


ACORNS!FT 

s 



ii 

© Copyright Acorn Computers Limited 1988 

Neither the whole nor any part of the information contained in, or the product 
described in, this manual may be adapted or reproduced in any material form 
except with the prior written approval of Acorn Computers Limited. 

The product described in this manual and products for use with it are subject 
to continuous development and improvement. All information of a technical 
nature and particulars of the product and its use (including the information 
and particulars in this manual) are given by Acorn Computers Limited in good 
faith. However, Acorn Computers Limited cannot accept any liability for any 
loss or damage arising from the use of any information or particulars in this 
manual. 

Archimedes is a trademark of Acorn Computers Limited. 
Acorn is a registered trademark of Acorn Computers Limited. 
UNIX is a registered trademark of AT&T Bell Laboratories. 

Within this publication, the term 'BBC' is used as an abbreviation for 'British 
Broadcasting Corporation'. 

First published 1988 
Issue 1 1988 
Published by Acorn Computers Limited 
Part number 0481,845 



liONTENTS 

INTRODUCTION 1 
EXPLANATION OF SYNTAX 2 

TEXT FILE MANIPULATION UTILITIES 5 
COMMON - LIST COMMON WORDS IN FILES 5 
DIFF - COMPARE TWO FILES 6 
GROPE - FIND PATTERNS IN FILES 8 
WC - COUNT WORDS IN FILES 12 

PROGRAM MANIPULATION UTILITIES 15 
AMU - A 'MAKE' UTILITY 15 
LIB FILE - LIBRARY FILE TOOL PROGRAM 21 
LINK - LINK OBJECT PROGRAMS AND LIBRARIES 25 
OBJLIB- CREATE/LIST A LIBRARY'S SYMBOL TABLE 32 
SQUEEZE - COMPRESS AN AIF FILE 33 

THE DBUG UTILITY 35 
INTRODUCTION 35 
DBUG COMMAND MODE 36 
EXPRESSIONS 37 
FORMATS 41 
DATA COMMANDS 45 
FILE AND SYMBOL TABLE COMMANDS 48 
PROGRAM EXECUTION COMMANDS 50 
VARIABLES AND MACROS 55 
MISCELLANEOUS COMMANDS 57 

THE BASIC SHELL LIBRARY 59 
THE SHELL FACILITY 59 
READING COMMAND PARAMETERS 62 
USING THE SHELL LIBRARY 63 

THE MEMTEST PROGRAM 67 
ERROR MESSAGES 68 

APPENDIX A: FILE FORMATS 71 
CHUNK FILES 71 

iii 



AOF FILES 72 
AIF FILES 74 
ALF FILES 76 

APPENDIX B: ARM PROCEDURE CALLING STANDARD 79 
INTRODUCTION 79 
REGISTER ALLOCATION 79 
PROCEDURE ENTRY 80 
PROCEDURE EXIT 85 
THE STACK BACKTRACE STRUCTURE 86 
ENTRY AND EXIT CODE 88 

' 
iv 



This manual describes the utilities in the Archimedes Software Developer's 
Toolbox package (the Arthur Symbolic Debugger is described in a separate 
manual) . The Toolbox includes a dozen utilities which are designed to enhance 
the productivity of programmers developing software under the Arthur 
operating system. 

The scope of these utilities is quite wide, and some programs will be used 
more frequently than others. For example, you will rarely need the memory 
tester routine, but if you are developing software in a compiled language like 
Pascal or C, you will have constant recourse to the linker. 

Here is an alphabetical list of the utilities provided with the package, with a 
brief description of what they do: 

• Amu Control compilation of multiple sources in large programs 
• Common List the most common words in a list of files 
• Dbug Machine code debugger for use from multiple languages 
• Diff Compare two files and list their differences 
• Grop-e Search files for a given pattern (regular expression) 
• Lib file Manipulate Acorn Library Format (ALF) files 
• Link Link AOF files and libraries to· form a runnable image 
• Memtest Test the application memory of the machine 
• Objlib List the symbols in a library file 
• Shell Allow BASIC to be used as a command language 
• Squeeze Compress Acorn Image Format (AIF) file to conserve disc 

space 
• We Count characters, word and lines in a file 

TEXT FILE MANIPULATION describes those utilities which are concerned 
with manipulating text files . These are: Common, Diff, Grope and We. 

PROGRAM MANIPULATION UTILITIES covers the utilities which 
manipulate program or library files. These are: Libfile, Link, Amu, Objlib 
and Squeeze. 

THE DBUG UTILITY looks at the debugger program, Dbug. 

THE BASIC SHELL LIBRARY is about the BBC BASIC Shell library. 

1 



THE MEMTEST PROGRAM describes the Memtest program. 

All of the programs (except BASIC Shell) are 'applications': that is, they load 
at address & 8 0 0 0 and take over the foreground control of the Archimedes 
workstation. When they terminate, they pass control back to the last program 
to set up an 'exit handler'. This is generally the operating system (the Arthur 
* prompt), but could also be another application such as Twin or BASIC 
(assuming the utility was called using the Shell library). You should therefore 
ensure that before issuing one of these commands from BASIC, the current 
program is saved. 

APPENDIX A: FILE FORMATS gives a brief description of three important 
types of file that a programmer will come across: object files, image files and 
libraries . 

APPENDIX B: ARM PROCEDURE CALLING STANDARD describes the 
standard that allows programs written in various high-level languages and 
assembler to communicate through a well-defined procedural interface. 

EXPLANATION OF SYNTAX 

2 

When the format of a command is described in the subsequent chapters, the 
notation makes use of some special characters to denote optional items and 
classes of item. Square brackets ( [ and ] ) enclose items which are optional. 
Classes of object are shown in italics, which indicates that these words are 
not to be typed literally. The vertical bar, I , denotes a choice of objects (and 
is read 'or'), and an ellipsis, ... , denotes that the previous item may be 
repeated an arbitrary number of times. 

Here is an example which uses all of the syntax characters: 

Common [-first n] [-n- I -n+] filename ... 

Thus the Common command may be followed by the keyword -first, which 
itself is followed by a number (the n) . This is followed by a list of filenames, 
each of which may be prefixed by the flags - n- or - n +. 



Note that it is not explicit in the ~yntax above just how much of the preceding 
text the . . . refers to. In this case, it encompasses the text [-n- I - n +) 

filename . In such ambiguous cases, the explanation of the command will make 
things clear. 

All of the commands documented in this manual respond to the -help option, 
so this is not mentioned explicitly in the text. 

You will have noticed the use of a typewriter-type font above. This is used in 
syntax descriptions, 

• to show something that is typed literally at the keyboard, and 
• to show output that is displayed on the screen. 

3 



4 



The four utilities described in this chapter operate on one or more text files. 
They provide information about the contents of the file(s), eg the most common 
words , whether particular patterns occur in the file etc. 

COMMON - LIST COMMON WORDS IN FILES 

Description of use 

This program scans a file or several files for strings of characters which look 
like words. It keeps a count of how many times each word occurs, and prints a 
table in decreasing order of frequency. All the words that were found can be 
printed, or just the most popular few. 

The definition of a word is 'any sequence of one or more upper or lower case 
alphabetical characters'. Thus Hello, APPLE and TUTTIFRUTTI are all 
words. The case of the letters is significant, so He 11 o is treated as a different 
word from HELLO. 

You can broaden the definition of a word to encompass numeric characters 
(the digits 0 to 9) as well. This is useful, for example, when you are analysing 
assembly language source files , where you may want to treat labels such as 
D IVO 10 a~ complete words. It also allows you to count the number of 
occurrences of register names in instructions, eg R 0, R 1 3 etc. 

Syntax 

The Common command has the syntax: 

Common [-first n) [ -n- I -n+) filename ... 

If the -first option is specified, only the first n most popular words are 
listed, othe·rwise all words are given. The switch - n + enables digits to be 
counted as word characters for subsequent filenames, and - n- disables digits 
again . The default is - n- . 

5 



Example 

Common -first 10 c.find -n+ asm.find 

This will print the 10 most common words found in the two files c . find and 
as m . find, where numerics are allowed .in words for the second file but not 
the first. 

Here is an example of the results printed by Common when it was run on a 
file-whose contents were the outp'!t of the command *HELP: 

Total number of different words: 664 
167 of 'on' 
14 9 of 'the' 
147 of 'Help' 
144 of 'keyword' 
122 of 'Syntax' 
57 of I a I 

48 of 'to' 
43 of 'file' 
41 of 'of' 
33 of 'filename' 

DIFF - COMPARE TWO FILES 

6 

Description of use 

This command ·compares the contents of two files. It then prints a series of 
comments which indicate the operations that must be performed on one of the 
files 'to make them identical ( ie to make the first named file identical to the 
second one) . 



-

-

-

u llLllln" 

Typical comments that are generated by the program are: 

remove filename line number: text of the line 

after filename line number: text of line 
add filename line number: text of line 

change filenamel, line number 
line number: text of line 

to filename2, line number 
line number: text of line 

Identical 

It is most useful to send the output from Diff to a file. You can then use Twin 
to edit the first file specified in the Diff command line in one window, and 
inspect the changes to be made in the other; see the example below. 
(Alternatively you could run Diffin one of Twin's windows, with the file to be 
altered in the other window.) 

Syntax 

The syntax of the Diff command is very straightforward: 

Diff filel file2 

As mentioned above, the instructions output by Diff give you the changes to 

make to the first file in order to make it identical to the second one. 

Example 

The command below compares two files, and sends Diff's output to a third 
file which can subsequently be inspected in Twin. 

*Diff asm.srce asm.backup.srce { > diffs 

7 



GROPE - FIND PATTERNS IN FILES 

8 

Description of use 

The Grope command is a pattern searcher. It looks for a string of characters in 
a list of files and displays the lines which contain the string. Because'· the 
search string can contain various wildcards and other special· characters, Grope 
is a very versatile utility. The formal name for the type of search string that 
Grope can find is 'pattern' or 'regular expression'. 

Grope can take several options in addition to the usual -he 1 p flag. These 
are described in the syntax section below. They may all be abbreviated to 
the first letter of the keyword (as shown in upper case). 

Syntax 

The syntax of Grope is: 

Grope patterns files [flags] 

The three parts may appear in any order, The patterns part has the syntax: 

[-Pattern] pattern [pattern] ... 

The keyword -pattern (or just -p) may be omitted if the patterns don't 
immediately follow the f i 1 es part. Otherwise it is required to separate the 
files list from the pattern list. The exact form that a pattern can take is 
described below. 

The f i 1 e s part has two forms : 

-Files file [file] ... 

and 

- VIA viafile 



-

. EXT FILE MANIPULATION 
UTILITIES 

In the first case, the keyword is followed by a list of filenames -to be searched 
for the pattern. They are searched in the order ·specified. The second form uses 
the filename given to find a list of files to be searched. The filenames should 
be listed one per line in the vi a f i 1 e . Again, the search order is the same as 
the ordering of the filenames. 

You can also combine these keywords. If they are both given, the -VIA file is 
taken to be a list of directory names. The - F i 1 e s list are files which are 
searched in each of those directories. For example, suppose the file Cpa t h s 
~ontains: 

$.arm.clib.c 
$.arm.clib.h 

then the command: 

GROPE Init ( -files main expr print -via cpaths 

will look for the pattern In it ( in the files: 

$.arm.clib.c.main 
$.arm.clib.c.expr 
$.arm.clib.c.print 
$.arm.clib.h.main 
$.arm.clib.h.expr 
$.arm.clib.h.print 

in that order. 

There are three optional f 1 a g s . These are: 

-Noc ase 
-Verbose 
-Describe 

Make the search case insensitive 
Display each file's name before it is searched 
Describe the pattern syntax 

9 



10 

Searches are usually performed in a case sensitive manner, so that the pattern 
HELP would not match the string Help in a file. Specifying -nocase reverses 
this, so that the case of letters in the pattern and file is not significant. 

If you use the -describe flag, Grope just gives a description of the pattern 
syntax and exits immediately, as with -help. 

Pattern syntax 

This section describes the syntax of Grope patterns. 

Note: The pattern syntax is very similar to that used in the EDIT 
program provided with the Acorn Master computer and 6502 
Development Package. Users of either of those products should have 
little difficulty understanding Grope patterns. (The patterns are also 
similar to those used by Twin, but use normal punctuation symbols as 
special characters, instead of Twin's function keys.) 

Any character which does not have a special meaning in a Grope pattern is 
referred to as a 'normal' character. This includes alphabetic and numeric 
characters, and many of the punctuation characters. The first six characters 
described below (any to 1i t inclusive) are know collectively as 'special' 
characters. 

any: matches any single character 
@ id: matches any 'identifier' character (same as [A-Za-z0-9 ) ) 

# dig: matches any single digit (same as [ 0- 9) ) 
1 ct r 1: control character. I c matches I Ctrl l c, where c is in the range @ to 

yielding ASCII 0 to ASCII 31. I ?matches ASCII DEL (127). I ! 
matches 128 plus the following character (or c t r 1 character). After a 
I ! , I is the only character which is not treated literally. 

