

The Archimedes Series

BBC BASIC GUIDE

Copyright © Acorn Computers Limited 1988

Neither the whole nor any part of the information contained in, nor the
product described in, this guide may be adapted or reproduced in any
material form except with the prior written approval of Acorn Computers
Limited.

The product described in this guide and products for use with it are subject to
continuous development and improvement. All information of a technical
nature and particulars of the product and its use (including the information
and particulars in this guide) are given by Acorn Computers Limited in good
faith. However, Acorn Computers Limited cannot accept any liability for any
loss or damage arising from the use of any information or particulars in this
guide.

All correspondence should be addressed to

Customer Support and Service,
Acorn Computers Limited,
Fulboum Road
Cherry Hinton
Cambridge CBl 4JN.

ACORN, ARCHIMEDES and ECONET are trademarks of Acorn Computers
Limited.

Within this publication, the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

First published 1988
Issue 1
Published by Acorn Computers Limited
ISBN 1 85250 052 2
Part number 0483,00 l

ii

Contents

About the BBC BASIC Guide

Command mode 3

Simple programming 7

Variables and expressions 19

Numeric variables 21

Bases 27

String variables 33

Arrays 41

Outputting text 51

Inputting data 57

Control statements 67

Procedures and functions 83

Data and command files 97

Screen modes 101

Simple graphics 111

Complex graphics 121

Graphic patterns 131

Viewports 141

Sprites 145

Teletext mode 149

Sound 155

Accessing memory locations 161

Contents iii

Error handling and debugging 165

Keywords 171

Keywords: Numerical 173

Keywords: Trigonometric 185

Keywords: Logical 197

Keywords: Program construction 203

Keywords: Program statements 221

Keywords: Variables 249
Keywords: Error handling 259

Keywords: Input/Output 267

Keywords: Character/String handling 283

Keywords: Sound 293

Keywords: File commands 301

Keywords: Assembly language 313
Keywords: Structures 331
Keywords: Graphics 347
YOU commands 373

The BASIC screen editor 383
Appendix A- Minimum abbreviations 401

Appendix B - Error messages 407
Appendix C- lnkey values 411
Appendix D- Plot codes 415
Appendix E - VDU commands 417
Appendix F - Operating system commands 421
Appendix G- *FX commands 423

Appendix H- BBC BASIC's history 427

Index 435

Contents iv

About the BBC BASIC Guide

BBC BASIC is onl! of thl! most popular and widely-used programming
languages. It consists of special keywords from which the programmer can
create sequences of instructions, or programs, to be carried out by the computer.
Such programs might perform calculations, create graphics on the screen,
manipulate data, or carry out virtually :my action involving the computer and the
devices connected ro it. Several examples of programs written in BBC BASIC
are provided on the Applications suite.

A brief history of BBC BASIC is provided in the Appendices.

The BASIC language operates within an environment provided by the
computer's operating system. The operating system is responsible for
controlling the devices available to the computer, such as the keyboard, the
:.creen, and the filing system. For example, it is the operating system which
reads each key you press and displays the appropriate character on the screen.
Operating system commands can be entered directly from within BASIC by
prefixing them with an asterisk(*).

The first chapters of this guide explain how to program in BASIC, and
introduce many of the commands provided by the language. A complete lbt of
the BASIC keywords, grouped by function, is given in the chapters headed
Keywords:. The last two chapters, and the appendices, list the features provided
by the operating system, and the commands available to control them. The
BASIC screen editor is a lso described.

About the BBC BASIC Guide

Conventions used in
this guide

The following conventions arc applied throughout this guide:

• Specific keys to press are denoted as <Ctrl>, <Delete> anJ so on.

• Instructions which require you to pre~ a comhmation of keys are shown thus:
<Shift> <Break> means hold down the <Shift> key and press and release
the <Break> key.

• Text you type on the keyboard anJ text that is dtsplayed on the screen
appear~ as follows:

PRINT " Hello "

• Classe~ of item arc shown in italics: For example, tn the descriptions of
BASIC keywords, you might see something like:

LET var = expression

where var and expression would he replaced with actunl instances, eg:

LET a$="hello "

• Items within square brackets [] are optional. For example,

GCOL [expr,] expr

means that the first expr and the comma after it do not have to be included.

• After entering any text, press <Return> to tell the computer that you have
completed the line and that you want the computer to act upon it.

• Extra spaces are inserted into program listings to aid clarity, but need not
be typed in.

• Program ltstings are indented to illustrate the structure of the program:..

If at any time you wish to interrupt a program the computer is executing you
can do so safely by pressing <E~c> .

Do not he afraid to experiment. Try modifying the programs liMed in this
book and writing new ones of your own.

About the BBC BASIC Guide 2

Command mode

Entering BASIC

Leaving BASIC

To activate BASIC, display the Task Manager menu (click the centre mouse
button over the 'A' icon at the hottom righthand corner of the desktop), and
type

BASIC

in the New Task submenu box. Press <Return>, and a RASIC window will
open on the screen.

Alternatively, press <F1 2> from the desktop, then type BASIC from the
command line.

Infonnation about the *BASIC command may be found in the chapter
Keywords: Program construction.

You can configure your computer to enter BASIC automaucally when it is
switched on. To do this, type the command:

*configure language 4

then press <Ctrl> <Break> .

To leave BASIC, type *QU IT, the press <Return> twice to get back to the

desktop.

When you enter BASIC it •~ 10 command or interactive mode (sometimes this is
rermed immediate mode). Th1s means that you can type commands and the
computer responds straight away. For example, if you type

PRINT "Hello "

the computer displays the following on the screen:

Hello

Command mode 3

PRINT is an example of a keyword which the computer recognises. It instructs
the computer to display on the screen whatever follows the PRINT statement
enclosed in quotation marks. Keywords arc always written in upper case
letters (capitals).

If you make a mistake, the computer may not be able to make sense of what
you have typed. For example, if you type:

PRINT " Hello

the computer responds with the message:

Missing "

Thi~ is an error message. It indicates that the computer cannot obey your
command because it does not follow the rules of BASIC (in this case because
the computer could not find a second quotation mark).

If PRINT is followed by any series of characters enclosed in quotation marks,
then these characters arc displayed on the screen exactly as you typed them.
Thus:

PRINT "1 2 - 3 "

produces the output:

12 - 3

PRINT, however, can abo be used to give the result of a calculation. For
example, typing

PRINT 12 - 3

produces the output:

9

In th1s case, because the sum was not enclosed in quotation marks, the
computer performed the calculation and displayed the result.

Similarly, multiplication and division can be performed using the symbols *
and /. For example:

PRINT 12 * 13
PRINT 111 I 11

Command mode 4

Some commands, although they have an effect on the computer, do not give
evidence that anything has changed. If, for example, you type

LET FRED = 12

nothing obvious happens. Nevertheless, the computer now knows about the
existence of a variable called FRED which has the value 12. A variable is a
name which can have different values assigned to it. It is described in more
detail later in this manual.

Now if you type

PRINT FRED / 3

the computer responds by displaying the number 4.

The program below illustrates how you can give commands to produce some
graphics on the screen:

MODE 12
CIRCLE FILL 600,500,100

The MODE command sets up the computer to produce high resolution graphics
(640 by 256 dots in 16 colours). It also clears the screen.

The CIRCLE FIL L command tells the computer to draw a circle at a position
600 dots across from the left of the screen and 500 dots up from the bottom.
This is near the centre of the screen because the screen is 1280 units across and
I 024 units high. The third number tells the computer how big the circle should
be, in this case giving a radius of 100 dots.

>CIRCLE FILL 600,500.100
>_

Command mode 5

Command mode 6

Simple programming

Entering a program A program is a list of instructions to be carried out by the computer. These
instructions are stored in memory and are only executed when you tell the
computer to do so.

Each line of a program is numbereJ so that it can be referred to more easily.
For example, type the following:

10 PRINT "Hello "

Note that nothing happens (but all must be well as no error message was
printed). Now type

RUN

The Hello message is displayeJ on the screen. The number I 0 at the :,tart of the
line is called the line number, and identifies the text after it as a program
statement to be stored in memory, rather than as a command to he executed
immediately.

You can type spaces either between the stan of the line and the line number, or
between the line number anJ the instruction without affecting the execution of
the program.

10 PRINT " Hello "

and

10PRTNT "Hello "

arc equally valid.

One of the advantages of programs is that they can be executed repeatedly:
typing RUN again here causes He 11 o to be displayed a second time • there is no
need to type the complete PRINT "Hello" statement again.

Simple programming 7

Altering a program

Replacing and adding
lines

The following is a simple program demonstrating the use of a variable and
the INPUT statement:

10 E'RINT "Can you give me a number ";
20 INPUT number
30 PRINT "The number you typed was ";number

Note that you must press <Return> at the end of each line.

The line numbers determine the order in which the computer executes these
instructions. They can take any whole value between 0 and 65279. You can
type line numbers m any order you like; BASIC will sort them into ascendmg
order and obey them in this order.

Now RUN this program. The computer obeys line LO and displays the message:

Can y ou give me a number ?

The question mark is added automatically by the execution of line 20.

The keyword INPUT instrtJcts the computer to wait for you to type something,
in this case a number. Type

6 <Return>

Line 30 is now obeyed, and the following message is d isplayed:

The number you typed was 6

O nce you have entered a program, you may wish to make changes to it.

You can of course type in a whole new version of the program, but there are
quicker methods available.

To see the program which is currently stored in memory type

LIST

Lmes I 0, 20 and 30 arc listed on the screen.

To add extra lines to the program, type in the new line with an appropriate
line number:

5 PRINT " Hello"
40 PRINT " Twice ";number " is "; 2*number

Simple programming 8

Altering a single line in
a program

and then:

LIST

Note that these two extra lines arc added to the program in such a way that
the line numbers are listed in numerical order:

5 PRINT " Hello"
10 PRINT "Can you give me a number II •

'
20 INPUT number
30 PRINT " The number you typed was "; number
40 PRINT " Twice II • number " is ". 2*number ' '

To replace lines, enter the new line with the line number of the one which is
to be replaced. For example:

40 PRINT number;" squared is ";number*number

Now when you type

LIST

the following is displayed:

5 PRINT " Hello"
10 PRINT "Can you give me a number "·
20 INPUT number
30 PRINT "The number you typed was "; number

40 PRINT number ;" squared is "; number*number

If you wish to alter only part of a line, for example, to correct a single
spelling mistake, you can do so using the cursor edit keys. These are the arrow
keys to the right of the mnin keyboard.

Suppose you want to change the word typed to entered on line 40.

Begin by pressing the <i> key twice. The original cursor position which was

under line 40 becomes a white square and the cursor moves up to the start of
line 30.

Press <Copy> a few times. The cursor edi ting moves along line 30, the white
square moves along as well, and line 30 is copied underneath line 40. Keep on

Simple programming 9

pressing <Copy> until the word typed is copied and then stop.

If you hold the key down, the repeat action allows you to move the cursor
quickly across the screen. A quick press and release gives you precise control,
moving one character position. The following is displayed on your screen:

5 PRINT "Hello"
10 PRINT "Can you give me a number ... ,
20 INPUT number
30 PRINT "The number you typed_was ";number
40 PRINT number;" squared is ... number*number ,
30 PRINT "The number you typed

Press <Delete> until the word typed is deleted from the new line 30. Note
that the cursor on the old line 30 has not moved:

5 PRINT " Hello "
10 PRINT "Can you give me a number ... ,
20 INPUT number
30 PRINT "The number you typed_ was "; number
40 PRINT number;" squared is ... number*number ,
30 PRINT "The number you

Type the word

entered

and press <Copy> to copy the rest of line 30 to your new version.

Press <Return>. The white square disappears and the cursor moves to the start
of a new line. Now type

LIST

to produce the following:

5 PRINT "Hello"
10 PRINT " Can you give me a number ... ,
20 INPUT number
30 PRINT " The number you entered was "; number
40 PRINT number;" squared is ... number*number ,

There are no restrictions on how much you move the cursor around when you
are copying. Note when the cursor reaches the end of the screen it will wrap-

Simple programming 10

Deleting lines

around to the other side of the screen. You can use the right and left arrow
keys to miss out parts of lines or to repeat them. You can also copy from
several different lines on to your new line as you go.

You can either delete lines one at a time, or delete a group of lines at once
using the DELETE command.

To delete a single line, you just type the line number followed by <Return >.
To delete line number 5, for example, type

5

To check that line 5 is deleted, type

LIST

and the computer displays the following:

10 PRINT " Can you give me a number " ;
20 INPUT number
30 PRINT " The number you entered was "; number
40 PRINT number ; " squared is " ; number*number

The DELETE command allows you to delete a number of consecutive lines in
three different ways:

• By deleting a block of lines. To delete all line numbers between 10 and 30
inclusive, type

DELETE 10,30

• By deleting from the beginning of a program. To delete all lines from the
beginning of the program to line 30, type

DELETE 0 , 30

• The number zero is the minimum line number that can be used in a
program. Therefore, all lines from the start of the program to \me 30 arc
deleted.

• By deleting from a line to the end of the program. To delete all lines from
line 20 to the end of the program, for example, type

DELETE 20 , 65279

• The number 65279 is the maximum line number that can be used in a
program, so in this case all lines from line 20 to the end of the program are

Simple programming 11

Deleting whole
programs

Numbering lines in a
program

deleted. Of course, you can use any other number which is higher than the
last line of the program, so something like 60000 will usually work just as
well, and is somewhat quicker to type!

Before you enter a new program, make sure no program currently exists in
memory. If it does, the lines of the new program you enter will get mixed up
with the lines of the existing program, and this could produce strange results!

To delete any existing program, you can use the DELETE command described
above, but an easier method is to type

NEW

This tells the computer to forget about any existing program, and to be ready
to accept a new one.

Although the DELETE and LIST commands combined with cursor editing are
fine for making small changes to a BASIC program, you should note that the
BASIC Editor is much more versatile. See the chapter The BASIC screen edi
tor for details of using this program.

There may be occasions when you want to change the line numbers of a
program without changing their order. The command to use is RENUMBER.
This facility is particularly useful when you want to insert a large number of
lines between two existing ones.

You can specify two numbers after typing the RENUMBER command. The
first number tells the computer what you want lhe new firsl program line
number to be. The second number tells the computer how much to add to each
line number to get the next one. For example,

RENUMBER 100 , 20

makes the first line into line 100 and numbers the remaining lines 120, 140,
160, and so on.

If you leave out the second number in the RENUMBER command, the
computer automatically increments the line numbers in steps of 10. So, for
example, you might want to renumber the following program:

23 PRINT "This demonstrates"
24 PRINT "the use of "
48 PRINT " the very useful "

Simple programming 12

Automatic line
numbering

Starting a program
from a paticular line

67 PRINT " RENUMBER command"

Typing

RENUMBER 100
LIST

produces the following display:

100 PRINT " This demonstrates "
110 PRINT " t he use of "
120 PRINT " the very useful "
130 PRINT "RENUMBER command"

Typing

RENUMBER

without including a number after the command, means that your program lines
arc renumbered 10, 20, 30, 40 and so on.

You do not have to type line numbers at the beginning of each new program
line. The computer docs it automat ically when given the AUTO command.

For example, type

AUTO

The computer displays the number 10 on the line below. If you type the first
program line and press <Return> , the number 20 appears on the next line,
and so on. To leave this automat ic line numbering mode, press <Esc>.

You can start a program at a line other than line lO by following the AUTO
command wi th the first line number you wish tO use. Thus,

AUTO 250

generate:. lines which arc numbered 250, 260, 270, and so on.

You can also specify the number of spare lines between each of your program
lines by adding a second number, separated from the first by a comma. Thus,

AUTO 250 , 15

starts at line number 250 and subsequently increases the line numbers in steps
of 15, generating lines numbered 250, 265, 280, and so on.

Simple programming 13

Listing long programs

Listing sections of
programs

Halting listings

The LIST command, used above to display the current program on the screen,
can be used to look at part of a program. This is particularly useful if the
program is very big and you want to concentrate on one part of it.

To look at one particular line, for example, type

LIST 40

To look at a number of consecutive lines type, for example,

LIST 20 ,4 0

To see from the beginning of the program up to a particular line type, for
example,

LIST , 30

To display from a particular line to the end of the program type, for example,

LIST 20 ,

If you list more of a program than can fit on the screen all at once, the
beginning of the listing disappears off the top of the screen before you have
time to read it. There are three ways of getting round this problem:

• Pressing the <Scroll Lock> halts the listing; pressing it again allows the
listing to continue. This enables you •o step through chunks of the ltsting.

• Holding down <Ctrl> and <Shift> together after typing LIST halts the
displayed listing on the screen. To continue the listing, take your finger off
either <Ctrl> or <Shift>.

• Putting the computer into paged mode. This is the most reliable method. To
enter this mode prel>S <Ctrl> N, then type LIST. The listing stops as soon as
the whole screen is filled. To display the next screenful of listing, press
<Scroll Lock> twice. This method ensures that you will not miss any of the
listing. To cancel the effect of <Ctrl> N, type <Ctrl> 0 when the listing is

finished.

In addition to the meth<xls described for halting listings, you can also slow the
listing down by pressing <Ctrl>. This makes the screen halt for the auto
repeat rate time (typically about l/25th of a second) between each new line.
Thus it takes a second to scroll one screenful in a 25-line text mode.

Simple programming 14

Comments When wntmg programs, especially long or complex ones, you should insert
comments to remind you what each part of the program is doing. This is done
by using the REM keyword which is short for 'remark'.

REM tells the computer to ignore the rest of the line when it executes the
program. For example, to add comments to the following program:

10 PRINT "Can you give me a number ";
20 INPUT number
30 PRINT "The number you typed was "; number
40 PRINT number; " squared is "; number*number

type

5 REM Read in a value and assign it to number
25 REM Now print ouL the number given .
35 REM And its square

and then

LIST

to display the complete program:

5 REM Read in a value and assign it to number
10 PRINT " Can you give me a number ";
20 INPUT number
25 REM Now print out the number given .
30 PRINT "The number you typed was "; number
35 REM And its square
40 PRINT number; " squared is "; number*number

You may like to add further REM statements to underline comments or leave
space above them to make them clearer:

5 REM Read in a value and assign it to number
6 REM ---------------------------------------

10 PRINT "Can you give me a number ";
20 INPUT number
24 REM
25 REM Now print out the number given
26 REM ------------------------------
30 PRINT " The number you typed was " ;number

Simple programming 15

Multiple statements

Saving and recalling
programs

Saving a program

34 REM
35 REM And its square
36 REM --------------
40 PRINT number ;" squared is "; number*number

A line of BASIC can contain up to 238 characters and can be spread over
several lines on the screen. In all the programs given so far, each line of
BASIC contains a single statement. Several statements, however, may be
placed on one line separated by colons(:). For example:

10 PRINT " Can you give me a number ";: INPUT number
30 PRINT " The number you typed was "; number : REM prin t
out the number
40 PRINT number ;" squared is "; number*number : REM and
its square

Note that REM statements must only be placed at the end of a line since the
whole of the rest of the line is ignored. If you alter the program so that line
30 reads as follows:

30 REM print out the number: PRINT " the number you
typed was ";number

you will prevent the PRINT statement being executed.

The lines above illustrate that lines with more than one statement can
overflow onto the next screen line very easily, making the program hard to
read. You should therefore try to avoid too many multi-statement lines.

You can save a copy of the current program on a floppy disc at any time. This
allows you to recall (load) it at a later date, without having to retype all the
instructions.

Before you can save a program ontO a floppy disc, you must make sure the
disc is formatted. Formatting prepares a disc to receive data. For information
on how to format a floppy disc, see the User Guide.

To save a program, in this case a program called progl, insert a formatted
floppy disc into the drive and type

SAVE "prog l "

The program with the name progl is now saved onto the floppy disc.

Simple programming 16

Loading a program

The name you use when saving a program can contain up to 10 characters. At
this stage, you should confine your names to numbers and upper- and lower
case letters and digits. Other characters may be used but some have special
meanings.

After using SAVE, your program remains in memory and is unaltered in any
way. You can still edit, LIST, RUN, and so on.

Another capability of the REM statement is that it allows you to give the
program name for use by the SAVE command. The filename must be
preceded by a > character, and the REM containing it must be the first line of
the program. Thus, if the first line of the program is

10 REM >progl

all you need to do is type the SAVE command (or its abbreviation SA.) on its
own, and the name progl will be used to save the program.

To load a program which you have previously saved, in this case progl, type

LOAD "pr ogl"

The LOAD operation replaces the current program with the one from the disc
(so you should be sure that you don't mind losing the current program before
you load a new one). You can check this by listing the program currently in
memory.

In addition to loading a program, you can add a program to the end of the
current one using the APPEND command. The appended program is
renumbered to ensure that its line numbers start after those of the initial
program. The statements INSTALL, LIBRARY and OVERLAY may be used
to add libraries of procedures and functions to the current program (see the
chapter Procedures and functions for details).

Simple programming 17

Simple programming 18

Variables and expressions

Types of variables

Naming variables

A variable has a name and a value associated with it. The name, for example,
FRED or a single letter such as x, allows the variable to be identified and its
value to be accessed. This value can be changed and retrieved as many times
as required.

There are three different types of variables used to store different types of
information. These are:

• Integer variables which can only store whole numbers

• Floating point variables, which can store either whole numbers or fractions

• String variables which score characters.

Each type is distinguished by the last character of the variable name. A name
by itself, like Fred, signifies a floating point variable; Fred% is an integer

variable, and Fred$ is a string variable.

The rules for naming variables are as follows:

• There must be no spaces within the name

• They can contain digits and unaccented upper· and lower-case letters

• To divide a name into two words, use (underscore)

• They must not start with a digit

• They must not start with certain BASIC keywords.

All the following names arc allowed:

X
xpos
XPOS
Xpos
x_position
greatest_x_position
position_of_X

Variables and expressions 19

XPOSl

Note that upper- and lower-case letters are regarded by BASIC as being
different, so that XPOS, xpos and Xpos arc three separate variables.

The following names are nor allowed:

2pos
TOTAL x

FOREST

COST
x-pos
X Position

X.pos

It does not begin with a letter.
It begins with TO, a BASIC keyword.
It begins with FOR, a BASIC keyword
It begins with COS, a BASIC keyword

It contains a minus sign.
It contains a space.
It contains a punctuation mark.

It is very easy to be caught out by the rule which says that the variables must
not start with a BASIC keyword. The best way to avoid this problem is to use
lower- or mixed-case variable names since BASIC keywords only use upper
case. This has the added advantage of making the program easier to read.

The values of the current variables may be displayed at any time by Lyping
the command LVAR at the BASIC prompt and then pressing <Return>.

Variables and expressions 20

Numeric variables

Floating point
numbers and integers

Floating point variables can represent both whole numbers (integers) and
decimal fractions, but integer variables can only store whole numbers. For
example, the assignments

LET number 4/3
LET number% = 4/3

leave the variables with the following values:

number is 1. 33333333
number% is 1

In the case of the integer variable, the decimal fraction part has been lost.

The advantages, however, of using integer variables are:

• They are processed more quickly by the computer

• They occupy less memory (important in arrays, discussed later)

• They are precise (decimal numbers are only accurate to 9 figures)

The range and accuracy of floating point and integer variables is summarised
below:

Range
Accuracy
Stored in

Integers

-2147483648 to 2147483647

absolute
4 bytes

Floating point numbers

-1. 7xl038 to 1.7xl038

9 significant figures
5 bytes

In the range for floating point numbers, we used a superscript to denote a
power. In BASIC, the " character is used for powers. Thus PR I NT 2 "4 will

print 24, or 16. So, a number written 1. 7*10"38 means 1.7xl038, ie 1 with 38

zeros after it.

Numeric variables 21

Assigning values to
variables

Another way of denoting powers of ten is to use exponential 'E' notation. The
number 1. 7*10"38 may be written 1. 7E38 in 'E' notation. Similarly,

1234567 may be written 1 . 234567E6, as the E6 part means xl06, which is
a million. BASIC use:, E notation when accepting floating point numbers, and
may be made to print numbers in this way. Try PRINT 1 0"20, for example.

The value assigned to a numeric (floating point or integer) variable can be
specified as:

• a single number

• the current value of another variable

• an expression

• the result of a function.

For example:

LET base = 3
LET height 4
LET area (base* height)/2
LET hypot = SQR(base*base + height*height)

(base * height)/2 is a mathematical expression consisting of the variables
base and height, and arithmetic operations to be performed on them.

SQR is a function which returns the square root of a number, in this case the
expression (base*base + height *height).

The above assignments leave the variables with the following values:

base is 3
height is 4
area is 6
hypot is 5

Note that giving a new value to base or height doc:, not automatically
update area or hypot. Once the expression is evaluated using the values of
base and height current at that time, it is forgotten. In other words, area
and hypot only know what value they contain, not how it was obtained.

The use of LET is optional. For example,

Numeric variables 22

Special Integer
variables

LET x = x+1

is equivalent to:

x = x+1

Using LET, however, makes it easier initially to understand what is happening.
On its own x = x + 1 looks, to a mathematician, like an unbalanced equation.
Using LET makes it clear that the = is not being used in its usual algebraic
sense but as shorthand for 'become equal'. LET x = x+ 1 can be read as 'let
x become equal to its old value with one added to it'.

In BBC BASIC, it is usual not to use LET at all; it is principally allowed to
provide compatibility with other BASICs which require its presence.

An alternative way of expressing an addition in an assignment is to use:

X += 1

This means 'let x become equal to itself with one added to it'. Similarly,

X -= 3

means let x become equal to itself with three subtracted from it'.

The 27 integer variables A% to Z% and @% are treated slightly differently
from the others. They are called 'resident' integer variables because they are
not cleared when the program is run, or when NEW is used. This means that
they can be used to pass values from one program to another.

A special integer pseudo-variable is TIME. TIME is an elapsed time clock
which is incremented every hundredth of a second while the computer is
switched on. It can be used to find out how long something takes by putting the
following statements around a program:

T% = TIME

PRINT (TIME- T%)/100 : REM Time in seconds

TIME may be assigned a starting value just like any other variable. So, for
example, the statement above could be replaced by:

TIME = 0

PRINT TIME/100

Numeric variables 23

Arithmetic operators

Note that you cannot use LET with TlME.

The full list of arithmetic operators and logical operators is given in the table
below. Each operator is assigned a priority. When an expression is being
evaluated, this priority determines the order in which the operators are
executed. Priority l operators are acted upon first, and priority 7 last.

Priority Operator Meaning

Unary minus

+ Unary plus
NOT Logical NOT
FN Functions
() Brackets
? Byte indirection

Word indirection
$ String indirection

I Floating point indirection

2 Raise to the power

3 * Multiplication
I Division
DIV Integer division
MOD Integer remainder

4 + Addition
Subtraction

5 Equal to
<> Not equal to
< Less than
> Greater than
<= Less than or equal to

>= Greater than or equal to
<< Shift left
>> Arithmetic shift right
>>> Logical shift right

6 AND Logical and bitwise AND

Numeric variables 24

7 OR

EOR

Logical and bitwise OR
Logical and bitwise Exclusive OR

For example, 12+3*4"2 is evaluated as 12+(3*{4"2)) and produces the
result 60.

Operators with the same pnonty are executed left to right, as they appear in
the expression. Thus, 2 2 MOD 3 I 7 is evaluated as (22 MOD 3)/7.

Note that the shift operators are emered by typing two {or three) > or <
symbols, and should not be confused with the .. and " characters in the ISO
Latini alphabet. Note also that although you can say l + 2 + 3, you couldn't write
1<<2<<3. This would have to be bracketed thus: (1<<2)<<3. This is because
you may only use one group 5 operator per (unbracketed) expression.

Numeric variables 25

Numeric variables 26

Bases

Hexadecimal
numbers

Binary numbers and
bits

We are most familiar with numbers expressed in lerms of powers of ten, or
decimal numbers. Sometimes it is more convenient to give numbers in a program
in another base. BASIC also allows numbers to be given in hexadecimal, or
base 16, and binary, or base 2.

The computer treats any number which is preceded by an & sign as a
hexadecimal (hex) number.

Whereas decimal numbers can contain ten separate digits, from 0 to 9,
hexadecimal numbers can contain sixteen separate digits, 0 to 9 and A to F. The
first 16 hexadecimal numbers and their decimal equivalents are given below:

H ex Decimal Hex Decimal

&0 0 &8 8
&1 I &9 9
&2 2 &A 10
&3 3 &B 11
&4 4 &C 12
&5 5 &D 13
&6 6 &E 14
&7 7 &F 15
The nexl hexadecimal number is &10 which is equivalent to 16 in decimal nota
tion. Thus, in hexadecimal notation, one in a column represents a power of six
teen rather than a power of ten. For example, &100 represents 256 which is
16*16.

You can enter numbers in binary notation, ie in base 2, by preceding them with
the percem sign%.

Binary numbers consist entirely of the digits 0 and 1. The following table gives
the binary equivalents of the decimal values I to 10.

Bases 27

Shift operators

Shift left

Shift right (unsigned)

Binary Decimal Binary Decimal

%1 1 %110 6
%10 2 %11 1 7

%11 3 %1000 8
%100 4 %1001 9
%101 5 %1010 10

A one in a particular column represents a power of two:

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2

Thus:

%1000101 = 1 *64 + 0*32 + 0*16 + 0*8 + 1 *4 + 0*2 + 1 *I = 69

Binary digits are usually referred to as bits.

There are three operators which act upon the 32 bits of an integer, shifting it
either left or right by a given number of places.

The simplest shift is <<. This shifts the bits of an integer to the left by a given
number of places and inserts zeros in the righthand bits. For example:

A% 10
B% A% « 1

C% M « 2
D% A% « 3

This leaves the variables with the following values:

Variable

A%
8%
C%
D%

Value

10 (%00000000000000000000000000001010)
20 (%00000000000000000000000000010100)
40 (%00000000000000000000000000101000)
80 (%00000000000000000000000001010000)

The >>> operator shifts the bits of an integer to the right a g•ven number of
times, losing the bits which were in those positions and introducing zeros at the

Bases 28

Shift right (signed)

Left shift as
multiplication

left. For example:

A 'II %1010
B% A% >>> 1
C% A% >>> 2
D% A% >>> 3

This leaves the variables with the following values:

Variable Value

A%
B%
C%
D%

10 (~00000000000000000000000000001010)

5 (%00000000000000000000000000000101)
2 (%00000000000000000000000000000010)
1 (%00000000000000000000000000000001)

The >> operator is similar to >>>, but instead of introducing zeros at the top
at each stage, the left-most bit is set to either one or zero depending on what
the current setting is. The left-most bit of an integer is normally used to
indicate whether the integer is positive (left-most bit = zero) or negative (left·
most bit = one). Consequently, this operator can be used to perform a division
by a power of two on a number, retaining its sign. For example:

M - 1610612740
B% 536870912

A% %10100000000000000000000000000000
B% %00100000000000000000000000000000
C% A% >>> 2
D% B% >>> 2
E% A% >> 2
Fg. B~ >> 2

This leaves the variables with the following binary values:

Variable Value

C% %00 1010000000000000000000000000000 (671088640)
D% %000010000000000000000000000000000 (134217728)
E% %111010000000000000000000000000000 (-402653184)
F% %000010000000000000000000000000000 (134217728)

The left shift operator can perform multiplication. The expression val <<n is

Bases 29

Left shift as
multiplication

Right shift as division

AND, OR & EOR

The left shift operator can perform multiplication. The expression val <<n is
equivalent to val * 2"n. So fred<<3 is the same as fred*8. Although

using shift can be faster than the equivalent multiply, you should bear in mind
that bits may be shifted off the end of the number, so leading to incorrect
results which will not be trapped as errors. For example, &10000<<16
yields 0, whereas the correct 'multiply' result is &l(){)()()(X)OO (which cannot be
represented in a 32-bit integer, and would be converted to floating point by
BASIC).

The two right shift operators perform a similar role in division. The >>
operator gives division of 'signed' numbers by a power of two. This means that
both positive and negative numbers may be divided; the result is always
rounded towards the integer less than or equal to the exact value. For
example, -3>>1 is the same as INT (-3/2) =-2 , not - 3 DIV 2, which is - 1.
The >>> operator ignores the sign when shifting negative numbers, so should
only be used to divide positive numbers by a power of two.

The operators AND, OR and EOR produce a result which depends upon the
bits of two integer operands:

• In the case of AND, the bits in the two integers are compared and if they
are both one, then a one is placed in the corresponding bit of the result.

• In the case of OR, a one is placed in the corresponding bit of the result if
either or both of the bits in the integers are one.

• In the case of EOR, a one is placed in the corresponding bit of the result if
either (but not both) of the bits in the integers is one.

Inputs

0 0

0 1

1 0

1 1

For example:

A% "' %1010
8% %1100

AND

0

0

0

1

C% A% AND 8%
1 D% A% OR B%

OR

0

1

1

1

EOR

0

1

1

0

Bases 30

This leaves the variables with the following values:

Variable Value

A% 10 (%1010)
B% 12 (%1100)
C% 8 (%1000)
D% 14 (%1110)
E% 6 (%0110)

The logical operators AND, OR and EOR are symmetrical, like + and *. Thus
X AND Y = Y AND X for all possible values of X and Y. This applies to

the other two operators a5 well.

TRUE and FALSE The truth values TRUE and FALSE have the values - 1 and 0 respectively.

This means that:

With AND TRUE AND TRUE gives TRUE (-1 AND -1 -1)
TRUE AND FALSE gives FALSE (-1 AND 0 0)

FALSE AND FALSE gives FALSE (0 AND 0 0)

With OR TRUE OR TRUE gives TRUE (-1 OR -1 -1)

TRUE OR FALSE gives TRUE (-1 OR 0 -1)

FALSE OR FALSE gives FALSE (0 OR 0 0)

With EOR TRUE EOR TRUE gives FALSE (-1 EOR -1 0)
TRUE EOR FALSE gives TRUE (-1 EOR 0 .. -1)

FALSE EOR FALSE gives FALSE (0 EOR 0 0)

Bases 31

Bases 32

String variables

Assigning values to
string variables

String variables may be used to store strings of characters, constituting words
and phrases. Each string can be up to 255 characters long. The following gives
some examples of strings:

day$ = "Monday"
Date$ = " 29th February"
space$ = " "
Address$ = "10 Downing Street, London"
Age$ = " 21 "

Note that the variable Age$ is assigned a string containing the two characters
2 and 1, and not the number 21. So, if you type

Real_Age$ = 21 * 2

the result will not be "42" because BASIC cannot do arithmetic with strings.
Instead, the error message:

Type mismatch: string needed

appears on the screen, indicating that only a string expression can be assigned
to a string variable. A type mismatch error can also be caused by an attempt
to multiply strings, as in:

total$ = "12"*"32"

You should note that the 'null' string '" ' is valid. This is a string containing zero
characters. In comparisons, it is less than any other string (except, of course,
another null string).

In order to obtain a double quotation character, ", in a string, you use two of
them adjacent to each other. For example, to print the text A" here, you would

use:

String variables 33

Joining strings
together

Splitting strings

PRINT "A"" here "

Two strings may be joined together, or more correctly speaking concatenated.
The + operator is used to indicate this:

10 Road$ - " Downing Street "
20 City$ = " London "
30 PRI NT Road$ + " " + City$

Typing RUN produces the following:

Downing Street London

The += operator can also be used, and as the following program shows,
produces the same output as +.

10 Address$ "Downing Street "
2 0 Address$ += " "
30 Address$ += " London"
40 PRINT Address$

Note, however, that the

produces an error message.

operator is meaningless when applied to strings and

As well as joining two strings together, BASIC can split a string into smaller
sequences of characters. Three functions are provided for doing this.

• LEFT$ (A$ 1 n) which gives the first (lefthand end) n characters of a string.

• RIGHT$ (A$ 1 n) which gives the last (righthand end) n characters of a string.

• MID$ (A$ 1 m1 n) which gives n characters from the middle, beginning at the

mth character.

For example,

PRINT
LEFT$(" HELL0", 2) , RIGHT$(" THERE", 2) 1 MID$(" GORDON", 3 , 2)

gives

HE RE RD

and

String variables 34

10 title$ = "Moonlight Sonata"
20 left of_string$ = LEFT$(t itle$,4)
30 right_of_st ring$ = RIGHT$(title$,6)
40 middle_of_string$ = MIDS(title$, 5 ,9)
50 PRINT left_of string$
60 PRINT right of_string$
70 PRINT middle of string$

produces the following when run:

Moon
Sonata
light Son

Each of these functions has a convenient shorthand form:

• LEFT$ (A$) gives all but the last character of the string

• RIGHT$ (A$) gives the last character of the string

• MID$ (A$, m) gives all the characters from the mth to the last

For example:

10 PRINT LEFT$ ("Hello ")
20 PRI NT RIGHT$("Hel lo")
30 PRI NT MID$("Hello", 3)

produces the following:

Hell
0

llo

LEFT$, RIGHT$ and MID$ may be used to replace part of a string. In each
case the number of new characters equals the number of characters being
replaced, and the string stays the same length. The number of characters being
changed can be determined by the length of the replacement string. Thus:

10 A$= "He llo there ."
20 MID$(A$,7) = " Susan "
30 PRINT A$
40 LEFT$(A$) = " Howdy"
50 PRINT A$
60 RIGHT$(A$) = " 1 "

String variables 35

Other keywords for
manipulating strings

70 PRINT A$

produces:

Hello Susan.
Howdy Susan.
Howdy Susan !

Alternatively, you can give the maximum number of characters to be replaced.
Then, if the length of the replacement string is less than the given value, all of
it is used. Otherwise only the first designated number of characters have an
effect. For example,

10 A$ = "ABCDEFGHIJ"
20 RIGHTS(A$,3)
30 PRINT A$
40 LEFT${A$,4)
50 PRINT A$
60 MIDS(A$,4,3)
70 PRINT A$

produces:

ABCDEFGHKL
MNOPEFGHKL
MNOSTUGHKL

= " KL "

= "MNOPQR"

= " STUVW"

There are also BASIC keywords to:

• produce a long string consisting of multiple copies of a shorter string

• find the length of a string

• determine whether one string is contained within the other.

These keywords are:

• STRING$ { n, A$), which returns a string consisting of n copies of A$.

• LEN (A$) , which gives the length of string A$.

• INSTR {A$, B$), which looks for the string B$ within the string A$ and
returns the position of the first place where it is found.

For example,

PRINT STRING${20 ," +-")

String variables 36

How characters are
represented

Converting between
strings and numbers

produces the output:

+-

The statement PRINT LEN ("PAUL") prints the number 4 and

A$ = " Great Britain "
PRINT LEN(A$)

produces the result 13. Note that the space is treated like any other character.

A$ = "Great Britain"
PRINT INSTR(A$," it ")

prints 9 because the string it is contained in Great Britain at the ninth
character position. If the substring in the INSTR function is not present in the
first string, then 0 is returned. Note also that you can start the search for the
substring at any position, not just from the start of the substring. This is done
by specifying a third parameter, so that for example,

PRINT INSTR('" ello ' ello",'" ello", 2)

will print 7, since the first occurrence of the substring will be skipped.

You can use the relational operators >, =, <= etc, to compare two strings. See
the chapter Control statements for details.

Every character and symbol which can be reproduced on the screen is
represented within the computer by a number in the range 0 to 255. The
system used to assign numbers to characters and symbols is known as IS0-
8859. This is an extension of the very popular ASCII (American Standard
Code for Information Interchange) code, which only applies to characters
between 0 and 12 7. We shall use ASCII as a general term for character
codes. It is wise to follow such a standard so that different computers can all
understand the same numerical alphabet.

BASIC provides a pair of functions for converting characters to their ASCII
number-codes and back again. These are:

• ASC (a$), which gives the ASCII code of the first character of a string.

• CHR$ (n), which gives the one-character string whose ASCII code is n.

There are three keywords which convert between strings and numbers:

String variables 37

VAL

EVAL

STR$

• VAL (A$), which converts a string of digits A$ into a number.

• STR$ (n), which converts the number n into a string.

• EVAL (A$), which evaluates the string A$ as though it were a BASIC
expression.

VAL returns the value of a string, up to the first non-numeric character.

For example:

PRINT VAL("10to10 ")

prints the value 10, since all the characters after the t are ignored. The string
may, however, begin with a+ or - Thus,

number= VAL(" -5")

assigns the value -5 to number. If, however, the string does not start with a
digit or a plus or minus sign , VAL returns 0.

EVAL however, considers the whole string as an expression, allowing
operators and variable names to occur within it. Variables must be assigned
values beforehand.

10 radius = 5
20 area = EVAL(" PI*radius"2 ")
30 PRINT area

When this program is run the value printed is 78.5398163, which is the
value PI (3.141592653) multiplied by 5 squared.

STR$ performs the opposite conversion to the above two functions. It takes the
number given and returns a string containing the digits in the number. For
example,

10 A = 45
20 B = 30 .5
30 A$- STR$(A)
40 B$ = STR$(B)
50 PRINT A + B
60 PRINT A$ + B$

produces the following when it is run:

String variables 38

75.5
4530.5

BBC BASIC can express numbers in base 16 (hexadecimal) as well as BASE
10 (decimal). This is useful for dealing with certain types of integer. The
chapter Bases explains more about the various ways in which bases can be
used. STR$-x gives the hexadecimal string representation of x. Thus

10 A 45
20 A$= STR$-(A)
30 PRI NT A$

produces:

20

because 20 is the hexadecimal version of the decimal number 45.

String variables 39

String variables 40

Arrays

The DIM statement

Two dimensional arrays

Arrays are groups of variables. An array has a name which applies to all
variables in the group. The individual members, known as the elements of the
array, are identified by a subscript. This is a whole number (zero or greater)
indicating the element's position within the array. For example, A(O) is the
first element in the array named A(), and A(l) is the second element, and so
on.

The DIM statement tells BASIC how many elements you wish to use in the
array. For example,

DIM A(9)

allocates space in the computer's memory for ten elements, each called A () ,

but each having a different subscript, zero to nine. The DIM statement also
assigns the value zero to each of these clements, which may then be
individually assigned values, just like any other variables. For example:

A(l) 0 .56
A(2) A(l) + 4

The example shown above is of a one-dimensional array: it may be thought of
as a line of variables, numbered from 0 to 9 in a sequence. More dimensions
may be used.

Two dimensional arrays in which the individual variables are identified by
two subscripts can be thought of as the printing on a TV screen. Each character
printed on the screen is at a particular position from the left, and a particular
position from the top. (Use the rows and columns as a matrix.)

A two dimensional array may be defined as follows:

DIM 8(2,2)

This allocates space for nine elements, each called 8 () in this case, and each

Arrays 41

identified by two subscripts as shown in the following table:
B(O,O) B(O,l) B(0,2)

B (1, 0) B (1, 1) B (1 , 2)

B(2,0) B(2,1) B(2,2)

Arrays may have as many dimensions as you like, and may hold floating point
numbers, integers, or strings. For example,

DIM str$(1 ,3,2)

allocates space for 24 string variables (str$ (0, 0 , 0) to str$ (1,3 , 2)),
each of them containing up to 255 characters.

The subscript need not be specified as a number - a variable or expression can
be used instead. For example:

10 DIM A(9)
20 X 6
30 A(X) = 3
40 A(A(X)) = 1

This gives A(6) the value 3, and A(3) the value I.

Any arithmetic expression may be used as a subscript. Since subscripts can only
be whole numbers, any expression giving a floating point result has the number
truncated to its integer value (the part before the decimal point).

When using arrays, remember that if you DIM the array using a particular
number of subscripts, each element of the array must: be referenced with the
same number of subscripts:

10 DIM name$(2,2,2)
20 name$(0) = "FRED"

produces an error. Line 20 should be replaced by:

20 name$(0,0,0) = " FRED"

In addition, the numbers used as subscripts must not be too big or less than zero:

10 DIM position(9,4)
20 position(- 1,5) = 1

Arrays 42

Finding the size of an
array

If you now type RUN, an error message is displayed because the firsl
subscript must be between zero and nine and the second between zero and
four.

When you DIM a string array, the elements are initialised, just as they are
for numeric arrays. Each element in the array is set to the null string, "". No
space is allocated for the characters of each string element until they are
assigned a value.

The operators += and ·"' are particularly useful with arrays, as they remove
the need to evaluate the subscript expressions twice. For example, suppose
you had the assignment:

a(100*(SINRADangle+1))=a(100 *(SINRADangle+1))+increment

The expression 10 0 * (SINRADangle+ 1) must be calculated twice, which
could be quite time-consuming. On the other hand, if you used

a(100*(SINRADangle+1)) +=increment

the complex subscript expression would only be used once, saving time. It is
also easier to write and read !

Functions are available to find the number of dimensions of an array, and the
size of each dimension. To find the number of dimensions of an array type

PRINT DIM (A())

To find the number of elements of the nth dimension, type

PRINT DIM(A() , n)

For example,

10 DIM A(4 , 2 , 7)
20 n = DIM(A())
30 PRINT n
40 PRINT DIM(A() , n)

produces:

3
7

These functions are useful mainly in procedures and functions which take

Arrays 43

Operating on whole
arrays

array parameters. See the chapter Procedures and functions for more details.

As described above, every element of an array is given the value zero when
the array is DIMmed.

lt is possible to set every element in an array to any given value using a single
assignment as follows:

10 DIM A(10), 8(10)
20 n % - 2
30 A() (3*n %)
40 B() =A ()

Line 10 dimensions two arrays of the same size. Line 30 sets all of the
elements of A() to 3*n%, ie 6. Then line 40 sets all of the elements of B()
from the corresponding elements in A().

Note: You may be wondering why the righthand side of the assignment in
line 30 is in brackets, ie why couldn't we have written

20 A() = 3*n%

The answer is that the righthand side of an array assignment must be a
single item (number, single variable or expression in brackets) to avoid
possible confusion with a more complex array operation, eg

20 A() = 3*n%()

as described below.

Instead of setting all of the elements of an array to one value, you can set
them to different values by giving a list of values after the =. For example:

10 DIM a(S) , b(2 , 2)
20 a() 1,2,3,4
30 b() = 6,5,4,3,2,1

Any clements omitted from the list are not changed in the array (eg a(4) and
a(5) above wouldn't be assigned). In the case of multi-dimensional arrays, the
elements are assigned so that the last subscript changes quickest. For example,
in the case of b() above the six values listed would be assigned to b(O,O),
b(O,l}, b(0,2), b(l,O}, ... , b(2,1}, b(2,2) respectively.

ln addition, all the elements in an array can be increased, decreased,

Arrays 44

multiplied or divided by a given amount:

10 DIM A(2,2), 8 (2, 2)
20 A(0 , 0) 4
30 A(1 , 1) 5
40 A(2 , 2) 6

50 n% = 2 : m% = 3
60 A() A() + (n%*n%)
70 A() A() - m%
80 B() A() * 6
90 B() B() I n %

When you RUN this program, the clements of the arrays A() and B() are
assigned the following values:

Array Value Array Value Array Value

A(O,O) 5 A (0, 1) 1 A(0,2) 1
A(1,0) 1 A(1, 1) 6 A (1, 2) 1
A(2,0) 1 A(2, 1) 1 A (2 , 2) 7

8(0 , 0) 15 8 (0, 1) 3 8(0 , 2) 3
8 (1, 0) 3 8 (1, 1) 18 8 (1 , 2) 3
8 (2, 0) 3 8(2 , 1) 3 8(2 , 2) 21

Note that in line 60 the brackets around n 9 * n ~ are necessary, as with a
simple array assignment. The amount being added, subtracted, and so on may
be either a constant, a variable, a function result or an expression, provided
that it is enclosed in brackets. However, you can use shorthand versions for
addition and subtraction which do not require brackets:

60 A() += n%*n%
70 A() m%

It is also possible to add, subtract, multiply or divide two arrays, provided
that they are of the same size. In the result, every clement is obtained by
performing the specified operation on the two elements in the corresponding
positions in the operands.

For example, for two arrays which have been DIMmed A(l, 1) and B(l, 1), the
instruction

Arrays 45

A() A() + B()

is equivalent to the following four instructions:

A(O , O)
A (0 , 1)

A (1, 0)

A(1,1)

A(O , O) + B(O , O)

A(O ,l) + 8 (0, 1)

A(l,O) + 8(1,0)

A(l,l) + 8(1 , 1)

BASIC will perform proper matrix multiplication on pair1> of two
dimensional arrays using the . operator. The first index of the array is
interpreted as the row and the second as the column. For example:

10 i=2 : j=3 :k= 4
20 DIM A(i , j) , 8(j ,k) , C(i , k)
30
40 REM Set up the array contents ...
50
60 C () .,. A() . B ()

Note that the first dimension of the array must be identical to the fir~t

dimension of the second array.

Also, the matrix multiplication operation can multiply a vector (a one
dimensional array) by a two dimensional matrix to yield a vector. There are
two possible cases:

row() .matrix()

This gives a row vector as the result. The number of elements is equal to the
number of columns in the matrix.

matrix() . column()

This gives a column vector as the result. The number of elements is equal to
the number of rows in the matrix. For example:

10 i = 2 : j = 3
20 DIM row(i) , column(j)
30 DIM matrix(i, j)
40:

50 REM lines to set up the drrays
200 column() =matrix() . column()

Arrays 46

Array operations

220 PROCprint(column())
260 row() = row() .matrix()
270 PROCprint(row())

Arithmetic operations on arrays are not quite as general as those on simple
numbers. Although you can say a=b*b+c, you cannot use the equivalent array
expression a () =b () *b () +c (). Instead, you would have to split it into two
assignments:

a() b () *b ()
a() a()+c()

Also, the only place these array operations may appear is on the righthand
side of an assignment to another array. You cannot say

PRINT a()*2

for example (or, indeed, PRINT a ()).

The table below gives a complete list of array operations.

array array Copy all elements
array -array Copy all elements, negating
array array + array Add corresponding elements
array array - array Subtract corresponding elements
array array * array Multiply corresponding elements
array array I array Divide corresponding elements

array factor Set all elements
array factor , expression, ... Set several elements

array
array

array +

factor+

array += expression

array array -
array factor-
array expression

array array *
array factor*

Arrays

factor Increment (or concatenate) all elements
array

factor Decrement all elements
array

factor Multiply all elements
array

47

array

array

array I
factor I

factor Divide all elements
array

array array . array Matrix multiplication

array means any array variable. All of the operations on two arrays require
arrays of exactly the same sire and type (real and integer arrays are treated
as different types for this purpose). Only the assignment and concatenation
operations are available on string arrays.

factor means a simple expression, such as 1, LENA$ or " HELLO". If you

want to use an expression using binary operators, it must be enclosed in
brackets: (a+ b) .

The arrays used in these operations may a ll be the same, or all be different,
or somewhere in between. For example, you are allowed to use:

a () b () + c()

a() a() + b()

a() a() +a()

The matrix multiplication operator works on two arrays which must be
compatible in size. This means that in the assignment

a () '"'b () . c()

the following DIMs must have been used:

DIM b(i , j)

DIM C(j , k)
DIM a(i ,k)

REM left side is i rows by j columns
REM right side is j rows by k columns
REM result is i rows by k columns

In addition, the following would be permitted:

DIM
DIM
DIM

or

DIM
DIM
DIM

Arrays

b (i, j)

c (i)
a (i)

b (k)
c (j , k)
a (j)

REM left side is i by j matrix
REM right side is column vector
REM result is column vector

REM l eft side is row vector
REM right s ide is i by k matrix
REM result is row vector

48

There are some functions which act on single arrays:

• SUM array gives the sum of all elements of the array or the concatenation
of all the strings (up to 255 characters) SUMLEN array gives the sum of

the lengths of all of the strings in an array

• MOD array gives the modulus, or square root of the sum of the squares of
the clements of a numeric array. For example, if you had the following
statements:

10 DIM a(100)
20

90 mod=MODa ()

then to perform the same operation without the MOD operator, you would

have to say:

10 DIM a (100), b (100)
20

90 b()=a()*a()
100 mod=SQRSUMb()

Arrays 49

Arrays 50

Outputting text

Print formatting

Using print separators

Printing numbers

The PRINT statement provides a number of ways of formatting the printed
output.

The items in a PRINT statement can be separated by a variety of different
punctuation characters. Each of these characters affects the way m which the text
is formatted:

• Items separated by spaces are printed one after the other, with numbers right
justified and strings left justified.

• Items separated by semicolons are printed one after the other, with no spaces
(numbers are left justified if there is a semicolon before the first number).

• Items separated by commas are tabulated into columns.

• Items separated by apostrophes are printed on separate lines.

The following program demonstrates this:

10 PRINT "Hello " "Hello ","Hello "'"What 's all this? "

Typing RUN produces the following output:

Hello Hello
What's all this?

Hello

Numbers are printed right justified in the print field, unless preceed by a
semicolon, which causes them to be left justified. Print fields are discussed
below. In the example below, the first number is right justified in the default
field of ten characters; the second number is left justified because a semicolon
comes before it:

10 A% = 4
20 PRINT 4; " " ;A%

Typing RUN produces (spaces are shown as . }:

Outputting text 51

Defining fields

......... 4 . 4

Numbers arc normally printed (displayed) as decimal values unless they are
preceded by a ~. in which case they are given in hexadecimal notation
(hexadecimal numbers are discussed in the chapter Bases):

10 PRINT 10
20 PRINT &10
30 PRINT -10
40 PRINT -&10

produces:

........ 10

........ 16
•.•.•.•.• A

........ 10

The columns controlled by commas are called fields. By default a field is ten
characters wide. Each string which is printed following a comma starts at the
lefthand side of the next field. In other words using commas is a convenient
method of left-justifying text. Numbers, on the other hand, arc displayed to
the right of the next field, so that the units of integers, or the least significant
decimal places of floating point numbers, line up.

