conventions used 4

Part 1 - Getting started 5

Installing the DOE 7
Hardware requirement 7
The Install application 7
Running the Install application 8
Installing the DOE on a hard disc machine I 0
Installing the DOE on a floppy disc machine 13
Installing the DOE on a network 14
Environment variables and the DOE 16

Working in the DOE 19
DOE tools 19
Booting the DOE 22

Working styles 23
New target support 27
Compatibility with previous Acorn language products 27

Where to go from here 27

iii

Contents

iv

Part 2 - Interactive tools 29

Desktop debugging tool 31
Overview 31

About debuggers 32

Preparing your program 33
Starting a debugging session 35

Specifying program objects 38

Execution control 45

Program examination and modification 53

Options and other commands 58

An example debugging sess ion 62

FormEd 71
Starting FormEd 71

Browser 72

Editing a window 73

Merging Templates files 75

Displaying sprites in template windows 75

Ed iting ROM utility templates 76

Example FormEd session 76

Make 79
Invoking Make 79

Using Make 80

Makefile format 89

An Example 90

Programmer interface 91

SrcEdit 93
Starting SrcEdit 93

SrcEdit menus 94
Printi ng a SrcEd it file 106

Laying out tables the Tab key I 06
Reading in text from another file 107
Bracket Matching I 07

Throwback I 07
Saving Options I 08

Application menu I 09

SrcEdit task windows 110
Some gu idelines and suggestions for using task windows 11 2
Keystroke equiva lents 112

Part 3 - Non-interactive tools 115

General features 117
The Application menu 118
The Setup box 120
Output 12 l

AMU 125
Starting AMU 125
The Application menu 127
Example output 128
Command line interface 128

Common 129
The SetUp dialogue box 129
The Application menu 130
Example output 13 l
Command line interface 132

DecAOF 133
The SetUp dialogue box 133
The Application menu 134

Example output 135
Command line interface 135

DecCF 137
The SetUp dialogue box 137
The Application menu 138

Example output 138
Command line interface 139

Contents

v

vi

Diff 141
The SetUp dialogue box 141
The Appli cation Menu 143

Example output 144
Command line interface 145

Find 147
The Set Up dia logue box 14 7
The Application menu 152

Example output 152
Command line interface 153

Link 155
The SetUp dialogue box 155
Output 157

Possible errors during a link stage 158
Libraries 159
Generating overlaid programs 159

Relocatable AIF images 163
Relocatable modules 164
Predefined linker symbols 165
Command line interface 166

LibFile 167
The SetUp dialogue box 167
Output 169

Command line interface 171

ObjSize 173
The SetUp dia logue box 173
The Application menu 174
Example output 174

Command line interface 175

Squeeze 177
The SetUp dialogue box 177
The Applicat ion menu 178
Example output 178

Command line interface 179

WC 181
The SetUp dialogue box 181
The Application menu 183

Example output 184

Command line interface 184

Extending the ODE 185
The FrontEnd module 185
Producing a complete WIMP application 186

The DDEUtil s module 198
SrcEdit 198
Make 198

Appendices 199

Appendix A - Makefile syntax 201
Make and AMU 201
Makefile basics 202
Makefi le structure 203
Advanced features 206
Makefiles constructed by Make 208
Miscellaneous features 210

Appendix B - FrontEnd protocols 211
~mmands21 1

EBNF Gramma-F-eftDesCTipfion Format 211

W~4essage returned after a * FrontEnd_SetUp 216

Appendix C - DDEUtils 217
Fi lename prefixing SWls 217
Fi lename prefixing *Commands 217
Long command line SWls 218

Throwback SWls 219
Throwback WIMP messages 22 1

Appendix D - SrcEdit file formats 223
Language Fi le Format 223
Help File Format 223

Contents

vii

viii

Appendix E - Code file formats 225
Terminology 225

Undefined Fields 226

Overall structure of AOF and ALF files 226

Chunk file fo rmat 226

AOF 229
Object file format 229
Linker defined symbols 239
Obsolescent and obsolete features 240

ALF 242
Library fi le format types 242
Library file chunks 242

LIB_DI RY 242
LIB_TIME 244
LIB_ VSRN 244
LIB_DATA 244

Ob ject code librari es 245

AIF 246
Properties of AIF 246

Layout of an AIF image 247
AIF header layout 248

Zero-initial isation code 249
Self relocation 250

ASD 254
Order of Debugging._Da-1'a 254
Representation of Data Types 255
Representation of Source File Positions 256
Debugging Data Items in Detail 256

Appendix F - ARM procedure call standard 265
The purpose of APCS 265
Design criteria 266
The Procedure Call Standard 267
Defined bindings of the procedure call standard 274
Examples from Acorn language implementations 278

Index 283

1 Introduction

The Desktop Development Environment is an extendable set of RISC OS desktop
applications for programming. These tools interact in ways designed to help

your productivity and make the desktop a high quality environment for creating
RISC OS applications and relocatable modu les from compiled languages or
assembler.

Since the development environment is designed to support more than one
programming language, all the tools not specific to a language are intended to be
included in more than one language product. The two products Acorn Desktop C
and Acorn Desktop Assembler can therefore be seen as subsets of the total
Desktop Deve lopment Environment developed by Acorn, each providing all the
tools relevant to programming in one language The purchaser of both products
accumulates a complete environment for programming in both languages
(potentially mixing them in one application) It is anticipated that third parties
may wish to extend the environment with support for additiona l languages and
market other language products including DDE tools .

This user guide describes the non-language specific too ls, and may itself be
distributed with severa l language products. It is included with both Acorn Desktop
C and Acorn Desktop Assembler.

The Desktop Development Environment consists of a large number of tools. This is
illustrated by the directory display showing their icons:

'Fl£'.l I ~ adfs: : Hard4. $, DllE "i'

:.fJC Kfj£i 'l ''fl'' :,fi~. @ :fY:''

~
;:\<:

:~' '. - .l" ? . - ·" .:~~ . : :~ :/ Jii,lc
!RRsfll !RMU !CC !CMHG !COf!lfllon !DDT !DecROF

:iri :.:fl 'fl ~ :fl'' :ix: 'r~ ·_:,· :· :, ~ ' : ; .~ :>-~ ! ;=. :~ --~' ' l~

!DecCF !Diff !Find !ForfllEd !LibFile !Link !Make
::11!: ''fl ll :~1:: .\ii:: .ii: lrx ~ I :J y: :,: ::\1·=).-'-~}. ::>~ / ,' ;. Y.: -:,:, /· .' '- ' ':

:~:
!ObiRsfll !ObjSize !Squeeze !SrcEdit !ToRHSI !ToPCC !WC t

With the exception of the Desktop Debugging Tool (DDT). al l these tools are
multitasking RISC OS applications . DDT has to operate outs ide RISC OS in order to
stop it dead at any moment for breakpoints etc, so is windowed but not
multitasking The DDE includes tools to

• edit program source and other text files

1

• search and examine text files mechanically

• examine some types of binary file

• compile and link programs

• assemble assembly language programs

• construct relocatable modules

• construct programs efficiently under the control of makefiles, these being set
up from a simple desktop interface

• squeeze finished program images to occupy less disk space

• construct linkable libraries

• debug RISC OS desktop applications interactively

• construct template files for RISC OS desktop applications

About this guide

2

This user guide tells you how to use the Desktop Development Environment tools
relevant for programming in more than one language, and is included in both the
products Acorn Desktop C and Acorn Desktop Assembler. It is accompanied by
additional user guide volumes covering the tools specific to each language -Acorn
ANSI C Release 4 in Acorn Desktop C, and Acorn Assembler Release 2 in Acorn Desktop
Assembler.

The majority of worked examples for the DDE products are described in the
accompanying language specific volumes, and those mentioned in this guide are
intended to make general points relevant to all the languages, although they
cannot be tried out on all different products.

This guide is not intended as an introduction to programming techniques,
languages or RISC OS. References are made to the RISC OS Programmer's Reference
manual available from Acorn.

This volume is organised into four parts

• Part I- Getting started

• Part 2 - Interactive tools

• Part 3- Non-interactive tools

• Part 4 - Appendices

Part 1- Getting started

This part of the guide describes how to set up the best working environment for
your purposes on your equipment using the standard DDE installation program,
and covers general methods of operating the DDE.

The chapters are:

• Installing the DOE

• Working in the DOE

Part 2 - Interactive tools

This has chapters covering each of the DOE tools which you use with constant
interaction as 'foreground' tasks. Each has its own distinctive icon and file type
They are the debugger, template file editor, make and the source text editor.

The chapters are:

• Desktop debugging tool

• FormEd

• Make

• SrcEdit

Part 3 - Non-interactive tools

This covers the less interactive DOE tools which all have similar interfaces for
setting options and running, some performing operations which can be controlled
by Make. The first chapter in this part covers the general features common to all
the non-interactive tools. The next eleven chapters are ordered alphabetically and
each describes an individual tool. The last chapter describes how to extend the
ODE by integrating your own tools with it. including how to create your own
non-interactive tools.

The chapters are:

• General features

• AMU

• Common

• DecAOF

• DecCF

• Di ff

• Find

• Lib File

• Link

• ObjSize

• Squeeze

• WC

3

Conventions used

• Extending the DDE

Part 4 - Appendices

As part of the strategy of making the DDE extendable and open, this part of the
guide contains specificat ions of file formats and other interfaces between tools as
necessary information for someone adding to the DDE. They also provide useful
references for others, for example those interworking assembler with a high leve l
language such as C.

The appendices are:

• Appendix A - Makefile syntax

• Appendix B - FrontEnd protocols

e Appendix C - DDEUti1s

• Appendix D - SrcEdit file formats

• Appendix E - Code file formats

• Appendix F - ARM procedure call standard

Conventions used

4

Throughout this Guide, a fixed-width font is used for text that the user should type,
with an italic version representing classes of item that would be replaced in the
command by actual ob jects of the appropriate type For example :

link options filenames

This means that you type link exactly as shown, and replace options and filenames
by specific examples

A bold version of the same font is used for text that the computer responds with.

Hex integers are given in uppercase, and preceded by OX, eg OXFEl.
(Not preceded by &, as is the case with those of you more familiar with BBC Basic)

The abbreviation DDE is used in later chapters to mean Desktop Development
Envi ronment.

Part 1 - Getting started

5

6

2 Installing the DOE

Insta lling the DOE means setting up a disc directory structure suitable for use for
future ODE sessions. You only need to perform this once to set up a suitable

structure for a given hardware configuration . Booting the DOE means setting up
your machine ready for starting work in the DOE, and is performed at the start of
each session (eg after re-booting your machine)

To use the DOE you wi ll need to:

• install the DOE

• boot the DOE.

You will then be able to work within the ODE.

This chapter only describes installation. The chapter ent itled Working in the DOE
explains how to boot and work within the DOE.

Hardware requirement
The minimum specification of RISC OS system recommended for serious use of the
ODE is a 2MB RAM machine with a hard disc drive.

You can use a 2MB or 4MB RAM machine with on ly floppy disc drives for
constructing smaller programs although this wi ll cause you some inconvenience
due to disc swapping This is because the DOE will not fit onto one floppy disc

A I MB machine is not recommended, as the number of DOE tools that you can
load at the same time is limited

If you are using a floppy disc machine that has access to an Econet network, you
can avoid most of the disc swapping See the section entitled Installing the DOE on a
network on page 14. On a floppy disc plus Econet system, it is st ill recommended to
store your own program on a work floppy disc (for speed reasons) but this restricts
the size of program you can store.

The Install application

Before installing the DOE on your machine with the Insta ll appl icat ion , it is wise to
take a backup copy of each of the floppy discs supplied with the product

7

Acorn Desktop C is supplied with four floppy discs; Acorn Desktop Assembler is
supplied with three. These are not intended for use before running Install, but if
you later wish to retrieve a file from them, it is useful to know their structure. They
are organised with names: Installation Disc, Boot Disc, Work Disc and Reference
Disc (not needed for Acorn Desktop Assembler) For diagrams showing their
precise directory structure, see the reference cards included with each product

The discs supplied with the DOE products are arranged so that Install can
transform them reasonably easily into a working set of floppy di scs during
installation on a machine without a hard disc. The Installation discs contain the
following:

• Install application

• reference material (which you wi ll only use occas ionally)

• programming examples.

The Boot discs conta in the following

• ODE relocatable modules in a !System directory

• desktop tools.

The Work di scs contai n the following

• ODE command line tools (called when the desktop tool s are run)

• programming examples

• a scrap file directory ! DDETmp

The Reference disc suppli ed with Acorn Desktop C contains linkable librari es and
associated headers.

Running the Install application

8

Take the fol lowing steps to run the Install appli cation

Take the preparation steps described in the later section covering the type of
installati on you wish to make.

2 Insert the disc labelled Installation Disc in your drive and click Select on the
drive icon to open its root d irectory.

3 Doub le click on !Install in the resulting d irectory display

The Install application then reads your current filing system and disc name, and
displays an opt ions dialogue box:

Install to: ~I __ a_d_f s_: _: H_ar_d_4 _~

~Pro9rannin9 exanples ~Force overwrite
r=JCrunched headers r=JRAM disc (floppy only)

Run Help Cancel

This dialogue box allows you to specify the filing system and disc name to install
to, and to set various opt ions for the installation arrangement.

The Install to: slot is a writable icon containing the filing system name and disc
name forming the destination for Install to copy files to. It is initialised with the
current filing system and disc name; in the example above, the adfs filing system
and a hard disc called Hard 4 .

When installing on machines with floppy disc drives, there are two ways you can
construct work discs:

• conta ining programming examples to try

• leaving the maximum space for you r own code.

The Programming examples option allows you to make this choice. This option is
enabled by defau lt - programming examples are included. When installing a hard
disc or network, th is option controls the inclusion of these examples.

Enabling the Force overwrite option causes Install to overwrite existing files
whose names are duplicated by new ones . This is intended to ensure that files such
as tool binaries in your l ibrary directory are cons istently updated , and is enabled
by defau lt.

The Crunched headers option on ly exists in the C Instal l program, not t he
Assembler Insta ll. Two versions of the C #include headers for the RISC OS specific
library RISC_OSLib exist - the fu ll commented version and the compact crunched
version for minimum disc usage and processing time. The Crunched headers
option specifies which version is installed. The full vers ions are on the Acorn
Desktop C Insta llation Disc, the crunched versions on the Reference Disc.

9

When working on a floppy disc only machine, your discs may be set up to load a
library of binaries into RAMFS at boot time. This leaves more space on your work
floppy disc for your own programs, but less space in RAM for operating DDE tools.
Enabling RAM disc results in Install setting up your working set of discs to use
RAMFS.

The options dialogue box contains three action buttons:

Run starts the installation process with the options as set

Help displays text information in a scrollable read-only text window.

Cancel cancels the Install process

If you are installing more than one DDE product. for example both Acorn Desktop
C and Acorn Desktop Assembler, merely run the Install process of each product in
turn, making sure the options dialogue box settings and so on are the same both
times.

After running Install, reset your machine, to make sure there are no problems
changing to new versions of relocatable modules supplied with the DDE.

Installing the DOE on a hard disc machine

10

To prepare for installation to your hard disc, first check and if necessary adjust the
!System application on your hard disc for correct interaction with Desktop C or
Desktop Assembler.

It is standard to have a !System application on an Archimedes hard disc. If you
have the standard directory Apps 1 on your disc your !System is likely to be located
there. !System sets environment variables from its ! Boot file executed when a
directory display is opened for the directory containing !System It therefore may
be convenient to move your !System application to the root($) directory of your
hard disc so that its ! Boot file is executed every time you open the root directory of
your disc.

For the Desktop Development Environment to work properly on your hard disc
machine, your !System needs to set the environment variables System$Path,
Wimp$Scrap and Wimp$ScrapDir. Set up and use your !System before running
Install, as Install uses System$Path itself. To set up your !System, open a directory
display on the rsystem directory by double clicking Select with the shift key
depressed Load the obey files ! Boot and ! Run into a text editor such as Edit (by
dragging them to the Edit icon bar icon) and inspect and alter the text if necessary
To set the environment variables, the !Boot file should look like:

I !Boot file for ! System
IconSprites <0bey$ Dir> . ! Sp rites
if "<System$Path >" = •• then Set System$Path <0bey$Dir> .
if " <Wimp$Scrap> " = •• then Set Wimp$Scrap <0bey$Dir> . ScrapFi l e
if " <Wimp$ScrapDi r> " = •• then Set Wimp$ScrapDi r <0bey$Dir>

and the !Run file should look like

I !Run file for !System
IconSprites <Obey$Dir> . !Sprites
Set System$Path <0bey$Dir> .
Set Wimp$Scrap <0bey$Dir> . ScrapFile
Set Wimp$ScrapDir <0bey$Dir>

: '

Note that System$Path is set with a terminating·.· character, unlike the other two
variables above. Note also that the above files are not identical to those supplied
on the Acorn Desktop C or Assembler distribution discs, which are intended for
floppy disc usage.

Save these files to your hard disc, then double click on !System to use it (execute
the !Run file and set the system variables)

If Install to: contains the filing system and disc name of your hard disc when you
run Install, the entire DDE directory and file structure is set up for use on your hard
disc.

11

Installing the DOE on a hard disc machine

12

The fo llowing directory structu re is set up for you on your hard disc. It is created if
not present, or updated if it is already there:

Library

amu
common
debugaif
decaof
deccf
diff
find
link
libfile
obj size
squeeze
we

+ other language
specific command
tools

$

!DDT
!FormEd
!Make
!SrcEdit
!AMU
!Common
!DecAOF
!DecCF
!Diff
!Find
!Link
!LibFile
!ObjSize
!Squeeze
!WC

Glib
Colour
DDEUtils
DDT
FPEmulator
Front End
Task

+ other language
specific tools

Acorn Desktop C only

ANSI Lib
OverMgr

Stubs

RISC_OSLib

assert
ctype
errno
float
kernel
limits
locale
math
pragmas
setjmp
signal
stdarg
stdio
stdlib
string
swis
time

akbd
alarm
baricon
bbc
colourmenu
colourtran
coords
dbox
dboxfile
dboxquery
dboxtcol
drawfdiag
drawferror
drawfobj
drawftypes
drawmod
event
file icon
fl ex
font
fontlist
fontselect
heap
help

magnify
menu
msgs
OS
pointer
print
res
respr
saveas
sprite
template
trace
txt
txtedit
txtopt
txtscrap
txtwin
typdat
visdelay
werr
wimp
wimpt
win
xferrecv
xfersend

An application !Boot is left in the directory $. DDE to assist you in boot ing t he
DOE. If you want to execute this every time you reboot your machine, you ca n
insert a line such as:

* $. DDE . !Boot . ! Run

in your own machine !Boot fil e. A machine !Boot fil e is an obey fil e (created with a
text editor such as Ed it) placed in your hard disc root directory, executed at
machine power-u p or reset It is analogous to t he Au toExec. Bat fil e for DOS
machines To set your machine to execute a machine boot fil e. type t he line:

* Opt 4 , 3

at t he RISC OS command line .

• Note that Install places a new version of the shared C l ibrary relocatable module in
<System$Path> Modules. If you have an older version of this module placed
somewhere else and loaded by your own !Boot fil e (or by one of t he appli cations
loaded by your! Boot) delete the old module and alte r any references to load the
new one.

Installing the DOE

Installing the DOE on a floppy disc machine
If Install to: contains a string such as adf s : : O or adf s : : UserWorkC when you
run Install, a working set of fl oppy di scs is constructed from the di stribution discs.

You will need a number of blank, previously-fo rmatted RISC OS 800K fl oppy discs.
The recommended format to use is RISC OS E format The number of blank discs
needed is the same as the number of distributed di scs when making a working set
wit h RAM disc enabled, one less without RAM disc. Thus, fo r example, installing
Acorn Desktop C with RAM disc on requ ires four blank discs, whereas with RAM
disc off you only need three.

When you run Insta ll , it prompts you to insert vari ous dist ri bution discs and fresh
discs in turn , so t hat each fresh disc ca n be named and fil es copied to it

The arrangement of fil es on a working set of fl oppy di scs is similar to that on a hard
disc, but split between the fl oppies The arrangement o f the three ma in discs
wit hout RAM disc enabled is as fo llows

Work disc
$

!DDETmp Library

amu
common
debugaif
de ca of
deccf
diff
find
link
libfile
objsize
squeeze
WC

Program
examples

in individual
directories

Stubs

+ other language
specific command
tools

Boot disc
$

!DDT
!FormEd
!Make
!SrcEdit
!AMU
!Common
!DecAOF
!DecCF
!Diff
!Find
!Link
!LibFile
!ObjSize
!Squeeze
!WC

!Run
Glib !Sprites
Colour
DDEUtils
DDT
FPEmulator
Front End
Task

+ other language
specific tools

Reference disc
$

CHelp

ANSI Lib
OverMgr

RISC_OSLib

Stubs akbd

assert
ctype
errno
float
kernel
limits
locale
math
pragmas
setjmf
s1gna
stdarg
stdio
stdlib
string
swis
time

alarm
baricon
bbc
colourmenu
colourtran
coords
dbox
dboxfile
dboxquery
dboxtcol
drawfdiag
drawferror
drawfobj
drawftypes
drawmod
event
fileicon
flex
font
fontlist
fontselect
heap
help

magnify
menu
msgs
OS
pointer
print
res
res pr
saveas
sprite
template
trace
txt
txtedit
txtopt
txtscrap
txtwin
typdat
visdelay
werr
wimp
wimpt
win
xferrecv
xfersend

Acorn Desktop C only

c

13

Installing the DOE on a network

The reason an extra blank di sc is required for installation with RAM disc is that an

extra Boot disc is created . This con tains the Library and CLib directories of the
above Work disc. It loads the command line too ls at boot time into RAMFS,
allowing them to operate faster and saving space on the Work disc, leaving more
disc room for your programs.

To use library binaries in RAMFS, you must make an addition to the Run$Path
RISC OS environment va riabl e at boot time. You ca n place a line in the !Boot file
supplied on the RAM fl oppy disc to set this up, such as

*set Run$Path , adfs : %., ram : %.

Installing the DOE on a network

14

In preparation fo r installation to a network, you must first log onto the target
network with system privilege, then set the current filing system to the network by
typing the line

*net

at the RISC OS command line. Return to the desktop and run Install

The Install to: field appears set to the network fileserver name, and when you run
Install, a diredory and file st ructure is set up on the network and one floppy disc
from the distribution discs.

You will need one blank fl oppy disc per use r, so format some to RISC OS E format

Note: If more than one user is to share your network insta llation, a site license
must be purchased through your Acorn Authorised Dealer

When you run Insta ll, it prompts you to insert va rious distribution discs and the
fresh disc in turn , so that files can be copied.

........ ~ 11111::/ UI ---

The arrangement of files on the network is similar to that on a hard disc, but split
between different directories. The following is the installed arrangement

$
I

UserWorkC
(UserWorkA for Assembler)

!DDETmp Library

amu Program
common examples
debugaif in individual
decaof directories
deccf
dill
find
link
libfile
objsize
squeeze
WC

+ other language
specific command
tools

$

I
DDETools

!DDT
!FormEd
!Make
!SrcEdit
!AMU
!Common
!DecAOF
!DecCF
!Dill
!Find
!Link
!LibFile
!Obj Size
!Squeeze
!WC

!System

Modules

!Boot

!Run
Glib !Sprites
Colour
DDEUtils
DDT
FPEmulator
FrontEnd
Task

+ other language
specific tools

ANSI Lib
OverMgr

Stubs

assert
ctype
errno
float
kernel
limits
locale
math
pragmas
setjmp
signal
stdarg
stdio
std lib
string
swis
time

$

RISC_OSLib

akbd
alarm
baricon
bbc
colourmenu
colourtran
coords
dbox
dboxfile
dboxquery
dboxtcol
drawfdiag
drawferror
drawfobj
drawftypes
drawmod
event
fileicon
flex
font
fontlist
fontselect
heap
help

magnify
menu
msgs
OS
pointer
print
res
respr
saveas
sprite
template
trace
txt
txtedit
txtopt
txtscrap
txtwin
typdat
visdelay
werr
wimp
wimpt
win
xferrecv
xfersend

Acorn Desktop C only ---~

Each network user then requires a copy of the $.DDETools directory within their
own directory area . plus a copy of the work fl oppy disc. Each user requires a copy of
the DDETools directory because tools such as Make and SrcEdit write opt ions fil es
into their application directories

To make a work fl oppy disc, name a blank formatted disc UserWorkC (C) or
UserWorkA (Assembler) and copy the content s o f the directory of the sa me name
on the net to the fl oppy disc.

15

Environment variables and the DOE

Environment variables and the DOE

16

Various DOE operations depend on the correct settings of environment variab les. If
you carefully follow the instructions in this user guide for insta lling and booting
the DOE, they should be correct ly set and you do not need the fo llowing
information. These details are summarised here as an aid for tracking down any
problems you may have.

Each ODE tool. when loaded, defines an environment variable of the sort
<toolname>$Dir. The purpose of these variables is to allow each tool access to
its application directory, for example, to store options. These are not likely to
become incorrectly set and cause problems. SrcEdit can be configured with
options from its desktop interface, and also from options variab les, as described in
the chapter entitled SrcEdit later in this guide

System$Path

Set by

Purpose:

Problems:

Wimp$Scrap

Set by

Purpose:

Problems:

Wimp$ScrapDir

Set by:

The ! Run and ! Boot files of the !System application

Used by Install to indicate the directory in which to place
relocatable modules. Used by the DOE applications as the place to
load relocatable modules from.

If the !System application has not been run or shown in a directory
display System$Path remains unset. Install then stops with an error
when run . ODE tools fail to load as they cannot locate required
modules.

The ! Run and ! Boot files of the !System application

This specifies the filename of a temporary file for passing from one
desktop application to another (eg when saving a file from SrcEdit
direct ly to the icon bar icon of WC)

If the !System appli cation has not been run or shown in a directory
display Wimp$Scrap remains unset. Direct saving of files from one
ODE tool to another then fails with an error.

On a hard disc the ! Run and ! Boot hies of the !System appli cat ion
On a fl oppy di sc or network, set by the ! Run and !Boot files of the
!DDETmp application on the work disc.

Purpose:

Problems:

Run$Path

Set by:

Purpose:

Problems:

DDE$Path

Set by

Purpose:

Problems:

This specifies the directory name in which to place temporary files
DDE tools such as the C compiler and assemblers generate
temporary output files which you then rename to the file you want
when you drag an icon to a directory display.

If Wimp$ScrapDir is not set. non-interactive DDE tools such as the
C compiler and assemblers attempt to create temporary files in
$. tmp when run . If this fails (for example because this directory
doesn't exist) the tools fai l to run, generating error messages about
being unable to open files in $. tmp.

User constructed !boot obey file .

This specifies a list of directory names which the system searches to
find and execute image files. When the DDE non-interactive tools
are run , they execute command line tools from a library directory,
which is in the ramfs filing system if the RAMFS floppy disc option is
used.

If incorrectly set , command line tools may not be found and
non-interactive tools fail to run.

The !Run and !Boot files of the DOE !Boot application (set up by
I nsta II)

This is set to the name of the directory containing the ODE tools,
and is used by Make to start tool interfaces for setting Tool options.

If DDE$Path is unset, the Make Tool options facility fail s with an
error mentioning DDE : .

C$Path (Acorn Desktop C only)

Set by

Purpose:

Problems:

The ! Run and ! Boot files of the DOE ! Boot application (set up by C
Insta ll)

This specifies a li st of directory names for the C compiler to search
for libraries and their headers.

The !Boot application is created rather than just copied by Install. If
you perform your installation by copying rather than running Install ,
you will produce a !Boot application which does not set C$Path. If

17

Environment variables and the DOE

unset. the C compiler wi ll not be able to find #include headers such
as those of RISC_OSLib, either when used managed by Make or
unmanaged.

C$Libroot (Acorn Desktop C only)

Set by:

Purpose:

18

The !Run and !Boot files of the DOE !Boot application (set up by C
Install)

This specifies a li st of directory names for the C compiler to sea rch
for #include headers. See the chapter entitled CC in the
accompanying Acorn ANSI C Release 4 user guide for more details.

3

DOE tools

Working in the DOE

This chapter describes how you boot the DOE to start each programming
session, and provides an overview of the most productive way to work with the

ODE to produce your programs The chapter entit led Installing the DOE describes
how to prepare your working environment.

To use the DOE you will

• install the DOE

• boot the ODE.

You will then be able to work within the ODE.

The DOE is formed from a number of RISC OS desktop programming tools. All ODE
language products include the following tools:

• DDT- A new windowed debugger for debugging any executable image file,
including the !Runlmage file of a RISC OS application DDT presents a
windowed interface with RISC OS style controls.
Note that as DDT has to be capable of stopping RISC OS dead at any point in a
program, for breakpoints, single stepping, etc, it cannot multitask under the
RISC OS desktop.

• FormEd -An improved version of the Form Ed application for producing the
Templates resource file of each RISC OS application

• Make - A new desktop application for constructing programs under the
management of 'recipes' stored in Makefiles. Various types of Makefile can be
rapidly constructed using the desktop controls of Make, as well as being
executed. This facility for constructing Makefiles is known as 'project
management' on some programming systems for other types of computer

• SrcEdit ,-A text editor derived from Edit with many new features for
constructing program sources and other text files.

• AMU - A compact alternative to Make for using, but not constructing,
Makefiles.

• Common - A utility to find the most common words in a text file.
• DecAOF-A utility for examining AOF files output by language compilers or

assemblers.

19

3

DOE tools

Working in the DDE

This chapter describes how you boot the DDE to sta rt each programming
session, and provides an overview of the most productive way to work with the

DDE to produce your programs The chapter entitl ed Installing the DDE describes
how to prepare your working environment.

To use the DDE you wil l:

• instal l the DDE

• boot the DDE.

You wi ll then be able to work with in the DDE.

The DDE is formed from a number of RISC OS desktop programm ing tools. All DDE
language products include the following tools

• DDT - A new windowed debugger for debugging any executable image file,
including the !Runlmage file of a RISC OS application. DDT presents a
windowed interface with RISC OS sty le cont rols.
Note that as DDT has to be capable of stopping RISC OS dead at any point in a
program, for breakpoints, single stepping, etc, it cannot multitask under the
RISC OS desktop.

• FormEd - An improved version of the Form Ed appl ication for producing the
Templates resource file of each RISC OS application

• Make - A new desktop appl ication fo r constructing programs under the
management of 'recipes' stored in Makefiles. Various types of Makefile can be
rapidly constructed using the desktop contro ls of Make, as well as being
executed. This facility for construct ing Makefiles is known as 'project
management' on some programming systems for other types of computer.

• SrcEdit :-A text editor derived from Edit with many new features for
const ru cting program sources and other text files.

• AMU - A compact alternative to Make for using, but not constructing,
Makefiles.

• Common -A utility to find the most common words in a text file.

• DecAOF- A utility for examining AOF files output by language compi lers or
assemblers.

19

20

• DecCF -A utility for examining chunk files

• Diff - A text file compa rison tool.

• Find -A tool for finding text patterns in the names or contents of sets of files.

• Link-A tool for constructing usable relocatable modules, program files, etc.,
from object files produced by language compilers and assemblers.

• LibFile -A utility for constructing linkable library files storing genera l purpose
routines for efficient re-use in more than one program.

• ObjSize -A utility to measure object file size.

• Squeeze -A tool which compacts finished program images so that they
occupy much less disc space and load faster.

• WC -A text file word and character counting utility

In addition, each product contains language specific tools, such as the C compiler
CC forming part of Acorn Desktop C, and the assembler ObjAsm in Acorn Desktop
Assembler. Each of the tools listed above is described in more detail in its own
chapter later in this volume. The language specific tools are described in the
language user guides accompanying this manual.

As well as performing individual tasks. several of the DOE tools cooperate in ways
designed to enhance your productivity. An example of this is throwback . When a
language compi ler or assembler detects an error in a program source file, it can
cause throwback - opening a SrcEdit window for immediate correct ion of the
offend ing program line. Another example of cooperation is the ability to drag an
output file from one DOE tool to the input of another appropriate DOE tool.

Interactive and non-interactive tools

The DOE tools are divided into two categories - interactive and non-interactive.
The non-interactive tools are those that have options set and then are run , without
any further interaction with you until the task completes or is halted. The
interactive tools are those that operate with constan t interaction with you, such as
the source editor SrcEdit.

In the list of tools above, the first four (DDT, Form Ed, Make and SrcEdit) are
interactive tools, and the rest are all non-interactive. The chapters describing each
tool are organised into parts of this manual describing each category of tool. The
non-interactive tools all have simila r user interfaces, and the features common to
all of them are described in the chapter entitled General features on page I I 7.

Working in the DOE

Entering filenames

Many of the DOE tools requi re you to specify file or directory names. The
interactive tools each have file types that they 'own', which you can double click on
in directory displays to start act ivities. These are:

• DebugAIF - execution of one starts a DDT session. Fi les of this type are
displayed in directory displays with the icon:

• Template - double clicking on one sta rts a Form Ed edit Template files are
displayed in directory displays with the icon

• Makefile - double clicking on one loads it into Make (and may start a Make
job) . Files of the type Makefile are displayed in directory displays with the icon :

• Text- double clicking on one starts a SrcEdit edit

None of the non-interactive DOE tools own a fi le type. Input fil es are specified to
these tools by dragging them to their icon bar icons from a.directory display or by
typing their names into a writable icon in a dialogue box or menu field . When
typing filenames into a writable icon, enter absolute fil enames such as :

adfs : : Hard4 . $. User . ! Buggy . a . Bu ggy

21

fjOOttng me UUt:

To reduce the amount of typing required, any writable icon on a dialogue box that
accepts a filename or directory name can be set by dragging a filename from a
directory display to it. For example, dragging a filename from a directory display to
the Files writable icon on the Link SetUp dialogue box adds it to the list of input
files already specified

~I [31 Linker
Files: I adfs: :Hard4.$.User. !Buggy.o.bugg~ I

Options
<$> AIF <)Re I ocatab I e AIF ODebug
(>Module <)Binary ouerbose

I Run I I Cancel I

Many program source fil es and makefil es contai n filenames, for example in an
assembler program line such as:

GET " . h . SWINames

RISC OS provides only one current directory, but many tasks (such as assembly
processes) ca n be multitasking, running at the same time. Thus while the previous
non-multitasking generation of Acorn language products could sea rch for files
relative to a suitab ly set current directory, a new concept of work directory is
introduced for the DDE. This can be cons idered rather like a current directory for
each task, and file sea rching is performed relative to thi s. See the sect ion on each
tool to see the way the work directory is set and used by that tool. Most of the
sim pler tools do not require a work directory

Booting the DOE

22

Booting the DDE at the sta rt of a work ing session requires three steps:

• If work ing from floppy disc with a RAM disc, load the library directory from the
RAM Boot floppy disc to RAMFS, using the ! Boot obey file provided , ensuring
that your setting of the RISC OS variable Run$Path is such as:

, adfs : %. , ram : %.

so that the li brary binaries stored in RAMFS can be executed normally.

• Double cl icking Select on a DDE !Boot appl ication (in the DDE directory)

• Double clicking Select on t he set of DDE tools you wish to use in the directory
d isplay of the DDE di rectory

Working styles

Working in the DOE

You are then ready to move to the User directory (on the UserWork disc) and
construct your own programs or the example programs provided. If you are working
on floppy discs double click on ! DDETmp on your work disc to ensure that
Wimp$ScrapDir is set correctly

The ODE ! Boot app lication is set up by the installation process as described in
chapter entit led Installing the DOE on page 7. Its location depends on the hardwa re
system you installed on. If you have a hard disc drive, the ! Boot application is
$. DDE. ! Boot, and you may set your own boot file to execute its !Run file when
your machine is started, removing the need for the first step above. If you have
installed on a network, the ! Boot application is in the subdirectory DOE of each
user's copy of the DDETools directory. If you have a floppy disc on ly system, the
! Boot application is in the DOE directory of the Boot disc produced at installation.
See the directory diagrams in the chapter entitled Installing the DOE for the installed
locations of files.

The number of DOE tools that you can usefu lly load at Boot time ready for use is
determined by a number of factors: your machine RAM size; the space occupied by
other applications loaded; the size of files you wish to process with the DOE tools;
and the space on your icon bar.

The DOE tools support two main styles of working - managed and unmanaged
development. These differ only in the way you construct your finished programs
from sources, not the way you write or debug them, and you can mix and match the
two styles as you wish.

Managed development makes use of makefiles to manage the construct ion of your
finished programs. A makefile is a ·recipe' for processing your sou rces and linking
the object fi les produced to form the usable program The tools Make and AMU can
both execute the commands in a makefile running other tools to perform a make
job. The tool Make also constructs makefiles for you, avoiding the need for you to
understand their syntax, and making it quick and easy to do this. The main
advantages of managed development are: timestamps of files are examined during
a make job and no unnecessary reprocessing of unaltered program sources is
performed; programs are constructed consistent ly, following the same recipe each
time, even when run by different people . These advantages make managed
development the best style for the development of larger programs with source
split into several source files.

Unmanaged development makes use of each individual tool directly to process the
files as required to const ruct your programs. This can offer the quickest way of
constructing sma ll programs.

23

24

When Booting for unmanaged development you have to load each tool that you
wish to use, but when Booting for managed development you on ly need to load
Make (or AMU) .

When working in either style, it is recommended you place each program project in
a separate subdirectory, in the same way that the program examples are arranged
You may find it convenient to place you r own project in User, like the examples .
You can place the source, header and ob ject files in suitable subd irectories of the
project directory. See the chapters on the language compilers or assemblers in the
accompanying language specific user guide for more details of subdirectory
conventions. Source may be placed elsewhere, but this can make it more difficult
to rename or move whole projects to other directories or filing systems.

Two ways of constructing the !Automata example

An illustration of managed and unmanaged development is the way that the
program example !Automata (supplied with both Acorn Desktop C and Acorn
Desktop Assembler) can be constructed from its sou rces in both working sty les.

All the necessary resource files of !Automata are supplied ready made except for
the main program file !Runlmage. !Run lmage is constructed from a C source file
c. Automata and an assembler file s . autoprocs, linking with two C libraries
Stubs and RISC_OSLib In Acorn Desktop Assembler there is no C compiler
supplied, so the C file is included ready compiled and linked to the libraries to
form an object file o . Automata. In Acorn Desktop C no assembler is supplied so
the assembler file is distributed ready assemb led as o . autoprocs.

Constructing !Automata in an unmanaged style

To construct !Runlmage in an unmanaged style, compi le/assemble and link with
the following steps

At boot time load Link, and either CC (Acorn Desktop C) or ObjAsm (Acorn
Desktop Assembler) by double clicking Select on their names in the ODE
directory.

2 Open a directory display on the !Automata application directory by double
clicking Select with the shift key pressed, pointing to !Automata in the User
directory.

3a If using Acorn Desktop C, compile the file c . Automata to produce the object
file o . Automata. To do this, open the c subdirectory and drag the Automata
text file to the CC icon bar icon . The CC setup dialogue box appears with the
Source writab le icon set to the name of the file you dragged. Enable the
Compile only option by clicking on it, then click on Run to start the compi ler.
The CC Run and then Save dialogue boxes appear. Open the o subdirectory
and drag the CC output file to it from the save box.

Working in the DOE

3b If using Acorn Desktop Assembler, assemble the file s. autoprocs to
produce the object file o . autoprocs. To do this, open the s subdirectory
and drag the autoprocs text file to the ObjAsm icon bar icon. The ObjAsm
Setup dialogue box appears with the Source writable icon set to the name of
the file you dragged. Click on Run to start the assembler. The ObjAsm Run and
then Save dialogue boxes appear. Open the o subdirectory and drag the
ObjAsm output file to it from the save box.

4 Link the object files to form the !Runimage AIF file. To do this, open the o
subdirectory and drag o . Automata to the Link icon bar icon. The Link setup
dialogue box appears with the Files writable icon set to the name of the file
you dragged. Drag the o. autoprocs file to the Files writable icon so that its
name is added to the list to be linked. If using Acorn Desktop C you also need
to drag the library files $. RISC_OSLib. 0 . RISC_OSLib and
$. CLib. o. Stubs to the Files writable icon to include them in the link.
Ensure that the AIF radio button is selected and click on Run to start the link.
The Link Run then Save windows appear. Click on OK to save the AIF file
produced with the default name, which is ! Run Image in the application
directory

Constructing !Automata in a managed style

To construct !Runimage in a managed style, build and use a Makefile with the
following steps:

At boot time load Make by double clicking Select on its name in the ODE
directory

2 Open a directory display on the !Automata application directory by double
clicking Select with the shift key pressed, pointing to !Automata in the User
directory

3 Click Select on the Make icon on the icon bar to show the New Project dialogue
box.

4 Fill in the Name writable icon with a short name of your choice (IO or fewer
alphanumeric characters), the Target writable icon with !Runimage (this is the
file you wish to produce) and the Tool writable icon with Link, as this is the
tool which finally outputs the target

5 Drag the Makefile from the dialogue box to the !Automata directory to create
the new Makefile (project). A Project dialogue box now appears for your new
Makefile.

25

26

6a If using Acorn Desktop C, open the c directory and drag c. Au torna ta to the
Insert writable icon, followed by o. autoprocs, $. CLib . o . Stubs and
$. RISC_OSLib. o . RISC_ OSLib Click on OK to the right of the Insert
writable icon. This is the way you specify a set of input files to be processed by

the Make job

6b If using Acorn Desktop Assembler, open the s directory and drag
s. autoprocs to the Insert writable icon, followed by o. Automata. Click on
OK to the right of the Insert writable icon. This is the way you specify a set of
input files to be processed by the Make job.

7 Run a Make job to construct !Runlmage from the input files specified by
clicking on the Make button.

To repeat construction of !Runlmage following your instructions stored in the
makefile, open a project dialogue box for your project again, and simply repeat
step 7 above, or alternatively double click on the Makefile in the directory display

The file !Runlmage is then constructed fol lowing your instruct ions stored in the
makefile.

For more details about operating the individual tools, see the chapter about each
tool.

For several worked examples illustrating general use of the DOE see the chapter
entitled C tools and tlie DOE or the chapter entitled Assemblers and tlie DOE in the
accompanying language specific user guide forming part of Acorn Desktop C or
Acorn Desktop Assembler.

Working with the DOE on small machines

As described in the chapter entitled Installing tlie DOE on page 7, the minimum
Archimedes system recommended for serious use of the DOE is a 2MB RAM
machine with a hard disc drive.

Working without a hard disc drive causes the DOE to be split between a set of
floppy discs or between one floppy disc and the network. This means you waste
time changing discs. and accessing files from a network can be relatively slow. The
size of program you can easily develop is also restricted by the space for your files
on an 800K work disc (with some extra effort a project could be split between two
work discs) RISC OS provides help to desktop programs using files from more than
one disc by including filing system and disc names in absolute filenames as used
by the DOE tools. It is therefore possible, for example, to use Link to link object
files from more than one disc The disc containing each file must be inserted both
when the filename is dragged from a directory display to the tool dialogue box, and
later when the tool is run and wants to read the file . This results in several disc
changes

Working in the DOE

New target support

The emphasis of earlier sections of this chapter has been on how to use the DOE

tools productively on your host machine, but the DOE products also include

improved support for your programs running on thei r target machines. giving you

new options in designing your software.

Acorn Desktop C RISC_OSLib has been slight ly extended, with new headers

fontli st. help, fontselect. print and txtscrap. ''

The ODE non-interactive tools all have RISC OS desktop interfaces provided by the

FrontEnd relocatable modu le. You can use this module to implement your own

non-interactive tools. for programming or any other purpose. without having to

build any handling of the RISC OS desktop into you r programs See the chapter

entitled Extending the DOE on page 185 for more detail s.

Compatibility with previous Acorn language products

There should be few problems in moving from processing your program sources

with previous Acorn language products to process ing them with DOE products.

Old makefiles, written to be used with the command line tool amu supplied with

ANSI C Release 3 can st ill be used by Make or AMU, though Make cannot be used

to alter them. You wi ll have to ed it an old makefile if it did not operate with the

current directory set as the directory containing it.

Where to go from here

If you have stud ied this chapter in detail you now understand how to construct a

simple runnable program from text sources. You may now wish to load va ri ous

DOE tools and experiment with their use, and there are further chapte rs that may

provide usefu l general informat ion.

Each DOE tool. such as the text ed itor SrcEdit and debugger DDT, has a chapter

describing it. either in this user guide or the accompanying language specific

manual. If you intend to make much use of any particular tool. its chapter may

prove useful read ing next.

A large number of the DOE tools are classified as 'non-interacti ve', and have

similar interfaces. Examples are the Link, CC and ObjAsm tools used in t he ea rli er

Automata sect ion. The chapter entitled General features later in this vo lume covers

the interface features of thi s class of tool.

Since program examples are inherently specific to one programming language,

most included with Acorn Desktop C and Assembler are described in their

language speci fi c manuals. Each of these manuals contains an ea rl y chapter

27

28

demonstrating some of the DDE features with worked examples. The C chapter is
called C tools and the DDE, the assembler equivalent is called Assemblers and the DDE.
Other C program examples are described in the CC chapter.

Each language specific manual has a section called Developing software for RISC OS
which contains chapters giving general advice on how to approach typical projects.
Two such chapters are How to write desktop applications in C and Writing relocatable
modules in assembler.

Part 2 - Interactive tools

29

30

4

Overview

Desktop debugging tool

This chapter describes the desktop debugging tool (DDT). DDT is an interact ive

aid to debugging desktop or non-desktop programs written in compi led

languages such as C, Pascal or Fortran. DDT can also be used to debug programs

written in ARM assembler using ObjAsm It can be used on any of the Archimedes

range of computers running RISC OS 2.00 or late r.

Although DDT can be used to debug desktop programs, and provides a windowed

interface, it is not a true multitasking desktop program. Thi s is because DDT has to

be able to halt the RISC OS desktop at any point fo r single stepping, breakpoints

etc. This means that its interaction with other RISC OS applicat ions is limited in

certain ways:

• When the debugger is active (ie when a program is halted under contro l of the

debugger) all other tasks are halted until execution of the program is resumed.

Note: You can always tell when the debugger is act ive, because the pointer will

change to a No Entry sign if you move it outs ide the debugger's windows:

• On ly one application may be running under the debugger at any given time.

The windowed interface of DDT is designed to be easily understood by RISC OS

desktop users, and to faci litate this it duplicates many RISC OS features. However,

it uses visua l details such as unusual co lou rs to act as reminders that it is not

operating as a true desktop multitasking program.

Topics covered in this chapter:
• section entit led About debuggers introduces the concept of debuggers in general

and describes the faci liti es provided by DDT

• section entit led Preparing your program describes how to prepare your program
for use with DDT

• sect ion entitled Starting a debugging session describes how to invoke the
debugger on your program

31

1-1oouc aeouggers

• section entitled Specifying program objects describes the way in which various
objects in the program you are debugging, such as variable names, procedure
names and line numbers are specified .

• section entitled Execution control describes how to control execution of a
program running under the debugger.

• section entitled Program examination and modification describes the debugger's
facilities for displaying various objects in the program being debugged and the
facilities for changing variable, register and memory contents .

• section entitled Options and other commands describes the options in the options
dialogue box and other commands which are not covered by any of the
previous topics.

About debuggers

32

This section is aimed mainly at readers who haven't used a program debugger of
any sort before. However, others may find it useful reading, as it introduces some
of the facilities provided by DDT.

Anyone who has written a program more than about ten lines long has had
recourse to debugging techniques: the tracking down and rem oval of errors . The
form this takes depends on many things, not least the language in which the
program is written.

Some languages provide primitive debugging facilities of their own. For example
ANSI C provides the assert macro which can be used to ensure a condition is
true, as in the following example:

assert(i >= 0) ; /*Ensure following loop is finite*/
while (i--) { ... }

Some language implementations provide additional debugging facilities A
description of the debugging facilities provided by Acorn's release of ANSI C may
be found in Acorn ANSI C Release 4.

Often, however, it is left to the programmer to plant trace information in the
program itself. For example you might trace the value of the index variable in a
while loop as follows:

while (i--) { fprintf(tracefile , "i = %d\n "); ... }

Such additions to the program can be useful, but are tedious to use in compiled
languages, because every time you want to change the debugging statements, the
program has to be recompiled There is also the possibility that the debugging
statements themselves have undesirable side-effects which contribute to the
ill-health of the program.

Planting trace information in assembly language programs is more difficult. For

example, displaying the contents of all ARM registers is a non-trivial code fragment

in ARM assembler

A debugger enables you to execute your program in a contro lled environment

where you can stop execution . examine and alter variables.jset breakpoints, single

step through a program and 'watch ' particular variables for changes.

DDT provides the fo llowing debugging facilities

• Start program execution and cont inue after program execution has been

stopped

• Single step program execution, by source statement or ARM instruction

• Stop program execution at a specified program location

• Stop program execution when a specified variable changes its va lue

• Stop program execution at any time on request

• Trace program execution continuously

• Trace procedure calls

• Trace changes to a specified variable or memory location

• Display source text, symbolic disassembly, variables, registers, memory

contents and stack backtrace information

• Alter variable values , register contents or memory contents

• Protect sensitive areas of memory against being accidenta lly overwritten by

your program .