$ new1: matches the end of line character (ASCII 10) 
\ 1 it: matches the following character literally, even if this would 

normally have a special meaning in patterns. For example, \ # means 
the ASCII character #, not dig. It must also be used before spaces in 

patterns, as these are used as pattern-list separators. 
[ ) class: matches a set or range of characters. For example [abc) 

matches any one of a, b or c. The characters in a class may be 



* 

UTlLlTlES 

normal characters or the special characters. That is, the characters @ # 
I $ \ retain their special meanings, and all others are treated 
literally. 
range: matches a range of characters. This can only be used within a 
c 1 ass. The pattern [a-b] matches any single character in the range 
a to b, where those are normal characters or ct r 1 chracters. For 
example, [ I @- I ] would match any control character. Several ranges 
and single characters may appear in a single c 1 ass, as shown in i d 
above. 
negation: matches anything but the following character, which may 
be a normal character, a special character, or a c 1 ass. For example, 
-A matches anything but ASCII 65, - # matches any non-digit, and 
- [ I @- I ] matches any non-control character. 
many: matches zero or more of the following character, which may be a 
normal character, a special character, a class, or a negation. The 
shortest string possible will be matched, so a many should be 
followed by another character to stop the null string from being 
matched. For example * # will always match the null string, whereas 
* #- # will match the longest sequence of digits possible, followed by 
a non-digit. LDM*. {* - ;PC will match any ARM LDM instruction 
involving the PC. 
mast: matches one or more occurrences of the following character, 
which may be a normal character, a special character, a class, or a 
negation. Unlike many, it matches the longest possible string. For 
example, "# matches a string of decimal digits, [A- Z a- z ] "@ matches 
an identifier of at least two characters. 

Note: The backslash character \ has a special meaning for the 
arguments decoder used by Grope. This means that in order to get a 
backslash through to the program itself, it should be 'escaped' thus: 
\\. 

11 



Examples 

The examples below use a file hlp which contains the output of the command 
*HELP. Below each command line is some of the output produced by the 
command. 

Grope basic - f hlp 
No output 

*Grope -nocase basic - f hlp 
"hlp", line 257:BBC BASIC V 1.00 (05 Jun 1987) 

" hlp", line 731 : Syntax: *BASIC (-helpl-chainl-loadl-quit] <filename > 
*Grope Syntax : A-$ -f hlp 
All the syntax lines in the help file are printed 

*Grope \\*Voices - f hlp 
"hlp ", line 1061:*Voices lists the installed voices and channel 
allocation 

WC - COUNT WORDS IN FILES 

12 

Description of use 

The W c command reports the number of lines, words and characters found in 
a file (or list of files) which is given as the parameter. In fact, two types of 
words are counted: those which consist of sequences of one or more upper and 
lower case letters, and 'identifiers' which can contain alphabetic characters and 
digits. A line is defined as a sequence of characters terminated by a newline 
character (ASCII lO). Note that We is designed for use with ASCII text files 
and will not give useful results with tukenised BASIC files. 

If a list of files is given on the command line, the counts for the individual 
files are given, followed by the total for all files. 

Syntax 

The syntax of the We command is as follows: 



-

UTILITIES 

We [filename] ... 

If no filenames are given, the help information for the command is displayed 
(as if the - help option had been specified) . 

Example 

The following commands might produce the output below: 

*We memsrc 
Word count of ' memsrc': 

Lines : 234 , Words : 595 , Alphanumerics : 719 , Characters: 3519 

*We shellinf helptxt 
Word count of ' SHELLINF ': 

Lines: 508 , Words: 2438, Alphanumerics: 2866 , Characters : 16132 
Word count of ' HELPTXT': 

Lines : 729 , Words : 3068 , Alphanumerics: 3253 , Characters: 22690 

Total: Lines: 123 7 , Wo rds : 5506 , Alphanumeri cs : 6119 , Characters: 38822 

13 



14 



This chapter describes the utilities which are concerned with the manipulation 
of object program files (AOF files), image files (AIF files) and libraries. 
Descriptions of all three types of file can be found in Appendix A : File 
formats. 

AMU - A 'MAKE' UTILITY 

Description of use 

Amu is designed to facilitate the management of large programs which use 
multiple source and object files. Its input is a file which contains 'targets', 
called the makefile. Associated with a target are one or more dependencies. 
Amu's job is to produce a list of commands which, when executed, ensure that 
the target is consistent with respect to the things (usually files) that it depends 
on. 

Typically a target is the name of a compiled program. It depends on the 
source and object files which are compiled and linked to produce the final 
program. T o be 'consistent', a target must be newer than the files it depends 
on, ie must have been updated more recently. (If a source file was altered 
more recently than the object file that it produces, the latter is probably out of 
date and therefore the whole system described by the 'makefile' is in an 
inconsistent state. 

As mentioned above, the output of Amu is a set of commands. These are 
derived from the makefile, where they are listed along with the dependencies, 
and are usually sent to a command file for execution when Amu terminates. 
(Amu does this automatically, but the file could be re-executed using *EXEC.) 
Alternatively, the commands may be displayed on the screen instead. When 
executed, the commands put the system being made into a consistent state with 
the minimum amount of work (eg the fewest compilations). 

The exact format of the contents of a makefile is described in the section 
below called The make file. 

Syntax 

The Amu command has the following syntax: 

15 



16 

Amu [ -f makefile] [ -o cmdfile] [ -n] [ -t] [target ... ] 

The -f option precedes the name of the makefile, ie the file which contains 
the targets and dependencies to use. If it is omitted, the file called rna kef i 1 e 

in the current directory is used. 

Following the - o option is the name of the file to which the list of commands 
must be sent. If omitted, the filename ! make is used. Alternatively, you can 
specify the - n option. This causes the commands to be displayed on the screen 
instead of being sent to a file. 

The option -t causes Amu to generate commands which make the target(s) up 
to date by setting the time/date-stamps on source files. The Arthur command 
*STAMP is used. All the source files must exist for this option to succeed 
(* STAMP will not create a file). 

Finally the targets specify which of the targets in the makefile should be 
processed. If none is given, the first target in the file is used, so it is usual for 
the first target to be one on which the whole of the system being made 
depends. Other typical targets are given in the next section. 

You can also define macros in the targets section, using the form 
name=val ue. These act as if they were defined in the makefile, as described 
in the section Text substitution below. 

The Makefile 

As already mentioned, the makefile is a list of targets, dependencies · and 
commands. Here is a listing of a typical makefile: 

all: 

grope; 

o .grope : 

grope 

o .grope o.pattrn o . output 
link - o grope o. grope o . pattrn o . output $.arm. clib . o . ansi lib 

c.grope h . grope 
cc -c c.grope 



UTlLITlli~ 

o . pattrn : c . pat t r n h . grope 

cc - c c . p a ttrn 

o . output : c . ouput h . grope 

cc - c c . out put 

h.grope : h.ctypes 
stamp h.grop e 

install : ; cop y g r ope $ . library . g r ope -cfq 

c l ean : ;wipe 0 . * -c f; delete g r ope 

The first line contains the target a 11. In the absence of any targets on the 
command line, Amu will try to satisfy this one. Immediately after the target is 
a colon and one or more spaces (or tabs) which separate it from the files it 
depends on. In the case of all, the only dependency is gr ope . Thus in order 
to make sure that the target a 11 is satisfied, Amu has to generate the 
commands to ensure that grope is consistent. 

g r ope depends on the three object files. You can read this line as 'grope 
must be younger than all of the object files on the line' . If it isn't, the 
command: 

link - o g·rope o .grope o . pattrn o . outpu t $ .ar m. c l ib.o . ansi lib 

must be executed. Notice, though, that each of the object files has its own target 
line and dependencies, so before the 1 ink command can be output, any or all 
of the source files may have to be re-compiled. For example, the lines: 

o . g r ope: c .grope h.grope 
c c -c c.grope 

say that o . grope must be newer than both c . grope and h. grope if it is to 
be considered up to date, and if it isn't, the cc command below must be 
executed. 

17 



18 

The dependency for the file h. grope says that it is out of date if it is newer 
than h. c types. In order to make it up to date, it is simply stamped with the 
current time. This will in turn make all of the object files out of date, as they 
all depend on h. grope, resulting in the re-compilation and re-linking of the 
files. 

The final two lines of the file are targets which can be used to produce 
commands to copy the newly compiled and linked grope into the library, and 
delete the object files from the home directory, respectively. They will be 
explained below. 

Dependency relations 

The example above covered most of the common items found in makefiles. 
Now follows a more formal description. 

A dependency relation consists of a single logical line containing a space­
separated list of target names, followed by : or : : , followed by a space­
separated list of source files on which each target depends. It is important that 
at least one space (or tab) follows the- : or : : . The difference between these 
two variations is explained below. 

You can continue the 'logical' line that the relation occupies on to the next 
physical line by preceding the newline with a backslash character ( \ ). Another 
way to deal with long dependencies is to have more than one target of the 
same name, eg: 

o.a11oc: 
o.a11oc: 

c.a11oc h.a11oc 
h.printf h.exit h.mcsuppt 
cc a11oc 

The right hand sides are effectively merged, so that in this example, o . a 11 o c 
is dependent on all five filenames. Note that only one of the relations may 
have an associated list of command lines below it (the second one, in the 
example above). 



U llLlll.t.:::; 

A command line starts with at least one space or tab character. The command 
is terminated by a newline, and may be followed by more command lines of 
the same form. Alternatively, you can use a semicolon to separate the 
dependency from the first command, and commands from each other, as this 
line taken from the first example above shows: 

clean: ;wipe o.* -cf ;delete grope 

This says that the target clean has no dependencies (so the commands are 
always sent to the output file) and the commands associated with it are a wipe 
command and a delete command. An Amu command to invoke this target 
might be: 

Arnu all copy clean 

This would re-compile the system (if necessary), copy the new object file to 

the library, and then delete all the unrequired object files. (Note that targets 
are made in the order in which they are specified on the command line.) 

If you use : : to separate the target from the dependencies, then the right hand 
sides are not merged but remain independent. For example: 

o. t1:: 

0. t1:: 

all: 

c.t1 h.t1 
cc -g -c c.t1 

c.tl h.t2 
cc -c c.t1 

o.t1 
link -o t1 o . t1 $ . arm.clib.o.ansilib 

In this example, the first cc command is executed if (and only if) either of the 
files c . t 1 or h . t 1 is newer than o . t 1. The second c c command executes if 
either c . t 1 or h . t 2 has changed. The a 11 part depends on either of the re­
compilations taking place. 

19 



20 

Text substitution 

You can 'parameterise' makefiles to a degree by using the textual substitu~ion 
mechanism. A macro is defined by a line of the form: 

name= text 

Examples are : 

CF LAGS = -fa -fh 
CC = cc160a 

To use a defined name in the makefile body, it is placed in a string of the 
form $ {name} or $ (name) . For example, the naines defined above might be 
used in this relation: 

o .hash c .hash h.hash 
${CC} ${FLAGS} hash 

By placing the macro assignments at the start of the makefile, you can quickly 
make all of the commands use, for example, a new version of the compiler, or 
different options. 

Comments 

Any text following a hash character # is regarded as a comment and is ignored 
by Amu, up to the end of the line. Comments can be useful for explaining non­
obvious relations, or planting Twin in-core filenames at the start of the file, eg: 

# >mkgrope - make file f o r the grope utility 



UllLlllli::S 

LIBFILE - LIBRARY FILE TOOL PROGRAM 

Description of use 

Libfile is a general-purpose tool for maninpulating compiled libraries. The 
two main applications of Libfile are complementary. It can be used to 
construct a library from compiled object files, or to decompose a library into 
its constituent files. Other uses are listing the contents of a library, and 
creating a library. As usual, the different options are accessed using command 
keywords . 

Syntax 

To avoid a complex command syntax line, each variant of the Libfile command 
is listed separately below. Capitalisation is used to show the alternative short 
form of each keyword. 

Libfile library -Create [nfiles len] [files] 
Libfile library -Insert files 
Lib file library -Delete files 
Libfile library -Extract files 
Libfiie library -List 

In all cases, a 1 ibrary must be specified. This has the form: 

[-Library] filename 

The keyword is only required if the filename could otherwise be taken to 
be part of a f i 1 e s list. If you make the library filename the first argument, 
you will never need to use the keyword. 

The files part, which is required by the -insert, -delete and 
-extract variants, and optionally in the - Create variant, consists of a 
keyword followed by one or more filenames. The keyword may be -Members 
or - F i 1 e s. The former is more natural in the delete and extract cases, where 
existing members of a library are being manipulated, and the latter makes 
sense in the create and insert cases, where names of object files are being 
quoted. 

21 



22 

Create keyword 

This form creates a new library file . The file may be empty, but with enough 
'slots' to allow the susbequent insertion of object files, or it may be formed 
from existing files . The first variant looks like this: 

Li bfile l i brary -create nfi les len 

Two numbers follow the -cre a te keyword. The first gives the number of 
slots to create in the file. Each of these slots can subsequently be filled by a 
-insert command. The second number gives the average length of the 
filename of each file. In effect, n f i 1 e s * ( K + 1 en) bytes (where K is a 
constant) are reserved in the 'directory chunk' of a new library file to hold the 
names and other information of its component files. See the section on the 
-1 is t option below for more details . 

You can insert some files into the new library at the same time that it is 
created by specifying them after a - f i 1 e s option. This variant has the form: 

Libfile library -create [nfiles len] -files filenames 

The files in the list are used to form the new library. They should be AOF 
files, eg generated by a compiler or ObjAsm, or extracted from a library. If 
you omit the numbers after the -create keyword, enough slots are created 
for about half as many files again. For example, if ten files are used to create 
the library, 15 slots will be created. 

You may use wildcards in the f i 1 en ames list. If you do, all files which 
match the wildcard specification will be inserted into the library. 

Insert keyword 

To insert one or more new files into an existing library file , you use a 
command of the form: 

Libfile library -insert files 



UllLlllh~ 

Before the list of filenames you can put the keyword - f i 1 e s or -members, 
or omit it altogether. Each of the AOF files listed is inserted into the library 
file. If a file has the same name (ignoring the case of letters) as an existing 
one, it replaces the current version. Wildcards may be used in the filenames 
and are expanded to a list of all the files matching the specification. 

If there is not enough room in the library file, you will get an error of the 
form: 

Not enough space in the directory chunk of 'library' 

or 

Not enough chunks in header of file 'library ' 

Delete keyword 

This variation of the command removes one or more files from the library. It 
has the form: 

Libfile library - delete files 

The files list may be preceded by the keyword -files or -members, or 
nothing at all. The names specified must match exactly those stored in the 
library (except for the case of the letters). A warning message is given if any 
of the files cannot be found in the library. It is a fatal error to specify the 
same file more than once, and wildcard characters cannot be used in the 
filenames. 