Thus,

10 FOR N% = 1 TO 5
20 A$= LEFT$("Hello",N%)
30 B% = N%*10~(N%-1)

40 PRINT A$, A$, A$,A$ ' B% ,B%,B%, B%
50 NEXT N%

produces the following when RUN:

H H H H
1 1 1

He He He He
20 20 20

Hel Hel Hel He1
300 300 300

Hell Hell Hell Hell
4000 4000 4000

Outputting text

1

20

300

4000

52

Using @% to alter
output

Hello Hello Hello Hello
50000 50000 50000 50000

Problems may occur when you print out floating point numbers. For example:

PRINT 6 , 9 ,7/3,5 7

produces:

6 92 . 33333333 57

The nine and the decimal equivalent of 7/3 run into each other.

To prevent this, you can alter the field width or limit the number of decimal
places printed (or both) by using the integer variable @%. T o sec the effect of
altering the value of@%, type

@% - &20408

then

PRINT 6 , 9 , 7/3 , 57

and the following is produced:

6 .0 000 9.0000 2.3333 57 .000 0

The assignment of the variable @% is made up of a number of parts:

• & indicates that a hexadecimal number follows.

• The first digit (2) indicates the format of the print field • two tells BASIC

to print a fixed number of decimal places.

• The next two d igits (0 4) indicate the number of decimal places required.

• The last two digits (08) give the field width.

The format: the first figure after the & symbol, can take three values:

• 0 is the default configuration; BASIC uses the number of decimal places it
requires up to a maximum of ten.

• 1 prints numbers in exponent form: a number between 1 and 9.99999999 fol ·
lowed by E and then a power of ten.

• 2 prints numbers to a fixed number of decimal places, giving up to a maxi·
mum of ten significant figures.

Outputting text 53

The text cursor

Text cursor
co-ordinates

Altering the postion of
the text cursor

See PRINT in the chapter Keywords: Input/Output for more details on @%

When text is entered at the keyboard or displayed using the PRINT
statement, the position it appears at on the screen depends on the location of
the text cursor. As each character is printed, this cursor moves on to the next
character position.

Initially, the text cursor is at the top lefthand comer of the screen, which ts
position (0,0). The number of possible positions for the cursor depends on the
screen mode. For example, in screen mode 12 which has 80 characters
across the screen and 32 rows, the co-ordinates it can have vary as follows:

(0 , 0 ,) (79 , 0)

l
(0 , 31) (79, 31)

You can use TAB with one parameter to control the position of the text cursor.
For example:

PRINT TAB{x)"Hel lo"

It works as follows. If the current value of COUNT (which holds the number
of characters printed since the last newline) is greater than the required tab
column (ie x above), a newline is printed. This moves the cursor to the start of
the next line, and resets COUNT to zero. Then x spaces are printed, moving the
cursor to the required column.

Note that it is possible to tab to column 60 in a 40 column mode; the cursor
will simply move to column 20 of the line below the current one. Using TAB
with one parameter to position the cursor on the line will also work, for
example, when characters are sent to the printer, as it is just printing spaces to

achieve the desired tabulation.

Outputting text 54

The VDU statement

Defining your own
characters

On the other hand, TAB with two arguments works in a completely different
way: it uses the operating system to position the cursor at a specified position
on the screen - this is relative to the screen 'home' position, which is normally
the top left.

If you try to position the cursor on, say, column 60 in a 40 column mode, the
command will be ignored. Furthermore, this kind of tabbing does not affect
any characters being sent to the printer.

In addition to TAB, there are other methods of altering the position of the
cursor. If, for example, you type

10 PRINT " A";

20 VDU 8
30 PRINT "B"

PRINT " A"; prints an A at the current cursor position and moves the cursor
one place to the right. VDU 8 moves the cursor back one position so that it is

underneath the A. Hence, PRINT " B" prints a Bat the same position as the A,

and so rubs it out.

VDU 8
VDU 9
VDU 10

VDU 11

VDU 12
VDU 13
VDU 30

Move~ the cursor back one space
Moves the cursor forward one space
Moves the cursor down one line
Moves the cursor up one line
Clears the screen and puts the cursor at the top left
Moves the cursor to the beginning of the line
Moves the cursor to the 'home' position

For detail of these and other effects available with YOU sec the chapter
VDU commands.

Each character is made up of a pattern of dots on an eight by eight grid. All
normal letters, numbers and so on are pre-defined in this way. It is possible,
however, to define your own characters with ASCII value:. tn the range 32 to
255.

To Jo this, use the YOU 23 command, followed by the code of the character
you wish to define and then eight integers, each representing one row of the
character, from top to bottom. The bit pattern of each integer defines the
sequence of dots and spaces: one gives a dot and zero gives a space.

Outputting text 55

128 64 32 16 8 4 2 1

24
60
126
219
126
36
66
129

To set up character 128 to be the shape shown above, use the following:

VDU 23 , 128,24 , 60 , 126 ,21 9 , 126 , 36 ,6 6 , 129

Then, to Ji~play this character, type

PRINT CHR$ (128)

Outputting text 56

Inputting data

Inputting data from
the keyboard

INPUT

The INPUT statement allowl> a program to request information from the user.

The following program gives an example:

10 PRINT "Give me a number and I ' ll double it";
20 INPUT X
30 PRI NT " Twice ";X " is ";X*2

When you run this program, the INPUT command on line 20 displays a question
mark on the screen and waits for you to enter data. The number you type is
assigned to the variable X. If you do not type anything, or type letters or
symbols instead, X is assigned the value 0.

INPUT may also be used with :.tring and integer variables:

10 PRINT " What is your name ";
20 INPUT A$
30 PRINT " Hello "; A$

Line 10 in each of the above two programs is used to print a message on the
screen indicating the type of respome required. The INPUT statement allows
text prompts to be included, so the program above could be written more neatly
as:

10 INPUT "What is your name ", A$
20 PRINT "Hello "; A$

The comma in line 10 tells the computer to print a question mark when it wants
input from the keyboard. If you leave out the comma, the question mark is not
printed. A semi-colon may be used, with exactly the same effect as the comma.

When the program is being executed, the INPUT statement requires you to

press <Return> if you wish to send what you have typed to the computer. Until

Inputting data 57

GET and GET$

you press <Return>, you can delete all or part of what you have typed by
pressing <Delete> or <Ctrl> U to erase the whole line.

When you are inputting a string, the computer ignores any leading spaces and
anything after a comma, unless you put the whole string inside quotation marks.

To input a whole line of text, including commas and leading spaces, INPUT
LINE (or LINE INP UT) may be used:

10 INPUT A$
20 INPUT LINE B$
30 PRINT A$
40 PRINT B$

RUN the above program and, in response to each of the question marks, type

Hello, how are you?

This pro<.luces the following output:

Hello

Hello, how are you?

Several inputs may be requested at one time:

10 INPUT A,B,C$

You may enter the data individually, pressing <Return> after each item. In
this case you arc prompted with a question mark until you enter the number
required. Alternatively, you can give all the inputs on one line, separated by
commas.

Single-character input may be used to read a single key press:

10 PRINT "Press a key"
20 A$ = GET$
30 PRINT "The key you pressed was "; A$

In this example the program waits at line 20 until you press a key. As soon as
you do so, the character that key represents is placed in A$. You do not have

to press <Return> an<.!:.<) do not get the chance to change your mind.

GET is similar to GET$ but returns the ASCII code of the key pressed,

Inputting data 58

INKEY and INKEY$

Including data as part
of a program

instead of the character.

INKEY$ is similar to GET$, except that it does not wait indefinitely for a key
to be pressed. You give it a time limit and it waits for that length of time
only. For example:

10 PRINT "You have 2 seconds to press a key"
20 A$= INKEY$ (200)

The number following the INKEY$ is the number of hundredths of a second it
waits. If a key is pressed in time, A$ holds the character which was typed.
Otherwise, A$ is the null string.

INKEY is used in a similar manner to INKEY$: it waits for a given time for a
key to be pressed, and then returns the ASCII code for the key pressed, or - 1
if no key is pressed within this time.

Predefined data may be included within a program and saved as part of it.
When the program is run, individual items of data arc read and assigned to

variables as follows:

10 FOR I% = 1 TO 4
20 READ age%, dog$
30 PRINT " Name: "; dog$ II Age: ";age%
40 NEXT I%
50 DATA 9,"Laddie",3,"Watson"
60 DATA 1
70 DATA "Mungo",3,"Honey"

You may use as many DATA statements as you like, but you must make sure
that the type of each item of data matches the type of the variable into which
it is being read. Each DATA statement can be followed by one or more items
of data separated by commas.

You can usually leave out the quotation marks around strings, but they are
needed if you want to include spaces or commas in the string.

For example,

10 DATA Hello, my name is
20 DATA Rose
30 READ A$,B$
40 PRINT A$;B$

Inputting data 59

produces:

Hellomy name is

To obtain the sentence Hello, my name is Ros e, change the program as
follows:

10 DATA " Hello , my name is "
20 DATA " Rose"
30 READ A$,B$
40 PRINT A$; 8$

A DATA statement must appear as the first statement on a line, otherwise it
will not be found. If BASIC encounters a DATA statement while executing a
program, it ignores it ami goes on to the next line.

When it attempts to READ the first item of data, it scans through the lines of
the program from the start until it finds the first DATA statement and uses
the first item of data on this line. The next READ uses the second item and so
on until the DATA statement has no more items left, at which pomt the next
DATA statement is searched for and used.

If there is insufficient data, the computer produces an error message, such as:

Out of data at line 20

This indicates that it has tried to READ an item of data, but that all items have
already been read.

You might have a lot of different sections of DATA, and want to start reading
from a certain point. You can do this using the RESTORE statement. It is
followed by a line number. BASIC will start subsequent searches for DATA
from that line instead of from the start of the program. For example, the
program below

10 RESTORE 60
20 READ A$
30 PRINT A$
40 END
50 DATA First line of data
60 DATA Second line of data

will print out

Inputting data 60

Programming the
keyboard

Waiting for input

Second line of da ta

because the RESTORE causes BASIC to start the search for DATA statements at
line60.

Because line numbers can't be used in procedure libraries, a special form of
RESTORE is provided so that you can still include data in them. If you say
RESTORE +offset, BASIC will start searching for DATA statements at
offset+ 1 lines from where the RESTORE statement is located. For example, if
you had the following lines:

1000 RESTORE +0
1010 DATA
1020 DATA ...

the next READ would read data from line 1010. If line 1000 was
RESTORE-+ 1, then data would be read next from line 1020, and so on.

A further useful feature is the ability to remember where data is currently
being read from (LOCAL DATA), read data from another part of the
program, then restore the original place (RESTORE OAT A). This is mainly
useful in functions and procedures, so is explained in the section dealing with
them.

A note about line numbers. In general, if you use line numbers anywhere in a
program (and there should be very few situations where you have to), they
should be simple numbers in the range 0 to 65279, not expressions like
start%+ 10 * n%. Otherwise, if the program is renumbered, it will stop
working since BASIC does not know how to change the expression in the right
way.

A program can wait for a key to be pressed, either indefinitely using GET
and GET$ or for a defined length of time using INKEY and INKEY$.
Normally the keyboard allows type-ahead. Every time you press a key it is
placed in the keyboard buffer which is a temporary block of memory used to
store key presses until BASIC is ready to read them. Up to 31 key presses
may be typed ahead like this.

The GET and GET$ instructions look in the keyboard buffer for a key. Hence
they take note of keys which were pressed before the input instructions were
executed. If this is a problem (eg you want to ensure that you only read keys

Inputting data 61

Using the Tab & cursor
keys to get ASCII code

pressed after a prompt has been displayed), you can empty or flush the
buffer before using these instructions. Then you can be sure that the key
obtained is in response to the prompt and not just an accidental press of the
keyboard a few moments before. To do this, use the operating system
command:

*FX 15,1

The cursor keys editing keys can be made to generate ASCII codes when they
arc pressed, rather than performing their normal cursor editing functions, by
typing

*FX 4,1

T he codes they return are:

Key Code
<Copy> 135
f- 136
~ 137
,!, 138
t 139

You can re~tore cursor copying by giving the command

*FX 4

The <Tab> key can be made to return any ASCII value you choose by typmg

*FX 2 19, n

where n is the ASCII code you want it to return.

The following program uses these features to move a block around the screen
until <Tab> or <Copy> is pressed, and then to leave it at 1ts current location.
Don't worry if you don't understand all of the statements (eg RECTANGLE
and REPEAT); they arc all described later on.

10 MODE 1
20 *FX 4 , 1
30 *FX 219 , 135
40 X = 600 : y = 492
SO oldx ~ x : oldy = y
60 RECTANGLE FILL x , y , 80 ,4 0

Inputting data 62

Scanning the keyboard

Using the mouse in
programs

70 REPEAT
80 *FX 15 , 1
90 key = GET

100 CASE key OF
110 WHEN 135 END
120 WHEN 136 X 20
130 WHEN 137 X += 20
140 WHEN 138 y 20
150 WHEN 139 y += 20
160 ENDCASE
170 RECTANGLE FILL oldx,oldy,80,40 TO x,y
180 oldx = x : oldy = y
190 UNTIL FALSE

Negative INKEY, when it is given a positive parameter, waits for a given
length of time for a particular key to be pressed; but it has an additional
function. If INKEY is given a negative parameter it tests to see if a particular
key is pressed at that instant. For example:

10 IF INKEY(-66) THEN PRINT " You were pressing A"

The list of negative values associated with each of the keys is given in
Appendix C .

This feature is particularly useful for real-time applications where the
computer is constantly reacting to the current input it is being given, rather
than stopping and waiting for you to decide what to do next. Another
advant<1ge is that it lets you check for keys like <Shift> and <Ctrl> being
pressed, which you cannot do with the other input functions.

The mouse provides a convenient method of supplying information to a
program. This information is in three parts:

• a position on the screen

• details of which of the buttons are currently being pressed

• the ttme of the last mouse 'event'.

To input this information, type

MOUSE x , y ,buttons , when

The values returned in x and y give the position of the mouse. The variable
buttons gives details of the mouse buttons currently pressed. Finally, when

Inputting data 63

Linking the mouse to a
pointer

gives the value of a centi-second timer. Thi:. timer starts at 0 when the machine
is switched on. The time given is that of the last time a mouse button was
pressed or released, or the current time if no presses or releases arc
'pending'. You can omit the last comma and variable if you are not interested
in the time.

The but tons variable has a value whose meaning is as follows:

Buttons Details

0
1
2
3
4
5
6
7

No buttons pressed
Adjust (righthand) only pressed
Menu (middle) only pressed
Adjust and Menu pressed
Select (lefthand) only pressed
Select and Adjust pressed
Select and Menu pressed
All three buttons pressed

The following program is a very simple sketchpad program whtch draws line:.
as you move the mouse around and hold down its buttons:

10 MODE 12
20 MOVE 0 ,0
30 REPEAT
40 MOUSE x , y , button
50 GCOL button + 1
40 DRAW x , y
50 UNTIL FALSE

In order to be able to see the position of the mouse on the screen, it can be
linked to a pointer. The easiest way to show the mouse pointer is to use the *
command *POINTER. This gives the pointer an arrow shape and displays it on
the screen. To tum the pointer off, use

*POINTER 0

Now, whenever you move the mouse, the pointer moves with it on the screen
indicating its current position. This enables the sketchpad program shown
above to be altered so that you can move to the position you want and then
draw a line to this new position by pressing any button:

Inputting data 64

Programming
function keys

Storing a series of
commands

Storing a small BASIC
program

5 MODE 15
10 *POINTER
20 MOVE 0,0
40 REPEAT
50 REPEAT
60 MOUSE x ,y,button%
70 UNTIL button% <> 0
80 DRAW x,y
90 UNT IL FALSE

The BASIC statement MOUSE also gives you a lot of control over the moul>e
and pointer. See the chapter Keywords: Input/Output for details.

The keys across the top of the keyboard labelled <Fl > to <F2> are function
keys. These can be programmed so that they generate any string you like when
they are pressed. For example, type

*KEY1 " *CAT"

Now when you press <Fl> the string *CAT is printed on the screen as though

you had typed it.

Try changing the definition to:

*KEY1 " *CAT IM"

The I sign means that the character following it is to be interpreted as a
control character. In this case it is a <Ctrl> M which is being included in the

string. This performs the same function as pressing <Return>. A full list of
the control characters is given in Appendix E.

Now when you press <Fl>, the string *CAT is printed and <Return> is
'pressed' automatically so the current directory is catalogued immediately.

A whole series of commands can be stored in one key. The following defines
a key to select screen mode 3 ami list the current program in paged mode.

I *KEY2 "MODE 3 IM IN LIST IM"

You can even define a key so that it contains a small BASIC program:

*KEY 3 " 10 MODE 15 IM 20 FOR I% = 1 TO 100IM 30 CIRCLE

RND(1 279}, RND(1024}, 50+ RND (3 00) IM 40 N. IM RUN IM"

Inputting data 65

Using other keys as
additional function keys

The quotation marks around the string are not strictly necessary. However, it is
important to remember that everything on the line after the *KEY command is
treated as part of the string. So if *KEY is used in a program, it must be the
last statement on the line.

The key labelled <PRINT> acts as function key 0. ln addition, the cursor
editing keys and <Copy> can be made to behave as function keys 11 to 15 by
giving the command:

*FX 4,2

Following this command, the keys, instead of having their normal cursor
editing effects, return the function key strings assigned to them:

Key *KEY number

<Copy> 11
f.- 12

~ 13
i 14
i 15

To rerum them to their normal state, type *FX 4

Symbols in function key The following special characters are allowed in function key strings:
strings

II means I

1 ! ch means the following character code + 128

! ? means Delete (ic CHR$ (127))

1 " means " (useful for making " the first character)

<n> means CHR$n

Inputting data 66

Control statements

IF ... THEN ... ELSE

Normally, lines in a BASIC program arc executed in sequence, one after the
other. However, the language includes two types of structure which alter this
sequence:

• Conditional structures allow statements to be executed only if certain condi
tions are met.

• Loop structures allow statements to be executed repeatedly, either for a
fixed number of times, or until a certain condition is met.

In all cases, the code is easier to read if it is clear which statements are in the
loop and which are conditional on certain factors. This clarity can be achieved
by usc of the LISTO command before listing the programs, to indem the
conditional and loop structures in the listing. All program~ included in t;1t~

chapter are Listed as if the command:

LISTO 3

had been typed beforehand; this gives a space after the line number and
indents structures.

The IF (single Line) statement may be used to enable the computer to make a
choice about whether or not to execute a statement or group of statements. It has
the form

IF condition [THEN) statements [ELSE statement s)

A condition is an expression that gives a number. It is said to be TRUE if
the number if not zero, or FALSE if the number is zero. Usually the relational
operators described below arc used in conditional expressions.

The statements after the THEN keyword (which is optional, as shown by the
fact that it is in square brackets) are only executed if the condition is TRUE. If
it is FALSE, the statements are skipped. However, if there is an ELSE, then the
statements following that arc executed if the condition is FALSE.

Control statements 67

Operators

Numerical operators

String operators

For example:

10 PRINT "What is 2 * 4"
20 INPUT ans%
30 If ans% = 8 THEN PRINT "Well done" ELSE PRINT "No -
you're wrong"

Line 30 contains a conditional expression. In the example shown the
expression is TRUE (ie has a non-zero value) when ans% is equal to 8, and is
FALSE (ie has a zero value) otherwise. Note that in an IF statement, either the
THEN part or the ELSE part (if present) is executed, never both.

A lthough any non-zero number is treated as TRUE in an IF statement, the
comparison operators described below return a particular value meaning
TRUE: -1. They return 0 for FALSE, of course. In addition, there are two
functions called FALSE and TRUE which return 0 and -1 respectively.

Three kinds of operators may be used in conditional expressions:

• numerical operators

• string operators

• logical operators.

The following table lists the operators and their meanings:

In the following, A and B can be integers or floating-point numbers.

Operator

A B

A < B

A > B

A <= R
A >:z B

A <> B

Operator

A$ = B$

A$ <> B$

Control statements

Meaning

TRUE when A is equal to B
TRUE when A is less than B
TRUE when A is greater than R

TRUE when A is less than or equal to B
TRUE when A is greater than or equal to B
TRUE when A is not equal tc B

Meaning

TRUE when A$ and B$ are the same
TRUE when A$ and B$ are different

68

Logical operators

IF ... THEN ... ELSE ...
ENDIF

A$ < B$
A$ > B$
A$ <= B$
A$ >= 8$

String comparisons; see below:

Corresponding characterb of each string are examined until either they are
different, or the end of a string is reached. If the strings are the same length,
and the corresponding characters are the same, the strings are said to be
equ;:~l ; otherwise, the shorter string is 'less than' the longer one.

In the case where the two corresponding characters differ, the relationship
between the strings is the same as that between the ASCII codes of the mis
matched characters. For example, " HI " < " Hi " yields TRUE, because the
ASCII code of upper case I is less than that of lower case i. Similarly,
" SIX" > " FIFTEEN " is TRUE because " SIX" starts with S, and the ASCII
value of S is larger than that ofF.

Operator

NOT A

A AND B
A OR B
A EOR B

Meaning

TRUE when A is FALSE
TRUE if both A and Bare TRUE
TRUE if either A or B or both are TRUE
TRUE if either A orB but not both are TRUE

A block structured IF ... THEN ... [ELSE ...) ENDIF statement is available. It
executes a series of statements, which may be split over several line~.
condit ionally on the result of the IF expression.

10 n% = RNO (10)
20m%= RNO(l0)
30 PRINT "What is "; n% " * " m%;
40 INPUT ans%
50 IF ans% = n%*m% THEN
60 PRINT "Well done"
70 ELSE PRINT "No- you ' re wrong"
80 PRINT n% ;" * ";m% " = "; n%*m%
90 END IF

100 RUN

The END IF on line 90 terminates the statement. It indicates that execut ion of
the following statements is not dependent on the outcome of the conditional

Control statements 69

FOR ... NEXT

expression on line 50, so these statements are executed as normal. Without the
END IF the computer has no way of knowing whether or not the statements on
lines 80 and 100 belong to the ELSE part.

There are certain rules which must be obeyed when using IF... THEN ...
[ELSE ...] ENOIF constructions:

• The first line must take the form:

I F conditi on THEN

with THEN being the last item on the line.

• The ELSE part need not be present, but if it is, the ELSE muse be the first
thing on a line (excluding spaces}.

• The ENDIF statement must be the first thing on a line (excluding spaces}.

• IF ... THEN ... [ELSE ...] ENOIF statements may be nested: one may occur
inside another. For example:

10 DIM A% (10)
20 count~ = 0
30 PRINT " Give me an inte ger between 0 and 9 ";
40 INPUT number%
50 IF numbe r % >= 0 AND nu mber% <= 9 THEN
60 IF A%(number%) = 0 THEN
70 PR INT "Thank you "
80 A%(number%) = 1 : count% = count%+ 1
90 ELSE

100 PRINT " You ' ve alre ady had that number"
110 ENDIF
120 ELSE
130 PRI NT number% " is no t between 0 and 9 !"
1 40 ENDIF
150 IF count% < 10 GOTO 30

The FOR and NEXT ~tatements are used to specify the number of times a
block of a program is executed. These statements are placed so that they
surround the block to be repeated:

10 FOR N% = 1 TO 6
20 PRINT N%
30 NEXT N%

Control statements 70

Type RUN and the following is produced:

1

2
3
4
5
6

The variable N% is called the control variable. It is used to control the
number of times the block of code is executed. The control variable can be
starred at any number you choose, and you may alter the step size, the amount
by which it changes each time round the loop.

10 FOR N% = -5 TO 5 STEP 2
2 0 PRI NT N%
30 NEXT N%

This program produces:

-5
-3
-1
1
3
5

The step size can be negative so that the control variable is decreased each
time. It does not have to be an integer value. You can also use a decimal step
size, although this is not generally advisable. The reason is that numbers such
as 0.1 are not exactly representable in the internal format used by the
computer. This means that when the step is added to the looping variable
several times, small errors may accumulate. You can see this by typing the
program:

10 FOR i=O TO 10 0 STEP 0.1
20 PRINT i
30 NEXT i

The looping variable i doesn't reach exactly 100.

FOR ... NEXT loops may be nested. For example,

Control statements 71

10 FOR N = 3.0 TO -1.0 STEP -2.0
20 FOR M = 2.5 TO 2.9 STEP 0 . 2
30 PRINT N,M
40 NEXT M
50 NEXT N

produces:

3 2.5
3 2.7
3 2.9
1 2.5
1 2.7
1 2.9
-1 2.5
-1 2.7
-l 2.9

You do not need to specify the control variable to which NEXT refers. The
following program produces the same results as the one above:

10 FOR N = 3.0 TO -1.0 STEP - 2.0
20 FORM= 2 . 5 TO 2 . 9 STEP 0 . 2
30 PRINT N, M
40 NEXT
50 NEXT

The computer assumes that NEXT applies to the most recent FOR.

If you put variable names after NEXT you should not mix them up as shown
below:

10 FOR N = 3.0 TO -1.0 STEP -2.0
20 FOR M = 2 . 5 TO 2.9 STEP
30 PRI NT N,M
40 NEXT N
50 NEXT M

The outpul produced by this example is:

3.0
1.0

-1.0

Control statements

2.5
2 . 5
2.5

0 . 2

72

Not in a FOR loop at line 50

Loops must be nested totally within each other: they must not cross. In the
above example, the N and M loops are incorrectly nested. BASIC tries to run
the program, but when line 50 is reached, it gives an error message indicating
that it cannot match the FOR statements with the NEXT statements.

Note: The reason the error wasn't given sooner, ie as soon as the mis-matched
NEXT was met, was th:tt it is actually legal, though not nice, to close more
than one loop with a single NEXT. When BASIC meers a NEXT var

statement, it terminates all open FOR loops until it meets one which started
FOR tJar. Thus the NEXT N in the example above closed the FOR M loop
before performing the NEXT N.

A FOR loop is ended when the control variable is:

• greater than the terminating value (value in the FOR statement) when a posi
tive step size is used.

• less than the terminating value (value in the FOR statement) when a nega
tive step size is used.

The loop is performed in the following sequence:

• 1 Assign the initial value to the control variable.

• 2 Execute the block of code.

• 3 Add the step to the control variable.

• 4 Test against terminating value, and if it is tO be performed again, go
back to step 2.

The initial and terminating values and the step size are calculated only once,
at the start of the loop.

One of the consequences of the way in which the loop is performed is that the
block of code is always executed at least once. Thus,

10 FOR N = 6 TO 0
20 PRINT N
30 NEXT

produces:

6

Control statements 73

REPEAT ... UNTIL

FOR ... NEXT loops are very versatile, since the initial and terminating values
and the step size can be assigned any arithmetic expression containing
variables or functions. For example:

10 REM Draw a sine curve
20 MODE 0 : MOVE 0 , 512
30 PRINT " Please give me a step size (eg 0 . 1) "
40 INPUT step
50 FOR angle = -2*PI TO 2*PI STEP step
60 DRAW 100*angle , 100*SIN(angle) +51 2
70 NEXT
80 END

The REPEAT ... UNTIL loop repeats a block of code until a given condition is
fulfilled. For example:

10 REM Input a number in a given range
20 REPEAT
30 PRI NT " Please give me a number between 0 and 9 "
40 INPUT N
50 UNTIL N >= 0 AND N <= 9
60 PRINT " Thank You "

If the result of the conditional expression following the UNTIL is TRUE,
then the loop is ended and the statement following the UNTIL is executed. If,
however, the result of the expression is FALSE, the block of code after the
REPEAT is executed again and the conditional expression is re-evaluated.

REPEAT ... UNTIL loops may be nested in the same way as FOR .. . NEXT
loops. They are also similar to FOR loops in that the body of the loop is
always executed once, since no test is performed until the end of the loop is
reached.

10 REM Repeat questions until answered right first time
20 REPEAT
30 tries% = 0
40 REPEAT
50 PRINT "What is 20 * 23 + 14 * 11 ". ,
60 INPUT ans%
70 tries% + 1
80 UNTIL ans% - 20 * 23 + 14 * 11

90 REPEAT

Control statements 74

WHILE ... ENDWHILE

100 PRINT "What is 12 + 23 * 14 + 6 I 3 II •

'
110 INPUT ans%
120 tries% += 1
130 UNTIL ans% 12 + 23 * 14 + 6 I 3
140 UNTIL tries% = 2;

The WHILE ... ENDWHILE loop repeats a block of code while a given
condition holds true. For example:

10 X = 0
20 WHILE: X < 100
30 PRINT X
40 X += RND (5)
50 ENDWHILE

The WHILE ... ENDWHILE loop has a conditional expression at the start of
it. If this expression returns TRUE, the block of statements following the
WHILE, down to the matching ENDWHILE statement, is executed. This is
repeated until the expression returns FALSE, in which case execution jumps to
the statement following the matching ENDWHILE. We say 'matching'
ENDWHILE because WHILE loops may be nested. This means that when
BASIC is looking for an ENDWHILE to terminate a loop, it might skip
embedded nested WHILE ... ENDWHILE loops.

Here is an example of nested WHILE loops:

10 A%=256
20 WHILE: A%<>0
30 B%=1
40 WHILE 8%<8
so PRINT A%,8%
60 8%=8%*2
70 ENDWHILE
80 A%=A% DIV 2
90 ENDWHILE

WHILE ... ENDWHILE is similar to REPEAT ... UNTIL except that the
conditional expression is evaluated at the beginning of the loop (so the body
of the loop may never be executed if the condition is initially FALSE) and the
loop repeats if the result is TRUE. The following program demonstrates the
fact that REPEAT ... UNTIL loops are always executed at least once, whereas
the WHILE ... ENDWHILE loops need not be executed at all.

Control statements 75

CASE ... OF ... WHEN ...
OTHERWISE ...
ENDCASE

10 REPEAT
20 PRINT " Repeat "
30 UNTIL TRUE
40
50 WHILE FALSE
60 PRINT "While"
70 ENDWHILE
80
90 PRI NT "All d o ne "

This program produces the fo llowing output:

Repeat
All done

The IF ... THEN ... ELSE ... ENDIF construct is useful if you wish to make a
choice between two alternatives. The CASE sta tement can be used when there
are many alternatives to be acted upon in different ways.

The following program is a keyboard-controlled sketch pad. The statemen ts
after the WHENs alter the values of X% and Y%, and then DRAW a line.

10 REM Draw a line depending on the L,R, U, D keys
20 MODE 0
30 MOVE 640 , 512
40 X% = 640: Y% 512
50 REPEAT
60 CASE GET$ OF
70 WHEN "L"," l ": X% 40 : DRAW X% , Y% : REM go left
80 WHEN 11 R", "r ": X% += 40 : DRAW X% , Y% : REM go right
90 WHEN 11 D", "d " : Y% 4 0 : DRAW X%, Y% : REM go do wn

100 WHEN "U" , "u " : Y% += 4 0 : DRAW X%, Y% : REM go up
110 ENDCASE
120 UNTIL FALSE : REM go on forever ...

This program reads in the character of the next key pressed and checks it
against each of the strings fo llowing the WHEN statements. If it matches o ne of
these values, the statements following it are executed. Execution continues
until another WHEN or the ENDCASE is reached. W hen this happens, contro l

passes to the statement after the ENDCAS E.

If you press a key which is not recognised by any of the four WHEN

Control statements 76

statements, the program goes round again and waits for another key to be
pressed. You can include another line to warn you that you prel>Sed the wrong
key. For example:

105 OTHERWISE VDU 7 : REM Make a short noise

The OTHERWISE statement is used if none of the WHENs finds a matching
key. The VDU 7 makes a short bell sound to warn you that you have pressed

the wrong key.

The following rules apply to CASE statements:

• CASE must be followed by an expression and then OF. This statement must
be at the end of the line.

• Each WHEN must start at the beginning of a line. It may be followed by
one or more values, ~eparated by commas.

• The statements dependent on a WHEN may follow it on the same line
after a colon : , or be spread over several lines following it.

• The OTHER WISE part is optional. If present it must be at the beginmng
of a line. The statements following OTHERWISE may be spread over sev
eral lines.

• An ENOCASE statement must be present. Like WHEN and OTHERWISE,
it must be the first non-space item on a line.

Whenever the result of the expression matches one of the values listed after a
WHEN, all the statements following this WHEN down to the next WHEN,
OTHER WISE or ENOCASE are executed. BASIC then skips to the statement
following the ENDCASE. This means that if the result matches a value in more
than one WHEN, only the statements following the first one are executed: the
others are ignored. Since OTHERWISE matches any value, having WHEN
statements following an OTHER WISE is pointless since they can never be
reached.

The following gives another example of using the CASE statement:

10 REM Guess a number
20 X% = RND (100)
30 Still_guessing% = TRUE
40 tries% = 0
50 WHILE Still_guessing%
60 INPUT "What is your guess ", guess%

Control statements 77

GOTO

70 CASE guess% OF
80 WHEN X%
90 PRINT "Well done, you've guessed it after

"; tries% " attempts"
100 Still guessing% = FALSE
110 WHEN X%-1 ,X~+1

120 PRINT " Very close"
130 tries% + 1
140 OTHERWISE

150 IF guess%<X% THEN PRINT "Too l ow" ELSE PRINT
" Too high "

160 tries% += 1
170 ENDCASE
180 ENDWHILE

Like all the other BASIC structures, CASE statements may be nested.

The GOTO instruction may be used to specify a line number from which the
computer is to continue executing the program. For example:

10 PRINT "Hello"
20 GOTO 10

Whenever the computer executes line 20 it is sent back to line I 0 once again.
Left on its own, this program never ends. To stop it, press <Esc>.

GOTO instructions send the control of the program either forwards or
backwards. The specified line number may be given as an expression. For
example:

10 start% = 100
20 GOTO (start %+10)
30 PRINT "This line should not be executed"

100 REM start of the action
110 PRINT "Hello"
120 END

Using a variable, however, as the destination for a GOTO is not recommended
because while RENUMBER changes the line numbers, it docs not alter
GOTO destinations that are given as anything other than a simple number. lf
you must use an expression, it is best to put in inside brackets, since BASIC
may get confused if the expression starts with a number.

Control statements 78

GOSUB ... RETURN

ON ... GOTO/GOSUB

If you wish to make your programs easy to read, especially for other people,
use as few GOT Os as possible because they make a program very difficult to
follow. It is far better to use one of the loop constructs like REPEAT ...
UNTIL which have been described above.

GOSUB stands for 'go to subroutine' and is another variation of GOTO.
Instead of continuing indefinitely from the line number which is jumped to,
the lines are executed until a RETURN statement is reached. Control then
passes back to the instruction which comes after the GOSUB. For example,

10 GO SUB 100
20 PRINT " This is printed after the first GOSUB returns "
30 GO SUB 100
40 PRINT " This is printed after the second GOSUB

returns"
50 END

100 PRINT "This is printed in the GOSUB "
110 RETURN

produces:

This is printed in the GOSUB
This is printed after the first GOSUB returns
This is printed in the GO SUB
This is printed after the second GOSUB returns

Like GOTO, GOSUB should be used sparingly, if at all. lt is provided in this
version of BASIC for compatibility with weaker dialects of the language.
Better methods of providing blocks of code, which once executed then return
control back to the point from which they were called are described in the
chapter Procedures and functions.

The ON ... GOTO statement is used to choose one of a number of different
lines depending on the value of a given expression.

For example:

10 PRINT "Input a number between 1 and 4"
20 INPUT N%
30 ON N% GOTO 60 , 100, 80, 120
60 PRINT " Your number is 1 "
70 GOTO 999
80 PRINT " Your number is 3"

Control statements 79

90 GOTO 999
100 PRINT "Your number is 2 "
110 GOTO 999
120 PRINT " Your number is 4 "
999 END

The computer checks the value of N% which is input, then jumps to the N%th
line number in the list. If N% is 3, the computer starts executing at line 80 and
so on. IfN% is less than 1 or greater than 4, the error message

ON range at line 30

is displayed.

ELSE can be used to catch all other values. It is followed by a statement
which is executed if the value of the expression after ON has no corresponding
line number. For example, line 30 above could be replaced by:

30 ON N% GOTO 60 , 100 ,80, 120 ELSE PRINT "Number out of
range "

40 GOTO 999

Now, when the program is run, if N% is not between 1 and 4 the message
Number-out-of-range is displayed and the program ends normally.

ON ... GOSUB acts in exactly the same way:

10 PRINT "Input a number between 1 and 4"
20 INPUT N%
30 ON N% GO SUB 60 , 100, 80 , 120
40 END
60 PRINT " Your number is 1"
70 RETURN
80 PRINT " Your number is 3 "
90 RETURN

100 PRINT " Your number is 2 "
110 RETURN
120 PRINT " Your number is 4 "
130 RETURN

There is also an ON ... PROC statement which is described in the chapter
Procedures and functions. Note, however, that when writing new programs, it
is better to use the more versatile CASE structures rather than the ON ...

Control statements 80

GOTO/GOSUB/PROC constructs. Again, this old-fashioned construct is
provided mainly for backwards compatibility with less powerful versions of
BASIC.

Control statements 81

Control statements 82

Procedures and functions

Defining and calling
procedures

Procedures and functions provide a way of structuring a program by grouping
statements together and referring to them by a single name. The statements
can be executed from elsewhere in the program simply by specifying the
procedure or function name. In addition, a function returns a value.

Procedure names begin with the keyword PROC, followed by a name.The
following shows how a procedure may be defined and called:

10 MODE 12
20 PRINT TAB(0,10)"Countdown commencing";
30 FOR N% = 30 TO 1 STEP - 1
40 PRINT TAB(22,10) II II TAB(22,10);N%;
50 PROCwait 1 second
60 NEXT
70 PRINT TAB(0,10) "BLAST OFF";STRING$(14," ")
80 END
90

100 DEF PROCwait 1 second
110 TIME = 0
120 REPEAT
130 UNTIL TIME >= 100
140 ENDPROC

The important points about procedures are:

• The procedure definition must start with DEF PROC followed by the proce
dure name. There must be no spaces between PROC and the name.

• The procedure definition must end with the keyword ENDPROC.

• Procedures are called by the keyword PROC followed by the procedure
name, again with no spaces.

• Procedure names obey the same rules as variable names, except that they
are allowed to start with a digit and may include the character @. Proce-

Procedures and functions 83

Parameters and local
variables

dure names can also include or start with reserved words, eg PROCTO.

• The main body of the progrc:tm must be separated from the procedure defini
tions by an END statement. That is, you should only enter the body of a proce
dure by a PROC statement, not by 'falling' into it. DEF statements are treat
ed as REMs if they are encountered in the usual execution of a program.

Procedures enable you to split up a large amount of code into smaller distinct
sections which are easy to manage. The main body of a program can then consist
almost entirely of procedure calls, so that it can remain short and easy to
follow (since it should be obvious from the procedure names what each call is
doing).

Consider the following program:

10 REM Draw boxes centred on the screen
20 MODE 12
30 FOR N% = 1 TO 10
40 PRINT "What size do you want the next box to be ";
50 INPUT size
60 IF si ze<l024 PROCbox(size) ELSE PRINT "Too large "
70 NEXT N%
80 END

100 DEF PROCbox(edge)
110 RECTANGLE 640 -edge/2 , 512-edge/2, edge, edge
120 ENDPROC b

The procedure PROCbox draws a box around the centre of the screen. The size
of this box is determined by the value of the variable edge. This variable has
the current value of size assigned to it each time the procedure is called from
line 60. The values being passed to the procedure c:tre known as actual
parameters. The variable edge used within the procedure is known as a formal
parameter.

A procedure can be defined with more than one parameter. However, it must
always be called with the correct number of parameters. These parameters may
be:

•
•

l •
•

integers

floating point numbers

strings

arrays.

Procedures and functions 84

Local variables

If a string variable is used as a formal parameter, it must have either a string
expression or a string variable passed to it. Floating point and integer
parameters may be passed to one another and interchanged freely, but
remember that the fractional part of a floating point variable is lost if it is
assigned to an integer variable. Array formal and actual parameters must be
of exactly the same type. That is, if the formal parameter is an integer, then
only integer arrays may be passed as actual parameters.

The formal parameters of a procedure are local to that procedure. This means
that assigning a value to any variable within the procedure does not affect any
variable elsewhere in the program which has the same name. In the following
program, the procedure PROCsquare has a parameter S% which is
automatically local. It also contains a variable, J%, which is declared as being
LOCAL.

10 FOR I% = 1 TO 10
20 PROCsquare(I%)
30 PROCcube (I%)
40 NEXT
50 END
60

100 DEF PROCsquare(S%)
110 LOCAL J %
120 J% = S% A 2
130 PRINT S% " squared equals "J%;
140 ENDPROC
150
200 DEF PROCcube(I%)
210 I% = I% A 3

220 PRINT " and cubed equals ";I%
230 ENDPROC

In the case of PROCcube, the actual parameter passed and the formal
parameter referred to within it are both called 1%. This means that there are
two versions of the variable, one inside the procedure and another outside it.

Adding the line

35 PRINT I%

to the program above prints out the numbers 1 to 10, showing that the
assignment to I% within PROCcube does not affect the value of 1% in the main

Procedures and functions 85

Declaring local variables I
body of the program.

It is good practice to declare all variables used in a procedure as local, since
this removes the risk that the procedure will alter variables used elsewhere in
the program.

When you declare a local array, the LOCAL statement must be followed by
a DIM statement to dimension the local array. For example, consider the
following function which, when passed two vectors of the same size, returns
their scalar product:

100 DEF FNscalar_product(A(),B())
110 REM ** Both arrays must have a dimension of 1 **
120 IF DIM(A()) <> 1 OR DIM(B()) <> 1 THEN
130 PRINT "Vectors required"
140 =0
150 ENDIF
160 REM ** Both arrays must be the same size **
170 IF DIM(A(),1) <> DIM(B(),l) THEN
180 PRINT "Vectors must be of same size"
190 =0
200 ENDIF
210 REM ** Create a temporary array of the same size **
220 LOCAL C ()
230 DIM C(DIM(A(),l))
240 REM ** Multiply the corresponding elements and place
inC() **
250 C() = A()*B()
260 REM ** Finally sum all the elements of C() **
270 =SUM (C ())

This example uses a function instead of a procedure. The two structures are
very similar, but they are used in slightly different circumstances. PROCs are
used wherever a statement can be executed. FNs are used in expressions,
wherever a built-in function might be used. Whereas procedures end with an

ENDPROC statement, functions return using =expression. The expression is
returned as the result of the function call. Functions can return integers,
floating point numbers or strings. Note that SUM is a built-in function.

Notice that although function definitions may be multi-line, the syntax is such
that single line functions as found in older dialects of BASIC may be defined

Procedures and functions 86

Value-result parameter
passing

in a compatible manner. Thus you can say either:

1000 DEF FNdisc(a,b,c)
1010 REM find the discriminant of a, b and c
1020 =b*b-4*a*c

or, using the old-fashioned form:

1000 DEF FND(a,b,c)=b*b-4 *a*c

(Another limitation of the non-BBC BASIC syntax was that often only single
letter function names were allowed.)

The simple parameter passing scheme described above is known as 'value'
parameter passing because the value of the actual parameter is copied into
the formal parameter, which is then used within the procedure. The result of
any modification to the formal parameter is not communicated back to the
actual parameter. Thus the formal parameter is entirely local.

BASIC provides a second method of parameter passing known as 'value
result'. This is just like the simple value mechanism in that the actual
parameter's value is copied into the formal parameter for use inside the
procedure. The difference is, however, that when the procedure returns, the
final value of the formal parameter is copied back into the actual parameter.
Thus, a result can be passed back. (This means that the actual parameter can
only be a variable, not an expression.)

A statement specifying that you wish to pass a result back for a particular
parameter should be preceded by the keyword RETURN. For example:

100 DEF PROCorderedswap(RETURN A,RETURN B)
110 IF A> B SWAP A, B
120 ENDPROC

SWAP is a built-in statement to swap the values of two variables or arrays.

Note that specifying RETURN before an array formal parameter does not
make any difference to the way the parameter is passed.

Arrays arc always passed by reference. That is, the array formal parameter
acts as an 'alias' for the actual parameter within the procedure or function,
and if you change the elements of the formal parameter, the actual parameter
will also be altered. If you want to simulate value passing of array

Procedures and functions 87

LOCAL OAT A and
LOCAL errors

parameters, you should use a local array of the same dimensions as the actual
parameter, eg:

1000 DEF PROCfred(a())
1010 LOCAL b{)
1020 DIM b(DIM(a() , 1) , DIM(a(),2)) :REM assume a() is 2D
1030 b () a () : REM now b () can be altered at will
1040

Because procedures and functions often set up their own error handlers and
local data, it is possible to make these local so that nothing outside the
procedure or function is affected. In fact, both these may be made 'local'
outside of a procedure. For example, you can make an error handler local to
a WHILE loop. However, the constructs are mentioned here for completeness.
More information can be found about local error handlers in the chapter
Error handling and debugging.

To make the current DATA pointer local, and then restore it, a sequence of
the form:

1000 LOCAL DATA
1010 RESTORE +0
1020 DATA ...
1030
1080 RESTORE DATA

is used. LOCAL DATA stores the current data pointer (ie the place where the
next READ will get its data from) away. It can then be changed by a
RESTORE to enable some local data to be read, and finally restored to its
original value using RESTORE DATA. Thus a procedure or function which
uses its own local data can read it without affecting the data pointer being
used by the calling program.

As mentioned above, LOCAL DATA and RESTORE DATA can be used
anywhere that localised data is required, not just in functions and procedures.
They can also be nested. However, if LOCAL DATA is used within a function
or procedure definition, it must come after any LOCAL variables. BASIC will
perform an automatic RESTORE DATA on return from a PROC or FN, so
that statement isn't strictly required at the end of PROCs and FNs.

Procedures and functions 88

ON ... PROC

Recursive procedures

ON ... PROC is similar to ON ... GOTO which is described in the chapter
Control statements. It evaluates the expression given after the ON keyword.
If the value N% is given, it then calls the procedure designated by N% on the
list. For example:

10 REPEAT
20 INPUT " Enter a number ", num
30 PRINT " Type 1 to double it "
40 PRINT "Type 2 to square it "
50 INPUT action
60 ON action PROCdouble(num), PROCsquare(num)
70 UNTIL FALSE

100 DEF PROCdouble(num)
110 PRINT " Your number doubled is "; num*2
120 ENDPROC
200 DEF PROCsquare(num)
210 PRINT " Your number squared is " ;num*num
220 ENDPROC

Note, however, that in most circumstances, the CASE statement provides a
more powerful and structured way of performing these actions.

A procedure may contain calls to other procedures and may even contain a
call to itself. A procedure which does call itself from within its own
definition is called a recursive procedure:

10 PRINT "Please input a string ·"
20 INPUT A$
30 PROCremove_spaces(A$)
40 END

100 DEF PROCremove_spaces(A$)
110 LOCAL pos_space%
120 PRINT A$
130 pos_space%=INSTR(A$, " ") : REM =0 if no spaces
140 IF pos_space% THEN
150 A$=LEFT$(A$,pos_space%-1)+RIGHT$(A$,pos_space%+1)
160 PROCremove_spaces(A$)
170 ENDIF
180 ENDPROC

In the example above, PROCremove_spaces is passed a string as a
parameter. If the string contains no spaces, the procedure ends. If a space is

Procedures and functions 89

found within the string, the space is removed and the procedure is called
again with the new string as an argument to remove any further spaces. For
example, typing the string The quick brown fox causes the following to
be displayed:

The quick brown fox
Thequick brown fox
Thequickbrown fox
Thequickbrownfox

Recursive procedures often provide a very clear solution to a problem. There
are two reasons, however, which suggest that they may not be the best way to
solve a problem:

• Some operations are more naturally expressed as a loop, that is, using FOR
... NEXT, REPEAT ... UNTIL, or WHILE ... ENDWHILE.

• Recursive procedures often use more of the computer's memory than the cor-
responding loop.

As an example, the following rwo programs both print Good morning!
backwards. The first one uses a WHILE ... ENDWHILE loop. The second
uses a recursive technique to achieve the same result.

First example:

10 PROCreverseprint("Good morning !")
20 END

100 DEF PROCreverseprint(A$)
120 WHILE LEN(A$) > 0
130 PRINT RIGHT$(A$);
140 A$=LEFT$(A$)
150 ENDWHILE
160 ENDPROC

Second example:

10 PROCreverseprint(" Good morning ! ")
20 END

100 DEF PROCreverseprint (A$)
110 IF LEN(A$) > 0 THEN
120 PRINT RIGHT$(A$);
130 PR0Creverseprint(LEFT$(A$))

Procedures and functions 90

Functions

Function and
procedure libraries

140 ENDIF
160 ENDPROC

Functions are similar to procedures, but differ in that they return a result.
BASIC provides many functions of its own, like the trigonometric functions
SIN, COS, TAN and RND. If you give RND a parameter with an integer
value greater than 1, it returns a random value between 1 and the number
given inclusive. For example,

X = RND (10)

produces random numbers between 1 and 10.

You may define functions of your own using the keyword DEF followed by FN
and the name of your function. The funclion definition ends when a statement
beginning with an = sign is encountered. This assigns the expression on the
right of the sign to the function result. This result may be assigned to a
variable in the normal way.

Functions obey the same rules as procedures with regard to naming
conventions, the use of parameters and local variables.

We have already seen an example function definition in
FNscalar product above. The following is another example of how a
function may be defined and used:

10 FOR N% = 1 TO 10
20 PRINT "A sphere of radius "; N% ;" has a volume " ;

FNvolume(N%)
30 NEXT N%
40 END

100 DEF FNvolume(radius%)
110 4/3*PI*radius%~3

Libraries provide a convenient way of adding frequently-used procedures and
functions to a BASIC program.

The libraries are kept in memory, and if a reference is made to a procedure
or function which is not defined in your program, a search of each library in
turn is made until a definition is found. If the routine is found in a library, it
is executed exactly as though it were part of the program.

The advantages of using libraries are:

Procedures and functions 91

Loading a library into
memory

• They standardise certain routines between programs.

• They reduce the time required to write and test a program. (The library rou
tines only need to be written and tested once, not each time a new program
is developed.)

• They make programs shorter and more modular.

There are three methods of loading a library into memory, INSTALL,
LIBRARY and OVERLAY.

INSTALL and LIBRARY are followed by a string giving a filename. This
file should contain a set of BASIC procedure and function definitions,
perhaps with local DATA statements to be used by those procedures and
functions.

INSTALL loads the library at the top of BASIC's memory. It then lowers the
upper memory limit that BASIC programs can use. INSTALLed libraries are
therefore 'permanent' in that they occupy memory (and may be called) until
BASIC is re-started (eg by another *BASIC command). You can not
selectively remove INSTALLed libraries. INSTALL is generally used before
the BASIC program is first run rather than from a program (because you don't
want to re-INSTALL the library, using up ever more memory, each time the
program is run.)

LIBRARY reserves a sufficient area of memory for the library just above the
main BASIC program and loads the library. Any library loaded in this way
remains only until the variables are cleared. This occurs, for example, when
the CLEAR or NEW commands are given, when the program is edited in
some way, or when a program is run. Thus LIBRARY-type libraries are much
more transient than INSTALLed ones (as temporary as normal variables, in
fact), so you would generally use LIBRARY from within a program.

For example:

10 MODE 1
20 REM Print out a story
30 REM Load output library
40 LIBRARY "Printout"
50 REM Read and print the heading
60 READ A$
70 PROCcentre(A$)
80 REM Print out each sentence in turn

Procedures and functions 92

90 REPEAT
100 READ sentence$
110 REM if sentence$ = "0" then have reached the end
120 IF sentence$ = "0" END
130 REM otherwise print it out
140 PROCprettyprint(sentence$)
150 UNTIL FALSE
200 DATA A story
210 DATA This,program,is,using,two,procedures:
220 DATA 'centre' ,and,'prettyprint' ,from,a,library
230 DATA called,'Printout'.
240 DATA The,library,is,loaded,each,time,
245 DATA the,program,is,run.
250 DATA The,procedure,'centre' ,places,a,string,in,the
260 DATA centre,of,the,screen.
270 DATA The,procedure,'prettyprint' ,prints,out,
280 DATA a,word,at,the,current,text,cursor,
290 DATA position,unless,it,would,be,split,over,
300 DATA a,line,in,which,case,it,starts,the,word,
305 DATA on,the,next,line,down.
310 DATA 0

Procedures and functions 93

The library Printout could be as follows:

10 REM >Prin t out - Text output library
20 REM ************************************
30 DEF PROCPrintouthelp
40 REM Print out details of the library routines
50 PRINT " PROCcentre(a$) "
60 PRINT " Place a string in the centre";
70 PRINT " PRINT " of a 40 character line" '
80 PRINT " PROCprettyprint(a$) "
90 PRINT " Print out a word at the current ";

100 PRINT " text cursor position, starting";
110 PRINT "a new 40 character line if required";
120 PRINT " to avoid splitting it over two lines";
130 ENDPROC

140 REM ***************** ** ************
200 REM Place a string in the centre
210 REM of a 40 character line
220 DEF PROCcentre(a$)
230 LOCAL start%
240 start%= (40- LEN(a$))/2
250 PRINT TAB(start%) ; a$
260 ENDPROC

270 REM ********************************
300 REM Print out a word at the current
310 REM text cursor position, starting
320 REM a new 40 character line if required
330 REM to avoid splitting it over two lines
340 DEF PROCprettyprint(a$)
350 LOCAL end%
360 end% = POS + LEN(a$)
370 IF end%< 40 PRINT a$; " " ;
380 PRINT 'a$;" ";
390 ENDPROC

ENDPROC

400 REM ********************************

Procedures and functions 94

Building your own
libraries

OVERLAY enables you to give a list of filenames which contain libraries.
When BASIC can't find a PROC or FN within the program or within any of
the current libraries, it will start to look in the OVERLAY files. You give
OVERLAY a string array as a parameter. For example:

10 DIM lib$ (5)
20 lib$()="libl","lib2","lib3","lib4"
30 OVERLAY lib$()
40

When the OVERLAY statement is executed, BASIC reserves enough space for
the largest of the files given in the string array. Then, when it can't find a
PROC or FN definition anywhere else, it will go through the list, loading the
libraries in order until the definition is found or the end of the array is met.