Preparing your program

This section describes how to prepare your program for use with DDT DDT uses

special information in the program being debugged, which provides DDT with

information about the source code that generated the program . This informat ion is

not automatically included in the output of the compiler This is mainly for reasons

of efficiency: programs which contain debugging in formation are larger, take longer

to compile, and run more slowly than those with no debugging in formation

Compiling

You enable the generation of debugging information with the Debug option on the

compiler SetUp menu . If you are using the compiler from the command line use

the - g flag to enable debugging information with the Acorn ANSI C compiler

(other compilers may use different flags, though - g is common across a wide range

of compilers Refer to your compiler manual for details) .

33

Preparing your program

34

Because each module of a program can be compiled with its own debugging
information, you need only specify debugging for suspect modules. Well-proven
modules in which you have complete faith can be compi led with no debugging
informatfon, whereas newer, less reliable code can have debugging information
enabled.

Turning on debugging inhibits optimisation, and reduces the speed of execution of
your program even when you are not debugging it This of course does not matter
when you are using the debugger, but for maximum speed, programs should be
compiled without debugging information, especially for production builds.

Note that if you are using an automated program construction tool. such as the
Make utility provided with Acorn's Desktop Development Environment. you may
have to delete the object files of the modules you wish to compi le with debugging
information when you enable the Debug option. This is because the modules are
not recompiled until the object files are either absent. or out of date with respect
to the source files, so you must delete the object files to force recompilation.

Linking

When linking a program to be debugged, you must instruct the linker to include the
debugging information generated by the compiler To do this, enable the Debug
option on the link menu, or, if you are using the linker from the command line, by
using the -de bug flag.

If you are using Acorn's ANSI C compiler to perform the link stage (ie without the
Compile only option enabled on the compiler menu, or without the -c flag from
the command line) the compi ler will automatically instruct the linker to include
debugging information if the compiler's debugging option is enabled

The linker also generates its own debugging information This debugging
information is used by DDT to provide low-level or symbolic debugging facilities. If
you do not wish to use source level debugging facilities, you can enable the Debug
option on the linker without enabling the Debug option on the compiler

Note that !Runimage files compiled or assembled and then linked with Debug
enabled are much larger than those produced without debug information This
may require an increase in the WimpSlot size specified in your !Run file, otherwise
the following error may be produced at run time:

No writable memory at this addr ess

If you are writing in assembler using ObjAsm you may wish to use the KEEP
directive, which instructs the assembler to keep information about local symbols
in the symbol table. These will be included in the program when linked with
debugging enabled

Desktop debugging tool

You might like to try preparing the fo llowing small program for use with the

debugger, using the methods described above.

1 #include <stdio .h>

2
3 int main(void)
4
5 int world;
6
7 for (world = O; world < 100; world++)

8 printf("Hello, World %d\n ", world) ;

9 return O;
10

Starting a debugging session

You can start a debugging session in one of the following ways:

• Double click the ! DDT application Thi s will place the debugger's icon on the

icon bar. Then drag the program to be debugged to the debugger's icon. You

can drag either an program image or an application directory. If you drag an

application directory, the program image within that directory must be ca ll ed

either ! Run or ! Run Image.

• Choose Debug from the debugger application menu. This will produce a

dialogue box with two writable icons, one for the name of the application to be

debugged, the second for any arguments the app lication may take . You can

specify the program name by dragging an application to the writable icon.

When the writab le icons have been filled, clicking the OK button will invoke

the debugger.

• Enter the following *Command:

*DebugAIF program [arguments]

where program is the name of the program to be debugged, and

arguments are any command line arguments that program may take . You

can enter this command from the supervisor prompt (outside the desktop),

from the Shell CU prompt (obtained by choosing the *Commands option on

the task manager menu) or from a task window CU prompt

Try invoking the debugger on the sample program shown at the end of the last

section.

35

36

Once you have started a debugging session in one of the above ways, two debugger
windows wi ll be displayed as foll ows

t88888888: fb888888 blnv &88888888 R
88888884: fb888888 blnv &8888888c i 88888888: eb88888c bl &88888848 8888888c: eb888858 bl Stub$$Code &88888154 . :

iliiiil!i !iiii!ll !~ll~ f 1~1~1!:f!f f!1~ ~ 88888828: 88888888 dcd 8 llltAll IJ: BllJk1M.Ml.W!W1cMllWiiiiMrnH!lllllPIBHm

R

I
RO area liflli t not on page boundat'y, last page not protected liJ mr •-•·•--ww•••••Miiiinm

The upper window is the Context window. The title bar contains the name of the
program being debugged. The Context window displays the source text or symbolic
disassembly associated with the current Context or PC location .

When you start a debugging session, the Context window initially displays a
symbolic disassembly, like that shown above. This is a disassembly of the run-time
system initialisation code. The arrow symbol (-7) to the left of the window shows
the current PC locat ion. The debugger does not display your source code at thi s
stage because the program has not started executing your code, it still has to
execute the initiali sation code Once execution reaches your code (ie the first
instructi on of ma in) your source code will be di splayed.

The lower window is the Status window. The title bar contai ns the current status of
the program being debugged. The Status window displays error and informational
messages, in addition to any data displayed by the debugger's di splay, trace and
watchpo int fac ilities. The Status display scroll s when any new information is
displayed . You ca n use the scroll bar to examine ea rli er contents o f the status
display

Some messages that may appear in the Status wi ndow at this stage are

No debugging information available

This means that you are debugging a program which has not been linked with
debugging information. No source- level or symbolic debugging facilities are
ava ilable, and debugging is limited to machine-level debugging (ie everything
must be specified in terms of machine addresses) If you have forgotten to link the
program with debugging information you should quit the debugging session, relink
the program with debugging enabled and start the debugging session aga in

No source level debugging information

This means that you are debugging a program which has been compi led without
debugging enabled. No source-level debugging faci lities are avai lable, symbolic
debugging facilities are available (ie objects can be specified in terms of link time
symbols) If you have forgotten to compi le the program with debugging
information, quit the debugging session and recompile the program with
debugging enabled.

RO area limit not on page boundary , last pag e not protected

This message occurs when memory protection is enabled (as it is by default) and
the last past of the code or read only area is not page aligned This means that the
last page of the read on ly area cannot be protected against accidental writes, since
writing to data, or a read/write area which immediately follows the code area,
would cause an erroneous data abort. You can ignore this message. Future
versions of the linker may align the areas on page boundaries when linking with
debugging enabled.

Can ' t set breakpoint on procedure main

When a debugging session is started the debugger automatically tries to set a
breakpoint on main if the Stop at entry option is enabled (as it is by default) If the
address of main cannot be determined, because, for example, the module
containing the procedure main has not been compiled with debugging information
enabled, or, the program is not written in C, then the above message will be
displayed

Try moving the pointer completely outside the debugger's windows. The pointer
will change into a No Entry pointer, indicating that the debugger is active and you
cannot select anyth ing outsi de the debugger's windows. Moving the pointer back
inside the debugger's windows changes it back to the usual arrow pointer.

37

Specifying program objects

Clicking Menu on either debugger window produces the following menu

Continue "C
Single step "S
Call ¢
Return ¢
Breakpoint "B ¢
Watchpoint "W ¢
Trace ¢
Context
Display "D ¢
Change ¢
Log ¢
Find ¢
Options ¢
*Co~~ands ¢
Help
Quit "Q

Continue, Single step, Call , Return, Breakpoint and Watchpoint are explained in
the section entitled Execution control on page 45.

Trace, Context. Display and Change are explained in the section entitled Program
examination and modification on page 53.

Log, Find, Options and *Commands are explained in the section entitled Options
and other commands on page 58.

Specifying program objects

38

Once the debugger is running, the program can be executed, single stepped, have
its variables examined or altered and so on. All of these facilities are described in
the following sections. However, before you can use these facilities, you must know
how to refer to certain program objects. Variable names, line numbers, procedure
names and memory addresses all have a syntax which must be used if you are to
reference the desired object

The following notation will be used in describing the syntax:

• An item in square brackets ([J) is an optional item which can be omitted if
desired.

• An item in braces ({}) is an optional item which can be repeated as many
times as desired

• An item in italicised text is a non-terminal item, ie an item wh ich must be
replaced by a suitable string of characters.

Desktop debugging tool

For example, an optional, comma-separated list of numbers would be denoted by:

[number{,number}]

Procedure names
Procedure names are used, for example, when setting a breakpoint on entry to a
procedure. The syntax for a procedure name is :

[module :] {procedure : }procedure

where module is the name of a program module and procedure is a procedure
name within that module. Each procedure name in the list of procedure names
refers to a successive procedure in the textual nesting of procedures . The module
name is the leaf fil ename of the compiled source file. For example, consider the
following program fragment stored in file pas . test.

program raytrace(input , output) ;
var count : integer; ...

procedure pixel(x , y : integer);
var colour : integer ;
function reflect(x , y : integer; angle

integer ;

begin (* body of reflect *) end ;
begin (* body of pixel *) end ;

begin (* body of raytrace *) end ;

The full name for function reflect would be:

test:raytrace : pixel : reflect

real)

that is, procedure reflect contained in procedure pixel contained in
procedure raytrace (the debugger treats the entire pascal program as one large
procedure) contained in module test (module names do not generally make
much sense for Pascal. since standard Pasca l has no facilities for separate
compilation, but many Pasca l implementations, including Acorn's ISO Pasca l , have
extensions to allow sepa rate compilation)

Note Some Pascal implementations on the Archimedes do not represent
procedure names in the manner described above. Instead , they generate a new
procedure name at the outermost leve l by concatenating enclosing procedure
names to the current procedure name separated by a dot. Also, they do not
generate a pseudo-procedure for the whole program. Thus, with such an
implementation , the full name for function reflect would be
test :pixel.reflect

39

Specifying program objects

40

You do not need to type the full name every time you wish to refer to a procedure:
Since the prefixed module name and procedure names are optional they can be
omitted, and the procedure referred to by its name alone (eg r e f l e c t or
pixel. r efl e ct in the above example) Sometimes it will be necessary to enter

a longer version of the procedure if there are two of more procedures with the same
name.

Suppose in the above example there was a procedure:

tes t:raytrace : l ine : reflec t

re fl ec t on its own would be ambiguous, so you would have to enter
p i xe l: r eflect or l ine : ref lec t to specify which one you meant. Note that
it is still not necessary to enter the tes t: r ay t race prefix, since the 1 ine or
p ixel prefixes are sufficient to render the procedure name unambiguous.

Similarly, suppose you had two C modules called quickdraw and slowdraw,
each containing a static function circle. In this case you would need to enter either
quick d r aw : ci r c le or slowdr aw : c ircl e to indicate which circle function
you were referring to.

Even if two procedures have the same name, it may not be necessary to enter more
than the procedure name on its own . When looking at a procedure specification ,
the debugger searches back along the dynamic call chain (ie the chain of
procedures called to reach this point in the program) to find a procedure name
which matches the first name in the procedure specification Having found this, it
matches the rest of the procedure specification against textually nested
procedures contained within the first procedure found.

For instance, in the above example with two reflect procedures, if the program was
stopped (at a breakpoint. perhaps) at some point in pixel : reflect , then
ref l ect on its own would refer to p ixel : re f lec t , since on looking at the
dynamic call chain the debugger would find that it was in a procedure called
re f lec t , and would match that against the procedure specification r e f lect.

Variable names

Variable names are used, for example, when setting a watchpoint . The syntax for a
variable name is .

[procedure - specification :] [line number :]variable

where procedure-speci fica ti on is a procedure specification as described in
the section above, line number is a line number in a source file and variable

is the name of a variable.

As in the case of a procedure specification, the debugger tries its best to match a

variable name given to it, by first searching back along the dynamic call chain, and

then searching the global va riables . so it is usua lly not necessary to specify more

than the va riable name on its own.

In the raytrac e example above, if the program was stopped at some point in the

function reflect then x, y and angle would refer to the arguments in functi on

reflect, colour on its own would refer to the local variable colour in

procedure pix el (since the debugger sea rches back the ca ll chain and finds

procedure pixe l containing a variable co l our). The variable coun t wou ld refer

to the global va riable count in program raytrac e.

In some cases, however, it may be necessary to specify more information about the

va riable, suppose, for example, you wanted to examine the arguments x and y to

the procedure p ixel Specifying x or y on its own wou ld display the x or y

argument in function refl ec t so you must specify pixel: x or pixe l : y .

There may stil l be some ambiguity in languages other than Pascal. In Pascal you

ca nnot declare loca l variables within a program block (ie between a

begin ... end pair). however Callows declarations in loca l blocks. Consider for

example the fol lowing code fragment as it wou ld be displayed in the debugger's

sou rce window:

· DDT: adfs: :HardDisc5.$.ddt.Man.evaJ
115 int
116 {
117
118
119
128
121

logicalCint a, int b, int op)

int tfl!P; t• tMp used in calculating a op b *'
if Cop=~ OP GT II op== OP GE> { t• >or>= •t

int lMPJ- -

122
123
124

op =10P == OP GT ? OP_LE : OP_LT; t• Change to <= or < *'
} tMp = a; a = o; b = tMPJ t• and swap arguMents ti Iii

m: MMMMiiirn~•lll:tM~f EDu@ul ;lf4>?-'.- ' o-c::,12wwwii:Mllll

The are two declarations of t mp in l og i c a l, so t mp or logical : t mp may be

ambiguous. In this case you must specify a line number before the variable name

to remove the ambiguity.

For example, to refer to the tmp variable in the outer scope (ie at the function

level) you could enter:

117 : t mp

or

logi cal : 117 : t mp

41

Specifying program objects

42

To refer to the tmp variable in the inner block, use:

120:tmp

or

logical :120 :tmp

The line number should be the line number of the declaration of the variable (in
this case 117 or 120) . The line numbers are displayed in the source window, so it is
quite easy to find the line number of the declaration .

The syntax described above is sufficient to refer to all textually nested variables.
However, variables in earlier instances of a recursive or mutually recursive
procedure cannot be accessed. For example:

void hanoi(int src , int dest, int via , int n)
{

if (n > 1) {

hanoi(src, via, dest , n - 1);
hanoi(src, dest, via , 1);
hanoi(via, dest, src , n - 1);

else
printf ("Move disc from peg %d to peg %d\n ",
dest);

src ,

Suppose this function is called with n = 3 and that it recurses until it hits a
breakpoint on the printf when n = I . There is no direct way to refer to the
variables src, dest and via in an outer call when n = 2 or 3 since any reference
to these variables will refer to the variables in the call with n = I . What you can do
is, use the Context opt ion on the debugger's main menu (described in the section
entitled Program examination and modification on page 53) to change the context to an
outer ca ll on the stack. Since the debugger searches from the current context
outwards, you can now specify the variable as per normal. The debugger will ignore
the variables in inner calls and use the variable in the current context .

Expressions

Several DDT commands (for example Display Expression) may take arbitrary
expressions. The syntax for these expressions is based on that found in C.

The following table summarises the operators av~ilable along with the precedence
of each operator.

2

3

4

5

6

7

8

9

IO

11

12

Desktop debugging tool

() grouping, eg a* (b+c)
[J subscript. eg isprime [n). matrix [1 J [2 J

record selection, eg rec. field, a . b . c

- > indirect selection, eg rec - >next is (*rec) . next

*
&

*
I
%

+

>>
<<

<

>
<=
>=

,_
&

&&

I I

logical not, eg ! finished
bitwise not, eg -mask
negation, eg -a
indirection, eg *ptr
address. eg &var

multiplication, eg a *b
division, eg c/ d
remainder. eg a%b is a-b* (a / b)

add ition, eg a+l
subtraction, eg b - d

right sh ift. eg k » 2
left shift, eg 2<<n

less than , eg a<b
greater than, eg n >lO
less than or equal to, eg c< =d
greater than or equa l to, eg k >=5

equal to, eg n= =O
not equa l to, eg count! =limit

bitwise and, eg i & mask

bitwise xor, eg a " b

bitwise or, eg ml OX l OO

logica l and, eg a ==l && b ! =0

logical or, eg a> l i m I I finished

The lower the number, the higher the precedence of the operator. Note the syntax

for subscript ing and record selection. The object to which subscript ing is applied

must be a pointer or array name. The debugger will check both the number of

subscripts and their bounds in languages which support such checking A warning

wi ll be issued for out-of-bound array accesses. As in C, the name of an array may be

used without subscripting to yie ld the address o f the first element

The prefix indirection operator* is used to dereference pointer values . in t he same

way as Pascal 's postfix operator ". Thus if ptr is a pointer type, *ptr wi ll yie ld the

object it points to (like ptr " in Pascal) .

43

44

To access the fields of a record through a pointer, you can either use
(*recp). field, or the C 'shorthand' notation, recp->field

If the lefthand operand of a right shift is a signed variable, then the shift will be an
arithmetic one (ie the sign bit is preserved). If the operand is unsigned, the shift is
a logical one, and zero is shifted into the most significant bit

If incompatible types are used during expression evaluation, the debugger will
print a warning message, but evaluation will continue.

Constants may be integers (to the base specified in the Base option), hex integers
(preceded by OX or&) character constants, strings or floating point numbers. The
following show examples of each.

32768
OXBOOO
3 . 2768e4
' A '

"Hello , World\n "

Integer in the currently selected base
Hex integer
Floating point number
Character constant
String

String constants can contain escapes following the standard C syntax:

\a alert
\b backspace
\f form feed
\n new line (cursor to start of next line)
\r carriage return (cursor to start of current line)
\t horizontal tab
\v vertical tab

\' single quote character
\" double quote character
\? question mark character
\\ backslash character

\x<hexadecimal number>
\<octa l number>

Integer base

The base in which DDT interprets constants entered by you, such as 32768, and in
which it displays integer values, is determined by DDT defaults, the setting of the
Base writable icon on the Options dialogue box (see Options and other commands on
page 58) and the similar item on the Display box.

If the Display box Base writable icon is set, the specified base is used to display
integer values. If the Options box Base writable icon is set, the specified base is
used for input and output, unless overridden for Display output from the Display

;;,

(

~·

Desktop debugging tool

box. Note that this means that you can change a variable to a value in the Options
base , then display it in another base specified on the Display box, for example
changing a variable to 153 (base l 0) then displaying it as 99 (base 16) . If the
Options box Base writable icon is not set, default bases are used .

Addresses & low-level expressions

This section describes the syntax for low-level expressions It is directed mainly at
assembly language programmers You can skip this if you will only be using the
high level language debugging facilities .

The syntax for a low-level expression (as used, for example, when setting a
breakpoint on a memory address or di splaying a disassembly or memory dump) is
as follows (an understanding of BNF is assumed)

expr : : = value + expr I value I expr
value : : = ' & ' hex-number I number I symbol

where hex-number is a hexadecimal number, number is a number in the default
base (hexadecimal if no default base specified) which must start with a digit in
range 0 .. 9 and symbol is a low level symbol in the debugging information
produced by the linker.

Examples:

main Address of function main.

main + &14 Five words into main.

8000 Start of image (assuming the image has not been relocated
and the default base is hex.)

Image$$RO$$Base Preferred way of specifying base of program.

Execution control

This section describes how you can control the way in which the debugger executes
your program.

Continue

Continue starts or restarts execution o f the program. Execution continues until
one of the following events occurs

• a watchpoi nt changes or is cancelled

• the program run s to completion

• an error or abort condition occurs.

45

46

You can interrupt execution of the program at any time by pressing Shift-Fl 2. Note
that if another task is executing when you press Shift-Fl 2 you may need to
generate an event to force execution to return to the program before the Shift-Fl 2
interrupt will be noticed. The simplest way to do this, usually, is to click on the

program's icon on the icon bar. or click on one of its windows .

As the debugger sets a breakpoint on procedure main, you can usually use
Continue to start execution of the program and get to the first line of your source
text. You cannot do this if

• you have disabled the Stop at entry option, or

• the Can't set breakpoint on main message appeared when you
started the debugging session.

Note that if you have any watchpoints set. the instructions are single stepped
instead of executed and the watchpoints are checked after each instruction. If any
have changed, the single stepping is stopped at that point. This will be completely
transparent, except that the program runs more slowly than normal.

You can use Ctrl-C as a short cut for Continue.

Single step

Single step allows you to step execution through one or more source statements
or ARM instructions. Choosing Single step produces the following dialogue box:

II mg e s ep

~Step into procedures
<t>Step by source state~ent
<)-Step by ARM instruction

No. of steps: D m
No. of steps allows you to enter the number of statements or instructions to be
executed. The Step by source statement and Step by ARM instruction radio
icons allow you to specify whether the contents of No. of steps should be treated
as a source statement count or an ARM instruction count.

The Step into procedures option icon selects whether procedure calls should be
treated as a single source statement I ARM instruction or whether single stepping

should continue into the procedure call.

Note that the debugger cannot detect certain types of procedure calls , for example,
calls via function variables in C In these cases the debugger will continue stepping
into the procedure, regardless of the setting of the Step into procedures option

Call

Desktop debugging tool

Note for assembly language programmers: The debugger treats BL instruct ions as
procedure calls , so if some other instruction is used to call a procedure, this will
not be detected by the debugger. For instance, consider the followi ng example,
which might be produced by the C compi ler when ca lling via a function variable.

MOV lr, pc
LDR pc , [sp, #o_fn]

; Set up link. PC = current instruction + 8
; Load PC from function variab le on stack
; Returns here

You complete the Single step dialogue by clicking on OK or pressing Return . The
specified number of statements or instructions are then executed.

Note that if you are currently stopped at an ARM instruction for which there is no
source information, stepping one source statement will step ARM instructions
until an instruction for which source information is available is reached . This can
be used when you initially start a debugging session, and wish to step to the first
source statement to be executed. This is usually the first instruction of main for C
programs, but need not necessarily be so, if, for example, the module containing
main was not compiled with debugging in formation.

You can use Ctrl-S as a short cut for single stepping I instruction or source
statement. The Step into procedures and Step by source statement I Step by
ARM instruction are determined by the current settings in the Single step
dialogue box (ie the settings when the dialogue box was last displayed) .

Call allows you to call a named procedure Choosing Call produces the following
dialogue box:

The writable icon allows you to specify the name of the procedure to be ca lled. You
can specify arguments to the procedure in a comma-separated list in round
brackets after the procedure name.

The arguments must be word-sized objects (eg integers or pointers) or
floating-point va lues. Floating-point arguments occupy the next two adjacent ARM
registers or stack words as described in the Arm Procedure Call Standard (ie
floating-point arguments are not passed in fl oating-point registers).

Complete the dialogue by clicking on OK or pressing Return . The specified
procedure is ca lled with the arguments on the program's stack, and in ARM
registers RO - R3 .

47

Execution control

Return

Note that the program 's stack pointer must be initialised before attempting to call
a procedure: calling a procedure without a va lid stack pointer may result in a Data
abort or Address exception . Therefore, if you are debugging a program written in C,
you must ensure you have executed the run-time system initialisation code using
Continue or Single step as described above. If you are debugging a program
written in assembler, you must ensure t hat you have executed your own
initialisation code, which must initialise the stack pointer.

Return allows you to retu rn from the current procedure. Choosing Return
produces the fo llowing dia logue box:

Return

Ualue:

You can enter a value to be returned from the procedure in the va lue writable icon.
This may be either an integer or floating-point va lue. If you do not specify a va lue a
default va lue of 0 (or 0.0 for floating-point va lues) is used.

Note that the Return option returns from the procedure in the current context. If
you used the Context option to change the current context to an outer context on
the stack non the debugger's menu , the Return option wi ll return from the
procedure in the se lected context, rather than the cu rrently executing procedure.

Breakpoint

48

Breakpoint is used to add and remove breakpoints. Choosing Breakpoint
produces the fol lowing dialogue box:

Break oint

I at Procedure 11 at Line J I at Address

on SWI I Ion Wi111p event ~I I Refllove

List Re111ove all

- --·---,- --- -vv·- -.;:, -- - ·

Choosing one of the at Procedure, at Line or at Address buttons sets a

breakpoint at the procedure, source line number or memory address entered in the

associated wri table icon. The syntax for specifying these objects is described in the

section entitled Specifying program objects on page 38.

Choosing the on SWI button causes the debugger to stop when the named SWI is

called by the debuggee SWI names are specified as in t he RISC OS Programmers
Reference Manua l except that a leading 'X' is ignored and case is ignored when

matching SWI names.

Choosing the on Wimp event leads to the fo ll owing dia logue box

Wit11 Events
Event selection:

OHull 0Redraw Window

00pen Window Otiose Window
0Pointer Leaving Window
0Pointer Entering Window

0Lose Caret OGain Caret

D User Message D Message Recorded

0Scroll Request

0Mouse Click
D User Drag Box
D Key Pressed

0Menu Selection

D Message Ack

OK

Select the set of Wimp events you are interested in and click OK. The debugger will

stop execution of the debuggee when it receives one of the specified events and

wi ll display a message describing the event received .

For example:

Event = User message , action = 0 (Quit)

Choosing Remove removes the breakpoint specified in the associated writable

icon . The breakpoint may be specified as a breakpoint number, as given in the list

breakpoints command, preceded by a hash(#) or it may be specified exact ly as

specified when setting the breakpoint.

List displays a. li st of all currently set breakpoints with breakpoint numbers which

can be used when removing individual breakpoints.

Remove all removes all current breakpoints

You can use Ctrl-B as a short cut to produce the Breakpoint dialogue box.

49

Execution control

Breakpoints may also be set or cleared by clicking on a line in a source or

disassembly display. Clicking on a line sets a breakpoint on the line. The

breakpoint is shown by the breakpoint marker (a filled in circle) to the left of the

line. Clicking on a line which already has a breakpoint removes the breakpoint.

Watch point

50

Choose Watchpoint to detect when a variable or memory location changes its

value. When a watchpoint is in force, instructions in the program are single

stepped instead of being executed and the values of the variab les being watched

are checked after each instruction or source statement executed. Watchpoints may

be set on simple variables such as integers or more complex variables such as

st ructs and arrays. Setting a watch point on a whole array can be very useful if, for

example, you are debugging a sort routine; you can track all changes to the array as

it is sorted.

Since the debugger is single stepping, execution can be quite slow, typically

between 4 and I 0 times as slow as normal execution . If thi s is too slow to be

practical, the best approach is to try to isolate the section of code under suspicion,

set a breakpoint on entry to this section of code, and only set the watchpoint(s)

when the program stops at the breakpoint.

Choosing Watchpoint produces the following dialogue box

a c porn

I on Uariable I

List

on Me111ory'

Re1110ve

I Re111ove all I

Selecting on Variable or on Memory sets a watch point on the variable or memory

location specified in the associated writable icon . The syntax for specifying

variables or memory addresses is described in the section entitled Specifoing
program objects on page 38.

Remove removes the watchpoint specified in the associated writab le icon . As with

breakpoints the watchpoin t to remove may be specified as a watchpoint number

preceded with a hash(#) or exactly as specified when .setting the watchpoint.

List displays a list of watchpoints currently in force . Remove all removes all

watchpoints

Trace

Desktop debugging tool

Note that if you are watching a local variable (ie a variable stored on the stack) the
watchpoint will become invalid on exit from the procedure containing the variable
being watched. The debugger detects this and stops execution with the message:

Watchpoint watchpoint discarded on exit from procedure

where wa t chpoin t is the name of the variable being watched.

Also note that when you are watching a variable which is stored in a register, the
debugger may erroneously report a change .in the variable's value. This is because
the C compiler does not allocate registers to variables over the whole range of a
procedure. Instead, it allocates the registers over the lifetimes of variables (ie the
range of the procedure in which the variable is actually used) . Outside this range a
register may be used for other purposes (such as temporary values in calculations).
It may even be allocated to another variable, if the lifetimes of the variables do not
overlap Thus the debugger may report a change in the variable when it sees the
register changing, but of course the register is no longer being used to store the
variable.

You can use Ctrl-W as a short cut to produce the Watchpoint dialogue box.

Trace allows you to select a set of actions about which you wish to be informed .
When one o f these actions occurs a message to this effect is di splayed in the
debugger's status window. For certain actions the source I disassembly display is
updated to show where the action occurred.

The actions which you can trace are as follows:

Execution

The source I disassembly display is updated for every ARM instruction or source
statement executed (ARM instruction if Machine-level debugging is enabled,
source statements otherwise). The effect is to produce a continuous execution
display in the context window.

Breakpoints

When a breakpoint occurs. instead of stopping execution, a message is displayed
in the Status window:

Break at breakpoint

where b r eakpoint is the location of the breakpoint. The source I disassembly
display is updated to show where the breakpoint occurred. Execution then
continues after the breakpoint.

51

52

Watchpoints

When a watch point changes, a message of the following form is displayed:

Watchpoint watchpoint changed at location

where watchpoint is the name of the variable being watched, and location is
the program location where the watchpoint was changed. If, for example, you are
debugging a sort routine and have a watch point on the array being sorted, you can
select watchpoint tracing to provide a continuous update of all changes to the
array.

Procedures

When procedure tracing is enabled, a message of the following form is displayed:

Entered procedure procedure name

This can be useful if you wish to quickly locate the procedure where a fault is
occurring.

Event breaks

When a Wimp event break occurs execution is not halted. Instead of stopping at
the breakpoint a decoded form of the event data is displayed and execution
continues.

SWI breaks

When a SW! break occurs execution is not halted, a message is displayed:

Break at SWI SWI Name

The SW! is then executed and execution continues after the SW! breakpoint.

Choosing Trace from the debugger's menu produces the following dialogue box:

Trace

Desktop debugging tool

Select the set of actions you are interested in tracing and click on OK. A message
confi rming your selection will be displayed You won 't notice the effects of
enabling procedure tracing until execution of the debuggee is resumed .

Program examination and modification

Display

This option allows you to display information about the program being debugged.
You can examine source text, instruction disassembly, variab le contents, memory
contents, stack backtrace information, register contents and low-level symbol
values. Choosing Display produces the fo llowing dialogue box:

lSP ay

OUpdah Base: D

Source 11 Expression 11 Sylilbols
Disassefllbly

11
Me1110ry

Ar9u111ents II Registers Locals

Backtrace 11 FP Registers

You can use Ctrl-D as a short cut to produce this display.

Select the item you want information about. The Source, Expression, Symbols,
Disassembly and Memory icons use the contents of the writable icon to
determine what to display. Each icon is described in turn below.

Source

Displays the speci fied source file in the debugger Context window. You can specify
a source line number at which to start the display. The syntax for the filename and
line number is :

filename[:line]

(that is, a valid RISC OS fil ename optionally followed by a co lon(:) and a line
number) . The line number defaults to I if not specified. The filename does not have
to be a source file used to generate the program you are debugging: you can
display any file you like.

53

Program examination and modification

54

Expression

The writable icon shou ld contain an express ion name. The syntax for entering

expression names is described in the sect ion entitled Speciflding program objects on

page 38. The expression is displayed in the debugger Status window.

Complex expressions such as C structs or arrays are displayed in structured format.

nested substructures are indented to indicated the level of nesting. Character

pointers and arrays are displayed as strings if a terminating 0 is found wi thin the

first 80 characters and there are no intervening non-graphic characters apart from

newline and carriage return . which are displayed as \n and \r. For example. the

following structure:

struct ProcedureLoc {
struct ProcedureLoc *nextproc ;

struct SourcePos {
char *filename ;
int line , chpos ;

location ;
char procname[32] ;

}thisproc ;

would be displayed as:

Status: Sto ed at Break oint ·
thisproc = struct {

nextproc = 88888888,
location = struct {

},

f ilenaMe = string "c.debug",
line = 1152, ·
chpos = 8 I procnaMe = ar1·ayC8 .. 31J 11 start_debug"

} u
IJ[: ======111111-1· 1· •.•. 1······.11•1·· a1;11.•1u1m1•1•1••-1•1· ··-1· ••· 1•l· l11lil+flli•1•11:mg

Arguments

Arguments displays all the arguments to the cu rrent procedure. The arguments are

displayed as if each individual argument had been displayed using the Display

Expression facility described above.

If you want to examine the arguments in an outer scope (ie in the procedure which

called this procedu re or the procedure wh ich called that ...) you can use the

Context item on the main menu to change the current context to that of one of the

ca lling procedures. and then select Arguments to display the arguments o f that

procedure .

Desktop debugging tool

Locals

Locals is very simi lar to Arguments. It displays all loca l variables (including the
arguments) in the current procedure .

Backtrace

Backtrace displays a list of procedures in the ca ll chain from the current
procedure back to the program entry point

Procedures which have been compiled with debugging information are di splayed
in the followi ng form :

procedure , line line of file

Those which have been compiled or assembled without debugging in fo rmat ion
look li ke this:

PC = address (procedur e + offset)

A typical backtrace might look something li ke thi s:

Status: Sto ed at Break oint
halloc, line 598 of c. link U
addarea, line 1318 of c.link I load!, line 1678 of c.link
Main, line 4341 of c.link
PC = 88819514 (_Main + 4)
PC =. 8881d3d8 (_kernel_CallinitProcs + 8> . Ii.I
Hi IMllMMM"F;iiM•**'*MllHR

The last two entries in this backtrace are procedures in the C library initialisation
code, the C l ibrary does not conta in debugging in fo rmat ion Note that because the
program used in the above example has been linked with debugging enabled , the
procedure names still show in the C library. If t he program had been linked without
debuggi ng information , even these would not be available, and the last entry, for
example, wou ld just read PC = 00011358.

Symbols

Symbols displays low- level symbols generated by the linker when linking wi th
debugging enabled. The writable icon gives a comma-separated list of symbols to
be displayed. The symbols and their addresses are di splayed in the debugger's
Status window.

You ca n use the fo ll owing wildca rd characters in symbol names:

• A star(*) matches 0 or more characters

• A hash (#) matches any single character.

55

Program examination and modification

56

For example, _kernel_* would list all the kernel routines (eg _kernel_ swi)
and*$$*$$* wou ld list all the linker generated symbols (eg Image$$RO$$Base
and C$$code$$Base).

Disassembly

This displays a symbolic instruction disassembly in the debugger's Context
window. The writable icon should contain a low-level expression which evaluates
to a memory address indicating where the disassembly shou ld start The syntax for
low-level expressions is described in the section entitled Specifying program objects on
page 38.

Memory

This displays a memory dump in the debugger's Context window. The writable icon
should contain a low-level expression giving the memory address.

Registers

This displays the contents of ARM user registers 0 - 15 and the flags in R 15.

FP Registers

This displays the contents of fl oating-point registers 0 - 7 and the flags in the
fl oati ng-point processor status word

The Base writable icon gives the numeric base to be used when displaying
Variables, Arguments, Locals, Symbols and ARM registers. If this writable icon is
left blank a default of decimal or hexadecimal is used depending on what is being
displayed

The Update box applies to Variables, Locals, Arguments, Backtrace, Registers and
FP Registers When Update is selected and one of these items is displayed , the
item is added to a list o f items to be displayed whenever the debugger stops
execution (for example, at a breakpoint). There is no way to remove items from this
list once they have been added to it .

uesKrop aeouggmg roo1

Change

Change allows you to alter va riable, registers or memory contents. Choosing
Change produces the fo llowing dialogue box:

.~Uar·iable

Na•:

ange

OMe111ory

New contents:...._ ________ ~

The Variable, Register and Memory radio buttons indicate what is to be changed
The Name writab le icon indicates which variable, register or set of memory
locations is to be changed. The New contents writable icon gives the new
contents. Clicking OK makes the change.

Variable

The Name writable icon should contain a variab le name as described in the
section ent itled Specif1Jing program objects on page 38. Only simple va riables such as
integers and pointers or floating-point va riables may be changed. The New
Contents writable icon should contain the new va lue for the variab le,
fl oating-point val ues are specified in normal C floating-point format.

Register

The Name writable icon should contain a register name. Va lid register names are
RO - RI 5, SL, FP, IP, SP, LR, PC and FO - F7. The New Contents wri table icon should
contain a low-level expression or floating-po .nt constant. depending on the type of
register being changed Low-level expressions are described in the section ent itled
Specifijing program objects on page 38.

Memory contents

The Name writable icon should contain a low- level expression which eva luates to
a memory address. The New Contents wri tab le icon shou ld contain a
comma-separated li st of low-level expressions, which are placed in successive
memory words sta rting at the memory word speci fied in the name writable icon.
The syntax for low- level expressions is described in the section entitled Specifijing
program objects on page 38.

57

Options and other commands

Options and other commands

58

The Options item on the debugger main menu produces the fo llowing dialogue

box:

[§]Source level

[§]Machine level

[§] Me111or!I protection

<$> Risc0S bindings

O tions

[§]Source line nuf!lbers

(§]Stop at entr!I

O Arthur bindings

Cof!lf!land line: ladfs: :HardDisc5.$.ddt.111an.hello [

Source tree: ladfs::HardDisc5.$.ddt.111an

Base: D OK

Source~level debugging

This option enables the display of source information in the debugger Context

window. If this option is deselected, a disassembly of the ARM instructions

corresponding to the source text will be displayed

Machine~level debugging

This option enables the tracing of ARM instructions when trace execut ion is

selected .

Memory protection

This option enables or disables protection of sensitive areas of memory When this

option is enabled zero page (0 - &7fff) is protected against writing and the

debuggee's code area is protected against writing.

Source line numbers

This option enables or disables the display of line numbers in source text displays

Stop at entry

When this option is enabled, the debugger automatically tries to set a a breakpoint

on procedure ma i n when a debugging session is started. This allows you to use

Continue on the debugger main menu to get rapidly to the start of your source

code.

RISC OS bindings I Arthur bindings

The ARM Procedure Call Standard (APCS) has two variants:

• APCS_A, which was used in the Arthur operating systems and earlier operating
systems for the ARM processors

e APCS_R, which is used in RISC OS.

Older compilers, such as Acorn's ISO Pascal and Fortran 77, and versions of the C
compiler prior to 3.00, generate APCS_A code. APCS_A code can still be used
under RISC OS, although machine language veneers may have to be written to
interface with libraries such as RISC_OSLib. The variants differ in the bindings of
the registers such as the stack pointer and frame pointer. The bindings are as
follows:

e RISC OS: SL= RIO, FP =RI I , IP= Rl2, SP= Rl3

e Arthur: FP =RIO, IP= RI I , SP= Rl2, SL= Rl 3

The debugger automatically determines which bindings are in force at any instant
when displaying stack backtraces or examined stack variables. However, when
displaying disassembly or register values, it cannot determine which bindings are
being used. This pair of radio icons allow you to tell the debugger which bindings
are in force.

It is not essential that you tell the debugger which bindings are being used, the
option only determines the way the register names are printed in disassembly and
register displays. For example the instruction

STMDB Rl3!, {RlO , Rll, Rl2, R13}

would appear as:

STMDB sp !, {sl , fp, ip , sp}

with RISC OS bindings, and as:

STMDBs l!, {fp , ip, sp , sl}

with Arthur bindings.

Command line

This writable icon allows you to change the command line passed to the debuggee
The existing command line is displayed in the icon and may be edited. Note that
the first word of the command line should be the program name.

Base

The Base writable icon gives the default numeric base when displaying or entering
numbers.

59

vµuun::; af/U UlflfH GUTTITTlaf/U:S

Log

Find

60

Source tree

Compilers such as Acorn 's ANSI C may put relative filenames in the debugging
information (eg c. display or " .mip. c . aetree). The debugger needs to know
where these files can be found. By default it assumes the source files res ide in the
directory from which the program image was loaded. This writable icon allows you
to change this default. It accepts a comma-separated list of directory names, each
one ending in a full stop (immediately before the comma)

Log allows you to record any information output to the debugger Status window to
a text file . Choosing Log produces the following dialogue box:

, .
Filenaflle:

Enter the name of the file into which you wish to log output. The file wi ll be opened
as a new log file . Any previous contents of the log file wil l be overwritten. If a log
file was previously open it will be closed when the new log file is opened

Find allows you to find a sequence of bytes , words or cha racters in the application
workspace. Choosing Find produces the following dialogue box:

Word or Byte

The writable icon shou ld conta in a comma separated li st of low- level express ions
giving the word or byte va lues to be found

String

The writable icon should contain the sequence of characters to be found , the
sequence should be entered without quotation marks of any kind.

Desktop debugging tool

All occurrences of the byte, word or character sequence in the application space

are reported in the debugger Status window.

*Commands

Help

*Commands allows you to access the RISC OS CL! from within the debugger.

Choosing *Commands will lead to the following dialogue box:

•Cof!ll!land

Enter the command you wish to execute in t he dialogue box and press Return or

click OK. If you are debugging a Wimp task (ie a task which has called

Wimp_Initialise) you should precede the command with the WimpTask command,

otherwise the output of any command executed may be displayed in graphics

mode.

If you wish to enter severa l commands you can enter the Gos command or the

ShellCLI command in the dia logue box.

Help gives interactive help on the debugger. Choosing Help will produce this

initial help window:

This is the Desktop Debugging Tool <DDT>. R
debugging session f!lay be started in one of the
following ways.

Link an application with the -debug flags and
execute it as per norf!lal.

Drop an iMage onto the debugger icon on the
icon bar.

Frof!l a task window or the desktoe cli <frof!l the
task 111anager f!lenu) type "debugaif <i111age) <args)"

- Topic:
I Continue J JSingle step 11 Call J l Return
I Breakpoint II Watchpoint II:= :::::;::Tr==ac==e===:ll Context

I Display 11 Change 11 Log 11 Find

61

An example debugging session

Quit

Choose the icon corresponding to the topic on which you want help. The help will
be display in the help box above the topic buttons.

This quits the debugger and returns to the calling environment (generally the
RISC OS desktop).

You can use Ctrl-0 as a short cut for Quit.

An example debugging session

62

The following example debugging session shows how DDT might be used to fix a
rather bug-ridden file sorting tool written in C. The source is given here with line
numbers for reference later in the chapter. The source, along with the other files to
make the application, can be found in the ! Sort directory, which is in the
examples directory User.

1
2
3

4
5

6

7

8

9

10
11

12
13

#include
#include
#include
#include

#include

#define
#define
#define

#define

<stdio.h>
<Stdlib.h>
<string.h>
<stdarg . h>

"kernel . h "

READATTR 5

READFILE 16
WRITEFILE 0

FILEFOUND 1

14 static void fail(char *errmsg , . . .)
15
16 va_ list ap ;
17
18 va_ start(ap , errmsg) ;
19 vfprintf(stderr , errmsg , ap) ;
20 va_ end(ap) ;
21 exit(l) ;
22
23
24 / * See Sedgewick: Algorithms 2nd edition P 108 * /
25 static void sortstrings(char *a[] , int n)
26 {
27 int h , i , j ;

28 char *v;
29

Desktop debugging tool

30 h = 1 ;
31 do
32 h h * 3 + 1 ;
33 while (h <= n) ;
34 do
35
36
37
38
39
40
41
42
43
44

h h I 3 ;
for (i = h + 1 ; i <= n ; i++) {

v = a[i] ;
j = i ;
while (j > h && strcmp(a[j-h], v) > 0) {

a[j] a[j-h] ;
j -= h ;

}

a [j] = v ;

45 while (h > 1) ;
46
47
48 void sortfile(char *infile , char *outfile)
49
50 _ kernel_ osfile_ block finfo;
51 int size ;
52 char * finbuff , *foutbuff ;
53 char *cp ;
54 int 1 , linestart ;
55 char * * lbuff ;
56 int i;
57
58 if (_kernel_osfile(READATTR , infile , &finfo) ! =

FILEFOUND)
59 fail ("Error opening %s \ n ", infile) ;
60 size = finfo.start ;
61 if (! (finbuff = malloc (size + 1)) I I ! (foutbuff

malloc(size + 1)))
62 fail ("Out of memory \ n ");
63 finfo.load = (int) finbuff ;
64 finfo . exec = O;
65 if (_kernel_osfile(READFI LE , infile, &finfo) < 0)
66 fail ("Error reading %s \ n ", infile) ;
67 1 = 0 ;
68 cp = finbuff ;
69 linestart = l ;
70 for (i = O; i < s ize ; i++) {
71
72
73
74

if (linestart) {
l++ ;
linestart = O;

63

An example debugging session

64

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105 int
106
107
108
109
110
111

if (!*cp II *cp ' \n ') {
*cp = ci ;
linestart 1 ;

cp++ ;

*(finbuff +size) = O;
if (! (lbuff = rnalloc (l * sizeof (char *))))

fail("Out of rnernory\n ");
cp = finbuff ;
for (i = 0 ; i < 1 ; i++)

lbuff[i] = cp ;
cp += strlen(cp) ;

sortstrings(lbuff , 1) ;
cp = foutbuff ;
for (i = O; i < l ; i++)

strcpy(cp , lbuff[i]) ;
cp += strlen(cp) ;
*cp++ = ' \n ';

finfo.start = (int) foutbuff ;
finfo.end = (int) foutbuff + size ;
if (_ kernel_ osfile(WRITEFILE , outfile , &finfo) < 0)

fail("Error writing %s\n ", outfile) ;
free(finbuff) ;
free (foutbuff) ;
free(lbuff);

rnain(int argc , char *argv[])

if (argc != 3)
fail("Usage : Sort <infile> <outfile> ");

sortfile(argv[l], argv[2]) ;
return O;

The debugging session

Follow the steps below to debug the example program.

Compile and link the program using ! Make with the Makefile provided in the
! Sort directory.

Now try running the program:

2 Double click on the ! Sort application directory. The Sort tool icon will appear
on the icon bar.

3 Drag the example input file infile on to the Sort tool icon.

This should sort the input file and display a Save as dialogue box, to allow you
to save the sorted result. Unfortunately it doesn't, instead it produces a
display similar to the following

Illegal address (eg wildl y outside array bounds)

Postmortem requested
Arg2: OxOOOOOOOc 12
Argl: Ox000176ac 95916

9dc8 in function sortstrings
Arg2 : Ox00015962 88418
Argl: Ox0001594b 88395

83bc in function sortfile
Arg2: Ox00015914 88340
Argl: Ox00000003 3

84bc in function main
Arg2 : Ox00008488 33928 - > [OxelaO OOd Oxe92dd833

Oxe24c 004 Oxe15d000a]
Argl : Ox000154c4 87236 c4c8 in fu

This is called a symbolic backtrace.

_main

The first line gives a general indication of what mig t be wrong with your
program. In this case it's an illegal address; the pro ram tried to access
memory which is outside the addressing range of y ur computer.

Each line of the form address in function na e represents a procedure
call frame on the stack. The first frame on the stack i, function sortstrings;
this is where the illegal address was referenced

This doesn't look too promising, so try running it un er DDT to get more clues
as to what might be wrong:

4 Quit the Sort tool.

5 Construct a debug version of Sort with Make. To do his, first open the Make
project dialogue box for Sort, click Menu on it and elect on the Link item of
the Tool options submenu. Next. enable the Linker pebug option and click on
OK to alter the Makefile. Use the Make Touch facility to touch all source
members by clicking on All in the Touch option. Finla!ly, click on the Make
button to remake Sort.

6 Start the debugger if you haven't started it already a d drag the! Sort
application directory on to the debugger's icon.

7 Drag the sample input file inf i le on to the Sort ic non the icon bar. The
debugger's Context and Status windows should no be displayed

The program actually crashed in the function sort trings. Since you want
the program to stop before making the illegal access you want it to stop at the
beginning of function sortstrings. So:

65

An example debugging session

66

8 Set a breakpoint on procedure sortstrings:

Bring up the breakpoint dialogue box. Enter the name sortstrings , and
choose at Procedure ..

As a general rule this is the best way to start a debugging session. By placing a
breakpoint just before the section of code you think is wrong (or after the code
you know to be correct) you can examine the program state to ensure it is
correct and the step through the incorrect code to find exactly where the error
is occurring.

Tell DDT to start executing your program:

9 Choose the Continue option from the debugger's menu . The debugger will
stop with the following message:

Break at main, line 107 of c.sort

The debugger always stops on entry to main. However you want it to continue
until it reaches sortstrings , so:

IO Choose Continue from the main menu again .

This time the debugger displays the following message:

Break at sortstrings , line 27 of c . sort

The Source window should contain the source for the start of function
sorts trings , with the execution location indicator (=>) pointing to the first
source line of the function sortstrings.

Now you want to examine the program state to ensure it is correct before
continuing. In this case, the most important state information is the function's
arguments. You can examine them as follows:

11 Choose Display on the debugger's menu (or use the short cut Ctrl-D) and click
on the Arguments button in the Display dialogue box.

The debugger will display the following in the Status window:

a = 000176ac
n = 12

The two arguments to sort strings are:

n is the number p f strings to sort. in this case 12. This is correct. since there
were l 2 names in the input file

a is a pointer to an array of char •s or strings The debugger displays the
value of this pointer, ie the address of the array.

Note: You may get a different address when you try running this example
depending on the version of the C compiler and library you are using.

Next. examine the individual elements of the array:

I 2 Enter the array element as it would appear on the left hand side of an
assignment in C in the Display dialogue box. and click on the Expression
button.