Extract keyword 

This performs a complementary function to -inse rt. It copies the contents of 
one or more files in the library into separate (AOF) files of the sai:Oe names. 
The format of the- command is: 

Libfile library -extract files 

23 



24 

As with the other variants, you may precede the list of filenames by either of 
the keywords -files or -members, or omit it altogether. Note that the files 
are not removed from the library; they are just copied into the filenames given. 
If a file cannot be located in the library, a warning of this form is given: 

libfile: (Warning) Failed to find member 'filename' 

List keyword 

You can list all the component files of a library using this version of the 
Libfile command. For each file the name, length and date of creation are 
given. After the list, the number of free entries left in the header ( ie the total 
allocated at creation minus the number currently used) and the number of free 
bytes in the directory chunk are printed. The size of the latter is determined 
by the number of entries in the library and the length of their names. 

When a library is created. the directory chunk size is calculated as 
nfiles* (5+ (len+4) div 4) words. For each entry, five words are 
allocated for fixed information such as creation date and length, then some 
extra words .are added depending on the average length of the filenames to be 
stored. It is possible to exhaust space in the directory chunk before all of the 
entries have been used up, for example if many .files are insertec:Y whose 
names are much longer than the 'average' previously given. 

The syntax of this form of the command is simply: 

Libfile library -list 

(You can reverse the order of the arguments if you prefer.) 



U llLll ill_, 

Examples 

Below are examples of all variants of the Libfile command. 

Libfile ansi lib - create 20 10 

Libfile ans i lib - create 10 12 -files signal stdi o ctype string 

Libfile ansi lib - insert math lib.* 

Libfile ansi lib -de lete -members sort osalloc time error 

Libfile ansi lib - extract locale startup 

Libfile ansi lib - list 

LINK - LINK OBJECT PROGRAMS AND LIBRARIES 

Description of use 

The Linker is an essential program for anyone developing programs in a high­
level compiled language on the Archimedes personal workstation. Its purpose 
is to combine the contents of one or more object files (the output of a compiler 
or Assembler) with one or more library files, producing a final executable 
program. 

Syntax 

The format of the Link command is: 

Link - output file [options] files 

The f i 1 e s argument is a list of input files; this is described below. 
- output is the only compulsory keyword . 

Below is a list of the command line options that the Linker can take . Most of 
these will only be used occasionally. In the descriptions below, the important, 
frequently-used options are given first, followed by the less common ones. As 
usual, capitals are used to denote the alternative shortened form of the 
keyword . 

25 



26 

-Output 
-VIA 
-Case 
-Base 
-Verbose 
-Relocatable 
-Dbug 
-Module 

Notes 

Name of the linked output file 
Use a file to obtain (further) input file names 
Make matching of symbols case insensitive 
Set base address for output file 
Print messages indicating progress of the link operation 
Generate relocatable output file 
Generate an AOF image for use with the Dbug program 
Generate an Arthur relocatable module 

• The keyword -base is followed by a numeric argument. You can use the 
prefix & to specify hexadecimal, and the suffixes k for 21'10 and m for 
2"'20. 

• The default base address for the output file is &8000 (32K). If -dbug is 
specified, the default base address is &50000 (ie 320K) . 

• The item f i 1 e s above is a list of one or more filenames, separated by 
spaces. This part of the command must be given. Each of the files in the 
list must be in Acorn Object Format (compiled files) or Acorn Library 
Format (libraries). They may contain references to external objects 
(procedures and variables) which the Linker will attempt to resolve by 
matching them against definitions found in other files . 

• You can use wildcards in the filename list. Names using wi!dcards will 
be expanded into the list of files matching the specification. For example, 
the name o. bas* might yield o. basmain, o. basexpr, o. bascmd. 

• Usually, at least one library file will be specified in the list. A library 
is just a collection of AOF files stored in a single Acorn Library Format 
file . You can call the procedures in the library for one language from 
programs written in another, as long as both languages conform to the 
ARM Procedure Calling Standard and both run-time libraries use the 
common run-time kernel. For example, an assembler program could use 
the C print f function, as long as the C run-time system had been 
initialised, through the common run-time kernel. 



mu·"'-'"""E.AM MANIPULATION 
UTILITIES 

• Libraries differ from object files in the way the Linker uses them. Object 
files' symbols are scanned only once when the Linker attempts to resolve 
external references. Libraries are scanned as many times as necessary. If 
a required symbol is found in one of the library's component files, the 
whole component is incorporated into the output file. 

• Two common errors given during a link are caused by unresolved and 
multiple references. In the first case, a symbol has been referenced from 
a file (whose name is given in the error), but there is no corresponding 
definition {or the symbol. This is usually caused by the omission of a 
required object or library file from the list, or the mis-spelling of a 
symbol in the original source program. 

• The second error is caused by a clash of names. For example, a 
procedure might have been defined with the same name as a library 
procedure, or as a procedure in another object file. The version of the 
procedure used in any situation is the one local to the reference to it. 

• The -outpu t keyword is obligatory. It is followed by the name of the 
file to which the final linked program should be written. If you just want 
to use the Linker to check object files for unresolved references, you can 
specify the device n u 11 : as the output file; the final object code will be 
discarded. The output is usually in Arthur Image Format, which can be 
executed directly. Alternative formats allow low-level debugging with 
Dbug or the creation of an Arthur relocatable module. 

Simple examples 

Before we move on to describe the rest of the Link command's options, we 
give some examples using the syntax described so far: 

Link -OUPTUT p.sieve o.siev e, ansilib 
Link - o %.mybasic o.bas* lib.f77 
Link - o null: o.comp* 

27 



28 

Via keyword 

Sometimes you may want to link a large number of input files which would be 
tedious to type on a command line, and whose names can't conveniently be 
matched by a wildcard specification. Using the -via keyword, you can store 
a list of input filenames in another file and use this to access them. For 
example, suppose you created the file bas f i 1 e s with the contents: 

o.main 
o.expr 
o.cmd 
o.stmnt 
o.lex 
o. filing 
o.tokens 

If you then used the command: 

*link -o basic -via basfiles lib 

then the files listed in bas f i 1 e s would be linked, together with the AOF 
file 1 ib . 

Case keyword 

If you specify -case in the command line, then the Linker will not treat the 
case of letters as significant in identifiers. By default, the identifiers rna in 
and Main refer to different objects, as they are spelt differently. However, 
with -case set, they are the same identifier. 

Base keyword 

By default, the base address of the output file of the Linker is & 8 0 0 0 . This 
corresponds to the start of application workspace on the Archimedes 
workstation. Alternatively, if the -dbug option is given, the base address is 
set to & 5 0 0 0 0. This is so that the debugger program Dbug can load at & 8 0 0 0 
as a normal application, and load the file to be debugged above itself. 
(There are other changes when -dbug is given, as described below.) 



UllLlllli~ 

Using the -base keyword, you can set the base address of the output file to 
any desired value. For example, you may want a program to have a high load 
address (as with the -dbug option set), but still be directly executable (which 
a dbug file in AOF format isn't). 

The keyword is followed by a number giving the base address desired for the 
output file, eg -base &80000, -base 256k etc. When this is done, all 
relocatable objects in the input files are relocated using that base instead of 
the default. 

Verbose keyword 

If you specify - ve rbose on the command line, the Linker gives a report of its 
progress. A message is printed as each file is opened and as each module is 
being relocated. For example: 

link: opening p.basic 
link: opening o.basl 
link: opening o .bas2 
link: relocating modu le o.basl 
link: relocating module o.bas2 
link: relocating module ansi lib (fpprintf) 

Relocatable keyword 

Usually, when an image file is produced, it will execute correctly only at the 
base address given (or the default). This is because the object program will 
contain references to absolute addresses within the data area. However, if you 
specify the - re 1 o ca t ab 1 e option, the final program will be relocatable. 
That is, it can be loaded and executed at any address. 

This feat is achieved by adding a relocation table and a small program to 
perform the relocation to the final object code. The relocation table is a list 
of offsets from the start of the progra~ to words which need relocating. These 
words are adjusted by the difference between the base address of the 

29 



30 

program and the address where it was loaded. Once the relocation has been 
performed, the program proper starts executing. 

The relocation process is very fast, and once it has be·en performed, the space 
occuupied by the table is available as part of the program's heap space when 
it starts executing. 

Note that although this ability can be used to make a program statically 
relocatable, it does not confer true position-independence on the program. 
That is, the program could not be moved in memory once it has started and 
still be expected to work. 

Dbug keyword 

If a program is linked using the -dbug keyword, an executable image is not 
formed . Instead, an AOF file is created which contains all of the symbols 
found in the original source files. The code segment of the file can be 
executed under the control of a Dbug program, and the contents of the code 
and data segments may be examined (and altered in the case of the data 
segment). 

Module keyword 

If you specify this keyword, the output file is created in Arthur relocatable 
module format, suitable for loading into the RMA (relocatable module area). 
To use this facility, there must be an area called!! !Module$$Header, 
which contains a standard RM header. 

Notes: To be of use, this feature requires the module support in the 
common run-time kernel. This is not provided in early releases of 
some compiled languages. Consult your language documentation for 
details. Note also that the -relocatable, -module and -dbug 
keywords are mutually exclusive; only one of them can be given on 
the command line. 



UTILITIES 

Predefined Linker symbols 

There are several symbols which the Linker knows about independently of any 
of its input files. These start with the string Image$$ arid, along with all 
other external names containing $ $, are reserved by Acorn. 

The symbols are: 

Image$$RO$$Base 
Image$$RO$$Limit 
Image$$ZI$$Base 
Image$$ZI$$Limit 
Image$$RW$$Base 
Image$$RW$$Limit 

Address of the start of the read-only (program) area 
Address of the byte beyond the end of program area 
Address of the start of run-time zero-initialised area 
Address of the byte beyond the zero-initialised area 
Address of the start of the read/write (data) area 
Address of the byte beyond the end of the data area 

Although it will often be the case, Acorn does not guarantee that the end of 
the read-only area corresponds to the start of the read/write area. You should 
therefore not rely on this being true. 

Note also that programs can reside in read/write areas, as they sometimes 
contain local writeable data (eg modifiable code), and it is possible to have 
read-only data (eg floating-point constants and string literals in C). 

These symbols can be imported as relocatable addresses by assembly 
language routines that might need them. 

The Linker joins all areas (from all input files) with the same name and 
attributes together to form a single area. It then creates the two symbols 
name$ $B ase and name$$Limit to mark the start and end of the area. It is 
an error for two areas to have the same name but different arttributes . 

31 



OBJLIB- CREATE/LIST A LIBRARY'S SYMBOL TABLE 

32 

Description of use 

The Objlib command is used to create or examine the external symbol table 
of library file . External symbols are those which are visible to modules 
outside the one in which they are defined. Typically they are the names of 
library functions ( eg print f in the C standard library) and global variables 
(eg errno, also from the C library). 

When a library is first created (using Libfile), there is no external symbol 
table. Objlib is therefore used to create the table, which is stored in the 
library as a chunk of the name OFL_SYMT. See Appendix A : File formats 
for more details of library file formats . 

Syntax 

The Objlib command has the form: 

Objlib [-File) file [-Create ) [-Li st ) 

The f i 1 e is the name of a library file. You cannot list the contents of the 
symbol table before it exists, so to list the symbols in a library for the first 
time you would use something like: 

Obj1ib 1ibfi1e - c -1 

Thereafter, the symbols may be listed using just -1 . The output from the 
command goes to the screen, but may be redirected using the usual Arthur 
method, eg: 

Objlib libfile -1 { > syms } 

Note that if the library is altered by Libfile, then the symbol table will 
become out of date and should be re-created using Objlib with the - c option .. 
(Objlib will tell you if the symbol table is out of date.) 



\...I.I.U.....I..I.U....IJ 

Output from the program looks like this: 

External Symbol Table, generated Thu Mar 17 09:30:34 1988 
clock from object file armsys 
time from object file armsys 

sys_msg from object file armsys 

pow from ob ject file armstart 

End of Table 

Of course the symbol and filenames will depend on the contents of the 
library file being examined. 

SQUEEZE - COMPRESS AN AIF FILE 

Description of use 

The Squeeze utility is a program compactor. It takes an AIF file (eg the 
product of an execution of the Link program) and compresses it by a factor of 
just less than two. The compressed program can be executed directly and it 
'expands' automatically when it is run. The advantages of using Squeezed 
programs is that they occupy less space on a floppy disc, and therefore take 
less time to load. 

The exact saving in space depends on the contents of the image file. If it has 
many zeros (eg a large area of initialised static data in a C program), a factor 
of greater than two may be achieved. A hand-coded assembly language 
program, which contains a greater diversity of instructions than one produced 
by a compiler, would not achieve such a high compression ratio (3 :2 being 
typical). 

Syntax 

The Squeeze command has the format: 

Squeeze [-v] srce-file [dest-file] 

33 



34 

If the -v flag is given, a more verbose form of the progress report messages is 
produced. Even if you omit the option, Squeeze still produces some 
information about the process. In particular, it tells you what reduction factor 
was achieved and how long it took. 

The form with only one filename will reduce the given file in situ, overwntmg 
the original with the new compacted form. If you give both filenames, the 
original is left intact, and the compressed version is stored in the second 
named file. 

Examples 

Below are two examples of the use of Squeeze. After the first example, 
typical output from the command is also reproduced. 