Once a definition has been found, that library stays in memory (and so the
other definitions in it may be used) until the next time a definition can't be
found anywhere. The search process starts again, so the current overlay library
will be overwritten with the first one in the list. Once BASIC has found a
definition, it will remember which file it was in (or more precisely, which
element of the array held the filename), so that file will be loaded
immediately the next time the definition is required and it is not in memory.

Because of the way one area of memory is used to hold each of the overlay
files (and only one at any one time), you are not allowed to call a procedure
whose definition is in an overlay library if one of the overlay definitions is
currently active. Another way of putting this is that you can't nest overlay calls.

If you know that a given overlay file will never be needed again in the
program, you can speed up the search through the overlay list by setting the no
longer-required elements of the array to the null string. You can also add new
names to the end of the array, as long as none of the new library files is
bigger than the largest one specified in the original OVERLAY statement.

You can execute OVERLAY more than once in a program. Each time it is
called, the memory set aside for the previous set of files will be lost, and a
new block based on the size of the new ones will be allocated.

There are certain rules which should be obeyed when writing library
procedures and functions:

• Line number references are not allowed.

Procedures and functions 95

I •

I •

Libraries must not use GOTO, GOSUB, etc. Any reference to a line number
is to be taken as referring to the current program, not to the lme numbers
with which the library is constructed. You can use RESTORE+ to access
DATA statements in a library.

Only local variables referring to the current procedure or function should
be used.

It is advisable that library routines only use local variables, so that they arc
totally independent of any program which may call them.

Each library should have a heading.

It is recommended that a library's first line contains the full name of the
library and details of a procedure which prints out information on each of
the routines in the library. For example:

10000 REM>hyperlib gives hyperbolic functions.
Call PROChyperHelp for details

This last rule is useful because BASIC contains a command, LV AR, which
lists the first line of all libraries which are currently loaded. As a result, it is
important that the first line of each library contains all the essential
information about itself.

Procedures and functions 96

Data and command files

Data files

Creating a data file

Writing infomation to a
data file

Programs can create and read information from files, called data files. For
example, if you write a program that creates a list of names and telephone
numbers, you may wish to save the names and telephone numbers as a data
file.

The data file is specified in a program by one of the OPEN.xx keywords. For
example you can create a data file using the keyword OPENOUT.

For example, typing

A = OPENOUT "books "

creates a data file named books and opens it so that it is ready to receive data.
The value stored in the variable A is called a channel number and allows the
computer to distinguish this data file from other open data files. All future
communication with the file books is made via the file channel number in A
rather than via the name of the file.

Writing information to a data file is done using PRINT#. For example:

10 A = OPENOUT " books"
20 FOR I = 1 TO 5
30 READ book$
40 PRINT#A, book$
50 NEXTI
60 CLOSE#A
70 END
80 DATA "Black Beauty"
90 DATA " Lord of the Rings"

100 DATA " The Wind in the Willows "
110 DATA "The House at Pooh Corner "
120 DATA "Little Women "

Data and command files 97

Closing a data file Closing a data file is done using CLOSE#. This ensures that any data
belonging to the file which is still in a memory buffer is stored on the disc.
The buffer can then be re-used for another file. After a CLOSE, the file
handle is no longer valid.

Reading data from a file You can read data from a file using OPENIN and INPUT#. OPENIN opens
an existing data file so that information may be read from it. INPUT# then
reads lhe individual items of data. For example:

Writing or reading
single bytes

Writing or reading
ASCII strings

10 channel = OPENIN "books"
20 REPEAT
30 INPUTffchannel, title$
40 UNTIL EOFffchannel
50 CLOSEichannel
60 END

EOF# is a function which returns TRUE when the end of a file is reached.

Other useful keywords for reading or writing data are:

• BPUTi which writes a single byte to a file

• BGETi which reads a single byte from a file.

The following writes all the upper-case letters to a file using BPUT# as part
of the program:

10 channel = OPENOUT "characters "
2 0 FOR N% = ASC ("A") TO ASC (" Z")
30 BPUTichannel,N%
40 NEXT N%
50 CLOSE#channel

BGET# is used as part of a program that allows each character to be read into
a string as follows:

10 channel OPENIN "characters"
20 string$ = ""
30 REPEAT
40 string$ += CHR$(BGET#channel)
50 UNTIL EOF#channel
60 CLOSE#channel

The BPUT# statement and GET$# function can also be used to write text to a

Data and command files 98

Command files

file, and read text from a file. These write and read the text in a form
compatible with other programs, such as text editors like Edit, unlike PRINT#
and INPUT# which write and read strings in BASIC string format.

When you PRINT# an expression to a file, it is written as an encoded
sequence of bytes. For example, an integer is stored on the file as the byte
&40 followed by the binary representation of the number. A string is written
as &00 followed by the length of the string, followed by the string itself in
reverse order.

To write information as pure text, you can use:

BPUT#channel,string[;J

The characters of the string, which may be any string expression, are written to
the file. If there is no semi-colon at the end of the statement, then a newline
character (ASCII 10) is written after the last character of the string. If the
semi-colon is present, no newline is appended to the string.

To read an ASCII string from a file, you can use:

str$=GET$#channe1

This function reads characters from the file until a newline (ASCll 10),
carriage return (ASCII 13), or null (ASCII 0) character is read. This
terminates the string, but is not returned as part of it. The end of file also
terminates the string.

A command file is a file whose contents are a sequence of commands to be
executed as if they had been typed at the keyboard. You can use a variety of
methods to create a command file. Using Edit is probably the easiest,
especially if that application is already loaded and can be activated from the
desktop. See the User Guide for details on using Edit.

Another way of creating a command file is to use the *BUILD command. If
you type

*BUILD keyfile

everything subsequently typed from the keyboard is sent directly to the file
called keyfile. If there is a file named keyfile already, it is deleted
when the *BUILD command is given.

Press <Return> at the end of each line. When you finish entering the

Data and command files 99

Executing a command
file

commands, press <Esc> to end keyboard input to key file.

There are two main ways of executing a command file. If the file contains a
sequence of commands to a language, such as BASIC, then you should *EXEC
it. For example, suppose you create a file called install which contains the
following lines:

INSTALL "basiclib.shell"
INSTALL "basiclib.hyperlib"
INSTALL "basiclib.debugger"
INSTALL "basiclib.FPasm"

The lines in the file are designed to save the programmer from having to type
in a list of INSTALL commands whenever BASIC is started. To execute these
commands, enter BASIC then type the command

*EXEC install

This causes the contents of install to be taken as input, exactly as if it had
been typed in (but much quicker!). You can make the command even shorter
by setting the file type of install to EXEC using the command

*SETTYPE install EXEC

EXEC converts the file into a runnable file. Once you have done this, you can
*EXEC the file just by giving its name as a command, eg:

*install

In RISC OS, all you need to do is type

*SETTYPE INSTALL command

The other way in which a command file can be executed is to *OBEY it. If you
do this, each line in the file is executed as a * command, ie it is passed to the
operating system command line interpreter only - not to BASIC. This is
similar to *EXECing the file from the RISC OS prompt. The differences are
that you do not see the lines that are being executed on the screen, and
*OBEY allows parameter substitution. See the User Guide for more details on
*OBEY.

Data and command files 100

Screen modes

Changing screen
modes

The display produced on a standard monitor can be in any of 19 different
modes (modes 0-17 and 24). A further five modes are available on 'multi-sync'
monitors (modes 24-28), and another one can be used with high-resolution
monochrome monitors (mode 23). These 28 modes are referred to by numbers
from 0 to 28, excluding 22. Each mode gives a different combination of values to
the following four attributes:

• the number of characters you can display on the screen

• the graphics resolution

• the number of colours available on the screen at any one time

• the amount of memory allocated to the screen display.

For example, mode 0 allows 32 rows of text to be displayed, each containing up
to 80 characters. It provides high resolution graphics, but allows just two colours
to be displayed on the screen. In contrast, mode 1 can display just 40 characters
on a row and provides medium resolution graphics; it supports, however, up to
four colours. Different modes use different amounts of memory to hold the
picture; the amount of memory is determined by the resolution and by the
number of colours. Mode 0, for example, requires 20K.

The mode which uses the most memory is the one with the highest resolution and
the highest number of colours available. This is mode 21 which combines the
highest resolution with the facility to use all 2 56 colours at once. The three
modes, numbered 18 to 20, require a special 'multi-sync' monitor. They provide
double the usual vertical resolution: 512 lines instead of 256. The horizontal
resolution is 640 pixels, and the numbers of colours available are 2, 4 and 16
respectively. Full details on screen modes is given in the Appendix on screen
modes in the User Guide.

To change mode, type MODE followed by the mode number you want. For
example,

101

Shadow modes

Using the shadow bank

MODE 12

changes the display to mode 12. This is one of the most useful modes since it
provides high resolution graphics in 16 colours. It is the desktop's standard
mode.

When you type MODE the desktop is cleared automatically.

In addition to mode numbers 0 to 23, you can use 128 to 151 (ie the mode
number with 128 added to it). These modes use the so-called 'shadow'
memory. If you imagine that there are two separate areas of memory which
may be used to hold the screen information, then selecting a normal mode
will cause one area to be used, and selecting a shadow mode (in the range 128
to 148) will cause the alternative bank to be used.

You can force all subsequent mode changes to use the shadow bank by issuing
the command:

*SHADOW

After this, you can imagine 128 to be added to any mode number in the range
0 to 23. To disable the automatic use of the shadow memory, issue the
command:

*SHADOW 1

In order to use the shadow bank, the ScreenSize configuration must reserve at
least twice as much screen memory as the amount required for the non-shadow
mode. For example, if you want to use both mode 0 and mode 128, 40K of
screen memory must be available, as mode 0 takes 20K.

In fact, for a given mode, there may be several banks available. You can work
out how many by dividing the amount of configured screen memory by the
requirement of the current mode. On the Archimedes 305, for example, 80K is
reserved for the screen by default. This means that you can have four banks of
mode 0.

The normal, non-shadow bank is numbered bank 1, and the shadow bank, used
by mode 128, is bank 2. There are two more, banks 3 and 4. Using operating
system calls, you can choose which of the four banks is displayed, and which is
used by the VDU drivers when displaying text and graphics.

A full description of the available modes is given in Appendix E.

Screen modes 102

Text size

Changing text size

Graphics resolution

The number of characters displayed on the screen is affected by the number
which arc allowed per row (ie the width of each character) and the number of
rows which can be displayed on the screen (ie the spacing between the rows).
The permitted number of characters per row is either 20, 40, 80 or 132. There
are two possibilities for the number of rows on the screen, either 25 or 32. The
former is particularly useful for text displays since the larger separauon
between the rows makes the text easier to read.

You can change the size of text characters in the modes which support
graphics. However, you can only do this when the display is in what is called
YOU 5 mode. This is explained at the end of the chapter Simple graphics.

To set the size of characters in YOU 5 mode, type:

VDU 23,17,7,6 , sx;sy; O;

where sx is the horizontal size of characters and sy is the vertical size.
Characters are normally eight pixels square so to get double height you
would use:

VDU 23,17 , 7 ,6, 8 ; 16;0;

Single- and double-height character plotting is much faster than other sizes,
but you can choose any numbers for sx and sy between 1 and 32767.

The graphics resolution is specified by the number of pixels (rectangular
dots) which can be displayed horizontally and vertically. The greater the
number of pixels which the screen can be divided into, the smaller each pixel
is. Since all lines have to be at least one pixel thick, smaller pixels enable
the lines to appear less chunky. To see the difference the pixel size makes try
typing the following in BASIC:

10 MODE 2
20 MOVE 100,100
30 DRAW 100,924
40 MOVE 100 , 100
50 DRAW 1180 , 100
60 MOVE 100,100
70 DRAW 1180,924

and then:

10 MODE 0

Screen modes 103

Colour modes

Two-colour mode

Four-colour modes

16-colour modes

20 MOVE 100,100
30 DRAW 100 ,924
40 MOVE 100,100
50 DRAW 1180,100
60 MOVE 100 ,100
70 DRAW 1180,924

The number of colours available on the screen at any given time is either 2, 4,
16 or 256. When you first enter a particular mode, the computer selects the
default colours which it uses for that particular mode. These are assigned to
colour numbers:

0 =black
1 =white

0 =black
1 =red
2 =yellow
3 =white

0 =black
1 =red
2 =green
3 =yellow
4 =blue
5 =magenta
6 =cyan
7 =white
8 = flashing black-white
9 = flashing red-cyan
10 =flashing green-magenta
11 = flashing yellow-blue
12 = flashing blue-yellow
13 = flashing magenta-green
14 = flashing cyan-red
15 =flashing white-black

The computer chooses one colour to display text and graphics and another for
the background. These two colours are chosen so that under default conditions
the text and graphics are in white and the background is black. For example,
in four-colour modes the computer chooses to draw text and graphics in colour
3 (white) on a background which is colour 0 (black).

Screen modes 104

256-colour modes

Changing colours

Changing the colour
palette

In the 256-colour modes, there are 64 different colours, and each colour may
have four different brightnesses, resulting in a total of 256. The colours
themselves are referred to as numbers 0-63. The brightness levels are called
'tints' and are in the range 0-255. However, because there are only four
different tints, the numbers normally used are 0, 64, 128 and 192.

The 256-colour modes are described in more detail below.

You may choose to display your text, graphics, or background in a different
colour from the defaults. To do this, use the following commands:

• COLOUR n selects colour n for text

• GCOL n selects colour n for graphics

Each command can affect both the foreground and background colours,
depending on the value it is given:

• If n is less than 128, the foreground colour is set to colour n .

• If n is 128 or greater, the background colour is set to colour n-128.

If the colour number is greater than the number of colours available in a
particular mode then it is reduced to lie within the range available. For
example, in a four-colour mode COLOUR 5 and COLOUR 9 are both
equivalent to COLOUR 1.

Try the following example:

10 MODE 1
20 COLOUR 129
30 COLOUR 2

REM four-colour mode
REM red background
REM yellow foreground

40 PRINT "Hello There"

In addition to being able to select the colour in which numbers, text and so on
are displayed, you can also change the physical colour associated with each
colour number.

Choosing a different set of default colours

At the simplest level, you can reassign the colour numbers to produce a
different one in the standard set of eight steady and eight flashing colours.
This requires the command:

COLOUR n,m

Screen modes 105

Returning to the
default colour settings

Changing the shade
of the colour

Experimenting with
colour

where n is the colour number (often called the logical colour} to be assigned
to, and m is the physical colour (the colour which you actually see) you wish
to assign to it. For example:

10 MODE 1
20 COLOUR 0,4 REM make colour number 0 appear as blue
30 COLOUR 128 REM choose this as the background
40 COLOUR 1,3 REM make colour number 1 appear as
yellow
50 COLOUR 1 REM choose this for the foreground text
60 PRINT " Yellow on Blue "

To return to the default settings for each of the colours type

VDU 20

Alternatively, you can define the amount (as one of 16 levels) of red, green,
and blue which go to make up the colour displayed for each of the logical
colour numbers. Thus, any of the 16 colour numbers can be made to appear as
a shade selected from the full range, or 'palette', of 16*16*16 = 4096 colours.

To assign any of the shades available to a logical colour use the following
command:

COLOUR n,r,g, b

This assigns r parts red, g parts green and b parts blue to logical colour
n . Each of r, g and b must be values between 0 and 2 55. A value of zero
specifies that none of that colour should be used and a value of 255 that the
maximum intensity of that colour should be used. Thus setting all of them to

zero gives black and setting all to 255 gives white.

The following program allows you to try out various combinations and to see
each displayed:

10 REPEAT
20 MODE 1
30:
40 REM Input values from the user
50:
60
70
80

INPUT"Amount of red (0
INPUT"Amount of green (0
INPUT"Amount of blue (0

Screen modes

15) "red%
15) "green%
15) " blue%

106

256-colour modes

90:
100 REM Force the numbers into the range required
110:
1 20
130
140
150:

red%
green%
blue%

red% << 4
green% << 4
blue% << 4

160 COLOUR O,red%,green%,blue%
170 GCOL 0
180 RECTANGLE FILL 540,412,200,200
190:
200 Now=TIME
250 REPEAT UNTIL TIME > Now + 500
260:
270 UNTIL FALSE : REM Repeat forever

This program asks you for three values, one for each of the amounts of red,
green and blue you require. It then plots a rectangle in that colour. After it
has displayed it for five seconds it clears the screen and starts again. To stop
the program at any stage press <Esc>.

To rerum to the default settings for each of the colours type

VDU 20

Note: the current display hardware only supports 16 levels for each
colour component numbered 0, 16, 32... up to 240. Intermediate numbers
will give the next lowest level.

Full control is not available over the colour palette setting in 256-colour
modes.

As noted above, in these modes, a choice of 64 colours is available directly
from the simple COLOUR and GCOL commands.

For example:

10 MODE 15
20 FOR Col% = 0 TO 63
30 COLOUR Col%
40 PRINT ":";Col%;
50 NEXT

Screen modes 107

About colour numbers

The TINT keyword

As in the other modes the colour of the background can be changed by adding
128 to the parameter of the COLOUR command. Try modifying line 30 of the
above program and running it again.

To understand the manner in which the colour number dictates the actual
shade of colour which you see you need to consider the binary pattern which
makes up the colour number. Only the right-most six bits are relevant. For an
explanation of% and binary numbers, see the chapter Bases.

In common with the other modes colour zero (%000000) is black.

l (%00000 l) is dark red
2 (%000010) is mid-red
3 (%000011) is bright red
4 (%000100) is dark green
8 (%001000) is mid-green
12 (%001100) is bright green
16 (%010000) is dark blue
32 (%100000) is mid-blue
48 (%110000) is bright blue
63 (o/ollllll) is white

Of the six bits which are used for the colour, the right-most two control the
amount of red, the middle two the amount of green and the left-most two the
amount of blue.

For example, COLOUR 35 is composed as follows: 35 = %100011, and so
contains two parts of blue, no green and three parts of red, and appears as a
purple shade. The remaining two bits of the eight bits of colour information
are supplied via a special TINT keyword, already mentioned above.

The effect of TINT on the shade of the colour is to change the small amount
of white tint used in conjunction with the base colour. This gives four subtle
variations to each colour.

The range of the TINT value is 0 to 255; but there are only four distinct tint
levels within this range, and so all the number values within the following
ranges have the same effect:

0-63
64-127
128-191
192-255

Screen modes

No extra brightness
Some extra brightness
More extra brightness
Maximum extra brightness

108

Displaying 256 shades

Control of the palette
in 256-colour modes

For example:

COLOUR 35 TINT 128

or

GCOL 17 TI NT 0

Here is a program which shows all possible tints and colours:

10 MODE 15
20 FOR col%=0 TO 63
30 FOR tint%=0 TO 192 STEP 64
40 GCOL col% TINT tint%
50 RECTANGLE FILL tint %*4, co l %*16, 256,16
60 NEXT tint%70 NEXT col%

The default settings for the palette have been very carefully chosen to enable
the use of COLOUR and TINT as defined above. If the settings of the palette
are changed, these simple relationships no longer apply.

To understand how to use the palette in 256-colour modes, you have to be
familiar with the way the video hardware deals with these modes. This section
is therefore for advanced readers who really need this information.

The eight-bit logical colour number is divided into two four-bit fields. Bits 0-3
select one of the 16 palette registers. Bits 4-7 are used as follows:

Bit controls

4 Bit 3 of the red value
5 Bit 2 of the green value
6 Bit 3 of the green value
7 Bit 3 of the blue value

The left-most four bits of the logical colour number therefore controls the
most significant bits of the values passed to the red, green and blue digital to
analogue convertors.

The sixteen palette registers have four bits each for red, green and blue.
However, because of the direct routing of the left-most four bits of the logical
colour number to the d/a convertors, not all of the bits are used in the 256-
colour modes. In particular,

Screen modes 109

Using the screen under
the WIMP

bits 0-2 of the red palette entry are used; bit 3 comes from bit 4 of I
bits 0-1 of the green palette entry are used; bits 2-3 come from bits 5-6 of I
bits 0-2 of the blue palette entry are used; bit 3 comes from bit 7 of I

where I is the logical colour number.

Finally you have to understand how the COLOUR (or GCOL) and TINT
values are converted to logical colour number by the operating system. The
COLOUR value is used to set bits 2-7 of the logical colour number, and the
TINT value is used to set bits 0-1, as shown below:

Logical colour bit Comes from

7 COLOUR bit 5
6 COLOUR bit3
5 COLOUR bit2
4 COLOUR bitl
3 COLOUR bit4
2 COLOUR birO
1 TINT bit 7
0 TINTbit6

When writing programs which run under the window environment (the WIMP
for short}, you should not use the standard commands such as COLOUR and
MODE as these may interfere with the running of other active programs.
Instead you should use the facili ties provided by the WIMP. These are
available through the SYS statement, eg SYS "Wimp_ Co l our", 0.

A full description of programming under the WIMP is not contained in this
user guide, so you are referred to the Programmer's Reference Manual for
information about this subject. Alternatively, look at the programs on the
Applications discs, such as Patience and Calculator, which are written in
BASIC.

Screen modes 110

Simple graphics

The graphics screen

Text and graphics plotting is performed by the operating system. Many graphics
operations require strings of control characters to be sent to the YOU drivers.
However, BASIC provides keywords to perform some of the more common
operations, such as plotting points, lines and circles and changing colours. This
section describes those keywords.

Most of the graphics moJes use the same co-ordinate system, regardless of the
resolution. The screen is 1280 units across by 1024 units high, and the origin (0,0)
is initially at the bottom left corner of the screen. This is illustrated below:

1023

l
y

0

OX --------..1279

Points outside these values may be used. For example, a line may be drawn
between (-144,-350) and (1060,1200). What appears on the screen in this case is
the portion of the line which crosses the region (0,0) to (1279,1023). The actual
range of co-ordinates that may be used is -32768 to+ 32767 in each direction,

Because the actual resolution of the modes available is less than the 1280 by
1024 system used, screen pixels are more than one unit square. For example, in
the 640 by 256 pixel mode 0, a pixel is 2 units wide (1280/640) by 4 units high
(1024/256). However, because the same co-ordinates are used in every mode, a
line drawn between, say, (100,100) and (768,564) will appear approximately the

Simple graphics 111

The point command

same. The only difference between the modes will be the apparent
'chunkiness' of the line, due to the different pixel sizes.

In some modes, the number of horizontal pixels is not a factor of 1280, or the
number of vertical pixels is not a factor of 1024. Where such a mode has 25
text lines, there are 250 vertical pixels and the screen is I 000 units high. In the
cases where there are 132 characters across, the vertical resolution is 1056
pixels. However, each pixel is still two units wide, so the screen is 21 L 2 units
wide. There are approximately 180 units per inch on most screens.

The simplest type of object you can plot on the screen is a single pixel, or
point. To plot a point, you use the statement POINT followed by the x and y
co-ordinates of the pixel you want plotted. For example:

POINT 640,512

will plot a pixel in the middle of the screen in the current graphics
foreground colour (and tint in a 256-colour mode).

The program below plots random points within a radius of 200 units from the
centre of the screen:

10 MODE 12
20 REPEAT
30 rad%=RND(199)
40 angle=RADRND(360)
50 GCOL rad%*8/200
60 POINT 640+rad%*C0Sangle , 512+rad%*SINangle
70 UNTIL FALSE

POINT may also be used as a function to discover the colour of a pixel. It has
the form:

col = POINT(x% , y%)

In 256-colour modes it returns a number between 0 and 63. To find the tint of
the pixel, you use the TINT keyword as a function in a similar way:

tint = TINT(x% ,y%)

The program below prints some text on the top four lines of the screen, then
changes all of the white pixels to random colours:

10 MODE 9

Simple graphics 112

The line command

Rectangle and
rectangle fiJI

20 FOR i%=1 TO 4
30 PRINT "Some white text"
40 NEXT i %

50 FOR y%= 1020 TO 1020-4 *32 STEP -4
60 FOR x%=0 TO 32*LEN " Some white text " STEP 4
70 IF POINT(x%, y%) GCOL RND(7) : POINT x% , y~

80 NEXT x%
90 NEXT y%

BASIC provides a very simple way of dr-.wing lines on the screen. All you
need to do is to work out the positions of the two ends of the line. You can
then draw a line with a single instruction such as:

LINE 120 , 120 , 840 , 920 : REM line (120 , 120) to (840 , 920)

You could draw the line the other way and produce the same result:

LINE 840 ,920, 120,120

The following program uses LINE four times to draw a box on the screen.

10 MODE 0
20 left% 100
30 right % 400
40 bottom% 200
50 top% 800
60 :
70 LINE left% , bottom% , right %, bottom%
80 LINE left% , top% , right%,top%
90 LINE left% ,bottom% , left %, top%

100 LINE right %, bottom%, right %,top%

The RECf ANGLE statements provide an easier way of drawing boxes on the
screen. The first two parameters of RECf ANGLE are the x and y co-ordinatel>
of the bottom left corner. The second two parameters are the width and height
of the rectangle. For example:

RECTANGLE 440,41 2 , 400,200

If the width and height arc equal, ie for a square, the fourth parameter may
be omitted:

RECTANGLE 400 , 312 , 400

Simple graphics 113

Circle and circle fill

Ellipse and ellipse fill

RECTANGLE FILL is used in exactly the same way as RECTANGLE, but
instead of drawing the outline of a rectangle, it produces a solid rectangle.
The following program plots solid squares of gradually decreasing size in
different colours:

10 MODE 15
20 FOR I% = 63 TO 1 STEP -1
30 GCOL I%
40 RECTANGLE FILL 640-I%*8 ,512-I%*8 ,I%*16
so NEXT I%

To draw the outline of a circle or to plot a solid circle, you need to provide
the centre of the circle and the radius.

For example:

CIRCLE 640,S12, 100 : REM centre (640,512) radius 100
CIRCLE FILL 640,S12, 50

This produces the outline of a circle centred at (640,512}, which is the centre
of the screen, and of radius 100. Inside this is a solid circle, again centred at
(640,512), which has a radius of 50.

Try the following program:

10 MODE 15
20 REPEAT
30 GCOL RND (64) :MOUSE x,y,z
40 CIRCLE FILL x,y, RND(400)+50
SO UNTIL FALSE

This program produces circles in random colours, centred on the current
mouse position and with a radius of between 51 and 450. To stop it press
<Esc>.

To draw the outline of an ellipse or to plot a solid ellipse you need to

provide its centre point and the size of its major and minor axes. In addition,
you may also give the angle hy which it is rotated from the horizontal.

Simple graphics 114

Graphics colours

Major axis

For example:

ELLIPSE 640 ,512 , 200,100, PI/4

This produces the outline of an ellipse centred at (640,512). The length of it is
200, the width is 100 and it is rotated by pi/4 radians (45 degrees) from the
horizontal.

If the angle is omitted, an axis-aligned ellipse is produced:

ELLIPSE 400 , 500, 320,80

Try the following program:

10 MODE 1
20 GCOL 1
30 FOR angle = 0 TO 3*PI/4 STEP PI/4
40 ELLIPSE FILL 640 , 512 , 200 , 60,angle
50 NEXT angle
60 GCOL 2
70 FOR angle = PI/8 TO 3*PI/4+PI/8 STEP PI/4
80 ELLIPSE FILL 640,512,100,30,angle
90 NEXT angle

This plots eight ellipses in two different sizes with the same centre point to
form multi-petalled flowers

.In previous examples, GCOL has taken one parameter, a number which

Simple graphics 115

selects the current logical colour for the graphics foreground or background.
For example,

GCOL 3
GCOL 129

selects the graphics foreground colour to be logical colour three and the
background colour to be one.

GCOL may, however, take two parameters: GCOL m, c. In this case the second
(c) selects the foreground and background graphics colours, and the first (m)
selects the manner in which c is applied to the screen as follows:

m Meaning

0 Store the colour c on the screen
1 OR the colour on the screen with c
2 AND the colour on the screen with c
3 EOR the colour on the screen with c
4 Invert (NOT) the colour on the screen (disregards c)
5 Leave the colour on the screen unchanged (disregards c)
6 AND the colour on the screen with NOT c.
7 OR the colour on the screen with NOT c.

Two of the options ignore the second parameter and either leave the colour on
the screen unchanged or invert it. Inverting a colour means that all the bits in
the colour number are altered: zeros are set to ones and vice versa. For
example:

10 MODE
20 GCOL
30 CLG
40 GCOL
50 LINE

9 : REM 16 colours 0(%0000) - 15 (%1111)
128+5

4,0 : REM plot in NOT (screen colour)
0 , 0 , 100 , 100

The colour on the screen is colour 5 (%0101). The colour used to draw the line
is, therefore, NOT (%0101) or colour 10 (%1010).

The OR, AND and EOR operators act on the bits of the colour already on the
screen and on the colour given as the second GCOL parameter as described in
the chapter Bases. Thus:

10 MODE 12 : REM 16 colours 0(%0000) - 15(%1111)

Simple graphics 116

The graphics cursor

20 GCOL 128+5 : REM c.:ear screen to magenta

30 CLG
40 GCOL 0,6 LINE 0,0, 100, 100
50 GCOL 1 , 6 LINE 100 , 100 , 200,200
60 GCOL 2,6 LINE 200,200, 300,300
70 GCOL 3,6 LINE 300, 300 400,400
80 GCOL 6,6 LINE 400,400 500,500
90 GCOL 7,6 LINE 500,500 600 , 600

The colour already on the ~creen when the lines are drawn is colour 5
(%0101). The foreground colour b ~elected as colour 6 (%0110) in all cases.
The method of applying it to the screen, however, alters the actual colour
displayed as follows:

• The first line appears in colour 6

• The second line appears in colour 7 (%0101 OR %0110 ~ %0111)

• The third line appears in colour 4 (%0101 AND %0110 = %0100)

• The fourth line appears in colour 3 (<}(J0101 EOR %0110 ~ %0011)

• The fifth line appears in colour 1 (%0101 AND NOT <X)0110 = %0101
AND &1001 = %0001)

• The sixth line appears in colour 13 (%0101 OR NOT %0110 = &0101 OR
%1001 = %1101)

In the examples shown so far, we have always explicitly mentioned where
objects are to be plotted, for example by giving hoth end points of a line in
the LINE statement. Thi~ isn't alway~ neces.,ary. hecaust: of the graphics
cur~or. The graphics cur~or is an invisible pomt on the screen which affects
where lines and other items are drawn from.

For example:

10 MODE 12
20 MOVE 100,100
30 DRAW 200,200

This moves the graphics cursor to (100,100), then dmws a line to (200,200) and
leaves the graphics cursor at this posilion. Now, if a further line is added to
the program as follows:

40 DRAW 300,100

Simple graphics 117

Relative co-ordinates
and BY

Printing text at the
graphics cursor

this adds a line from (200,200) to (300,100). BASIC's LINE command is
actually shorthand for a MOVE followed by a ORA W.

Many of the graphics cmities described m the next chapter rely on the currem
position of the graphic~ cursor, and some of them also usc its previous
positions.

All co-ordinates used so far are termed absolute because they tell the
computer where to plot the object with respect to the graphtcs ongin (0,0).
However, it is also po~sible to use relauve co-ordmates. When these are used,
the co-ordinates given arc added to the current graphics cursor position to find
the new point. To usc relative co-ordinates in POINT, MOVE and DRAW
statements, you follow the keyword by the word BY.

Here is a program that starts in the middle of the screen and 'walks'
randomly around:

10 MODE 0
20 MOVE 640,512
30 REPEAT
40 dx%=8*(RND(3)-2)
50 IF dx%=0 THEN dy%=8*(RND(3) - 2) ELSE dy%=0
60 DRAW BY dx %,dy%
70 UNTIL FALSE

Printing text at the text cursor posmons gives only limited control over the
places at which characters may be located. In addition it does not allow
characters to overlap. Attempting to print one character on top of an existing
one deletes the existing one. You may find that you would like to be able to

place text in different positions, for example to label the axes of a graph or
to type two characters on top of each mher, in order to add an accent, eg "· to

a letter.

To do either of these type

VDU 5

You are now in YOU 5 mode. Whilst you are in this mode of operation, any
characters you print are placed at the graphics cursor position. The text cursor
is ignored. You can use the MOVE statement to locate the text precisely.

Since thts method of printing makes use of graphics faciltttcs, it is not
possible in text-only modes. If the command VDU 5 is given in any of these

Simple graphics 118

:-.~o:rccn modes it has no eftl.•cr.

Each character is actually pi,KcJ so that its top kft comcr •~ at the graphic~
cun.or. After the character has hcen printed, the graphtes cursor moves to the
right hy the width of one character. Although thL• graphics cursor also
automatically moves down hy the height of a character (32 units in modes 0 to

17) when the righthanJ side of the screen is reached, the screen docs not scroll
when a character is placed in the bottom righthand corner. Instead the cursor
returns to the top left.

To return to the normal modL· of operatton type

VDU 4

Simple graphics 119

Simple graphics 120

Complex graphics

The commands such as MOVE, ORA W, CIRCLE, etc are special cases of the
more general PLOT command. This command can give a far wider range of
options over what kind of shape you produce and how you produce it. Of course,
the added functionality it provides makes it more complicated to use.

PLOT takes the following format:

PLOT k, x,y

where k is the mode of plotting, and x and y are the co-ordinates of a point
to be used to position the shape. PLOT takes one pair of co-ordinates. To
produce shapes which need more than one pair to define them, such as
rectangles, it uses the previous position or positions of the graphics cursor to
provide the missing information. This means that you must pay careful attention
to the position of the graphics cursor after a shape has been drawn. Otherwise
future plots may produce unexpected results.

Each type of plot has a block of eight numbers associated with it. These are
listed below in both decimal and hexadecimal notation. (See the chapter Bases).

0-7
8-15
16-23
24-31

32-39
40-47
48-55
56-63

64-71
72-79
80-87

(&00- &07)
(&08- &OF)
(&10- &17)
(&18- &1F)

(&20- &27)
(&28- &2F)
(&30- &37)
(&38- &3F)

(&40- &47)
(&48- &4F)
(&50- &57)

Complex graphics

Solid line including both end points
Solid line excluding final points
Dotted line including both end points
Dotted line excluding final points

Solid line excluding initial point
Solid line excluding both end points
Dotted line excluding initial point
Dotted line excluding both end points

Point plot
Horizontal line fill (left & right) to non-background
Triangle fill

121

HH-95 (&58- &SF) Hori:ontalline fill (right only) to background

96-103 (&60- &67) Rc·crangle fill
104-111 (&68- &6F) Homontallinc fill (left & right) to foreground
112-119 (&70- &77) Parallelogram fill
120-127 (&78-&7F) Horizontal line fill (righr only) to non-foreground

128-135 (&80- &87) Flood co non-hackground
1 36-14 3 (&88- &8F) Fh 1od to foreground

144-151 (&90- &97) Ctrcle outlmc
I 52-159 (&98- &9F) C1rcle fill
160-167 (&AO- &A7) Circular arc
168-175 (&AS- &AF) Segment
176-183 (&BO- &B7) Sector
184-191 (&B8- &BF) Block copy/move

192-199 (&CO- &C7) Ellipse outline
200-207 (&C8- &CF) Ellipse fill

208-215 (&DO- &07) Graphics characters
216-223 (&08- &DF) Re~erved for Acorn expansion
224-231 (&EO- &E7) Rc~crved for Acorn expansion
232-239 (&E8- &EF) Sprite plot

240-247 (&FO- &F7) Rt.'served for user programs
248-255 (&F8- &FF) Rl'scrved for user programs

Within each block of eighr, the offset from the hase number has the followmg
meaning:

0 move cursor relative (to last graphics point visited)
1 plot relative using current foreground colour
2 plot rdattve usmg logical mvcrse colour
3 plot relative using current hackground colour

4 move cursor absolute (ie move to actual co-ordinate given)
S plot absolute usmg current foreground colour
6 plot absolute using logical mversc colour
7 plot ahsolute using current backgrounJ colour

PLOT IS a good example of where using hexadecimal notation helps to make
things clearer. Each block of eight starts at either &xO or &x8, where x

Complex graphics 122

Plotting simple lines

Dot-dash lines

represents any hexadecimal digit, ~o a plot absolute in the current foreground
colour, for example, ha~ a plot code of &xS or &xD. Thus, it is obvious whtch
mode of plotting is being used. Stmllarly, tt 1s olwtou~ whtch ~hape is hemg
plotted, and so, for example, tf the plot is between &90 and &9F, then it is a
circle. This ts a far easter range to recognise than 144 to 159

Each of the types of plot is descnhed in further detail he low.

A line is plotted between the co-ordinates given by the PLOT and the
previous position of the graphics cursor. The following example~ draw a line
from (200,200) to (800,800):

10 MODE 0
20 PLOT &04,200,200
30 PLOT &05,800,800

These two PLOT statements arc equivalent to MOVE 200,200 and DRAW

800,800 respectively.

The same line can be drawn by a different PLOT code:

10 MODE 0
20 PLOT &04,200,200
30 PLOT &01,600,600

This demonstrates the use of relative plotting. The co-ordinate (600,600) which
has been gtven in line 30 ts rclau,·c to the IX>siuon ti the graphics cursor. The
ah.solute value is obtained hy adding rhb t>ffsct to the previous position ie
(600,600) + (200,200) which gtves a !XNtion of (800,800). This is equivalent to

DRAW BY 600 , 60C.

Straight lines do not have to be drawn as a solid !tne. Instead you can set up a
pattern of dots and dashes and usc that to determine which pixels along the
ltne wtll he plotted.

A dot-dash pattern is set up using:

VDU 23,6,nl,n2,n3,n4,n5,n6,n7,n8

where nl to nB define a bit pattern. Each hit which is set to one represents a
point plotted and each bit set to zero represents no point. The pattern starts at
bit 7 of nl, then for each pixel plotted moves one bit to the right in nl. After
bit 0 of nl has been used, bit 7 of n2 is used, and so on.

Complex graphics 123

Triangles

Rectangles

The pattern can be made to repeat (ie go back to bit 7 of nl) after a given
number of pixels. The maximum pattern repeat is 64. However, you can set up
any repeat between one and 64 using:

*FX 163,242,n

If you set n to zero, this sets up the default pattern which has a repeat length
of eight bit~ and is alternately on and off, te nl b %10101010 (&AA).

There are four differenr methods which may be used to plot the line:

PLOT range

&10-&17

&18-&lF

&30-&37

&38-&3F

Effect

Both end points included, the pattern being restarted when
each new line is drawn.

Final point omitted, the pattern being restarted when each
new line is drawn.

lntttal point omitted, the pattern being continued when each
new line is drawn.

Both end points omitted, the pattern being continued when
each new I me ts drawn.

To draw a triangle plot, you need the co-ordinates given with the triangle
PLOT code and two previous points which mark the other comers. For
example:

10 MODE 12
20 MOVE 200 ,200
30 MOVE 600 , 200
40 PLOT &55 ,400 ,400

Thts plots a triangle with comers (200,200), (600,600) and (400,400). Adding a
further line:

50 PLOT &55,800,400

plots a further triangle using corners (600,200), (400,400) and (800,400).

An axes-aligned (filled) rectangle plot can be plotted between the co
ordmates given by the PLOT and the previous position of the graphics cursor.
For example:

Complex graphics 124

Parallelograms

MOVE 200,200
PLOT &61,600 , 600

This is equivalent to RECTANGLE FILL 200,200, 600,600. You can abo
specify absolute co-ordinates in the PLOT version, cg:

MOVE 200 , 200
PLOT &65, 800 , 800

A parallelogram plot is constructed as a rectangle which has heen sheered
sideways. For example.

(400,800) (900,800)

/

I
I

(200),(200) (700,200)

These require three points to define them. Thus to plot the parallelogram
shown above the following could be w;ed:

MOVE 200 ,200
MOVE 700 ,200
PLOT &75,900,800

Although any three comers of the parallelogram may be used to Jefine it, the
order in which these are given affects which way round the parallelogram
appears. Consider the three points given below:

(200,500)

•
Complex graphics

(700,800)

•
(600,500}

•
125

Circles

Ellipses

The1>e could produce any of three parallelograms, depending on the order m
which they were used. The rule to determine what the final parallelogram
will look like is as follows: the three points specify adjacent vertices, with the
fourth vertex being calculated from these. From this, it can he seen that the
unsrec1f1ed comer is the one which appe.trs diagonally opposite the second
roint gl\·en.

Suppo~e. for example, you used the following ~cquence of statements with the
three points shown above:

MOVE 200,~00
MOV~ 600,500
PLOT &75,700,800

The final point 1s calcubtcd by the computcr to have thl· co-ordinates
(300,800), diagonally opposite the point (600,500).

The other two po~>~>ible parallelograms that would be obtained using these
thrl'e sequences are:

MOVE 600,500
MOVE 7),800

MOVE 700,800
MOVE 211 I 500

PLOT &75,200,500
PLOT &75,600,~00

When specifying the comers, you can g1vt: them in 'clotkwlse' or 'anti
clockwise' order; the same shnpe is drawn regardless.

To plot a circle plot define the centre by movmg to it, and then usc PLOT with
the relev;\nt plot code and the co-ordmates of a point on Its cin.:umference. For
example, to plot a solid circle in the centre of the screen w11h a radiUs of 100,
type

MOVE 640 ,512 : REM centre
PLOT &90,740,512 :REM Xcentre+radius,Ycentre

Alternatively you could usl' relative plotting:

MOVE:: 640,512
PLOT &99 , 100 ,0

:REM centre
:REM radius,O

In both these examples the circles arc solid and could have been produced
using the CIRCLE FILL command. The equivalent of the CIRCLE command
for producing outlines of circles would be PLOT &95 and PLOT &91

.Ellipses are more complicated to define than c1rcles. To plot an ellipse the

Complex graphics 126

following information is required:

• the centre point

1 • an outermost point (either to the right or left) at the same height as the
centre

• the highest or lowest point of the ell1pse.

(640,512)

For example, to draw the ellipse above, you coulJ use:

MOVE 640,512:REM the centre
MOVE 740,512:REM the righthand point
PLOT &C5,800,712:REM the top point

or alternatively:

MOVE 640,512 :REM the centre
MOVE 540,512:REM the lefthand point
PLOT &C5,480,312:REM the bottom point

Note that only the x co-ordinate of the second pomt IS relevant, although for
clarity it is good practice to give the same y co-ordinate as for the centre point.

The following example create~ a pattern using a number of differently
shaped ellipses:

10 MODE 0
20 FOR step% = 0 TO 400 STEP 25
30 MOVE 640,512
40 MOVE 215+step%,512
50 PLOT &C5,640,512+step%
60 NEXT step%

Solid ellipses are drawn in the same way using the plot coJes &C8 to &CF

The BASIC ELLIPSE keyword provides an easier way of specifying rotated

Complex graphics 127

Arcs Wo.: saw ahovc how circle outlines arc defined and drawn. In a :-.imilar way,
JU~t <l port ton of tho.: ctrcle l)Utline may be drawn rn produce an arc In t hi~
case, three points are required: the centn: of the circle and two points to
inditate the starting ,md finishmg pomts of the arc lde1lh. the~e would he
gtvcn as follow~:

Centre Starting point

In the example above, however, hoth the :.tarring and finishing points are on
the arc itself. This ts a destgn which requtres a large amount of ctlculatton It
is caster for the starting potnt to bt· taken as hetng on the arc and used to

calculate the radius, the finishing point heing used just to indicate the angle
the ;trc suhtends.

For cxamplo.::
Possible
fimshing points

Centre Staning point
This is the method used hy the VDU drivers. To draw an arc, you need to
specify the centre of the circle it is based upon and the starttng pomt of the
arc, and then to plot to a thtrd potnt to spectfy the angle.

The example below draws an arc based on a circle whose centre is at

(640.512). It draws the portton of the arc from 0 to 270. Smcc arcs are drawn
anttclockwtsl' this means that tts starlmg position is the point (440,512) (270)
and its finishing position (640, 5l2+n) (0):

MOVE 640,512
MOVE 440,512

Complex graphics 128

Sectors

PLOT &A5,640,1000

The resultinf! arc would look like that drawn below:

{640,512)

(440,512)

\""
A sector is a filled shape enclosed by two straight radii and the arc of a circle.

End

Start

Centre
Sectors are defined in a similar manner to arcs. For example:

MOVE 640,512:REM centre point
MOVE 440,512:REM s tarting point on the circumference
PLOT &B5,640,1000:REM point indicating a ngle of sector

Again the sector is taken as going anti-clockwise from the starting point to the
finishing point.

Complex graphics 129

Segments A segment is an area of a circle between the circumference and a chord as
shown below:

End

•
Centre

Start

Segments are defined in exactly the same way as arcs and sectors.

Complex graphics 130

Graphic patterns

Default patterns

Any of the colours which are available in a given mode may be 'interwoven' to
give a tremendous range of colour patterns. When using modes with a limited
number of colours, for example any of the four-colour modes, this feature may
be used to extend the colours available, since combining similar colours
produces further shades which look like pure colours. Alternatively, contrasting
colours may be used to give checks, wavy lines, and so on.

Default patterns are set up for you as follows:

Mode(s) Pattern

0 I
2
3
4

4,18 1
2
3
4

1,5,8,19 1

2,9,12,20

13,15

2
3
4

I
2
3
4

I
2

Graphic patterns

Colour

Dark grey
Grey
Light grey
Hatching

Dark grey
Grey
Light grey
Hatching

Red-orange
Orange
Yellow-orange
Cream

Orange
Pink
Yellow-green
Cream

White-grey stripes
Black-grey stripes

131

Plotting using
pattern fills

3 Green-black stripes
4 Pink-white stripes

T o use these patterns you issue a GCOL with a plot action which depends on

the pattern Jesired. In general, to use pattern n, the GCOL command should be

GCOL n*l6+action, col

where act ion is the plotting action you want to use with the pattern (for
example 0 for store, l for OR etc, as described earlier), anJ col is 0 if you
want to set the foreground colour as a pattern or 128 for a background pattern.
The parameter n is in the range 1 to 4 for the normal patterns, or 5 for a large
pattern whtch is fonned by placing patterns 1 to 4 next to each other.

All the shapes which have been described above can be plotted using these
colour patterns. A pattern may be selected using GCOL. The first parameter
to GCOL affects the plotting action as was seen in the chapter Screen modes.
Patterns can be used in future plots by using values in the following ranges:

16-3 1 Pattern 1
32-47 Pattern 2
48-63 Pattern 3
64-79 Pattern 4

Try the fo llowing:

10 MODE 9
20 GCOL 16 ,0
30 MOVE 100 , 100
40 MOVE 800,800
50 PLOT &55 , 700 ,20 0

or

10 MODE 1
20 GCOL 32 , 0
30 MOVE 640, 512
40 PLOT &90 , 740 , 512

It is possible to plot lines using these colour patterns in a similar manner, but
the effects may be rather strange. Consider, for example, a line drawn at 45
degrees in mode one. If the pattern being used were alternate black and
white pixels, then this line would be drawn either in all white or all black,

Graphic patterns 132

Defining your own
patterns

Native mode patterns

Two-colour modes

the latter not being visible on a black background.

You may define your own colour patterns using VDU commands as follows:

VDU 23 ,2, nl, n2, n3, n4, n5, n6, n7, nB defines GCOL 16 , 0 ie pattern 1

VDU 23 1 3 , nl, n2, n3, n4 , n5, n6, n7, nBdefines GCOL 32 , 0 ie pattern 2

vou 23 ,4,nl,n2 ,n3 ,n4,n5,n6,n 7,n8 defines GCOL 48,0iepattern3

VDU 2 3 1 5 1 nl, n2, n3, n 4, n5, n 6, n 7, n8 defines GCOL 64 , 0 ic pattern 4

The pattern produced by a set of parameters depends upon which pattern
mode is being used. There are two modes available, one where the
parameters are interpreted in the same manner as on a BBC Master 128 and
another simpler method used by this machine only. The default is the BBC
Master 128 mode. To change to native mode type

VDU 23,17 , 4 , 1 1

To revert back again to the Master mode type

VDU 23,17 ,4 1

The pattern fill works with blocks of pixels. The size of these blocks depends
on the number of colours available in the mode:

Colours
2
4
16

256

Horizontal pixels
8
4
2
1

Vertical pixels
8
8
8
8

In all cases, each pixel may be assigned a colour independently of the others.
Each parameter of the YOU command corresponds to a row in the pixel
block. The first parameter contains the value of the top row, the second the
value of the second row, and so on. The way the value of the parameter h.
interpreted depends on the mode being used.

In native mode the bits of the parameter arc used in a straightforward manner
to give the colour of the pixels.

Each bit of the parameter is assigned to a pixel, the least significant bit
applying to the pixel on the left, ie the pixels appear on the screen in the

Graphic patterns 133

Four-colour modes

16-colour modes

256-colour modes

Two-colour modes

opposite order to which the bits are written down on paper. For example, to
set a row of the pattern as follows:

black
%0

white
%1

white
% 1

white
%1

black
%0

the value required is 142 (%10001110).

black
%0

black
%0

white
%1

Each pair of bits of the parameter is assigned to a pixel, the least significant
pair applying to the pixel on the left. For example, to set a row of the pattern
as follows:

yellow
%10

red white yellow
%01 %1 1 %10

the value required is 182 (%lOll 0110).

Each set of four bits of the parameter is assigned to a pixel, the least
significant set applying to the pixel on the left. For example, to set a row of
the pattern as follows:

green white
%0010 %01 11

the value required is 114 (%01110010).

The value of the parameter defines the colour assigned to the pixel directly.

Patterns in these cases are more complex since they involve interleaving the
bits from the colour to obtain the parameter value.

This is the easiest case to understand. Each pixel in the block corresponds to
one bit of the parameter, the least significant bit applying to the pixel on the
right, so pixels on the screen appear in the same order as the bits are written
down on paper. For example, to set a row of the pattern as follows:

black white white white black
%0 %1 %1 % 1 %0

the value required is I 13 (%01 110001).

black
%0

black
%0

white
%1

Defining a pattern in a two-colour mode is similar to setting up a user-defined
character.

Graphic patterns 134

Four-colour modes

16-colour modes

In four-colour modes each colour is defined using two bits as follows:

yellow (%10)

bit 7
1

red (%01)

6 5

0

0

4

white (%11)

3
0

0

2

The value required is 182 (%10110110).

yellow (%10)

1 0
10 (yellow)
01 (red)
11 (white)

0 10 (yellow)

1 0

In 16-colour modes the situation is different again. There are just two pixels in
a row, four bits of the parameter being used to hold the value of each colour.
However, it is not the case that the left-most four bits correspond to the first
colour and the right-most four bits to the other. Instead, the bits of each arc
interleaved:

I bit

green (%0010) white (%0111)

7 6 5 4 3 2 I 0
0 0 1 0 0010 (green)

0 0111 (white)

I o 0 0 0 1 I
and the value required is 29 (%00011101).

To get the colours the other way around different numbers are required:

white (%0111) green (%0010)

bit 7 6 5 4 3 2 0
0 1 1 0111 (white)

0 0 0 0010 (green)

0 0 0 0

and the value required is 46 (%00101110).

Thus a cross-hatch pattern of alternate white and green pixels can be defined:

VDU 23 ,2,29,46,29,46,29,46,29,46

Graphic patterns 135

Giant patterns

Simple patterns

Giant patterns can be set up which take all four of the separate patterns and
place them side by side, giving an overall pixel size as shown below:

Colours Horizontal pixels Vertical pixels

2 32 8
4 16 8
16 8 8
256 4 8

To produce a giant pattern in this way, the first parameter given to GCOL

should be in the range 80 to 95.

Often the most effective way of using the pattern fills is for simple cross
hatch patterns. If you want to use this sort of colour pattern, a simpler way of
defining it is available. In this method, just a small block of eight pixels is
defined which is used to form the normal-sized block as shown below.

1
3
5 _]_ I

~ '

L~
16-colour modes

I The eight pixel colours are set up using

VDU 23,2,nl ,n2,n3,n4,n5,n6,n7,n8

l j
5
7

2

6-
8

Four-colour modes

where n 1 to n 8 correspond to the actual colours to be used. The numbers are
given in the following order:

Graphic patterns 136

Flood-fills

Flood to non
background

Flood until foreground

1 2
J 4

~ 1 ~

Mode4

i
Double pixels

1 2
3A_
5 6
7 8

ModeS

This section is concerned with how to fill the inside of any closed region,
however awkward the shape. The method used is flood-filling; with this you
can start off at any point within the boundaries of the shape. The whole shape
is then filled at once.

This can be used on shapes which arc in the current background colour and
bordered by non-background colours. The shape is filled with the current
foreground colour.

To use this flood-fill method, type, for example:

FILL 640,512

This starts filling from the point (640,512): the middle of the screen. If this
point is in a non-background colour then it returns immediately. Otherwise it
fills in all directions until it reaches either a non-background colour or the
edge of the screen.

Flood-fills may be performed using either pure colours or colour patterns.
Note that if you wish to colour in a shape it must be totally enclosed by a
solid border. If there is a gap anywhere then the colour 'leaks' out into other
regions.

Whereas the previous flood-fill filled a shape currently in the background
colour, this one fills a shape currently in any colour except the present
foreground one, with the present foreground colour. This is performed by a
PLOT command with plot codes &88 to &8F.

For example:

PLOT &80,640,512

Flood-filling will only succeed when the region being filled does not already

Graphic patterns 137

Copying and moving

contain any pixels in the colour being used. For example, if you are attempting a
flood to non-background when the background colour is black, you should not try
to flood in black or in a pattern which contains black pixels.

Using RECTANGLE ... TO and RECTANGLE FILL ... TO, you can 'pick' up a
rectangular area of the screen and either make a copy of it elsewhere on the
screen or move it to another position, replacing it with a block of the background
colour.