To examine element 0, enter a [0 J . To examine element I . enter a [1 J . The
debugger will display the array elements as follows:

a[OJ = string "Noel "
a [l] =string""

The first element was correct: it contained the string Noel, which is the first
name in the input f'.ile. However. the second element is a null string. This is
wrong: it should contain the string Edward. This means that the arguments to
sortstrings were wrong. The error therefore occurred earlier. so you want
to try re-running the program under the debugger and setting the breakpoint
earlier:

13 Quit the debugging session and drag the sample input file inf i le to the Sort
icon to start a new debugging session.

I 4 Now follow the instructions in step 8 to set the breakpoint at function
sort file instead of function sort strings, and continue execution until
the program hits the breakpoint at function sort file.

The variable lbuff i's passed as the first argument (a) to sort strings
lbuff is initialised in the loop just before the call to sortstrings.
Therefore you·. want to set a breakpoint at the start of the initialisation loop:

I 5 Scroll the Sour~e window up until the initialisation loop comes into view.

From the line numbers in the Source display you can see that the initialisation
loop starts at line 84. with the initialisation of cp. So. set a breakpoint on line
84:

16 Enter 84 in the Breakpoint dialogue box and click on at Line.

I 7 Now choose Continue from the main menu.

The program will continue executing until it reaches line 84, where it will stop
at the breakpoint. You want to examine each element of the array as it is
initialised. since the array is initialised from the pointer cp Set a watchpoint
on cp:

18 Enter cp in the Watch point dialogue box and click on on Variable.

I 9 Choose Continue again. The debugger will stop with the message:

Watchpoint on cp changed at sortfi l e, line 85 of c . sort
New contents: string "Noel "

This is correct. so:

67

An example debugging session

68

20 Choose Continue again. The debugger will respond with :

Watchpoint on cp changed at sortfile , line 87 of c . sort
New contents: string ""

This is wrong: it should contain the string Edward. Look at the line which
updated the value of cp:

87 cp += strlen(cp) ;

This is supposed to update cp to point to the next string in the list of strings
to be sorted. It does this by adding the size of the string pointed to by cp into
cp. Unfortunately, it miscalculates the size of the string by omitting to take
into account the 0 byte at the end of the string. This means that the second
and all subsequent strings are treated as null st rings, because they are
pointing to the 0 byte at the end of the previous string instead of the start of
the string.

To fix this:

21 Quit the debugger and the Sort tool frontEnd .

22 Edit the file c . sort and change lir ~ 87 to read

87 cp += strlen(cp) + l;

23 Recompile c. sort using the Make utility

Now try re-running the program:

24 Double click on the ! Sort application directory and drag the file inf i le to
the Sort tool icon, then choose Continue twice on the DDT menu to run Sort.

The result is the same as when you first tried running it: you get the same
exception, although this time trapped by DDT rather than generating a
backtrace, so obviously the fix applied to line 87 didn't fix the problem . So, try
running it under the debugger again:

25 Quit the Sort tool frontend .

26 Drag infile to the Sort tool icon.

27 Set a breakpoint on function sort strings and choose Continue.
The debugger will stop when it reaches main.

28 ·Choose Continue again, and the debugger will stop at the start of
sortstrings.

Examine the arguments Al l being well they shou ld look something like this

a 000176b0
n = 12

Desktop debugging tool

29 Display the individual elements of a by entering a [O l etc, in the Display
dialogue box and choosing Expression.

Do the same for a[l] and a[11]. The display should look like this:

a[O] = string "Noel"
a[l] = string "Edward"
a[ll] = string "Martin"

They're correct now, so something must be wrong with the sort algorithm. So,
try setting a breakpoint on the inner while loop

30 Scroll the source display to find the line number; it should be line 39. Enter 3 9
in the Breakpoint dialogue box and click on at Line and continue execution.
The debugger shou ld display

Break at sortstrings, line 39 of c.sort

Examine a few variables:

3 I Enter j in the Display dialogue box and choose Expression; then do the same
for h. The debugger should display:

j = 5
h = 4
These are both correct, so look at the contents of a [j -h]:

32 Enter a [1 l in the Display dialogue box and choose Expression The debugger
should display

a[l] = string "Edward "

The she ll sort algorithm should be comparing against the first string (ie Noel).
It is not, so this is wrong Looking closely at the algorithm you can see that it
has been written assuming array indices start at I, whereas in C they start at 0.

To fix this, you could subtract l from each array index. However you just want
a quick fix to see if it works, so:

33 Add the following line at the start of the function after line 29

30 a--; /* Quick hack to make array 1 origin */

34 Compile the program, this time disabling the Debug opt ion of Link using
Make (see step 5), and try running the result.

All being well , the program shou ld run to completion and produce a Save as
dialogue box for the output. You can just click the OK button to save it, or you may
like to drag it to the editor icon to load it into the editor to check that it has been
sorted correctly.

69

70

5 Form Ed

Form Ed is the tool used to construct the Templates resource file of a RISC OS
desktop application The template editor Form Ed is an application which

allows you to define windows on the screen, and save the definitions in a
Templates file ready for loading by your application. This is the approach used to
construct Acorn's own applications. Form Ed is a single document editor, and thus
can only edit one template file at a time.

FormEd is supplied with DOE language products To use it, you first need to
understand the program interface of the window system, as described in the
RISC OS Programmer's Reference manual. Refer, in particular, to the descriptions of the
SWis Wimp_CreateWindow and Wimp_Createlcon, in the Window manager
chapter. The account that follows also assumes an understanding of template files;
these are described in the same chapter. For a guide to window styles refer to the
Acorn RISC OS Style Guide.

Starting FormEd

Start Form Ed in a similar way to other RISC OS applications, by double-clicking
Select or Adjust on !FormEd in a directory display, or on a template file. Provided
that FormEd has been 'seen' by the system the template file will be loaded along
with Form Ed. If a template file does not appear to load properly, give more memory
to Form Ed before it starts, using the Task Manager. The Form Ed icon appears on
the icon bar.

If you start Form Ed by double clicking on a template file, the Form Ed Browser
appears, listing the windows defined in the template file . FormEd, as a RISC OS
application, has a template file defining its own windows. The appearance of the
Browser for ! FormEd. Templates is:

Lj flLWOrkarea
ldl browser

71

Browser

72

If you start Form Ed without an existing template file, you can open a new template
by clicking on the Form Ed icon on the icon bar. An empty Browser will appear:

The Form Ed Browser is the central display of a template file edit. It lists all the
windows defined by the template file being edited in a way similar to the way a
directory display lists the files in a directory. From this list you select which
individual windows you want to be displayed for editing. The Browser is a new
feature of the version of Form Ed distributed as part of the ODE, previous versions
merely displaying all defined windows on the screen at once, often resulting in an
overcrowded screen.

The appearance of a typical Form Ed Browser window is shown below. It has a title
bar displaying the title of the current ly edited template file (or <unt i t 1 ed> if
none) and a '*'after the title if the template file has been modified (this occu rs
even if a window has been moved) In this example, the template file has not been
altered:

An empty Browser appears when you click on the Form Ed icon on the icon bar or
select the New Templates option on the menu. An empty Browser window has the
title <untit l ed>.

There are two types of windows: scrollable windows and dialogue boxes A
scrollable window is a window which has one or two scroll bars, whereas a
dialogue box is a window with no scroll bars. In the work area of the Browser, each
window listed is accompanied by one of two icons. These icons indicate whether
the window is scrol lable or a dialogue box.

Form Ed

Clicking Menu on the Browser brings up the Browser menu, from which you can
save the template file being edited, or create or remove windows:

¢

Sel, 'proglnfo' ¢
New window ¢

The Save option leads to a standard Save as dialogue box from which you control
saving the template file being edited in the normal way.

When one or more window names are selected in the Browser in the same way that
file names are selected in a directory display, the Set. or Selection option leads to
a submenu:

Sel, 'proglnf o'
New window

Copy
Rena111e ¢
Delete

From this menu you can copy a single selected window to form a new window with
another name, rename a single selected window or delete all se lected windows.
Since you can only copy or rename a single window, the Copy and Rename options
are shaded out if two or more windows are selected. The Selection item is shaded
out if no windows are selected.

The New window option allows you to add a simple scrollable window to the set
defined by the template file being edited To create a dialogue box you first create
a scrollable window and then remove the scroll bars - this causes the icon in the
Browser to change to a dialogue box icon.

Single clicking Select and Adjust on window names selects one or more windows,
like selection of files in a directory display Double clicking Select on a window
name causes that window to be displayed for editing, or brings it to the front if it is
already displayed

Editing a window

When you load an application's template file into Form Ed, all the windows used by
that application are listed in the Browser window. Double clicking on a window
name in the Browser displays that window for editing

73

Editing a window

74

When Form Ed displays a window defined by a template file, most of the window
areas can be regarded as pictures of the real window you will see when running the
application For example, try loading the template file for the Configure
application (make a copy before you do this!). The main Configure window will
appear in the Browser as a scrollable window with the name of Configure.
Double clicking on that window name makes the configure window appear, but you
will not be able to use it to, for example, set the mouse speed.

While most parts of the border of a displayed window (title bar, scroll bars, back
icon, etc) have their normal actions, the Close icon is used to close the display of
that window. This can be reversed by double clicking on the window name in the
Browser.

Clicking Menu on a displayed window produces a top-level menu:

¢

Renu~ber ¢
Copy icon ¢
Move icon ¢
Delete icon

Window flags ¢
Colours ¢
Work area ¢
ldentif ier ¢
Close window

This is the menu from which to change most window and icon properties, eg add or
remove scroll bars, change icon wording. The upper half of this menu relates to
icon properties, and the bottom half to window properties. Which of these features
is selectable (not shaded out) depends on exactly where the pointer was when you
clicked Menu: if it was on an icon, you will be able to amend or renumber the icon
as well as the window itself If the pointer was not on an icon, you will still be able
to create a new icon.

Each of the window and icon properties in the menu and its submenus maps
directly onto bitfields listed in the Wimp_CreateWindow and Wimp_Createicon
descriptions in the RISC OS Programmer's Reference manual. However, you should also
note the following points

• Each window within a template file has a name or identifier which is unique to
that template file. The identifier is used when the window definition is loaded
by a call to SWI Wimp_LoadTemplate.

• The icons you add to a window are numbered in sequence, sta rting at 0. If two

icons are placed so that they overlap, the window manager uses the

numbering to determine which shou ld obscure the other: higher numbers are

displayed obscuring lower numbers. You may therefore need to change the

number allocated to an icon; do this by swapping over two icon numbers. Click

Menu over the icon you wish to renumber and select Renumber. Type in the

number of the icon you want to swap with the currentl y selected icon, and the

two wi ll switch numbers.

• To add a new window to a template file, use the Browser menu.

• Because of the way the icon flag bitfield is organised, you cannot use

anti-aliased text within a filled icon. Setting the Anti~aliased opt ion in the

Icon flags menu wi ll make the background and fo reground co lour

unselectable

• The V centred (vertically centred) option applies on ly to sprites, not to text

Merging Templates files

To merge the window definitions of two Templates files into one file, load one

Templates file into FormEd, then drag the other from a directory display to the

displayed Form Ed browser. The browser then shows that its file has been modified,

and adds to the window list any new windows added by the merge

Any window defined by the second Templates file with an identifier not used in the

first file is added to the merged file. If both origina l Templates fil es define a

window with the same identifier, the 'duplicate' window from the second

Templates file is ignored

The RISC OS desktop limits the number of windows that can be defined in a

Templates file, so combinations of large Templates files which together wou ld

define too many windows cannot be merged.

Displaying sprites in template windows

Windows defined by template files often have icons in which sprites are displayed.

Such common items as radio buttons and option boxes are examples.

To display a sprite, you first specify its name in the writable submenu of the Sprite

option in the Icon flags submenu (reached by following Amend icon on the top

menu). If a sprite of the name entered is defined in the Form Ed default sprite file

(as is the case for standard icons such as radio buttons) the sprite then appears. If

a sprite of the specified name is not in the Form Ed file def a ult, to display it you

75

have to drag a sprite file contai ning it to the Form Ed icon bar icon . You can move
sprite icons within templates, and delete them . To edit a sprite, use the Paint
application

When you run a finished program, standard icons such as radio buttons are found
in the wimp sprite area shared between all applications When you display the
Templates fi le of your application using Form Ed, as described above such icons are
instead found in the sprites file called defau lt in the Form Ed application
directory, or a sprites file dragged to the Form Ed icon . The default file is a copy of
the wimp sprite pool forming part of RISC OS 2.00 . To view the sprites stored in the
default file, open the Form Ed application directory by double clicking Select on
!FormEd in the DDE directory while pressing the Shift key, then double click on the
file default to load it into Paint To dump the wimp sprite pool of you r machine
to a file on disc called WSprites (which will probably create a file identical to
de f ault if you have RISC OS 2.00) type in and run the following 2 line Basic
program :

SYS "Wimp_BaseOfSprites " TO rom
SYS " OS_ SpriteOp", &l OC , rom, "WSpr i tes "

Editing ROM utility templates

It is possible to update the template files used by ROM utilities. These reside in
the deskf s : filing system in the ROM. You access them via the environment
variable Wimp $Path , so by updating this to search a directory of your own first
where you r updated template files reside, you can replace the window templates
used by the utilities in the ROM.

Example FormEd session

76

This example uses the template file for the Pa lette utility, wh ich demonstrates
some of the points described above.

Make a copy of the template file from the ROM by typing the following at the
Command line prompt:

* adfs

*dir

* cdir temp l ates

* copy deskfs : templates . pa l ette templates .palette

2 Add the following to the !Boot file for you r machine

* set Wi mp$Path adfs : : 4 . $. , deskfs :
This assumes that you have a hard disc. If you don't , amend the line above as
appropriate, depend ing on the location of your templates fi le.

Form Ed

3 Now return to the desktop and double-click on your copy of the templates file.

The Form Ed Browser will appear, showing that two dialogue boxes are defined:

the palette's main tool window and the Save box.

4 Double click Select in the Browser on each window name in turn to bring them
up for edit ing

The main tool window appears covered in cross-hatching: this indicates that
the appl ication (in this case, the palette utility code) is involved in redrawing
the window.

You can move the windows around the screen by dragging on its title bar in the
normal way. Move the main window to another position, noticing the star (*)

appearing in the Browser title to show that you have modified the template
file.

5 Save the modified file using the save box on the menu that appears when you
press Menu over the FormEd Browser.

6 Now reset the machine.

You will find that the palette utility appears in the new position - where you
dragged its window in the template file.

7 Double-click on the template fi le again, then the main window name in the
Browser, to re-enter Form Ed and display the main window.

8 Press Menu over the pa lette template window.

The menu that appears is divided into two parts. The upper half affects
whatever icon you were pointing at when you pressed Menu; the lower half
affects the window as a whole.

By entering the Window flags, Colours, and Work area submenus. you can
see which bits within the window description are set and which are clear:
compare this with the Wimp_CreateWindow section in the RISC OS
Programmer's Reference manual. By clicking or typing on entries with in these
submenus you can affect such th ings as the tit le text and the co lours of the
window.

Some changes you might make will prevent the code from working properly, as
they actua lly change the behaviour of the window in the program that operates
it Others, such as colour changes, are reasonable ways of setting your own
choices for how the palette utility shou ld appear.

9 Point at the black co lour select ion button and press Menu.

Each of the sixteen co lour select ion buttons is an icon. You can see that it is
icon number 16 in this window.

By working through the Amend icon #16 submenu , you can inspect and
change every aspect of this icon in exactly the same way as with the whole
window.

77

78

To move or resize an icon , take the following steps:

Ensure that its button type (within the Amend submenu) is set to Click/drag,
so that it responds to dragging events.

2 Drag the icon with Select to move it.

3 Drag the icon with Adjust to change its size.

You can move the icon a pixel at a time or to specific coordinates using the Move
icon submenu. Usi ng other top-leve l submenus, you can make a copy of an icon , or
renumber it

6

Invoking Make

Make

The Make application aids the programmer in the construction and maintenance

of multiple-file programs, which can be combined to form any number of final

targets (for example, libraries , modules, and application programs) . The set of final

targets and the files from which they are constructed are known as a project (see

later for a more detailed description of this term). The facilities provided for a

project include

• automatic construction of makefiles;

• automatic maintenance of makefiles to track changes made to sources and the

addition/deletion of source and ob ject files to or from a project;

• setting options using dialogue boxes for the tools used to convert source files

to object files (eg C compiler or ObjAsm options);

• pre-emptive multitasking of the Make process when constructing final targets ,

including the ability to pause, continue, or abort it at any time;

• display of the output of tools used to make a final target, in a scrollable,

saveable window.

Make can be invoked in two ways; by double-clicking on the Make icon from a

directory display, or by double-clicking on a file of type Makefile (OXFEl). In the

latter case this will also run the Acorn Make Utility (AMU) tool to make the first

target found in the chosen Makefile.

Clicking Menu on the Make icon gives the menu as shown below:

r Make
Info ~>
Options¢
Open ¢
Quit

Info shows the normal information box about the application

Options allows the setting of auto-run and display options

Open is used to open a dialogue box for a given project .

79

Using Make

Quit quits Make.

These are described more fully in later sections.

To use Make efficiently it is necessary first to understand how to create and
maintain a project

Projects

80

A project is made up of a collection of source and object files, which combine to
form a number of final targets The life cycle of a project will typically involve the
creation and maintenance of the project. the production o f final results, and finally,
if required , the removal of the project from Make's contro l. The details of these
steps are more fully described in later sections, but here we give an overview of
their operation

When a new project is created, you give it a unique name, and save its associated
Makefile to disc. The persistent state of a project is held in a Makefile, which is
automatically maintained by Make, with the option that it can be textually edited
for customisation to a particular projects' requirements. To achieve this automatic
maintenance, the Makefile is divided into sections which are delimited by active
comments (ie lines beginning with a (#),which are otherwise ignored by the AMU
program) .

The files which make up the project can reside anywhere on disc (or on a network)
and can be added to, and removed from, the project by dragging their filer icons
onto a dialogue box representing that project

Final targets for the project are created by clicking on Make in the dialogue box
relating to that project; the targets will be saved in the same directory as the
Makefile for the project

Under the desktop the concept of current directory has no sensible meaning, Make .
therefore uses the work directory in which the Makefile for a project has been saved
as a prefix for all filenames used in the project This prefix is denoted by the at
symbol(@).

Make

Clicking Menu on a project dialogue box gives the menu shown below, which is
used to further tailor the project. References to this menu are made in a later
section on maintaining projects.

Creating new projects

Make options ¢
Touch
List 111e111bers
Add target ¢
Re111ove target
Re111ove project
Tool options ¢

In order to create a new project, you shou ld click Select on the Make icon on the
icon bar. This wi ll display the New Project dialogue box as shown below, which
allows you to enter information for the new project:

Exa111ple

!RunI111age

Linkl

There are three writable icons in the New Project dialogue box which you must fill
in before a new project can be created. These are:

Name you shou ld fill this in with the name of the project This name will be
used to identify the project in the Open menu as described later.

Target you should fill this in with the name of the main targerto be created
from this project. For example, if you were creating an appli cation the
target name would be !Runlmage, if you were creating a module the
target name wou ld be the module's name (eg FrontEnd).

Tool you should fill this in with the name of the tool used to construct the
main target For an application this could be Link, or in the case of a
library this could be Libfile

81

Ul:;ll l!J IVldl\t::

82

Having filled in these three boxes, you must then save the Makefile which wi ll be
used to hold all information for this project. This is accomplished either by
dragging the Makefile icon to a directory viewer (having optionally changed the
leafname from the default Makefile), or by typing in a full pathname and clicking
OK. The directory in which the Makefile is saved is important. This directory is
where the final targets for the project will be created, since each target will be
saved in the @work directory (see the section entitled Creating a final target for a
project on page 87 for an explanation of this) . The sources for the project can be
stored anywhere, since they will always be referenced relative to@. If any of the
Name, Target or Tool icons have not been correctly fifled in then an error is
reported , and the Makefile is not created.

When this process has been completed, the newly created project becomes one of
those maintained by Make, until it is explicit ly removed (see the section entitled
Removing projects on page 86 for how this is done) The dialogue box wh ich is used to
maintain this project then appears, with the project's name in its title bar. The
project can then be maintained as described below.

Maintaining projects

To maintain a project it is necessary to understand how to open and close projects,
and how to specify the targets for a project.

Opening a project

Make keeps a list of all projects which it is maintaining at any one time. This list is
shown when you enter the Open submenu from Make's application menu . When
no projects are known about, this menu item is unselectable.

The 1.ist of project names is shown with the most recently regi stered project at the
bottom. Clicking on a project name in this list wi ll open a dialogue box for that
project, with the name of the project in its title bar; if the project was already open ,

then the dialogue box is brought to the front of the WIMP's window stack. If the

project is being opened for the first time, then the directory containing the

Makefile for this project is also opened. The dialogue box is shown below:

Insert: .___ ________ __. []!]
ReMove: []!]
Target: [BI !Runbage I~

Save Make

This dialogue box can be used to add new members to the project, remove

members which are no longer required, make final targets, and select the current

final target to which these operations refer These are described in more detail in

later sections.

Adding and removing members

When you have written a new source file or created a new object file which you wish

to include in a project, you should drag the filer icon for that file to the icon marked

Insert in the project's dialogue box menu. Typically, the only object files which you

will need to insert in a project are external libraries. Any number of files can be

dragged in this way to Insert, where their full pathnames are displayed, provided

that the number of characters displayed does not exceed the buffer for the icon

(4096 characters by default, but this can be changed by editing the templates file

using !FormEd).

Once you are satisfied that this is a list of all the files to be added to the project,

click on OK to the right of Insert. The insertion will then take place An asteri sk

appears in the title bar of the project dialogue box to indicate that this project has

been modified since its Makefile was last saved.

If you wish to remove members from a project, follow the same procedure as that

described for insertion, but drag file icons to the Remove icon instead , and click on

OK to the right of Remove. Again an asterisk will appear in the project's title bar, to

indicate that a modification has been made.

Note that insertion and removal app lies on ly to the currently selected target when

used in conjunction with multiple-target projects (see the section entitled Multiple

targets on page 84 for more details).

Make uses the following rule for dealing with files dragged to Insert if the filename

has, as its last but one component, a string (usually just one character) wh ich

corresponds to one of those registered by a translation tool, then it is assumed to

83

84

be a program source fil e and a rule is constructed to make it into an object file;
otherwi se it is assumed to be an object fil e (such as a library) and wi ll just be
inserted into the list of objects which go to make up the cu rrent final target

Listing members

A list of the members which have been added to a project (and not subsequently
removed) can be obtained in a scrolling text window by selecting the List
members option from that project's dialogue box menu . The fil enames in thi s li st
are expanded to full pathnames, whereas they will appear relative to @ in the
Makefile for the pro ject

Touching members

You ca n force a member of the pro ject to be time-stamped using the Touch opt ion
in a project's dialogue box menu :

Touch
Li st, fllefllbers
Add target ¢
Refllove target
Refllove project
Tool options ¢

,__ ___ ___.[]!]
All I

In the Touch dialogue box, you ca n type (or drag to it) the filename(s) of the file(s)
to be touched (either relati ve to @ as it appears in the Makefi le, or as a full
pathname). and then click on OK. If you wish to touch all source members of the
pro ject , then click on All; in this case any fil ename in Files is ignored.

Multiple targets

When a project is first created, it has just one final target - the one whose name is
entered in the Target icon in the New Project dia logue box. This name will also
appear in the Target icon in a project's dialogue box when that pro ject has been
opened. This target is referred to as the current target. and it is the target which will

Make

be made when you click the Make icon. The current target is also the one to which

members are added or removed when you enter filenames in the Insert and

Remove icons from a project's dialogue box.

List 111e111bers ~ Hew tar et
Add tat'get ¢ Target: I Mylibt·ary I

::==::::::;::::::;:::;=::::::1
Tool: l,_ __ Li_bF_i_l e.._l _ __,I Re111ove target

Re111ove project
Tool options ¢ 00

In order to add a new target, you should use the Add target option from a project's

dialogue box. In the Add target dialogue box you must enter a name fo r the new

target, and the name of the tool which is used to construct that target (eg

MyLibrary and Libfile), as shown above.

Targets created in this fashion can be removed by choosing Remove target in the

project menu . Remove target always applies to the current target.

When a project has its dialogue box open, the list of final targets can be traversed

using the up and down arrow icons (next to the Target icon) . You will notice that

any targets which you manually insert in the user-editable section of the Makefile

will also appear in the project dialogue box. This is so that you can select them as

the target to be made when clicking on the Make icon .

This can be used to create a 'squeezed' image by doing the following

• When you first create the project use a fina l target name such as ! RunimageU

for the unsqueezed binary. Insert all you r sou rces and library files to this

target.

• Then add a target (called, for example, ! Runimage) with its 'tool' set to

Squeeze.

• Insert the @ . ! RunimageU as the only member for this target.

If you used the example names above, and you now make the target ! Run Image ,

you will get a squeezed final binary

Setting tool options

In order to make final targets and object files which will combine to make those

final targets, a number o f tools such as compilers. assemblers. linkers and library

constructors will be used. These tools will typically have a set of options which are

normally specifi ed from a dialogue box when using the tools under the contro l of

85

86

t he Front End modu le. It is possible to set the options for a pa rti cular tool 's use
under Make (for a given project) by followi ng the Tool options submenu from the
project's dialogue box menu.

List 111e111bers
Add target ¢
Re111oue target
Re111oue project

¢

Link
Obj Rs111
CMHG
LibFi le
Squeeze

This wil l show a list of all the tools which have reg istered themselves for use with
Make (for example. Cc. ObjAsm . Aasm. Link etc). Cl icking Select or Adjust on a
tool 's name in this list will result in the options dia logue box for that tool being
displayed. This dialogue box can then, be used to set the options for the tool; these
will be trans lated into command-line options and entered into the tool flags
section of t he Makefile for the project.

Removing projects

A pro ject can be removed from the list of pro jects maintained by Make by choosing
Remove project from the project's dia logue box menu. This simply means that it is
removed from the l ist of projects which can be opened from Make's Open
submenu; the Makefi le for the project is still retained .

You wi l l also be asked if you want to remove the files which store the tool flags for
the project. If you intend never to reinstate th is project as one maintained by Make,
then answer Yes to this query. If you are just temporari ly removing t his project
from the list. then answer No, so that the tool flags state for this project is saved.

If you later wish to reinstate a removed project. this can be done by dragging the
Makefi le for the project onto the Make icon .

Creating a final target for a project

There are two ways of creating a final target for a project:

• If you click on Make in a project's dialogue box, Make will make the target

which is currently showing in the Target icon. An alternative target can be

selected by clicking the up and down arrow icons to move through the list of

possible final targets

• If you double click on a filer icon of type Makefile (OXFE I), and you have

enabled the Auto Run options from Make's Options menu , then Make wi ll

make the first target that it finds in the Makefile (which will be the target

specified when the project was created)

In both of the above cases, the amu program is run pre-emptively using the

TaskWindow module to make the chosen target The space avai lable to load and

start up amu is determined by the Wimp Next slot If you get errors such as:

No wr i tabl e memory a t t hi s address

when you run a Make job, try adjusting the Next slot

The output from this process appears by default in a scrollable, saveable text

window (or in a summary dialogue box if this option is selected in the Display

submenu) :

This window is read-only, you can scroll up and down to view progress, but you

cannot edit the text without exporting it to an editor To indicate this, clicking

Select on the scrollable part of this window has no effect

Clicking Adjust on the close icon of the output window switches to the output

summary dialogue box:

Run at:
91 Lines of output

87

Using Make

88

This box presents a reminder of the tool running (Make), the status of the task
(Running, Paused, Completed or Aborted), the time when the task was started and
the number of lines of output that have been generated (ie those that are displayed
by the output window). Clicking Adjust on the close icon of the summary box
returns to the output window.

Both the above output displays follow the standard pattern of all the
non-interactive ODE tools. The common features of the non-interactive ODE tools
are covered in more detail in the chapter entitled General features. Both output
displays, and the menus brought up by clicking Menu on them, offer the standard
features allowing you to abort, pause, or continue execution, save output text to a
file , or repeat execution.

Saving a project without Making it

If you have made changes to a project, and wish these to be written back to the
project's Makefile without actually making a target, then click on Save in the
dialogue box.

Setting Make main options

The Options submenu from the Make icon bar menu allows you to set two options:
Auto Run and Display

Selecting Auto Run means that when you double-click a file of type Makefile
(OXFEl) from a directory display, the AMU program is immediately invoked to
make the first target found in the Makefile; if you do not select Auto Run, then
double-clicking a Makefile merely adds the project to Make's list of maintained
projects (if it is not already there), and opens the dialogue box for that project
(bringing it to the front of the WIMP's window stack if it is already open)

In the Display submenu, you can choose whether the output of all Make processes
is displayed in a scrolling text window or in a summary dialogue box.

Text-editing Makefiles

You can use a text editor to customise a project's Makefile . There is a section of the
Makefile, foll owing the active comment User-editable dependencies ,
which is left untouched by Make. All other sections of the Makefile wi ll be

Make

over-written and so shou ld not be edited using a text ed itor (unless you are

thoroughly famil iar with the operation of Make) The full format of a Makefile is

described later in the section entitled Makefile format.

A good example of how this cou ld be used, is to create a rule which removes an

application's binary image and the object files used to create it. so that the next

'make' will remake all objects . This is done by entering in the user-editable section

the following lines:

clean :; remove !Runimage

wipe o . * -c f

Using conventional Makefiles

Makefile format

If a file of type Makefile, which does not comply to the Makefile format, is

double-clicked, or if a file of type Text or Data is dragged onto the Make icon, it is

not registered as a project. Instead Make runs the AMU program with this file as its

input Makefile This allows the use of Makefiles from other systems, and ones

which do not fit into the pro ject-oriented way of working required by Make.

The Makefile which is used to maintain a project is a file of type OXFEl

(Makefile), and contains normal ASCII text. This text is arranged into a number

of sections which are separated by active comments. For a detailed description of

Makefile syntax see Appendix A - Makefile syntax.

Below, we describe each of these sections, beginning with their respective active

comments :

Project project_name

Toolflags

This gives a name to be used for the project in the Open

submenu.

This section has a set of defau lt flags for each of the tools

which have registered themselves with Make, for

automatic inclusion in a Makefile The tool will have

done thi s by writing lines (described in the section

entitled Programmer interface on page 9 I) into

<Make$Dir>.choices.too l s .

Each macro in the Makefile wi ll be of the type:

toolflags -.

eg ccflags = -c

89

An Example

An Example

90

Final targets

User-editable
dependencies

Static
dependencies

Dynamic
dependencies

This section contains the rules for making the final
targets of the project (eg ! Runlmage : 1 ink
$ (linkflags) This information is obtained when the
project was created (from the Name and Tool icons in
the New Project dialogue box)

This section is left untouched by Make, and can freely be
edited by the user. This allows rules to be added wh ich
are specific to a particular project; for example, it may
copy sources from a file server to your local Winchester,
before doing a compilation

This section contains rules for making an object file from
its corresponding source. It does not refer to include
files etc (described in Dynamic dependencies).

This section contains the rules which are created by Make
by running the relevant tool on a source file to ascertain
its dependencies (eg cc -depend) .

In order to demonstrate using Make, you can manage the desktop example
program Automata (which is formed from more than one source module) . This
example can be found in the User directory in the subdirectory Automata.

On the release discs there is initially no project for Automata, so that you can use
this as an example of creating a project from scratch. If you follow the instructions
below, you shou ld be able to create and manipulate a project for Automata.

Double-click Select on the !Make icon from a directory display to install the
Make application on the icon bar. By clicking Select on the Make icon (the one
with the brick wall and trowel) you will get the dialogue box used to create a
new project.

2 In the New Project dialogue box you will need to fill in a name for the project
(for example Automata) the name of the final target (which you should type as
! Runlmage since this is an application) and the name of the tool used to
create the final target (in this case you should enter link).

3 When you have filled in the New Project dialogue box you can then save the
project to a directory display by dragging out the Makefile icon . It is best if you
drag this icon to the directory viewer for User . ! Automata. This now
becomes the Automata project, and you will see the dialogue box for the
project pop up to replace the New Project box. In its ti t le bar this dialogue box
will have the name of the project. Also, the project name wi ll appear in the
Open list from Make's main menu .

I.

4 You will now need to add the members of the project. Do this by dragging the
source and object files from the User . ! Automata directory onto the Insert
icon in the project's dialogue box, and then clicking OK. For Acorn Desktop C
you wi ll also need to insert the stubs object file (or ANSILib) and RISC_OSLib

into the project. In order to see the members which you have added, you can
click Menu on the project's dialogue box, and select List members. Note that
the exact mixture of source and ob ject files depends on which DDE product
you are using (eg Acorn Desktop C or Acorn Desktop Assembler)

5 Set the options for the tools used to construct the example program For
instance, if you have the Acorn Desktop C product, then you must add the
RISC_ OS Lib headers to the C compiler's include path , using the Include icon
in the C compi ler's dialogue box. Such options can be set fo r a particular tool
by clicking Menu on the project's dialogue box, then selecting the too l's name
in the Tool options menu entry.

6 You can make the final binary for !Automata by clicking on Make in the
project's dialogue box, or by double-clicking the project's Makefile from a
directory display

Programmer interface

The following information is given for programmers wishing to add new tools to be
used with the DDE Make appli cation.

If you wish to use a tool with Make, which does not come with the DDE, you can
use either of the fo llowing two methods

• Write a description file for the tool for use by the FrontEnd module and
register it with Make as described be low in the section ent itled Registering
command-line tools with Make .

• Write a WIMP frontend for the tool which complies with the deta ils given
below in the section entit led Message-passing interface for setting tool options.

Registering command-line tools with Make

A command-line tool which will be run under the control of the FrontEnd module
(for setting its options in a Makefile), will need to append lines of the following
format to the file <Make$Dir>.choices . t oo l s:

toolname

string

flags

rule

pathname

Name of tool.

Extension .

Default flags for use by Make.

Rule for converting sources to objects.

Full pathname of file containing application descript ion

91

Programmer interface

All the above lines should be terminated by the C newline character \ n.

For typical examples see the entries in <Make$Dir>.choices. tools after
installing the ODE.

Message-passing interface for setting tool options

92

When the user selects a tool name from the Tool options submenu, Make issues a
star command to get the frontend module to start up a wimp frontend for the
chosen tool (without an icon appearing on the icon bar) The setup dialogue box
for that tool is then displayed, with the Run icon replaced by an OK box.

The user can then set options for that tool. A suitable set of command-line options
is returned by the generali sed frontend , to be used as that tool 's tool flags entry
in the makefile

If the star command fails (presumably because the frontend module is not act ive or
because there is no description for the chosen tool) , then Make broadcasts a WIMP
message (recorded delivery), to see if any application can deal with the request .
This is to al low expansion of the system to incorporate other WIMP-based
compi lers, assemblers, etc., which other parties wish to provide for use under the
control of Make.

The WIMP message has the format:

Byte offset

+16
+20
+24 .

Contents

DDE_CommandLineRequest (reason code) (&81401)
Make's internal handle
nut-terminated application name.

If you have written an application which needs to respond to this message, then
your application shou ld :

Acknowledge the WIMP message. You must also store the taskhandle of Make.

2 Display a dialogue box to allow the user of your appli cation to set options
appropriately

3 When the user has chosen the options, send back a WIMP message to Make,
with the following format:

Byte offset

+16
+20
+24 to +36
+36 .

Contents

DDE_CommandLineResponse (reason code) (&81400)
Application 's handle
Application's name
nut-terminated command-l ine options

7 SrcEdit

SrcEdit is a text editor, based on the RISC OS editor (Edit). with extra features to
make it more suitable to create and edit program sources.

You can control SrcEdit from a menu tree, which is described fully in this chapter.
However, many menu choices are available directly from the keyboard; once you
are familiar with SrcEdit. you may find that you prefer this method. These keystroke
equivalents are listed later in this chapter.

Starting SrcEdit
You can load SrcEdit either by double-clicking on the !SrcEdit icon from a directory
display, or by double-clicking on a file of type Text (&0 ff f). You will then see an
icon similar to that of Edit on the icon bar (a pen and program listing)

Typing in text

When you first open a new SrcEdit window, an I-shaped bar- the caret - appears at
the top left of the window. This is where text will appear when you start typing You
can open more SrcEdit windows, but only one of them will have a caret in it: this is
called the current window. It is also identified by the fact that parts of its border
appear in cream rather than grey. You can type only in the current window.

If you type in some text without putting in any carriage returns, and using the
system font (the default font) you will find that the window scrolls sideways Thi s is
because the default SrcEdit window is not as wide as the screen. You can break
your text into lines by pressing Return . Alternatively, click on the Toggle Size icon
to extend the window to the full screen and avoid having to scroll sideways There
is another way of getting all your text into the window, using the Format
command ; thi s is described later.

As you type, you will notice that SrcEdit fill s the current line and then carries on to
the next line, often breaking words in the middle Ignore this for the moment. as
there is a menu option (Wordwrap) that will take care of it. and this will be
described later.

93

Inserting and deleting text

If you need to insert or delete text. position the ca ret where you want to make the
alteration by moving the pointer there and pressing Select. You can insert text
simply by typing. If you want to delete a character, position the caret immediately
after it and press either Backspace or Delete ; hold the key down and the
auto-repeat will come into effect. deleting more characters.

SrcEdit menus

94

The top level menu for text wi ndows contains the fo llowing options:

The Misc menu

This menu offers six options:

Saue
Select
Edit
Display

Misc ¢

Saue FJ ¢

Select ¢

Edit ¢

Display ¢

New uiew
Coluflln tab ~FJ
Overwrite ~Fl
Wordwrap "F5

Info tells you about SrcEdit. including the version number of your copy of the
program.

File gives information about the fi le you are working on, in pa rticular:

• whether it has been modified since you last saved it;

• what type of file it is: for example, a Text File OF a Command file (its icon, if it
has one, is also shown) ;

• its name, including the full d irectory pathname;

• its size, in number of characters;

• the time and date it was last saved (or if you have not saved it yet. the time and
date when it was first created).

SrcEdit

New view opens a second window on the same text. This allows you to look at two

parts of the same document, and makes many actions such as copying from one

part of a document to another much easier. Remember that you are looking at one

document. not at two separate copies of it: to illustrate this, try looking at the

same part of a document in two views (not the way you will normally use New

view!); enter some changes in the first view and you will see the same changes

appearing in the second view. This is particularly useful with large documents.

Column tabs switches on a different type of tab insertion; for more detail see the

section entit led Laying out tables: the Tab key on page l 06. When this option is on, it

is ticked in the Misc menu and Col Tab appears in the Title bar.

In SrcEdit the default state is to have Column tabs on.

Overwrite, means that each character you type replaces the character at the cursor,

instead of pushing the cursor aside and inserting the new character. When this

option is on, it is ticked in the Misc menu and Overwrite appears in the Title bar.

Wordwrap prevents words being split over line-ends as you type. When this option

is on, it is ticked in the Misc menu and Wordwrap appears in the Title bar. Do not

confuse this option with Wrap, selected from the Display submenu. Wordwrap,

unlike Wrap, inserts a newline character (which is there although you cannot see it

on the screen) when the cursor moves to a new line.

Saving text: the Save menu

The Save menu allows you to save a complete file; you can also save part of a file

using the Select menu, described below.

SrcE:dit
Misc ¢ Save.Zfst
mmmJ¢

~ Select ¢
:;;

Edit ~I Text Fil ej I~ Display

In order to save a file in the easiest way, you need to have on the screen the

directory display for the directory where you want to save the file . Move to Save,

and a box appears, containing an icon. the current filename, and an OK box. If the

file has not been saved before, SrcEdit offers you a default filename ofTextFile.

If you want a different name, use Backspace or Delete (or press Ctrl -U) to delete

TextFile, then type in the name you want. Place the pointer on the icon in the

menu and drag the icon into the directory display where you want to keep the new

file An icon for the file then appears in the directory window.

95

96

This action assigns a full pathname to the fi le, as you wil l see from the Tit le bar of
the SrcEdit window. When you have made some changes to t he text and want to
save the file a second t ime, use the Save opt ion aga in , but t his t ime, provided you
want to use the same fi lename, you can save the file by clicki ng t he OK box.

Manipulating blocks of text - the Select menu

You can select blocks of text , then manipulate t hem.

The simplest way to select a block is to position t he pointer where you want the
block to start and , using the Select button, drag the pointer to the end of the block
and re lease the button. The selected block of text is highlighted.

If necessary, you can then use Ad just to 'ad just' the ends of the block. Position the
pointer exact ly where you want the block to sta rt or fini sh, click Ad just and the
block lengthens or shrinks accordingly Th is is particularly useful when you want to
select a block that extends beyond the part of the text you can see in the window.
Select a few words or lines at the start of the block, scroll until you can see the
point where you want the block to end, place the cursor there and click Adjust.

To select a single word, position t he pointer anywhere within the word and
double-click Select; select a single line by trip le-clicking. Double-clicking with
Adjust will extend the block to include the whole of the current word at the pointer,
triple-clicking with Adjust extends it to the current line.

Once selected, text can be saved, copie'd, moved, de leted, deselected (cleared).
indented, searched for programming help in an information library or treated as a
fi lename to load by choosing Load from the Select menu:

Display

Clear
Indent
Help
Load

To save a selected block, move to Save from the Select menu, and follow the
standard saving procedure Use this option to copy a selection into another
SrcEdit window: open a new window and drag the icon into it. The copied block wi l l
appear at the end of any text that is already in the destination window.

SrcEdit

To make a copy of a selected block of text , first position the caret where you want
the copy inserted, then ca ll up the Select submenu and choose Copy; the original
block remains selected. Keep clicking on Copy to make as many copies as you
want.

If the ca ret is already at the position where you want the copied block to appear,
press and hold Ctr! whi le making the selection in the usual way. Still holding Ctr!.
press C, and the block will be copied to the caret position .

If you copy to a position inside a selected block, both the original and the new copy
remain selected . If you then make multiple copies you wi ll get double t he number
you indicate. This may happen accidentally if you position the caret immediately to
the right of a selected block ending in a carriage return : because the carriage return
does not appear on the screen it is not highlighted, but is st ill part of the selected
block. To undo an acti on, choose Undo from the Edit menu (see later)

To move a selected block of text, place the ca ret where you want the text moved to,
then click on Move.

If the ca ret is already where you wa nt the block to end up, press and hold Ctr! while
making the selection in the usual way Sti ll holding Ctr!. press V, and the block will
be moved to the caret position.

To delete a selected block of text. click on Delete. The marked block then
disappears.

Undo - in the Edit menu - allows you to reverse any changes or delet ions made in
the Select menu.

To clea r (or deselect) a block of text you have previously marked , click on Clear. The
marked block reverts to the normal display and the block is no longer selected.

Indent allows you to indent a selected block of text. The indent is defined in
character spaces. You can also use Indent to add a text prefix to the beginning of a
block.

To indent a selected block of text , ca ll up the Indent submenu , then type in a
number.

• A pos itive number gives you an indent of the specified width .

• A negat ive number, eg - 5, removes the specified number of spaces or
cha racters from the beginning of the block line: use thi s to ca nce l an indent.

• You ca n also type in text: IGNORE, or NB, fo r examp le. This wi ll then appear at
the beginni ng of every line in the selected block. You ca n remove this text by
indenting with a negative number.

97

98

By selecting some text and choosing the Help submenu, some language-specific
help can be given on that selection . This help is supplied by a language package,
which will have regis'tered a help file containing typically a list of help messages for
keywords of a programming language (eg the C print f function).

The Load submenu allows you to load a file into the editor, whose name is given by
the current selection . The rule used to determine the name of the file to be loaded
(assuming the current selection is in a file whose name has the form
DirectoryPath . LanguageExtens i on.foo) is as follows :

Try to load file Sel e c ti on.

2 If (I) fails try to load file :

Di rec t or yPa th. LanguageExt ens i on . Selecti on

3 Try to load file Di rectoryPa t h.Selection.

4 If (3) fails try the comma-separated list of directories entered by the user from
the Search Path entry in the Options submenu of SrcEdit's icon bar menu,
with S e lec t ion appended as a leafname.

5 If (3) and (4) fail, try the comma-separated list of directories which are
registered for the current language (see the section entitled Application menu on
page 109 for details of how to set the current language) .

For example , you may have a C source file with a line #inc l ude "defs . h". By
selecting def s . hand typing Ctrl-L the header file d e f s . h will be loaded into
SrcEdit (providing it can be found on one of the search paths) .

The Edit menu

The first option in the Edit menu is Find. At its simplest, this allows you to locate
any charact~r(s) in your file . You can also use it to replace text with other text. To
make sure that the search is complete , always position the caret at the start of the
file before giving the Find command . In the following description, the text being
searched for is referred to as a string; it may consist of any sequence of letters,
numbers, spaces or other characters.

SrcEdit

To use Find without doing anything with the found strings, choose Find in the Edit
submenu the Find text dialogue box appears, with the caret in the Find box. Type
in the string you want to locate and press Return . The caret then moves to the
Replace with box.

To start a sea rch, click on Go, press Return or press Fl .

Edit finds the first occurrence after the caret of the word in your fil e, then displays
the Text found dialogue box, indicat ing the operat ions avai lable

To look for the next occurrence of your string, click on Continue. To abandon the
search, click on Stop, or press Return or Escape.

To use Find for replacing a string with a new string, go to the Find text dialogue
box as before, but this time, insert the new string into the Replace with box. Then
press Return , and the Text found dialogue box appears.

Click on Replace to substitute the new string for the old stri ng; if you do not want
to change this particu lar occu rrence of the old string, click on Continue and Edit
moves on to the next one.

If you click Last Replace, Edit replaces the current ly found instance of the string,
but does not search for further occurrences.

If you click End of file Replace, SrcEdit finds and replaces all occurrences of the
string from the present one forwa rd to the end of the file , without stopping at each
one for instructions.

Cli cking on Undo takes you back to the last string replaced and returns it to the
original version; click reDo to change it back aga in .

99

100

The display at the bottom of the menu keeps you informed of the state of the
search; if Edit cannot find the word you have specified it displays t he message
Not Found.

Besides using the Select button, you can contro l all these options by pressing keys;
the particular keys are indicated by the capital letters in the dialogue box. Press S
and the sea rch stops, press C and it continues, D and it wi ll redo, and so on.
Pressing Escape or Return will stop the sea rch and remove the Text found window.

Note that you ca n use Find to delete strings in a text. by entering nothing in the
Replace with box, and clicking on Replace in the Text found dia logue box, thus
rep lacing the found string with nothing: delet ing it. in effect

There are several other usefu l facilities , accessed in the Find text dia logue box:
• You can carry out the last Find and Replace operat ion again, by clicking

Previous or pressing F2 .

• You can specify a string and ask Ed it to count the number of times it occurs in
your file (from the caret position to the end of the file) by clicking on Count or
pressing F3.

You can match case by selecting Case sensitive or pressing F4. By default, Find
makes no distinct ion between upper and lower case characters-Hello will match
to both HELLO and hello, or for that matter, hElLo. If you ask SrcEdit to match
case, Hello wi ll on ly match Hello. Case sensitivity remains selected until you
deselect it by clicking again

Replace with:
Ocase •:sensitiue ·ii'

~Magic characters (>Wildcarded expressions
~w s- _,r_, ::::~

\,=any char \a=any letter or digit \d=any digit
\xXX=hex char \n=nnlin~· \cX=ctl-X \ \:\
\•=any string \&=f.ound string

&f FH

• In order to remain backwards compatib le with versions of the RISC OS Edit,
SrcEdit supports the Magic Characters facilities. which can be accessed by
clicking on the Magic Characters in the Find dialogue box. You wi ll notice
that the dialogue box expands to show the meaning of characters which have a
specia l use. They operate as follows:

SrcEdit

\ * matches any string (including a string consisting of no characters at all)
This is really only useful in the middle of a search string For example,
jo\ *n matches jon, johnson, and jonathan.

\a matches any single alphabetic or digit character. Sot \ ap matches tip,
tap, and top, but not trap.

\d matches any digit

\ . matches any character at all, including spaces and non-alphabetic
characters.

\n matches the newline character (remember that to the computer, this is a
character just like any other)

\cX matches Ctrl-X, where Xis any character.

\& is used in the Replace with box to represent the found string: the string
matched in the search. This is useful when you have used magic characters
in the Find string. For example, if you have searched fort \ap, and you
want to add ans to the end of all the strings found, \&s in the Replace
with box will replace tip, tap and top by tips, taps and tops.

\ \ enables you to search for a string actually containing the backslash
character \ while using magic characters. To search for the strings cat \a
or cot \a , enter c\at \\a.

\xXX matches characters by their ASCII number, expressed in hexadecimal.
Thus \x61 matches lower-case a. This is principally useful for finding
characters that are not in the normal printable range.

00 Find texf !t*!fil® h 11r·
CE] !Previous I I Count I

Find: I
Replace with:
Dease sensitive
<>Magic characters <.t> Wildcarded expressions

Any . Newline $ Alphanuflt @ Digit I
Ctr I I Nor11tal \ Setc lSet
Hot N 8 or 11tore • 1 or 11tore .. Most %

To - Found & Fieldl ? Hex (3

101

102

In SrcEdit there is also a facility for specifying wildcarded expressions in search
strings, providing the power of an editor like Twin . In order to use this facility, click
on Wildcarded Expressions in the Find dialogue box. A number of action icons
show the features which are available. These are:

Action
icon Expression

Any

Newline

Alphanum

Digit

Ctr!