*squeeze mint 
squeezing 'MINT' to 'MINT' 
encoding stats (0, 1, 2, 4) 9% 70 % 19% 0% 
compressed size 17519 is 57 % of 30388 
compression took 68csec, 44688 bytes/cpusec 
getting timestamp from Arthur 

*squeeze -v mint lib*.mint 



INTRODUCTION 

The Dbug utility is a versatile and powerful machine code debugger which can 
be used with high-level language programs. The input to Dbug is a file 
containing executable code. This file might have been linked using the -dbug 

option, in which case it will also contain symbol table information. See the 
section Link - link object programs and libraries in the previous chapter, 
Program manipulation program utilities, for more details. Alternatively, other 
types of code file may be loaded, as described below. 

As with many programs of its type, Dbug is interactive and is characterised by 
short command names. All commands may be abbreviated to one character 
(usually a letter). Before we describe the commands available and their 
syntax, we give the options available on the Dbug command line itself. 

Syntax 

The Dbug command has the form 

Dbug [file] [-Limit addr] [ -Rs423 [-Baud tx/ rx]] 

As all of the arguments are optional, you can just issue the command on its 
own. This enters Dbug, which starts with the prompt: 

Dbug: 

At this stage, you could use various Dbug commands, such as those to examine 
and alter memory locations, call particular routines etc. However, many Dbug 
commands require the presence of a file so that addresses of code and data 
may be expressed in terms of symbols (and so that there is actually a 
program to debug) . Thus, the command usually includes at least a file name, 
eg: 

Dbug o.prog 

When Dbug starts, it will load the program part of the given file at its code 
base address, which is usually & 50 0 0 0. The symbol table of an AOF file is 
loaded into the free area that Dbug has between the end of its own code and 

35 



data and the upper limit which it can use. Typical values for these two 
addresses are & 2 8 0 0 0 (160K) and & 50 0 9 0 (320K), leaving 160K for symbol 
tables. 

If the file isn't an AOF one, it can still usually be loaded and debugged, but 
symbol information will not be available. If the load address of the file is 
greater than or equal to 320K, it is loaded there. If the file is a relocatable 
Arthur Image Format file, it is loaded at 320K and the relocation code 
executed to allow execution there. If none of the above applies, Dbug will ask 
if it should load the file at 320K. The file should contain position independent 
code in order for 'yes' to be a sensible answer. 

The other parts of the command line are seldom required. The -1 imi t 
keyword gives the upper limit of memory that Dbug can use . It is followed by 
a number which may be prefixed by & for hexadecimal and suffixed by K for 
*1024. The default is 384K. You could increase this to &80000 (512k) if 
absolutely required, but usually the debugger will function without the extra 
space. 

The - r s 4 2 3 keyword tells Dbug to use the RS-423 port for its input and 
output, instead of the keyboard and screen. This can be useful if you are 
debugging a program whose interaction with the screen might be confused

1
by 

the presence of Dbug messages. The baud rate defaults to 9600 for transmit 
and receive, but may be altered using the -baud keyword. 

Command examples 

Below are some typical ways in which Dbug might be called: 

*Dbug 
*Dbug o.myfile 
*Dbug o.myfile -limit 512k 
*Dbug -rs423 

DBUG COMMAND MODE 

36 

Dbug responds to about 20 commands. As mentioned above, these may all be 
abbreviated to one character, and all but two of them are letters. In fact, Dbug 



EXPRESSIONS 

only looks at the first character of a command, and ignores subsequent 
characters until the first space. Upper and lower case are not differentiated in 
Dbug command names. 

Before using Dbug, you should be aware of its limitations. Under an operating 
system such as Arthur, which provides no memory protection, it is difficult to 
guard against a fault in the debugged programmer crashing the debugger. For 
example, if the program being examined starts to write all over Dbug's 
program code, there is little that can be done about it. Thus if the debugger 
appears to crash in mysterious circumstances, you should suspect your program 
first . 

You should also note that Dbug is not designed to be used on programs which 
execute in SVC (or IRQ or FIQ) mode. It is a user-mode program utility. 

Many of the commands take parameters of various types, so we will describe 
the form these take before moving on to the commands themselves. 

In general, when Dbug requires a number, eg an address or a count, a general 
expression can be used. This section described the elements that expressions 
may contain. 

Operands 

The operands in an expression are numbers in various bases, register numbers, 
symbols found in the loaded symbol tables, and a couple of special 
characters. 

Numbers are treated as decimal unles prefixed with an & for hexadecimal. 
Examples are 123 and &lff (511). Alternatively, you can use the form 
base digits, where base is the base to be used (in decimal), and digits 
is a strlng of one or more digits in the ranges 0-9, A-Z, as appropriate to the 
base . 

A character constant has the form ' c hars'. Chars is between one and four 
characters. The ASCII value of the first character is placed in the least 

37 



38 

significant byte of the 32-bit integer, the second character in the next byte, and 
so on. Missing characters are taken as zero. For example, 'A' evaluates to 65, 
' 0 1 ' to & 3 1 3 0. Characters may contain all of the standard C la!1guage escape 
sequences, eg ' \ n ' for the newline character. 

A register number is the letter r followed immediately by a decimal number 
in the range 0 to 15. Examples are r 0 and r 13. Usually a register evaluates to 
its number, so r 15 just means 15. However, in some commands, an expression 
is used as an address whose contents are required. In these commands, a 
register number is replaced by the register's contents. 

Floating point registers have the letter f followed by a digit in the range 0- 7. 
The floating point status register is accessed using FPPSW. Note that the 
floating point emulator (or hardware) must be present for you to be able to 
use these registers. 

There are some special register names which correspond to those defined in 
the Acorn procedure calling standard: 

fp r10 Frame pointer 
ip r11 Work register 
sp r12 Stack pointer 
sl r13 Stack limit 
lr rl4 Link register 
pc rlS Program counter (without the flags) 

Two special characters that may be used in expressions are period (.) and 
tilde (-). These stand for addresses used in recent commands, saving you the 
need to type the whole expression again. Period stands for the last address 
that was examined or altered in an E or D command. Say you examine the 
contents of addresses in the range & 2 4 to & 3 8. Then using . in an expression 
will yield the address & 3 8. 

. is set to the start address when a file is loaded, and to the program counter 
when control returns to Dbug (after a Single Step, for example). 



. HE DBUG UTILITY 

Tilde, when used in an E or D command, yields the first address used in the 
previous command of the same type. Using the example above, - would 
evaluate to & 24 . 

Symbols used in expressions evaluate to the address defined for that symbol. 
Any symbol which is in Dbug's symbol tables may be used. You can load 
separate symbol tables, from AOF files other than the one given on the 
command line. This can be useful in certain advanced applications. 

A symbol which is the name of a procedure evaluates to the entry address of 
that procedure. This is useful when, say, you want to set a breakpoint at some 
offset from a procedure's entry point. If a symbol is the name of a piece of 
static data, the resultant address is the first location occupied by that data. 
Some symbols are 'constants' which do not refer to particular objects, but give 
information about the object file. For example, the symbol 
Image$$ CodeBase evaluates to the lowest address used by the code area of 
the file . You can obtain a list of symbols that the debugger knows about using 
the L command. 

When giving the name of a symbol which begins with a $ sign, you should 
enclose it between vertical bars, eg I $entry 1. This prevents confusion with 
the format strings which also begin with $, and which are described below. 

If you suffix a symbol name with { n}, the symbol will only be searched for 
in symbol table n . This can be useful to ensure that you are using the right 
symbol when you have more than one table loaded. 

Operators 

The debugger understands seven different operators and allows the use of 
brackets. Four of the operators are the usual arithmetic ones: 

* Multiply 
I Divide 
+ Add 

Subtract 

39 



40 

Multiply and divide have a higher precedence than add and subtract, so an 
e~pression such as 1+2*3 would evaluate to 1+ (2*3 ) =7 not (1+2) *3=9. 
You can use brackets to over -ride this, eg ( 5-2 ) * ( 3 + 7 ) . 

Unary plus and minus are allowed. The former has no effect on the 
expression; the latter subtracts the value of the item following it from zero. 
The unary operators have a higher precedence that the binary ones above, so 
-1+1 evaluates to 0, not -2 . 

The final 'arithmetic' operator is A. This is a unary postfix operator, which 
means it takes one operand, which it follows. Its meaning is 'contents of, much 
the same as the Pascal operator of the same name. The operand is either an 
address, in which case the contents of the word at that address are fetched, or a 
register, in which case the register's contents are fetched. A has a higher 
precedence than unary plus and minus, so -1 2 A means minus the contents of 
address 12, not the contents of address minus 12. 

In addition, there are some relational and logical operators. The former 
perform unsigned comparisons on integers. They are: 

Equal 
<> Not equal 
# Not equal 
>= Greater than or equal 
< Less than 
<= Less than or equal 
> Greater than 

All of these return either TRUE or FALSE when displayed, which are 
represented as 1 and 0 internally. They may be combined with the logical 
operators: 

AND Logical AND 
OR Logical OR 
NOT Logical NOT 

which obey the usual truth-tables. Note that these are only logical operations, 
not bitwise ones. Examples of expressions are: 



FORMATS 

main 
. +&1 00 
iob " 

(arr2-arr1) / 4 
. =main 

The address give by the symbol rna in 
The last address in a D or E command plus & 1 0 0 
The contents of the data at the address i o b 
The difference in two symbols' values divided by 4 
The . symbol has the same value as main NOT 

main <printf 

Note: it may appear that Dbug can handle both signed and unsigned 
values. However, internally it treats all operands as unsigned. The 
fact that expressions such as - 2 - 4 produce the expected result is due 
to the fact that two's complement and unsigned arithmetic are the 
same thing on the ARM. Thus you should bear in mind that a number 
such as -1 (&FFFFFFFF) is always treated as a very large positive 
number, never a small negative one. This is illustrated by the 
expression - 1 > 0 yielding TRUE. 

Dbug is very flexible in the way in which it can display values. There are 
three main attributes that data may take. These are its 'style', its 'base' and its 
'size' . The first attribute determines whether a value will be shown as a 
number, as a symbolic name, as an instruction and so on. The base attribute 
refers to· numbers, and determij es which base they will be displayed in. Any 
base between 2 and 36 may be used. Finally, the size relates to the width of 
objects used in certain commands. 

Most commands have default attributes, but these may be over-ridden. An 
attribute begins with the character $. This is followed by a single letter, or a 
number in the range 2 to 36 when an arbitrary base is specified. 

Style formats 

Below is a list of the styles available. 

$c Character. The value is shown as a sequence of between one and four 
characters. ASCII values in the range 32 to 126 are displayed 
directly. All other values are shown in the form \ n urn, where n urn is 

41 



42 

the numeric representation of the character code. This uses the current 
numeric base (which defaults to }lex), but may be over-ridden by 
specifying a base attribute too . 

$ i Instruction. This is the default style for many instructions. The value 
is interpreted as a four-byte (one word) ARM op-code, and decoded 
appropriately. The instruction is displayed in standard ARM format . 
Registers in the special group listed above are displayed by name, 
rather than number. Numeric values, eg immediate operands, shift 
counts and immediate offsets, are displayed in the current numeric 
base. 

Destinations of branches are displayed symbolically if possible. If 
not, the destination is given as an absolute address. If this can't be 
calculated (because there is no particular address associated with the 
op-code), a byte offset from the instruction is given. 

$ s String. This treats the value as a series of characters, and prints them 
in $ c format. The string is terminated by the byte & 0 0 . 

$y Symbol. In this format, Dbug tries to display the value as a symbol 
whose value is found in the symbol table. If an exact match is found, 
ie there is a symbol whose value is exactly equal to the expression, 
then the symbol's name is displayed. If not, the symbol with the 
nearest value less than the expression is used, with an offset added in 
the current base. Because there may be more than one symbol with 
the same value defined (particularly in the case of constant symbols), 
you inay not always see the expected name displayed. If the value is 
less than any symbol, the numeric version is used. 

$p PC part. This format displays its operand in the current numeric 
base. However, before doing that, it bitwise ANDs the value with 
& 3FFFFFFC. This effectively masks out the bits which correspond to 

the flags in the ARM's RlS register. The main use of this format is 
when you are examining the contents of RlS (PC) or R14 (LR) and 
want to see only the address held there, not the status bits too. 



$ f Flags part. This complements the previous format. It uses only the 
bits of the operand which correspond to the flags and mode bits in 
the ARM's R15, and prints a textual interpretation of them. If any of 
the status bits NZCVIF are set, then the appropriate letter is 
displayed. This is followed by one of the strings User, F I Q, IRQ or 
SVC, according to bits 0 and 1 of the value. 

$n Numeric. Values are displayed as numbers when this style is 
specified. The current base is used, unless a base attribute is also 
specified in the command. The base defaults to hexadecimal when 
Dbug starts up. Values are always displayed as unsigned in this 
style. See $ z below for an alternative. 

$ z Signed numeric. This style also displays values as numbers, but if the 
top bit (determined by the size of the operand) is set, then it prefixes 
the value by a minus sign and then displays the absolute value. This 
applies to all bases, not just decimal, so you can see things like - & 1 
for a signed, hexadecimal value. 

$ r Real. This style allows the display of IEEE floating point values . The 
precision used is determined by the size attribute: one, two or three 
words for single, double and extended precision respectively. 

$q Packed real. This format interprets the value as a three-word packed 
floating point number. 

$v FP flags. This format interprets the value as a set of flags whose bits 
correspond to those in the FPU processor status register. When you 
examine the FPPSW, this format will be used by default. It is also 
useful for examing memory locations which are supposed to contain 
dumped versions of the FPPSW. 

Base formats 

Below is a list of the bases that can be used. 

$d Decimal. A decimal number is just a sequence of digits in the range 0 
to 9. 

43 



44 

$x Hexadecimal, prefixed by the & character. Letters are printed in 
upper case. 

$o Octal (base 8). Numbers are printed in the form 8 _ digits. Octal 
digits are in the range 0 through 7. 