For example:

RECTANGLE FILL 400,600,60,80 TO 700,580

This marks out the source rectangle as having one comer at co-ordinates
(400,600), a width of 60 and a height of 80. It then moves this rectangular area so
that the bottom left of it is at the co-ordinates (700,580). The old area is
replaced by background.

The new position can overlap with the rectangular area, as in the example above,
and the expected result is still obtained.

The rectangle move and copy commands may also be expressed in terms of
PLOT codes. The relevant range of codes is &88 to &BF: first move to two
points which denote the bottom left and top right of the rectangle to be copied
or moved; then plot, using one of the range of codes described above, to the
bottom left comer of the destination rectangle. The meanings of the plot codes
are as follows:

&88

&89

&BA

&BB

&BC
&BD
&BE
&BF

Move relative (no copy/move operation)

Relative rectangle move

Relative rectangle copy

Relative rectangle copy

Move absolute (no copy/move operation)
Absolute rectangle move
Absolute rectangle copy
Absolute rectangle copy

The rectangle move operations erase the source rectangle, whereas the copy
operations leave it intact. So, the RECTANGLE FILL . . . TO example above

Graphic patterns 138

could also be expressed as:

MOVE 400 ,600
MOVE BY 60 ,8 0
PLOT &80,700 , 580

The graphics used by Draw use the Draw module. This is outside the scope of
this manual, but is described in the Programmer's Reference Manual.

Graphic patterns 139

Graphic patterns 140

Viewports

Text viewports

The operating system allows the programmer to set up special rectangular areas
of the screen, called viewports, in order to restrict where text or graphics can
appear on the screen.

Text viewports provide automatic scrolling of text written into the viewport area,
and so are also referred to as 'scrolling viewports'.

Graphics viewports restrict the area affected by graphics operations, so that, for
example, lines are clipped to lie within the viewport area. Graphics viewports
are therefore also referred to as 'clipping viewports'.

Note: the text and graphics viewports described here are supported directly by
the YOU drivers, and are quite distinct from the bordered, moveable windows
used by the desktop manager software, which uses graphics viewports as a
stepping stone to greater functionality.

Normally, text may appear anywhere on the screen. However, you can define a
text viewport, which allows the text to appear only inside the viewport. To set up
a text viewport, use the VDU 28 command as follows:

VDU 28,left,bottom,right,top

where left, bottom (A,B below) is the bottom lefthand and right, top

Viewports 141

Graphics viewports

(C,D below) the top righthand position inside the viewport given in text co
ordinates.

Nothing outside the text viewport is affected by text statements, such as CLS to

clear the text screen, or screen scrolling. Note that TAB (X, Y) positions the text
cursor relative to the position of the top left of the current text viewport. The
following program demonstrates how text viewports behave:

MODE 1
20 REM Set up a text viewport 6 characters square
30 VDU 28,5,10,10,5
40 REM Change the background colour to colour 1 (red)
50 COLOUR 129
60 REM Clear the text screen to show where it is
70 CLS
80 REM Demonstrate scrolling
90 FOR N% = 1 TO 20

100 PRINT N%
110 NEXT N%
120 REM Show position of character (2,3)
130 PRINT TAB(2,3); u *u
140 END

To revert back to having the whole screen as the text viewport type

VDU 26

The precise actions of the YOU 26 command are as follows:

• Restore text viewport to the whole screen

• Restore graphics viewport to the whole screen

• Home the text cursor

• Restore graphic origin to bottom left of screen

• Home graphics cursor to (0,0).

Just as text may have a text viewport defined, so a graphics viewport may be set
up using

VDU 24, left;bottom;right;top;

where (left,botwm) and (right,wp) are the co-ordinates of the lower lefthand and

Viewports 142

upper righthand pixels inside the viewport. (Be sure to use semi-colons as
indicated, not commas.)

R

j
/·.

L
Graphics
Viewports

/,
:·.

T
B

J J

Nothing outside the graphics viewport is affected by graphics commands, such
as CLG to clear the graphics screen. When a graphics viewport is set up, the
graphics origin (0,0) is unaltered.

The following program demonstrates how graphics viewports behave:

10 MODE 12
20 REM Set up a graphics viewport,a quarter of the

screen size
30 VDU 24,320;256;960;768;
40 REM Change the background colour to colour 1 (red)
50 GCOL 129
60 REM Clear the graphics viewport
70 CLG
80 REM Show position of 0 , 0
90 CI RCLE 0,0,600

100 END

To revert back to having the whole screen as the graphics viewport type

VDU 26

Viewports 143

Viewports 144

Sprites

Using system sprites

Defining a sprite

There are two ways of creating and manipulating sprites. You can work in a
sprite editor or act directly on sprites in memory using * commands. These
commands are totally separate from the sprite editor programs and can either
be issued whilst in BASIC command mode or included within programs.

Two sprite editors are available. The first is Paint. This is a general-purpose
painting program whose output happens to be stored in a sprite. It is useful
for defining sprites which are fairly complex and contain other graphics
objects such as lines and circles. It is fully described in the User Guide.

Secondly, you can use the FormEd program to define sprites. This program is
actually designed as a 'form' editor for WIMP-based programs. However, tt
also contains a sprite editor for defining icons. This program is more useful
than Paint for designing sprites which are fairly small and where simple
control over the colour of individual pixels will suffice.

If you do not want to use a sprite editor, you can still manipulate sprites using
the * commands mentioned above. These act on system s{nices. System sprites
are stored in an area of memory set aside when the computer is switched on.
You can set the amount of memory reserved for system sprites the task
manager window, or using a *CONFIGURE command. For example, the
command

*CONFIGURE spritesize 8K

followed by a hard reset will allocate 8192 bytes for system sprites.

You access system sprites by their names. A sprite name can be up to 12
characters and may contain letters and digits. There exists a 'current sprite',
which is the one that wi ll be used by the next sprite PLOT command. You set
the current sprite using the *SChoose command. The sprites with names 0, 1, 2,
... 2 55 are special, in that they can also be selected using a YOU command.

To define the shape of a system sprite from the screen, MOVE to the two

Sprites 145

Listing sprites

Manipulating sprites

Loading and saving
sprites

comers of the rectangle which bounds the area you are interested in and issue
a * SGet command. For example, suppose you have drawn a small shape in
the lower left comer of the screen, 32 by 32 units square. To store this in a
sprite called myspr i te, you would use:

MOVE 0,0
MOVE 31 , 31
*SGet mysprite

Once a sprite has been obtained in this way, it becomes the current sprite, so
you don't have to *SChoose it.

You can also get a sprite whose name is a number between 0 and 255 using a
VDU command:

VDU 23 , 27 , 1 , nl

This is equivalent to using * SGet name, where name is STR$n, ie 0, l, 2, ... 255.

You can obtain a list of the currently defined system sprites using the
* SLi st command. This simply gives the names of all the system sprites, eg:

*SList
my sprite
bigsprite
car
bus

Once you have one or more sprites defined, you can perform various
operations on them. These are:

*SChoose name
*SFl ipX name
*SFlipY name
*SDelete name
*SNew
*S!nfo
*SRename namel name2

*SCopy namel name2

Make name the current sprite
Flip name about the X axis
Flip name about the Y axis
Remove name from the system sprite area
C lear the system sprite area, removing all sprites
Print information about system sprite space
C hange the name of namel to name2
Make a copy of namel and call it name2

All the sprites which you currently have in memory can be saved in a file by
typing

Sprites 146

Plotting sprites

*SSave filename

You can also load a sprite file back into memory so that you can either plot or
edit the sprites in it. To do this, type:

*SLoadfilename

If you wish to merge a file of sprites with those you have in memory, then you
can use:

*SMergefilename

This command, however, should be used with care if there is a sprite currently in
memory which has the same name as one of the sprites in the file, since when the
two are merged, the version which was in memory will be lost.

It is very simple to plot one of the sprites which is currently stored in the system
sprite area. All you have to do is select which sprite you wish to plot and where
you want it to appear on the screen.

To select a particular sprite, use:

*SChoose name

A PLOT command is then used to put it on the screen. The possible plot
numbers which may be used are &E8 to &EF. As usual, the eight possible plot
numbers determine whether absolute or relative co-ordinates will be specified,
and which colours will be used. lt is usual to use &E8+5, ie &ED, which plotS a
sprite at the absolute co-ordinates given.

For example:

*SChoose horse
PLOT &ED, 640, 512

plots sprite horse with its bottom lefthand comer exactly in the centre of the
screen.

As an alternative to *$Choose, the following YOU command may be used for
certain sprites:

VDU 23,27,0,nl

This is equivalent to *$Choose when the name of the sprite contains just digits,

Sprites 147

Plotting with a mask

Plotting within
graphics viewports

the values of which are numbers between 0 and 255. The advantage of using
the YOU command is that it can contain variables. If you wish to plot eight
sprites, whose names are 1 to 8, you can use, for example:

10 FOR sprite_num% = 1 TO 8
20 VDU 23 ,27, 0 ,sprite num%1
30 PLOT &ED,x%,y%
40 NEXT

On the other hand, using the *SChoose command in conjunction with the
OSCLI statement enables you to use any sprite name, eg:

10 FOR sprite%=1 TO 5
20 READ name$
30 OSCLI " CHOOSE " +name$
40 PLOT &ED,x%,y%
50 NEXT sprite%
60 DATA horse , fish, cow, ...

If a sprite has a mask defined (which can be done using Paint or Form&!),
this can be used whilst plotting so that the area of the mask leaves the
background unchanged: the mask area is treated as if it were transparent.

To plot using the mask, use the GCOL plotting modes 8 to I 5. For example:

GCOL 8,0
*SCHOOSE horse
PLOT &ED, 640, 512

Sprites are clipped to the edges of the screen so they appear to scroll on and
off. This is handled for you by the plotting routines which only display the
part of the sprite which should be on the screen. This clipping also applies to
graphics viewports.

Sprites 148

Teletext mode

Coloured text

The teletext mode, mode 7, is unique in the way it displays text and graphics.
Commands such as COLOUR, GCOL, MOVE and DRAW do not work in this
mode. Instead colourful displays are produced using teletext control codes.

Mode 7 is compatible with the teletext pages broadcast by CEEFAX and
Oracle. You can produce your own teletext displays using the limited but
effective graphics which are available.

Type in the following program and run it:

10 MODE 7
20 PRINT "THIS "; CHR$(129) ;"demonstrates "; CHR$ (1 30);
" the "; CHR$ (131);"use "
30 PRINTCHR$ (132); "of " ; CHR$ (133); "control "; CHR$ (134) ;
" codes"

The characters 129, etc, which are printed using CHR$(129) are the control
codes. Although the control codes arc invisible they still take up a character
position, so the words are separated by a space. Each control code affects the
way in which the remaining characters on that particular line are displayed.
For example, printing CHR$(129) makes the computer display the text in red.
The full list of colours and their associated control codes is given below:

Code Text colour

129 Red
130 Green
131 Yellow
132 Blue
133 Magenta
134 Cyan
135 White (default)

Every line starts off with the text in white. So, if you want several rows of text

Teletext mode 149

Making text flash

Double-height text

Changing the
background colour

to appear in red, for example, you must start each of these rows with
CHR$(129).

Text can be made to flash. For example:

10 MODE 7
20 PRINT CHR$ (136) " Flash " ; CHR$ (137) " Steady " ;CHR$ (136) ;
"Flash "

Flashing coloured text can be produced by using two control codes:

10 MODE 7
20 PRINT "Steady white";CHR$(129);CHR$(136)"Flashing
red"

Since each control code occupies a character posmon, the words white and
Flashing are separated by two spaces on the screen.

Double-height text can be produced as follows:

10 MODE 7
20 PRINT CHR$(141) " Double height "
30 PRINT CHR$(141) " Double height "

To obtain double-height text, the same text must be printed on two successive
lines beginning with CHR$(141). If the text is only printed once, only the top
half of the letters is displayed.

To revert to single-height graphics on the same line, the control code is 140.
For example:

10 MODE 7
20 PRINT CHR$(141) " Double Height "; CHR$ (1 40); "Single
Height "
30 PRINT CHR$(141) " Double Height "; CHR$(140); "Single

1
Height "

Changing the background colour requires two codes:

10 MODE 7
20 PRI NT CHR$(131) ; CHR$(157) " Hello"

The first code is for yellow text. The second tells the computer to use the
previous control code as the background colour. The net effect of the two

Teletext mode 150

Teletext graphics

codes is to give yellow text on a yellow background as you can see when you
run the program above. Hence to print text visibly on a coloured background,
three control codes arc required, two to change the background colour, and a
third to change the colour of the text.

For example:

10 MODE 7
20 PRINT CHR$ (131) ;CHR$ (157) ;CHR$ (132) " Blue on yellow "

Certain characters, such as the lower-case letters, may either be printed
normally as text or made to appear as graphics shapes by preceding them
with one of the graphics control codes. These are:

Code Graphics colour

145 Red
146 Green
147 Yellow
148 Blue
149 Magenta
150 Cyan
151 White
156 Set background to black
157 Set background colour to the current foreground colour

Each line of the teletext display starts with the following attributes: white,
alpha (ie non-graphics) characters on a black background.

Each graphics shape is based on a two by three grid:

A B

It is possible to calculate the code for any particular graphics shape, since
each of the six cells contributes a particular value to the code as follows:

Teletext mode 151

Outlining blocks of
colour

Placing blocks of colour
next to each other

2

4 8

16164

The base value for the codes is 160, so that they lie in the ranges 160 to 191 and
224 to 255. For example,

has a code of 160 + 1 + 8 + 16 = 185 and so may be produced on the screen in
red. To do this, type

PRINT CHR$(145);CHR$(185)

Normally, the blocks of colours are continuous. For example,

PRINT CHR$(145};CHR$(255}

produces a solid block of red. Nevertheless, the graphics can be separated, with
a thin black line around all the segments. To see the effect of this, try typing

PRINT CHR$(145};CHR$(154);CHR$(255)

So far we have seen that each of the teletext control characters appears on the
screen as a space. This means that it is not normally possible to have graphics
blocks of different colours touching each other. They have to be separated by at
least one space to allow for the graphics colour control codes.

However, if you wish to use different colours next to each other, you can do so by
using some of the more advanced teletext controls. For example, try typing

PRINT CHR$(145)CHR$(152}CHR$(255 }CHR$(158}CHR$(146}
CHR$(147}CHR$(159}

Code 152 conceals the display of all graphics characters until a colour change

Teletext mode 152

occurs. Hence the solid red graphics block is not displayed.

Code 158

Code 146

Code 147

holds the graphics. This means that it remembers the previou~
graphics character, in this case the solid block, and displays
all future graphics shapes and control codes as the
remembered character.

first colour change. As a result, it reverses the concealing
effect of code 152 so that future characters are displayed,
and also selects green graphics.

control code displayed as a solid graphics block in the
current colour which is green. It selects yellow graphics.

Code 159 control code displayed as a solid graphic block in the current
colour which is yellow. It releases the graphics, ie it reverses
the effect of any previous 158 codes.

Teletext mode 153

Teletext mode 154

Sound

Activating the sound
system

Selecting sound
channels

Allocating a wave
form to each voice

The computer contains a sound synthesizer which enables you to emulate up to
eight different instruments playing at once, giving either mono or stereo sound
production for each instrument.

The sound system can be activated or de-activated using the statements
SOUND ON and SOUND OFF.

You can select how many different sound channels you want to use. The
default value is 1, but you can alter this by typing

VOICES n

The maximum number allowed is eight. Any number between one and eight
can be specified, but the number which the computer is to handle has to be a
power of two, and so the number you give is rounded up by the computer to

either one, two, four or eight.

After you have specified the number of voices you require, you will need to

allocate a wave-form to each voice. This is done with *CHANNEL VOICE, the
syntax of which is:

*CHANNELVOICE channel voicename

It is important to realise that what is termed the voice in BASIC is called the
channel by RISC OS, while RISC OS refers to the wave-form as the voice.

Since the bell uses channel 1, you can get an idea of how the command works
by entering

*CHANNELVOI CE 1 Percussion-Snare

and then sounding the bell by typing <Ctrl> G.

As you will notice, the sound of the bell has changed, since the sound channel
has been allocated a new voice - in this case a percussion snare sound.

Sound 155

Setting the stereo
position

Creating a note

A full list of the resident voices can be obtained, along with their channel
allocations, using the *VOICES command. With voice 8 allocated to channel
1, the list appears as follows:

Voice Name
1 WaveSynth-Beep
2 StringLib-Soft
3 StringLib-Pluck
4 StringLib-Stecl
5 StringLib-Hard
6 Percussion-Soft
7 Percussion-Medium
8 Percussion-Snare
9 Percussion-Noise

l\l\1\l\1\1\l\l\ ChannelAllocation Map

Note that *VOICES indicates only the mapping of voices to channels - it
does not specify how many channels have been selected with BASIC's
VOICES command.

For each active channel, the stereo position of the sound can be altered using:

STEREO chan, pos

pos can take any value between -127 (indicating the sound is fully to the left)
and + 127 (indicating the sound is fully to the right). The default value for
each channel is zero which gives central (mono) production.

Although the range of the pos argument in the STEREO keyword is -127 to

127, there are actually only seven discrete stereo positions. These are:

-127 to -80
-79 to -48
-4 7 to -16
-lSto+lS
+16to+47
+48 to +79
+80to+127

Full left
2/3 left
l/3 left
Central
1/3 right
2/3 right
Full right

BASIC provides a SOUND statement to create a note on any of the channels.
This requires four parameters which can be summarised as follows:

SOUND channel, amplitude, pitch, duration[, after]

Sound 156

Channel

Setting the volume

Pitch

There are eight different channels, numbered 1 to 8. Each of these is identical,
except for the voice assigned to it.

The second parameter amplitude determines how loud a note is to be
played. You set the amplitude to an integer between 0 and -15. -15 is the
loudest, -7 is half-volume and zero produces silence.

Alternatively, a logarithmic scale can be used, by giving a value between 256
(&100) and 383 (&17F). A change of 16 represents a doubling or halving of
the volume.

The pitch can be controlled in steps of a quarter of a semitone by giving a
value between 0 and 255. The lowest note (0) is the A# one octave and two
semitones below middle C. The highest note is the D four octaves and a tone
above middle C. A value of 53 produces middle C itself. The following table
is a quick reference guide to help you find the pitch you require:

Note Octave number
1 2 3 4 5 6

A 41 89 137 185 233
A# 0 45 93 141 189 237
B 1 49 97 145 193 241
c 5 53 101 149 197 245
C# 9 57 105 153 201 249
D 13 61 109 157 205 253
I)# 17 65 113 161 209
E 21 69 117 165 213
F 25 73 121 169 217
F# 29 77 125 173 221
G 33 81 129 177 225
G# 37 85 133 181 229

Alternatively, a finer control is available by gtvmg a value between 256
(&0100) and 32767 (&7FFF). Each number consists of 15 bits. The left-most
three bits control the octave number. The bottom 12 bits control the fractional
part of the octave. This means that each octave is split up into 4096 different
pitch levels. Middle C has the value 16384 (&4000).

Using hexadecimal notation is a particularly useful way of seeing what pitch
a given value defines. Each value in hexadecimal notation comprises four
digits. The left-most one gives the octave number and the right-most the

Sound 157

Duration of sound

Synchronising the
channels

Finding the value of
the current beat

fractional part of the octave. The following table illustrates this:

Note Octave number
2 3 4 5 6 7 8 9

A &OCOO &I COO &2COO &3COO &4COO &5COO &6COO &7COO
A# &0055 &1055 &2055 &3055 &4055 &5055 &6055 &7055
B &OEAA &lEAA &2EAA &3EAA &4EAA &5EAA &6EAA &7EAA
c &1000 &2000 &3000 &4000 &5000 &6000 &7000
C# &0155 &1155 &2155 &3155 &4155 &5155 &6155 &7155
0 &02AA &12AA &22AA &32AA &42AA &52AA &62AA &72AA
D# &0400 &1400 &2400 &3400 &4400 &5400 &6400 &7400
E &0555 &1555 &2555 &3555 &4555 &5555 &6555 &7555
F &06AA & 16AA &26AA &36AA &46AA &56AA &66AA &76AA
F# &0800 &1800 &2800 &3800 &4800 &5800 &6800 &7800
G &0955 &1955 &2955 &39AA &49AA &59AA &69AA &79AA
G# &OAAA & I AAA &2AAA &3AAA &4AAA &5AAA &6AAA &7 AAA

The fourth SOUND parameter determines the duration of a sound. A value of
0 to 254 specifies the duration in twentieths of a second. For example, a value
of 20 causes the note to sound for one second. A value of 255 causes the note
to sound continuously, stopping only when you press <Esc> . Values between
256 and 32767 also give the duration in 20ths of a second.

The channels can be synchronised by using the beat counter. The counler
increases from zero to a set limit, then starts again at zero. Typically, you
would use the time it takes for the counter to complete one cycle to represent
a 'bar' in the music, and use the after parameter in the SOUND statement to
determine where in the bar the note is sounded.

You can set the value that this counter will count up to by typing

BEATS n

The counter then counts from 0 to n-1 and when it reaches n it resets itself to

zero. To find the current beat counter value, type

PRINT BEATS

Increasing the number of beats increases the time taken before two notes are
repeated. It has no effect on the time interval between the two notes
themselves.

In addition, the current beat value is found by typing

Sound 158

Finding the current
tempo

Executing a sound on
a beat

PRINT BEAT

The rate at which the beat counter counts depends on the tempo which can be
set as follows:

TEMPO n

n is a hexadecimal fractional number, in which the three least-significant
digits are the fractional part. A value of &1000 corresponds to a tempo of one
tempo beat per centi-second; doubling the value (&2000) causes the tempo to
double (2 tempo beats per centi-second), halving the value (&800) halves the
tempo (to half a beat per centi-second).

Suppose you are working in 4/4 time, and want to have a resolution of 8
computer beats per musical beat (ie there are 32 computer beats to the bar).
Furthermore, suppose you want the musical tempo to be 125 beats per minute.
This is 125*8/60 computer beats per second, or 125*8/60/100 computer beats
per centi second. If you calculate this, you obtain 0.6666667 computer beats
per centi-second. Multiply this by the scaling factor of &1000 (4096), and you
get a TEMPO value of 683. Therefore you would use the following two
commands:

TEMPO 683
BEATS 32

To find the current tempo, type

PR I NT TEMPO

Increasing the tempo decreases both the time taken before two notes are
repeated and the time interval between the two notes.

Sounds can be scheduled to execute a given number of beats from the last
beat counter reset by giving the fifth parameter after to the SOUND
statement.

The optional after parameter in the SOUND statement specifies the number
of beats which should elapse before the sound is made. The beats are counted
from the last time the beat counter was set to zero (ie the start of the bar). If
the beat counter is not enabled (because no BEATS statement has been
issued), the beats are counted from the time the statement was executed.

For example, the listing below repeatedly waits for the start of the bar, then
schedules the sounds to be made after 50 beats and 150 beats respectively.

Sound 159

Sychronising sounds

Given that a bar is 200 beats long, this corresponds to the second and fourth
beat of a 4/4 time:

10 BEATS 200
15 VOICES 2
20 *CHANNELVOICE 1 1
30 *CHANNELVOICE 2 1

40 REPEAT
50 REPEAT UNTIL BEAT=O
60 SOUND 1 , -15, 100 ,
70 SOUND 2, -15, 200,

5 ,
5,

80 REPEAT UNTIL BEAT<>O
90 UNTIL FALSE

50
150

Having scheduled the sounds, the program waits in another REPEAT loop
until the current beat is not zero. This prevents the sounds from being
scheduled more than once in a bar.

Note: Where other things are happening in a program, such as screen
updating, it is not safe to test for BEAT =0, in case the program misses the
short period where that was true. lt is better to test, for example, for
BEAT< l 0 and treat beat 10 as the 'start' of the bar.

If the after parameter is given as -1, the sound, instead of being scheduled for
a given number of beats, is synchronised with the last sound that was
scheduled. For example,

SOUND 1 , -10 , 200 , 20 , 100
SOUND 2 ,-10,232 , 20 ,-1

will cause two sounds, an octave apart, to be made I 00 beats from the present
moment, assuming that at least two channels are active and have been assigned
voices.

Sound 160

Accessing memory locations

Reserving a block of
memory

The '?' indirection
operator

Individual memory locations can be accessed from BASIC by using four
indirecnon operators:

Symbol

I
$

Purpose

Byte indirection operators
Integer indirection operator
Floating point indirection operator
String indirection operator

Number of bytes

1
4
5
I to 256

These operators can either he used to read the value(s) in one or more memory
locations or to alter the value(s) there. You must be very careful that you only
read from or write to memory locations which you have set aside specially. Using
these operators on other areas of the memory can have undesirable effects.

You can reserve a block of memory using a special form of the DIM command.
For example:

DIM pointer% 100

This reserves a block of (uninitialised) memory and sets the variable pointer%
to the address of the first byte of the block. The bytes are at addresses
pointer%+0 to pointer~+lOO, a total of 101 bytes. Note that the address
assigned to pointer% will always be a multiple of four. This means that
consecutive DIMs will not necessarily allocate contiguous blocks of memory.

Note also that this differs from the usual use of DIM to dimension an array in
that the ~izc is not contained in brackets, and the variable cannot be a string.

You can set the contents of the first byte of this block of memory to 63 by typing

?pointer% = 63

To check that this value has been inserted correctly, type

Accessing memory locations 161

The'!' indirection
operator

PRINT ?pointer%

The ? indirection operator a(fects only a single byte. Only the least significant
byte of the number is stored. Thus, if you give it a value of 256 or more, only
n AND &FF will be stored.

For example,

?pointer% = 356
PRINT ?pointer%

produces the result:

100

because 356 AND &FF gives 100.

If you wish to set or examine the contents of the location which is five bytes
after pointer%, you can do this by typing

? (pointer% + 5) 25

Alternatively, a shorter form is available as follows:

pointer%?5 = 25

The following program prints out the contents of all the memory locations in
the reserved block:

10 DIM block_of memory% 100
20 FOR N% = 0 TO 100
30 PRINT "Contents of "; N%;" are ";block_of_memory%?N%
40 NEXT N%

BASIC integer variables arc stored in four consecutive bytes of memory. The
! operator can be used to access these four bytes. For example, type

DIM pointer% 100
!pointer% = 356
PRINT !pointer%

The least significant byte of the integer is stored in the first memory location,
and the most significant byte in the fourth location. This can be seen in the
following example:

Accessing memory locations 162

The 'I' indirection
operator

The '$' indirection
operator

10 DIM pointer% 100
20 !pointer% = &12345678
30 PRINT -pointer%?0
40 PRINT -pointer%?1
50 PRINT -pointer%?2
60 PRINT -pointer%?3

This prints:

78
56
34
12

Floating point numbers, which are stored in five consecutive bytes, can be
accessed using the unary operator I . For example:

10 DIM pointer% 100
20 !pointer% = 3.678
30 PRINT !pointer%

There is no dyadic form of I. You cannot say, for example, a I 5= 1 . 2 3.

For advanced readers, floating poinl numbers are stored in memory as
follows: the first four bytes are the mantissa in normalised form with an
assumed 0.1 just before bit 30. Bit 31 is the sign for the mantissa, 1 being
negative. The fifth byte is the exponent in excess-128 form. Zero is stored as
five zero bytes.

Strings can be placed directly in memory, each character's ASCII code being
stored in one byte of memory. For example:

DIM pointer% 100
$pointer% = " STRING "
PRINT $pointer%

The $ indirection operaror places a carriage return (ASCII 13) after the last
character of the string. Thus, the example above uses seven bytes: six for the
characlcrs of the word STRING, plus one for the terminaling carriage return.
To sec this, run the following program:

10 DIM space% 10
20 REM set all bytes to zero

Accessing memory locations 163

30 FOR N% = 0 TO 10
40 space%?N% = 0
50 NEXT N%

60 REM Store the string
70 $space% = " STRING"
80 REM Print out the bytes
90 FOR N% = 0 TO 10

100 PRINT space%?N% " "; CHR$(space%?N%)
110 NEXT N%

As with I , there is no dyadic form of $. For example, although you may use
$ (string+1), the form string$1 is not allowed.

Accessing memory locations 164

Error handling and debugging

Global error handling

Trapping an error

By default, when the BASIC interpreter finds an error it halts execution of the
program and prints an error message on the screen. Most errors are generated
by incorrect programming, such as using a variable which has not had a value
assigned to it. You have to correct this kind of error to make the program work.
However, even if the syntax of the program is correct, errors can occur whilst it is
being executed, because it cannot cope with the data it is given.

For example:

10 REPEAT
20 INPUT "Number",N
30 L = LOG(N)
40 PRINT "LOG of "; N" is "; L
so UNTIL FALSE

This program takes a number from the keyboard and prints the logarithm of that
number. If you type in a negative number, however, the program gives the
message:

Logarithm range at line 30

The same thing happens if you type 0, or a character such as w, or a word such as
TWELVE.

You may decide that you would like to trap such an error and print a message to

tell the user what he or she has done wrong instead of having the program end
abruptly. You can do this using the ON ERROR statement.

For example:

5 ON ERROR PROCerror
10 REPEAT
20 INPUT "Number", N
30 L = LOG(N)

Error handling and debugging 165

Turning off the error
handler

40 PRINT "LOG of ";N" is .. ; L

so UNTIL FALSE
60 END

100 DEFPROCerror
110 IF ERR=22 THEN
120 PRINT "The number must be greater than 0 "
130 ELSE REPORT
140 PRINT " at line ";ERL
150 END
160 END IF
170 ENDPROC

The ON ERROR statement can be followed by a series of statements given on
the same line. In many cases, it is more convenient to follow it with a call to
an error handling procedure, as in the example above, which can then be as
complex as you like.

When an error occurs, BASIC passes control to the first statement on the ON
ERROR line, as if it jumped there using a GOTO. It will 'forget' about any
loops or procedures that were active when the error occurred, as if the
program had been re-started. Of course, the values of all the variables and so
on will still be intact.

Each error has an error number associated with it. When a particular error
occurs, its number is placed in a variable called ERR. A full ltst of error
numbers is given in Appendix B.

In the example above, the error handling procedure tests for error 22 which is
the Logarithm range error. If it was this error which occurred, it is dealt
with appropriately. If a different error occurred, the program executes the
REPORT instruction which prints out the error message and then prints the
number of the line where the error occurred which is given in the function ERL.
Then it executes the END to end the execution of the program. Trapping all
errors is not necessarily a good idea since you then would not be able to press
<Sc>, which is treated as an error, to stop the program.

If a program contains more than one ON ERROR statement, the most recently
executed one is used when an error occurs.

Error handling can be turned off at any stage in the program using the
instruction ON ERROR OFF.

Error handling and debugging 166

Generating errors

External errors

In addition to the error messages that the interpreter itself generates when it
discovers a mistake in the program, you can cause your own errors. This can be
useful when, for example, you find a mistake in the user's input data and want
to notify the user through your standard error handler. To generate an error,
use the statement:

ERRORerrnum, errstring

The errnum expression is a number which will be passed to the error

handler via the ERR function, as usual. The errstring is accessible to the
error handler through the REPORT statement and REPORT$ function. ERL
will be set to the line number at which the ERROR statement was executed.

If you use 0 as the error number, the error will be a 'fatal' one. As with built
in errors with that number, it cannot be trapped by using ON ERROR.

An example of the use of ERROR is:

1000 ch=OPENINf$
1010 IF ch=O THEN ERROR 214,"Fi1e '"+ f$+"' not found"

If an error occurs in a program, you may wish to leave BASIC altogether and
pass the error back to the program that called BASIC in the first place. You
can do this using the ERROR EXT statement. Its syntax is very similar to
ERROR, described above. If you say:

ERROR EXT O,"Can't find template file"

then BASIC will quit and the error message and number will be passed back
to the error handler of the program that called BASIC (eg the Arthur
Supervisor prompt or error box).

BASIC's default error handler uses this form of the ERROR statement if the
program being executed was called from a command of the form

*BASIC -quit filename

(A BASIC program filename typed as a * command will behave like this.)
When BASIC is called like this, it loads and executes the program stored in
filename, and then QUITs automatically when the program terminates. In
addition, the function QUIT will return TRUE instead of FALSE, as it
usually does. This is used in BASIC's default error handler, which reads as
follows:

Error handling and debugging 167

Local error handling

Trapping an error;
procedures & functions

Restoring the previous
error handler

TRACE OFF
IF QUIT THEN

ERROR EXT ERR,REPORT$
ELSE

RESTORE
! (HIMEM-4) =@%
@%=&900
REPORT

REM save current @%
REM print line numbers as integers

IF ERL THEN PRINT " at line " ERL ELSE PRINT
@%=! (HIMEM-4) : REM restore @%
END

END IF

When an error occurs, the ON ERROR command can be used to deal with it.
BASIC, however, forgets all about what it was doing at the time the error
happened. For example, if it was in the middle of a FOR ... NEXT loop or
executing a procedure, it is not possible to jump back to the place the error
occurred and carry on as though nothing had happened.

The ON ERROR LOCAL command can be useJ to get around this problem.
This command traps errors which occur inside an individual procedure or
function and then continues executing within the procedure or function rather
than jumping back to the top level. For example:

10 PROCcalculate(100)
20 END

100 DEFPROCcalculate(A)
110 LOCAL I
130 FOR I = -15 TO 15
140 ON ERROR LOCAL PRINT " Infinite Result":NEXT: I :ENDPROC
150 PRINT A I I
160 NEXT I
180 ENDPROC

Local error handlers can be used in any loops, not just inside procedures and
functions.

Normally, when one ON ERROR or ON ERROR LOCAL statement is used,
all previous ON ERROR statements are forgotten about. It is po&;ible,
however, to use one error handler and then restore the previous one. To do
this, use the instruction LOCAL ERROR to store the old error handler, and
RESTORE ERROR to activate it again.

Error handling and debugging 168

Debugging

Stopping execution of
the program

For example:

1 ON ERROR PRINT " Error ";REPORT$;: END
10 PROCcalculate(100)
15 this line will give an error ! ! !
20 END

100 DEFPROCca1culate(A)
110 LOCAL I
120 LOCAL ERROR
130 FOR I = - 15 TO 15
140 ON ERROR LOCAL PRINT '' Infinite Result":NEXT: I : ENDPROC
150 PRINT A I I
160 NEXT I
170 RESTORE ERROR
180 ENDPROC

This shows that the local error handler is in force during the procedure, but
that the original one set up by the first line of the program is restored when
the PROC has finished.

Strictly speaking, the RESTORE ERROR is not required here because it is done
automatically when the ENDPROC is reached. RESTORE ERROR is also
executed automatically at the end of a user-defined function. However, if you
set up a local error handler in a loop at the top level, then you would need to
use it explicitly, eg:

100 LOCAL ERROR
110 WHILE ...
120 ON ERROR LOCAL
130
140 ENDWHILE
150 RESTORE ERROR
160

A program may contain errors which cause it to behave differently from the
way you intended. In these circumstances, you may wish to watch more closely
how the program is being executed.

One option you have available is to place a STOP statement at a particular
point in the program. When this line is reached, execution of the program
stops and you can then investigate the values assigned to any of its variables
using the PRINT statement or LV AR command.

Error handling and debugging 169

Tracing the path
through the program

Another option is to use the TRACE facility. The standard trace prints the
BASIC line numbers in the order these lines are executed, thus showing the
path being taken through the program. This can be invoked by typing

TRACE ON

To trace only those lines with a line number below 1000, for example, type

TRACE 1000

Alternatively you may trace procedures and functions only as follows:

TRACE PROC

Tracing can be performed in single-step mode where the computer stops after
each line or procedure call and waits for a key to be pressed before
continuing. Single-step tracing can be invoked by typing

TRACE STEP ON

to stop after every line traced, or

TRACE STEP n

to trace all lines below n and stop after each one, or

TRACE STEP PROC

to stop after every procedure call. Any TRACE option affects all programs
which are subsequently run until tracing is turned off by

TRACE OFF

or until an error occurs.

Because TRACE is a statement, you can also use it from within a program.
Thus if you know that a program is going wrong within a particular procedure,
you could insert a TRACE ON statement at the start of the procedure, and a
TRACE OFF just before the ENDPROC. That way, trace information will
only be produced while the procedure is executing.

Error handling and debugging 170

Keywords

The next 14 chapters describe the BBC BASIC keywords. They have been
divided by function into these groups:

• Numerical

• Trigonometric

• Logical

• Program construction

• Program statements

• Variables

• Error handling

• Input/output

• C haracter/string handling

• Sound

• File commands

• Assembly language

• Structures

• Graphics

Each keyword is listed in the index.

Keywords 171

Keywords 172

Keywords: Numerical

Syntax

Argument

Result

Example

ABS
Function gtvmg magnitude of its numeric argument, ie changes negative
numbers into positive numbers.

ABS factor

Any numeric.

Same as the argument if this is positive, or·(the argument) if it is negative.

Note: The largest negative integer does not have a legal positive value, so
that if a%=-2147483648, ABS(a%) yields the same value: -2147483648.
However, this does not arise with floating point numbers.

diff=ABS(lengthl - length2)

Keywords: Numerical 173

Syntax

Operands

Result

Examples

DIY
Integer division (no remainder).

operand DIV operand

Integer-range numerics. Reals are converted to integers before the divide
operation is carried out. The right hand side must not evaluate to zero.

The (integer) quotient of the operands is always rounded towards zero. If the
signs of the operands are the same, the quotient is positive, otherwise it is
negative. The remainder can be found using MOD.

PRINT (first-last) DIV 10
a %=space% DIV &100

Keywords: Numerical 174

Syntax

Argument

Result

Examples

EVAL
Function which evaluates its string statement as an expression.

EVAL factor

A string which EVAL evaluates as a BASIC expression.

EV AL can return anything that could appear on the righthand side of an
assignment statement, including strings. It can also produce the same errors
that occur during assignment. For example: Type mismatch: number
needed, and No such function/procedure.

INPUT hex$: PRINT EVAL("&"+hex$)
f$="LEFT$(" : e$=EVAL(f$+"""ABCDE""",2)")

Keywords: Numerical 175

Syntax

Argument

Result

Examples

INT
Function giving the integer part of a number.

INT factor

Any integer-range numeric.

Nearest integer less than or equal to the argument. Note that this is different
from rounding towards zero: whereas I NT (1 . 5) equals I, I NT (-1 . 5) is
equal to -2, not -l.

DEF FNround(n) =I NT(n+0. 5)
DEF FNroundToZero(n)=SGNn*INTABSn
size=len%*INT((top-bottom)/100)

Keywords: Numerical 176

Syntax (1}

Arguments

Result

Syntax (2)

Arguments

Examples

MOD
Operator g1vmg the integer remainder of its operands, ie gives remainder of
the division.
Function giving the modulus of its array argument.

operand MOD operand

The operands are integer-range numerics. The righthand side must not be
zero.

Remainder when the lefthand operand is divided by the righthand one using
integer division. The sign of the result is the same as the sign of the lefthand
operand.

MOD numeric array

The numeric array can be any integer or floating point array.

The square root of the sum of the squares (the modulus) of all the elements of
the array.

INPUT i%: i% = i% MOD max num%
count%=count% MOD max% + 1
PRINT result% MOD 100
DEF FNrms(a()} =MODa()/SQRDIM(a(),1)

Keywords: Numerical 177

Syntax (1)

Result

Syntax (2)

Result

Examples

RND
Function returning a random number.

RND

A four-byte signed random integer between -2147483648 and +2I47483647

RND(expression)

expression< 0

expression should be an integer. This reseeds the random number
generator, and the function returns its (truncated) argument as a result.
Reseeding the generator with a given seed value always produces the same
sequence of random numbers.

expression= 0

This uses the same seed as the last RN D(l) call and returns the same random
number rounded between 0 and .999999999.

expression= I

This returns a random real number between 0 and .999999999.

expression> I

The expression, n, should be an integer. The result is an integer between I and
n inclusive.

Note that there should be no space before the opening bracket.

dummy=RND(-TIME) : REM reseed the generator 'randomly'
x%=RND(1280) : y%=RND AND &3ff
prob=RND(l)
lastProb=RND(O)
r%=RND

Keywords: Numerical 178

Syntax

Argument

Result

Examples

SGN
Function returning the sign of its argument.

SGN factor

Any numeric.

-1 for negative arguments, 0 for zero-valued arguments, and + 1 for positive
arguments.

DEF FNsquare(th)=SGN(SIN(th))
IF SGN(a)<>SGN(b) THEN ...

Keywords: Numerical 179

Syntax

Argument

Result

Examples

Function returning the square-root of its argument.

SQR factor

Any non-negative numeric.

A real which is the argument's square-root.

DEF FNlen(xl,yl , x2 , y2)-SQR((x2 - xl)A2+(y2-yl)A2)
disc=SQR(b*b- 4*a*c)

Keywords: Numerical

SQR

180

Syntax

Argument

Result

Examples

SUM
Function returning the arithmetic sum or string concatenation of an array.

SUM array

array is the name of an array.

If the argument is an integer or floating point array, it is an integer or floating
point value of the sum of all the elements in the array.

I(the argument is a string array, it is the string which contains each of the
elements of the array concatenated. This must be less than 256 characters in
all.

A() = 1 : PRINT " There are ";SUM(A())" elements. "
DEF FNmean (a()) =SUMa()/DIM(a(), l)

Keywords: Numerical 181

Syntax

Argument

Result

Examples

SUMLEN
Function returning the length of the string concatenation of an array.

SUMLEN string-array

string-array is the name of a string array.

The sum of the lengths of all the elements in the array. Thus
SUMLENa$ () =LENSUMa$ () except that the former is not limited to a
maximum of 255 characters.

DEF FNmeanlen(a$()) =SUMLENa$()/DIM(a(),l)

Keywords: Numerical 182

Syntax

Arguments

Purpose

Examples

SWAP
Statement exchanging the value of two variables or arrays.

• SWAP identifierl,identifier2

The arguments are variables or array names. Simple variables must be of
assignment-compatible types, ie both string or numeric. Arrays must be of
identical type elements (both integer, floating point or string), but can be of
differing sizes.

The SWAP statement exchanges the contents of the two variables or arrays. In
the case where arrays are swapped, the number of subscripts and their upper
limits are also swapped. For example, if you have

DIM A(l0),B(20,20)

SWAP A () , B ()

then after the SWAP, it would be as if the arrays had been DIMed:

DIM A(20,20),B(l0)

All of the elements of the arrays are also swapped, though no actual
movement of data is involved so this is a very quick operation.

SWAP A%, B%
SWAP forename$, surname$
SWAP arr{i%), arr(i%+gap%)
SWAP arrayl$ {), array2$ ()
SWAP a, B%
SWAP A$, SA%
SWAP matrix() , vector ()

Keywords: Numerical 183

Syntax

Argument

Result

Example

VAL
Function returning the numeric value of a decimal string.

VAL factor

A string of length zero to 255 characters.

T he number that would have been read if the string had been typed in
response to a numeric IN PUT statement. The string is interpreted up to the
first character that is not a legal numeric one (0 to 9, E, -,+,and.).

date=VAL(date$)

Keywords: Numerical 184

Keywords: Trigonometric

Syntax

Argument

Result

Examples

ACS
Function giving the arc-cosine of its numeric argument.

ACS factor

Real or integer between -l and 1 inclusive.

Real in the range 0 to 1t radians, being the inverse cosine of the argument.

ang=ACS(normvecl(l)*normvec2(1)+normvec1(2)*normvec2(2))
angle=DEG(ACS(cosl))
PRINT ACS (O.S)

Keywords : Trigonometric 185

Syntax

Argument

Result

Examples

ASN
Function giving the arc-sine of its numeric argument.

ASN factor

Numeric between -1 and 1 inclusive.

Real in the range -n/2 to +n/2 radians, being the inverse sine of the argument.

PRINT ASN(opposite/hypotenuse)
angle DEG(ASN(0 . 2213))

Keywords: Trigonometric 186

Syntax

Argument

Result

Examples

ATN
Function giving the arc-tangent of its numeric argument.

ATN factor

Any numeric.

Real in the range -rt/2 to +rt/2 radians, being the inverse tangent of the
argument ..

ang = DEG(ATN(sin/cos))
PR I NT " The slope is '';ATN (opposite/adjacent)

Keywords: Trigonometric 187

Syntax

Argument

Result

Examples

cos
Function giving the cosine of its numeric argument.

cos factor

factor is an angle in radians.

Real between -1 and + 1 inclusive.

Note: If the argument is outside the range -8388608 to 8388608 radians, it
is impossible to determine how many 1tS to subtract. The error
Accuracy lost in sine/cosine/tangent is generated.

PRINT COS(RAD(45))
adjacent hypotenuse* COS (angle l

Keywords: Trigonometric 188

Syntax

Argument

Result

Examples

Function returning the number of degrees of its radian argument.

DEG factor

Any numeric value.

A real equal to 180*n/7t where n is the argument's value.

angle =DEG(ATN(a))
PRINT DEG(PI/4)

Keywords: Trigonometric

DEG

189

Syntax

Argument

Result

Examples

EXP
Function returning the exponential of its argument.

EXP factor

Numeric from the largest negative real (about -lE38) to approximately +88.

Positive real in the range zero to the largest positive real (about 1E38). The
result could be expressed as the argument where E is the constant 2.718281828.

DEF FNcosh(x)=(EXP(x) + EXP(-x))/2

Keywords : Trigonometric 190

Syntax

Argument

Result

Examples

LN
Function returning the natural logarithm of its argument.

LN factor

Any strictly positive value: a numeric greater than z.ero.

Real in the range -89 to +88 which is the log to base E (2.718281828) of the
argument.

DEF FNlog2(n)=LN(n)/LN(2)
PRINT LN(10)

Keywords: Trigonometric 191

Syntax

Argument

Result

Examples

Function returning the logarithm to base ten of its argument.

LOG f actor

Any strictly positive value: a numeric greater than zero.

LOG

Real in the range -38 to + 38, which is the log to base ten of the argument.

PRINT LOG (2 .4 323)

Keywords: Trigonometric 192

Syntax

Result

Examples

Function returning the value of 1t.

PI

The consant 3.141592653

DEF FNcircum (r) =2 *PI*r

Keywords : Trigonometric

PI

193

Syntax

Argument

Result

Examples

Function returning the radian value of its argument.

RAD factor

A number representing an angle in degrees.

A real giving the corresponding value in radians: argument*7t/ 180.

(sin%+i%*5)=SIN(RAD(i%))
PRINT RAD(theta)-PI/2

Keywords: Trigonometric

RAD

194

Syntax

Argument

Result

Examples

SIN
Function returning the sine of its argument.

SIN factor

A numeric representing an angle in radians.

A real in the range -1 to 1, being the sine of the argument.

Note: If the argument is outside the range -8388608 to 8388608 radians, it
is impossible to determine how many 7tS to subtract. The error
Accuracy lost in sine/ cosine/tangent is generated.

PRI NT SIN(RAD(135))
opp=hyp*SIN(theta)

Keywords: Trigonometric 195

Syntax

Argument

Result

Examples

TAN
Function giving the tangent of its argument.

TAN factor

A real number interpreted as an angle in radians.

A real giving the tangent of the angle, in the range -1E38 to+ 1 E38.

Note: If the argument is outside the range -8388608 to 8388608 radians, it
is impossible to determine how many 1tS to subtract. The error
Accuracy lost in sine/cosine/tangent is generated.

opp=adj*TAN(RAD(theta))

Keywords: Trigonometric 196

Keywords: Logical

Syntax

Operands

Result

Examples

AND
Operator giving logical or bitwise AND

relational AND relational

Relational expressions, or bit values to be ANDed.

The bitwise AND of the operands. Corresponding bits in the integer operands
are ANDed to produce the result. Hence a bit in the result is one if both of the
corresponding bits of the operands are one. Otherwise it is z.ero.

If used to combine relational values, AND's operands should be either TRUE (-
1) or FALSE (0). Otherwise, unexpected results may occur. For example, 2 and
4 are both true (non-zero), but 2 AND 4 yields FALSE (zero).

a = x AND y : REM a is set to binary AND of x and y
PRINT var AND 3 : REM print lowest 2 bits of var
IF day=7 AND month$="March" THEN PRINT "Happy birthday"
IF temp>SO AND NOT windy THEN PROCgo_ out ELSE PROCstay_in
REPEAT a=a+l : b =b-1 : UNTIL a>lO AND b<O
isadog = feet =4 AND tails=l AND hairy

Keywords: Logical 197

Syntax

Operands

Result

Examples

EOR
Operator giving the logical or bitwise exclusive-OR.

1 relational EOR relational

Relational expressions, or bit values to be exclusive-ORed

The logical bitwise exclusive-OR of the operands. Corresponding bits in the
operands are ex-ORed to produce the result. Each bit in the result is zero if
the corresponding bits in the operands are equal, and otherwise one.

PRINT height>lO EOR weight<20
bits = mask EOR valuel

Keywords: Logical 198

Syntax

Result

Examples

FALSE
Function returning the logical value FALSE.

FALSE

The constant zero. The function is used mnemonically in logical or conditional
expressions.

flag=FALSE

REPEAT
CI RCLE RND(l279),RND(l024),RND(200)

UNTIL FALSE

Keywords: Logical 199

Syntax

Argument

Result

Examples

NOT
Function returning the logical or bitwise NOT of its argument.

NOT factor

An integer-range numeric.

An integer in which all the bits of the argument have been inverted: ones have
changed to zeros and zeros have changed to ones. If the argument is a truth
value, NOT can be used in a logical statement to invert the condition. In this
case, the truth value should only be one of the values -1 (TRUE) and 0
(FALSE) .

IF NOT ok THEN PRINT "Error in input "
inv%=NOT mask%
REPEAT UNTIL NOT INKEY(- 99)

Keywords: Logical 200

Syntax

Argument

Result

Examples

OR
Operator giving the logical OR of its operands.

relational OR relational

relationals can be any integer-range numerics.

An integer obtained by ORing together the corresponding bits in the
operands. The operands may be interpreted as bit-patterns, in which case a bit
in the result is set to one if either or both of the corresponding bits in the
operands are one. Alternatively, they may be interpreted as logical values, in
which case the result is TRUE if either or both of the operands are TRUE.

PRINT a% OR &AASS
IF a<l OR a>lO THEN PRINT "Bad range "

Keywords: Logical 201

Syntax

Result

Examples

TRUE
Function returning the constant -1.

TRUE

TRUE always returns -1, which is the number yielded by the relational
operators when the condition is true. For example, 1 + 1 <3 gives TRUE as its

result.

debug TRUE
IF debug PRINT"debug in operation "

Keywords: Logical 202

Keywords: Program construction

Syntax

Argument

Purpose

Examples

APPEND

Command to append a file to a BASIC program.

APPEND expression

expression is a string which should evaluate to a fil ename that is valid for
the filing system in use.

The file specified is added to the end of the BASIC program currently in
memory. If the file contain!> a BASIC program, the line numbers and any
references to them in the added section are renumbered so that they starr
after the last line of the current program.

APPEND ": O. lib "
APPEND second half$

Keywords: Program construction 203

Syntax

Parameters

Purpose

Examples

AUTO
Command initiating automatic line numbering.

AUTO [start][, step]

start is an integer constant in the range 0 to 65279 and tS the first line to be
generated automatically. It defaults to 10.

step is an integer constant in the range 1 to 65279 and is the amount by which

the line numbers increase when <Return> is pressed. If omitted, I 0 is
assumed.

AUTO is used when entering program lines to produce a line number
automatically, so that you do not have to type them yourself. To end automatic
line numbering use <Esc>. AUTO will stop if the line number becomes
greater than 65279.

AUTO
AUTO 1000
AUTO 12,2

Keywords: Program construction 204

Syntax

Purpose

The command to enter the BASIC interpreter

*BASIC [options)

*BASIC

The command *BASIC is not one of the usual BASIC keywords which are
described in this and other Keywords chapters. It is an operating system
command which is used to activate the interpreter in the first place. It is
described here for completeness.

The options control how the interpreter will behave when it starts, and when
any program that it executes terminates. If no option is given, BASIC simply
starts with a message of the form:

ARM BBC BASIC V version 1 . 03 (C) Acorn 1988

Starting with 643324 bytes free

The first line is also used for the default REPORT message, before any
errors occur.

One of three options may follow the *BAS I C command to cause a program to
be loaded, and, optionally, executed automatically. Alternatively, you can use
a program that is already loaded into memory by passing its address to the
interpreter. Each of these possibilities is described in tum below.

In all cases where a program is specified, this inay be a tokenised BASIC
program, as created by a SAVE command, or a textual program, which will
be tokenised (and possibly renumbered) automatically.

*BASIC -help

This command causes BASIC to print some help information describing the
options documented here. Then BASIC starts as usual.

*BASIC [-chain) filename

If you give a fil ename after the *BASIC command, optionally preceded by
the keyword -chain, then the named file is loaded and executed. When the
program stops, BASIC enters immediate mode, as usual.

Keywords : Program construction 205

1 *BASIC -quit filename

This behaves in a similar way to the previous option. However, when the
program terminates, BASIC quits automatically, returning to the environment
from which the interpreter was originally called. This is the default action
used by BASIC programs that are executed as * commands. In addition, the
function QUIT returns TRUE if BASIC is called in this fashion.

*BASIC -load filename

This option causes the file to be loaded automatically, but not executed.
BASIC remains in immediate mode, from where the program can be edited or
executed as required.

*BASIC @start,end

This acts in a similar way to the -load form of the command. However, the
program that is 'loaded' automatically is not in a file, but already in memory.
Following the @ are two addresses. These give, in hexadecimal, the address of
the start of the in-core program, and the address of the byte after the last one.
The program is copied to PAGE and tokenised if necessary. This form of the
command is used by Twin when returning to BASIC.

