
BBC BASIC Reference Manual

BASIC VI

Acornl

BBC BASIC Reference Manual

BASIC VI

\
\. "" '

Acornl

ii

Copyright© I 992 Acorn Computers Limited. All rights reserved

Published by Acorn Computers Technical Publica tions Department

No part of this publication may be reproduced or transmitted. in any form or by
any means. electronic. mechanical. photocopying. recording or otherwise. or
stored in any retrieval system of any nature. without the written permission of the
copyright holder and the publisher. application for which sha ll be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure cou ld be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
Acorn Computers Limited in good faith. However. Acorn Computers Limited
cannot accept any liability for any loss or damage arising from the use of any
information or particulars in this manual.

If you have any comments on this manual. please complete the form at the back of
the manual and send it to the address given there

Acorn supplies its products through an international distribution network Your
supplier is available to help resolve any queries you might have

Within this publication, the term 'BBC' is used as an abbreviation for 'Briti sh
Broadcasting Corporation·.

ACORN. the ACORN logo. ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

All other trademarks are acknowledged

Published by Acorn Computers Limited
ISBN I 85250 I 03 0
Part number 0470.280
Issue I . October I 992

Contents

Contents iii

Part 1 - Overview 1

About the BBC BASIC Reference Manual 3
Intended readership 3
Structure of the manual 3

Conventions used in this manual 4

About BBC BASIC 5
What is BASIC VI? 5
Why use BASIC VI? 5
The BASIC interpreter 6
Window managed programs 6

Part 2 - Programming techniques 9

Command mode 11
Entering BASIC I I
Leavmg BASIC 12
Command mode 12

Simple programming 15
Enterrng a program 15
Altering a program 16
Deleting whole programs 19
Numbering lines in a program 20
Listing long programs 21
Comments 22
Multiple statements 23
Saving and recalling programs 24

Variables and expressions 27
Types of variables 27

Contents

iv

Numeric variables 29
Integers and noating point numbers 29
Specia 1 integer variables 31
Arithmetic operators 31

Bases 33
Hexadecimal numbers 33
Binary numbers and bits 33
Shift operators 34

AND, OR and EOR 36
TRUE and FALSE 37

String variables 39
Assigning values to string variables 39
Joining strings together 40
Splitting strings 40
How cha racters are represented 43
Converting between strings and numbers 43

Arrays 47
The DIM statement 47
Two dimensional arrays 47
Finding the size of an array 49
Operating on whole arrays 49
Array operations 52

Outputting text 55
Print formatting 55
The text cursor 58

Defining your own characters 60

Inputting data 63
Inputting data from the keyboard 63
Including data as part of a program 65
Programming the keyboard 67
Using the mouse in programs 69
Programming function keys 71

Control statements 73
IF. .. THEN ... ELSE 73

Operators 74
IF .. THEN ... ELSE .. . ENDIF 75
FOR ... NEXT 77

REPEAT.. UNTIL 80
WHILE... ENDWHILE 81
CASE ... OF .. WHEN ... OTHERWISE ... ENDCASE 82

GOTO 83
GOSUB .. . RETURN 84
ON ... GOTO/GOSUB 85
For example: 85

Procedures and functions 87
Defining and cal ling procedures 87
Parameters and loca l variables 88

ON ... PROC 92
Recursive procedures 93
Functions 94
Function and procedure libraries 95

Data and command files 101
Data files 101
Writing o r reading single bytes I 02
Writing or reading ASCII strings 103
Command files 104

Screen modes 1 07
Changing screen modes I 07
Shadow modes I 07
Text size I 08
Graphics resolution I 09
Colour modes I 09
Changing colou rs II 0
Changing the colour pa lette 110

256-colou r modes 112
Using the screen under the Wimp 11 4

Contents

v

Contents

vi

Simple graphics 115
The graphics screen 115
The point command 116
The line command 117

Rectangle and rectangle fil l 117
Circle and circle fill 118
El lipse and ellipse fill 118
Graphics colou rs 119
Thegraphicscursor 121

Relative coordinates and BY 121
Printing text at the graphics cursor 122

Complex graphics 123
Plotting simple lines 125
Ellipses 129

Arcs 130
Sectors 13 I
Segments 132

Graphic patterns 133
Default patterns I 33

Plotting using pattern fills I 34
Defining your own patterns I 35
Native mode patterns 136

BBC Master 128 mode patterns I 37
Giant patterns 138
Simple patterns I 38
Flood-fills 139
Copying and moving 140

Viewports 143
Text viewports 143
Graphics viewports 145

Sprites 147
Loading a user sprite 147
Plotting a user sprite 148

Teletext mode 149
Coloured text 149

Making text nash 150
Double-height text 150
Changing the background colour 150
Teletext graphics 151

Sound 155
Activating the sound system 155

Selecting sound channels 155
Allocating a wave-form to each voice 155

Setting the stereo position 156
Creating a note 157
Synchronising the channels 158
Finding the value of the current beat 159

Finding the current tempo 159
Executing a sound on a beat 160

Accessing memory locations 161
Reserving a block of memory 161
The'?' indi rection operator 161
The .,. indirect ion operator 162

The ·1 indirect ion operator 163
The ·s indirection operator 163

Error handling and debugging 165
Generating errors 167
External errors 167
Loca l error handling 168
Debugging 170

VDU control 173

Editing BASIC files 185
Editing BASIC fi les under RISC OS 3 185
Ed iting BASIC files under RISC OS 2 187

Contents

vii

Contents

viii

Part 3 - Keywords 205

Keywords 207
VARIND 231
STOREA 231
STSTORE 232
LVBLNK 232

CREATE 233
EXPR 233
MATCH 234
TOKENADDR 235
FSTA 236
FLDA 236
FADD/FM U L 236
FSU B/FDIV 236
FLOAT 237

FIX 237
FSORT 237
BBC/Master compatible calls 237
Formatting numbers 346

Part 4 - Appendices 409

Appendix A - Numeric implementation 411
Numeric types 41 1

Effects of storage size 4 I 3
What is noating point arithmetic? 415
Implementation 415

Appendix B- Minimum abbreviations 417

Appendix C - Error messages 423

Appendix 0 - lnkey values 427

Appendix E - Colour modes 431

Appendix F - Plot codes 433

Appendix G - VDU commands 435

Appendix H - *FX commands 437

Appendix I - BBC BASIC's history 439
BASIC II improvements 440
BASIC Ill improvements 442
BASIC IV improvements 442
BASIC V version 1.04 improvements 443
BASIC V version 1.05 improvements 445

BASIC VI version 1.05 improvements 446

Appendix J - ARM assembler 447
Using the BASIC assembler 447
Saving machine code to file 451
Executing a machine code program 451
Format of assembly language statements 451
Registers 452
Condition codes 454
The instruction set 454

Index 465

Contents

Contents

X

Part 1 - Overview

2

1 About the BBC BASIC Reference
Manual

T his manual provides a complete description of BBC BASIC. one of the most
popu lar and widely-used programming languages

Intended readership
You should read this manual if you are

• a computer user who has never used BBC BASIC before. who wants an
introduction to a new computer language;

• an experienced programmer in other computer languages. who wants an
insight into BBC BASIC's features without having to resort to a lengthy
tutorial-type manual:

• an experienced BBC BASIC programmer. who needs specific information about
the structure of BBC BASIC. and the use of its commands

Structure of the manual

The manual is divided into the following parts

Part I : Overview - includes this chapter. and the chapter entitled About BBC
BASIC. which gives an introduction to BASIC VI. It compares BASIC VI with BASIC
V. and describes the benefits and effects of using both versions

Pa rt 2: Programming techniques - explains how to program in BBC BASIC. and
introduces many of the commands (or keywords) provided by the language. The
last chapter in this section describes the BASIC screen edi tor.

Pa rt 3: Keywords - conta ins a complete list of BBC BASIC keywords. in
alphabetical o rder. It defines the syntax of all the keywords. and gives you
examples of how to use them.

Part 4: Reference - contains the appendices. which have useful reference
materia l. such as numeric representation. erro r messages. keyword abbreviations
and VDU commands. Appendix I - BBC BASIC's history gives a brief history of BBC
BASIC

3

Conventions used in this manual

Conventions used in this manual

4

The foilowing conventions are applied throughout this manual :

• Specific keys to press are denoted as Ctrl. Delete and so on

• Instructions which require you to press a combination of keys are shown thus
Shift-Break means hold down the Shift key and press and release the Break key.

• Text you type on the keyboard and text that is displayed on the screen appea rs
as fol lows:

PRINT "Hello "

• Classes of item are shown in italics For example. in the descriptions of BASIC
keywords. you might see something like:

LET va1 - expression

where va rand expression are items you need to supply. for example

LET a$ "hello "

• Items within square brackets [; are optionaL For example,

GCO (exp1·ession2 , - expr ossionl

means that you must supply at least one expression If you supply two you
must separate them with a comma.

• All interactive commands are entered by pressing the Return key. However.
this is not actually shown in the examples or syntax of commands.

• Extra spaces are inserted into program listings to aid clarity. but need not be
typed in

• Program listings are indented to il lustrate the structure of the programs

If at any time you wish to interrupt a program the computer is executing you can do
so safely by pressing Esc.

Feel free to experiment. Try modifying the programs listed in this manual and
writing new ones of your own

2 About BBC BASIC

BBC BASIC consists of special keywords with which you create sequences of
instructions. called programs. to be carried out by the computer. You can use

programs to perform complicated tasks involving the computer and the devices
connected to it such as:

• performing calculations

• creating graphics on lhe screen

• manipulating data.

Several examples of programs written in BBC BASIC are provided with the RISC OS
Applications suite.

The BASIC language operates within an environment provided by the computer's
operating system The operating system is responsible for controlling the devices
available to the computer. such as:

• the keyboard

• the screen

• the filing system

For example. it is the operating system which reads each key you press and
displays the appropriate character on the screen. You can enter operating system
commands directly from within BASIC. by prefixing them with an asterisk(*) These
commands are described in the The RISC OS user guide.

What is BASIC VI?

BASIC VI is the latest version of BBC BASIC. supplied alongside BASIC v with the
RISC OS 3 operating system. Its main advantage over BASIC Vis that it ca n handle
real numbers with greater accuracy. It does this by using more memory space to
store real numbers (8 bytes instead of 5 bytes).

Why use BASIC VI?

Normally, the way in which the computer handles real numbers will not matter to
your programs. However, changes to BASIC VI mean that:

• BBC BASIC is now compatible with all BASIC compilers

5

The BASIC interpreter

• Exchanging data between BBC BASIC and other languages. like C. is now
easier.

e BBC BASIC now performs noating point calcu lations in line with IEEE
standard 7'54 .

If you do need to know more about rea l numbers. Appe11dix A- Numeric implemetJtalion
explains in detail how they arc stored and manipulated.

You will fi nd a full list o f the differences between BASIC V and BASIC VI in Appmdix
I - BBC BASIC's liistory.

The BASIC interpreter

When you run a BASIC program. the operating system passes it to the BASIC
i11terpreter. This translates your instructions into a form that the computer can
understand (called assembly language).

Different versions of BBC BASIC use different versions of the interpreter BASIC V
and VI both use version 1.05 o f the BASIC interpreter. However. you might not have
the latest version of BBC BASIC. If you don't helve it. this manual also explains.
where necessa ry. how to achieve the same results using version 1.04 of the BASIC
interpreter.

Window managed programs

6

If you wish to write programs that work in the desktop windowing environment you
must read Tlie Wi11dow Ma11ager chapter in the Programmer's Re{ere11ce Ma11ual The
Window Manager provides·

• a simple to use graphical interface

• the facilities to al low programs to run in a multitasking environment, so that
they can interact with each other. and with other software.

The Window Manager is usually referred to as the Wimp (Windows. Icons Menus
and Pointer) and it simplifies the task of producing programs that conform to the
notion of a 'desktop' . where the windows represent documents on a desk An
example of a BASIC program writ ten under the window environment is ! Patience.

Commands to avoid

If you do decide to wri te a window managed program you must be careful to avoid
the commands in BASIC which wil l either interfere with the running of other
programs under the Wimp. or simply not work at al l. These include:

About BBC BASIC

Avoid described in reason

GET. INKEY. INPUT lnpulling data these commands work under the
Wimp. but can cause problems

• F'X com mands Inputting data Some *FX commands should be
avoided under the Wimp. for example.
usmg the Tab and cursor keys to get
ASCII codes

COI.OUR, MODE Scrm1 modes these commands will interfere with
oLhcr programs use the facilities
provided by the WIMP instead For
example·

SYS "Col ou• '1 ans_Se.C,COJ"

SYS "'ti::.mn S<' L ColoUJ ", 0

Flood-filling Grap{uc patterns flood-filling is not u-;able under the
Wimp

View ports Viewports the Wimp uses its own viewports

7

Window managed programs

8

Part 2 - Programming techniques

9

10

3· Command mode

T his chapter describes how to enter and leave BASIC. and how command mode
works whi le with in BASIC.

Entering BASIC

BASIC V

BASIC Vis supplied with both I~ ISC OS 2.00 and RISC OS 3.

From RISC OS 2.00

Load Edit From the Edit icon bar menu. choose Create/New Task window. and
then type the following

BASIC

Press Return. and the BASIC V version and memory option will be d isplayed on the
screen.

From RISC OS 3

To start BASIC V. display the Task manager menu (click Menu over the Acorn icon at
the bottom right hand corner of the desktop) Choose the Task window option and
then type the fo llowing:

!3ASlC

Press Return. and the BASIC V version and memory option will be displayed on the
screen

BASIC can also be started in both RJSC OS 2.00 and RISC OS 3 from the New Task
option on the Task Manager or from the command line (press Fl2).

BASIC VI

BASIC VI is supplied with RISC OS 3 only

BBC BASIC VI IS different to BBC BASIC V in that it IS stored on disc. not in the
computer's r~OM BASIC VI is abo known as BASIC64

BASIC VI is used by some appl ica ti ons (for example SciCalc) so it may get loaded
into memory without you having to take any special action.

11

Leaving BASIC

Leaving BASIC

To start BASIC VI. display the Task manager menu (dick Menu over the Acorn icon
at the bottom righthand corner of the desktop) Choose the Task window option
and then type the following:

BASIC64

Press Return. and the BASIC VI version and memory option will be d1splayed on
the screen If BASIC VI is not loaded you will get the error message

File 'BASIC64' no~ found

If you get this error message then you should type:

SYSTEM :MODULES.BASIC64

Press Return. and the BASIC VI version and memory option wi ll be displayed on
the screen.

If you now get the error message

file • sys Lem:modu les .bas ic6~ ' no~ found

then either you have not seen a !System directory. in which case you should open
a directory display on the directory containing your !System. or your !System does
not contain a copy of BASIC64. If you don't have BASIC64. you should update it
from the !System on the applications discs

BASIC can also be started from the New task option on the Task manager menu or
from the command line {press Fl2l

BASIC files saved from both BASIC V and BASIC VI are the same and can be run
using either BASIC.

To leave BASIC, type QUIT. then press Return twice to get back to the desktop.

Command mode

12

When you enter BASIC it is in command or interactive mode (sometimes this is termed
imml'diatP mode). Th is means that you can type commands and the computer
responds straight away For example, if you type

t' HINT' "Hello"

the computer displays the following on the screen

Hello

Command mode

PRINT is an example of a keyword which the computer recognises It instructs the
computer to display on the screen whatever follows the PRINT statement enclosed
in quotation marks. Keywords are always written in upper case letters (capitals).

If you make a mistake. the computer may not be able to make sense of what you
have typed For example. if you type·

PR IN'I "He I • o

the computer responds with the message:

Missing "

This is an error message. It indicates that the computer cannot obey your
command because it does not follow the rules of BASIC (in this case because the
computer could not find a second quotation mark).

If Pf~INT is fol lowed by any series o f characters enclosed in quotation marks. then
these characters are displayed on the screen exactly as you typed them Thus

PRINT "12 3"

produces the output

12 - 3

PRINT. however can also be used to give the result of a calculation. For example.
typing

l'){IK'l' 12 - 3

produces the output·

9

In this case. because the sum was not encloc;ed in quotation marks. the computer
performed the calcu lation and d isplayed the resu lt.

Simi larly, multiplication and division can be performed using the symbols • and I
For example

PHINT 12" 13
f'RI NT 1 ~1 I : 1

Some commands. although they have an effect on the computer. do not give
evidence that anyth ing has changed. If. for example. you type

• .E'I FRED - " 2

nothing obvious happens. Nevertheless. the computer now knows about the
existence of a variable called FRED which has the value 12 A variable is a name
which can have different values assigned to it It is described 1n more detail later in
this manual

Command mode

14

Now if you type

PRINT fRED I 3

the computer responds by displaying the number 4

The program below illustrates how you can give commands to produce some
graphics on the screen:

MODE 12

CIRCLE FILL 600,500,100

~ciRC~~ F:~L 600,500,1~0

The tv.OOF command sets up the computer to produce high resolution graphics
t640 by 2'56 dots in 16 colours). It also clears the screen

The L I RC' E F 1 LL command tells the computer to draw a circle at a position 600
dots across from the left of the screen and '500 dots up from the bottom This is
near the centre of the screen because the screen is 1280 units across and I 024
units high The third number tells the computer how big the circle should be. in
this case giving a radius of 100 dots.

4 Simple programming

A program is a list of instructions to be carried out by the computer These
instructions are stored in mC'mory and are only executed when you tell the

computer to do so

Entering a program

Once you have entered BASIC you can begin to type in programs Each line of a
program is numbered so that it can be referred to more easily. Note that you must
press Return at the end of each line you type in. For example. type the following·

_8 PRIN~ " n~l o "

Note that nothing happens (but all must be well as no error message was printed)
Now type

?.TJN

The Hello message is displayed on the screen. The number 10 at the start of the
line is called the line number. and identifies the text after it as a program
statement to be stored in memory. rather than as a command to be executed
immediately

You can type spaces either between the sta rt of the line and the line number. or
between the I ine number and the instruction without affecting the execution of the
program.

10 PRINT " He l lo "

and

1 OPRI~'T •o: . .;<?llo"

are equally valid.

One of the advantages of programs is that they can be executed repeatedly Typing
!UN again here causes He:..lo to be displayed a second time- there is no need to
type the complete PRIKT "Hello" statement again

The followmg IS a simple program demonstrating the use of a variable and the
IN PUT statement

15

Altering a program

lC PRINT "Can you give me a number ";
20 INPUT number
30 PRINT "The number you =yped was ";namber

The line numbers determine the order in which the computer executes these
instructions. They can take any whole value between 0 and 65279. You ca n type line
numbers in any order you like; BASIC will sort them into ascending order and obey
them in this order.

Now RUN this program. The computer obeys line 10 and displays the message

Can you gjve me a number ?

The question mark is added automatically by the execution of line 20. It wil l appear
on a new line if you miss off the semicolon at the end of line I 0

The keyword INPUT instructs the computer to wait for you to type something. in
this case a number. Type the following (followed by Return):

6

Line 30 is now obeyed. and the following message is displayed:

The number you typed was 6

Altering a program

16

Once you have entered a program. you may wish to make changes to it.

You can of cou rse type in a whole new version of the program, but there are quicker
methods available.

To see the program which is currently stored in memory. type

L IST

Lines I 0. 20 and 30 are listed on the screen.

Replacing and adding lines

To add extra lines to the program, type in the new line with an appropriate line
number:

5 PRINT "Hello"
40 PRINT " Twice "; number " i s "; 2 * number

and then :

LIST

Note that these two extra lines are added to the program in such a way that the I ine
numbers are listed in numerica l order:

Simple programming

5 PRINT "Hello "
10 PRINT "Can you give me a number ".

'
20 INPUT number
30 PRINT "The number you Lyped was ";number
40 PRINT "Twice ". number .. is ". 2 *number ' '

To replace lines, enter the new I ine with t he line number o f the one which is to be
replaced For example

40 PRINT number ;" squared i s "; number *number

Now when you type

I , [S'T

the following is displayed:

5 PR~NT' "He :.. lo "
10 PR I ~1 "Can you g i ve mo a number ";
20 INP:.JT number
30 PRINT "The number you Lyped was "; number
40 PRINT number; " squared is "; number*numbor

Altering a single line in a program

If you wish to alter on ly part of a iine. for example, to correct a single spell ing
mistake, you ca n do so using the cu sor ed it keys. These are the arrow keys to the
right of the main keyboard.

Suppose you want to change the word Lyped to entered on line 30. Begin by
pressing the i key twice. The original cu rsor position which was under line 40
becomes a square and the cursor moves up to the sta rt of l ine 30.

Press Copy a few t imes. The cu rsor ed iting moves along line 30, the square moves
along as wel l . and line 30 is copied underneath l ine 40. Keep on pressing Copy
until the word typed is copied and then stop.

If you ho ld the Copy key down. the repeat action allows you to move the cursor
quickly across the screen. A quick press and release gives you precise control.
moving one character position The following is displayed on your screen

5 PRIN~ "Hello"
10 PR IN'l' "Can you give me a number ";
2 0 J NP'JT number
30 PRINT "The number you Lyped_was ";number
40 PRINT namber; " squared is "; number*number
30 PRIN'I "The number you typed

17

Altering a program

Press Delete until the word typed is deleted from the new line 30 The cursor on
the o ld line 30 does not move:

5 PRINT " He::.lo "
10 PRINT "Can you give me a number II •

'
20 INPUT P.umbe!'
30 PRINT " The number you typed_ was ";number
40 PRINT P.umber ;" squared is " . null'ber * number '
30 PRINT " The number you

Type the word

enL0 10d

and press Copy to copy the rest of line 30 to your new version

Press Return . The square disappears and the cu rsor moves to the sta rt of a new
line. Now type

LIST

to produce the following:

'.:> PRINT "Hello "
10 PRINT "Can you give me a number ";
20 INPUT number
30 PRIN':' "The number yoc entered was ";number
40 PRINm nuwber ;" squared is "; null'ber*number

There are no restrictions on how much you move the cursor around when you are
copying Note when the cursor reaches the end o f the screen it will wrap-around to
the other side of the screen. You can use the right and left arrow keys to miss out
parts o f lines or to repeat them. You ca n also copy from several different lines on to
your new line as you go.

Deleting lines

18

You ca n either delete lines one at a time. or delete a group of lines at once using
the DELETE command.

To delete a single line. you just type the line number followed by l~eturn . To delete
line number 5, for example. type

5

To check that line 5 is deleted. type

LIST

Simple programming

and the computer displays the following

10 PRINT "Ca n yot.. give me d number ";
20 INPUT number
'30 PRI NT "'The numoer you e:1tered was "; number
40 PRI NT number-;" s qua r ed i s "; number *number

The DELETE command allows you to delete a number o f consecutive lines in three
different ways·

• By deleting a block of lines. To delete all line numbers between I 0 and 30
inclusive. type

DEL ETE 10,30

• By deleting from the beginning of a program. To delete all lines from the
beginning of the program to line 30. type

DEL ETE 0,30

The number zero is the minimum line number that can be used in a program
Therefore. all lines from the start of the program to line 30 are deleted.

• By deleting from a line to the end of the program. To delete all lines from line
20 to the end of the program. for example. type

DFI.~:n: 20 , 65279

The number 65279 is the maximum line number that can be used in a program.
so in this case all lines from line 20 to the end of the program are deleted. Of
course. you can use any other number which is higher than the last line of the
program. so something like 60000 will usually work just as well. and is
somewhat quicker to type!

Deleting whole programs

Before you enter a new program, make sure no program currently exists in memory.
If it does. the lines of the new program you enter wi ll get mixed up with the lines of
the existing program. and this could produce strange results'

To delete any existing program. you can use the DELETE command described
above. but an easier method is to type

This tells the computer to forget about any existing program. and to be ready to
accept a new one.

Although the DELETE and LIST commands combined with cursor editing are fine
for making small changes to a BASIC program. you should note that. if you are
us1ng RISC OS 2. the BASIC Editor is much more versatile See the chapter entitled
Editinq BASIC files on page 185 for details of using this program

Note RISC OS 3 users should use Edit as a BASIC program ed1tor

19

Numbering lines in a program

Numbering lines in a program

20

There may be occasions when you want to change the line numbers of a program
without changing their order. The command to use is RENUMBFR This facility is
particularly useful when you want to insert a large number of lines between two
ex1sting ones

You can specify two numbers after typing the RENUMBER command The first
number tells the computer what you want the new first program line number to be
The second number tells the computer how much to add to each line number to
get the next one

For example.

HENUM8ER 100 , 20

makes the first line into line 100 and numbers the remaining lines 120. 140, 160.
and so on.

If you leave out the second number in the RENUMBER command, the computer
au tomatica lly increments the line numbers in steps of I 0. So. for example. you
might want to renumber the fo llowing program.

23 PRINT "This demonstrates"
24 PRINT "the use of"
48 PRINT "the very useful "
67 PRINT "RENl.JMBER command"

Typing

RI:.NL>MBER 100
LIST

produces the following d isplay

100 PRINT "This demonstrates "
110 PRINT "the use o f"
120 PRINT " the ver y useful "
1 30 PRINT " RENUMBER comma nd "

Typing

HENUMJ3ER

without including a number after the command, means that your program lines are
renumbered 10. 20. 30. 40 and so on.

Simple programming

Automatic line numbering

You do not have to type line numbers at the beginning of each new program line.
The computer does it automatica lly when given the AUTO command. For example.
type

AUTO

The computer d isplays the number I 0 on the l ine below. If you type the first
program line and press Retu rn . the number 20 appears on the next l ine, and so on.
To leave this automatic line numbering mode, press Esc.

Starting a program from a particular line

You can sta rt a program at a l ine other than line 10 by following the AUTO
command with the first line number you wish to use . Thus,

AUTO 250

generates lines which are numbered 250. 260, 270, and so on.

You ca n also specify the number o f spare l ines between each o f your program lines
by adding a second number. separated from the first by a comma. Thus.

AUTO 250, 15

starts at line number 250 and subsequently increases the line numbers in steps of
15. generating lines numbered 250. 265. 280. and so on.

Listing long programs

The LIST command, used above to display the cu rrent program on the screen, can
be used to look at part of a program. This is pa rt icu larly useful if the program is
very big and you wanl to concentrate on one part of it.

Listing sections of programs

To look alone particular l ine type. for example

LIST 40

To look al i:l number of consecutive lines type, for example.

L:;:ST 20,40

To see from the beginning of the program up to a pa rticu lar line type for example.

To display from a particular line to the end of the program type. for example.

LIST 2C ,

21

Comments

Halting listings from the command line

Comments

22

If you list more of a program than can fit on the screen all at once the beginning of
the listing disappears off the top o f the screen before you have time to read it If
you are running BASIC from the command line there are three ways of getting
round this problem.

• Pressing the Scroll Lock halts the listing; pressing it again allows the listing to
continue. Th is enables you to step through chunks o f the listing.

• Holding down Ctrl and Shift together after typing LIST halts the displayed
listing on the screen . To continue the listing, take your finger off either Ctrl or
Shift

• Putting the computer into paged mode. This is the most reliable method To
enter this mode press Ctri-N. then type LIST. The listing stops as soon as the
whole screen is fil led. To display the next screenfu l of list ing, press Scro l l Lock
twice. This method ensures that you wi ll not miss any of the listing To cancel
the effect of Ctrl-N. type Ctrl-0 when the listing is finished.

In addition to the methods described for halt ing listings. you can also slow the
listing down by pressing Ctrl This makes the screen halt for the auto-repeat rate
time (typically about l /25th o f a second) between each new line. Thus it takes a
second to scro l l one screenful in a 25-line text mode

When writing programs. especially long or complex ones. you should insert
comments to remind you what each part of the program is doing This is done by
using the REM keyword which is short for ·remark'

REM tells the computer to ignore the rest of the l ine when it executes the program.
For example. to add comments to the fo llowing program:

10 PRINT "Can you gi vc me a m:mber ";
20 INPLJT number
30 PRINT "'l'he number you typed was "; number
40 PRIK'f number ;" squared is" ; number*number

type

5 REM Hetid in a value dnd assign it ~o numbe~
25 R3M Now print out tr.e nuwber given.
35 REX And i~s square

and then

:..IST

to display the complete program

Simple programming

5 RPM Read in a value ~nd ass ign it Lo number
10 PRINT "Can you give me d number ";
20 INPU'f' number
2~ REM Now print out the ntMber given .
30 PRIN'I '"f'he number you l yped was ";number
3S REM And its sqaare
40 PRINT number;" squared is"; number*number

You may like to add further REM statements to underline comments or leave space
above them to make them clearer

~ REM Read in a value and assign it co number
6 RSM ---------------------------- ----------

10 PRINT "C'an you give me a number";
/0 INPUT number
?.4 REM
?.'l RE[v! Now print out the number given
?.6 REM --- ------ --------- ------ -
30 PRINT "The number yo:J typed was "; number
34 REM
35 REM And its square
36 REM --
40 PRINT number;" squared is "; numbe1 *number

Multiple statements
A line of BASIC can contain up to 238 characters and can be spread over several
lines on the screen . In all the programs given so far. each line of BASIC contains a
single statement. Several statemc-nts. however. may be placed on one line
separated by colons(:). For example

10 PRTN':' "Can you give r:tc a num"ber ";: INPUT number
10 PRIN':' "The number you typed was ";number : REM print
out t.he number
4C ?RINT nurrber ;" squa1·ed is "; number*number : RE~ and
ils squa1c

Note that REM statements must on ly be placed at the end of a line since the whole
of the rest of the line is ignored If you alter the program so that line "30 reads as
follows

30 REM print oa= =he number : PRINT "the number you
typed was "; nur:t"ber

you will prevent the PRINT statement being executed.

23

Saving and recalling programs

The lines above illustrate that lines with more than one statement can overflow
onto the next screen line very easily. makin€ the program hard to read You should
therefore try to avoid too many multi-statement lines.

Saving and recalling programs

24

You can save a copy of the current program to disc at any time. This allows you to
recall (load) it at a later date. without havin€ to retype all the instructions How you
are running BASIC determmes how you can save your program

Saving and loading a program from Edit (RISC OS 3)

If you are writing your program in Edit. you can save it to disc at any stage. using
the Save menu option (see the chapter on Edtt rn the Applications Guide) Once
saved. the file can be loaded for edttmg by holding down Shift and double-clickmg
on its icon.

Saving a program from the command line

To save a program from the command line. type

SAVF " program_nawe"

The program will be saved to the currently-selected disc. with the name
o ·~ogr a""l_.-;arnt. The name you use when saving a program can contain up to I 0
characters At this stage. you should confine your names to numbers and upper
and lower-case letters and digits Other characters may be used but some have
spectal meanings. See the RISC OS User Guide for further information on file
naming.

After usin€ SAVE your program remains tn memory and is unaltered in any way
You can still edit LIST RUN and so on.

Another capability of the REM statement is that it allows you to give the pro€ram
name for use by the SAVE command The filename must be preceded by a>
character. and the REM containtn€ tt must be the first line of the pro€ram Thus if
the first line of the program is

10 R!-'!ft >Pt001

all you need to do is type the SAVE command (or its abbreviation SA) on its own
and the name prog I will be used to save the program

Loading a program from the command line

To load a program which you have prevtously saved. in this case progl. type

LO.;;D "prog1"

Simple programming

The LOAD operation replaces the cu rrent program with the one from the disc (so
you should be sure that you don't mind losing the current program before you load
a new one) You can check this by listing the program currently in memory

In addition to loading a program. you can add a program to the end or the current
one using the APPEND command The appended program is renumbered to ensure
that its line numbers start after those of the initial program The statements
LIBRARY and OVERLAY may be used to add libraries of procedures and functions
to the current program (see the chapter entitled Procedures and function s on page 87
for details)

25

Saving and recalling programs

26

5 Variables and expressions

A variable has a name and a value associated with it. The name. for example.
FRED or a single letter such as x. allows the variable to be identified and its

value to be accessed. This value can be changed and retrieved as many times as
required

Types of variables

There are three different types of variables used to store different types of
information These are

• Integer variables which can only store whole numbers

• Floating point variables. which can store either whole numbers or fractions

• String variables which store characters.

Each type is distinguished by the last character of the variable name. A name by
itself. like Fred. signifies a floating point variable: Fred% is an integer variable,
and Fred$ is a string variable.

Naming variables

The rules for naming variables are as follows:

• there must be no spaces within the name

• they can contain digits and unaccented upper- and lower-case letters

• they can be divided into multiple words. using the underscore character Ll

• they must not start with a digit

• they must not start with any BASIC keywords

All the following names are allowed

X
xpos
XPOS
Xpos
x_position
greatest_x_position
position_of_X
XPOSl

27

Types of variables

28

Note that upper- and lower-case letters are regarded by BASIC as being different.
so that XPOS, xpos and Xpos are three separate variables.

The following names are not allowed

2pos
'TOTAL_x
FOREST
COST
x-pos
X Position
X.pos

It does not begin with a letter.
It begins with TO. a BASIC keyword
It begins with rOR, a BASIC keyword.
It begins with COS, a BASIC keyword.
It conta ins a minus sign
It contains a space.
It contains a punctuation mark.

It is very easy to be caught out by the rule which says that the variables must not
start with a BASIC keyword. The best way to avoid this problem is to use lower- or
mixed-case variable names since BASIC keywords only use upper-case. This has
the added advan tage of making the program easier to read .

The values of the current variables may be displayed at any time by typing the
command LVAR at the BASIC prompt and then pressing Return.

6 Numeric variables

T his chapter tells you how to perform arithmetic operations using numeric
variables. If you want to know more about the different types of numeric

variable which BBC BASIC uses. and how they are represented. see Appendix A­
Numeric implementation

Integers and floating point numbers
Integer variables are specified by placing a percent sign(%) at the end of the name.
Floating point variables have no percent sign at the end. For instance, a variable
called number% is an integer variable. whereas a variable ca lled number is a
noating point variable.

Floating point variables can represent both whole numbers (integers) and decimal
fractions. but integer variables can only store whole numbers For example. the
assignments

I.F.T number = 4 I 3
I .ET number% = 4 I 3

leave the variables with the following values

number
number%

is :;_ . 33333333
is 1

In the case of the integer variable. the decimal fraction part has been lost The
advantages. however. of using integer variables are

• they are processed more quickly by the computer.

• they occupy less memory;

• they are precise.

29

Integers and floating point numbers

30

Assigning values to variables

The value assigned to a numeric (floating point or integer) variable can be
~pccificd as:

• a single number

• the current value of another variable

• an expression

• the result of a function.

For example·

LEI' .J<ISe 3
:-...E'T heighL - 4
LET ul ea = (base * he.:.glll) /2
LET hyooL - SQR(base* base i height*heightl

(ba~;e * height) I 2 is a mathematical expression consisting of the variables
basE' and -,e: ghl. and arithmetic operations to be performed on them

SOR 1~ a function which returns the square root of a number. 1n this case the
expression (base*base + heighL*heighL).

The above assignments leave the variables with the following values·

bel ~;p is 3
he ... ql1t is 4
area is 6
hyool is '5

Note that giving Cl new value to base or heig'll does not automatically update
ar eo or hypot Once the expression is evaluated using the values of base and
height current at that time. it is forgotten In other words. arC>a and hypot on ly
know what va lue they contain. not how it was obta ined.

The usc of LET is optional For example.

is equivalent to :

x = x~l

Using LET. however. makes it easier initially to understand what is happening On
its own x - x+ 1 looks. to a mathematician. like an unbalanced equation Using
LET makes it clear that the= is not being used in its usual algebraic sense but as
shorthand for 'become equa l' u:•1 x = x+ ~ can be read as 'let x become equa l
to its old value with one added to it.

Numeric variables

In BBC BASIC, it is usual not to use LET at all: it is principally allowed to provide
compatibility with other BASICs which require its presence

An alternative way of expressing an addition in an assignment is to use:

X += 1

This means 'let x become equal to itself with one added to it'.

Similarly,

X -= 3

means 'let x become equal to itself with three subtracted from it'.

Special integer variables

The 27 integer variables A% to Z% and@% are treated slightly differently from the
others. They are called 'resident' integer variables because they are not cleared
when the program is run , or when NEW is used. This means that they can be used
to pass values from one program to another.

A special integer pseudo-variable is TIME. TIME is an elapsed time clock which is
incremented every hundredth of a second while the computer is switched on. It can
be used to find out how long something takes by putting the following statements
around a program:

T% = TIME

PRINT (TIME- T%)/100 : REM Time in seconds

TIME may be assigned a starting value just like any other variable. So. for example.
the statement above could be replaced by

TIME = 0

PRINT TIME/100

Note that you cannot use LET with TIME.

Arithmetic operators

The full list of arithmetic operators and logica l operators is given in the following
table. Each operator is assigned a priority. When an expression is being evaluated.
this priority determines the order in which the operators are executed. Priority I
operators are acted upon first, and priority 7 last

31

Arithmetic operators

32

Priority Operator Meaning

I Unary minus
+ Unary plus
NOT Logica l NOT
FN Functions
{) Brackets
? Byte indirection

Word indirection
$ String indirection

I Floating point indirection

2 Raise to the power

3 * Multiplication
I

I Division
DI V Integer division
MOD Integer remainder

4 + Addition
Subtraction

5 Equal to
<> Not equal to
< Less than
> Greater than
< = Less than or equa l to
>= Greater than or equal to
<< Shift left
>> Ari thmetic sh ift right
>>> Logical sh ift right

6 AND Logical and bitwise AND

7 OR Logical and bitwise OR
EOR Logical and bi twise Exclusive OR

For example. 12+3*4"2 is eva luated as 12+(3*(4"2)) and produce-s the resu lt 60.

Operators with the same priority are executed left to right. as they appear in the
expression Thus. 22 MOD 3 /7 is evaluated as { 22 MOD 3) /7 .

Note that the shift operators are entered by typing two (or three)> or< symbols.
and should not be confused with the «and »characters in the ISO Latin I alphabet
Note also that although you ca n say I +2+ 3. you couldn't write I <<2<<3. Th is
would have to be bracketed thus: (I <<2)<<3. This is beca use you may on ly use one
group 5 operator per (unbracketed) expression .

7 Bases

We are most familiar with numbers expressed in terms of powers of ten, or
decimal numbers. Sometimes it is more convenient to give numbers in a

program in another base. BASIC allows numbers to be given in hexadecimal (base
16) and binary (base 2) as well as base 10.

Hexadecimal numbers
The computer treats any number which is preceded by an & sign as a hexadecimal
(hex) number.

Whereas decimal numbers can contai n ten separate digits. from 0 to 9.
hexadecimal numbers ca n contain sixteen separate digits, 0 to 9 and A to F The
first 16 hexadecimal numbers and their decimal equivalents are given below:

Hex Decimal Hex Decimal

&0 0 &8 8
&I I &9 9
&2 2 &A 10
&3 3 &B II
&4 4 &C 12
&5 5 &D 13
&6 6 &E 14
&7 7 &F 15

The next hexadecimal number is & I 0 which is equivalent to 16 in decimal notat ion.
Thus. in hexadecimal notation. one in a column represents a power of sixteen
rather than a power of ten. For example. & I 00 represents 256 which is 162

Binary numbers and bits
You can enter numbers in binary notation. i.e. in base 2. by preceding them with
the percent sign °/o

Binary numbers consist enti rely o f the digits 0 and I . The following table gives the
binary equ ivalents of t he decima l values I to 10.

33

Shift operators

Shift operators

Binary Decimal Binary Decimal

%1 1 %1l0 6
%10 /. %111 7
%1:!. 3 %:000 8
%100 4 %:001 9
%102. ') %1010 :!.0

A one in a particu lar column represents a power of two:

27 26 25 24 i3 22 21 20
128 64 32 16 8 4 2 I

Thus.

% I 000 I 0 I I ' 64 + 0 • 3 2 + 0 • I 6 + 0 • 8 + I • 4 + 0 • 2 + I • I = 69

Binary digits are usua lly referred to as bits.

There are three operators which act upon the 32 bits of an integer. shifting it either
left or right by a given number of places

Shift left

34

The simplest ~hifl is<< This shift~ the bits of an integer to the left by a g1ven
number of places and inserts zeros in the righthand b1t~ For example

A%
B%
C%
0%

10
A%
A%
A%

<< 1

<< 2

<<

This leaves the variables with the fo llowing values

Variable

A%
B%
C%
D%

Value

10 (%00000000000000000000000000001C:O)
20 (%000COOOOOOC000000000000000010100)
4 0 (%000 0000000000 0000000000000 1 01000)
80 (%00000000 000000000000 00000 10100 00)

Bases

Shift right (unsigned)

The>>> operator shifts the bits of an integer to the right a given number of times.
losing the bits which were in those positions and introducing zeros at the left. For
example

A% = %1010
B% = A% >>> 1
C% = A% >>> 2
D% = A% >>> 3

This leaves the variables with the following va lues:

Variable

A%
8%
C%
0%

Shift right (signed)

Value 1 , 1 , _, ,
1 1 o (%00 oolo oo o:o ooopo oo.ooo01.o ooopo oop. 01 o l

5 (%00000000000000000000000000000101)
2 (%000000000000000000000000000000JO)
1 (%00000000000000000000000000000001)

''SlAV\ £.,.~~ J.,t!'
The>> operator is sim ilar to >>>. but instead of introducing zeros at the top at
each stage, the left-most bit is set to either one or zero depending on what the
current setting is. The left-most bit of an integer is normally used to indicate
whether the integer is positive (left-most bit= zero) or negative (left-most bit=
one) Consequently. this operator can be used to perform a division by a power of
two on a number. retaining its sign For example

A - 1610612740
B = 536870912

A% = %10100000000000000000000000000000
B% = %00100000000000000000000000000000
C% A% >>> 2
D% = B% >>> 2
E% = A% >> 2
F% B% >> 2

This leaves the va riables with the following binary va lues:

Variable Value

C% %0010l0000000000000000000000000000 (671088640}
0% %000010000000000000000000000000000 (134217728}
E% %111010000000000000000000000000000 (-402653184}
F% %000010000000000000000000000000000 (134217728)

35

AND, OR and EOR

Left shift as multiplication

The left shift operator can perform multiplicatiOn The expression va~<< n is
equivalent to va * 2"n. So fred<<3 is the same as fred* 8. Althou~h using
shift can be faster than the equivalent multiply. you should bear in mind that bits
may be shifted off the end of the number. so leading to incorrect results which wi ll
not be trapped as errors For example. & 1 oooo 16 yields 0. whereas the correct
·multiply' result is & I 00000000 (which cannot be represented m a ·n-bit mteger
and would be converted to floatmg point by BASIC).

Right shift as division

The two right shift operators perform a similar role in division The>> operator
~1ves d1v1sion of 'signed' numbers by a power o f two This means that both positive
and negative numbers may be divided. the result is always rounded towards the
integer less than or equal to the exact value. For example. -3,, 1 is the same as

NT (3 12) =-2. not 3 orv 2. which is 1 . The >» operator ignores the sign
when shiftin~ negative numbers. so should only be used to div1de positive
numbers by a power of two

AND, OR and EOR

36

The operators AND. OR and EOR produce a resu lt which depends upon the b1ts of
two integer operands

• In the case of AND. the bits in the two integers are compared and if they are
both one. then a one is placed in the corresponding bit of the result.

• In the case of OR a one is placed in the correspondin~ bit of the result if ei ther
or both of the b1ts in the integers are one

• In the case of EOR. a one is placed in the corresponding b1t of the result if
either (but not both) of the bits in the integers is one

Inputs AND OR EOR

0 0 0 0 0

0 I

0

For exc~mple:

A% %1010

R% - %11CO

0

0

C% = ,\% AND B%

Jt i\% OR B%
E% - A% FO~ 3%

I

0

Bases

This leaves the variables with the following values:

Variable

A%
B%
C%
D%
E%

Value

10 (%1010)
12 (%1100)
8 (%1000)
14 (%1110)
6 (%0110)

The logical operators AND. OR and EOR are symmetrical, like+ and • . Thus X AND
Y = Y AND X for all possible values of X andY. This applies to the other two
operators as well.

TRUE and FALSE

The truth va lues TRUE and FALSE have the values -1 and 0 respectively This
means that:

With AND

TRUE AND 'TRUE gives TRUE (-1 AND -1 -1)

TRUE AND FALSE gives FALSE (-1 AND 0- 0)
FALSE AND FALSE gives FALSE (0 AND 0 0)

With OR

TRUE OR TRUE gives TRUE (- 1 OR -1 -1)
TRUE OR FALSE gives TRUE (- 1 OR 0 -1)
FALSE OR FALSE gives FALSE (0 OR 0 0)

With EOR

T'RUF. EOR 'TRUE gives F'A I.SF. (- 1 EOR -1 0)
TRUE EOR FALSE gives TRUE (-1 EOR 0 -1)

FALSE EOR FALSE gives FALSE (0 EOR 0 = 0 l

37

TRUE and FALSE

38

8 String variables

String variables may be used to store strings of characters. constituting words
and phrases This chapter shows you how to assign values to a string variable.

and describes several useful operations you can perform on strings in BASIC: such
as splitting a string and joining two or more strings together

Assigning values to string variables

Each string can be up to 255 characters long. The following gives some examples of
slri ngs:

dayS = "Monday "
Date$ - "29th February"
spaceS = " "
Address$ "1 0 Downing Street, London"
1\qe$ = "?. • "

Note that the variable Age$ is assigned a string containing the two characters 2
and 1. and not the number 21. So. if you type

Real_Age$ = 2l * 2

the result will not be "42" because BASIC cannot do arithmetic with strings
Instead. the error message:

Type wisMacch: string needed

appears on the screen. indicating that only a string expression can be assigned to
a string variable. A type mismatch error can also be caused by an attempt to
multiply strings, as in

totalS= " 12 " * " 32"

You shou ld note that the ·null' stri ng '"' is va lid. This is a stri ng conta ining zero
characters. In compa ri sons. it is less than any other string (except, of course.
another null string).

In order to obtain a double quotation character.", in a string. you use two of them
adjacent to each other. For example. to print the text A "here. you would use

IRTNT "A""here"

39

Joining strings together

Joining strings together
1\vo strings may be joined together. o r. more correctly speaking. concatenated The
+operator is used to indicate this

10 Road$ = "Downing St.::-eet"
~0 C ' ty$ = "Londoc"
30 PRINT Roc1d$ ~ " " + City$

Typing RUN produces the following:

uowning Street Landor.

The+= operator can also be used. and as the following program shows. produces
the same output as+.

10 Address$ = "Downing Sl.t"'CCL "
20 Address$ +- " "

30 Address$ 1 "London"
40 PRINT Address$

Note. however. that the-= operator is meaningless when applied to strings and
produces an error message.

Splitting strings

40

As wel l as joining two strings together. BASIC can split a string into smaller
sequences of characters Th ree functions are provided for doing this

• LEF':!'$ (A$, P l which gives the first (lehhand end) '1 characters of a string

• RIGHT$ (AS, n) which gives the last (righthand end) n characters of a string.

• MID$ (AS, m, n) which gives n characters from the midd le. beginning at the
mth character.

For example.

PR:Nl' ~EF. S ("HEL~O·, 2), HI G -1 '1'$ ("':'HERE", 2), MID$ ("GORDON", 3, 2)

gives

HE

and

RE RD

10 title$ = "Moon:ig~t Sonala "
20 lef.t_of_string$ = :.EFT$(lille$,4)
30 righL_of_stri:w$ = ~IGH'l'S(title$,6)
40 w~ddle_of_string$ = M:D$(title$,5,9)
?0 P!{ 11'\'J l e!:t_of_ string$
60 PRINT right_of_string$
70 PRINT middle_of_str:ng$

produces the following when run

t-1oon
Sona::u
l igl~:: So:r.

Each of these functions has a convenient shorthand form :

• 1. E b" I'S (A$) gives all but the last character oft he st ring

• RIGHT$ (A$) gives the last character o f the string

• M r D$ (A$, m) gives all the characters from the mth to th e last.

For example

10 PRINT LEFT$("Hello")
20 PRINT RIGHT$("Hello ")
10 PRINT MIDS("Hello ", 3)

produces the following

Hell
0

llo

String variables

LEnS. RiGHTS and MID$ may be used to replace part of a string In each case the
number of new characters equals the number of characters being replaced. and the
string stays the same length The number of cha racters being changed can be
determined by the length of the replacement string. Thus:

10 A$= "Hello there. "
20 MI~$(A$, 7) = "Susan "
30 PRI NT AS
40 LEFT$(AS) = "Howdy "
50 PRINT AS
60 RIGHT$(A$) "!"

7[) PRINT AS

41

Splitting strings

42

produces:

Hello Susan .
Howdy Susan.
Howdy Susan!

Alternatively, you can give the maximum number of characters to be replaced
Then. if the length of the replacement string is less than the g1ven value. all of it is
used Otherwise only the first designated number of characters have an effect For
example,

10 A$ "ABCOEFGHIJ "
20 RIGHT$(AS , 3)
30 PRIN'I A$
40 LEFTS(A$, 4)
50 PRI NT A$
60 MID$(A$,4, 3)
70 PRINT A$

produces:

ABCDEFGHKL
MNOPE FGHKL
MNOSTUGHKL

= "KL "

= "~NOPQR "

= "STUV1N"

Other keywords for manipulating strings

There are also BASIC keywords to:

• produce a long string consisting of multiple copies of a shorter string

• find the length of a string

• determine whether one string is contained within the other.

These keywords are:

• STRING$ (n, A$). which returns a string consisting of n cop1es of A$.

• IJEN (AS). wh1ch gives the length of string A$

• I NSTR (A$, B$). which looks for the string BS within the string A$ and
returns the position of the first place where it is found.

For example.

PR NT STRING$(20,"+- ")

produces the output:

+-+-+-+-+-+-+-+-+-+-t- t - +-+-+ +-•- r-+-+-

String variables

The statement PRINT LEN (" Pl\UL " l prints the number 4 and

A$ = "Great Britain "
PRINT LEN(A$)

produces the result 13. Note that the space is treated like any other character.

AS = "Great BriLain "
PRINT INSTR(A$, "it")

prints 9 because the string it is contained in Grea t Britain at the ninth
character position. If the substring in the INSTR function is not present in the first
string. then 0 is returned. Note also that you can start the search for the substring
at any position. not just from the start of the substring. This is done by specifying a
third parameter. so that for example.

PRINT I NSTR("'e l l o ' ello " ," ' ello ", 2)

wi II print 7. since the first occurrence of the substring wil l be skipped.

You can use the relational operators>. =. <=etc. to compare two strings. See the
chapter entitled Control statements on page 73 for detai ls.

How characters are represented

Every character and symbol which can be reproduced on the screen is represented
within the computer by a number in the range 0 to 255. The system used to assign
numbers to characters and symbols is known as IS0-8859. This is an extension of
the very popular ASCII (American Standard Code for Information Interchange)
code. which only applies to characters between 0 and 127. We sha ll use ASCII as a
general term for character codes. It is wise to follow such a standard so that
different computers can all understand the same numerical alphabet.

BASIC provides a pair of functions for converting characters to their ASCII
number-codes and back again. These are

• ASC {a$ l. which gives the ASCII code of the first character of a string.

• CHRS (n). which gives the one-character string whose ASCI I code is n.

Converting between strings and numbers
There are three keywords which convert between strings and numbers:

• VA~ (A$), which converts a string of digits A$ into a number.

• STR$ (n). which converts the number n into a string.

• EVAL (A$). which evaluates the string A$ as though it were a BASIC
expression.

43

Converting between strings and numbers

VAL

EVAL

STR$

44

VAL returns the va lue of a string, up to the first non-numeric character

For example

PRINT VAL("10tol0")

prints the value 10, since all the characters after the L are ignored. The string may.
however, begin with a+ or - Thus,

number- VAL(" -5 ")

assigns the value - 5 to number If however. the string does not start with a digit
or a plus or minus sign, VAL returns 0

EVAL however, considers the whole string as an expression, allowing operators and
variable names to occur within it. Variables must be assigned values beforehand.

10 radius = 5
20 area = EVAL("PI *radius"2")
30 PRINT area

When this program is run the va lue printed is 78.5398 1 63, which is the value PI
(3. 141592653) multiplied by 5 squared.

STRS performs the opposite conversion to the above two functions It takes the
number given and returns a string containing the digits in the number

For example,

10 A = 45
20 B- 30 . 5
30 A$ = STR$(A)
40 B$ = STR$(8)
50 PRINT A + B
60 PRINT A$; B$

produces the fo llowing when it is run :

75 . 5
4530 . 5

String variables

BBC BASIC can express numbers in base 16 (hexadecimal) as well as base 10
(decimal) This is useful for dealing with certa in types of integer. The chapter
entitled Bases on page '33 explains more about the various ways in which bases ca n
be used. ST'R$-x gives the hexadecimal string representation of x. Thus

10 1\=45
20 AS = STRS - (,;\)

30 PRIK'T A$

produces:

20

because 2D is the hexadecimal version o f the decimal number 45.

45

Converting between strings and numbers

46

9 Arrays

A rrays are groups of variables An array has a name which applies to all variables
.l"'l. in the group. The individual members, known as the elements of the array. are
identified by a subscript. This is a whole number (zero or greaten indicating the
element's position within the array For example. A(OI is the first element in the
array named A(l. and A(I l is the second element, and so on.

The DIM statement
The DIM statement tells BASIC how many elements you wish to usc in the array.
For example,

JIM !1{9)

allocates space in the computer's memory for ten elements. each cal led A (),but
each having a different subscript, zero to nine The 01 M statement also assigns the
value zero to each of these elements. which may then be individually assigned
values, just like any other variables For example

A(:) 0 . ':>6
AL~l = A(l) ~ 4

The example shown above is of a one-dimensional array it may be thought of as a
line of variables. numbered from 0 to 9 in a sequence. More dimensions may be
used

Two dimensional arrays
Two dimensional arrays in which the individual variables are identified by two
subscripts can be thought of as the printing on a TV screen Each character printed
on the screen is at a particu lar position from the left. and a particular position from
the top. !Usc the rows and columns as a matrix.)

A two dimensional array may be defined as follows

D. M Jj(/.,7.)

47

Two dimensional arrays

48

This allocates space for nine elements, each called B (} in this case, and each
identified by two subscripts as shown in the following table

8(0 , 0) B(0 ,1} B(0,2)

8 (1, 0) B (l ,l} 8(1,2)

8(2,0) B(2,1} 8(2 , 2)

Arrays may have as many dimensions as you like, and may hold floating point
numbers, integers, or strings. For example,

DI M str$(1,3,2}

allocates space for 24 string variables (s t r$ (0 , 0 , 0) to s tr$ (1 , 3 , 2)) , each
o f them containing up to 255 characters.

The subscript need not be specified as a number- a variable or expression can be
used instead. For example:

1 0 DH1 A (9}

20 X = 6
30 A(X) = 3
40 A(A (X}) = 1

This gives A(6) the value 3, and A(3) the value l.

Any arithmetic expression may be used as a subscript. Since subscripts can on ly be
whole numbers, any expression giving a floating point result has the number
truncated to its integer value (the part before the decimal point)

When using arrays. remember that if you DIM the array using a particular number
of subscripts, each element of the array must be referenced with the same number
of subscripts

10 DIM name$ (2,2,2}
20 name$(0) = "FRED "

produces an error. Line 20 should be replaced by

20 name$(0 ,0,0} = "FRED "

In addition, the numbers used as subscripts must not be too big or less than zero

10 DI M position(9,4}
20 posiLion(- 1,5) = 1

If you now type RUN, an error message is displayed because the first subscript must
be between zero and nine and the second between zero and four.

Arrays

When you DIM a string array. the elements are initialised. just as they are for
numeric arrays. Each element in the array is set to the null string No space is
allocated for the characters of each string element until they are assigned a value.

The operators+= and-= are particularly useful with arrays. as they remove the
need to evaluate the subscript express ions twice. For example. suppose you had
the assignment:

a(100*(S I NRADangle+l))=a(100*(SI NRADangl e+l))+increment

The expression 100* (SINRADangle+ l) must be calculated twice. which could
be quite time-consuming. On the other hand. if you used

a(lOO *(SINRADang l e+l)) +=increment

the complex subscript expression would only be used once. saving time. It is also
easier to write and read I

Finding the size of an array

Functions are available to find the number of d imensions of an array. and the size
of each dimension. To find the number of dimensions of an array type

PRINT DIM(A())

To find the number of elements of the nth dimension. type

PRI NT DI M(A(),n)

For example.

10 DIM A(4,2,7)
20 n = DIM(A())
30 PRINT n
40 PRINT DIM(A() ,n)

produces:

3
7

These functions are useful mainly in procedures and functions which take array
parameters. See the chapter entitled Procedures and functions on page 87 for more
details.

Operating on whole arrays
As described above. every element of an array is given the value zero when the
array is DIMmed.

49

Operating on whole arrays

50

It is possible to set every element in an array to any given value using a single
assignment as follows:

10 DIM A(10) , 8(10)
20 n% = 2
30 A() = (3*n%)
40 8() = A()

Line I 0 dimensions two arrays of the same size. Line 30 sets all of the elements of
A() to 3*n'7'o, i.e. 6. Then line 40 sets all of the elements of B() from the
corresponding elements in A().

Note: You may be wondering why the righthand side of the assignment in line
30 is in brackets, i .e. why couldn't we have written

20 A() = 3*n%

The answer is that the righthand side of an array assignment must be a single
item (number. single variable or expression in brackets) to avoid possible
confusion with a more complex array operation, for example

2 0 A (} = 3 *n% (}

as described below.

Instead of setting all of the elements of an array to one value. you can set them to
different values by giving a list of values after the= For example:

10 DIM a(S) , b(2 ,2)

20 a() = 1. 2 , 3 ,4
30 b() = 6 , 5 , 4 , 3 , 2 , 1

Any elements omitted from the list are not changed in the array (for example. a(4)
and a(5) above wouldn't be assigned] In the case of multi-dimensional arrays. the
elements are assigned so that the last subscript changes quickest For example. in
the case of b() above the six values I is ted would be assigned to b(O,Ol. b(O.I).
b(0.2). b(1.0). b(2.1). b[2.2) respectively.

In add ition. all the elements in an array can be increased. decreased. multiplied or
divided by a given amount.