$n Base n . This may be in the range 2 to 36. The letters A through Z are 
used as highest digits in the bases 11 through 36 respectively. 
Numbers are printed in the form n d i g i t s, except for bases 10 and 
16, which are printed as described above. 

Size formats 

Usually operands are treated as being four-byte quantltles for display 
purposes. However, for particular commands it might be more useful to treat 
them differently. The size attribute allows this. 

$e Three word. This size is used for extended and packed precision real 
numbers. 

$ t Two word. This size is used for double precision real numbers. 

$w Word. This is the usual four-byte integer interpretation of operands, 
or single precision reals. 

$h Half-word. This attribute gives a 16-bit (two-byte) interpretation of 
operands. 

$b Byte. When this attribute is set, operands are treated as individual 
bytes. 

Setting default formats 

As mentioned above, most commands use a set of default formats for their 
output. Unless a note to the contrary is made, you can assume that the 
commands described below produce their output using the current default 
attributes. When Dbug starts, these are set to: $I $X $W. 



-

You can alter the default formats using the format type as a command. For 
example, the command: 

$N 

causes the default style to become Numeric instead of Instruction. Thereafter, 
commands which usually produce assembly listings (eg the Examine 
command) will display numbers instead. Similarly you could issue the 
command: · 

$H 

to set the default size to half-word. 

DATA COMMANDS 

This section lists the commands which are concerned with the examination and 
altering of memory locations and registers. It also covers the commands which 
produce useful information, such as =, which displays the result of an 
expression, and L, which lists symbols. 

D - Deposit values 

This command stores a given value in a memory location or register. The syntax 
is: 

D addr val [format] 

The first argument, add r, is an expression giving the address (or register name 
or number) of the first byte to be altered. An address may be numeric, or 
@name, where name is the name of a user variable. See the section Variables 
and macros below for details on user variable. 

The val argument is an expression giving the value to be stored there. The 
only format allowed (if one is given) is a size attribute. This determines how 
many bytes will be affected by the command. 

45 



4.6 

If the size is omitted, the the current size is usually used. Note however that 
certain types of operand (eg machine registers) have their own 'natural' sizes 
which over-ride the current setting. In particular, for ARM register and the 
FPPSW the size defaults to $ w; for FP registers it is $e. 

Examples are: 

D rO 1 23 

D r O 12 3 $b 
D my s tr &0 04 3 4241 
D FPPSW &17 
D @ADDR main " 
D F1 2 1 
D .+4 ( -1) 

Store the value 123 in RO, zeroing the top three 
bytes 
Store 12 in RO, leaving the top three bytes unaltered 
Store the characters A, B, C, NULL at mystr 
Store INX,OFL,DVZ,IVO flags as set 
Set a user variable - see Variables and macros 
Set the contents of an FPU register 
Store the value -1 at the word after the last one 
Note the brackets around - 1 to avoid ambiguity 

E - Examine memory or registers 

Examine complements the Desposit command described above. It allows you 
to see the contents of a series of memory locations or registers. The syntax of 
the command is: 

E [address-range] [format] 

The address-range, if specified, can take one of two forms. If it is omitted 
altogether, it means 'the single location after the previous one examined'. This 
allows you to type a sequence of E command, with each displaying successive 
locations. 

An address-range of the form start: end gives the first and last address 
(inclusive) of the block to be examined. Both values can be expressions. The 
output of the command displays values at successive locations until the end 
location would be exceeded by the next line. The address of each location 
exceeds the one before by the size attribute being used. 

If you give the address range in the form start, count, then count lines of 
output are produced, starting at address start . In fact, it is equivalent to 



start: start+count *size-1, where size is the size attribute used during 
the command. 

At the end of every E command, Dbug sets the special symbols . and -, as 
described in the section 'Operands' above. It also sets an internal 'next 
location' value, equal to . +s i ze. This is used as the location for the next E 

command if you do not specify any addresses. 

The output of the E command is a series of lines with the following format: 

label: contents 

The 1 abe 1 is the current location, displayed using the $ Y format. Thus, if 
possible Dbug displays the location symbolically. If it can't, it displays it in 
the numeric base used during the command. The contents are displayed in 
the style format used during the command. Unless this is over-ridden, it will 
be the default of $ i for word-length operands and $ n for other lengths. 
Default formats for ARM registers, FPU registers and FPPSW are $ n, $ r 
and $v respectively. 

Examples of use of the E command are: 

E 0,4 
E 0,4 $d 
E 0,4 $n 
E 0,5 $n $d 
E 

E 0,4 $b 
E main:err 
E r0,16 
E lr $f 
E fppsw 
E fO 
E fl $n 

Display the contents of words at & 0, & 4, & 8, & 12 
As above, but all offsets etc. are in decimal 
Display the contents of the 4 words numerically (hex) 
Display the contents of the 4 words in decimal 
(After the previous one) display the contents of the word at 
address 16 
Display the contents of the bytes at & 0, & 1, & 2, & 3 
Display the words at rna in to err as instructions 
Display all of the user registers' contents 
Display the flags part of R14 
Display FP flags 
Disphi.y FO as a real 
Display FO as three words 

47 



F - display the registers 

This command displays the contents of all the ARM's 27 registers. The 16 
user/all-mode registers are displayed, followed by the two SVC mode 
registers, the two IRQ mode registers, and the seven FIQ mode registers. 

You can also use E RO , 16 $n to display just the user mode registers. 

= - display an expression 

This is a general-purpose display command. It has the syntax: 

= [expression] [format] 

The expression can involve any of the operand and operator elements 
described above. If it is omitted, nothing is displayed. The format may be 
used to over-ride the current defaults. As the start-up style is Instruction, you 
will usually use $n in this command to display the results numerically, or 
issue a $ n command to set the default style to numeric. 

Examples of the use of = are: 

main $n Print the value of the symbol main 
1234 $n $2 Print 1234 in binary 
main " Display the instruction at main 
Image$$DataLimit-Image$$DataBase $n 
pc"'"' Display the instruction addressed by the PC 

FILE AND SYMBOL TABLE COMMANDS 

48 

This section covers the commands relating to whole AOF files and the symbol 
table part of AOF files. The only AOF-related command is G, to load a file. 
It is described below. 

G - get an AOF file 

This command has the form: 



-

G file 

and is used to load the code, data and symbol table chunks of an AOF file 
into memory. The code arid data parts are loaded at the locations appropriate 
to the base address used when the file was linked (and given by the symbols 
Image$$CodeBase and Image$$DataBase). The symbol table is loaded 
into the free space between the end of the Dbug program and the memory 
limit available to it. It adds to (rather than replaces) any symbol tables 
already loaded. 

A use of this command is when you have started using Dbug without specifying 
a filename on the command line, and then want to load one. An example is: 

G o.test 

L - list symbols 

This command lists symbols from the current table(s). Its syntax is: 

L [pattern] [format] 

The default format is $n. You can over-ride this to print the symbols' values in 
other bases, or perhaps as characters. You can't over-ride the size, which is 
always word. 

If you specify a pattern, only those symbols which start with the characters 
in the pattern (and with the same letter case) will be displayed. Examples 
are: 

L 

L $2 
L $8 C$$ 

All symbols that start with an underscore 
All symbols, in binary 
All symbols that start with C $ $, in octal 

49 



X - handle symbol tables 

There are three forms of this command, dependent on the letter that follows it. 
They are: 

X G file 
X D file 
X L 

Get the symbol table from the AOF file given 
Dispose of the symbol table obtained from the named file 
List the symbol tables 

The memory space between the top of the Dbug program and the limit 
specified by the -Limit command line parameter is used to hold symbol 
tables. As mentioned earlier, when an AOF file is loaded, its symbol table is 
automatically loaded too. You can see this by using the X L command, which 
produces output of the form: 

Table 1 test 

where test is the filename. 

There is a small chance that if you load many symbol tables, the space used to 
store them will eventually become full. To avoid this, you can delete memory 
symbol tables that are no longer required using the X D command. 

Finally, X G is used to load a new symbol table from the AOF file given. 

PROGRAM EXECUTION COMMANDS 

50 

Clearly there is more to debugging a program than examining memory 
locations and displaying expressions. This section describes an important set 
of commands concerned with controlling the execution of the debugged 
program. 

R - run the program 

This command starts execution of the program. lt has the form: 

R [arguments] 



You do not have to specify an address. Dbug starts execution from the entry 
point of the program, given by the -symbol Image$$CodeBase. 

The arguments, if present, are passed directly to the program. They can then 
be read using whichever method the program normally uses (eg via * argv [] 
and argc in C). 

If you just Run a program, it will execute until it either terminates normally, 
or some exception such as illegal address or undefine~ instruction occurs. At 
this point, control will return to Dbug. It is usual to set breakpoints before 
executing a p~ogram, so that it is interrupted at a well defined place, enabling 
the stack and variables etc. to be examined. 

B - handle breakpoints 

Breakpoints are set, cleared and listed using this command. A breakpoint 
marks an instruction which, when executed, will cause control to return to the 
debugger instead of allowing the program to continue normally. The three 
forms of the command are: 

B S address ["commands"] 
B D [address] 

B L 

The first form Sets a breakpoint at the address given. This can be a general 
expression yielding a suitable word-aligned address. The string, if present, is 
a list of commands to be executed when the breakpoint is encountered. For 
example, you might use: 

B S getstr "F" 

to display all the registers when the breakpoint at the entry of gets t r is 
executed. Multiple commands may be separated using semicolons (; ) . 

You can also set conditional break points. The first 'command' in the string 
should be an expression which yields either TRUE or FALSE. Whenever the 

51 



52 

breakpoint is encountered, the expression is evaluated. Execution only 
terminates if it yields TRUE or an error. An example is: 

B S process " countA=lO ; e array , S" 

The second form of the command is used to Delete a breakpoint. If the 
address is given, only the breakpoint there is deleted, otherwise all 
breakpoints are removed, with a prompt for confirmation before each one is 
removed. 

The last form Lists the current breakpoints. An example of the output from the 
command is: 

Breakpoints 
code main 
code getstr+&48 

S - single step 

Instead of running the program at full speed until a breakpoint is met, you 
may want to step through the code at a more sedate pace, examining the state 
of execution as you go. The S command allows you to do this . It has the form: 

S [count] 

count is the number of instructions you want to execute. The default is one. 
At the end of each Step command, the next instruction to be executed is 
displayed. Note that if you use , say: 

s 10 

to step through ten instructions, the command still only displays one instruction 
- the next one. 



HE DBUG UTILITY 

T- trace 

The T command allows you to Trace program execution. It is similar to 
executing an infinite succession of S commands, but rather faster. As with Step, 
each instruction is displayed just before it is executed. 

Note that like R, the only way to stop a Trace is to execute a breakpoint. You 
should therefore be careful not to start tracing a section of code with a long, 
uninterrupted loop, unless you are prepared for a long wait. 

C - continue execution 

Having interrupted the program with a breakpoint, you can use any of the 
commands that Dbug provides to examine and perhaps alter the execution 
state. Eventually you will want to resume execution. You do this using the C 
command. It continues execution from the next instruction, which will be just 
after a breakpoint unless you have single-stepped on. 

U - unwind the stack 

This command Unwinds the stack, displaying the contents of the frame pointer 
(RIO) and location of the procedure call which created the stack frame . The 
syntax of the command is: 

U [CIP] [F] [count] 

If the count is omitted, the stack is unwound until the stack base is reached. 
The stack base is the highest memory location occupied by the (descending) 
stack, and marks the start of procedure stack frames . If you include the count, 

only that number of stack frames are shown. 

If you give the C option, then the unwind continues from the previous U 

command. This would had to have been one which specified a count for the C 
to be useful. Specifying P causes the stack to be unwound from the same level 
as the previous U command. 

The F option causes all stacked registers to be displayed, in addition to the 
information mentioned above. On entry, a procedure saves the pc, lr, ip and fp 

53 



54 

registers, in addition to any registers that it uses and needs to preserve under 
the Acorn procedure calling protocol.· For each register that was saved, its 
name and contents are displayed, using the $ Y format. 

Note: this command relies on the stack being organised according to 
the Acorn procedure calling standard for its operation. Programs 
which do not follow this standard cannot have their stack checked 
using the Unwind command. 

J - jump to a procedure 

A - set procedure arguments 

It is sometimes useful to be able to call a procedure in the debugged program 
independently of the normal flow of control of the program. For example, you 
might want to test a procedure from the debugger before incorporating it into 
the program. Alternatively, you might have a procedure written specifically to 
be used from the debugger, for example one which prints out complex data 
structures which would be tedious to examine directly from Dbug. 

The J command can be used to call a procedure in the manner described 
above. It has the syntax: 

J address 

The address is the entry point of the required procedure, and so is usually 
just a symbol, eg: 

J disptree 

You can set up the first four parameters of the called procedure using the A 

command. It has the syntax: 

A arg value 

The arg is in the range 0 to 3. The value can be any expression appropriate 
to the argument that is being initialised. For example, suppose the dis pt re e 



-

procedure from the previous example takes a pointer to a data structure which 
is held in the static variable tree root, you might use this before calling it: 

A 0 treeroot" 

On return from the procedure, the result (ie the value in RO) is displayed, as 
in: 

Function result lE 

Note: Using the J command is potentially dangerous. For example, if 
the called procedure assumes some facts about its run-time 
environment which aren't true, it might execute instructions (eg by 
calling a library procedure) which result in incorrect operation. It 
should be classed as a 'use with caution' command. 

VARIABLES AND MACROS 

Dbug provides some facilities for making debugging more convenient. The first 
of these is variables. A variable is a named object where you can store data to 
be used later. Variables obviate the need to make notes of important 
addresses etc - they can just be stored for later access. 

The second device is macros. A macro is a named 'string' which contains a list 
of commands that can be executed. Storing common command sequences in 
macros can save a lot of typing. 

Variable and macro names are separate from each other and from symbol 
names. There is therefore no need to worry about clashes of names. 