Note that the in-core address description is fixed format. It should be in the
form:

@xxxxx9xxx,xxxxxxxx

where x means a hexadecimal digit. Leading zeros must be supplied. The
command line terminator character must come immediately after the last
digit. No spaces are allowed.

*BASIC -chain @start,end

This behaves like the previous option, but the program is executed as well.
When the program terminates, BASIC enters immediate mode.

*BASIC -quit @start,end

This option behaves as the previous one, but when the BASIC program

Keywords: Program construction 206

Examples

terminates, BASlC automatically quits. The QUlT flag will return TRUE
during the execution of the program.

*BASIC
*BASIC -quit shellProg
*BASIC @000ADFOC,OOOAE345
*BASIC -chain fred

Keywords: Program construction 207

Syntax

Argument

Examples

DELETE
Command to delete a section of the program.

• DELETEinteger, integer

Integer constants in the range zero to 65279. They give the first and last line to
be deleted respectively. If the first line number is greater than the second, no
lines are deleted. To delete just a single line the DELETE command is not
necessary. Instead type the line number and press <Return>.

DELETE 5 , 22
DELETE 110 , 150

Keywords: Program construction 208

Syntax

Purpose

EDIT
Command to enter the BASIC screen editor.

EDIT

EDI T enters the BASIC screen editor to allow you to create a new program or
amend the current one. Full details of the editor are given in the chapter The
BASIC screen editor.

Keywords: Program construction 209

Syntax

Purpose

Examples

HELP
Command giving help information.

HELP (keyword]

HELP displays a list of useful information about the status of BASIC. If the
keyword is present, help about that particular command, statement or
function is printed. To obtain a list of all keywords, type HELP

HELP
HELP HIM.
HELP

Keywords: Program construction 210

Syntax

Argument

LIST
Command to list the program.

LIST [line-range] [IFstring]

line-range gives the start and end lines to be listed. Both values are
optional and should be separated by a comma. The first value defaults to
zero and the last to 65279. The IF, when present, is followed by a string of
characters (not in quotes). Only lines which contain this string are listed.

Notes: In the search string following the IF statement, leading spaces are
included as part of the string. So the command

LIST IF PRINT

will list

100 PRINT "Single space between line number and
statement ."

110 PRINT "Several spaces between line number and
statement "

but will ignore

120 PRINT "No space between line number and
statement."

The command

LIST IFPRINT

will find and list all three lines.

The string given after the IF is tokenised before it is checked against the
program. Hence, LIST IF PRINT and LIST IF P. both list lines
containing the PRINT keyword. However, LIST IF PR does not.

Because the string after IF is tokenised, only one version of the pseudo
variables (each of which has two tokens) can be found. This is the one
acting as a function (as in PRINT TIME), rather than the statement

Keywords: Program construction 211

Examples

version (as in TIME=expression).

LIST
LIST 1000 ,
LIST 1 50
LIST 10, 40
LIST IFDEF
LIST , 100 IFfred%=

list the whole program
list from line 1000 to the end
list from the start to line 50
list from line 10 to 40 inclusive
ist all lines containing a DEF
list all lines up to line 100 containing fred%=

Keywords: Program construction 212

Syntax

Argument

Examples

LISTO
Command to set the LIST indentation options.

LISTO expression

expression should be in the range zero to 31 and is treated as a five-bit
number. The meaning of the bits is as follows:

Bit Meaning

0 A space is printed after the line number
I Structures are indented
2 Lines are split at the : statement delim iter
3 The line number is not listed. An error is displayed at line number

references
4 Keywords are listed in lower case

LISTO 0

LISTO 2
LISTO %10011

Default
All loops and conditionals indented by two characters
Tokens in lower case, structures indented, line numbers
followed by a space.

Keywords : Program construction 213

Syntax

Argument

Examples

LOAD
Command to load a BASIC program at PAGE.

LOAD expression

expression is a string which should evaluate to a filename that is valid for
the filing system in use.

Note: Any program which is currently in memory is overwritten and lost
with all its variables. The static integers (A% - Z% and @%) and
INSTALLed libraries are not affected.

LOAD ": OGDisc .disasm"

where OGDisc is the name of a floppy disc.

LOAD FNnextFile

Keywords: Program construction 214

Syntax

Purpose

LVAR
Command displaying the first line of all current libraries, all defined
variables and all procedures and functions that have been called.

LVAR

LVAR lists all the values of BASIC variables, sizes of arrays, known
procedures and functions. It also lists the first line of all libraries currently
loaded. These are displayed in the same order as that in which the libraries
are searched when a library procedure or function is called.

Note: In order for LV AR to be useful, you should ensure that the first
line of each library includes the full name of the library and the name
of a procedure which can be called to provide details of all the routines
which the library contains.

Keywords : Program construction 215

Syntax

Purpose

NEW
Command to remove the current program, and tO initialise the computer so
that it is ready to receive a new program.

NEW

The NEW command does not destroy the program, but merely sets a few
internal variables as if there were no program in the memory. The effect of
NEW may be undone using the OLD command, providing no program lines
have been typed in, or variables created, between the two commands. BASIC
does an automatic NEW whenever it is entered.

Keywords: Program construction 216

Syntax

Purpose

OLD
Command to retrieve a program after NEW has been typed.

OLD

The OLD command retrieves a program lost by NEW or <Break> providing no
new program lines have been entered, or variables defined. When you
recover the previous program using OLD, you may notice that the first line
number has changed. In particular, it is now its old value MOD 256. So if the
first line used to be 1000, it will now be 232. You can remedy this slight
problem using the RENUMBER command.

Keywords: Program construction 217

Syntax

Argument

Purpose

Examples

RENUMBER
Command to renumber the program lines.

RENUMBER [start] [, step]

See AUTO for a description.

RENUMBER resequences the lines in the program so that the first line is start
and the line numbers increase in steps of step. It also changes line numbers
within the program, such as after RESTOREs, so that they match the new line
numbers. If the line used in a RESTORE cannot be found, the message

Failed with nnnn on line 1111

is given, where nnnn is the line number which was referenced but which does
not appear in the program, and 1111 is the line on which the reference was
made.

RENUMBER needs some workspace, and if there is not enough room to
change the line numbers successfully, a RENUMBER space error is generated.

RENUMBER
RENUMBER 1000,20

Keywords: Program construction 218

Syntax

Argument

Examples

SAVE
Command to save a program as a file.

SAVE [expression)

If present, expression should evaluate to a string which is a valid filename
under the filing system in use. The current BASIC program is stored (without
variables, etc) on the medium under this name.

SAVE can be used without an expression, in which case the name is taken from
the first line of the program which should have the format:

10 REM >filename

For example:

10 REM > Gamel

SAVE "Versionl"
SAVE FNprogName
SAVE

Keywords: Program construction 219

Syntax

Purpose

TWIN
Command to enter the Twin text editor.

TWIN

TWINO expression

TWIN converts the program to text, then calls the Twin editor (which should be
on a convenient disc known to the system). You can edit the program as
required, then return to BASIC using one of Twin's commands. See the Twin
User Guide for details.

TWINO is similar, except that when it converts the program to text, it uses the
LISTO-type option that follows the command. Most useful is 8, which strips
line numbers from the start of the program.

Keywords : Program construction 220

Keywords: Program statements

Syntax

Argument

Examples

CHAIN
Statement to load and run a BASIC program.

CHAIN expression

expression should evaluate to a string which is a valid filename for the
filing system in use.

Note: A filing system error may be produced if, for example, the file
specified cannot be found. When the program is loaded, all existing
variables are lost (except the system integer variables and installed
libraries).

CHAIN "partB"
CHAIN a$+ " 2 "

Keywords: program statements 221

Syntax

Purpose

CLEAR
Statement to remove all program variables.

CLEAR

When this statement is executed, all variables are removed and so become
undefined. In addition, any currently active procedures, subroutines, loops,
and so on are forgotten, and LIBRARY and OVERLAY libraries are lost.
The exceptions to this are the system integer variables and INSTALLed
libraries which still remain.

Keywords: Program statements 222

Syntax

Argument

Examples

DATA
Passive statement marking the position of data in the program.

DATA [expression] [,expression], etc

The expressions may be of any type and range, and are only evaluated when a
READ statement requires them.

Notes: The way in which DATA is interpreted depends on the type of
variable in the READ statement. A numeric READ evaluates the data as
an expression, whereas a string READ treats the data as a literal string.
Leading spaces in the data item are ignored, but trailing spaces (except
for the last data item on the line) are counted. If it is necessary to have
leading spaces, or a comma or quote in the data item, it must be put
between quotation marks. For example:

100 DATA " HI","A,B,", """ABCD"

If an attempt is made to execute a DATA statement, BASIC treats it as a
REM. In order to be recognised by BASIC, the DATA statement, like
other passive statements, should be the first item on a line.

DATA Jan,Feb ,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec
DATA 3.26,4,4.3,0

Keywords: Program statements 223

Syntax

Parameters (1) and (2)

Purpose

Examples

Passive statement defining a function or procedure.

(l) DEF FNproc- part

(2)DEF PROCproc-part

where proc-part has the form identifier[(parameter-list)]

DEF

The optional parameters, which must be enclosed between round brackets and
separated by commas, may be of any type. For example: parm, parm%,
parm$, ! parm, $parm. It may be preceded by RETURN to use value-result
passing instead of simple value passing. In addition, whole arrays may be
passed as parameters, eg a () , a$ () .

The DEF statement marks the first line of a user-defined function or
procedure, and also indicates which parameters are required and their types.
The parameters are local to the function or procedure (except for arrays), and
are used within it to stand for the values of the actual parameters used when it
was called.

Notes: Function and procedure definitions should be placed at the end of
the program, so that they cannot be executed except when called by the
appropriate PROC statement or FN function. The DEF statement should
be the first item on the line. If not, it will not be found.

DEF FNmean(a,b)
DEF PROCinit
DEF PROCthrow_dice(d% , tries , RETURN mesg$)
DEF PROCarray_determinant(A())

Keywords: Program statements 224

Syntax

Argument (1)

Argument (2)

Argument (3)

Argument (4)

Statement declaring arrays or reserving storage.
Function returning information about an array.

DIM dim-part[, dim-part] etc

where dim-part is:

(1) identifier[% or$] (expression{, expression] etc)

or

(2) numeric-variable space expression

or as a function:

(3) DIM {array)
(4)DIM{array,expression)

DIM

The identifier can be any real, integer or string variable name. The
expressions are integers which should be greater than or equal to zero. They
declare the upper bound of the subscripts; the lower bound is always zero.

This is the way to declare arrays in BASIC. They may be multi-dimensional:
the bounds are limited only by the amount of memory in the computer.
Numeric arrays are initialised to zeros and string arrays to null strings.

The numeric-variable is any integer or real name. The expression gives
the number of bytes of storage required minus one, and should be -1 or
greater. It is limited only by the amount of free memory.

The use of this form of DIM is to reserve a given number of bytes of memory,
in which to put for example, machine code. The address of the first byte
reserved, which will be a multiple of four, is placed in the numeric-variable.
The byte array is uninitialised.

The array is the name of any previously DIMed array, or an array used as a
formal parameter in a procedure or function. The result of the function is the
number of dimensions which that array has.

The array is the name of any previously DIMed array or an array used as a
formal parameter in a procedure or function. The expression is a number

Keywords: Program statements 225

Examples

between one and the number of dimensions of the array. The result of the
function is the subscript of the highest element in that dimension, ie the value
used for that subscript in the DIM statement that declared the array in the
first place.

Note: It is possible to have local arrays, whose contents arc discarded
when the procedure or function in which they are created returns. See
LOCAL

DIM nameS(num_names%)
DIM sin(90)
DIM matrix%(4,4)
DIM A{64), B%{12,4), C${2 ,8,3)
DIM bytes% size*lO+overhead
PRINT DIM {name$())
size%=DIM{name${) , 1)

Keywords : Program statements 226

Syntax

Purpose (1)

Purpose (2)

Purpose (3)

END
Statement terminating the execution of a program or a function returning the
top of memory used.
Statement setting the highest address used by BASIC.
Function returning the address of the end of BASIC variables.

as a statement:

(1) END

(2) END expression

as a function:

(3) END

The END statement terminates the execution of a program.

Note: This statement is not always necessary in programs; execution stops
when the line at the end of the program is executed. However, END (or
STOP) must be included if execution is to end at a point other than at the
last program line. This prevents control falling through into a procedure,
function or subroutine. END is also useful in error handlers.

When used in a assignment, END sets the highest address used by BASIC
when running under the WIMP. This can be used by programs running under
the WIMP to claim more memory from the free pool, or alternatively to give
up unrequired memory.

The expression should be an integer giving the new value for HIMEM. After
the call, memory above the given address will be de-allocated and HIMEM
will be set to that location. In addition, local arrays and installed libraries
are cleared. As HIMEM holds the address of the start of the stack, you
should not use this statement if there if anything on the stack, ie you should not
use it within PROCs, FNs or any looping construct.

If there is not enough free memory to set IIIMEM to the requested value, the
error At tempt to allocate insufficient memory is given.

The END function returns the address of the top of memory used by a program
and its variables. The expression END-TOP gives the number of bytes used
by variables (except LOCAL arrays), and OVERLAY and LIBRARY
libraries.

Keywords: Program statements 227

Examples PRINT END
END = &10000 REM only need 32K to RUN

Keywords: Program statements 228

Syntax

Purpose

Examples

ENDPROC
Statement marking the end of a user-defined procedure.

ENDPROC

When executed, an ENDPROC statement causes BASIC to terminate the
execution of the current procedure and to restore local variables and actual
parameters. Control is passed to the statement after the PROC which called
the procedure. ENDPROC should only be used in a procedure. Otherwise,
when it is encountered, a Not in a p rocedure error message is generated.

ENDPROC

IF a<=O THEN ENDPROC ELSE PROCrecurse(a- 1)

Keywords : Program statements 229

Syntax

Argument (1)

Argument (2)

Examples

Word introducing or calling a user-defined function.

(1) DEF FNproc-part

(2) FNproc-part

FN

For the format of proc-part, see DEF above. It gives the names and types

of the parameters of the function, if any. For example:

1000 DEF FNmin(a% , b%) IF a%<b% THEN =a% ELSE =b%

a% and b % are the formal parameters. They stand for the expressions passed

to the function (the actual parameters) when FNmin is called. The result of a
user-defined function is given by a statement starting with =. As the example
above shows, there may be more than one = in a function. The first one which
is encountered during execution terminates the function.

Note: User-defined functions may span several program lines, and
contain all the normal BASIC statements, for example, FOR loops, IF
statements, and so on. They may also declare local variables using the
LOCAL keyword.

proc-part is an identifier followed by a list of expressions (or array or
RETURN variables) corresponding to the formal parameters in the OEF
statement for the function. The result depends on the assignment that
terminated the function, and so can be of any type and range. An example
function call is:

PRINT FNmin(2*bananas%, 3*apples %+1)

DEF FNfact(n%) IF n%<1 THEN =1 ELSE =n %*FNfact(n%-1)
DEF FNhex4(n%)=RIGHT$("000"+STR$~(n%),4)
REPEAT PRINT FNhex4(GET): UNTIL FALSE

Keywords: Program statements 230

Syntax

Argument (1)

Argument (2)

Examples

GOSUB
Statement to call a subroutine.

(1) GOSUB expression
(2) ON expression GOSUB expressionl [, expression2 ...] [ELSE
statement]

expression should evaluate to an integer between 0 and 65279, in other
words a line number. If the expression is not a simple integer (eg 1030) it
should be enclosed between round brackets. The line given is jumped to, and
control is returned to the statement after the GOSUB by the next RETURN
statement.

expression should evaluate to an integer. If this integer is n then the nth
subroutine listed after the GOSUB is jumped to. If the integer is less than 1 or
greater than the number of line numbers given, the statement following the
ELSE, if it is present, is executed.

Notes: Procedures should be used in preference to subroutines since they
are more flexible and produce a better structured program. The line
number after GOSUB should be a constant so that RENUMBER works
properly.

10 GOSUB 2000
20 GOSUB (2300+20*opt): REM not nice
30 ON x% GOSUB 100 , 200 , 300 ELSE PRINT "Out of range"

Keywords: Program statements 231

Syntax

Argument (1)

Argument (2)

Examples

GOTO
Statement to transfer control to another line.

(1) GOTO expression
(2) ON expression GOTO expressionl [, expression2 ...][ELSE

statement)

expression should evaluate to an integer between 0 and 65279: a line
number. If the expression is not a simple integer, it should be placed between
round brackets. This line number is jumped to and execution carries on from
this new line.

expression should evaluate to an integer. expressi onl ... should evaluate
to integer line numbers between 0 and 65279. If the first integer is n then the
nth line after the GOTO is jumped to. If the integer is less than 1 or greater
than the number of line numbers given, the statement following the ELSE, if it
is present, is executed.

Note: The line number after GOTO should be a constant so that
RENUMBER works properly.

GOTO 230
IF TIME<lOOO THEN GOTO 1000
ON x GOTO 20 ,50, 30 , 160

Keywords: Program statements 232

Syntax

Argument

Purpose

Examples

INSTALL
Statement to load a function or procedure library into memory.

INSTALL expression

expression is a string which should evaluate to a filename that is valid for
the filing system in use.

INSTALL loads the chosen function and procedure library into the top of
memory and lowers the BASIC stack and value of HIMEM by an appropriate
amount. The library remains in memory until you QUIT from BASIC. Any
number of libraries may be installed provided that there is enough memory
for them.

When searching for a procedure or function, BASIC looks in the following
order: first, the current program is searched, in line-number order; next, any
procedure libraries loaded using LIBRARY are searched - the most recently
loaded file is searched first; then, any INSTALLed libraries are examined,
again in the reverse order of loading. Finally the OVERLAY library list is
searched.

The LV AR command lists (the first lines of) libraries in the order in which
they are examined.

INSTALL "Printout"
A$ = " Libraryl "
INSTALL A$

Keywords : Program statements 233

Syntax

Argument

Examples

LET
Statement assigning a value to a variable.

LET variable= expression

The variable is any addressable object, such as a, a$, a%, !a, a?lO, Sa,
a (1) , a () and so on.

expression is any expression of the range and type allowed by the
variable: for reals, any numeric; for integers, any integer-range numeric; for
strings, any string of length 0 to 255 characters, and for bytes any integer in
the range 0 to 255 (though an integer-range number will be treated AND
&FF).

If the variable is a whole array, the right-hand side obeys the rules described
in the chapter Arrays.

Note: The LET keyword is always optional in a variable assignment, and
must not be used in the assignment to a pseudo-variable. For example,
LET TIME=100 is illegal.

LET starttime=TIME
LET a$~LEFT$ (addr$, 10)

LET table?i=127*SIN(RAD(i))
LET a() = 1
LET A%() = B%() + C%()

Keywords: Program statements 234

Syntax

Argument

Purpose

Examples

LIBRARY
Statement to load a function or procedure library into memory.

LIBRARY expression

expression is a string which should evaluate to a filename that is valid for
the filing system in use.

LIBRARY reserves an area in the BASIC heap {where variables are stored)
and loads the chosen function and procedure library into this area. It remains
there until the heap is cleared. Whilst the library is in memory, the current
program can call any of the procedures and functions it contains. See also
INSTALL.

LIBRARY " Printout "

A$ = "Libraryl "
LIBRARY A$

Keywords: Program statements 235

Syntax

Argument (1)

Argument (2)

Examples

Statement to declare a local variable in a procedure or function.
Statement to make current DATA pointer local.

(l) LOCAL [variable] [,variable ...]
(2) LOCAL DATA

LOCAL

variables following the LOCAL may be of any type, such as a, a%, a$,
$buffer, a () , and so on. The statement causes the current value of the
variables cited to be stored on BASIC's stack, ready for retrieval at the end of
the procedure or function. This means the value inside the procedure may be
altered without fear of corrupting a variable of the same name outside the
procedure. At the end of the procedure, the old value of the variable is
restored.

Notes: Local numerics are initialised to zero, and local strings are
initialised to the null string. Arrays can be declared as being local and
then dimensioned using DIM as normal.

LOCAL DATA stores the current data pointer on the stack for the duration of a
loop or function/procedure call. This enables a new data pointer to be set up,
using RESTORE, and for the original one to be restored with RESTORE
DATA. RESTORE DATA is performed automatically on return from a
function/ procedure.

LOCAL a$,len%,price
LOCAL a () , B () : DIM a (2) , B (4 , 5)

LOCAL ERROR

Keywords: Program statements 236

Syntax

Argument

OSCLI
Statement to pass a string to the operating system.

OSCLI expression

expression should be a string of between 0 and 255 characters. It is passed
to the operating system OS_ CLI routine to be executed.

Notes: The difference between passing a string to the operating system
via a * command and via OSCLI is that the former makes no attempt to

process the text following it, whereas the latter evaluates the text as a
BASIC string expression. Thus you can say:

OSCLI "LOAD file " +STR$-buffer%

but not (usefully)

*"LOAD file "+STR$-buffer%

Many extensions to BBC BASIC on previous machines (eg the Master
128) used 'internal' BASIC routines called from OSCLI commands. BBC
BASIC provides extra information when using * or OSCLI to allow such
software to be ported onto this computer. (Note that this does not happen
forSYS "OS_CLI "," fred ").

Information is passed in registers RO to R5, because the high user-mode
registers are not conveniently readable from other modes. Before using
the information passed in these registers, the routine should transfer them
to the correct registers, as documented in the section on CALL It should
also ensure it is executing in user mode before calling any BASIC
routines.

RO contains CLI string pointer
Rl contains &BA51Cxxx
R2 ARGP
R3 LINE
R4 current string pointer
R5 environment information pointer (as CALL)

The value in Rl should be inspected by any routine in order to validate
that the call is, indeed, from BASIC (it is also a good idea to check RZ to

Keywords : Program statements 237

Examples

R5 for valid addresses); the value is also at address [RS,#-4]. The current
BASIC interpreter provides &BASlCOOS, the next &BA51C006 and so on.

The value in LINE should not be relied on, except that it is sufficient for
BASIC to produce the correct line number in case of an error. When
BASIC is eventually returned to at the end of the SWI OS_CLI call, its
(user-mode) registers must not have been altered.

OSCLI "CAT "
OSCLI " LOAD " +file$+ " " +STR$buff%: REM get file in buffer

Keywords : Program statements 238

Syntax

Argument (1)

Argument (2)

Argument (3)

Examples

Statement introducing or calling a user-defined procedure ..

(l)DEF PROCproc-part
(2) PROCproc-part

PROC

(3) ON expression PROCprocl [, PROCproc2 ...] (ELSE statement]

proc-part has the form identifier[(parameter-list)]. It gives the
name of the procedure (the identifier) and the names and types of the
optional parameters, which must be enclosed in brackets and separated by
commas.

The second form is used when the procedure is actually invoked, and this time
the parameter list comprises expressions of types corresponding to the
parameters declared in the DEF PROC statement. The expressions are
evaluated and assigned (locally) to the parameter variables. Control returns
to the calling program when an ENDPROC is executed.

expression should evaluate to an integer. If this integer is n then the nth
procedure listed is called. If the integer is less than 1 or greater than the
number of line numbers given, the statement following the ELSE, if it is
present, is executed.

DEF PROCdelay(n)
TIME=O:REPEAT UNTIL TI ME=n*lOO:ENDPROC

IF ?flag=O THEN REPEAT PROCdelay(O.l): UNTIL ?flag

Keywords: Program statements 239

Syntax

Purpose {1)

Purpose (2)

Statement to leave BASIC.
Function returning -quit status.

QUIT

QUIT as a statement leaves the BASIC interpreter.

QUIT

QUIT as a function returns TRUE or FALSE. If the interpreter was invoked
using the -quit flag, then it will return TRUE. If -quit was not specified
on the command line, then the function returns FALSE.

Keywords: Program statements 240

Syntax

Argument

Examples

READ
Statement reading information from a OAT A statement.

READ [variable] [,variable ...]

Any variables should correspond in type to the items in the DATA statement
being read. In fact, a string READ item is able to read any type of DATA
and interpret it as a string constant after stripping leading spaces. A numeric
READ item tries to evaluate its DATA; so in the latter case, the DATA
expression should yield a suitable number.

READ n%
READ a$, fred%, float

Keywords: Program statements 241

Syntax

Argument

Example

REM
Statement indicating a remark.

REM rest-of- line

rest-of-line can be absolutely anything; it is ignored by BASIC. The
purpose of a REM is to provide comments to make the program clear to any
reader.

REM find the next prime

Keywords: Program statements 242

Syntax

Argument (1)

Purpose (2)

Examples

Statement setting the OAT A pointer.
Statement restoring DATA pointer from the stack.

(l) RESTORE [[+]expression]
(2) RESTORE DATA

RESTORE

expression is a line number. If it is absent, the DATA pointer is reset to

the first DATA statement in the progam, and the next item READ comes from
there. If the line number is present, the DATA pointer is set to the first item
of data on or after the line specified, so that subsequent READs access that
particular data item (and those which follow).

If the expression is preceded by a + sign, then it is interpreted as an offset
from the line containing the RESTORE statement. +0 means the line after the
one containing the RESTORE, + 1 means the line after that, and so on. The
main use of this is in libraries, where references to actual line numbers are
not allowed (and RESTORE on its own restores to the start of the main
program, not the library).

The second form of RESTORE loads a DATA pointer from the stack that was
previously saved using LOCAL DATA. By using these two statements as a
pair, you can prevent any RESTOREs in a procedure or function from changing
the DATA pointer used by the main program.

RESTORE
RESTORE 1000
RESTORE +10

Keywords : Program statements 243

Syntax

Purpose (1)

Purpose (2)

Examples

Statement returning control from a subroutine.
Modifier in formal parameter list.

(1) RETURN
(2) RETURN parameter

RETURN

RETURN returns control to the statement following the most recent GOSUB. If

there are no GOSUBs currently active, a Not in a subroutine error occurs.

RETURN indicates value-and-result parameter passing (as distinct from value
passing, the default) when applied to a parameter in the definition.

DEF PROCSwapifDisordered(RETURN A, RETURN B)
IF A>B SWAP A,B

ENDPROC

Keywords : Program statements 244

Syntax

Purpose

RUN
Statement to execute the current program.

RUN

RUN executes the program in memory, if one is present, after clearing all
variables and resetting LOMEM.

Keywords: Program statements 245

Syntax

Purpose

Example

STOP
Statement producing the fatal error Stopped to terminate the program.

STOP

The STOP statement gives the fatal (untrappable) error message Stopped. It
differs from END, as the latter produces no message. It may be used as a
debugging aid to halt the program at a given point so that the current values of
the program's variables can be determined.

IF NOT ok THEN PRINT"Bad data ": STOP

Keywords: Program statements 246

Syntax

Argument (1)

Purpose

Examples

Statement to initiate line/procedure tracing.

(1) TRACE [STEP] expression
(2) TRACE (STEP) ON

(3) TRACE (STEP) PROC

(4) TRACE OFF

TRACE

expression is a line number. All line numbers below this line number are
printed out when they are encountered during the execution of the program.

TRACE causes line numbers (case (1) and (2)) or procedure and function
names (case (3)) to be printed as they are encountered. In each case, if STEP

is present, BASIC will wait for a key to be pressed before continuing after
each traced item.

TRACE ON is the same as TRACE 65279, ie all line numbers are printed as
they are met.

TRACE OFF disables tracing, as does the default error handler.

IF debug THEN TRACE 9000
TRACE STEP PROC
IF debug THEN TRACE OFF

Keywords : Program statements 247

Keywords: Program statements 248

Keywords: Variables

Syntax

Argument

Result

Example

ADVAL
Function reading data from an analogue port if fitted, or giving buffer data.

ADVAL factor

Negative integer -n, where n is a buffer number between 1 and 10.

The number of spaces or entries in the buffer is given in the table below:

arg

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10

Buffer name

Keyboard (input)
RS-423 (input)
RS-423 (output)
Printer (output)
Sound 0 (output)
Sound 1 (output)
Sound 2 (output)
Sound 3 {output)
Speech (output)
Mouse (input)

Result

Number of characters used (0-31)
Number of characters used (0-255)
Number of characters free (0-191)
Number of characters free (0-63)
Number of bytes free (0-15, step 3)
Number of bytes free (0-15, step 3)
Number of bytes free (0-15, step 3)
Number of bytes free (0- I 5, step 3)
Number of bytes free (not used)
Number of bytes used (0-63, step 9)

In the table 'step 3' (or 9) means that one entry in the buffer uses three (or
nine) bytes.

The ADVAL function only returns a result for postttve arguments if the
optional analogue/digital converter podule is fitted. If this is absent, the
function ADVAL (1) , for example, will result in a Bad command error.

IF ADVAL(-1)=0 THEN PROCinput

Keywords: Variables 249

Syntax

Result

Examples

COUNT
Function giving the number of characters printed since the last newline.

COUNT

Positive integer, giving the number of characters output since the last newline
was generated by BASIC.

Notes: COUNT is reset to zero every time a carriage return is printed
(which may happen automatically if a non-zero WIDTH is being used). It
is incremented every time a character is output by PRINT, INPUT or
REPORT, but not when output by YOU or any of the graphics commands.
COUNT is also reset to zero by CLS and MODE.

REPEAT PRINT " ";
UNTIL COUNT=20
chars = COUNT

Keywords: Variables 250

Syntax

Result (1)

Argument (2)

Examples

HIM EM
Pseudo-variable holding address of the top of the BASIC stack.

(1) HIMEM
(2) HIMEM =expression

An integer giving the address of the location above the end of user memory.
The amount of user memory is given by HIMEM - LOMEM and the amount

of free memory by HIMEM - END.

expression should be an integer between LOMEM and the top of usable
memory. It restricts the amount of memory which the current program can use
for workspace etc, hence giving an area where data, or machine code routines
can be stored.

Notes: If HIMEM is set carelessly, running the program may produce the
No room error.

The INSTALL statement lowers HIMEM by the size of the library being
installed.

When an attempt is made to set HIMEM, LOMEM, or PAGE to an
illegal value, a warning message is displayed, but the program
nevertheless continues to run. This means that such errors cannot be
trapped using ON ERROR.

PRINT "Memory available ";HIMEM- LOMEM
a%=HIMEM-1000 : HIMEM=a%

Keywords: Variables 251

Syntax

Result (1)

Arguments (2)

Examples

LOMEM
Pseudo-variable holding the address of BASIC variables.

(1) LOMEM
(2) LOMEM expression

The address of the start of the BASIC variables.

expression is the address at which BASIC variables start. The expre&.ion

should be in the range TOP to HIMEM to avoid corruption of the program
and/or the generation of No room errors.

Notes: LOMEM should not be changed after any assignments in a
program. If it is, variables assigned before the change are lost. LOMEM
is reset to TOP by CLEAR (and thus by RUN).

If you attempt to set LOMEM to an illegal value, a warning message is
given and LOMEM is not altered.

LOMEM=TOP+&400 : REM reserve lK above TOP
PRINT-LOMEM

Keywords: Variables 252

Syntax

Result

Argument (2)

Example

PAGE
Pseudo-variable holding the address of the program.

(1) PAGE
(2) PAGE =expression

An address which is an unsigned number. PAGE is the location at which the

current BASIC program starts.

expression is an integer in the range &8FOO to HIMEM, where &8FOO is

the current limit of BASIC's own workspace (this could change in later
versions of BASIC). PAGE should be on a word boundary. By changing

PAGE, you can have several BASIC programs residing in the machine at once.

Note: If you attempt to set PAGE to an invalid address, a warning
message is given and PAGE is not altered.

PAGE = HIMEM - &4000

Keywords: Variables 253

Syntax

Result

Examples

POS
Function returning the x-coordinate of the text cursor.

POS

An integer between 0 and n, where n is the width of the current text viewport
minus one. This is the position of the text cursor which is normally given
relative to the left-hand edge of the text viewport. If the cursor direction has
been altered using VDU 2 3 , 16 , ... then it is given relative to the negative x
edge of the screen which may be top, bottom, left or right.

Note: Even in YOU 5 mode, POS returns the position of the text cursor.
You should therefore keep track of the horizontal position explicitly in
programs which must operate in YOU 5 mode (eg WIMP-based
programs). COUNT still works as expected in YOU 5 mode.

old x%=POS
IF POS<>O THEN PRINT

Keywords: Variables 254

Syntax

Result (1)

Arguments (2)

Examples

TIME
Pseudo-variable reading or altering the value of the centi-second clock.

(1) TIME

(2) TIME = expression

An integer giving the number of centi-seconds that have elapsed since the last
time the clock was set to zero.

expression is an integer value used to set the clock. TIME is initially set to
the lowest four bytes of the five byte clock value maintained by the operating
system. Assigning to the TIME pseudo-variable alters the system centi-second
timer (the one which is read and written by OS_ Wordsl and 2 respectively).
There is, however, an additional system clock which is monotonic: it always
increases in value with lime, and cannot be reset by software. TIME does not
affect this timer.

DEF PROCdelay(n) TIME=O:REPEAT UNTIL TIME>=n*lOO

Keywords: Variables 255

Syntax

Result (1)

Result (2)

Examples

TIME$
Pseudo-variable accessing the real-time clock.

(l) TIME$
(2) TIME$ - expression

TIME$ returns a 24-character string of the format:

Fri , 24 May 1 984.17:40 : 59

The date and time part are separated by a full stop ' . ' .

The expression should be a string specifying the date, the time, or both.
Punctuation and spacing are crucial and should be as shown in the examples
below.

PRINT TIME$
TIME$=" Tue , 01 Jan 1972 "
TIME$="21:12 : 06"
TIME$ =" Tue , 01 Jan 1972 . 21:12:06 "

Note that the day of the week is automatically calculated from the date, so
that any three characters may be entered at the start of the date, for example

TIME$=" xxx , 19 Aug 1987 "

Keywords: Variables 256

Syntax

Result

Example

TOP
Function returning the address of the end of the program.

TOP

TOP gives the address of the first byte after the BASIC program. The length
of the program is equal to TOP-PAGE. LOMEM is usually set to TOP (or the
first word above if TOP isn't on a word boundary}, so this is where the
variables start.

PRINT TOP

Keywords: Variables 257

Syntax

Result

Examples

VPOS
Function returning the y-coordinate of the text cursor.

VPOS

An integer between 0 and n, where n is the height of the current text viewport
minus one. This is the position of the text cursor which is normally given
relative to the top edge of the text viewport. If the cursor direction has been
altered using VDU 23, 16, ... then it is given relative to the negative y edge of
the screen which may be top, bottom, left or right.

Note: Even in VDU 5 mode, VPOS returns the position of the text cursor.
You should therefore keep track of the vertical position explicitly in
programs which must operate in VDU 5 mode (eg WIMP-based
programs).

DEF FNmyTab(x%)
PRINT TAB(x%,VPOS);: =""

I F VPOS>lO THEN PRINT TAB(0,10);

Keywords: Variables 258

Keywords: Error handling

Syntax

Result

Examples

ERL
Function returning the last error line.

ERL

Integer between 0 and 65279. This is the line number of the last error to occur.
An error line of 0 implies that the error happened in immediate mode or that
there has not been an error.

Note: If an error occurs inside a LIBRARY, INSTALL or OVERLAY
procedure, ERL is set to the number of the last line of the main program. It
does not indicate where in the library the error occurred.

REPORT : IF ERL<>O THEN PRINT " at line "; ERL
IF ERL=3245 PRINT " Bad function, try again"

Keywords: Error handling 259

Syntax

Result

Examples

ERR
Function returning the last error number.

ERR

A four-byte signed integer. Errors produced by BASIC are in the range 0 to

127.

Note: The error number 0 is classed as a fatal error and cannot be
trapped by the ON-ERROR statement. An example of a fatal error is
that produced when a BASIC STOP statement is executed.

IF ERR=l8 THEN PRINT " Can ' t use zero; try again!! "

IF ERR=l7 THEN PRINT"Sure?": A$=GET$: IF INSTR(" Yy", A$)
THEN STOP

Keywords: Error handling 260

Syntax

Arguments (2)

Examples

ERROR
Generates an error, or is part of the ON ERROR statement.

(1) ON ERROR ...
{2)ERROR [EXT]expressionl , expression2

Note (1): See ON ERROR for details of the error handling statements.

expressionl evaluates to a four-byte signed integer corresponding to an
error number. expression2 evaluates to a string associated with this error
number. The error described is generated, in the same way as internal BASIC
errors. Thus ERL will be set to expression} and REPORT$ set to expression2.
The current error handler will then be called, unless the error number is zero,
in which case a fatal (untrappable) error will be generated.

If the keyword EXT is present, then BASIC terminates and the error number
and string are passed to the error handler of the program that invoked
BASIC. The default BASIC error handler uses this if the -quit option was
given on the command line.

ERROR 6, "Type mismatch: number needed"
ERROR EXT ERR,REPORT$: REM pass on the error

Keywords: Error handling 261

Syntax

Examples

LOCAL ERROR
Makes the error control status local.

LOCAL ERROR

Notes: LOCAL ERROR can be used anywhere in a program. It
remembers the current error handler so a subsequent use of ON-ERROR
does not overwrite it. This error handler can later be restored using
RESTORE ERROR.

If LOCAL ERROR is used within a procedure or function it must be the
last item to be made local.

Returning from a procedure or function call which contained a LOCAL
ERROR automatically restores any stored error status.

See also ON ERROR LOCAL.

10 ON ERROR PROCerror
20 res = FNdi vide(opp , adj)
30 END
40 DEFFNdivide(x,y)
50 LOCAL ERROR
60 ON ERROR LOCAL PRINT "attempt to divide by zero" : =0
70 =x/y : REM end of function restores previous error
status

Keywords: Error handling 262

Syntax

Use (1)

Use (2)

Examples

Statement defining or cancelling an error handler

(1) ON ERROR [LOCAL) statements
(2) ON ERROR OFF

ON ERROR

The ON ERROR statement introduces an error handler. When an error occurs
after an ON ERROR has been executed, control passes to the first statement of

the ON ERROR line. The program continues from there. Note that all of the
error handler code has to be on the ON ERROR line, so complex error
handlers should use a procedure, eg:

10 ON ERROR PROCerr handler

Usually, before the error handler is called, BASIC will forget about all
active procedures, functions and loops, in effect reverting to the 'top-level' of
the program. However, if the LOCAL keyword is used on the ON ERROR line,
then the nesting level current when the ON ERROR is executed will be re
entered when the error occurs. Thus error handlers which are useful within
loops and other constructs may be written.

See also LOCAL ERROR and RESTORE ERROR.

ON ERROR OFF cancels any active error handler, so that this default action is
used when an error occurs:

100 TRACE OFF
110 IF QUIT THEN ERROR EXT ERR, REPORT$
120 ELSE
130 RESTORE: (HIMEM-4) =@%: @%=8900
140 REPORT:IF ERL PRINT " at line " ERL ELSE PRINT
150 @%=! (HIMEM-4) :END
160 ENDIF

An automatic ON ERROR OFF is performed when fatal (ERR=O) errors are
generated.

ON ERROR IF ERR=1 7 STOP : REM trap just Escape
ON ERROR LOCAL PRINT" Bad arguments " : ENDPROC

Keywords: Error handling 263

Syntax

Examples

Statement printing the message of the last error encountered.

REPORT

REPORT:PRINT " at line ";ERL;END
REPORT:PRINT " error!! "'' : END

Keywords: Error handling

REPORT

264

Syntax

Examples

REPORT$
Function returning the message of the last error encountered as a string.

REPORT$

PR I NT REPORT$
ERROR ERR,REPORT$

Keywords: Error handling 265

Syntax

Examples

RESTORE ERROR
Statement to restore saved error status.

RESTORE ERROR

1 0
20
30
40
50
60
70

Notes: RESTORE ERROR restores the error status previously saved using
LOCAL ERROR. If an error status has not been saved then a fatal error
arises.

The error status is restored automatically on return from a procedure or
funct ion, and when one of the loop-terminating constructs is encountered
(UNTIL, ENDWHILE and NEXT).

LOCAL ERROR
REPEAT

ON ERROR LOCAL PRI NT"Negative value"
INPUT x
PRINT " Square root of x "; SQR(x)

UNTIL x= O
RESTORE ERROR

Keywords: Error handling 266

Keywords: Input/Output

Syntax

Result

Examples

GET
Function returning a character code from the input stream (eg keyboard, RS423,
etc).

GET

An integer between 0 and 255. This is the ASCII code of the next character in
the buffer of the currently selected input stream (keyboard or RS423). The
function will not return until a character is available, and so it can be used to
halt the program temporarily.

Note: The character entered is not echoed onto the screen. To make it
appear you must explicitly PRINT it.

PRINT " Press space to continue " :REPEAT UNTIL GET=32
ON GET-127 PROCa, PROCb, PROCc ELSE PRINT " Illegal entry"

Keywords: Input/Output 267

Syntax

Result

Examples

GET$
Function returning a character from the input stream (eg keyboard).

GET$

A one-character string whose value would be CHR$(GET) if GET had been
called instead. This is provided so you can use statements like
IF-GET$="*" . . . rather than IF CHR$(GET)="*"

PRINT " Do you want anot her game? ": response$ =GET$
IF response$ " Y" or response$ = "y " CHAIN "program"

PRINT " Input a digit " ; : PRINT GET$

Keywords: lnpuVOutput 268

Syntax

Argument (1)

Result

Argument (2}

Result

Argument (3)

Result

Examples

IN KEY
Function returning a character code from the current input stream, or
interrogating the keyboard.

(1) INKEY positive-factor
(2) INKEY negative-factor

(3) INKEY -256

An integer in the range 0 to 32767, which is a time limit in centi-seconds.

The ASCII code of the next character in the current input buffer if one
appears in the time limit set by the argument, or -l if a time-out occurs.

An integer in the range ~to -1, which is the negative INKEY code of the key
being interrogated (see Appendix E for details).

TRUE if the key is being pressed at the time of the call, FALSE if it is not.

- 256

A number indicating which version of the operating system is in use.

DEF PROCwait(secs%)
IF INKEY(lOO *secs%) : REM throw away result
ENDPROC

IF INKEY(-99) THEN REPEAT UNTIL NOT INKEY(-99)

Keywords: lnpuVOutput 269

Syntax

Argument

Result

Example

IN KEY$
Function returning a character from the input stream.

INKEY$ factor

As INKEY (I)

Where INKEY would return -1, INKEY$ returns the null string '"' In all
other situations, it returns CHR$ (INKEYargument }.

A$= INKEY$(500}

Keywords: Input/Output 270

Syntax

Examples

INPUT
Statement obtaining a value or values from the input stream.

INPUT is followed by an optional prompt, which, if present, may be followed
by a semi-colon or comma, which causes a ? to be printed out after the
prompt. This is followed by a list of variable names of any type, separated
by commas. After the last variable, the whole sequence may be repeated,
separated from the first by a comma. In addition the position of prompts may
be controlled by the SPC, TAB and' print formatters (see PRINT).

Note: Leading spaces of the input string itself are skipped, and commas
are taken as marking the end of input for the current item.

INPUT a$: REM Print a simple " ? " as a prompt
INPUT " How many ", num% : REM prompt is " How many? "
INPUT " Address &" hex$: REM "Address &" no ? because no ,
INPUT TAB(lO) "Name '' ,n$'TAB(10)"Address ",a$
INPUT a,b , c , d, " More " ,yn$
INPUT SPC(S)"Letter",char$

Keywords: Input/Output 271

Syntax

Result

Example

INPUT LINE
Statement obtaining a value or values from the input stream.

This has the same syntax as INPUT

If the input variable is a string, all the user's input is read into the variable,
including leading and trailing spaces and commas. If the input variable is
numeric, only a single value will be selected from the beginning of the input
line.

Note: INPUT LINE is equivalent to LINE INPUT

INPUT LINE " >" basic$

Keywords: Input/Output 272

Syntax

Result

Example

LINE INPUT
Statement obtaining a value or values from the input stream.

This has the same syntax as INPUT

If the input variable is a string, all the user's input is read into the variable,
including leading and trailing spaces and commas. If the input variable is
numeric, only a single value will be selected from the input line.

Note: LINE INPUT is equivalent to INPUT LINE

LINE INPUT " Your message" mess$

Keywords: Input/Output 273

Syntax (1)

Syntax (2)

Syntax (3)

Syntax (4)

MOUSE
Statement interrogating and controlling the mouse position and button status.

MOUSE variablel, variable2, variable][, variable4]

The first two variables are assigned the x and y positions of the mouse as
values in the range -32768 to 32767. The third variable is ass1hmed a value
giving the status of the mouse buttons as follows:

Value

0
l
2
3
4
5
6
7

Status

No buttons pressed
R1ght button only pressed
Middle button only pressed
Middle and right buttons pressed
Left button only pressed
Left and right buttons pressed
Left and middle butmns pressed
All three buttons pressed

If present, the last variahlc is assigned the time of a monotonic (always
increasing) centi-second timer, which can act as a time-stamp for making sure
that button-press events are processed in order, and for detectmg double
clicks, etc.

MOUSE ON [expression]

MOUSE ON causes the mouse pointer to be displayed. The optional numeric
expression is the pointer shape to be used in the range 1 to 4. If it IS omitted,
1 is used.

If bit 7 of the pointer shape number is set, ie the expression IS m the range
&81 to &84, then the mouse pointer will be unlinkeJ from the mouse. That is,
movements of the physical mouse will not affect the screen pomter. Instead,
you can use POINT TO x, y to position the pointer.

MOUSE OFF

MOUSE OFF disables the mouse pointer, removing it from the screen.

MOUSE COLOUR expression, expression, expression, expression

Keywords: Input/Output 274

Syntax (5)

Syntax (6)

Syntax (7)

Examples

This sets the colour components of the mouse pointer logical colour given in
the first expression to the red, green and blue values given in the second, third
and fourth expressions. Pointer logical colours are in the range 1 to 3. Colour
0 is always transparent.

1 MOUSE TO expression , expression

This moves the mouse (and pointer) to the (x,y) position given by the first and
second numeric arguments.

MOUSE STEP expression[, expression]

This controls the speed of movement of the mouse pointer compared to the
speed of the movement of the actual mouse device. If there is one argument, it
is used as a multiplier for both the x and y movements. If there are two, the
first is used for x and the second for y. The arguments can be negative to
reverse the usual directions.

MOUSE RECTANGLE expr, expr, expr, expr

This sets a bounding rectangle outside which the mouse cannot move. The
arguments are the left, bottom, right and cop of the rectangle in graphics units.
If the mouse pointer is outside the box when this command is given, it will be
moved to the nearest point within it.

MOUSE xpos%,ypos%,button %
MOUSE ON 2
MOUSE OFF
MOUSE COLOUR Co1 %, red%,green%,b1ue%
MOUSE TO 100 , 100
MOUSE STEP 3 , 2
MOUSE RECTANGLE 640 , 512 , 1023,1279

Keywords: Input/Output 275

Syntax

PRINT
Print information on the output stream(s) (eg screen, printer, etc) ..

The items following PRINT may be string expressions, numeric expressions,
and print formatters. By default, numerics are printed in decimal, right
justified in the print field given by @% (see below). Strings are printed left
JUStified in the print field. The pnnt formatters have the following effects
when printing numbers:

Do not right justify (print leading spaces before) numbers in the print field.
Set numeric printing to decimal. Semi-colon stays in effect until a comma is
encountered. Do not print a new line at the end if this is the last character of
the PRINT statement.

, (comma)
Right justify numbers in the print field. Set numenc printing to dectmal. Thts
is the default print mode. Comma stays in effect until a semi-colon is
encountered. If the cursor is not at the start of the print field, print spaces to
reach the next one.

- (tilde)
Print numbers as hexadecimal integers, using the current left/right-justify
mode. Tilde stays in effect until a comma or semi-colon is encountered.

I
,
Print a new line. Retain current left/right-justify and hexadecimal/decimal
modes.

TAB(

If there is one argument, for example, TAB (n), print (n_COUNT) spaces. If
the cursor is initially past position n (ie COUNT>n), print a new line first. If
there are two arguments, for example, TAB (1 0, 2 0) , move directly to that tab
position. Left/right-justify and hexadecimal/decimal modes are retained.

SPCfactor

Print the given number of spaces. For example SPCS outputs five spaces.
Right-justify and hexadecimal/decimal modes are retained.

space

Keywords: Input/Output 276

Print the next item, retaining left/right-justify and hexadecimal/decimal
modes.

When strings are printed the descriptions above apply, except that
hexadecimal mode does not affect the string. Also no trailing spaces are
printed after a string unless it is followed by a comma. This prints enough
spaces to move to the start of the next print field.

The format in which numbers are printed, and the width of print fields are
determined by the value of the special system integer variable, @%. Each byte
in the variable has a special meaning. These are described below.

Byte 4

This determines whether the STR$ function uses the print format determined
by @% when converting its argument to a string, or whether it will use a default
general format. If the byte is zero (the default), STR$ uses a general format
(equivalent to @o/o=&AOO). If it is non-zero, STR$ uses the format determined
by the rest of@%.

Byte 3

This selects the format to be used. The legal values are:

0
General format: Numbers have the form nnn. nnn, the maximum number of
digits printed being given in byte 2. This is the default format.

Exponent format: Numbers have the form n. nnnEnn, the number of digits
printed before the E being given in byte 2.

2
Fixed format: Numbers have the form nnn. nnn, the number of digits after
the decimal point being given in byte 2.

Byte 2

This determines the number of digits printed. In General format, this is the
number of digits which may be printed before reverting to Exponent format (1

Keywords: Input/Output 277

Examples of @%

Examples

to 10); in Exponent format it gives the number of significant figures to be
printed after the decimal point (1 to 10). In fixed format it gives the number
of digits (exactly) that follow the decimal point.

Byte 1

This gives the print field width for tabulating using commas, and is in the
range 0 to 255.

@%=&0000090A uses General format with up to nine significant digits in a
field width of ten characters. Note that General format reverts to Exponent
format when the number is less than 0.1. This is the default setting of@%.

@%=&0102020A uses Fixed format with two decimal places in a tab field
width of ten. In addition, STR$ uses this format instead of its default (which is
&OAOO). Numbers are printed out in the form 1. 23, 923.10, etc.

@%=&00010408 uses Exponent format. Four significant digits are printed, in a
field of eight characters. These numbers look like 1 . 234EO, 1 .10 0E-3, etc.

Note: Setting byte two to 10, eg &OAOA, shows the inaccuracies which
arise when trying to store certain numbers in binary. For example:

PRINT 7.7

prints 7 . 699999999 when @%=&0AOA.

The print formatters ', TAB (and SPC may also be used in INPUT
statements.

PRINT "Hello there ";
PRINT a,SIN(RAD(a)) , x,y' ' p,q
PRINT TAB(10,3) "Profits "SPC(10);profits;

Keywords: Input/Output 278

Syntax

Argument

Examples

SPC
Print modifier to generate spaces in PRINT and INPUT statements.

SPC factor

A one-byte integer between 0 and 255. It gives the number of spaces to be
printed.

PRINT SPC(l0) ;
INPUT SPC(7) " How many", a$

Keywords: Input/Output 279

Syntax

Argument (1)

Argument (2)

Examples

Print modifier to position text cursor in PRINT and INPUT statement~.

(1) TAB (expression)

(2)TAB(expressionl,expression)

TAB

A numeric in the range 0 to 255. It expresses the desired x-coordinate of the
cursor. This position is obtained by printing spaces. A new line is generated
first if the current position is at or to the right of the required one. COUNT is
updated appropriately. This form is useful for tabulating on both the screen
(even in VDU 5 mode) or printed output.

expressionl is the desired x co-ordinate; expression2 is the desired y co
ordinate. The position is reached using the VOU 31 command. Both co
ordinates must lie within the current text viewport, otherwise, no cursor
movement will take place. COUNT is no longer correct. This form is only
useful when positioning the cursor on the screen as it uses control codes which
will not be sent to a printer.

PRINT TAB(l0) "Product";TAB(20) "Price "
INPUT TAB(O,lO) "How many eggs ",eggs%

Keywords: Input/Output 280

Syntax

Result (1)

Argument (2)

Examples

WIDTH
Statement setting the line width for BASIC output, and function returning
same.

(1) WIDTH
(2) WIDTH expression

WI DTH returns the current print width, ie the last value used in a WI DTH
statement described below (or 0 by default).

expression should be a positive integer. Expressions in the range 1 to
2147483627 cause BASIC to print a new line and reset COUNT to zero every
time COUNT exceeds that number. If the expression is 0, BASIC stops
generating auto-newlines, which is the default.

WIDTH 0 : REM 'infinite width'
WIDTH 40: REM newline every 40 characters hori zontally
PRINT WIDTH

Keywords: Input/Output 281

Keywords: lnpuVOutput 282

Keywords: Character/String handling

Syntax

Argument

Result

Examples

ASC

Function giving the ASCII code of the first character in string.

ASC factor

String of length 0 to 255 characters.

ASCII code of the first character of the argument in the range 0 to 255, or -1 if
the argument is a null string.

10 x2=ASC (name$)
100 IF code >= ASC("a") AND code <= ASC("z"} THEN PRINT
" Lower case"

Keywords: Character/String handling 283

Syntax

Argument

Result

Examples

Function giving the character corresponJing to an ASCII code.

CHR$ factor

An integer in the range 0 to 255

A single-character string whose ASCII code is the argument.

PRINT CHR$(code)
lower$=CHR$(ASC(upper$) OR &20)

Keywords: Character/String handling

CHR$

284

Syntax

Argument

Result

Examples

INSTR(
Function to find the position of a substring in a string.

INSTR (expressionl, expression2[, expressi on]))

expression] is any string which is to be searched for a substring.
expression2 is the substring required. expressi on] is a numeric in the
range I to 255 and determines the position in the main string at which the
search for the substring will start. This defaults to 1.

An integer in the range 0 to 255. If 0 is returned, the substring could not be
found in the main string. A result of 1 means that the substring was found at
the first character of the main string, and so on. The position of the first
occurrence only is returned.