10 DI M .A.(2,2) , B (2,2}
20 A(O , O) 4
30 A (1. 1) = 5

40 A(2 , 2) = 6

50 n% = 2 : m% = 3

60 ;.. (} = A() + (n%*n%}
7 0 A() A() - m%
80 B() A() * 6
90 8 (} B () I n%

Arrays

When you RUN this program. the elements of the arrays A(1 and B(l are assigned
the following values:

Array Value Array Value Array Value

A(O.O) 5 A(O.I) I A(0.2)
A(I .O) A(l.l) 6 A(I,2J
A(2.0) A(2.1) A(2.2) 7

8(0.0) 15 8(0,1) 3 8(0.2) 3
B(I,O) 3 B(l.l) 18 B(1,2) 3
8(2.0) 3 8(2,1) 3 8(2,2) 21

Note that in line 60 the brackets around n%*n% are necessary. as with a simple
array assignment The amount being added. subtracted. and so on may be either a
constant. a va riable. a function result or an expression. provided that it is enclosed
in brackets. However. you can use shorthand versions for addition and subtraction
which do not requ ire brackets

60 A(} + n% *n%
70 A (} - m%

It is also possible to add. subtract. multiply or divide two arrays, provided that they
are of the same size. In the result. eve ry element is obtained by performing the
specified operation on the two elements in the corresponding positions in the
operands

For example. for two arrays which have been DIMmed A(1.1) and B(1,1). the
instruction

A() -A() + 8()

1s equivalent to the following four instructions

A(O , O}
A (0, 1)

A(l, 0)

A(l , 1)

A(O , 0}
= A(0,1)

A(1 , 0)
A(1 , 1)

+ 8(0,0)
+ 8(0,1)
+ 8(1,0)
+ 8(1 , 1)

BASIC will perform proper matrix multiplication on pairs o f two-dimensional
arrays using the . operator. The first index or the array is in terpreted as the row and
the second as the column. For example:

10 i=2 : j-3 : k=4
20 DIM A(i,j) ,8(j, k} , C(i,k)

30
40 REM Set up the array contents ...

50
60 C (} = A () . B (l

51

Array operations

Note that the second dimension of the first array must be identical to the first
dimension of the second array.

Also. the matrix mu ltipl ication operation can multiply a vector (a one-dimensional
array) by a two dimensiona l matrix to yield a vector. There are two possible cases :

r ow() .ma t r ix()

This gives a row vector as the result. The number of elements is equal to the
number of columns in the matrix.

mat rix () .column()

This gives a column vector as the result. The number of elements is equal to the
number of rows in the matrix. For example:

10 l = 2: j = 3
20 DTM row(i}, column(j}
30 DIM matrix(i ,j}
40:

50 REM l ines to set up the arrays
200 column() = ma t r ix() .column()
220 PROCprint(c o l umn ())
260 r ow() =row() .mat rix(}
27 0 PROCpr int(row())

Array operations

52

Arithmetic operations on arrays are not quite as general as those on simple
numbers. Although you can say a =b*b+c. you cannot use the equivalent array
expression a (} =b () *b () +C ().Instead. you would have to spl it it into two
assignments:

a () = b (} *b ()
a () = a (} +c ()

Also. the only place these array operations may appear is on the righthand side of
an assignment to another array. You cannot say

PRI NT a (}*2

for example (or. indeed. PRI NT a ()).

Arrays

The table below gives a complete list of array operations.

array array
array -array
array array
array array
array array
array array

array factor
array factor ,

+ array
array

* array
I array

expression,

Copy all elements
Copy all elements. negating
Add corresponding elements
Subtract corresponding elements
Multiply corresponding elements
Divide corresponding elements

Set all elements
. . . Set severa l elements

array array + factor Increment (or concatena te) all elements
array
array +-

array
array -
array

array
array

array =
array

array

factor +

expression

array
factor -
expression

array *
factor *
array I
factor I

array

array

factor Decrement all elements
array

facLor Multiply all elements
array

facLor Divide all elements
array

array Matrix multiplication

array means any array variable. All o f the operations on two arrays requ ire
arrays of exactly the same size and type (real and integer arrays are
treated as different types for this purpose). Only the assignment and
concatenation operations are available on string arrays.

face or means a simple expression. such as 1. LF.NA$ or " HELLO". If you want
to use an expression using binary operators. it must be enclosed in
brackets (a+b).

The arrays used in these operations may all be the same, or all be d ifferent, or
somewhere in between. For example. you are allowed to use:

a() b() + c()

a() a() + b()

a () a () + a ()

The matrix multiplication operator works on two arrays which must be compatible
in size. This means that in the assignment

a() = b() . c()

53

Array operations

54

the following DIMs must have been used:

DI~ b (i, j) REM left. side is i rows by j columns
DIM c(j,k) : REM right side is j rows by k columns
DIM a(i,k) : REM result is i rows by k columns

In addition. the following would be permitted

DIM b(i,j) REM left side .i.s i by j matrix
;)!~ c (i) REM right side is column vector
!)IM a(i) REM result lS column vee Lor

or

DIM b(k) REM left side is row VC'CLOl"
DTM c (j 'k) REM right side is j by k matrix
DI M c) (j) RF.M result lS row vector

There are some functions which act on single arrays:

• SUM array gives the sum of al l elements of the array or the concatenation of all
the strings (up to 255 characters)

• SUM LEN array gives the sum of the lengths of all of the strings in an array

• MOD array gives the modulus. or square root of the sum of the squares of the
clements of a numeric array. For example, if you had the following statements:

10 DIM a(100)
20

90 mod~MODa ()

then to perform the same operation without the MOD operator. you would
have to say:

10 DIM a(100) , b(100)
20

90 b()=a()*a()
100 mod-SQR (Silll(b (})

10 Outputting text

You can output text. including special characters defined by yourself. using the
PRINT statement.

Print formatting
The PRINT statement provides a number of ways of formatting the printed output

Using print separators

The items in a PRINT statement can be separated by a variety of different
punctuation characters. Each of these characters affects the way in which the text
is formatted:

• Items separated by spaces are printed one after the other. with numbers right
justified and strings left justified.

• Items separated by semicolons are printed one after the other with no spaces
(numbers are left justified if there is a semicolon before the first number)

• Items separated by commas are tabulated into columns

• Items separated by apostrophes are printed on separate lines

The following program demonstrates this

10 PRINT "Hello " "Hello "," Hello"' "1/Jhat 's <Jll this?"

Typing RUN produces the following output

Hello Hello
What's all this?

Printing numbers

Hello

Numbers are printed right justified in the pri nt field, un less preceded by a
semicolon, which causes them to be left justified. Print fields arc discussed below.
In the example below. the first number is right justified in the default field of ten
characters: the second number is left justified because a semicolon comes before
it

10 A% 4
20 PRiNT 4;" ";A%

55

Print formatting

Typing RUN produces (spaces are shown as .):

........ . 4. 4

Numbers are normally printed (displayed) as decimal values unless they are
preceded by a-, in which case they are given in hexadecimal notation
(hexadecima l numbers are discussed in the chapter entitled Bases on page 33)

10 PR I NT 10
20 PRINT &10
30 PRINT -10
40 PRINT -&10

produces:

........ 10

........ 16

..... A

........ 10

Defining fields

56

The columns controlled by commas are ca lled fields By default a field is ten
characters wide. Each string which is printed following a comma starts at the
lefthand side of the next field. In other words. using commas is a convenient
method of left- justifying text. Numbers, on the other hand, are displayed to the
right of the next field, so that the units of integers, or the least sign ificant decimal
places of floating point numbers. line up.

Thus.

10 FOR N% = 1 TO 5
20 A$= LEFT$("Hello",N%)
30 B% = N% *1 0A(N%-1)
40 PRINT A$, A$,A$,A$ 'B%,B%,B%, B%
50 NEXT N%

produces the following when RUN:

Outputting text

H H H H
1 1 1 1

He He He He
20 20 20 20

Hel He l He l He l
300 300 300 300

Hell Hell Hell Hell
4000 4000 4000 4000

Hello Hello Hello Hello
50000 50000 50000 50000

Using@% to alter output

Problems may occur when you print out floating point numbers. For example:

PR I NT 6,9,7/3 , 57

produces:

6 92 . 33333333 57

The nine and the decimal equ ivalent of 7/3 run into each other.

To prevent this, you can alter the defau lt values for the field width or the number of
decimal places printed (or both) by using the integer variable@% The way in
which you alter the value of@% depends on which version o f the BASIC interpreter
you are using, as follows

Using the 1.05 interpreter.

To see the effect of altering the value of@%, type

@% =" F8.11 "

t hen

PRINT 6 , 9 ,7/ 3 , 57

and the following is produced:

6.0000 9 .0 000 2 . 3333 57 . 0000

The value you supply for @% can take one o f three forms

• "Gx y" General !G l format. where x is the field width andy is the number of
d igits

• "Ex.y" Exponent (E) format. where xis the field width andy is the number of
digits

• "Fx.y". Fixed (F) format. where xis the field width andy is the number of digits
after the decimal point.

57

The text cursor

The text cursor

For more information on using@%. see the section on the PRINT command. in the
chapter entilled Keywords on page 207

Using the 1.04 interpreter.

To obtain the same format in the I 04 and the 1.05 interpreter example. type.

@% = &20408

The assign men I o f the variable @% is made up of a number o f parts·

• & indicates that a hexadecimal number fo llows

• The first digit (2 1 ind icates the format of the print field -two tel ls BASIC to
print a fixed number of decimal places

• The next two d igits (04) indicate the number o f decimal places requ ired

• The last two digits (08) give the field width .

The format: the first figure after the & symbol. can take three values

• 0 is the defau lt General (Gi format. BASIC uses the number of decimal places
it requires up to a maximum of ten

• I prints numbers in Exponent 1 E.) format: a number between I and 9 99999999
followed byE and then a power o f ten

• 2 prints numbers in the Fixed [I') format: a fixed number o f decimal places.
giving up to a maximum of ten significant figures

See PRINT on page 345 for more details on@%

Text cursor coordinates

58

When text is entered at the keyboard or displayed using the PRINT statement the
position at wh1ch it appears on the screen depends on the location of the text
cursor. As each character is printed. this cursor moves on to the next character
posit ion

Outputting text

Initial ly. the text cursor is at the top left hand corner of the screen. which is position
(0.0). The number of possible positions for the cursor depends on the screen
mode. For example, in screen mode 12 which has 80 characters across the screen
and 32 rows. the coordinates it can have vary as follows:

(0,0) ---~ (79,0)
.--------------------

v '------

(0,31 (79,31)

Altering the position of the text cursor

You can use TAB with one parameter to control the position of the text cursor. For
example:

PRINT TAB(x) "Hel l o "

It works as follows. If the current value of COUNT (which holds the number of
characters printed since the last newl ine) is greater than the required tab column
(ie. x above). a newline is printed Th is moves the cursor to the sta rt o f the next
line, and resets COUNT to zero. Then x spaces are pri nted, moving the cu rsor to
the required column.

Note that it is possible to tab to column 60 in a 40 column mode; the cursor will
simply move to column 20 of the line below the current one. Using TAB with one
parameter to position the cursor on the line wi ll also work. for example. when
characters are sent to the printer. as it is just printing spaces to achieve the desired
tabulation.

On the other hand. TAB with two arguments works in a completely different way it
uses the operating system to position the cu rsor at a specified position on the
screen - th is is relative to the screen 'home· position. wh ich is normally the top left.
In this case. if you try to position the cursor on. say, column 60 in a 40 column
mode. the command will be ignored. Furthermore, this kind of tabbing does not
affect any characters being sent to the printer.

59

Defining your own characters

The VDU statement

In add ition to TAB. there are o ther methods of altering the position of the cu rsor. If.
for example. you type

1 0 PRINT "A";
20 VDU 8
30 PRINT "B"

PRINT " .r:... " ; prints an A at the current cursor position and moves the cu rsor one
place to the right. vou 8 moves the cursor back one position so that it is
underneath the A. Hence. PRTN'T" " B" prints a Bat the same position as the A. and
so rubs it out.

VDU 8 moves the cursor back one space.
VDU 9 moves the cursor forward one space.
VDU 10 moves the cursor down one l ine.
VDU 11 moves the cursor up one line.
VDU 12 clears the screen and puts the cursor at the top left.
VDU 13 moves the cursor to the beginning of the l ine.
VDU 30 moves the cursor to the 'home' position .

For details of these and other effects avai lable with VDU see the chapter entitled
VDU control on page 173.

Defining your own characters

60

Each character is made up of a pattern of dots on an eight by eight grid. All normal
letters. numbers and so on are pre-defined in this way. It is possible, however. to
define your own cha racters with ASCI I va lues in the range 32 to 255.

To do this. use the VDU 23 command. followed by the code of the character you
wish to define and then eight in tegers. each representing one row of the character.
from top to bottom. The bit pattern of each integer defines the sequence of dots
and spaces: one gives a dot and zero gives a space.

128 64 32 16 8 4 2 1

24

60

126

219

126

36

66

129

Outputting text

To set up character 128 to be the shape shown above, use the fol lowing:

VDU 23, 128,24,60, 126,219, 126.36.66,129

Then. to display this character. type

PRINT CHR$(128)

61

Defining your own characters

62

11 Inputting data

T his chapter describes several methods by which you can input data into your
BASIC program:

• from the keyboard

• from predefined data within your program

• by programming keys on the keyboard

• from a mouse.

Inputting data from the keyboard

INPUT

There are three commands you can use to input data from the keyboard

• The INPUT command allows a program to request information

• The GET command waits for the user to press a s1ngle key

• The IN KIZY command wa its a specified length of time for the user to press a
single key.

Note that you are advised not to use these three commands in BASIC programs
written under the window manager environment (see the section entitled Window
managed programs on page 6)

The INPUT statement allows a program to request information from the user

The following program gives an example:

10 PRINT "Give me a n~mbPr and I'!l double it" ;
20 IKFJT X
30 PRINT '"I'wice ";X " i !; "; X*2

When you run this program. the INPUT command on li ne 20 d isplays a question
mark on the screen and waits for you to enter data The number you type is
assigned to the variable X. If you do not type anything. or type letters or symbols
instead. X IS ass1gned the value 0.

63

Inputting data from the keyboard

64

INPUT may also be used with string and integer variables:

10 PR I N~ "What is your nama ";
20 INPUT A$
30 PRINT "Hello " ;A$

Line I 0 in each of the above two programs is used to print a message on the screen
indicating the type of response required The IN PUT statement allows text prompts
to be included. so the program above cou ld be written more neatly as

10 INPUT "What is your name ", A$
20 PRINT "Hello "; A$

The comma in line 10 tel ls the computer to prin t a question mark when it wants
input from the keyboard . If you leave out the comma. the question mark is not
printed. A semi -colon may be used, with exactly the same effect as the comma.

When the program is being executed, the INPUT statement requires you to press
Return if you wish to send what you have typed to the computer Until you press
Return. you can delete all or part of what you have typed by pressing Delete or
Ctri-U to erase the whole line.

When you are inputting a stri ng. the computer ignores any lead ing spaces and
anything after a comma. unless you put the whole string inside quotation marks.

To input a whole line of text. includ ing commas and leading spaces. INPU'I' LINE
(Or LINE INPUT) may be used

10 INPUT AS
20 INPUT LINE B$
30 PRI NT AS
40 PRINT BS

RUN the above program and. in response to each of the question marks. type

Hello , how are you?

This produces the following output:

Hello

He l lo, how are you?

Several inputs may be requested at one time

10 INPUT A,B , C$

You may enter the data individually, pressing Return after each item. In this case
you are prompted with a question mark until you enter the number required.
Alternatively, you can give all the inputs on one l ine. separated by commas.

Inputting data

GET and GET$

Smgle-character input may be used to read a single key press

LO PRINT "Press a key"
20 A$ = GE'!'$
30 PRINT "'!'he i<ey you p"esscd was ";AS

In this example the program waits at line 20 until you press a key As soon as you
do so. the character that key represents is placed in A5 You do not have to press
Return and so do not get the chance to change your mind

Gr~T is similar to GETS but returns the ASCII code of the key pressed. instead of the
character.

INKEY and INKEY$

INKCYS is similar to GETS. except that it does not wa it indefin itely for a key to be
pressed. You give it a time limit and it waits for that length of time on ly (unless a
key is pressed first) For example

I 0 PH. I NT "You have 2 secor.ds L:o pr·cs!> a key "
20 AS NK~YS(200)

The number following the IN KEYS is the number of hundredths of a second it
wa1ts If a key is pressed in time. AS holds the character which was typed
Otherwise. AS is the null string

IN KEY is used in a similar manner to IN KEYS it waits for a given time for a key to
be pressed and then returns the ASCII code for the key pressed. or • if no key is
pressed within this time

Including data as part of a program

Predefined data may be included within a program and saved as part of it When
the program is run. individual items of data are read and assigned to variables as
follows.

10 ··OR T% - 1 'TO 4

20 READ age%, dog$
30 pqf!\'I " Name: "; dog$ " Age: "; age%
110 Nr:XT I%
1l0 Lll\'1 '/\ 9 , "Laddie ", 3, "',,Ia tson"
60 LlA'l'A l

70 DA!'A "M~ngo ",3,"Honcy "

65

Including data as part of a program

66

You may use as many D.LI.TA statements as you like. but you must make sure that
the type of each item o f data matches the type of t he variable into which it is being
read. Each DATA statement ca n be followed by one or more items of data
separated by commas.

You can usual ly leave out the quotation marks around stri ngs, but they are needed
if you want to include spaces or commas in the string.

For example.

10 DATA He l lo, my name is
20 DATA Marvin
30 READ A$,8$
40 PIHN'l' A$; B$

produces:

Hellomy name is

To obta in the sentence He] lo , my name is Marvj n. change the program as
follows

10 DATA "Hel lo, my name is 11

20 DATA " Marvin"
30 READ A$,8$
40 PRINT A$; 8$

A DATA statement must appear as the first statement on a line, otherwise it will not
be found If BASIC encounters a DATA statement while executing a program. it
ignores it and goes on to the next line.

When it attempts to READ the first item o f data. it scans through the lines of the
program from the start until it finds the first DATA statement and uses the first
item of data on this line. The next READ uses the second item and so on until the
DATA statement has no more items left, at which point the next DATA statement is
searched for and used.

If there is insufficient data, the computer produces an error message. such as:

Out of data aL Jine 20

This indicates that it has tried to READ an item of data. but that all items have
already been read.

You might have a lot of different sections of DATA. and want to start reading from a
certa in point. You can do this using the RESTORE statement It is fol lowed by a
line number. BASIC will sta rt subsequent searches for DATA from that line instead
of from the start of the program. For example, the program below

Inputting data

10 RES'TORE 60
20 READ A$
30 PRINT AS

40 END

'JO OA'I'A First line of da tcl
60 DA'I'A Socond line of datn

will print out

Second l ine of data

becausE> the RESTORE causes BASIC to start the search for DA'T A statements at
line 60

Because line numbers can't be used in procedure libraries. a special form of
RESTORE is provided so that you can sti II include data in them. If you say
RESTORE +offset . BASIC will start searching for DATA statements at offset+ I
lines from where the RESTORE statement is located. For example. if you had the
following lines:

.~. 000 HESTORE -0
1010 Di\'I'A .. .
1020 DATA .. .

the next READ would read data from I me I 0 I 0 If line I 000 was RESTORE • 1. then
data would be read next from line I 020. and so on.

A further useful feature is the abil ity to remember where data is currently being
read from (LOCAL DATA). read data from another part of t he program. then restore
the original place (RESTORE DATA} Thi s is main ly useful in functions and
procedures. so is explained in the section dealing with them

A note about line numbers In general. if you use line numbers anywhere in a
program (and there should be very few situations where you have to). they should
be simple numbers in the range 0 to 65279. not expressions like starr 'ti 1 0 *n%.
Otherw1se. if the program is renumbered. it will stop working since BASIC does not
know how to change the expression in the right way.

Programming the keyboard

Waiting for input

A program can wait for a key to be pressed either indefinitely using GET and GETS.
or for a defined length of time usmg IN KEY and IN KEYS. Normally. every time you
press a key. it is placed in the keyboard buffer which is a temporary block of
memory used to store key presses until BASIC is ready to read them Up to 31 key
presses may be typed ahead like this

67

Programming the keyboard

68

The GET and GETS instructions look in the keyboard buffer for a key. Hence they
take note of keys which were pressed before the input instructions were executed.
If. for instance, you want to ensure that you only read keys pressed after a prompt
has been displayed. you can empty or nush the buffer before using these
instructions. Then you can be sure that the key obtained is in response to the
prompt and not just an accidental press of the keyboard a few moments before To
do this, use the operating system command:

*FX 15,1

Using the Tab & cursor keys to get ASCII code

The cursor editing keys can be made lo generate ASCII codes when they are
pressed. rather than performing their normal cursor editing functions. by typing

*FX 4,1

The codes they return are:

Key

Copy
f-

~

j,

i

Code

135 t81-
136 ($.. <pg--
137 ~ ~~
138 &.__ ~ (k
139 ~ ~~~

You can restore cursor copying by giving the command

*FX 4

The Tab key can be made to return any ASCII value you choose by typing

*FX 219 ,n

where n is the ASCII code you want it to return.

The following program uses these features to move a block around the screen until
Copy is pressed, and then to leave it at its current location. Don't worry if you don't
understand all of the statements (e.g. RECTANGLE and REPEAT): they are all
described later on in the manual.

Note that this method of redefining keys to generate ASCII codes is not compatible
with BASIC programs written under the window manager environment (described
in the section entitled Window managed programs on page 6) .

Inputting data

:0 :·10DF 1
70 *FX <1, ~

30 X 600 : y = 492
40 oldx = x : oldy = y
50 RECTANGLE ?I~L x,y,80,40
60 REPEAT
70 *?X .5,1
88 key = GET
Ill) CASE key 0?

lOU WHEN 135 EN~

1 1 0
l/C

'<·!HEN 1 3 6
··m~:N 1 37

X 20
X • /. ()

l!C WH~N 138 y)()

l4C \tJJIEN 139 y .,.= 20
:c,o C:t\DCASE

:flO H~:CI'i\NG ,P. F ll.l . o ldx , oldy , 80 ,4 0 TO x , y
:·io o~dx = x : oldy = y
:tW UK'I.:L fALSE

Scanning the keyboard

When you give IN KEY a positive parameter. 1t wa1ts for a given length of time for a
partiCu lar key to be pressed but it has an additional funct1on. If you give IN KEY a
negative parameter it tests to see if a particular key is pressed at that instant

Th1s feature is particularly useful for real-time applications where the computer is
constantly reactmg to the current input it is being given. rather than stopping and
Wdlting for you to decide what to do next For example

'll! •r Iri<\FY(btl 7:-:r:N ::>Rf:-.I";" "You wcte> P'"E'"-stnq ,\"

Another advantage is that it lets you check for keys like Sh ift and Ctrl bemg
pressed. which you cannot do with th e other 1nput !unctions

The list o t negat ive va lues associated with each o f the keyo.; is given in Appl'ndix D­
IHkc'~l V(.l/w·~.

Using the mouse in programs

Tlw mouse provides a conven ient method o f supplying info rmati on to a program.
Th1s information is in three parts

• d position on the screen

• deta ils of which of the buttons are cu rrently being pressed

• the t 1mc of the last mouse event·

69

Using the mouse in programs

70

To input this information. type

MOUSE x,y,buttons,when

The values returned in x andy give the position of the mouse The variable
but tons gives details of the mouse buttons currently pressed Finally. when gives
the value of a centi-second timer This timer starts at 0 when the machine is
switched on. So. when gives the last time a mouse button was pressed or released
or the current time if no presses or releases are ·pend tng· You can omit the last
comma and variable if you are not interested in the time

The buttons variable hC:ts a value whose meaning is as follows

Buttons

0

Details

No buttons pressed
I
2
3
4
'3
6
7

Adjust lrighthand) only pressed
Menu (middle) only pressed
Adjust and Menu pressed
Select (lefthandl only pressed
Select and Adjust pressed
Select and Menu pressed
All three buttons pressed

Linking the mouse to a pointer

The following program is a very simple sketchpad program whteh draws lines as
you move the mouse around and hold down tts buttons

10 MODE 12
20 MOVE 0,0
30 REPEAT
40 ~OUSE x,y,b~tton

50 GCOL button + 1
40 DRAV.I x, y
50 UNTIL FALSE

In order to be able to see the position of the mouse on the screen. it can be
linked to a pointer. The easiest way to show the mouse pointer is to use the
BASIC statement MOUSE ON. This gives the pointer an arrow shape and displays
it on the screen. To turn the pointer off. use MOUSE OFF.

Now. whenever you move the mouse. the pointer moves with it on the screen
indicating its current position . This enables the sketchpad program shown above
to be altered so that you can move to the position you want and then draw a line to
this new position by pressing any button.

Inputting data

5 MODE 1':>
::.0 KOUSE ON
20 MOVE 0,0
IJO R~PEAT

~0 RI-:PF.AT

60 MOUS~ x ,y,bulton%
70 UN' l' L button% <> 0
80 DRAft,' x,y
9 () 'JN'l' I L FALSE

For more details about the MOUSE statement see the chapter entitled Ke!III'Ords on
page 207

Programming function keys

The keys across the top of the keyboard label led Fl to Fl2 are function keys These
can be programmed so that they generate any string you like when they are
pressed For example. type

*KEYl "*CT,T "

Now when you press Fl the string ~cAT IS printed on the screen as though you had
typed 1t.

Try changing the definition to

*KEY 1 " *CAT IM"

The 1 sign means that the character fol lowing it is to be interpreted as a control
character In this case it is a Ctri -M which is being included in the string This
performs the same function as pressing Return. A full list o f the control characte rs
is given in Appendix G- VDU cornrnatJds

Now when you press Fl . the string *CAT is printed and Return IS ·pressed·
automatical ly so the current directory is catalogued immediately

Storing a series of commands

A whole series of commands can be stored in one key. The fol lowing defines a key
to se lect screen mode 3 and list the current program in paged mode

* hCY2 "MOO[3 IM IN LIS'l ltJi "

71

Programming function keys

72

Storing a small BASIC program

You can even define a key so that it contains a small BASIC program

*KFY 3 "1 0 MODF. .iS IM 20 FOR 1% = 1 TO lOOIM 30 CIRCLE
RND(1279), RND(1024), 50+ RND (300) IM 40 N. IX RUN IM"

The quotation marks around the string are not strictly necessary However. 1t is
important to remember that everything on the line after the • KEY command is
treated as part of the string. So if • KEY is used in a program it must be the last
c;tatement on the line.

Using other keys as additional function keys

The key labelled PRINT acts as function key 0. In addition. the cursor editing keys
and Copy can be made to behave as function keys I I to 15 by giving the command:

*FX 4,2

Following this command. the keys, instead of having their normal cursor editing
effects. return the function key strings assigned to them:

Key *KEY number

Copy II
~ 12
~ 13
.1 14
i 15

To return them to their normal state. type * FX 4

Symbols in function key strings

The following special characters are allowed in function key strings:

II means I

I ! ch means the following character code+ 128

! ? means Delete (i.e. CHRS (127))

I" means " (useful for making" the first character)

<.fl'> means C HRSn

12 Control statements

Normally. lines in a BASIC program are executed in sequence. one after the
other. llowever. the language includes two types of structure which alter this

sequence

• Conditional structures allow statements to be executed only if certain
conditions are met.

• Loop structures allow statements to be executed repeatedly. either for a fixed
number of times. or until a certain condition is met.

In all cases. the code is eas ier to read if it is clear which statements are in the loop
and which arc conditional on certain factors. This clarity can be achieved by use of
the LISTO command before listing the programs. to indent the conditional and
loop structures in the listing All programs included m this chapter are listed as if
the command

I, I STO 1

had been typed beforehand : this gives a space after the line number and indents
structures

IF. .. THEN ... ELSE
The IF [single line! statement may be used to enable the computer to make a
choice about whether or not to execute a statement or group of statements It has
the form

iF condition [THEN) statemencs [ELSF F.tdt..C'ments:

A condition IS an expression that gives a number It is said to be TRUE if the
number if not zero. or FALSE if the number is zero Usually the relational operators
described below are used in conditional expressions.

The staLements after the 'I H~:N keyword [which is optional. as indicated by the
square brackets) are on ly executed if the condition is TRUE. If it is FALSE. the
statements arc skipped However. if there is an ELSE. then the statements
following that are executed if the condition is FALSE

73

Operators

Operators

For example

10 PRINT "What is 2 * 4"
20 INPUT ans%

30 IF ans% = 8 THEK P~INT "\·:ell done" ELSE PRINT "Wror.g"

Line 30 contains a conditional expression In the example shown the expression is
TRUE (i e has a non-zero va lue) when ans% is equal to 8. and is FALSE (i.e has a
Lero value) otherwise. Note that in an IF statement. either the THEN part or the
FI.SF. part (if present) is executed. never both

Any non-zero number is treated as TRUE in an IF statement. however. the
comparison operators described in the following section return a particular value
meaning TRUE: -I. They return 0 for FALSE. of course. In addition. there arc two
functions ca lled FALSE and TRUE which return 0 and -1 respectively.

1\vo kinds of operators may be used in expressions:

• relationa l operators

• logical operators [on TRUE and FALSE values I

Relational operators

74

Relational operators can be used to evaluate numbers or strings

Numbers

In the following. A and B can be integers or noatmg po1nt numbers.

Operator

A ::i

A "' B
A , B

A <- 13

A >= B
A <> R

Meaning

TRUE when A is equal to B
TRUE when A is less than B
TRUE when A is greater than B

TRUE when A is less than or equa l to B
TRUE when A is greater than or equal to B
TRUE when A is nor equa l to B

Control statements

Strings

Operator

AS = B$
AS <> B$

AS < !3$
t\S > B$
A$ <= BS
A$ >= BS

String comparison

Meaning

TRUE when AS and BS are the same
TRUE when AS and BS are dirterent

String comparisons. see below

Corresponding characters of each string are examined until either they are
different, or the end of a string is reached. If the strings are the same length. and
the corresponding characters are the same. the strings are said to be equa l;
otherw ise. the shorter string is 'less than' the longer one.

In the case where the two corresponding characters dirtcr. the relationship between
the strings is the same as that between the ASCII codes of the mismatched
characters. For example. "HI" < "H i " yields TRUE. because the ASCII code of
upper case I is less than that of lower case i Similarly, " s 1 X " " FIFTEEN" is
TRUE because " SIX " starts with s. and the ASCI I value of sis larger than that of F.

Logical operators (on TRUE and FALSE values)

Operator

NOTA
AANDB
AOR B
A EOR B

IF ... THEN ... ELSE ... ENDIF

Meaning

TRUE when A is FALSE
TRUE if both A and Bare TRUE
TRUE if either A orB or both are TRUE
TRUE if either A orB but not both arc TRUE

A block structured IF ... THEN ... 1 ELSE ...] EN DIF statement is available. It
executes a series of statements. which may be spl it over several lines.
cond itiona lly on the resu lt of the IF expression.

75

IF .. THEN ... ELSE. .. ENDIF

76

10 n% = ~ND(:..O)
20 1"1% = RND (::.0)
30 PRINT "'dhat is "; :1% " * "r.l%;

110 INPUT ans%
')0 IF' ans% = n% "m% TH!!:N

60 PRINT "Well done"
70 ELSE
80 PRTN'I "i,~irong ..

90 PRINT n%;" * ";n% " = ";n%*m%
·oo r~ND IF

The FN'JIF on line 90 terminates the statement. It indicates that execution of the
following statements is not dependent on the outcome of the conditional
expression on line 50. so these statements are executed as normal. Without the
'·:NDI 1 ·the computer has no way of knowing whether or not the statements on line
I 00 belongs to the ELSE part.

There are certain rules which must be obeyed when using W ... THEN ... 1 ELSE ... 1

t.N Dl F constructions

• The first line must take the form

IF condition ~HEN

•

•
•

I 0
/.0
10
tJO
50
60
., 0

80
90

100
1 1 0
120
uo
140
1')0

with THEN being the last item on the line.

The ELSE part need not be present. but if it is. the ELSE must be the first thing
on a line (excluding spaces)

The ENDIF statement must be the first thing on a line (excluding spaces)

IF ... THEN ... 1 ELSE ... 1 ENDIF statements may be nested one may occur
inside another. For example:

DIM A%(1.0)

counL% 0
PR l N'l' "Give ne an in Leger bel ween 0 and 9 ";

INPUT "lUmber%
IF number% >= 0 AND number% <= 9 THEN

lf A%(number%) - 0 THEN
PRINT "Thank you"
A%(number%) = 1 : count% - counL% • -:.

F.T .SF.

PR IN'_' "You've a 1 ready had Lha L number"
END IF

ELSE
PRINT number%" is not. belween 0 and 9 '"

END IF
IF counl% < 10 GOTO 30

FOR ... NEXT

Control statements

The FOR and NEXT statements are used to spec1fy the number or times a block of
a program is executed. These statements are placed so that they surround the
block to be repeated

10 FOR N% = 1 TO 6
20 PRINT N%
30 NEX':' N%

"TYpe RUN and the following is produced

1
~

3
4
~

6

The variable N'Yo is called the control variable. It is used to control the number of
times the block of code is executed The control variable can be sta rted at any
number you choose. and you may alter the step size. the amount by which it
changes each time round the loop.

:0 FOR N~ = -~ TO 5 STEP 2
/.0 PRIN·r N%
30 N~XT N%

Th1s program produces.

-5
-3

1

l

3
~

The step size can be negative so that the contro l variable is decreased each time. It
does not have to be an integer value. You can also use a decimal step size.
although this is not genera lly advisable. The reason is that numbers such as 0.1 are
not exactly representable in the internal forma l used by the computer. This means
that when the step is added to the looping variable several times. sma ll errors may
accumulate You can see this by typing lhe following program

10 FOR i =O TO 100 STEP 0 . l
/.0 PRlNT i
30 NEXT .!.

The looping variable i doesn't reach exactly I 00

77

FOR ... NEXT

78

FOR ... NEXT loops may be nested For example.

10 FOR N = 3 . 0 TO -: . 0 ST~P -2 . 0
20 FORM = 2 . 5 TO 2 . 9 STEP 0 . 2
lO PRIN'f N,YJ
'10 NEX':' M
'>0 NEXT N

produces:

3 2 . 5
3 2 . 7
3 2 . 9

2 . ~

1 2 . 7
1 2 . 9

- 1 2 . 5
-1 2 . 7
-1 2 . 9

You do not need to specify the contro l variable to which NEXT refe rs The following
program produces the same results as the one above

10 FOR N = 3 . 0 TO -1 . 0 S~EP 2 . 0
20 rOR M 2 . 5 TO 2 . 9 STE? 0.2
30 PRINT N.~
'10 NEXT
?0 NEX'!'

The program will now run slightly faster because the computer assumes that NEXT
applies to the most recent FOR

If you put variable names after NEXT you should not mix them up as shown below:

10 FOR N = 3 . 0 TO -1 . 0 S~EP 2 . 0
20 FOR M = 2 . 5 TO 2 . 9 STEP 0 . ~

30 PRIN'I N, M
40 !\:EXT N
50 NEXT M

The output produced by this example is

3 . 0 2 . 5
1 . 0 2 . 5

-1.0 2 . 5
NoL in a POR loop at line SO

Control statements

Loops must be nested tota lly within each other: t hey must not cross. In the above
example. theN and M loops are incorrectly nested. BASIC tries to run the program.
but when line 50 is reached, it gives an error message indicating that it cannot
match the FOR statements with the NEXT statements.

Note The reason the error wasn't given sooner. i.e. as soon as the mismatched
NEXT was met. was that it is actually legal. though not advisable. to close more
than one loop with a single NEXT When BASIC meets a NEXT var statement. it
terminates all open FOR loops unti l it meets one which started FOR var. Thus the
NEXT N in the example above closed the FORM loop before performing the NEXT
N.

A FOR loop is ended when the control variable is:

• greater than the terminating va lue (value in the FOR statement) when a
positive step size is used.

• less than the terminating value (value in the FOR statement) when a negative
step size is used.

The loop is performed in the following sequence:

Assign the initial value to the control variable.

2 Execute the block of code.

3 Add the step to the control variable.

4 Test against terminating va lue. and if it is to be performed again, go back to
step 2.

The initial and terminating values and the step size are calculated only once. at the
start of the loop.

One of the consequences of the way in which the loop is performed is that the
block of code is always executed at least once. Thus.

10 FOR N = 6 TO 0
20 PRINT N
30 NEXT

produces:

6

FOR ... NEXT loops are very versatile. since the initial and terminating va lues and
the step size can be assigned any arithmetic expression contain ing variables or
functions. For example:

79

REPEAT.. UNTIL

10 REM Draw a sine curve
20 MODE 0 : MOVE 0,512
30 PRINT " P'ease give me a s:ep size (eg 0 .1) "
40 INPUT step
50 FOR angle = -2*PI TO 2*PI STEP step
60 DRAW 100*angle , 100*SIN(angle)+S12
70 NEXT
80 END

REPEAT ... UNTIL

80

The REPEAT ... UNTIL loop repeats a block of code until a given condition is
fulfilled. For example:

10 REM TnpuL a number in a given range
20 REPEAT
30 PRIN'I' "Please give rre a number between 0 and 9 "
40 INPUT N

!)0 UNTIL N >= 0 AND N <.= 9
60 PRINT " 'I'Par'lk You"

If the result of the condi t ional expression following the UNTIL is TRUE. then the
loop is ended and the statement fo llowing the UNTIL is executed. If. however. the
result of the expression is FALSE. the block of code after the REPEAT is executed
again and the conditional expression is re-evaluated

REPEAT ... UNTIL loops may be nested in the same way as FOR ... NFXT loops
They are also similar to FOR loops in that the body of the loop is always executed
once. since no test is performed unti l the end of the loop is reached .

10 REM Repeat questjons unLil answered right first Lime
20 REPEAT
30 tries% = 0
40 REPEAT
50 PRINT "What is 20 * 23 + 14 * 11 ";

60 INPUT ans%
70 t.l' i es% += 1
80 u~riL ans% = 20 * 23 + 14 * 11
90 REPEAT

100 PRINT "What is 12 + 23 * 14 + 6 I 3 ";
110 INPUT ans%
120 tries% += 1
130 UNTIL ans% = 12 + 23 * 14 + 6 I 3
140 UNTJL tries% = 2;

Control statements

WHILE ... ENDWHILE

The WHILE ... ENDWHILE loop repeats a block of code whi le a given condition
holds true. For example:

10 X = 0
20 WHILE X < 100
30 PRINT X
40 X += RND(5)
50 ENm•JIIILE

The WHILE ... ENDWHILE loop has a cond itional expression at the sta rt of it. If
this expression returns TRUE, t he block of statements following the WHILE. down
to the matching ENDWHILE statement. is executed. This is repeated unti l the
expression returns FALSE. in which case execution jumps to the statement
foll owing the matching ENDWHILE. We say ·match ing' ENDWHILE because
WHILE loops may be nested. This means that when BASIC is looking for an
ENDWH ILE to terminate a loop. it m ight skip nested WHILE ... ENDWHI LE loops.

Here is an example of nested WHILE loops:

10 ,;:,,%=256
20 ;tJHILE A%<>0

30 B% -"..
!J 0 i,-Jl!ILE B%<8
~0 PRIKT A%,B%

60 B%=5%*2
70 ENm··lrCLE

80 ,l',%=A% D:V 2

90 END\t.JH:LE

WHILE ... ENDWHILE is similar to REPEAT ... UNTIL except that the conditional
expression is eva luated at the beginning of the loop (so the body of the loop may
never be executed if the condition is initia lly FALSE) and the loop repeats if the
resu lt is TRUE. The following program demonstrates the fact that REPEAT ...
UNTIL loops are always executed at least once. whereas the WHILE ... ENDWHILE
loops need not be executed at all.

l c R i.o~.:.: ... ~/1.'1 1

20 :::R 11\J'~' "Repeat "
30 Ut\'T T I , '~RUF

40
110 ;tJHILE F.l\LSE

60 PRINT "'i/'Jhi :!.. c "
70 :C:ND'.:Il-i : L:C:

8:J
90 PRIXT "A .._ 1 do:~e "

81

CASE ... OF. .. WHEN ... OTHERWISE ... ENDCASE

This program produces the following output

Repeat
All done

CASE ... OF ... WHEN ... OTHERWISE ... ENDCASE

82

The IF ... THEN ... ELSE ... ENDIF construct is useful if you w1sh to make a choice
between two alternatives. The CASE statement can be used when there are many
alternatives to be acted upon in different ways

The following program is a keyboard-controlled sketch pad The statements after
the WHENs alter the values of X% andY%. and then DRAW a line

10 HEM Draw a line depending on Lhc r, , H,U,D keys

:W MODE 0
30 MOVE 640,512
40 X% = 640: Y% 512
50 REPEAT
60 CASE GET$ OF
70
80
90

100
110
120

'~I HEN 11
[

11
1

11
}

11
:

'~IHEN .. R", "r":

'A' HEN "0" 1 "d":

'A'HEN nun I II u II:

ENDCASE
UNTIL FAIS~=' : ~F~

X%
X%
Y%
Y%

go

- 40 :)RAW X%,Y% :REM go

+ 40 :)RAltJ X%,Y% :RFM go

40 : DRAW X%,Y% :REM go

+- 40 : DRAW X%,Y% :REM go

on forever ...

left
right

dovm

up

Th1s program reads in the character of the next key pressed and checks it against
each of the strings following the ltiHEN statements If it matches one of these
values. the statements following it are executed Execution continues until another
',;'HEN or the ENDCASE is reached When this happens. control passes to the
statement after the ENDCASE.

If you press a key which is not recognised by any of the four 'v-lllCN sta tements. the
program goes round again and waits for another key to be pressed You can include
another line to warn you that you pressed the wrong key ror example

10':1 O'J'HERirHSE VDU 7 : REM Make <1 shorl. llOLf3C'

The O'T'IiERirH SE statement is used if none of the WII ENs finds a matching key. The
VDU 7 makes a short bell sound to warn you that you have pressed the wrong key.

The following rules apply to CASE statements

• CASE must be followed by an expression. and then OF This statement must be
at the end of the line

GOTO

Control statements

• Each WHEN must start at the beginning of a line It may be followed by one or
more values. separated by commas

• The statements dependent on a WHEN may follow 1t on the same line after a
colon : . or be spread over several lines following it

• The OTHERWISE part is optional If present it must be at the beginning of a
line The statements following OTHERWISE may be spread over several lines.

• An ENDCASE statement must be present Like WHEN and OTHERWISE. it
must be the first non-space item on a line.

Whenever the result of the expression matches one of the values listed after a
WHEN. all the statements following this WHEN down to the next WHEN,
OTHERWISE or EN DCASE are executed. BASIC then skips to the statement
following the ENDCASE. Th is means that if the resu lt matches a value in more than
one WH F.N, on ly the statements follow ing the first one are executed the others are
ignored. Since OTHERWISE matches any value. having WilEN statements
following an OTHERWISE is pointless since they can never be reached

The following gives another example of using the CASE statement

10 R'~ Guess a ~~xbe_

20 X% R~D (l:l~)

10 s·, .. _q.Je.ssi:-.g% ~ 'TR;.F

>~ ·,.;pr·." Still_g~essir:g%
60 l:·JP"':' " l·.'!lat is your guPs.3 •, q•,('r;[,%

7o C'?.s::: q.Jcss% OF

80 ';IHEN X%

'10 PR:l\1' •;.:ell dore, you ' ve guessed it a l ter " ; tru•::.% • dtle:rpts•

1 00 Sl:: :_g·.essir.g% ~·A .. SF.
110 \'illEr\ X% - l , X% +1

120 ?R:t-:1' · ve:y close •

1!C rr'es%+= 1
l'C o-H ERWl SE
1··0 F q.Je>ss%<X% T1 ::::~J PH _:\l' "l'oo l uw " "'.SF. ,>~I IJ'T " ~oo h ig·1 "

160 tl ~ es% + ~ 1
1 'I 0 ~'NCCAS E

1 'l·~· FN")':.JW' ,F.

Like all the other BASIC structu res. CASE statements may be nested.

The GOTO instruction may be used to specify a l ine number from which the
computer is to continue executing the program For example

10 PR L!\1'!' " Hello "

20 GO' I'O 10

83

GOSUB ... RETURN

Whenever the computer executes line 20 it is sent back to line 10 once again Left
on its own. this program never ends To stop it. press Esc

GOTO instructions send the control of the program either forwards or backwards
The specified line number may be given as an expression For example

10 Sldrt:% = 100
20 GOTO (start%+10)
30 PRINT "This line should not be executed "

100 RE~ start of the action
110 PRINT "Hello"
120 FN'J

Using a variable, however, as the destination for a GOTO is not recommended
because while RENUMBER changes the line numbers. it does not alter GOTO
destinalions that are given as anything other than a simple number. lf you must
use an expression. it is best to put in inside brackets. since BASIC may get
confused if the expression starts with a number.

H you wish to make you r programs easy to read. especia lly for other people, use as
few GOTOs as possible They make a program very difficult to follow. It is far better
to use one of the loop constructs like REPEAT ... UNTIL which have been described
above

GOSUB ... RETURN

84

GOSUB stands for ·go to subroutine· and 1s another variation of GOTO Instead of
continu ing indefinitely from the line number which IS JUmped to. the lines are
executed unti l a RETURN statement is reached Cont rol then passes back to the
instruction which comes after the GOSUB For example,

... o GOSUl3 100
20 PRINT "This .:.s prir_ted ufter the firsl GO SUB returns •
30 GO SUB 100
40 PRINT "This .:.s pri:r:ted a:=:tel" the second GO SUB returns •
50 END

100 PRINT "This i.s pri:r:ted in the GOSU 13"
J •• 0 RETURI'\

produces:

'l'his 15 printed in the GO SUB
This 15 printed af::e::- the first. GOStiB L ct 'd rn ~;
1'h is is printed i:r: the GO SUB
J'h is is printed afte!' the ~;econd GO SUB ret t:r ns

Control statements

Like GOTO. GOSUB should be used sparingly, if at all It is provided in this version
of BASIC for compatibi lity with weaker dialects of the language Better methods of
prov1ding blocks of code. which once executed then return control back to the
point from which they were called are described in the chapter entitled Procedures
attd functions on page 87.

ON ... GOTO/GOSUB

For example:

The ON ... GOTO statement is used to choose one o f a number o f different lines
depending on the value of a given expression.

10 PR I NT " Input a number be Lwccn 1 and 4 ..

20 I NPUT N%
30 ON N% GOTO 60, 1 00' 80 , 120
60 PRI NT " Your number is 1"

"10 GO'l'O 999
80 PRINT "Your number is 3 "

90 GOTO 999
100 PRINT "Your number is 2 "
110 GOTO 999
120 PRINT "Your !'lumber is 4 ..

999 END

The computer checks the value of N% wh;t:h is input. then 1umps to the N%th line
number in the list If N% is 3. the computer sta rts executing at line 80 and so on If
NC), IS less than I or greater than 4 . the error message

ON range at line 30

ic:; displayed

F.LSE can be used to catch all other values. It is fo llowed by a statement which is
executed if the value of the expression after ON has no corresponding line number.
r-or example. line '30 above could be replaced by:

30 0 1\1 N% GO':'O 60 . ~00 , 8G,l20 E.:...SE PR JJ\'1' " Nu rnbc1 ouL o(range"

-10 GOTO 999

Now. when the program is run. if N% is not between I and 4 the message Number
ot.. t of 1 ange is displayed and the program ends normally

ON ... GOSUB acts in exactly the same way

85

For example:

86

10 PRINT "Input a number between 1 and 4 "
20 INPUT N%
30 ON N% GO SUB 60, 100 , 80 , 120
40 END
60 PR I NT "Your number is J "
70 RETURN
80 PRINT "Your numbe r is 3"
90 RETURN

100 PR I NT "Your number is 2"
110 RETURN
120 PRINT "Your number is 4"
130 RETURN

There is also an ON ... PROC statement which is described in the chapter entitled
Procedures and functions on page 87 . Note, however. t hat when wri ting new programs.
it is better to use the more versatile CASE structu res rather than the ON ...
GOTO/GOSUB/PROC constructs. Aga in. th is o ld-fash ioned construct is provided
mainly for backwards compati bi li ty with less powerful versions of BASIC.

13 Procedures and functions

P rocedures (PROCs) and functions (FNs) provide a way of structuring a program
by grouping statements together and referring to them by a single name. The

statements can be executed from elsewhere in the program simply by specifying
the procedure or function name A function returns a value. but a procedure does
not.

The two structures are very similar. but they are used in sl ightly different
circumstances PROCs are used wherever a statement can be executed FNs are
used in expressions. wherever a built-in function might be used. Whereas
procedures end with an ENDPROC statement. functions return using expression
The expression is returned as the result of the function call. Functions can return
integers. noating point numbers or strings.

Defining and calling procedures
Procedure names begin with the keyword PROC. followed by a name. The following
shows how a procedure may be defined and ca lled:

10 MODE 12
20 PRINT TAB(0,10l "Countdown commencing";
30 FOR N% 30 TO 1 STEP -1
40 PRINT 'I'AB(22,10) " " TAB(22,10) ;N%;
50 PR0Cwait_1_second
60 NEXT
70 PRINT TAB(0 ,10) "BLAST OFF "; STRJNG$(14, " ")
80 END
90

100 DEF PROCwaiL 1 second
110 TIME 0
120 REPEAT
130 UNTIL TIME >= 100
140 ENDPROC

87

Parameters and local variables

The important points about procedures are·

• The procedure definition must sta rt wi th DEF PROC (or. more simply
DI:.FPROC) followed by the procedure name There must be no spaces between
PROC and the name.

• The procedure definition must end with the keyword ENDPROC

• Procedures are called by the keyword PROC followed by the procedure name.
again with no spaces.

• Procedure names obey the same rules as va riable names except that they are
allowed to start with a digit and may include the cha racter Ca1 Procedure
names can also include or sta rt with reserved words. e g PROCTO.

• The main body of the program must be separated from the procedure
defin itions by an END sta tement. That is. you should only enter the body of a
procedure by a PROC statement, not by ·fal ling' into il. Dr:F sta tements are
treated as REMs if they are encountered in the usual execution o f a program.

Procedures enable you to split up a large amount o f code into smaller distinct
sections which are easy to manage. The main body o f a program can then consist
almost entirely of procedure ca lls. so that it can rema in short and easy to follow
(since it should be obvious from the procedure names what each ca ll is doing).

Parameters and local variables

88

Consider the following program

!0 REX Draw boxes cen;:red o~ the screen
/.0 MODF 12
30 FOR N% = 1 TO 10
40 PRINT "1/lha;: size do you \oJant the next box to be ";
50 INPUT size
60 IF size<1024 PROCbox(size) ~LSE PRINT "Too large "
70 NF.XT N%
80 f<.ND

1.00 D~:F PROCbox (edge)
1 10 R~:C'f'ANGL r: 640 - edge/2 , 512-edge/2 . edge , edge
• 2 0 t<:ND PROC

The procedure PROCbox draws a box around the centre o f the screen. The size of
this box is determined by the value of the variable edge This variable has the
current va lue of size assigned to it each time the procedure is ca lled from line 60.
The values being passed to the procedure are known as actual parameters. The
va riable 'edge •used within the procedure is known as a formal para~et~

Procedures and functions

A procedure can be defined with more than one parameter llowever it must
always be called with the correct number of parameters These parameters may be:

• integers

• floating point numbers

• strings

• arrays

If a string variable is used as a formal parameter. it must have either a stri ng
expression or a string variable passed to it Floating point and integer parameters
may be passed to one another and interchanged freely, but remember that the
fractiona l pa rt of a floating point variable is lost if it is assigned to an integer
variable. Array formal and actual parameters must be of exactly the same type That
is. if the formal parameter is an integer, then only integer arrays may be passed as
actual parameters.

Local variables

The formal parameters of a procedure are loca l to that procedure This means that
assign ing a value to any variable within the procedure does not affect any variable
elsewhere in the program which has the same name In the following program. the
procedure PROCsquare has a parameter 5% whtch is automatically local It also
contains a variable, J%. which is declared as being LOCAL

1 0 FOR I% = 1 TO 10
20 PROCsquare (I% l
30 PROCcube(I%)
tiO NEX':'
50 END
60

100 DEF PROCsquare(S%)
110 LOCAL J%
120 J% - S% ,... 2
130 PRlNT S% " squared cqudls "J %;

140 ENDPROC
150
200 DEF PROCcube(I%)
210 I% I% A 3
220 PRINT " and cubed _equals .. ; I%

230 ENDPROC

In the case of PROCcube. the actual parameter passed and the formal parameter
referred to within it are both called 1% This means that there are two versions of
the variable. one inside the procedure and another outside it

89

Parameters and local variables

90

Adding the l ine

35 PRINT _%

to the progrdm dbove prints out the numbers I to I 0, showing that the assignment
to 1% within PROCcube does not dfrcct the value of 1% in the main body of the
program

Declaring local variables

It is good practice to declare all variables used in a procedure as local. since this
removes the risk that the procedure will alter variables used elsewhere in the
program

When you declare a local array, the LOCAL statement must be followed by a DIM
statement to dimension the local array. For example, consider the following
function which. when passed l wo vectors of the same size. returns their Sedlar
product

.~::; ::lEF n.scalat_product{l\(),3())

1.~0 ~EM ** Roth arrays 'TIUSt:. have a diw.ension of 1 *w

:20 IF UlM(A()) <~ 1 Ort DlX(R()) <~:~HEN
:30 PRJ~r " VPclors =equir0d "
140 =-0
1 ')0 E;.. oH
160 RE!.N •" iOL h arrays m·..;sl lH• L he same s i 7.< • *
170 TF D:t·1(ll(),l) <> [)JN(P.(), : l 'LHC:N

180 PR_N'l "Vf'c·ors m:..st be of s.,:ne size"

1<10 =:l
)()~: FW)lt'

2 ~1 3EM ** ('I ' dlP a terpo :c.Py olt I c.lY o: t::c :;cHTIE:' size **
no r.oG•:, c ()
,:30 CE L (l) lf\'1(!\() , 1))

.>10 H!:~-~ ** fvl.1 l t ~ ply chc cott<'f·,~ond:.::g clEmlent.s and plac~' i"l C() **
:;bO Ci) i\()*H()

160 R;::r.; •• l•'ntlly sum ell th•• <":.e:-'ents ol C()

~ 1 n - s·Jr·t rc < 1 1

This example uses a function instead of a procedure. Note that SUM is a built-in
function

Notice that although function definitions may be multi-line. the syntax is such that
single line functions as found in o lder dialects of BASIC may be defined in d
compatible manner Thus you cdn say e1ther:

1000 DEr I'Ndisc(a , b , c)
1010 REM find the discri~inant of a, band c
1020 =b*b li*a*c

Procedures and functions

or. using the old-fash ioned form:

1000 DEF FND(a,b,c) =b*b- 4*a*c

(Another limitation of the non-BBC BASIC syntax was that often only single- letter
function names were allowed)

Value-result parameter passing

The simple parameter passing scheme described above is known as ·va lue·
parameter passing because the value of the actual parameter is copied into the
formal parameter. which is then used within the procedure. The result of any
modification to the formal parameter is not communicated back to the actual
parameter. Thus the formal pa rameter is entirely local.

BASIC provides a second method of parameter passing known as 'value-resu lt'.
This is just like the simple value mechanism in that the actual parameter's va lue is
copied into the formal parameter for use inside the procedure. The difference is.
however. that when the procedure returns. the final value of the formal parameter
is copied back into the actual parameter. Thus. a result can be passed back. (This jl/
means that the actual parameter can only be a variable. not an expression .) {

A statement specifying that you wish to pass a result back for a particular
parameter should be preceded by the keyword RETURN. For example.

,---·---;:~-
100 DEF PROCo r deredswap(RI-:'T'URN .A.,RETURN B)
110 I ~ A > B SWAP A,B
120 ENDPROC

SWAP is a built-in statement to swap the values of two variables or arrays.

Specifying RETURN before an array formal parameter does not make any difference
to the way the parameter is passed.

Arrays passed by reference

Arrays are always passed by reference. That is. the array formal parameter acts as
an 'al ias· for the actual parameter within the procedure or function. and if you
change the elements of the formal parameter. the actual parameter will aiso be
altered. If you want to simulate value passing of array parameters. you should use
a local array of the same dimensions as the actual parameter. for example:

1000 DEF PROCfred(a())
1 01 0 LOCAL b ()
1020 DIM b(DIM(a(),1), DIM(a() ,2)) :REM assume a() is 20
1030 b()=a() : REM now b() can be altered at will
1040

91

ON ... PROC

LOCAL DATA and LOCAL errors

ON ... PROC

92

Because procedures and functions often set up their own error handlers and local
data. it is possible to make these local so that nothing outside the procedure or
function is affected In fact. both these may be made 'local" outside of a procedure
For example, you can make an error handler local to a WHILE loop However the
constructs are mentioned here for completeness More information can be found
about local error handlers in the chapter entitled Crror handling and debugging on
page 16'5 .

To make the current DATA pointer loca l. and then restore it , a sequence of the
following form is used:

1000 LOCAL DA'fl\

1010 RESTORE +0

1020 DATA . ..

1030
1080 ::\ESTORE DATA.

LOCAL DATA stores the cu rrent data pomter (ie the place where the next READ
will get its data from 1 away It can then be changed by a RESTORE to enable some
local data to be read. and finally restored to its original va lue using RESTORr_
DATA Thus a procedure or function which uses its own loca l data can read i t
without affecting the data pointer being used by the ca lling program

As mentioned above. LOCAL DATA and RESTORE DATA can be used anywhere that
localised data is required. not just tn functions and procedures. They can also be
nested. However. if LOCAL DATA IS used within a function or procedure dchnition.
1t must come after any LOCAL variables. BASIC will perform an automatic
RESTORE DATA on return from a Pf~OC or FN, so that statement isn't strictly
requ ired at the end of PROCs and FNs.

ON ... PROC IS similar to ON ... GOTO which is descnbed in the chapter entit led
Control statements on page 73. It eva luates the expression given after the ON
keyword If the value N'Yo is given, it t hen ca lls the procedure designated by N% on
the list For example:

Procedures and functions

10 REPEAT
20 INPUT " EnLer a number ",num
30 PRINT "Type 1 to double it"
40 PRINT "Type ?. to square it"
50 I NPUT action
60 ON action PROCdouble(num), PROCsquare(num)
70 UNTlL F.Z:..LSE

100 DEF PROCdouble(nu~)

110 PRINT "Your number doubled is ";num* 2
120 ENDPROC
200 DEF PROCsquare(num)
210 PRINT "Your number squared is "; num*num
220 ENDPROC

Note. however, that in most circumstances. the CASE statement provides a more
powerful and structu red way of performing these actions.

Recursive procedures

A procedure may conta in ca ll s to other procedures and may even conta in a cal l to
itself. A procedure which does call itself from within its own definitio n is called a
recursive procedure:

10 PRINT " Please inp~t a string ·"
20 I NPUT A$
30 PROCremove_spaces{A$)
40 END

100 ~EF PROCremove_ spaces{A$)
110 LOCAL pos_spacc%
120 PRINT A$
130 pos_space%=INSTR(A$," "): REM =0 iE no spaces
140 IF pos_space% THEK
150 A$-LEFT$(A$,pos_spacc%-1l+RIGHTS(A$,pos_space%•l)
160 PROCreMove_spacesiASl
170 ENDIP
180 ENDPROC

In the example above. PROCr er:1ove_spaces is passed a string as a parameter If
the string contains no spaces. the procedure ends. If a space is found within the
string. the space is removed and the procedure is ca lled again with the new stri ng
as an argument to remove any further spaces For example. typing the st ring l'~e
quick b~own fox causes the following to be displayed:

93

Functions

Functions

94

The q~ick brown fox
~hequ i c~ b r own f ox
Thequ ickbrown fox
'I'hequ i c'.<brO\•mfox

Recursive procedures often provide a very clear solution to a problem There are
two reasons. however, which suggest that they may not be the best way to solve a
problem:

• Some operations are more naturally expressed as a loop. that is. using FOR ...
NEXT, REPEAT ... UNTIL. o r WHILE ... ENDWHILE.