V - create a variable 

This command has the form: 

V @name [size] 

The name part is a sequence of one or more alphanumeric characters, the first 
one being a letter or underscore. The size is the number of bytes required for 

55 



56 

the variable, with four being the default. It can be arbitrarily large, so you can 
use variables to store strings. The contents of the variable are not initialised at 
all. 

Variables may be used in the Examine and Deposit commands' address part. 
For example: 

E @addr 

would show the contents of the variable called addr, and: 

D @addr 12 $b 

would set the first byte of that variable's value. Variables can also be used as 
the operand of the " operator, as in: 

D @cnt @cnt"+l 

to increment a count. 

M- Macros 

The M command is used to create, list and execute macros. To create a macro, a 
command of the form 

M C name "commands" 

is used. The name obeys the same rules as those for variables (but doesn't 
have a leading @ ). The commands part within the quotes is a sequence of Dbug 
command, separated by semicolons. An example is: 

M C A "E @here",20;D @here @here"+BO" 

This sets the macro called A to be an E command, which happens to use the 
contents of a variable as one of the operands. The second part of the command 
increments the variable by the number of bytes examined. 



It is a good idea to keep macro names short, as they are supposed to save 
typing. You can execute the macro using: 

M X A 

This will execute the Examine and Deposit commands exactly as if they had 
been typed at the keyboard. 

Finally, you can use: 

M L A 

to list the contents of the macro. If you don't give a name in theM L command, 
all macros are listed. 

- MISCELLANEOUS COMMANDS 

This sections describes those commands which don't come under any of the 
previous headings and which, in general, are fairly esoteric. 

K- set MEMC domain 

This command sets the 'domain' for use by the Examine command. A domain is 
a property of the memory mapping performed by the MEMC chip in the 
Archimedes workstation, and is not currently used under Arthur. The syntax of 
the command is: 

K domain 

where domain is a number between 0 and 15. This command is best ignored 
at the moment. 

P - set register save address 

This command has the syntax: 

P [addr] 

57 



58 

It sets the address where Dbug believes the registers have been saved. This 
allows, for example, the examination of the saved register set of a thread 
which is not the current one. The default value may be restored using the P 

command on its own. 

As with K, this command has little application under Arthur. 

Q - quit from Dbug 

This command quits Dbug. It does not verify your decision to exit the program, 
so you should be careful not to type it accidentally. 

* - issue an OS command 

As with most interactive programs running on the Archimedes personal 
workstation, Dbug will treat a line starting with a * character as a string to be 
passed directly to the operating system. This makes the full power of the 
Arthur command line interpreter available to the user. 



-

This chapter describes not a complete program, but a BASIC library file, 
which can be used to advantage by any other BBC BASIC program. The 
library is called BASIClib. Shell. It contains the following function and 
procedure definitions: 

PROCAssemble Shell 
PROCShell(command$) 
FNShell_String_UC(c$) 
FNShell_Array(c$(),c$) 

Assemble machine code for the Shell 
Call the Shell code with a string 
Convert string to upper case 
Split string into words 

There are really two aspects to the Shell library. The first is concerned with 
calling applications from within BASIC, and enabling BASIC to continue 
when the application completes. This ability enables you to use BASIC as a 
command language (such as the Cor Bourne shell under Unix). You can call 
compilers, linkers, editors and other such programs from BASIC, and use the 
full power of the language to change the way in which such programs are 
called based on variables such as user input, the results of previous 
compilations etc. 

The second use of the Shell library is in decoding parameters from the 
BASIC command line. There is no built-in command in BASIC for reading 
command line parameters (such as argv and argc in C). The Shell library 
provides a way of accessing the BASIC command line, and splitting this up 
into 'words'. 

THE SHELL FACILITY 

We will describe the use of the Shell procedures first. To see why these 
procedures are required, you have to understand what happens when you start 
an application running using a command such as * 1 ink or * f 7 7. Applications 
running under Arthur are allowed to use memory from the lower limit of 
& 8 0 0 0 up to a variable upper limit, called HIMEM, whose value depends on 
the memory size of the machine and on how much memory has been configured 
for other resources such as the screen and modules. 

Most RAM-based applications load at & 8 0 0 0, have a stack growing down 
from HIMEM, and use the area in between for dynamic (heap) storage. 
Programs written in C ( eg the Diff and Common utilites described in the 

59 



60 

previous chapter) are examples of such applications, as are the compilers and 
linkers that run under Arthur. 

When an application terminates, it executes a SWI called OS_Exit. This 
causes control to return to the most recent· program that set up an 'exit handler'. 
This is usually the operating system, so applications return to the Arthur * 
prompt when they finish . 

Consider now what happens when you call an application from a BASIC 
program using the * command facility (or equivalently the OSCL I statement). 
The application loads at & 8 0 0 0. This is a disaster for a start. ROM BASIC's 
workspace starts there - about 4K of internal variables, followed by the 
BASIC program and its variable . RAM BASIC actually executes there, so 
would be over-written by the new application. Then, when the application 
terminates, it returns to the OS, so even if BASIC was left intact, control 
wouldn't return to the BASIC program after an application terminates. 

The upshot of this, and the Shell library's raison d'etre, is that you can't call 
applications from BASIC using the normal methods. Note that we are talking 
only of applications here. It is of course perfectly possible to call other types 
of command, eg module commands, transients etc. These return using a simple 
MOV PC, R14 -type instruction, and don't interfere with application workspace. 

To enable applications to be run from BASIC, the Shell library does the 
following. First, the program using the library must call 
PROCAssemble Shell. This assembles the machine code which is 
subsequently called by P ROC She 11, and which is the key to the whole thing. 
When you subsequently execute a statement such as: 

PROCShell("f77 -link fred") 

the command string is placed into a buffer, and the machine code assembled 
previously is called, with the address of the buffer as a parameter. 



The Shell machine code ensures that, before the operating system is called to 
execute the command given, the BASIC workspace is moved to a safe place. It 
also sets up an exit handler, so that when the application terminates, control 
passes back to BASIC (or more accurately, the Shell machine code, then 
BASIC). The phrase 'a safe place' above means HIMEM. All of the memory 
used by BASIC from &8000 to END (which gives the highest address used by 
BASIC's variables) is copied up towards HIMEM. The operating system's 
value for HIMEM is then altered to be just below the relocated BASIC 
storage. This is shown diagrammatically below: 

FREE SPACE 

OS WORKSPACE 

BEFORE 

FREE SPACE 

NEW PROGRAM 

ORIGINAL 
HIMEM 

t----------i &8000 
OS WORKSPACE 

l...------------1 &0000 

AFTER 

When the application terminates, the new exit handler copies the program 
down again and restores HIMEM, so that the BASIC interpreter knows nothing 
of what has happened. Note that any OS_CLI command may be called by 
using PROCShell, but for commands such as *CAT and *MODULES, it will 
involve a lot of work which could be avoided using * or OSCLI. 

61 



READING COMMAND PARAMETERS 

62 

It is quite likely that a BASIC program which uses PROCShell will itself be 
called as an OS_CLI command. As you may know, the Arthur 
Alias$@RunType facility lets you execute BASIC programs direcdy from the 
command line. FOF example, if you type the command: 

MakeC 

and MakeC is a file with type FFB (BASIC), the actual command executed by 
the operating system will be: 

BASIC -quit "MakeC" 

This causes BASIC to start-up, load the program (which may be text or 
tokenised), execute it, then exit back to the OS. Using this facility, you can 
write utilities which act as though they are written in machine code or a 
compiled language, but with the convenience of using an interpreted language. 

It is useful if you can pass parameters to the BASIC program in the usual way, 
by appending them to the command name. As mentioned above, BASIC has no 
built-in way of reading such parameters. However, PROCAssemble Shell 
sets up a string variable Shell Env$ which contains the text of the command 
following the program name. For example, if you type the command: 

f77 - opt XO myprog 

then after the (BASIC) program f77 calls PROCAssemble Shell, the string 
SShell_Env$ will be set to - opt XO myprog. -

This is a useful first step. However, it is even more useful if the command 
parameters can be manipulated as an array of words instead of a single string. 
This is where FNShell_Array comes in. It is called with two parameters. 
The first is a string array, and the second is a string of space-separated 
command words (eg Shell Env$). The function splits the string into its 
constituent words and assigns the elements of the array to them. It returns the 
number of words read. 



-
-

-

BASIC SHELL LIBRARY 

If we use the value of Shell_Env$ used in the example above, then the call 
FNShell_ Array (a$ () , ShellEnv$) will return 3 and elements 0, 1 and 2 
of a$ () will contain - opt, XO, and myprog. 

The final function is useful when you examine the parameters for options or 
'switches'. By convention these begin with a minus sign,·and may be upper or 
lower case.The function FNShell String UC takes a string parameter and 
returns the same string, but with all the letters in the string forced to their 
upper case versions. 

All programs should allow the -help switch as the first parameter, so a 
typical line near the start of a BASIC Shell program might be: 

IF FNShell String_UC(a$(0))="-HELP" THEN ... 

This assumes that the parameters have already been split into words . 

USING THE SHELL LIBRARY 

Now you understand what the Shell library does, we give some examples of 
its use. Programs which use the library should start by loading it using a 
LIBRARY statement. 

Next, the program should call PROCAssemble Shell. This both assembles 
the machine code used by PROCShell and sets up Shell Env$. If the 
program expects arguments on the command line, it could use 
FNShell_Array to read them. It should at least check for -help. 

63 



64 

Putting these first few actions togther, we have: 

1000 REM >filecat 
1010 LIBRARY " $.BASICLib . Shell " 
1020 PROCAssemble Shell 
1030 DIM argv$(20) 
1040 argc=FNShell_Array(argv$() , Shell_Env$) 
1050 IF FNShell_String_ UC (argv$(0))= "-HELP" THEN 
1060 PRINT "Fi lecat concatenates zero o r more files " 
1070 PRINT " Syntax : Filecat [file] ... [-to file] " 
1080 END 
1090 ENDIF 

This is followed by the body of the program. In the current example, no 
further use is made of the procedures and functions in the Shell library. 
However, the program is listed below as it does show how a r g c and 
a rgv $ ( ) are used. As you can see from the syntax description printed when -
he 1 p is specified, the command is followed by a list of filenames, optionally 
followed by a destination specification. If no source files are given, the 
keyboard is used; if no destination is mentioned, the screen is used . 

1100 IF argc >= 2 AND FNShell String_UC(argv$(argc- 2)) 
1110 dest$ = argv$ (argc- 1) 
1120 argc -= 2 
1130 ELSE 
1140 dest$ 
1150 ENDIF 
1160 

"rawvdu :" 

1170 IF argc = 0 THEN 
11 80 
1190 

argc = 1 
argv$(0) 

1200 ENDIF 
1210 

" rawkbd: " 

1220, out = OPENOUTdest$ 
1230 
1240 FOR i % = 0 TO argc-1 

125 0 in = OPENINargv$ (i %) 

"-TO " THEN 

1260 IF in= 0 CLOSE#out :ERROR 99 ,"Filecat: file " +argv$(i%)+"not found " 



,__ 

1270 WHILE NOT EOFin BPUT#out , BGET#in END WHILE 

1280 CLOSE#in 

1290 NEXT i % 

1300 

1310 CLOSE#out 

1320 END 1 

The next example uses PROCShe1 1 to call an application from BASIC. In 
particular, it calls the Fortran 77 compiler front-end, and optionally the code 
generator. It also interacts with the user to obtain certain parameters. It is a 
good example of a BASIC program which uses P ROC She 11 to provide a more 
powerful command script than would be available using a simple *EX EC file 
(which, for example, couldn't use an interactive user input). 

1000 REM > $ . Library . F77 

1010 LIBRARY " $ . TEMP . SHELL LIB " 

1020 PROCAssemble Shell 

1030 IFFNShell String UC(Shell_Env$ )="-HELP " THEN 
1040 PRINT " F77 command command 1 . 00 : - help"' 
1050 PRINT " Use : f77 <program name> [ - opt <options>) " 

1060 PRINT " Program will accept just f77 and prompt f or parameters ." 
1070 END 

1080 ENDIF 

1090 A$=Shell Env$ 

1100 IFINSTR(A$, " " ) A$=LEFT$(A$ , INSTR(A$ ," " ) - 1) 

1110 B%=INSTR (FNShell_String_UC (Shell_Env$) , "-OPT " ) 
1120 B$= "" 
1130 IFB%>2 B$=MID$(Shell_ Env$ , B%+5 ) 

1140 IFA$= "" THEN INPUT " Program source file name , options : "A$ , B$ 
1150 PROCShell( " f77fe src. "+A$ " - to fcode ." +A$+ " - opt +" B$) 
1160 PRINT " Run the cg? [y /Y) :"; 
1170 R$=GET$ 

1180 PRINTR$ 
1190 IFR$<> " Y" IFR$<> " y " END 

1200 INPUT"New map size: "A 
lZlO IFA=O A+40 

1220 PROCShell( " f77cg fcode ."+A$+ " - to aof ." +A$+ " - opt m" +STR$A+ " +" +B$ ) 

1230 PRINT"link it? [y/Y): "; 

65 



66 

1240 R$=GET$ 

1250 PRINTR$ 

1260 IFR$<> " Y" IFR,$<> " y " END 
1270 PROCShe11( " 1ink aof. " +A$+ - library $.arm.fortran . xlib_f77 - image 

" +A$+ " - adfs ") 

1280 PRINT " run it? [y/Y] : "; 

1290 R$=GET$ 

1300 PRINTR$ 

1310 IFR$ <> " Y" IFR$<> " y " END 

1320 PROCShell (A$) 



This chapter describes a utility which will not be used frequently, but is very 
useful when it is required. Memtest checks the application workspace (from 
& 8 0 0 0 to HIMEM) in a variety of ways. The checks performed detect memory 
errors due to faults such as: address lines stuck at 111 or 101

, address lines 
shorted, and data lines stuck at one level or shorted together. 