Notes: If the substring is longer than the main string, 0 is always returned.
If the substring is the null string, the result is always equal to expression3,
or 1 if this is omitted.

REPEAT a$=GET$:UNTIL INSTR(" YyNn ", a$) <> 0
pos %.,. INSTR(com$, " *FX",l 0)

Keywords: Character/String handling 285

Syntax

Argument (1)

Result

Argument (2)

Examples

LEFT$(
Function returning, or statement altering, the left pan of a string.

(I) LEFT$ (expression I [, expression2])

(2) LEFTS (variable I, expressionl]) = expression2

expression] is a ~tring of length between 0 and 255 character~.

expression2, if pre/>ent, gives the number of characters from the left of the

string thnt are to be returned. If it is omitted, LEN (expression I)-1 is used, ie
all but the last character of the string is returned. Thi~ is useful for stripping
off unwanted trailing characters.

Character1o from the left of expression I, where the length of the re~ult is the
minimum of the length of expression/ and expression2 (or the implied default
for expression2).

variable is the name of the string variable to be altered. The character~ 111

the variable arc replaced, starting from the left hand character (posiuon l), hy
the string expression2. If the numher expression] is pre~enr, this give~>
the maximum number of characters Lhnt will be overwritten in the variable.
Otherwise, it is the smaller of LENvariable and LENexpression2: the string's
length can never be altered by this ~tatemcnt.

startS ~ LEFTS(a$)
lef t_half$=LEFTS(input$,LEN(input$) DIV 2)
LEFT$(A$) - "ABCD "
LEFT$(A$,n\) - B$

Keywords: Character/String handling 286

Syntax

Argument

Result

Examples

LEN
Function returning the length of a string.

LEN factor

Any string of 0 to 255 characters.

The number of characters in the argument string, from 0 to 255.

Note: The function SUMLEN returns the total length of the elements in a
string array.

REPEAT INPUT a$: UNTIL LEN(a$)<=10
I F LEN(in$) > 12 THEN PRINT " Too long"

Keywords: Character/String handling 287

Syntax

Argument (1)

Result

Argument (2)

Examples

MID$(
Function returning, or statement assigning to a substring of a string.

(l) MID$ (expressionl, expression2[, expression]))
(2) MID$ (variable , expressionl [, expression2]) =expression]

expressionl is a :string of length 0 to 255 character::;. expression2 is the
position within the string of the first character required. expression], if

present, gives the number of characters in the substring. The default value is
255 (or to the end of the source string).

The substring of the source string, of a length given in the third argument, and
starting from the position specified. The result string can never he of greater
length than the source string.

variable is the name of the string variable which is to he altered.
expression] evaluates tO a string which provides the characters to replace
those in variable. expressi onl is the position within the string of the first
character to be replaced. expression2, if present, gives the maximum
number of character:. to be replaced. The replacement stops when the end of
the string variable is reached, even if there are characters in expressron3 which
MC unused.

PRINT MID$("ABCDEE"G", 2 , 3) ;" : REM should print " BCD"
right_half$=MID$(any$, LEN(any$) DIV 2)
MID$(A$,4,4) 8$
MID$(A$, 2 ,5) = MID$(8$,3,6)

Keywords: Character/String handling 288

Syntax

Argument (1)

Result

Argument (2)

Examples

RIGHT$(
Function returning or statement altering the right-most character(s) of a string.

(1) RIGHT$ (expressionl [, expression2])

(2) RIGHT$ (variable[, expressionl]) = expression2

expressionl should be a string of length 0 to 255 characters. If
expression2 is present, it should be a numeric giving the number of
characters from the right of the string to be returned, also in the range 0 to
255. If it is omitted, a default of 1 is used.

A string consisting of the n right-most character(s) from the source string,
where n is expression2 or 1. If n is greater than the length of the source string,
the whole source string is returned.

variable is the name of the string variable to be altered. The righthand
characters in variable are replaced by the string expression2.

If present, expression] gives the maximum number of characters which will be
replaced: the number of characters altered is the lesser of expression] and
LENexpression2. expression] defaults to 255.

PRINT RIGHT$(any$,4)
year$=RIGHT$(date$,2)
RIGHT$(birthday$) = "May"
RIGHT$(name$,4) = "Mary "

Keywords: Character/String handling 289

Syntax

Argument

Result

Examples

STR$
Function pnxlucing the string representation of it~ argument.

STR$ [-) f actor

Any numeric for decimal conversion, any integer for hexadecimal conver~ion.
Decimal conversion is used when the tilde (-) is absent, hex conversion when
it is present.

Decimal or hex ~tring repre~entation of the argument, depending upon the
absence or presence of rhe tikk·.

Notes: The :.tnng returned by STR$ is usually formatted in the same way
as the argument would he printed with @% set to &AOO. However, if the
most significant byte of @% is non-zero, STR$ returnl> the result in exactly
the same format as it would be printed, taking the current value of @%

into account. Sec also PRINT.

DEF FNhe x4(a%) RIGHT$ ("000" +STR$ - (a!i),4)
DEF FNdigi t s (a) =LEN(STR$ (a))
dp=INSTR (STR$ {a ny_va l),".")

Keywords: Character/String handling 290

Syntax

Arguments

Result

Examples

STRING$(
Function returning mu ltiple copies of a string.

STRING$(expressionl ,expression2)

e xpressionl is an integer, n, in the range 0 to 255. expression2 should

he a string of length 0 to (255 OIV n) character~.

A string comprising n concatenated copies of the source string, l)f a length
n*LEN (exf>ression2).

MODE
PR!NT STRING$(40 ," '') ; : REM underline across the screen

pattern$ STRING$ (20 ," <- -> ")

Keywords: Character/String handling 291

Keywords : Character/String handling 292

Keywords: Sound

Syntax

Result

Example

BEAT
Function returning the current beat value.

BEAT

An integer giving the current beat value. This is the value yielded by the beat
counter as it counts from zero to the number set by BEATS at a rate
determined by TEMPO. When it reaches its limit it resets to zero.
Synchronisation between sound channels is performed with respect to the last
reset of the beat counter.

PRINT BEAT

Keywords: Sound 293

Syntax

Arguments (1)

Result (2)

Examples

Function returning or statement altering the beat counter.

(1) BEATS expression
(2) BEATS

BEATS

express ion gives the value 1 higher than that which the beat counter
increments to, ie it counts from 0 to expression-!. This counter is used in
conjunction with the SOUND and TEMPO statements to synchronise sound
oulputs from different sound channels.

An integer giving the current value of the beat limit, as set by a BEATS
statement, or 0 if no counting is currently being performed.

BEATS 2000
PRINT BEATS

Keywords : Sound 294

Syntax

Purpose (1) and (2)

Arguments (3)

SOUND
Statement generating a sound or suppressing/allowing ~ubsequent sound
generation.

(1) SOUND ON

(2) SOUND OFF

(3) SOUND exprl, expr2, expr3 , expr4 (, expr5)

SOUND ON is the default setting. It allows sounds to be produced by
subsequent use of the SOUND (3) statements. SOUND OFF suppresses sounds
and means that subsequent SOUND (3) statements have no effect.

exprl is the channel number, expr2 is the amplitude, expr 3 is the pitch,
expr4 is the duration, and exprS, if present, is the delay.

Channel
A two-byte integer giving the channel number to be used. It has the range 1 to
8.

Amplitude
This is an integer in one of two different ranges. The range -15 to 0 is a simple
volume (amplitude), -15 being the loudest and zero being the quietest (no
sound). The range 256 (&100) to 511 (&lFF) is a logarithmic volume range, a
difference of 16 providing a doubling or halving of the volume.

Pitch
This is treated as an integer. In the range 0 to 255, the note middle C has a
pitch value of 53; a difference in the parameter of 48 corresponds to a
difference in pitch of one octave. In other words, there are four pitch values
per semi-tone. In the range 256 (&100) to 32767 (&7FFF), the note middle C
has a pitch value of &4000, and a difference in the value of &1000
corresponds to a difference in pitch of one octave.

Duration
The last compulsory SOUND parameter is also treated as a two-byte integer. It
gives the duration of the note in twentieths of a second. A value of 255 gives a
note with an infinite duration: one that does not stop unless the sound queue is
flushed in some way. A value greater than 255 is treated as a duration in 20ths
of a second.

Keywords: Sound 295

Examples

Delay
This is the number of beat counts from the last beat coumer reset before the
sound is produced. See BEATS and TEMPO for more details. If this
parameter is omitted, the sound is produced immediately. A value of -1
synchronises the new note with the last scheduled sound.

SOUND OFF
SOUND 1 , -15 , 255 , 10
SOUND &102 ,&14 0 , &2400,200
SOUND 3,300,300 , 100 , 200

Keywords: Sound 296

Syntax

Arguments

Examples

STEREO
Statement setting the stereo position of a sound channel.

STEREO expressionl,expression2

expressionl is the channel number which should be between I and the
number of active channels (the maximum being 8). expression2 is a value
giving the stereo position. It can take any value between -12 7 (meaning that the
sound is fully to the left) and + 12 7 (meaning that the sound is fully to the
right) . The default value of each channel is 0, giving central (mono) production.

If the number of physical channels is eight, only the channel specified ts
programmed. Otherwise, the following occurs, where chan is expression 1:

No of channels

1
2
4

Channels programmed

chan to eight
chan and every alternate channel up to eight
chan ::~nd chan+4 if chan+4 is less than or equal to eight

STEREO 4 ,-60
STEREO n%, stereo%

Keywords: Sound 297

Syntax

Argument (1)

Result (2)

Examples

I
I
I
I

',
I
I

Function returning or statement altering the beat counter rate.

(1) TEMPO expression
(2) TEMPO

TEMPO

expression is a scale<.! frl'!ctional number, in which the 12 least-sign ificant

bits are the fractional part. Thus a value of & I 000 corresponds to a tempo of
one tempo beat per centi-second; doubling the value (&2000) causes the
tempo to double (two tempo beats per centi-second), halving the value (&800)
halve~ the tempo (one beat every two centi-seconJs).

The tempo determines the rate at which the beat counter increases.

A number giving the current tempo.

TEMPO &2000
PRINT TEMPO
DEF FNtempo=TEMP0/&1000
DEF PROCtempo(t) TEMPO t*&lOOO : ENDPROC

Keywords : Sound 298

Syntax

Arguments

Examples

VOICES
Statement specifying the number of sound channels to be used.

VO I CES expression

expression is the number of channels to be used. The maximum number

allowed is eight. Any number between 1 and 8 can be specified, but the
number which the computer is to handle must be a power of two and so the
computer rounds up the number you give to either one, two, four or eight.

Note: The sound system uses up some of the computer's processing power,
and so it is good practice to minimise the number of active channels.
Otherwise, the computer will take longer to perform other tasks such as
drawing to the screen.

VOICES 4
VOICES n%*2

Keywords: Sound 299

Keywords : Sound 300

Keywords: File commands

Syntax

Argument

Result

Examples

BGET#
Function returning the next byte from a file.

BGET# factor

A channel number returned by an OPENxx function.

T he ASCII code of the character read (at position PTR#) from the file, in the
range 0 to 255.

Note: PTR# is updated to point to the next character in the file. If the last
character in the file has been read, EOF# for the channel will be TRUE.
The next BGET# will return an undefined value and the one after that will
produce an End of fil e on file handle nn error.

char%=BGET#(channel)
char$=CHR$(BGET#fileno)

WHILE NOT EOF# (channel)
c har%= BGET#(channel)
PROCprocess(char%)

ENDWHILE

Keywords : File commands 301

Syntax

Arguments (1)

Argument (2)

Examples

Statement to write a byte or :1 string to a file.

(l)BPUT#factor,numeric-expression
(2) BPUT# factor , string-expression!;]

BPUT #

factor is a channel number as returned by an OPENxx function. The
numeric-expression is truncated to an integer 0 to 255, anJ is the ASCII
code of the character to be ~cnt to the file.

factor is a channel numhcr as returned by an OPENxx functton. string
expression is a string containing 0 to 255 characters. The ASCII codes of
all the characters in the string are sent w the file. This is followed by a
newline (ASCII value 10), unless the statement is terminated by a;.

Note: JYfR# is updated to point to the next character to be written. If the
enJ of the file is reached, the length (EXT~) increa:.cs too. It is only
possible to use BPUT# with OPENUP and OPENOUT files, not
OPENIN ones.

BPUT#outputfile,byte%
BPUT#channel ,ASC(MID$(name$, pos,l))
BPUT#file, " Hello"
BPUT#chan ,A$+B$;

Keywords: File commands 302

Syntax

Argument

Purpose

Examples

CLOSE#
Statement to close an open file.

CLOSE# factor

A channel number as returned by the OPENxx function. If zero is used all
open files on the current filing system are closed. Otherwise, only the file
with the channel number specified is closed.

Note: you shouldn't use the CLOSE#{) form within programs, as other
programs may be relying on files remaining open. You should only use it
as an immediate command, and possibly in a program during its
development stage.

Closing a file ensures that its contents are updated on whatever medium is
being used. This is necessary as a certain amount of buffering is used to make
the transfer of data between computer and mass-storage device more efficient.
Closing a file, therefore, releases a buffer for use by another file.

CLOSE#indexFile
CLOSE#O

Keywords : File commands 303

Syntax

Argument

Result

Examples

EOF#
Function indicating whether the end of a file has been reached.

EOF# factor

A channel number returned by an OPENxx function.

T RUE if the last character in the specified file has been read, FALSE
otherwise. EOF for a file may be reset by positioning its pointer using the
PTR# statement.

REPEAT
VDU BGET#file

UNTIL EOF#file

IF EOF~invoices PRINT " No more invoices "

Keywords: File commands 304

Syntax

Argument (1)

Result

Argument (2)

Examples

EXT#
Pseudo-variable returning or setting the length (extent) of an open file.

(l) EXT# factor

(Z) EXT#factor=expression

factor is a channel number, as allocated by one of the OPENxx functions.

Integer giving the current length of the file from 0 to, in theory 2147483648,
although in practice the extent is limited by the file medium in u~e.

factor is a channel number as allocated by one of the O PENxx functions.

expression is the desired extent of the file, whose upper limit depends on
the filing system. The lower limi t is 0. The main use of the statement is to

shorten a file. For example: EXT#fil e EXT#file-&1000. A file may be
lengthened by explicitly using PTR>t, or implicitly by BPUTing to its end.

Note: As with all the pseudo-variables, the LET keyword and the
operators+= and·= cannot be used with EXT#.

EXT is also used a part of the ERROR EXT . . . statement; see the
chapter Keywords: Error Handling for details.

IF EXT#file>90000 THEN PRINT " File full " : CLOSENfile
EXT#op=EXT#op+&2000

Keywords : File commands 305

Syntax

Argument

Result

Examples

GET$#
Function returning a string from a file.

GETS# factor

A channel number returned by an OPENxx function.

A string of characters read until a linefecJ (ASCII 10), carriage return
(ASCII 13), null character (ASCII 0) or the end of the file is encountered, or
else the maximum of 2 55 characters is reached. The terminating character is
not returned as part of the string.

Note: fYTR.tt is updated to point to the next character in the file. If the last
character in the file has been read, EOF# for the channel will be TRUE.

string$ - GET$#channel
PRINT GET$#fileno

Keywords: File commands 306

Syntax

Arguments

Examples

Statement obtaining a value or values from a file.

I NPUT# factor [, variable, variable ...]

INPUT#

factor is the channel number of the file from which the information is to be
read, as obtained by an OPENxx function. The variables, if present, may be of
any type. The separators may be semi-colons instead of commas.

Integer variables are read as &40 followed by the two's complement
representation of the integer in four bytes, most significant byte first.

Real variables are read as &FF followed by five bytes. The first four bytes
are the mantissa and the fifth is the exponent. The mantissa is read least
significant byte (LSB) first. 31 bits represent the magnitude of the mantissa
and one bit (bit 7 of the fourth byte) the sign. The exponent byte is in excess-
128 form.

String variables are read as a zero byte followed by a byte containing the
string length and then the characters in the string in reverse order.

Note: Files read using INPUT# must adhere to the format described
above, which implies they should have been created using PRINT#.
BASIC will perform conversion between integers and floating point
values where possible.

INPOT#data ,name$,addrl$, addr2$,addr3$, age%
INPOT#data,$buffer,len

Keywords: File commands 307

Syntax

Argument

Result

Examples

OPEN IN
Function opening an existing file for input only.

OPENIN f actor

A string which evaluates to a valid filename.

An integer acting as a channel number for the file. All subsequent operations
on file (eg BGET#, PTR#, EOF# etc.) usc the chnnnel number, sometimes
called a handle, as an argument.

OPENIN opens a file for input only. The file must exist prior to the call. If it
doesn't, a channel number of 0 is returned. Only read-type operations are
allowed on the file. For example, you can get characters from it, but not put
them. You can move PTR# freely within the file, but not outside of it. A file
may be opened for reading several times. However, you can't OPENIN and
OPENOUT (or OPENUP) the same file.

i n_ fil e% OPENIN(" I nvoices")
data%=0PENIN(":O " +data$)

Keywords: File commands 308

Syntax

Argument

Result

Examples

OPEN OUT
Function for opening a new file for input and output.

OPENOUT factor

A string which evaluates to a valid filename.

An integer acting as a channel number for the file. All subsequent operations
on file (eg BGET#, PTR#, EOF# etc.) use the channel number, sometimes
called a handle, as an argument.

OPENOUT creates and opens a file for input and output. Read- and write
type operations are allowed on the file. You can both get characters from, and
write characters to, the file. You can move PTR# freely within the file, and
extend the file by moving PTR# outside of the file (beyond EXT#). You can
also shorten the file by assigning to EXT#. Once you OPENOUT a file, it
can't be opened again unless it is closed first. Similarly, trying to OPENOUT
an open file gives an error.

out file%=0PENOUT("Customers")
data%=0PENOUT(":datadisc. " +data$)

Keywords: File commands 309

Syntax

Argument

Result

Examples

OPENUP
Function for opening an existing file for input and output (update).

OPENUP factor

A string which evaluates to a valid filename.

An integer acting as a channel number for the file. All subsequent operations
on file (eg BGET#, PTR#, EOF# etc.) use the channel number, sometimes
called a handle, as an argument.

OPENUP opens a file, which must exist already, for input and output. Read
and write-type operations are allowed on the file. You can both get characters
from, and write characters to, the file. You can move PTR# freely within the
file, and extend the file by moving PTR# outside of the file (beyond EXT#) ,
You can also shorten the file by assigning to EXT#, Once you OPEN UP a
file, it can't be opened again unless it is closed first. Similarly, trying to
OPENUP an open file gives an error.

random file%=0PENUP("records ")

Keywords: File commands 310

Syntax

Arguments

Example

PRINT#
Print information to an open file.

PRINT~ factor [, expression, expression ...)

factor is the channel number of a file opened for output or update. The
expressions, if present, are any BASIC integer, real or string expressions.
They are evaluated and sent to the file specified with the corresponding type
information.

Integers are written as &40 followed by the two's complement representation
of the integer in four bytes, most significant byte first.

Real variables are written as &FF followed by five bytes. The first four
bytes are the mantissa and the fifth is the exponent. The mantissa is written
least significant byte (LSB) first. 31 bits represent the magnitude of the
mantissa and one bit (bit 7 of the fourth byte) the sign. The exponent byte is
in excess-128 form.

Strings are written as &00 followed by a one byte count of the length of the
string, followed by the characters in the string in reverse order.

PRINTNfile , nameS+ '':", INT(lOO*price+.S),qnty%

Keywords: File commands 311

Syntax

Argument (1)

Result

Argument (2)

Examples

Pseudo-variable accessing the pointer of a file.

(1) PTRit factor

(2) PTRit factor expression

factor is a channel number, as returned from an OPEN.xx function.

PTR#

An integer giving the position of the next byte to be read or written relative to
the start of the file. The minimum value is 0 and the maximum value depends
on the filing system in use.

factor is as (I). The expression is an integer giVIng the desired position of
the sequential pointer in the file. Files opened for input may only have their
PTR# value set to between 0 and the EXT# of the file.

PRINT PTR#file ;"bytes processed"
PTR#chan%=rec len%

Keywords: File commands 312

Keywords: Assembly language

Syntax

Arguments

Purpose

CALL
Statement to execute a machine code subroutine.

CALL expression[, variable ...]

expression is the address of the routine to be called. The parameter
variables, if present, may be of any type, and must exist when the CALL
statement is executed. They arc accessed through a parameter block which
BASIC sets up. The format of this parameter block and of the variables
accessed through it is described below.

CALL can be used to enter a machine code program from BASIC. Before the
routine is called, the ARM's registers are set up as follows:

RO A%
Rl B%
R2 C%
R3 D%
R4 E%
RS F%
R6 G%
R7 H%
R8 Pointer to BASIC's workspace (ARGP)
R9 Pointer to list of !-values of the parameters
RIO Number of parameters
Rll Pointer to BASIC's string accumulatOr (STRACC)
R12 BASIC's LINE pointer (points to the current statement)
Rl3 Pointer to BASIC's full, descending stack
R14 Link back to BASIC and environment information pointer.

Keywords: Assembly language 313

Format of the CALL
parameter block

R9 points to a list gtvtng details of each variable passed as a parameter to

CALL. For each variable, two word-aligned words are used. The first one is
the !-value of the parameter. This is the address in memory in which the value
of the variable is stored.

The second word is the type of variable. This list is in reverse order, so the !
value pointed to by R9 is that of the last parameter in the list. The pointer to
the list is always valid, even when if the list is null (ic RlO contains 0). The
possible types are as follows:

Type BASIC (,value points to

&00 ?factor byte-aligned byte

&04 !factor byte-aligned word

&04 name% word-aligned word

&04 name%(n) word-aligned word
&05 \factor byte-aligned FP value (5 bytes)
&05 name byte-aligned FP value (5 bytes)
&05 name(n) byte-aligned FP value (5 bytes)

&80 name$ byte-aligned SIB (5 bytes)

&80 name$(n) byte-aligned SIB (5 bytes)

&81 $factor byte-aligned byte-string (CR-terminated)

&100+&04 name%() word-aligned array pointer
&100+&05 name() word-aligned array pointer
&100+&80 name$() word-aligned array pointer

For types &00, &04 and &05, the address points to the actual byte, four-byte
integer or five-byte floating point value.

For type &80, the address points to a five-byte 'string information block'. The
first four bytes are a byte-aligned word pointing to the first character of the
string itself, which is on a word boundary, followed by a byte containing the
length of the string.

For types &lOO+n the value points to a word-aligned word. If the array has
not been allocated, or has been made LOCAL but not DIMmed, this word
contains a value less than 16. Otherwise, the word points to a word-aligned list

Keywords: Assembly language 314

of integer subscript sizes (the values in the DIM statement plus 1) terminated
by a zero word, followed by a word which contains the total number of entries
in the array, followed by the zeroth element of the array. For example,
consider this program:

10 DIM a(10 , 20)
20 a = 12 . 3
30 a$ = "char "
40

100 CALL code , a , a() , a$

a type (&05)

a 1-value -

a() type (& 105)

a() l-value -

Rl0=3 a$ type (&80)

R9~ a$ l-value -

a(O,O)

elements (231)

1.23 terminatOr

sub 2 size (21)

array pointer - sub 1 size (11)

length(4) r

lncl ng a
string pointer h

c
address

The diagram above shows the resulting parameter block and other data items
when code is called.

The access method into the arrays is given by the following algorithm:

position 0
number = 0
REPEAT

Keywords: Assembly language 315

IF subscript(number) > array(number) THEN fault
number = number+!
IF number<>total THEN position = (position+subscript)

* array (number)
UNTIL no more_subscripts
position - position*size(array)

This means that the last subscript references adjacent elements. For a simple
two dimensional array DIM A(LIMI-l,LIMJ-1) the address of A(I,J) is
(I*LIMI + J)*sizc+base_address.

MOV PC , Rl4 returns to the BASIC calling program. However, R 14 also
points to an array of useful values:

Offset Name

&00 RETURN

Meaning

Return address to BASIC

The following are words containing a word-aligned offset from ARGP (R8)

&04 STRACC String accumulator (256 bytes long)

&08 PAGE Current program PAGE

&OC TOP Current program TOP
&10 LOMEM Current start of variable storage
&14 HIMEM Current stack end (ie highest stack location}

&18 MEMLIMIT Limit of available memory
&lC FSA Free space start (end of variables/stack limit)

&20 TALLY Value of COUNT

&24 TIMEOF Not used, but see note below

&28 ESCWORD Exception flag word (contains escflg, trcflg)

&2C WIDTHLOC Value of WIDTH-I

Branches to internal BASIC routines:

&30
&34
&38
&3C

VARIND
STORE A
STSTORE
LVBLNK

Get value of !-value

Store value into !-value
Store string into type 128 strings
Convert variable name string to !-value address and

Keywords: Assembly language 316

&40
&44
&48
&4C

&50

CREATE
EXPR
MATCH
TOKENADDR
END

type
Create new variable
Use expression analyser on string
Lexically analyse source string to destination string
Pointer to string for given token

End of I ist, a zero word

In the following, RO .. R3 contain an expanded floating point value. R9 points to
a packed five-byte floating point value (as accessed through the I operator).

&54 9 Second list

&58 FSTA [R9) = RO .. R3

&5C FLDA RO .. R3 = [R9]

&60 FADD RO .. R3 += [R9)

&64 FSUB RO .. R3 = [R9]- (RO .. R3)

& 68 FMUL RO .. R3 = (RO .. R3)*[R9]

&6C FDIV RO .. R3 = [R9)/(RO .. R3)

&70 FLOAT RO .. R3 = FLOAT(RO) (RO contains an integer on entry)
&74 FIX RO = FIX(RO .. R3) (RO contains an integer on exit)
&78 FSQRT RO .. R3 = SQR(RO .. R3)

The word at address [R14] is a branch instruction which returns you to the
BASIC interpreter. The words which follow it contain useful addresses which
are not absolute, but are offsets from the contents of the ARGP register. R8.

The first offset word, at [Rl4,#4], gives the location of the string accumulator,
STRACC, where string results are kept. Thus if you execute

LOR
ADD

RO, [R14,#4]

RO,R8,RO

;Get STRACC offset from R8
;Add offset to ARGP

RO will give the base address of the string accumulator. (Actually, the
address of STRACC is also in Rll on entry, so this isn't a particularly good
example.) Similarly, to load the pointer to the end of free space into RO, you
would use:

LOR RO, [Rl4 , #&lC) ;Get FSA offset from R8

Keywords: Assembly language 317

LOR RO, (R8, RO] ; De- reference it

Although the word referenced through the TIMEOF offset is not used, the
four that follow it are. They contain respectively:

LOCALARLIST
INSTALLLIST

LIBRARYLIST
OVERPTR

A pointer to the list of local arrays
A pointer to the list of installed libraries
A pointer to the list of transient libraries
A pointer to the overlay structure

The first of these is probably not very useful, but the other three allow
routines to access the libraries that have been loaded. For example, a 'find'
routine would be able to find a procedure no matter where it was defined
(which LIST IF can't do).

Libraries are stored as a word, which is a pointer to the next library (0
denoting the end of the list). The word is followed immediately by the
BASIC program which forms the library.

Before an OVERLAY statement has been executed, OVERPTR contains 0.
After a statement such as OVERLAY a$(), it contains a pointer to the
following structure:

OVERPTR+&OO
OVERPTR+&04
OVERPTR+&08
OVERPTR+&OC

Pointer to b<lse of OVERLAY array, ie a$(0)
Index of current OVERLAY file (or -1 if none loaded)

T oral allowed siz.e of OVERLAY area
Start of current OVERLAY file in memory.

After the word offsets come the branches useful to BASIC routines. For
example, to call STOREA, whose branch is at offset &34 from Rl4, you might
use:

STMFD R13! , {R14}
MOV
ADR
ADD

.myRet

RlO, R14
R14, myRet
PC , RlO, #&34

Keywords: Assembly language

;Save BASIC return address
;Save pointer to branches
;Set up return address to my code
;Do the 'branch'

318

VARIND

STOREA

LDMFD Rl3!, {PC} ;Return to BASIC

The internal routines are only guaranteed to work in ARM user mode. The
following functions are provided:

Entry with RO:

RO
R9
Rl2

Address of !-value, ie where to load the variable from
Type of !-value, as in CALL parameter block
LINE

Returns with RO ... R3 as the value, R9 the type of the value as follows:

R9

0
&40000000
&80000000

Type

String
Integer
Roat

Location of value

STRACC, R2 points to end ([R2]-STRACC is length)
RO
RO .. R3

Uses no other registers (including stack). Possible error if asked to take value
of an array fred(): will need Rl2 valid for this error to be reported correctly.

When floating point values are returned/required in RO .. R3, the format is as
follows:

RO
Rl
R2
R3

32-bit mantissa, normalised (so bit 31 = I)
Exponent in cxcess-128 form
Undefined
Sign. 0 =>positive, &80000000 => negative

This is provided for information only. We reserve the right to change this
format; you should treat RO .. R3 as a single item, wtthout regard to the
constituent parts.

Entry with RO .. R3 value (stay in STRACC with R2=end), as appropriate to
type of value in R9.

R4 Address of !-value (where to store the value)

Keywords: Assembly language 319

STSTORE

LVBLNK

RS
R8
R9
RI2
RI3

Type of 1-valuc (as in CALL parameter block)

ARGP
Type of value
LINE (for errors)

Stack pointer (for free space check)

Converts between various formats, for example integer and floating point
numbers, or produces an error if conversion is impossible.

Returns with RO toR 7 destroyed. Stack is not used.

This stores a string into a string variable. Entry with:

R2

R3
R4
R8
Rl2
Rl3

Length (ie address of byte beyond the last one)
Address of start of string
Address of 1-value
ARGP
LINE (for error reporting)
Stack pointer (for free space check)

The string must start on a word boundary and the length must be 2SS or less.

Uses RO, R 1, RS, R6, R 7. Preserves input registers. Stack not used.

This routine looks up a variable from the name pointed to by R8.

On entry:

R8
Rll
Rl2
Rl3

ARGP
Pointer to start of name
LINE (many errors possible, such as subscript error in array)
Stack (may call EXPR to evaluate subscripts)

The string is processed to read one variable name and provide an address and
type which can be given to V ARINO.

If a valid variable name (or more precisely l-value) was found:

z flag 0

Keywords: Assembly language 320

CREATE

RO
R9

Address of !-value

Type of !-value

If a valid variable was nm found:

Z flag

C flag 1 if there is no way the ~tring wa~ a variable name {eg o/oQ)
C flag 0 Could he a variable hut ha~n'r been created (egA)
Other register set up for a subsequent call to CREATE.

Uses all registers.

This creates a variable. Input is the failure of LVRLNK to find something.
Thus we have:

R3
R4
R8
R9
RIO
RLI
Rl2
Rl3

Second character of name or 0
Points to start of the rest of the name
ARGP
Contains the numher of zero hyte'> on the end
First character of name
Points to the end of the n;~me

LINE
Stack pointer

It 1s recommended that CREATE 1s only called immediately after a failed
LVBLNK.

CREATE uses all register~. Returns result a~ LVALNK. The LVBLNK and
CREATE routines can be combined together to provide a routine which checks
for a variable to assign to, and creates it if necessary:

STMFD Rl3!, {Rl41 ;Save re t urn address
AL LVALNK ;Look-up name
LOMNEFO Rl3!, {PCI ;ReLur.n if found
LDMCSFD Rl3!, IPCl ;Or illegal name
BL CREATE ;Create the new var
LDMFD Rl3!, {PCI ;Return

Keywords: Assembly language 321

EXPR

MATCH

This evaluates an expression pointe<.! to by Ril. On entry:

R8
RII
RI 2

RI3

ARGP
Pointer to start of string
UNE
Stack pointer

EXPR stops after reading one expression (like those in the PRINT st<Hement).

The value is returned in the snme manner as V ARIND. On exit:

Z flag
Z flag

R9
RIO
RII

I => the expression was a string
0 => the expression was a number
N flag = 1 = > expression was a floating point number
N flag = 0 = > expression was an mteger
Type
First character after the expression
Pointer to next character after RIO

The status fou nd in the Z and N flags on exit can be recreateJ by executing
the instruction T EQ R 9 , # 0 .

One useful thing about EXPR is that it ennhb the machme code to call a
BASIC routine. You Jo this by evaluating a string which has a call to a user
Jefincc.l function in it. For example, the string you evalum e might be
" FNi nput " . The function could perform some task which is teJious to do in
machine code, such as input a fl oating point number.

One shghr complication ts that the string to he e"aluated must ha"e been
tokentscJ already, so you must either call MATCH descnbed below, or store
the stnng with the tokeniseJ form ofFN (the byte &A4).

This routine takes a text string and tokcniscs it to another string. Strings
passeJ to EXPR and LVBLNK must be tokenised first if they contain any
BASIC keywords. On entry:

Keywords: Assembly language 322

Rl
R2
R3
R4
RU

Point~ to the source string (terminated by ASCII I 3)
Points to the destination :.tnng
MODE
CONSTA
Stack pointer

Note that MATCH doe~ not need ARGP or LINE.

' The MODE value is 0 for left-mode (before an sign, or at the ~tart of a

statement) and l for nght-mode (in an expression). The d1fference is in the
way that BASIC tokeni:.e~ the pseudo-variables. Each of the~e has two tokem,
one for when it is used as a statement (eg TIME= ...) and one when it is used as
a function (PRINT TIME). As you will generally use MATCII ro tokenise an
expression string, you will usc MODE= l.

The CONST A value b 0 if you do nor want BASIC to convert mtegers wh1ch
could be line numbers (m the range 0 to 65279) into internal fonnat, and l if
you do. Internal format consists of the token &80 followed by three byte~
which contain the encoded line number. A property of these bytes is that they
lie in the range 64 tO 127, and therefor~;: do not contain control codes or tokens.

Encoded constants arc used for line numbers after GOTO, GOSUB,
RESTORE, THEN and ELSE keywords. Because they are of f1xed length, the
program can be renumbered without havmg to move program lines about.
Because they don't conwin special characters, certain BASIC scnrch operatiom
(eg for rhe ELSE in a single-line IF) are speeded up.

Both MODE and CONST A will be updated during the use of the routine. For

example, GOTO will ~et CONST A to &8D to read the line number, PRINT
will change MODE to I to read an expre~-,ion. The tahle hclow summames
the settmg of MODE and CONSTA:

MODE
0
0

CONSTA
0
&8D
0
&8D

Meaning
Tokenise a statement
Used to read line number at the start of <l line
Tokenise an expression
Tokenise an expression after GOTO etc.

Keywords: Assembly language 323

TOKENADDR

FSTA

The routine uses ROtoRS.

On exit, Rl and R2 arc left pointing one byte beyond the terminating CR
codes of the strings.

R S contains status information, it can usually be disregarded: values greater
than or equal to &1000 imply mismatched brackets. Bit 8 set implies that a
number which was too large to be encoded using &80 (ic was greater than
65279) was found. If (R5 AND 255) = l then mismatched string quotes were
found.

Notes: if the first item in the source string is a line number and CONST A
is set on entry, the &80 byte will not be inserted into the destination
string, but a space will be left for it. It is safe for the source and
destination strings to be the same, as long as the destination never
becomes longer than the source (which CONSTA line numbers can do.)

This routine converts a token value into a pointer to the text string representing
it. On entry:

RO
RI2

The token value
Pointer to next byte of token string

The value of Rl2 is only used when two-byte tokens arc required. No other
registers are used or required.

Returns R I as a pointer to the first character of the string, terminated by a
byte whose value is & ?F or greater. RO is set to the address of the start of the
token table itself. R 12 will have been incremented by one if a two-byte token
has been used.

Store a four-word FP value into a five-byte variable. On entry:

RO .. R3
R9

On exit:

R2

Source floating pointer value
Pointer to destination value

Altered (but this doesn't affect the FP value)

Keywords: Assembly language 324

FLDA

FADD/FMUL

FSUB/FDIV

No errors. Stack not u~ed.

Load <I five-byte variable anto a four-word FP value. On entry:

R9 Pointer w source value

On ex it:

RO .. R3 = Lo:-tded FP value

No error~. Stack not u~ed.

Add/multiply the four-word FP value in RO .. R3 by the variable at [R 9). On

entry:

RO .. R3
R9

On extt:

RO .. R3
R4 .. R7

Source FP value

Pointer w five-byte varmhlc.

Added/multiplied by [R9]
Corrupted

Overflow errors possible. Stack not used .

Subtract RO .. R3 from [R9] or divide IR9) hy RO .. R3, with the re~ulr in RO .. R 3.

On entry:

RO .. R3
R9

On exit:

RO .. R3
R4 .. R7

FP value

Pointer to five-byte variable.

[R9] mmu~ old value or [R9] /old value

Corrupted

Overllow errors possible. Divide by zero possible for FDIV. Stack not used.

Keywords: Assembly language 325

FLOAT

FIX

FSQRT

BBC/Master
compatible calls

Convert integer to four-word floating point value. On entry:

RO

On exit:

RO .. R3
R9

Integer

Floated version
&80000000 (floating type code)

No overflow possible. Swck not used.

Convt:rt four-word floaung point value to an integer. On entry:

RO .. R) =

On exit:

RO
R9

Floating point value

Fixed ver~ion (rounded towards 0)
& 40000000 (integer type code)

Overflow error possible. Stack not u~ed.

Take the -,quare rom of the floating potnt number in RO .. R 3. On entry:

RO .. R3 =

On exit:

RO .. R3 "
RO .. R7

Floating point value

SQR (old value)

Corrupt

Negative root error possible. Stack not u~ed.

If the CALL statement •~ used with an address whtch corresponds to a MOS
entry potnt on the BBC Micro/ Acorn Electron/Ma~ter 128 ~enes machtnes and
there are no other parameters, then BASIC treats the call as tf tt had heen
made from one of those machines. The way in which the registers arc
initialised is then as fo llows:

RO A1>n
Rl X%

Keywords: Assembly language 326

Examples

R2 Y%
C flag C% (bit 0)

Thi~ means that program~ writtt:n to run on earlier machine~ u•ing legal MOS
calll> can continue to work. For ex::.mple, the sequence

10 osbyte=&FFF4
1000 Allc=138
1010 X"' 0
1020 Y%=65
1030 CALL osbyte

will he interpreted as the equivalent SYS OS_Ryte call:

1000 SYS "OS_Byte ", l38 , 0 ,65

This facility is proviJeJ for backwards compatibility only. You ~houiJ not use
1t 111 new program~. Abo, you must be c::trcful that any machmc code you
assemble in a program Joes not lie in lhe address range &FFCE to &FFF7;
otherwise when you call il, it might be mistaken for a call 10 an old MOS
routine.

CALL invertMatrix , a()
CALL sampleWaveform, start% , end% , values%()

Keywords: Assembly language 327

Syntax

Arguments

Purpose

SYS
A statement for calling operating system routines.

SYS exprl [1 [exprn] ...) [TO [varl] [1 [var2] ...] [;flags]]

expr 1 defines which operating system routine is to he called. It may evaluate
to an integer numeric giving the routine's SWI number, or to a string which is
the name of a routine. BASIC uses the SWI OS_SWINumberFromString to
convert from a string to number, so the case of the letters in the string must
match exactly that of the SWI name.

The opttonal list of expressions following this, up to a maximum of eight, is
passed to the routine via registers RO to R7. If the expression evaluates to a
numeric, it is converted to an integer and placed d irectly in a register. If the
expression evaluates to a string, the string is placed on BASIC's stack,
beginning at a word boundary and terminated with a null character. A pointer
to it is put in the regbter. Any expressions not given (indicated hy adjacent
commas 1 1) default to zero.

The optional TO is followed by a variable list. Each variable is assigned any
value returned by the routine in the registers RO to R7 respectively. If the
variable to assign to is numeric, the integer in the register is converted to an
appropriate format and ~tored in it. If the variable to assign to is a string, the
register i~> treated as a pointer to a string terminated hy ASCII 0, I 0 or 13 and
this string is assigned to the variable. The strings given on input can be
overwritten, but should not be extended. As with the input expressions, output
variables may be omitted using adjacent commas in the list.

flags is an optional variable, to which the processor flag bits are returned.
The value stored in the flags value is a binary number of the form o/oNZCV,
where the letters stand for the result flags of the ARM status register.

SYS provtdes access to the routines supplied by the operating system for
entering and outputting characters, error handling, sprite manipulation, and so
on. Details of these operating system routines is beyond the scope of this
book, but can be found in the Programmer's Reference Manual.

Keywords: Assembly language 328

Examples SYS "OS ReadMonotonicTime " TO time
SYS "OS_Sprite0p", 28 ,,"MYSPRITE",, 3
SYS "font_FindFont ",,"Homerton .Medium", l2*16, l2*16 TO f%

Keywords: Assembly language 329

Syntax

Argument

Result

Example

USR
Function returning the value of RO after executing a machine code routine.

USR factor

The address of the machine code to be called. Calls to the 6502-based BBC
Microcomputer operating systems are handled by USR for compatibility.

USR is similar to CALL except that it returns a result and cannot be passed
any parameters. On entry to the routine, RO .. Rl4 are as for CALL.

An integer, being the contents of RO on return to BASIC.

DEF FNmachinecode =USR(start_of_code)

Keywords: Assembly language 330

Keywords: Structures

Syntax

Arguments

Examples

CASE
Statement marking the start of a CASE ... OF ... WHEN ... OTHERWISE ...
ENDCASE construct. It must be the last statement on the line.

CASE expression OF

WHEN expression [,expression ...][: statements ...]
[statements]
(WHEN ...]

OTHERWISE [statements ...]
[statements ...]

ENDCASE

expression can be any numeric or string expression. The value of expression
is compared with the values of each of the expressions in the list following the
first WHEN statement. If a match is found, then the block of statements
following the WHEN down to either the next WHEN or OTHERWISE or ENDCASE

is executed. Then control moves on to the statement following the ENDCASE. If
there is no match, then the next WHEN is used, if it exists. OTHERWISE is
equivalent to a WHEN but matches any value.

CASE A$ OF

CASE Y*2 + X*3 OF
CASE GET$ OF

Keywords: Structures 331

Syntax

Examples

ELSE
Part of the ON GOTO/GOSUB/PROC ... ELSE or IF ... THEN ... ELSE or IF
... THEN ... ELSE ... ENDIF construct:..

Sec IF and ON entries, as appropriate.

Notes: ELSE may occur anywhere in the program, hut is only meaningful
after an IF (multi- or single-line) or ON ... GOSUB/GOTO/PROC
statement. When used as part of a multi-line IF statement, it must he the
first non-space object on the line.

IF a=b THEN PRINT " hello " ELSE PRINT "good-bye "
IF ok ELSE PRINT " Error"
ON choice GOSUB 100 , 200 , 300 ,4 00 ELSE PRINT" Bad choice"

IF num>=O THEN
PRINT SQR(num)
ELSE
PRINT "Negat ive number"
PRINT SQR(-num)

END IF

Keywords: Structures 332

Syntax

ENDCASE
Statement marking the end of a CASE .. . OF . . . WHEN . . . OTHER WISE ...
ENDCASE construct.

ENDCASE

Notes: ENDCASE must be the first non-space object on the line. When
the statements corresponding to a WHEN or OTHERWISE statement
have been executed, control then jumps to the statement following the
ENDCASE. If ENDCASE itself is executed, it signals the end of the
CASE statement, no matches having been made. Control then continues as
normal.

Keywords: Structures 333

Syntax

END IF
Terminates an IF ... THEN ... ELSE ... ENDIF construct.

END IF

Notes: ENDIF marks the end of a block-structured IF statement. It mu~t
be the first non-space object on a line. When the statements
corresponding to rhe THEN or ELSE statement have been executed,
control jumps to the statement following the ENDIF. If ENDIF itself is
executed, it signals the end of the IF statement, nothing having been
executed as a result of it. Control then continues as normal.

Keywords: Structures 334

Syntax

Example

END WHILE
Statement to terminate a WHILE ... ENDWHILE loop.

ENOWHILE

Notes: When an ENDWHILE is executed, control loops back to the
corresponding WHILE statement. The statements forming the WHILE ...
ENDWHILE loop are executed until the condition following the
matching WHILE evaluates to FALSE, whereupon control jumps to the
statement following the ENDWHILE.

MODE 15
INPUT X
WHILE X > 0

GCOL X
CIRCLE FILL 640 , 512 ,X
X -= 4

ENDWHILE

Keywords : Structures 335

Syntax

Arguments

Examples

FOR
Part of the FOR ... NEXT statement.

FOR variable=expression TO expression [STEP expression]

The variable can be any numeric variable reference. The expressions can be
any numeric expressions, though they must lie in the integer range if the
variable is an integer one. It is recommended that integer looping variables
are used for the following reasons:

• the loops go faster

• rounding errors are avoided.

If the STEP part is omitted, the step is taken to be + 1. The action of the FOR
loop is as follows. The looping variable is set to the first expression. The
limit expression and step, if present, arc remembered for later. The
statements up to the matching NEXT are executed. At this stage, the step is
added to the looping variable. The termination condition is that, for positive
steps, the looping variable has become greater than the limit, and for negative
steps it has become less than the limit. lf this condition is met, control
continues at the statement after the NEXT. Otherwise, control jumps back to
the statement after the NEXT.

Notes: The statements between a FOR and its corresponding NEXT are
executed at least once as the test for loop termination is performed at the
NEXT rather than the FOR. Thus a loop started with FOR 1=1 TO 0
executes once, with l set to 1 in the body of the loop. The value of the
looping variable when the loop has finished should be treated as
undefined, and should not be used before being reset by an assignment.

FOR addr%=200 TO 8000 STEP 4
FOR I=l TO LEN(a$)

Keywords : Structures 336

Syntax

Arguments (1)

Statement to execute statements conditionally.

(l) IF expr [THEN] [statements ...] [[ELSE] [statements ...]]
(2)
IF expression THEN

[statements ...]
[ELSE [statements ...]
statements ...]

END IF

IF

expr is treated as a truth value. If it is non-zero, it is counted as TRUE and
any statements in the THEN part are executed. If the expression evaluates
to zero (FALSE), then the ELSE pan statements arc executed.

statements is either a list of zero or more statements separated by colons,
or a line number. In the latter case there is an implied GOTO after the THEN
(which has to be present) or ELSE.

Notes: The THEN is optional before statements except before *
commands. For example:

IF a THEN *CAT not IF a *CAT

The ELSE part matches any IF, so be wary of nesting !Fs on a line.
Constructs of the form:

IF a THEN ... IF b THEN ... ELSE ...

should be avoided because the ELSE pan might match either the first or
second IF depending on the values of a and b. To avoid the ambiguity,
use a multi-line IF of the form:

Keywords: Structures 337

Arguments (2)

Examples

IF a THEN
IF b THEN

ELSE

END IF
END IF

or

IF a THEN
IF b THEN

END IF

ELSE REM part of IF a

END IF

depending on the effect required.

However, the form:

IF a T HEN ... ELSE IF b THEN ...

is not ambiguous and can be used with no problems.

expression is treated as a truth value. If it is non-zero, it is counted as

TRUE and any statements on the line after the THEN down to either an ELSE

or an ENDIF are executed. If the expression evaluates to zero (FALSE), any
statements following the ELSE (if present) until the ENDIF are executed.

Note that in this form, THEN must be the last thing on the line.

IF temp<=lO PROClow_temp
IF a %>b% THEN SWAP a %, b% ELSE PRINT " No swap"

IF BA2 >= 4*A*C THEN
PROCroots (A,B, C)

END IF
IF r$ = " Y" OR r$ = "y " THEN

PRINT "YES"
ELSE

PRINT " NO "
STOP

END IF

Keywords: Structures 338

Syntax

Arguments

Examples

NEXT
Part of the FOR ... TO ... NEXT structure.

NEXT [variable][, I variable] ...]

The variables are of any numeric type, and if present should correspond to

the variable used to open the loop. See the FOR entry for a description of the
mechanism of the FO R ... NEXT loop.

Notes: The variables after the NEXT should always be specified as this
enables BASIC to detect improperly nested loops. If the loop variable
given after a NEXT does not correspond to the innermost open loop,
BASIC closes the inner loops until a matching looping variable is found.
In order for the indentation produced by LISTO 2 to be useful, you
should only close one loop per NEXT statement.

NEXT a%
NEXT
NEXT j% , i%
NEXT,,,

REM close one loop
REM close two loops
REM c l ose four loops

Keywords : Structures 339

Syntax

Arguments

Examples

OF
Part of the CASE ... OF ... WHEN ... OTHER WISE ... EN DCASE statement.

CASE expression OF

expression may yield any type of value: integer, floating point, or string.

Notes: The OF keyword must he the last item on the line. See the CASE
keyword for more details.

CAS E n % OF

CASE LEFT$(answer$) OF

Keywords: Structures 340

Syntax

Examples

OTHERWISE
Part of the CASE ... OF ... WHEN ... OTHER WISE ... ENDCASE statement.

See CASE

Notes: The OTHERWISE statement is executed only when the previous
WHEN statements have failed to match the value of the CASE
expression. OTHERWISE matches any values. If it is present, all
statements following it will be executed until the matching ENDCASE is
encountered.

OTHERWISE PRINT "Bad input"

OTHERWISE PROCdraw (x, y) : PROCwait

Keywords: Structures 341

Syntax

Purpose

Examples

REPEAT
Statement marking start of a REPEAT ... UNTIL loop.

REPEAT

The statements following REPEAT arc repeatedly executed until the condition
following the matching UNTIL evaluates to FALSE. The statements may occur
over several program lines, or may all be on the same line separated by
colons. The second approach is useful in immediate statements. The statements
are executed al least once.

REPEAT UNTIL INKEY-99

REPEAT
a% +-=l : c%=c% >> 1

UNTIL c%=0

Keywords: Structures

REM wait f or SPACE

342

Syntax

Examples

THEN
Optional part of a single line IF ... THEN ... ELSE statement and compulsory
part of mult i-line IF ... THEN ... ELSE ... ENDIF statement.

See IF

IF a>3 THEN PRINT " Too large " : REM THEN optional
IF mem THEN HIMEM = HIMEM - &2000
IF A$ = " Y" THEN 1200 ELSE GOTO 1 40 0

MODE 1
IF colour$

COLOUR 1

CLS
ELSE
COLOUR 0

END IF

" red" THEN

CLS

Keywords: Structures 343

Syntax

Argument

Examples

UNTIL
Statement to terminate a REPEAT loop.

UNTIL expression

expression can be any numeric expression which can be evaluated to give a
truth value. If it is zero (FALSE), control passes back to the statement
immediately after the corresponding REPEAT. If the expression is non-zero
(TRUE), control continues to the statement after the UNTIL.

DEF PROCirritate
REPEAT VDU 7 : UNTIL FALSE
ENDPROC

REPEAT PROCmove:UNTIL gameOver

Keywords : Structures 344

Syntax

Arguments

Examples

WHEN
Pan of the CASE ... O F ... WHEN ... OTHER WISE ... ENOCASE statement.

WHEN expression [, expression ...) I: statements]
!statements)

WHEN is followed by a list of expressiom separateJ by commas. These

expressions should evaluate to the same type as that of the expression
following the corresponding CASE statement. If the value of the expression
following the CASE statement matche~ that of any of the list following the
WHEN, statements are executed and control is then passed to the
statement following the ENDCASE.

Notes: WHEN must be the first non-space object on a line. A CASE
statement can contain any number of WHEN statements, but only the
statements of the first one which contains a matching value will be
executed. To match any value, an OTHERWISE should be used.

WHEN 1 : PROCload
WHEN 2 , 4 , 6 , 8 : PRINT " Even " : remainder• 0
WHEN " Y"," y "," YES "," Yes "," yes " : PROCgame

Keywords : Structures 345

Syntax

Arguments

Examples

WHILE
Statement marking the sum of a WHILE ... ENDWHILE loop.

WHILE expression

express ion can be any numeric which can he evaluated to give a truth value.
If it is zero (FALSE), control passes forward to the :.tatement immediately
after the corresponding ENDWHILE. If it is non-zero, control conunues unul
the ENDWHILE statement is reached, then loop~ back to the WHILE
statement, and e xpression is re-evaluated.

Note: The statements making up the body of the WHILE ... ENDWHILE
loop arc never executed if the mitial value of expression i!> FALSE.

WHILE TIME < 1000
PROCdraw

ENDWHILE

WH ILE flag PROCmainloop

Keywords: Structures

ENDWH ILE

346

Keywords: Graphics

Syntax

Purpose

Examples

BY
Optional part of MOVE, ORA W, POINT and FILL :.tatements.

See the above-mentioned keywords.

The BY keyword changes the effect of certain graphics statements. In particular
it indicates that the co-ordinates given in the ~;tatement arc relntive rather than
absolute. For example, POINT BY 100,1 00 means plot a point at co
ord inate~ displaced hy (100,100) from the current graphic~ cursor position,
rather th<tn a point which is at (100,100).

In terms of its effect at the VDU driver level, BY makes BASIC use the
relati vc forms of the appropriate OS_ P 1 o t calls, instead of the ab~olll[e ones.

MOVE BY 4*x%, 4*y %
PO I NT BY 100,0
DRAW BY x% *1 6 , y % 4
FILL BY x% , y %

Keywords: Graphics 347

Syntax

Arguments

Examples

CIRCLE
Statement to Jraw a circle.

CIRCLE IF I LL]expressionl,expression2,expression3

The expressions arc integers in the range -32767 to + 32768. The first two
values give the x and y co-ordinates of the centre of the circle. The third gives
the radius. CIRCLE produces a circle outline, whereas CI RCLE FILL plots a
solid circle. The current graphics foreground colour and action arc used.

Note: In both cases, the position of the graphics cursor is updated to lie at
a position on the circumference which has an x co-ordinate of expression! +
expression3 and a y co-ordinate of expression2. The 'previous graphics
cursor' position (as used by, for example, triangle plotting) will be
updateJ to lie at the centre of the circle plotted.