• Recursive procedures often use more of the computer's memory than the
corresponding loop

As an example, the following two programs both print Good morning!
backwards. The first one uses a WHILE ... ENDWHILE loop. The second uses a
recurs ive technique to achieve the same result.

First example:

10 PROCr everseprint("Good mor ning !" }
100 DEF PROCreversepr i nt(A$)
110 FOR i% = LEN A% TO 1 STEP -1
120 PRINT MID$1A$,i%, 1 }
130 NEXT
140 F.NIJPROC

Second examp le:

10 PROCre ver sep r int("Cood reorning !")
100 IJEF PROCr evc r sepr i n t (A$)
110 IF LEN(AS) > 0 THEN
120 PRINT RI GHTS(A$);
130 PROCr ev erseprint (LEFT$1A$))
140 ENDI F
160 ENDPROC

Functions are similar in many ways to procedures. but differ in that they return a
resu lt BASIC provides many functions of its own, l ike the trigonometric fu nctions
SIN, COS. TAN and RND. If you give RND a parameter with an integer va lue greater
than I. it returns a random value between I and the number given incl usive. For
example,

X =- RND (1 0)

Procedures and functions

produces random numbers between I and 10

You may define functions of your own using the keyword DEF followed by FN and
the name of your function. The function definition ends when a statement
beginning with an =sign is encountered This assigns the expression on the right
of the sign to the function result This result may be assigned to a variable in the
normal way

Functions obey the same rules as procedures with regard to naming conventions.
the use of parameters and local variables.

We have already seen an example function definition in FNsra 1 a r _pr-oduct
above. The following is another example of how a function may be defined and
used:

10 FOR :-J% 1 TO 10
20 l'RDJT' "A sphere of rac'ns ";1\%;" hds <1 vo' 1mt> "· "'Nvol~me(N%)

.l:J NEXT :-J%
<\0 F:NI

: oo IF:F "Nvo une(radi~.:s%i
'1 0 4/l*l'l'radiJs%A3

Function and procedure libraries

Libraries provide a convenient way of adding frequently-used procedures and
functions to a BASIC program

The libraries are kept in memory (unless they are OVI:.RLAYed). and if a reference is
made to a procedure or function which is not defined in your program. a search of
each library in turn is made until a definition is found If the routine IS found in a
library. it is executed exactly as though it were part of the program

The advantages of using libraries are

• They standardise certain routines between programs

• They reduce the time required to write and test a program. (The library
routines only need to be written and tested once, not each time a new program
is developed)

• They make programs shorter and more modu lar.

Loading a library into memory

There are three methods of loading a library into memory. INSTALL. LIBRARY and
OVERLAY

INSTALL and LIBRARY are followed by a string giving a filename This file should
contain a set of BASIC procedure and function definitions, perhaps with local DATA
statements to be used by those procedures and functions

95

Function and procedure libraries

96

INSTALL loads the library at the top of BASIC's memory. It then lowers the upper
memory limit that BASIC programs can usc INSTALLed libraries are therefore
·permanent' in that they occupy memory (and may be called) until BASIC 1s
re started (e g. by another • BASIC command). You can not selectively remove
INSTALLed libraries. INSTALL must be used before the BASIC program is first run
rather than from with in a program- it is a command. and cannot be used d'> a
program statement

LIHI~AI~Y reserves a sufficient area of memory for the library just above the main
BASIC program and loads the library Any library loaded in this way remains only
unti l the variables are cleared Th is occurs. for example. when the CLEAR or NEW
commands are given. when the program is edited in some way. or when a program
is run Thus LIBRARY-type libraries are much more transient than INSTALLed ones
(as temporary as normal variables. in fact). so you would generally use LIBRARY
from within a program.

For example:

Yu")E 12

;>..; Hr:Y ?nn:. o ... ~ a sro1y
lG Hr::..: Loarl OLJLpu:: ~ i b'dJ y

IJO •• lB!{A~Y "1'1 ·nLouL"
'10 Hr.t< Redll ,md pyi ~t tw head:'.ng

oO ~~AD AS

10 ~qocc~nlroi~Sl

bu '<F l-1 Pri~l out eacr S•' ll tence •.. tur,..

9ll f<E n~A' I '

•·"
REi\0 s.;nl.cnccS

f<H'I it S!'n:er:ce$ "0" then hdVC reached tho crd
12C 1 r scnte>~ce$ - "0" 1·\1'

I h) R:=:!>! c• hc>r..,·;i se p1 int i ': o•Jt

140 PKOC'prr-~ 1 ynr .ir:t: (::;cnll'nces)

1'>0 UNTrL bAl.SI:

2 00 Di\TA A st oyy
'lJO :JA.'t\ 'lr.~s.progra:", :& ,ltt· . ng,two,p,.ocedu~es:

2)0 >N·.; 'cen• :::E' ' ,and, 'p:-01 ryprin: ' , !:tom ,a,libr,lly
)){• LA.---t\ cdl.• cJ, · ~rin to L '.
<:·1~ I).A.'f.; l'he, .ib r ary , is, o,h;ed ,eac:l,Limc ,
2•11

} IJ/\'IA t h P ,pl Oq:=:'dffi ,.i s ,J ...o ll.

2J~: LJt•.'lA -'hc,ptucec~re, ' c<'ll'~c ' ,pl<~cns,<>,.st r ing, u1,t!-.e

Lb'' DATA. c~cn::::e,of,the,!Trce>n .

;"7tJ IJATA "hc,procecute , ' pr< t-yptul~' ,print.s,ou•,

2~0 D;\r.!:.. a,~..;o::c,tlL ,l :-~e,cuJt0n~-,tex~,c ... rsor,

; •)IJ ~Al'.; posi· i o·· , unle.ss , il,' . .,.ou d,be,spliL , ovcr ,
3~/f! D)\':"1\ a, 1::1A, ir,'.• . .:hi. ch,c.d~:c ,i ~ ~ st.drLs ,Lhe,·rotd,
l ~ '> DA'iA on, L '1<'', next, 1 i "'•' , ciow::-, .

Procedures and functions

The library Printout could be as follows

10 HEM >Prin:out - Text outpu~ !ibrary
'0 REM **************•**************k•*A**t

10 9EF PROCPrir.tou:heip
40 R~M Prirt out details of the library ro~tines
~0 PR~NT "PROCcent~e(a$)"

60 PRINT "Place a string ~n the centr0"
70 Prt:NT •of a 40 cr.aractet lir.e•
BO PRINT "PROCpret:yprinl(a$)"
90 PRINT "Prin: oJt a word a~ Lhe cut JenL "

100 P~INT •text cursor position, starting•
110 PR I NT •a new tlO character li :1c if JequiH~d "

120 PR.NT •to avoid spiit:ir.g il over Lwo lines•
130 ENDPROC

. 40 REM *******************************

200 REM Place a string in :he centre
210 REM of a 40 character line
220 Dl.f PROCcentye{a$)
2 30 LOCAL, start%
2110 start% - (40 - LE-:1\{aS)) 17.

?.50 PH IN:' 'I'AB(start%) ; a$
?.60 I:NDPHOC

270 HE:Yl ******•**************•*****"~r****

100 HE:~ ?rint ot:: a wo~d at the current
310 REM text c~rsor posit1on, starting
3?.0 HE-:~ a ne\>140 c::aracter li-e it required
130 HS~ to avo~d sp:it:i~g it over two l1ncs
340 DEF PROCpret:yprin:(ctS)
'3')0 LOCAL enc%
160 end% POS ~ LEN(a$)
370 IF end%< 4C PRINT aS; ""; ElmPROC

1 H 0 ?H l J\'f ' a$; " " ;
l'JO I·.NDPROC
t.OO RE~ *******~**************w*********

In the above example the library Printoul contains three procedures

PROCPrintouthelp prints out details o f the library structure

PROCcentre

PROCprettyprint

prints a string in the middle of a 40 character line

prints a word at the current position or. if
necessa ry, on the next line to avoid splitting it

To make PROCprettyprint and PROCcentre more general-purpose a further
refinement would be for them to take an additional parameter speofying the
number of cha racters there are on the line instead of a fixed length of 40

97

Function and procedure libraries

98

Overlaying

OVEI~LAY enables you to give a list of filenames which contain libriirie~ When
BASIC c<.m't rind a PROC or FN within the program o r within any of the current
libraries. it wil l sta rt to look in the OVF.RU\Y files You give OVEI~LAY i1 st ri ng array
as a parameter For example

10 .] l t'-': 1 i b :;, (-,)

20 tb$() "l ~b l "," . ib/ "," . Lb ~ ","]ibiJ"

3U OVE~LAY l i b$()
40

When the OVI' kt.A Y statement is executed. BASIC reserves enough space for the
largest of the files given in the string array Then. when it can't find a PROC or FN
definition anywhere else. it will go through the list, loading the l ibranes in order
unti l the definition is found or 1 he end of the array is mel

Once a deli nition has been found. thdtlibrary stays in memory (and so the other
definition'> in it may be used) until the next time a definition cant be founcl
anywhere The search process starts agr1in . so the current overlay library will be
overwntten w1th the first one in the lio.,t Once BASIC has found cJ dchn1t1on. 1t will
remember which file it was in (or more precisely, which element of the array held
the filenumel. so that file will be loaded immediately the next time th(' definition 1s
requ1red and it is not in memory

Becauo.,e of the way one area of memory I'> used to hold each of the overlay files
(and on ly one at any one time). you dre not allowed to call a procedure who~e
definition is in an overlay I ibrary i I one ol I he overlay defin itions is currently active.
Another wo1y of putting this is that you c<:1n't nest overlay ca lls

It you know thr1t d given overlay file will never be needed again in the program. you
can speed up the .:,earch through the overlay list by setting the no- longer-required
elements of the array to the null strmg You can also add new names to the end of
the <Hrtly. as long a'> none of the new libr<~ry hie.:, is bigger than the largest one
spec1hed in the ongmdl OVERLAY stdlenwnt

You Ctln execute OVERLAY more than once 1n a program Fach time it 1s called the
memory set aside for the previous st'l o l fi lcs wi II be lost. and a new block brJsed on
the SI7.C o f tlw new ones wil l be allottL i t'd

Procedures and functions

Building your own libraries

There are certain rules which should be obeyed when writing library procedures
and functions

• Line number references are not allowed

Libraries must not use GOTO. GOSUB. etc Any reference to a line number is to
be taken as referring to the current program. not to the line numbers with
which the library is constructed. You can use RESTORE+ to access DATA
statements in a library.

• Only loca l variables referring to the current procedure or function should be
used

It is advisable that library routines only use local variables. so that they are
totally independent of any program which may call them.

• Each library should have a heading.

It is recommended that a library's first line contains the full name of the library
and details of a procedure which prints out information on each of the
routines in the library For example:

10000 REM>hyper:ib - gives hyperbolic functions .
Cal l PROChyperHe l p for details

This last rule is useful because BASIC contains a command, LVAR, which lists the
first line of all libraries which are currently loaded. As a result. it is important that
the first line of each library contains all the essential information about itself.

99

Function and procedure libraries

100

14

Data files

Data and command files

T his chapter describes how you can create data files to read information from
fi les. and how you can create command fi les to bui ld up a sequence of

commands to BASIC.

Programs can create and read information from files. called data files For example.
if you write a program that creates a l ist of names and telephone numbers. you
may wish to save the names and telephone numbers as a data fi le.

Creating a data file

The data file is specified in a program by one of the OPENxx keywords For example
you can create a data file using the keyword OPENOUT

For example. typing

A = OPENOUT "books "

creates a data file named books and opens it so that it is ready to receive data The
value stored in the variable A is called a chatmel number and allows the computer to
distinguish this data file from other open data files All future communication with
the fi le books is made via the file channel number in A rather than via the name of
the file.

Writing information to a data file

Writing mformat1on to a data hie is done using PRINT# For example.

101

Writing or reading single bytes

10 A = OPEt\OUT "books"
?.0 FOR I 1 TO 5
30 REA::> book$
~0 PRINT~A, book$
50 NEXTI
60 CLOSE#A
70 END
80 DATA "B:ack Beauty"
90 DATA "Lord of the Rings•

l 00 DATA "The 1-.Jind in ::he 1l·,'i 1 :ows "
I l 0 D;\ l';\ "The House at ?ooh Cor ne7 "

1.20 DATA "The BBC BASlC Re f eccncc Ma.nudl "

Closing a data file

Usc CLOSE# lo close a data fi le. This ensures that any dala belonging to the fi le
which is sli ll in a memory buffer is sto red on the disc. The buffer ca n then be
re-used for another file. After a CLOSE. the fi le hand le is no longer valid

Reading data from a file

You can read data from a file using OPEN IN and INPUT# OPEN IN opens an
cxi<;ling data file so that information may be read from it INPUT# Lhen reads the
individual ilems of data. For example

10 chonne::. = O?ENIN "boo~s"
20 REPEAT
30 TNPUTnchannel, ::icleS
~0 UNTIL EOFnc~anr.el
50 CLOSE~cha~nel
60 END

EOFit 1s a function which returns TRUE when the end of a file is reached.

Writing or reading single bytes

Other useful keywords for read ing or wriLing dala arc

• 131-'U l'tr which writes a single byle Lo a file

• 13G~' l,lr which reads a single byle from a file.

102

Data and command files

The following writes al l the upper-case letters to a file using BPUT# as part of the
program:

10 channe l = OPENOUT "characters"
20 FOR N% = ASC("A") TO ASC("Z")
30 BPUT#channel,N%
40 NEXT N%
50 CLOSE#channel

BGET# is used as part of a program that allows each character to be read into a
string as follows

10 channel OPENIN "characters "
20 string$ =
30 REPEAT
40 string$ += CHR$(BCET#channel)
~0 UNTIL EOF#channel
60 CLOSE#channel

Writing or reading ASCII strings

The BPUT# statement and GETS# function can also be used to write text to a file.
and read text from a file. These write and read the text in a form compatible with
other programs. such as text editors like Edit. unlike PRINT# and INPUT# which
write and read strings in BASIC string format

When you PRINT# an expression to a file. it is written as an encoded sequence of
bytes For example. an integer is stored on the file as the byte &40 followed by the
binary representation of the number. A string is written as &00 followed by the
length of the string, followed by the string itself in reverse order.

To write information as pure text. you can use:

BPUT#channel , string[;l

The characters of the string. which may be any string expression. are written to the
file If there is no semi-colon at the end of the statement. then a newline cha racter
(ASCII I 0) is written after the last character of the string. If the semi-colon is
present. no newline is appended Lo the string.

To read an ASCII string from a file. you can use:

str$=GET$#channel

This function reads characters from the file until a newline (ASCII 10). ca rriage
return (ASCII 13 and CHR$13). or nuii(ASCII 0 and CHR$0) character is read. This
terminates the string. but is not returned as part of it. Thus any new lines will look
like new strings when you read the file. The end of file also terminates the string.

103

Command files

Command files

A command file is a file whose contents are a sequence of commands to be
executed as if they had been typed at the keyboard You can use a variety of
methods to create a command fi le Using Edit is probably the eas iest. especial ly if
that app lication is already loaded and can be activated from the desktop See the
RISC OS Applications Guide for details on using Edit

Another way of creating a command file is to use the ·BUILD command. If you type

*BUI ,) keyfi.le

everything subsequently typed from the keyboard is sent directly to the file called
key f i 1 e If there is a file named -<ey: i 1 e already, it is deleted when the • BU 1 LD
command is given.

Press l~eturn at the end of each l ine. When you finish entering the commands.
press Esc to end keyboa rd input to keyfile

Executing a command file

104

There are two main ways of executing a command file. If the file contains a
sequence of commands to a language. such as BASIC. then you should *EXEC it.
For example. suppose you create a file called i nsr.all which contains the
following lines

!~STALL "bDsiclib .she_l"
INSTALL "bas icl i b.hypcrlib"
INSTALL "basiclib . debuggc r "
INSTALL "basiclib .FPctsm"

The lines in the file are designed to save the programmer from having to type in a
list of INSTALL commands whenever BASIC is started. To execute these
commands. enter BASIC then type the command

*EXEC' ii'1StDll

This causes the contents of install to be taken as input. exactly as if it had been
typed in (but much quicker'). You can make the command even shorter by setting
the fi le type of instal l to COMMAND using the command

*SETI'YI'I·: insl:all COJI.lMAN!)

This converts the file into a runnable file Once you have done this, you can *EXEC

the file just by giving its name as a command for example

*im;tall

The other way in which a command file can be executed is to *OBEY it

Data and command files

Note: If you do this. each line in the file is executed as a * command. i.e. it is
passed to the operating system command line interpreter on ly- not to BASIC. In
this case you do not see the lines that are being executed on the screen. and
•OBEY allows parameter substitution

See the section Command scripts in the chapter Notes for command line users in the
RISC OS 3 User Guide for more details on •oBEY

105

Command files

106

15 Screen modes

The display produced on a standard monitor can be in any of 24 different modes
(modes 0-17. 22. 24. 33-36). Other modes are available for use with multiscan.

high-resolution and VGA monitors. Each mode gives a different combination of
values to the following four attributes:

• the number of characters you can display on the screen

• the graphics resolution

• the number of colours ava ilable on the screen at any one time

• the amount of memory allocated to the screen display.

For example. mode 0 allows 32 rows of text to be displayed. each containing up to
80 characters. It provides high resolution graphics. but allows just two colours to
be displayed on the screen. In contrast, mode I can display just 40 characters on a
row and provides medium resolution graphics; it supports, however, up to four
colours Different modes use different amounts of memory to hold the picture: the
amount of memory is determined by the resolution and by the number of colours.
Mode 0 for example. requires 20K

Full details on screen modes are given in the Appendix on screen modes in the
RISC OS Usa Guide

Note BASIC screen mode and graphics commands control the computer when
BASIC is being run from the command line. When it is being run from a Task
Window. these functions are controlled by the RISC OS Window Manager. hence
these BASIC commands have no effect.

Changing screen modes
To change mode. use MODE followed by the mode number you want. For example.

MODE 12

changes the display to mode 12. Th is is one of the most useful modes since it
provides high resolution graph ics in 16 colours. It is the desktop's standard mode.

When you type a MODE command from the command line. the desktop is cleared
automatically.

107

Shadow modes

Shadow modes

Text size

108

In addttion to mode numbers 0 to 36. you can use 128 to 164 (i e the mode number
with 128 added to it) These modes use the so ·called ·shadow· memory If you
imagine that there are two separate areas of memory which may be used to hold
the screen informat ion then selecting a normal mode will cause one area to be
used. and selecting a shadow mode 1 in the range 128 to 164) will cause the
alternative bank to be used.

You can force all subsequent mode changes to use the shadow bank with the
command.

S*SHAD018

After thi s. you can imagine 128 to be added to any mode number in the range 0 to
36. To disable the automatic use o f the shadow memory, issue the command:

*SIIADOW 1

Using the shadow bank

In order to use the shadow bank. the ScreenSize configuration must reserve at least
tw ice as much screen memory as the amount required for the non-shadow mode.
For example. if you want to use both mode 0 and mode 128 40K of screen memory
must be available, as mode 0 takes 20K

In fact. for a given mode. there may be several banks available You can work out
• how many by divid ing the amount of configured screen memory by the

reqUirement of the current mode

The normal. non-shadow bank is numbered bank I. and the shadow bank. used by
mode 128 is bank 2. There are two more. banks '3 and 4 Using operating system
calls. you can choose which of the fou r banks is displayed. and which is used by the
VDU drivers when displaying text and graph ics

The number o f characters displayed on the screen is affected by the number which
are allowed per row (ie the width of each character) and the number of rows which
can be displayed on the screen (ie. the spacing between the rows) Using 25 rows
on the screen provides just th e right amount of separation between the rows to
make text eas ier to read.

Screen modes

Changing text size

You can change the size of text characters in the modes which support graphics
However, you can only do this when the display is in what is called VDU 5 mode.
This mode is explained in the section entitled Printing Lex! al Lhe graphics cursor on
page 122.

To set the size of characters in VDU 5 mode, type

VDU 23,17 ,7, 6 , sx; sy;O;

where sx is the horizontal size of characters and sy is the vertical size. Characters
are normally eight pixels square so to get double height you would use:

VDU 23, 1 7 , 7,6 , 8 ;16 ;0;

Single- and double-height character plotting is much faster than other sizes, but
you can choose any numbers for sx and sy between I and 32767.

Graphics resolution

The graphics resolution is specified by the number of pixels (rectangular dots)
which can be displayed horizontally and vertically. The greater the number of pixels
which the screen can be divided into, the sma ller each pixel is. Since all lines have
to be at least one pixel thick. smaller pixels enable the lines to appear less chunky
To see the difference the pixel size makes try typing the following in BASIC:

10 MODE 9
20 MOVE 100,100
30 DRA\•1 100,924
40 MOVE 100,100
'JO DRA'iJ 1180,100
60 MOVE 100,100
70 DRA\•1 1180 ' 924

and then

10 MODE 0
20 MOVE 100 , 100
30 DRAW 100 , 924
40 MOVE 100, 100
50 DRAW 1180,J00
60 l-10VE 100 , 100
70 DRAitJ 1180 ' 924

109

Colour modes

Colour modes

The number of colours available on the screen at any given time is either 2. 4. 16 or
256 When you first enter a particular mode. the computer selects the default
colours which it uses for that particular mode These are assigned to colour
numbers (see Appmdix E- Colour modes on page 4311

The computer chooses one colour to display text and graphics and another for the
background These two colours are chosen so that under default conditions the
text and graph1cs are in white and the background is black. For example. in
fou r-colour modes the computer chooses to draw text and graphics 1n colour 3
(white) on a background which is colour 0 (black!

256-colour modes

In the 256-colour modes. there are 64 d i fferent colours. and each colou r may have
four d i fferent brightnesses. resulting in a tota l of 256. The colours themselves are
referred to as numbers 0-63. The brightness levels arc ca lled 'tints' nnd are in the
range 0 255 However. because there are only four different tints. the numbers
normally used are 0. 64. 128 and 192

The 256-colour modes are described in more detai l on page I 12

Changing colours

110

You may cho<,se to display your text. graphics or background in a different colour
from the defaults To do this use the following commands

• COl OLIR r selects colour n for text

• r;('OI. r. selects colour n for graphics

EcJch command can affect both the foreground and background colours, depending
on the value it is given

• If :. is less than 128, the foreground colou r is set to colour n .

• If ;, is 128 or greater. the background colour is set to colour:. 128.

If the colour number is greater than the number o f colou rs ava ilable in a particular
mode then i t is reduced to l ie with in the range avai lab le For example. in a
fou r-colour mode COLOUR 5 and COLOUR 9 arc both equ ivalent to COLOUR I .

Try the lol lowing example

IC t·1Duf. 1 REE four-cc.OL I !'llOd,>

l.O COl ~) I ;R 129 : ~E.:·: red bdckgl ouml
H) COL OUK ')

~E:Vl yc ~ lo··:i :o1 •'<H o 1nd L•

40 PRIN'l " llel .o There "

Screen modes

Changing the colour palette

In addition to being able to select the colour in which numbers. text and so on are
displayed. you can also change the physical colour associated with each colour
number

Changing the shade of the colour

You can define the amount of red. green. and blue (as one of 161evels) which go to
make up the colour displayed for each of the logical colour numbers. Thus. any of
the 16 colour numbers can be made to appear as a shade se lected from the full
range. or 'pa lette'. of 16*16*16 = 4096 colours.

You can assign any of the shades available to a logical colour using the command

COLOUR n, r, g, b

This assigns r parts red, g parts green and b parts blue to logical colour n. Each of
1. g and b must be values between 0 and 255. A value of zero specifies that none of
that colour shou ld be used and a value of 255 that the maximum intensity of that
colour should be used. Thus setting all of them to zero gives black and setting all
to 255 gives white.

Returning to the default colour settings

To return to the default settings for each of the colours type

VDu 20

Note you should not use VDU 2 0 if you are writing a BASIC program under the
W1mp (described in the section entitled Window managed programs on page 61

Experimenting with colour

The following program allows you to mix and display various colours

10 REPEAT

20 MODE 1
30 :
40 REM Input values from the user
~0 :

60 I NPU'T' " Amount of red (0 15) "red%
'I 0 INPUT "Amount of green (0 1 5) "green%
80 INPUT "Amount of blue (0 15) "b 1 ue%
90:

100 REM Force the numbers into the range required
110:
120 red% = red% << 4

111

256-cofour modes

:30
~40

:so :

green%
blue%

green% << 4
blue% << 4

:60 COLOUR O,red% ,green%,blue%
:70 GCOL 0
~80 RECTANGLE FI~L 540,412,200,200
190 :
200 Now=TIME
250 REPEAT UN~IL TIME > Now + 500
260 :
270 UN~TL FALSE : REM Repeat forever

This program asks you for three values. one for each of the amounts of red. green
and blue you require It then plots a rectangle in that colour. After it has displayed
it for five seconds it clea rs the screen and starts again. To stop the program at any
stage press Esc.

Note: the current display hardware only supports 161evels for each colour
component numbered 0. 16. 32 ... up to 240. Intermediate numbers will give the
next lowest leveL

256-colour modes

112

Full contro l is not available over the colour palette setting in 256-colour modes.

As noted above. in these modes. a choice of 64 colours is available directly from
the simple COLOUR and GCOL commands.

For example .

.LO MODE 15
20 FOR Col% = 0 TO 63
30 COLOUR Col%
40 PRINT ":";Col%;
50 NEXT

As in the other modes the colour of the background can be changed by adding 128
to the parameter of the COLOUR command. Try modifying line 30 of the above
program and run ning it again.

About colour numbers

To understand the manner in which the colour number dictates the actual shade of
colour which you see you need to consider the binary pattern which makes up the
colour number. Only the right-most six bits are relevant For an explanation of%
and binary numbers. see the chapter entitled Bases on page 33

Screen modes

In common with the other modes colour zero (%000000) is black.

Colour binary pattern shade of colour

I (%000001) dark red
2 (%000010) m1d-red
3 (%000011) bright red
4 (%000100) dark green
8 (%001000) mid-green

12 (%00 11001 bright green
16 (%0100001 dark blue
32 (%100000) mid-blue
48 (%110000) bright blue
63 (%111111) white

Of the six bits which are used for the colour, the right-most two control the amount
of red. the middle two the amount o f green and the left-most two the amount of
blue.

For example, COLOUR 35 is composed as fol lows: 35 %I 000 I I , and so contains
two parts of blue. no green and three parts of red. and appears as a purple shade.
The remaining two bits of the eight bits of colour information are supplied via a
specia l TINT keyword. already mentioned above

The TINT keyword

The effect of TINT on the shade of the colour is to change the small amount of
wh1te tmt used in conjunction with the base colou r This g1ves four subtle
variations to each colour.

The range of the TINT value is 0 to 255; but there are only four distinct tint levels
within this range, and so all the number values within the following ranges have
the same effect:

0-63
64- 127
128- 191
192-255

For example:

No extra brightness
Some extra brightness
More extra brightness
Maximum extra brightness

COLOUR 35 TINT 128

or

GCOL 17 TINT 0

113

Using the screen under the Wimp

Displaying 256 shades

Here is a program which shows all possible tints and colours

10 MODE 15
20 POR col%;0 TO 63
30 F'OR tint%=0 TO 192 STEP 64
40 GCOL col% TINT tint%
~0 RECTANGLE FILL tint% *4 , co1% *16 , 2S6 , 16
60 NEXT tint%
70 NEX'l ' col%

Using the screen under the Wimp

114

When writing programs which run under the window environment. you shou ld not
use the standard commands such as COLOUR and MODE as lhese wi ll interfere
with the running of other active programs. Instead you shou ld use the facilities
provided by the Wimp (see the section enliLied Window managed programs on page 6
for more details)

16 Simple graphics

T ext and graphics plotting is performed by the operating system. Many graphics
operations require strings of control characters to be sent to the VDU drivers.

However. BASIC provides keywords to perform some of the more common
operations. such as plotting points. lines and circles and changing colours. This
chapter describes those keywords.

The graphics screen
Whichever graphics mode your program is in, the actual range of coordinates that
can be addressed is - 32768 to+ 32767 in each direction. The coordinate range of
the graphics screen that you actually use, and which is dependent upon the mode
you select. is really a window on this area. Many graphics modes use a screen
coordinate area 1280 units across by 1024 units high, with the origin (0.0) located
initially at the bottom left corner of the screen. So. for example. you could draw a
line between (-1300,-900) and (850. 1500) and what would appear on the screen is
the portion of the line which crosses the region (0,0) to (1279, I 023)

+32768

+
1023

/

/

/

(850, 1500)
/

/

l typical
screen

-32768 ------~---~~~~- - -- - -.<-~-- -- - -~-~-0-----~79-----_.+32768
/

/
/

/

(-1300,-900)
Y-axis

-32768

115

The point command

Because the actua I resolution of most of the modes available is less than the 1280
by I 024 system. screen pixels are more than one unit square. For example. in the
640 by 256 pixel mode 0. a pixel is 2 units wide (1280/6401 by 4 units high
(I 024/256) However because the same coordinates are used in every mode. a line
drawn between. say. (100.100) and (768.564) will appear approximately the same.
The only difference between the modes will be the apparent 'chunkiness· of the
line. due to the different pixel sizes

In most modes. the number of horizonta l pixels is not a factor of 1280. and the
number of vertical pixels is not a factor of I 024. Where such a mode has 25 text
lines. there are 200 vertical pixels and the screen is 1000 units high In the cases
where there arc 132 characters across. the vertical resolution is I 056 p1xels
However. each pixel is still two un1ts wide. so the screen is 2112 units wide There
are approximately 180 units per inch on most screens

The point command

116

The simplest type of object you can plot on the screen is a single p1xel. or point To
plot a point. you use the statement POINT followed by the x andy coord1nates of
the pixel you want plotted. For example

POINT 640,'J'/.

will plot a pixel in the middle of the screen in the current graphics foreground
colour (and tint in a 256-colour mode) .

The program below plots random points within a radius of 200 units from the
centre of the screen

10 MODF 12
20 REPf<:A' I '

30 rad% RND(l99)
40 angle=RAORND(360)
50 GCOL rad%*8/200
60 POINT 640+rad% *COSang]e, 512+rad%*SINangle
70 UNTIL FALSF

POINT may also be used as a function to discover the colou r of a pixel It has the
form:

col = ~OTNT(x% ,y%)

In 256-colour modes it returns a number between 0 and 63 To find the tmt of the
pixel. you use the TINT keyword as a function in a similar way.

tint = l'JN'I'(x% , y%)

Simple graphics

The line command
BASIC provides a very simple way of drawing lines on the screen All you need to do
is to work out the positions of the two ends of the line. You can then draw a line
with a single instruction such as:

LINE 120,120, 840,920 : REM line (120,120) to (840,920)

You could draw the line the other way and produce the same result

Lli\JE 840 , 920 , 120 , 120

The following program uses LINE four times to draw a box on the screen:

1 0 MODE 0
20 lefL% 100
30 right% 400
40 bottom% 200
50 top% 800
60 :
70 LINE left% , bottom%, right%,bottom%
80 LINE left%,top%, right%,top%
90 LINE left%,bottom%, left% , top%

100 I.TNE right%,bottom%, right%,Lop%

Rectangle and rectangle fill
The RECTANGLE statements provide an easier way of drawing boxes on the screen.
The first two parameters of RECTANGLE are the x andy coordinates of the bottom
left corner The second two parameters are the width and height of the rectangle
For example.

RFC""ANGLE 440,412, 400,200

If the width and height are equa l. as in a square. the fourth parameter may be
omitted:

K~CTANGLE 400,312,400

RECTANGLE Fl LL is used in exactly the same way as RECTANGLE. but instead of
drawing the outline of a rectangle. it produces a so lid rectangle. The following
program plots solid squares of gradually decreasing size in different colou rs

1 () MOD~ l ~

20 f'OR I% = 63 TO 1 S'TF.P

30 GCOL I%

40 REC':'AKGLE FIL[, 640-I%*8,S12-I%*8,I%*16
so NEXT I%

117

Circle and circle fill

Circle and circle fill
To draw the outline of a circle or to plot a solid ci rcle. you need to provide the
centre of the circle and the radius. For example:

CIRCLE 640 , 512 , 10 0 : REM centre (640,512) radius 100
CIRCLE FILL 640,512, 50

This produces the outline of a circle centred at (640,512), which is the centre of the
screen. and of radius I 00. Inside this is a solid circle. again centred at (640. 512).
which has a radius of 50.

Try the following program:

10 MODE 15

20 REPEAT
30 GCOL RND (64) :MOUSE x , y,z
40 C IRCLE FILL x,y, RND(400)+50
50 UN'[' I [FALSE

This program produces circles in random colours. centred on the current mouse
position and with a radius of between 51 and 450 To stop it press Esc.

Ellipse and ellipse fill

118

To draw the outline of an ellipse or to plot a solid ellipse you need to provide its
centre point and the size of its major and minor axes. In addition. you may also
give the angle by which it is rotated from the horizontal.

e)

Simple graphics

For example

ELLIPSE 640,512 , 200,100, PI/4

This produces the outline of an ellipse centred at (640.512) The length of it is 200.
the width is I 00 and it is rotated by pi/4 radians (45 degrees) from the horizontal. If
you omit the angle. an axis-aligned ellipse is produced

ELLIPSE 400,500, 320,80

Try the following program. which plots eight ellipses of two different sizes with the
same centre point to form multi-petalled nowers:

10 MODE 1
20 GCOL 1
30 FOR angle= 0 TO 3*PI/4 STEP PI/4
40 ELLIPSE FILL 640,512,200,60,angle
50 NEXT angle
60 GCOL 2
70 FOR angle = PI/8 TO 3*PI/4+PI/8 STEP Pl/4
80 ELLIPSE FILL 640,512,100,30,angle
90 NEXT angle

Graphics colours
In previous examples. GCOL has taken one parameter. a number which selects the
current logical colour for the graphics foreground or background For example.

GCOL 3
GCOL 129

selects the graphics foreground colour to be logical colour three and the
background colour to be one.

GCOL may, however. take two parameters: GCOL m, c In this case the second (c)
selects the foreground and background graphics colours. and the first (m) selects
the manner in which cis applied to the screen as follows

m Meaning

0 Store the colour con the screen
I OR the colour on the screen with c
2 AND the colour on the screen with c
3 EOR the colour on the screen with c
4 Invert (NOT) the colour on the screen (disregards c)
5 Leave the colour on the screen unchanged (disregards cl
6 AND the colour on the screen with NOT c
7 OR the colour on the screen with NOT c

119

Graphics colours

120

Two of the options ignore t he second parameter and either leave the colour on the
screen unchanged or invert it Inverting a colour means that all the bits in the
colour number are altered zeros are set to ones and vice versa . For example

10 MODE 9 : REM 16 colour s 0(%0000) - 15 (%1 111)
20 GCOL J28+5
30 CLG
40 GCOL 4 ,0 : REM plot in NOT {screen colour)
50 LINE 0 , 0, 100,100

The colour on the screen is colour 5 (%0 10 I). The colour used to draw the line is,
therefore, NOT (%0 10 I) or colour I 0 (%I 0 10).

The OR, AND and EOR operators act on the bits of the colour already on the screen
and on the colour given as the second GCOL parameter as described in the chapter
Bases. Thus:

10 MODE 12 : REM 16 colours 0(%0000) - 15(%1111)
20 GCOL 12 8+5 : REM c lea r screen to magenta
30 CLG
40 GCOL 0,6 LINE 0, 0, 100,100
50 GCOL 1 , 6 LINE 100,100, 200,200
60 GCOL 2,6 LINE 200 , 200 , 300 , 300
70 GCOL 3 ,6 LINE 300,300, 400 ,400
80 GCOL 6,6 LINE 400,400, 500,500
90 GCOL 7,6 LINE 500,500, 600,600

The colour already on the screen when the lines are drawn is colour 5 (%0 I 0 I). The
foreground colour is selected as colour 6 (%0 II 0) in all cases. The method of
applying it to the screen. however, alters the actual colour displayed as follows

• The first line appears in colour 6

• The second line appears in colour 7 (%0101 OR %0110 = %0 111)

• The third line appears in colour 4 (%0 10 I AND %0 II 0 = %0 I 00)

• The fourth line appears in colou r 3 (%0101 EOR %0110 = %0011}

• The fifth line appears in colour I (%0101 AND NOT%0 110 = %0101 AND &100 1
= %0001)

• The sixth line appears in colour 13 (%0101 OR NOT%0110 = &010 1 OR %1001
= %1 101)

Simple graphics

The graphics cursor

In the examples shown so far. we have always explicitly mentioned where objects
are to be plotted. for example by giving both end points of a line in the LINE
statement This isn't always necessary, because of the graph ics cursor The graphics
cursor is an invisible point on the screen which affects where lines and other 1tems
are drawn from.

For example

10 ~ODE : 2
20 MOVE 100,100
30 DRAW 200 , 200

This moves the graphics cursor to (I 00. 1 00). then draws a line to (200.200) and
leaves the graphics cursor at this position. Now. if a further line is added to the
program as follows:

If 0 IJ!{l\.'l>i 3 0 0 ' 1 0 0

This adds a line from (200.200) to (300. 100). BASIC's LIN E command is actually
shorthand for a MOVE followed by a DRAW.

Many of the graphics entities described in the next chapter rely on the current
position o f the graphics cursor. and some of them also use its previous positions

Relative coordinates and BY

All coordinates used so far are termed absolute because they tell the computer
where to plot the object with respect to the graph ics ongm (0.0) However. it is also
poss1ble to use relative coordinates When these are used. the coordinates given are
added to the current graphics cursor position to find the new point To use relative
coordinates in POINT. MOVE and DRAW statements. you follow the keyword by the
word BY

Here is a program that starts in the middle of the screen and ·walks' randomly
around:

10 MODE 0
20 MOVE 640 , 512
10 RFP !-: l\.'1'

110 dx%=8 *(RND(3)-2}
') 0 :!: P dx%=0 THEN dy%=8* (RND (3} - 2} ELSE dy% =0
60 DRA\1>1 BY dx%,dy%
7 0 UNTIL FALSE

121

Printing text at the graphics cursor

Printing text at the graphics cursor

122

Printing text at the text cursor positions gives on ly limited control over the places
at which characters may be located. In addition it does not allow characters to ·
overlap Attempting to print one character on top of an existing one deletes the
existing one. You may find that you would like to be able to place text in d ifferent
positions. for example to label the axes of a graph or to type two characters on top
of each other. in order to add an accent. e.g. 1\. to a letter. To do either of these type

VDU 5

You are now in VDU 5 mode. Whilsl you are in this mode of operation. any
characters you print are placed at the graphics cursor position The text cu rsor is
ignored. You can use the MOVE statement to locate the text precisely

Since th is method of printing makes use of graphics facilities. it is not possible in
text-on ly modes. If the command VD:J 5 is given in any of these screen modes it
has no effect.

Each character is actually placed so that its top left corner is at the graphics cursor.
After the character has been printed. the graphics cursor moves to the right by the
width of one character. Although the graph ics cursor also automatica lly moves
down by the height of a character (32 units in modes 0 to 17) when the righthand
side of the screen is reached. the screen does not scrol l when a character is placed
in the bottom righthand corner. Instead the cursor returns to the top left

To return to the normal mode of operation type

V;)U 4

17 Complex graphics

The commands such as MOVE. DRAW, CIRCLE. etc are special cases of the more
general PLOT command. This command can give a far wider range of options

over what kind of shape you produce and how you produce it Of course, the added
functionality it provides makes it more complicated to use.

PLOT takes the following format:

PLOT k,x,y

where k is the mode of plotting, and x andy are the coordinates of a point to be
used to position the shape. PLOT takes one pair of coordinates. To produce shapes
which need more than one pair to define them, such as rectangles. it uses the
previous position or positions of the graphics cursor to provide the missing
information. This means that you must pay careful attention to the position of the
graphics cursor after a shape has been drawn. Otherwise future plots may produce
unexpected results.

Each type of plot has a block of eight numbers associated with it. These are listed
below in both decimal and hexadecimal notation. (See the chapter entitled Bases
on page 33)

0-7 (&00- &07) Solid line including both end points
8-15 (&08- &OF) Solid line excluding final points
16-23 (&10-&17) Dotted line including both end points
24-31 (&18- &I F) Dotted line excluding final points

32-39 (&20- &27) Solid line excluding initial point
40-47 (&28- &2F) Solid line excluding both end points
48-55 (&30- &37) Dotted line excluding initial point
56-63 (&38- &3F) Dotted line excluding both end points

64-71 (&40- &47) Point plot
72-79 (&48- &4F) Horizontal line fill (left & right) to non-background
80-87 (&50- &57) Triangle fill
88-95 (&58- &5F) Horizontal line fill (right only) to background

96-103 (&60- &67) Rectangle fill
104-111 (&68- &6F) Horizontal line fill (left & right) to foreground
112-119 (&70- &77) Parallelogram fill
120-127 (&78- &7F) Horizontal line fill (right only) to non-foreground

123

124

128-135 !&80- &87) Flood to non-background
136-143 !&88- &8F) Flood to foreground

144-151 (&90- &97) Circle outline
152-159 (&98- &9F) Circle fill
160-167 (&AO- &A7) Circular arc
168 175 (&A8- &AF) Segment
176-183 !&BO - &B7) Sector
184-191 (&B8- &BF) Block copy/move

192-199 (&CO- &C7) Ellipse outline
200-207 (&C8- &CF) Ellipse fill

208-2 15 !&DO- &D7) Graphics characters
216-223 !&D8 - &DF) Reserved for Acorn expansion
224-23 1 !&EO - &E7) Reserved for Acorn expansion
232-239 (&E8- &EF) Spri te plot

240-247 (&FO- &F7) Reserved for user programs
248-255 (&F8- &FF) Reserved for user programs

Within each block of eight. the offset from the base number has the following
mean ing

offset meaning

0 move cursor relative (to last graphics point visited)
I plot relative using current foreground colour
2 plot relative using logical inverse colour
3 plot relative using current background colour

4 move cursor absolute (i.e. move to actual coordtnate given)
5 plot absolute using current foreground colour
6 plot absolute using logical inverse colour
7 plot absolute using current background colour

PLOT is a good example of where using hexadecimal no tation helps to make things
clearer. Each block of eight starts at either &xO or &x8. where x represents any
hexadecimal digit, so a plot absolute in the current foreground colour. fo r example.
has a plot code of &x5 or &xD. Thus. it is obvious wh ich mode of plotting is being
used. Similarly, it is obvious which shape is being plotted. and so. for example. i f
the plot is between &90 and &9F. then it is a circle. This is a far easier range to
recognise than 144 to 159.

Each of the types of plot is described in further detail below.

Complex graphics

Plotting simple lines

A line is plotted between the coordinates €iven by the PLOT and the previous
position of the graphics cursor. The following examples draw a line from (200.200)
to (800.800)

10 MODE 0
20 PLOT &04,200,200
30 PLOT &05,800,800

These two PLOT statements are equivalent to MOVE 2 00 1 2 0 0 and DRA'..V
800 , 800 respectively.

The same line can be drawn by a different PLOT code

10 MODE 0
20 PLOT &04,200,200
30 PLOT &01,600,600

This demonstrates the use of relative plotting. The coord inate (600.600) which has
been €iven in line 30 is relative to the position of the €raphics cursor. The absolute
value is obtained by adding this offset to the previous position i.e (600.600) +
(200.200) which €ives a position of (800.800) . This is equivalent to DRAW BY
6001 600.

Dot-dash lines

Straight lines do not have to be drawn as a solid line. Instead you can set up a
pattern of dots and dashes and use that to determine which pixels along the line
will be plotted.

A dot-dash pattern is set up using.

VDU 23,6 ,nl,n2,n3,n4,n5,n6,n7,n8

where nl to nB define a bit pattern. Each bit which is set to one represents a point
plotted and each bit set to zero represents no point. The pattern starts at bit 7 of
nl, then for each pixel plotted moves one bit to the right inn 1. Aher bit 0 of nl
has been used. bit 7 of n2 is used, and so on.

The pattern can be made to repeat (ie. go back to bit 7 of nl) after a given number
of pixels. The maximum pattern repeat is 64. However. you can set up any repeat
between one and 64 using:

*FX 163 ,242,n

If you set n to zero. this sets up the default pattern which has a repeat length of
eight bits and is alternately on and off. i.e n 1 is% I 0 I 0 I 0 l 0 t&AA)

125

Plotting simple lines

126

There are four different methods which may be used to plot the line:

PLOT ra nge

&10-&17

&18-&IF

&30-&37

&38-&3F

Triangles

Effect

Both end points included, the pattern being restarted when
each new line is drawn.

Final point omitted. the pattern being restarted when each new
line is drawn.

Initial point omitted. the pattern being continued when each
new line is drawn.

Both end points omitted, the pattern being continued when
each new line is drawn.

To draw a triangle plot, you need the coordinates given with the triangle PLOT code
and two previous points which mark the other corners. For example:

10 MODE 12
20 MOVE 200,200
30 MOVE 600,200
40 PLOT &55,400,~00

This plots a triangle with corners (200.200). (600.6001 and (400.400)

Adding a further line

50 PLOT &~5.800 ,400

plots a further triangle using corners (600,200), (400.400) and (800,400i

Rectangles

An axes-aligned (filled) rectangle plot can be plotted between the coordinates
given by the PLOT and the previous position of the graphics cursor For example

tv:OVE 200,200
PI.OT &6- ,600,600

This is equivalent to RECTANGLE FILL 200.200. 600.600 You can also specify
absolute coord inates in the PLOT version. for example

MOVE 200 ,200
P~OT &65 , 800 , 800

Complex graphics

Parallelograms

A parallelogram plot is constructed as a rectangle which has been sheered
sideways For example:

I (400,800) (900,800)

I I
I

'-

(200),(200) (700,200)

These require three points to define them. Thus to plot the parallelogram shown
above the following could be used:

MOV b: /. 0 0, 2 0 0
MOVE 700,200
PLOT &75,900 , 800

Although any three corners of the parallelogram may be u~ed to define it. the order
in which these are given affects which way round the parallelogram appears
Consider the three points given below

(200,500) (600,500)

• •

(700,800)

•

These cou ld produce any of three parallelograms. depending on the order in which
they were used. The rule to determine what the final parallelogram will look l ike is
as follows: the three points specify adjacent vertices. with the fourth vertex being
calcu lated from these. From this. it can be seen that the unspecified corner is the
one which appears diagonally opposite the second point given

127

Plotting simple lines

Suppose. for example. you used the following sequence of statements with the
three points shown above.

MOVE 200 , ?00
MOVE 600 , ~00

PLOT &7~ , 700 , 800

The final point is calculated by the computer to have the coordinates (300.800).
diagonally oppos ite the point (600.'500)

The other two possible parallelograms that would be obtained using these three
sequences are

t-10V~ 600 , 1)00 : MOVE 700 , 800 : PLO'l' & 75 , 200 , 500
t-10VE 700 , 800 : l-10VE 200 , 500 : 0 1.0'1' &75 ,6 00 , 500

When specifying the corners. you can give them in 'clockwise· or ·an ti-clockwise·
order: the same shape is drawn regardless.

Circles

128

To plot a circle. define the centre by moving to it. and then use PLOT w1th the
relevant plot code and the coordinates of a point on its circumference For
example. to plot a solid circle in the centre of the screen with a radius of 100. type

t-10VE 64 C, 512 : REM centre
PLOT &90 , 740 , 512 : REM Xcenl J'enadius, Ycentre

Alternatively you could use relative plo tting

MOVE 640 , 5'2
PLOT &99, 100 , 0

: REtv ccnlr-o
: REtv radius , O

In both these examples the circles are solid and could have been produced using
the CIRCLE FILL command The equivalent of the CIRCLE command for producing
outlines of circles wou ld be PLOT &95 and PLOT &91

Ellipses

Complex graphics

Ellipses are more complicated to define than circles:

(800,712)

(540,512) •
(740,512)

(640,512)
(460,312)

To plot the above ellipse. the following information is required:

• the centre point

• an outermost point (either to the right or left) at the same height as the centre

• the highest or lowest point o f the ellipse

For example. to draw the ellipse above. you could use:

MOVE 640,512 : REM the centre
MOVE 740 , 512 : REM the righthand point
PLOT &C5,800,712 :REM the top point

or alternatively:

MOVE 6~0.512 :REM the centre
MOVE 540,512 :REM the l efthand point
PLOT &C5,480 ,312 : REM the bottom point

Note that only the x coordinate of the second point is relevant. although for clarity
it is good practice to give the same y coordinate as for the centre point.

The following example creates a pattern using a number of differently shaped
ellipses:

129

Arcs

Arcs

130

10 ~ODE 0
20 FOR step% - 0 TO 400 STEP 2~
30 MOVE 640 , 512
4 0 MOVE 215·step%,S12
50 PLOT &C5, 640 ,512 +s t ep%
60 NF'x~ step%

Solid ellipses are drawn in the same way using the plot codes &C8 to &CF

The BASIC ELLIPSE keyword provides an easier way of spec1fying rotated ellipses

We saw above how circle outlines are defined and drawn . In a similar way. just a
portion of the circle outline may be drawn to produce an arc. In this case. three
points are requ ired: the centre of the circle and two points to indicate the starting
and finishing points o f the arc. Idea lly, these wou ld be given as follows:

Finishing point

•
Centre Starting point

In the example above. however. both the starting and finishing points are on the
arc itself This is a design which requires a large amount of calculation It is easier
for the starting point to be taken as being on the arc and used to calculate the
radius. the finishing point being used just to indicate the angle the arc subtends
For example:

Possible
finishing points

Centre Starting point

Sectors

Complex graphics

This is the method used by the VDU drivers. To draw an arc. you need to specify the
centre of the circle it is based upon and the starting point of the arc. and then to
plot to a third point to specify the angle

The example below draws an arc based on a circle whose centre is at (640.512). It
draws the portion of the arc from 0 to 270 Since arcs are drawn anticlockwise this
means that its starting position is the point (440,5 12) (270) and its finishing
position (640.512+n) (0):

MOVE 640,512
MOVE 440,512
PLOT &A5,640 ,1000

The resulting arc would look like that drawn below:

(640,512)

(440,512)

\
I

)

A secto r is a filled shape enclosed by two straight radii and the arc of a circle.

End

Start

Centre

131

Segments

Segments

132

Sectors are defined in a similar manner to arcs. For example:

MOVE 640,512 : REM centre point
MOVE 44 0 , 512 :REM sta~L ing point on the circumference
PLOT &B5 , 640 , 1000 :R~M poinL indicating angle of sector

Aga in the sector is taken as going anti-clockwise from the sta rting point to the
fin ishing point.

A segment is an area of a circle between the ci rcumference and a chord as shown
be low:

End

• Start

Segments are defined in exact ly the same way as arcs and sectors.

18 Graphic patterns

A ny of the colours which are avai lable in a given mode may be 'interwoven' to
l"l. give a tremendous range of colour patterns. When using modes with a limited
number of colours. for example any of the four-colour modes, this feature may be
used to extend the colours ava ilable~ si nee combining similar colours produces
further shades which look like pure colours. Alternatively, contrasting colours may
be used to give checks, wavy lines. and so on.

Default patterns

Default patterns are set up for you as follows:

Mode(s) Pattern Colour

0 I Dark grey
2 Grey
3 Light grey
4 Hatching

4,25 I Dark grey
2 Grey
3 Light grey
4 Hatching

I ,5.8,26 I Red-orange
2 Orange
3 Yel low-orange
4 Cream

2,9, 12.27 I Orange
2 Pink
3 Yellow-green
4 Cream

13, 15,28 I White-grey stripes
2 Black-grey stripes
3 Green-black stripes
4 Pink-white stripes

133

Plotting using pattern fills

To use these patterns you issue a GCO~ with a plot action which depends on the
pattern desired In general. to use pattern 11 . the GCOL command should be

GCOL n•l6+acc ion. col

where ace ion is the plotting action you want to use with the pattern (for example
0 for store. I for OR etc. as described earlier). and col is 0 if you want to set the
foreground colour as a pattern or 128 for a background pattern The parameter 11 is
1n the range I to 4 for the normal patterns. or 5 for a large pattern which is formed
by placing patterns I to 4 next to each other.

Plotting using pattern fills

134

All the shapes which have been described above can be plotted using these colou r
patterns. A pattern may be selected using GCOL. The first parameter to GCOL
affects the plotting action as was seen ea rlier in the chapter en titled Screen modes.
Patterns can be used in future plots by using values in the fol lowing ranges:

16-31 Pattern I
32 -47 Pattern 2
4R-6'3 Pattern 3
64-79 Pattern 4

Try the fo llowing:

10 NODE c;

20 GCOL :.6 , 0
~0 MOVE . 00 , 100
40 f-!OVI:: 800 , 800
'0 J>LO':' &':>~ . i00 , 208

or

10 r.:coc 1
2(• CCOL 32 , D
\ (J VO\! F 6tJ 0, 5 l 2
·1 () I ' I .Cl'l &9 D,i40,5 1 2

It is possible to plot lines using these colou r pallerns in a simi lar manner. but the
effects may be rather strange. Consider. for example, a li ne drawn at 45 degrees in
mode one. If the pattern being used were diterna te black and white pixels. then this
line would be drawn either in all while or a ll black the laLLcr not being visible on a
black background

Graphic patterns

Defining your own patterns

You may define you r own colour patterns using VDU commands as follows

VDU 23,2,nl,n2,n3,n4,n5,n6,n7,n8de fincsGCOL 16, o i e. pattern I

VDU 23,3,nl,n2,n3,n4,n5,n6,nl,n8defines GCOL 32,0ie pattern 2

VDU 23,4,nl,n2 ,n3,n4,n5,n6 ,n7,n8dcfi ncs GCOL 48, o i.e pattern 3

VDU 2 3 , 5, nl, n2, n3, n4, n5, n6, n 7, nB defines GCOL 64 , 0 i e. pattern 4

The pattern produced by a set of parameters depends upon which pattern mode is
being used. There are two modes ava ilable, one where the parameters are
interpreted in the same manner as on a BBC Master 128 and another simpler
method used by this machine on ly The default is the BBC Master 128 mode. To
change to native mode type

VDU 23 , 1'7 , 4 ,1 1

To revert back again to the Master mode type

VDU 23 ,17,41

Note: the I character denotes a floating point indirection operator. See the chapter
entitled Accessing memory locations on page 161 for more information.

The pattern fill works with blocks of pixels. The size of these blocks depends on the
number of colours available in the mode

Colours

2
4
16

256

Horizontal pixels

8
4

2

Vertical pixels

8
8
8
8

In all cases. each pixel may be assigned a colour independently of the others Each
·parameter o f the VDU command corresponds to a row in the pixel block. The first
parameter contains the va lue of the top row. the second the value of the second
row. and so on. The way the va lue of the parameter is interpreted depends on the
mode being used.

135

Native mode patterns

Native mode patterns

136

In native mode the bits of the parameter are used in a straightforward manner to
give the colour of the pixels

Two-colour modes

Each bit of the parameter is assigned to a pixel. the least significant bit applying to
the pixel on the left. i.e. the pixels appear on the screen in the opposite order to
which the bits are written down on paper For example, to set a row of the pattern
as follows:

black white white white black black black white
'7'o0 'J'ol 'Yo l %1 %0 '7'o0 %0 'Yo l

the value required is 142 [%10001110).

Four-colour modes

Each pair of bits of the parameter is assigned to a pixel. the least significant pai r
applying to the pixel on the left. For example, to set a row of the pattern as follows

yellow red
'Yo I 0 %01

white yellow
'Yo ll %10

the va lue required is 182 [%10110110).

16-colour modes

Each set of four bits of the parameter is assigned to a pixel. the least significant set
applying to the pixel on the left For example, to set a row of the pattern as follows:

green white
'YoOOIO %01 11

the value required is 114 [%0 Ill 00 I OJ

256-colour modes

The value of the parameter defines the colour assigned to the pixel directly.
Patterns in these cases are more complex since they invo lve interleaving the bits
from the colour to obtain the parameter value.

Graphic patterns

BBC Master 128 mode patterns

In BBC Master 128 mode. the bits of the parameter are used in the following
manner to give the colour o f the pixels

Two-colour modes

Th1s IS the easiest case to understand. Each pixel in the block corresponds to one
bit of the parameter. the least signi ficant bit applying to the pixel on the right. so
pixels on the screen appear in the same order as the bits are written down on
paper For example, to set a row of the pattern as follows

black white white white black
%0 %1 %1 %1 %0

the value required is 113 (%0 II I 000 I) .

black black
%0 %0

white
%1

Defining a pattern in a two-colour mode is similar to setting up a user-defined
cha racter.

Four-colour modes

In four-colour modes each colour is defined using two bits as follows:

yellow (%10) red(%01) white (% 11) yellow (%10)

bit 7 6 5 4 3 2 0
0 10 (yellow)

0 01 (red)
II (wh ite)

0 10 (yellow)

[I 0 0 0

The value required is 182 (%10110110).

16-colour modes

In 16-colour modes the situation is different again. There are just two pixels in a
row, four bits of the parameter being used to hold the value of each colour.
However. it is not the case that the left -most four bits correspond to the first colour
and the right-most four bits to the other. Instead. the bits of each are interleaved.
as shown:

137

Giant patterns

Giant patterns

green (%0010) white (%0111)

bit 7 6 5 4 3 2 l 0
0 0 0 0010 (green)

0 0111 (white)

0 0 0 0

and the value required is 29 (%000 Ill 0 I)

To get the colours the other way around different numbers are required .

white (%01 11) green (%0010)

bit 7 6 5 4 3 2 0
0 0111 (white)

0 0 0 0010 (green)

0 0 0 0

and the value required is 46 (%00101110)

Thus a cross-hatch pattern of alternate white and green pixels can be defined:

VDU 23 , 2 , 29 ,46,29,46,29,46,29,4 6

Giant patterns can be set up wh ich take all four of the separate patterns and place
them side by side. giving an overall pixel size as shown below

Colours Horizontal pixels Vertical pixels

2 32 8
4 16 8

16 8 8
256 4 8

To produce a giant pattern in thi s way. the first parameter given to GCOL shou ld be
in the range 80 to 95.

Simple patterns

138

Often the most effective way of using the pattern fil ls is for simple cross-hatch
patterns. If you want to use this sort of colour pattern. a simpler way of defining it
is avai lable In th is method. just a small block of eight pixels is defined which is
used to form the normal-sized block

Flood-fills

Graphic patterns

The eight pixel colours in the following diagram are set up using

VDU 23,2 ,nl,n2 ,n3,n4, n5,n6,n7,n8

where nl to nB correspond to the actual colours to be used

1

3

5
7

16-colour modes

2
4

6
8

The numbers are given in the following order:

1 2
3 4

5 6
7 8

Mode4

1

3
5
7

1

3
5
7

2

4

6

8

Four-colour modes

Double pixels

2
4

6
8

ModeS

This section is concerned with how to fill the inside of any closed region. however
awkward the shape. The method used is flood-filling; with this you can sta rt off at
any point within the boundaries of the shape. The whole shape is then fi lled at
once.