Normal

Seti/Set!

Not

0 or more

I or more

Most

To

Found

Field#

$

@

\

[l

*

%

&

?

Action

matches any single character.

matches the newline character (LineFeed)

matches any alphanumeric character a-z, A-z , 0-9 or_.

matches any digit 0 - 9

c or IC will match the character Ctrl-C.

\c will match the character c even if c is a special character.
eg \ . means the dot character not any single character.

[abc J matches any one of the characters a, b, c.
Note that a set is always case-sensitive.

-c matches any other character than c, where c is any of the
simple character patterns li sted above.

*c matches 0 or more occurrences of c, where c is any of the
simple character patterns listed above.

"c matches I or more occurrences of c, where c is any of the
simple character patterns listed above.

%c matches the most contiguous characters matching c,
where c is any of the simple character patterns (except Any)
listed above.

[cl-c2 J matches any character in the ASCII character set
between c l and c2 inclusive.

refers to the whole of the found string
(only to be used in the Replace with string)

if a pattern was found which matched the search string, then
?n refers to the part of the found string which matched the
n'th ambiguous part of the search string, where n is a digit O
to 9. Ambiguous parts are those which could not be exactly
specified in the search string; eg in the search string
% # f red * $ there are two ambiguous parts, % # and * $,which

Hex

SrcEdit

are ? O and ? 1 respectively. Ambiguous parts are numbered
from left to right.
(only to be used in the Replace with string)

[:)nn matches the character whose ASCII number is nn, where
nn is a two-digit hex number.

The full power of this facility can be illustrated by a few examples

• To count how many lower case letters appear in a text:

Find: [a-z]

and click on Count.

• To count how many words are in a text:

F i nd: %@

and Click on Count.

• To surround all words in a text by brackets:

Find: %@
Rep l ace wi t h : (&)

and click on GO, then on End of File Replace in the Found dialogue box

• To change all occurrences of strings like #inc lude h. f oo into #inc lude
foo . h :

Find: \#include 'h\.%@'
Replace wi t h: #include '?0.h'

and click on GO, then on End of File Replace in the Found dialogue box

• To remove all non-printing ASCII characters (other than newline) from a file

Find: - [-\-$]
Rep l ace with:

and click on GO, then on End of File Replace in the Found dialogue box (ie
find all characters outside the set from the space character to the - character,
and newline, and replace them with nothing) In fact this could be written
without the \ , since - would not make sense in this context if it had its special
meaning of Not, ie:

F i nd : - [--$]

103

104

Returning to the Edit menu

To send the caret to a specific line of text. use the Goto option Call up the Goto
submenu and Edit displays a dialogue box:

current line: 1
current charfr8

Go to line: l,..........__ _ __,I~

Type in the line number you want to move to, then click on OK. The dialogue box
disappears, and the screen displays the caret. positioned at the beginning of the
line you have just specified . Note that this option understands 'line' to mean the
string of characters between two presses of Return . If you have not formatted your
text. a line in this sense may run over more than one display line.

Undo allows you to step backwards through the most recent cha nges you have
made to the text. The number of changes you can reverse in this way va ries
according to the operations involved.

Redo allows you to remake the changes you reversed with Undo.

CRH LF allows you to convert the line feeds in your text to carriage returns and
back again

If you convert from linefeeds to carriagE;! returns, the file will be converted to one
continuous line, with carriage return characters inserted where linefeeds have been
removed. Though it is possible to edit a file in this state, you may find that
updating the screen takes a long time. This facility is useful when importing text
from other text editors, which may use carriage return where SrcEdit uses the line
feed character.

Expand Tabs converts tab characters to the equ ivalent number of spaces, since
some printers can interpret spaces more easi ly than the tab character.

Format text allows you to reformat a paragraph of text - from the caret to the next
blank line or line starting with a space - so that the lines fill the screen and break
correctly at the ends of words . It is useful for tidying up text after editing. Position
the caret at the beginning of the paragraph, choose Format text in the Edit menu
and enter the number of characters per line you want your text to have in the
Format width dialogue box. Then move the pointer back over the Edit menu and
click on Format text to format the paragraph.

The setting in the Format width dialogue box also controls the length of lines
when you are entering text with Word wrap switched on .

SrcEdit

The Display menu

Display allows you to change the way your text looks on the screen: you can
experiment with fonts, colours, line spacing and margins. However, the features
you select do not form part of the text when you save it.

For example, if you choose New view in the Misc menu, you will have a second
window on your text. If you wish, the Display features in these two windows can be
different; this will not affect the text as such.

SrcEdit
Misc

¢

Font size ;;
Font height ;;.
Line spacing ¢
Margin ¢
Invert
Window wrap
Foreground ¢
Background ¢

.J Work Area ¢

Font offers you a choice of fonts (typefaces) System Font is the default style, and
has a fixed character width. For further information on fonts, see the RISC OS User
Guide.

You can use Font size to set the point size (height and width) of the characters
di splayed on the screen. Either select one of the sizes indicated or position the
pointer on the bottom (blank) line of the menu; you can then type in another size.

Font height allows you to set the height of the characters displayed on the screen
leaving their width unchanged

Line spacing increases or decreases the space between lines. Its units are pixels
(the smallest unit the screen uses in its current mode) The selected font size
assigns a su itable line spacing; this option is therefore used only to increase (or if
you type a negative number, to decrease) the given spacing.

Margin sets the left margin, again in pixels.

Invert swaps foreground and background colours, so that black text on white
becomes white text on black, and so on.

105

Printing a SrcEdit file

By default, SrcEdit assumes a text width of 76 characters, but the default window is
not as wide as the full screen. You can of course change the number of characters
per line (by choosing Format text in the Edit menu) or enlarge the window to the
full screen by clicking on the Toggle Size icon . Alternatively, clicking Window wrap
makes your text fit the size of the window. When Window wrap is on, you can
change the window to any size, and the width of the text will change accordingly
You can revert to the default by selecting Window wrap again

Foreground allows you to set the text to any one of the sixteen colou rs, by clicking
on the selected co lou r square from the palette displayed.

Background allows you to set the window's background colour, as above.

Work Area allows you to set the extent of you r SrcEdit windows so that you can
have windows which are wider than the current screen mode. Normally SrcEdit
restricts the maximum horizontal extent of a window to the size of the screen in the
current mode, but you can specify a wider window in terms of System Font
characters in the Work Area submen u (the size of System Font characters is used
even if the current font used is a fancy font) This is particularly useful if you have
sources which, for example, are 80 or 132 characters wide and you are viewing them
in mode 12. The maximum size of window width which can be specified in this
manner is 192 System Font characters.

Printing a SrcEdit file

There are two ways of printing a SrcEdit file; however. to use either, you first need
to load a printer driver.

If the file you want to print is already loaded into SrcEdit. call up the Save as
dialogue box and drag the icon onto the printer driver icon on the icon bar. Thi s
will print the current version of the file, whether or not it has been saved.

If the file is not loaded into SrcEdit. you can simply drag the files's icon from its
directory display onto the printer driver icon. You can also do this if the file is
loaded, but if you have made any changes to it since you last saved it. they wi ll not
appear in the printed copy; only what has been saved will be printed by this
method.

Laying out tables: the Tab key

106

To set out a table, type in the first line -the column headings, for example-as you
want it to appear, using spaces to separate the text in the co lumns. Then press
Return. If Column tabs is turned off then pressing Tab on the next line wi ll make
the cursor jump to the position underneath the start of the next word in the line
above.

SrcEdit

If you want your tab le to have columns regularly spaced eight characters apart,

click on Column tabs in the Misc menu. The word Col Tab wi ll appear in the

window's Title bar to remind you that you have done this. Pressing Tab wi ll then

cause the cursor to jump to the next tab position .

Reading in text from another file

If you want to add all the text from another file into the file you are current ly

editing, position the caret at the point where the inserted text is to appear. Call up

the directory display for the incoming file, and drag its icon into the text window.

The entire contents of the source file are then copied into the destination file at the

caret position The caret will appear at the end of the text you have inserted.

Bracket Matching

Throwback

SrcEdit has a useful bracket-matching facility. If you place the caret to the left of an

opening bracket (any of the set (, [,or {)and press Ctr!-) , the corresponding

closing bracket will become the current selection; simi larly by placing the caret to

the left of a closing bracket (any of the set) , J, or }) and pressing Ctr!-(, the

corresponding opening bracket wi ll be selected. If there is no matching bracket an

error message is generated. This is a particularly useful feature in heavily bracketed

expressions and blocks of code which extend over a large amount of sou rce code,

and is useful in conjunction with the Ctrl-F7 feature (toggle caret and selection),

thus moving the selection between matching brackets.

The purpose of throwback is to allow translators (compilers/assemblers) to signa l

the editor when they have detected source errors. On receiving such a signal,

SrcEdit displays a window which shows the name of the file which was being

processed when the error(s) were found, the name of the file in which the error(s)

were found, and the relevant line number together with the text of the error

message. Also di splayed is the severity level of the error(s): Serious Error, Error, or

Warning. The complete list of errors is shown in a scrollable window. We shall refer

to a single line of this window as an error line. You can scroll through these as with

any normal text window, using the vertical and horizontal scroll bars.

107

Saving Options

Saving Options

108

Double-clicking Select on an error line opens an edit window on the appropriate
file (if it is not already open). and highlights the line containing the selected error.
The selected error line is also highlighted in the scrollable error window. Clicking
Adjust on an error line removes it from the list (presumably you have either
corrected the error or have chosen to ignore it) . Note that error line numbers refer
to the original source when it was processed. You may, in the course of correcting
errors, insert or delete lines; the position in the source where errors were detected
remains correct despite your edits (provided that the edits are made as a
consequence of throwback).

'Informational ' throwback is also supported for tools like! Find. The functionality of
such a throwback window is the same as for 'error' throwback.

To retain the same set of options whenever you use SrcEdit, set the menu and
dialogue box entries to the required configuration and then choose Save options
from the SrcEdit icon bar menu . The options you have chosen are then saved in
two files :

<SrcEdit$Dir> . choices . options
<SrcEdit$Dir>.choices.liboptions

These files are read when SrcEdit starts up. The options saved are:

Feature

Foreground Colour
Background Colour
Font Width
Font Height
Left Margin in pixels
Extra spacing between lines
Window wrap
Font name

Default

black
white
10
10
0
0
off
System font

SrcEdit

Window work area width
Column tab
Overwrite
Wordwrap
Warn multiple edits
Current language
Search path

Application menu

Screen width
on
off
off
on
none
none

Pressing Menu on the SrcEdit icon on the icon bar produces a menu with the
fo llowing options :

Info gives you some information about the vers ion of SrcEd it you are using.

Save All saves all modified buffers, and closes all open windows.

Save Options saves the current settings of all SrcEdit options to fil e, so that there
is no need to set the environment variables used to maintain these options.

The Options submenu allows you to set the fo llowing options

Info
Save all
Save options
Options
C1·eate
Quit

¢

ftF9

¢ Overwrite
Wordwrap

4 Warn 11iultiple edits
Language ¢
Search path ¢

Column tab, Overwrite and Wordwrap are sim ilar to the opt ions on the Misc
submenu in the section entitled Tlie Misc menu on page 94. They are used to set
the default options for all windows opened by SrcEdit.
Warn multiple edits, if enabled, will warn you when you attempt to load a fil e
which is already loaded in a modified SrcEdit buffer. This reduces the chance
of you accidentally editing two copies of the same fil e, and then saving one
over the other. In such a case you will be presented with a dialogue box, giving
you the choice of having a read-only copy of the file, a normal ed itable copy, or
to cance l the load of the file . If you choose to have a read-only copy, then the
SrcEdit window for the document will have Read-Only in its Title bar and you
will be prevented from making any edits to the contents of the document.

109

SrcEdit task windows

The Language submenu gives you a list of any language packages which have
registered themselves with SrcEdit. You can select which of these languages is
current, and this will determine what Help text is available, and also the

default search path used when loading from a selection.

Search path - If you load from a selection (ie when you have chosen Load
from the Select submenu), SrcEdit will look in a number of places for the file to
be loaded. You may set a comma-separated list of paths to search by typing
them into the Search path writable icon (described in (2) in the Load
submenu in the section entitled SrcEdit menus on page 94) . Note that each such
path should either be a path variable or be explicitly terminated by a dot.

Create leads to a submenu which enables you to open windows for specific types
of file : Text, Data , Command, Obey and Make files.

In addition, the Create submenu allows you to set up SrcEdit Task windows, these
are described in the next section.

Finally, Quit stops SrcEdit and removes it from the computer's memory, first
presenting you with a dialogue box for confirmation if there are any current files
you have not saved.

SrcEdit task windows

110

SrcEdit task windows allow you to use Command Line mode in a window. To open
a task window, choose Task window from the SrcEdit application menu. You can
have more than one task window open. When you open a task window, you will see
a • prompt. You can now enter commands in the window just as if you were using
Command Line mode.

The major advantages in entering commands in a task window instead of at the
Command Line prompt are that:

• Other applications continue to run in their own windows while you run the
task (this does mean , though, that the task may run more slowly than it would
using other methods of reaching the Command Line)

• Commands that you type, plus the output (if any). appear in a conventional
Edit window, and may therefore easily be examined by scrolling up and down
in the usual way. When you type into the window, or when a command
produces output, the window immediately scrolls to the bottom of the text.
Anything you type in is passed to the task, and has the same effect as typing
whilst in Command Line mode. You can change this by unlinking the window

in this case, anything you type in alters the contents of the window in the same
way as any other Edit window, even while a task is running. Any output from
the task is appended to the end.

SrcEdit

You can also supply input to a task window by selecting some text from another
text file and choosing Tasklnput from the task window menu. The selection may be
in any Edit window.

You cannot use graphics in a task window. The output of any commands that use
graphics wi ll appear as screen contro l codes in the task window.

The menu for a task window contains the following options:

Task J
Ki 11
Reconnect
Suspend
Resur;e
Unlink
link
Taskinput

.J Ignore Ct l
Edit ¢

Kill stops and destroys the task running in the window.

Reconnect starts a new task in the window, allocating memory to the task from the
Task Manager's Next slot.

Suspend temporarily halts the task running in the window.

Resume restarts a suspended task.

Unlink prevents the sending of typed-in characters to the task. Instead, they are
processed as if the task window were a normal Edit text window.

Link reverses the effect of Unlink.

Tasklnput reads task input from the currently selected block.

Ignore Ctl , when selected, prevents any control characters generated by the
program from being sent to the screen .

Edit leads to the normal Edit menu. Although this makes available most of Edit's
features, you cannot use facilities such as the cursor keys or keys such as Page Up
and Home while you are using a Task window.

111

Some guidelines and suggestions for using task windows

Some guidelines and suggestions for using task windows

In order to use a task window, you will need to be familiar with Command Line
mode. There are some commands which you will find are more useful in a task

window than they are directly from the Command Line. In particular:

*wimps lot min [max] can be used to adjust the amount of memory available
to the task. which wi ll otherwise start up using the Next space allocation. If you
want to remove all the memory allocated to a task without closing its window or
destroying the task, use the command *wimps lot 0 0.

* f iler_ opendir path opens a new directory display for the directory with the
given path The path must start with a filing system name, but need not be a full
pathname. For example, adfs : : @will open a display for the current directory.

The command *Spool should not be used from a task window. Because its effect
is to write everything that appears on the screen to the spool file, using * Spool
from the desktop wi ll produce unusable files full of screen contro l characters.
There is. in any case. no point in using *Spool, since the output from the task
appears in the window, and can be saved using SrcEdit as normal.

When you run a command in a task window, the computer divides its time between
the task window and other activities running in the desktop. You should note that
some time-consuming commands, for example, a *Copy of a large file, may
prevent access to the filing system that they use until the command is complete.

Note that Command Line concepts suc;h as current directory become relevant
when you are using Task Windows.

Keystroke equivalents

112

On occasions. it can be convenient to use the keyboard instead of the mouse,
especia lly once you are familiar with SrcEdit through its menus.

When editing

~, ~.r. J,

Shift-~, Shift-~

Shift-I, Shift-..l

Ctrl-i

Ctri-..l-

Ctrl-~. Ctr!-~

Ctrl-Shift-i. Ctrl-Shift-..l-

Move caret one character left, ri ght, up or down.

Move caret one word left or right.

Move caret one windowful up or down.

Move caret to start of file.

Move caret to end of file .

Move caret to start or end of line.

Scrol l file without moving caret.

Ctrl-Shift-f

Ctrl-Shift--t

Copy

Shift-Copy

Ctrl-Copy

Home

Insert

Page Up/Page Down

Shift-Page Up/Page Down

Ctrl-Page Up/Page Down

Shift-F3

Shift-Fl

Ctrl-F5

Ctrl-F7

Scroll all documents up by one line.

Scroll all documents down by one line.

Delete character to right of caret.

Delete word at current caret position.

Delete line at caret.

Place caret at top of document.

Insert space to right of caret.

Scroll up or down one windowful.

SrcEdit

Move caret up or down one line without scrolling.

Move caret and scroll up or down one line.

Toggle column tabs on or off.

Toggle overwrite mode on or off.

Toggle word wrap on or off.

Make where the caret is the current selection, and
move the caret to where the selection was (ie toggle
caret and selection).

Keystroke equivalents in the Select menu

Ctrl-Z

Ctrl-X

Ctrl-C

Ctrl-V

FI

Ctrl-L

Clear selection.

Delete selection.

Copy selection to caret.

Move selection to caret.

Request language-specific help.

Load file whose leafname is given by selection.

Keystroke equivalents in the Edit menu

F4

Ctrl-F4

F5

F6

Display Find dialogue box.

Indent text block.

Display GoTo dialogue box.

If no block is selected, select the single character
after the caret. If a block is selected, and the caret is
outside it. extend the selection up to the caret. If a

113

Keystroke equivalents

114

Shift-F6

F7

Shift-F7

F8

F9

Ctrl-F6

Ctrl-F8

Ctrl-Shift-Fl

block is selected and the caret is inside it, cut the
block from the caret position to the nearest end of
the block.

Clear the current selection.

Copy the selected block at the current caret position

Move the current selection to the caret position .

Undo last act ion.

Redo last action.

Format text block.

Toggle between CR and LF versions of the file

Expand tabs.

Keystroke equivalents in the Find menu

Note: these keystroke definitions only come into play once the Find dialogue box
has been displayed (eg by typing F4)

i , J,

Fl

F2

F3

F4

F5

F6

Keystroke File options

F2

Shift-F2

F3

Find I replace text string

Display Text found dialogue box.

Use previous find and replace strings.

Count occurrences of find string.

Toggle case sensitive switch.

Toggle magic characters switch.

Toggle wildcarded expressions switch.

Open a dialogue box enabling you to load an existing
Edit file into a new window.

Open a dialogue box enabling you to insert an
existing SrcEdit file at the caret position.

Save the file in the current wi ndow. This is a shortcut
to the normal Save as dialogue box.

Part 3 - Non-interactive tools

115

116

8 General features

This chapter describes those features common to all the DOE non-interactive
tools.

As described in the chapter entitled Working irt the DOE on page 19, the large
number of programming tools forming the Desktop Development Environment can
be divided into two categories: interactive and non-interactive. The non-interactive
tools are those which you set options for and then run , not interacting further until
the task completes or is halted. An example of a non-interactive tool is the linker
Link, whereas the editor SrcEdit is an interactive tool. The chapters following this
each describe an individual non-interactive DOE tool. Further chapters in the
accompanying language user guides describe non-interactive tools specific to
programming in particular languages; for example, the language compilers and
assemblers themselves.

The non-interactive tools can be further divided into two sub-categories: filters and
non-filters. The filter tools are those that take a set of input files and process them
to produce output files, examples being Link, Libfile, Squeeze and the language ·
processors. The non-filter tools all perform some immediate action, such as
examining text files and presenting you with information as text output. The filter
tools are intended to be used both managed and unmanaged by Make (an
interactive tool described earlier in this user guide). whereas the non-filter tools
are normally just used for unmanaged work.

To start unmanaged use of any of the non-interactive tools, you first double click
Select on a tool application name in a directory display. This loads the tool. putting
its application icon on the icon bar (just like any other RISC OS application). The
interactive DOE tools all have different icons, but the application icons of the
non-interactive tools are all similar:

!.lf~ll. ~ application sprite

RppHaf!le -c application name

The icon shows a spanner and screwdriver (representing an application tool), with
the name of the application beneath .

117

The Application menu

When using the filter type of non-interactive tool managed by Make. there is no
need to sta rt each tool and put its icon on the icon bar.

All the non-interactive ODE tools are implemented as command line programs
provided with RISC OS desktop interfaces by the FrontEnd rel ocatable module. but
you do not need to be aware of this when using them. as command lines are
automatically generated from your settings of the desktop interface of each tool.
making the tools appear to be standard RISC OS applications.

The interface of each non-interactive tool can be summari sed as follows:

• Clicking Menu on the application icon brings up a standard application main
menu (for unmanaged use only).

• Clicking Select on the applicat ion icon displays the SetUp dialogue box. This
all ows the user to set options and specify input files etc. A menu is available
within the dialogue box enabling other opt ions to be set. Tool Set Up boxes are
displayed by Make for managed development.

• Messages generated are output to a Text window or a Summary window. You
can toggle between these windows and save the output to a fil e.

• A processed output file from a filter tool is either saved in a work directory or is
saved by you from a standard Save as dialogue box which appears when the
task has compJ.eted without error (unmanaged use only)

The Application menu

118

'Clicking Menu on the application icon gives the following main menu :

Save options
Opt ions . ¢
Help
Du it

. Info returns information about the application

Save options causes the opt ions in the SetUp box. and all submenu opt ions
(meta-options) from this main menu. to be saved in a file for later use as defaults
when the tool is restarted.

General features

The Options submenu allows you to set the foll owing options:

Info ¢
1-----~----.

Save opt ions U i«rns
~¢Auto Run
Help Auto Save
Quit Display ¢

Auto Run will ca use the command- line command to be run immediately when

a fil e is dragged onto the icon on the icon bar, without first di splaying the

SetUp dia logue box. Options remain as they are current ly set.

Auto Save suppresses the Save as dialogue box of filter tools if a sensible

pathname is ava ilable to save the output to. For more detail s on pathnames

see the METAOPTIONS section on page 19 1. Note that 'output' here is used to

describe a single fil e which is produced by running the command-line tool.

The Display submenu allows the user to choose whether the too l outputs by

defau lt into a text wi ndow or a summary window.

Help _displays a help fil e in a scrollable text window, fo r example:

'1 1 (:) I ,, Diff help "' ..
Dltt ~ NNNN

Purpose: File cof!lparer

Setup :
Icon RctiontMeaning Default
---- -------------- -------
Path!) Hat11es of files or directories to nil
Path2) be diff 'ed

<typed or dragged)
off Case insensit ive Ignore case

Ex!fand tabs Expand tabs to 8 s~aces off
Ret11ove spaces Ret11ove all spaces efore cot11paring off

' lines
Squash spaces Squash sequences of spaces to one off

space

Menu: J Entry Rcti ontMeaning Default
----- -------------- -------
Dir. structu1·e show on ly the ~!rectQr~ off {I

¢rn I 1 ~ l!I

Quit quits the applicati on

119

The Setup box

The Setup box

120

When working in the unmanaged way, ie with the tool application icon on the icon
bar, clicking Select on this icon or dragging the name of an input file to this icon
displays the SetUp dialogue box. If the SetUp box was displayed by a filename
drag, this filename is displayed in the relevant writable icon. Options appear with
the previous settings used, making it easy to repeat the last run of a tool.

When working managed by Make, you specify a 'recipe' of tasks to be followed to
construct a program from its sources. This recipe is stored as a makefile, and can
be used later. You specify the recipe in terms of what goes in (source files, libraries,
etc.). what comes out (eg an executable !Runlmage file) and the processes
followed. The processes followed include specifying the options to be set for the
filter tools when they are used. To set these options you follow the Tool options
menu item of Make to a list of tools, then Select on the name of the relevant tool.
This brings up the SetUp dialogue box of the relevant tool, whether its application
icon is on the icon bar or not The SetUp box appears with options set to helpful
default states for managed use.

A typical SetUp dialogue box is that of the application Common:

The SetUp box for each application is different. but for unmanaged use they all
offer the following two action buttons:

Run runs the tool with the options as set. starting a multitasking task performing
the non-interactive job specified. This multitasking depends on the presence of the
TaskWindow relocatable module.

Clicking Select on Run removes the dialogue box, clicking Adjust on Run leaves the
dialogue box on your screen.

Cancel discards any changes made to the options and closes the SetUp box.

Output

General features

The Setup menu

Clicking Menu on the SetUp dialogue box produces a menu with the style of

Co111111and line ¢
Ot hel' opt ions
Othel' options

Command line leads to a dialogue box showing the command line equiva lent of
the opt ions set in the SetUp dialogue box, and any extra options set from the
Other options part of the above menu .

Other options are a set of options specific to the parti cular applicati on

Two types of output wi ndow are ava ilable for generated messages; Text and
Summary.

The Text window

If Text has been chosen from t he Display submenu then a scrollable, saveable text
window appears when the tool is runn ing. All textual output sent to t he screen by
the program appears in t he text window. This window ca n be cl osed at any t ime,
thu s aborting the command- li ne program The Title bar of thi s window shows the
name of t he tool and the state of t he text running, ie Runni ng, Completed, or
Paused. An example of a Text window using the appl icat ion Common is:

o a nufll et' o
334 of 'the '
131 of 'to'
129 of 'a'
187 of 'of'
185 of 'pt'oject'
98 of 'in'
78 of 'for'
67 of 'is '
64 of 'Make'
58 of 'be'
55 of 'which'
55 of 'and'
58 of 'box'

121

122

Clicking Menu on a text window displays the following menu

Info gives information about the program being run.

Cmd Line shows the command line generated and used to run the tool.

Save allows the textual output to be saved in a file

Abort aborts a running program.

Pause pauses a running program.

Continue continues a paused program.

The Summary window

If Summary has been chosen from the Display submenu then a small summary
window, similar to the following, appears when the tool is running:

Cofllfllon 267 Lines of output

Abort Continue

This summary window displays the sprite of the application and the time at which
the command was run. The Title bar is the same as for the text window. There are
two action buttons, Abort and either Pause or Continue. wh ich allow the program
to be aborted, paused, and continued in an identical fashion to the menu on the
Text window.

General features

Clicking Menu on the summary dialogue box displays a menu simi lar to the

following

17Coililon ,,
Info ¢
C111d Line ¢
Save ¢

Info gives information about the program being run .

Cmd Line shows the command l ine generated to be used to run the too l.

Save allows the textual output to be saved in a fil e

Toggling between the Text and Summary windows

To toggle between the Text and Summary windows click Adjust on the output

window's close icon.

Processed file output from filter tools

The numbers and types of files output varies between each filter tool, so for more

details see the chapter on the tool in question.

During managed development the saving of processed files is specified by the

makefi le, which can be constructed for you by Make.

For unmanaged development, processed fi les are either saved in positions relative

to the work directory, or saved by you from a Save as dialogue box which appears

when a job has completed without errors. This box does not appear i f you have

enabled the Auto save option on the application menu.

123

Output

124

9

Starting AMU

AMU

T he Acorn Make Utility (AMU). is a tool managing the construction of executable
program images. libraries. and so on using operations specified in a makefile.

All the faci lities provided by AMU are also provided by Make. which in add ition
assists you in constructing your makefiles. It is therefore recommended that you
use Make rather than AMU, except where extreme memory shortage makes the
larger size of Make a problem and the extra facilities are not needed.

Since use of AMU is deprecated. the description in this chapter is brief. For details
of makefile syntax. see Appendix A - Makefile syntax Some details described in the
chapter entit led Make on page 79 may also be useful references for AMU. as the
command line tool amu. which performs the management of program
construction. is the same tool used by Make

Each time that AMU is run . a work directory is set up for that job as t he directory
containing the makefile For the effect of the work directory on each tool. see the
chapters on individual tools such as the language processors CC and ObjAsm in
this and accompanying user gu ides.

AMU is one of the non-interactive DOE tools, its desktop user interfa ce being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter entitled
General features on page I 17.

Since AMU is an alternative tool providing const ruct ion management like Make. it
is normally used contro lled directly from its desktop interface. To start AMU. first
double cl ick on !AMU in a directory disp lay to put its icon on the icon bar

125

Starting AMU

126

Clicking Select on this icon or dragging the name of a make file (text or
Makefile file type) from a directory display to the icon brings up the AMU SetUp
dialogue box, from wh ich you contro l the running of AMU

" I (3 I AMU
Makefile: ldf s: : Hard4, $,User, Dhryst one.Makefile~
Targets: I

- Opt ions
[]Continue after errors []Don't execute
[]Ignore return codes []Si lent

I Run I I Cancel I

Makefile contains the name of the makefile to be used when AMU is run . If you
brought up the SetUp dialogue box by clicking on t he AMU icon bar icon, this
writab le icon contains the previous makefile used (if any), otherwise it displays the
name of the fi le you dragged to the icon. Dragging another fi le to this writable icon
replaces its contents with the new name.

Targets contains a space-separated list of the names of the targets in the makefile
to be constructed, and macro predefinitions of the type n a me =s tring. If this
writab le icon is empty (defau lt) the first target in the makefile will be made.

The Continue after errors option causes the make job to contin ue after one of the
commands issued by it has returned a bad return code (s ignall ing an error). When
the job continues, on ly those branches of the make job which don't depend on the
failed command are executed.

The Ignore return codes option causes the make job to continue after one of the
commands issued by it has returned a bad return code (signalling an error). When
the job continues, all subsequent branches of the make job are executed, as if the
return code was good.

The Don't execute option stops any commands being executed, instead just
printing them to the output window with dependency reasons fo r each one.

The Silent option stops printing of executed commands in the output window.

Clicking Menu on the SetUp dialogue box brings up the AMU SetUp menu ,
containing a few additional opt ions:

Cofllflland line¢
Staf!IP
Cofllflland file¢

The Command line option on t he above menu has the standard purpose for
non-interacti ve DOE tools as described in chapter entitled General features on
page 117.

AMU

The Stamp option stops construction o f the target. instead ca using sources and
ta rget to be stamped with current time so that the target appea rs up to date. This
only works if all sources are present

The Command file option leads to a writable icon where you specify the name of a
fil e to be wri tten containing com mands generated. If you specify a relati ve
fil ename, this is used relati ve to the work directory (the location of the makefile)
The commands are written to t hi s fil e but not executed .

The Application menu
Clicking Menu on the AMU appli cation icon on the icon bar gives access to the
fo llow ing options:

Info ¢
Save options
~¢
Help
Quit

1---,,-.,..,.,--,,,,......,

Suf11111a1·y

For a descri pt ion of each opt io n in the appl icat ion menu see chapter entitled
General featu res on page 117.

127

Example output

Example output

Running AMU displays any error messages in the standard text output window for
non-interactive tools. If all goes well this window contains no error messages, for
example:

Command line interface

128

For normal use you do not need to understand the syntax of the AMU command
line, as it is generated automatically for you from the Set Up dialogue box and
menu settings before it is used .

The syntax of the AMU command line is:

amu [options J [targetl { target2 . .. } J

Options

- f makefi le Makefile name (makefile defaults to Makefile if
omitted)

- i Ignore return codes
- k Continue after errors
- n Don't execute
- o commandfile Specify Command file as on SetUp menu
- s Silent
-t Equivalent to Stamp on the Setup menu

targetl {target2} ...

This is a space-separated list of targets to be made or macro pre-definitions of the
form name=string. Targets are made in the order given . If no targets are given,
the first target found in makefile is used.

10 Common

This applicati on tool counts the frequency of words in a fil e. It allows you to

choose between:

• displaying the number of times every word in a file occurs (defaul t);

• displaying the number of times only the most common words in a fil e occur.

You ca n also choose whether or not to treat numeri cs as words.

The Setup dialogue box

Clicking Select on the application icon or dragging t he name of a fil e (text) from a

di rectory display to the icon brings up the SetUp dialogue box

~I (31 Col!l111on
Files: I I

- Opt ions

0First 00 O!!J words

0Recognise digits

I Run I I Cancel I

The Files writable icon allows you to specify the names o f fi les to be processed

(typed in or dragged from a directory di splay)

Setup options

First allows you to di splay only the most common words in a fil e. You ca n specify

how many of t he m ost common words are to be di splayed by:

• using the adjacent arrow icons to increase or decrease the number of words

appearing in the words box;

• ed iting the words box by cl icking Select inside it and typ ing in a number.

129

If First has been chosen and severa l different words occur the same number of
times in a file, then Common will display the frequency of each of the different
words but, for the purposes of words, treat them all as if they were on ly one word.

The default is off (ie consider every word in the file)

Recognise digit, if chosen, will force Common to count numerics as words.

The default is off (ie ignore digits)

The Setup menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

Cofllhn
Cofllflland line¢

For a description of the Common Command line option see the section ent itled
Command line interface on page 132.

The Application menu

130

Clicking Menu on the Common appl ication icon gives the following options

Coflltllon
Info ¢
Save options
~¢
Help
Du it

M===,....-__,

Sufllfllary

For a description of each option in the application menu see the chapter ent itl ed
General features on page 117.

Note that the Auto Save facility is not avai lable for this application

Example output

Common

The output of Common appears in one of the standard non-interactive tool output

windows. For more detai ls of these see the section entitled Output on page 121.

The fo llowing is an example of a large text fil e analysed by Common and displayed

in an output text window:

o a nu111 er o
334 of 'the'
131 of 'to'
129 of 'a '
187 of 'of'
18S of 'project'
98 of 'in'
78 of 'for'
67 of ' is'
64 of 'Make'
SS of 'be'
SS of 'whi ch'
SS of 'and '
SB of 'box '

Common always returns the following information in t he output text window:

• The total number of different words. This is shown at the top of the output text

window, eg:

Tota l number of different words 77 1

• A list of al l the words (or, if First has been chosen , only the most common

words) ranked in order of frequency. In the fi le analysed above the most
common word is the, occurring 334 times.

In the above example the words which and and both occur 55 times; if the First
opt ion had been set these two words would be considered as one word.

131

Command line interface

132

For normal use you do not need to understand the syntax of t he Common
command line, as it is automatica lly generated for you from the SetUp dialogue
box settings. The Command Line syntax for Common is

Common [-f nwords] [-n± J filename

-f

-n±

filename

For example:

if present Common will only look at the number of word counts
specified by nwords.

if present then
- = ignore numeri cs.
+ = treat numeri cs as word s.

a va lid pathname specifying a fil e.

• If First (- f) and Recognise digits (-n) are not chosen

Common adfs : : Username . Testfile

• If First and Recognise digits are chosen, and nwords set to 50:

Common -f 50 -n+ adfs: : Username . Testfile

11 DecAOF

DecAOF decodes one or more object fi les and returns information about each

area within the files

The Setup dialogue box
Clicking Select on the appl ication icon or dragging the name of a fi le from a

directory display to the icon brings up the SetUp dialogue box:

" I 01 DecROF
Files: I I

- Opt ions
c:JOnly area declarations

Print
[ili] Sy111bo l table [ili] String table [ili] Debug
[ili) Rrea contents [ili] Rrea declarations
[ili] Relocation directives

I Run I I Cancel I

The Files writable icon al lows you to specify the name of one or more fi les to be

processed (typed in or dragged from a directory display) These fi les must be Acorn

Ob ject Format (AOF) fi les.

SetUp options

Only area declarations prints a short summary of details about each area in the

object fi le. If this option is selected no other detai ls are printed

The options offered under the heading of Print are all set on by defau lt Choosing

one or more of them wil l set the remaining options to off.

Symbol table prints the contents of the symbol tab le.

String table prints the contents of the string table.

Debug prints the debug areas in a readable format

133

Area contents prints the area contents in hex.

Area declarations prints the area declarations.

Relocation directives prints li nker re location directives.

The Setup menu

Clicking Menu on the SetUp dialogue box displays the fo llowing menu on the
screen:

DfcAOF
Cofllflland line ¢

For a description of the DecAOF Command line option see the section entitled
Command line interface on page 135

The Application menu

134

Clicking Menu on the DecAOF appl ication icon gives the fol lowing options

Dec AO
Info ¢
Save options
~¢
Help
Quit

For a description of each option in the appl ication menu see the chapter entitled
General features on page 117.

Note that Auto Save is not available for this application

Example output

DecAOF

The output of DecAOF appears in one of the standard non-interactive tool output

windows. For more details of these see the section entit led Output on page 121 .

The following window shows an example of the output from DecAOF:

• Area C$$code1 AlignMent 4, Size 168 (8x88a8), 7 relocations
~ Attributes: Code: Read only

• Syl!lbol Table:

Main
codeseg

$dataseg
ain
$stack_overflow
iMe

localtil!le
trftil!le
printf

• String Table:

ffset String-naMe
------------------4: C$$code

12 : C$$data

External reference
Local, Relative, offset 8x8888 in area "C$$code"
Local Relative, offset 8x8888 in area "C$$data"
Global, Relative, offset 8x8818 in area "C$$code"
External reference
External reference
External reference
External reference
External reference

Command line interface
For normal use you do not need to understand the syntax of the DecAOF command

line, as it is automatically generated for you from the SetUp dialogue box settings.

The Command Line syntax for DecAOF is:

DecAOF [options] filename [filename ...]

Options

- b Print only the area declarati ons

-a Print area contents in hex (impl ies -d)

-d print area decla rations

-r print relocation directives (implies -d)

-g print debug areas

135

Command line interface

- s print symbol table

-t print string table

filename a valid pathname specifying an AOF file

136

12 DecCF
: : ti~ . . 1: :i., ,, : :
t11' .. _ ~ I

/ ' x _. >

Dec F

DecCF analyses one or more object or library fil es and returns informati on

about the chunks in each file .

The Setup dialogue box

Clicking Se lect on the applicat ion icon or dragging the name of a file from a

directory display to the icon brings up the SetUp dialogue box

~I &JI Dec cf
Files: I I I

I Run I I Cancel I

The Files writab le icon all ows you to specify the name of one or more files to be

processed (typed in or dragged from a directory display) These files must be Acorn

Library Format (ALF) or Arm Ob ject Format (AOF) files .

The SetUp menu

Clicking Menu on the SetUp dia logue box displays the following menu on the

screen :

D'ecCF
Co111111and line ¢

For a description of the DecCF Command line opt ion see the sect ion entit led

Command line interface on page 139.

137

The Application menu

The Application menu

Example output

138

Clicking Menu on the DecCF applicati on icon gives the following options

Save options
~¢
Help
Ou it

0 tions
Auto Run

Su111111ary

For a description of each option in the application menu see the chapter entitled
Genera l features on page 117.

Note that Auto Save is not available for thi s application

The output of DecCF appears in one of the standard non-interactive tool output
windows . For more details of these see the section entitled Output on page 121 .

The following window shows an example of the output from DecCF:

,.
Chunk file adfs::DHarris.$.date, fllax chunks = 5, used chunks = 5 '!&"

OBJ_HERD offset = 644 size = 44
OBJ AREA off set = 92 size = 224
OBJ:IDFH off set = 316 size = 64 OBJ_SYMT off set = 388 size = 144
OBJ_STRT off set = 524 size = 128

For each fil e in the Files writab le icon DecCF wil l return :

• the maximum number of permissible chunks;

• the number of used chunks;

• the offset and size of each chunk.

DecCF

Command line interface

For normal use you do not need to understand the syntax of the DecCF command

line, as it is automatically generated for you from the SetUp dialogue box settings

The Command Line syntax for DecCF is:

DecCF filename [filename ... J

filename a valid pathname specifying an ALF or AOF file

139

140

13 Diff

Di ff displays the textual differences between two files on a line-by-line basis. To

compare files more usefully various options allow you to display only those

differences of speci fic interest.

The Setup dialogue box

Clicking Select on the application icon or dragging the name of a file from a

directory display to the icon brings up the SetUp dialogue box:

Di ff
Path!:

Path2:
Options --------------.1

.Oca~e inse

QExpand tabs

Run

e <) spaces

I Cancel

Path I and Path2 allow you to specify the names of files to be processed (typed in

or dragged from a directory display).

Setup options

Case insensitive instructs Di ff to ignore the case o f letters; for example ,

Variable and variabl e would be considered as identical if thi s option was

chosen.

Expand tabs substitutes tabs by mul tip les of eight spaces

Remove spaces removes all spaces before comparing lines. This is use ful if you

wish to examine two fil es you have been editing but are not interested in any extra

spaces you may have introd uced.

Squash spaces replaces all instances of two or more spaces by one space.

141

The SetUp dialogue box

142

Note: If you are using Di ff to display the differences between two source files where
spaces can be crit ical, eg assembler code, and you want to display lines where
spaces have been deleted or added, it is essent ial to ensure that neither Remove
spaces or Squash spaces have been chosen.

The Setup menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

Cofllflland line ¢

Dir. structure
Equate CRtLF
Fast
Large files
Squidge
Expand tabs ¢

Command line enables you to examine or edit the actua l command line. For more
information on this option see the section entitled Command line interface on page
145.

Dir. structure displays only the directory structure of the two files. It does not
display any differences between the files.

Equate CR/LF instructs Di ff to treat the linefeed and carriage return characters as
identical. This is especia lly helpful when analysing files created by different editors
where sometimes linefeeds and sometimes carriage returns are used as end of line
terminators.

Fast performs a speedy analysis of two files. lt reports on ly whether there are
differences between the two files, not what the differences are.

Large files is helpful where very large files are being compared. It sometimes
happens that two files differ complete ly over a large section of text because, for
instance, you may have edited in several paragraphs or even severa l pages of text.
Ordinarily Di ff would not be able to detect this and wou ld report every line from
this point forward as different . However, if Large files has been chosen Di ff
performs a more detailed analysis (thereby taking longer) and can detect this
situation. It will then pick up where the two files converge again and display on ly
valid differences from that point onward.

Squidge removes all spaces, except between alphanumeri cs, where multiple
spaces are replaced by one space.

Expand tabs allows you to replace tabs by multiples of any number of spaces you

wish.

The Application Menu
Clicking Menu on the Diff application icon gives the following options:

Save options
~~
Help
Quit

Su111111ary

For a description of each option in the application menu see the chapter entitled

General features on page 117.

Note that Auto Run and Auto Save are not available for this application .

143

Example output

Example output

144

The output of Di ff appears in one of the standard non-interactive tool output
windows. For more details of these see the section entitled Output on page 121.

The following two windows show examples of the output from Di ff

, _: ;-- ' -' - - -Mi Dif f files 1 adf s:: DHart'is. $, FilesyS'l 1 and • adfs:: DHarl'is, $,Fi ldys2 1

change adfs: :DHarris.$.Filesysl, line 2 to 2 '
line 2: that you will have 'I> perf orfll to fllaiotain

to adfs: :DHarris.$.Filesys2 lint 2 'to 2 ·
, line 2: that ~ou will ~ave to perforfll to fllaintain

change adfs::DHarr1s.$.Filesysl, line~6 to 7
line 6: check progt'afll), and also keeping your f i lesystefl\
line 7: tidy b.y refllOving unnecessary fl les that are

to adfs::DHarris.$.Filesys2, line 6 to 7
line 6: check prografll) and also keeping your Filesystejl\
line 7: tid b refllOvin unnecesar files that are

Di ff files 'adf s:: DHarris, $,Fi lesysl' and • adfs:: DHat·t'is. $, Filesys2' "
hange adfs: :DHart'is.$.Filesysl, line 7 to 7 ,,
line 7: tidy by t'eflloving unnecessary files that{ a1·e

to adfs : :DHa1·1·is.$.Filesys2, line 7 to 7
line 7: tidy by ref!IO\!ing unnecesary files that are

In the first examp le two text files have been analysed by Di ff without any opt ions
being set Three differences have been found:

• on line 2 of the second file there are two extra spaces before the word
perform.

• on line 6 of the second file Filesystem has been spelt with a capital F

• on line 7 of the second file unnecessary has been spelt with on ly ones.

In the second example the same two files are compared but the Case insensitive
and Remove spaces options have been chosen. The result is that only the different
spelling of the word unnecessary has been displayed.

Command line interface

For normal use you do not need to_understand the syntax of the Di ff command

line, as it is automatically generated for you from the Set Up dialogue box settings

The Command Line syntax for Di ff is:

Diff [options] filenamel filename2

Options

-d Show only the directory structure, do not di splay any differences

-e Equate CR and LF

-f Perform a fast Di ff, all options except -d ignored, do not display any

differences

-1 Handle large files more effect ive ly (but more slowly)

-n Ignore case sensitivity when comparing letters

-r Remove all spaces before comparing lines

-s Squash sequences of spaces to one space

-t As for -r, but -s when between two alphanumeric characters

-x Expand tabs to spaces (tab stops at multiples of 8)

-xn Expand tabs to spaces (tab stops at multiples of n)

145

Command line interface

146

14 Find Jflli.
Find

F ind searches both the names and the contents of one or more files for text

patterns. It includes options allowing you

• to control whether the case of letters should be considered;

• to use wildcard expressions to specify several filenames;

• to insert wildcard expressions in the pattern string so that digits, control

characters, alphanumerics and particular sets of characters can be searched

for;

• to start SrcEdit displaying found text using Throwback.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file from a

directory display to the icon brings up the SetUp dialogue box:

~ lt:l I Find
Patterns: I I I

Files: I I

- Options
<)Line count on l ':I D Case insensit iue

(>Filenaf!les only ouerbose @]Throwback

<) Wi ldcards

I Run I I Cancel I

The Patterns writable icon allows you to type in the patterns to be searched for.

If a single pattern includes spaces , the pattern must be enclosed in double quotes,

for example:

II II II the t ext II II II

Double quote characters in a search pattern must be preceded by a backslash.

The Files writab le icon allows you to specify the name of one or more files (typed

in or dragged from a directory display) to do the searching in.

147

The Setup dialogue box

148

Setup options

Line count only prints only a count of the number of lines matching the pattern
from the specified files

Filenames only li sts on ly the names of files matching the pattern.

Case insensitive will ignore the case of letters; for example, normal and Normal
would be cons idered as ident ica l if this opt ion was chosen.

Verbose li sts the name o f each file before searching it for pattern matches.

Throwback enables SrcEdit throwback when text se lections are found .

Clicking on Wildcards displays a further set of options

-$> Wi 1 dcards

I Run I I Cancel I
-File Wildcards

Fihnaf!le ch. ti 8orMore f ilena111e chs. * Sub-directories ... Or { I} Or
8orMore C) 8orMore

Pattern Wildcards
Any . Newline $ Rlphanufll @

Digit • Ctrl I Norfllal \

Set[lSet Not "'
8 or fllore * I 1 or fllore "

Pattern wildcards

The options li sted under Pattern Wildcards allow you to specify wi ldcarded
express ions in your search stri ng. Clicking on one of these opt ions wi ll insert a
special cha racter into the Patterns writable icon immediately before the caret

Any. Matches any single character. For example:

Fr . d will match Fred and Frld, but not Fried.

Newline$ Matches the newline character (LineFeed)

Alphanum@ Matches any alphanumeric character a-z , A-z, 0-9 or_

Digit# Matches any digit 0- 9.

Ctrl I

Normal\

Seti

I Set

Not -

0 or more•

I or more"

Matches Ctrl-c, where c is any character between @and_. For
example:

Ix matches Ctrl-x

Note: There are two specia l cases:

I ? matches the Delete character.

Find

I ! c matches Ctrl-c' where c' is the character c with its
top bit set

Matches the following character even if that character is a specia l
character. For example:

\ . matches the dot character (not any single
cha racter).

\c matches lowercase c.

Inserts a left square bracket immediately before the caret

Inserts a right square bracket immediately before the caret

The preceding two options insert opening and closing square
brackets into the Patterns writable icon . You can then manually
insert one or more characters between these brackets and Find
wi ll match any one of the cha racters you put inside the brackets.
For example:

t [aei Jn matches tan, ten and tin, but not ton.

Note that a set is always case-sensitive.

Matches any character other than the following character, where
the following character is any of the simple character patterns
listed above. For example:

la-ne matches late, lace and lake, but not lane.

Matches 0 or more occurrences of the following cha racte r, where
the following character is any of the simple character patterns
listed above. For example:

ca*n matches can, cannot and cat.

Matches I or more occurrences of the following cha racter. where
the fo llowing character is any of the simple character patterns

listed above. For example:

ca"n matches can and cannot, but not cat.

149

The Setup dialogue box

150

File wildcards

The options offered under File Wildcards insert special characters into the Files
writable icon which allow you to specify files in a variety of ways Several of these
options require you to manually insert additional text next to or inside these
special characters :

Filename ch. #inserts a hash character immediately before the caret This
character will match any single filename character except .

For examp le:

Find adfs : : Fred#

Find adfs: :Fr#d

will search files Fredl and Freda, but not
Fred13, Frederick etc.

will search files Fred and Fr2d, but not Freld,
Freed etc.

OorMore filename chs. * inserts an asterisk immediately before the caret This
character will match any sequence of filename characters except . , { , and } .