CIRCLE 640,512,50
CIRCLE FILL RND(1278),RND(1022),RND(200)+50

Keywords: Graphics 348

Syntax

Examples

CLG
Statement to clear the graphic:. viewpon to the graphic:. background colour,
u:.ing the graphics background action.

CLG

CLG

MODE 1
GCOL 130
VDU 24 , 200 ; 200 ; 1080 ; 824 ;
CLG

Keywords: Graphics 349

Syntax

Examples

CLS
Statement to clear the text viewport to the text background colour.

CLS

Notes: C LS also resets COUNT to zero and moves the text cursor to its
home position, which is normally the top left of the text window.

CLS

MODE 1
COLOUR 129
VDU 28 , 4 , 28 , 35 , 4

CLS

Keywords: Graphics 350

Syntax

Arguments (1)

Arguments (2)

Arguments (3)

COLOUR (COLOR)
Statement to set the text colours or alter the palette settings.

(1) COLOUR expression !TINT expression]
(2) COLOUR expression , expression
0) COLOUR expressi on, expression, e xpression, e xpre ssion

expression is an integer in the range 0 to 255. The range 0 to 127 sets the
text foreground colour. Adding 128 to this (ie 128 to 255) sets the text
background colour. The colour is treated MOD the number of colours in the
current mode. The argument is the logical colour. For a lt:.t of the default
logical colours, see the chapter Screen modes.

The optional TINT is only effective in 256-colour modes. It selects the amount
of white to be added to the colour. The value can lie in the range 0 to 255,
with only the value!oi 0, 64, 128 and 192 currently being used to obtain
different whiteness level:.. Colours in the 2 56-colour modes are in the range 0
to 63.

The first expression is an imeger in tht: range 0 to 15 giving the logical colour
number. The second expression is an integer in the range 0 to 15 giving the
actual colour to be displayed when the logical colour is used. The actual
colour numbers corre:.ponJ to the default colours available in 16-colour
mode:.: eight steady colours and eight flashing colours. The colour list is given
in the chapter: Screen modes.

This form of the command sets the palene, so any changes are vbihlc
immediately.

The first expression is an integer in the range 0 to 15 giving the logical colour
number. The next three expressions are integers in the range 0 to 255 giving
the amount of red, green and blue which .uc to be assigned to that logical
colour. Only the top four bits of each arc relevant with tht: current video
display hardware. Thus distinct levels arc 0, 16, 3 2, ...

Nores: The keyword is listed as COLOUR in programs, even if it was
typed in using the alternative spelling.

In all modes the default state, before any changes to the palette, dictates
that colour 0 is black and colour 63 i~ white.

Keywords: Graphics 351

Examples

Only colours 0 and I arc unique in two-colour modes. After that the cycle
repeats. Similarly, only colours 0, I, 2 and 3 are distinct in the four
colour modes.

In WIMP-based programs, you should use rhe call Wimp_SetPalette
to control the palcLte.

COLOUR 128+1 : REM text background colour = 1
COLOUR 1 , ~ : REM logical colour 1 = colour 5 (magenta)
COLOUR 1 , 255 , 255 , 255 : REM logical colour 1 = white

Keywords: Graphics 352

Syntax

Arguments

Examples

DRAW
Statement to draw a line to specified co-ordinates.

DRAW [BY]expression,expression

The rwo expressions give the co-ordinates of one of the end points of a straight
line. The other end point is given by the current graphics cursor position. After
the line has been drawn (using the graphics foreground colour and action), the
graphics cursor is updated to the co-ordinates given in the ORA W ~tatement.

If the keyword BY is omitted, the co-ordinate:. are absolute. That is, they give
the position of the enJ of the line with respect to the graph1c~ origin. If BY i~

included, the co-ordinates arc relative. That means they give the position of the
enJ of the line with respect to the current graphics cursor position.

DRAW 640 , 512 : REM Draw a line to middle of the screen
DRAW BY dx% , dy ~

Keywords: Graphics 353

Syntax

Arguments

Examples

ELLIPSE
Statement to draw an ellipse.

ELLIPSE IFILL] exprl, expr2, expr3, expr4 [, expr51

exprl to expr5 are mteger expressions. The first two give the co-ordinates of

the centre of the ellipse. The third expression gives the length of the semi
major axis. This is the axis parallel with the x axis if the ellip~e is not
rotated. The founh expression gives the length of the semi-mmor axi~. Thi:. t:.
the axis parallel with they axis if the ellipse is not rotated.

The optional fifth expression gives the rotation of the ellipse, in radians, ant i
clockwise.

ELLIPSE draws the outline of an ellipse. ELLIPSE FILL plots a solid
ellip~e.

Notes: The ELLIPSE statement has some (minor) reMrictions nhout the
size of its operands: if both of the semi-axes are of length zero, then you
are not allowed to specify a rotation value. If the semt-minor axts length
is zero, then the rotation, if specified, must not be zero. The result of
trying to draw any of these 'illegal' ellipses is a Division by zero
error.

ELLIPSE 640 , 512 , 200 ,1 00
ELLIPSE FILL x%,y%,major%,minor%,ang

Keywords: Graphics 354

Syntax

Arguments

Examples

Flood-fill an area in the current foreground colour.

FILL !BY] expression , e xpression

FILL

The two expressions give the co-ordinates of the point from which the flood
fill is to commence (the 'seed' point). The filled pixels arc plotted using the
current foreground colour and action over an area bounded by non-background
colour pixels and the graphics viewport. If the seed point is in a non
background colour, then no filling takes place at all.

The graphics cursor is updated ro the co-ordinates given,

If the keyword BY is omitted, the co-ordinates are absolute. That is, they give
the position of the seed point with respect to the graphics origin. If BY is
included, the co-ordinates arc relative. That means they give the position of the
seed point with respect to the current graphics cursor position.

FILL x%, y%
FILL BY dx %, dy %

Keywords: Graphics 355

Syntax

Arguments

GCOL
Statement to set the graphic~ colours and actions.

GCOL [expressionl,] expression2 [TINT expressionJ]

GCOL sets the colour and plot mode that will be used in subsequent graphics
operations.

expressionl, if present , is an integer between 0 and 255 which determines
the plot 'action', ie how the graphics colour, expression2, wtll he combined
with what's on the screen when plotting points, lmes, etc. Its ha~•c range is 0 to
7, as shown below:

Ac tion Meaning

0 Store the colour expression2 on the screen
l OR the colour on the screen with expression2
2 AND the colour on the screen with expression2
3 EOR the colour on the screen with expression2
4 Invert the currenl colour, disregarding ext>ression2
5 Oo not affect the screen at all
6 AND the colour on the screen with the NOT expression2
7 OR the colour on the screen with the NOT expression2

Although action 5 does not actually alter the screen, each pixel ts accessed as
though the operation was taking place, so it is no quicker than the other actions.

If you aJJ n* l6 to the action number, then colour patterns are used instead of
solid colours. n is in the range l to 4 for the four basic patterns, or 5 for a
large pmtern made from the other four plflced side by side. VDU 23,2 to
VDU 2 '3 ,S are used to set the colour fill patterns. If the currently selected
pattern i~ re-defined, it becomes flC tive immediately.

If you further add 8 to the flC tion, then where the colour pattern contains the
current graphics background colour, nothing is plotted, ie that colour becomes
transparent. For example, suppose the display is a four-colour one, and the
current background colour is 129 (red).

Now, if pattern l was selected as the foreground colour (GCOL 16 , 0), a
solid rectangle would be red-yellow, as pattern 1 consists of alternating red

Keywords: Graphics 356

Examples

and yellow pixels. However, if the foreground colour was set using GCOL
2 4, 0 (adding 8 to the plot action number), then a solid rectangle would
appear yellow, with transparent 'holes' where the red pixels would have been
plotted.

Adding 8 to the action also causes sprite plotting to use the transparency
mask, if present. See the chapter Sprites for more details.

If expressionl is omirred, 0 is used, which means that the colour given is
stored onto the screen.

The colour number, expression2, is in the range 0 to 255. Values below
128 are used to set the graphics foreground colour. Other values set the
background colour. For example, colour 129 sets the background colour to 129-
128, or 1. The number is treated MOD the number of colours in the current
mode, ie 2, 4, 16 or 64. Thus in 256-colour modes, the colour range is 0 to 63
(or 128 to 191 for background).

The TINT value, if present, is used ro add one of four whiteness levels to the
64 colours available in the 256-colour modes, giving the total 256 possible
hues. expressi on3 is in the range 0 to 255, where currently the only
significant levels are 0, 64, 128 and 192.

Note: WIMP-based programs should use the call Wimp_SetColour to

change colours, not GCOL.

GCOL 2 : DRAW 100,100 : REM Draw a l i ne in colour 2
GCOL 4,128 : CLG : REM Invert the graphics window
GCOL 1 ,2 : REM OR the screen with colour 2
GCOL 1 8 TINT 1 28

Keywords: Graphics 357

Syntax

Arguments

Examples

LINE
Draw a line between two points.

LINEexpression , expression , expression,expression

The (integer) expressions are two pairs of co-ordinates between which the line
is drawn. The line is drawn using the current graphics foreground colour and
action, and the graphics cursor position is updated to the second pair of co
ordinates. It is equivalent to a MOVE followed by a ORA W.

LINE 100,100,600,700
LINE xl,yl,x2 , y2
LINE xl,yl,xl+xoffset,yl+yoffset

Keywords: Graphics 358

Syntax

Arguments (1)

Result (2)

Statement changing, or function returning, the display mode.

(I) MODE expression
(2) MODE

expression should be an integer in the range 0 to 255.

MODE

There arc 24 different modes, numbered from 0 to 23. Modes 0 to 17 arc
available on type 0 and 1 ('normal' and multi-sync) monitor~. Modes 18 to 21
arc available only on type l monitors. Modes 22 and 23 are available only on
type 2 (high-res monochrome) monitors, and type 2 monttors support only
these modes.

If expression is greMer than 128, the mode used is expression-128. Sufficient
memory, however, for two copies of the screen is reserved if the configured
screen size allows. This allows you to have one copy on display whilst you arc
updating the other, which means that smooth animation can be obtained.

Detatls of all the modes available are given in Appendix E.

Changing mode also docs the following:

• sets COUNT to zero

• set~ the text and graphics viewports to their defaults of the whole screen

• clears the screen to the current text background colour

• homes the text cursor

• moves the graphics cursor to (0,0)

• resets the logical-physical colour map (palette) to the default for the new
mtxle

• resets the colour-fill patterns to their defaults for the new mode sets the
dot pattern for doned lines to &AA and the repeat length w 8

• resets VDU's magnification.

An integer giving the current screen mode. If the screen mode was entered
using a number gre;:~ter than or equal to 128 (ie a shadow mode), this is not
reflected in the value returned by the MODE function. For example, if you
typed MODE 129, the MODE funct ion would return l.

Keywords: Graphics 359

Examples MODE 0
MODE m%+ 128
PRINT MODE

Keywords : Graphics 360

Syntax

Arguments

Examples

Statement to set the position of the graphics cursor.

MOVE [BY]expressi on ,expression

MOVE

The expressions are x and y co-ordinates of the new position for the graphics
cursor.

If the keyword BY is omitted, the co-ordinates are absolute. That is, they give

the po:.ition of the cur::.or with respect to the graphics origin. If BY is included,
the co-ordinates are relative. That means they give the new position of the
cursor with respect to the current graphics cursor position.

MOVE is equivalent to PLOT 4; MOVE BY is equivalent to PLOT 0.

MOVE 0 , 0 : REM Goto the origin
MOVE BY 4*dx%, 4*dyb

Keywords : Graphics 361

Syntax

Purpose

Examples

OFF
Statement to remove the cursor from the screen

OFF

The OFF statement switches off the flashing text cursor until it is re-enablcJ
by the ON statement, or until cursor copying is usetl.

OFF

Keywords: Graphics 362

Syntax

Purpose

Example

ON
Statement to restore the text cursor on to the screen.

ON

The ON statement re-enables the text cursor after it has been removed with an
OFF statement.

ON

Keywords: Graphics 363

Syntax

Arguments

Example

ORIGIN
Statement to move the graphics origin.

ORIGIN expression, expressi on

The expre:.sions are integer numerics in the range -32768 to +32767. They are
the absolute co-ordinates of the new graphics origin: the position of the point
(0,0). These co-ordinates are always given with respect to the bottom left
corner of the screen.

The graphics origin is used by all commands which plot graphics, such as
MOVE, LINE, PLOT , CIRCLE, and so on, and also by YOU 24 which sets a
graphics viewport.

ORIGIN 640 , 512 REM Set origin to the cent re of screen

Keywords : Graphics 364

Syntax

Arguments

Examples

PLOT
Statement performing an operating system PLOT function.

PLOTexpressionl , expression2, expression3

expressi onl is the plot number in the range from 0 to 255. For example, 85
is the plot number for an absolute triangle plot in the foreground colour. The
second and third expressions are the x and y co-ordinates respectively, in the
range -3 2 7 68 to + 3 2 7 6 7. Sec Appendix G for a full list of PLOT codes.

PLOT 85 , 100 , 100 : REM Draw a triangle
PLOT 69 , x , y : REM Plot a single point

Keywords: Graphics 365

Syntax

Arguments (1)

Arguments (2)

Examples

Statement to plot a single point or move the on-screen pointer.

(l)POINT [BY]expression,expression
(2) POINT TO expression, expression

POINT

The expreSl>ions are integers giving the co-ordinates at which the poim will be
plotted. The point is plouetl using the current graphics foreground colour and
action, antl the graphics cursor is updated to these co-ordinates.

If the keyword BY is omitted, the co-ordinates are absolute. That is, they give
the position of the point with respect to the graphic:. origin. If BY 1:. included,
the co-ordinates are relative. That meflns they give the position of the point
with respect to the current grflphics cursor position.

The expressions are integers giving the co-ordinate:. at which the on-screen
pointer will be placed if it is not linked to the mou:.e position. If the pointer
is linkeJ to the mouse this commanJ is ignored. See MOUSE for more details
ahout unlinking the pointer from the mouse.

POINT 320 ,600
POINT x .., +4 , Y%+4
POINT BY 100 , 0
POINT TO 640 ,51 2

Keywords: Graphics 366

Syntax

Arguments

Result

Example

POINT(
Finds the logical colour of a graphics pixel.

POINT(expression , expression)

The expressions are the co-ordinates of the pixel whose colour is required.

This is an integer in the range -1 to n, where n is one less than the number of
logical colours in the current mode. For example, n is 15 in a 16-colour mode.
If the point specified lies outside the current graphics viewport, -1 is returned.
Otherwise, it is the logical colour of the point.

Note that the value returned is in the range 0 to 63 for the 2 56-colour modes.
The function TINT(x,y) will read the tint of the given co-ordinate, returning a
value in the range 0 to 255.

REPEAT Y%+=4:UNTIL POINT(640,Y%)<>0

Keywords: Graphics 367

Syntax

Arguments (1)

Purpose

Arguments (2)

Purpose

Purpose (3)

RECTANGLE
Smtement lO draw a rectangle or copy/move a rectangular area of the screen
or set the mouse bounding box.

(1) RECTANGLE (FILL] expl , exp2, exp31, exp4]
(2) RECTANGLE [F ILL] expl , exp2, e xp3[, exp4] TO exp5 , exp6
(3) MOUSE RECTANGLE expl , exp2 , exp3 , exp4

expl and exp2 are integer expressions in the range -32768 to +32767. They
are the co-ordinates of one of the corners of the rectangle. exp3 is the width
of the rectangle. It is also the height (giving a square) unless exp4 is given, in
which case this is the height.

RECTANGLE draws the outline of a rectangle which is aligned with the x and y
axes. RECTANGLE FILL plots a solid axes-aligned rectangle . The rectangles
are d rawn using the current graphics foreground colour and action.

RECTANGLE leaves the graphics cursor at the starting position. However, with
RECTANGLE F I LL, the graphics cursor is updated to the position of the
opposite corner to the one specifi ed.

The first four arguments define a rectangular area of the screen, as for the
first usage described above. exp5 and e xp6 give the position to which the
lower left corner of the source rectangle is copied or moved.

RECTANGLE ... TO copies the original rectangular area defined to the new
position, hence making a second copy of a rectangular screen area. Pixels in
the source that are outside of the current graphics viewport are drawn in the
current graphics background colour.

RECTANGLE FI LL ... TO moves the original rectangular area defined to the
new position, replacing the old }]rea with the current graphics background
colour. ln both cases the new position is allowed to overlap with the
rectangular area.

To set a bounding box for the mouse pointer. See MOUSE for details.

Keywords: Graphics 368

Examples RECTANGLE 500 , 500, - 200, - 100
RECTANGLE FILL bl%(1} , bl%(2} , width%, height%
RECTANGLE 400 , 400 , 60 , 60 TO 460 , 400
RECTANGLE FILL x , y , size , size TO xnew , ynew

Keywords: Graphics 369

Syntax

Arguments (1) and (2)

Arguments (3)

Result (4)

Examples

TINT
Part of the COLOUR or GCOL statements for u~e in 256-colour modes, or a
statement o n its own, or a function.

(l) COLOUR expr [TINT expression]
(2) GCOL [expr, , expr [TINT expression]
(3) TINT expression , expression
(4)TINT(expression , expression)

For usage~ (I) and (2), l>ec COLOUR <1nJ GCOL respectively.

The T: NT l>tatement take~ two exprc~~•tms. The ftN •~ a number in rhe range
0 to 3 which indicates which type of colour\ tint value •~ hcing set:

Number Colour affected

0 Text foreground
1 Text background
2 G raphics foreground
3 Graphics background

The second expression is a number in the range 0 to 255. This giws the amount
of white w add ro the hasic colour. C urrently, only the wp two hits of tht,
number arc stgnificant, ~o 0, 64, 128 and 192 give distmct tint value~.

The two lines below arc equivalent:

GCOL 34 TINT 128
GCO~ 34 : TINT 2 ,1 28

The two expressions within the bmckets give the co-ordinate~ of the point
whose tint is required. The result is the tint for that pi xel, currently one of the
va lues 0, 64, 128 or 192. If the pixel is outside the graphic~ window, 0 is
returned, :-o POINT () ,hould he u~ed to check that the poinr is valid fir-.r.

CO~OUR l~J% TINT N~
GCOL 128+63 TINT 255 : REM solid whit.e
GCOL 3 TINT TINT (x, y) : REM NB t wo uses at once!
t=TIN-;:"(0 , 0)

Keywords : Graphics 370

Syntax

Arguments

Examples

VDU
Statement sending byte:. to the VDU driven..

VDU lexpr] [, or ; or I or expr] ... [; or I)

Any expressions may be followed by a comma, a semi-colon, a vertical bar, or
nothing.

Expressions followed by a semi-colon arc :.ent as two bytes (low byte first) to

the operating system VOU drivers.

Expres~tons followed hy a comma (or nothing) are sent to the VDU drivers a~

one hyte, taken from the least significant byte of the expression.

The vertical bar means , 0, 0 , 0, 0 , 0, 0 , 0, 0, 0 , and so sends the expression

before it as a byte followed by nine zero bytes. Since the maximum number
of parameters required by any of the VDU statements is nine, the vertical har
ensures that sufficient parameters have heen sent for any particular call. Any
surplu~ ones are irrelevant, since VDU 0 does nothing.

Notes: For the meanings of the VDU codes, sec the chapter VDU
Commands.

VDU 24 ,400;300;100 0 ; 740 ; : REM set up a graphics window
VDU 7 , 7 : REM Emit 2 beeps
VDU 23 , 9 ,200 23 , 10 , 2001 : Slow down the flash rate

Keywords: Graphics 371

Syntax

Purpose

Examples

WAIT
Statement to wait for enJ of the current display frame. Wa1ting until the enJ
of the frame maximises the amount of time ;lVadable in wh1ch to draw object~
whde the electron beam i~ 'hlanked'.

WAIT

To cnahlc a program to ~ynchrnnise an imation effects with the scanning of the
display h;udware.

MODE 0
a=O
REPEAT

PO-NT 1279 , 500~200'SINa

at'-'RADS
WATT:RECTANGLE FILL 0,300,1279,400 TO -4,300

UNTIL FALSE

Keywords: Graphics 372

VDU commands

The YOU (Visual Display Unit) driver is a part of the operating system which
provides a set of routines used to display all text and graphical output. Any
bytes sent to the VDU driver are treated either as characters to be displayed
or as VDU commands: instructions which tell the driver to perform a specific
function. Their interpretation depends on their ASCII values as follows:

ASCII value

0-31
32-126
127
128-159
160-255

Interpretation

YOU commands
Characters to be JisplaycJ
Delete
Characters to he displayed / teletext comrol codes
International characters to be displayed

The statement YOU X is equivalent to PRINT CHR$(X); except that VDU
ignores the value of WIDTH anJ docs not affect COUNT.

In addition, the YOU commands can be given from the keyboard by holding
down <Ctrl> and one further key as shown in the table below. For example, to

give the command YOU 0, you would press <Ctrl> and <@.> Some YOU
commands require extra <.lata to be sent. T he number of bytes extra is also given
in the table.

VDU Code <Ctri> plus Extra bytes Meaning

0 2 or@ 0 Do nothing

A Sen<.! next character to printer

only
2 B 0 Enable printer
3 c 0 Disable printer

4 D 0 Write text at text cursor

5 E 0 Write text at graphics cursor

VDU commands 373

VDUO

VDU 1

VDU2

VDU 3

6
7
8
9
10
11
12
13
line
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

F

G

H

I

J

K

L

M

N

0
p

Q
R

s
T

u
v
w
X
y

z
[

\
1
6 or"

- or

0
0
0
0
0
0
0
0

0
0
0
I
2
s
0
0
I

9
8
5
0
0
4
4
0
2

The YDU commands are descnhed below.

VDU 0 does nothing.

Enable YDU Jnver
Generate hell :-ounJ

Move cur!tor hack one character
Move curwr on one space
Move cursor down one line

Move cursor up one line
Clear text viewport
Move cur~:>or to start of current

Turn on page mode
Turn off page mode
Clear graphics viewport
Define text colour
Define graphics colour
Define logical colour
Restore defnult logical colours
Disable YOU drivers
Select screen mode
Multi-purpose command
Define graphtc~:> viewport
PLOT
Restore defnult viewports
Does nothing
Define text viewport
Define graphics origin
Home text cursor
Move text cursor

V DU 1 semls the next character to the printer only, if the printer has been
enabled (with YOU 2 for example).

VDU 2 causes all subsequen t printable characters, nnd certain control
characters, to be sent to the printer as well as to the screen.

VDU 3 cancels the effects of YOU 2 so that all l>llh~equent printable

VDU commands 374

VDU4

VDUS

VDU 6

VDU7

VDU8

VDU9

VDU10

VDU 11

VDU12

VDU13

characters are sent to the screen only.

VDU 4 causes a ll subsequent printable characters to be printed at the current
text cursor position using the current text foreground colour. Cursor control
characters (eg carriage return and line feed) affect the text cursor and not the
graphics cursor.

VDU 5 links the text and graphics cursors and causes all subsequent printable
characters to be printed at the current graphics cursor position using the
current graphics foreground colour and action. Cursor control characters (eg
carriage return and line feed) affect the graphics cursor and not the text cursor.

VDU 6 restores the functions of the YOU driver after it has been disabled
(using YOU 21) . Hence, this command causes all subsequent printable
characters to be sent to the screen.

VDU 7 generates the bell sound.

VDU 8 causes either the text cursor (by default or after a YOU 4 command)
or the graphics cursor (after a YOU 5 command) to be moved back one
character position. It does not cause the last character to be deleted. Note that
during command input, <Ctrl> H acts as the <Delete> key, so the last
character will be deleted.

VDU 9 causes e ither the text cursor (by default or after a YOU 4 command)
or the graphics cursor (after a YOU 5 command) to be moved on one
character position.

VDU 10 causes either the text cursor (by default or after a YOU 4 command)
or the graphics cursor (after a YOU 5 command) to be moved on one line.

VDU 11 causes either the text cursor (by default or after a YDU 4 command)
or the graphics cursor (after a YOU 5 command) to be moved back one line.

VDU 12 clears either the current text viewport (by default or after a YOU 4
command) or the current graphics viewport (after a YOU 5 command) to the
current text or graphics background colour respectively. In addition the text or
graphics cursor is moved to its home position (see YDU 30).

VDU 13 causes the text cursor (by default or after a YOU 4 command) or the
graphics cursor (after a YDU 5 command) to be moved to the start of the
current line.

VDU commands 375

VDU14

VDU15

VDU16

VDU 17,n

VDU 17,k,c

VDU 19,1 ,p,r ,g,b

VDU 20

VDU 21

VDU21

VDU 23,p1 ,p2,p3,p4,
p5,p6,p7,p8,p9

VDU 1 4 enters paged mode, and so makes the screen dbplay wait for
<Shift> or <Scroll Lock> (twice) to be pressed before Jbplaying the next
page.

VDU 1 ~ cancels the effect of VDU 14 so that scrolling is unrestricted.

VDU 16 clears the current graphics v1ewport to the current graphics
background colour using the graphics and action. It does not affect the position
of the grnphics cursor.

VDU l 7 sets either the text foreground (n< I 28) or background (n>= 128)
colours to the value n. It b equivalent to COLOUR n.

VDU • 8 1s used to define either the graphiC!> foreground or hac.kground colour
and the way in which it is to be applied to the screen. The BASIC equivalent
is GCOL- k,c.

VDU 1 9 is used to define the physical colours associated with the logical
colour I.

If p <= IS & p >= 0, r, g and b are ignored, and one of the 'tandard colour
settings is used. This is equ1valent to COLOUR l,p.

If p = 16, the palette is set up to contain the levels of red, green and blue
dictated by r, g and b. This is equivalent to COLOUR l,r,g,b.

If p = 24, the border is given colour components according tor, g and b.

If p = 2S, the mouse logtcal colour l is given colour components accordmg to r,
g and b. This is equivalent to MOUSE COLOUR l,r,g,b.

VDU 20 restores the defnult pa lette for the current mode and so cancels the
effect of all YOU 19 comm<1nds or their BASIC keyword counterparts. It also
sets the default text and graphics foreground and background colours.

VDU 21 stops all further text and graphics output to the screen until a YOU 6
command is received.

VDU 22 is used to change mode. It is equivalent to MODEn.

See Appendix E for full details of the modes available.

VDU 2 3 is a multi-purpme command taking nine parameters, of which the fir:.r
tdenttfies a particular functton. Each of the available functtons 1s described

VDU commands 376

VDU 23,0,n,ml

VDU 23,1,nl

VDU 23,2 to 5,n1 ,n2
n3,n4,n5,n6,n7,n8

VDU 23,6,n1 ,n2,n3,
n4,n5,n6,n7 ,n8

below. Eight additional parameters are required in each case.

If n = 8, this sets the interlace as follows:

Value

m=O
m= 1
m =&80
m = &81

Effect

Toggles the screen interlace state
Sets the screen interlace state to the current *TV setting
Turns the screen interlace off
Turns the screen interlace on

If n = 10, then m defines the start line for the cursor and its appearance. Thus:

Bits Effect

0-4 define the start line
5-6 define its appearance:

Bit 6 Bit 5 Meaning

0 0 Steady
0 1 Off
1 0 Fast flash
1 1 Slow flash

If n = 11, then m defines the end line for the cursor.

This controls the appearance of the cursor on the screen depending on the
value of n. Thus:

Value Effect

n = 0 Stops the cursor appearing
n = 1 Makes the cursor reappear
n = 2 Makes the cursor steady
n = 3 Makes the cursor flash

These define the four colour patterns. Each of the parameters nl to n8 defines
one row of the pattern, nl being the top row and n8 the bottom row. See the
chapter: Graphics Patterns for more details.

This sets the dot-dash line style used by dotted line PLOT commands. Each of
the parameters n I to n8 defines eight elements of the line style, nl controlling
the start and n8 the end. The bits in each are read from the most significant to
the least significant, zero representing a space and one representing a dot. See

VDU commands 377

VDU 23,7,m,d,zl

VDU 23,8,t1 ,t2,x1 ,y1,
x2,y2;0;

the chapter: Complex Graphics for more detaib.

This scrolls the current text screen. The values of m, d and z determine the
area to he scrolled, the direction of scrolling and the amount of scrolling
re11pectivdy. Thus:

Value

m= 0
m= I

1 d = 0
d =I
d=Z
d=3

d=4
d=S
d=6
d=7

z=O
z = 1

Effect

Scroll the current text viewport
Scroll the en I ire screen

Scroll right
Scroll left
Scroll down
Scroll up

Scroll in the po~it ive X direction
Scroll in the negative X direction
Scroll in the positive Y direction
Scroll in the negative Y direction

Scroll by one character cell
Scroll by one character cell vertically or one byte horizontally

This clears a block of the current text viewport to the text background colour.
The pttmmetcrs tl and t2 indicate the base positions relating to the start and
end of the block to be cleared respectively. The positions to which the values
oft refer are shown below:

Value Position

t = 0 top left of viewport
t= I top of cursor column
t= 2 off top right of viewport

t= 4 left end of cursor I me
t = 5 cursor position
(= 6 off right of cursor line

(= 8 bottom left of viewport
(= 9 bottom of cur::.or column
t= 10 off bottom right of viewport

VDU commands 378

VDU 23,9,nl
VDU 23,10,nl

VDU 23,11 1

VDU 23, 12to15,n1 ,n2,
n3,n4,n5,n6,n7,n8

VDU 23,16,nl

The parameters xl, yl and x2, y2 are the x and y displacements from the
positions specified by t1 and t2 respectively. They determine the start and end
of the block.

These set the durations for the first and second flashing colours respectively.
The duration is set to n frame periods (1/50th of a second in the standard
modes). For example, VDU 2 3, 9, 10 I sets the duration of the first flash
colour to 10/50 or 1/5 of a second. An alternative to the YOU command is
*FX9 or *FXlO described in Appendix G

This sets the four-colour patterns to their default values. See the chapter
Graphics Patterns for more details.

These set up the simple colour patterns. A block of two-by-four pixels is
defined using the eight parameters. Each pair of parameters corresponds to
the colours of the pixels on a given row, nl and n2 being the top row and n7
and n8 the bottom row. See the chapter Graphics Patterns for more details.

This alters the direction of printing.

Normally when a character has been printed, the cursor moves to the right by
one place, and then to the start of the row below when a character is entered
in the righthand column. This movement, however, can be altered so that, for
example, the cursor moves down one row after each character, and moves to
the top of the next column to the right when the bottom of the screen has been
reached. This effect can by produced by typing

VDU 23,16,81

The effect on cursor movement depends on the value n as shown below:

Value

0
2
4
6

8
10
12
14

Effect

Positive X direction is right, positive Y direction is down
Positive X direction is left, positive Y direction is down
Positive X direction is right, positive Y direction is up
Positive X direction is left, positive Y direction is up

Positive X direction is down, positive Y direction is right
Positive X direction is down, positive Y direction is left
Positive X direction is up, positive Y direction is right
Positive X direction is up, positive Y direction is left

VDU commands 379

VDU 23,17,n,ml

VDU 23,17,6,x;y;O;O

VDU 23,17,7,flags,
dx;dy;O;O;

Altering the direction of cursor movement also affect!> the way in which the
screen scrolls; so in the example above, when a character has been entered at
the bottom righthand corner, the screen scrolls to the left by one column
rather than ~croll ing up by one row as it usually docs.

The following is the complete list of YOU commands for movmg the cursor:

Command

YOU8
YOU9
YDUlO
YDU 11
YDU 13
YDU30
YOU 3l,x,y
YOU 127

Movement

Moves the cursor one place in the negative X direction
Move~ the cursor one place in the positive X direction
Movet. the cursor one place in the negative Y direction
Moves the cursor one place in the positive Y direction
Move~ the cursor to negative X edge
Move~ the cursor to the negative X andY edges (home)
Moves the cursor lO TAB(x,y)
Moves the cursor one place in the negative X direction,
destructively

If n = 0 to 3, this command sets the tint to the value m for the text foreground,
text background, graphics foreground and graphics background colour~
respectively. It is equivalent to TINT n,m. See the chapter Screen modes for
more details.

If 11 = 4, this command chooses which set of default colour pattern~ is used. m
= 0 gives the Master 128-compatible set; m = I gives the native set. See the
chapter Graphics Patterns for more details.

If 11 = 5, this command swaps the text foreground and background colours.

If n = 6, then the command has the format:

It 1s used m set the origin of colour patterns. By default, patterns are aligned
so that the top left corner of the pattern coincides with the top left corner of
the screen. Using this call, you can make the top left of the pattern coinc ide
with any pixel on the screen, given by the co-ordinates (x,y).

If n = 7, then the command has the format:

The flag byte's bits have the following meanings:

Bit Meaning if set

0 Set YOU 4 character size from dx,dy

VDU commands 380

VDU23, 18to24,n1 ,n2,
n3,n4,n5,n6,n7 ,na

VDU 23,25,n1 ,n2,n3,
n4,n5,n6,n7 ,na

VDU 23,26,h,s,p1 ,p2,
s1 ,s2,0,0

VDU 23,7,m,nl

VDU 23,28to30,n1 ,n2
n3,n4,n5,n6,n7 ,n8

VDU 23,32to255,n1 ,
n2,n3,n4,n5,n6,n7,n8

VDU 24,x1 ;y1 ;x2;y2

1
2

Set YOU 5 character size from dx,dy
Set YOU 5 character spacing from dx,dy

The bit 0 option is not implemented at present.

If bit 1 is set, then dx and d)' give the size in pixels of characters plotted in
VDU 5 mode. The standard size of 8 by 8, and double height, 8 by 16, are
optimised. Other sizes use the scaled character option of the sprite module
and are therefore somewhat slower.

Bit 2 set causes dx and dy to be used to set the amount by which the VOU
driver moves after each VDU 5-mode character has been printed (dx) and the
amount to move down for a line feed (dy). Usually these would be set to the
same values as the character size (so you would set bit 1 and 2), but they can
be set independently to allow, for example, narrower than usual spacing.

These are reserved for future expansion.

VDU 2 3 1 2 5 is used for anti-aliascd fonts. Use of these calls is now

deprecated, and you should use the SWis provided by the FontManager
module. See the Programmer's Reference Manual for details.

VDU 2 3 1 2 6 is used for anti-aliased fonts. Use of this call is now deprecated,
and you should use the SWis provided by the FontManager module. See the
Programmer's Reference Manual for details.

If m = 0, this command selects the sprite whose name is STR$n. It is
equivalent to *SChoose n.

If m = 1, this command defines sprite n to contain the contents of the
previously marked rectangle. It is equivalent to *SGET n.

See the chapter Sprites for more details.

These arc reserved for use by applications programs.

These redefine the printable ASCII characters. The bit pattern of each of the
parameters nl to n8 corresponds to a row in the eight-by-eight grid of the
character. See the chapter Outputting text for more details.

VDU 2 4 defines a graphics viewport. The four parameters define the left,
bottom, right and top boundaries respectively, relative to the current graphics
origin.

VDU commands 381

VDU 25,k,x;y;

VDU26

VDU 27

VDU 28,1x,by,rx,ty

VDU 29,x;y ;

VDU 30

VDU 31,x,y

The parameters may he sent as shown, with semicolom after them. Th1s
indicate:-. that the values are each two bytes long. Alternatively, they can be
sent as eight one-byte values separated as usual by comma~. The first of each
pair contains the low byte for the boundary; the second contain~ the high byte.

For example,

VDU 24 , 160 ; 300 ; 360 ; 800 ;

is equivalent to

vou 24 ,160, 0, 44, 1, 104, 1 , 32, 3.

See the chapter: Viewports for more details.

VDU 2 5 is a multi-purpme graphics plotting command. It b equivalent to

PLOT k,X,)'· See the chapter Complex Graphics for more details.

VDU 2 6 returns the text ami graphics viewport~ to their default states: full
screen size. In addition, it resets the graphics origin to (0,0), moves the
graphics cursor to (0,0), and moves the text cursor to its home position.

VDU 2 7 has no effect.

VDU 2 8 defines a text viewport. The parameters specify the boundary of the
viewport; the left-most column, the bottom row, the right-most column and the
top row respectively. See the chapter: Viewports for more details.

VDU 2 9 moves the graph1cs ongin. x and)' specify the co-ordmmes of the new
posmon. Normally the ongin is at the bottom left of the screen at (0,0):
whenever a position is given as an absolute value, for example MOVE 2 0 , 8 0,

the co-ordinates are taken as being relative to the graphics origin. This
commnnd, therefore, affects all movements of the graphics cursor and all
subsequent graphics viewport commands. The position on the screen of any
existing graphics viewport b not affected. This command is equivalent to

ORIGIN x,y.

VDU 30 moves the text cursor to its home position.

vou 3 1 moves the text cursor to a specified position on the screen. It is
equivalent to PRINT T AB(x,y);.

VDU commands· 382

The BASIC screen editor

Entering the editor

The BASIC screen editor allows you to move around and change any part of a
program currently loaded in the computer.

The editor is supplied as a module on the Welcome disk. Before you can use it,
load it using the command:

*RMLOAD $.Modules . BasicEdit

or double-click its icon from the desktop.This only has to be done once, unles1>
you switch the machine off or press <Ctrl> <Break>. To enter the screen editor
from BASIC type

EDIT

and press <Return>.

This command enters the editor with the current BASIC program displayed.

If you have previously been editing the program, the editor tries to re-enter it at
the point at which you h:ft it. If you have changed the program from within
BASIC, it may not be possible w maintam the posttion, m which case editing

I
~tarts from' the top of the program.

If you wish to enter the editor at a particular point, such as line IOO, type

I

I

I

I

EDIT 100

The editor starts with line 100 displayed at the top of the screen. If line 100
does not exist, the editor chooses either the next line or the end of the program,
whichever comes first.

You may wish to enter the editor with the first occurrence of a particular piece
of text at the top of the screen. For example:

The BASIC screen editor 383

The BASIC screen

The status line

Moving the cursor

Changing a line

EDI T l h ree

The editor displays the program starting with the first occurrence of the word
three at the top of the ~creen. If the string cannot he found, the computer
'beep~· ,md editing starts at the top nf the program.

Once m the editor, your program is displayed wtth the line numher' at the
left hand ~ide. If you enter the editor with no program loaded the ~creen is
nearly blank, with just the number 10 at the top left.

The cursor is at the beginning of the top line on the screen, ju:.t to the right of
the line number. Note that the editor automatically puts a line number on the
heginnmg of each line: there., no need for you to t)pe them in.

The statu~ line is at the bottom of the screen, Jbplayed in re\ er~ed colours in
order to make it stand out from your program text. It contains various useful
pieces of information such as the size of your program, its name, and whether
it has hccn modified since you entered the editor.

The :.tatu' line displays the following information (if it will fit):

• Program ~ize

• Original/Modi f ied indicator

• Program name

• Copy if in cursor copy mode.

In addttion, the status line b used for prompts such as Rep lac£? (Y/N)

which appear in the SELECTIVE REPLACE facility. See the ,ectton Searching
and replacmg below for detmb.

The cursor can be moved around using the four arrow keys. Note, however, that
you cannot move the cursor into that area of the screen containing the line
numbers. This is because in general you need never he concerned with
providing line numbers for your BASIC Matements. A~ a rc-.ult, cursor
movement is restricted to the area of the screen wh1ch contaim rrogram text.

To change a line, use the cur~or keys to position the cursor on the correct line.
You can then delete part or all of the line and type new text in place of the
old.

Now, assume chat the program looks like thi~:

10 rOR X = 2 TO 30

The BASIC screen editor 384

Adding a line

Inserting lines

Deleting text

20 PRI NT X+X
30 NEXT X

and that it needs to he changed to look like thb:

10 FOR X = 2 TO 20
11 PRINT X*X
20 PRI NT X+X
30 NEXT X

To achieve this you must ch<mge line 10 and add a new line: line ll .

Po~ltton the cursor on the 0 of 30 on line 10, pres.-, <Delete> and t)pe 2. The
30 is replaced by 20.

To create a new line tn the middle of the program move the cursor to the lme
above the place where you want the new line and press <Return>.

In the example above, move the cursor to line 10 and press <Rt>turn>.

Line 11 is now created.

To complete the above prngram type

PRI NT X*X

The program should now he complete. You may like to experiment with the
<Rt:tum> and cursor keys to create a larger program.

ThL'rL' arc two functton key:- which, no
create a new line <tt the top or end
directly. These keys arc <Ctrl> <F9>
<FlO> (INSERT AT END).

maner where you arc m the program,
of the program anJ move you there

(INSERT AT START) and <Ctrl>

There nre two ways to delete single ch<tmcteri>. The <Delete> key removes the
character to the left of the cursor and moves the character:, to the right of the
cursor back one space.

To delete the ch<trncter immediately ahove the cursor, hold the <Shift> key
down and press the <Delete> key. <Delete> and <Shift> <Delete> both
move the following text hack a space, but <Shift> <Delete> leaves the cursor
in the same position.

To delete all the characters from the cursor position w the end of the lmc,

The BASIC screen editor 385

Long lines

Saving and loading
programs

Saving a program

Loading a program

Appending a program

Seeing other parts of
your program

Moving vertically

press the <Fil > key.

If a statement is too long to fit on one line of the ~creen, it wraps around to

the next line. To see this, try typmg more text after one of the lines in the
program. As m a BASIC program, the length of a ltne ts limited hy the
BASIC editor ro 2 51 characterit.

To save a program which you have created or changed pre~s <F3> (SAVE).

A window appears into which you ~hould type the name of the program. Once
you arc sure that you have typed the correct name for the program press
<Return> or <F I2> (EXECUTE) to perform the save opcrat ion.

The program name need not he endo~>ed within quotation marb.

If you wish to save only a portion of a program you may do this by setting
limits. See the section on Line commands he low for details of how to do this.

You may now wish to load in one of your own programs to experiment with
before moving on to the next 1>ection. To do this press <F2> (LOAD).

A window appears ready to accept the filename.

Type in the name of the program and pre~~ <Return> or <F l2 > (EXECUTE).

If the current program has been modified hut nor ~<wed a warnmg message i~
g"·en.

You can also join one program onto the end of the current one.

To do this press <Shift> <F2 > (APPEND) and 1 hen proceed in the same
manner as for loading.

Several commands are provided to help you move quickly around when you
are editing a large program, such as one which b too large to be displayed on
the screen at one time.

If you move the cursor to the tnp screen line and keep pressing the <i> key,
previous statements are brought onto the screen one at a time until you reach
the beginning of the program. Simi larly, pressing <J-> <down> from the
bottom screen line brings the following statements onto the screen one at a

The BASIC screen editor 386

Moving horizontally

Renumbering the
program

Further editing
functions

Swapping case

Undoing changes to a
line

Splitting and joining
lines

rime until you reach the end of the program.

To move directly to the top of your program, press <Crrl> <i> which moves
the cursor to the first line of the program. Pressing <Ctrl> <-l-> moves to the
last line.

If you press <Shift> and the <-l-> <down> key, the next screenful of your
program is displayed. In this way, you can move quickly around your program
from beginning to end. Similarly, if you press <Shift> <i> , you can sec the
previous screenful. These functions are duplicated by the <Page Up> and
<Page Down> keys.

Pressing the <Shift> key together with the <~> and <~> keys enables you to

move sideways across the screen at twice the normal speed.

Pressing <Ctrl> <~> takes you to the beginning of the previous statement
and <Ctrl> <~> takes you to the end of the current line.

If new lines are created in the middle of a program, the editor automatically
adjusts the numbering where necessary. If this happens in a program
containing a GOTO or a GOSUB to a line number as yet non-existent, then
that 1 ine number is replaced by the characters @@@@.

You may at any time renumber the program yourself by pressing <F8>
(RENUMBER). This renumbers the program starting at line 10 with an
increment of 10.

If you have typed in some text in either upper or lower case and you want to
change it to the opposite case, move to the area to be changed and press
<FlO> (SWAP). This converts one alphabetic character at a time from lower
case to upper case and vice versa.

If you want to abandon any changes you have made to a statement before you
have left it, press <Shift> <FlO> (UNDO). This restores the statement to the
way it was before you made the changes.

Occasionally, you may want to split one statement into two or more. You can
do this by positioning the cursor on the character which is to he at the start of

, the new statement and pressing <Shift> <Fl> (SPLIT). You can only split a

The BASIC screen editor 387

Repeating a line

Marking a line

Placing the marker line

Finding a marker

Line command

Deleting lines

statement from somewhere 111 the middle. As you are creattng .1 new
statement, 1 his may cause renumbering to take place.

Therc may also be occa~ion~> when you want to join two statements together. To
do th•~. mo\'e the cursor to the first of the two .,tatements and press <Ctrl>
<Fl> (JOIN). The edttnr automaticall~ puts a colon between the two
statcments. If the combtncd length of the two ~t<ttement~ would exceed rhe
maximum space available, thl' join is not carried out and an error message b
displayed.

To create an exact cnpy nf any statement immediately after it, move to the
statement you wish to COP\ and press <Shtft> <F8> (REPEAT). As in the case
of SPLIT, this may caw.e renumbering to be carried out.

As you movc about your program, there may be a sunement which you wish to

comc hack to later on. The editor provides a way of marking a statement so
that you can go back to 1t with a single key-~troke. To mark a statement, firM
move to it and pre~ <F6> (TOGGLE MARK). Pressing tht· same l..e) again
remo\'es the marker. A full stop appear:. on the screen 1->etween the line
numher and the start of the text, indicatmg that this statement has 1--een
markcd. Up to four marks may hc set at any time.

Whcrever you are in the program, pressing <Shift> <F6> (COTO MARK)
brings the marked statement to the top of the scrcen and positiom the cursor
tht•re. If there is no marh·d line, pressing C:iOTO MARK dtsplays an error;
pre'-"mg <E..,c> then allow~ you to continue.:.

The!>e an.· commands which allow you to deh~tc, move and copy e1ther a single
line or a block of lines. They can be inserted into the lefthand margin and arc
not executed until <Fl2> (EXECUTE) is pressed.

For example, to delete a '>inglc line, mo\'e the cursor onto that .,tatement, hold
down the <Ctrl> key and pre~ D. The line number is removed and replaced

by the letter D. To delete the line from your program, pre" <Fl2>
(EXECUTE). The line is remo\'ed from the :.creen and the curMlr positioned
on the previous line.

If there is a hlock of lines which you want to dclcte, move to the first line in
the blm:k and press <Crrl> D twice. The line number disappears and b

replaced 1->y the letter~ DD. Now move to the la~t line in thl· hlnck and press

The BASIC screen editor 388

Moving a block

Copying lines

<Ctrl> 8 twice more. Finally, pre;;s <Fl2> (EXECUTE) to remove this hlock
of lines from your program.

You may wish to delete from the current line m the end of the program. In
this case, press <Ctrl> D twice on the wrrent lme and then press <Ctrl> E.

The line number is replaced h) DDt; and the hlock from there to the end of
the program can he removed by pressmg <F IZ> (EXECUTE).

In a similar way, you can delete from the current line rn the top of the
program by using <Ctrl> T imtead of <Ctrl > E and then pressing <Fl2>
(EXECUTE).

<Ctrl> E and <Ctrl> T are examples of JcMination' and we shall encounter
more of these later.

To move a single statement from it:-. current position to the end of the program,
move to it and press <Ctrl > M followed hy <Ctrl > E. The line numher is
replaced by ME and pressing <Fl 2> (EXECUTE) moves thar line to the end
of the program.

<Ctrl> T can be used likewise to move a statement to the top of a program.

Instead of using <Ctrl> T or <Ctrl> E to .,pe<..ify the destination as the top or
the end of the program you can specify that the destination is hefore or after a
certain line.

To move text to a position after a partiCular lme, move to the destination and
press <Ctrl> A.

Altemati,·ely you can Ul-e <Ctrl> B to move text to a position hefore a
particular line.

Rlocb of lines can be moved as easily as ,t single line hy putting MM around
the block to be moved, choosing your dcstinat ion, and pressing <Fl 2>
(EXECUTE).

Whereas moving text removes it from its original position, copying text leaves
the original unchanged and duplicates it elsewhere. The command to copy text
is <Ctrl > C instead of <Ctrl > M, but otherwise the move and copy commands

arc 1 he same.

Naturally, for both the move and copy commands the destination must not he
within the block being moved or copied.

The BASIC screen editor 389

Denoting limits

Justifying text

Removing line
commands

Things to notice about
line commands

You cf"!n limit the effect of certain operations either to one line or to a hlock
of lines. These operation:, arc:

• SAVE: P<1rt of a program can he saved.

• RENUMBER: Part of the program is renumbered.

• SEARCH, SEARCH & EDIT: The search 1s l1mited to the lmt' or block.

• SELECTIVE REPLACE, GLOBAL REPLACE: The replaCt'lncnt ~~ limited
to the line or block.

To limit the operation to a single line, move the cursor to that line and pres~
<Ctrl> !.. To delimit an t'ntirc block of line:. pres~ <Ctrl> L twice each on the

fir:.t and hN line of the block in LJUestion.

When ,, \unit is set up, thl' functions which t<tke accounr of 1t d1~p\ay rhe limit
in their wmdow.

The editor can indent all \)r part of a program automatically. To reformat a
part of the program, move w the first line of the block you wnnt to justify and
press <Ctrl > J twice. Then move to the last line of the block and press <Ctrl>

J tw1cc. Pressmg <Fl2> (EXECUTE) justifies the block so that the mdentation

of each \me 1s identical to th<tt of the first line.

To remove a line command, move to the line in question and press <Ctrl> R.

Thb deletes the line command from the screen and replaces the line number.
Pressing <Ctrl> R on a line which does not contain any line commands

removes all line commands no matter where they are. You do nm, however,
have to remove a line command in order to change it: to rcplnce the old
command Mmply overtype 1t with a new one.

<Ctrl> R can also he used to remove the line marker set by <FR> (TOGGLE

MARK); but unlike the line commands, the marker can only be removed when
you are on the marked statement.

Line commands are not stored as part of your program text hut arc only held
internally m the editor. There i~ no need, therefore, to remove \me commands
or the marker before saving your program.

Nore thnt copying or moving statements C<H1ses renumbering to take place
automatically.

The BASIC screen editor 390

Searching and
replacing

Search and edit

Search

Global replace

Selective replace

Next match & previous
match

Keyboard options

The <Tab> key

To search for the first occurrence of a particular piece of text, press <F4>
(SEARCH & EDIT). A window appears where you should enter the text to be
found. When you have Jon<: this press <Fl2> (EXECUTE) and the search is
carried out. The cursor reappears on the first match within the program.

As an alternative to SEARCH & EDIT you can find all occurrences of a given
string and have them displayed. To do this press <F7> (SEARCH) and enter
the string which is to be located. Then press <Fl2> (EXECUTE) to perform
the search. Any line on which a match is found is displayed. You may then
move up and down the list, choose one to look at and press <Home>. This line
is then placed at the top of the full edit screen and you can edit it.

To change one string for a nor her throughout your entire program press < FS >
(GLOBAL REPLACE) and enter the text to be changed. You must then enter
the new text, and when you are happy with it press <Fl2> (EXECUTE) to
carry out the change.

It is possible to perform a replace operation selectively. To do so press
<Shift> <FS> (SELECTIVE REPLACE). You must then enter both the text to
be changed and the new text. Press <Fl2> (EXECUTE) to starr the search.
Each match is displayed and you arc prompted for either Y or N to indicate
whether the replacement is to be performed or not.

lt is possible to move on to the next occurrence of the text searched for in the
last search operation or back to the previous one. To do this press either
<Shift> <F7> (NEXT MATCH) or <Ctrl> <F7> (PREVIOUS MATCH).

Pressing <Shift> <F3> brings up a window which allows you to select various
options. This is called the Options Window. The options arc displayed in
three groups described below. Pressing <Return> allows you to cycle through
the groups.

This enables you to move more quickly across the screen. It moves the cursor to
every third character position. At the end of a line, it takes the cursor to the
beginning of rhe next line.

Pressing <Shift> <Tab> moves the cursor in the opposite direction.

The options can be used to set the width of the tab movement to any value

The BASIC screen editor 391

Auto indentation

Insert mode and
overtype mode

Wildcard options

Mode and colours

User-defined keys

(number of characters) in the range 0 to 63.

The editor can automatically line up text in a program so that each line starts
beneath the first position of the line above which is not blank. This is known as
auto-indentation. It can be turned on or off using the Options Window: Auto
indent (on/off)

There will be times when you want to overtype existing text rather than insert
before what is already there. To do this, press <Insert> and you will see that
the cursor has changed to an underline. This indicates that you are in overtype
mode, and that text which you type in will replace existing text. To return to
insert mode, press <Insert> again, and you will be able to insert text as
before. In insert mode, a block cursor is used. In overtype mode, a line cursor
is used.

When you enter the editor, the default setting (insert or overtype) is used.
You can change this default using the Options Window. Your choice is
retained in non-volatile memory.

There are four wildcards, each of which may be customised using the options
available.
• Single character (default is .).

• Multiple characters (default is I).

• Start case insensitivity: this will match both PRINT and print (default is().

• End case insensitivity: this will match exactly what is entered. This is the
normal method of searching (default is }).

Wildcards can be changed to any punctuation character, or can be disabled
by using the Space Bar. Different wildcards must not use the same character.

The editor works in 40-, 80- or 132-column modes. You can choose the default
mode using the Options Window. The value is held between sessions in non
volatile memory.

Note that 256-colour modes and modes with 20-column text are not allowed.

You can also set up your default choice of foreground and background colours.

The editor makes extensive usc of the normal function keys, but you can still
program your own in the usual way via the *KEY command. T o access them
you must press <Ctrl> <Shift> together with the function key, and not just the
function key on its own.

The BASIC screen editor 392

Full use of windows

Input windows

Information windows

Entering data

Windows arc displayed whenever user input is required or information is
displayed.