Note that flood-filling is not compatible with BASIC programs written under the
window manager environment (described in the section entitled Window managed
programs on page 6)

139

Copying and moving

Flood to non-background

This can be used on shapes which are in the current background colour and
bordered by non-background colours. The shape is filled with the current
foreground colour.

To use this nood-fill method. type. for example

FILL 640 , 512

This starts fi lling from the point (640.512): the middle of the screen. If this point is
in a non-background colour then it returns immediately. Otherwise it fills in all
directions until it reaches either a non-background colour or the edge of the
screen.

Flood-fills may be performed using either pure colours or colour patterns. Note
that if you wish to colour in a shape it must be totally enclosed by a solid border. If
there is a gap anywhere then the colour 'leaks' out into other regions.

Flood until foreground

Whereas the previous flood-fill filled a shape currently in the background colour.
this one fills a shape currently in any colour except the present foreground one.
with the present foreground colour. This is performed by a PLOT command with
plot codes &88 to &8F

For example:

PLOT &80,640,512

Flood-fil ling will on ly succeed when the region being filled does not already
contain any pixels in the colour being used. For example. if you are attempting a
flood to non-background when the background colour is black. you should not try
to flood in black or in a pattern which contains black pixels

Copying and moving

140

Using RECTANGLE ... TO and RECTANGLE FILL ... TO. you can pick up a
rectangular area of the screen and either make a copy of it elsewhere on the screen
or move it to another position. replacing it with a block of the background colour.

For example:

RECTANGLE FILL 400,600,60,80 TO 700,580

This marks out the source rectangle as having one corner at co-ordinates (400.600).
a width of 60 and a height of 80. It then moves this rectangular area so that the
bottom left of it is at the co-ord inates (700,580). The o ld area is replaced by
background

Graphic patterns

The new position can overlap with the rectangular area. as in the example above.
and the expected result is still obtained.

The rectangle move and copy commands may also be expressed in terms of PLOT
codes. The relevant range of codes is &88 to &BF: first move to two points which
denote the bottom left and top right of the rectangle to be copied or moved; then
plot. using one of the range of codes described above. to the bottom left corner of
the destination rectangle. The meanings of the plot codes are as follows

&88 Move relative (no copy/move operation)
&89 Relative rectangle move
&BA Relative rectangle copy
&BB Relative rectangle copy
&BC Move absolute (no copy/move operation)
&BD Absolute rectangle move
&BE Absolute rectangle copy
&BF Absolute rectangle copy

The rectangle move operations erase the source rectangle. whereas the copy
operations leave it intact. So. the RECTANGLE FILL ... TO example above could
a I so be expressed as:

!'lOVE 400,600
MOVE BY 60,80
PLO'r &80 , 700 , 580

The graphics used by Draw use the Draw module. This is outside the scope of this
manual. but is described in the Programmer's Reference Manual.

141

Copying and moving

142

19

Text viewports

Viewports

The operating system allows the programmer to set up special rectangular areas
of the screen. called viewports, in order to restrict where text or graphics can

appear on the screen.

Text viewports provide automatic scrolling of text written into the viewport area.
and so are also referred to as ·scrolling viewports' .

Graphics viewports restrict the area affected by graphics operations. so that. for
example. lines are clipped to lie within the viewport area. Graphics viewports are
therefore also referred to as 'clipping viewports'.

Note the text and graphics viewports described here are supported directly by the
VDU drivers. and are quite distinct from the bordered, moveable windows used by
the window manager software, which uses graphics viewports as a stepping stone
to greater functionality (for more details see the section entitled Window managed
programs on page 6).

Normally, text may appear anywhere on the screen. However, you can define a text
viewport. which al lows the text to appear only inside the viewport. To set up a text
viewport. use the vou 28 command as follows

VDU 28,1eft,bottom,righL,Lop

where 1 eft, bot com is the bottom lefthand and right, cop the top righthand
position inside the viewport given in text coordinates:

T
.....

top

1 bottom

- left >[Text
Viewport

<~ right

143

Text viewports

144

Nothing outside the text viewport is affected by text statements, such as CLS to
clear the text screen. or screen scrolling. Note that 'I'AB (x, Y) positions the text
cursor relative to the position of the top left of the current text viewport The
following program demonstrates how text viewports behave:

10 MODE 1
?.0 REM Set up a text viewport 6 characters square
30 VDU 28,5,10,10,5
40 REM Change the background colour to colour 1 (red)
JO COLOUR 129
60 REM Clear the text screen to show where it is
70 CLS
80 REM Demonstrate scrolling
90 FOR N% = 1 TO 20

100 PRINT N%
110 NEXT N%
120 REM Show position of character (2,3)
130 PRINT TAB(2,3) ;"*"

140 END

To revert back to having the whole screen as the text viewport type

VDU 26

The precise actions of the VDU 26 command are as follows

• Restore text viewport to the whole screen

• Restore graphics viewport to the whole screen

• Home the text cursor

• Restore graphic origin to bottom left of screen

• Home graphics cursor to (0,0)

Viewports

Graphics viewports

Just as text may have a text viewport defined, so a graphics viewport may be set up
using

vou 24 , left ; bottom; right ; top;

where (left ,b ot t om) and (r ight, t op) are the coordinates of the lower left hand
and upper righthand pixels inside the viewport. Be sure to use semi-co lons as
indicated, not commas.

<E----- right

Graphics
Viewport

<E--- left _____,.,
1\

bottom

v

top

Nothing outside the graphics viewport is affected by graphics commands, such as
CLG to clear the graphics screen. When a graphics viewport is set up. the graphics
origin (0.0) is unaltered.

The following program demonstrates how graphics viewports behave

10 MODE 12
20 REM Set up a graphics v i ewport , a quarter of Lhe screen size
30 VDU 24, 320 ; 256 ; 960; 768 ;
40 REM Change t he background col ou r to colour 1 (red)
50 GCOL 129
60 REM Clear the graphics viev;porL
·; 0 CLG
80 REM Show pos it i o n of 0 , 0
90 CIRCLE 0, 0 , 600

100 END

To revert back to having the whol e screen as the graphics viewport type

VDU 26

145

Graphics viewports

146

20 Sprites

Asprite is just a graphic shape made up of an array of pixels You can create and
manipulate sprites using Paint Th is is a general-purpose painting program

whose output happens to be stored in a sprite. It is fully described in the
RISC OS 3 Applications Guide.

Having created one or more sprites in a spritefi le (using Paint). you can then :

• load this file;

• manipulate and plot one or more sprites from it.

For a full description of how to load. manipulate and plot sprites see the Sprites
chapter of the Programmer's Reference Manual.

Loading a user sprite
In the program fragment below the function FN ioad_sprites takes the name of a
sprite file as a parameter and loads sprites from th is file into a user sprite area

60 DEF FNl oad_sprites (spr: t e _ file$)
70 LOCAL l e ngt h %, are a_p tr%

80 RRM Find s ize o r sp r i Le ~ · e
90 SYS HOS_ File ft,l 3 , spr i t e_fi:cs TO , , , ,l e ngth%

l OG R~M Reserve me mor y f o r user s pr i t e a r ea
110 REt1 S i ze of area s hou ld be size of f ile + 4 bytes for lengt-h
120 on 1 area _ p tr% l e ngt h%+4-1

1 30 R~M I nit i a l ise area wi t h s ize ...
140 a r e a_ptr%!0 = l e ngt h%+4
' 50 REM ... and wi t h offset. to firs t spr ite
160 area_pt r% !4 = 16
17 8 REM Finish ini t i a l is ing wi t.h t hi s sprite op
1 80 SYS "OS_Spr i t eOp ", 9+2 56 , area_ptr%

190 REM Load sprites
200 SYS "OS_Spr i te0 p ", l0+256 , a r ea_ptr%, spri t e _ f ile$

2 10 REM Retu r n pointer t o use r s pr i t e a rea

7. 7.0 area_ptr%

The function FNioad_sprites (defined above) calls OS_SpriteOp to initialise a
sprite user area and load the specified sprite file into it. OS_SpriteOp is the SWI
which controls the sprite system (SWI stands for SoftWare Interrupt. and is one of

147

Plotting a user sprite

the ARMs built-in instructions). The first parameter this SWI takes is a number
between I and 62 specifying the particular action to be taken Adding 256 to this
number indicates that it is a user sprite These actions include

OS_SpriteOp 9 + 256
OS_SpriteOp 10 + 256
OS_SpriteOp 34 + 256

initialise a sprite area
load sprite definitions from a spritefile into a sprite area
plot a sprite at the coordinates supplied

Plotting a user sprite

148

The following program calls the function FNload_sprites to load a spritefile and
return a pointer to the control block of the user sprite area. It then cal ls
OS_SpritcOp 34+256 (i.e. 290) to plot a sprite from this spritefile on the screen at
coordinates (200.300). using a plot action of 0

10 ~EM Lodd spriLefi:e fro~ KlSC OS "Appl'cat i o n s 1 " di6c

20 spr i Le_urea% = FNloac_sp y· i :es ("ac1fs ::/\ppl.$.! Sys lr>M.! Sprites ")

10 :<m"l plol spr· Le Lo screen ac ! 200 , 300)

II r. SYS "OS_Sp1· i LeOp", 34+256, spr i te_aJ ed%, "! sy~;tem •, 7.:10 , 3 00, G

L1r: I·:N)

The parameters that OS_SpriteOp 290 takes arc:

pointer to control block of sprite area
sprite name
x coordinate
y coordinate
plot action

Value

0
I
2
3
4

5
6
7
&08
& 10
&20
&30
&40
&50

Action

Overwrite colour on screen
OR with colour on screen
AND with colour on screen
exclusive OR with colour on screen
Invert colour on screen
Leave colour on screen unchanged
AND with colour on screen with NOT of sprite pixel colour
OR with colour on screen with NOT of sprite pixel colour
If set, then use the mask. otherwise don't
ECF pattern I
ECF pattern 2
ECF pattern 3
ECF pattern 4
Giant ECF pattern (patterns I - 4 placed side by side!

21

Coloured text

Teletext mode

The teletext mode, mode 7, is unique in the way it displays text and graphics
Commands such as COLOUR. GCOL. MOVE and DRAW do not work in this

mode (or in the Wimp) . Instead colourful displays are produced using teletext
control codes.

Mode 7 is compatible with the teletext pages broadcast by CEEFAX and Oracle.
You can produce your own teletext displays using the limited but effective graphics
which are avai lable.

Type in the following program and run it

I C ~··10 DE 7
20 PI{ .:IJT"' THIS " ; CHR$ (1 2 9) ; " cenonP- 1 r ates "; Cf-' RS (1 '\ 0) ; "t '1e "; Cf-'R S (13 1 i; " use "

30 PRI:\11' C:-IR$(132 l;"o f"; CHRS(:3l);"co:l trc l"; CJWS(l34 i; " coc'ies "

The characters 129. etc. which are printed using CHRS(129) are the control codes.
Although the control codes are invisible they still take up a character position . so
the words are separated by a space

Each control code affects the way in which the rema ining characters on that
particular line are displayed For example. printing CHRS(1291 makes the computer
display the text in red. The full list of colours and their associated control codes is
given overleaf

Code Text colour

129 Red
130 Green
131 Yellow
132 Blue
133 Magenta
134 Cyan
135 White (default)

Every line starts off with the text in white. So. if you want several rows of text to
appear in red. for example. you must start each of these rows with CHRS(129).

149

Makmg text flash

Making text flash

Text can be mc~de to flash. For example

1 !i f··KJ IH< !

20 il-<1 ''I Cli<~·('16) "J7 lo.~·· "; C i h'-' (l I'/) " ~>100 cly "; C:!H$(l\(.); "l•:d'; h"

Flashing coloured text can be produced by using two control codes·

10 [.1\)[)£-: I

~il P-<.~•1' ".)l (·dcy ,,.,.h~te• ;CJR~;(.:'9) ; (' IH$(.36) "F:.a~;hinq rt·n·

Smce each control code occupies a character position. the words ._.,.hit, .. and
.·l1sh i 1q are separated by two spaces on the screen.

Double-height text

Double-height text ca n be produced .-lS fo llows

::!~ J·R · rn· Cll<'(l4ll"L.:ou.:>lo " ' tqhl"

~~ I'HUJ" Cll<'(lt.ll"Doublc r. ,C1ht"

To obtam double-height text. t he same text must be printed on two successtve
lines beginning with CHR$(14111f the text is only printed once. only the top half of
the letters 1s displayed

To revert t(' single-height graphics on the same line, the control code is 140 For
example

10 t·KJI J:

20 .::' kl!\'1 Clk~·!'•1l) " Uoub <' I IC' qh· "; CHR~.(.40) ; " Sinq .L' llt>i<J.'I "

10 'Rl:\'1 C.~H$(:•1l) " Doub.t• lk <ill " ";CIR:;.(:40) ; " Sinq c• !1.-•iql':t"

Changing the background colour

150

Changmg the background colour requires two codes.

1 0 1¥ •DE t
•n r; ~n (' H::.(ll 1) ; CER$\l.,'/i"l'•·l l c•"

The first code is to r yellow text. The second tells the computer to usc the previous
con trol code as the background colour The net effect of the two codes is to give
yellow Lcxt on a yellow background as you ca n see when you run the program
above Hence to print text visibly on() colou red background. three cont rol codes
are requtred, two lo change the background colour. and a thi rd to change the
colou r of the text

Teletext mode

For example:

10 MODE 7

20 PRI NT CHRS (~3 l);CH~ $ (1 57) ; CHRS(l32) " Blue on yellow "

Teletext graphics
Certain characters. such as the lower-case letters. may either be printed normally
i:lS text or made to appear as graphics shapes by preceding them with one of the
graphics control codes. These are

Code Graphics colour

145 Red
146 Green
147 Yel low
148 Blue
149 Magenta
150 Cyan
151 White
156 Set background to black
157 Set background colour to the current foreground colour

Each line of the teletext display starts with the following attributes white. alpha
(i e non-graphics) characters on a black background

l'.ach graphics shape is based on a two by three grid

A B

II
II

It is possible to calcu late the code for any part icu lar graph ics shape. since each of
the six cells con tributes a pa rticular value to the code as follows:

I : :

~ 64

151

Teletext graphics

152

The base value for the codes is 160, so that they lie in the ranges 160 to 191 and 224
to 255. For example

has a code of 160 + I + 8 + 16 = 185 and so may be produced on the screen in red
To do this. type

PR I Nr CHR$(145) ;CHR$(185)

Outlining blocks of colour

Normally. the blocks of colou rs are continuous. For example.

~RlNT CHRS(145) ;CHR$(255)

produces a solid block of red. Nevertheless. the graphics can be separated. with a
thin black line around all the segments. To see the effect of this. try typing

PRINT C'MR$(145) ; CIIR$(154) ;CilR$(/. ':l 'l)

Placing blocks of colour next to each other

So far we have seen that each of the teletext control characters appears on the
screen as a space This means that it is not normally poss1ble to have graphics
blocks of different colours touching each other. They have to be separated by at
least one space to allow for the graphics colour control codes

However. if you wish to use different colours next to each other. you can do so by
using some of the more advanced teletext controls For example. try typing

fJ R L N' l' C H R $ (: 4 S) C H R S (1 S ?.) C .:1 R $ (/. 1) 'l) C H R $ (I ? 8) C H R S (14 6)
CHR$(147)CHR$(159)

Code I '52 concea ls the display of al l graphics cha racters unti l a colour change
occurs. Hence the solid red graph ics block is not displayed.

Code 158 holds the graphics. This means that it remembers the previous
graph ics character. in this case the solid block. and displays all future
graphics shapes and control codes as the remembered character

Code 146 first colour change As a result . it reverses the conceal ing effect of
code 152 so that future characters are displayed. and also selects
green graphics.

Teletext mode

Code 14 7 control code displayed as a solid graphics block in the current colour
which is green. It selects yellow graphics

Code 159 cont rol code displayed as a solid graphic block in the current colour
which is yellow. It releases the graphics. i e it reverses the effect of
any previous 158 codes.

153

Teletext graphics

154

22 Sound

The computer contains a sound synthesizer which enables you to emulate up to
eight different instruments playing at once. giving either mono or stereo

sound production for each instrument

Activating the sound system
The sound system can be activated or de-activated using the statements SOUND
ON and SOUND OFF

Selecting sound channels
You can select how many different sound channe ls you want to use. The default
va lue is l. but you can al ter thi s by typing

VOICES n

The maximum number allowed is eight Any number between one and eight can be
specified. but the number which the computer can handle has to be a power of two.
and so the number you give is rounded up by the computer to either one. two four
or eight

Allocating a wave-form to each voice
After you have specified the number of voices you require. you will need to allocate
a wave-form to each voice. This is done with •CHANNELVOICE. the syntax of which
is

*CH/\NNPLVOICE channel voicenamc

It is important to rea lise that what is termed the voice in BASIC is ca lled the channel
by RISC OS. while RISC OS refers to the wave-form as the voice.

Since the bell uses channel I. you can get an idea of how the command works by
entering

*CHi\NNEf.VO [CE :!. Percuss.'..on - SncHC

and then sounding the bell by typing Ctrl-G

As you will notice. the sound of the bell has changed, since the sound channel has
been allocated a new voice- in this case a percussion sna re sound

155

Setting the stereo position

A full l ist of Lhe resident voices can be obta ined. along with their channel
allocations. using the *VOICES command. With voice 8 allocated to channel I, the
list appears as follows

1

voice Name
',•hlveSynth-Bl't?P

/. St.ringLib .'~oi:.

3 StrlngLib-Pluck
II St.r ing Lib Steel
S SL.::ing;:,ib-H.:ttd
6 Percuss:on Soft
7 Percussion-M~d:um
8 J>erc'Jssion Snare
9 Percussion Noise

Channe1Allocc1 l i 0 11 Map

Note that *VOICES indicates only the mapping of voices to channels- il does not
specify how many channels have been se lected with BASIC's VOICES command

Setting the stereo position

156

For each active channel. the stereo position of the sound can be altered using

S'J'ERI:"O chan, pas

pos can take any value between - 127 (indicating the sound is fully to the left) and
+ 127 (indicating the sound is fully to the right) The default value for each channel
is zero which gives central (mono) production

Although the range of the pas argument in the STEREO keyword is -127 to I 27,
there are actually only seven d iscrete stereo positions. These are:

- 127 to -80 Full left
-79 to -48 2/3 left
-47 to -16 1/3 left

I '5 to +1'5 Central
+ 16 to +47 1/3 right
+48 to +79 2/3 right
+80 to+ I 27 Fu ll right

Creating a note

Sound

BASIC provides a SOUND statement to create a note on any of the channels This
requires four parameters which can be summarised as follows

SOUNDchannel, amplitude, pitch, duzationl.afterl

Channel

There are eight different channels. numbered I to 8 Each of these is identical.
except for the voice assigned to it.

Setting the volume

Pitch

The second parameter amplitude determines how loud a note is to be played.
You set the amplitude to an integer between 0 and 15 - 15 is the loudest. -7 is
half-volume and zero produces silence.

Alternatively, a logarithmic scale can be used. by giving a va lue between 256 (& 1 00)
and 383 (&17F). A change of 16 represents a doubling or halving of the volume.

The pitch can be controlled in steps of a quarter of a semitone by giving a value
between 0 and 255. The lowest note (0) is the A# one octave and two semi tones
below midd le C. The highest note is the D four octaves and a tone above middle C
A value of 53 produces middle C itself The following table is a quick reference
guide to help you find the pitch you require

Note Octave number
2 3 4 5 6

A 41 89 137 185 233
A# 0 45 93 141 189 237
B I 49 97 145 193 24 1
c 5 53 101 149 197 245
C# 9 57 105 153 201 249
D 13 61 109 157 205 253
D# 17 65 11 3 161 209
E 21 69 117 165 213
F 25 73 121 169 217
F# 29 77 125 173 221
c 33 81 129 177 225
C# 37 85 133 181 229

157

Synchronising the channels

Alternatively. a finer control is available by giving a value between 256 !&0 I 001 and
32767 !& 7FFF) Each number consists of 15 bits The left most three bits control
the octave number The bottom 12 bits control the fractional part of the octave
This means that each octave is split up into 4096 different pitch levels Middle C
has the value 16384 (&4000)

Using hexadecimal notation is a particularly useful way of seemg what pitch a
g1ven value defines Each value in hexadecimal notation comprises four digits The
left-most one gives the octave number and the nght-most the fractional part of the
octave The following table illustrates this

Note Octave number
2 3 4 5 6 7 8 9

;\ &OCOO &I COO &2COO &3COO &4('()() &SOlO &6COO &7COO
A# &OD55 &1055 &2055 &3055 &4055 &5055 &6055 &7055
B &OEAA &IEAA &2EAA &JEAA &4EAA &5EAA &6EAA &7EAA
c &1000 &2000 &3000 &4000 &5000 &6000 &7000
('# &0155 &1155 &2155 &3155 &4155 &5155 &6155 &7155
I) &02AA &12AA &22AA &32AA &42AA &52AA &62AA &72AA
!)# &0400 &1400 &2400 &3400 &4400 &5400 &6400 &7400
E &0555 &1555 &2555 &3555 &4555 &5555 &6555 &7555
F &06AA &16AA &26AA &36AA &46AA &56AA &66AA &76AA
1-# &0800 &1800 &2800 &3800 &4800 &5800 &6800 &7800
(i &0955 &1955 &2955 &39AA &49AA &59 AA &69AA &79AA
G# &OAAA &IAAA &2AAA &3AAA &4AAA &5AAA &6AAA &7AAA

Duration of sound

The fourth SOUND parameter determines the durat1on of a sound A value of 0 to
254 specifies the duration in twentieths of a second For example. a value of 20
causes the note to sound for one second A value of 255 causes the note to sound
continuously. stopping on ly when you press Lsc Va lues between 256 and '32767
dlso give the duration in 20ths of a second

Synchronising the channels

158

The channels can be synchro nised by using the beat counter. The counter increases
from zero lo d set limit. then starts aga in at zero. Typically, you would use the time
il l<Jke'> lor the counter to complete one cycle to represent a 'bar in the music and
IJ'>(' l he a{la parameter in the SOUND statement to determine where in the bar the
note is <,ounded

You can set the value that this counter will count up to by typing

BEATS n

Sound

The counter then counts from 0 ton- I and when it reaches nit resets itself to zero.

To find the current beat counter value. type

PRINT BEATS

Increasing the number of beats increases the time taken before two notes are
repeated It has no effect on the time interval between the two notes themselves.

Finding the value of the current beat

In addition, the current beat value is found by typing

PRINT BEAT

Finding the current tempo

The rate at which the beat counter counts depends on the tempo which can be set
as follows

TEMPO n

n is a hexadecimal fractional number, in which the three least-significant digits are
the fractional part. A value of & I 000 corresponds to a tempo of one tempo beat per
centi-second: doubling the value (&2000) causes the tempo to double (2 tempo
beats per centi-second). halving the va lue (&800) halves the tempo (to half a beat
per centi-second).

Suppose you are working in 4/4 time. and want to have a resolution of 8 computer
beats per musical beat (i.e. there are 32 computer beats to the bar). Furthermore,
suppose you want the musical tempo to be 125 beats per minute. This is 125*8/60
computer beats per second, or 125 *8/6011 00 computer beats per centi second. If
you calculate this. you obtain 0.6666667 computer beats per centi-second . Multiply
this by the sca ling factor of &1000 (4096), and you get a TEMPO value of 683.
Therefore you would use the follow ing two commands:

TEMPO 683
BEATS 32

To find the current tempo, type

PRINT TEMPO

Increasing the tempo decreases both the time taken before two notes are repeated
and the time interval between the two notes.

159

Executing a sound on a beat

Executing a sound on a beat

160

Sounds can be scheduled to execute a given number of beats from the last beat
counter reset by giving the fifth parameter after to the SOUND statement.

The opt1onal after parameter in the SOUND statement specifies the number of
beats which should elapse before the sound is made The beats are counted from
the last time the beat counter was set to zero (i e the start of the bar) If the beat
counter is not enabled (because no BEATS statement has been issued). the beats
are counted from the time the statement was executed

For example. the listing below repeatedly waits for the start of the bar. then
schedules the sounds to be made after 50 beats and I 50 beats respectively. If a bar
is 200 beats long, this corresponds to the second and fourth beat of a 4/4 time:

... o 13L!:ATS 200
~~ VOICES 2
20 *CHANI:\ELVOICE 1 1
30 *CHANI'\ELVOICE 2 1
40 REP.::A'l'
:,c REPEAT UKTIL BEAT=O
60 SOU!'\::J 1' -15 , 100 , 5, 50
70 socro 2, -15, 200, 5, 150
80 REPEAT UK~I: BEAT<>O
90 UNTIL FA:.SE

Having scheduled the sounds. the program waits m another REPEAT loop until the
current beat is not zero. This prevents the sounds from being scheduled more than
once m a bar

Note Where other things are happening in a program. such as screen updating. it
1s not safe to test for BEAT=O. in case the program misses the short period where
that was true It is better to test . for example. for BEAT< I 0 and treat beat I 0 as the
·start' of the bar.

Synchronising sounds

If you give -I as the after parameter. the sound. instead of being schedu led for a
given number of beats. is synchron ised with the last sound that was schedu led. For
example,

SOUND 1,-10,200,20,100
SOUND 2,-10,232 , 20 ,-1

will cause two sounds. an octave apart. to be made 100 beats from the present
moment. assuming that at least two channels are active and have voices assigned.

Note. If you alter the sound system. you should restore it before returning to the
desktop. or running any other programs.

23 Accessing memory locations

Individual memory locations can be accessed from BASIC by using four
indirection operators:

Symbol

?

s

Purpose

Byte indirection operators
Integer indirection operator
Floating point indirection operator

String indirection operator

Number of bytes

I
4
5 (BASIC V)
8 (BASIC VI)
I to 256

These operators can either be used to read the value(s) in one or more memory
locations or to alter the value(s) there. You must be very careful that you on ly read
from or write to memory locations which you have set aside specia lly. Using these
operators on other areas of the memory can have undesirable effects.

Reserving a block of memory

You can reserve a block of memory using a special form of the DIM command. For
example:

DIM pointer% I 00

This reserves a block of (uninitialised) memory and sets the variable pointer% to
the address of the first byte of the block. The bytes are at addresses pointe r %+0
to pointer%+100, a total of IOI bytes. Note that the address assigned to
po i nter% will always be a multiple of four. This means that consecutive DIMs will
not necessarily allocate contiguous blocks of memory.

Note also that this differs from the usual use of DIM to dimension an array in that
the size is not contained in brackets. and the variable cannot be a string.

The'?' indirection operator

You can set the contents of the first byte of this block of memory to 63 by typing

?pointer% = 63

To check that this value has been inserted correctly, type

PRINT ?po i n t er%

161

The '!' indirection operator

The? ind irection operator affects only a single byte Only the least significant byte
of the number is stored. Thus. if you give it a va lue of n. where n > 256 only n AND

&FF will be stored.

For example.

?poinler% 356
PRINT ?pointer%

produces the result:

1 0 c
because 3~6 AND &FF gives 100.

If you wish to set or examine the contents o f the loca tion which is five bytes after
pointer<'lo. you can do th is by typing

?(pointer% + 5) = 25

Alternatively. a shorter form is available as follows:

pointer%?5 = 25

The following program prints out the contents of all the memory locations in the
reserved block:

10 DIM block_of_ memory% 100
20 FOR N% = 0 TO 100
30 PRINT "Contents of " ; N%;" are ";block_of_memory%?N%
•10 NEXT N%

The '!' indirection operator

162

BASIC integer variables are stored in four consecutive bytes of memory The
operator can be used to access these four bytes For example. type

DIM pointer% 100
!pointer% = 356
PRINT ! pointer%

The least significant byte o f the in teger is stored in the first memory location. and
the most significant byte in the fourth loca tion. This can be seen in the fol lowing
example:

10 DIM pointer% 100
20 !pointer% = &12345678
30 PRINT -pointer%?0
40 PRINT
50 PRINT
60 PRINT

This prints:

78
56
34
12

-pointer%?1
-pointer%?2
-pointer%?3

The 'I' indirection operator

Accessing memory locations

Floating point numbers. which are stored in five bytes (in BASIC V) or eight bytes
(in BASIC VI), can be accessed using the unary operator I. For example:

10 DIM pointer% 100
20 !pointer% = 3 . 678
30 PRINT !pointer%

There is no dyadic form of I. You cannot say, for example, a 15=1 . 23 .

Appendix A - Numeric implementation explains how floating point numbers are stored
in BBC BASIC.

The '$' indirection operator

Strings can be placed directly in memory, each character's ASCII code being stored
in one byte of memory. For example

DIM pointer% 100
$pointer% = "STRING"
PRINT $pointer%

The$ indirection operator places a carriage return (ASCII 13) after the last
character of the string. Thus. the example above uses seven bytes: six for the
characters of the word STRING, plus one for the terminating carriage return. To see
th is, run the following program:

163

The '$'indirection operator

164

10 DIM space% 10
20 REM set all bytes to zero
10 FOR N% = 0 TO 10
40 space%?N% = 0
50 NEXT N%
60 REM Sto~e the string
70 $space% = "STRING "
80 REM Print out the bytes
90 FOR N% = 0 TO 10

100 PRINT space%?~% " "; CHRS(space%?N%)
1 lO NFXT N%

As with I. there is no dyadic form of $. For example. although you may use
s (s L ring+ 1) . the form stringS 1 is not allowed.

24 Error handling and debugging

BY default. when the BASIC interpreter finds an error it halts execution of the
program and prints an error message on the screen. Most errors are

generated by incorrect programming, such as using a variable which has not had a
value assigned to it. You have to correct this kind of error to make the program
work. However, even if the syntax of the program is correct. errors can occur whilst
it is being executed. because it cannot cope with the data it is given.

For example:

10 REPEAT
2 0 I NPUT "Number ",N
3 0 L = LOG(N)
40 PRI NT "LOG of ";N" is ";L
50 UNTI L FALSE

This program takes a number from the keyboard and prints the logarithm of that
number. If you type in a negative number. however. the program gives the message:

Logari thm range a t lin e 3 0

The same thing happens if you type 0. or a character such as W, or a word such as
TWELVE.

Trapping an error

You may decide that you would like to trap such an error and print a message to
tell the user what he or she has done wrong instead of having the program end
abruptly. You can do this using the ON ERROR statement.

165

166

For example :

5 ON ERROR PROCer-ror
10 REPEAT
20 INPUT "Number-",N
30 L = LOG(N)
40 PRINT " i...OG of n; Nil

50 UN1'TL FALSE
60 END

100 DEFPROCerror
110 IF ERR=22 THEN

is .. ; L

120 PRINT "The number must be greater than 0 "
13 0 ELSE REPORT
140 PRINT " at line ";ERL
1~0 END
1 60 ENDH'

1'/0 ENDPROC

The ON ERROR statement can be followed by a series of statements given on the
same line In many cases. it is more convenient to follow it with a ca ll to an error
handling procedure. as in the example above, which can then be as complex as you
like

When an error occurs. BASIC passes control to the first statement on the ON
ERROR line, as if it jumped there using a GOTO It will 'forget' about any loops or
procedures that were active when the error occurred , as if the program had been
re-started Of cou rse. the values of all the variables and so on will still be intact.

Each error has an error number associated with it When a particu lar error occurs.
its number is placed in a va riable called ERR (these numbers are guaranteed to
remain the same) A full list of error numbers is given in Appendix C- Error messages.

In the example above. the error handling procedu.re tests for error 22 which is the
Logarithm range error. If it was this error which occurred. it is dealt with
appropriately. If a different error occurred, the program executes the REPORT
instruction which prints out the error message and then prints the number of the
line where the error occurred which is given in the function ERL. Then it executes
the END to end the execution of the program. Trapping all errors is not necessarily
a good idea since you then would not be able to press Esc. which is treated as an
error. to stop the program.

If a program contains more than one ON ERROR statement. the most recently
executed one is used when an error occurs.

Error handling and debugging

Turning off the error handler

Error handling can be turned off. and BASIC's default handler restored. at any stage
in the program using the instruction ON ERROR OFF.

Generating errors

External errors

In addition to the error messages that the interpreter itself generates when it
discovers a mistake in the program. you can cause your own errors. This can be
useful when. for example. you find a mistake in the user's input data and want to
notify the user through your standard error handler. To generate an error. use the
statement

ERROR errnum , errstring

The errnum expression is a number which will be passed to the error handler via
the ERR function. as usual. The errstring is accessible to the error handler
through the REPORT statement and REPORTS function. ERL will be set to the line
number at which the ERROR statement was executed.

If you use 0 as the error number. the error will be a 'fatal' one. As with built-i n errors
with that number. it cannot be trapped by using ON ERROR.

An example of the use of ERROR is:

1000 ch=OPENIN(f$)
1010 IF ch=O THEN ERROR 214," File '"+ f $+" ' not found "

If an error occurs in a program. you may wish to leave BASIC altogether and pass
the error back to the program that called BASIC in the first place. You can do this
using the ERROR EXT statement. Its syntax is very sim ilar to ERROR. described
above. If you say

ERROR EXT 0, "Can 't find temp l a te file "

then BASIC will quit and the error message and number will be passed back to the
error handler of the program that called BASIC [e.g. the RISC OS Supervisor
prompt or error box) .

BASICs default error handler uses this form of the ERROR statement if the
program being executed was ca lled from a command of the form

*BASIC - qui t filename

167

Local error handling

(A BASIC program filename typed as a * command will behave like this l When
BASIC is called like this. it loads and executes the program stored in filename.
and then QUITs automatically when the program terminates In addition. the
function QUIT will return TRUE instead of FALSE. as it usually does This is used in
BASICs default error handler. which reads as follows

TRACE O:F
Ir QUIT TEEN

ERROR EXT ERR,REPORTS
ELSE

RESTORE
! (HIME:-1-4)=@%

@%'-&900
REPORT

REM save current @%

REM prim: line numbers as integers

IF ERL THEN PRINT " at line "ERL EJ.SE PR INT
@% = ! (H I MEM-4) : REM rcsLo.rG @%
END

ENIJT F

Local error handling

168

When an error occurs. the ON ERROR command can be used to deal with it BASIC.
however. forgets all about what it was doing at the time the error happened For
example. if it was in the middle of a FOR ... NEXT loop or executing a procedure. it
is not possible to jump back to the place the error occurred and carry on as though
nothing had happened.

Trapping an error; procedures & functions

The ON ERROR LOCAL command can be used to get around this problem. This
command traps errors which occur inside an individual procedure or function and
then continues executing within the procedure or function rather than jumping
back to the top level. For example

10 PROCcalculate(100)
20 END

100 DEPPROCcalcuJate(A)
I 1 0 I ,QC i\ I , I
12 0 I ,QCAL ERROR
110 FOR I = -iS TO 15
140 ON ERROR LOCA~ PRI~T"Infinite Result ": NEXT l : ENDPROC
l?C ?RTNT .X.. I I
160 NEXT' T
180 ENDPROC

Error handling and debugging

Local error handlers can be used in any loops. not just inside procedures and
functions.

Restoring the previous error handler

Normally, when one ON ERROR or ON ERROR LOCAL statement is used. all
previous ON ERROR statements are forgotten about. It is possible. however. to use
one error handler and then restore the previous one. To do this. use the instruction
LOCAL ERROR to store the o ld error handler. and RESTORE ERROR to activate it
again.

For example:

1 ON ERROR PRINT "Error ";REPORT$; :END
10 PR0Cca l culate(100)
15 this line will give an error ! ! !

20 END
100 DEFPROCcalculate(A)
110 LOCAL I
120 LOCAL ERROR
130 FOR I = -15 TO 15
140 ON ERROR LOCAL PRINT"Infinite Result"·:NEXT I :ENDPROC
150 PRINT A I I
160 NEXT I
170 RESTORE ERROR
180 ENOPROC

This shows that the local error handler is in force during the procedure. but that
the original one set up by the first line of the program is restored when the PROC
has finished.

Strictly speaking. the RESTORE ERROR is not required here because it is done
automatically when the ENDPROC is reached . RESTORE ERROR is also executed
automatically at the end of a user-defined function However. if you set up a local
error handler in a loop at the top level. then you would need to use it explicitly.

For example:

100 LOCAL ERROR
110 TtJHILE
120 ON ERROR LOCAL
130
140 ENOWHI LE
150 RESTORE ERROR
160

169

Debugging

Debugging

170

A program may contain errors which cause it to behave differently from the way you
intended In these circumstances. you may wish to watch more closely how the
program IS being executed.

Stopping execution of the program

One option you have available is to place a STOP statement at a particular point in
the program When this line is reached. execution of the program stops and you
can then investigate the values assigned to any of its variables using the PRINT
statement or LVAR command.

Tracing the path through the program

Another option is to use the TRACE facil ity The standard trace prints the BASIC
line numbers in the order these lines are executed. thus showing the path being
taken through the program. Th is can be invoked by typing

' I'Ri\CI:: ON

To trace on ly those lines with a line number below I 000. for example. type

'!'~ACE 1000

Alternatively you may trace procedures and functions only as follows

THACE. PROC

You can also trace both at once if you wish by typing

TRACE 1000 : TRACE PROC

Tracing can be performed in single-step mode where the computer stops after each
line or procedure call and waits for a key to be pressed before continuing
S1ngle-step tracing can be invoked by typing

THACE STEP ON

to stop after every line traced . or

TRACE S.,.,EP n

to trace all lines below nand stop after each one. or

,.,RAC:. s~EP PROC

to stop after every procedure ca ll.

Instead of having TRACE output displayed on the screen. you can send it to a file
To do this. type

'I 1-U·.CI·: 1'0 filename

Error handling and debugging

This means that you have a permanent record of the path taken through your
program.

Any TRACE option affects all programs which are subsequently ru n until tracing is
turned off by

TRACE OFF

or until an error occurs.

Because TRACE is a statement, you can also use it from within a program. Thus if
you know that a program is going wrong within a particular procedure. you could
insert a TRACE ON statement at the start of the procedure. and a TRACE OFF just
before the ENDPROC. That way. trace information will only be produced while the
procedure is executing.

171

Debugging

172

25 VDU control

The Visual Display Unit (VDU) driver is a part of the operating system which
provides a set of routines used to display all text and graphical output. Any

bytes sent to the VDU driver are treated either as characters to be displayed or as
VDU commands: instructions which tell the driver to perform a specific function.
Their interpretation depends on their ASCII values as follows:

ASCII value

0-31
32-126
127
128-159
160-255

Interpretation

VDU commands
Characters to be displayed
Delete
Characters to be displayed I teletext control codes
Internationa l characters to be displayed

The nearest equiva lent to the statement VDU X is PRINT CHR$(X): with the
exception that VDU ignores the value of WIDTH and does not affect COUNT

In addition. the VDU commands can be given from the keyboard by ho lding down
Ctrl and one further key as shown in the table below. For example. to give the
command VDU 0, you would press Ctrl-@. Some VDU commands require extra data
to be sent. The number of bytes extra is also given in the table.

VDU Code Ctrl plus Extra bytes Meaning

0 2 or@ 0 Do nothing
I A I Send next character to printer only
2 8 0 Enable printer
3 c 0 Disable printer
4 D 0 Write text at text cu rsor
5 E 0 Write text at graphics cursor
6 F 0 Enable VDU driver
7 G 0 Generate bell sound

8 H 0 Move cursor back one character
9 I 0 Move cursor on one space
10 J 0 Move cu rsor down one line
II K 0 Move cursor up one line
12 L 0 Clear text viewport
13 M 0 Move cursor to start of current line
14 N 0 Turn on page mode
15 0 0 Turn off page mode

173

VDUO

VDU 1

VDU 2

174

16 p 0 Clear graphics viewport
17 Q I Define text colou r
18 R 2 Define graphics colour
19 s '5 Define logical colour
20 1' 0 Restore default logical colours
21 u 0 Disable VDU drivers
22 v I Select screen mode
23 w 9 Multi-purpose command
24 X 8 Define graph ics viewport
2'5 y '5 PLOT
26 z 0 Restore default viewports
27 [0 Does nothing
28 \ 4 Define text viewport
29 1 4 Define graph ics origin
30 6 or" 0 Home text cu rsor
31 - or 2 Move text cu rsor

In the VDU commands described below. note the following three points

• Expressions followed by a semi-colon are sent as two bytes (low byte first) to
the operating system VDU drivers

• Expressions followed by a comma (or nothing) are sent to the VDU drivers as
one byte, taken from the least significant byte of the express ion

• The vertical bar I means , 0, 0, 0, 0, 0, 0, 0 , 0, 0, and so sends the
expression before it as a byte followed by nine zero bytes. Since the maximum
number of pa rameters required by any of the VDU statements is nine. the
vertical bar ensures that sufficient parameters have been sent for any
particular call. Any surplus ones are irrelevant, since VDU 0 does nothing.

vou 0 does nothing.

VDU 1 sends the next character to the printer only, if the printer has been enabled
(with VDU 2 for example).

vou 2 causes all subsequent printable characters and certain control characters.
to be sent to the printer as well as to the screen (' 1b1ect to FX3 mask etcl

VDU 3

VDU4

VDU 5

VDU6

VDU7

VDU8

VDU9

VDU control

vou 3 cancels the effects of VDU 2 so that all subsequent printable characters are
sent to the screen only.

vou 4 causes all subsequent printable characters to be printed at the current text
cursor position us in€ the current text foreground colour. Cursor control characters
(e.g. carriage return and line feed) affect the text cursor and not the graphics cursor.

vou 5 links the text and graphics cursors and causes al l subsequent printable
characters to be printed at the current graphics cursor position using the current
graphics foreground colour and action. Cursor control characters (e.g. carriage
return and line feed) affect the graphics cursor and not the text cursor.

vou 6 restores the functions of the VDU driver after it has been disabled (using
VDU 21) Hence. this command causes all subsequent printable characters to be
sent to the screen.

vou 7 generates the bell sound.

VDU 8 causes either the text cursor (by default or after a VDU 4 command) or the
graphics cursor (after a VDU 5 command) to be moved back one character position
It does not cause the last character to be deleted. Note that during command
input. Ctri-H acts as the Delete key. so the last character will be deleted.

VDU 9 causes either the text cursor (by default or after a VDU 4 command) or the
graphics cursor (after a VDU 5 command) to be moved on one character position

VDU10

vou 10 causes either the text cursor (by default or after a VDU 4 command) or the
graphics cursor (after a VDU 5 command) to be moved on one line.

175

176

VDU 11

vou :!.1 causes either the text cursor (by default or after a VDU 4 command) or the
graphics cursor (after a VDU 5 command) to be moved back one line

VDU12

vou 12 clears either the current text viewport (by default or after a VDU 4
command) or the current graphics viewport (after a VDU 5 command) to the cu rrent
text or graphics background colour respectively. In addition the text or graph ics
cursor is moved to its home position (see VDU 30)

VDU13

VDu 1.3 causes the text cursor (by default or after a VDU 4 command) or the
graphics cursor (after a VDU 5 command) to be moved to the sta rt of the cu rrent
line

VDU14

VDu :. 4 enters paged mode. and so makes the screen d1splay wait for Sh1ft or
Scroll Lock (twice) to be pressed before displaying the next page.

VDU15

VDU 15 cancels the effect of VDU 14 so that scrolling is unrestricted

VDU16

vou 16 clears the current graphics viewport to the current graphics background
colour using the graphics and action. It does not affect the position of the graphics
cursor.

VDU 17,n

V;)U 17 sets either the text foreground (n< 128) or background (n>= 1281 colours to
the value n It is equivalent to COLOUR 11.

\7-
VDU ~k,c

VDU 18 is used to define either the graphics foreground or background colour and
the way in which it is to be applied to the screen The BASIC equivalent is

GCOL k.c I ~ (J wo(
I. #- - " , 'os ,,

VDU 19,f,p,r,g,b •

VIJU 1 9 is used to define the physical colours associated with the logical colour I.

VOU control

If p <= 15 & p >= 0. r, g and bare ignored. and one of the standard colour settings is
used. This is equivalent to COLOUR l,p.

If p = 16. the pa lette is set up to contain the levels of red, green and blue dictated
by r. g and b. This is equiva lent to COLOUR l,r,g,b.

If p = 24. the border is given colour components according tor. g and b.

If p = 25, the mouse logica l colour I is given colour components according tor. g

and b. This is equiva lent to MOUSE COLOUR l.r.g,b.

VDU 20

vou 2 0 restores the defau It palette for the current mode and so cancels the effect
of all VDU 19 commands or their BASIC keyword counterparts. It also sets the
default text and graphics foreground and background colours.

VDU 21

vou 21 stops all further text and graphics output to the screen until a VDU 6
command is received.

VDU pf 'L-'2-

vou 22 is used to change mode. It is equivalent to MODEn.

See Appendix G • VDU commands for full details of the modes available.

VDU 23,p1,p2,p3,p4, p5,p6,p7,p8,p9

vou 23 is a multi·purpose command taking nine parameters. of which the first
identifies a particular function. Each of the available functions is described below.
Eight add itiona l parameters are required in each case.

VDU 23,0,n,ml

If n = 8. this sets the interlace as follows:

Value

m=O
m =I
m = &80
m = &8 1

Effect

Toggles the screen interlace state
Sets the screen interlace state to the current *TV setting
Turns the screen interlace off
Turns the screen interlace on

177

178

If 11 = I 0, then rn defines the start li ne for the cursor and its appearance. Thus:

Bits Effect

0-4 define the start line
5-6 define its appearance

Bit 6 Bit 5 Meaning

0 0 Steady
0 I Off

0 Fast flash
Slow flash

If n = II. then rn defines the end I me for the cursor

VDU 23,1,nl

Th is contro ls the appearance of the cursor on the screen depending on the va lue o f
11. Thus:

Value

11=0
11 = I
11 = 2
11 = '3

Effect

Stops the cursor appearing (OFF)
Makes the cursor reappear (ON)
Makes the cursor steady
Makes the cursor flash

VDU 23,2 to S,n1 ,n2 n3,n4,n5,n6,n7,n8

These define the four colour patterns Each of the parameters n I to n8 defines one
row of the pattern. n I being the top row and 118 the bottom row See the chapter
entitled Grapf1ic patterns on page 133 for more details

VDU 23,6,n1 ,n2,n3, n4,n5,n6,n7,n8

This sets the dot-dash line style used by dotted line PLOT commands Each of the
parameters n I to 118 defines eight elements of the line style. n I controlling the start
and 118 the end The bits in each are read from the most significant to the least
significant. zero representing a space and one representing a dot See the chapter
enti tled Complex graphics on page 123 for more details.

VDU 23,7,m,d,zl

This scrolls the current text screen The values of rn . d and z determine the area to
be scrolled the direction of scrollmg and the amount of scrolling respectively.
Thus

Value

m 0
m =I

d=O
d=l
d==2
d 3

d=4
d-5
d=6
d 7

z = 0
z=l

Effect

Scroll the current text viewport
Scroll the entire screen

Scroll right
Scroll left
Scroll down
Scroll up

Scroll in the positive X direction
Scroll in the negative X direction
Scroll in the positive Y direction
Scroll in the negative Y direction

Scroll by one character cell

VOU control

Scroll by one character cel l vertically or one byte horizontally

VDU 23,8,t1 ,t2,x1 ,y1 , x2,y2;0;

This clears a block of the cu rrent text viewport to the text background colour. The
parameters t I and t2 indicate the base positions relating to the start and end of the
block to be cleared respectively. The positions to which the values of 1 refer are
shown below:

Value Position

I= 0 top left of viewport
I= I top of cursor column
I= 2 off top right of viewport

I= 4 left end of cursor line
I= 5 cursor position
I 6 off right of cursor line

I= 8 bottom left of viewport
I= 9 bottom of cursor column
I= 10 off bottom right of viewport

The parameters xl, yl and x2. y2 are the x andy displacements from the positions
specified by 11 and t2 respectively They determine the start and end of the block.

VDU 23,9,nl
VDU 23,1 O,nl

These set the durations for the first and second nashing colours respectively. The
duration is set ton frame periods 1 !/50th of a second in the standard modes) For
example vou 2 3, 9, 10 1 sets the duration of the first nash colour to I 0/50 or 1/5
of a second An alternative to the VDU command is • FX9 or • FX I 0 described in the
appendix • FX commands.

179

180

VDU 23,111

This sets the four-colour patterns to their default values. See the chapter entitled
Graphic pattems for more details.

VDU 23, 12to15,n1 ,n2, n3,n4,n5,n6,n7 ,n8

These set up the simple colour patterns. A block of two-by-four pixels is defined
using the eight parameters. Each pair of parameters corresponds to the colours of
the pixels on a given row. n I and n2 being the top row and n7 and n8 the bottom
row. See the chapter entitled Graphic pallerns for more details

~vu '1.'\1 1 ~ 1 n l
This alters the direction of printing on the screen.

Normally when a character has been printed. the cursor moves to the right by one
place. and then to the start of the row below when a character is entered in the
righthand column. This movement, however. can be altered so that. for example.
the cursor moves down one row after each character. and moves to the top of the
next column to the right when the bottom of the screen has been reached This
effect can by produced by typing

VDU 23, 1 6, 8 1

The effect on cursor movement depends on the va lue n as shown below

Value

0
2
4

6
8

10
12
14

Effect

Positive X direction is right. positive Y direction is down
Positive X direction is left. positive Y direction is down
Positive X direction is right. positive Y direction is up
Positive X direction is left. positive Y direction is up
Positive X d irection is down, positive Y direction is right
Posi tive X d irect ion is down, positive Y direction is left
Positive X direction is up, positive Y direction is right
Positive X direction is up. positive Y direction is left

Altering the d1rection of cursor movement also affects the way in which the screen
scrolls; so in the example above. when a character has been entered at the bottom
righthand corner. the screen scrolls to the left by one column rather than scrolling
up by one row as it usually does.

VDU control

The following is the complete list of VDU commands for moving the cursor:

Command

VDU 8
VDU 9
VDU 10
VDU II
VDU 13
VDU '30
VDU '3 I .x.y
VDU 127

VDU 23,17,n,ml

Movement

Moves the cursor one place in the negative X direction
Moves the cursor one place in the pos1t1ve X direction
Moves the cursor one place in the negative Y direction
Moves the cursor one place in the positive Y d~rection
Moves the cu rsor to negative X edge
Moves the cursor to the negative X andY edges (home)
Moves the cursor to TAB(x.y)
Moves the cursor one place in the negative X direction.
destructively

If n = 0 to 3, this command sets the tint to the value m for the text foreground. text
background, graphics foreground and graphics background colours respectively. It
is equiva lent to TINT n.m. See the chapter entilled Screen modes on page I 07 for
more detai ls.

If n = 4, this command chooses which set of default colour patterns is used m = 0
gives the Master 128-compatible set: m = I gives the native set See the chapter
entitled Graphic patterns for more details

If n = 5. this command swaps the text foreground and background colours

If n = 6. then the command has the format
•• VDU 2J,l7{x ; y;O;O

Th1s is used to set the origin of colour patterns By default, patterns are aligned so
that the top left corner of the pattern coincides w1th the top left corner of the
screen. Using this ca ll. you can make the top left of the pattern comcide with any
pixel on the screen. given by the coord inates (x.y).

If n = 7. then the command has the format

VDU 23 , 17,7,flags,dx; dy ; O; O

The bits in the flag byte have the following meanings:

Bit Meaning if set

0 Set VDU 4 character size from dx.dy
I Set VDU 5 character size from dx.dy
2 Set VDU 5 character spacing from dx,dy

The bit 0 option is not implemented at present

181

182

If bit I is set, then dx and dy give the size in pixels of characters plotted in VDU 5
mode The standard size of 8 by 8. and double height. 8 by 16. are optimised Other
s1zes use the scaled character option of the sprite module and are therefore
somewhat slower

B1t 2 set causes dx and dy to be used to set the amount by which the VDU driver
moves after each VDU 5-mode character has been printed (dxl and the amount to
move down for a line feed (dy). Usually these would be set to the same values as
the character size (so you would set bit I and 2). but they can be set independently
to allow for example. narrower than usual spacing.

VDU23, 18to24,n1 ,n2, n3,n4,n5,n6,n7,n8

These are reserved for futu re expansion.

VDU 23,25,n1 ,n2,n3, n4,n5,n6,n7,n8

VIJU /. "3, 25 is used for anti-a liased fonts. Use of these ca lls is now deprecated.
and you should use the SWis provided by the FontManager modu le. See the
Programmer's Refem1ce Manual for details.

VDU 23,26,h,s,p1 ,p2, s1 ,s2,0,0

VDG 23.26 is used for anti-a liased fonts Use of this call is now deprecated, and
you should use the SWis provided by the FontManager module See the
Proaranwtt>r's Reference Manual for details

VDU 23,7,m,nl

If m 0, th1s command selects the sprite whose name IS s I'R$ 11 It is equivalent to
·schoose 11

If m = I. this command defines sprite n to contain the contents of the previously
marked rectangle It is equivalent to *SGET n

VDU 23,28to30,n1 ,n2 n3,n4,n5,n6,n7,n8

These arc reserved for use by appl ications programs

VDU 23,32to255,n1 , n2,n3,n4,n5,n6,n7,n8

These redefine the prin table ASCII characters The bit pattern of each of the
parameters n I to nB corresponds to a row in the eight-by-eight gnd of the
character See the chapter entitled Outpulling IPXI on page 55 for more details.

VDU control

VDU 24 x1·y1·x2·y2 ·
' ' ' ' J

VDU 24 defines a graph ics viewport. The four parameters define the left. bottom.
right and top boundaries respectively. relative to the current graph ics origin

The parameters may be sent as shown. with semicolons after them. This indicates
that the values are each two bytes long. Alternatively, they can be sent as eight
one-byte va lues separated as usua l by commas. The first of each pair contains the
low byte for the boundary; the second contains the high byte.

For example.

VDU 24 ,1 60 ; 300 ; 360 ;800;

is equiva lent to

VDU 24 ,1 60 ,0,44,1,104 ,1, 32 ,3 .

See the chapter entitled Viewports on page 143 for more details.

VDU 25,k,x;y;

VDU 25 is a multi-purpose graphics plotting command. It is equivalent to PLOT
k.x.y See the chapter entitled Complex qrapftics on page 123 for more details.

VDU 26

vou 26 returns the text and graph ics viewports to their defau lt states: full screen
size. In addition. it resets the graph ics origin to (O.Ol. moves the graphics cursor to
(0.01. and moves the text cursor to its home position.

VDU 27

vou 27 has no effect.

VDU 28,1x,by,rx,ty

VDU 2 8 defines a text viewport The parameters specify the boundary of the
viewport: the left-most column. the bottom row. the right-most column and the top
row respectively. See the chapter entit led Viewports for more detai ls.

VDU 29,x;y;

VDU 29 moves the graphics origin. x andy specify the coordinates of the new
position. Normally the origin is at the bottom left of the screen at (0.0) whenever a
position is given as an absolute va lue. for example MOVE 20 , 80. the coordinates
are taken as being relative to the graphics origin. This command. therefore. affects

183

184

all movements of the graphics cursor and all subsequent graphics viewport
commands. The position on the screen of any existmg graphics viewport is not
affected. This command is equivalent to ORIGIN x, y.

VDU 30

, DU 30 moves the text cursor to its home position

VDU 31 ,x,y

vou 31 moves the text cu rsor to a ~pecified po~ition on the screen It is equivalent
to J>RJ N'l' ,..,A3 (x, y);.

26 Editing BASIC files

There are two ways to edit BASIC files depending on which version of RISC OS
you are ustng:

• RISC OS 2 provides a BASIC screen editor supplied as a module.

• RISC OS '3 Edit can be used as a BASIC program edi tor

Editing BASIC files under RISC OS 3

Under RISC OS '3 Edit can be used as a BASIC program ed ito r. It automatically
converts BASIC programs into text format for ed iting, and I hen converts them back
aga in when they are saved.

For full details of ed iting files using Edit see Tile RISC OS Applicalions Guide.

Using Edit to write and edit BASIC programs

Fdit can convert Text files produced in Edit to tokenised BASIC files

Writing a new program

To wnte a new program. click Menu over the Edit icon on the icon bar and from the
Create menu choose BASIC. You can now type your program directly into an Edit
window There is no need to include line numbers. as Ed1t will msert them for you
when you save the file. Press Return at the end of the last line of the program

Editing an existing program

To usc Fd it for working on an exist ing BASIC program. simply drag the program's
icon from its directory onto the Edit icon on the icon bar

Icon bar menu

Pressing Menu on the Edit icon bar icon displays a menu containing the Ed it
options. Moving to the BASIC Options submenu displays the fo llowing options:

• Strip line numbers produces a text file with no line numbers If a reference to
a line is found. an error box will appear asking whether you want to leave the
number in . This option is on by default

185

Editing BASIC files under RISC OS 3

186

• Line number increment sets the number increment between successive lines
in the program.

Edit
Info
Create
BRSIC options
Quit

¢
¢~----O~ti~o-ns----~

Converting to a tokenised file

Converting a text fi le to a tokenised fi le is usually quite straightforward If there are
no line numbers. Edit wi ll sta rt at I 0 and increment by 10. If line numbers are
supplied. these are used as a basis for any l ines without line numbers.

Warnings

If there are line numbers. Edit will not sort them into ascending sequence and the
resulting BASIC program may behave very strangely.

If your code is incomplete. Edit wi ll warn you about the following problems

• Line number reference too large

• Mismatched quotes

• Mismatched brackets.

In all cases Ed it wil l also quote the offending line number. After you have clicked
on OK. the token ising continues.

Attempts to token ise a crunched program (e.g. one with the spaces removed) will
genera lly result in a non-functioning program.

Printing a BASIC program

If you have Ed it running. you can print a BASIC program on paper by dragging its
icon onto a printer driver icon. Edit will perform the conversion to allow the
program to be printed.

Editing BASIC files

Editing BASIC files under RISC OS 2

The BASIC screen editor allows you to move around and change any part of a
program currently loaded in the computer

Entering the editor

The editor is supplied as a module with the RISC OS 2 Applications suite Before
you can use it. first insert the App2 disc into drive 0. then load it by double-clicking
its icon from the desktop This on ly has to be done once. unless you switch the
machine off or press Ctri-Break. You can also load the editor from the command
l1ne. by typing the following:

*RMI.Oli.U adfs : :O. $.Modules . BasicEdLL

To enter the screen ed itor from BASIC type

I' I) I 'I'

and press Return.

This command enters the editor with the cu rrent BASIC program displayed.

If you have previously been editing the program. and you type

ED f"r .

the ed1tor tries to re-enter it at the point at which you left it If you have changed
the program from within BASIC. it may not be possible to maintain the position . in
whiCh case ed1ting starts from the top of the program

If you wish to enter the editor at a particular point. such a<> line 100. type

F:D.l:'f 100

The editor starts with line I 00 displayed at the top of the screen If line I 00 does
not exist. the editor chooses either the next line or the end of the program.
whichever comes first.