For example:

Find adfs: :Fred*

Find adfs : : Fr*d

will search files Fredl and Freda, and also
Fredl3, Frederick etc.

will search files Fred and Fr2d, and also Frd,
Freed, Fr123d etc.

Sub~directories ... inserts three dots immediately before the caret. It must be
positioned immediately after a directory name. Find will then search all nominated
files in that directory and in any subdirectories in that structure.

For example:

Find adfs : :Amy.$.Receipts ... monthly

will search all files called monthly in the directory Receipts and also in any
subdirectories of Receipts.

Or { inserts a left brace immediately before the caret

Or} in serts a right brace immediately before the caret.

The preceding two options insert opening and closing braces into the Files
writable icon. You can then manually insert one or more filename characters
between these braces, separating each filename with a comma. Find will then
search all filenames inside the braces

For example:

Find adfs : : W. rel.{atype , btype,ctype}

would sea rch all three fil es inside the braces , ie a t ype , b type and ctyp e .

OorMore (inserts a left bracket immediately before the ca ret.

) OorMore inserts a right bracket immediately before t he ca ret.

The preceding two options inse rt opening and clos ing brackets into the Files
writable icon. You ca n then manually insert one or more fil ename characters
between these brackets and Find will sea rch any fil es with none, one or more
occurrences of the characters you put inside the brackets.

For example:

Find

Find adf s : : Fr (e) d wi ll sea rc:1 fil es Frd, Fred and Freed, but not
Frid.

Find adfs : : Fr (ie) d will sea rch fil es Frd , Fried and Frieied, but
not Fr id, Frieed or Fred.

The Setup menu

Clicking Menu on the SetUp dialogue box displays the fo llowing menu on the
screen:

Find
Cofllflland line ¢
Rllow '-' ¢
Grep style

For a descri pti on o f the Find Command line opti on see the section ent it led
Co mmand lin e in terface on page 153 .

The Allow '-' opti on enables you to specify a second pattern which will be matched
even if it begi ns with a - . Thi s second pattern will be sea rched for in conj unction
wit h t he pattern you have inserted in to the Patterns writable icon.

Grep style enables you to specify pa ttern s using th e syntax of the UNIX grep too l.
Thi s option is provided fo r users fa mili ar with UNIX.

151

The Application menu

The Application menu
Clicking Menu on the Find applicat ion icon gives t he fo ll ow ing options

Info ¢
Save options
~¢
Help
Quit

,__...,,....=-----.

Su111111ary

For a description of each opti on in the appl ication menu see the chapter entit led
Genera l features on page 117.

Note that Auto Run and Auto Save are not ava ilable for this appli cation.

Example output

152

The output of Find appears in one of the standard non-interact ive tool output
windows. For more detail s of these see the secti on entitled Output on page 121.

The fo ll owing window shows an exa mple o f t he output from Find

\
a s: : arr 1 s. . 1 , ine : I' I n_1 p u -ft "adfs: :DHarris.$.Util", line 124: MOUUC r8, Mn_ indu

~
"adfs: :DHarris.$.Util", line 127: MOUUC r8, Mn_fscontrolu
"adfs::DHarris.$.Util", line 138: MOU UC r8, Mn

5
111odule_clai111

"adfs::DHarris .$.Util", line 131: MOU UC r3, M2 6
"adfs::DHarris.$.Util", line 228: MOU CS r3, rl
"adfs::DHarris.$.Util", line 262: MOU CS 1·8, M'. I

"adfs::DHarris.$.Util", line 266: MOU CC 1•8, M8
"adfs:: DHarris. $.Ut i l", line 274: MOUCCS pc, Ir
"adfs: :DHarl'is.$.Util", line 278: MOUCCS pc, Ir
"adfs: :DHarris.$.Util" line 288: MOUCSS c It· l}
¢ i{> 21

In the above example t he pattern MOV [CV] was specifi ed in t he Patterns writable
icon in order to li st only those instructi ons beginning with MOW or MOVC in an
assembler source fil e. Instru cti ons where th e fourt h letter was not a C or V, such as
MOVS, MOVNE and MOVEQS, were, t herefore, not li sted. The Throwback opti on was
not enabled in th e above exa mple Wit h Throwback enabled , a SrcEdit Th rowback
browser would also have appea red allowing the fil e Util to be edited, start ing at
the found lines .

Find

Command line interface

For normal use you do not need to understand the syntax of the Find command
line, as it is automatically generated for you from the SetUp dialogue box settings

The Command Line syntax for Find is:

Find [options] [pattern{ pattern }] -f filepattern{ filepattern }

Options

- c list only a count of the number of lines matching from each file .
- n ignore the case of letters when making comparisons.
- 1 list only the names of files matching patterns.
- v list the name of each file before searching it for matches.
-u accept UNIX grep/egrep-style patterns.
- e allow the following pattern arguments to begin with a -

Pattern

$
@

matches any single character.
matches the newline character (LineFeed)
matches any alphanumeric character.
matches any digit.
I c matches Ctrl-c , where c is any character between @ and_.

I
\
[

matches the following character even if that character is a special character.
matches any character inside the square brackets.
matches any character other than the fo llowing cha racter.

* matches 0 or more occurrences of the fo ll owing character.
matches I or more occurrences of the following character.

-f marks the end of multiple patterns and the start of filepatterns

Filepattern

matches any filename character except .
* matches 0 or more filename characters other than

searches files in that directory and any subdirectories in that directory.
{ , } searches files contained within braces (filenames separated by

commas).
() search any file with none, one or more occurrences of the characters inside

the brackets.

153

Command line interface

154

15 Link

The purpose of Link is to combine the contents of one or more object files (the
output of a compi ler or Assembler) with selected parts of one or more

libraryfiles to produce an executable program.

Load the Link appl ication by double-clicking on the !Link icon.

The SetUp dialogue box
Click Select on the appli cation icon. This displays the SetUp dialogue box

'11 [3 I Linker
Files: I l I

Options
-\!> AIF ()Relocatable AIF ODebug
<)Module -\)Binat·y ouerbose

I Run I I Cancel I

This allows you to set the following options

The Files writable icon all ows you to enter the list of object and library files to be
linked. You can do this in two ways:

• Type in a space-separated list of the files to be linked. You can use wildcards (•
to match zero or more characters, and# to match a single character)

• Drag the icons of the files to be linked onto the Files writab le icon. Dragging a
directory to the icon (eg an o directory) links all the files in that directory

Note: When linking libraries , you must take care to link them in the correct order.
See the section entitled Libraries on page I 59.

AIF generates Application Image Format (AIF) output. This is the default image
used for building an application You should only choose other image types if AIF
is not suitable for some reason. The format of AIF files is described in Appendix E.

Module generates Relocatable Modu le Format (RMF) output. Refer to the
RISC OS Programmer's Reference manual, ANSI C Release 4, and the section entitled
Relocatable modules on page 164 for more details on relocatable modules.

155

The SetUp dialogue box

156

Relocatable Alf links an image so that it can be run at any address, usua lly
specified in conjunction with the Workspace option on the SetUp menu. See the
section entitled Relocatable AIF images on page 163 for more details .

Binary generates a plain binary image (without an image header or any specific
image format) Genera lly it is only used when writ ing completely in assembler.
Programs written entire ly or partly in C or other high level languages cannot
usually use this format

Debug allows you to debug a program with the desktop debugger DDT See the
chapter entitled Desktop debugging tool on page 31 for more details on preparing a
program for use with the debugger. This option is not suitable for use with the
module option . This option is switched off by default

Verbose gives progress reports in the Output window while linking. See the
section entitled Output on page 157 for an example of this output This option is
switched off by default

The SetUp menu

Clicking Menu on the Setup dialogue box displays the following menu on the
screen:

Link
Cofllflland line¢
Link fllap
X-Ref
Overlay ¢
Workspace ¢
Entry ¢
Base ¢
No Case
Uia file ¢

Command line allows you to specify the command line to be presented to the
underlying Link command line tool. Refer to the section entitled Command lin e
interface on page 166 for more details.

Link map displays the base address and size of every code, data and debugging
information area , and displays total sizes for the code, data and debugging
information in the output window. See the section entitled Link map option on page
162 for more information. For details on linker areas. see the sect ion entitled AOF
in Appendix E - Code file formats

Output

X-Ref displays a list of inter-area references This option is most useful when trying
to reduce dependencies between library elements, so that you only need include
the minimum set of library elements. It is also useful when using overlays . See the
section entit led X-Ref option on page 162 for more details.

Overlay generates an overlaid image using the specified overlay description file
For details of overlay description files, see the section entitled Overlay description files
on page 161. This option is not suitable for use when generating Module or Binary
output

Workspace, when used in conjunction with the Relocatable Alf option, generates
an auto-relocatable image which will relocate itself to the top of its appl ication
space. This leaves the specified amount of workspace above the image free for the
use of the program being linked. The effect of this option is not currently defined
when generating image types other than relocatable AIF

Entry specifies the entry point of an image if none of the object files themselves
specify an entry point Generally, you should only use it when writing completely in
assembler without using the assembler's ENTRY directive.

Base specifies the base address at which the image should be linked. By default
this is &8000 for AIF images and 0 for binary images You should always load
non-relocatable AIF images at their base address.

No case causes a case insensitive comparison to be used when comparing
symbols You will not genera lly want to use this option with C (which is case
sensitive). However, you may need to use it with other language systems (such as
Pascal and Fortran) wh ich are case insensitive, especially if you are trying to
interwork with C and one of these languages.

Via file allows you to set up a list of object files to be linked in one file ca lled a Via
file Instead of having to drag all the files to the Files li st on the Setup dialogue
box, just enter the name of the Via fi le in the submenu.

Note: The Base, Workspace and Entry options require a numeric argument to be
entered in the associated submenu. You can prefix this argument by & or OX to
specify a hexadecimal value. You can postfix it by k for 2A IO and m for 2A20.

The Output window displays information printed when you have selected the
Verbose, Link map or X-Ref options It also displays any error messages
generated while linking.

The following windows show examples of the Verbose and Link map output You
wi ll find an example of the X-Ref output in the section entit led X-Ref option on page
162.

157

Possible errors during a link stage

Verbose output :

oa ing o lec 1 e .ne .as .o.1Mage i e.
Loading oblect file $.ned.asd.o.interact .
Loading oblect file $.ned.asd.o . lib.
Loading oblect file $.ned.asd.o . lowleYel.
Loading oblect file $.ned.asd.o .prograM.
Load ing oblect file $.ned.asd.o.readexpr.
Loading oblect file $.ned.asd.o.respond.
Loadin9 obiect file $.ned .asd.o.source.
ExaMin1ng ibrary $.clib.o.RnsiLib for referenced Modules .

Loading clib to resolYe x$stack oYerf low.
Loading string to resolYe strrcfir .

in :
link:
link:
link:
link:
link:
link:
link:
link:
link:
link:
link:
link :
link :

Load~ng ke~nel to resolYe _ket•nel escape_seen,
Loading pr1ntf to resolYe _sprintT.
Loadin MeMc to 1·esolYe MeMMOYe. -&

~

Link map output:

a
27f b8 68
28818 58
28868 31c
28384 c88
28f 84 c8
2984c 148
29194 a4
29238 6cc

a a
Data
Data
Data
Zero
Zero
Zero
Zero
Zero

a a t'OM scan
C$$data froM arMsys
C$$data froM error
K$$Data f roM kernel
C$$zidata f roM hash
C$$zidata f roM interact
C$$zidata f roM lowleYel
C$$zidata ft'OM p1·ograM
C$$zidata f roM readexpr

I!!

Possible errors during a link stage

158

Two common errors which ca n occur during a l ink stage are ca used by unresolved
and mu lti ple references .

In the case o f unresolved references, a symbol has been referenced from an object
fil e, but there is no corresponding definiti on for t he symbol Link wi ll generate an
error message giving th e name of the undefined symbol. Thi s is usually cau sed by
th e omiss ion of a required object or library fi le from the fi le li st, or the misspelling
of an external identifi er in the original source program.

Multiple references are ca used by a clash of names. For example, a procedure
might have been defined with t he sa me name as a l ibrary procedure, or as a
procedure in another ob ject fil e.

Libraries

Libraries differ from object files in the way Link uses them. First, all the object files
are linked together. Then, for each library in turn, Link searches for symbol
definitions which match unsatisfied symbol references When such a symbol
definition is found, the module defining that symbol is loaded.

When a library module is loaded, new unsatisfied symbol references may be
created, so the library is re-searched until no more members are loaded from it
Note that each library is processed in turn, so references between libraries must be
ordered.

A reference from a member of a library later in the file list to a member earlier in
the file list will not be resolved. Therefore you must drag libraries to the file list in
the correct order.

For example, if you are using the libraries RISC_OSLib and ANSI Lib, you must drag
RISC_ OS Lib first and then ANSI Lib to ensure they appear in the right order. If you
are using the shared C library stubs instead of ANSI Lib the order is unimportant.
since the shared C library stubs is an object file which defines all of the syr:nb.ols in
the shared C library. Also note that, because of the ordering constraints, libraries
containing circular references cannot easily be linked.

Usually, at least one library file will be specified in the list of files to be linked. This
will typically be the run-time library for the language you are using When writing in
C, you can use either the shared library (in which case you will need to link with the
shared library stubs, $. cl ib. o . stub s) or the unshared library,
$. c 1 ib . o . ans i 1 i b. Use the unshared library when linking a program for use
with the desktop debugger, or when linking a program which you intend to
distribute to people who may not have the shared C library

You can call the procedures in the library for one language from programs written
in another, provided:

• both libraries conform to the ARM Procedure Call Standard (APCS) described
in Appendix F - ARM procedure call standard

• the library's initialisation routines have been cal led.

Refer to the chapter entitled Machine-specific features in ANSI C Release 4 for details on
how to initialise the common run-time kernel distributed with the C library

Generating overlaid programs

An introduction to overlays is given in ANSI C Release 4. If you are not familiar with
the concept of overlays, you should read the chapter on overlays in that manual
first This section only describes how to use Link to create an overlaid appl ication.

159

\:1t:llt:ldLlllY VVt:lldlU fJIVy1a111;:,

160

A simple, 2-dimensional, static overlay scheme is supported. There is one root
segment , and as many memory partitions as you specify (called l_N, 2_N, etc)
Within each partition, some number of overlay segments (called l_l, 1_2, etc)
share the same area of memory. You specify the contents of each overlay segment
and Link calculates the size of each partition, allowing sufficient space for the
largest segment in it. All addresses are calculated at link time: overlaid programs
are not relocatable.

A hypothetical example of the memory map for an overlaid program might be

2_1
2_N

1 1 1 2 - -
1_N

2_2

1 3 -

root segment

2_3

1 - 4

high
address

low
address

Segments l_l, 1_2, 1_3 and I_ 4 share the same area of application workspace.
Only one of these segments can be in memory at any given instant; the remainder
must be on disc.

Similarly segments 2_1 , 2_2 and 2_3 share the 2_N area of memory, which is
entirely separate from the l_N partition

Link assigns AOF AREAs to overlay segments under user control Usually, a
compiler produces one code AREA and one data AREA for each source file (called
C$$cod e and C$$data when generated by the C compiler) The C compiler
option -zo (described in ANSI C Release 4) allows each separate function to be
compiled into a separate code AREA. This gives finer control of the assignment of
functions to overlay segments (but at the cost of slightly enlarged code and
enlarged object files) You control the overlay structure by describing the
assignment of certain AREAs to overlay segments.

For all remaining code AREAs, Link will act as follows

If all references to the AREA are from the same overlay segment. the AREA is
included in that segment; otherwise, the AREA is included in the root
segment.

This strategy can never make an overlaid program use more memory than if Link
put all remaining AREAs in the root segment. but it can sometimes make it
smaller.

By default, onl y code AR EAs are included in overlay segments Data AR EAs can be
forcibly included, but it is th e use r's responsibility to ensure that do ing so is
meaningful and safe.

On di sc, an overl aid program is orga nised as a RISC OS application Th e
components of the applica tion (the ! Run Image and the va rious overlay segments)
must reside in t he applicati on d irectory Link creates the fo llowing components in
the applicati on directory

!Runimage

1 1

The root segment, an AIF image (which may be squeezed)

Overlay segments. which are pl ain binary images, linked at
absolute 1_2 addresses Ove rlay segments may not be
squeezed .

2 1

Overlay description files

The overl ay descri pti on fil e, specifi ed in the overlay submenu . describes the
required ove rlay structure. It is a sequence of logica l lines:

• A backslash(\) immediately before the end of a phys ical line continues the
logica l line on the next phys ica l line.

• Any text from a semico lon (;)to the end of th e logica l line inclusive is a
comment (for docum entati on purposes) which is ignored by Link.

Each logical line has the fo llowing structure

segment_ name module_name [(list_ of_ AREA_ names)] module_ name

For example:

1 1 edi tl edi t 2 editdata(C$$code , C$$data) sort

The list_ of_ AREA_ names is a comma-separated li st o f names as they appea r
when di splayed by the DecAOF too l. If omitted , all code AREAs are included.

A module_ name is either the name of an obj ect fil e (with all leading pathname
segments removed) or th e name of a library member (again , with all leading
pathname segments removed)

161

Generating overlaid programs

162

X-Ref option

To help the user-pa rt iti on between overl ay segments, Lin k ca n generate a list of
in ter-AREA references To do th is, choose the X-Ref opti on on the SetUp menu .
The fo llowing window shows an exa mple of the output from X-Ref

con ro re ers o ow eve co e
control(C$$DATA> refers to control(C$$CODE>
control(C$$CODE> refers to control(C$$DATA>
control(C$$CODE> refers to lowlevel(C$$z idata)
control(C$$CODE> refers to lowlevel(C$$data)
decode(C$$code) refers to strin9(C$$code)
decode(C$$code) refers to cl ib(C$$code)
decode(C$$code) refers to hash(C$$code)
decode(C$$code) refer~ to hash(C$$zidata)
decode(C$$code) refers to respond(C$$data)
decode(C$$code) refers to lib(C$$code)
decode(C$$code) refers to clib(C$$data)

In general. if area A references area B (for exa mple beca use x in area A ca ll s y in
area B) then A and B shou ld not share the sa me area of memory Otherwise. every
t ime x ca ll s y or y returns to x, there will be an ove rlay swap

Link map option

The Link map opt ion displ ays the base address and size of every area in the output
program It is use fu l for determin ing how AREAs might be packed most effi cient ly
into ove rl ay segments

Linking with the overlay manager

The overl ay ma nager is responsible for load ing overl ay segments when

• an inter-segment reference occurs to a segment which is not loaded , or

• a procedure return occurs to a segment which is no longer loaded.

In general, referencing a datum ca nnot cau se an overlay segment to be loaded.
One excepti on to th is is an indi rect procedure ca 11 via a funct ion pointer which wi 11
ca use an overl ay segment to be loaded (Lin k cannot d ist inguish t his from a normal
procedu re cal l , since Link just sees a word reloca t ion to an overl ai d procedure)
Note th at the poin ter itse lf mu st not be ove rl aid .

If Link detects a data reference to a non co-resident or potentially non co-resident
segment it will issue one of the fo llowing messages:

Non co-resident data reference in module_ name(area_ name)

Possible non co-resident data reference in
module_ name(area_ name)

Certain types of data reference cannot be detected by Link. This happens when
read-only data is placed in a code segment The C compi ler places string literals in
code areas. This will cause problems if you have external string literals, since Link
cannot distinguish between a string literal and a procedure in the code segment
Hence it indirects the string through the Procedure Call Indirection Table (PCIT)
So, when your program reads the contents of the string, it will in fact end up
reading the contents of the PCIT

The C compiler option -fw (described in ANSI C Release 4) causes the compiler to
place string literals in data areas. You should use this option on modules which
may contain external string literals.

The overlay manager must be included in the link stage You wi ll find the overlay
manager in the object file $. clib . o . overmgr You shou ld drag this ob ject file
to the Files icon when linking an overlaid program

Note: The overlay manager is also contained in the non-shared library ANSI Lib, so.
if you are using ANSILib, you do not need to drag the overlay manager to the Files
icon . The shared C library does not contain a copy of the overlay manager

Relocatable AIF images

Usua lly, when an image file is produced, it will execute correctly only at the
specified base address (or the default of &8000 if a base is not specifi ed) This is
because the program will contain references to absolute addresses within itself.
However if you tell Link to generate a relocatable AIF image, you can load and
execute the program at any address. Link also inserts a branch in the image header,
so that the relocation code is automatically called when you run the program.

This is achieved by adding the fo llowing to the end of the image:

• a relocation table

• a small routine to perform the relocation .

The relocation table is a li st of offsets from the start of the program to words which
need relocating. These words are adjusted by the difference between the base

address of the program and the address where it was loaded. Once the relocation
has been performed, the program proper starts executing.

163

Relocatable modules

However, although this can be used to make a program statically relocatable, it
does not confer true position-independence on the program . That is, the program
cannot be moved in memory once it has started, and sti ll be expected to work.

If a Workspace value is specified on the SetUp menu, Link inserts the va lue in the
image header The relocation code examines this value and, if the va lue is
non-zero, relocates the application to the top of application space, leaving the
specified amount of workspace between the end of the application and the top of
application space for stack and heap usage.

Utilities

Utility or transient programs (filetype FFC) can be linked as relocatable AIF
images. Use the SetType command to set the filetype correctly after linking

*SetType image Utility

Notes The C library cannot be used when linking a utility. Utility programs must
not be squeezed. For more details on utilities, refer to the RISC OS Programmer's
Reference manual.

Relocatable modules

164

When linking a relocatable module, Link performs a similar task as when linking a
relocatable AIF image, adding a relocation table and a relocation routine to the
end of the module image

However, the mechanism by which the relocation routine is called is different in a
relocatable module A module must be multiply relocatable, since it may move
about in the Relocatable Module Area (RMA) when, for example, the RMA is tidied
with the • RMTidy command. The module must ca ll the relocation routine in its
initialisation (or re-initialisation) code.

When using the C Module Header Generator (CMHG) tool you need not worry
about this, since CMHG automatically generates a module header which includes
a call to the relocation routine in its initialisation code.

If you are constructing the module header in assembler, you must make this call
yourself Use the IMPORT directive to import the externa l symbol _ RelocCode
and place a BL to this symbol in your initialisation code.

IMPORT l_RelocCodel
init

BL l_ RelocCodel

Note: any code executed before the call to the relocation routine must be
position-independent

When creating a module header in assembler, the AREA containing the header
should have the attributes CODE and READONLY The AREA name should be
chosen so that the AREA will be the first AREA in the module. Link sorts AREAs
first by attribute, then by AREA name, so you should choose an AREA name which
is lexicographically less than all other AREA names in your module. The CMHG
tool uses an AREA name of ! ! ! Module$ $Header, but this is not obligatory

Predefined linker symbols

All symbols containing the substring $ $ are reserved by Acorn for use by Link.

For each AREA in the output file formed by coalescing one or more areas of the
same name (eg C$ $code) Link generates two symbols:

area_ name$ $Base Address of the start of the area.

area_ name$ $Limi t Address of the byte beyond the end of the area.

area_ name is the name of the area in the output file. You can
use these symbols in your programs to refer to the
Base and Limit of areas in your programs.

In addition , Link creates four conceptual areas in the output. and defines Base and
Limit symbols for them.

Image$ RO $Base Address of the start of the read-only (code) area.

Image$ RO $Limit Address of the byte beyond the end of the code area.

Image$ RW $Base Address of the start of the read/write (data) area .

I mage$ RW $Limi t Address of the byte beyond the end of the data area .

Image$$ZI$$Base Address of the start of the zero-initialised (bss) area.

Image$$ZI$$Limit Address of the byte beyond the end of the bss area.

Image$ $RWO $$Base Address of the start of the debugging tables.

I mage$ $RWO $$L i mi t Address of the byte beyond the end of the debugging
tables

Although it will often be the case, there is no guarantee that the end of the
read-only area corresponds to the start of the read/write area. You shou ld not
therefore rely on this being true.

The read/write (data) area may contain code, as programs are sometimes
self-modifying. Similarly, the read-only (code) area may contain read-only data (eg
strings, floating-point constants etc)

165

Command line interface

Command line interface

166

The format of the Link command is :

Link options file_ list

Options

-h

-o image_ file

-d

Display a screen of help text

Place output in named image_ file

Include debugging tables in the output image suitable for
use by the desktop debugger

-ov overlay_ file Generate an overlaid application as directed by commands
in overlay_ file

-m Generate relocatable module output

-r Generate relocatable AIF output

-ai f Generate normal AIF output (default)

-aof Generate partia lly linked AOF output suitab le for inclusion
in a subsequent link step

-bin Generate a plain binary image

-w n Reserve n bytes of workspace for a relocatable image

- e n Set the image entry point to the address specified by 11

-b n Set the image base to the address specified by n

-c Make matching of symbols case insensitive

-map Generate a map of the base and size of each AREA and
di splay total s for code, data, zero-in it and debugging
AREAs

-x Display a list of references between linker areas

-v Display messages indicating progress of the link operation

-via via_ file Take further input file names from via_ file

-s symbol_ file Produce a symbol table dump in symbol_ file

16 Lib File

LibFile creates and maintains library arch ives. It can be used to create archives of

fil es for backup and distribution purposes, for example A specia l form of

library archive contain ing AOF files can be created for use with Link. The format of

library archive files is described in Appendix E - Code file formats

LibFile supersedes the Obj Lib too l previously distributed with the Software

Developers Toolkit. Refer to the sect ion entitled Command line interface on page I 7 I

fo r more details.

The SetUp dialogue box

Click Select on the application icon. This displays the Setup dialogue box

'11 [:J I LibFile
Libt'ary: ;

File List: I r

Options
<$> Create .().Delete

oust library ,,

0Insert <)Extract

I Run I I Cancel I

Each of the options in the Setup dia logue box is described overleaf.

The SetUp options

Library is the name of the library to be processed If a library is being created this

wi ll be shaded. A Save as dia logue box wi ll be presented when the li brary is

created.

File List, when used with Create or Insert, conta ins the li st of files to be placed in

the library. When used with Delete or Extract it contains a list of fil es in the library

which are to be extracted or deleted. You can use wildcard characters in the File

List(* to match zero or more characters, and# to match a si ngle character).

Create creates a new library containing the files in File List Thi s is the default
option.

167

The SetUp dialogue box

168

Delete removes the files in File List from the specified library

Insert adds the files in File List to the specified library. Files of the same name in
the library will be replaced

Extract copies the fil es in File List from the specified library to disc The files are
not deleted from the library

List library lists the files contained in the specified library By default, this option
is off.

The Setup menu

Click Menu on the SetUp dialogue box. This displays the LibFile Setup menu:

Co~~and line ¢
.J Sy~bol table

List sy~bol table
Uia file ¢

Command line allows you to specify the command line to be presented to the
underlying LibFile command line tool You shou ld take care when modifying the
command line. The effect of certain arguments depends on the order in which they
appear in the command line. Changing this order may have unanticipated effects.
Refer to the section entitled Command line interface on page 171 .

Symbol table adds an externa l symbol table, as used by Link, to the library
External symbols in any ob ject files in the library are placed in the symbol table .
Non ob ject files are ignored By default, this option is on.

List symbol table lists the symbols in the external symbol table along with the
name of the AOF file which generated each symbol This opt ion is off by default

Via file allows you to set up a list of files to be used in one file called a Via file .
When creating or maintaining li braries with a large number of files it may become
tedious having to drag all the files to the File List every time, especia lly if they are
in different directories. Enter the name of the Via file in the submenu and press
Return.

Output

Lib Fife

The Output window displays the li st of files in the library and/or the list of externa l

symbols when the List library or List symbol table options are selected . The

fol lowing windows show examples of each .

Notes:

~ .w·

?r

ype

Text · !DDT.c. inst
Text !DDT .c.helf
Text !DDT.c.eva uate
Text !DDT .c.errors
Text !DDT.c.display
Text !DDT.c.debug
Sprite !DDT.Sprites
Tefllplate ! DDT. T ef!IP lat es
Obey ! DDT.! Run
Obe !DDT.!Boot

,,,.,

lfllage$$ove~lay_init
ltiiage$$loaa_seg
fllefllfllOIJe
fllefllcp~

di fft lflll! I

fllktiflle
asct iflle
ct iflle
localt iflle
gflltiflle
strc

iffi>fffr

lZe

17628
5668
7982
3781
7168

19176
152

5483
1714

367

frofll overfllgr
f rofll overfllgr
frofll llll!fllCPY
frofll lllefllCP!I
frofll tiflle
frofll tiflle
frofll t iflle
frofll tiflle
frofll tiflle
frofll tiflle
frofll strin

19:54
19:54

~
19:54
19:54
19:54
19:54
19:54
19:54
19:54
19:54 ~
"~ l!I

Any di rectories in the File List to be archived will be recursively archived (ie all

files in the specified directory wil l be archived and any directories in the

specified directory wi ll themselves be recursiyely archived) This can be useful

if, for example, you are backing up an entire .source tree on which you are

current ly working

2 When extracting files, LibFile places abso lute filenames from the l ibraries

index in thei r corresponding absolute filenames on disc. Relative filenames (ie

those not containing a colon (:)a dollar($) or an at sign(@)) are placed in a

temporary directory and, when the extract ion is finished, a Save as dia logue

169

Output

170

box is presented This allows you to drag the extracted fil es to a suitable place
on your di sc. The temporary directory is then renamed to the correct place on
your disc, or copied and subsequently deleted if you drag to a different device
or filing system

3 When creating librari es fo r di stribution purposes, you should not use absolute
fil enames in the File List If, for example, you created a library with a File List
of adfs :: Edward.$. PDUtils, it would not be very useful to someone
ca lled Ian or to someone using an Econet network. Instead , set your current
directory (from the command line with the • Dir command) to
adf s: : Edward . $ and use the File List PDUt i 1 s .

4 When creating librari es fo r backup purposes, you ca n use absolute fil enames,
since you will always be restoring to your own disc. You should not, however,
mix absolute and relative fil enames in the same library LibFile will handle thi s
as described in the note on extracting fil es above , but the behaviour may be
confusing to anyone t rying to extract fil es.

5 When creat ing a library, LibFile builds the library in memory Thi s means that
you ca nnot create a library bigger than the ava ilable memory on your machine.
When altering an exist ing library (using Insert or Delete) Libfile requires
memory space for the new and old librari es. If there is not enough memory fo r
this you ca n get around the problem by ext racting all t he fil es and recreating
the library including the fil es to be inserted , or omitting the fil es to be deleted.

6 When the Object library option is se lected, LibFil e always updates the
external symbol table rega rdless of the operati on being perfo rmed Thi s is
correct fo r Create, Insert and Delete. For Extract this is usually not very
useful, so you should generall y ensure the Object library option is deselected
when using Extract

7 If the Object library option is not se lected , LibFil e deletes the external symbol
table when used with Insert or Delete. This prevents a potential problem
whereby the external symbol tabl e could become out o f date with respect to
the object modules in the libra ry

8 Convergence testing is a testing method whereby a binary fil e (such as an
obj ect library) is rebuilt using itse lf, and the new and old binaries are
compared to ensure that they are th e same. Thi s ca n be difficul t with too ls
(such as LibFile) which t imestamp fil es placed in the library, because the new
and old librari es will be built at different times , and will always differ.

LibFile provides the Null timestamps option to circumvent thi s problem. The
Null timestamps option uses timestamps o f all bits 0, which corresponds to a
date of O O: 00 : O O O l - Jan-19 9 0. Thus. libraries built at differenttimes can
be compared using a binary compari son ut ility, without the timestamps
ca using extraneous differences to appear.

Lib File

9 Wildcard matching, when applied to library members (when using Extract or

Delete) applies the wi ldcard across the complete fil ename When applied to

files (Create or Insert) wildca rds apply to single components o f the filename .

Thus, the wildcard specification a #c would match a .band ab c when using

Extract or Delete, but would only match abc when using Create or Insert.

Command line interface

For normal use you do not need to understand the syntax of the LibFile command

line, as jt is automati ca lly generated for you from the Set Up dialogue box settings

The format of the Lib File command is

L ibf ile options library [f i le_ list]

Wildcards *and# may be used in file_ l i st

Options

- h Display a screen of help text

- c Create a new library containing fil es in file_ list

-i Insert files in file_ list, replace exist ing members

-d Delete the members in file_ list

-e Extract members in file_ list placing in files of the same name.

- o Add an external symbol table to an ob ject library

-1 List library, may be specifi ed with any other opt ion

-s List symbol table, may be specified with any other option

- t Use timestamps of all bits 0 when creat ing or updat ing library.

-v file Take additional arguments from file.

- csd dir Place relat ive fil enames in dir when extracting fil e

Notes:

Multiple options may be specified on a single options argument. For example,

-cl so is equ iva lent to - c -1 - s - o.

171

Command line interface

172

2 Most of the above options should be familiar from the description of the
desktop interface. One possible exception to this is the -csd option This
option means "behave as though the directory specified after the -csd option
were the current working directory (as set by the dir command)"

When extracting files with relative pathnames, LibFile creates this directory if
it does not already exist and prefixes the relative pathnames with the specified
directory Note, that you should not add a full stop () to the end of the
directory specification, LibFile adds this itself

3 The -csd option is used by the desktop interface (since the desktop has no
notion of a current working directory) to tell LibFile where to put files with
relative pathname (generally <Wimp$ScrapDir>Tmp_ name where
Tmp_ name is a name invented by the desktop interface) This directory is then
renamed, or copied to a user-specified directory

4 For compatibility with previous versions of LibFile, spec;ifying -c with -o with
a null file li st does not create an empty library. Instead, it ignores the -c
option and adds a symbol table to an existing library

5 LibFile supersedes the Obj Lib tool previously distributed with Software
Developer's Toolkit. If you have makefiles which depend on the use of Obj Lib,
you can use the following alias to define an Obj Lib command

Examples

Set Alias$0bjLib LibFile -o %*0

Thi s will work provided you do not use the -List or -File options with
Obj Lib If you do use these options, edit the makefile and use the appropriate
LibFile command

LibFile -c srclib *

Create a library called srclib in the current directory from all the files in the
current directory (including the files contained in any directories in the current
directory)

LibFile -co adfs : : Edward.$.clib.o.AnsiLib o

Create the object library AnsiLib from the object files contained in directory o in
the current directory.

Libfile -e -csd : Ian.$. PDUtils : 0.PDLib *

Extract all the files from : 0 . PDLib and put them in the directory
: Ian . $. PDUtils.

17 Obj Size

0 bjSize analyses one or more object or library files and returns the code-size,
data-size and debug-size of each fi le.

The Setup dialogue box

Clicking Select on the application icon or dragging the name of a file from a

directory display to the icon brings up the SetUp dialogue box

~I (:) I Obi Size
Files: I I I

I Run I I Cancel I

The Files field allows you to specify the name of one or more files to be processed

(typed in or dragged from a directory display) These fi les must be ALF or AOF ~ J es

The Setup menu

Clicking Menu on the Setup dialogue box displays the fo llowing menu on the

screen:

For a description of the Obj Size Command line option see the section entitled

Command line interface on page 175.

173

The Application menu

The Application menu

Clicking Menu on the ObjSize app lication icon gives the following options

Sufllfllary

For a description of each option in the application menu see the chapter entitled
General features on page 1 17.

Note that Auto Save is not available for this application, and that Auto Run is
enabled by default

Example output

174

The output of Obj Size appears in one of the standard non-interactive tool output
windows. For more detail s of these see the section entitled Output on page 121.

The following window shows an example of the output from Obj Size:

otal <of all Hies),:

code7size data-size
. 1484 3724

code-size
168

1652

data-size
8

3724

The three object sizes displayed by ObjSize are

code-size The size of the object code.

debug-size
8 ..

8

data - size The total size o f all areas in the AOF file which have the attribute
data or zero-Init.

U/Jj:ilZe

d e bug- siz e The total size of all areas in the AOF file (compiled with the debug

option set) which have the attribute debug

If a library file is being analysed ObjSize displays the above three object sizes for

each individual member of the library file and then displays the overall totals of

these to provide a set of total s for the entire library.

Command line interface

For normal use you do not need to understand the syntax of the Obj Size command

line, as it is automatically generated for you from the Set Up dialogue box settings

The Command Line syntax for ObjSize is

ObjSize filename [filename ...)

filename a valid pathname specifying an ALF or AOF file .

175

Command line interface

176

18 Squeeze

Squeeze compresses an executable ARM-code program, saving disc space and
often making the program load faster.

Relocatable modules can be squeezed but must be run rather than RM Loaded.

Squeeze converts a module to a program, which installs the module in the RMA
when run. This program contains a binary image of the module within itself.
Squeeze compresses this program.

The Setup dialogue box
Clicking Select on the application icon or dragging the name of a file from a
directory display to the icon brings up the SetUp dia logue box

~I t3 I Squeeze
Input: I I

Ii Opt ions _D Try harder ouerbose I
I Run I 1: I Cancel I

The Input writab le icon allows you to specify the name of a file to be processed
(typed in or dragged from a directory display) This file must be an AIF file

Try harder wi ll fo rce Squeeze to compress the file even if the file is considered by
Squeeze to be too smal l to warrant compression

Verbose outputs messages and compression stat ist ics.

The Setup menu

Clicking Menu on the SetUp dialogue box displays the fo ll owing menu on the
screen:

For a description of the Squeeze Command line option see the section entit led
Command line interface on page 179.

177

The Application menu

Example output

178

Clicking Menu on the Squeeze application icon gives the following options:

Save options ,
~¢./Auto Run
Help
Quit

When Auto save is enabled, a squeezed file is saved to a suitable place
automatically without producing a save dialogue box for you to drag the file from.
Auto save is off by default, whereas Auto Run is on by default

For a description of each option in the application menu see the chapter entit led
General features on page 117.

The output of Squeeze appears in one of the standard non-interactive tool output
windows. For more detai Is of these see the section entit led Output on page 121 .

The following window shows an example of the output from Squeeze, together with
a standard save dialogue box (which appears if Auto Save is not enabled)

Squeeze

Command line interface

For normal use you do not need to understand the syntax of the Squeeze command
line, as it is automatica lly generated for you from the SetUp dialogue box settings
The command line syntax for Squeeze is:

Squeeze [options] unsqueezed-file [squeezed-file]

Options

- f

- v

unsqueezed-file

squeezed- file

compress file regardless of size.

output messages and compression statistics .

a v9lid pathname specifying an input AIF file .

a valid pathname specifying an output AIF fi le,

179

Command line interface

180

..

19 WC

W C ana lyses one or more files and returns the number of lines. word s,
alphanumerics and characters in each file.

The SetUp dialogue box
Clicking Select on the application icon or dragging the name of a file from a
directory display to the icon brings up the SetUp dialogue box:

~I Cl I WC
Files: I I I Options.

_ DAllow binary files I
- Wi ldcards
Filenaflle ch. It 8orMore f ilenaflle chs. •
Sub-directories ,,, Or < I} Or
8orMore (> 8orMore

I Run I I Cancel I

The Files writable icon allows you to specify the name of a file to be processed
(typed in or dragged from a directory display) .

Setup options

Allow binary files enables WC to analyse binary files (ignored by default) .

The options offered under the heading of Wildcards insert specia l characters into
the Files writab le icon which al low you to specify files in a variety of ways. Several
of these options require you to manually insert additional text next to or inside
these specia l characters.

181

The Setup dialogue box

182

Filename ch.# inserts the# character immediately before the caret. This character
will match any single filename character except dot (.).

For example:

WC adfs: : Fred#

WC adfs : : Fr#d

will search files Fredl and Freda , but not Fredl 3,
Frederick etc.

will search files Fred and Fr2d, but not Freld,
Freed etc.

OorMore filename chs. * inserts the * character immediately before the caret.
This character will match any sequence of filename characters except dot(.) or
braces ({ }) .

For example:

WC adfs : : Fred*

WC adfs : :Fr*d

will search files Fredl and Freda, and also
Fredl3, Frederick etc.

will search files Fred and Fr2d, and also Freed,
Fr1 23d etc.

Sub~directories ... inserts three dots immediately before the caret. It must be
positioned immediately after a directory name. WC will then search all nominated
files in that directory and in any subdirectories in that st ructure.

For example:

WC adfs : : Arny.$. Receipts ... monthly

will sea rch all files called monthly in the directory Receipts and also in any
subdirectories of Receipts.

Or { inserts a left brace immediately before the caret.

Or} inserts a right brace immed iately before the ca ret.

The preceding two opt ions insert opening and closing curly brackets into the Files
writable icon. You can then manua lly insert one or more filename characters
between these brackets, separating each filename with a comma . Find will sea rch
all filenames inside the brackets.

For example:

Find adfs : :W. rel . {atype,btype,ctype}

would sea rch all three files inside the brackets, ie atype, btype and ctype.

OorMore (inserts an opening bracket immediately before the caret.

) OorMore inserts a closing bracket immediately before the caret.

The preceding two options insert opening and closing brackets into the Files
writable icon. You can then manually insert one or more filename characters
between these brackets and WC will search any files with none, one or more
occurrences of the characters you put inside the brackets.

For example:

WC

WC adf s: : Fr (e) d will search files Frd, Fred and Freed, but not Fr id.

WC adfs: : F·r (ie) d will search files Frd, Fried and Frieied, but not
Frid, Frieed or Fred.

The Setup menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

Fbr a description of the WC Command line option see the section entitled
Command line interface on page 184.

The Application menu

Clicking Menu on the WC application icon gives the following options

Save options
~{>
Help
Quit

For a description of each option in the application menu see the chapter entitled
General features on page 117.

Note that Auto Save is not available for this application

183

Example output

Example output

The output of WC appears in one of the standard non-interactive tool output
windows. For more details of these see the section entitled Output on page 121.

The following window shows an example of the output from WC:

3 files counted
Total: Lines: 21, Words: 164, Rlph.~nufllerics: 169, Characters : J183.

Command line interface

184

For normal use you do not need to understand the syntax of the WC command line,
as it is automatically generated for you from the SetUp dialogue box settings The
command line syntax for WC is:

WC [options] filepattern [filepattern .. .]

Options

-b Do not ignore binary files.

Filepattern

Match any filename character except dot (.)

* Match 0 or more filename cha racters other than dot (.)or braces ({}).

Look in all sub-di rectories beneath the specified directory

{,} Searches files contained with in braces (filenames separated by commas).

() Search any file with none, one or more occurrences of the characters
inside the brackets.

20 Extending the DOE

The components of the DOE have been designed in a way which allows third
parties to add tools and applications, provided that they fo llow a number of

rules and conventions which are given in thi s section. Unless you are a software
developer, intending to use components of the DOE in your products, or intending
to add further tools to the ODE, then you can skip th is section. (Of course you may
just be interested in how it all works, in which case read on!)

The FrontEnd module will act as a generic application, as described in the chapter
entitled General features on page 117. It is assumed here that you are familiar with
this chapter, and that you have a feel for how the non-interactive tools operate

The extensions you can make fall roughly into the following categories

• Adding a compi ler for another language - this wi ll require all of the
information given below;

• Adding a utility that you wish to run unde.r the desktop, with the same look and
feel as the other DOE non-interactive tools. For instance you may like to port
the UNIX sed stream editor to RISC OS, with a WIMP front end - this on ly
requires knowledge of how to describ~ an applicat ion to the FrontEnd module;

• Creating your own project management tool , similar to Make-this will require
knowledge of the message-passing protocols used with the FrontEnd module,
and also the fo rmat of a makefile used to maintain a project.

In this chapter you wi ll find further technical information on the fo llowing
components of t~e ODE:

• The FrontEnd module

• The DDEUtils module

• The SrcEdit ed itor

• The Make project management tool

The FrontEnd module

Overview

The purpose of the FrontEnd module is to ease the job of putting consistent WIMP
frontends onto a number of simple tools which are normally driven from the
command line (eg Link, CC, ObjAsm etc). A WIMP appli cation can then be made by

185

supplying a forma l description of the mapping between the WIMP interface and
command line options, a templates file, !Run !Sprites and !Boot files, a messages
file, and a !help file (a lso a !SetUp file if this is to be used by Make - see later for
more details) .

To give you a feel for how the FrontEnd module interacts with your command line
tool, here is a brief description of how it works. The FrontEnd module understands
two star commands:

*Fron tEnd_ Start

*Front End_ SetUp

The former of these is used to invoke a WIMP front end fo r a tool, with an icon on
the icon bar; the latter is used to allow Make options for the tool to be set using a
WIMP interface.

When the FrontEnd module gets a *FrontEnd_Start command it creates a new
instantiation of itself ca lled Front End% tool name where t oolname is the name
of the tool invoked; it then enters that instantiation as the current applicat ion , and
does a SWI Wimplnitialise to become a Wimp task. Because this task stops the
WIMP from mapping out its application workspace, by responding to service ca ll
OX 11 , the task appears in the appl ications task I ist of the Task Manager display
From this point on , the behaviour of the WIMP task is governed by the formal
description file which was initially passed to the * FrontEnd_Start command.

The *FrontEnd_SetUp command is simi lar, except it ca ll s its new instantiat ion
Fron tEnd%Mtoo1name, and does not produce an icon on the icon bar. The
templates for windows used by the appli cation must be provided by you , and they
must fo llow the conventions laid down later in the sect ion entitled Template files on
page 188.

When the user causes the command line tool to be run (for example by clicking on
the Run icon in the application 's dialogue box), the FrontEnd module starts up a
task ca lled toolname_ task ru nning under the control of the task window
module; thus the tool is pre-emptively multitasked, and any output the tool
produces is stored and will be displayed in a window, if this is what the user
wi shes. When the user quits the application, the FrontEnd module ensures that
the relevant instantiation is also removed from the RISC OS module list.

Producing a complete WIMP application

186

In order to produce a complete WIMP appl ication you wi ll need to provide the
following:

• !Run, !Boot and (possibly) !SetUp files

• a !Sprites file

..

• a Templates file

• a Description file

• a Messages file (optional)

• a !Help file (optional) .

These are described in more detail below.

!Run, !Boot and !Setup files

Your !Boot file will be the same as for normal applications, including doing things

like setting file types, and performing *lconSprites commands on your sprites.

A typical !Run file will look like any of those supplied with the DOE non-interactive

tools, like ! Link, ! Find, or! Diff. The size of wimpslot does not depend in any way on

the size of the command- line tool which is running under the FrontEnd module,

but instead refers to the application workspace used by the module, when starting

up as a Wimp task (currently a minimum of 16k) You should ensure that you have

a command bf the following form :

*Set t oolname$ Di r <0b ey$Di r >

so that your resource files can be found. Having made sure that the FrontEnd and

Task Window modu les are loaded (by using *RMEnsure) you then issue the

• FrontEnd_Start command with application name and full pathname of the

description file as parameters. You may need the facilities provided by the

DDEUtils module, in which case you shou ld *RM Ensure it in your !Run file

For example for !Diff, the !Run file is

*If "<System$Path> " = "" Then Error 0 System resources cannot be found

*WimpSlot -Min 128k -Max 128k

*IconSprites <0bey$Dir> .! Sprites

*Set Dif f$Dir <0bey$Dir>
*RMEnsure FPEmulator 0 RMLoad System : modules . fpemulator

*RMEnsure FPEmulator 2 . 80 Error You need FPEmulator 2 . 80 to run !Diff

*RMEnsure SharedCLibrary 0 System : modules . clib

*RMEnsure SharedCLibrary 3 . 70 Error You need Clib 3 . 70 to run !Diff

*RMEnsure FrontEnd 0 System : modules . frontend

*RMEnsure Frontend 1 . 07 Error You need vers i on 1 . 07 of the FrontEnd

module torun !Diff
*RMEnsure TaskWindow 0 System : modules . task

*RMEnsure TaskWindow 0 . 29 Error You need version 0 . 29 of the taskwindow

module to run !Diff
*RMEnsure DDEUtils 0 System:modules . ddeutils

*RMEnsure DDEUtils 1.30 Error You need version 1 . 30 of the DDEUtils

module to run !Diff
*WimpSlot -Min 32 k -Max 32 k

*FrontEnd Start -app Diff - desc <Diff$Dir> . desc

187

188

A typical !SetUp file is very similar to a !Run file , but wi ll be used when the
FrontEnd module gets a request from Make to startup the WIMP front end for a
tool, to allow the user to set options from a dialogue box. This file should on ly
need to do the following:

• * Wimps l ot - mi n 16K - max 1 6K

• * Set toolname$ Dir <0bey $Dir>

• *RMEnsure FrontEnd

• * Fr on t End_ Setup - app %0 - desc %1 -task %2 - handle %3

Again , examples of a !Setup file can be found in the set of non-interactive ODE
tools .

!Sprites file

The !Sprites file will contain the sprite for the application icon on the icon bar, a ' d
also optionally a small sprite, both of which should comply with RISC OS style . T e
name of the large sprite should be the same as the appl ication (eg ! Link. ! Find et).

Template files

The set of window templates which you should supply in a file called Temp l at s
is as follows :

Window name . Status

proglnfo Mandatory

Set Up Mandatory

Details

Should be as standard Acorn application
information boxes.

Icon #I must be indirected text. with a bu1 er
size large enough to accept the applicati n
name.

Icon #4 must be indirected text. with a buf er
size large enough to accept the version
stri ng.