Valid keys and their actions arc:

Keys

<Tab> I <Return> I <-b
<Shift> <Tab> I <i>
<Esc>
EXECUTE <Fl2>

<Insert>

<Delete>

<Shift> <Delete>
DELETE TO END OF LINE <F l I >

DELETE TO START OF LINE
<Shift> <Fl >
DELETE LINE <Ctrl> <Fll >
<f-> I <Shift> <f->
<~>I <Shift><~>

<Ctrl> <f->

<Ctrl> <~>

<Esc>

Data can be entered in one of three ways:

• Typing in text (eg program name)

• Selecting a prompted action {eg YIN)

Effect

Moves the cursor to the next field
Moves the cursor to the previous field
Cancels the window, returns to editing
Validates the input & executes the
command
Toggles insertlovertype for this
window only
Deletes the character to the left of the
cursor
Deletes the character above the cursor
Deletes characters from the cursor to

the end of the field
Deletes all characters before the
cursor
Deletes all text in this field
Moves the cursor left 1 or 2 positions
Moves the cursor right I or 2 positions
Moves the cursor to the ~eginning of
the field
Moves the cursor to the end of the
field
Removes the window and returns to

editing.

• Pressing the Space Bar to cycle through a list of valid choices (eg
foreground colour)

Pressing another function key whilst a window is present usually executes its
function. The exceptions are those functions which manipulate the program text
(eg SPLIT and JOIN).

The BASIC screen editor 393

Keyboard summary

Editing keys

Function keys

The following actiom arc performed directly via key presses:

<+->
<---+>
<i>
d.>

<Shift> <---+>
<Shift><+->
<Shift> <i>
<Shift> d.>

<Ctrl> <---+>
<Ctrl> <+->
<Crrl > <i>
<Ctrl> <J.>

<Page Up>
<Page Down>

<Tnb>
<Shift> <Tab>
<Home>

<Copy>
<Enter>

<Insert>
<Delete>
<Shift> <Delete>

<Enter>

<Fl> (*COMMAND)
<F2> (LOAD)
<F3> (SAVE)
<F4> (SEARC H & EDIT)

The BASIC screen editor

Moves righ t
Moves left
Moves up
Moves down

Moves right two characters

Moves left two character:.
Moves cursor up a screenful
Moves cursor down a scrccnful

Moves to the end of the statement
Moves to the beginning of the statement
Moves to the beginning of the program
Moves to the end of the program

Moves cursor up a screenfu l
Moves cursor down a screcnful

Moves right to next tab position
Moves left to previous tab position
Brings statement to top of !>Creen

Enters copy mode
Ends copy mode

Toggles insert/overtype mode
Deletes character to left of cursor
Deletes character at cursor position

Creates a new statement after the current
one

Perform OS command
Load a program
Save a program
Find string and edit from it

394

Function keys with
<Shift>

Function keys with
<Ctrl>

<FS> (GLOBAL REPLACE)
<F6> (TOGGLE MARK)

<F7> (SEARCH)
<F8> (RENUMBER)
<F9> (OLD)
<FlO> (SWAP)
<Fll> (DEL TOENDOFLINE)
<FJ 2> (EXECUTE)

<Shift> <Fl > (SPLIT)
<Shift> <F2> (APPEND)
<Shift> <F1> (OPTIONS)
<Shift> <F4> (EXIT)

<Shift> <FS>
(SELECTIVE REPLACE)
<Shift> <F6> (GOTO MARK)

<Shift> <F7> (NEXT MATCH)
<Shift> <FS> (REPEAT)
<Shift> <F9> (NEW)

<Shift> <FlO> (UNDO)
<Shift> <Fll >
(DELETE TO START OF LINE)
<Shift> <Fl2>
(GOTO LINE COMMAND)

<Ctrl> <Fl > (JOIN)
<Ctrl> <F2>
<Ctrl> <F.3>
<Ctrl> <F4>

· <Ctrl> <FS>
<Crrl> <F6>
<Ctrl> <F7> (PREV. MATCH)
<Ctrl> <FS> (EXTEND)
<Ctrl> <F9> (INSERT START)
<Ctrl> <FlO> (INSERT END)
<Ctrl> <Fll > (DELETE LINE)

The BASIC screen editor

Global search and replace
Set or remove a marker. Up to four
markers are allowed
Find all occurrences of a string
Renumber the entire program
Same as BASIC OLD
Swap case of alphabetic characters
Delete from cursor to enJ of line
Execute line commanJs

Split statement at the cursor
AppenJ a program
Present the Options WinJow
Return to BASIC. Variables will be lost
if changes were made
Selective replace. When prompted, only
Y,N, Escape and Home are valid
Go to next marker, with program
wraparounJ
Go to next occurrence of search string
Copy current statement
Same as BASIC NEW. Prompts if program
has been modified
Undo changes to current statement
Delete all characters hefore the cursor

Go to next line command, with program
wraparound

Join two statements, with a colon separator
Reserved
Reserved
Reserved
Reserved
Reserved
Go to previous occurrence of search string
Add a line to current statement
Add a statement at beginning of program
Add a statement at end of program
Delete all text from current statement

395

Error messages

<Ctrl> <Fl2> (GO TO LINE) Go to selected line number

Function keys are used with <Ctrl> and <Shift> for user-defined strings.

The editor displays the following messages. In each case, an explanation is
given below the message.

Limit is xxxx to xxxx/Limit is xxxx only

A range has been set using the L or LL line commands, and this function will
only operate within the range.

Line xxxx is too long to be edited

The program already contains a line which is too long.

Not enough room in RMA for The BASIC Editor

RMA initialisation failed to acquire workspace.

Replace? (Y/N}

Displayed on the status line when prompting during the SELECTIVE
REPLACE operation.

Tab must be between 0 and 63

Displayed by OPTIONS.

The combined length of these statements would be too
big

The two statements cannot be joined.

The destination must be outside the block being moved
or copied

Raised by EXECUTE.

The first statement in the block to be justified must
not be blank

Raised by EXECUTE.

The maximum line is 65279

Raised by GOTO LINE.

The BASIC screen editor 396

The name has been truncated

On saving, the program name following REM > in the first line of the
program is longer than can be displayed in the window.

The named program is invalid

The user appended a program which was invalid. The editor restored the
original.

The named program is too big

The user tried to load or append a program for which there was not enough
room in memory.

The renumber has failed. Unmatched line numbers have
been replaced by @@@@

When trying to renumber the program one or more line number references
could not be resolved.

The search string has no text

The search string must not be blank, and must not contain only wildcards.

The string could not be found

The search string could not be found.

There is not enough memory to update the program

All available memory has been used up.

This is not a valid mode

An invalid screen mode was specified in OPTIONS.

This is not a valid program

OLD was pressed with no valid BASIC program in memory, or the user tried
to load an invalid program.

This program could not be found

The named program on a load or append was not in the directory.

This program has not been saved

The BASIC screen editor 397

The user is warned on a load if the program has been modified and not saved.

This program has not been saved

Press NEW again to confirm.

Press ESCAPE to cancel

The user pressed NEW but the program had been modified and not saved.

This statement is too long

The statement is too long, and needs to be shortened.

This statement is too long to be changed

Replacing or justifying would make the statement too long.

This statement is too long to be split

Even after splitting, both parts of the statement would still be too long.

Wildcards must not be the same

Raised by OPTIONS.

You cannot load a directory

The filename specified in load or append is a directory.

You do not need to enter a destination for this
command

Raised by EXECUTE.

You do not need to enter a repetition factor for this
command

Raised by EXECUTE.

You have entered a destination but no command

Raised by EXECUTE.

You have entered too many commands

Raised by EXECUTE.

The BASIC screen editor 398

You have not entered any line commands

Raised by GOTO LINE COMMAND when there are no line commands.

You have not entered any markers

Raised by GOTO MARKER when no markers are set.

You have not yet entered a search string

Raised by NEXT MATCH or PREVIOUS MATCH when no find string has
been entered.

You have used the maximum number of statements . No
more can be added

The program alreaJy contains the maximum number of statements allowed by
BASIC (65279) and the user tried to add another.

You must enter a dest i nat i on for this command

Raised by EXECUTE.

You must enter a mode

No screen mode was specified within OPTIONS.

You must enter a program name

The program name was not entered for load, append or save.

You must enter a search string

The search string was not entered.

You must enter a tab value

No tab value was specified in OPTIONS.

You need to spec i fy both ends of the range for th i s
command

Raised by EXECUTE.

You should not enter two different commands

Raised by EXECUTE.

The BASIC screen editor 399

*ARMdBE is only valid from BASIC

The user invoked the editor from outside BASIC.

The BASIC screen editor 400

Appendix A , Minimum abbreviations

Keyword Abbr. Version Token byte(s)

ABS ABS I &94
ACS ACS I &95
ADVAL AD. I &96
AND A. I &BO
APPEND AP. v &C7 &BE
ASC ASC I &97
ASN ASN I &9B
ATN ATN I &99
AUTO AU. I &C7 &8F
BEAT BEAT v &C6 &BF
BEATS BEA. v &C8 &9E
BGET B. I &9A
BGET$ BGET$ v
BPUT BP. I , V &DS
BPUT$ BPUT$ v
BY BY v &42 &59 (not tokenised)
CALL CA. I &D6
CASE CASE v &CB &BE
CHAIN CH. I &D7
CHR$ CHR$ I &BD
CIRCLE CI. v &C8 &BF
CLEAR CL. I &DB
CLG CLG I &DA
CLOSE CLO. I &D9
CLOSE# CLOSE# I
CLS CLS I &DB
COLOR c. III &FB
COLOUR c. I &FB
cos cos I &9B
COUNT cou. I &9C

Appendix A - Minimum abbreviations 401

Keyword Abbr. Version Token byte(s)

DATA D. I &DC
DEF DEF I &DD
DEG DEG I &9D
DELETE DEL. I &C7 & 90
DIM DIM I, V &DE
DIV DIV I &81
DRAW DR . I &DF
EDIT ED. IV &C7 &91
ED ITO ED . O IV &C7 &91 &4F
ELLIPSE ELL . v &C8 &9D
ELSE EL . I , V &CC
END END I , V &EO
ENDCASE ENDC. v &CB
END IF END IF v &CD
ENDPROC E . I &E1
ENDWHILE ENDW . v &CE
EOF EOF I &CS
EOF# EOF# I
EOR EOR I &82
ERL ERL I &9E
ERR ERR I &9F
ERROR ERR. I , V &85
EVAL EV. I &AO
EXP EXP I &A1
EXT EXT I,IV, V &A2
EXT# EXT# 1 , v
FALSE FA . I &A3
FILL FI. v &C8 &90
FN FN I &A4
FOR F. I &E3
GCOL GC . I , V &E6
GET GET I &AS
GET$ GE . I , V &BE
GET$# GET$# v
GO SUB GOS . I &E4
GOTO G. I &ES
HELP HE . v &C7 &92
HIMEM H. I &03 I &93

Appendix A - Minimum abbreviations 402

Keyword Abbr. Version Token byte(s)

IF IF I, V &E7
INKEY IN KEY I &A6
INKEY$ INK. I &BF
INPUT I. I &E8
INPUT# INPUT# I
INPUT LINE INPUT LINE I
INSTALL INS. v &C8 &9A
INSTR(INS. I &A7
!NT INT I &AS
LEFT$(LE. I, V &CO
LEN LEN I &A9
LET LET I &E9
LIBRARY LIB . v &C8 &98
LINE LINE I , V &86
LINE INPUT LINE INPUT v
LIST L . ! , IV &C7 &93
LIS TO L.O I, V &C7 &93 &4F
LN LN I &AA
LOAD LO . I &C7 94
LOCAL LOC. I, V &EA
LOCAL ERROR LOCAL ERROR V
LOG LOG I &AB
LOMEM LOM . I &D2 I &92
LVAR LV . v &C7 &95
MID$(M. I, V &Cl
MOD MOD I, V &83
MODE MO. I, V &EB
MOUSE MOU . v &C8 &97
MOVE MOVE I &EC
NEW NEW I &C7 &96
NEXT N. I &ED
NOT NOT I &.Jl.B" 9y Ac
OF OF v &CA
OFF OFF I, V &87
OLD 0. I &C7 & 97
ON ON I I v &EE
ON ERROR ON ERROR v
OPEN IN OP. I &8E

Appendix A - Minimum abbreviations 403

Keyword Abbr. Version Token byte(s)

OPENOUT OPENO. I &AE
OPENUP OPENUP II &AD
OR OR I &84
ORIGIN OR . v &C8 &91
OSCLI OS. II &FF
OTHERWI SE OT . v &7F
OVERLAY ov. v &C8 &A3
PAGE PA . I &DO I &9 0
PI PI I &AF
PLOT PL. 1 &FO
POINT POINT v &C8 &92
POINT (PO . I &BO
POS POS I &Bl
PRI NT P . I &Fl
PRINT# PRINT# I
PROC PROC I &F2
PTR PTR I &CF I &8F
PTR# PTR# I
QUIT Q. v &C8 &98 - RAf) ~ ~~-~ READ READ I &F3
RECTANGLE REC. v &C8 &93
REM REM I &F4
RENUMBER REN. I &C7 &98
REPEAT REP. I &FS
REPORT REPO . I &F6
REPORTS REPO.$ v &F6 &24
RESTORE RES. I, V &F7
RESTORE DATA v
RESTORE ERROR v
RETURN R. I , V &F8
RIGHT$(RI. I , V &C2
RND RND I &83
RUN RUN I &F9
SAVE SA. I , V &C7 &99
SGN SGN I &64
SI N SIN I &BS
SOUND so. I , V &04
SPC SP C 1 &89

Appendix A - Minimum abbreviations 404

Keyword Abbr. Version Token byte(s)

SQR SQR I &B6
STEP s . I , V &BB
STEREO STER. v &CB &A2
STOP STOP I &FA
STR$ STR$ I &C3
STRING$(STRI . I &C4
SUM SUM v &C6 &BE
SUMLEN SUM LEN v &C6 &BE
SWAP sw. v &CB &94
SYS SYS v &CB &99
TAB(TAB(I &BA
TAN T . I &B7
TEMPO TE . v &CB &9F
THEN TH . I , V &BC
TIME TI. I, IV &01 I &91
TIME$ TI . $ IV &01 I &91 $
TINT TINT v &CB &9C
TO TO I I v &BB
TOP TOP I &BB &50
TRACE TR . I , V &FC
TRUE TRUE I &B9
TWIN TWIN v &C7 ~ ~90
TWINO TW . v &C7 ~ ~'f £
UNTIL u. I &FD
USR USR I &BA
VAL VAL I &BB
VDU V. I &EF
VOICE VOICE v &CB &A1
VOICES vo . v &CB &AO
VPOS VP. I &BC
WAIT WA. v &CB &96
WHEN WHEN v &C9
WHILE W. v &CB &95
WIDTH WI. I &FE

The two values for the pseudo-variables LOMEM, HIMEM, PAGE, PTR and
TIME are the statement and function tokens respectively.

Appendix A - Minimum abbreviations 405

Where more than one version number is given, the second one indicates that
the keyword was employed in a new way in that version.

Appendix A - Minimum abbreviations 406

Appendix B ., Error messages

Error
number

0

1

2

Error
message

Corruption of stack
Error control status not found on
stack for
RESTORE ERROR
HELP has no information on this
keywo r d
Incorrect in-core file description
Inval id LISTO option
Invalid TWINO option
Line too long
Line numbers larger than 65279
would be
generated by this
renumber
LIST/TWIN found line number
reference
Missing incore name
No room
No room to do this renumber
Stopped
No such mnemonic
No such suffix on EQU
Assembler limit reached
Bad address offset
Ba d i mmediate conslant
Bad shift
Bad register
Duplicate register in multiply

Appendix B -Error messages 407

Error
number

4
4

5
6

6

7

8
9
10

11

12

Error
message

Missing
Missing
Mistake
Missing ,

in FOR statement

Type mismatch : array needed
Type mismatch : numeric array needed
Type mismatch: number needed
Type mismatch: numeric variable
needed
Type mismatch : string array needed
Type mismatch : string needed
Type mismatch: string variable
needed
Type mismatch between arrays
Can ' t assign to array of this size
Array type mismatch as parameter
Can ' t SWAP arrays of different
types
Not in a function
Too low a value for $<number>
Missing "
Arrays cannot be redimensioned
Bad DIM statement
Can 't DIM negative amount
DIM() function needs an array
Impossible dimension
No end of dimension list)
No room to do matr i x multiple with
source(s)
the same as destination
Attempt to allocate insu fficient
memory
No room for this DIM
No room for this dimens ion
Items can only be made local in a
function or
procedure

Appendix B -Error messages 408

Error
number

13
14
14

15

16
17
18
19
20

21
22
23

24
26

27

28

29
30
31

32
33
34

Error
message

Not in a procedure
Reference array incorrect
Undimensioned array
Unknown array
Unknown array in DIM() function
Incorrect number of subscripts
Subscript out of range
Syntax error
Escape
Division by zero
String too long
Number too big
Number too big for arc Sine or arc
Cosine
Negative root
Logarithm range
Accuracy lost in Sine/ Cosine/
Tangent
Exponent range
Can ' t use array reference here
Unknown or missing variable
Missing)
Missing)
Missing {
Missing }
Bad Binary
Bad Hex
Hex number too large
No such function/procedure
Bad call of function/procedure
Arguments of function/procedure
incorrect
Invalid array actual parameter
Invalid RETURN actual parameter
Not in a FOR loop
Can ' t match FOR
Bad FOR control variable

Appendix B -Error messages 409

Error
number

35
36
38
39
40
41
42

42
43
44
45
46
47
48

48
49
50
51

52

Error
message

The step cannot be zero
Miss ing TO
Not in a subroutine
ON syntax
ON range
No such line
DATA pointer not found on stack for
RESTORE
DATA
Out of data
Not in a REPEAT loop
Too many nested structures
Missing #
Not in a WHILE loop
Missing ENDCASE
CASE . . OF statement must be the last
thing on a
line
OF missing from CASE statement
Missing ENDIF
Bad MOUSE variable
Too many input expressions for SYS
Too many output variables for SYS
Can ' t install library
Bad program used as function/
procedure library
No room for library

Appendix B -Error messages 410

Appendix C ., lnkey values

Key INKEY number

<Print> - 33
<Fl> -114
<F2> -115
<F3> -116
<F4> -21
<F5> -117
<F6> - 118
<F7> -23
<F8> -119
<F9> -120
<FlO> -3 1
<F11> -29
<F12> - 30
A - 66
B - 101
c - 83
D - 51
E - 35
F - 68
G - 84
H - 85
I - 38
J -70
K - 71
L -87
M - 102
N -86
0 -55
p - 56

Appendix C - lnkey values 411

Key

Q
R

s
T
u
v
w
X
y

z
0
1

2

3
4

5
6

7

8

9

I
[

\
l

<Esc>
<Tab>
<Caps Lock>
<Scroll Lock >
<Num Lock>
<Break>

' /
#/Currency

Appendix C - lnkey values

INKEY number

- 17
-52
-82
-36
-54
- 100
- 34
-67
-69
-98
-40
- 49
- 50

-18
-19

-20
- 53
-37
-22
-39
- 103
- 24
- 10 4
- 105
- 57
- 121
- 89
-88
- 113
- 97
- 65
-32
-78
- 45
- 4 6
-47

412

Key

<Back Space>
<Insert>
<Home>
<Page Up>
<Page Down>
I I"
<Shift> (either/both}

INKEY number

- 48
- 62
-63
-64
-79
- 80
-1

<Alt> (either/both} -3
<Shift> (left/right- hand}-4/-7
<Ctrl> (left/right-hand) -5/-8
<Alt> (left/right-hand} -6/-9
Space Bar -99
<Delete> -90

<.JRetum> - 74
<Copy> - 106

<i> - 58

<~> - 26

<~> - 122
<.b - 42
Keypad 0 -1 07
Keypad 1 - 108
Keypad 2 -125
Keypad 3 -109
Keypad 4 -123
Keypad 5 -124
Keypad 6 - 27
Keypad 7 - 28
Keypad 8 -4 3
Keypad 9 - 44
Keypad + -59
Keypad - -60
Keypad -7 7
Keypad I -7 5
Keypad # - 91
Keypad * -92
Keypad <Enter> - 61
Select mouse button (L) - 10

Appendix C - lnkey values 413

Key INKEY number

Menu mouse button (Middle) - 11
Adjust mouse button (Right)-12

Appendix C - lnkey values 414

Appendix D ~ Plot codes

The groups of PLOT codes are as follows:

0 7 (&00 - &07) Solid line including both end points
8 15 (&08 - &OF) Solid line excluding final points
16 23 (&10 - &17) Dotted line including both end points
24 31 (&18 - &IF) Dotted line excluding final points
32 39 (&20 - &27) Solid line excluding initial point
40 47 (&28 - &2F) Solid line excluding both end points
48 55 (&30 &37) Dotted line excluding initial point
56 63 (&38 &3F) Dotted line excluding both end points
64 71 (&40 - &47) Point plot
72 79 (&48 - &4F) Horizontal line fill (left & right) to non-

background
80 87 (&50 - &57) Triangle fill
88 95 (&58 - &SF) Horizontal line fi II (right only) to

background
96 103 (&60 - &67) Rectangle fill
104 ill (&68 - &6F) Horizontal line fill (left & right) to

foreground
ll2 119 (&70 - &77) Parallelogram fill
120 127 (&78 - &7F) Horizontal line fill (right only) to non-

foreground
128 - 135 (&80 - &87) Flood to background
136 - 143 (&88 - &SF) Flood to foreground
144 151 (&90 - &97) Circle outline
152 - 159 (&98 - &9F) Circle fill
160 - 167 (&AO - &A7) Circular arc
168 - 175 (&AS - &AF) Segment
176 - 183 (&BO - &B7) Sector
184 - 191 (&BS - &BF) Block copy/move
192 199 (&CO - &C7) Ellipse outline
200 - 207 (&CS - &CF) Ellipse fill

Appendix D - Plot codes 415

208 215 (&00 &07) Graphics characters
216 223 (&08 - &OF) Reserved for Acorn expansion
224 231 (&EO - &E7) Reserved for Acorn expansion
232 239 (&E8 - &EF) Sprite plot
240 247 (&FO - &F7) Reserved for user programs
248 255 (&F8 - &FF) Reserved for user programs

Within each block of eight the offset from the base number has the following
meaning:

0 Move cursor relative (to last graphics point
visited)

I Draw relative using current foreground colour
2 Draw relative using logical inverse colour
3 Draw relative using current background colour
4 Move cursor absolute (ie move to actual

co-ordinate given)
5 Draw absolute using current foreground colour
6 Draw absolute using logical inverse colour
7 Draw absolute using current background colour

The above applies except for COPY and MOVE where the codes
are as follows:

184 (&88)
185 (&89)
186 (&BA)
187 (&BB)
188 (&BC)
189 (&BD)
190 (&BE)
191 (&BF)

Move only, relative
Move rectangle relative
Copy rectangle relative
Copy rectangle relative
Move only, absolute
Move rectangle absolute
Copy rectangle absolute
Copy rectangle absolute

Appendix D - Plot codes 416

Appendix E ~ VDU commands

VDU Ctrl Extra Meaning
Code bytes

0 @ 0 Docs nothing
I A 1 Sends next character to printer only
2 B 0 Enables printer

' c 0 Disables printer
4 D 0 Writes text at text cursor
5 E 0 Writes text at graphics cur~or
6 F 0 Enables VDU driver
7 G 0 Generates bell sound
8 H 0 Move~ cursor back one character or

delete~ previous character
9 I 0 Moves cursor on one space
10 J 0 Moves cursor down one line
11 K 0 Move~ cursor up one line
12 L 0 Clean. text area
13 M 0 Moves cursor to :.tart of current line
14 N 0 Turn~ on page mtxle
15 0 0 Turns off page rmxle
16 p 0 Clean. graphics area
17 Q 1 Defines text colour
18 R 2 Defines graphics colour
19 s 5 Defines logic<ll colour
20 T 0 Restores default logical colours
21 u 0 Disables VDU drivers or deletes

current line
22 v I Selects screen mode
23 w 9 Multi-purpose command
24 X 8 Defines graphics window
25 y 5 PLOT
26 z 0 Restores default windows

Appendix E - VDU commands 417

VDU Ctrl Extra Meaning
Code bytes

27 (0 Does nothing
28 \ 4 Defines text window
29 I 4 Defines graphics origin
30 1\ 0 Homes text cursor
31 2 Moves text cursor

Appendix E - VDU commands 418

Mode Text Resolution Colours Bits I Memory Monitor
col x row hor x ver pixel types

0 BOx 32 640 X 256 2 l 20K I, 2
I 40 X 32)20 X 256 4 2 20K 1, 2
2 20 X 32 160 X 256 16 4 40K 1, 2
3 80 X 25 Text only 2 2 40K 1, 2
4 40 X 32 320 X 256 2 1 20K I, 2
5 20 X 32 160 X 256 4 2 20K 1, 2
6 40 X 25 Text only 2 2 20K 1, 2
7 40 X 25 TELETEXT 16 80K 1, 2

8 80 X 32 640 X 256 4 2 40K 1, 2
9 40 X 32 320x256 16 4 40K 1, 2
10 20 X 32 160 X 256 256 8 80K 1, 2
11 80 X 25 640x250 4 2 40K 1, 2
12 80 X 32 640 X 256 16 4 80K I, 2
13 40 X 32 320 X 256 256 8 80K I, 2
14 80 X 25 640 X 250 16 4 80K 1, 2
15 80 X 32 640 X 256 256 8 160K 1, 2
16 132 X 32 1056 X 256 16 4 132K I, 2
17 132 X 25 1056 X 2'i0 16 4 1'32K 1, 2

18 80 X 64 640 X 512 2 1 40K 2
19 BOx 64 640 X 512 4 2 80K 2
20 SOx 64 640 X 512 16 4 160K 2
21 80 X 64 640 X 512 256 8 320K 2

22 160 X 122 1280x976 2 160K 3
23 144 X 54 I I 52 X 432 2 160K 3

Appendix E - VDU commands 41 9

Appendix E - VDU commands 420

Appendix F ,. Operating system commands

Command

*ALPHABET
*AuDIO
*CHANNELVOICE
*CONFIGURE
*COUNTRY
*ECHO
*ERROR
*EVAL
*FX
*GO
*GOS
*HELP
*IF
*IGNORE
*KEY
*KEYBOARD
*MODULES

*POINTER
*QSO'JND
*ROMMODULES
*SET
*SETEVAL
*SETMACRO
*SHADOW
*SHOW
*SO'JND

Description

Select~ a re:.ident character set

Ennhle~/dtsables the sound system
As>igm a voice to a channel

Defines the CMOS RAM configurations

Selects the country setting
Reflects a string to the screen

Generates an error

Evnluates an expression

Acce:-.,es a particular operating :..y:..tcm routine
Stan~ execution at a given address

Entcr~ the Arthur supervisor

Provides help information about commands
Conditionally executes a command

Sets the printer ignore character

Assigns a string to a soft key

Selects a resident keyboard driver
Displays infonnation on currently installed

rclo<.ntahle modules
Enables/disables the mouse potntcr

Queues a sound for later processtng

Ltsts relocatable modules currently tn ROM
A~stgns a string to a variable

Assigns a value to a variable

Assigns an expression to a variable

Enclbles/disables automatic shadow mode
Lists all variables defined

MakL'S a sound

Appendix F - Operating system commands 421

Command

*SPEAKER
*STATUS
*STEREO
*TEMPO
*TIME
*TUNING
*TV
*UNPLUG
*UNSET
*VOICES
*VOLUME

Description

Enables/disables the internal loudspeaker

Displays default values held in CMOS RAM
Sets the stereo position of a channel
Sets the sound system tempo
Prints the day, date and time

Sets the overall sound system tuning
Gives the vertical screen alignment and interlace opts
Prevents ROM modules being initialised
Deletes variables set by *SET, etc
Displays the available voices and channel map
Sets the overall sound system volume

Appendix F - Operating system commands 422

Appendix G , *FX commands

Command

*FX 0

*FX 1

*FX 2

*FX 3
"'FX 4

" FX 5
" FX 6
*FX 7

*FX 8
*FX 9
*FX 10
" FX 11
"FX 12
*FX l 5
*FX 18
*FX 19

*FX 20

*FX 21
*FX 25
"FX 106
"?X 112

*FX 11 3

*FX :14
*FX 118

Description

Displays operating system title and version
number
Writes ro location left free for the user
Specific~ stream for all subsequent data input
Specifies :,tream for all subsequent data output
Comrob. cursor key status
Selects where ~uhsequent printer output will be sent
Selects printer ignore character
Selects RS423 baud rate for receiving data
Selects RS423 baud rate for transmitting data
Selects fla~h rate for first colour
Select~ flash rate for second colour
Selects keyboard auto-repeat delay
Selects keyboard auto-repeat rate
Flushes huffer
Resets function keys
Waits for vertical sync (v~ync)

Resets font Jefinitions
Flushes a selected buffer
Re:-.ets a group of font definitions
Selects cursor I activates mouse
Write~ screen h;mk number aJdressed by VDU
driver
Writes screen bank number addressed by displ:.ty
helrdware
Sets up automatic shadow moJc
Reflects keybo:uJ ~tatus m LED~

Appendix G - *FX commands 423

Command Description

"FX 120 Writes keys pressed information

*FX 124 Clears <Esc> condition
*FX 125 Sets <Esc> condition
*FX 126 Acknowledges <Esc> condition
*FX 138 Inserts character coue into buffer
*FX 139 *OPT equivalent
*FX :.43 Issues mouulc services call
*FX 144 *TV equivalent
*FX 153 Inserts character into input buffer
*FX 156 Sets RS423 attributes
*FX 162 Writes a value in CMOS RAM
*FX 163 Sets the dot-Jash line pattern length
*FX 178 Enahles/uisables keyboard
*FX 181 Alters RS421 character actions
*FX 196 *FX 11 equivalent
*FX 197 *FX 12 equivalent
*FX 200 Selects <Break> anJ Escape effects
*FX 201 Sets keyboard status
*FX 202 Alters keyboard status byte
*FX 203 Sets RS423 'buffer full' limit
*FX 204 Enables/disables RS42 3 buffering
*FX 211 Selects bell channel number
*FX 212 Selects bell amplification
*FX 213 Selects hell frequency
"'FX 214 Selecrs bell Jur;1tion
*FX 216 Cancels function key expansion
*FX 217 Resets paged mode line count
*FX 218 Cancels VDU command sequence
*FX 219 Selects <Tab> key code
*F'X 220 Sdects <Esc> character
*F'X 221 Selects interpretation of input values 192 m 207

*FX 222 Selects interpretation of input values 208 to 223
*FX 223 Selects interpretation of input values 224 to 239
*FX 224 Selects interpretation of input values 240 to 255
*FX 225 Selects soft key interpretation

Appendix G - *FX commands 424

Command

" FX 226
*FX 227
*?X 22 8

*FX 229
*FX 230
*FX 238
*FX 2 47

*FX 254
" FX 254

Description

Select:. <Sh1fr> plus the soft key interpretation
Selects <Ctrl> plus the soft key interpretation
Selects <Shift> <Ctrl> plus the soft key
interpretation
Selects <E~L> key statu~
Selects <be> effects

Selects numeric keypaJ interpretation
Sets rhe <Rrcak> key dfccts
Se lect~ effect ot" <Sh ift> on numeric keypad
Selects cffc..·ct of <Shift> on numeric keyp;td

Appendtx G - *FX commands 425

Appendix G- *FX commands 426

Appendix H; BBC BASIC's history

Introduction

BASIC I

BASIC II

BASIC Ill

BASIC IV

BASIC V

This appendix is designed to pin-point the variations found among the dialects
of BBC BASIC. Using it, the reader should be able to determine whether a
given feature of the language is present in a particular version. You should
also refer to Appendix A. This gives the version number of the first apperance
of each keyword. For example, OSCLI has II in the version column, as the
OSCLI statement was first introduced in BASIC II.

There have been five releases of BBC BASIC, the latest being BASIC V. The
complete list is:

The original version l>upplied with early BBC Microcomputers, models A and
B. BBC BASIC is in tum descended from Atom BASIC, a fast integer-only
BASIC supplied with the Acorn Atom.

This was an update to BASIC I. It also ran on the BBC models A and B. It
incorporated various bug fixes to BASIC 1, and added the OPENUP and
OSCLI keywords, and offset assembly. Version II is the principal BBC
Microcomputer version of BBC BASIC.

11us was supplied on the BBC Microcomputer model B+. It was substantially
unchanged from version II. There were one or two bug fixes, and a new
keyword: the American spelling of the COLOR statement.

Also known as CMOS BASIC, this version was a major development from
BASIC III. It was designed for use on the BBC Master series and 65Cl2
Second Processors. Both these used a slightly more powerful version of the
6502 processor than the one used in the original BBC. Thts allowed several
major enhancements to be squeezed into the 16K ROM, such as LIST IF,
EXT* as a statement, EDIT, TIME$, ON ... PROC, I in VDU statements and
faster floating point. Some bugs were also corrected.

Developed for Acorn rise computers. BASIC builds on the foundations
provided by BASIC IV. However, because of the lack of restrictions such as
l6K total code size, the enhancements made are far greater than those that

Appendix H - BBC BASIC's history 427

BASIC II
improvements
New keywords and
features

have appeared previously. The interpreter is now about 64K long, including
comprehensive built-in help text, and is probably the most powerful BASIC
found on any computer. It is certainly the fastest interpreted BASIC in the
world.

OSCLI. This passes a string to the command line interpreter for execution. It
is more powerful than simple * commands, as these cannot contain general
string expressions.

OPENUP. This does an OSFIND with reason code &CO, ie open an exisiting
file for update. This was the action of OPENIN in BASIC I. OPENIN now
does an OSFIND &40, ie open for input only. OPENOUT still does an
OSFIND &80, ie create and open for update.

Numeric printing has been improved to allow numbers to be printed to ten

digits accuracy. This allows integers up to 233 to be printed without resorting
to 'E' notation.

The MODE statement now resets the COUNT function to zero.

A semi-colon (;) is allowed in place of a comma (,) in the INPUT statement.

Fatal errors are introduced. These have error number 0, and cause an
automatic ON ERROR OFF. This means that the default error handler is
always used for these errors. The STOP statement now causes a fatal error, as
does the No room condition. Additionally, the standard error handler no
longer uses ~tack space, so spurious No room errors are not produced.

A new error, number 45, Mi ssing tf is given if any of the keywords PTR,

EOF, BGET, BPUT, EXT is not followed by a #.

String allocation has been improved. A string which was the last one created
on the heap can be extended without discarding the old storage. This stops No
room errors from being generated in certain situations.

Bit 2 of the assembler OPT expression is used to control offset assembly. If
this bit is set, P% holds the run-time location counter, and 0% holds the
assembly-time counter where bytes are actually assembled to. If bit 2 is
clear, P% holds both the run-time and assembly-time counters.

Four new assembler directives are introduced: EQUB, EQUW, EQUD,
EQUS. These allow one-, two-, four- and multiple-byte (stnng) quantities to

Appendix H - BBC BASIC's history 428

Bug fixes

BASIC Ill
improvements
New keywords and
features

Bug fixes

he embedded into the code.

ELSE in <ln ON ... GOTO/GOSUR no longer leave., a hyte on the 6502 stack.

This prevented ELSE from being used in ON \taremems m RASIC !.

INSTR no longer lea\Tl> the main srnng on rhe ~nftware ~tack when it 1s
shorter than the substring. Th1~ caused ENDPROC and =e:xpression to crash
when INSTR was used in~ide a PROC or FN under the above-mentioned
condition.

The argument of EVAL is now tokeniscd correctly so that EVAL"TIME" (or

any other pscudo-variahle) worb. PreviOu!tly the statement versions of pseudo
variables were used, resulting in a No such variable error when BASIC

1ried to evaluate the expression.

The ABS function can now cope with non-negative integers without returning a

string type. Previously, ABSl appeared to yield a string so a statement like

PRINT -ABSl would give a type-mismatch error.

The LN and LOG functions have been re-written. This makes them more

accurate and avoids a problem when BASIC tried to evaluate LN(2E-W) .
Other changes ~o the arithmetic package arc a fix w a hug which caused
INTI E39 to fail and the re-coding of the SIN/COS routine to make it more
accurate.

A hug associated with ON ERROR GOTO 9999 (and other line number~) ha.,

been fixed.

DIM mr n where n is an ex pre:.:. ion less th.m -I now gl\·e~ a Bad D ~ M error

imtead of lowering the value of the free ~pace pointer. This former action
could result in the corruption of variables or the program.

The COLOUR keyword may now be spclr COLOR, to aid the porting of
programs from American dialect!. of RASIC. In programs, the keyword
always lists as COLOUR, except in the American version of BASIC III, which

always lists it as COLOR. This is the only difference between the two versions.

A string expression in a SAVE command works correctly now, so you can ~ay,
for example, SAVE A$+B$ without error.

The indirection oper<Hors ? and ! may he used as formal parameters without
problems. For example, you could have a procedure DEF PROCa (! & 70},

Appendix H - BBC BASIC's history 429

BASIC IV
improvements
New keywords and
features

Bug fixes

where the contents of locations & 70 .. & 73 act a~ a local integer vnriablc.

The ON ... GOTO/GOSUB statement ha~> heen extended to include PROC~.
The syntax is ON ex[n-ession PROut , PROCh, PROCc ... !ELSE statement].
The nth PROC in the list is called, where n is the value of ex[n-ession.

The EDIT wmmand converts the program to text and then call~ the editor

with a *EDIT commantl. The program can he ctlited then re-tokenised hy
returning to BASIC. A No r oom error will be givt:n if there i~ not enough

room to store hoth the tokenised and textu<ll version of the program during
conversion to text.

The TIME$ pseudo-varinhle can he usetl to tlisplay and alter the time held in

the CMOS hanery-hacked clock.

The delimiter l may be used in VDU statements to send nine 0 byres after
the last expression. This can ht: used to ensure that, cg, VDU 2 3 commands
which require many tr<1iling zeros arc correctly terminated.

USTO bit:. I and 2 (which cau~e loops to be mdenred) now work correctly,
inasmuch as the NEXT lines up with its FOR and UNTIL with its REPEAT. If
LISTO is non-zero, leading spnces are stripped from input line11 (•e between
the line-numher and first ~tatement). Trailing spaces are always stripped.

LIST has been extended hy adding the IF part to it. LIST !Ftext wdl only list
lines which contain text.

The function EXT= returning the length of the file may now also 1--c used a~ a
statement to set rhc length of a file (EXT..,.chan=ex[>r). It relic~> for it:-.

operation on an OSARGS call supported by ADfS and ANFS.

AUTO no longer prints a space after the linr number, as this wa,n't part of
the input !me anyway.

The as~t:mblcr supports the full 65Cl2 instruction set, and now accepts lower
case in <1ll c ircumstances (cg the x in lda & 7 0 , x which previously had to he

m upper cm.c).

RENUMRER and LIST no longer ger confused by the presence of an &HD

Tcktext control character in REM smtemcnts. (&8D is u;,cd in internal-format

lme number" by BASIC).

In previous version:,, a FOR !nor which used an FN in the start, l'nd < 1r st el'

Appendix H - BBC BASIC's history 430

BASIC V
improvements

New keywords and
features

expressions, where the FN itself contained a FOR loop would not work
properly. This has been fixed.

The random number generator gives different results from previous versions
for RND(1) and RND(n). This is to avoid certain statistical problems.

A bug whereby it was possible to RESTORE to a line which had no DATA
statement but a comma present has been fixed .

Because the major part of this user guide is concerned with the documentation
of BASIC V, this section only mentions the new keywords and features in very
terse terms. You are directed to the Keywords chapters for detailed
descriptions of all BASIC keywords. The index will also give you the page
reference for the main discussion of topics mentioned below.

The new constructs WHILE ... ENDWHILE, IF ... THEN ... ELSE ... ENDIF,
CASE ... OF ... WHEN OTHERWISE ... ENDCASE have been introduced.
This makes readable, GOTOless programming much easier to attain than
previously.

Procedure and function calls have been enhanced in the following ways: value
and result parameters (RETURN parameters), array parameters and local
arrays, procedure libraries (LIBRARY, INSTALL and OVERLAY), LOCAL
DATA and LOCAL ERROR handlers, a relative RESTORE statement which
does not require the use of line numbers.

Many array operations have been introduced. These include: local arrays and
array reference parameters, whole arrays operations such as assignment, four
function arithmetic, matrix and vector multiplication, SUM of array elements,
the DIM function to fmd information on array parameters, array element
initialisation, MOD (square root of the sum of the squares of a numeric array).

Several new operators have been introduced: << (left shift), >> (arithmetic

right shift), >>> (logical right shift), I (floating point indirection), +=

(increment assignment, including all the elements of an array), -= (decrement
assignment). The character % introduces binary constants as & introduces
hexadecimal ones.

TRACE has been enhanced to allow single stepping and the tracing of
procedure and function calls. Example: TRACE STEP PROC.

Line numbers may now be in the range 0-&FEFF, ie 0-65279. On line entry,
BASIC checks for mismatched quotes and parentheses and attempts to

Appendix H - BBC BASIC's history 431

Bug fixes

reference line numbers greater than 65279. An error is reported if a mismatch
is detected.

Attemptl> to ~et PAGE, LOMEM or HIMEM to mcorrect value:. will result in
an error message being printed, hut execution will continue.

Many new statement have been introduced. The relevant keywords arc:
BEATS, BPUT<t, CIRCLE, COLOUR, ELLIPSE, END, ERROR, EXT, FILL,
GCOL, LINE, INPUT, LEFT$, MID$, RIGHT$, MOUSE, ON, OFF,
ORIGIN, POINT, QUIT, RECTANG LE, SOUND, STEREO, SWAP, SYS,
TEMPO, VOICE, VOICES, WAIT.

Several new functions have also been introduced. The keywords arc: BEAT,
BEATS, DIM, END, GET$#, LEFT$, MODE, REPO RT$, RIGHT$, SUM,
SUMLEN , TEMPO.

Some new commands have been introduced. They are: APPEND, HELP,
LISTO (enhanced), LVAR, SAVE (enhanced), TWIN, TWINO.
Additionally, the *BASIC command itself now supports several command
lme option:. and arguments.

All error messages have been made more useful, and many new error
messages have been introduced.

The a:>semhlcr accepts the full ARM instruction set. Full details of the
assembler arc given in the Assembler Guide; a brief description is gtven in the
appendix on the assembler in the Programmer's Reference Manual.

CALL and USR may he used to call ARM assembler routine, or to emulate
6502-hased MOS routine when supplied with the appropriate addresses.
Access to many internal BASIC routines is (legally) available to writers of
CALL, USR and OSCLI routines. SYS can be used to access operatmg system
SWI routines.

The default error handler sets @% to a value which ensures that the line
number will he printed as an integer. It restores@% at the end.

COUNT and WIDTH arc now stored as 32-bit wide quantities. This means
that tabulation using commas is more reliable. (Swmge effects used to occur
after 255 characters had been printed.)

The pseudo-variables may now be used as statements after an IF even when
the THEN is omitted. That is, IF relocate% PAGE-PAGE+&lOOOO will

Appendix H - BBC BASIC's history 432

work, even though it didn't previou11ly.

Integer FOR statements that would overflow will be ignored. (Rasically this
means that if limit+step-1 / & 7FFFFFFF, the loop will terminate at the
NEXT.)

Appendix H - BBC BASIC's history 433

Appendix H - BBC BASIC's history 434

Index

Symbols

! 24, 162
$ 24, 163
o/o 27
& 27
(24
) 24
* 24
*BASIC 205
*CHANNELVOICE 155
*commands 421
*CONFIGURE 145
*configure language 3
*EXEC 100
*FX 15 62
*FX 163 124
*FX 219 62
*FX 4 62
*FX commands 423
*KEY 65
*OBEY 100
*POINTER 64
*SChoose 146
*SCopy 146
*SDelete 146
*SETTYPE 100
*SFlipX 146
*SFlipY 146
*SGet 146
*SHADOW 102

Index

*Sinfo 146
*SList 146
*SLoad 147
*SMerge 147
*SNew 146
*SRename 146
*SSave 147
+ 24
+ (string concatenation) 34
+= 23
+= (string lengthen) 34
+= (with arrays) 43
- 24
-= 23
-= (with arrays) 43
. (matrix multiplication) 46
I 24
I 24, 163
< 24,68
« 24,28
<= 24,68
<> 24,68
<Copy> 10
<Tab> key 62
= 22, 24,68
=expression 86
> 17,24,68
>= 24,68
» 24,29
>» 24,28
? 24, 162
1\ 24

435

- 39, 52
.. 33
'E' notation 22

Numerics

256-co\our mode 105
256-colour modes 107

A

ABS 173
absolute co-ordinates 118
ACS 185
actual parameter 84
ADVAL 249
altering text, in editor 384
amplitude, sound 157
AND 24, 30, 69, 197
APPEND 17, 203
arc plot 128
arithmetic operator 24
array 41
array operations 44
ASC 37, 283
ASCII 37
ASN 186
assignment 21, 22
ATN 187
AUTO 13,204
automatic line numbering 13

B

background colour 105, 116
background colour, teletext ISO
base 16 27
base 2 27
BASIC screen editor 383
BEAT 159,293

Index

beat counter 158
BEATS 158, 294
BGET# 98, 301
binary 27
block copy, in editor 389
block move, in editor 389
block structured IF 69
BPUT # 98, 302
BY 118, 347
byte DIM 161
byte indirection 161

c
CALL 313
CASE 76,331
CHAIN 221
changing colour 1 OS
changing text size 103
changing text, in editor 384
channel number 97
channel, sound 156
character input 58
CHR$ 37, 284
CIRCLE 114,348
CIRCLE FILL 114
circle plot 126
CLEAR 222
CLG 349
CLOSE# 98, 303
CLS 350
co-ordinate system Ill
colour 104
COLOR 105,351
COLOUR 105,351
colour palette 105
colour pattern 131
colour, teletext 149
comments 15
comparison operators 68

436

concatenation, string 34
conditional structures 67
control variable 71
conversions 37
copying rectangles 138
cos 188
COUNT 250
cursor 377
cursor control 380
cursor editing 10 •
cursor keys 62
cursor movement, in editor 384

D
DATA 59,223
data files 97
debugging 169
DEF 83,224
default colours 106
default error handler 166
default patterns 131
default viewports 143
defining a function 91
defining a procedure 83
defining a sprite 146
defining colour patterns 133
DEG 189
DELETE 11, 208
deleting lines, in editor 388
deleting programs 12
deleting text, in editor 385
DIM 41,225
DIM (as a function) 43
DIM, byte form 161
dimension 41
disabling error trapping 166
display 101
display modes 419
displaying text 51

Index

DIY 24, 174
dot-dash pattern 123
double-height characters 103
double-height, teletext 150
DRAW 117,353
duration, sound 158

E

EDIT 2109,383
editor 383

altering text 384
block copy 389
block move 389
cursor movement 384
deleting lines 388
deleting text 385
errors 396
inserting text 385
insert/overtype 391
keys 392
line commands 388
loading programs 386
marking lines 388
mode 392
renumbering 391
saving programs 386
searching 390
status line 384
wildcards 392
windows 392

ELLIPSE 114,354
ELLIPSE FILL 114
ellipse plot 126
ELSE 67, 70, 332
ELSE (in ON) 80
END 227
ENDCASE 786 333
ENDIF 70, 334
ENDPROC 83, 229

437

ENDWHILE 75, 335
EOF# 198, 304
EOR 25, 30, 69, 198
ERL 166, 259
ERR 166,260
ERROR 167, 261
ERROR EXT 167,261
error handling 165
error trapping 165
errors, in editor 396 ,.
EVAL 38, 175
executing a command file 100
EXP 190
EXT# 305
external errors 167

F

FALSE 31, 199
file 97
file input 98
file output 97
FILL 137,355
flashing colours 105, 379
flashing, teletext 150
floating point 19
floating point indirection 163
floating point variable 21
flood-fill 13 7
FN 24, 86, 91, 230
FOR 70,336
foreground colour 105, 116
formal parameter 84
function keys 65
function key definitions 66
functions 83
function library 91

Index

G

GCOL 105, 115, 356
GCOL action 116
GET 58, 267
GET$ 58,268
GET$# 98, 306
giant patterns 136
GOSUB 79, 231
GOTO 78,232
graphics 111
graphics cursor 11 7
graphics resolution 103
graphics units 111
graphics viewport 141
graphics, teletext 151

H

HELP 210
hexadecimal 2 7
HIMEM 251

I

IF 337
IF (multi-line) 69
IF (single line) 67
indirection, byte 162
indirection, floating point 163
indirection, string 163
indirection, word 162
INKEY 59, 270
INKEY values 411
INKEY$ 59, 270
INPUT 57, 271
INPUT LINE 58, 273
INPUT# 98,307
insert/overtype, in editor 391

1 inserting text, in editor 385

438

INSTALL 92,233
INSTR 34, 285
INT 176
integer 19
integer variable 21
interlace 377
IS0-8859 37

K

keyboard buffer 61
keyboard input 57
keys, in editor 392

L
left shift 28
LEFf$ 34, 286
LEN 36,287
LET 22,234
LIBRARY 92,235
library 91
LINE 113,358
LINE INPUT 58, 273
line number 7
LIST 9, 14, 211
listing sprites 146
LISTO 67, 213
LN 191
LOAD 17, 214
loading programs, in editor 386
LOCAL 85, 236
LOCAL DATA 88, 236
LOCAL ERROR 168,262
local error handling 168
LOG 192
logical colour 106
logical operator 24,31
LOMEM 252
loop structures 6 7

Index

LVAR 20, 96, 169, 215

M

mask, sprite 148
matrix multiplication 48
MID$ 34,288
MOD 24, 49, 177
MODE 101,359
mode 101,419
mode, in editor 392
MOUSE 274
mouse 63
MOVE 117,361
moving rectangles 138

N

negative INKEY values 63,411
NEW 216
NEXT 70,339
NOT 24, 79, 200
note synchronisation 158, 160
null string 33

0

octave 157
OF 77,340
OFF 362
OLD 217
ON 363
ON ... GOSUB 80, 231
ON ... GOTO 79,232
ON ... PROC 89, 239
ON ERROR 165, 263
ON ERROR LOCAL 168
ON ERROR OFF 166
OPENIN 98,308
OPEN OUT 97, 309

439

OPENUP 310
OR 25, 30, 69, 201
ORIGIN 364
OS commands 421
oscu 237
OTHER WISE 341
OVERLAY 95

p

PAGE 253
paged mode 3 7 5
palette 105
paraJlelogram plot 125
parameter 84
pattern fill 132
physical colour 106
PI 193
pitch, sound 157
pixel 112
PLOT 121,365
PLOT codes 415
plotting sprites 14 7
POINT 112
POINT (function) 367
POINT (statement) 366
pointer 64
POS 254
PRINT 4, 51, 276
PRINT# 97,311
printer 374
PROC 83
procedures 83
procedure library 91
program 7
program data 59
program editing 9
prompt 57
PTR# 312

Index

Q
QUIT 3, 167, 240

R

RAD 194
READ 59, 241
reading from a file 98
reading text 57
RECTANGLE 113, 368
RECTANGLE ... TO 138
RECTANGLE FILL 114
RECTANGLE FILL ... TO 138
rectangle plot 124
recursion 89
relative co-ordinates 118
REM IS, 242
RENUMBER 12,218
renumbering, in editor 387
REPEAT 74, 342
REPORT 166, 264
REPORT$ 265
resequencing programs 12
resident integer variable 23
resolution 101, Ill
RESTORE 60, 243
RESTORE OAT A 88, 243
RESTORE ERROR 168,266
RESTORE+ 96
RETURN 79,244
RETURN (parameter) 87
right shift (arithmetic) 29
right shift (logical) 28
RIGHT$ 34, 289
RND 178
RUN 7, 245

440

s
SAVE 17,219
saving programs, in editor 386
scaled characters 380
screen display 101
screen editor 383
screen modes 419
scrolling 378
searching, in editor 390
sector plot 129
segment plot 130
SGN 179
shadow mode 102
shift operator 28
simple patterns 136
SIN 195
single-byte file i/o 98
single-character input 58
SOUND 155, 295
sound 155
sound after parameter 159
sound channel 156
sound, duration 158
sound pitch 157
sound scheduling 159
sound synchronisation 160
sound volume 157
SPC 279
sprites 145,381
sprite mask 148
sprite plotting 14 7
status line, in editor 384
STEP 71
STEREO 156, 297
STOP 169, 246
STR$ 38,290
STR$- 39
string array 43
string file i/o 98

Index

string indirection 163
string variable 19, 33
STRING$ 36, 291
subscript 41
substring 34
SUM 49, 181
SUMLEN 49, 182
SWAP 183
synchronisation, sound 158, 160
SYS 329
system sprites 145

T
TAB 54,280
TAN 196
teletext mode 149
TEMPO 159, 298
text output 51
text cursor 54
text direction 3 79
text input 57
text output 51
text size 103
text viewports 141
THEN 67, 70,343
TIME 23,255
TIME$ 256
timed input 59
TINT 108, 370
tints 105
TO 70
TOP 257
TRACE 170, 24 7
trapping errors 165
triangle plot 124
TRUE 31,202
TWIN 220
TWINO 220
type-ahead 61

441

u
UNTIL 74, 344
user-defined characters 55
user-defined function 91
USR 330

v
VAL 38, 184
variable 19
VDU 55,371
VDU 5 mode 118
VDU commands 373
YOU commands, summary 417
viewport 141
VOICES 155, 299
volume, sound 157
VPOS 258

w
WAIT 372
WHEN 76,345
WHILE 75, 346
WIDTH 281
wildcards, in editor 392
WIMP 110
windows, in editor 392
word indirection 162
writing to a file 97

Index 442