You may wish to enter the editor with the first occurrence of a particular piece of
text at the Lop of the screen. For example

bOll' three

The editor displays the program starting with the first occurrence of the word three
at the top of the screen. If the string cannot be found, the computer 'beeps' and
editing starts at the Lop of the program.

187

Editing BASIC files under RISC OS 2

188

Leaving the editor

If you want to save anyth ing you have done before you leave the BASIC editor,
follow the instructions in the section entitled Saving a program on page 190. When
you are ready to leave the ed itor and return to BASIC. press Shift-F4.

The BASIC screen

Once in the editor. your program is displayed with the line numbers at the lefthand
side. If you enter the ed itor with no program loaded the screen is nearly blank, with
just the number 10 at the top left

The cursor is at the beginning of the top line on the screen. just to the right of the
line number. Note that the editor automatica lly puts a line number on the
beginning of each line there is no need for you to type them in.

The status line

The status line is at the bottom of the screen. displayed in reversed colours in
order to make it stand oul from your program text It contains various useful pieces
of information such as the size of your program, its name. and whether it has been
modified since you entered the editor.

The status line displays the following information (if it will fit) :

• Program size

• Od ginaJ/Modi f ied indicator

• Program name

• Copy if in cursor copy mode.

In addition. the status line is used for prompts such as RepJ ace? (Y /N} which
appear in the SELECTIVE REPLACE facility See the section entitled Searching and
replacing on page 195 for details.

Moving the cursor

The cursor can be moved around using the four arrow keys Note. however. that you
cannot move the cursor into that area of the screen containing the line numbers.
This is because in genera l you need never be concerned with providing line
numbers for your BASIC statements. As a result, cursor movement is restricted lo
the area of the screen which contains program text

Changing a line

To change a line. use the cursor keys to position the cursor on the correct line. You
can then delete part or all of the line and type new text in place of the old.

Editing BASIC files

Now. assume that the program looks like this :

IU ~OK X = 2 TO 30
20 PRINT' X+X

30 NEX':' X

and that it needs to be changed to look like this

10 FOR X 2 TO 20
11 PIUNT x~x

20 PRINT' X-X
\() NFX'f X

To achieve this you must change line 10 and add a new line line II .

Position the cursor on the 0 of 30 on line 10. press Delete and type 2 The 30 is
replaced by 20.

Adding a line

To create a new line in the middle of the program move the cursor to the line above
the place where you want the new line and press r~clurn

In the example above. move the cursor to line 10 and press Return

Line I I is now created

To complete the above program type

PR:::NT X"'X

The program should now be complete You may like to expenment with the Return
and cursor keys to create a larger program

Inserting lines

Tlwre are two function keys which. no mot1er where you are in the program. create
a new line at the top or end of the program and move you there directly. These keys
arC' Ctri-F9(1NSERT AT START) and Ctri-FJO (INSt::RT AT END)

Deleting text

There are two ways to delete single chardcters The De lete key removes the
character to the left of the cu rsor and moves the chmacters to the right of the
cursor back one space.

To delete I he cha racter on which the cu rsor is placed. hold the Shtft key down and
press the Delete key. Delete and Shift-Delete both move the following text back a
space. but Shift-Delete leaves the cursor in the same position

189

Editing BASIC files under RISC OS 2

190

To delete all the characters from the cursor position to the end of the line, press
the Fll key.

Long lines

If a statement is too long to fit on one line of the screen. it wraps around to the
next line To see this. try typing more text after one of the lines in the program As
in a BASIC program the length of a line is limited by the BASIC editor to 251
characters

Saving and loading programs

Saving a program

To save a program which you have created or changed press F'3 (SAVE)

A window appears into which you should type the name of the program. Once you
arc su re that you have typed the correct name for the program press Return or Fl 2
(CXECUTE) to perform the save operation.

The program name need not be enclosed within quotation marks

If you wish to save only a portion of a program you may do this by setting limits
See the section ent itled Line command on page 19'3 for details of how to do this .

Loading a program

You may now wish to load in one of your own programs to experiment w1th before
moving on to the next section To do this press F2 (LOAD I

A window appears ready to accept the filename

Type in the name of the program and pre'>s Ret urn or Fl2 (EXECUTE)

If the current program has been modified but not saved a warn1ng message is
given

Appending a program

You can also join one program onto the end of the cu rrent one

To do this press Shift-F2 (APPEND) and then proceed in the same manner as for
loading.

Seeing other parts of your program

Several commands are provided to help you move quickly around when you are
editing a large program such as one which is too large to be displayed on the
screen at one time

Editing BASIC files

M oving vertically

If you move the cu rsor to t he top screen line and keep pressing the i key, previous
statements are brought onto the screen one at a t ime until you reach the beginning
of the program. Simi larly, pressing j, from the bottom screen line brings the
following statements onto 1 he screen one at a time unti l you reach the end of the
program.

To move direct ly to the top of your program, press Ctrl i which moves the cursor to
the fi rst l ine of t he program. Pressing Ctrl j, moves to the last line.

If you press Sh ift 1-. the next screenfu I of your program is displayed In th is way, you
ca n move quickly around your program from beginning to end. Simi larl y, if you
press Sh ift i. you can see the previous screen fu l These functions are dupl icated by
the Page Up and Page Down keys

If you press Ctrl-Shi ft i o r Ctrl-Shi ft l- you can move to the fi rst or last statement
on the current screen. In add it ion. if the cursor starts n cha racters along a
statement, it rema ins f'l characters along. It does not go to the beginning of the
statement.

M oving horizontally

Pressing t he Sh ift --t and Shift~ enables you to move sideways across the screen
at twice the normal speed.

Pressing Ctr! ~takes you to the beginning o f t he current statement and Ctrl --t

takes you to the end of the current li ne. Pressing Ctri-Sh ift --t ta kes you to the
beginning of the next statement Pressing Ctrl -Shi ft ~ takes you to the beginning
of the previous statement

Using two windows

You can split the screen into two windows, which lets you look at two portions of
your program at the same time (this is called spli t window mode) To do th is. press
Ctri-F4. Th is saves you scroll ing th rough the program many times. To place the
cursor in t he other window. press Ctri -F2 (which acts as a toggle between the two
windows)

When you want to return to a single window, press Ctri -F4 again. Note that wh ile
you are using the split window mode. the Copy key wi ll not work.

Renumbering the program

If new l ines are created in t he middle of a program, the edi to r automatical ly
ad justs the numbering where necessary If this happens in a program conta ining a
COTO or a COSUB to a line number as yet non-existent, t hen that line number is
replaced by the characters @·:S@@.

19 1

Editing BASIC files under RISC OS 2

192

You may at any time renumber the program yourself by press1ng F8 (RENUMBER)
This renumbers the program starting at line 10 with an increment of 10

Further editing functions

Swapping case

II you have typed in some text in either upper or lower case and you want to change
it to the opposite case. move to the area to be changed and press FlO)SWAP) This
converts one alphabetic character at a time from lower cac;e to upper case and vice
verc;a

Undoing changes to a line

If you want to abandon any changes you have made to a statement before you have
left it. press Shi ft-F l O (UNDO). This restores the statement to the way it was before
you made the changes. This on ly works if you have not moved the cu rsor off the
line

Splitting and joining lines

Occasionally, you may want to split one statement into two or more You can do
this by positioning the cursor on the character which is to be at the start of the new
statement and pressing Shift-F l (SPLIT) You can only split a statement from
somewhere in the middle. As you are creating a new statement , this may cause
renumbering to take place.

There may also be occasions when you want to join two statements together To do
this , move the cursor to the first of the two statements and press Ctri-FI (lOIN)
The editor automatically puts a colon between the two statements If the combined
length of the two statements would exceed the maximum space available. the join
is not carried out and an error message is displayed

Repeating a line

To create an exact copy of any statement immediately after it. move to the
statement you wish to copy and press Sh ift-F8 (REPEAT) As in the case of SPLIT.
th is may cause renumbering to be ca rried oul.

Marking a line

Placing the marker line

As you move about your program. there may be a statement which you wish to
come back to later on. The editor provides a way of marking a statement so that
you can go back to it with a single key-stroke To mark a statement first move to it
and press F6 (TOGGLE MARK) Pressing the same key again removes the marker A

Editing BASIC files

full stop appears on the screen between the line number and the start ot the text,
indicating that this statement has been marked. Up to four marks may be set at any
time .

Finding a marker

Wherever you are in the program. pressing Shift-F6 (GOTO MARK) brings the
marked statement to the top of the screen and positions the cursor there. If there
is no marked line. pressing GOTO MARK displays an error; pressing Esc then
allows you to continue.

Line command

These are commands which al low you to delete. move and copy either a single line
or a block of lines. They can be inserted into the lefthand margin and are not
executed until Fl2 (EXECUTE) is pressed

For example. to delete a single line. move the cu rsor onto that statement, hold
down the Ctrl-key and press D. The l ine number is removed and replaced by the
letter D. To delete the line from your program, press Fl 2 (EXECUTE). The line is
removed from the screen and the cursor positioned on the previous line.

Deleting lines

If there is a block of l ines which you want to delete. move to the first line in the
block and press Ctri-D twice. The l ine number disappears and is replaced by the
letters DO. Now move to the last line in the block and press Ctri-D twice more.
Finally, press Fl2 (EXECUTE) to remove this block of lines from your program.

You may wish to delete from the current line to the end of the program. In th is
case. press Ctri-D twice on the current line and then press Ctri-E. The line number
is replaced by ODE and the block from there to the end of the program can be
removed by pressing Fl2 (EXECUTE)

In a simi lar way, you can delete from the current line to the top of the program by
using Ctri-T instead of Ctri-E and then pressing Fl2 (EXECUTE).

Ctrl-E and Ctri-T are examples of destinations and we sha ll encounter more of
these later.

Moving a block

To move a single statement from its current position to the end of the program.
move to it and press Ctri-M fol lowed by Ctri-E. The line number is replaced by ME

and pressing Fl2 1 EXECUTE) moves that line to the end of the program.

Ctri-T can be used likewise to move a sta tement to the top of a program.

193

Editing BASIC files under RISC OS 2

194

Instead of using Ctri-T or Ctri-E to specify the destination as the top or the end of
the program you can specify that the destination is before or after a certain line.

To move text to a position after a particula r line. move to the destmation and press
Ctrl-A

Al ternatively you can use Ctri-B to move text to a position before a particular line.

Blocks of lines can be moved as easily as a single line by putting MM around the
block to be moved. choosing your destination. and pressing F12 !EXECUTE)

Copying lines

Whereas moving text removes it from its original po~ition . copying text leaves the
original unchanged and duplicates it elsewhere. The command to copy text is
Ctri -C instead of Ctri-M. but otherwise the move and copy commands are the
same

Natural ly. for both the move and copy commands the destination must not be
within the block being moved or copied

Denoting limits

You can limit the effect of certa in operations either to one line or to a block of
Iince; These operations are

• SAVE Part of a program can be saved

• SEARCH SEARCH & EDIT: The search is limited to the line or block.

• SELECTIVE REPLACE, GLOBAL REPLACE The replacement IS hm1ted to the
line or block

To limit the operation to a single line. move the cursor to that line and press Ctri-L
To limit the operation to a block of lines. press Ctrl-L twice each on the first and
last l ine of the block

To limit the operation from a particular line to the top (Or end) of the program.
move the cursor to that line and press Ctri-L Ctri-L T [or Ctri-L Ctri-L El

When a limit is set up. the functions which take account of it d isplay the l imit in
their window.

Justifying text

The editor can indent al l or part o f a program automatica lly To reformat a part of
the program. move to the first line of the block you wan t to justify and press Ctrl-1
twice Then move to the last line of the block and press Ctrl-ltwice Pressing F12
(C.X!::.CUTEliustifies the block so that the indentation of each line is identical to
that of the first line

Editing BASIC files

Removing line commands

To remove a line command. move to the line in question and press Ctri-R This
deletes the line command from the screen and replaces the line number Pressing
Ctrl Ron a line which does not contain any line commands removes all line
commands no matter where they are. You do not. however. have to remove a line
command in order to change it to replace the old command simply overtype it
w1th a new one

Ctri-R can also be used to remove the line marker set by F6 (TOGGLE MARK!. but
unlike the line commands. the marker can on ly be removed when you are on the
marked statement.

Things to notice about line commands

Line commands are not stored as part of you r program text but are only held
internal ly in the editor. There is no need. therefore. to remove line commands or
1 he marker beforE: saving you r program

Note that copying or moving statements ca uses renumbering to take place
automatically.

Searching and replacing

Search and edit

To search for the first occurrence of a particu lar piece of text. press F4 (SEARCH &
EDIT) A window appears where you should enter the text to be found When you
have done this press Fl2 (EXECUTE) and the search IS earned out The cursor
reappears on the first match within the program

Search

As an alternative to SEARCH & EDIT you can find all occurrences of a given string
and have them displayed To do this press F7 (SEARCH) <Jnd enter the string which
is to be located. Then press F 12 (EXECUTE) to perform the search Any line on
which a match is found is displayed. You may then move up and clown the list.
choose one to look at and press Home. This line is then placed at Lhe top of t he fu ll
ed it screen and you can ed it it.

Global replace

To change one string for another throughout your entire program press F'5
(GLOBAL REPLACE! and enter the text to be changed You must then enter the
new text. and when you are happy with it press Fl 2 (EXCCUTE) to carry out the
change

195

Editing BASIC files under RISC OS 2

196

Selective replace

It IS possible to perform a replace operation selectively To do so press Shift F5
(SELECfiVE REPLACE). You must then enter both the text to be changed and the
new text Press Fl2 (EXECUTE) to start the search Each match is displayed and
you are prompted for either Y or N to Indicate whether the replacement is to be
performed or not

Next match & previous match

It is possible to move on to the next occurrence of the text searched for in the last
search operation or back to the previous one. To do this press either Shlft-F7
(NEXT MATCII) or Ctrl-F7 (PREVIOUS MATCH)

Keyboard options

Pressing Shift-F3 brings up a window which allows you to select Vdrious options
This is ca lled the Options Window. The oplions are displayed in three groups
described below. Pressing Return allows you to cycle through the groups

The Tab key

This enables you to move more quickly across the screen. It moves the cursor to
every third character position. At the end of a line. it takes the cursor to the
beginning of the next line.

Pressing Shift-Tab moves the cursor in the opposite direction

The options can be used to set the width of the tab movement to any value
(number of characters) in the range 0 to 63

Auto indentation

The editor can automatically line up text in a program so that each line starts
beneath the first position of the line above which is not blank Th1s is known as
auto-indentation. It can be turned on or off using the Options Window
Auto-indent (on/off)

Insert mode and overtype mode

There will be times when you want to overtype existing text rather than insert
before what is already there. To do this. press Insert and you will see that the cursor
has changed to an underline. This indicates that you are in overtypc mode. and
that text which you type in will replace existing text To return to insert mode. press
Insert again. and you will be able to insert text as before In insert mode. a block
cursor is used In overtype mode. a line cursor is used

Editing BASIC files

When you enter the ed itor. the default setting (insert or overtype) is used You can
change this default using the Options Window Your choice is retained in
non-volatile memory

Wildcard options

There are four wildca rds. each of which may be customised using the options
available

• Single character (default is .).

• Multiple cha racters (default is 1).

• Start case insensitivity: This will mCJtch both PR1N'T and pr· · nt (default is {).

• End case insensitivity: this will match exactly what is entered This is the
normal method of searching !default is))

Wildcards can be changed to any punctuation character. or can be disabled by
using the Space Bar. Different wi ldcards must not use the same cha racter.

Mode and colours

The editor works in 40-. 80- or I '32-column modes You can choose the defau lt
mode using the Options Window. The va lue is held between sessions in
non volati le memory.

Note that 256-colour modes and modes with 20-column text are not allowed You
can also set up your default choice of foreground and background colours

User-defined keys

The editor makes extensive use of the normal function keys. but you can still
program your own in the usual way via the • KCY command To access them you
must press Ctrl Shift together with the function key. and not just the function key
on its own

197

Editing BASIC files under RISC OS 2

198

Full use of windows

Windows are displayed whenever input is required or information is shown.

Input windows

Valid keys and their actions are:

Keys

Tab I Return I..!.
Shift-Tab I i
Esc
Fl 2 (EXECUTE)
Insert
Delete
Shift-Delete
Fll
Shift-FII
Ctrl-FI I
f- I Shift f­
-t I Shift -t

Ctrl f-
Ctrl -t

Information windows

Esc

Entering data

Effect

Moves cursor to next field
Moves cursor to previous field
Cancels window. returns to editing
Validates input & executes command
Toggles insertlovertype for this window only
Deletes character to left of cursor
Deletes character above cursor
Deletes characters from cursor to end of field
Deletes a II characters before cursor
Deletes all text in this field
Moves cursor left I or 2 positions
Moves cursor right I or 2 positions
Moves cursor to beginning of field
Moves cursor to end of field

Removes window and returns to editing.

Data can be entered in one of three ways

• Typing in text (eg program name)

• Selecting a prompted action (eg YIN)

• Pressing the Space Bar to cycle through a list of valid choices (eg foreground
colour)

Pressing another function key whilst a window is present usually executes its
function The exceptions are those functions which manipulate the program text
(eg SPLIT and JOIN).

Editing BASIC files

Keyboard summary

The following actions are performed d irectly via key presses:

Editing keys

Shift~
Shift~

Shift i
Shift .L

Ctrl ~
Ctrl ~
Ctrl i
Ctrl .L

Ctri-Shift ~

Ctri-Shift ~
Ctri-Shift i
Ctri-Shift .L

Page Up
Page Down

Tab
Shift-Tab
Home

Copy
Enter

Insert
Delete
Shift -Delete

Enter

Function keys

Fl (*COMMAND)
F2 (LOAD)
F3 (SAVE)
F4 (SEARCH & EDIT)
F5 (GLOBAL REPLACE)

Moves right
Moves left
Moves up
Moves down

Moves right two cha racters
Moves left two cha racters
Moves cursor up a screenful
Moves cu rsor down a screenful

Moves Lo the end of t he statement
Moves La the beginning of the statement
Moves to the beginning of the program
Moves to the end of the program

Moves to beginning of next statement
Moves to beginning of previous statement
Moves to top of current screen
Moves to bottom of current screen

Moves cu rsor up a screenful
Moves cu rsor down a screenful

Moves right to next tab position
Moves left to previous tab position
Brings statement to top of screen

Enters copy mode
Ends copy mode

Toggles i nsertlovertype mode
Deletes cha racter to left of cursor
Deletes character at cursor position

Creates a new statement after the current one

Perform OS command
Load a program
Save a program
Find string and edit from it
Globa l sea rch and replace

199

Editing BASIC files under RISC OS 2

F6 (TOGGLE MARK)
F7 (SEARCH)
F8 (RENUMBER)
F9 (OLD)
FlO (SWAP)
Fll (DEL TO END OF LINE)
Fl2 (EXECUTE)

Function keys with Shift

Shifl-FI (SPLIT)
Shift-F2 (APPEND)
Shift-F3 (OPTIONS)
Shift-F4 (EXIT)

Shift-F5
(SELECTIVE REPLACE)
Shift-F6 (GOTO MARK)
Shift-F7 (NEXT MATCH)
Shift-F8 (REPEAT)
Shift-F9 (NEW)

Shift-FlO (UNDO)
Shift-FII
(DELETE TO START OF LINE)
Sh1ft Fl2
tGOTO LINE COMMAND)

Function keys with Ctrl

Ctri-F I (101 N)
Ctri-F2 (SWAP WINDOW)
Ctri-F3
Ctri-F4
(SPLIT/lOIN WINDOW)
Ctri-F5 (HELP)
Ct ri -F6 (INFO)
Ctri -F7 (PREV MATCH)
Ctri -F8 (EXTEND)
Ctri-F9 (INSERT START)
Ctri-FIO (INSERT END)
Ctri-FJI (DELETE LINE)
Ctri-F12 (GO TO LINE)

Set or remove a marker Up to four markers allowed
Find all occurrences of a string
Renumber the entire program
Same as BASIC OLD
Swap case of alphabetic characters
Delete from cursor to end of line
Execute line commands

Split statement at the cursor
Append a program
Present the Options Window
Return to BASIC. Variables wi ll be lost if changes
were made
Selective replace. When prompted. on ly
Y.N. Escape and Home are va l id
Go to next marker. with program wraparound
Go to next occurrence of search string
Copy current statement
Same as BASIC NEW. Prompts if program has
been modified
Undo changes to current statement
Delete all characters before the cursor

Go to next line command . with program
wraparound

Join two statements. with a colon separator
Toggle between windows
Reserved
Split or join window(s)

Display help window
Display program info rmation
Go to previous occurrence o f sea rch string
Add a l ine to current statement
Add a statement at beginning of program
Add a statement at end of program
Delete all text from current statement
Go to selected line number

Function keys are used with Ctrl and Shift for user-defined strings

200

Editing BASIC files

Error messages

The editor displays the following messages. In each case, an explanation is given
below the message.

Limi t is xxxx to xxxx/Limit is xxxx only

A range has been set using the :, or· , I, line commands. and this function will on ly
operate within the range.

T.ine xxxx is too long Lo be edited

The program already contains a line which is too long.

NoL cnoug~ room in RMA fo r The BASrC Editor

RMA initialisation failed to acquire workspace

Rep·ace? (Y/l\)

Displayed on the status line when prompting during the SELECTIVE REPLACE
operation .

Tab musL be between 0 and 63

Displayed by OPTIONS.

~he combined length of Lhcse statements wo~ld be too
big

The two statements cannot be joined.

The destinalion musL be o~ ~side the b lock be ing noved
or cop::.cct

Raised by EXECUTE.

The firsL statement in =he block to be jus= ified w~st
no l oe b la nk

Raised by EXECUTE.

The ~ax~ m~m l ine is 652/9

Raised by GOTO LINE.

'.'l:e na 1r.e has been trur-cd'-ed

On saving. the program name following l~EM >in the first line of the program is
longer than can be displayed in the window

The naMed prograll' is inval::.d

The user appended a program which was invalid . The editor restored the o riginal

The ~amed prog ~an is t oo big

The user tried to load or append a program for which there was not enough room
in memory.

201

Editing BASIC files under RISC OS 2

202

The renumber has failed . Unmatched line numbers have
been replaced by @@@@

When t rying to renumber the program one or more line number references could
not be resolved.

The search string has no text

The search string must not be blank. and must not contain on ly wildcards.

The string could not be found

The search string could not be fou nd.

There is not enough memory to update Lhe program

All available memory has been used up.

Thjs js not a val id mode

An inval id screen mode was specified in OPTIONS.

This is not a valid program

OLD was pressed with no va lid BASIC program in memory. or the user tried to load
an inva lid program.

This program could not be found

The named program on a load or append was not in the d irectory.

This program has noL been saved

The user is wa rned on a load if the program has been modified and not saved

This pcogram has noL been saved

Press NEW aga in to confi rm.

Press ESCAPE to cancel

The user pressed NEW but the program had been modified and not saved.

This statement is too long

The statement is too long. and needs to be shortened.

This sLaLement is Loo long to be changed

Replacing or justifyi ng wou ld make the statement too long.

Thls statement is too long to be split

Even after spli tti ng. both pa rts of the statement wou ld stil l be too long

Wildcards must not ~e the same

Ra ised by OPTIONS.

You cannot load a di~ectory

Editing BASIC files

The filename specified in load or append is a directory.

You do not need to enter a destination for this command

Ra ised by EXECUTE.

You do not need to e nter a repetition factor for thjs
command

Ra ised by EXECUTE.

You have en~ered a destination but no command

Raised by EXECUTE.

You have entered too many commands

Raised by EXECUTE.

You have no L enLered a ny line commands

Raised by GOTO LINE COMMAND when there are no line commands.

You have not entered a ny markers

Raised by GOTO MARKER when no markers are set

You have noL yet entered a search string

Raised by NEXT MATCH or PREVIOUS MATCH when no find stri ng has been
entered.

You have used the maximum number of statements . No
more can b e added

The program al ready conta ins the maximum number of statements allowed by
BASIC (65279) and the user tried to add another.

You must enter a destir.aLion for Lh js command

Raised by EXECUTE.

You must enter a mode

No screen mode was specified wit hin OPTIONS.

You must er.cer a program name

The program name was not entered for load, append or save.

You musL enter a search string

The sea rch string was not entered.

You must enter a tab value

No tab value was specified in OPTIONS.

You need to specify both ends of the range for this
command

203

Editing BASIC files under RISC OS 2

204

Raised by EXECUTE.

You should noL enter two different commands

Ratsed by EXECUTE.

*ARMBE is only valid from BASIC

The user invoked the editor from outside BASIC

Part 3 - Keywords

205

206

27 Keywords

This chapter describes the BBC BASIC keywords First. there ~~a ~hort list
grouping the keywords by function Use this list if you are not sure what

keywords are available for a particular task

• Assembly language

CALL.SYS, USR

• Character/string handling

ASC. CHR$. INSTR(. LEFT$(. I.F.N. MID$(. RIGHT$(. STRS. STRING$(

• Error handling

ERL ERK ERIWR. LOCAL ERROR, ON ERROR. RFPORT. REPOKI'S. RESTORE
ERROR

• File commands

BGET#, BPUT#. CLOSE#, EOF#, EXT#, GETS#. INPUT#. OPENIN. OPENOUT.
OPENUP. PRINT#. PTR#

• Graphics

BY. CIRCLE, CLG CLS COLOUR (COLOR! DRAW. r.I.LIPSE FILL. GCOL. LINE.
MODE. MOVE. OFF. ON. ORIGIN. PLOT POINT POINT(RECTANGLE TINT.
VDU. WAIT

• Input/Output

GD. GETS. INKEY. INKEY$. INPUT. INPUT LINE, LINE INPUT. MOUSE. PRINT.
SPC. TAB. WIDTH

• Logical

AND. EOR. FALSE. NOT. OR. TRUE

• Numerical

ABS. DIV, EVAL. INT. MOD. RND. SGN. SOR. SUM, SUMLEN, SWAP. VAL

• Program construction

APPEND. AUTO. •BASIC. *BASIC64. CRUNCII, DE.:LI.:TC. EDIT. HELP, INSTALL.
LIST. LISTO. LOAD. LVAR. NEW. OLD RENUMBLR, SAVI- TEXTLOAD
TI:.XTSAVE. TWIN

207

208

• Program statements

CHAIN. CLEAR. DATA. DEF. DIM. END. ENDPROC FN, GOSUB. GOTO. LET.
LIBRARY LOCAL OSCLI. PROC OUIT READ. REM RFSTORE:. RETURN. RUN.
STOP. TRACE

• Sound

BEAT, BEATS. SOUND. STEREO, TEMPO. VOICES

• Structures

CASE, ELSE. ENDCASE. ENDIF, ENDWHILE., FOR IF. NEXT. OF. OTHERWISE.
REPEAT TIIEN. UNTIL, WHEN. WH ILE

• Trigonometric

1\CS. 1\SN, ATN, COS. DEC, F:XP. LN. LOG. PI, f~AD. SIN, TAN

• Variables

ADVAL. COUNT, HIMEM. LOMEM. PAGE, POS, TIME. TIM F.$, TOP. VPOS

The remainder of this chapter li sts the keywords alphabetica lly (with the
exceptions of •BASIC and •BASIC64, which appear first) fo r ease ot reference It
g1ves complete definitions of syntax, with examples

Each keyword is listed in the index

Keywords

*BASIC

The command to enter the BASIC V interpreter

Syntax

'HA~ I C Lo.ot- i ons]

Purpose

The command *BAS_c is not one of the usual BASIC keywords which are
described m this chapter It is an operating system command which is used to
activate the interpreter in the first place. It is described here lor completeness

The options control how the interpreter wi ll behave when il starts. and when any
program that it executes terminates If no option is given, BASIC simply sta rts with
a message of the form:

AR~ ~BC RAS : C V version 1 .CS ICI Ac o1 n 1989

S t ,H t ing witl: 643324 i:lytes :"1ee

The number of bytes free in the above message will depend on the amount of free
RAM on your computer The first line is also used for the default REPORT message.
before any errors occur

One of three options may follow the ·BASIC command to cause a program to be
loaded and. optionally. executed automatically Altern<Hively. you can use a
program that is already loaded into memory by pass1ng 1ts address to the
interpreter l.ach of these possibilities 1s descnbed in turn below

In all cases where a program is specified. this may be a tokcnised BASIC program.
as created by a SAVE command. or a textual program. which will be tokenised (and
possibly renumbered; automatically.

*JJASTC 'lclp

Th is command causes BASIC to print some help information describing the
opti ons documented here. Then BASIC starts as usua l.

* Hl\S I C cna in f i Iet1anu~

If you give a fi 1 ename after the • BASIC command, optionally preceded by the
keyword rha in, then the named file is loaded and executed When the program
stops. BASIC enters immediate mode. as usual

209

*BASIC

210

*BASIC -quit filename

This behaves in a similar way to the previous option However. when the program
term mates. BASIC quits automatically returning to the environment from whJCh
the interpreter was originally called It also performs a CRUNCH %1111 on the
program (see the description of the CRUNCH command later in th1s chapter) This
is the default action used by BASIC programs that are executed as ·commands In
addition the function QUIT returns TRUE if BASIC is called in this fashion

~HASIC load filename

This option causes the file to be loaded automatical ly, but not executed. BASIC
remains in immediate mode. from where the program can be edited or executed as
required

*BASIC @start , end

This acts in a similar way to the loc:td form of the command l lowever. the
program that is 'loaded' automatical ly is not in a fi le. but already in memory.
Following the·~ are two addresses. These give. in hexadecimal. the address of the
start of the in-core program. and the address of the byte after the last one. The
program is copied to PAGE and tokenised if necessary This form of the command
is used by Twin when returning to BASIC

Note that the in-core address description is fixed format It should be in the form.

@xxxxxxxx,xxxxxxxx

where x means a hexadecimal digit. Leading zeros must be supplied . The
command line terminator character must come immediately aFter the last digit. No
spaces are allowed.

*bASIC -chain @starr,end

This behaves like the previous option. but the program is executed as well. When
the program terminates. BASIC enters immediate mode

*BASIC - quit @starr,end

This option behaves as the previous one. but when the BASIC program terminates.
BASIC automatica lly qu its. The function QUIT wi ll return TrW I:: during the
execution of the program.

Examples

*BASIC
*BASIC - quit shellProg
*RASlC @000ADFOC,000AE345
*BASIC -chain fred

Keywords

*BASIC64

The command to enter the BASIC VI interpreter

Syntax

*.:3i\SICo~ roptions)

Purpose

Thi~ has exactly the same purpose as the •BASIC command, and takes the same
options. the on ly difference being that it enters the BASIC VI interpreter instead of
the BASIC V interpreter.

If no option is given. BASIC VI simply starts with a message of the form :

ARM BBC BASIC Vl version 1 . 05 (C) Acorn 1989

Star t i •tg w i Lh 581628 bytes free.

The number o f bytes free in the above message will depend on the amount of free
RAM on your computer.

Examples

*BAS .. C64
*BASIC64 -qui~ shellProg
*BASIC64 @000AD?OC , OOOAF.34~

*BASIC64 -c~ain fred

211

ABS

212

Syntax

ABS

Function giving magn itude of its numeric argument. i.e. changes negative numbers
into positive numbers.

ABS fact.or

Argument

Result

Any numeric.

Same as the argument if this is positive. or -(the argument) if it is negative.

Note: Th e largest negative integer does not have a lega l positive value. so that
if a%=-2147483648, ABS[a%) yields the same value: - 2147483648. However.
this does not arise with floating point numbers.

Example

diff=ABS(lengthl-length2)

Keywords

ACS

function giving the arc-cosine of its numeric argument

Syntax

Argument

Real or mteger between -I and I inclusive

Result

l~eal in the range 0 ton radians. being the inverse cos ine o f the argument.

Examples

_l lltJ-1\CS (normvecl (1} *norrr.vcc2 { J} ~ 110 li:1Vc:'C 1 { 2 } *1101 mvec2 { 2))

tnqle-OEG(ACS(cos:})

J>Rli'J7 ACS(O . S}

213

AD VAL

214

AD VAL

Function reading data from an analogue port 1f fitted. or giving buffer data

Syntax

.\DVAL faC[Or

Argument

Result

Negative integer -11. where 11 is a buffer number between I and I 0

The number o f spaces or entries in the buffer is given in the table below

arg Buffer name Result

I Keyboard [input) Number of characters used
-2 RS-423 [input) Number of characters used
- '3 RS-423 [output) Number of cha racters free
-4 Printer (output) Number of characters free
-'5 Sound 0 [output) Number o f bytes free
-6 Sound I (output) Number of bytes free
-7 Sound 2 (output} Number of bytes free
-R Sound 3 (output) Number of bytes free
-9 Speech (output) Number of bytes free
- 10 Mouse 1 input) Number of bytes used

The AD' •;\1. function only returns a result for positive arguments if the optional
analogue-digital converter podule is fitted . If this is absent . the function
ADVAL (1). for example. will result in a Reid c-or•undnd error

Example

lP ADVA. (- 1)-0 TH~N P}{OCinput

Keywords

AND

Operator giving logical AND or bitwise AND

Syntax

L t •ld! .iorJal t-\ND re1ationd1

Operands

Result

Relational expressions. or bit va lues to be ANDed

The bitw ise AND of the operands Corresponding bils in the integer operands arc
ANDed to produce the result. Hence a bil in the resull is one if both of the
corresponding bits of the operands arc one Olherwise il is zero

It used to combine relational values. AND's operands should be either TRUE (- I)
or ~ALSI::: (0) Otherwise. unexpected results may occur ~or example. 2 and 4 are
both true (non-zero). but 2 AKD t, yields FALSE (zero)

Examples

REM a :s sel to oind:y ANO of x and y

PRfN'I var AND 3 REH prir:::. ::.owest 2 b:ts of Vdt

1F day 4 ,\NO monlh$= "April " !'HEN PIUNI' " Happy birthday "

IE' lc:np · ''0 AND NO'f \·Jj nc.y I'HEJI: J>R.OCqo_oul FLSF rROC.:;Lay_in

RE.PEAT
d cH 1
lJ])

l JN': 'IL d · lO AND b < J

i ~;adoq f e el.-4 AND tai ls= l AN D ha iJy

215

APPEND

216

APPEND

Command to append a file to a BASIC program

Syntax

ArPEND expression

Argument

expl ession is a string which should evaluate to a filename that is va lid for the
fi ling system in use.

Purpose

The file specified is added to the end of the BASIC program currently in memory. If
the file contains a BASIC program. the line numbers and any references to them in
the added section are renumbered so that they start after the last line of the
cu rrent program.

Examples

Alf'END ": O. lib"
APPEND second_ half$

Keywords

ASC

Function giving the ASCII code of the first character in string.

Syntax

;\SC factor

Argument

Result

String of length 0 to 255 characters.

ASCII code of Lhe first character of the argument in the range 0 to 25 5. or - I if the
argument is a null string.

Examples

10 x2=ASC(narre$l

:00 IF cooe >- ASC(" a " l .l>ND code<"= ASCI"z") THE~ PRlN'I'
"l.o•,;e ::- case "

217

ASN

218

ASN

Function giving the arc-sine of its numeric argument.

Syntax

ASN factor

Argument

Numeri c between -I and I inclusive.

Result

Rea l in the range -rt/2 to +rt/2 radians. being the inverse sine of the argument

Examples

PRINT ASNiopposite/hypotenuse)
ang l e = D ~:G(fi.SN (0 . /2131)

Keywords

ATN

Function giving the arc-tangent of its numeric argument.

Syntax

A~N fucr.or

Argument

Any numeric.

Result

Real in lhe range -rt/2 to +rt/2 radians. being the inverse tangent of the argument.

Examples

ang = DEG(ATN(sin/cos))
PRIN':' "'l'he slope is "; A'IN(opposite/adjacent)

219

AUTO

220

AUTO

Command initiating automatic line numbering

Syntax

AUTO : start] (,step)

Parameters

start is an integer constant in the range 0 to 65279 and is the first line to be
generated automatica l ly. It defaults to I 0.

step is an integer constant in the range I to 65279 and is the amount by which the
l ine numbers increase when Return is pressed If omitted. I 0 is assumed.

Purpose

AUTO is used when entering program lines to produce a line number
automatically, so that you do not have to type them yourself To end automatic line
numbering use Esc. AUTO wi ll stop if the line number becomes greater than 65279.

Examples

AUTO
AUTO 1000
,'\UTO 12, 2

Keywords

BEAT

Function returning the current beat value.

Syntax

Result

An integer giving the current beat value. This is the value yielded by the beat
counter as it counts from zero to the number set by BEATS at a rate determined by
TEMPO. When it reaches its limit it resets to zero. Synchronisation between sound
channels is performed with respect to the last reset of the beat counter.

Example

PRINT BEAT

221

BEATS

222

Syntax

Function returning or statement altering the beat counter.

(1) BEATS expression
(/) BEA'T'S

BEATS

Arguments (1)

expression gives the value 1 higher than that which the beat counter
increments to. i.e. it counts from 0 to expression- l. This counter is used in
conjunction with the SOUND and TEMPO statements to synchronise sound
outputs from different sound channels.

Result (2)

An integer giving the current va lue of the beat limit. as set by a BEATS statement.
or 0 if no counting is currently being performed

Examples

BEATS 2000
PRINT BEATS

Keywords

BGET#

Function returning the next byte from a file

Syntax

BGET# factor

Argument

Result

A channel number returned by an OPENxx function

The ASCII code of the character read (at position PTR#) from the fi le. in the range 0
to 255.

Note: PTR# is updated to point to the next character in the file. If the last
character in the file has been read. EOF# forthe channel will be TRUE. The next
BGET# will return an undefined value and the one after that will produce an
End of file on file handle nnerror

Examples

char%=BGETn channel
char$=CHR$(BGET#fileno)

WHTLE NOT EOF* channel
char% = BGET# channel
PROCprocess(char%)

ENmVHILE

223

BPUT#

224

Syntax

Statement to write a byte or a string to a file.

(1} BPUT#factor , numeric-expression
(2} BPUT#factor , strjng- expression[;]

BPUT#

Arguments (1)

factor is a channel number as returned by an OPENxx function. The
numeric-expression is truncated to an integer 0 to 255, and is the ASCII code
o f the character to be sent to the fi I e.

Arguments (2)

factor is a channel number as returned by an OPENxx function.
string-expression is a string containing 0 to 255 characters. The ASCII codes
of all the characters in the string are sent to the file This is followed by a newline
(ASCII value 10). unless the statement is terminated by a; (semi-colon)

Examples

Note PTR# is updated to point to the next character to be written. If the end of
the file is reached. the length (EXT#) increases too. It is only possible to use
BPUT# with OPEN UP and OPENOUT files, not OPEN IN ones.

BPUT~outputfi le , byte%

BPUT~channe l , ASC(MJD$ (name$, pos , l})

BPUT#file ,"Hello "
BPUT#chan , AS +B$;

Keywords

BY

Optional part of MOVE, DRAW. POINT and FILL statements.

Syntax

See the above-mentioned keywords.

Purpose

The BY keyword changes the effect of certain graphics statements. In particular it
indicates that the coordinates given in the statement are relative rather than
absolute. For example, POTN'T' BY 2. 0 0, 10 0 means plot a point at coordinates
displaced by (I 00,1 00) from the current graphics cursor position. rather than a
point which isat(IOO.IOOJ.

In terms of its effect at the VDU driver level. BY makes BASIC use the relative forms
of the appropriate o s_Plot calls. instead of the absolute ones.

Examples

MOVE BY 4* x% , 4 *y%
POINT BY 100,0
ORA;,,; BY x %*1 6 , y%= 4
FILL IW x% , y%

225

CALL

226

CALL

Statement to execute a machine code or assembly language subroutine.

Syntax

CAI.,L expression [,variable . .. 1

Arguments

expz ession is the address of the routine to be called The parameter variables. if
present, may be of any type, and must exist when the CALL. statement is executed.
They are accessed through a parameter block which BASIC sets up. The format of
this parameter block and of the variables accessed through it is described below.

Purpose

CALL. can be used to enter a machine code program from BASIC Before the routine
is called. the ARM's registers are set up as follows

RO A%
Rl B%
R2 C%
R3 D%
R4 E%
R5 F%
R6 G'}'o
R7 H%
R8 Pointer to BASIC's workspace (ARGP)
R9 Pointer to list of I-va lues of the parameters
R I 0 Number of parameters
R II Pointer to BASIC's string accumulator (STRACC)
r~ 12 BASIC's LINE pointer (points to the current statement)
I~ 13 Pointer to BASIC's full, descending stack
I~ 14 Link back to BASIC and environment information pointer

Format of the CALL parameter block

R9 points to a list giving details of each variable passed as a parameter to CALL.
For each variable. two word-aligned words are used The first one is the 1-value of
the parameter This is the address in memory in which the va lue of the variable is
stored

Keywords

The second word is the type of variable. This list is in reverse order. so the 1-value
pointed to by R9 is that of the last parameter in the list The pointer to the list is
always valid. even when if the list is null (i e. R I 0 contains 0) The possible types
are as follows

Type BASIC 1-value points to

&00 ?factor byte-aligned byte
&04 ~factor byte-aligned word
&04 name'ro word-aligned word
&04 name%(n) word-aligned word
&05 lfactor byte-aligned F'P value (5 bytes)
&05 name byte-aligned FP value (5 bytes)
&05 name(n) byte-aligned F'P value (5 bytes)
&OR lfactor word-a ligned FP value (8 bytes)
&08 name wo rd-a ligned FP va lue (8 bytes)
&08 name(n) wo rd -a ligned F'P value (8 bytes)
&80 nameS byte-a ligned SIB (5 bytes)
&80 name$(n) byte-aligned SIB (5 bytes)
&81 S[aaor byte-a Jig ned byte-string (CR-term i nated)
&100+&04 name%() word-aligned array pointer
&100+&05 name() word-aligned array pointer
&100+&08 name() word-aligned array pointer
&100+&80 name$() word-aligned array pointer

For types &00. &04. &05 and &08 the add ress points to the actual byte. the four­
byte integer. the five-byte floating point value or the e1ght-byte floating point
value

For type &80, the address points to a five-byte 'string information block'. The first
four bytes are a byte-aligned word pointing to the first character of the string itself.
which is on a word boundary. followed by a byte containing the length of the string.

For types & I OO+n the value points to a word-aligned word If the array has not been
al located. or has been made LOCAL but not DIMed. this word contains a value less
than 16. Otherwise. the word points to a word-aligned I ist of integer subscript sizes
(the values in the DIM statement plus I) terminated by a zero word. followed by a
word wh ich contains t he total number of entries in the array, fol lowed by the zeroth
element of the array. For example. consider the foll owing program:

227

CALL

228

10 DI M a (l 0 , 20)
20 a = 12 . 3
30 a$ = " char "
40

100 CALL code , a , a() , a$

R10=3

R9_.,.

type(&O~
5 bytes .. 1-value

a() type(&105)

a() 1-value

a$ type (&80)

a$ 1-value

1.23

word
.,. I array pointer

F length(4)

I__. r wor:tring pointer

5 bytes

a(O,O)
word

#elements (231)

terminator

sub 2 size (21)

i
Increasing
addresses

The diagram above shows the resulting parameter block and other data items
when code is called. The access method into the arrays is given by the following
algorithm:

posit ion 0
number = 0
REPEAT

IF subscript (number) > array (number) THEN fault
number = number+l
IF number<>total THEN position = (position+subscr i pt) *

array(number)
UNTIL no_more_subscripts
position = posit i on* size (array)

This means that the last subscript references adjacent elements. For a simple two
dimensional array DIM A(LIMI-1 ,LIMI-Il the address of A(I,J l is

1 I* LIMI+J)*size+base_address

MOVS PC , Rl4 returns to the BASIC ca ll ing program ifV set on error is signa ll ed at
RO. However. R 14 also points to an array of useful values:

Keywords

Offset Name Meaning

&00 RETURN Return address to BASIC

The following are words containing a word-aligned offset from ARGP (R8) :

&04 STRACC String accumulator (256 bytes long)
&08 PAGE Current program PAGE
&OC TOP Current program TOP
&10 LOMEM Current start of variable storage
&14 HIM EM Current stack end [ie highest stack location)
&18 MEMLIMI T Limit of ava ilable memory
&1C FSA Free space start [end of variables/stack limit)
&20 TALLY Value of COUNT
&24 TRACEF TRACEFILE handle [or 0 if no file being traced to)
&28 ESCWORD Exception flag word (contains escfig. trcfig)
&2C \I.JIDTHLOC Value of WIDTH-I

Branches to internal BASIC routines:

&30 VARIND Get value of 1-value
&34 STOREA Store value into 1-value
&38 STSTORE Store string into type 128 strings
&3C LVBLNK Convert variable name string to 1-value address

and type
&40 CREATE Create new variable
&44 EXPR Use expression analyser on string
&48 MATCH Lexically analyse source string to dest ination string
&4C TOKENADDR Pointer to string for given token
&50 END End of list. a zero word

In the following (BASIC V only), RO .. R3 contain an expanded floating point value.
R9 points to a packed five-byte floating point value accessed through the I
operator:

&54 9
&58 FSTA
&SC FLDA
&60 FADD
&64 FSUB
&68 FMUL
&6C FDIV
&70 FLOAT
&74 FIX
&78 FSQRT

number of extra routines
IR9j = RO .. R3
RO .. R3 = IR9]
RO .. R3 = IR9] + (RO R3)
RO .. R3 = IR9j- (RO .. R3)
RO .. R3 = (RO .. R3) * IR9]
RO .. R3 = IR9) I (RO R3)
RO .. R3 = FLOAT(RO) (RO contains an integer on entry)
RO = FIX(RO .R3) [RO contains an integer on exit)
RO .. R3 = SOR[RO R3)

229

CALL

230

The word at address 1 R 14] is a branch instruction which returns you to the BASIC
interpreter. The words which follow it contain useful addresses which are not
absolute. but are offsets from the contents of the ARGP register. R8

The first offset word. at 1 R 14.#4]. gives the location of the string accumulator,
STRACC, where string results are kept Thus if you execute

LOR
ADD

RO, [Rl4, li4]
RO ,R8,RO

; Ge: STRACC offset from R8
; Add o:fset to ARGP

RO will give the base address of the string accumulator (Actua lly, the address of
STRACC is also in R II on entry. so this isn't a particularl y good example l Similarly.
to load the pointer to the end of free space into RO, you wou ld usc

l,lJR RO , [R14, #& lC] ; Get FSA offset from RR
LOR RO , [R8, RO] ; De-reierence il:

Although the word referenced through the TRACEF offset is the TRACEFILE handle,
the four that follow it are also used. They contain respectively:

[R*, 'I RAO:I--+4 j LOCALAR J, I ST a pointer to the list o f loca l arrays
IR*, 'I 'RACEF+8) INS'L~LLLIST a pointer to the list of instal led libraries
IR*, 'I'Rl\CEF .,-12) LIBRARYLlST a pointer to the I 1st of transient libraries
IR*, TRACEF+l6] OVERP'TR a pointer to the overlay structure

The first of these is probably not very useful. but the other three allow routines to
access the libraries that have been loaded For example. a ·find routine would be
able to find a procedure no matter where it was defined (which LIST IF can't do)

Libraries are stored as a word. which IS a pointer to the next library 10 denoting the
end of the l ist] The word is followed immediately by the BASIC program which
forms the library

Before an OVERLAY statement has been executed. OVERPTR contains 0 After a
statement such as OVERLAY aStl. it contains a pointer to the following st ructu re

OV?:~PTRt&OO

OVERP'l'lh&04
OV IO:K l'' l'R+&08

OV J-o:R 1' '1' R • & OC

Pointer to base of OVERLAY array, i c. a$(0)
Index of current OVERLAY fi le (or l if none loaded)
Tota l allowed size of OVERLAY area
Start of current OVERLAY fi le in memory

After the word offsets come the branches useful to BASIC rou tines For example. to
ca ll STORF.A, whose branch is at offset & 34 from R 14, you might use

VARIND

STOREA

Keywords

STME'D Rl3 !' {R14} ; Save BAS IC reLurn address
]v]QV RlO, R14 ; Save pointer to branc h es
ADR Rl4 , my Ret ; Set up return address to my code
ADD PC, RlO, Ji&34 ;Do 1:he ' branch '

.myRet

LDMFD R13!, {PC } A ;Return to BASIC

The internal routines are on ly guaranteed to work in ARM user mode. The following
functions are provided:

Entry with RO:

RO Address of 1-value. i.e. where to load the variable from
R9 Type of 1-value. as in CALL parameter block
Rl2 LIN E

Return s with RO ... R3 as the value (or FO if using BASIC VI). R9 the type of the value
as follows

R9

0
&40000000
&80000000

Type

String
Integer
Float

Location of value

STRACC, R2 points to end ([R2j-STRACC is length)
RO
RO .. R3

Uses no other registers (includ ing stack) . Possible error if asked to take va lue of an
array fred[) will need R I 2 valid fo r this error to be reported correctly

When floating point va lues are returned/required in RO R3. the format is as
follows

RO =
Rl =
R2 =
R3 =

32-bit mantissa. normali sed (so bit 31 = I)
Exponent in excess- I 28 form
Undefined
Sign. 0 :::::> positive, &80000000 :::::> negative

This is provided for information on ly. We reserve the right to change this format:
you shou ld treat RO .. R3 as a single item. without regard to the constituent parts.

Entry with RO .. R3 va lue (stay in STRACC with R2=end) if using BASIC V [FO if using
BASIC VI) . as appropriate to type of value in R9.

231

STSTORE

STSTORE

LVBLNK

232

R4 =
R5 =
R8 =
R9
Rl2
Rl3

Address of 1-value (where to store the value)
Type of 1-value (as in CALL parameter block)
ARGP
Type of value
LINE (for errors)
Stack pointer (for free space check)

Converts between various formats. for example integer and floating point
numbers. or produces an error if conversion is impossible

Returns with RO to R7 destroyed. Stack is not used.

This stores a string into a string variable. Entry with:

R2 Length (ie. address of byte beyond the last one)
R3 Address of start of stri ng
R4 Address of 1-value
R8 ARGP
R 12 LINE (for error reporting)
R 13 Stack pointer (for free space check)

The string must start on a word boundary and the length must be 255 or less.

Uses RO. R I. R5, R6. R7. Preserves input registers Stack not used.

This routine looks up a variable from the name pointed to by R8.

On entry:

R8 ARGP
Rll =
Rl2 =
Rl 3 =

Pointer to start of name
LINE (many errors possible, such as subscript error in array)
Stack (may call EXPR to eva luate subscripts)

The string is processed to read one variable name and provide an address and type
which can be given to VARIN D.

If a valid variable name (or more precisely 1-value) was found

z flag 0
RO = Address of 1-va lue
R9 = Typeof l-value

If a va lid variable was not found

CREATE

EXPR

Keywords

7 flag =
C flag = I if there is no way the string was a variable name (e.g. %0)
c flag = 0 Cou ld be a variable but hasn't been created (e.g. A)
Other register set up for a subsequent ca ll to CREATE.

Uses al l registers.

This creates a variable. Input is the fail ure of LVBLNK to find something Thus we
have

R3 =
R4 =
R8

Second character of name or 0
Points to start of the rest of the name
ARGP

R9 Contains the number of zero bytes on the end
R I 0 First character of name
R II Poin ts to the end of the name
Rl2 LINE
R 13 Stack pointer

It is recommended that CREATE is only ca lled immediately after a failed LVBLN K.

CREATE uses all registers. Returns result as LVBLNK. The LVBLNK and CREATE
routines can be combined together to provide a routine which checks for a va riable
to assign to. and creates it if necessary:

S'I'JvJFD Rl3! ,{ R14} ; Save return address
Bl. LVBLNK ; Look-up name
LDMNEFD R13!, {PC} ; Return if found
LDf\1CS FD R13! , {PC } ;Or illegal name
BL CREATE ; CreaLe the new var
LDNFD R 1 3 ! , {PC} ;Return

This eva luates an expression pointed to by R II. On entry

R8 ARGP
Rll =
Rl2 =

Pointer to start of string
LINE

Rl3 Stackpointer

EXPR stops after reading one expression (like those in the PRINT statement).

The value is returned in the same manner as VARIN D. On exit:

233

MATCH

MATCH

234

z flag I =>the expression was a string
z flag 0 ==>the expression was a number

N flag= I ==>expression was a floating point number
N flag= 0 ==>expression was an integer

R9 Type
R I 0 First character after the expression
R II Pointer to next character after R I 0

The status found in the Z and N flags on exit can be recreated by executing the
instruction 'l' EQ R9, #0.

One useful thing about EXPR is that it enables the machine code to call a BASIC
routine. You do this by eva luating a string which has a call to a user-defined
function in it For example, the string you evaluate might be " FNinpu L" . The
function cou ld perform some task which is tedious to do in machine code. such as
input a floating point number.

One slight complicalion is that the string to be evaluated must have been
tokenised al ready, so you must either call MATCH described below. o r store the
string with the tokenised form o f FN (the byte &A4)

This routine takes a text string and tokenises it to another string. Strings passed to
EXPR and LVBLNK must be tokenised first if they contain any BASIC keywords. On
entry:

Rl Pointstothesourcestring(terminatedbyASCIIIOor 13)
R2 Points to the destination string
R3 MODE
R4 CONSTA
R 13 Stack pointer

Note that MATCH does not need ARGP or LINE.

The MODE value is 0 for left-mode (before an = sign, or at the start of a statement)
and I for right-mode (in an expression). The difference is in the way that BASIC
lokenises the pseudo-variables. Each of these has two tokens, one for when it is
used as a statement (e.g. TIME= ... i and one when it is used as a function (PRINT
TIME) . As you wi ll genera lly use MATCH to tokenise an expression string, you wil l
use MODE = I .

The CONSTA value is 0 if you do not want BASIC to convert integers which cou ld be
line numbers (in the range 0 to 65279) into interna l format, and I if you do. Internal
format consists of the token &8D fol lowed by three bytes which contain the
encoded line number. A property of these bytes is that they lie in the range 64 to
127, and therefore do not contain control codes or tokens.

TOKENADDR

Keywords

Encoded constants are used for line numbers after GOTO, GOSUB, RESTORE.
THEN and ELSE keywords Because they are of fixed length, the program can be
renumbered without having to move program lines about Because they don't
contain special characters, certain BASIC search operations (e.g. for the ELSE in a
single-line IF) are speeded up

Both MODE and CONSTA will be updated during the use of the routine. For
example. GOTO will set CONSTA to &8D to read the line number. PRINT will
change MODE to I to read an expression The table below summarises the setting
of MODE and CONSTA:

MODE

0
0

CONSTA

0
&8D

Meaning

Tokenise a statement
Used to read line number at the sta rt of a line

0 Tokenise an expression
&8D Tokenise an expression after GOTO etc.

The routine uses RO to R5.

On exit, Rl and R2 are left pointing one byte beyond the terminating CR codes of
the strings.

R5 contains status information. it can usually be disregarded: values greater than
or equa l to &1000 imply mismatched brackets. Bit 8 set implies that a number
which was too large to be encoded using &8D (i .e was greater than 65279) was
found. If (R5 AND 255) = I then mismatched string quotes were found.

Note if the first item in the source string is a line number and CONSTA is set
on entry, the &8D byte will not be inserted into the destination string, but a
space will be left for it. It is safe for the source and destination strings to be the
same. as long as the destination never becomes longer than the source (which
CONSTA line numbers can do)

This routine converts a token value into a pointer to the text string representing it.
On entry:

RO The token value
R 12 Pointer to next byte of token string

The value of R 12 is only used when two-byte tokens are required No other
registers are used or required

Returns R I as a pointer to the first character of the string, terminated by a byte
whose value is & 7F or greater. RO is set to the address of the start of the token table
itself. R 12 will have been incremented by one if a two-byte token has been used.

235

FSTA

FSTA

FLDA

FADD/FMUL

FSUB/FDIV

236

Store a four-word FP value into a five-byte variable On entry

RO R3 =
R9 =
On exit :

R2

Source floating pointer value
Pointer to destination value

Altered (but this doesn 't affect the FP value I

No errors. Stack not used.

Load a five-byte variable into a four-word FP va lue. On en try·

R9 = Pointer to source va lue

On exit

RO. R3 Loaded FP value

No errors Stack not used.

Add/multiply the four-word FP value in RO R3 by the variable at 1 R9 On entry:

RO R3
R9 =
On exit

RO R3 =
R4 R7

Source FP value
Pointer to five-byte variable

Added/multiplied by I R91
Corrupted

Overnow errors possible Stack not used.

Subtract RO .R3 from IR9J or divide IR9J by RO .. R3. with the result in RO .. R3. On
entry

RO R3 =
R9 =

On exit·

RO R3 -
R4 R7 =

FP value
Pointer to five-byte variable

IR9] minus old value or IR9J I old value
Corrupted

FLOAT

FIX

FSQRT

Keywords

Overflow errors possible. Divide by zero possible for FDIV. Stack not used.

Convert integer to four-word floating point value . On entry:

RO

On exit:

RO .. R3 =
R9

Integer

Floated version
&80000000 (floating type code)

No overflow possible. Stack not used.

Convert four-word floating point value to an integer. On entry

RO .. R3 =

On exit:

RO
R9

Floating point value

Fixed version (rounded towards 0)

&40000000 (integer type code)

Overtlow error possible. Stack not used.

Take the squa re root of the floating point number in RO .. R3 . On entry:

RO .. R3

On exit :

RO .. R3
RO .. R7

Floating point value

SOR(old value)
Corrupt

Negative root error possible. Stack not used.

BBC/Master compatible calls

If the CALL statement is used with an address which corresponds to a MOS entry
point on the BBC Micro/Acorn Electron/Master 128 series machines and there are
no other parameters. then BASIC treats the call as if it had been made from one of
those machines. The way in which the registers are initialised is then as follows:

237

BBC/Master compatible calls

238

RO
Rl
R2
C flag

A%
X%
Y%
C% (bit 0)

This means that programs written to run on earlier machines using legal MOS calls
can continue to work. For example. the sequence

10 osbyte=&FFF4
1000 A%=138
1010 X%=0
1020 Y%=65
1030 CALL osbyte

will be interpreted as the equivalent SYS OS_Byte call:

1000 SYS "0S_Byt e",J38,0,65

This facility is provided for backwards compatibility only. You should not use it in
new programs. Also. you must be careful that any machine code you assemble in a
program does not lie in the address range &FFCE to &FFF7; otherwise when you
call it. it might be mistaken for a call to an old MOS routine.

Examples

CALL invertMatrix,a()
CALL sampl eWaveform, start% , end% , values%()

Keywords

CASE

Statement marking the start of a CASE ... OF ... WHEN ... OTHERWISE ...
ENDCASE construct It must be the~ statement on the line.

Syntax to..'!\
CASE expression OF
WHEN expression [, e xpress i on ...] [: staLements .. .)
[statemen ts]
(T,-JH EN ...)