This dialogue box is used to set the most
common options for the command line to0L

I
Rarer options can be set from a menu by t e
user pressing the Menu button on this
dialogue box. The title bar must be
indirected text. and have a buffer size larg~
enough to accept the application name, pills
a space and the string (Completed) . I

CmdLine Mandatory

Help Optional

query Mandatory

Extending the DOE

Icon #0 must be indirected text (buffer size
12 bytes), and have a button type of Menu
icon and an ESG of I , and shou ld contain
the text Run. It is used to invoke the
command line tool with the chosen options.

Icon #I must be text. and have a button type
of Menu icon and an ESG of I , and should
contain the text Cancel. It is used to close
the Options dialogue box, and revert to the
options settings as they were when the
dialogue box was last opened.

Other icons are of your choice, and can be
used to map to command line options. You
must, however, follow the conventions
described in the section entitled Writing an
application description on page 190.

This dialogue box is used to show the
command line equivalent of the options
which the user has chosen. The title bar
should contain some explanatory text like
Command Line : .

Icon #0 must be indirected text with buffer•
size 12 bytes , with button type Menu icon
and ESG of I , and contain ing the text Run. It
is used to invoke the command line tool
with the shown command line.

Icon #I must be indirected text with buffer
size typically at least 256 bytes, and with a
button type of Writeable.

Used to display help text when the user
se lects Help from the application 's main
menu . The title bar should contain some
appropriate text The window should not
have its Auto-redraw flag set .

Used to ask the user if they really want to kill
o ff a task which is running.

Icon #0 must be text. button type Menu
icon, an ESG of I , and is used to reply Yes.

Icon #I must be indirected text. buffer size
256 bytes

189

Producing a complete WIMP application

190

Icon #2 must be text , button type Menu
icon, an ESG of I , and is used to repl y No.

Output Opti onal Used to di splay in a scrolling window, the
textual output of the command line tool.
The window's Auto-redraw flag must not
be set

Summary Optional Used to give a summary of the textual
output produced by the command line tool.

Icon #2 must be text, with button type Menu
icon, ESG of I , containing the text Abort.
It is used to abort the task.

Icon #3 must be indirected text, with a buffer
size large enough to hold strings Pause and
Continue, button type Menu icon, ESG
of I . It is used to pause and continue the
task.

xfer_send Ma ndatory if Used both as a save dialogue box fo r the
use r is able to textual output of a tool, and to save the
save anything result fil e generated by running the tool.

Icon #0 must be text , with button type Menu
icon, ESG of I , containing the text OK.

Icon #2 must be indirected text , with a buffer
size of 256, and button type writeable.

Icon #3 must be indirected text

save Optional As fo r xfer_send, but is used to save the
result fil e generated by running the tool. It
should also have a close icon.

Writing an application description

As previously mentioned , your application running under the FrontEnd module is
driven by a formal descri ption written in a language whose EBNF grammar is given
in Appendix B - FrontEnd protocols on page 211 . This section gives an explanation of
the semantics of the language, and hence explains how to wri te your own
descri ption

As ca n be seen from the EBNF rule in Appendix B - FrontEnd protocols for an
application, the descri ption fil e consists of I 0 sections, with only the first section

being mandatory (TOOLDETAILS) Each of these sect ions is described separately

below.

TOOLDETAILS section

The tool details section is the only section which you must have in the description
The section starts with the name of the tool, which must be the same as the string
passed as the -app parameter to *FrontEnd_Start This name will be used in
window and menu title bars to identify the application

Normally the tool will reside in your current library directory, and hence the
command will be invoked using only the tool name. If you wish to change this you
can specify a command_i sentry, which gives a pathname for the tool. For example
if you have an application called example, but the executable image for this
application is held in ! Run Image in the application directory, then you shou ld have
a line in the description file saying

command_i s " <example$Dir> . !Runimage ";

The version entry will typically be a version number and date for the tool. These
will be used in the Program Information dialogue box (proglnfo)

If your tool understands a particular file-type , then this can be entered using the
keyword filetype Thi s is used when the user double-clicks on a file of this type
in a directory di splay The effect is as if the user has dragged the file icon to your
icon on the icon bar.

By default the tool is run in a Wimpslot of 640k, under the Task Window module. If
you want this value to be different. then use the Wimpslot command in the
description.

Si.nee the limit on RISC OS command lines is 256 characters, you may find t hi s to
be an unnecessa rily strict limit when passing a potentially large list of full
pathnames to a tool on its command line. If you use the
has_ extended_ cmdline keyword in the description, then the FrontEnd
module wi ll request space from the DDEUtils module to place the command line
arguments in . If the tool is written in C (or runs under any other run-time
environment which cooperates with DDEUtil s) the tool will pick up the arguments
from DDEUtils . Using this option, your command line is limited only by the size of
the writab le icons in your dialogue boxes. If written in C. the tool must have been
linked with the DOE stubs or ANSILib to use this feature

METAOPTIONS section

The METAOPTIONS sect ion refers to non-application-specific options

If the has_auto_run keyword is used, the application's main menu option Auto
Run will not be greyed out. In addition, if you include the keyword on, then this
option will be enabled by default Auto Run means that if a file is dragged to the
application icon , then the tool will immediately be run, rather than first di splaying
the Options dia logue box.

191

Producing a complete WIMP application

192

The has_auto_save keyword refers to the Auto Save option in the application's
main menu, and the keyword on turns this option on by default. If this option is on,
then rather than producing a Save as dialogue box to save the file output of the
tool, the tool is run to directly write to the desired output place . The location where

output should be sent is given following the has_auto_save keyword; in order
to specify this location, you must first give an icon number in the Options dialogue
box, whose first entry will be used to determine the directory where the output will
go (using the from icn <integer> keywords).

For example, if you have the line:

has_ auto_ save " . "! Runimage" from icn 3 ;

and icon 3 of the options dialogue box contains the text:

adfs: :4.$.objects.filel adfs : :4. $. objects . file2

then the filename adf s : : 4 . $.obj ects . f ilel will be used to form the output
filename. First the leafname filel is stripped off to leave the dire.ctory name
adf s: : 4 . $. objects which will form the stub of the output filename. This stub
is then manipulated by the string which is specified between the keyword
has_auto_ save and the keyword from. You can indicate parent directories
using any (reasonable) number of "-s and can refer to the original leafname using
the keyword leaf name (in this example leafname would map to filel) This
leafname can have literal strings prepended or appended to it.·

If the application is to have textual output, then you can specify that you want text
and/or summary window(s) by using the keywords has_ text_window and
has_ summary _window Beware that if you don't have any output windows at all,
then the user has no way of pausing/aborting/examining the running task. The
default display mode is text, but this can be explicitly stated as text or summary
using the keyword display_dft_ is

FILEOUTPUT section

The FILEOUTPUT section deals with the production and saving of a single output
object. To enable the user to then save this output, it is sent to a temporary fi le,
which is then copied to a permanent file when the corresponding icon is dragged
to a directory display - the icon can also be dragged to another appl ication

By default it is assumed that the output filename for a tool is that wh ich appears
last on the command 'line with no special preceding flag. If your command l ine too l
requires a flag such as -o to go before the output filename, then this is specified
using the output_option_i s keyword.

Also by default, the name which appears in the Save as dialogue box is t he string
Output, assuming that no Auto Save string has been specified. This can be
changed using the output_dft_ string keyword.

Extending the DOE

Certain tools produce an output file, or not. depending on the com bi.nation of
options on their command line. By using the output_dft_ is keyword, you can
specify whether the default mode of operation is to produce output or not This
state will then be changed as the user chooses options from the options dialogue

box and menu which either turn output production on or off (see the DBOX section
and the MENU section)

DBOX section

The DBOX section describes the properties of the main dialogue box used to set
options for the command line tool.

The purpose of the icon definitions is to show how icon clicks and drags etc map
onto command line option strings, and how these affect the state of other icons
and menu entries. Essentially, icon numbers correspond to those numbers used in
the template for the dialogue box (designed using an application such as Form Ed)

There are four types of icon definition:

I those that map directly onto command line strings

2 those that increase or decrease the numeric value of another icon

3 those that cause a string to be inserted in a writable icon

4 those that extend and contract the dialogue box.

The most complex of these is the icon which maps to a command line string. Such
an icon can be of two WIMP types:

• a writable indirected text icon

• a click icon.

The former of these contributes to the command line, if it contains any text. and is
generally used for specifying filenames to the command line tool. The latter is
generally used to turn flags on and off, and contributes to the command line if it is
selected. The mapping onto the command line is given after the keyword
maps_ to; this may begin with an optional string literal (eg -f), optionally
followed by keywords string or number. These latter keywords are used for
writable indirected text icons, and refer to their contents. If you want each item in
the writable text icon to be preceded by a particular string, this can be specified
using the prefix_by keyword .

You can also specify that selecting this icon causes the values of other icons to be
used in the command line, by using the followed_by keyword . These items will
be separated by the entry given after the separator_i s keyword. As discussed in

the FILEOUTPUT section, it is possible to specify whether a tool produces output
by default; each icon can be made to toggle this state using the keywords

193

Producing a complete WIMP application

194

produces_no_ output and produces_output . The not_ saved keyword
should be used if the value of the particular icon should not be saved when the
user picks the Save options entry from the application 's main menu .

Some examples should make this clearer

icn 3 maps_ to " -c ";

This would be usedfor a click icon, which when selected will result in - c being
inserted into the command line.

icn 6 maps_ to " -f " string not_ saved ;

This would be used for a writable indirected text icon, whose string contents
should follow the literal - f on the command line It would typically be used for
specifying input filename(s) The contents of icon 6 wou ld not be saved when the
user chose the Save options menu entry.

Using the increases or decreases keyword is typ ically used for arrow icons,
used to increase and decrease the numeric va lue of another icon . The default
amount by which the increase or decrease is made is I, but this can be changed
using the keyword by. Minimum and maximum values can also be specified . The
button type of such an arrow icon should be click or auto-repeat.

If an icon should just be used to insert a useful string in ano,ther writab le
indirected text icon , then this is specified using the keyword inserts. Whenever
such an icon is clicked , the given string litera l is inserted into the keyboard buffer,
if the options dialogue box currently has the input focus Its button type should be
Menu icon.

The extends keyword is used for an icon which is used to toggle the options
dialogue box, from large to small and vice versa. The from icon number is the icon
which is used to mark the bottom of the dialogue box when small; the to icon
num.ber is the icon which is used to mark the bottom of the dialogue box when
large.

The li st of icon definitions can optionally be followed by a li st of icon default
values, using the keyword defaults. Each icon can be listed with the keywords
on and off for click icons, or a string or numeric litera l value for writable
indirected text icons. These defaults refer to those used when the tool is invoked
via *FrontEnd_Start; if the tool has different options by defaultwhen invoked from
Make, these are li sted using the make_defaul ts keyword

Following this in the description is an optiona l specification of what happens when
drags occur, from the filer or from other applications After the keyword
imports_ start, which begins this part of the description, you can optionally
specify a wildcard string, which is used whenever a directory is dragged to your
application Typically this wi ldcard will be * Hence a directory adfs : : 4 . $. foo

dragged onto the application will expand to adf s: : 4 . $. foo. *.There then
follows a list of drag_ to specifications, each of which gives either a specific icon
number in the dialogue box, or the keywords any or iconbar; the icon list
following the word inserts is where the filenames of the dragged files will be
inserted, with an optiona l separator string. If no separator string is given then a
drag will overwrite the previous contents of the writable indirected text icon. Here
are some examples:

drag_ to icn 3 inserts icn 3 ;

This means that a drag onto icon 3, will insert the filename into icon 3, and
subsequent drags to this icon will overwrite it

drag_ to icn 6 inserts icn 6 separator_ is II II •

'
drag_to any inserts icn 6 separator_is " ";

drag_ to iconbar inserts icn 6 ;

These means that a drag to icon 6, or anywhere else on the dialogue box, or to the
icon bar wi ll insert the filename of the dragged icon in icon number 6. In the case
of the icon bar, the contents of icon 6 will be overwritten.

MENU section

The MENU section is simi lar to the DBOX section, except that it is used to specify
the way that menu entries on the menu attached to the options dialogue box map
to command line option strings. This menu is typically used fo r less commonly
used options.

Each entry in the menu entry list begins with a literal string, which is used to give
the text that will appear in that menu entry. This is followed, after the keyword
maps_ to, by string literal (which may be null) to which that menu entry maps in
the command line. This is optionally followed by the keyword sub_menu, in which
case this menu entry wi.11 be given a writable submenu with the given string literal
as its title, and with a buffer size given by the supplied integer value. If you want
each item in the submenu buffer to be preceded by a particular string, this can be
specified using the prefix_by keyword. The produces_ output,
produces_no_output and not_ saved keywords are as described above for
the DBOX section.

Menu default values can be set in a similar manner to those for the dialogue box
icons. This is done using the defaults keyword, and then following each menu
entry with the keyword on or off depending on the desired default state of that
entry If the entry has a writable submenu, this can also be given a default string or
integer value. Also a separate set of option defaults can be set for when the
FrontEnd module is invoked from Make. Menu entries are numbered from I
(ignoring the command line equivalent entry).

195

Producing a complete WIMP application

196

For example:

menu_start
"F i rst op t i on" ma p s _ to "-a";
"Se c ond option" map s _t o "-b " s ub_menu "Value : " 8 ;

d e faults
men u 1 off ,
men u 2 on sub_menu " 42 ";

men u_ e nd

will result in a menu with two entries (other than the command line equivalent.

which is always the first entry) . By default First option will not be ticked , but

Second option will be ticked and its writable submenu will contain the value 42.

DESELECTIONS section

The DESLECT!ONS section allows you to state which Options when enabled

should di sable other options. This can be done for both icons in the main options

dialogue box and for entries in its attached menu . For example:

icn 3 dese l ec t s i c n 4, icn 5 , menu 3 ;

means that if icon 3 is selected, then icons 4 and 5 and menu entry 3 will be

deselected.

EXCLUSIONS section

The EXCLUSIONS section is sim ilar to the DESELECTIONS section, except that the

listed icons and menu entries are made unselectable (greyed out). When the icon

or menu which caused this exclusion is deselected, then the excluded items

become selectable again.

MAKE_EXCLUSIONS section

Certain tools require that some options are made unselectable when the FrontEnd

module is invoked from Make. The MAKE_EXCLUSIONS section allows these icons

and menu entries to be listed.

ORDER section

By default the command line for the tool is constructed in the following order

I the dialogue box icons in the order given in the DBOX section

2 the menu entries in the order given in the MENU section

3 the output option if appropriate.

Extending the ODE

If this ordering is not satisfactory, you can give another ordering by using the

order_i s keyword fol lowed by a list of icon numbers, menu entries and string

literals. This mechanism can be used to insert string literals which always appear

on the command line.

MAKE_ORDER section

The MAKE_ ORDER section is similar to the ORDER section, except that it gives a

way of specifying an alternative command line ordering, when invoked from Make.

Messages files

There are a number of textual messages (warnings and errors and the like), which

the FrontEnd module issues. The purpose of the messages file for an application is

to allow internationalisation of the messages A messages file is supplied with

each of the non-interactive tools, which you can use for your application; it should

be in a file called . <toolname$Dir> . Messages. If no such file is present, then

FrontEnd's internal default English messages are used .

Providing interactive Help

Responses to interactive help requests are handled by the FrontEnd module. In

each of the DDE non-interactive tools directories you will find a Messages file for

the tool. In this file are help messages for the various dialogue boxes of the tools .·

In general a message whose tag field is the name of the dialogue box, is used when

the pointer is not over an icon; when the pointer is over an icon, the icon number

is used to distinguish the help message

For example, an entry in the messages file of:

SETUP3 : This is where you specify the input filenames

will result in the message

This is where you specify the input filenames

appearing in ! He I p's interactive help window, when the pointer is over icon number

3 of the Set Up dialogue box.

!Choices file

When th€ user selects Save choices from the application's main menu, the current

setting of options is saved in a file < toolname$Dir> . ! choices.

197

The DDEUtils module

SrcEdit

Make

198

The DDEUtils module is intended for three purposes

• to relax the 256 byte command line limit

• to solve the problem of 'current directory' under the desktop

• to provide throwback to the editor on finding source errors.

Further details are given in' Appendix C - DDEUtils.

Resource files

A language compi ler needs to supply three lines of information about itself to
SrcEdit when it is installed. It does this by appending these three lines to the fil e
<SrcEdit$Dir> . choices . languages of the form shown in Appendix D.
SrcEdit file formats

The language help fil e is used when the user se lects a portion of hi s text and
requests language help on this. The format of entries in the help file is shown in
Appendix D - SrcEdit file formats

You will have noticed that when the user se lects Menu on a project in Make, it is
possible to select options for a tool , by picking the name of that tool from the Tool
options menu . Thi s is done by Make issuing the star command *FrontEnd_SetUp;
the Front End module then replies with a WIMP message (details of which are given
in Appendix B - FrontEnd protocols on page 211) containing the desired comma nd line

In order to achieve this , a tool which is being added to the DOE must append six
lines to the file <Make$Dir>. choices. tools of theform:

tool name

extension

make_ defaults

conversion_rule

description_ file

setup_ file

(the st ring used to identify a source written in this
language, eg c fo r the C language)

(the default opt ions for thi s tool when in a makefi le)

(ie how to convert source fil es to ob ject fil es)

(full pathname of file containing application
description)

(full pathname of file containing SetUp act ions for
when tool is invoked via Make)

Appendices

199

200

21

Make and AMU

Appendix A - Makefile syntax

This appendix covers the syntax of makefiles understood by amu, and the way
they are arranged by Make. If all you need to do is construct and use simple

makefiles with Make, you do not need to study this information It is included for
those wishing to study, modify or construct makefiles manually

Makefiles may be constructed by hand, using a text editor such as SrcEdit, or
semi-automatical ly using Make. For more details of operating Make, see the earlier
chapter entitled Make . Makefiles may be used to run a make job using either Make
or AMU. In both cases, make jobs operate by the command line tool amu
interpreting the Makefile text and issuing command lines to other tools. The
command line tool amu is installed in your library directory

Command execution

Amu executes commands by calling the C library function system, once for each
command to be executed In turn , system issues an OS_CLI SWI to execute the
command. Before calling OS_CLI, system copies its caller to the top end of
application workspace and sets the workspace limit just below the copied program
Any command executed by amu therefore has less memory to execute in than amu
had initially (the difference being the size of amu plus the size of amu's working
space)

When the command returns, amu will be copied back to its origina l location and
will continue, unless, of course, the command set a bad (non-0) value in the
environment variable Sys$ReturnCode (the C library automatically sets
Sys$ReturnCode to the value returned by main () or passed to exit ()) . If you
have limited memory on your computer, or you are trying to run amu in a limited
wimp slot under the desktop, and a program (such as the C compiler) to be run by
amu needs more memory than is left, you can instruct amu not to execute
commands directly, but to write them to an output window to be saved and
executed later (see the Don't execute option of Make and AMU) Of course, in this
case, execution is not terminated or modified by a non-0 return code from a
command.

201

Makefile basics

Makefile basics

202

Finall y, note that there is a RISC OS command length Hmit of 255 characters. The

DDE tools such as the linker and C compi ler cooperate with the DDEUtil s module

to allow much longer command lines. but ca re must be taken to avoid generating

long command lines fo r other operations, such as wipe, etc.

In its simplest fo rm , a makefile consists of a sequence of entries which describe

• what each component of a system depends on;

• what commands to execute to make an up-to-date version of that component.

Everything else that you ca n express in a makefil e is designed to make the job of

descri pt ion easier for you.

Amu perform s two functions fo r you. Firstl y, it expa nds your descripti on into the

simple form just described: a sequence of explicit rul es about how to make each

component of a system Then it decides which rul es need to be appl ied to make a

completely up-to-date, consistent system This it does by decid ing which

components are older t han any of the fil es they depend on. It then executes t he

commands associated with those entri es, in an appropriate order

An example will make alLthis clea r, so let 's look at part o f the makefi le for amu
itse lf:

amu: o . amu $. 301 . clx . o . clxlib

o . amu :

install :

link -o amu o . amu $. CLib . o . Stubs
squeeze amu

c.amu $. 301 . clx . o . clxlib
cc -I$. 301 . clx c.amu

copy amu %.amu -cfq
remove amu
remove o . amu

Each entry consists o f

• a target. fo llowed by a colon character, foll owed by

• a li st of fil es on which the target depends, fo llowed by

• a li st of commands to execute to make the target up to dat e.

Each command line begins with some white space (if you want your makefil e to be

portable to UNIX systems you should begin th ese lines with a Tab character) . For

example, amu itself is made from o. amu, the compiled amu program, and a

Appendix A - Makefile syntax

proprietary library called $. 3O1 . c lx. o . clxl ib. If either of these files is newer
than amu, or if amu does not yet exist , then the commands link :- o amu.
followed by squeeze amu, should be executed.

But what if o . amu doesn't yet exist or is not itself up to date? Amu will check this
for you and will not use o . amu without first making it up to date. To do this it will
execute the command(s) associated with the o . amu entry

Thus amu might well execute for you:

cc -1$. 301 . clx c.amu
link -o amu o . amu $.CLib . o . Stubs
squeeze amu

As you can see, if you do this more than once - for example, because you are
developing the program being managed by amu - it will save you many keystrokes .
Now suppose you don't have $. 301 . clx . o . clxl ib. What then? Well, the
makefile doesn't instruct amu how to make this so it can do no more than tell you
so. Either you must modify the makefile to say how to make it or, more likely,
obtain a copy ready-made.

Makefile structure
Makefiles contain normal ASCII text. and are of type OXFEl (Makefile). For
backwards compatibility they may also be used with text (OXFFF) file type , though
these cannot be adjusted automatically by Make.

A makefile consists of a sequence of logical lines. A logical line may be continued
ove r several physical lines provided each but the last line ends with a \ . For
example:

This is a comment line \
continued on the next physical line \
and on the next , but not thereafter .

A comment is introduced by a hash character# and runs to the end of the logical
line. The active comment line:

Dynamic dependencies

is interpreted by amu as a marker for the start of dependencies to be kept up to
date during a make job (see the later section entitled Makefiles constructed by Make)
All other comment lines are ignored by amu.

Otherwise there are four kinds of non-empty logical lines in a makefile

• dependency lines

• command lines

203

Makefile structure

204

• macro definition lines

• rule and other special lines.

Dependency lines have the form :

space-separated-list-of-targets COLON space-separated-list-of-prerequisites

For example:

amu : o.amu $.301.clx.o.clxlib
o.d35 o.d36 o .d37: , h.util

A dependency line cannot begin with white space. Spaces before the co lon are
optional, but some white space must follow to distinguish a colon separating
targets and prerequisites from a colon as part of a RISC OS filename.

For example:

adfs: :4.$.library.amu: o.amu ...

(Although a space after the co lon is not required by UNIX's make utility, omission
of it is rare in UNIX makefiles)

A line with multiple targets is shorthand for several lines, each with one target and
the same right-hand side (and the same associated commands, if any). Multiple
dependency lines referring to the same target accumulate, though only one such
line may have commands associated with it (amu wou ld not know in what order to
execute the commands otherwise). For example:

amu: o.amu
amu: $.301.clx . o . clxlib

is exactly equivalent to the single line form given earli er. In genera l, the single line
form is easier for you to write whereas the multi-line form is more readily
generated by a program (for example, Make wi ll generate a list of lines of the form
o. foo: h. thing, one for each #include thing. h inc. foo). Command lines
immediately fol low a dependency line and begin with white space

For maximum compatibi lity with UNIX makefiles ensure that the first character of
every command line is a Tab. Otherwise one or more spaces will do. A semi-colon
may be used instead of a new line to introduce commands. This is often used when
there are no prerequisites and only a single command associated with a target. For
example:

clean: ; wipe o.* - cfq

Note that. in this case. no white space need follow the colon.

Macro definition lines are lines of the form:

macro-name = some text to the end of the logical line

For example;

CC = nee
CFLAGS = -fah -c -I$. c lib
LD = link
LIB = $.CLib.o.clxlib $. CLib .o.Stubs
CLX = $. 301.c lx

The = can be surrounded with white space, or not, to taste. Thereafter, wherever
${name} or$ (name) is encountered, if name is the name of a macro then the
whole of$ {name} is replaced by its defin ition . A reference to an undefined macro
siplp ly vanishes. An example which uses the above macro definitions, and which is
taken from the makefile for amu itself, is:

amu: amu . o $(CLX) .o.clxlib
$(LD) -o amu ${LFLAGS} o.amu ${LIB}

which expands to

amu : amu . o $.301 . clx . o . clxlib
link -o amu o.amu $. CLib . o . clxlib $. CLib.o . Stubs

Note that $ { LFLAGS} expands to nothing.

By using macros intelligently, you can minimise the effort needed to move
makefiles from computer to computer; for example, dealing with varying locations
for prerequisites, or centralising what wou ld otherwise be distributed through
many lines of text. It is obviously much easier to add -g to a CFLAGS= line to
make a debuggable vers ion of the compiler than it is to add -g to 28 separate cc
commands. Similarly, using $ (CC) and CC=cc, rather than just cc, makes it very
easy to use a different version of cc; just change the definition of the macro. Whilst
this may not seem very useful in a small makefile, it is common practice when
describing larger systems such as the C compiler Macros are used extensively in
makefiles constructed by Make.

205

Advanced features

Advanced features

206

File naming

VPATH

To help you move MS-DOS and UNIX makefiles to RISC OS, or to develop makefiles
under RISC OS for export to MS-DOS or UNIX, both amu and the C compiler accept
three styles of file naming

RISC OS native

UNIX-like

MS-DOS-like

$.301 . cfe . c . pp

/301/cfe/pp . c

\301\cfe\pp.c

A. include.h.defs

.. /include/ defs.h

.. \include\defs.h

(All three of these examples refer to the same two RISC OS files)

The linker offers more limited support; in essence, it recognises thing . o and
o. thing as referring to the same RISC OS file (o. thing). In pract ice, object files
almost always live locally (that's the on ly place the RISC OS and UNIX C compilers
will put one) so this support is fairly complete

Amu will even accept a mixture of naming styles, though this practice shou ld be
di scouraged .

The mapping between different naming styles cannot be complete (consider the
UNIX analogue o f adf s : : 0 . $.Library or net#l . 2 51 : src . amu). Howeve r, it
is usually sufficient to take much of the hard work out of m.oving reasonably
portable makefiles .

Usually, amu looks for files relative to the work directory or in places implicit in the
filename. The example given earlier contains the line:

amu : amu . o $. 301 . clx . o.clxlib

which refers to :

@. o. amu (in @. o) and $. 3 01. clx . o . clxlib (in $. 3 01 . clx . o)

Sometimes, particularly when dealing with multiple versions of large systems, it is
convenient to have a complete set of object files loca ll y, a few sources locally, but
most sources in a central place shared between versions. For example, we can
build different versions of the C compiler this way If the macro VPATH is defined,
then amu will look in the list of places defined in it for any files it can't find in the
places implicit in their names For example, we might have compiler sources in
somewhere . arm, somewhere. mip, somewhere . cfe and put the compiler
makefile in somewhere . ccriscos. It might contain the follow ing VPATH
definition

Appendix A - Makefile syntax

and then dependency lines like:

note t hat UNIX VPATHs
separate path e l ements
wi t h co l ons , n o t sp aces

a . pp : c . pp # A . cfe . c . pp , via VPATH

a . cg : c . cg # A .mip. c . cg , via VPATH

Rule patterns, .SUFFIXES,$@,$*,$< and$?

All the examples given so far have been written out longhand, with expl icit rules for
making targets. In fact. amu can make inferences if you supply the appropriate rule
patterns . These are specified using special target names consisting of the
concatenation of two suffixes from the pseudo-dependency . SUFFI XE S. This
sounds very complicated , but is actua lly quite simple For example:

. SUFFIXES :
amu :
. c . o :;

·. o . c
o.amu
$(CC) $ (CFLAGS) -o $@ c . $*

(Note the order here . c . o makes a . a -like thing from a . c -like thing)

The rule pattern . c . o describes how to make . a -li ke things from . c -like things If.
as in the above fragment. there is no explicit entry describing how to make a
. a -like thing (o . amu, in the above example) amu wil l apply the first rule it has for
making . a-like things Here, order is determined by order in the . SUFFIXES
pseudo- dependency. For example, suppose . SUFFIXES were defined as
. o . c . f and that there were two rules , . c . o : ... and . f. o : .. Then am u
wou ld choose the . c . o rule because . c precedes . f in the . SUFFIXES
dependency In applying the . c . o rule, amu infers a dependence on the
corresponding . c -like thing - here c . amu. So, in effect, it infers:

o . amu : c . amu
$(CC) $ (CFLAGS) -o o . amu c . amu

Note that. in the commands, $@ is replaced by the name of the target and $ * by
the name of the target with the 'extension' deleted from it. In a sim ilar fashion, $<
refers to the list of inferred prerequisites So the above example could be rewritten
using the rule:

. c . o :; $(CC) $ (CFLAGS) -o $@ $<

However, if a VPATH were being used, th is second form is obligatory. Consider, fo r
example. the fragment:

207

Makefiles constructed by Make

VPATH=A . arm A. mip A. cfe

cc : o . pp
. c . o :; $(CC) $(CFLAGS) - o $@ $<

There is no explicit rule for making o . pp, so amu will apply the rule pattern
.c . o : ?. Thi s might expand to:

o . pp : A. cfe . c.pp
$(CC) $(CFLAGS) -o o.pp A. cfe . c . pp

which has a much more useful effect than:

$(CC) $(CFLAGS) -o o . pp c.pp

Finally, $? ca n be used in any command to stand fo r the li st o f prerequisites with
respect to which the target is out of date (which may be only some of the
prerequisites)

Use of : :

If you use : : to separate targets from prerequisi tes, rather than : , the right-hand
sides of dependencies which refer to the same targets are not merged.
Furthermore, each such dependency ca n have separate commands associated with
it. Consider, for example:

0 . tl: : c.tl h.tl
cc -g -c c.tl # executed if o . t1 is out of

date wrt c . tl or h . tl
0. tl:: c.tl h.t2

cc -c c . tl # executed if o . tl is out of
date wrt c.tl or h . t2

These features are used extensive ly in makefil es constructed by Make.

Prefix$Dir

The DDEUt ils module provides an environment va riable Prefix$Dir set to t he
work directory. This is provided to allow you to execute binaries placed in the work
directory, since Run$Path ca nnot otherwise specify the work directory.

Makefiles constructed by Make

208

A makefil e constructed by Make, ie used to maintain a pro ject, is a fil e of type
OXFEl (Makefile). This text is arranged into a number of sections which are

separated by active comments.

Appendix A - Makefile syntax

When maintaining a project the meta-symbol @ is used to stand for the pathname

of the work directory. This overcomes the problem of a current directory not being

appropriate under the RISC OS desktop. If the absolute filename of a makefi le is:

adfs: :4.$.any.thing.makefile

then all filenames for the project can use@ to replace adf s : : 4. $.any. thing

For example :

adfs : :4 . $. any.thing .c.foo

becomes denoted by

@. c . foo

Amu is invoked with the -desktop flag to indicate that @ should be expanded

Tools like cc and objasm which must produce dependency information are invoked

with a flag -depend ! Depend.

Below, we describe each of the makefi le sections, beginning with the.ir

corresponding active comments:

Project proj ect_name

Toolflags

Final targets

#User-editable
dependencies

Static
dependencies

#Dynamic
dependencies

This gives a name to be used for the project in the Open

submenu.

This section has a set of default flags for each of the tools

which have registered themselves with !Make, for

automatic inclusion in a makefile . Each rule wou ld be of

the type:

t.oo1FLAGS

This section contains the rules for making the final

targets of the project For example:

!Runimage: link $(linkflags) -o ! Runimage -via objects)

This section is left untouched by !Make, and can freely

be edited by the user using a text editor.

This section contaiRs rules for making an object file from

its corresponding source. It does not refer to include

files and the like (described below in the section
Dynamic dependencies).

This section contains the rules wh ich are created by

!Make by running the relevant tool on a source file to

ascertain its dependencies (eg cc -depend).

209

Miscellaneous features

210

The special pseudo-target ._SILENT tells amu not to echo commands to be
executed to your screen. Its effect is as if you used the Make or AMU option Silent.

The special pseudo-target . IGNORE tells amu to ignore the return code from the
commands it executes. Its effect is as if you used the Make or AMU option Ignore
return codes.

A command line in a makefile, the first non-white-space character of which is@, is
locally silent; just that command is not echoed. This is only rarely useful.

A command line, the first non-white-space character of which is - has its return
code ignored when it is executed. This is extremely useful in makefiles which use
commands such as diff which cannot set the return code conventionally.

The special macro MFLAGS is given the value of the command line arguments
passed to amu. This is most useful when a makefile itself contains amu commands
(for example, when a system consists of a collection of subsystems. each described
by its own makefile). MFLAGS allows the same command line arguments to be
passed to every invocation of amu, even the recursive ones. For example, you
might invoke amu like this:

* amu -k LIB=$.experiment.new.lib.grafix

and the makefile might contain entries like:

subsys_l : $(COMMON) $(HDRS1)
dir subsysl
amu $ (MF LAGS)
back

22 Appendix B - FrontEnd protocols

Star Commands
Two star commands are supported:

*FrontEnd_Start -app- <application name>
- desc <description_filename>

*FrontEnd_ SetUp -app <application_ name >
-desc <description_filename>
-task <task-id_of_caller>
-handle <app-spec ific_ handle>
-toolflags <filename >

The application specific handle can be used by the caller to identify return
messages, if many *FrontEnd_SetUp commands have been made.

EBNF Grammar of Description Format
The following is an EBNF grammar for an.application description

Note: Blank lines and characters following# (up to newline) are ignored

APPLICATION : : = TOOLDETAILS
[METAOPTIONS]
[FILEOUTPUT]
[DBOX]
[MENU]
[DESELECTIONS]
[EXCLUSIONS]
[MAKE_ EXCLUSIONS]
[ORDER]
[MAKE_ ORDER]
<EOF>

TOOLDETAILS :: = tool_ details start
name <string> ";"
[command_is <string> ;]
version <number_ and_ optional_ date>
II• II

'

211

212

f_iletype <3.digit_~exnumber> "; " J
[wimpslot <integer>k " ; ")
[has_ extended_ cmdl ine ";")

tool_ details end

METAOPTIONS:: = metaoptions_ start
[has_ auto_ run [on) "; "J
[has_ auto_save [on)

FILEOUTPUT

DBOX

MENU

{ " " . " } [<string> J [leafname)
[<string>] from icn <integer> ";"]
[has_text_window ";")
[has_summary_window ";"]
[display_dft_ is textlsummary ";"]

metaoptions_ end

fileoutput_ start
[output_ option_ is <string> " ;"]
[output_dft_ string <string> ";"]
[output_dft_ is (produces_ outputl

produces_no_output) ";"]
fileoutput_ end

dbox_ start ICONS
[ICONDEFAULTS]
[IMPORTS]

dbox_ end

menu_ start
MENULIST
[MENUDEFAULTS]

menu_ end

#--------- ----------------------- -------- ----------------

MENULIST

MENU ENTRY

{ MENUENTRY }

<string> maps_to <string>
[sub_menu <string> <integer> [prefix_ by

<string>))
[produces_ no_ outputl
produces_output]
[not_saved] "; "

MENUDEFAULTS : :=defaults
menu <integer> on I off [sub_menu

<string>
I <integer>

Appendix B - FrontEnd protocols

"," menu <integer> on I of f [sub_menu
<string>

II• II
I

I <integer>

[make_ defaults
menu <integer> on I off [sub_menu

<st ring>
I <int9ger>

menu <integer> on I off [sub_menu
<string>

11. 11
I

I <integer>

#------- -------------- --- -- --------------- ----------- --- -

ICONLIST i c n <integer> { "," icn <integer>}

ENTRYLIST menu <integer> { "," menu <integer>

ICON_ ENTRYLIS : :=menulicn <integer>
<integer> }

II II
I menu I icn

#------------------ ------------- ----- --- ---------- ------ -

ICONS icons start
ICONDEFLIST

icons end

ICONDEFLIST : : = { ICONDEF

ICONDEF icn <integer> (maps_ to ([<string>]
[CONVERSION])

[prefix_ by <string>]
[fo llowed_ by [spaces] OPTLIST]
[separator_ is <st ring>
[produces_ no_ output
lproduces_output]
[not_ saved])
I (increasesldecreases i cn <integer>
[by] <integer> [max <integer>]

[min <integer>])

213

--··· -'~'' " ''~' _ ,., , , .. ,~ ..

214

OPTLIST

OPT ENTRY

CONVERSION

inserts <string> ";"
extends from icn <intege r>

to icn <integer>

OPTENTRY { "," OPTENTRY}

icn <integer>

string I number

ICONDEFAULTS : :=defaults

II 0 II .

icn <integer> on I off
I <integer>

<s t r i ng>

{ ", n icn <integer> on
<string> I <integer>
}
II 0 II .

[make_ defaults
icn <integer> on I off
I <integer>
{ "," icn <integer> on
<string> I <integer> }
II 0 II .

off

<string>

off

#- ------------- - --- --- ----------------- --------- --- -- ----

DESELECTIONS : : = dese l ections start
DESELECTIONLIST

deselec tions end

DESELECTIONLIST: :={ DESELECT }

DESELECT icn <integer> deselects
ICON_ ENTRYLIST ";"
I menu <integer> deselects
ICON_ ENTRYLIST " ; "

#-------- - ---

EXCLUSIONS : : = exclusions start
EXCLUSIONLIST

exclusions end

EXCLUSIONLIST : : ={ EXCLUDE }

EXCLUDE

Appendix B - FrontEnd protocols

icn <integer> excludes
ICON_ ENTRYLIST ";"
I menu <integer> excludes
ICON_ ENTRYLIST ";"

#--

MAKE_ EXLUSIONS: : =make excludes ICON_ENTRYLIST II• II

'

ORDER

MAKE_ ORDER

order_ is (menulicn <integer>)
I <str ing>
I output { "," (menu l icn <integer>)
I <string > I output}

11 •II

'
make_order is

(menulicn <integer>)
output

I <s tring>

{ "," (menu li cn <integer>)
<st ring> I output}
II• II

'

#-- --- ------ ---- ------- --- -------------------------------

IMPORTS

IMPORTLIST

IMPORT

imports_start
[wild_ card_is <string> ";"]
IMPORTLIST

imports_ end

{ IMPORT

drag_ to
(icn <integer>lanyliconbar)
inserts
ICONLIST
[separator_is <string>] II • 11

'

215

WIMP Message returned after a *FrontEnd_SetUp

216

When an application like Make does a *FrontEnd_SetUp command, the FrontEnd
module replies to that application when the user has chosen his options with a
WIMP message of the format:

Byte offset

+16
+20
+24 to +36
+36

Contents

reason code Ox00081400
Handle which was passed to *FrontEnd_SetUp
Application name
null-terminated command-line options

23 Appendix C - DDEUtils

The DDEUtils module performs three functions. These functions have been
combined in one module for convenience:

• Filename prefixing. This allows a unique current working directory to be set
for each task running under RISC OS.

• Long command lines. A mechanism for passing long command lines (> 255
characters) between programs (eg between AMU and Link).

• Throwback. Throwback allows a language processor (eg CC or ObjAsm) to
inform an editor that an error has occurred while processing a source file. The
editor can then display the source file at the location of the error.

These functions are described individually in the rest of the chapter

Filename prefixing SWls
DDEUt il s _ Prefix (&425 80)

Entry

Exit:

Error:

Use:

RO= Pointer to 0 terminated directory name, or RO= 0

All registers preserved

None

This sets a directory name to be prefixed to all relative filenames
used by this task. If RO= 0 this removes any previously set prefix
If you use this SWI within a program to set a directory prefix you
should call it again with RO= O immediately before exiting your
program.

Filename prefixing *Commands
*Pre fix [directory]

This sets the specified directory name to be prefixed to all relative filenames used
by this task. *Prefix with no arguments removes any previously set prefix.

The system variable <Prefix$Dir> is set to t he prefix used for the current ly
executing task. This can be set by you, and this will have the same effect as *Prefix.

217

Long command line SW/s

Long command line SWls

218

These SWis are used to pass long command lines between programs Typically they
will be ca lled by library veneers. For example, the C run-time library initialisation
calls DDEUtil s_GetCLSize and DDEUtils_GetCL to fetch any long
command lines set up by a ca lling program and ca lls DDEUti ls_SetCLSize and
DDEUtils_ SetCl in the system library call.

DDEUtils_ SetCLSize (&42581)

Entry:

Exit:

Error:

Use:

RO= Length of command line buffer required

RO destroyed

None

This SWI shou ld be ca lled by a program when it has a long
command line which it wishes to pass to another program The
SWI shou ld be called with the length of the command line in RO.
A buffer of suitable size is allocated in the RMA

DDEUtils_ SetCL (&42582)

Entry:

Exit:

Error:

RO= Pointer to zero terminated command line tail

All registers preserved

Possible errors are

CLI buff er not set

This error is generated if the program has not previously called
DDEUtils SetCLSize to establish the size of the command
line.

Use: This should be called after calling DDEUt i ls_ SetCLSi ze to set
the size of the command line buffer. RO contains a pointer to the
command tail (ie the command line without the name of the
program to be run) .

DDEUtils_GetCLSize (&42583)

Entry:

Exit:

Error:

Use:

don't care

RO = Size of command line

None

This is called by a program which may have been run with a long
command line. The size of the command line is returned in RO. 0
is returned if no command line has been set

Appendix C - DDEUtils

DDEUtils_GetCL (&42584)

Entry:

Exit:

Error:

Use:

Throwback SWls

RO= Pointer to buffer to receive command line

All registers preserved

None

This SW! is called to fetch the command line. The command line
is copied into the buffer pointed to by RO.

DDEUtils_ ThrowbackRegister (&42585)

Entry:

Exit:

Error:

RO= task handle of caller

All registers preserved

Possible errors are:

Another task is registered for throwback
Throwback not available outside the desktop

Use This registers a task which is capable of dealing with throwback
messages, with the throwback module. The task handle will be
used in passing wimp messages to the caller, when they are
generated by an appljcation.

DDEUtils_ ThrowbackUnRegister (&42586)

Eh try:

Exit:

Error:

RO= task handle of caller

All registers preserved

Possible errors are:

Task not registered for throwback
Throwback not available outside the desktop

Use This call should be made when the wimp task which registered
itself for throwback is about to exit

DDEUtils_ ThrowbackStart (&42587)

Entry: don't care

Exit: Al l registers preserved

Error: Possible errors are:

No task registered for throwback
Throwback not available outside the desktop

219

Throwback SW/s

220

Use: When a non-desktop tool detects errors in the source(s) it is
processing, and throwback is enabled, the tool should make this
SWI to start a throwback session .

Throwback_Send (&42588)

Entry: RO = reason code

R2-R5 =depends on reason code (see below)

If RO= 0 (Throwback_ReasonProcessing)

If

If

R2 = pointer to nul-terminated full pathname of file being
processed.

RO= I (Throwback_ReasonErrorDetails)
R2 = pointer to nu I-terminated full pathname of file being

processed.

R3 = line number of error

R4 = severity of error
= 0 for warning
= I for error
= 2 for serious error

R5 = pointer to nu I-terminated description of error

RO= 2 (Throwback_ReasonlnfoDetails)
R2 = pointer to nu I-terminated full pathname of file being

processed.

R3 = line number to which 'informational' message refers.

R4 = must be 0.

R5 = pointer to nu I-terminated 'informational' message.

Exit: RO-R4 preserved

Error: Possible errors are:

No task registered for throwback
Throwback not available outside the desktop

Use This SWI should be called with reason

Throwback_ ReasonProcessing

once, when the first error when processing a file was found. Then
it should be called once for each error found , with the reason

Throwback_ReasonErrorDetails

1-1ppen0tx v - UUt:.UWS

DDEUtils_ThrowbackEnd (&42589)

Exit: all registers preserved

Error: Possible errors are:

No task registered for throwback
Throwback not available outside the desktop

Throwback WIMP messages

These messages are sent by the DDEUtils module to an editor that has registered
itself for throwback using the SW! DDEUtils_ThrowbackRegister You on ly
need to know about them if you want to write your own editor.

Contents Byte Offset

+16 DDEUtils_ ThrowbackStart (&42580)

The translator then passes messages giving fu ll information on each error, or each
'i nformational' message, to the editor.

A complete series of messages sent by the translator to the editor is described by
the grammar below. Items in< .. > are individual wimp messages, identified by their
reason code.

ErrorDialogue

ErrorsWhileProcessing

ErrorFoundin

Inf oDialogue

InfoDetails

<DDEUtils_ ThrowbackStart>
ErrorsWhileProcessing
{ErrorsWhileProcessing}
<DDEUtils_ ThrowbackEnd>

<DDEUtils_ ProcessingFile>
ErrorFoundin {ErrorFoundin}

<DDEUtils_ Errorin>
<DDEUtils_ ErrorDetails>

<DDEUtils_ ThrowbackStart>
InfoDetails{InfoDetails}
<DDEUtils_ ThrowbackEnd>

<DDEUtils InfoforFile>
<DDEUtils InfoDetails>

221

Throwback WIMP messages

The format of such wimp messages is as follows :

222

Byte Offset

+16
+20

Byte Offset

+16
+20

Byte Offset

+16
+20
+28

+32

Byte Offset

+16

Byte Offset

+16
+20

Byte Offset

+16
+20
+28
+32

Contents

DDEUtils~ProcessingFile (&42581)
Nu l -terminated filename

Contents

DDEUti l s_ Error sin (&42582)
Nul-terminated filename

Contents

DDEUtils ErrorDeta i ls (&42583)
Line number
Severity

0 for warning
= 1 for error
= 2 for ser ious error

Nul-terminated description

Contents

DDEUtils ThrowbackEnd (&42584)

Contents

DDEUtils_ InfoforFile (&42585)
Nul-terminated filename

Contents

DDEUtils InfoDetails (&42586)
Line number
must be 0
Nul-terminated ' informational ' message

24 Appendix D - SrcEdit file formats

Language File Format

1 anguage_ name

searchpath this line can be blank.

helppath this line can be blank.

searchpa th is a comma-separated list of fu ll pathnames for default sea rch
path when loading from a selection. Note that each item in this
list shou ld either be a path variab le (eg c:), or be terminated by a
dot

helppa th is the full pathname of language help fil e

Help File Format

%<keyword>

<line 1 of help text>

<line 2 of help text>

<line 3 of help text>

<line 4 of help text>

etc

There is no limit on the number of help lines for a given keyword

223

Help File Format

224

25

Terminology

Appendix E - Code file formats

This appendix defines three file formats used by DOE tools to store processed
code and the format of debugging data used by DDT

• AOF - Arm Object Format

• ALF - Acorn Library Format

• AIF- RISC OS Application Image Format

• ASD - ARM Symbolic Debugging Format

DOE language processors such as CC and ObjAsm generate processed code output
as AOF files An ALF file is a collection of AOF fil es constructed from a set of AOF
fi les by the LibFil e tool. The Link tool accepts a set o f AOF and ALF fil es as input,
and by default produces an executable program fil e as output in AIF

Throughout thi s appendix the terms byte. half word, word, and string are used to mea n
the fo ll owing:

Byte: 8 bits, considered unsigned unless ot.herwise stated, usually used to store fl ag
bits or characters

Half word 16 bits , or 2 bytes. usually unsigned The least signifi cant byte has the
lowest address (DEC/Intel byte sex, sometimes ca ll ed little endian) The address o f a
half word (ie o f its least significant byte) must be divisible by 2.

Word: 32 bits, or 4 bytes, usually used to store a non-negati ve va lue The least
significant byte has the lowest address (DEC/Intel byte sex, somet imes called little
endian) Th e address of a word (ie of its least sign ifi ca nt byte) must be divisible by
4.

String A sequence of bytes terminated by a NUL (OXOO) byte The NUL is part of the
string but is not counted in the string's length . Strings may be aligned on any byte
boundary

For emphasis: a word consists o f 32 bits, 4-byte aligned; within a word , the least
significant byte has the lowest address. This is DEC/ Intel. or little endian, byte sex,
not IBM/Motoro la byte sex.

225

Undefined Fields

Undefined Fields

Fields not explicit ly defined by this append ix are implicitly reserved to Acorn . It is
required that all such fields be zeroed. Acorn may ascribe meaning to such fields at
any time. but will usually do so in a manner which gives no new meaning to zeroes .

Overall structure of AOF and ALF files
An object or library file contains a number of separate but related pieces of data . In
order to simpli fy access to these data , and to provide for a degree of extensibility,
the object and library file formats are themselves laye red on another format ca lled
Chunk File Format, which provides a simple and efficient means of accessing and
updating distinct chunks of data within a single file . The object file format defines
five chunks:

• header

• areas

• identification

• symbol table

• string table.

The library file format defines four chunks:

• directory

• time-stamp

• version

• data.

There may be many data chunks in a library

The minimum size of a piece of data in both formats is four bytes or one word. Each
word is stored in a file in little-endian format; that is the least significant byte of
the word is stored first

Chunk file format

226

A chunk is accessed via a header at the start of the file . The header contains the
number, size, location and identity of each chunk in the file . The size of the header
may vary between different chunk files but is fixed for each file . Not all entries in a
header need be used, thus limited expansion of the number of chunks is permitted
without a wholesale copy A chunk fil e can be copied without knowledge of the
contents of the individual chunks.