Memtest actually performs four separate tests on memory, designed to detect 
different types of memory fault. These are as follows . 

Phase one: incrementing pattern 

In this test, the application memory is filled with a pattern of words, such that 
the content of each word is equal to that of the previous word plus a fixed 
number. Once filled, the memory is checked to ensure that the pattern read 
back is the same as the one stored there initially. 

This test is performed four times, with different start values and increments. It 
is likely to fail if there are any problems on the data bus, eg data lines stuck 
or shorted, or faulty memory locations. 

Phase two: TRUE hierarchy 

This test gives the address lines of the machine a good work-out. It works as 
follows. There are several passes 1, 2, 3 ... 31. For each pass n, the application 
space is filled such that if address line n is high for the word being 
addressed, the value & F F F F F F F F is stored there, otherwise 0 is stored. As 
above, once the pattern has been written, it is checked for validity. 

Because memory is filled a word at a time in this test, address lines AO and 
A1 are always zero. Thus on the first pass (testing Al), a zero is written to 
every location. On the second pass (testing A2), alternate words are set to 0 
(even word addresses) and & FFFFFFFF (odd words). On the third pass, the 
pattern is 0, 0, &FFFFFFFF, &FFFFFFFF and so on. 

67 



Phase three: FALSE hierarchy 

This is exactly the same as phase two, except that the opposite values are 
stored in the memory locations. Thus if the address line for pass n is high, a 0 
is stored in the word; if it is low, &FFFFFFFF is stored. 

Phase four: Cycling bits 

This phase is another exhaustive test of the data bus. It works by storing a 
pattern of words, each with a single bit set in memory. Each word has bit (n+ 1) 
MOD 32 set, where n is the bit that was set in the previous word. 

There are 32 passes. On the first pass, the first word to be tested has bit 0 set, 
the second word has bit 1 set, and so on. The cycle repeats, so that the 32nd 
word also has bit 0 set, the 33rd word has bit 1 set, and so on. On the second 
pass, the first word has bit 1 set, the second one has bit 2 set. On the last pass, 
the first word has bit 31 set, the second word has bit 0 set. This is summarised 
in the diagram below: 

Addr Pass 1 Pa ss 2 Pass 31 Pa ss 32 
00 &00000001 &00000002 &4000 0 000 &80000000 
04 &00000002 &00000004 &80000000 &0000000 1 
08 &00000004 &00000008 &00000001 &00000002 
oc &00000008 &00000010 &00000002 &0000000 4 

1C &80000000 &00000001 &20000000 &40000000 
20 &00000001 &00000002 &40000000 &80000000 
24 &00000002 &00000004 &80000000 &0000000 1 
28 &0000000 4 &00000008 &00000001 &00000002 

ERROR MESSAGES 

68 

If an error is detected during any of the phases of the memory test, a message 
of the following form is printed: 



Phase 1 fail at &xxxxxxxx with &xxxxxxxx instead of &xxxxxxx 

where xxxxxxxx stands for a 32-bit hexadecimal number. 

If no errors were detected, the message: 

PASSED ...... . 
Press SPACE to continue. 

is printed. When you press space, control returned to the OS, and the VDU is 
disabled. 

69 



70 



CHUNK FILES 

This appendix briefly discusses the three file formats mentioned in this 
manual. They are Acorn Object Format (AOF), Acorn Image Format (AIF) 
and Acorn Library Format (ALF). This data is given for information only. It is 
not detailed enough for, say, a compiler writer to be able to produce a 
correctly formatted AOF file . If you need this level of detailed information, 
contact Acorn directly. 

AOF and library files are held in a format known as 'chunk file format '. 
Chunk files allow a single file to hold multiple objects which can be treated 
as separate entities. At the start of a chunk file is a header. This identifies the 
file as being in chunk file format, and contains information about the rest of 
the file . 

The first word of a chunk file is the special value &C3CBC6C5. (Or, if it's 
easier to remember, the string 'EFKC' with the top bits set.) Unless a file 
starts with these four bytes, it is not a chunk file. 

The next two words in the file give the maximum number of chunks it may 
contain (maxChunks) and the current number of chunks (numChunks), 
respectively. MaxChunks is fixed when the file is created; numChunks can vary 
throughout the life of the file . 

The next 4*maxChunks words are entries for each chunk. An entry comprises a 
chunk id (two words), a file offset for the chunk (one word, a multiple of four 
bytes), and the length of the chunk (one word). The format of the chunk id is a 
four character type name followed by a four character component name. 
Examples of type names are 'OBL' for AOF files and 'LIB_' for library files. 
Examples of component names are 'HEAD' and 'SYMT', which are both 
component chunks of an AOF file . 

If the file offset for a chu_nk is zero, then that entry is not being used. There 
should be maxChunks - numChunks entries for which this is true. 

Immediately following the chunk entries are the chunks themselves. These are 
of arbitrary format, defined independently of chunk files. The contents of the 
chunks in library and AOF files are described below. 

71 



AOF FILES 

72 

AOF files are produced by compilers and also by assemblers when 
assembling a module for linking into another program. An AOF file is a 
chunk file. 

AOF files are defined to have a least five chunks. The names of these chunks 
are stored in the chunk file header. They are: 

OBJ_HEAD 
OBJ_AREA 
OBJ_IDFN 
OBJ_SYMT 
OBJ_STRT 

The header 
The areas information 
The indentification part 
The symbol table 
The string table 

The prefix OBJ_ identifies the chunks as being part of an AOF file. The next 
four characters identify the particular sections of the AOF file which are 
present in most AOF files. In fact, only the header and areas chunks are 
compulsory, and there may be others (eg debugging information) for use by 
special tools . 

The header 

The header contains information about the rest of the file. It is in two parts; the 
first six words iJ.re fixed and are always present. Following the fixed part is a 
variable-length part which describes the contents of the areas chunk. 

The fixed part of the header contains: the object file type, the version of the 
object format, the number of areas, the number of symbols, and entry address 
information. 

The areas information contains one entry for each area in the areas chunk. 
Typically there are two areas, one for data and one for code. The area 
information entry contains: the name of the area, the alignment of the area, its 
attributes (whether it's code or data, absolute or position independent, etc), the 
size of the area, the number of relocations it contains, and the base address for 
the area (for absolute areas). 



Area name strings are held in the string table chunk, OBJ_STRT, as is all 
textual information in the AOF file. Strings are referred to by their offsets 
from the start of the string table. Typical names for areas produced by a 
compiler (the C compiler, in fact) are: C$$code, C$$data and C$$debug. The 
last refers to an area holding debugging information for the ASD program. 

The areas chunk 

This chunk contains the code or data referred to in the header chunk. It consists 
of one or more areas, each followed by its associated relocation information. 
Relocation information is present to allow the area to be moved from the 
absolute area for which it was compiled, when it is being linked with other 
files. It consists of an offset into the area of the data to be relocated, a symbol 
to be used to in the relocation (if required), the size of item to be relocated 
(byte, half-word or word), and the method to use to perform the relocation. 

The Linker uses the relocation table to 'patch' the area so that the data or 
instructions it contains are consistent with the position it occupies in the final 
linked ouput. It might also use the symbol associated with the relocation to 
insert the address of an external routine or data object into the file . 

The symbol table chunk 

This chunk contains information about the symbols referenced in the relocation 
information. Additionally, symbols which are being exported from an area, eg 
library routines, are defined here. The number of entries is given in the header 
chunk. 

Each symbol entry includes a reference to: the symbol name, its attributes 
(local/global, constant/offset, definition/reference etc.), its value and the area 
with which it is associated if its value is an offset from an area base address. 

As with all AOF file strings, the name is actually stored as an offset into the 
string table chunk. This enables the name to be stored as a fixed length (one 
word) item in the symbol table entry. 

73 



AIFFILES 

74 

The string table chunk 

This chunk contains the textual names of all of the identifiers in the file. In 
particular the area names are stored here, as are the names of the symbols in 
the symbol table chunk._ An entry in the string table consists of a word-aligned 
text string, terminated by a zero byte. 

Note: identifiers in the symbolic debugger information area 
produced by compilers have their text stored in the debug area itself, 
not in the string table chunk. 

The identification chunk 

This chunk contains a text string, terminated by a zero byte, identifying the 
language and version number which produced the AOF file. This chunk is not 
required. 

An image format file is produced by the Linker as a result of resolving the 
external references in one or more object files and libraries. Although an AIF 
file is not a chunk file, it is divided into several parts. These are described 
briefly below: 

Header 

The header is 32 words (128 bytes) long. The first four words are branch 
instructions into the following pieces of code: 

000000 
000004 
000008 
oooooc 

BL decompressCode 
BL selfRelocCode 
BL zeroinitCode 
BL imageEntryPoint 

The addresses on the left are offsets from the start of the file. Only the last 
branch, to the start of the program proper is required. The other three may be 
replaced by no-op instructions (BLNV) if the relevant routine is not present. 



I PPENDIXA 

An AIF file is always entered at its first location, so l;Jefore the program starts 
to execute, the following three things may happen. First, the file is 
'decompressed'. This applies to files which have been processed by the 
Squeeze program. This program compacts the image by encoding four-byte 
words into one or two-byte versions, and adds a translation table and code to 
perform the decompression to the end of the file. Squeeze then sets the first 
instruction to branch to the decompression code. 

Once the program has been expanded, it may relocate itself. This branch is 
filled in by the Linker when it is given the -relocate option. It appends a 
table of relocation offsets and a small routine to perform the relocation on to 
the end of the image. When this is called, it uses the load address {accessible 
through the link register R14), the address the image was linked for {available 
in the header) and the relocation table to patch up the words which contain 
position dependent offsets. 

Note that this relocation is less versatile than the static relocation performed 
by the Linker because it can only deal with whole-word quantities and symbol­
relative relocation is not possible. However, because of the position­
independent manner in which most data accesses are performed in ARM code, 
even large programs require only a few relocation table entries {eg less than 
50 for a 64K program), so the overhead of using the - r . link option is quite 
small. 

Next, the zero initialise code is called. This is used to store zeros after the 
read/write area (see below) which should be so initialised before the 
program runs. The code to perform this and the parameters necessary to 
initialise the correct area are also stored in the AIF header. Note that not all 
AIF files will use this entry; some have the data area already initialised on 
loading. 

Finally, once the other three routines have executed (or been have skipped) the 
branch to the start of the program is made. 

Note: The description of the AIF format given above and completed 
below refers to the final image in memory, · after the decompression 
and relocation routines have executed. The image on disc (and when 

75 



ALFFILES 

76 

first loaded) will be substantially different before these routines 
have run. 

The rest of the header 

Immediately after the four branches, the header contains the following 
information: 

SWI Exit 
Read-only size 
Read/write size 
Debug size 
Zero-init size 
Debug type 
Image base 
Reserved 
Zero-init code 

The other areas 

Just in case the main program returns 
Number of bytes in program area, inc. the header 
Number of bytes in the data area 
Number of bytes in the optional debug area 
Number of bytes in the zero-intialised area 
0 for none, 1 for Dbug, 2 for ASD 
Base address used during linking 
Five 0 words 
16 words long 

Following the header are the read-only (program code) and read/write (static 
data) areas. The header is counted as part of the read-only code. The 
read/write area includes the zero-intialised area (if present), whose size is 
given in the header. You should note that if this is used, the area of memory 
occupied by the program may be considerably larger than its length on the 
disc implies. This is also true of compressed files. 

If there is any Arthur Symbolic Debugger information in the image, it is 
stored at the start of the zero-initialised area. Therefore the debugger has to 
move it before the zero-initialise code is executed. 

Library ,files are chunk files. There are at least three chunks, and may be 
many more. The two compulsory chunks are identified as: 

LIB_ TIME 
LIB_VRSN 
LIB_DIRY 

Time and date of last library modification 
Library file format version number 
Directory chunk 



The first chunk is eight bytes long and holds an encoded form of the time and 
date the library file last modified (by Libfile, for example). The second 
chunk is four bytes long and contains the library format version number in 
binary. This is currently 1. 

The third chunk is a directory of all the AOF files which make up the library. 
Each file has its name, length and date/time-stamp stored. 

In addition to these two chunks, there is one chunk for every AOF file in the 
library. These have chunk identifiers: 

LIB_DATA 

The format contents of an AOF chunk is exactly the same as a complete AOF 
file. Thus you can regard a library as a chunk file of chunk files. 

Finally, the library may contain two chunks created by Objlib command. 
These are called: 

OFL_SYMT 
OFL_TIME 

External symbol table chunk 
Symbol table date/time 

The first one contains a list of the external symbols which are defined in the 
various modules that make up the library. These can be viewed using the 
Objlib - 1 option. The second chunk contains the time and date when the table 
was last updated. This allows Objlib to check that the table is not out of date 
with respect to the rest of the library. 

77 



78 



~.l.AN lJAKlJ 

INTRODUCTION 

In this appendix, we describe the ARM Procedure Calling Standard. This 
standard has been laid down for the benefit of software developers who want 
to be able to call 'external' routines. Example uses are assembler programs 
which use routines from the common library and C language programs which 
call hand-written assembler routines. 

The standard covers several areas - register allocation, stack discipline and 
backtracing, procedure entry and exit conditions etc. What it doesn't define is 
data representation. Certain data types have 'obvious' representation on the 
ARM. Integers, for example, are most usefully one-word quantities. However, 
the Standard only concerns itself with how a given number of one-word 
parameters are passed to a routine, and how the result (if any) is returned. 
You should consult the manual for each language to see how they use these 
rules to implement their required parameter-passing mechanisms. The ANSI 
C language should be regarded as the model for both data-type 
representation and implementation of the Standard. It is therefore used in 
some of the examples given in this appendix. 