OTHERWISE [statements ...]
[statemen ts . ..)
ENDCASE

Arguments

e xpression can be any numeric or string expression. The value of expression
is compared with the values of each of the expressions in the I ist following the first
WHEN statement If a match is found. then the block of statements following the
WHEN down to either the next WHEN or OTHERWISE or ENDCASE is executed.
Then control moves on to the statement fol lowing the ENDCASE. If there is no
match. then the next WHEN is used, if it exists. OTHERWISE is equivalent to a
WHEN but matches any value.

Examples

CASE A% OF
CASE Y*2 + X*3 OF
CASE GET$ OF

239

CHAIN

240

CHAIN

Statement to load and run a BASIC program

Syntax

CHAIN expression

Argument

expression shou ld evaluate to a string which is a valid filename for the filing
system in use.

Examples

Note: A filing system error may be produced if. ror example. the file speci fi ed
cannot be found. When the program is loaded. all ex isting variables are lost
(except the system integer variables and insta lled libraries)

CHA I N "partB "
CHAlN aS+ "2 "

Keywords

CHR$

Function giving the character corresponding to an ASCII code

Syntax

CHR$ 1aclor

Argument

An integer in the range 0 to 255

Result

A single-character st ri ng whose ASCI I code is the argument.

Examples

PRINT' CHR$(code)
lower$ CHR$(ASC(upper$) OR &20)

241

CIRCLE

242

CIRCLE

Statement to draw a circle.

Syntax

CIRCLE (FILL) expressionl , exp.ression2 , expression3

Arguments

The expressions are integers in the range -32767 to +32768. The first two values
give the x andy coordinates of the centre of the ci rcle The third gives the radius.
CIRCLE produces a circle outline. whereas CIRCLE FILL plots a solid circle. The
current graphics foreground colour and action are used.

Examples

Note: In both cases. the position of the graphics cursor is updated to lie at a
position on the circumference which has an x coordinate of express i onl +

exp1 ession3 and a y coordinate of expression2. The ·previous graphics
cursor' position (as used by. for example. triangle plotting! will be updated to
lie at the centre of the circle plotted.

~~RCLS 6110,512,50
CIRCLE FILL RND(l278) , Rl'\0(1022) , RND(200) tSO

Keywords

CLEAR

Statement to remove al l program variables.

Syntax

CLEAR

Purpose

When this statement is executed. all variables are removed and so become
undefined. In addition, any currently active procedures, subroutines. loops, and so
on are forgotten. and LIBRARY and OVERLAY libraries are lost. The exceptions to
this are the system integer variables and INSTALLed libraries which still remain.

243

CLG

244

CLG

Statement to clear the graphics viewport to the graphics background colour. using
the graphics background act ion

Syntax

<..'I.G

Examples

CLC

MODE
CCOT. 130
VDU 7. ~,200 ; 200 ; 1080 ; 824 ;

CI ,C

Keywords

CLOSE#

Statement to close an open file

Syntax

CLOSE# factor

Argument

A channel number as returned by the OPENxx function If zero is used all open files
on the current fi l ing system are closed. Otherwise. on ly the file with the channel
number specified is closed.

Purpose

Note: you shouldn't use the CLOSE#O form within programs. as other
programs may be relying on fi les rema ining open. You shou ld on ly use it as an
immediate command. and possibly in a program during its development
~lage.

Closing a file ensures that its contents are updated on whatever medium is being
used This is necessary as a certain amount of buffering is used to make the
transfer of data between computer and mass-storage device more efficient Closing
a file. therefore. releases a buffer for use by another file

Examples

CLOSEl!indexFile
CLOSEl!O

245

CLS

246

CLS

Statement to clear the text viewport to the text background colour.

Syntax

C I,S

Note: CLS also resets COUNT to zero and moves the text cursor to its home
position, which is normally the top left of the text window.

Examples

CLS

MODE 1
COLOUR 129
VDU ~8.4,28 , 3~ . 4

CLS

Syntax

Keywords

COLOUR (COLOR)

Statement to set the text colours or alter the palette settings.

(1) COLOUR expression [TINT expression)
(2) COLOUR expression , expression
(3) COLOUR expression,expression,expression,expression

Arguments (1)

expression is an integer in the range 0 to 255. The range 0 to 127 sets the text
foreground colour. Adding 128 to this (i.e. 128 to 255) sets the text background
colour. The colour is treated MOD the number of colours in the current mode. The
argument is the logical colour. For a list of the default logica l colours, see the
chapter entitled Screen modes on page I 07.

The optional TINT is only effective in 256-colour modes It selects the amount of
white to be added to the colour. The value can lie in the range 0 to 255. with only
the values 0. 64. 128 and 192 currently being used to obta in different whiteness
levels Colours in the 256-colour modes are in the range 0 to 63

Arguments (2)

The first expression is an integer in the range 0 to 15 giving the logical colour
number The second expression is an integer in the range 0 to 15 giving the actual
colour to be displayed when the logical colour is used The actual colour numbers
correspond to the default colours available in 16-colour modes. eight steady
colours and eight nashing colours. The colou r list is given in the chapter entitled
Screen modes on page 107.

This form of the command sets the palette, so any changes are visible immediately.

In WIMP-based programs. you should use the ca ll Wi mp_SeLPaleL Le to control
the palette

Arguments (3)

The first expression is an integer in the range 0 to 15 giving the logical colour
number. The next three expressions are integers in the range 0 to 255 giving the
amount of red. green and blue which are to be assigned to that logical colour. Only
the top four bits of each are relevant with the current video display hardware. Thus
distinct levels are 0, 16, 32

247

COLOUR (COLOR)

Note. The keyword is listed as COLOUR in programs. even if it was typed in
using the alternative spell ing

In all modes the default state before any changes to the !Jalette. dictates that
colour 0 is black and colour 63 is white

Only colours 0 and I are un ique in two-colour modes After that the cycle
repeats Similarly, only colours 0. I . 2 and 3 are distinct in the four-colour
modes

In WIMP-based programs. you shou ld use the call '>'I i mp_Sct Palette to
control the pa lette.

Examples

COLOuR 128+1 : REM t ext background colour I
COLOUR 1 , 5 : REM l ogical colour 1 = co l our 5 (magenta)
COI~OUR 1 , 255 , 255 , 255 : REM logical colou t· 1 while

248

Keywords

cos
Function giving the cosine of its numeric argument.

Syntax

COS factor

Argument

Result

factor is an angle in radians.

Real between -I and+ I inclusive.

Note If the argument is outside the range -8388608 to 8388608 radians. it is
impossible to determine how many ns to subtract. The error Accuracy lost
in sine/cosine/tangent is generated.

Examples

PRINT COS(RAD(45))
ad:acent = hypotenusc*COS(ang l e)

249

COUNT

250

Syntax

Result

COUNT

Funct ion giving the number of characters printed since the last newline

COUNT

Posi tive integer, giving the number of characters outpu t since the last newline was
generated by BASIC.

Note COUNT is reset to zero every time a ca rriage return is prin ted (which may
happen automatically if a non-zero WIDTH is l:leing used) . It is incremented
every lime a character is output by PRINT. INPUT or REPOI<T. but not when
output by VDU or any of the graphics commands. COUNT is also reset to ze ro
by CLS and MODE.

Examples

RE ,)f<,A'l' PRI NT " ";
UNTIL COUNT=20
chars = COUNT

Keywords

CRUNCH

Command to strip various spaces from a program.

Syntax

CRUNCH variable

Argument

vari ab 7 e is a 5-bit binary word Each bit in the variable has a special meaning. as
follows

strips out all spaces before statements. Bit 0 = I

Bit I = I strips out all spaces within statements. Note that CRUNCH %10
may make a program uneditable.

Bit 2 = I

Bit 3 = I

Bit 4 = I

strips out all REM statements, except those on the first line.

strips out all empty statements.

strips out al l empty lines.

The interpreter has been optim ised for fully CRUNCHed programs

Note that. in BASIC VI. programs with -quit set wi l l be CRUNCH %1111 , as will
LIBRARY subprograms BASIC V will also do this if the OS variable BASICSCrunch
exists. OVERLAY statements will not be CRUNCHed.

Restrictions

The BASIC 1.04 interpreter cannot read assembler statements that have been
CRUNCHed; for example EORR4 , R4, R5. Setting bit 4 to I may cause problems in
constructs that expect an empty line as the target (e.g. GOTO. GOSUB. IF THEN.
RESTORE) .

Examples

CRUNCH %1101
CRUNCH %10011

251

DATA

252

DATA

Passive statement marking the position of data in the program

Syntax

DATA f expression] [,expression), etc

Argument

The expressions may be of any type and range, and are only evaluated when a
READ statement requires them.

Examples

Note: The way in which DATA is interpreted depends on the type of variable in
the READ statement. A numeric READ evaluates the data as an expression.
whereas a string READ treats the data as a literal string. Leading spaces in the
data item are ignored. but trailing spaces (except for the last data item on the
line) are counted. If it is necessary to have leading spaces. or a comma or
quote in the data item, it must be put between quotation marks. For example

100 DATA " HI .. , .. A , B , " , " " "ABCD"

If an allempl is made to execute a DATA statement, BASIC treats it as a REM
In order to be recogn ised by BASIC, the DATA statement. like other passive
statements. shou ld be the first item on a line.

DATA can, Feb, Mar, Apr, t•lay, Jun, Jul , Aug, Sep, Oct, Nov, Dec
DATA 3.~6,4,4.3,0

Syntax

Passive statement defining a function or procedure

(!) DEP FNproc-part

(2) DEF PROCproc-part

where proc-part has the form idenLi f ier((pdtclmeLer - 1 i st J]

Parameters (1) and (2)

Keywords

DEF

The optional parameters, which must be enclosed between round brackets and
separated by commas, may be of any type. For example: parm. parm%, parm$.
! parm. $parm. lt may be preceded by RETURN to use value-result passing instead
of simple va lue passing. In add ition, whole arrays may be passed as parameters,
ega{).a${).

Purpose

The DEF statement marks the first line of a user-defined function or procedure. and
also indicates which parameters are requi red and their types The parameters are
loca l to the function or procedure (except for arrays). and are used within it to
stand for the values of the actual parameters used when it was called

Note: Function and procedure definitions should be placed at the end of the
program so that they cannot be executed except when called by the
appropriate PROC statement or FN function The DEF statement should be the
fi rst item on the line. If not. it wi ll not be found

Examples

DEF FNmean(a , b)
DEF PROCinit
DEP PR0Cthrow_dice {d%, tries , RETURN mcsg$)
~EP PROCarray_determinant(A () J

253

DEG

254

Function returning the number of degrees of its rad1an argument

Syntax

DEG t.acLor

Argument

Any numeric value.

Result

A rca I eq ua I to 180 • nln where n is the a rgu mcnt's va I ue.

Examples

clrlg 1 e=DEG (A'Df (a})
L'!HNT DEG (PI I~)

DEG

Keywords

DELETE

Command to delete a section of the program.

Syntax

~ELETE integer, integer

Argument

Integer constants in the range zero to 65279. They give the fi rst and last li ne to be
deleted respectively. If the first line number is greater than the second. no l ines are
deleted. To delete just a single l ine the DELETE command is not necessary. Instead
type the line number and press Return .

Examples

DELETF. 5 , 22
DJ:.: LETE 110 , 1!:!0

255

DIM

256

Syntax

Statement declaring arrays or reserving storage
Function returning information about an array

DIM dim pan [,dim-par-e : elc

where dim-part is:

(1} idcntificrL% or$] (exprcssion[,expu~s~;ion] etc}

or

(/.) numeric-variable space expression

or as Cl function:

(~) DlM(aJray)

(<1) lJlM(array,expression)

Argument (1)

DIM

The i dtnLi f; ercan be any real. integer or string vcniable name The expressions
arc integers which should be greater than or equal to Lero They declare the upper
bound of the subscripts; the lower bound is always zero

This is the way to declare arrays in BASIC They may be multi dimensional the
bounds are limited only by the amount of memory in the computer Numer1c arrays
arc initialised to zeros and string arrays to null strrngs

Argument (2)

The numeric-variable is any integer or real name It is always global. even if it
is declared locally. The express ion gives the number of bytes of storage required
minus one, and should be -I or greater It is limited only by the amount of free
memory.

The use of th is form of DIM is to reserve a given number of bytes of memory, in
which to put for example. machine code. The address of the first byte reserved.
wh ich will be a multiple of four. is placed in the num~ric-variablr. The byte array is
uninitialised.

Keywords

Argument (3)

The array is the name of any previously DIMed array, or an array used as a formal
parameter in a procedure or function. The result of the function is the number of
dimensions which that array has.

Argument (4)

The array is the name of any previously DIMed array or an array used as a formal
parameter in a procedure or function The expression is a number between one and
the number of dimensions of the array. The result of the function is the subscript o f
the highest element in that dimension, i.e. the value used for that subscript in the
DIM statement that declared the array in the first place.

Note: It is possible to have local arrays, whose contents are discarded when
the procedure or function in which they are created returns. See LOCAL on
page 31 I.

Examples

DIM name$ (num_names%)
DIM sin(90)
DIM maLrix%(4,4)
DIM A (64) , B% (12, 4) , C$ (2 , 8 , 3)
DIM byt es% size*lO+overhead
PRINT DIM(namc$())
size%=DlM (name$() ,1)

257

0/V

258

DIV

Integer division

Syntax

opt?J"and DlV ope1 and

Operands

Result

Integer-range numerics. Rea is are converted to integers before the divide
operation is carried out The righthand side must not eva luate to zero.

The (i ntegcr) quotient of the operands is always rounded towards zero. If the signs
of the operands are the same, the quotient is posit ive. otherw ise it is negative. The
remainder can be found using MOD.

Examples

tRINT (firsc-last) DIV 10
c~% space% DIV &100

Keywords

DRAW

Statement to draw a line to speci fi ed coord inates.

Syntax

DPAW [BY] expression,expression

Arguments

The two expressions give the coordinates of one of the end points o f a stra ight line.
The other end point is given by the current graph ics cu rsor position After the line
has been drawn (using the graphics foreground colou r and action]. the graph ics
cursor is updated to the coordinates given in the DRAW statement

If the keyword BY is omitted. the coordinates are absolute. That is. they give the
position of the end of the line with respect to the graphics origin. If BY is included,
the coordinates are relative. That means they give the position of the end o f the
line with respect to the current graphics cursor position

Examples

DRM'l 640,5 12 : REM Draw a l i.ne to middle of the screen
DRA\t·l BY dx%, dy%

259

EDIT

260

EDIT

Command to enter the BASIC screen editor.

Syntax

t·.JI 'I'

Purpose
ED 1' 'enters the BASIC screen editor to allow you to create a new program or
amend the current one. Full details of the ed itor are given in the chapter entitled
Ed iring BASIC files on page 185.

Keywords

ELLIPSE

Statement to draw an ellipse.

Syntax

r~L .. ,I PSE: ~FILL I expr 1' expr2' expr 3 ' expr4 r ' expr 5 I

Arguments

exprl to expr5 are integer expressions. The first two give the coordinates of the
centre of the ellipse. The th ird expression gives the length of the semi-major axis.
This is the axis paral lel with the x axis if the ell ipse is not rotated. The fourth
expression gives the length of the semi-minor axis. This is the axis para llel with the
y axis if the ell ipse is not rotated .

The optiona l fifth expression gives the rotation of the ell ipse. in radians.
anti-clockwise.

ELLIPSE draws the outline of an ellipse. ELLIPSE FILL plots a solid ellipse.

Examples

Note The ELLIPSE statement has some (minor) restrictions about the size of
its operands. if both of the semi-axes are of length zero. then you are not
allowed to specify a rotation value If the semi-minor axis length is zero. then
the rotation . if specified. must not be zero. The result of trying to draw any of
these 'illegal' ellipses is a D' v · s' on by zero error

FJ,J,JPSE 640 ,512,200 ,1 00
ELLIPSE FILL x%,y%,majo~%,mino1%,ang

261

ELSE

262

ELSE

Part of the ON GOTO/GOSUB/PROC ... ELSE or IF ... THEN ... ELSE or IF ... THEN
... ELSE ... ENDIF constructs.

Syntax

See IF and ON entries, as appropriate.

Examples

Note: ELSE may occur anywhere in the program, but is only meaningful after
an IF (multi- or single-line) or ON ... GOSUB/GOTO/PROC statement. When
used as part of a multi-line IF statement. it must be the first non-space object
on the line.

IF a=b THEN PRINT "hello" ELSE PRINT "good- bye"
IF ok ELSE PRINT " Error "
ON cho ice GOSUB 100.~00,300,400 ELSE PRINT"Bad choice "

IF num>=O THEN
PRINT SQR(num}

ELSE
PRINT "NegaLive number "
PRTN'f SQR(- num)

ENDIF

Keywords

END

Statement terminating the execution or a program or a function returning the top
or memory used

Syntax

Statement setting the highest address used by BASIC.

Function returning the address or the end of BASIC variables

as a statement:

(1) END
(2) END = expression

as a function

(3) END

Purpose (1)

The END statement terminates the execution or a program

Note· This statement is not always necessary in programs. execution stops
when the line at the end or the program is executed However. END (or STOP)
must be included if execution is to end at a point other than at the last
program line This prevents control falling through into a procedure. function
or subroutine END is also useful in error handlers

Purpose (2)

When used in a assignment. END sets the highest address used by BASIC when
running under the WIMP. This can be used by programs running under the WIMP to
claim more memory from the free pool. or alternatively to give up unrequired
memory.

The expression should be an integer giving the new va lue for HIM EM After the
cal l. memory above the given address wil l be de-a llocated and HIM EM wi ll be set
to that location. In addition. loca l arrays and insta lled libraries are clea red.

Restrictions on the use of END=

• 1.04 Interpreter
As HIM EM holds the address of the start of the stack. you should not use this
statement if there is anything on the stack. i e you should not use it within
PROCs. FNs or any looping construct

263

END

264

• 1.05 interpreter
You can now use END= almost anywhere. except with INSTALLed libraries.
nested within EVAL or LOCAL ERROR. nested within assignments to local
arrays. or within nested local arrays

If there is not enough free memory to set HIM EM to the requested value. the error
Attempt to allocate insufficient memoryisgiven

Purpose (3)

The END function returns the address of the top of memory used by a program and
its variables. The expression END-TOP gives Lhe number of bytes used by variables
(except LOCAL arrays). and OVERLAY and LIBRARY libraries

Examples

PRINT END
CND = &10000 REl-1 only need 32K Lo RUN

Syntax

Keywords

ENDCASE

Statement marking the end of a CASE ... OF ... WHEN ... OTHERWISE ...
ENDCASE construct.

ENDCAS J::

Note: ENDCASE must be the first non-space object on the line. When the
statements correspond ing to a WHEN or OTHERWISE statement have been
executed. control then jumps to the statement following the EN DCASE. If
ENDCASE itself is executed. it signa ls the end of the tASE statement. no
~""'atches having been made. Control then continues as normal.

265

ENDIF

Syntax

266

ENDIF

Termmatesan IF ... THEN ... ELSE ... ENDIF'construct

1-:Nu l F

Note· ENDIF' marks the end o f a block-structured IF' statement It must be the
fi rst non-space object on a line. When the statements corresponding to the
THEN or ELSE statement have been executed. contro l jumps to the statement
fo llowing the ENDIF. If ENDIF itself is executed. it signa ls the end of the IF
statement. nothing having been executed as a result of it. Control then
continues as normal.

Keywords

ENDPROC

Statement marking the end or a user-defined procedure

Syntax

ENDPROC

Purpose

When executed. an ENDPROC statement causes BASIC to terminate the execution
of the current procedure and to restore local variables. actual parameters. LOCAL
DATA and LOCAL ERROR. Cont rol is passed to the statement after the PROC which
called the procedure. ENDPROC' should only be used in a procedure Otherwise.
when it is encountered. a Not in c:t procedure error message is generated.

Examples

E::\DP~OC

IF a< 0 THEN EN~PROC ELSE PROCrecurse(a - 1)

267

END WHILE

268

Syntax

ENDWHILE

Statement to terminate a WHILE ... ENDWHILE loop.

END'v·IH I [E

Note When an ENDWHILE is executed. control loops back to the
corresponding WHILE statement. The statements forming the WH ILE ...
ENDWH ILE loop are executed until the condition following the matching
WHILE evaluates to FALSE. whereupon control jumps to the statement
following the ENDWHILE.

Example

I\10Dt·: 1:,
I NPUT X
•,,IH I l. b~ X > 0

GCOL X
CIRCLE ?I~L 640,512,X
X - 4

ENul'iHl L I::

Keywords

EOF#

Function indicating whether the end of a file has been reached.

Syntax

EOFtt Iact.or

Argument

A channel number returned by an OPENxx function

Result

TRUE if the last character in the specified file has been read, FALSE otherwise. EOF
for a file may be reset by positioning its pointer using the PTR# statement.

Examples

REPEl'.T
V::>U BGETtt[i le

UNTI :" EOFI* f ilc

IF EOF#i nvoices PR: NT' "No more invo i ces "

269

EOR

270

EOR

Operator giving the bitwise exclusive-0 1~ (EOR).

Syntax

relationdl EOR relational

Operands

Result

Relational expressions. or bit values to be E:.ORed

The logica l bit wise EOR of the operands. Corresponding bits in the operands are
EORed to produce the result. Each bit in the resu lt is zero if the corresponding bits
in the operands are equal. and otherwise one.

Examples

PR:NT height>lO EOR weight<20
bits = mask EOR valuel

Syntax

Result

Keywords

ERL

Function returning the last error line.

ERL

Integer between 0 and 65279. This is the line number of the last error to occur. An
error line of 0 implies that the error happened in immediate mode or that there has
not been an error.

Note: If an error occurs inside a LIBRARY, INSTALL or OVCRLAY procedure.
ERL is set to the number of lhe last line of the main program. It does not
normally indicate where in lhc library the error occurred.

Examples

REPORT : IF ERL<>O THEN PRINT " at line "; E'RL
IF ERL=3245 PRINT "Bad function, try agaiP"

271

ERR

272

Syntax

Result

ERR

Function returning the last error number

ERR

A four-byte signed integer. Errors produced by BASIC are in the range 0 to 127.

Note The error number 0 is classed as a fatal error clnd cannot be trapped by
the ON ERROR statement. An example of a fatal error is that produced when a
BASIC STOP statement is executed.

Examples

IF ERR=18 THEN PRINT "Can'L usc zero ; try again !!"

IF ERR = 17 THEN PRINT " Sure?" : A$=GETS: :::r- INSTR (" Yy ", AS)

THEN STOP

Keywords

ERROR

Generates an error. or is part of the ON ERROR statement.

Syntax

(1) ON ERROR ...
(2} ERROR [EXT) expressionl , expression2

Note (I): See ON ERROR for deta il s of the error handling statements.

Arguments (2)

expression 7 evaluates to a four-byte signed integer corresponding to an error
number. expression2 eva luates to a string associated with this error number.
The error described is generated. in the same way as interna l BASIC errors. Thus
ERL wil l be set to expressi onl and REPORT$ set to expression2. The current
error hand ler will then be called . unless the error number is zero. in which case a
fatal 1 untrappable) error wil l be generated

If the keyword EXT is present, then BASIC terminates and the error number and
string are passed to the error hand ler of the program that invoked BASIC. The
default BASIC error hand ler uses this if the qu i t option was given on the
command line.

Examples

ERROR 6 , "Type mismatch : number n eeded "
ERROR ~XT SRR ,REPORT$: REM pass on the erro~

273

EVAL

274

EVAL
Function which evaluates its string statement as an expression

Syntax

EVAL factor

Argument

A string which EVAL evaluates as a BASIC expression.

Result

EVAL can return anything that could appear on the righthand side of an
assignment statement, includ ing strings. It can also produce the same errors that
occur during assignment. For example:

Type mismatch: number needed

and

No such function/procedure.

Examples

... NPUT hex$
PRINT EVAL (" & "+hex$)

($:"LEF'TS("
e$=EVAL(f$+" "" A!3CDE """, 2) ")

Keywords

EXP
Function returning the exponential of its argument.

Syntax

EXl' facr.or

Argument

Result

Numeric from the largest negative real(about -I E'38) to approximately +88.

Positive real in the range zero to the largest positive real(about I E38). The resu lt
could be expressed as the argument where E is the constant 2. 718281828.

Example

UEF ~Ncosh{x) = (~XP(x} + ~XP(- x) }/2

275

EX T#

276

EXT#

Pseudo-variable returning or setting the length (extent) of an open file.

Syntax

(1) EXT #factor
(2) J::: XT!ffactoro...exp r ession

Argument (1)

Result

facLor is a channel number, as allocated by one of the OPENxx functions.

Integer giving the current length of the file from 0 to. in theory 2147483648.
although in practice the extent is limited by the file medium in use.

Argument (2)

factor is a channel number as allocated by one of the OPENxx functions

expression is the desired extent of the file. whose upper limit depends on the
filing system. The lower limit is 0. The main use of the statement is to shorten a file
For example: EXTHile=EXT#f i l e-&1 000. A file may be lengthened by
explicitly using PTR#, or implicitly by BPUTing to its end.

Examples

Note As with all the pseudo-variables. the LET keyword and the operators +=
and-= cannot be used with EXT#.

EXT is also used a part of the ERROR EXT ... statement; see the ERROR
keyword for details.

IF EXT#fi l e>90 00 0 THEN PR l NT · ~i le f ul l ": CLOSE #f i l e
EXT#op=EX~~Op+&2000

Keywords

FALSE

Function returning the logica l va lue FALSE.

Syntax

FALSE

Result

The constant zero. The function is used mnemonically in logica l or cond itional
expressions.

Examples

flag=F'ALSE

REPEAT
CIRCLE RND(1279) , RND(1024),RND(200)

UNTIL Fl\LSE

277

FILL

278

FILL

Flood-fill an area in the current foreground colour

Syntax

~lwL lAY] expression , exprcssion

Arguments

The two expressions give the coordinates of the point from which the flood-fill is to
commence (the 'seed' point) The filled pixels are plotted using the current
foreground colour and action over an area bounded by non-background colour
pixels and the graphics viewport. If the seed point is in a non-background colour.
then no filling takes place at all.

The graph ics cu rsor is updated to the coord inates given.

If the keyword BY is omitted. the coordinates are absolute. That is. they give the
position of the seed point with respect to the graph ics origin . If BY is included. the
coordinates are relative . That means they give the position of the seed point with
respect to the current graphics cursor position

Examples

FILL x%,y%
!'ILL BY dx%, dy%

Syntax

Word introducing or calling a user-defined function .

(1) DEP FNproc-part

(2) F'Nproc-part

Keywords

FN

Argument (1)

For the format of proc-part, see DEF above. It gives the names and types of the
parameters of the function , if any. For example

1000 DEF FNmin(a%,b%) I F' a%<b% THEN -a% ELSE b%

a% and b% are the formal parameters They stand for the expressions passed to the
function (the actual parameters) when FNmin is called. The result of a user-defined
function is given by a statement starting with =. As the exampl e above shows. there
may be more than one = in a function . The first one which is encountered during
execution terminates the function.

Note User-defined functions may span several program lines. and contain all
the normal BASIC statements. for example. FOR loops. IF statements, and so
on. They may also declare local variables using the LOCAL keyword .

Argument (2)

proc-part is an identifier fol lowed by a list of expressions (or array or RETURN
variables) corresponding to the forma l parameters in the DEF statement for the
function. The result depends on the assignment that terminated the function. and
so can be of any type and range. An example function call is

PRINT FNmin{2*bananas% , 3*apples%+1)

Examples

DEF FNfact(n%) IF n%<1 THEN =1 ELSE =n%*FNfact(n%-1)
DEF F~hex4(n%)=RICHT$(" 000"•STR$-(n%) ,4)
REPEAT PRINT FNhex4(GET) : UNT IL FALSE

279

FOR

280

FOR

Part of the I 'OK ... NI-;XT statem ent

Syntax

:-CJI' Veil i diJ! c l 'Xpressio;. TO , •;.:p res si o n ~ S':'EP exprc~;sion]

Arguments

The vanablc can be any numenc variable reference. The expressions can be any
numenc expressions though they mu-;tl le in the integer range if the vanable is an
integer one It is recommended that integer looping variables are used lor the
following reasons.

• the loops go faster

• rounding errors are avoided

If the STEP part is omitted . the step is taken to be+ l The act ton of the FOR loop is
as follows The looping variable is set to the first expression The limit expression
and step, if present , are remembered for later The statements up to the matching
NEXT arc executed At this stage. the step is added to the looping vanable The
term ination condition is that. for positive steps. the looping vanable has become
greater than the limit. and for negative steps it has become less than the ltmit If
this condition is met. control continue.;; il l the statement after ttw NEXT
Otherwise. control jumps back to the statement after the NEXT

Examples

Note The statements between a l OR and its corresponding Nl:.XT dre
executed at least once as the test for loop termination is performed at the
NlXT rather than the FOR Thus o loop started with FOR I I TO 0 executes
once. with I set to I in the body of the loop. The value of the looping VilTiable
when the loop has finished should be treated as undefined. and should not be
used before being reset by an ass1gnment

FOR ac'ldr %- 2 00 TO 8000 S 1'1 ' I ' 11
FOR I - 1 TO LEN(a$}

Keywords

GCOL

Statement to set the graphics colours and actions.

Syntax

GCO I, [expression/ ,) expression?. (TINT expression]]

Arguments
\

i l\
\

GCOL sets the colou r and plot mode that wi ll be used in subsequent graphics
operations

expressi onl . if present is an integer between 0 and 255 which determines the
plot ·action·, i.e. how the graphics colour, expression2, will be combined with
what's on the screen when plotting points. lines. etc. Its basic range is 0 to 7. as
shown below

Action

0
I
2
3
4

'5
6
7

Meaning

Store the colour expressio112 on the screen
OR the colou r on the screen with expression2
AND the colour on the screen with expression2
EOR the colour on the screen with expression2
Invert the cu rrent colou r. disregarding expression2
Do not affect the screen at all
AND the colour on the screen with the NOT expression2
OR the colour on the screen with the NOT expression2

Although action 5 does not actua lly alter the screen. each pixel is accessed as
though the operation was taking place. so it is no quicker than the other actions.

If you add n# 16 to the action number. then colour patterns are used instead of
solid colours. n is in the range I to 4 for the four basic patterns, or 5 for a large
pattern made from the other four placed side by side. VDU 23,2 to VDU 23.5 are
used to set the colou r fil l patterns. If the cu rrently selected pattern is re-defined. it
becomes active immediately.

If you further add 8 to the aclion, then where the colour pattern contains the
current graphics background colour, nothing is plotted, i .e. that colour becomes
transparent . For example. suppose the display is a four-colour one, and the current
background colour is 129 (red).

281

GCOL

282

Now. if pattern I was selected as the foreground colour (GCOL 16, 0). a solid
rectangle would be red-yellow. as pattern I consists of alternating red and yellow
pixels llmvever. if the foreground colour was set using GCOL /.II, 0 (adding 8 to
the plot action number). then a solid rectangle would appear yellow. with
transparent 'holes· where the red pixels wou ld have been plotted

Adding 8 to the action also causes sprite plotling to use the transparency mask. if
present. See the chapter entitled Sprites on page 147 for more detai Is

If cxprcssion1 is omitted. 0 is used. which means that the colou r given is stored
onto the screen.

The colour number, expression?.. is in the range 0 to 255. Values be low 128 are
used to set the graphics foreground colour. Other values set the background
colour. For example. colour 129 sets the background colour to 129-128. or I. The
number is treated MOD the number of colours in the cu rrent mode. i.e. 2. 4. 16 or
64 . Thus in 256-colour modes. the colour range is 0 to 63 lor 128 to 191 for
background).

The TINT value. if present. is used to add one of four whiteness levels to the 64
colours available in the 256-colour modes. giving the total 256 possible hues.
expression] is in the range 0 to 255. where currently the only sign ificant levels
are 0. 64. 128 and 192.

Note: WIMP-based programs should use Wimp_SetColour or
ColourTrans_ReturnGCOL. not GCOL.

Examples

GCOL 2
DRM·.J 100 ,1 00 REM ~raw d line in colour 2

GCOL 4,128
CLG REM Invert the graphics window

GCOL 1.2 RSM OR the screen with co~our 2

GCOL 18 TINT 128

Keywords

GET

Function returning a character code from the input stream (e.g. keyboard. RS423.
etc)

Syntax

Result

GET

An integer between 0 and 255. This is the ASCII code of the next character in the
buffer of the currently selected input stream (keyboard or RS423) The function wi ll
not return unti l a character is available, and so it can be used to halt the program
temporarily.

Note The character entered is not echoed onto the screen. To make it appear
you must expl icitly PRINT it

Examples

PRINT " Press space to continue " : REPEAT UNTI L GET=32
ON CET-127 PROCa , PROCb , PROCc ELSE PRINT " I llegal entry"

283

GET$#

284

GET$#

Function returning a string from a file

Syntax

Gr .. "'$!1 tdctoi

Argument

Result

A channel number returned by an OPLNxx function

A string of characters read until a linefeed (ASCI I I 0). carriage return (ASCII 13).
nul l character (ASCII 0) or the end of the file is encountered. or else the maximum
of 255 characters is reached The terminating character is not returned as part of
the string.

Note PTR# is updated to point to the next character m the file If the last
character 1n the file has been read. EOF# for the channel will be TRU[

Examples

string$ - G~T$#channcl

PRIK~ G~T$4file~o

Keywords

GET$

Function returning a character from the input stream (e.g. keyboard) .

Syntax

GI::TS

Result

A one-character string whose value would be CHRS(GET) if GET had been called
instead. Th is is provided so you can use statements like IF GETS=''*". . . rather
than IF' CH R$(GET)="* "

Examples

PRINT "Do you wanL anot her game? ": responseS =GET$
IF response$ - "Y" or responseS = " y " CHAIN "progr am "

PR I NT " lnput a digit "; : PRI NT GET$

285

GOSUB

286

GOSUB

Statement to call a subroutine

Syntax

(1 J GOS!JB expression

(2) ON expression GOSLJB expression.i [,t?Xl)lessioi,.? . .. ,

(~:1 S~: Rtaternent]

Argument (1)

0xp1 cssion should evaluate to an integer between 0 and 65279. in other words a
line number. If the expression is not a simple tnteger (e g. 10301 it ~hould be
enclosed between round brackets. The line given is jumped to . and contro l is
returned to the statement after the GOSUI3 by the next R[TlJRN statement.

Argument (2)

exp1 cssion should evaluate to an integer If this integer IS n then the nth
subroutine listed after the GOSUB is jumped to If the integer 1s less than 1 or
greater than the number of line numbers given, the statement fol lowing the ELSE.
tf 1t IS present is executed.

Examples

Note Procedures should be used in preference to subrouttnes since they arc
more flexible and produce a better structured program The ltne number after
GOSUB should be a constant so that RENUMBER works properly

.0 GOSUB 2000

~0 COS IJB (/.300+2C"'opt l : ?FY not r·~n~

1:l ON x% C:OS;JR 1C0,2C0 , 30() ELSE P?.IK'I "011t of Y.Jror·"

Syntax

Keywords

GOTO

Statement to transfer control to another line.

(1) GOTO expression
(2) ON expression GOTO expre~sionl [,expression2 ... l [ELSE
statement)

Argument (1)

expression shou ld evaluate to an integer between 0 and 65279: a line number. If
the express ion is not a simple integer. it should be placed between round brackets.
This line number is jumped to and execution carries on from this new line.

Argument (2)

expression shou ld eva luate to an integer. expression] ... should evaluate to
integer line numbers between 0 and 65279. If the first integer is n then the nth line
after the GOTO is jumped to. If the integer is less than I o r greater than the number
of line numbers given. the statement following the ELSE, if it is present. is
executed.

Note The line number after GOTO shou ld be a constant so that RENUMBER
and APPEND work properly.

Examples

GOTO 230
IF T:ME<JOOO THEN GOTO lCOO
ON x COTO 20,50 , 3C,l60

287

HELP

288

HELP

Command giving help information .

Syntax

HEL P [keywordl

Purpose

HI:: Ll-' d isplays a list of useful information about the status of BASIC. If the
keyt..;ord is present. help about that particular command, statement or function is
printed To obtain a list of all keywords. type HELP .

Examples

HELP

HELP HI!vJ.

HELP

Syntax

Pseudo-variable holding address of the top of the BASIC stack.

(1) HHl E:vl

(2) E::: IVJE1'1 expression

Keywords

HIM EM

Result (1)

An integer giving the address of the location above the end of user memory. The
amount of user memory is given by HIM EM - LOMEM and the amount of free
memory by HJMEM END.

Argument (2)

expression should be an integer between LOMEM and the top of usable
memory It restricts the amount of memory which the current program can use for
workspace stacks etc. hence giving an area where data. or machine code rout ines
can be stored.

Examples

Note: If HIM EM is set carelessly, running the program may produce the No

room error. There must always be enough for the stack.

The INSTALL statement lowers HIM EM by the size o f the library being
installed.

When an attempt is made to set HIM EM. LOMEM, o r PACE to an illegal value,
a warning message is displayed, and no change is made. but the program
nevertheless continues to run . Th is means that such errors cannot be·trapped
using ON ERROR.

PRINT "Memory available- ";H IMEM - LOMEM
a% HlMEM- 10 08 : HI~EM-a%

289

IF

290

IF

Statement to execute statements conditionally

Syntax

(~)

IF expr ['l'HFN] [sLatcments ... l
[[1-'f SF ; [stdtements ... J J

(2}

l~ expzession THEN

[stdtPments .. .]
[I·' LSI.!. [star..ement.s . ..)

.-it r1 t ~.·ner? L- .s . .. ~

Arguments (1)

cxp1 is treated as a truth value If it is non-zero. it is counted a<. TRUE and any
,.., •'L'mcnts in the THEN part are executed If the expression eva luates to zero
1r/\JSEJ then the ELSE part sratemenrs are executed

:·tat emcnt s IS either a list of zero or more statements separated by colons or a
line number In the latter case there is an implied GOTO after the THEN (which has
to be present) or ELSE.

Note The THEN is optional before statements except before* commands For
example

IF <· ~'-!3N *CAT

not

I fo' d *C.l\':'

The ELSE part matches any I r. so be wary o f ne~ting IFs on a line Constructs of
the form

l fo' Ll Til E!\ .. . Jf:o b ' l 'f l f.:J\ ... ELSE . 00

'i hould be avoided because th e FLSE part might match ei ther the fi rst o r
second IF depend ing on the va lues of a and b To avoid the ambigu ity u~e a
multi l ine IF of t he form ·

H a 'THE:\

:::F b 'THE:\

ELSE

FNDlF

F:\IDIF

or

depending on the effect required .

However. the form

If' u THEN
l F' h I'Ht.N

bND:::I-

SI.SE RI-.YJ pat L of IF o

ENDE·

TF a ~:.;EN ... 3LSE IF b 'lllf~ ...

is nol ambiguous and can be used with no problems

Arguments (2)

Keywords

expt ess ion is treated as a truth value. If it is non-zero. il is counted as TRUE and
any statements on the line after the THEN down to either an ELSE or an ENDIF are
executed. If the expression evaluates to zero (FALSE). any statements following the
ELSE (if present) until the ENDIF are executed Note thnl in lhis form THEN must
be the last thing on the line.

Examples

IF Le"'p<. :c PROClow_ :..er:tp
If a% ·b% ':'HEN Sit;Ap a%, b% EI SF. ?RINT "No swap"

IF B'2 >= 4*A•C 'THEN
?ROCroots(A,B,Cl

ENDIF

IF r$ = "Y" ORr$= " y " 'Jlli::N

PRINT "YES"
r-: 1 .s~:

I'Hil\'1 " NO"

S'l'OL'

END1!7

291

INKEY

292

IN KEY

Funct1on retu rning a cha racter code from the cu rrent input stream. or interrogating
the keyboard

Syntax

(1) INKEY positive-factor
(21 TNKEY negacive-factor
(~) INKEY 2S6

Argument (1)

Result

1\n integer in the range 0 to 32767, which is a time l imit in ce nti -seconds.

The /\SCI I code of the next character in the current input buffer i f one appears in
the time limit set by the argument, or - 1 if a time-out occurs

Argument (2)

Result

An Integer in the range -255 to - I . which is t he negative IN KEY code of the key
being interrogated (see Appendix D- lnkey values on page 427 for details)

TI~UE 1f the key is being pressed at the t1me of the call. F/\I.SE 1f 1t is not

Argument (3)

2S6

Result

1\ number indicating which version o f the operating system is in the computer.

Examples

DP.F· PROCwc:l it (sees%)
l ~ lNK ~Y(l OO * secs%) : REM throw awdy result
ENO l' ROC

lF lNKEY(-99) T HEN REPEAT UNTTT. NOT TNi<F.Y(-99)

Keywords

IN KEY$

Function retu rning a cha racter from the input stream

Syntax

. IJKEY$ factor

Argument

As IN KEY (I I

Result

Where IN KEY would return - I, IN KEYS returns the nul l string "" . In al l other
situations, it returns CHR$ (I N KEY a rgumen 1) .

Example

A$ - INKLYS(SOO)

293

INPUT

294

INPUT

Statement obtatning a value or values from the input stream.

Syntax

INPUT is followed by an optiona l prompt. which. if present. may be fol lowed by a
semi·colon or comma, which causes a '? to be printed out after the prompt. Th is is
followed by a list of variable names of any type. separated by commas After the
lac;t va riable. the who le sequence may be repeated separated from the first by a
comma In additton the position of prompts may be controlled by the SPC TAB
and· print formatters (see PRINT on page 345)

Note Leading spaces of the input string itself are ~kipped. and commas are
taken as marking the end of input for the current item.

Examples

~NPUT a$: REM Print a simple " ? " as a prompt

I NPUT " How many ", m1r.1% RE:-1 prompt is " Pow many? "

I NPUT "Address &"hex$ REM "Address& " 110? because no ,

INPUT TAB(lO) "Name ", n$ ' TAB(l0) "Address ·, ~$

INPU~ a,b,c,d, "More ",yn$

INPU7 SPC(5) "Letter ", charS

Keywords

INPUT LINE

Statement obtaining a value or values from the input stream

Syntax

Result

Th1s has the same syntax as INPUT

If the input variable is a string. all the user's input is read into the variable.
including leading and trailing spaces and commas. If the input variable is numeric.
only a single va lue wi ll be selected from the beginning of the input l ine.

Note IN PUT LINE is equ ivalent to LINE IN PUT

Example

INPUT LlNE: " > " basic$

295

INPUT#

296

INPUT#

Statement obtaining a va lue or values from a file.

Syntax

TNPC'r# ractor l, '7ari ab le , variabl e . ..]

Arguments

factor is the channel number of the file from which the information is to be read.
as obtained by an OPENxx function. The variables. if present. may be of any type .
The separators may be semi-colons instead of commas.

Integer variables are read as &40 followed by the two's complement representation
of the integer in four bytes. most significant byte first.

5- byte real variables are read as &80 followed by five bytes. The first four bytes are
the mantissa and the fifth is the exponent The mantissa is read least significant
byte (LSB) first. 31 bits represent the magnitude of the mantissa and one bit (bit 7
of the fourth byte) the sign. The exponent byte is in excess- 128 form .

8- byte real variables are read as &88 followed by two 4- byte words. in IEEE Double
Precision (D) format The exponent is represented by bits 20 to 30 in the first word.
The sign bit is bit 31 in the first word. The mantissa is represented by bits 0 to 19 in
the first word and bits 0 to 31 in the second word.

Both BASIC V and BASIC VI can read 5- and 8- byte real formats.

String variables are read as a zero byte followed by a byte containing the string
length and then the characters in the string in reverse order.

Note Files read using INPUT# must adhere to the format described above.
which implies they should have been created using PRINT#. BASIC will
perform conversion between integers and floating point values where
possible.

Examples

I NPUT#d aLa , name$,addrl $,addr2 $, a dd r 3 $, age%
I NPUT#data ,$bu ffer , len

Keywords

INSTALL

Statement to load a funct ion or procedure library into memory

Syntax

TI\JS'Ti\1 .L expression

Argument

expression is a string which should evaluate to a filename that is valid for the
filing system in use

Purpose

INSTALL loads the chosen funct ion and procedu re library in to the top of memory
and lowers the BASIC stack and value of HIM EM by an appropriate amount The
library remains in memory until you QUIT from BASIC. Any number of libraries may
be installed provided that there is enough memory for them .

When searching for a procedure or function. BASIC looks in the following order:
first, the current program is searched. in line-number order; next. any procedure
libraries loaded using LIBRARY are searched· the most recently loaded file is
sea rched first; then. any INSTALLed libraries are examined, again in the reverse
order o f loading. Finally the OVERLAY library list is searched.

The LVAR command lists (the first lines of) libraries in the order in which they are
examined.

Examples

iNSTALL "Printout "
.i\. 5 = "Librc,ryl "
: NS':',;:,,LL A$

297

INSTR(

298

INSTR(

Function to find the position of a substring in a string

Syntax

INSTR(cxpLessionl ,expression2[,expressionJ])

Argument

Result

exp1 css ion J is any string which is to be searched for a substring

cxprcssion2 is the substring required .

cxpne>o' .s i on3 is a numeric in the range I to 2'55 and determines the position in
the main string at which the search for the substring wi ll start . Th is defaults to I.

An integer in the range 0 to 255 . If 0 is returned. the substring cou ld not be found
in the main string A result of I means that the substring was found at the first
character of the main string, and so on. The position of the first occurrence only is
returned

Note If the substring is longer than the main string. 0 is always returned If the
subst ring is the null string. the result IS always equal to t.'XPl t'.c:t; ion 1. or I if
this is omitted.

Examples

1{~.21!./\'1 a$=GE'l$: UJ\'T-I TNSTR("YyNn",dS) <> 0
po~%=INSTR(comS , "*FX",l 0)

Keywords

INT

Function giving the integer part of a number.

Syntax

INT fact.or

Argument

Result

Any integer-range numeric.

Nearest integer less than or equal to the argument Note that this is different from
rounding towards zero: whereas J 1\'T (1 . 5) equals I . INT (-1 . S 1 is equal to - 2.
not - I.

Examples

DEF FNround(ni=INT(n+O . S)
DEF FNTruncateToZero(n)=SGNn*! NT(ABS(n))
size=le~%*INT((~op-bot=om)/100)

299

LEFT$(

300

LEFT$(

Function returning. or statement altering. the left part of a string.

Syntax

(1) LEFTS(expressionl [,expression2])
(2) LEF1'S(variab1e [,expressionl]) exp1ession2

Argument (1)

Result

cxpr ess i on1 is a string of length between 0 and 255 characters.

exp1.ession2. if present. gives the number of characters from the left of the
string that are to be returned. If it is omitted. LEN (expression]) 1 is used. i.e.
al l but the last character of the string is returned. This is usefu l for stripping off
unwanted trail ing characters.

Characters from the left of expressionl. where the length o f the result is the
minimum of the length of expressionl and express i on2 (or the implied
default for expression2l.

Argument (2)

variable is the name of the string variable to be altered The characters in the
va riable are replaced. starting from the lefthand character (position f), by the
string exp1ession2. If the number expressio111 is present. th1s gives the
maximum number of characters that will be overwritten in the va riable. Otherwise.
it is the smaller of LENvariabl e and LENexp1·essi on2 the string's length can
never be altered by this statement

Examples

slarl$ - LEFTS(a$)
le[t ha l f$= LEFT$(input$,LEN(input$) DIV 2)
LCFT$(A$1 - "ABCD"
LCFT$(A$, n%} - B$

Keywords

LEN

runction returning the length of a string

Syntax

... eN facc:or

Argument

Any string of 0 to 255 characters.

Result

The number of cha racters in the argument string. from 0 to 255.

Note: The function SUM LEN returns th e tota l length of the elemen ts in a string
array.

Examples

RE?r.A'l' lNPUT aS : U!'<TIL LDl(aS)<=lO
JF .EN(lrS) > 12 THEN PRINT "Too long"

301

LET

302

LET

Statement assigning a va lue to a variable.

Syntax

LET variable expr e ssion

Argument

The vari able is any addressable object. such as a . a$. a%, ! a. a?10 . $a. a (1) ,
a () and so on.

expre ss i o n is any expression of the range and type allowed by the variable: for
rea is. any numeric; for integers. any integer-range numeric; for strings. any string of
length 0 to 255 characters. and for bytes any integer in the range 0 to 255 (though
an integer-range number will be treated AND &FF).

If the variable is a whole array. the righthand side obeys the rules described in the
chapter entitled Arrays on page 47.

Examples

Note The LET keyword is always optiona l in a variable assignment. and must
not be used in the assignment to a pseudo-variable For example. L F:'T'

TIME- 100 is i llega l.

LET s tart t ime=T I ME
LF.T a$ =LEFT$(a ddr$,10)
L ~T :ab le? i =127 *S LK(RAD(i))
LET a () = 1
T. ET .Z\% () - B% () - C% {)

Keywords

LIBRARY

Statement to load a function or procedure library into memory

Syntax

uiBRARY expression

Argument

expression is a string which shou ld evaluate to a filename that is valid for the
filing system in use.

Purpose

LIBRARY reserves an area in the BASIC heap (where variables are stored) and loads
the chosen function and procedure library into this area. It remains there until the
heap is cleared. Whilst the library is in memory, the current program can call any of
the procedures and functions it contains. See also INSTALL on page 297.

Examples

LIBRARY "Printout"

A$ "Libraryl"
LIBRARY AS

303

LINE

304

LINE

Draw a line between two points.

Syntax

LINE expression , expression , expression,expression

Arguments

The (integer) expressions are two pairs of coordinates between wh ich the line is
drawn. The line is drawn using the current graphics foreground colou r and action.
and the graphics cursor position is updated to the second pair of coordinates. It is
equivalent to a MOVE followed by a DRAW

Examples

LlNE 100 ,1 00 , 600 , 700
LINE xl,yl , x2 , y2
LINE xl , yl,xl+xoffset , yl+yoffset

Syntax

Result

Keywords

LINE INPUT

Statement obtaining a value or values from the input stream.

This has the same syntax as INPUT

If the input variable is a string. all the user's input is read into the vanable.
including lead ing and trailing spaces and commas. If the input variable is numeric.
only a single value will be selected from the input line.

Note: LINE INPUT is equiva lent to INPUT LINE

Example

LINE INPUT "Your message" mess$

305

LIST

306

LIST

Command to list the program.

Syntax

L:ST [line-range] [IFscring]

Argument

1 i ne range gives the start and end lines to be listed. Both values are optional
and should be separated by a comma. The first va lue defaults to zero and the last
to 65279.

The IF, when present, is followed by a string of characters (not in quotes) . On ly
lines which contain this string are listed.

Note: In the search string following the IF statement, lead ing spaces are
included as part of the string. So the command

LIST ~F PR:NT

will list

100 PRJXT "Sing.e space between line nu~ber and s:atemcnt."

110 °RIN~ "Several spaces between line ~umber and statement"

but will ignore

~20PRlNT "No space between li~e number and statement . "

The command

LIST .FPRINT

will find and list all three lines.

The string given after the IF is tokenised before it is checked against the
program . Hence, LIST IF PRINT and LIST IF P , both list lines
containing the PRINT keyword . However, L TST IF PR does not

Because the string after IF is tokenised, on ly one version of the
pseudo-variables (each of which has two tokens) can be found. This is the one
acting as a function (as in PRINT TIME). rather than the statement version (as
in TIME=expression)_

Examples

L •• ST
I 1ST 1000,
LrST ,50
LIST 10,40
r.!ST l FDEF
:.IS I' , 100 IFfred%=

Keywords

lislthe whole program
list from line 1000 to the end
list from the start to line '50
list from line I 0 to 40 inclusive
list all lines containing a DEF
list all lines up to line 100 containing fred%=

307

LIS TO

308

LISTO

Command to set the LIST indentation options.

Syntax

LISTO expression

Argument

expression should be in the range zero to 31 and is treated as a five-b1t number
The meaning of the bits is as follows

Bit Meaning

0 A space is printed after the line number
I Structures are indented
2 Lines are spl it at the : statement delimiter
3 The line number is not listed An error is displayed at line number

references
4 Keywords are listed in lower case

Examples

ulSTO 0
LISTO 2
L!STO %10011

Default
All loops and conditionals indented by two characters
Tokens in lower case. structures indented. line numbers
followed by a space.

Keywords

Funct ion returning the natural logarithm of its argument

Syntax

LN factor

Argument

Result

Any strictly positive value: a numeric greater than zero.

Rea l in the range - 89 to +88 which is the log to base E 12. 718281828) o f the
argument.

Examples

DEF FNlog2(n)=LN{n)/LN(2)
PRINT LN (10)

LN

309

LOAD

310

LOAD

Command to load a BASIC program at PAGE.

Syntax

LOAD expression

Argument

expression is a string which should evaluate to a filename that is valid for the
filing system in use.

Examples

Note: Any program which is currently in memory is overwritten and lost with
all its variables. The static integers (A%- Z% and@%) and INSTALLed libraries
are not affected.

LOAD adfs ::GDisc .disasm

where GDi sc is the name of a floppy disc.

LOAD FNnextFi le

Statement to declare a local variable in a procedure or function
Statement to make cu rrent DATA pointer local
Statement to make the error control status local

Syntax

(1) LOCAL [variable] [,variable ...]
(2) LOCAL DATA

(3) I ,OCAL ERROR

Argument (1)

Keywords

LOCAL

variables following the LOCAL may be of any type, such as a. a%. a$. $buffer,
a {),and so on. The statement causes the current value of the variables cited to be
stored on BASIC's stack. ready for retrieva l at the end of the procedure or function.
This means the va lue inside the procedure may be altered without fear of
corrupting a variable of the same name outside the procedure. At the end of the
procedure. the old value of the variable is restored.

Note: Local numerics are in itialised to zero. and local strings are initialised to
the null string. Arrays can be declared as being local and then dimensioned
using DIM as normal.

Argument (2)

LOCAL DATA stores the current data pointer on the stack for the duration of a loop
or function/procedure call This enables a new data pointer to be set up. using
RESTORE. and for the original one to be restored with RESTORE DATA RESTORE
DATA is performed automatically on return from a fu nction/ procedure

Argument (3)

LOCAL ERROR remembers the current error handler so a subsequent use of
ON ERROR does not overwrite it. This error handler can later be restored using
RCSTORE ERROR.

No te: LOCAL ERROR can be used anywhere in a program

If LOCAL ERROR is used within a procedure or function it must be the last
item to be made local.

Returning from a procedure or function call which contained a LOCAL ERROR
automatical ly restores any stored error status

311

LOCAL

312

See also ON ERROR LOCAL on page 330.

Examples

LOCAL a$,ler.% , price
LOCAL a (), B () : DIM a (2) , B (4, 5)

10 ON ERROR PROCerror
20 res = fNdivide(opp ,adj)
30 END
40 DEFFNdivide(x , y)
50 LOCAL ERROR
60 ON ERROR LOCAL PRINT "attempt to divide by zero " : =0
70 x/y : REM end of function restores previous error
sL:at us

Keywords

LOG

Function returning the logarithm to base ten of its argument

Syntax

LOG factor

Argument

Any strictly positive value: a numeric greater than zero.

Result

Real in the range -38 to +38, which is the log to base ten of the argument.

Example

I'RlNT LOG(2 .4323)

313

LOMEM

314

LOMEM

Pseudo-variable holding the address of BASIC va riables.

Syntax

(1) LOMEM
(2) LOMEM = expression

Result (1)

The address of the start of the BASIC variables

Argument (2)

expression is the address at wh ich BASIC variables sta rt The expression shou ld
be in the range TOP to HIM EM to avoid corruption of the program and/or the
generation of No room errors.

Note LOMEM should not be changed arter any assignments in a program If it
IS. vanables assigned before the change are lost LOMEM i& reset to TOP by
CLEAR (and thus by RUN)

If you attempt to set LOMEM to an illegal value. a warning message is given
and LOMEM is not altered.

The va lue of LOMEM for the BASIC VI (64 bit rea ls] interpreter is 2Kbytes
higher than that for the BASIC V (40 bit rea ls) interpreter

Examples

LOMEX- TOP•&400
PRINT LOMEM

REM reserve lK above TOP

Syntax

Keywords

LVAR

Command displaying the first line of all current libraries. all defined variables and
all procedures and functions that have been called

LVAR

Purpose

I.V/\R lists all the values of BASIC variables. sizes of arrays, known procedures and
functions. It also lists the first line of all libraries current ly loaded These are
displayed in the same order as that in which the libraries are searched when a
library procedure or function is ca l led.

Note: In order for LVAR to be useful. you shou ld ensure that the first line of
each library includes the full name of the library and the name of a procedure
which can be called to provide delails of aiiLhe routines which the library
contains.

315

MID$(

316

MID$(

Function returning, or statement assigning to a substring of a string.

Syntax

(1 l t-1I D$ (C'Xpressionl , expression~ : , expression] I l
(2) M:D$(v,u·iable ,expressionl[,exp.r·ession2]) = exp1essionJ

Argument (1)

Result

exp1 ession 1 is a string of length 0 to 255 characters.) . "
express i on2 is the position within the string of the first character required.

expressi on3 . if present. gives the number of characters in the substring. The
de fa u It va I ue is 2'5'5 (or to the end o f the source string).

The substring of the source string of a length given in the third argument. and
sta rling from the position specified . The result string can never be of greater length
than the source string.

Argument (2)

var i c~b I e is the name of the string variab le which is to be altered.

cxprcssi on3 eva luates to a st ring which provides the characters to replace
those in variable

expreE=s ion I is the position within the string of the first character to be
replaced

expression.). if present. gives the maximum number of characters to be
replaced The replacement stops when the end of the string variable is reached.
even if there are characters in exp1 esr, ion 3 which are unused.

Examples

PRfN'::.' ~rDS(" ABCDEFG", 2 , 3) ; : RPM should prinl " ACD "

right_hdl $ M:::O$(anyS,LEN(uny$) DTV 2)
M:O$(A$,1J,4) BS
MIO$(AS,?..~) MIDS(B$,3,6)

. I

Keywords

MOD

Operator giving the integer remainder of its operands. i.e . gives remainder of the
division.

Function giving the modulus of its array argument

Syntax (1)

operand MOD operand

Arguments

The operands are integer-range numerics. The righthand side must not be zero.

Result

Remainder wh_en the lefthand operand is divided by the righthand one using
integer division. The sign of the result is the same as the sign o f the lefthand
operand.

Syntax (2)

MOD numeric array

Arguments

The numeric array can be any integer or noating point array.

The square root of the sum of the squares (the modulus) of al l the elements of the
array.

Examples

INPUT i%: i% = i % MOD max_num%
count%=count% MOD max% + 1
PRI NT resu l t% MOD 100
DEF FNrms{a()) =M0 Da()/SQRDIM(a (), 1)

317

MODE

Syntax

Statement changing, or function returning, the display mode.

(_) ~ODE exptession
(2) >10DF

Arguments (1)

expre.s,.; ion shou ld be an integer in the range 0 to 255.

MODE

There are 3'3 different modes. numbered from 0 to 36 (some numbers are
excluded). The append ix VDU commands shows you which modes will work on the
different types o f monitor available.

If expression is greater than 12R, the mode used is expression-128 Su fficien t
memory. however, for two copies of the screen is reserved if the configured screen
size allows This allows you to have one copy on display whilst you are updating
the other. wh1ch means that smooth animat1on can be obtained

Details of all the modes available are given in the appendix VDU commands .