Graphically, the layout of a chunk fil e is as follows

ChunkFileld

maxChunks

numChunks

entry1

entry2

entry "maxChunks"

chunk 1

chunk "numChunks"

3 words

4 words per entry

End of header (3 + 4*MaxChunks) words
Start of data chunks

ChunkFileid marks the file as a chunk fil e Its va lue is C3CBC6C5 hex. The
rnaxChunks fi eld defines the number of the entries in the header, fi xed when the
fil e is created. The nurnChunks field defines how many chunks are currently used
in the file, which ca n vary from 0 to rnaxChunks. The va lue of nurnChunks is
redundant as it can be found by scanning the entries.

Each entry in the header compri ses four words in the following order

chunk Id

Offset

size

a two word fi eld identifying what data the chunk fil e contains

a one word fi eld defining the byte offset within the file of the
chunk (which must be divisible by four); an entry of zero indicates
that the corresponding chunk is unused

a one word field defining the exact byte size of the chunk (which
need not be a multiple of four).

The chunkid fi eld provides a conventional way of identifying what type of data a
ch unk contains. It is sp lit into two parts The first four characters (in the first word)
contai n a universa lly unique name all ocated by a central authority (Acorn). Th e

227

Chunk file format

228

rema ining four characters (j n the second word) ca n, be used to identi fy component
chunks within thi s universa l domain In each part. the first character of the name is
stored first in the fil e, and so on.

For AOF fi les, the first part of each chunk's name is OBJ_; the second components
are defin ed later For ALF fi les, the first pa rt is LI B_ .

AOF

Appendix E - Code file formats

ARM ob ject format files are output by language processors such as CC and

ObjAsm

Object file format
Each piece of an ob ject file is stored in a separate, identifiable, chunk. AOF defines
five chunks as follows:

Chunk

Header
Areas
Identifi ca ti on
Symbol Table
String Table

Chunk Name

OBJ_HEAD
OBJ_AREA
OBJ_IDFN
OBJ_SYMT
OBJ_STRT

On ly the header and areas chu nks must be present, but a typical object file will
contain all five of the above chunks.

A feature of chunk file fo rmat is that chunks may appear in any order in the fi le
However, language processors wh ich must also generate other ob ject formats -
such as Unix's a . out format - shou ld use thi s flexib ility ca utiously

A language translator or other system utility may add add itional chunks to an
ob ject fi le, for example a language-specific symbol table or language-specific
debugging data, so it is conventiona l to allow space in the chunk header for
add itiona l chunks; space for eight chunks is conven tiona l when the AOF file is
produced by a language processor which generates all fi ve chunks described here.

The header chunk should not be con fused with the chunk file 's header.

Format of the AOF header chunk

The AOF header is logically in two parts, though these appear contiguously in the
header chunk. The first part is of fixed size and describes the contents and nature
of the ob ject fil e. The second part is va riable in length (specified in the fixed part)
and is a sequence of area declarations defin ing the code and data areas within
the OBJ_AREA chunk.

229

Object file format

230

The AOF header chu nk has the following format

Object file type

Version Id

Number of areas

Number of Symbols

Entry Address area

Entry Address Offset

1st Area Header

2nd Area Header

nth Area Header

Object file type

6 words in the fixed part

5 words per area header

(6 + S*Number of Areas) words in
the AOF header

C5E2D080 (hex) marks an ob ject file as being in relocatable object format

Version ID

This word encodes the version of AOF to wh ich the ob ject file complies AOF I .xx is
denoted by 150 decimal; AOF 2.xx by 200 decimal.

Number of areas

The code and data of the object file is presented as a number of separate areas, in
the OBJ_AREA chunk, each with a name and some attributes (see below) Each
area is declared in the (variable-length) part of the header which immediately
follows the fixed part The va lue of the Number of Areas field defines the
number of areas in the file and consequent ly the number of area declarations
which follow the fixed part of the header.

Number of symbols

If the object file contains a symbol table chunk OBJ_SYMT, then this field defines
the number of symbols in the symbol table.

Appendix E - Code file formats

Entry address area/ entry address offset

One of the areas in an ob ject file may be designated as containing the sta rt address
for any program wh ich is linked to include this file If so, the entry address is
specified as an <area-index , offset> pair, where area-index is in the
range I to Number of Areas , specifying the nth area declared in the area
declarations part of the header. The entry address is defined to be the base address
of this area pl us off set.

A va lue of 0 for area - index signifies that no program entry address is defined by
this AOF fi le

Format of area headers

The area headers follow the fixed pa rt of the AOF header. Each area header has the
fo ll owing form:

Area name (offset into string variable)

zeros I AT I AL

Area size

Number of relocations

Unused - must be zero 5 words in total

Area name

AL

Each name in an ob ject file is encoded as an offset into the string table, wh ich
stored in the OBJ_STRT chunk. This all ows the variable-length characteristics of
names to be factored out from primary data formats Each area within an ob ject file
must be given a name which is unique amongst all the areas in t hat object file

This byte must be set to 2; all other values are reserved to Acorn.

AT (Area attributes)

Each area has a set of attributes encoded in the AT byte. The least-signi fi cant bit of
AT is numbered 0

Link orders areas in a generated image first by attributes. then by the
(case-sign ificant) lexicographic order of area names. then by position of the
conta ining ob ject module in the link-li st The position in the link-li st of an ob ject
module loaded from a library is not predictable

231

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

232

When ordered by attributes, Read-Only areas precede Read-Write areas which
precede Debug areas; wit hin Read-Only and Read-Write Areas, Code precedes Data
which precedes Zero-Init ialised data. Zero-Initialised data may not have the
Read-Only attribute.

This bit must be set to 0

If this bit is set, the area conta ins code, otherwise it contains data.

Bit 2 specifies that the area is a common block definition.

Bit 3 defines the area to be a (reference to a) common block and precludes the area
having initialising data (see Bit 4, below) In effect, the setting of Bit 3 impli es the
setting of Bit 4.

Common areas with the same name are overlaid on each other by Link. The S i ze
field of a common definition defines the size of a common block. All other
references to this common block must specify a size which is sma ller or equal to
the definition size . In a link step there may be at most one area of the given name
with bit 2 set If none of these have bit 2 set, the actual size of the common area will
be size of the largest common block reference (see also the section entit led Linker
defined symbols on page 239)

This bit specifies that the area has no initialising data in this ob ject file and that
the area contents are missing from the OBJ_AREA chunk. This bit is typically used
to denote large uninitialised data areas. When an uninitialised area is included in
an image, Link either includes a read-write area of binary zeroes of appropriate size
or maps a read-write area of appropriate size that wi ll be zeroed at image start-up
time. This attribute is incompatible with the read-only attribute (see the section on
Bit 5, below)

Note: Whether or not a zero-initia lised area is re-zeroed if the image is re-entered
is a property of Link and the relevant image format The definition of AOF neither
requires nor precludes re-zeroing

Bit 5

Bit 6

Bit 7

Appendix E - Code file formats

This bit specifies that the area is read-only. Link groups read-onl y areas together so
that they may be write protected at run-time, hardware permitting. Code areas and

debugging tables should have this bit set. The setting of this bit is incompatible
with the sett ing of bit 4.

This bit must be set to 0.

This bit specifies that the area contains symbolic debugging tables. Link groups
these areas together so they can be accessed as a single contiguous chunk at
run-tim e. It is usual for debugging tables to be read-onl y and, therefore, to have bit
5 set too. If bit 7 is set, bit I is ignored

Area size

This fi eld specifies the size of the area in bytes, wh ich must be a multiple of 4.
Unless the Not Initialised bit (bit 4) is set in the area attributes, there must
be this number o f bytes for this area in the OBJ_AREA chunk.

Number of relocations

This specifies the number o f relocati on records which apply to this area.

Format of the areas chunk

The areas chunk (OBJ_AREA) contains the actual areas (code, data , zero- initialised
data, debugging data, etc.) plus any associated relocat ion in formation. Its chunkld
is OBJ_AREA. Both an area's contents and its relocation data must be
word-aligned . Graphically, an area's layout is:

Area 1

Area 1 relocation

Area n

Area n relocation

An area is simply a sequence of byte va lues, the order fo llowing t hat of the
addressing rul es of the ARM, that is the least significant byte of a word is first An
area is fo ll owed by its associated relocat ion table (if any) . An area is either

233

Object file format

completely initialised by the values from the file or not initialised at al l (ie it is
initialised to zero in any loaded program image, as specified by bit 4 of the area
attributes)

Relocation directives

234

If no relocation is specified, the value of a byte/halfword/word in the preceding area
is exactly the value that will appear in the final image

Bytes and halfwords may only be relocated by constant values of suitably small
size. They may not be relocated by an area's base address.

A field may be subject to more than one relocation.

There are 2 types of relocation directive, termi::d here type- I and type-2. Type-2
relocation directives occur only in AOF versions 1.50 and later.

Relocation can take two basic forms: Additive and PC Relative.

Additive relocation specifies the modification of a byte/halfword/word, typically
containing a data value (ie constant or address).

PCRelative relocation always specifies the modification of a branch (or branch with
link) instruction and involves the generation of a program- counter-relative,
signed, 24-bit word-displacement.

Additive relocation directives and type-2 PC-relative relocation directives have two
variants: Internal and Symbol .

Additive internal relocation involves adding the al located base address of an area
to the field to be relocated. With Type-I internal relocation directives, the value by
which a location is relocated is always the base of the area with which the
relocation directive is associated (the Symbol IDentification field (SID) is ignored)
In a type-2 relocation directive, the SID field specifies the index of the area relative
to which relocation is to be performed. These relocation directives are analogous
to the TEXT-. DATA- and SSS-relative relocation directives found in the a.out object
format.

Symbol relocation involves adding the value of the symbol quoted

A type- I PCRelative relocation directive always references a symbol. The relocation
offset added to any pre-existing in the instruction is the offset of the target symbol
from the PC current at the instruction making the PCRelative reference. Link takes
into account the fact that the PC is eight bytes beyond that instruction.

In a type-2 PC-relative relocation directive (only in AOF version 1.50 and later) the
offset bits of the instruction are initialised to the offset from the base of the area of
the PC value current at the instruction making the reference - thus the language

Appendix E - Code file formats

translator, not Link, compensates fo r the difference between the address of the
instruction and the PC va lue current at it. This variant is introduced in direct
support of compilers that must also generate Unix's a. out format.

For a type-2 PC-relative symbol-type relocat ion directive, the offset added into the
instruct ion making the PC-relative reference is the offset of the target symbol from
the base of the area contain ing the instruction. For a type-2 , PC-relative, internal
relocati on directive, the offset added into the instructi on is the offset of the base of
the area identified by the SID field from the base of the area containing the
instruction.

Link itself may generate type-2 , PC-relative, internal relocat ion directives during
the process of partially linking a set of ob ject modules.

Format of Type 1 relocation directives

Diagrammatically:

Offset

0 I A IR FT SID

Offset

Offset is the byte offset in the preceding area of the fi eld to be relocated.

SID

If a symbol is involved in the relocation, this 16-bit field specifies the index within
the symbol table (see below) of the symbo l in question

FT (Field Type)

This 2-bit field (bits 16- 17) specifies the size of the field to be relocated

00 byte
01 halfword
IO word
11 illegal value

R (relocation type)

Thi s field (bit 18) has the following interpretat ion

0 Additive relocat ion
PC-Relative relocation

235

Object file format

236

A (Additive type)

In a type- I relocation directive, this I-bit fie ld (b it 19) i·s on ly interpreted if bit 18 is
a zero.

A=O specifies Interna l relocat ion , meaning that the base address of t he area (with
wh ich this relocation directive is associated) is added into the field to be relocated.
A= I specifies Symbol relocation, meaning that the va lue of the given symbol is
added to the field being relocated.

Bits 20 - 31

Bits 20-31 are reserved by Acorn and should be written as zeroes.

Format of Type 2 relocation directives

Th ese are ava ilable from AOF 1.50 onwards.

·1 Offset

10001 A I RI FT 24-bit SID

The interpretat ion of Offset. FT and SID is exactly the same as for type- I relocation
d irectives except that SID is increased from 16 to 24 bits and has a different
mea ning - described below - if A=O)

The second word of a type-2 relocation directive conta ins I in its most significa nt
bit; bits 28 .. 30 must be written as 0, as shown.

The different interpretation of the R bit in type-2 directives has already been
described in the section enti tled Relocation directives on page 234.

If A=O (internal relocation type) then SID is the index of the area, in the OBJ_AREA
chunk, relative to which the va lue at Offset in the cu rrent area is to be relocated .
Areas are indexed from 0.

Format of the symbol table chunk

Th e Number of Symbols field in the header defines how many entries there are
in the symbol tab le. Each symbol table entry has the fo llowing forma t

Name

Value

Area name

Name

Thi s va lue is an index into the string table (in chunk OBJ_STRT) and thu s locates
th e character string representing the symbol

AT

Thi s is a 7 bit field specifying the attributes of a symbol as follows

Bits I and 0

(I 0 means bit I set, bit 0 unset)

01 The symbol is defined in this ob ject file and has scope limited to this
ob ject file (when resolving symbol references, Link will only match this
symbol to references from other areas within the same object fil e)

IO The symbol is a reference to a symbol defined in another area or another
object file. If no defining insta nce of the symbol is found then Link
attempts to match the name of the symbol to the names of common
blocks. If a match is found it is as if there were defined an
identically-named symbol o f globa l scope, having as va lue the base
address of the common area.

11 The symbol is defined in this ob ject file and has globa l scope (ie when
attempting to resolve unresolved references, Link will match thi s symbol
to references from other ob ject fil es).

00 Reserved by Acorn .

Bit 2

Thi s attribute is on ly meaningful if the symbol is a defining occurrence (bit 0 set)
It specifies that the symbol has an absolute va lue, for example, a consta nt.
Otherwi se its va lue is relative to the base address o f the area defined by the Area

Name field of the symbol tabl e entry

Bit 3

Thi s bit is only meaningful if bit 0 is unset (that is, the symbol is an external
reference). Bit 3 denotes that the reference is case-insensitive. When attempting to
resolve such an external reference , Link will ignore character case when performing
the match.

Bit 4

Thi s bit is only meaningful if the symbol is an external reference (bits 1,0 = I 0) . It
denotes that the reference is weak, that is that it is acceptable for the reference to
remain unsati sfi ed and for any fi elds relocated via it to remain unrelocated.

237

Object file format

238

Note A weak reference st ill causes a library module satisfying that reference to be
auto-loaded.

Bit 5

This bit is on ly meaningful if the 'symbol is a defining, externa l occurrence (ie if bits
1,0 = 11). It denotes that the definition is strong and, in turn , this is on ly
meaningful if there is a non-strong, externa l definition of the same symbol in
another ob ject file . In this scenario, all references to the symbol from outside o f
the file containing the strong definition are resolved to the strong definition
Within the file containing the strong definition, references to the symbol resolve to
the non-strong definition.

Thi s attribute allows a kind of link-time indirection to be enforced. Usually, st rong
definitions will be absolute and will be used to implement an operat ing system's
entry vector which must have the forever binary property.

Bit 6

This bit is only meaningful if bits I ,O = I 0. Bit 6 denotes that the symbol is a
common symbol - in effect, a reference to a common area with the symbol's name.
The length of the common area is given by the symbol's value field (see below)
Link treats common symbols much as it treats areas having the common reference
bit set - all symbols with the same name are assigned the same base address and
the length allocated is the maximum of all specified lengths

If the name of a common symbol matches the name o f a common area then these
are merge and symbol identifies the base of the area.

All common symbols for which there is no matching common area (reference or
definition) are collected into an anonymous linker pseudo-area.

Value

This field is only meaningful if the symbol is a defining occurrence (ie bit 0 of AT
set) or a common symbol (ie bit 6 of AT set). If the symbol is absolute (bit 2 of AT
set) , th is field contains the va lue o f the symbol Otherwise, it is interpreted as an
offset from the base address of the area defined by Area Name, wh ich must be an
area defined in this object file .

Area name

This field is only meaningful if the symbol is not absolute (ie if bit 2 of AT is unset)
and the symbol is a defining occurrence (ie bit 0 of AT is set) . In this case it gives
the index into the string table of the character string name of the (logical) area
relative to which the symbol is defined.

Appendix E - Code file formats

String table chunk (OBJ_STRT)

The string table chunk contains all the print names referred to within the areas and
symbol table chunks. The separation is made to factor out the variable length
characteri~tic of print names. A print name is stored in the string table as a
sequence of IS08859 non-control characters terminated by a NUL (0) byte and is
identified by an offset from the table's beginning The first 4 bytes of the string
table contain its length (including the length word - so no val id offset into the
table is less than 4 and no table has length less than 4). The length stored at the
start of the string table itself is identically the length stored in the OBJ_STRT chunk
header.

Identification chunk (OBJ_IDFN)

This chunk shou ld contain a printable character string (characters in the range
1321261). terminated by a NUL (0) byte, giving information about the name and
version of the language translator wh ich generated the object fil e.

Linker defined symbols
Though not part of the definition of AOF, the definitions of symbols which the AOF
linker defines during the generation of an image file are collected here. These may
be referenced from AOF object files, but must not be redefined

Linker pre-defined symbols

The pre-defined symbols occur in Base/Limit pairs A Base value gives the address
of the first byte in a region and the corresponding Limit value gives the address of
the first byte beyond the end of the region . All pre-defined symbols begin
Image$$ and the space of all such names is reserved by Acorn.

None of these symbols may be redefined. The pre-defined symbols are

Image$$RO$$Ba se
Image$$RO$$Limit

Image$$RW$$Base
Image$$RW$$Limi t

lmage$$ZI$$Base
Image$$ZI$$Limit

Address and limit of the Read-Only section
of the image

Address and limit of the Read-Write section
of the image

Address and limit of the Zero-init ialised data
section of the image (created from areas having
bit 4 of their area attributes set and from
common symbols which match no area name)

If a sect ion is absent, the Base and Limit va lues are equal but unpredictable.

239

Obsolescent and obsolete features

Image$$RO$$Base

Image$$RW$$Limit

includes any image header prepended by Link.

includes (at the end of the RW sect ion) any
zero-initialised data created at run-time.

The Image$ $xx$$ {Base ,°L imit} va lues are intended to be used by language
run-time systems Other va lues wh ich are needed by a debugger or by part of the
pre-run-time code associated with a particular image format are deposited into the
relevant image header by Link.

Common area symbols

For each common area, Link defines a g loba l symbol having the same name as the
area, except where this wou ld clash wi th the name of an existing globa l symbol
definition (thus a symbol reference may match a common area).

Obsolescent and obsolete features

240

The following subsect ions describe features that were part of revision I .xx of AOF
and/or that were supported by the 59x releases of the AOF linker, which are no
longer supported In each case, a brief rationale for the change is given.

Object file type

AOF used to define three image types as well as a relocatable object file type
Image types 2 and 3 were never used under Arthur/RISC OS and are now obsolete.
Image type I is used only by the obsolete Dbug (DDT has Dbug's functionality and
uses Applicat ion Image Format).

AOF Image type I
AOF Image type 2
AOF Image type 3

AL (Area alignment)

C5E2D08 I hex
C5E2D083 hex
C5E2D087 hex

(obsolescent)
(obsolete)
(obsolete)

AOF used to allow the alignment of an area to be any specified power of 2 between
2 and 16. By convention, relocatable object code areas always used minimal
alignment (AL=2) and only the obsolete image formats , types 2 and 3, specified
values other than 2. From now on, all va lues other than 2 are reserved by Acorn.

AT (Area attributes)

1Wo attributes have been withdrawn the Absolute attribute (bit 0 of AT) and the
Position Independent attribute (b it 6 of AT)

The Absolute attribute was not supported by the RISC OS linker and therefore had
no utility Link in any case allows the effect of the Absolute attribute to be
simulated.

The Position Independent bit used to specify that a code area was position
independent, meaning that its base address could change at run-time without any
change being required to its contents. Such an area could only contain internal,
PC-relative relocations and must make all external references through registers
Thus only code and pure data (containing no address values) could be
position-independent

Few language processors generated the PI bit which was only significant to the
generation of the obsolete image types 2 and 3 (in which it affected AREA
placement) Accordingly, its definition has been withdrawn.

Fragmented areas

The concept of fragmented areas was introduced in release 0.04 of AOF. tentatively
in support of Fortran compilers. To the best of our knowledge, fragmented areas
were never used . (Two warnings against use were given with the original definition
on the grounds of: structural incompatibility with Unix's a. out format; and likely
inefficient handling by Link. And use was hedged around with curious restrictions)
Accordingly, the definition of fragmented areas is withdrawn.

241

ALF

ALF
ALF is the format of linkable libraries (such as the C RISC OS library RISC_OSLib) .

Library ti.le format types

There are two library file formats described here, termed new-style and old-style Link
can read both formats. though no tool wi ll actually generate an old-style library.

Currently, only the Acorntropexpress Fortran-77 compiler generates old-style
libraries (which it does instead of generating AOF object files) Link handles these
libraries specially, including every member in the output image unless explicitly
instructed otherwise.

Old-style libraries are obsolescent and should no longer be generated.

Library file chunks

LIB_DIRY

242

Each piece of a library file is stored in a separate, identifiable, chunk, named as
follows:

Chunk Chunk Name

Directory LIB_DIRY
Time-stamp LIB_TIME
Version LIB_VSRN - new-style l ibraries on ly
Data LIB_DATA

Symbol table OFL - SYMT - object code libraries only
Time-stamp OFL_T IME - object code l ibraries only

There may be many LIB_DATA chunks in a l ibrary, one for each library member.

The LIB_DIRY chunk contains a directory of all modules in the library each of which
is stored in a LIB_DATA chunk. The directory size is fixed when the library is
created. The directory consists of a sequence of variable length entries, each an
integral number of words long. The number of di rectory entries is determined by
the size of the LIB_DIRY chunk.

This is shown pictorially in the following diagram:

Integral
number
of words

Chunklndex

Entrylength

Data Length

Data

Appendix E - Code file formats

Chunklndex

The Chunklndex is a 0 origin index within the chunk file header of the
corresponding LIB_DATA chunk. The LIB_DATA chunk entry gives the offset and
size of the library module in the library file. A Chunklndex of 0 means the directory
entry is not in use.

Entrylength

The number of bytes in this LIB_DIRY entry, always a multiple of 4.

Data length

Data

The number of bytes used in the Data section of this LIB_DIRY entry This need not
be a multiple of 4, though it always is in new-style libraries.

T hec:rat:3s-e·ctiun-eems-is-t-s-ef-aJl t minated stringfollowed by any other
information relevant to the library module. Strings should contain on ly IS0-8859
non-contro l ch_aracters (ie codes I 0- 31 J, 127 and 128+10-311 are excluded) The
string is the name used by the library management tools to identify this library
module. Typically this is the name of the file from which the library member was
created.

In new-style libraries, an 8-byte, word-aligned time-stamp fo llows the member
name. The format of this time-stamp is described in the section entitled LIB_ TIME
on page 244. Its value is (an encoded version of) the time-stamp (ie the last
modified time) of the file from which the library member was created

243

L/1::1_ 11/Vlt::

LIB_TIME

LIB_VSRN

LIB DATA

244

Applications which create libraries or library members should ensure that the
LIB_DIRY entries they create contain va lid time-stamps. Applications which read
LIB_DIRY entries should not rel y on any data beyond the end of the name-string
being present unless the difference between the Data Length field and the
name-string length allows for it Even then, the contents of a time-stamp should be
treated cautious ly and not assumed to be sensibl e.

Applicat ions which write LIB_DIRY or OFL_SYMT entries should ensu re that
paddi ng is done with NUL (0) bytes; applications which read LIB_DIRY or
OFL_SYMT entries should make no assumptions about the va lues of padding bytes
beyond the first, string-terminating NUL byte

The LIB_ TIME chunk contains a 64 bit time-stamp recording when the library was
last modified, in the following format

High-address byte

TimeStamp

Low-address byte

L 2 byte microsecond count, usually O

6 bytes of centi-seconds since
1/1/1900 00:00 GMT

In new-sty le libraries, this chunk contains a 4-byte version number. The current
version number is I . Old-style libraries do not contain thi s chunk.

A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY
chunk. No interpretation is placed on the contents of a member by the library
management tools. A member could itself be a file in chunk file format or even
another library.

Object code libraries

An object code library is a library file whose members are fil es in AOF All libraries
you are likely to use with the DDE are object code librari es.

Addition.;il informat ion is stored in two extra chunks, OFL_SYMT and OFL_TIME.

OFL_SYMT contains an entry for each external symbol defined by members of the
library, together with the index o f the chunk containing the member defining that
symbol

The OFL_SYMT chunk has exact ly the same format as the LIB_DIRY chunk except
that the Data sect ion of each entry contains only a string, the name of an external
symbol (and between I and 4 bytes of NUL padding) OFL_SYMT entries do not
contain time-stamps.

The OFL_TIME ch unk records when the OFL_SYMT chunk was last modified and
has the same format as the LIB_TIME chunk (see above) .

•

245

AIF

AIF
AIF is the format of executable program files produced by linking AOF files
Example AIF files are !Runlmage files of applications coded in C or assembler.

Properties of AIF

246

• An AIF image is loaded into memory at its load address and entered at its first
word (compatible with old-style Arthur/Brazil ADFS images)

• An AIF image may be compressed and can be self-decompressing (to support
faster loading from floppy discs, and better use of floppy-disc space)

• If created with suitable linker options, an AIF image may relocate itself at load
time . Self-relocation is supported in two, distinct senses: ~

• One-time Position-Independence: A relocatable image can be loaded at
any address (not just its load address) and will execute there (compatible
with version 0.03 of AIF)

• Specified Working Space Relocation A suitably created relocatable image
will copy itself from where it is loaded to the high address end of
applications memory, leaving space above the copied image as noted in
the AIF header (see below)

In addition , similar relocation code and similar linker options support
many-time position independence of RISC OS Relocatable Modules.

• AIF images support being debugged by the Desktop Debugging Tool (DDT) , for
C, assembler and other languages Version 0.04 of AIF (and later) supports
debugging at the symbolic assembler level (hitherto done by Dbug) Low-level
and source-level debugging support are orthogona l (capabilities of debuggers
notwithstanding, both , either, or neither kind of debugging support may be
present in an AIF image)

Debugging tables have the property that all references from them to code and
data (if any) are iri the form of relocatable addresses. After loading an image at
its load address these values are effectively absolute. All references between
debugger table entries are in the form of offsets from the beginning of the
debugging data area. Thus, following relocation of a whole image, the
debugging data area itself is position independent and can be copied by the
debugger

Appendix E - Code file formats

Layout of an AIF image

The layout of an AIF image is as follows:

Header

Compressed image

Decompression data This data is position ~independent

Decompression code This code is position-independent

The header is small. fixed in size, and described below. In a compressed AIF image,
the header is NOT compressed

Once an image has been decompressed - or if it is uncompressed in the first place
- it has the following layout:

Header

Read-only area

Read-write area

Debugging data (optional)

Self-relocation code Must be position-independent

Relocation list List of words to relocate, terminated by -1

Debugging data are absent unless the image has been linked appropriately and , in
the case of source- level debugging, unless the constituent components of the
image have been compiled appropriately

The relocation list is a list of byte offsets from the beginning of the AIF header, of
words to be relocated , followed by a word containing -l. The relocation of
non-word values is not supported .

247

AIF header layout

After the execution of the self-relocat ion code - or if the image is not
self-re locating - the image has the fo ll owing layout

Header

Read-only area

Read-write area

Debugging data (optional)

At this stage a debugger is expected to copy the debugging data (if present)
somewhere safe, otherwise they will be overwritten by the zero-initialised data
and/or the heap/stack data of the program A debugger can seize control at the
appropriate moment by copying, then modifying, the third word of the AIF header
(see below)

AIF header layout

BL DecompressedCode

BL SelfRelocCode

BL ZerolnitCode

BL lmageEntryPoint

SWI OS_Exit

Image ReadOnly size

Image ReadWrite size

Image Debug size

Image zero-init size

Image debug type

Image base

Work space

Four reserved words (0)

Zero-init code (16 words)

248

BLNV O if the image is not compressed

BLNV O if the image is not self-relocating

BLNV O if the image has none

BL to make header addressable via R14

Just in case silly enough to return

Includes header size and any padding
Exact size - a multiple of 4 bytes

Exact size - a multiple of 4 bytes

Exact size - a multiple of 4 bytes

Exact size - a multiple of 4 bytes

0, 1,2 or 3 (see below)

Address of the AIF header - set by link

a self-moving relocatable image
Min work space - in bytes - to be reserved by

Header is 32 words long

Appendix E - Code file formats

BL is used everywhere to make the header addressable via R 14 (but beware the
PSR bits) in a position-independent manner and to ensure that the header wil l be
position-independent.

It is required that an image be re-enterable at its first instruction. Therefore, after
decompression, the decompression code must reset the first word of the header to
BLNV 0. Similarly, following self-relocation, the second word of the header must be
reset to BLNV 0. This causes no additional problems with the read-only nature of
the code segment - both decompression and relocation code must write to it
anyway. So, on systems with memory protection, both the decompression code
and the self-relocation code must be bracketed by system cal ls to change the
access status of the read-only section (first to writeable, then back to read-on ly)

The image debug type has the following meaning:

O No debugging data are present.

I: Low-level debugging data are present.

2: Source level (ASD) debugging data are present.

3 I and 2 are present together.

All other values are reserved by Acorn .

Zero-initialisation code

The Zero-initialisation code is as follows

BIC IP , LR , #&FC000003 clear status bits - > header + &C
ADD IP ,
LDMIA IP ,
CMPS R3 ,
MOVLES PC ,

IP , #8 -> Image ReadOnly size
{R0 , Rl , R2 , R3} various sizes
#0
LR
IP ,
IP ,

#&14
RO

nothing to do
image base
+ RO size

SUB
ADD
ADD
MOV
MOV

IP ,
IP ,
IP ,
RO ,
Rl ,

IP , Rl + RW size = base of 0-init area

MOV R2 ,
MOV R4 ,

ZeroLoop
STMIA IP !,
SUBS R3 ,

#0
#0
#0
#0

{RO , Rl, R2 , R4}
R3 , #16

BGT
MOVS

zeroLoop
PC , LR 16 words in total .

249

Self relocation

Relationship between header sizes and linker pre-defined symbols

Self relocation

250

AIFHeader .ImageBase

AIFHeader.ImageBase +

AIFHeader .ROSize

AIFHeader.ImageBase +

AIFHeader . ROSize +

AIFHeader . RWSize

AIFHeader .ImageBase +
AIFHeader . ROSize +

AIFHeader . RWSize +

AIFHeader . ZeroinitSize

Image$$RO$$Base

Image$$RW$$Base

Image$$ZI$$Base

Image$$RW$$Limit

Two kinds of self-relocation are supported by AIF and one by AMF; for
completeness, all three are described here.

One-time position independence is supported by relocatable AIF images
Many-time position independence is required for AMF Relocatable Modules. And
only AIF images can self-move to a location which leaves a requested amount of
workspace.

Why are there three different kinds of self-relocation?

• The rules for constructing RISC OS applications do not forbid acquired
position-dependence. Once an application has begun to run, it is not, in
general, possible to move it, as it isn't possible to find all the data locations
which are being used as position-dependent pointers. So, AIF images can be
relocated only once. Afterwards, the relocation table is over-written by the
application's zero-initialised data, heap, or stack.

• In contrast. the rules for constructing a RISC OS Relocatable Modules (RM)
require that it be prepared to shut itself down , be moved in memory, and start
itself up again . Shut-down and start-up are notified to a RM by special service
calls to it. Clearly, a RM must be relocatable many times so its relocation table
is not overwritten after first use.

• Relocatable Modules are loaded under the control of a Relocatable Module
Area (RMA) manager which decides where to load a module initially and where
to move each module to whenever the RMA is reorganised . In contrast , an
application is loaded at its load address and is then on its own until it exits or
faults . An application can only be moved by itself (and then only once, before
it begins execution proper) .

Appendix E - Code file formats

Self-relocation code for relocatable modules

In this case there is no AIF header, the code must be executable many times, and it
must be symbolica lly add ressable from the Relocatable Module header. The code
below must be the last area of the RMF image, following the relocation li st. Note
that it is best thought of as an additional area.

When the following code is executed, the module image has already been loaded
at/moved to its target address. It only remains to relocate locat ion-dependent
addresses. The list of offsets to be relocated , terminated by (-1), immediately
follows End. Note that the address values here (eg I _ RelocCode I) wi ll appear
in the list of places to be relo~ated , allowing the code to be re-executed.

IMPORT 1Image$$RO$$Basel
EXPORT l_RelocCodel

RelocCodel
LDR Rl ,
SUB IP ,
SUBS Rl ,
MOVEQS PC ,
LDR
ADD
ADR

RelocLoop
LDR
CMNS
MOVLES
LDR R3 ,
ADD
STR

IP ,
IP ,
R2 ,

RO ,
RO ,
PC ,
[IP ,
R3 ,
R3 ,

RO]

RelocCode
PC , #12
IP , Rl
LR
ImageBase
IP , Rl
End

[R2] , #4
#1
LR

R3 , Rl
[IP , RO]

B RelocLoop
RelocCode DCD
ImageBase DCD
End

l_RelocCode l
1Image$$RO~$Basel

where the image is linked at ...
referenced from the RM header

value of RelocCode (before relocation)
value of _RelocCode now
relocation offset
relocate by 0 so nothing to do
image base prior to relocation . ..
. . . where the image really is

got list terminator?
yes => return
word to relocate
relocate it
store it back
and do the next one

the lis t of locations to relocate
starts here (each is an offset from the
base of the module) and is terminated
by -1.

Note that this code, and the associated list of locations to relocate, is added
automatically to a relocatable module image by Link (as a consequence of using
Link with the SetUp option Module enabled)

Self-move and self-relocation code for AIF

This code is added to the end of an AIF image by Link, immediately before the list
'Of relocations (terminated by -I). Note that the code is entered via a BL from the
second word of the AIF header so, on entry, R 14 points to AIFHeader + 8.

251

252

RelocCode ROUT
BIC IP , LR , #&FC000003 ; clear flag bits ; -> AIF header + &OS
SUB IP , IP , # S - -> header addtess
MOV RO , #&FBOOOOOO BLNV #0
STR RO , [IP , #4] won ' t be called again on image re - entry

; does the code n eed to be moved?
LDR
CMPS
BEQ

R9 , [IP , #&2C)
R9 , #0
RelocateOnly

; calculate the amount to move by ...

min free space requirement
0 => no move , just relocate

LDR RO , [IP , #&20) imag e zero-init size
ADD R9 , R9 , RO space to leave = min free + zero i nit
SWI
ADR

01 LDR
CMNS
BNE
SUB
SUBS
BLE
BIC
ADD
ADR

GetEnv
R2 , End
RO , [R2) , #4
RO , #1
%B01
R3 , Rl ,
RO , R3 ,
RelocateOnly
RO , RO ,
R3 ,
RS ,

R2 ,
%F01

R9
R2

#15
RO

MemLimit -> Rl
-> End
load relocation offset , increment R2
terminator?
No , so loop again
MemLimit - freeSpace
amount to move by
not enough space to move .. .
a multiple of 16 ...
End + shift
intermediate limit for copy-up

copy everything up memory , in descending address order , branching
to the copied copy loop as soon as it has been copied .

02 LDMDB R2 ! , {R4-R7}
STMDB R3 ! , {R4-"R7}
CMP R2 , RS copied the copy loop?
BGT %B02 not yet
ADD R4 , PC , RO
MOV PC , R4 jump to copied copy code

03 LDMDB R2 ! , {R4-R7}
STMDB R3 ! , {R4-R7}
CMP R2 ,· IP copied everything?
BGT %B03 not y et
ADD IP , IP , RO load address of code
ADD LR , LR , RO relocated return address

RelocateOnly
LDR Rl , [IP , #&2SJ header + &2S = code base set by Link
SUBS Rl , IP , Rl relocation off set
MOVEQ PC , LR relocate by 0 so nothing to do
STR IP , [IP , #&2SJ new image base = actual load address
ADR R2 , End start of reloc list

RelocLoop
LDR RO , R2],

CMNS RO , #1
MOVEQS PC , LR
LDR R3 , [IP ,

ADD R3 , R3 ,
STR R:i , [IP ,
B RelocLoop
End

relocate

#4

RO]

Rl
RO]

offset of word to relocate
terminator?
yes => return
word to relocate

relocate it
store it back
and do the next one
The list of offsets of locations to

starts here ; terminated by -1 .

253

ASD

ASD
Acknowledgement This design is based on work originally done for Acorn
Computers by Topexpress Ltd.

This section describes the format of symbolic debugging data generated by ARM
compilers and assemblers running under RISC OS and used by the desktop
debugger DDT

For each separate compilation unit (called a section) the compiler produces
debugging data an a special AREA of the object code (see the section entitled AOF
on page 229 for an explanation of AREAs and their attributes) . Debugging data are
position independent. containing only relative references to other debugging data
within the same section and relocatable references to other compiler-generated
AREAs .

Debugging data AREAs are combined by the linker into a single contiguous section
of a program image (see the section entitled AIF on page 246 for a description of
Application Image Format) . Because the debugging section is
position-independent. the debugger can move it to a safe location before the
image starts executing. If the image is not executed under debugger control the
debugging data is simply overwritten .

The format of debugging data allows for a variable amount of d.etail This
potentially allows the user to trade off among memory used, disc space used ,
execution time, and debugging detail

Assembly-language level debugging is also supported, though in this case the
debugging tables are generated by the linker, not by language processors These
low-level debugging tables appear in an extra section item , as if generated by an
independent compilation . Low-level and high-level debugging are orthogonal
facilities, though DDT allows the user to move smoothly between leve ls if both sets
of debugging data are present in an image.

Order of Debugging Data

254

A debug data AREA consists of a series of items. The arrangement of these items
mimics the structure of the high-level language program itself

For each debug AREA, the first item is a section item, giving global information
about the compilation , including a code identifying the language and flags
indicating the amount of detail included in the debugging tables.

Each data, function , procedure, etc. , definition in the source program has a
corresponding debug data item and these items appear in an order corresponding
to the order of definitions in the source. This means that any nested structure in

Appendix E - Code file formats

the source program is preserved in the debugging data and the debugger can use
this structure to make deductions about the scope of various source-level objects.
Of course. for procedure definitions, two debug items are needed : a procedure
item to mark the definition itself and an endproc item to mark the end of the

procedure:s body and the end of any nested definitions. If procedure definitions
are nested then the procedure - endproc brackets are also nested. Variable and
type definitions made at the outermost level , of course. appear outside of all
procedure/endproc items.

Information about the relationship between the executable code and source files is
collected together and appears as a fileinfo item , which is always the final item in
a debugging AREA Because of the C language's #include facility, the executable
code produced from an outer-leve l source file may be separated into disjoint
pieces interspersed with that produced from the included files . Therefore, source
files are considered to be co llect ions of 'fragments', each corresponding to a
contiguous area of executable code and the fileinfo item is a list with an entry for
each file , each in turn containing a list with an entry for each fragment. The fileinfo
field in the sect ion item addresses the fileinfo item itself. In each procedure item
there is a 'fileentry' field which refers to the file-list entry for the source file
containing the procedure's start ; there is a separate one in the endproc item
because it may possibly not be in the same source file .

Representation of Data Types

Severa l of the debugging data items (eg procedure and variab le) have a type word
field to identify their data type This field contains, in the most significant 3 bytes.
a code to identify a base type and, in the least significant byte, a pointer count: 0 to
denote the type itself; I to denote a pointer to the type; 2 to denote a pointer to a
pointer to .. ; etc.

For simple types the code is a posit ive integer as follows:

void 0 (all codes are decimal)

signed integers
single byte 10
half-word l l
word 12

unsigned integers
single byte 20
half-word 21
word 22

255

floating point
float 30
double 31
long double 32

complex
single complex 41
double complex 42

functions
function 100

For compound types (arrays, structures, etc.) there is a specia l kind of debug data
item (array, struct, etc.) to give details of the type such as array bounds and field
types The type code for such types is negative being the negation of the (byte)
offset of the specia l item from the start of the debugging AREA

If a type has been given a name in a source program, it wi ll give rise to a type
debugging data item which conta ins the name and a type word as defined above. If
necessary, there wi ll also be a debugging data item such as an array or struct to
define the type itself In that case , the type word will refer to this item.

Enumerated types in C and sca lars in Pascal are treated simply as integer
sub-ranges of an appropriate size, the name in formation is not ava ilab le in the this
version of the debugging format. Set types in Pascal are not treated in detail: the
on ly information recorder for them is the total size occupied by the object in bytes

Fortran character types are supported by a special kind of debugging data item the
format of which is yet to be defined

Representation of Source File Positions
Severa l of the debugging data items have a sourcepos fi eld to identi fy a position in
the source file. This field contains a line number and character position within the
line packed in to a single word. The most signi fi cant I 0 bits encode the character
offset (0-based) from the start of the line and the least- significant 22 bits give the
line number.

Debugging Data Items in Detail

256

The first word of each debugging data item contains the byte length of the item
(encoded in the most significant 16 bits) and a code identifying the kind of item (in
the least sign ificant 16 bits). The following codes are defined-

section
2 procedure
3 endproc
4 variable
5 type
6 struct
7 array
8 subrange
9 set
10 fileinfo

The meaning of the second and subsequent words of each item is defined below.

Where items include a string field , the string is packed into successive bytes
beginning with a length byte, and padded at the end to a word boundary (the
padding value is immaterial, but NUL or' ' is preferred) The length of a string is in
the range 10 2551 bytes

Where an item contains a field giving an offset in the debugging data area (usually
to address another item), this means a byte offset from the start of the debugging
data for the whole section (in other words, from the start of the section item)

Section

A section item is the first item of each section of the debugging data.

language:8
· debuglines I
debugvars: I
spare: 14
debugversion:8
codeaddr
dataaddr
codesize
datasize
fileinfo

debugsize
name or nsyms

one byte code identifying the source language
I =>tables contain line numbers
I =>tables contain data about local vars

one byte version number of the debugging data
pointer to start of executable code in this section
pointer to start of static data for this section
byte size of executable code in this section
byte size of the static data in this section
offset in the debugging data of the file information for
this section (or 0 if no fileinfo is present)
total byte length of debugging data for this section
string or integer

The name field contains the program name for Pascal and Fortran programs For C
programs it contains a name derived by the compiler from the main file name
(notionally a module name) .Its syntax is similar to that for a variable name in the
source language. For a low-level debugging section (language= 0) the field is
treated as a 4 byte integer giving the number of symbols following

257

Debugging Data Items in Detail

258

The following language byte codes are defined:-

0
I
2
3
other

Low=level debugging data (notionally, assembler)
c
Pascal
Fortran77
reserved to Acorn.

The fileinfo field is 0 if no source file information is present.

The debugversion field was defined to be I; the new debugversion for the extended
debugging data format (encompassing low-level debugging data) is 2. For low-level
debugging data, other fields have the following va lues:-

language
codeaddr
dataaddr
codesize
data size
fileinfo
nsyms
debugsize

0
lmage$$RO$$Base
Image$$RW$$Base
Image$$RO$$Limit - Image$$RO$$Base
lmage$$RW$$Limit - lmage$$RW$$Base
0
number of symbols within the following debugging data
total size of the low-level debugging data including the
size of the section item

The section item is immediately followed by nsyms symbols, each having the
following format:-

stridx:24
flags:8
value

byte offset in string table of symbol name
(see below)
the value of the symbol

The flags field has the following values :-

0/ 1

+
0/2/4/6

the symbol is a local/global symbol
(there may be many local symbols with the same name)
symbol names an absolute/code/data/zero-init value

Nqte that the linker reduces all symbol values to absolute values. The flags field
records the history, or origin, of the symbol in the image

The string table is in standard AOF format. It consists of a length word followed by
the strings themselves, each terminated by a NUL (0) The length word includes the
length o f the length word, so no offset into the string table is less than 4. The end
of the string table is padded to the next word boundary

Appendix E - Code file formats

Procedure

A procedure item appears once for each procedure or function definition in the
source program. Any definitions with the procedure have their related debugging
data items between the procedure item and the matching endproc item. The
format of procedure items is as follows:-

type
args
sourcepos

startaddr
bodyaddr

endproc
fileentry
name

the return type if this is a function, else 0
the number of arguments
a word encoding the source position of the start of the
procedure
pointer to the first instruction of the procedure .
pointer to the first instruction of the procedure body (see
below)
offset of the related endproc item
offset of the file list entry for the sou rce file
string

The bodyaddr field points to the first instruction after the procedure entry
sequence, that is the first address at which a high-level breakpoint could sensibly
be set The startaddr field points to the beginning of the entry sequence, that is the
address at which control actually arrives when the procedure is called.

A label in a source program is represented by a special procedure item with no
matching endproc (the endproc field is 0 to denote this) Pascal and Fortran
numerical labels are converted by the compiler into strings prefixed by '$n'.

For Fortran77, multiple entry points to the same procedure each give rise to a
separate procedure item but they all have the same endproc offset referring to a
single endproc item.

Endproc

This item marks the end of the debugging data items belonging to a particular
procedure. It also contains information relating to the procedure's return. Its
format is as follows:-

sourcepos

endadd1

filentry
nreturns
retaddrs ..

a word encoding the position in the source file of the end
of the procedure
a pointer to the code byte AFTER the compi led code for
the procedure
offset of the file-list entry for the procedure's end
number of procedure return points (may be 0)
pointers to the procedure-return code

259

260

If the procedure body is an infinite loop, there wi ll be 'no return point so nreturns
will be 0 Otherwise the retaddrs should each point to a su itable location at which
a breakpoint may be set 'a t the exit of the procedure'. When execution reaches this
point. the current stack frame shou ld sti ll be in this procedure

Variable

Type

This item contains debugging data relating to a source program va riable or a
formal argument to a procedure (the first var iable items in a procedure always
describe its arguments). Its format is as follows:-

type
sourcepos
class
location
name

a type word
a word encoding the source position of the va riable
a word encoding the va riable's storage class
see explanation below
stri ng

The following codes define the storage classes of va riables:

2
3
4

5
6
7

externa l variables (or Fortran common)
static variables private to one sect ion
automatic variables
register variables
Pascal var arguments
Fortran arguments
Fortran character arguments

The meaning of the location field of a variable item depends on the storage class:
it contains an absolute address for static and externa l variab les (relocated by the
linker) ; a stack offset (ie an offset from the frame- pointer) for automatic and
var-type arguments; an offset into the argument li st for Fortran arguments; and a
register number for register variables (the 8 floating point registers are numbered
16 23)

No account is taken of variab les which ought to be addressed by +ve offsets from
the stack-pointer rather than -ve offsets from the frame-pointer

The sourcepos field is used by the debugger to distingu ish between different
definitions having the same name (eg identica ll y named variab les in disjoint
source-level naming scopes such as nested block in C).

This item is used to describe a named type in the source language (eg a typedef in
C) The format is as follows:-

type
name

a type word (described earlier)
stri ng

Struct

Array

l
I

This item is used to describe a structured data type (eg a struct in Cora record in
Pascal). Its format is as follows :-

fields
size
fi eldtable

offset
type
name

the number of fields in the structu re
total byte size of the structure
a table of fields entries int e fo llowi ng format-

byte offset of this fi eld within the structure
a type word (interpretation as described earlier)
string

Union types are described by struct items in wh ich all fields have 0 offsets.

C bit fields are not treated in full detail a bit field is simply represented by an
in teger starting on the appropriate word boundary (so that the word contains the
whole field)

This item is used to describe a one-d imensional array Multi-dimensional arrays
are described as arrays of arrays. Wh ich dimension comes first is dependent on the
source language (d ifferent for C and Fortran). The format is as follows: -

size
arrayflags

· basetype
lowerbound
upperbound

total byte size of each element
(see below)
a type word
constant va lue or stack offset of variable
constant va lue or stack offset of variable

If the size field is zero, debugger operat ions affecting the whole array, rather than
individual elements of it, are fo rbidden

The following bit numbers in the arrayflags field are defined -

0

2
3

lower bound is undefined
lower bound is a constant
upper bound is undefined
upper bound is a constant

If a bound is defined and not consta r t then it is an integer va riable on the stack
and the boundvalue field contains th e stack offset of the va ri able (from the
frame-pointer)

261

Debugging Data Items in Detail

262

Subrange

Set

This item is used to describe subrange typed in Pascal. It also serves to describe
enumerated types in C and sca lars in Pascal (in which case the base type is
understood to be an unsigned integer of appropriate size) Its format is as follows:-

size
type code
lwb
upb

half-word I, 2, or 4 to indicate byte size of object
half-word: simple type code
lower bound of subrange
upper bound of subrange

This item is used to describe a Pascal set type. Currently, the description is only
partial. The format is:-

size byte size of the object

Fileinfo

This item appears once per section after all other debugging data items. The half of
the header word which would usually give the item length is not required and
shou ld be set to 0.