Note that the standard only refers to external calls. Procedure calls within a 
language may use any scheme that is convenient; it is only at the point of call 
and return when interfacing to an external procedure that a language has to 

obey the rules described here . 

REGISTER ALLOCATION 

The 16 ARM registers and eight floating point registers are allocated specific 
names and uses under the Standard. Some of these uses are optional, for 
example registers used for stack backtracing and stack overflow checking may 
be 'undedicated' if those facilities are not required. However, both these 
features are supported by the common library and by the code generated by 
the C compiler. It is therefore recommended that all programs conform. 

79 



The table below gives the symbolic names assigned to the registers, with a 
brief description of the register's use. 

RO al 
Rl a2 
R2 a3 
R3 a4 

R4 vl 
RS v2 
R6 v3 
R7 v4 
RS v5 
R9 v6 

RIO fp 
Rll ip 
R12 sp 
R13 sl 
R14 lr 
R15 pc 

FO fO 
Fl fl 
F2 f2 
F3 f3 
F4 f4 
FS f5 
F6 f6 
F7 f7 

Argument 1/integer result 
Argument 2 
Argument 3 
Argument 4 

Register variable 
Register variable 
Register variable 
Register variable 
Register variable 
Register variable 

Frame pointer. Used for stack backtrace 
Used as temporary workspace 
Stack pointer to full, descending stack 
Stack limit. Used for stack overflow checking 
Link register. Used for procedure return 
Program counter 

Floating point result 
Floating point work register 
Floating point work register 
Floating point work register 
Floating point register variable 
Floating point register variable 
Floating point register variable 
Floating point register variable 

PROCEDURE ENTRY 

80 

In this section we describe the exact contents of the registers at the point when 
control is passed to a procedure, ie immediately after a BL instruction to the 
procedure's entry point. We also describe typical entry code to perform stack 
checking and argument stacking. 



Arguments 

Arguments are passed in the usual C way of pushing them in reverse order on 
a descending stack. This ensures that they appear in ascending order in 
memory when read left to right. (Note though that this doesn't imply anything 
about the order in which the arguments are evaluated, only that they are 
pushed right to left.) 

For efficiency, the first four words of the arguments are passed in the 
argument registers a 1- a 4. Access to registers is much quicker than access to 
memory .locations, and as operands in ARM instructions have to be in registers 
anyway, it makes sense to ensure that they are already in place. 

Suppose a procedure is called with two integer arguments, as in: 

proc(i1,i2); 

where i 1 and i 2 are available in registers. The code to call pro c looks, in 
theory, like this: 

STMFD sp!, {i2} ;Push arg2 
STMFD sp!, {i1} ;Push arg1 
LDMFD sp!, {a1-a2} ;Load up to first four words in 
BL proc ;Call routine 

Of course, in practice a decent compiler (or hand coder) would load the 
arguments into a 1 and a 2 directly from the other registers. 

a1-a4 

81 



82 

The theoretical pushing and pulling occurs in practice when multi-word 
arguments are passed. Consider passing three floating point expressions ( eg C 
doubles). These occupy two ARM words each. A typical calling sequence 
would be: 

;Obtain third arg in fO 
STFD fO, [sp, #-8] ! ;Save it on the FD stack 

;Obtain second arg in fO 
STFD fO, [sp, #-8]! ;Save it 

;Obtain first arg in fO 
STFD fO, [sp, #-8]! ;Save it 
LDMFD sp!,{al-a4} ;Load first four words in al-a4 
BL proc ;Call routine 
ADD sp,sp,#8 ;Discard the remaining two words 

At the point when the pro c is called, a 1-a 4 hold the four words which 
constitute the first two parameters, and the last parameter is at the top of the 
stack. It is very likely that the called routine will immediately save a 1- a 4 
back on to the stack so that the arguments can be transferred into FP registers. 
It might seem more sensible to pass floating point arguments in the FP 
registers in the first place. Unfortunately, this does not tie in very well with 
the C way of doing things. Anyway, you could imagine cases where the called 
routine could use the contents of the argument registers directly (for example, 
where they contain the first four words of a structure type). 

Statistically, procedures are very likely to have four or fewer arguments, so in 
effect parameters usually passed in registers under the Standard. If a 
procedure is passed, say, two one-word parameters, a 3 and a 4 will be 
undefined on entry and the stack will not hold any further parameter words. 

Register variables 

The registers named v 1-v 6 and f 4- f 7 above are allocated for register 
variables. On entry to a procedure, these registers are not defined to contain 
any particular values, but must be preserved. Thus if a procedure uses v 1 and 
v 2 as working registers, it must store their values on the stack before they are 
altered for the first time, and load them back after they have been used for 



the last time. It is usual for these actions to occur at the procedure entry and 
exit points respectively. 

The stacking of register variables is usually combined with the creation of the 
stack back trace structure into a single S TM instruction. This is illustrated below 
when the backtrace structure is described. 

Frame pointer 

This register is used to point to a 'backtrace structure', or contains 0 if that 
mechanism is not supported. The backtrace structure is effectively the values of 
some stacked registers, including the PC. The FP register itself points to the 
stacked copy , of the PC. Through this, the backtrace software can access 
information relating to what other registers are stacked. This information is 
used, for example, by the default C signal handler, and the Dbug program. 
We describe the backtrace structure in more detail below. 

C also uses fp as the base from which to access stacked arguments when 
transferring them to and from registers. 

IP register 

This is undefined on procedure entry. It is used as temporary workspace. In 
particular, it is used to hold the entry value of the stack pointer while the 
backtrace structure is pushed on to the stack, so that the SP value appears in 
the correct place in that structure. See below for details. Other than that, it is 
free for use within the procedure to hold temporary results etc . 

. Stack pointer 

On entry to a procedure, this register points to the most recently pushed word 
of a full, descending stack. The stack is used to hold arguments, local 
variables and the backtrace information. 

As noted above, up to four argument words are passed in registers. The 
remaining words are located on the stack, with s p holding the address of the 
fifth word. 

83 



84 

It is the responsibilty of the calling code to remove any arguments that it 
pushed on the stack by adjusting sp. This is illustrated by the second example 
in the section Arguments above. 

Stack limit 

The s 1 register contains a value which the stack pointer should not descend 
belciw. In fact s 1 contains an address 512 bytes above the lower end of the 
available stack.At the moment of procedure entry, sp+256>=sl. That is, at 
least 256 bytes are available on the stack, which should be enough for the 
procedure to check for stack overflow and allocate a new segment if necessary. 

The way to check for stack on entry to a procedure overflow is as follows: 

CMP 

BLLT 
sp,s1 
lx$stack_overf1owl 

If the comparison fails, s p > = s 1 and there are at least 512 bytes available on 
the stack. This means that as long as the procedure uses 256 or fewer bytes of 
stack, it can call any other procedure without further checking. 

If the test succeeds, that is s p < s 1, there are between 256 and 508 bytes left on 
the stack, and the call to the stack overflow routine x $stack_ over f 1 ow is 
required to allocate a new stack segment. This is the name of the common 
library routine to perform this action; other systems may use other routines. If 
x$stack_overflow can't allocate a new stack segment, a C 'signal' is raised. 

Procedures which use more than 256 bytes of stack must perform slightly more 
checking. In particular, they must compare s l with the value of s p minus the 
amount of space used, eg: 

SUB ip,sp,#256 ;Uses 256 bytes of stack workspace 
CMP ip,sl 
BLLT lx$stack_overflowl 

This shows another use of the i p register. 



Link register 

When a procedure is entered, 1 r hold the return address and status register. 
Its contents are restored into R15 (the PC) in order to effect the return to the 
caller. Note that both the PC and flags part must be transferred; a procedure 
call is defined to preserve the status register. 

As the 1 r is saved as part of the backtrace structure on the stack, procedure 
return is usually combined with the restoration of the other saved registers, 
using an instruction such as: 

LDMDB fp, { fp, sp, pc} A 

The reasons for using fp as the base register in a 'decrement before' 
instruction are discussed in the section The stack backtrace structure below. 
Note the A to ensure that the flags part of R15 is also loaded. 

Program counter 

R15, the PC, is, of course, wholly dedicated on the ARM and it always fulfills 
the same function. Bits 2 .. 23 contain the word address of the next instruction to 
be fetched; bits 0 .. 1 and 24 .. 31 contain the processor mode, interrupt mask and 
status flags. 

On execution of the first instruction of a procedure it contains an address eight 
greater than that of the instruction (due to pipelining), and the flags part is the 
same as the return flags in 1 r. Note that it is not sufficient for a procedure to 
preserve the flags in R15 at entry; it must actually restore them from the 
contents of 1 r. 

PROCEDURE EXIT 

To return to the caller, a procedure must load any result in a 1 or f 0 as 
appropriate, then restore various registers. In particular, fp, sp, s1, vl-v6 
and f 4 - f 7 must be restored to their entry values. The return link which was in 
1 r on entry should be placed in the PC. 

85 



All other registers may contain any value. In particular, i p, l r, a 2- a 4 and 
f 1 - f 3 are not defined on return. 

THESTACKBACKTRACESTRUCTURE 

86 

We have mentioned this several times already, and describe it in detail in this 
section. The structure is simply a set of four or more registers saved on the 
stack, with fp pointing at the one occupying the highest location. (If there is no 
backtrace structure, fp contains 0.) The stack looks likes this: 

fp - 0- > I save mask pointer (pc) I 
fp - 4- > I return link value (lr) I 
fp - 8- > I return sp value (ip) I 
fp -1 2 - > I return fp value (fp) I 

[I saved v6 value (v6) IJ 
[I saved v5 value (v5) IJ 
[I saved v4 value (v4) IJ 
[ I saved v3 . value (v3) ll 
[ I saved v2 v alue (v2) ll 
[ I saved v1 value (v1) IJ 
[I saved a4 value (a4) ll 
[I saved a3 v alue (a3) ll 
[I saved a2 value (a2) IJ 
[I saved a1 value (a1) IJ 
[I saved f7 value (f7) IJ three words 
[I saved f6 value ( f6) ll three words 
[I saved f5 value (f5) IJ three words 
[I saved f4 value (f4) IJ three words 

Stack entries in square brackets are the optional ones. The first four words are 
always saved. The register names in brackets refer to the register which was 
pushed to make that entry. Note that the return sp value is saved by pushing 
ip. 



The save mask pointer pointed to by fp, when ANDed with Ox03fffffc holds 
the address plus 12 of a word called the return data save instruction. This is 
the S TM instruction which saved all of the registers onto the stack in the first 
place. It has the form: 

STMFD sp! I { [a1] I ••• 1 [a4] 1 [v1] 1 ••• 1 [v6] I fp1 ip1 lrlpc} 

Again square brackets denote optional registers. 

The value of fp pushed points to a similar backtrace structure (or is 0), and so 
on. 

The value of ip pushed contains the value of sp on entry, so that sp can be 
restored in the same instruction as the rest of the registers. 

The value of 1 r pushed holds the return address and flags. 

The value of pc pushed is 12 bytes beyond the STMFD itself, due to 
pipelining. The status bits are also written, which is why the word at [fp] has 
to be masked before it can be used to ascertain the address of the instruction. 

The S TM is followed immediately by between zero and four S TFE instructions. 
These perform the optional pushes of f 4- f 7. The instructions must be of the 
form and in the order shown below: 

STFE 

STFE 

STFE 

STFE 

f7 1 [spl #- 12] 
f6 1 [sp 1 #-12] 
f5 1 [sp 1 #-12] 
f4 1 [sp 1 #-12] 

;1 1101101 01101100 01110001 00001100 
;11101101 01101100 01100001 00001100 
; 11101101 01101100 01010001 00001100 
;11101101 011 01100 01000001 00001100 

Any deviation from this ordering terminates the sequence. By examining the the 
STM and instructions immediately after it, the backtrace code can determine 
which registers have been stacked and print their values accordingly. 

87 



ENTRY AND EXIT CODE 

88 

Having seen the conditions at entry and exit of a procedure, and the form of 
the stack backtrace structure, we can give some examples of typical entry and 
exit code sequences. Note that these aren't mandatory. Any sequence that 
produces the desired effects is allowed. 

Take the simplest case of a function which uses no (preserved) registers or 
additional stack and which returns an integer result. This could use the 
following code: 

MOV ip, sp ;Save entry sp in ip 

STMFD sp!, {fp, ip, lr, pc} ;Save compulsory backtrace 

stuff 

SUB fp, ip, #4 ;fp points at saved pc 

ADD al ,a2 ,a3 LSL #2 ;Form a result in al 

LDMDB fp, {fp, sp, pc}A ;Restore and return 

You can see now why an LDMDB is used to return. Since fp, which is used as 
the base register, points at the saved pc value, the registers pulled are the 
three below that on the stack (as the instruction Decrements Before pulling the 
first one). Thus the PC and flags are loaded from the saved 1 r, the s p is 
loaded from the saved i p (which was the entry s p) and f p is loaded from the 
entry fp. 

Now consider the case where it is desirable to have all of the parameters on 
the stack as, the procedure assumes that that they occupy contiguous locations in 
memory (as C's print f does). Also, say the routine uses the stack for 
workspace and uses v 1 and v2. Its entry and exit code might look like this: 

MOV ip ,sp ;Save entry sp 
STMFD sp!, {al-a4} ;Make args. contiguous on stack 
STMFD sp!, {vl,v2,fp,ip,lr,pc} ;Save backtrack info and reg. vars. 
SUB fp,ip,#20 ;fp points at saved pc 
CMP sp,sl ;Check for stack space 

BLLT lx$stack overflow I ;Deal with overflow -



LDMDB fp , {vl , v2 , fp , ip ,lr,pc}A ;Restore and return 

Note the calculation to derive the new value of fp had to take into account the 
four words pushed before the backtrace structure was set-up. 

89 





-





SKDH 