Changing mode also does the following

• sets COUNT to zero

• sets the text and graphics viewports to their defaults of the whole screen

• clears the screen to the current text background colour

• homes the text cu rsor

• moves the graph ics cursor to (0.01

• resets the logical-physical colour map (palette) to the default lor the new
mode

• resets the colour-fill patterns to thei r defaults for the new mode sets the dot
pattern for dotted lines to &AA and the repeat length to 8

S~~tJ~ l ~~ -v • resets VDU 5 magnification

318

Result (2)

An mteger giving the current screen mode If the screen mode was entered using a
number greater than or equal to 128 (I e a shadow model. this 1s not reflected in
the value returned by the MODE funct1on For example. if you typed MODE 129,
the MODE function would return I

Examples

MODE 0
MODE m% 1 1/.8
PRINT MODE

Keywords

319

MOUSE

320

MOUSE

Statement interroga ting and con\ rolling the mouse position t~nd button stat us

Syntax (1)

1·1\.)l coL va: iab,rnr , valiat}:c._ .. >, ,,.·ari .. l[1l(') ~ [, va.r .idblt...J)

The first two variables are assigned the x and y positions of the mouse as va I ues in
the range -32768 Lo 32767. The third variable is ass igned a value giving the status
oft he mouse buttons as follows

Value

0
I

2
3
4
')

6
7

Status

No buttons pressed
Right button only pressed
Middle button only pressed
Middle anrl right bullons pressed
Left button only pressed
Left and right buttons pressed
Left and middle buttons pressed
All three buttons pressed

If present. the last vanable is assigned the time of a monotonic (always mcreasmgJ
cent1 <.econd t1mer. which can act as a time-stamp for makmg sure that
button-press events are processed in order. and for detecting double clicks. etc.

Syntax (2)

MO!J<'E ON I expu•ssion]

MOUSE ON causes the mouse pointer to be displayed. The optional numeric
expression is the po inter shape to be used in the range I to 4. If it is omitted. I is
used

If b1t 7 of the pointer shape number is set. 1 e the expression is 1n the range &R 1 to
&84. then the mou<.e pointer will be unlinked from the mouse That is. movements
of the physical mouse will no t dffect the screen pointer Instead. you can use
~'0 I NT TO x , y LO position the pointer

Syntax (3)

MOUS I::: OFF dis'ables the mouse pointer. removing it from the screen

Syntax (4)

MOUSE COLOUR expression , expression , expression,
expression

Keywords

This sets the colour components of the mouse pointer logical colour given in the
first expression to the red. green and blue values given in the second, third and
fourth expressions. Pointer logica l colours are in the range I to 3. Colour 0 is
always transparent

Syntax (5)

MOUSE TO expression , expression

This moves the mouse (and pointer) to the (x.y) position given by the first and
second numeric arguments.

Syntax (6)

MOUSE STEP expression[,expression]

This controls the speed of movement of the mouse pointer compared to the speed
of the movement of the actual mouse device. If there is one argument. it is used as
a multiplier for both the x andy movements. If there are two. the first is used for x
and the second for y. The arguments can be negative to reverse the usual
directions.

Syntax (7)

MOUSE RECTANGLE expr ,expr ,expr,expr

This sets a bounding rectangle outside which the mouse cannot move. The
arguments are the left. bottom. right and top of the rectangle in graphics units. If
the mouse pointer is outside the box when th is command is given. it will be moved
to the nearest point with in it

Examples

MOUSE xpos% ,ypos% ,button%
MOUSE ON 2
MOUSE OFF
MOUSE COLOUR Col% , red%,green%,blue%
MOUSE TO 100,100
t-10USE STEP 3 , 2
MOUSE RECTANGLE 6~0 . ~ : 2 ,1023 ,1279

321

MOVE

322

MOVE

Statement to set the position of the graphics cursor.

Syntax

MOVE [BY] expression , expie8sion

Arguments

The expressions are x andy coordinates of the new position for the graph ics cursor.

If the keyword BY is omitted, the coordinates are absolute. That is. they give the
position of the cursor with respect to the graphics origin . If BY is included. the
coordinates are relative. That means they give the new pos ition of the cursor with
re<;pect to the current graphics cursor position .

MOVE is equivalent to PLOT 4; MOVE BY is equivalent to PLOT 0

Examples

MOV~ 0,0 : REM Goto the origin
MOVE BY 4*dx%,4 *dy%

Syntax

Keywords

NEW

Command to remove the current program. and to initialise the computer so that it
IS ready to receive a new program

NFW

Purpose

The NEW command does not destroy the program. but merely sets a few internal
variables as if there were no program in the memory. The effect of NEW may be
undone using the OLD command, providing no program l ines have been typed in.
or variables created. between the two commands. BASIC does an automa tic NEW
whenever it is entered.

323

NEXT

324

NEXT

Part of the FOR ... TO ... NEXT structure.

Syntax

1\JCX'l' fva riablc] [, [variabi t?l ... J

Arguments

The variables are of any numeric type. and if present should correspond to the
variable used to open the loop. See the FOR entry for a description of the
mechanism of the roR ... NEXT loop

Examples

Note The variables after the NCXT should always be specified as this enables
BASIC to detect improperly nested loops. If the loop variable given after a
NEXT does not correspond to the innermost open loop. BASIC closes the
inner loops until a matching looping variable is found In order for the
indentation produced by LISTO 2 to be useful. you should only close one loop
per NEXT statement.

NEX':' a%
NEXT RE~ close one loop

~E~ close Lwo loops
~EM close lour loops

NEXT j%,i%
NEXT

Keywords

NOT

Function returning the bitwise NOT of its argument

Syntax

NOT factor

Argument

Result

An integer-range numeric.

An integer in which all the bits of the argument have been inverted: ones have
changed to zeros and zeros have changed to ones. If the argument is a truth value.
NOT can be used in a logical statement to invert the condition. In this case. the
truth value should only be one of the values - 1 (TRUE! and 0 (FALSE).

Examples

lF NOT ok THEN PRINT "Error 1.n input "
inv%=NOT mask%
REPEAT UNTIL NOT INKEY(-99)

325

OF

326

OF

Part of the CASC ... OF ... WHEN ... OTII ERWISE ... ENDCASE statement

Syntax

CASE ex.p1ession 0?

Arguments

expi. t:.,.c ion may yield any type of value integer. noating point. or string

Note. The OF keyword must be the last item on the line. See the CASF. keyword
for more details.

Examples

CASE n% OF

Cf..SE LEE 'I'$ (cmswerS) OF

Keywords

OFF

Statement to remove the cursor from the screen

Syntax

o.·F

Purpose

The OFF statement switches off the flashing text cursor until it is re-enabled by the
ON statement. or until cursor copying is used.

Examples

OFF

327

OLD

328

OLD

Command to retrieve a program after NEW has been typed

Syntax

OI,D

Purpose

The OLD command retrieves a program lost by NEW or Break providing no new
program lines have been entered, or variables defined. When you recover the
previous program using OLD. you may notice that the first li ne number has
changed In particular. it is now its o ld va lue MOD /.')6. So if the first line used to
be I 000. it will now be 232. You can remedy this slight problem using the
RENUMBER command to reduce the value of the line numbers.

Keywords

ON

Statement to restore the text cursor on to the screen

Syntax

ON

Purpose

The ON statement re-enables the text cursor after it has been removed with an OFF
statement.

Example

ON

329

ON ERROR

330

Syntax

Statement defining or cancelling an error handler

(1} ON ERROR (LOCAL] statements
(2} ON ERROR OFF

Use (I)

ON ERROR

The ON ERROR statement introduces an error handler When an error occu rs after
an ON ERROR has been executed. control passes to the first statement of the ON
ERROR line. The program continues from there. Note that all of the error handler
code has to be on the ON ERROR l ine. so complex error handlers should use a
procedure. for example:

10 ON ERROR PROCerr_handler

Usually. before the error handler is called. BASIC will forget about all act1ve
procedures. functions and loops, in effect reverting to the 'top-level' of the
program. However. if the LOCAL keyword is used on the ON ERROR line. then the
nesting level cu rrent when the ON ERROR is executed wil l be re-entered when the
error occurs. Thus error hand lers which are usefu l within loops and other
constructs may be written .

See also LOCAL ERROR on page 311 and RESTORE ERROR on page 363

Use (2)

ON ERROR OFF cancels any active error handler. so that this default action is used
when an error occurs:

100 'TRACE OFF
110 I? QUIT THEN
120 ERROR EXT ERR, REPORT$
130 ELSE
140 RES'l'ORE : (HIMEM-4) =@% : @%=890 0
150 REPORT:lF ERL PRI NT " at line " ERI, ELSE PRIN'l'
160 @%= ! ([JIMEM-4}: END
170 ENDIF

An automatic ON ERROR OFF is performed when fatal erro rs are generated

Examples

ON ERROR I~ ~RR=17 STOP : REM trap just Escape
ON ERROR LOCAL PRINT" Bad arguments " : ENDPROC

Keywords

OPEN IN

Function opening an existing fil e for input only.

Syntax

OPENIN factor

Argument

Result

A string which evaluates to a valid filename

An integer acting as a channel number for the file. All subsequent operations on
file (e.g. BGET#, PTR#, EOF# etc.) use the channel number, sometimes ca lled a
handle. as an argument.

OPEN IN opens a file for input only The file must exist prior to the call. If it doesn't.
a channel number of 0 is returned. Only read-type operations are allowed on the
file For example. you can get characters from it, but not put them. You can move
PTR# freely within the file, but not outside of it. A file may be opened for reading
severa l times. However, you can't OPEN IN and OPENOUT (or OPENUP) the same
file.

Examples

i n_file%=0PENIN " Invoices "
data%=0PENIN (":0"+data$}

331

OPENOUT

332

OPENOUT

Function for opening a new file for input and output

Syntax

OPENOUT factor

Argument

Result

A string which evaluates to a valid filename.

An integer acting as a channel number for the file. All subsequent operations on
file (e.g. BGET#. PTR#, EOF# etc.) use the channel number. sometimes ca l led a
handle. as an argument

OPENOUT creates and opens a file for input and output Read- and wnte· type
operations are allowed on the file. You can both get characters from. and write
characters to. the file. You can move PTR# freely within the file. and extend the file
by moving PTR# outside of the file (beyond EXT#). You can also shorten the file by
assigning to EXT#. Once you OPENOUT a file. it can't be opened again unless it is
closed first Trying to OPENOUT an open file gives an error.

Examples

out file%=0PENOUT "Customers"
data%=0PENOUT(": datadjsc."+data$)

Keywords

OPEN UP

Function for opening an existing file for input and output (update)

Syntax

OPENUP factor

Argument

Result

A string which eva luates to a va lid fi lename

An integer acting as a channel number for the file. Al l subsequent operations on
file (e.g. BGET#. PTR#. EOF# etc.) use the channel number. sometimes called a
handle. as an argument.

OPEN UP opens a fi le. which must exist already. for input and output. Read- and
write-type operations are allowed on the fi le. You can both get characters from.
and write characters to. the file. You can move PTR# freely within the fi le. and
extend the fi le by moving PTR# outside of the file (beyond EXT#). You can also
shorten the fi le by assign ing to EXT#. Once you OPEN UP a file. it can't be opened
again un less it is closed first. Similarly. trying to OPEN UP an open file gives an
error.

Examples

random_ f i l e%-OPENlJP ("records " l

333

OR

334

OR

Operator giving the bitwise OR of its operands.

Syntax

relational OR relational

Argument

Result

relationals can be any integer-range numerics

An integer obtained by ORing together the corresponding bits in the operands. The
operands may be interpreted as bit-patterns. in which case a bit in the resu lt is set
to one if either or both of the corresponding bits in the operands are one
Alternatively, they may be interpreted as logical values. in which case the result is
TRUE if either or both of the operands are TRUE.

Examples

PRINT a% OR &AA55
IP a<l OR a>lO THEN PRINT "Bad range"

Keywords

ORIGIN

Statement to move the graphics origin.

Syntax

ORIGIN expression , expression

Arguments

The expressions are integer numerics in the range - 32768 to +32767. They are the
absolute coordinates of the new graphics origin the position of the point (0.0) .
These coordinates are always given with respect to the bottom left corner of the
screen.

The graphics origin is used by all commands which plot graphics. such as MOVE.
LINE. PLOT. CIRCLE. and so on. and also by VDU 24 which sets a graphics
viewport

Example

ORIGIN 640 , 512 REM Set origin to the centre of screen

335

OSCL/

336

OSCLI

Statement to pass a string to the operating system

Syntax

OSCLI ex pres s ion

Argument

expres s ion should be a string of between 0 and 255 cha racters. It is passed to
the operating system OS_CLI routine to be executed.

Note The difference between passing a string to the operating system via a •
command and via OSCLI is that the former makes no attempt to process the
text fo llowing it. whereas the latter evaluates the text as a BASIC string
expression. Thus you can say:

OSCLI "LOAD fi l e " ..-STR$- buf fer%

but not (usefully)

*"LOAD file "+STR$- buffer%

Many extensions to BBC BASIC on previous machines (e g the Master 128)
used 'internal' BASIC routines called from OSCLI commands BBC BASIC
provides extra information when using • or OSCLI to allow such software to be
ported onto this computer (Note that this does not happen for SYS
"OS CLI ", "fred") .

Information is passed in registers RO to R5. because the high user-mode
registers are not convenient ly readable from other modes Before using the
information passed in these registers. the routine shou ld t ransfe r them to the
correct registers. as documented in the section on CALL It should also ensure
i t is execut ing in user mode before ca lling any BASIC routines

RO contains CLI string pointer
I< I contains &BA51 Cxxx
R2 ARGP
R3 LINE
R4 current string pointer
R5 environment informati on pointer (as CALL)

The va lue in R I should be inspected by any routine in orderto validate that the
ca ll is. indeed. from BASIC (it is also a good idea to check R2 to R5 for val id
addresses); the va lue is also at address 1 R5,#-4] The current BASIC interpreter
provides &3A51COC 5. the next &BA:>lC006 and so on

Examples

Keywords

The value in LINE should not be relied on. except that it is sufficient for BASIC
to produce the correct line number in case of an error When BASIC is
eventually returned to at the end of the SWI OS_CLI call. its 1 user-mode)
registers must not have been altered .

OSCLI "CAT"
OSCLI "LOAD "+fi l e$+" "+STR$buf f%:REM get fi le in buffer

337

OTHERWISE

Syntax

OTHERWISE

Part of the CASE ooo OF 000 WHEN 000 OTHERWISE 00 0 ENDCASE statement

See CASE

Note: The OTHERWISE statement is executed only when the previous WHEN
statements have fa iled to match the value of the CASE expression.
OTHERWISE matches any values. If it is present. all statements following it
will be executed until the matching ENDCASE is encountered.

Examples

338

O'l'llERWI SE PRINT " Bad inpu l "
OTHER\•IISE PROCdraw{x,y) : PROCwait

Pseudo-variable holding the address of the program.

Syntax

(1) PAGE
(2) PAGE

Result (1)

expression

Keywords

PAGE

An address which is an unsigned number. PAGE is the location at which the cu rrent
BASIC program starts.

Argument (2)

expression is an integer in the range &8FOO to HIMEM, where &8FOO is the
current limit of BASIC's own workspace (this cou ld change in later versions of
BASIC) PAGE should be on a word boundary. By changing PAGE. you can have
several BASIC programs residing in the machine at once.

Example

Note: If you attempt to set PAGE to an invalid address. a warning message is
given and PAGE is not altered .

PACE = HIMEM - &4000

339

PI

PI

Function returning the value of rt.

Syntax

PI

Result

The constant 3. I 4 I 5926'53589793

Examples

DEF FNcircum{r)=2*PI *r

340

Keywords

PLOT

Statement performing an operating system PLOT function

Syntax

PLOT expressionl,expressi on2 , expression3

Arguments

expressionl is the plot number in the range from 0 to 2'5'5. For example. 8'5 is
the plot number for an absolute triangle plot in the foreground colour.

The second artcl third expressions are the x andy coordinates respectively, in the
range -32768 to +32767.

See Appendix F - Plot codes on page 433 for a full list of PLOT codes.

Examples

PLOT 85,100,100 : REM Draw a tr i angle
PLOT 69 , x,y : REM Plot a single point

341

POINT

342

Syntax

Statement to plot a single point or move the on-screen pointer

(1) POI NT (BY) exp r e ssio n , e xpression
(2) POINT TO expression,express ion

Arguments (1)

POINT

The expressions are integers giving the coordinates at which the point will be
plotted. The point is plotted using the current graphics foreground colour and
action, and the graphics cursor is updated to these coordinates.

If the keyword BY is omitted, the coordinates are absolute. That is, they give the
position of the point with respect to .the graphics origin . If BY is included, the
coordinates are relative. That means they give the position of the point with
respect to the cl.ment graphics cursor position.

Arguments (2)

The expressions are integers giving the coordinates at which the on-screen pointer
will be placed if it is not linked to the mouse position . If the pointer is linked to the
mouse this command is ignored. See MOUSE for more details about unlinking the
pointer from the mouse.

Examples

POI NT 32 0,60 0
POI NT X% +4, Y%+4
POINT BY 100,0
POINT TO 640, 5 12

Keywords

POINT(

Finds the logical colour of a graphics pixel.

Syntax

POIN'T'(expJcssion , expression)

Arguments

Result

The expressions are the coordinates of the pixel whose colour is reqUired

Th is is an integer in the range - I ton. where n is one less than the number of
logical colours in the current mode. For example, n is 15 in a 16-colour mode. If the
point specified lies outside the current graphics viewport. -I is returned
Otherwise. it is the logical colou r of the point

Note that the value returned is in the range 0 to 63 for the 256-colour modes The
function TINT(x,y) will read the tint of the given coordinate. returning a value in the
range 0 to 255.

Example

REPEAT Y%•=4 : UNTIL POINT(640,Y%)<>0

343

POS

344

Syntax

Result

POS

Function returning the x-coordinate of the text cursor.

POS

An integer between 0 and n, where n is the width of the current text viewport minus
one. This is the position of the text cursor which is normally given relative to the
lefthand edge of the text viewport If the cursor direction has been altered using
VDU 2 3 I 16 I ••• then it is given relative to the negative x edge of the screen which
may be top. bottom, left or right.

Note Even in VDU 5 mode, POS returns the position of the text cursor. You
should therefore keep track of the horizontal position explicitly in programs
which must operate in VDU 5 mode (e.g. WIMP-based programs). COUNT sti ll
works as expected in VDU 5 mode.

Examples

old_ x% =POS
IF POS<>O THEN PRINT

Keywords

PRINT

Print information on the output stream(s) (e.g. screen. prin ter. etc) .

Syntax

The items following PRINT may be string expressions. numeric expressions, and
print formatters. By default, numerics are printed in decimal. right justified in the
print field given by@% (see below). Strings are printed left justified in the print
field The print formatters have the following effects when printing numbers:

Do not right justify (print leading spaces before) numbers in the
print fie ld. Set numeric printing to decimal. Semi-colon stays in
effect until a comma is encountered. Do not print a new line at
the end if this is the last character of the PRINT statement.

, (comma) Right justify numbers in the print field Set numeric printing to
decimal. This is the default print mode. Comma stays in effect
until a semi-colon is encountered. If the cursor is not at the
start of the print field, print spaces to reach the next one.

- (tilde) Print numbers as hexadecimal integers. using the current
left/ right-justify mode. Ti lde stays in effect until a comma or
semi-colon is encountered.

' (single quote) Print a new line. l~etain current left/right-justify and
hexadeci ma 1/deci ma I modes.

'T'.A B (If there is one argument, for example. TAB (n), print
(n_COUNTl spaces If the cursor is initially past position 11 (i .e.
COUNT>nl. print a new line first If there are two arguments. for
example, TAB (10, 2 0). move directly to that tab position
Left/right-justify and hexadecimal/decimal modes are retained.

SPC factor Print the given number of spaces. For example SPC5 outputs
five spaces Right-justify and hexadecimal/decimal modes are
retained.

space Print the next item. retaining left/right- justi fy and
hexadecimal/decima l modes.

When strings are printed the descriptions above apply, except that hexadecimal
mode does not affect the string. Also no trailing spaces are printed after a string
unless it is followed by a comma. This prints enough spaces to move to the start of
the next print field .

The print formatters TAB, SPC and ' may also be used in INPUT statements.

345

Formatting numbers

Formatting numbers

346

The format in which numbers are printed. and the width of print fields are
determined by the value of the special system integer vanable. @% The way ::1
which you speci fy@% depends whether you are using the I 05 BASIC mterpreter or
the I 04 BASIC interpreter. as follows

Setting @% using the 1.05 interpreter

The value of@% is specified in ANSI printf format. as follows

@% - "expression"

where expression takes the form [+ 1 Ax .y, and must be in quotes

A defines the format. and can take the fol lowing values.

• G (Genera l format). In G format. x defines the field width andy defines the
number of digits to be printed Note that if x is less than 0.0 I , printing reverts
toE format.

• E (Exponent format). In E format, x defines the field width andy defines the
number of significant figures to be printed after the decimal point. Note that E
format allows 3 digits for the exponent. and an optional minus sign. This will
leave up to three trailing spaces if the exponent is positive and only one or two
digits long.

• F (Fixed format) In F format. x defines the number of figures (exactly) to be
printed after the decimal point andy Oefines the field Width

The optional +sign is a switch affecting the STRS function If supplied 1t forces
STRS to use the format determined by (a)%. If it is not supplied. STRS uses a default
format equivalent to@%= " -GO. 10" Note that there must not be any spaces in
the definition of @9'o

The BASIC 1.05 interpreter supports partial setting of (a%. which means you do not
have to supply all the arguments. See the examples of (111% below

Examples of @%

@% "Gl O. 9 " is the default setting. It is a Genera l format, with a field width of 10
and a precision of 9 digits: for example 12 . 31156 7 89 STI~S uses its default.

@% - " +R 1 o. 3 " is an Exponent format. with a field width of I 0, and 3 digits after
the decimal point: for example J • 24 El. STRS uses this format instead of its
default.

~% " F7 . 4" is a Fixed format. with a field width of 7. and 4 digits after the decimal
point. for example 12 . 345 7. STR$ uses its default

Keywords

@% = "+" forces STRS to use the current format.

@%= "G" changes toG format. STR$ uses its default.

@% = " 10" sets the field width for the current format to I 0, and forces STRS to use
its default.

@%=" . 5" just sets the precision for the current format to 5 digits, and forces STRS
to use its default.

Setting @% using the 1.04 interpreter

l..'"'"'-'

~K

)"~

You can set the variable@% to produce the same results as the BASIC 1.05
interpreter. The va lue of@% is specified using a hexadecimal word four bytes long,
as fol lows

@% =&wwxxyyzz

•

•
•

Byte 4, which can be I or 0, corresponds to the + STRS switch. If this byte is 1 .
STRS uses the format specified by the rest of@% If it is 0, STRS uses its defau lt
value of &OOOOOAOO.

Byte 3, which can be 0, I or 2, selects the G, E or F format.

Byte 2, which can take va lues from I to 10, determines the number of digits
printed. In General format. this is the number of digits which may be printed
before reverting to Exponent format (I to 10); in Exponent format it gives the
number of sign ificant figures to be printed after the decimal point (I to 10) In
fixed format it gives the number of digits (exactly) that fol low the decimal
point.

• Byte I, which is in the range 0 to 255, gives the print field width for tabulating
using commas.

Examples of @%

@% =&0000090A uses General format with up to nine significant d igits in a field
width of ten characters. Note t hat General format reverts to Exponent format when
the number is less than 0.1. Th is is the default setting of@%.

@% =&0101030A uses Exponent format. Th ree significant digits are printed, in a
field of ten characters. These numbers look like 1. 23 EO, 1. 10E- 3. etc. In
addition. STRS uses this format instead of its defau lt (which is &OOOOOAOO).

@% =&00020407 uses Fixed format with four decimal places in a tab field width of
seven. Numbers are printed out in the form 1 . 23. 923 .10. etc.

Note: Setting byte two to 10, e.g. &OAOA. shows the inaccuracies which arise
when trying to store certain numbers in binary For example:

PRINT 7.7

347

Formatting numbers

prints 7 699999999 when @%=&0AOA

Examples

.'RINr "He::.lo there" ;
PRINT a , SIN(RAD(a)) , x , y• 'p , q ;

PRINT TAB(lO , 3) " Profits " SPC(10) ; profits ;

348

Keywords

PRINT#

Print information to an open file.

Syntax

PRINT#factor [,expr ession, expression ...]

Arguments

factor is the channel number of a file opened for output or update The
expressions. if present, are any BASIC integer. rea l or string expressions. They are
evaluated and sent to the file specified with the corresponding type information.

Integers are written as &40 fol lowed by the two's complement representation of the
integer in four bytes. most sign ificant byte first.

5-byte real variables are written as &80 followed by five bytes. The first four bytes
are the mantissa and the fifth is the exponent. The mantissa is written least
significant byte (LSB) first. 31 bits represent the magnitude of the mantissa and
one bit (bit 7 of the fourth byte) t he sign. The exponent byte is in excess-128 form .
BASIC V on ly prints real numbers in 5-byte real format.

8-byte real variables are written as &88 followed by two 4-byte words. in IEEE
Double Precision (D) format. The exponent is represented by bits 20 to 30 in the
first word. The sign bit is bit 31 in the first word . The mantissa is represented by
bits 0 to 19 in the first word and bits 0 to 31 in the second word . BASIC VI only
prints real numbers in 8-byte real format. You need 1.05 series (rather than 1 04) to
read this information back.

Strings are written as &00 followed by a one byte count of the length of the string.
followed by the characters in the stri ng in reverse order.

Example

PRINT.file,name$+":",INT (100* price+ .5),qnty%

349

PROC

350

Syntax

Statement introducing or calling a user-defined procedure

II) DEF PROCproc-part

)2) PROCproc-part

PROC

(3) ON expression PROCprocl [, PROCproc2 ...) [ELSE statement)

Argument (1)

proc part has the form ident i fieri (paramete1 1 i st) 1. It gives the name
of the procedure (the identifier) and the names and types of the optional
parameters. which must be enclosed in brackets and separated by commas.

Argument (2)

The second form is used when the procedure is actually invoked. and this time the
parameter list comprises expressions of types corresponding Lo the parameters
declared in the DEF PROC statement. The expressions are evaluated and assigned
(locally) to the parameter variables Control returns to the calling program when an
ENDPROC is executed.

Argument (3)

exp1 essi on should evaluate to an integer If th1s integer is 11 then the nth
procedure listed is called. If the integer is less than I or greater than the number of
l1ne numbers given. the statement following the ELSE. if it is present. is executed.

Examples

DCF PROCoe1ay (n)
TTtv:F: O: REPEAT UNTIL TI MP.=n*!O O: ENDPROC

TF ?I lag =O THEN REPEAT PROCdelay (O.l): UNTIL ?flag

Syntax

Pseudo-variable accessing the pointer of a file

(1) P'l'R# facLor

(2) P'l'R#factor expression

Keywords

PTR#

Argument (1)

Result

facLor is a channel number. as returned from an OPENxx function

An integer giving the position of the next byte to be read or written relative to the
start of the file The minimum value is 0 and the maximum value depends on the
filing system in use.

Argument (2)

faCLor is as (1). The expression is an integer giving the desired position of the
sequentia l pointer in the fi le. Files opened for input may on ly have their PTR#
value set to between 0 and the EXT# of the file.

Examples

PRINT PTR~ iile; "bytes p1·ocessed"
P'l'Rnchan%=Lec_len%

351

QUIT

352

Statement to leave BASIC.
Function returning qu i t status

Syntax

QUIT

Purpose (1)

QUIT as a statement leaves the BASIC interpreter.

Purpose (2)

QUIT

QUIT as a function returns TRUE or FALSE. If the interpreter was invoked using the
- quit Oag. then it will return TRUE. If -quit was not specified on the command
line. then the function returns FALSE.

Function returning the radian value of its argument.

Syntax

RAD factor

Argument

A number representing an angle in degrees.

Result

A rea l giving the corresponding value in radians: argument*rr /180 .

Examples

(s in%+i% *5)=S IN(RAD{i %))
PRI NT RAD(the t a) -PI/ 2

Keywords

RAD

353

READ

354

READ

Statement reading information from a DATA statement

Syntax

READ [var·iab1e) [,variable ...]

Argument

Any variables should correspond in type to the items in the DATA statement being
read In fact. a string READ item is able to read any type of DATA and interpret it as
a string constant aher stripping leading spaces A numeric READ item tries to
eva luate its D/\TA; so in the latter case. the DATA expression should yield a suitable
number.

Examples

READ n%
READ a$, fred%, float

Keywords

RECTANGLE

Statement to draw a rectangle o r copy/move a recta ngular area of the screen or set
the mouse bounding box.

Syntax

(I) RECT'fi.NGI.F. (PILL l exp! , exp/. , exp3 . , cxp4 j
(2)REC L'fi.NGLF. (~'[1, :...) exp !, exp2 , cxp3[, exp4] TO exp5,cxp6
(3) t•IOUSE RECTlJ\IGLE expl , exp2 , exp3 , exp4

Arguments (1)

exp ! and exp2 are integer express ions in the range -32768 to +'52767. They are
the coordinates of one of the corners o f the rectangle.

exp3 is the width of the rectangle. It is also the height (giving a square) unless
exp4 is given. in which case this is the height.

Purpose

RECTANGLE draws the outl ine of a rectangle which is aligned with the x andy
axes. RECTANGLE FILL plots a sol id axes-aligned rectangle. The rectangles are
drawn using the current graph ics foreground colour and action.

RECTANGLE leaves the graphics cursor at the sta rting position . However. with
RECTANGLE FILL, the graphics cursor is updated to the position of the oppos ite
corner to the one specified .

Arguments (2)

The first four arguments define a rectangu lar area of the screen. as for the first
usage described above.

exp':J and exp6 give the position to wh ich the lower left corner of the source
rectangle is copied or moved.

Purpose

RECTANGLE ... TO copies the original rectangular area defined to the new
position, hence making a second copy of a rectangular screen area. Pixels in the
source that are outside of the current graphics viewport are drawn in the current
graphics background colour.

355

RECTANGLE

356

RECTANGLE FILL ... TO moves the original rectangular area defined to the new
position. replacing the old area with the cu rrent graphics background colou r In
both cases the new position is allowed to overlap with the rectangular area

Purpose (3)

To set a bounding box for the mouse pointer. See MOUSE for details.

Examples

RECTANGLE 500 , 500 ,-200 ,-100
RECTANGLE FILL bl%(1) , bl%(2),width%,height%
RECTANGLE 400 , 400 , 60 , 60 TO 460,400
RECTANGLE FILL x,y , size,size TO x new, yncw

Keywords

REM

Statement indicating a remark.

Syntax

REt-1 rest-of-line

Argument

rest -of-1 ine can be absolutely anything; it is ignored by BASIC. The purpose
of a REM is to provide comments to make the program clear to any reader.

Example

REM f ind the next prime

357

RENUMBER

358

RENUMBER

Command to renumber the program lines

Syntax

RENUMBER [start] [,step]

Argument

See AUTO on page 220 for a description.

Purpose

RENUMBER resequences the lines in the program so that the first l ine is start
and the line numbers increase in steps of step. It also changes l ine numbers
within the program, such as after RESTOREs, so that they match the new line
numbers. If the line used in a RESTORE cannot be found. the message

~a· l ed with nnnn on line 1111

is given. where nnnn is the line number which was referenced but which does not
appear in the program. and 1111 is the line on which the reterence was made.

RENUMBER needs some workspace. and if there is not enough room to change the
line numbers successfully, a RENU:V:BER space error is generated

Examples

RE-.NUMBER
HENUMBER 1000 , 20

Keywords

REPEAT

Statement marking start of a REPEAT ... UNTIL loop

Syntax

REPEAT /'

Purpose

The sta tements following REPEAT are repeatedly executed until the condition
following the matching UNTIL evaluates to FALSE. The statements may occur over
severa l program lines. or may all be on the same line separated by colons. The
second approach is useful in immed iate statements. The statements are executed
at least once.

Examples

RKPEAT UNTIL I NKEY -99

REPEAT
a%+=1:c%=c% >> 1

'JNTIL c%=0

R~M wai t for SPACE

359

REPORT

360

Statement printing the message of the last error encountered.

Syntax

RF.POR'T

Examples

REPORT:PRINT " at l ine ";ERL;END
REPORT:PRlNT" error !!"'' : END

REPORT

Keywords

REPORT$

Function returning the message or the last error encountered as a string.

Syntax

Rt.POR'f$

Examples

PRINT REPORT$
KHROR PRR,REPORT$

361

RESTORE

362

Syntax

Statement setting the DATA pointer.
Statement restoring DATA pointer from the stack.

(ll RESTORE ((+) expression)
(2] RESTORE DATA

RESTORE

Argument (1)

expression is a line number. If it is absent. the DATA pointer is reset to the first
DATA statement in the program. and the next item READ comes from there. If the
line number is present, the DATA pointer is set to the first item of data on or after
the line specified. so that subsequent READs access that particular data item (and
those which follow) .

If the expression is preceded by a + sign, then it is interpreted as an offset from the
line containing the RESTORE statement +0 means the line after the one
conta ining the RESTORE. +1 means the line after that and so on. The main use of
th1s is in libraries. where references to actual line numbers are not allowed (and
RESTORE on its own restores to the start of the main program. not the library)

Purpose (2)

The second form of RESTORE loads a DATA pointer from the stack that was
previously saved using LOCAL DATA. By using these two statements as a pair. you
can prevent any RESTOREs in a procedure or function from changing the DATA
pointer u~ed by the main program

Examples

RESTORE
RESTORE :000
RESTOR~; ~ 1 0

Keywords

RESTORE ERROR

Statement to restore saved error status

Syntax

RESTORE ERROR

Note· RESTORE ERROR restores the error status previously saved using
LOCAL ERROR. If an error status has not been saved then a fatal error arises.

The error status is restored automatically on return from a procedure or
function. and when one of the loop-terminating constructs is encountered
(UNTIL, ENDWHILE and NEXT).

Examples

10 LOCAL ERROR
20 REPEAT
30 ON ERROR LOCAL PRINT "Negative value "
40 INPUT x
50 PRINT "Square root of x = ";SQR(x)
60 UNTIL x=O
70 RESTORE ERROR

363

RETURN

364

Syntax

Statement returning control from a subroutine
Modifier in formal parameter list.

(I) RETURN
(2) RETURN parameter

Purpose (1)

RETURN.

RETURN returns contro l to the statement following the most recent GOSUB. If
there are no GOSUBs currently active. a NoL i n a s ubrou t i ne error occurs.

Purpose (2)

RETURN indicates value-and-result parameter passing (as distinct from value
passing, the defau lt) when applied to a parameter in the definition

Examples

DEF PROCSwapifDisordered (RETURN A, RETURN B)
IF A>B SWAP A, B

F.NDPROC

Keywords

RIGHT$(

Function returning or statement altering the right-most character(s) of a string.

Syntax

(I) RIGHT$ (expressionl [. expression21l

(2) RIGHT$ (variable I, expressionl)) = expression2

Argument (1)

Result

expressionl shou ld be a string of length 0 to 255 characters.

If expression2 is present. it shou ld be a numeric giving the number of
characters from the right of the string to be returned, also in the range 0 to 255. If it
is omitted, a default of I is used.

A string consisting of then right-most character(s) from the source string, where n
is expression2 or I . If n is greater than the length of the source string. the whole
source string is returned.

Argument (2)

variable is the name of the string variable to be altered. The righthand
characters in variable are replaced by the string expression2.

If present. expressi onl gives the maximum number of characters which will be
replaced: the number of characters altered is the lesser of expressionl and
LENexpression2. expressionl defaults to 255.

Examples

PRINT RIGHT$(any$,4)
year$=RIGHT$(date$,2)
RIGHT$(birthday$) = "May"
RIGHT$(name$,4) = "Mary "

365

RND

366

RND

Funct1on returning a random number

Syntax (1)

RNO

Result

A lour-byte signed random integer between -2 147483648 and +2147483647

Syntax (2)

Result

RND(expression)

expression< O

expression should be an integer. This reseeds the random number generator.
and the function returns its (truncated) argument as a result Reseeding the
generator with a given seed value always produces the same sequence of random
numbers

expression = 0

Th1s uses the same seed as the last RND(I) call and returns the same random
number rounded between 0 and I .

expression 1

This returns a random real number between 0 and I

exp1.ession > 1

The expression. n, should be an integer The result is an integer between I and n
inclusive.

Note that there shou ld be no space before the opening bracket.

Examples

dJmmy=RND (-TIME) : REt'-1 reseed lhe generator 'n1ndomly •
x% RND(1280) : y%=RND AND &3ff
ptob=RND(l)

lasLProb=RND(O)

r% RND

Keywords

RUN

Statement to execute the current program

Syntax

RUN

Purpose

RUN executes the program in memory. if one is present. after clearing all variables
and resettmg LOMEM.

367

SAVE

368

SAVE

Command to save a program as a file.

Syntax

SAVE (expressionJ

Argument

If present, expression should evaluate to a string which is a va lid filename
under the filing system in use. The current BASIC program is stored (witho ut
variables, etc) on the medium under this name.

SAVE ca n be used without an expression . in which case the name is taken fro m the
first line o f the program which should have the fo rmat:

10 REM > filename

For example:

10 REM > Gamel

Examples

SAVE "Versionl"
SAVE FNprogName
SAVE

/

Function returning the sign of its argument.

Syntax

SGN factor

Argument

Result

Any numeric.

- I for negative arguments
0 for zero-valued arguments

+I for positive arguments

Examples

DEF FNsquare (th) =SGN(S I N(th))
IF SGN (a)<>SGN(b) THEN ...

Keywords

SGN

369

SIN

370

SIN

Function returning the sine of its argument

Syntax

SIN factor

Argument

Result

A numeric representing an angle in radians.

A real in the range -I to l. being the sine of the argument.

Note: If the argument is outside the range -8388608 to 8388608 radians. it is
impossible to determine how many ns to subtract. The error Accurac y los L
in s ine/cosine/tangent is generated.

Examples

PRINT SIN(RAD (l 3 5))

opp=hyp*SIN(theta)

Keywords

SOUND

Statement generating a sound or suppressing/a llowing subsequent sound
generation

Syntax

(1) SOUND ON

(2) SOUND OFF

(~)SOUND expr1 , expr2,expr3,expr4[, cxpr5]

Purpose (1) and (2)

SOUND ON is the default setting. It allows sounds to be produced by subsequent
use of the SOUND (3) statements. SOUND OFF suppresses sounds and means that
subsequent SOUND (3) statements have no effect.

Arguments (3)

expr 1 is the channel number
expr2 is the amplitude
expr 3 is the pitch
expr4 is the duration
expr 5 if present, is the delay

Cfrannel
A two-byte integer giving the channel number to be used It has the range I to 8.

Amplitude
This is an integer in one of two different ranges The range - IS to 0 is a simple
volume (ampl itude). - 15 being the loudest and zero being the quietest (no sound).
The range 256 (&I 00) to 511 (&IFF) is a logarithmic volume range. a difference of
16 providing a doubling or halving of the volume.

Pitch
This is treated as an integer. In the range 0 to 255. the note middle C has a pitch
va lue of 53: a difference in the parameter o f 48 corresponds to a difference in pitch
of one octave. In other words. there are four pitch va lues per semi-tone. In the
range 256 (&100) to 32767 (&7FFF) . the note middle C has a pitch value of &4000.
and a difference in the value of & I 000 corresponds to a difference in pitch of one
octave.

371

SOUND

372

Duration
The last compulsory SOUND parameter is also treated as a two-byte integer It
gives the duration of the note in twentieths of a second A value of 255 gives a note
with an infinite duration one that does not stop unless the sound queue is nushed
tn some way A value greater than 255 is treated as a duration tn 20ths of a second.

Delay
This is the number of beat counts from the last beat counter reset before the sound
is produced. See BEATS on page 222 and TEMPO on page 386 for more details. If
this parameter is omitted. the sound is produced immediately A value of -I
synchronises the new note with the last scheduled sound

Examples

SOU ND OFF
SOU ND 1, 15,255 , 10
SOUND &102,&140,&2400 , 200
SOUND 3 , 300 ,300,100 , 200

Keywords

SPC

Print modifier to generate spaces in PRINT and INPUT statements

Syntax

SPC [actol·

Argument

A one-byte integer between 0 and 255 It gives the number of spaces to be printed

Examples

PRI NT SPC {1 0) ;

INPUT SPC (7) "How many ", aS

373

SQR

374

Function returning the square-root of its argument

Syntax

SQR factor

Argument

Any non-negative numeric.

Result

A real which is the argument's square-root.

Examples

DEF ~Nlen(xl,yl,x2 , y2}=5QR((x2-xl)A2+(y2-yl}A~)

disc=SQR(b*b-4*a*c)

SQR

Keywords

STEREO

Statement setting the stereo position of a sound channel.

Syntax

STEREO expressionl,expression2

Arguments

expressionl is the channel number which should be between I and the number
of active channels (the maximum being 8)

expression2 is a value giving the stereo position . It can take any value between
- 127 (meaning that the sound is fully to the left) and+ 127 (meaning that the
sound is fu lly to the right) . The default value of each channel is 0. giving central
(mono) production

If the number of physica l channels is eight. only the channel specified is
programmed. Otherwise. the following occurs. where chan is expressionl

No of channels

I
2

Channels programmed

chan to eight
chan and every alternate channel up to eight

4 chan and chan+4 if chan+4 is less than or equal to eight

Examples

STEREO 4,-60
STEREO n%, stereo%

375

STOP

376

STOP

Statement producing the fatal error Stopped to termrnate the program

Syntax

.>I'OP

Purpose

The STOP statement gives the fatal (untrappable) error message SLopped It
differs from END. as the latter produces no message It may be used as a
debugging aid to ha It the program at a given point so that the cu rrent values o f the
program's variables can be determined.

Example

J F NOT ~k THEN PRI NT"Bad data ": STOP

Keywords

STR$

Function producing the string representation of its argument

Syntax

STRS(-) factor

Argument

Result

Any numeric for decimal conversion. any integer for hexadecimal conversion.
Decimal conversion is used when the ti lde(-) is absent. hex conversion when it is
present.

Decimal or hex string representation of the argument. depending upon the
absence or presence of the tilde.

Note: The string returned by STRS is usually formatted in the same way as the
argument would be printed wi th@% set to &AOO. However. if the most
significant byte of@% is non-zero. STRS returns the result in exactly the same
format as it would be printed. taking the current value of@% into account See
also PRINT

Examples

DEF FNhex4(a%)=RIGHT$("000"+STR$-(a%),4)
DEF FNdigits(a) =LEN(STR$(a))
dp= INSTR(STR$(any_va l) ,".")

377

STRING$(

378

STRING$(

Function returning multiple copies of a stnng

Syntax

STRING$(expressionl , expression2)

Arguments

Result

exp1 essionl is an integer. 11. in the range 0 to 255

expressi on2 should be a string of length 0 to (2'55 DIV 11) characters.

A string comprising 11 concatenated copies o f Lhe source string, of a length
n*LEN (expression2).

Examples

MODE
PRINT STRI~G$(40 , "_ ") ; : RE~ underline across the screen
pat;:ern$=STRING$(20, "<-->")

Keywords

SUM

Function returning the arithmetic sum or string concatenation of an array

Syntax

Si.JM anay

Argument

Result

dl ray is the name of an array.

If lhe argument is an integer or floating point array, it is an integer or floating point
value of the sum of all the elements in the array.

If the argument is a string array. it is the string which contains each of the elemenls
of the array concatenated. This must be less than 256 characters in all.

Examples

A() = 1 : PRINT "There are "; SUM(A(l)" elements. "
DEF FNmean(a())=SUMa()/DIM(a() , 1)

379

SUMLEN

380

SUM LEN

Function returning the length of the string concatenation of an array

Syntax

SUMLE~ string-array

Argument

Result

str~ng an·ay is the name or a string array.

The sum of the lengths o f all the elements in the array. Thus

SUMLENa$()-LENSUMa$()

except that the former is not limited to a maximum or 255 characters

Examples

DEP PNmeanlen(aS())=SUMLENa$()/DIM(a() ,1)

Keywords

SWAP

Statement exchanging the value of two variables or arrays.

Syntax

SWAP idenLifierJ, identifier2

Arguments

The arguments are variables or array names. Simple variables must be of
assignment-compatible types. i.e. both string or numeric. Arrays must be of
identical type elements (both integer. floating point or string). but can be of
differing sizes.

Purpose

The SWAP statement exchanges the contents of the two variables or arrays. In the
case where arrays are swapped. the number of subscripts and their upper limits are
also swapped. For example. if you have

DIM A(l0) ,8(20 , 20)

SltJAP A () , B ()

then after the SWAP. it would be as if the arrays had been DIMed:

DIM A(20,20),B(l 0)

All of the elements of the arrays are also swapped. though no actual movement of
data is invo lved so this is a very quick operation .

Examples

S\t·IAP A% , B%
SWAP forenames , surname$
SWAP arrli%) , arrli%+gap%)
SWAP arrayl$() , array2S(l
SVJAP a , B%
S\t·IAP AS, $A%
SWAP matrix(), vector()

381

SYS

382

SYS
A statement for calling operating system routines

Syntax

SYS exprl [, [exprn] ...] ['TO [varl] [, [var 2] ...] [;fl ags])

Arguments

exprl defines which operating system routine is to be called . It may evaluate to a
number giving the routine's SWI number. or to a string which is the name of a
routine. BASIC uses the SWI OS_SWINumberFromString to convert from a string to
number. so the case of the letters in the string must match exactly that of the SWI
name.

The optiona l list of expressions following this. up to a maximum of eight. is passed
to the routine via registers RO to R7. If the expression evaluates to a numeric. it is
converted to an integer and placed directly in a register. If the expression eva I uates
to a string. the string is placed on BASIC's stack. beginning at a word boundary and
terminated with a null character. A pointer to it is put in the register. Any
expressions not given (indicated by adjacent commas , ,) default to zero.

The optional TO is followed by a variable list Each variable is assigned any value
returned by the routine in the registers RO to R7 respectively. If the variable to
ass1gn to is numeric. the integer in the register is converted to an appropriate
format and stored in it. If the va riable to assign to is a stnng. the register IS treated
as a pointer to a string terminated by ASCII 0. I 0 or 13 and this string is assigned to
the variable. The strings given on input can be overwritten . but should not be
extended. As with the input expressions. output variables may be omitted using
adjacent commas in the list.

fla g s is an optional variable. to which the processor nag bits are returned. The
value stored in the flags value is a binary number of the form %NZCV. where the
letters stand for the result nags of the ARM status register.

Purpose

SYS provides access to the routines supplied by the operating system for entering
and outputting cha racters. error handling. sprite manipulation. and so on. Details
of these operating system routines is beyond the scope of this book. but can be
found in the Programmer's Reference Manual.

Examples

SYS "OS_ReadMonotonicTime" TO time
SYS "OS_Sprite0p",28, ,"MYSPRITE", ,3

Keywords

SYS "Font_ FindFont",, "Homerton .Medium ", 12*16,12*16 TO f%

10 SYS 0,(442 : REM output a*
20 OS_Write% = 0
30 SYS OS_Write% , 42
40 END

383

TAB

384

TAB

Print mod1fier to position text cursor in PRINT and INPUT statements

Syntax

(L) TAB(expression)
().) TAB(expressionl ,expression2)

Argument (1)

A numeric in the range 0 to 255. It expresses the desired x-coordinate of the cursor.
This pos ition is obtained by printing spaces A new line is generated first if the
current position is at or to the right of the required one. COUNT is updated
appropriately This form is usefu l for tabulating on both the screen (even in VDU 5
model or printed output.

Argument (2)

cxp1 essi onl is the desired x coordinate:

express i on2 is the desired y coordinate

The position is reached using the VDU 31 command Both coordinates must lie
w1thm the current text viewport. otherwise. no cursor movement will take place
COUNT is no longer correct. This form is only useful when positlonmg the cursor
on the screen as it uses control codes which will not be sent to a printer

Examples

PRIN'J' 'IAB(::.O) "Product" ; TAB(20) " P1 ice"
I NPU'f' 'IAI3(0 , 2.0) " :-10\..; :nany eggs ", eggn%

Keywords

TAN

Funct ion giving the tangent of its argument

Syntax

TAN factor

Argument

A real number interpreted as an angle in radians

Result

A rea l giving the tangent of the angle. in the range-I E38 to + I E38.

Note If the argument is outside the range -8388608 to 8388608 radians. it is
impossible to determine how many ns to subtract. The error Accuracy
lost in sine/cosine/tangent is generated

Examples

opp:adj *TAN (RAD(theta))

385

TEMPO

386

Syntax

Function returning or statement altering the beat counter rate

(1) TEM?O expression
(2) TEMPO

TEMPO

Argument (1)

(xpression is a scaled fractional number. in wh1ch the 12 least-significant bits
are the fractional part. Thus a value of & I 000 corresponds to a tempo of one tempo
beat per centi-second. doubling the value (&2000) causes the tempo to double
(two tempo beals per cen ti-second). halving the va lue (&800) halves the tempo
(one beat every two centi-seconds).

The tempo determines the rate at which the beat counter increases

Result (2)

1\ number giving lhe current tempo

Examples

.'H•H'O &2000
PRINT 'TEMPO
DE? fNte~po TE~PO/&JOOO

DE? PP.OCtempo(t) 'TEl•lPO t*&IOOC:EKDPROC

Keywords

TEXTLOAD

Command to load a BASIC fi le at PAGE.

Syntax

TEXTLOAD sLring expression

Argument

sLring expression is a string which shou ld evaluate to a filename that is valid
for the fi ling system in use. The file can be a BASIC program. or a BASIC program
that was saved as a text file (see TEXTSAVE). If a text file is loaded which has l ines
without line numbers, TEXTLOAD automatica lly renumbers it.

Note I : Any program which is currently in memory is overwritten and lost with
all its variables. The static integers (A%- Z% and@%) and INSTALLed libraries
are not affected.

Examples

Note 2: Files loaded with this command must end in a linefeed. or the
computer will hang.

TEXTLOAD adfs : : GOjsc.disasm

where GDisc is the name of a floppy disc.

TEXTLOAD FNnextFile

387

TEXTSAVE

388

TEXTSAVE

Command to save a BASIC program to a text file

Syntax

(1) TEXTSAVE string expression
(2) TEXTSAVEO expre ssion, string expression

Arguments (1)

string expression shou ld evaluate to a string which is a valid fi lename under
the filing system in use. The cu rrent BASIC program is stored as a text file on the
medium under this name.

Arguments (2)

expression shou ld be in the range zero to 31, and is treated as a 5-bit binary
number. TEXTSAVEO is sim ilar to TEXTSAVE, but when it converts the program to
text. it uses the LISTO- type option speci fied by expression to format the output
to the file given by string expression .

Examples

TEXTSAVE "Versionl "
TEXTSA\TEO 8, "Version2 " REM strips out Jine numbe r s

Syntax

Keywords

THEN

Optional part of a single line IF ... THEN ... ELSE statement and compulsory part
of multi-line IF ... THEN ... ELSE ... ENDIF statement

See IF on page 290

Examples

lF a>3 THEN PRINT "Too large" : REM THEN optional
lF mem THEN HIMEM = HIMEM - &2000
IF A$- "Y" THEN 1200 ELSE GOTO 1400

MODE 1
IF colour$ = "red" THEN

COLOUR 1
CLS

ELSE
COLOUR 0 CLS

END IF

389

TIME

390

TIME

Pseudo-variable reading or altering the value or the centi-second clock

Syntax

(lJ TIME
(2) TIME = expression

Result (1)

An integer giving tire number of centi-seconds that have elapsed since the last
time the clock was set to zero.

Arguments (2)

express ion is an integer value used to set the clock. TIME is initially set to the
lowest four bytes' of the five-byte clock value maintained by the operating system.
Assigning to the TIME pseudo-variable alters the system centi-second timer (the
one which is read and written by OS_ Words I and 2 respectively). There is. however.
an additional system clock which is monotonic: it always increases in value with
time. and cannot be reset by software. TIME does not affect this timer

Examples

DEF PROCdelay{n) T%=TIME+n*l00 : REPEAT UNTIL TIME>T%

Keywords

TIME$

Pseudo·variable accessing the real·time clock.

Syntax

(1) TIME$
(2) TIME$

Result (1)

expression

TIME$ returns a 24·character string of the format:

Fri,24 May 1984 . 17 : 40:59

The date and time part are separated by a full stop ' . '.

Result (2)

The expression should be a string specifying the date, the time. or both.
Punctuation and spacing are crucial and should be as shown in the examples
below.

Examples

PRINT TIMES
TIME$="Tue , 01 Jan 1972"
TIME$="21:12 : 06"
TIME$="Tue,01 Jan 1972.21:12:06"

Note that the day of the week is automatica lly calcu lated from the date. so that any
three characters may be entered at the start of the date, for example

TIME$= "xxx,l9 Aug 1987"

391

TINT

392

TINT

Part o f the COLOUR or GCOL statements for use in 256-colour modes. or a
statement on its own. or a function .

Syntax

(1) COLOUR expr [TINT expression)
(2) GCOL [expr,) expr [TINT expression]
(3) TINT expression , expression
(4) TINT(expression , expression)

Arguments (1) and (2)

For usages (I) and (2), see COLOUR (COLOR) on page 247 and GCOL on page 281
respectively.

Arguments (3)

The TINT statement takes two expressions The first is a number in the range 0 to 3
which indicates which type of colour's tint value is being set:

Number

0
I
2
3

Colour affected

Text foreground
Text background
Graphics foreground
Graphics background

The second expression is a number in the range 0 to 255. This gives the amount of
wh ite to add to the basic colour. Currently, only the top two bits of this number are
significant, so 0. 64. l 28 and 192 give distinct tint values.

The two lines below are equivalent

GCOL 34 TINT 128
GCOL 34 : TINT 2,128

Result (4)

The two expressions within the brackets give the coord inates of the point whose
tint is required. The result is the t int for that pixel. currently one o f the values 0. 64,
128 or 192. If the pixel is outside the graphics window, 0 is returnerl, so PO I NT ()
should be used to check that the point is valid first.

Examples

COLOUR l +J% TINT N%
GCOL 128+63 TINT 255 : REM solid white
GCOL 3 TINT TINT{x , y) : REM NB two uses at once!
t=TINT{O,O)

Keywords

393

TOP

394

Syntax

Result

TOP

Function returning the address of the end of the program

TOP

TOP gives the address of the first byte after the BASIC program. The length of the
program is equal to TOP-PAGE. LOMEM is usually set to TOP (or the first word
above if TOP isn't on a word boundary). so this is where the variables start.

Example

PRINT TOP

Keywords

TRACE

Statement to initiate or terminate line/procedure tracing.
Function enabling text to be sent to a trace file.

Syntax

as a statement:

(1) TRACE [STEPl expression
(2) TRACE [STEP) ON
(3)' TRACE [STEP) PROC
(4) TRACE OFF
(5) TRACE TO filename
(6) TRACE CLOSE

as a function:

(7) TRACE

Argument (1)

expression is a line number All line numbers below this line number are
printed out when they are encountered during the execution of the program.

Argument (5)

ti 1 ename is the name of the file to which TRACE output is directed.

Purpose

TRACE ca uses line numbers or procedure and function names to be printed as they
are encountered. In cases (I). (2) and (3), if STEP is present, BASIC will wait for a
key to be pressed before continuing after each traced item.

(I) TRACE expression traces only those lines with a line number below the
value of expression

(2) TRACE ON is the same as TRACE 65279, i.e. all line numbers are printed as
they are met .

(3) TRACE PROC traces procedures and functions only.

(4) TRACE OFF disables tracing. as does the default error handler

(5) TRACE TO sends the output from TRACE to a specified file (not ava ilable on
1.04 interpreter) .

395

TRACE

396

(6) TRACE CLOSE stops output to a named file (the interpreter closes the fi le
before exit) Note that errors found when writing to this file wi l l cause it to
be closed.

(7) The function TRACE is either zero. or a fi le handle. It allows output other
than line numbers to be sent to the trace fi le, as in the last example below.

Examples

I P debug THEN TRACE 9000
TRACE STEP PROC
IF debug THEN TRACE OFF
IF TRACE THEN BPUT#TRACE,"X is " +STR$X

Keywords

TRUE

Function returning the constant -I.

Syntax

TRUE

Result

TRUE always returns -I. which is the number yielded by the relational operators
when the condition is true. For example. 1 t-1 <3 gives TRUE as its result.

Examples

debug TRUE
I P debug PRINT"debug in operation"

397

TWIN

398

TWIN

Command to enter the 1\vin text editor

Syntax

T'dTN
T't..'INO expression

Purpose

TWIN converts the program to text. then calls the 1\vin ed itor (which should be on
a convenient disc known to the system). You can edit the program as required.
then return to BASIC using one of Twin's commands. See the '!Win User Guide for
deta ils.

TWINO is similar. except that when it converts the program to text. it uses the
LISTO-type option that follows the command. Most useful is 8. which strips line
numbers from the start of the program

Keywords

UNTIL

Statement to terminate a REPEAT loop

Syntax

UNTIL expression

Argument

expression can be any numeric expression which ca n be evaluated to give a
truth value. If it is zero (FALSE). control passes back to the statement immediately
after the corresponding REPEAT If the expression is non-zero (TRUE). control
continues to the statement after the UNTIL.

Examples

DEF PROCirrltate
REPEAT VDU 7 :UNTIL FALSE
ENDPROC

REPEAT PROCmove : UNTIL gameOver

399

USR

400

USR

Function returning the va lue of RO after executing a machine code routine.

Syntax

USR factor

Argument

Result

The address of the mach ine code to be ca lled. Ca lls to the 6502-based BBC
Microcomputer operating systems are handled by USR for compatibil ity.

USR is sim ilar to CALL except that it returns a resu lt and cannot be passed any
parameters. On entry to the routine. RO .. R 14 are as for CALL.

An integer. being the contents of RO on return to BASIC.

Example

DEF FNmachinecode =USR (start_of_code)

Keywords

VAL

Function returning the numeric value of a decimal string.

Syntax

VAL factor

Argument

A string of length zero to 255 characters.

Result

The number that wou ld have been read if the string had been typed in response to
a numeric INPUT statement. The string is interpreted up to the first character that
is not a legal numeric one (0 to 9. E. - .+,and .1.

Example

dat e =VAL(date$)

401

vou

402

VDU

Statement sending bytes to the VDU drivers.

Syntax

VDU [expr· [, or or I or expr] ... [; or t]

Arguments

Any expresstons may be followed by a comma. a semi-colon. a vertical bar or
nothing

Expressions followed by a semi-colon are sent dS two bytes (low byte firsn to the
operating system VDU drivers.

Expressions followed by a comma (or nothing) are sent to the VDU drivers as one
byte. taken from the least significant byte of the expression.