Each source file is described by a sequence of 'fragments ', each of which describes
a contiguous region of the file within which the addresses of compiled code
increase monatonically with source-file position The order in which fragments
appear in the sequence is not necessarily related to the source file positions to
which they refer

Note that for compilations that make no use of the #include facility, the list of
fragments will have only one entry and all line-number information will be
contiguous.

The item is a list of entries each with the fo llowing format:-

length
date
filename
n
fragments ..

fragmentsize
firstline
last line
codeaddr
codesize
lineinfo ..

length of thi s entry in bytes (0 marks the final entry)
date and time when the file was last modified
string (or null if the name is not known)
number of fragments following
n fragments with the following structure

length of this entry in bytes
linenumber
linenumber
pointer to the start of the fragment's executable code
byte size of the code in the fragment
a va riable number of line number data

Appendix E - Code file formats

There is one lineinfo half-word for each statement of the source file fragment which
gives rise to executable code . Exactly what const itutes an executable statement
may be defined by the language implementation; the definition may for instance
include some declarations. The half-word can be regarded as 2 bytes: the first
contains the number of bytes of code generated from the statement and cannot be
zero; the second contains the number of source lines occupied by the statement (ie
the difference between the line number of the start of the statement and the line
number of the next statement) . This may be zero if there are multiple statements
on the same source line.

If the whole half-word is zero, this indicates that one of the quantities is too large
to fit into a byte and that the following 2 half-words contain (in order) the number
of lines followed by the number of bytes of code generated from the statement.

263

264

26 Appendix F - ARM procedure call
standard

This Appendix relates to the implementation of compiler code-generators an~

language run-time library kernels for the Advanced RISC Mach me (ARM) but 1s

also a useful reference when interworking assembly language with high level

language code .

The reader should be familiar with the ARM's instruction set, floating-point

instruction set and assembler syntax before attempting to use this information to

implement a code-generator. In order to write a run-time kernel for a language

implementation , additional information specific to the relevant ARM operating

system will be needed (some information is given in the sections describing the

standard register bindings for this procedure-call standard)

The main topics covered in this Appendix are the procedure call and stack

disciplines. These disciplines are observed by Acorn's C language implementation

for the ARM and, eventually, will be observed by other high level language

compilers too. Because C is the first-choice implementation language for RISC OS

applications and the implementation language of Acorn's UNIX product RISC iX,

the utility of a new language implementation for the ARM will be related to its

compatibility with Acorn's implementation of C

At the end of this document are several examples of the usage of this standard,

together with suggestions for generating effective code for the ARM.

The purpose of APCS
The ARM Procedure Call Standard is a set of rules , designed

• to facilitate calls between program fragments compiled from different source

languages (eg to tnake subroutine libraries accessible to all compiled
languages)

• to give compilers a chance to optimise procedure call, procedure entry and

procedure exit (following the reduced instruction set philosophy of the ARM).

This standard defines the use of registers, the passing of arguments at an

external procedure call, and the format of a data structure that can be used by

stack backtracing programs to reconstruct a sequence of outstanding calls. It

does so in terms of abstract register names. The binding of some regi ster names to

265

Design criteria

Design criteria

266

register numbers and the precise meaning of some aspects of the standard are
somewhat dependent on the host operating systE:m and are described in
separate sections .

Formally, this standard only defines what happens when an external procedure call
occurs. Language implementors may choose to use other mechanisms for internal
calls and are not required to follow the register conventions described in this
document except at the instant of an external call or return . However, other
system-specific invariants may have to be maintained if it is required , for example,
to deliver reliably an asynchronous interrupt (eg a S I G I NT) or give a stack
backtrace upon an abort (eg when dereferencing an invalid pointer) More is said
on this subject in later sections.

This procedure call standard was defined after a great deal of experimentation,
measurement, and study of other architectures. It is believed to be the best
compromise between the following important requirements:

• Procedure call must be extremely fast.

• The call sequence must be as compact as possible. (In typical compiled code,
calls outnumber entries by a factor in the range 2: I to 5: I .)

• Extensible stacks and multiple stacks must be accommodated. (The standard
permits a stack to be extended in a non-contiguous manner, in stack chunks.
The size of the stack does not have to be fixed when it is created, avoiding a
fixed partition of the available data space between stack and heap The same
mechanism supports multiple stacks for multiple threads of control)

• The standard should encourage the production of re-entrant programs, with
writable data separated from code.

• The standard must support variation of the procedure call sequence, other
than by conventional return from procedure (eg in support of C's l ongj mp,
Pascal 's g o t o-out -o f -block , Modula-2+'s exceptions, UNIX's signals, etc)
and tracing of the stack by debuggers and run-time error handlers . Enough is
defined about the stack's structure to ensure that implementations of these
are possible (within limits discussed later)

Appendix F - ARM procedure call standard

The Procedure Call Standard

This section defines the standard .

Register names

The ARM has 16 visible general regi sters and 8 floating-point registers . In interrupt
modes some general registers are shadowed and not all floating-point operations
are available , depending on how the floating-point operations are implemented

Thi s standard is written in terms of the register names defined in this section . The
binding of certain register names (the call frame registers) to register numbers is
di scu,ssed separately. We do this so that:

• Diverse needs can be more easily accommodated, as can conflicting historical
usage of register numbers , yet the underlying structure of the procedure call
standard - on which compilers depend critically - remains fixed .

• Run-time support code written in assembly language can be made portable
between different register bindings, if it obeys the rules giveh in the section
entitled Defin ed bindings of tfie procedure call standard on page 27 4.

The register names and fixed bindings are given immediately below.

General Registers

First. the four argument registers:

al RN 0 argument l/integer result
a2 RN 1 a r gume n t 2
a3 RN 2 a r gument 3
a4 RN 3 ar.gument 4

Then the six 'variable' registers:

vl RN 4 register variable
v2 RN 5 register var i able
v3 RN 6 register variable
v4 RN 7 register variab l e
vs RN 8 register variabl e
v6 RN 9 register variable

Then the call-frame registers , the bindings of which vary (see the section entitled
Defined bindings of tfie procedure call standard on page 274 for detai ls):

sl stack limit I stack chunk handle
fp frame pointer
ip temporary workspace , used in

procedure entry
sp RN 13 lower end of current stack frame

267

268

Finally, lr and pc, which are determined by the ARM 's hardware:

l r RN 14
pc RN 15

; link a ddre ss on calls/ t e mpora r y works pace
; program c ounter and proces s o r s tatus

In the obsolete APCS-A register bindings described below, sp is bound to rl 2; in
all other APCS bindings, s p is bound to r 13 .

Notes

Literal register names are given in lower case, eg v l, s p, l r . In the text that
follows, symbolic values denoting 'some register' or ·some offset' are given in
upper case, eg R, R +N.

References to 'the stack' denoted by sp assume a stack that grows from high
memory to low memory, with s p pointing at the top or front (ie lowest addressed
word) of the stack.

At the instant of an external procedure call there must be nothing of value to the
caller stored below the current stack pointer, between sp and the (possibly
implicit, possibly explicit) stack (chunk) limit Whether there is a single stack chunk
or multiple chunks, an explicit stack limit (in s l) or an implicit stack limit, is
determined by the register bindings and conventions of the target operating
system.

Here and in the text that follows, for any register R, the phrase 'in R' refers to the
contents of R; th~ phrase 'at [RJ ·or 'at [R, #N J · refers to the word pointed at by
R or R +N, in line with ARM assembly language notation.

Floating-point Registers

The floating-point registers are divided into two sets, analogous to the subsets
a l-a 4 and v l-v6 of the general registers Registers f 0 - f3 need not be
preserved by a called procedure; f 0 is used as the floating-point result register In
certain restricted circumstances (noted below), f0-f3 may be used to hold the
first four floating-point arguments Registers f4-f7, the so called 'variable'
registers. must be preserved by cal lees.

The floating-point registers are:

fb FN 0 floati ng point result (or 1st FP argument)
fl FN 1 floati ng point scratch register (or 2nd FP arg)
f2 FN 2 floati ng point scratch register (or 3rd FP arg)
f3 FN 3 float ing point scratch reg i ster (or 4th FP arg)
f4 FN 4 f l oating po int preserved r eg i s t er
fS FN 5 floati ng point preserved register
f6 FN 6 floating po int preserved regi ster
f7 FN 7 ; fl oating po int preserved register

Data representation and argument passing

The APCS is defined in terms of N (>= 0) word-sized arguments being passed from
the caller to the callee, and a single word or floating-point result passed back by

the callee. The standard does not describe the layout in store of records, arrays and
so forth, used by ARM-ta rgeted compilers for C, Pascal , Fortran-77, and so on. In
other words, the mapping from language-level objects to APCS words is defined by
each language's implementation , not by APCS, and, indeed, there is no formal
reason why two implementations of, say, Pascal for the ARM shou ld not use
different mappings and , hence, not be cross-ca llable.

Obviously, it would be very unhelpful for a language implementor to stand by this
formal position and implementors are strongly encouraged to adopt not just the
letter of APCS but also the obviously natural mappings of source language objects
into argument words. Strong hints are given about this in later sections which
discuss (some) language specifics

Register usage and argument passing to external procedures

Control Arrival

We consider the passing ot N (>= 0) actual argument words to a procedure which
expects to receive either exactly N argument words or a variable number V (>= I) of
argument words (it is assumed that there is at least one argument word which
indicates in a language-implementation-dependent manner how many actual
argument words there are: for example, by using a format string argument, a count
argument, or an argument-list terminator)

At the instant when control arrives at the target procedure, the following shall be
true (for any M, if a statement is made about argM, and M > N, the statement can
be ignored) :

arg l is in al
a r g 2 i s in a2
a rg3 i s in a 3
arg4 i s in a 4
for a ll I > = 5 ' argI is at [sp , #4* (I -5)]

f p contains 0 or points to a stack backtrace structure (as described in the next
section) .

The values in s p , s l, f p are all multiples of four.

lr contains the p c +psw va lue that should be restored into rl 5 on exit from the
procedure. This is known as the return link value for this procedure ca ll .

p c contains the entry address of the target procedure.

269

The Procedure Call Standard

270

Now, let us call the lower limit to which sp may point in this stack chunk SP _ LWM

(Stack-Pointer Low Water Mark) Remember, it is unspecified whether there is one
stack chunk or many, and whether SP _ LWM is implicit, or explicitly derived from
sl; these are binding-specifi~ details. Then

Space between sp and SP _LWM shall be (or shall be on demand) readable,
writable memory which can be used by the called procedure as temporary
workspace and overwritten with any values before the procedure returns.

sp >= SP_ LWM + 256 .

This condition guarantees that a stack extension procedure, if used, will have a
reasonable amount - 256 bytes - of work space available to it, probably sufficient
to call two or three procedure invocations further.

Control Return

At the instant when the return link value for a procedure call is placed in the
pc+psw, the following statements shall be true:

fp, sp, sl, vl-v6, and f4-f7 shall contain the same values as they did at the
instant of the call. If the procedure returns a word-sized result, R, which is not a
floating-point value, then R shall be in al. If the procedure returns a floating-point
result, FPR, then FPR shall be in fO.

Notes

The definition of control return means that this is a 'callee saves' standard.

The requirement to pass a variable number of arguments to a procedure (as in
old-style C) precludes the passing of floating-point arguments in floating-point
regi sters (as the ARM's fixed point registers are disjoint from its floating-point
registers). However, if a callee is defined to accept a fixed number K of arguments
and its interface description declares it to accept exact ly K arguments of matching
types, then it is permissible to pass the first four floating-point arguments in
floating-point registers f 0- f 3. However, Acorn's C compiler for the ARM does not
yet exploit this latitude

The values of a2-a4 , ip , lr and fl-f3 are not defined at the instant of return.

The Z, N, C and v flags are set from the corresponding bits in the return link value
on procedure return. For procedures called using a BL instruction, these flag
values will be preserved across the call.

The flag values from lr at the instant of entry must be restored; it is not sufficient
merely to preserve the flag values across the call. (Consider a procedure ProcA

which has been 'tail-call optimised' and does CMPS al , #0; MOVLT a2,

Appendix F - ARM procedure call standard

#2 5 5 ; MOVGE a 2 , # O; B ProcB. If ProcB merely preserves the flags it sees

on entry, rather than restoring those from lr, the wrong flags may be set when

Pr ocB returns direct to Pr ocA's caller).

This standard does not define the values of fp, sp and s lat arbitrary moments

during a procedure's execution , but only at the instants of (external) call and

return . Further standards and restrictions may apply under particular operating

systems, to aid event handling or debugging In general. you are strongly

encouraged to preserve fp, sp and sl , at all times .

The minimum amount of stack defined to be available is not particularly large, and

as a general rule a language implementation shou ld not expect much more, unless

the conventions of the target operating system indicate otherwise . For example,

code generated by the Arthur/RISC OS C compiler is able, if there is inadequate

local workspace, to allocate more stack space from the Cheap before continu ing.

Any language unable to do this may have its interaction with C impaired . That s l

contains a stack chunk handle is important in achieving this. (See the section

entitled Defined bindings of the procedure call standard on page 274 for further details) .

The statements about sp and SP _ LWM are designed to optimise the testing of the

one against the other For example, in the RISC OS user-mode binding of APCS, s l

contains SL_LV\7M+51 2, allowing a procedure's entry sequence to include

something like

CMP sp, s l
BLLT lx$stack_over flowl

where x$s t ack_over f low is a part of the run-time system for the relevant

language. If this test fail s, and x$stack_over fl ow is not called, there are at

least 512 bytes free on the stack.

This procedure should only call other procedures when sp has been dropped by

256 bytes or less, guaranteeing that there is enough space for the called

procedure's entry sequence (and, if needed, the stack extender) to work in.

If 256 bytes are not enough, the entry sequence has to drop sp before comparing it

with sJ, in order to force stack extension (see later sections on implementation

specifics for details of how the RISC OS C compi ler handles this problem) .

The stack backtrace data structure

At the instant of an external procedure ca ll. the value in fp is zero or it points to a

data structure that gives information about the sequence of outstanding procedure

call s. This structure is in the format shown below:

271

272

fp points to here:

Optional
values

save mask pointer

-return l ink value

return sp value

fp value

saved v6 value

saved vs value

saved v4 value

saved v3 value

saved v2 value

saved vl value

saved a4 value

saved a3 value

saved a2 value

saved al value

saved f7 value

saved f6 value

saved f5 value

saved f4 value

[fp]

[f p , # - 4]

[fp , #-8 1

[fp , #-12 1

three words

three words

three words

three words

Thi s picture shows between four and 26 words of store, with those words higher on
the page being at higher addresses in memory. The presence o f any of the opt ional
va lues does not im ply the presence of any other. The fl oating-point va lues are in
extended format and occupy three words each.

At the instant of procedure ca ll , all o f t he fo llow ing statements about thi s structure
shall be t rue:

• The return fp value is either 0 or contains a pointer to another stack backt race
data structu re of t he same form . Each of these corresponds to an acti ve,
outstanding procedure invoca tion. The statements listed here are also true o f
t his next stack backtrace data structure and, indeed, hold true fo r each
structure in t he chain

• The save mask pointer va lue, when bits 0, I , 26, 27, 28, 29, 30, 31 have been
clea red, points twe lve bytes beyond a word known as the return data save
instruction.

Appendix F - ARM procedure call standard

• The return data save instruction is a word that corresponds to an ARM

instruction of the following form

STMDB sp! , {[al],
[vl] ,

[a2] ,
[v2] ,

[a3] ,
[v3] ,

fp, i p , l r , p c}

[a4],

[v 4 J , [v SJ, [v6J,

Note the square brackets in the above denote optional parts : thus , there are 12

x I 024 possib le values for the return data save instruction, correspond ing to

the following bit patterns

111 0 1001 0010 11 01 11 01 l Oxx xxxx xxxx APCS -R , APCS-U

or

11 10 1001 00 1 0 1100 11 00 llxx xxxx xxxx APCS -A (obsolete)

The least significant IO bits represent argument and variable registers: if bit N

is set. then register N will be transferred.

The optional parts al. a2, a3, a4, vl, v2 , v3, v4, vs and v6 in th is

instruction correspond to those optional parts of the stack backtrace data

structure that are present such that: for all M, if v M or aM is present then so is

sav ed vM value or saved aM value, and if vM or aM is absent then so is

saved vM v a lue or saved aM value. This is as if the stack backtrace data

structure were formed by the execution of this instruction, fo llowing the

loading of ip from sp (as is very probably the case)

• The sequence of up to four instructions following the return data save

instruction determines whether savetl floating-point registers are present in

the backtrace structure. The four optional instructions allowed in this

sequence are:

STFE f7 ' [sp , #-12] ! . 1110 1101 0110 1101 0111 0001 0000 0011

STFE f6 , [sp , #-12] ! 1110 1101 0110 1101 0110 00 01 0000 0011

STFE fS , [sp , # - 12] ! 1110 1101 0110 1101 0101 0001 0000 0011

STFE f4 , [sp , #-12] ! 1110 1101 0110 1101 0100 0001 0000 0011

Any or all of these instructions may be missing, and any deviation from thi s

order or any other instruction terminates the sequence.

(A hi storical bug in the C compiler (now fixed) inserted a single arithmetic

instruction between the return data save instruction and the first STFE. Some

Acorn software allows for this.)

The bit patterns given are for APCS-R/APCS-U register bindings In the

obsolete APCS-A bindings, the bit indicated by ! is 0

The optional instructions saving f4, f5, f6 and f7 correspond to those

optional parts of the stack backtrace data structure that are present such that:

for all M, if STFE fM is present then so is saved fM value; if STFE fM is

absent then so is saved fM value.

273

Defined bindings of the procedure call standard

• At the instant when procedure A calls procedure B, the stack backtrace data
structure pointed at by fp contains exactly those elements vl, v2, v3 , v4, v5,
v6, f4, f5, f6, f7, fp, sp and pc which must be restored into the
corresponding ARM registers in order to cause a correct exit from procedure A,
albeit with an incorrect result.

Notes

The following example suggests what the entry and exit sequences for a procedure
are likely to look like (though entry and exit are not defined in terms of these
instruction sequences because that would be too restrictive ; a good compiler can
often do better than is suggested here)

ent ry MOV ip, sp
STMDB sp !' {argRegs , workRegs , fp , ip , lr , pc}
SUB fp , i p , #4

exit LDMDB fp , {workRegs , fp, sp , pc}"

Many apparent idiosyncrasies in the standard may be explained by efforts to make
the entry sequence work smooth ly. The example above is neither complete (no
stack limit checking) nor mandatory (making arguments contiguous for C, for
instance, requires a slightly different entry sequence; and storing argRegs on the
stack may be unnecessary).

The workRegs registers mentioned above correspond to as many of vl to v6 as
this procedure ne.eds in order to work smoothly. At the instant when procedure A
ca lls any other, those workspace regi sters not mentioned in A's return data save
instruction will contain the values they contained at the instant A was entered.
Add itiona lly, the registers f4-f7 not mentioned in the floating-point save
sequence following the return data save instruction will also contain the values
they contained at the instant A was entered.

This standard does not require anything of the values found in the optional parts
al, a2, a3, a4 of a stack backtrace data structure. They are likely, if present, to
contain the saved arguments to this procedure call ; but this is not required and
should not be relied upon

Defined bindings of the procedure call standard

APCS-R and APCS-U: The RISC OS and RISC iX PCSs
These bindings o f the APCS are used by:

• RISC OS applications running in ARM user-mode

• compiled code for RISC OS modules and handlers running in ARM SVC-mode

• RISC iX applications (which make no use of sl) running in ARM user mode

274

Appendix F - ARM procedure call standard

• RISC iX kernels running in ARM SVC mode.

The ca ll-frame register bindings are:

sl RN 1 0 stack limit I stack chunk handle

unused by RISC ix appli cati ons

fp RN 11 frame p o inter

ip RN 12 u sed a s temporary workspace

sp RN 1 3 lower end o f current stack frame

Although not formally requi red by this standard, it is considered good taste fo r

compiled code to preserve the va lue of s 1 everywhere.

The invariants sp > ip > fp have been preserved, in common with the obsolete

APCS-A (described below), allowing symbo lic assembly code (and compi ler

code-generators) written in terms of register names to be ported between APCS-R,

APCS-U and APCS-A merely by relabelling the ca ll -frame registers provided

• When call-frame registers appear in LDM, LDR, STM and STR instructions they

are named symboli ca ll y, never by register numbers or register ranges.

• No use is made of the ordering of the four ca ll -frame registers (eg in order to

load/save f p or sp from a full register save).

APCS~R: Constraints on sl (For RISC OS appli cations and modules)

In SVC and IRO modes (collectively ca llec;i module mode) SL_LWM is implicit in sp:

it is the next megabyte boundary below sp Even though the SVC-mode and

!RO-mode stacks are not extensible, s l st ill points 512 bytes above a skeleton

stack-chunk descriptor (stored just above the megabyte boundary) This is done for

compatibili ty with use by app licat ions running in ARM user-mode and to facilitate

module-mode stack-overflow detection. In other word s:

sl = SL_ LWM + 5 1 2 .

When used in user-mode, the stack is segmented and is extended on demand

Acorn 's language-independent run-time kernel allows language run-time systems

to implement stack extension in a manner which is compatible with other Acorn

languages. sl points 512 bytes above a full stack-chunk structu re and, aga in :

sl = SL_ LWM + 512 .

Mode-dependent stack-overflow handling code in the language-independent

run-time kernel faults an overflow in module mode and extends the stack in

application mode. This all ows library code , including the run-time kernel, to be

shared between all applications and modules written in C

In both modes, the va lue of s l must be va lid immediately before each externa l ca ll

and each return from an external call .

275

276

Deallocation of a stack chunk may be performed by intercepting returns from the
procedure that caused it to be allocated. Tail-ca l l opt imisation complicates the
re lationship, so, in general, sl is required to be valid immediately before every
return from external ca l l.

APCS-U: Constraints on s l (For RISC iX applications and RISC iX kerne ls)

In thi s binding of the APCS the user-mode stack auto-extends on demand so sl is
unused and there is no stack-lim it checking

In kernel mode, sl is reserved by Acorn.

APCS-A: The obsolete Arthur application PCS

Thi s obsolete binding of the procedure-ca l l standard is used by Arthur applicati ons
running in ARM user-mode . The appl icable call-frame reg ister bind ings are as
follows :

sl RN 13 stack limit /stack chunk handle
fp RN 10 frame pointer
ip RN 11 used as temporary workspace
sp RN 12 lower end of current stack frame

(Use of r12 as sp, rather than the architecturally more natural r13, is hi stori ca l
and predates both Arthur and RISC OS)

In this binding of the APCS, the stack is segmented and is extended on demand .
Acorn's language-independent run-time kernel allows language run-time systems
to implement stack extension in a manner which is compat ible with other Acorn
languages.

The stack limit regi ster, sl, points 512 bytes above a stack-chunk descriptor, itself
located at the low-address end of a stack ch unk. In other words:

sl = SL_ LWM + 512.

The va lue of sl must be va lid immediately before each external ca ll and each
return from an external ca ll.

Although not forma l ly required by this standard , it is cons idered good taste for
compiled code to preserve the value o f sl everywhere.

Notes on APCS bindings

Invariants and APCS-M

In all future supported bindings of APCS sp sha l l be bound to r13. In all
supported bindings of APCS the invariant sp > ip > fp sha l l hold . This means
that the only other poss ib le binding of APCS is APCS-M

sl RN 12 stack limit/stack chunk handle

fp RN 10 frame pointer

ip RN 11 used as temporary workspace

sp RN 13 lower end of current stack frame

This binding of APCS is unlikely to be used (by Acorn)

Further Restrictions in SVC Mode and IRO Mode

There are some consequences of the ARM 's architecture whi ch, while not formall y

acknow ledged by the ARM Procedure Call Standard , need to be understood by

implementors of code intended to run in the ARM's SVC and !RO modes.

An IRO corrupts r14_irq, so !RO-mode code must run with IROs off until

r14_ irq has been saved. Acorn 's preferred solution to this problem is to enter

and exit IRO handlers written in high-level languages via hand-crafted 'wrappers'

which on entry save r14_irq, change mode to SVC, and enable IROs and on exit

return to the saved r14_irq (which also restores IRO mode and the I RO-enable

state) Thus the handlers themselves run in SVC mode, avo iding thi s problem in

compiled code.

Both SWls and aborts corrupt r14_ svc. This means that ca re has to be taken

when ca lling SWl s or ca using aborts in SVC mode.

In high-level languages, SWls are usually ca lled out o f line so it suffices to save and

restore r14 in t he ca lling veneer around the SWL If a compi.l er ca n generate in-liJl e

SWls, then it should , of course, also generate code to save and restore r14 in-line,

around the SWI , unless it is known that the code will not be executed in SVC mode.

An abort in SVC mode may be symptomat ic of a fata l error or it may be ca used by

page faulting in SVC mode. Acorn expects SVC-mode code to be correct, so these

are the only opti ons. Page faulting ca n occur because an instruction needs to be

fetched from a miss ing page (causing a prefetch abort) or beca use of an attempted

data access to a missing page (causing a data abort). The latter may occur even if

the SVC-m ode code is not itse lf paged (consider an unpaged kernel accessing a

paged user-space).

A data abort is completely recoverable provided r14 contains nothing o f value at

the instant of the abort Thi s can be ensured by

• saving R 14 on entry to every procedure and restoring it on exit

• not using Rl4 as a temporary register in any procedure

• avoiding page faults (stack fa ul ts) in procedure entry sequences

A prefetch abort is harder to recover from and an aborting BL instruction ca nnot be

recovered , so special action has to be taken to protect page faulting procedure

call s.

277

Examples from Acorn language implementations

For Acorn C, R 14 is saved in the second or third instruction of an entry sequence.
Aligning all procedures at addresses which are 0 or 4 modulo 16 ensures that the
criti ca l part of the entry sequence cannot prefetch-abort. A compiler can do thi s by
padding all code sections to a multiple of 16 bytes in length and being careful
about the alignment of procedures within code sections.

Data-aborts earl y in procedure entry sequences can be avoided by using a so ftware
stack-limit check like that used in APCS-R.

Fi nall y, t he recommended way to protect BL instructions from prefetch-abort
corrupt ion is to precede each BL by a MOV ip , pc instruction. If the BL faults, the
prefetch abort handler ca n sa fely overwrite r14 with ip before resuming execution
at the target of the BL. l f the prefetch abort is not caused by a BL then this action
is harmless, as R 14 has been corrupted anyway (and, by des ign, contained nothing
of va lue at any instant a prefetch abort could occur).

Examples from Acorn language implementations

278

Example procedure calls in C

Here is some sample assembly code as it might be prod uced by the C compiler

; gggg is a function of 2 args that needs one register variable (vl)
gggg MOV ip , sp

STMFD sp! , {al, a2 , vl , fp , ip , lr , pc}
SUB fp , ip , #4 points at saved PC
CMPS sp , sl .
BLLT lx$stack_overflowl handler procedure

MOV vl , ... use a register variable

BL ffff

MOV ... , vl ; rely on its value after ffff()

Within the body of the procedure, arguments are used from registers, if poss ible;
otherwise t hey must be addressed relat ive to fp. In the two argument case shown
above, argl is at [fp , #-2 4 J and arg2 is at [fp , #-2 0 l. But as di scussed
below, arguments are sometimes stacked with positive offsets relative to fp.

Loca l va riables are never addressed o ffset from fp; they always have positive
offsets relat ive to sp. In code that changes sp this means that the o ffsets used may
vary from place to place in th e code. The reason for this is t hat it permits the
procedure x$stack_ overflow to recover by setting sp (and sl) to some new
stack segment. As pa rt of thi s mechan ism , x$stack_overf l ow may alter
memory offset from fp by negati ve amounts, eg [fp , #-64 J and downwa rd s,
prov ided that it ad justs sp to provide workspace fo r the ca lled routine.

Appendix F - ARM procedure call standard

If the function is going to use more than 256 bytes of stack it must do:

SUB
CMPS
BLLT

ip, sp, #<my s tack s i ze>
ip, s l
lx$ s tack_ ov erflow_ll

instead of the two-instruction test shown above.

If a function expects no more than four arguments it can push all of them onto the

stack at the same time as saving its old f p and its return address (see the example

above); arguments are then saved contiguously in memory with argl having the

lowest address. A function that expects more than four arguments has code at its

head as follows

MOV ip , sp
STMFD sp !, {al , a2 , a3 , a4} ; put argl - 4 below stacked args

STMFD sp !, {vl , v2 , fp , i p, lr , pc} ; vl-v6 saved as necessary

SUB fp , ip , #20 ; point at newly created call -f rame

CMPS sp , sl
BLLT lx$stack_ overflowl

LDMEA fp , {vl , v2 , fp , sp , pc}A ; restore register vars & return

The store of the argument registers shown here is not mandated by APCS and can

often be omitted . It is useful in support of debuggers and run-time trace-back code

and required if the address of an argument is taken.

The entry sequence arranges that arguments (however many there are) lie in

consecutive words of memory and that on return sp is always the lowest address

on the stack that still contains useful data .

The time taken for a call, enter and return, with no arguments and no registers

saved, is about 22 S-cycles

Although not required by this standard, the va lues in fp, sp and sl are
maintained whi le executing code produced by the C compiler. This makes it much

easier to debug compiled code.

Multi~word results other than double preci sion reals in C programs are

represented as an implicit first argument to the ca ll, which points to where the

ca ll er wou ld like the result placed It is the first, rather than the last. so that it works

with a C function that is not given enough arguments .

279

280

Procedure calls in other language implementations

Assembler

The procedure ca ll standard is reasonably easy and natural for assembler
programmers to use. The following rules shou ld be fo ll owed:

• Call-frame registers shou ld always be referred to explicit ly by symbolic name,
never by register number or implicitly as part of a register range .

• The offsets of the call-frame registers within a register dump should not be
wired into code. Always use a symbolic offset so that you can easily change the
register bindings

Fortran

The AcorntropExpress Arthur/RISC OS Fortran-77 compi ler vio lates the APCS in a
number of ways that preclude inter-working with C. except via assembler veneers.
This may be changed in future releases of the Fortran-77 product

Pascal

The Acorn/3L Arthur/RISC OS ISO-Pascal compiler vio lates the APCS in a number
of ways that preclude inter-working with C, except via assembler veneers. This may
be changed in future releases of the ISO-Pasca l product

Lisp, BCPL and BASIC

These languages have their own special requirements which make it inappropriate
to use a procedure call of the form described here. Natu rally, all are capable o f
making external calls of the given form, through a sma ll amount of assembler 'g lue'
code.

General

Note that there is no requirement specified by the standard concerning the
production of re-entrant code, as this would place an intolerable strain on the
conventional programming practices used in C and Fortran . The behaviour of a
procedure in the face of multiple overlapping invocations is part of the
specificat ion of that procedure

Various lessons

This document is not intended as a general gu ide to the writing of
code-generators, but it is worth highlighting various optimisations that appear
particularly relevant to the ARM and to th is standard.

The use of a ca llee-saving standard , instead o f a ca ll er-saving one, reduces the size

of large code images by about I 0% (with compilers that do little or no

interprocedural optimi sation).

In order to make effective use of the APCS, compilers must compile code a

procedure at a time. Line-a t-a-t ime compilation is insuffi cient.

The preservation of condi t ion codes over a procedure ca ll is often useful because

any short sequence of inst ructions (including ca lls) t hat forms the body of a short

IF statement ca n be executed without a branch instruct ion. For exa mple:

if (a< 0) b = foo() ;

ca n compi le in to:

CMP
BLLT
MOVLT

a , #0
foo
b , al

In t he case of a leaf or fast procedure - one that ca ll s no other proced ures -much

of the standard entry sequence ca n be omitted. In very small procedures. such as

are frequently used in data abstraction modules. the cost of t he procedure ca n be

very sma ll indeed . For instance, consider:

typedef struct { ... ; int a ; ... } foo ;
int get_ a (foo * f) {return (f->a) ; }

The procedure get_ a ca n compile to just :

LOR
MOVS

al, [al, #aOf f set J

pc , lr

This is also use ful in procedures with a cond itional as the top leve l statement ,

where one or other arm of t he conditional is fast (ie ca ll s no proced ures). In thi s

case there is no need to fo rm a stack frame there. For example, using thi s. t he C
program ·

int sum(in t i)
{.

if (i <= 1)
return(i) ;

else
return (i + sum(i-1)) ;

could be compiled in to :

281

Examples from Acorn language implementations

282

sum CMP al , #1 ; try f ast case
MOVSLE pc , lr ; and if app r opr iate , h~ndle qu i ckly !
; else , form a stack frame and handle the rest as normal code .
MOV ip , sp
STMDB sp! , {vl , f p , ip , l r, pc}
CMP sp , s l
BLLT overflow
MOV vl, al
SUB al, al , #1
BL sum
ADD al , al, vl
LDMEA fp , {vl, fp , sp , pc}A

register to hold i
set up argument for call
do the call
perform the addition
and return

This is only worthwhile if the test can be compiled using only ip, and any spare of
a l-a 4, as scratch registers . This technique can significantly speed up certain
speed-critical routines, such as read and write character. At the present time , this
optimisation is not performed by the C compiler

Finally, it is often worth applying the tail call optimisation , especially to
procedures which need to save no registers . For example, the code fragment:

extern void *malloc(size_ t n)
{

return primitive_ alloc(NOTGCABLEBIT, BYTESTOWORDS(n)) ;

is compiled by the C compiler into:

malloc ADD
MOV
MOV
B

al, al , #3
a2 , a l , L SR #2
al, #1 073 741 82 4
p rimi t i ve_ a l loc

lS
lS
l S
1N+2S = 4S

This avoids saving and restoring the call-frame registers and minimises the cost of
interface 'sugaring' procedures . This saves five instructions and, on a 4/8MHz ARM,
reduces the cost of the malloc sugar from 24S to 7S .

Index

Symbols
!Boot file , for new WIMP application I87

!DDT 35
!Run file, for new WIMP application I 87

!SetUp file, for new WIMP application I87

*DebugIAF 35
*filer_opendir I I 2

* FrontEnd_SetUp l 86, I 98

*FrontEnd_Start I86, I 87, 194

invqking using command_is . 191

* IconSprites l 87
*Prefix 2 I 7
*RMEnsure 187
*RMTidy 164
*Spool l 12
*wimpSlot l l 2

A
a.out format 229
Acorn Library Format see ALF

Acorn Make Utility see AMU

adding applications to the DOE l 85

adding compilers to the DOE l 85

AlF 155, 225, 246
header layout 248

image debugging 246

layout of an image 247

layout of uncompressed image 24 7

relocation 246
self relocation 250

zero-initialisation code 249

ALF 225, 242
Chunkindex 243
DataLength 243

EntryLength 243
LIB_DIRY 242

library file chunks 242

library file format types 242

object code libraries 245

overall structure 226

AMU I25-l28
Application menu l 27

command line l 28

controlling operation l 26

SetUp dialogue box l 26

SetUp menu l 27
specifying makefile to be used l 26

specifying targets l 26

am u command line tool l 25

AOF 225
area attributes 23 l

area name 23 l
area size 233

AREAs 160
attributes l 65
packing 162

entry address area/ entry address offset 231

files 167
format of the areas chunk 233

format of the symbol table chunk 236

format of type l relocation directives 235

format of type 2 relocation directives 236

header chunk format 229

identification chu nk (OBJ_lDFN) 239

internal relocation directives 234

number of areas 230

number of relocations 233

obsolete features 240

overall structure 226

relocation directives 234

string table chunk (OBJ_STRT) 239

283

Index

symbol table 230
AOF and ALF files

chunk names 228
structure 226

APCS I 59, 265 - 282
argument passing 269 - 270
bindings 274 - 278
control arriva l 269 - 270
contro l return 270
design criteria 266
examples 278 - 282
purpose 265 - 266
stack backtrace 27 1 - 274

application image format see AlF
applications

porting to RISC OS 185
Arm Object Format see AOF
ARM Procedure Call Standard see APCS
ASD 254

AREAs
items 254

data items
Array 261
Endproc 259
Filein fo 262
order of 254
Procedure 259
Section 257
Set 262
source fil e position 256
Struct 261
Subrange 262
Type 260
Variab le 260

data types 255
sourcepos field 256

Auto Run opt ion
enabling 191

Auto Save opt ion
enabling 192

284

B
base/limit pa irs 239
breakpoints

setting 39
on addresses and low-level

expressions 45
on procedure names 39

byte

c

defi nition 225
sex 225

C module header generator (CMHG) 164
chunk file

chunkld 227
format 226
headerentries 227
layout 227
library file format 226
object file format 226
offset 227

command line interface 121
Common 132
DecAOF 135
DecCF 139
Diff 145
Find 153
LibFil e 171
Link 166
ObjSize 175
Squeeze 179
WC 184

command lines
passing long command lines see DDEUtils

modu le
Common

Applicat ion menu 130
command l ine in terface 132
menu options

Command line 130

Output window 131
SetUp

dialogue box 129
menu 130

SetUp options
Files 129
First 129
Recognise digits 130

common area symbols 240
compiler

add ing to DOE 185
compi ling a program

with debugging information 33

Context window 36
contro lling DDT execution 45

D
DOE

add ing appli cat ions to 185
add ing compilers to 185
applicat ion descri pt ion

arrow icons 194
DBOX sect ion 193
FILEOUTPUT section 192
icon defau lt va lues 194
icon types 193
METAOPTIONS sect ion 191
toggli ng dialogue box size 194
TOOLDETAILS section 191

Boot discs 8
Booting 22
compatibility with older products 27
configuration opti ons 9
directory structure on a networked

machine 15
di rectory structure on floppy di sc

machine 13
directory structure on hard di sc machine 12

extending 185
hardwa re requirement 7
install appl ication 7
installing 7 - 15

installing multiple products 10

insta lling on a network 14
installing on fl oppy disc machine 13

Reference disc 8
using on smaller machines 26
work directory 22
Work di scs 8

DDEUtil s module 185, 198, 217

DDT 31 - 69
accessing nested va riabl es 42
breakpoints

on addresses and low- level
expressions 45

on procedure names 39
Context window 36
debug data items see ASD data items
debugging AIF images 246
enabling debugging 33
error messages 36
example sess ion 62
execution control 45
limitations 31
linking a program 34
main menu 38
menu options

*Commands 61
Breakpoint 48
Call 47
Change 57
Continue 45
Debug 35
Display 53
Find 60
Help 61
Log 60
Options 58
Quit 62
Single step 46
Trace 51
Wa tchpo int 50

menu shortcuts
Breakpoint 49
Continue 46, 62

' ..

285

Index

Display 53
Single step 47
Watchpoint 51

preparing a program 33
program examination and modification 53
specifying program objects 38
starting a debugging session 35
Status window 36
watchpoints

on variable names 40
debugging

format of symbolic data 254
source-level 34

debugging see also DDT (desktop debugging tool)
DecAOF

Application menu 134
command line interface 135
menu options

Command line 134
Output window l 35
Set Up

dialogue box 133
menu l 34

SetUp options

DecCF

Area contents 134
Area declarations 134
Debug l 33
Fi les 133
Only area declarations 133
Relocation directives l 34
String table 133
Symbol table l 33

Application menu l 38
command line interface 139
menu opt ions

Command line 137
Output window l 38
Set Up

dialogue box 137
menu 137

SetUp options
Files 137

286

desktop utility
adding to ODE 185

Di ff

E

Application menu 143
command line interface 145
menu options

Command line 142
Dir. structure 142
Equate CR/LF l 42
Expand tabs 143
Fast 142
Large fi !es 142
Squidge 142

Output window 144
setup

dialogue box 141
menu 142

Setup options
Case insensitive l 4 l
Expand tabs 141
Remove spaces 141
Squash spaces 141

EBNF rule, for application 190
Econet 7
editing templates see Form Ed
Entry points see Link menu options
entry vector 238
environment variables 16

C$Libroot l 8
C$Path l 7
DDE$Path 17
Run$Path l 7
System$Path 16
Wimp$Scrap 16
Wimp$ScrapDir 16

error messages
DDT 36

error throwback 219
Errors

linking a program 158
extending the ODE 185 - 198
extract ing files

LibFile 169

F
file formats

AIF 246 - 253
ALF 242 - 245
AOF 229 - 241
layering 226
SrcEdit 223

filename prefixing see DDEUtils module
Find

Application menu 152
command line interface 153
menu options

Allow 151
Command line 151
Grep style 151

Output window 152
SetUp

dialogue box 14 7
menu 151

Setup options
Case insensitive 148
Filenames only 148
Files 147
Line count only 148
Patterns 14 7
Throwback i 48
Verbose 148
Wildcards 148

SetUp wildcard filenames
OorMore 15 I
OorMore filename chs. 150
Filename ch. 150
Or 150
Sub-directories 150

SetUp wildcard patterns
0 or more 149

Index

I

I or more 149
Alphanum 148
Any 148
Ctr! 149
Digit 148
Newline 148
Normal 149
Not 149
Set 149

floating-point
registers 268

fonts see SrcEdit (fonts)
format of area headers 231
FormEd 71 - 78

adding icons to window 75
adding new window to template file 75
Browser 71

menu 73
changing number allocated to an icon 75
closing a displayed window 74
dialogue boxes 72
displaying an application window for

editing 73
displaying sprites in template windows 75
editing ROM utility templates 76
example session 76
listing defined windows 72
merging template files 75
scrollable windows 72
starting 71
top-level menu 74
window identifiers 74

FrontEnd module 185, 185 - 197
operation when command line tool is

run 186

H
half word

definition 225
hardware requirement for DOE 7

287

Index

IMPORT directive I 64
insta ll application 7
invoking a WIMP frontend for a tool 186

K
KEEP directive 34

L
language processors - output format 225
LIB_

name of ALF files 228
LIB_DATA 244
LIB_DIRY 242
LIB_VSRN 244
LibFil e 167 - I 72

command line interface 171
extracting fi Jes I 69
limitations when creating libraries J 70
menu options

Command line 168
Li st symbol table I 68
Null timestamps I 70
Via file 168

Output window 169
SetUp

dia logue box I 67
menu 168

SetUp options

libraries

Create 167
Delete 168
Extract I 68
Fi le li st 167
Insert 168
Library 167
List library 168
Ob ject library 168

linking 159

288

symbol references 159
library archives

AOF files I 67
Link 155 - 166

AIF I 55
command line interface I 56, 166
errors I 58
IMPORT directive I 64
inter-area references J 62
libraries I 59
linking with the overlay manager J 62
loading I 55
menu options

Base 157
Command line I 56
Debug I 56
Entry I 57
Link map I 56, 158, 162
No case I 57
Overlay 157, 161
Relocatable AIF 157
Verbose I 58
Via file I 57
Workspace I 56, 157, 164
X-Ref I 57, I 62

Output window I 57
overlaying programs J 59
predefined symbo ls 165
relocatable AIF images 163
relocatable module format (RMF) J 55
relocatable modules 164
Set Up

dialogue box I 55
menu I 56

Setup options
AIF I 55
Binary I 56
Files I 55
Module I 55
Relocatable AIF 156

specifying files to be linked J 55
utility programs 164

linker pre-defined symbols 239

linking
preparing to debug a program 34, 156

little endian 225

M
Make 23, I 25, I 98

command execution 20 I - 202

command line tools 9 I
invoking 79
Makefiles

conventional Makefiles 89
editing 88
file naming 206
format 89
specifyi ng I 26
structure 203

menu options
Info 79
Open 79
Options 79

MFLAGS macro 2 I 0
Output window 87

programmer interface 9 I

projects 80
adding a member 83
adding a target 85
creating a final target 87

creating a new project 8I
final targets 80
listing members 84
opening a project 82
removing a member 83
removing a project 86
setting tool options 85
touching members 84

rule patterns 207 - 208
tool opti ons, message passing 92

VPATH macro 206
WIMP message format 92

Make project management tool I 85

module headers

creati ng in assembler I 65

multi-tasking
pre-emptive multi-tasking I86

N
nested variables

accessing in DDT 42

new-style libraries see ALF

0
OBJ_

name of AOF files 228

OBJ_AREA
areas chunk 233

OBJ_IDFN 239
OBJ_STRT 239
ObjAsm

KEEP directive 34
object file

format 229
chunk names 229

type 230
Obj Size

Application menu I 74

command line interface 175

menu options
Command line I 73

Output window I 74
Set Up

dialogue box I 73
menu I 73

SetUp options
Files I 73

OFL_SYMT 244, 245
OFL_TIME 245
old-style libraries see ALF

output formats in Link 157
AIF 155
binary I 56

289

Index

RMF 155
Output window

Common 131
DecAOF 135
DecCF 138
Diff 144
Find 152
LibFile 169
Link· 157
ObjSize 174
Squeeze 178
WC 184

overlay description files 16f
overlay manager

linking 162
overlaying programs 159

p
packing

AREAS 162
parent directories

indicating with ". 192
porting applications to RISC OS 185
predefined linker symbols 165
Prefix$Dir 208
procedure names

setting breakpoints in DDT 39
program objects

specifying in DDT 38
project management tool

creating 185
. projects see MAKE

R
register names 267 - 268
relocatable AIF images 163
relocatable module area (RMA) 164
relocatable module format (RMF) 155
relocatable modules 164

290

relocating applications on the stack
the Workspace optiop 164

relocation
Additive and PCRelative 234

resource files in SrcEdit 198
RISC OS Application Image Format see AIF

s
saving single output object 192
source-level debugging 34
Squeeze

Application menu 178
command line interface 179
menu options

Command line 177
Output window 178
Set Up

dialogue box 177
menu 177

Setup options
Input 177
Try harder I 77
Verbose 177

SrcEdit 198
Application menu options

Create 110
Options 109
Save All 109
Save Options I 08, I 09

block operations 96
bracket-matching I 07
carriage return I 04
colours 105
entering text 93
file formats 223
finding text 98

case sensitivity I 00
counting text I 00

fonts 105
formatting text I 04
inserting/deleting text 94

keystroke equivalents 112
line spacing 105
linefeed I 04
magic characters I 0 I
margin 105
menu options

Display 105
Edit 98
Misc 94
Save 95
Select 96

printing a file 106
reading text from another file I 07
replacing text 99
resource files 198
signalling errors via throwback I 07
starting 93
tabs I 04
task windows 110
text wrap I 06
throwback 198
undoing changes J 04
window 93

string
definition 225

SWI
DDEUtils_GetCLSize 218
DDEUtils_Prefix 217
DDEUtils_SetCL 218
DDEUtils_SetCLSize 218
DDEUtils_ThrowbackEnd 221
DDEUtils_ ThrowbackRegister 219
DDEUtils_ThrowbackStart 219
DDEUtils_ThrowbackUnRegister 219
Throwback_ReasonErrorln 220
Throwback_ReasonProcessing 220
Throwback_Send 220
Wimp_Createlcon 74
Wimp_CreateWindow 74

Wimp_LoadTemplate 74
Wimplnitialise 186

SWIDDEUtils_GetCL 219
symbol references

to libraries 159
symbols

predefined linker symbols 165

T
targets

specifying to AMU 126
Task Manager

allocating memory to Form Ed 71
Templates file

CmdLine 189
Output 190
proglnfo 188
query 189
save 190
Setup 188
Summary 190
Window name 188
xfer_send 190

Throwback
SWls 219

throwback 20
protocol 219
SrcEdit 107

throwback see also DDEUtils module
tool output. specifying default 193
tools

adding to the ODE 185
defaults when invoking from Make 194

tools, interactive 20, 117
DDT 31
entering filenames 21
FormEd 71
Make 79
SrcEdit 93

tools, non-interactive 20, 117
AMU 125
Application menu 118
Common 129
DecAOF 133
DecCF 137

Index

291

Index

u

Diff I4I
entering filenames 2 I
file output I 23
Find I47
LibFile I67
Link I 55
ObjSize I 73
Output windows I 2 I

Summary I22
Text I2I
toggling between I 23

SetUp dialogue box I 20
Set Up menu I 2 I
Squeeze I 77
starting I I 7
WC I8I

utility programs I64

v
variable names

setting watchpoints in DDT 40
version ID 230
via file

w

use in LibFile I68
use in Link I 57

watchpoints
setting 40

WC
Application menu I83
command line interface I84
menu options

Command line 183
Output window I84
SetUp

292

dialogue box I8I
menu I83 '

SetUp options
OorMore I83

WIMP

OorMore filename chs I82
Allow binary files I8I
Filename ch I 82
Files I8I
Or I82
Sub-directories I 82

description fi le I86
frontend, adding to tools I 85
invoking frontend for a tool I 86
producing complete WIMP application I86
setting MAKE options I 86

wimpslot
default I9I
size I87

writing an application description I 90

Reader's Comment Form
Acorn Desktop Development Environment

We would greatly appreciate your comments about this Manual. which will be taken into account for the
next issue:

Did you find the Information you wanted?

Do you like the way the Information Is presented?

General comments:

If there 1s not enough room for your comments, please continue overleaf

How would you classify your experience with computers?

D D D
Used computers before Experienced User Programmer

Cut out (or photocopy) and post to: Your name and address:
Dept RC, Technical Publications
Acorn Computers Limited

D
Experienced Programmer

645 Newmarket Road
Cambridge CB5 8PB
England

This information will only be used to get in touch with you in case we wish to explore your
comments further

Acornl
\