The vertical bar means , 0, 0, o, o, o, 0, 0, o, 0, and so sends the expression
before it as a byte followed by nine zero bytes Since the maximum number of
parameters required by any of the VDU <;tatements is nine. the vertical bar ensures
that sufficient parameters have been sent for any particular call Any surplus ones
are irrelevant. since VDU 0 does nothing

Examples

Note: For the meanings of the VDU codes. see the chapter entitled VDU control
on page I 73.

VDU 21\,1\00;300 ;1 000 ;74 0 ; : f{~:M !;eL up a graphics window
\/DU 7 : REM Emit a beep
'fDU 23,9,200 23,10,2001 : Slow down Lhe :lash rate

Keywords

VOICES

Statement specifying the number of sound channels to be used.

Syntax

VO I CES expression

Arguments

expression is the number of channels to be used. The maximum number
allowed is eight. Any number between I and 8 can be specified. but the number
which the computer is to hand le must be a power of two and so the computer
rounds up the number you give to either one. two. four or eight.

Examples

Note: The sound~ystem uses up some of the ccmputer's processing power.
and so it is good practice to minimise the number of active channels.
Otherwise. the computer will take longer to perform other tasks such as
drawing to the screen.

VOT CES 4
VOI CES n%* 2

403

VPOS

404

Syntax

Result

VPOS

Function return ing they-coordinate of the text cursor

VPOS

An mteger between 0 and 11. where 11 is the height of the current text viewport
minus one. This is the position of the text cursor which is normally given relative to
the top edge of the text viewport. If the cursor d irection has been altered using
VDU 23 , 16, ... then it is given relative to the negative y edge of the screen which
may be top, bottom, left o r right.

No te: Even in VDU 5 mode. VPOS returns the pos ition of the text cursor. You
should therefore keep t rack of the vertica l position expl ici tly in programs
whi ch must operate in VDU 5 mode (e.g. WIMP-based programs)

Examples

DEr FNmy1'ab(x%)
PRINT TAB(x %, VPOS) ;:

IP VPOS>l0 THEN PRINT TAB (0 , 10) ;

Keywords

WAIT

Statement to wa it for end of the current display frame. Waiti ng until the end of the
frame maximises the amount of time available in which to draw objects while the
electron beam is 'blanked·.

Syntax

WAIT

Purpose

To enable a program to synchron ise animat ion effects with the scanning of the
display hardware.

Examples

MODE 0
a=O
REPEAT

POINT 1279,500+200*SINa
a+=RAD5
WA!T:RECTANGLE FILL 0,300,1279,400 TO - 4,300

UNTIL FALSE

405

WHEN

406

WHEN

Part of the CASE 00. OF oo· WHEN 00. OTIIERWISE 000 ENDCASE statement.

Syntax

'dHEN expression ~ ,expression . .. ; [: statement..s]

[sratements

Arguments

WHEN is followed by a list of expressions separated by commas. These expressions
should evaluate to the same type as that of the expression following the
corresponding CASE statement. If the value of the expression following the CASE
statement matches that of any of th e li st following the WHEN. statemenl s are
executed and contro l is then passed to the statement following the EN DCASE

Examples

Note: WHEN must be the first non space object on a line. A CASE statement
can contain any number of WHEN statements but only the statements of the
first one which contains a matching value will be executed To match any
value, an OTHERWISE should be used

~VHEN ~ : J>ROC J oad
WHEN 2,4,6 , 8 : PRINT " Even " : l emdlnder= 0
11'11-!EN "Y","y","YES","Yes","yes ": i>RQCgame

Keywords

WHILE

Statement marking the start of a WHILE ... ENDWHILE loop.

Syntax

TtJHILE expression

Arguments

expression can be any numeric which can be evaluated to give a truth value. If it
is zero (FALSE). control passes forward to the statement immediately after the
corresponding ENDWHILE. If it is non-zero. control continues until the
ENDWHILE statement is reached. then loops back to the WHILE statement. and
expression is re-evaluated.

Note: The statements making up the body of the WHILE ... ENDWHILE loop
are never executed if the initial va lue of expression is FALSE.

Examples

WHILE TI ME < 1000
PROCdraw

ENDWHlLE

'itJHILE flag PROCmainloop ENDWHILE

407

WIDTH

408

WIDTH

Statement setting the line width for BASIC output. and function returning same.

Syntax

(I) ~<JIDTH

(2) '.\1ID'IIl expression

Result (1)

WIDTH retwrns the current pri_nt width, i.e. the last va lue used in a WIDTH
statement described be low (or 0 by default).

Argument (2)

expression should be a positive integer. Expressions in the range 1 to
2147483627 cause BASIC to print a new I ine and reset COUNT to zero every time
COUNT exceeds that number. If the expression is 0. BASIC stops generating
auto-newlines. which is the default.

Examples

~·!!D'JH 0 : REM 'i.nfir.ite width'
~-IID'IH 40 : ~E.~ newline every 40 charac::ers horizonlally
PRINT WIDTH

Part 4 - Appendices

409

410

Appendix A - Numeric implementation

Numeric types

Before you can perform any arithmetic operations. you need to know how the
computer hand les numbers. and what l imitations there are on their use.

This appendix describes the different types of numbers you can use with BBC
BASIC. tells you how they are stored and manipulated and explains what
limitations this places on your programs.

You can use the fol lowing numeric types with BBC BASIC

Integers

These are whole numbers. which can be represented exactly by the computer. for
example:

I
2
1024

Floating point numbers

These are real numbers expressed as a decimal fraction. for example

1.3
123.45
1.2345E2

Fixed point numbers

These are real numbers expressed as a decimal fraction. but with a fixed number of
places after the decimal point For example:

1.3333
1.2346
123.4568

are fixed pomt numbers accurate to four decimal places.

411

Numeric types

412

The most important factor governing numeric types is the amount of memory used
to store them. For the purposes of this description. we will only consider integers
and floating point numbers.

BASIC VI uses the following storage sizes for numeric types:

Numeric type

Integers

Floating point numbers

Storage size

4 bytes (32 bits)

8 bytes (64 bits)

Remember that BASIC V on ly supports integers and 5-byte reals (we shall use the
term n-byte rea/s to mean n-byte floating point numbers). The following figures
show how the storage for each numeric type is organised.

bit
31

bit
31

2's complement representation of integer

tstword ~-------- Mantissa

2nd word

bit
0

Exponent

bit
0

Appendix A - Numeric implementation

bit bit
31 30 20 19 ... 0

1st word S~ Exponent ___ l Mantissa

2nd word Mantissa

Effects of storage size
The storage size of a numeric type affects the following things:

• the speed with which numbers of that type are processed by the computer;

• the amount of memory left for your program:

• the range of numbers of that type which can be represented by the computer;

• the accuracy with which numbers of that type can be represented by the
computer.

For example. integers occupy less space than real numbers. and are handled much
more quickly. 8-byte reals use more memory than 5-byte reals. and are therefore
more accurate. The computer can represent larger numbers in the 8-byte format.

The effect on memory usage is very important if. for instance. your program uses
arrays of real numbers. Consider an array with I 00 elements in. each element being
a 5-byte real. This will occupy 500 bytes of memory, whereas it would occupy 800
bytes if the elements were 8-byte rea is. This is a trivial example. but the effects can
become severely limiting if you use very large arrays.

The following two subsections explain range and accuracy of representation in
more detail

413

Effects of storage size

Range
The greater the storage size of a given numeric type, the greater the range of
numbers of that type that the computer can represent For instance. integers are
stored in 4 bytes or 32 bits. The maximum positive integer that the computer can
represent IS given by "'\

2 1\ (32- I) • ') I J - I .
wh1ch means 2 raised to the power of 3 I. and is equal to 214 748364 7

I

The maximum positive real number that the computer can represent depends on
which type of real number you specify For instance. the maximum positive 5-byte
real that the computer can represent is

1.7x1038

Accuracy

414

The accuracy of a number is determined by how many sign ificant figures of the
number that the computer can show. The computer can show a lithe significant
figures in an integer (as long as it is within the representable range) However. it
must lose some of the significant figures of a floating point number.

For instance. the value of PI shown to three significant figures is 3 I 4 Shown to six
significant figures. it is 3. 14159. BASIC VI can show up to 17 significant figures of a
floating point number. but this does not mean it is completely accurate PI has an
infinite number of digits after the decimal point. and so the computer can only
print an approximation to it, by chopping off the trailing digits

The table below summarises the numerical representation of BBC BASIC

Range Accuracy Stored In

Integers -2147483648 to 2147483647 absolute 4 bytes

5-byte reals ±1 .7x i038 to ±1 .5x 1 0 39 9 sig figs 5 bytes

8- byte reals ±I. 7x I 0308 to ± 1. 5x I 0 323 17 sig figs 8 bytes

The rest of this appendix explains the two methods used by BASIC VI for
implementing 8-byte floating point arithmetic to IEEE standard 754 BASIC V on ly
employs one of these methods. and does perform its 5-byte arithmetic to the IEEE
standard .

Appendix A - Numeric implementation

What is floating point arithmetic?

Implementation

Floating point arithmetic is the process by which real numbers are manipulated, as
a resu lt of your instructions to the computer. For example, a computer cannot add
two numbers together in the way we can. It must first convert the numbers into
binary form, and then add them using Boolean operations.

Every arithmetic operation can be reduced, at the lowest level. to a group of
Boolean operations. It is more convenient. however, to represent these groups by a
set of mnemonics. ca lled the floating point instruction set. The BBC BASIC floating
point instruction set is given in full in the RISC OS Programmer's Reference Manual.

BBC BASIC VI uses two methods to implement floating point arithmetic. They are
as follows

• software implementation. using a floating point emulator (FPE)

• hardware implementation. using an optiona l floating point coprocessor

The advantage of hardware implementation is that it is much faster.

When you instruct the computer to add two real numbers A and B together. the
following sequence of events takes place:

The BASIC interpreter stores the numbers in floating poin t format

2 The ARM processor scans the list of operations it can perform It cannot
perform floating P<?int operations itself, so one of the following two things can
happen:

• The instruction is performed by the floating point coprocessor (if fitted) .

• The instruction is performed by the floating point emulator

3 The interpreter produces machine code instructions. telling the ARM
microprocessor that the floating point numbers A and Bare to be added
together using a floating poinl add instruction (ADF) .

4 The ARM processor stores A and Bin its internal floating point registers

Floating point emulator

The floating point emulator is a software module that provides floating point
support It emu lates a hardware float ing point coprocessor. It is th is module that
provides the floating point instruction set. extend ing the existing instruction set of
the ARM processor

415

Implementation

You cannot use floating point instructions directly, as the BASIC interpreter does
not understand them However. you can .include them in an assembly language
module which is called from your program The descnption of the CALL statement
(on page 2261 explains this.

Floating point coprocessor

416

The floating point coprocessor is an optional hardware device that performs
floating point arithmetic to IEEE standard 754 The coprocessor only directly
supports a subset of the floating point instruction set If a particular instruction is
not supported by the coprocessor. it is performed by the emulator instead

It does not matter to your program whether a coprocessor is present or not. The
user interface ensures that programs run in exactly the same way in ei ther case.
The on ly difference you will see is in the speed al which your program runs

Floating point instructions are performed much faster in hardware. although the
actua l improvement in performance depends on what equ ipment you are using,
and which processor you have.

Appendix 8 - Minimum abbreviations

Keyword Abbr. Version Token byte(s)

ABS ABS I &94
ACS ACS I &95
ADVAL AD . I &96
AND A. I &80
APPEND AP . v &C7 &8E
ASC ASC I &97
ASN ASN I &98
ATN ATN T &99
AUTO AU . I &C7 &8F
BEAT BEAT v &C6 &8F
BEATS BEA . v &C8 &9E
BGET B. I &9A
BGET$ BGET$ v ,.
BPUT BP . I , V &D5
BPUT$ BPUT$ v
BY BY v &42 &59 (not tokenised)
CALL CA . I &D6
CASE CASE v &C8 &8E
CHAIN CH . I &D7
CHR$ CHR$ I &BD
CIRCLE CI . v &C8 &8F
CLEAR CL . I &D8
CLG CLG I &DA
CLOSE CLO . I &D9
CLOSE# CLOSE# I ,,
CLS CLS I &DB
COLOR c . II I &FB
COLOUR c . I &FB
cos cos I &9B
COUNT cou . I &9C
CRUNCH CH . v &C7 &90
DATA D. I &DC
DEF DEF I &DO
DEG DEG I &90
DELETE DEL . I &C7 &91

417

418

Keyword Abbr.

DIM DH1

DIV DIV
DR.I\\t·l DR.
EDIT ED .

EDITO ED . O
ELLIPSE ELL.
ELSE EL.
END END
EN DC AS E.: ENDC .
END I F ENDIF
ENDPROC E.
ENDV.IHILE ENmv.
EOF EQb'
EOF# EOF#
EOR EOR
ERL ERL
ERR ERR
ERROR ERR .
EVAL FV .
EXP EXP
EXT EXT
EX'!'#
FALSE
FILL
FN
FOR
GCOL
GET
GET$
GET$1+
GO SUB
GOTO
HELP
HIMEt1

IF
INKEY
INKEY$
INPUT

EXT#
FA .
FI .
FN
F .
GC .
GET
GE .
GET$#
GOS .
G.
HE.
H.
IF
I N KEY
INK .
I.

Version

l ' v
I

1
lV

IV
v
l 'v
l,V

v
v
I
v
I

I

I

I

I

I

I
I , I\l , ·v
1 , v
I
v
I

I

I " ' v
I
I, \i
v
T

I

v
I

I F
' '

I

INPU~# I NPUT# T
INPUT LINE INPUT LIKE I
INSTALL I NS . V

Token byte(s)

&DE
&8 1
&DF
&C7 &92
&C7 &92 &4F
&C8 &9D
&CC
&EO
&CB
&CD
&c:l
&CE
&CS

&82

&9E
&9F
&85 _
&AO
&;..1

&A2

&A3
&C8 &90
&.A.4
&E3
&E6
&AS
&BE

&E4
&ES
&C7 &93
&D3 I &93
&E7
&A6
&BF
&E8

&C8 &9A

Appendix 8 - Minimum abbreviations

Keyword Abbr. Version Token byte(s)

INSTR(INS . I &A7
INT I NT I &A8
LEFT$(LE. I , V &CO
LEN LEN I &A9
LET LET I &E9
LIBRARY LIB . v &C8 &98
LINE LINE I, V &86
LINE I NPUT LINE INPUT v
LIST L . I, IV &C7 &94
LIST.O L . O I,V &C7 &94 &4F
LN LN I &AA
LOAD LO. I &C7 95
LOCAL LOC. I, V &EA
LOCAL ERROR LOCAL ERROR v
LOG LOG I &AB
LOMEM LOM. I &D2 I &92
LVAR LV . v &C7 &96
MID$(M. I , V &Cl
MOD MOD I , V &83
MODE MO. I, V &EB
MOUSE MOU. v &C8 &97
MOVE MOVE I &EC
NEW NEW I &C7 &97
NEXT N. I &ED
NOT NOT I &AB
OF OF v &CA
OFF OFF I, V &87
OLD 0. I &C7 &98
ON ON I , V &EE
ON ERROR ON ERROR v
OPEN IN OP. I &8E
OPENOUT OPENO. I &AE
OPENUP OPENUP II &AD
OR OR I &84
ORIGIN OR. v &C8 &91
OSCLI OS. II &FF
OTHERWISE OT. v &7F
OVERLAY ov . v &C8 &A]
PJ.'.GE PA . I &DO I &90
PI PI I &AF
PLOT PL . I &FO

419

Keyword Abbr. Version Token byte(s)

POINT POINT v &C8 &92
POINT(PO. I &BO
POS POS I &Bl
PRINT P. 1 &Fl
PRINTlt PRINT# I

PROC PROC I &F2
P'T'R PTR I &CF I &SF
PTR# PTR# I
QUIT Q. v &C8 &98
READ READ I &F3

RECTANGLE REC. v &C8 &93
REM REM I &F4
RENUMBER REN . I &C7 &99
REPEAT REP. I &FS
REPORT REPO. I &F6
REPORT$ REPO. $ v &F6 &24
RESTORE RES. I , V &F7
RESTORE DA'T'A v
RESTORE ERROR v
RETURN R. I, V &F8
RIGHT$(RI. I , V &C2
RND RND &83
RUN RUN 1 &F9
SAVE SA. I , V &C7 &9QA
SGN SCN J &84
SIN SlN I &B':l
SOUND so . r.v &D4
SPC SPC I &89
SQR SQR I &B6
STEP s. r, ·v &88
STEREO STER . v &C8 &A2
STOP STOP I &FA
STRS STR$ I &C3
STRING$ (STRI. I &C4
SUM SUM v &C6 &8E
SUMLEN SUM LEN \l &C6 &8E
SltJAP srf.i. v &C8 &94
SYS SYS v &C8 &99
TAB('T'AB(I &8A
TAN T . I &87
TEMPO ':'E . v &C8 &9F

420

Appendix B - Minimum abbreviations

Keyword Abbr. Version Token byte(s)

TEXTLOAD TEXTL. v &C7 &9B
TEXTSAVE TEXTS . v &C7 &9C
THEN TH . I,V &BC
TIME TI. I, IV &01 I &91
TI ME$ TI. $ IV &01 I &91 s
TINT TINT v &CB &9C
TO TO I , V &BB
TOP TOP I &B8 &50
TRACE TR. L V &FC
TRUE TRUE I &B9
TWIN TWIN v &C7 &90
TltJINO TW. v &C7 &9E
UNTIL u . I &FD
USR USR I &BA
VAL VAL I &BB
VDU v . I &EF
VOICE VOICE v &CB &A1
VOICES vo. v &CB &AO
VPOS VP . I &BC
WAIT WA . v &C8 &96
ltJHEN WHEN v &C9
ltJHILE w. v &C8 &95
WI DTH !,VI . I &FE

The two values for the pseudo-variables LOMEM. HIM EM. PAGE. PTR and TIME are
the statement and function tokens respectively

Where more than one version number is given. the second one indicates that the
keyword was employed in a new way in that version .

421

422

Appendix C - Error messages

Note that error numbers 20 to 24 cannot be formed in BASIC VI

Error
number

0

1

2

'3

5

6

Error
message

Corruption of stack

Error control status not found on stack for
RESTORE ERROR

HELP has no jn formalion on Lhis keyword

Incorrec t in core f i le descr i p l ion

Invalid LISTO option

Invalid TWINO option

Line too long

Line numbers larger than 65279 would be
generated by lhis renumber

LIST/TWIN found line number reference

Missing incore name

No room

No room to do this renumber

Stopped

No such mnemonic

No such suffix on EOU

Assembler limit reached

Bad address offset

Bad immediate constant

Bad shifl

Bad regisLer

DuplicaLe reg i ster in multiply

Missing =

Missing

Mistake

Missing ,

in FOR statement

Type mismatch : array needed

Type mismatch : numeric array needed

423

424

Error
number

6

7

8

9

10

11

12

13
14

14

15

16

17

18

Error
message

Type mismatch: number needed

Type mismatch: numeric var iab~c needed

Type mismatch: string array needed

Type mismatch: string needed

Type mismatch: string variable needed

Type mismatch between arrays

Can't assign to array of this size

Array type mismatch as parameter

Can't S1..VAP arrays of differenl Lypes

Not in a function

Too low a value for $<numbel~

Missing "

Arrays cannot be redimensioned

Bad DIM statement

Can't DIM negative amount:.

DIM() function needs an array

Impossible dimension

No end of dimension list)

No room to do matrix multiple with

source(s) the same as destination

Attempt to allocate insufficient memory

No room for this DIM

No room for this dimension

Items can only be made local in a funct]on or
procedure

Not in a procedure

Reference array incorrect:.

Undimensioned array

Unknown array

Unknown array in DT M() function

Incorrect number of subscripLs

Subscript out of range

Syntax error

Escape

Division by zero

Error
number

19

20

21
22

23

24
26

27

28

29

30

31

32

33
34
35

36
38

39

40
lj 1

42

42
43

Appendix C - Error messages

Error
message

String too long
Number ;:oo big

Nuwber coo big for arc Sine or arc Cosine
Negative root
Logarithm range
Accuracy :ost in Sine/ Cosine/

Tangent
Exponent range
Can't use array refer0nce here
Unknown or missing variable
Missing
Missing
Missing
Missing
Bad Binary

Bad Hex
Hex number too large
No such function/procedure
Bad call of function/procedure
Arguments of function/procedure incorrect
Invalid array actual parameter
Invalid RETURN actual parameter
Not in a FOR :oop
Can't match FOR
Bad FOR control variable

The step cannot be zero
Missing TO
Not in a subrout i ne
ON syntax
ON range

No such line
DATA pointer not found on slack lor RESTORE
DATA
Out of data
Not in a REPEAT loop

425

426

Error
number

44
45

46
47

48

48

49

50

51

52

Error
message

Too many nested structures
Missing #

Not in a WHILE loop
Missing ENDCASE

CASE .. OF statement must be the last thing on
a line
OF missing from CASE statement
Missing ENDIF

Bad MOUSE variable
Too many input expressions for SYS
Too many output variables for SYS
Can ' t install Jibrary

Bad program used as function/procedure library
No room for library

Appendix D- lnkey values

Key INKEY number

Print -33
Fl -1 111
F2 115
F3 -116
F4 -21
F5 -117
F6 -1 18
b"J -23
1~8 -119
F9 -120
FlO -31
Fll -29
Fl2 -30
A -66
B -101
c -83
D -51
E -35
F -68
G -84
H -85
1 -38
J -70
K -7 1

L -87
M -102
N -86
0 -55
p -56
0 -1'1
R -52
s -82
'1' -36
u -54
v -100

427

428

Key

\IJ

X

Y.

z
0
1
2
3
4
5
6
7
8
9

I
l
\
]

Esc
Tab
Caps Lock
Scroll Lock
Num Lock
Break
'/­
#/Currency
Back Space
I nsert
Home
Page Up
Page Down
I I II

Shi ft (ei t her/both)
Alt (either/both}
Shift (left/right-hand}
Ct rl (l e f t/right - hand)
Al t (left/right-hand}

INKEY number

- 34
-67
-69
-98
-40
-49
- 50
-18
-19
- 20
- 53
-37
- 22
- 39
-103
-24
-104
-105
-57
- 12]
- 89
- 88
-113
-97
-65
-32
-78
- 45
- 46
-47
-48
- 62
- 63
-64
-79
- 80
- 1

- 3
-4/-7
- 5/ - 8
-6/-9

Key INKEY number

Space Bur­
Delete
Rei.: urn
Copy
i
~

--4

i
Keypad 0
Keypad 1
Keypad 2
Keypud J
Keypad ~

Kcypc~d 5
Keypad 6
Keypad 7
Keypad 8
Keypad 9
Keypad t

Keypad -
Keypad
Keypad I
Keypad ti

Keypad *
Keypad E11L:er
Se l ect mouse button (Lo f LI
Menu mouse butcon {Middl0)

99
-90
- 74
-1 06

58
-26
-122
-<'I/.
-107
-108
-125
- 109
- 1 /.3

124
-2 7
-28

43
- 4~

-59
-60
-77
-75
- 91
-92
-6 1

10
-11

Adjust mouse button {RighL) 12

Appendix D - lnkey values

429

430

Appendix E - Colour modes

Two-colour mode

0 = black
I = white

Four-colo~.tr modes

0 black
red

2 = yellow
3 = white

16-colour modes

0 black
I = red
2 green
3 yellow
4 blue
5 = magenta
6 = cyan
7 = white
8 = flashing black-white
9 = flashing red-cyan

10 flash ing green-magenta
II = flash ing yellow-blue
12 = flashing blue-yellow
13 = flashing magenta-green
14 = flashing cyan- red
15 = flash ing white-black

431

432

Appendix F - Plot codes

The groups of PLOT codes are as follows:

0 - 7 (&00 - &07) Solid line including both end points
8 - 15 (&08 - &OF) Solid line excluding final points

16 - 23 (&10 - &17) Dotted line including both end points
24 - 31 (&18 - &IF) Dotted line exclud ing fina l points
32 - 39 (&20 - &27) Solid line excluding initial point
40 - 47 (&28 - &2F) Solid line excluding both end points
48 - 55 (&30 - &37) Dotted line excluding initial point
56 - 63 (&38 - &3F) Dotted line exclud ing both end points
64 - 71 (&40 - &47) Point plot
72- 79 (&48 - &4F) Horizontal line fill (left & right) to non-

background
80 - 87 (&50 - &57) Triangle fill
88 - 95 (&58 - &5F) Horizontal li ne fill (right on ly) to

background
96 - 103 (&60 - &67) Rectangle fill

104 - Ill (&68 - &6F) Horizonta l l ine fill (left & right) to
foreground

112 - 119 (&70 - &77) Parallelogram fill
120 - 127 (&78 - &7F) Horizonta l line fill (right on ly) to non-

foreground'
128 - 135 (&80 - &87) Flood to background
136- 143 (&88 - &8F) Flood to foreground
144 - 151 (&90 - &97) Circle outline
152 - 159 (&98 - &9F) Circle fill
160 - 167 (&AO - &A7) Circular arc
168 - 175 (&A8 - &AF) Segment
176- 183 (&BO - &B7) Sector
184 - 191 (&B8 - &BF) Block copy/move
192 - 199 (&CO - &C7) Ell ipse outl ine
200 - 207 (&C8 - &CF) Ell ipse fi ll
208 - 215 (&DO - &D7) Graphics characters
216 - 223 (&D8 - &DF) Reserved for Acorn expansion
224 - 231 (&EO - &E7) Reserved for Acorn expansion
232 - 239 l&E8 - &EF) Sprite plot
240 - 247 (&FO &F7) Reserved for user programs
248 - 255 (&F8 - &FF) Reserved for user programs

433

434

Within each block of eight the offset from the base number has the following
meaning:

0 Move cursor relative (to last graphics point visited)

I Draw relative using current foreground colour

2 Draw relative using logical inverse colour

3 Draw relative using current background colour

4 Move cursor absolute (ie move to actual co-ordinate given)

5 Draw absolute using current foreground colour

6 Draw absolute using logica l inverse colour

7 Draw absolute using current background colour

The above applies except for COPY and MOVE where the codes are as follows

184 (&B8) Move only. relative

185 (&B9) Move rectangle relative

186 (&BA) Copy rectangle relative

187 (&BB) Copy rectangle relative

188 (&BCl Move only. absolu te

189 (&BD) Move rectangle absolute

190 (&BEl Copy rectangle absolute

191 (&BF) Copy rectangle absolute

Appendix G - VDU commands

VDU Ctrl Extra Meaning
Code bytes

0 @ 0 Does nothing
A Sends next character to printer only

2 B 0 Enables printer
'3 c 0 Disables printer
4 D 0 Writes text at text cursor
5 E 0 Writes text at graphics cursor
6 F 0 Enables VDU driver
7 G 0 Generates bell sound
8 H 0 Moves cursor back one character (or

deletes previous character)
9 I 0 Moves cursor on one space
10 J 0 Moves cursor down one line
II K 0 Moves cursor up one line
12 L 0 Clears text window
13 M 0 Moves cursor to sta rt of current line
14 N 0 Turns on page mode
15 0 0 Turns off page mode
16 p 0 Clears graphics window
17 0 I Defines text colour
18 R 2 Defines graphics colou r
19 s 5 Defines logical colour
20 T 0 Restores default logical colours
21 u 0 Disables VDU drivers (or deletes current line)
22 v I Selects screen mode
23 w 9 Multi-purpose command
24 X 8 Defines graphics window
25 y 5 PLOT command
26 z 0 Restores default windows
27 I 0 Does nothing
28 \ 4 Defines text window
29 l 4 Defines graphics origin
30 1\ 0 Homes text cursor
31 2 Moves text cursor

For more detai ls of VDU commands see the chapter entitled VDU control on
page 173 .

435

436

Appendix H - *FX commands

Command Description

*FX 0 Displays operating system title and version number
*FX 1 Writes to location left free for the user
*FX 2 Specifies stream for all subsequent data input
*FX 3 Specifies stream for all subsequent data output
*FX 11 Controls cursor key status
*FX ') Selects where subsequent printer output will be sent
*FX 6 Selects printer ignore character
*f•X 'I Selects RS423 baud rate for receiving data
*FX 8 Selects RS423 baud rate for transmitting data
*FX 9 Selects flash rate for first colour
*FX 10 Selects flash rate for second colour
*FX]1 Selects keyboard auto-repeat delay
*FX 12 Selects keyboard auto-repeat rate
*FX 15 Flushes buffer
*FX 18 Resets function keys
*FX 19 Waits for vertical sync (vsyncl
*FX 20 Resets font definitions
*FX 21 Flushes a selected buffer
*FX 25 Resets a group of font definit ions
* F'X 106 Selects cursor I activates mouse
*FX 112 Writes screen bank number addressed by VDU driver
*FX 113 Writes screen bank number addressed by display hardware
*l'X 114 Sets up automatic shadow mode
*FX 11 8 Reflects keyboard status in LEDs
*FX 120 Writes keys pressed information
*FX 12 11 Clears Esc condition
*FX 125 Sets Esc condition
*FX 126 Acknowledges Esc condition
*FX 138 Inserts character code in to buffer
*FX 139 *OPT equivalent
*FX 111 3 Issues module services ca ll
*FX 144 •rv equivalent
*FX 153 Inserts character into input buffer
*FX 156 Sets RS423 attributes
*FX 162 Writes a value in CMOS RAM

437

438

Command Description

* F'X 163 Sets the dot-dash line pattern length
*FX 178 Enables/disables keyboard
*FX 181 Alters RS423 character actions
*FX 196 • FX 11 eqUivalent
*FX :97 *FX 12 equivalent
*FX 200 Selects Break and Escape effects
*FX 201 Sets keyboard status
*rx 202 Alters keyboard status byte
*FX 203 Sets RS423 'buffer full' limit
* F'X 204 Enables/disables RS423 buffering
*FX 21 I Selects bell channel number
*FX 212 Selects bell amplification
*FX 213 Selects bell frequency
*FX 214 Selects bell duration
*FX 216 Cancels function key expansion
*?X 217 Resets paged mode line count
*rX 218 Cancels VDU command sequence
*FX 219 Selects Tab key code
* F'X 220 Selects Esc cha racter
*['X /.21 Selects interpretation of input va lues 192 to 207
*FX 2/.7 Selects interpretation of input values 208 to 223
*FX 223 Selects interpretation of input values 224 to 239
*FX 224 Selects interpretation of input values 240 to 255
*FX 225 Selects soft key interpretation
*FX 226 Selects Shift plus the soft key interpretation
*:;-X 227 Selects Ctrl plus the soft key interpretation
*E-X 228 Selects Shift Ctrl plus the soft key interpretation
*FX 229 Selects Esc key status
*FX 230 Selects Esc effects
* F'X 238 Selects numeric keypad interpretation
*FX 247 Sets the Break key effects
*FX 2':>4 Selects effect of Shift on numenc keypad
*FX 2 ~4 Selects effect of Shift on numeric keypad

For more details of •Fx commands and their parameters. see the chapter entitled
OS_Byles and the 1ttdex of OS_Byles in the Programmer's Reference Matwal

Appendix I - BBC BASIC's history

This appendix is designed to pinpoint the variallons found among the dialects
of BBC BASIC You can use it to determine whether a given feature of the

language is present in a particular version You should also refer to Appendix B­
Minimum abbreviations on page 417 This gives the version number of the first
appearance of each keyword. For example. OSCLI has II in the version column. as
the OSCLI statement was first introduced in BASIC II

There have been six releases of BBC BASIC, the latest being BASIC VI. The
complete li st is:

BASIC I

The original version supplied with early BBC Microcomputers. models A and B.
1:31:3C BASIC is in turn descended from Atom BASIC. a fast integer-only BASIC
supplied with the Acorn Atom.

BASIC II

Thrs was an update to BASIC I It also ran on the BBC models A and B It
incorporated various bug fixes to BASIC I. and added the OPE.NUP and OSCLI
keywords and offset assembly Version II is the principal BBC Microcomputer
version of BBC BASIC

BASIC Ill

This was supplied on the BBC Microcomputer model B+ It was substantially
unchanged from version II. There were one or two bug fixe5. and a new keyword. the
American spelling of the COLOR statement.

BASIC IV

Also known as CMOS BASIC, th is version was a major development from BASIC Il l.
It was designed for use on the BBC Master series and 65C 12 Second Processors.
Both these used a sl ightly more powerful version of the 6502 processor than the
one used in the original BBC. This al lowed several major enhancements to be
squeezed into the ROM, such as LIST IF. EXT# as a statement, EDIT, TIME$. ON ...
PROC. 1 in VDU statements and faster noating point Some bugs were also
corrected

439

BASIC II improvements

BASIC V, version 1.04

Developed for Acorn RISC computers BASIC V built on the foundations provided
by BASIC IV. llowever. because of the lack of restrictions such as 16 KBytes total
code siLe, the enhancements made were far greater than those that appeared
previously. The interpreter was by now about 61 KBytes long, including
comprehensive built-in help text, and was probably the most powerful BASIC
found on any computer. It was certainly the fastest interpreted BASIC in the world.

BASIC V, version 1.05

This upgrade of the version 1.04 interpreter gave BBC BASIC more speed and
power New commands were introduced The interpreter had grown to 64Kbytes to
accommodate the improvements

BASIC VI, version 1.05

BASIC VI runs on the Acorn RISC computers. Improved floating point handling
means it now performs floating point arithmetic to IEEE standard 754. using 8-
byte real representation

Because BASIC Vis still a useful language. you are given the option to invoke
either BASIC V (using the •BASIC command) or BASIC VI (using the new •BASIC64
command) The interpreter is now only 57 KBytes long. although the value of PAGE
is higher

BASIC II improvements

440

OSCLI This passes a string to the command line interpreter for execution It is
more powerful than simple • commands. as these cannot contain general string
expressions

New keywords and features

OPEN UP This does an OSFIND with reason code &CO. i.e. open an ex1sting file for
update This was the action of OPEN IN in BASIC I. OPEN IN now does an OSFIND
&40, i.e . open for input only OPENOUT sti ll does an OSFIND &80. i.e. create and
open for update.

Numeric printing has been improved to allow numbers to be printed to ten digits
accuracy This allows integers up to 233 to be printed without resort1ng to 'E'
notation

The MODE. statement now resets the COUNT function to zero

A semi-colon (; 1 is allowed in place of a comma (,lin the INPUT statement

Appendix I - BBC BASIC's history

Fatal errors are introduced. These have error number 0, and cause an automatic
ON ERROR OFF This means that the default error handler is always used for these
errors. The STOP sta tement now causes a fatal error, as does the No room
cond ition. Additionally, the standard error handler no longer uses stack space. so
spurious No room errors are not produced.

A new error. number 45, :vlissing #is given if any of the keywords PTR. EO F. BGET.
BPUT. EXT is not followed by a !! .

String allocation has been improved. A string which was the last one created on
the heap ca n be extended without discarding the old storage. This stops No room
errors from being generated in certain situations.

Bit 2 of the assembler OPT expression is used to control offset assembly. If th is bit
is set. P% holds the run-time location counter, and 0% ho lds the assembly-time
counter where bytes are actually assembled to . If bit 2 is clear. P% ho lds both the
run-time and assembly-time counters.

Four new assembler directives are introduced EOUB, EOUW, EOUD. EOUS. These
allow one-. two-. four- and multiple-byte (string) quantities to be embedded into
the code.

Bug fixes

ELSE in an ON ... GOTO/GOSUB no longer leaves a byte on the 6502 stack. Th is
prevented ELSE from being used in ON statements in BASIC I.

1 NSTR no longer leaves the main string on the software stack when it is shorter
than the substring. This caused EN DPROC and =expression to crash when I NSTR was
used inside a PROC or FN under the above-mentioned condition.

The argument of EVAL is now tokcni sed correctly so that EVAL"TIME" (or any other
pseudo-variable) works. Previously the statement versions of pseudo-variables
were used. resu lting in a J\o sJch variable error when BASIC tried to eva luate
the expression.

The /\BS function ca n now cope with non-negative integers without returning a
string type . Previously, ABSl appeared to yield a string so a statement like PRI NT
-ABS1 would give a type-mismatch erro r.

The LN and LOG functions have been re-written. This makes them more accurate
and avoids a problem when BASIC tried to eva luate LN(2E-39l. Other changes to
the arithmetic package are a fix to a bug which ca used INTI E39 to fail and the
re-coding of the SIN/COS routin e to make it more accurate.

A bug associated with ON ERROR GOTO 9999 (and other li ne numbers) has been
fixed.

441

BASIC Ill improvements

DIM var n where n is an expression less than - I now gives a Bad Dl M error instead
of lowering the value of the free space pointer. This former action cou ld result in
the corruption of variables or the program.

BASIC Ill improvements
The COLOUR keyword may now be spelt COLOR. to aid the porting of programs
from American dialects of BASIC. In programs. the keyword always lists as
COLOUR. except 1n the American version of BASIC Ill , which always lists it as
COLOR. This is the only difference between the two versions.

A string expression in a SAVE command works correctly now, so you can say. for
example. SAVE A$+BS without error

The indirection operators-:> and ! may be used as formal parameters without
problems. For example. you could have a procedure DEF PROCa (! & 7 0 l. where
the contents of locations &70 .. &73 act as a local integer variable.

BASIC IV improvements

442

The ON ... GOTO/GOSUB statement has been extended to include PROCs The
syntax is ON expression PROCa, PROCb, PROCc ... I ELSE staternenl]. The nth PROC
in the list is called, where n is the value of expression.

The EDIT command converts the program to text and then calls the editor with a
• EDIT command The program can be edited then re· tokenised by returning to
BASIC. A No room error will be given if there is not enough room to store both the
tokenised and textual version of the program during conversion to text

The TIMES pseudo-variable can be used to display and alter the time held in the
CMOS battery-backed clock.

The delimiter I may be used in VDU statements to send nine 0 bytes after the last
expression This can be used to ensure that. for example. VDU 23 commands which
require many trailing zeros are correctly terminated

LISTO bits I and 2 (which cause loops to be indented) now work correctly,
inasmuch as the NEXT lines up with its FOR and UNTIL with its REPEAT If LISTO is
non-zero. leading spaces are stripped from input lines (i .e. between the
line-number and first statement) Trailing spaces arc always stripped

I.IST has been extended by adding the IF part to it LIST IFtext will only list lines
which contain text

The function EXT# returning the length of the file may now also be used as a
statement to set the length of a file (EXT#cftan expr) It relies for its operation on an
OSARGS call supported by ADFS and ANFS.

Appendix I - BBC BASIC's history

AUTO no longer prints a space after the line number. as this wasn't part of the
input line anyway.

The assembler supports the full 65C 12 instruction set. and now accepts lower case
in all circumstances (e.g. the x in lda & 70, x which previously had to be in upper
case) .

RENUMBER and LIST no longer get confused by the presence of an &8D Teletext
control character in REM statements. (&8D is used in internal-format line numbers
by BASIC).

In previous versions. a FOR loop which used an FN in the start. end or step
expressions. where the FN itself contained a FOR loop would not work properly.
This h'as been fixed

The random number generator gives different results from previous versions for
RND(1) and RND(n). This is to avoid certain statistical problems.

A bug whereby it was possible to RESTORE to a line which had no DATA statement
but a comma present has been fixed

BASIC V version 1.04 improvements
This uses version I .04 of the BASIC interpreter. Because the major part of the
BASIC V guide is concerned with the documentation of BASIC V. this section only
mentions the new keywords and features in very terse terms. You are directed to
the Ke!1words chapters for detailed descriptions of all BASIC keywords The index
also gives you the page reference for the main discussion of topics mentioned
below.

The new constructs WHILE ... ENDWHILE. IF ... THEN ... ELSE ... EN DIF, CASE ...
OF ... WHEN ... OTHERWISE ... ENDCASE have been introduced. This makes
readable, GOTO-Iess programming much easier to attain than previously

Procedure and function calls have been enhanced in the following ways: value and
result parameters (RETURN parameters). array parameters and local arrays,
procedure libraries (LIBRARY. INSTALL and OVERLAY). LOCAL DATA and LOCAL
ERROR handlers, a relative RESTORE statement which does not require the use of
line numbers.

Many array operations have been introduced. These include: local arrays and array
reference parameters. whole arrays operations such as assignment. four-function
arithmetic. matrix and vector multiplication, SUM of array elements. the DIM
function to find information on array parameters, array element initialisation.
MOD [square root of the sum of the squares of a numeric array) .

443

BASIC V version 1. 04 improvements

444

Several new operators have been introduced: << (left shift).>> (arithmetic right
shift).>>> (logical right shift). I (floating point indirection).+= (increment
assignment. including all the elements of an array). -: (decrement assignment).
The character% introduces binary constants as & introduces hexadecimal ones

TRACE has been enhanced to allow single stepping and the traong of procedure
and function ca ll s. Example TRACE STEP PROC.

Line numbers may now be in the range 0-&FEFF. i.e. 0-65279. On line entry. BASIC
checks for mismatched quotes and parentheses and attempts to reference line
numbers greater than 65279. An error is reported if a mismatch is detected.

Attempts to set PAGE. LOMEM or HIM EM to incorrect values will result 1n an error
message being printed. but execution will continue

Many new statements have been introduced. The relevant keywords are BEATS.
BPUT#. CIRCLE. COLOUR. ELLIPSE. END. ERROR. EXT, FILL. GCOL, LINE, INPUT.
LEFTS, MID$. RIGHTS. MOUSE. ON. OFF. ORIGIN, POINT, QUIT. RECTANGLE.
SOUND, STEREO. SWAP, SYS. TEMPO. VOICE. VOICES. WAIT

Several new functions have also been introduced The keywords are BEAT BEATS.
DIM. END. GET$#, LEFTS. MODE. REPORTS. RIGHTS. SUM. SUMLEN, TEMPO.

Some new commands have been introduced. They are. APPEND, HELP, LISTO
(enhanced), LVAR, SAVE (enhanced). TWIN, TWINO. Additionally, the *BASIC
command itse lf now supports several command-line options and arguments

All error messages have been made more useful. and many new error messages
have been Introduced.

The assembler accepts the full ARM instruction set. Full details of the assembler
are given in the Assembler Guide; a brief description is given in the appendix on the
assembler in the Programmer's Reference Manual.

CALL and USR may be used to call ARM assembler routine. or to emulate
6502-based MOS routine when supplied with the appropriate addresses Access to
many internal BASIC routines is (legally) available to writers of CALL. USR and
OSCLI routines SYS can be used to access operatmg system SWI routines

The default error handler sets@% to a value which ensures that the line number
will be printed as an integer. It restores@% at the end.

COUNT and WIDTH are now stored as 32-bit wide quantities This means that
tabulation usmg commas is more reliable (Strange effects used to occur after 255
characters had been printed l

The pseudo-variables may now be used as statements after an IF even when the
THEN is omitted. That is. IF relocate% PAGE:PAGE+&lOOOO will work, even
though it didn't previously

Appendix I - BBC BASIC's history

Integer FOR statements that would overflow will be ignored. 1 Basically this means
that if limit+step-1/ &7FFFFFFF. the loop will terminate at the NEXT)

BASIC V version 1.05 improvements

This uses version 1.05 o f the BASIC interpreter. It is an upgrade of BASIC V version
1.04. and includes new commands as well as bug fixes.

The new CRUNCH command strips various spaces from a program. Its argument is
a 5-bit binary word. Each bit in the word has a different meaning (for instance bit 0
controls the stripping of spaces before statements: bit 2 controls the stripping out
of REM statements)

END= can now be used almost anywhere. with the following exceptions: nested
within EVAL or LOCAL ERROR: nested within assignments to local arrays; within
nested local arrays

The@% print formatter now uses ANSI G. E or F formats. If you use the 1.04
interpreter. you can achieve the same results using the method given in the
description of the PRINT command.

The new TEXTLOAD command can load a file that is either a BASIC program. or a
BASIC program that was saved as a text file. In the latter case. TEXTLOAD
automatically renumbers the program. TEXTSAVE stores a BASIC program as a text
file. and strips out the line numbers.

The TRACE command is now more versatile. Output from a TRACE command can
now be sent to a file. using TRACE TO filename TRACE can also be used as a
function. to enable ou tput other than line numbers to be sent to the trace file.

The speed of the following array statements has been increased:

foo() =<express ion>
foo%() =<expression>
foo () =fie ()
DIM foo(, foo (, foo%

The interpreter now tags error messages with the name of the library which caused
the error message (found from the REM statement on the first line of the l ibrary).

The interpreter can now handle such things as TAN I E-5.

PRINT-1"-10 will now print the value I. instead of causing a crash.

There is now no difference between IF THEN ELSE and IF THEN ELSE

445

BASIC VI version 1.05 improvements

BASIC VI version 1.05 improvements

446

This also uses version 1.05 of the BASIC interpreter The major change for BASIC VI
is that it now supports real numbers in 8-byte format (according to IEEE standard
754) This means greater precision and accuracy in floating point arithmetic

BASIC VI can still understand 5-byte reals. but will only print numbers in the 8-
byte real format

Another change to note is that the name o f this manual has changed to the BBC
BASIC Re{ere11ce Ma11ual. The structure has also changed. In particular. the first two
sections contain introductory and tutorial material. and the rest of the manual is
given over to reference information The sections on Keywords have been
reorganised mto one chapter. Keywords. which lists the keywords in alphabetical
order.

BASIC VI is invoked using the new *BASIC64 command. BASIC v can st il l be
invoked. by using the old *BASIC command. Both commands take the same
command line options and arguments

The interface of the CALL statement has changed to accommodate 8-byte reals
There are additions to the list of !-values to which R9 points.

INPUT# can now read variables in both 5-byte rea l format and 8-byte real format
PRINT# on ly prints numbers in 8-byte rea l format.

Appendix J - ARM assembler

A ssembly language is a programmmg language in which each statement
l"l. translates directly into a single machine code instruct1on or piece of data An
assembler is a piece of software which converts these statements into their
machine code counterparts

Writing in assembly language has its disadvantages The code is more verbose
than the equivalent high-level language statements. more difficu lt to understand
and therefore harder to debug. High-level languages were invented so that
programs could be written to look more like English so we could talk to computers
in our language rather than directly in its own.

There are two reasons why. in certain circumstances. assembly language is used in
preference to high-level languages. The first reason is that the machine code
program produced by it executes more quickly than its high-level counterparts.
particularly those in languages such as BASIC which are interpreted The second
reason is that assembly language offers greater nexibility It allows certain
operating system routines to be called or replaced by new pieces of code. and it
allows greater access to the hardware devices and controllers.

Finding out more

For more details of writing in assembly language see the Acom Assembler Release 2
manual

For more details of RISC OS see the Programmer's Re/t'rence Mant~al

f-or more details of the ARM3 processor, see the Acorn RISC Machine family Data
Manual VLSI Technology Inc (1990) Prentice-Hall, Englewood Cliffs, NJ. USA ISBN
0-13-781618-9.

Using the BASIC assembler

The assembler is part of the BBC BASIC language. Square brackets '['and 'j' are
used to enclose al l the assembly language instructions and directives and hence to
inform BASIC that the enclosed instructions are intended for its assembler
However. there are several operations which must be performed from BASIC itself
to ensure that a subsequent assembly language routine is assembled correctly

447

Using the BASIC assembler

448

Initialising external variables

The assembler allows the use of BASIC variables as addresses or data in
instructions and assembler directives For example variables can be set up in
BASIC giving the numbers of any SWI routines which will be called

OS_Wrirei = &100

SWl OS_Writei+ASC ">"

Reserving memory space for the machine code

The machine code generated by the assembler is stored in memory However. the
assembler does not automatically set memory aside fer this purpose You must
reserve sufficient memory to hold your assembled machine code by using the DIM
statement For example:

Looo DIM code% !00

The start address of the memory area reserved is assigned to the variable code%
The address of the last memory location is code%+ I 00 Hence. this example
reserves a total of I 0 I bytes of memory In future examples. the size of memory
reserved is shown as required_size. to emphasise that you must substitute a value
appropriate to the size of your code

Memory pointers

You need to tell the assembler the start address of the area of memory you have
reserved The simplest way to do this is to assign P% to point to the start of this
area For example

DlM code% required_size

P% - code%

P% is then used as the program counter. The assembler places the first assembler
instruction at the address P% and automatica l ly increments the value of P% by fou r
so that it points to the next free location. When the assembler has finished
assembling the code, P% points to the byte following the final location used
Therefore. the number of bytes of machine code generated is given by

l'% - code%

This method assumes that you wish subsequently to execute the code at the same
location.

Appendix J - ARM assembler

The position in memory at which you load a machine code program may be
significant For example. it mighl refer directly to data embedded within itself. or
expect to find routines at fixed addresses. Such a program only works if it is loaded
in the correct place in memory. However. it is often inconvenient to assemble the
program directly into the place where it will eventua lly be executed. This memory
may wel l be used for something else whilst you are assembling the program. The
solution to this problem is to use a technique called 'offset assembly' where code
is assembled as if it is to run at a certain address but is actually placed at another.

To do this, set 0% to point to the place where the first machine code instruction is
to be placed and P% to point to the address where the code is to be run .

To notify the assembler that this method of generating code is to be used. the
directive OPT. which is described in more detail below. must have bit 2 set

It is usually easy, and always preferable. to write ARM code that is position
independent

Implementing passes

Normally, when the processor is executing a machine code program. it executes
one instruction and then moves on automatica lly to the one following it in
memory. You can. however. make the processor move to a different location and
start processing from there instead by using one of the 'branch' instructions. For
example:

.resul t_was 0

BEQ resu l t_was_O

The full stop in front of the name result_was_O identifies this string as the name of
a 'label' . This is a directive to the assembler which tells it to assign the current
value of the program counter (P%) to the variable whose name follows the fullstop

BEO means 'branch if the result of the last calculation that updated the PSR was
zero· . The location to be branched to is given by the value previously assigned to
the label result_was_O.

The label can. however. occur after the branch instruction. This causes a slight
problem for the assembler since when it reaches the branch instruction. it hasn't
yet assigned a value to the variable. so it doesn't know which value to replace it
with.

You can get around this problem by assembling the source code twice. Th is is
known as two-pass assembly. During the first pass the assembler assigns va lues to
all the label variables. ln the second pass it is able to replace references to these
variables by their values.

449

Using the BASIC assembler

450

It is o nly when the text contains no forward references of labels that just a single
pass is sufficient

These two passes may be performed by a FOR NEXT loop as follows

DIM code% required_size
FOR pass% - 0 TO 3 STEP 3

P% = code%
[

OPT pass%
further assembly language statements and assembler directives

NEXT pass%

Note that the pointer(s), in this case just P%. must be set at the start of both
passes.

The OPT directive

The OPT is an assembler directive whose bits have the following meaning

Bit Meaning

0 Assembly listing enabled if set
I Assembler errors enabled
2 Assembled code placed in memory at 0% instead of P%
3 Check that assembled code does not exceed memory limit L%

Bit 0 controls whether a listing is produced It is up to you whether or not you wish
to have one or not

Bit I determines whether or not assembler errors are to be nagged or suppressed.
For the first pass. bit I should be zero since otherwise any forward-referenced
labels will cause the error 'Unknown or missing variable' and hence stop the
assembly During the second pass. this bit should be set to one. since by this stage
all the labels defined are known. so the only errors it catches are 'real ones·- such
as labels which have been used but not defined.

Bit 2 al lows 'offset assembly', i.e. the program may be assembled into one area of
memory. pointed to by 0%. whilst being set up to run at the address pointed to by
P%.

Bit 3 checks that the assembled code does not exceed the area of memory that has
been reserved (i.e none of it is held in an address greater than the value held in
L%) When reserving space. L% might be set as follows

DIM code% required_size
L% = code% + required_size

Appendix J - ARM assembler

Saving machine code to file

Once an assembly language routine has been successfully assembled. you can
then save it to file To do so. you can use the •save command In our above
examples. code% points to the start of the code. arter assembly, P% points to the
byte after the code So we could use this BASIC command

OSCLI "Save "+out f i l e$+" "+STR~- (code%)+" "t STRS-(P%)

after the above example to save the code in the file named by outfileS

Executing a machine code program

From memory

From memory. the result ing machine code can be executed in a variety of ways:

CALL address
USR address

These may be used from inside BASIC to run the machine code at a given address.

From file

The commands below will load and run the named file. using either its filetype
(such as &FF8 for absolute code) and the associated Alias$(a'LoadType_XXX and
AliasSCaRunType_XXX system variables. or the load and execution addresses
defined when it was saved.

*name
*RUN name
* / name

We strongly advise you to use file types in preference to load and execution
addresses.

Format of assembly language statements

The assembly language statements and assembler directives should be between
the square brackets.

There are very few rules about the format of assembly language statements: those
which exist are given below:

• Each assembly language statement comprises an assembler mnemonic of one
or more letters followed by a varying number of operands

• Instructions should be separated from each other by colons or newlines

451

Registers

Registers

452

• Any text following a full stop· · is treated as a label name

• Any text following a semicolon·:. or backslash '\',or 'REM' is treated as a
comment and so ignored (until the next end of line or·)

• Spaces between the mnemonic and the first operand. and between the
operands themselves are ignored

The BASIC assembler contains the following directives·

EQUB int
EOU'..V in t
EQUD inL
EQUS st.r

Al.fGN

ADR reg ,addr

Define I byte of memory from LSB of i nt (DCB. =)
Define 2 bytes of memory from i nt (DCW)
Define 4 byte~ of memory from int (DCD)
Define 0- 255 bytes as required by string expression
str (DCSJ
Align P% (and 0%) to the next word (4 byte) boundary
Assemble instruction to load addl into reg

• The first fou r operations initialise the reserved memory to the values specified
by the operand In the case of EOUS the operand field must be a string
expression. In all other cases it must be a numeric expression. DCB (and=).
DCW. DCD and DCS are synonyms for these directives

• The ALIGN directive ensures that the next P% (and 0%) that is used lies on a
word boundary. It is used after. for example. an EOUS to ensure that the next
inst ruction is word-aligned.

• ADR assembles a single instruction- typically but not necessarily an ADD or
SUB- with reg as the destination register It obtains addr in that register. It
does so in a PC-relative (i.e. position independent) manner where possible

At any particular time there are sixteen 32-bit registers available for use. ROtoR 15.
However. R I 5 is special since it contains the program counter and the processor
status register.

R 15 is split up with 24 bits used as the program counter (PC) to hold the word
address of the next instruction. 8 bits are used as the processor status register
(PSR) to hold information about the current values o f nags and the cu rrent
mode/register bank. These bits are arranged as fo llows:

Appendix J - ARM assembler

The top six bits hold the following information:

Bit

31
30
29
28
27
26

Flag

N
z
c
v
I
F

Meaning

Negative flag
Zero flag
Carry flag
Overflow flag
Interrupt request disable
Fast interrupt request disable

The bottom two bits can hold one of four different values:

M Meaning

0 User mode
I Fast interrupt processing mode (FlO mode)
2 Interrupt processing mode (IRQ mode)
3 Supervisor mode (SVC mode)

User mode is the normal program execution state. SVC mode is a special mode
which is entered when calls to the supervisor are made using software interrupts
(SWis) or when an exception occurs. From within SVC mode certain operations can
be performed which are not permitted in user mode. such as writing to hardware
devices and peripherals. SVC mode has its own private registers R 13 and R 14. So
after changing to SVC mode. the registers RO - R 12 are the same, but new versions
of R 13 and R 14 are avai lable. The values contained by these registers in user mode
are not overwritten or corrupted.

Similarly, IRQ and FlO modes have their own private registers (R 13 - R 14 and
R8- R 14 respectively) .

Although only 16 registers are avai lable at any one time. the processor actual ly
contains a total of 27 registers.

For a more complete description of the registers, see the chapter entitled ARM
Hardware in the Programmers' Reference Manual.

453

Condition codes

Condition codes

AIILhe machine code instructions can be performed conditionally according to the
status or one or more or the following flags N. Z. C. v The s1xteen available
condition codes are

AL Always
CC Carry clear
CS Carry set
EO Equal
GE Greater than or equal

GT Greater than

HI Higher (unsigned)
LE Less than or equal

LS Lower or same (unsigned)
LT Less than

Ml Negative
NE Not equa l
NV Never
PL Positive
vc Overflow clear
vs Overflow set

Th1s IS the default
C clear
C set
z set
(N set and V set) or
(N clear and v clear)
((N set and V set) or
(N clear and V clear)) and Z clear
C set and Z clea r
(N set and V clear) or
(N clear and V set) or Z set
C clear or Z set
(N set and v clear) or
(N clear and V set)
N set
Z clear

N clear
V clear
v set

Two of these may be given alternative names as follows

LO Lower unsigned is equivalent to CC
HS Higher I same unsigned is equivalent to CS

You should not use the NV (never) condition code

The instruction set

454

The avai lable instructions are introduced below in categories indicating the type of
action they perform and their syntax. The description of the syn tax obeys the
fol lowing standards:

(())

(xly)

indicates that the contents of the brackets are optiona l
(unlike all other chapters. where we have been using r l
instead)

indicates that either x or y but not both may be given

Moves

#exp

Rn

shift

Syntax:

Appendix J - ARM assembler

indicates that a BASIC expression is to be used which
evaluates to an immediate constant. An error is given if the
value cannot be stored in the instruction.

indicates that an expression evaluating to a register number
(in the range 0- 15) shou ld be used, or just a register name.
e.g. RO. PC may be used for R I 5.

indicates that one of the following shift options should be
used:

ASL

LSL

ASR

LSR

(Rnl#exp)

(Rnl#exp)

(Rnl#exp)

(Rnl#exp)

Arithmetic shift left by contents of
Rn or expression

Logical shift left

Arithmetic shift right

Logical shift right

ROR (Rnl#exp) Rotate right

RRX Rotate right one bit with extend

In fact ASL and LSL are the same (because the ARM does not
hand le overflow for signed ari thmetic shifts). and synonyms
LSL is the preferred form. as it indicates the functiona lity.

opcode«cond»«S» Rd. (#expiRm)«,shift»

There are two move instructions. ·op2' means '(#expiRm)«.shift»':

Instruction

MOV
MOVN

Move
Move NOT

Calculation performed

Rd = Op2
Rd =NOT Op2

Each of these instructions produces a resu lt wh ich it places in a destination
register (Rd). The instructions do not affect bytes in memory directly.

Again. all of these instructions can be performed conditionally. In addition, if the
·s· is present. they can cause the condition codes to be set or cleared. These
instructions set Nand Z from the ALU, C from the sh ifter (but only if it is used). and
do not affect V.

Examples:

~·~OV RO, ~ 1 0 ; ~oad ROw~:~ :~e va uc 1: .

Special actions are taken if the source register is R I 5: the action is as follows

• If Rm=R I 5 all 32 bits of R I 5 are used in the operation, i.e. the PC+ PSR.

455

The instruction set

If the destination register is R 15. then the action depends on whether the optional
'S' has been used:

• If Sis not present on ly the 24 bits of the PC are set.

• If Sis present the whole result is written to R15, the flags are updated from the
result (However the mode, I and F bits can only be changed when in non-user
modes)

Arithmetic and logical instructions

456

Syntax:

opcode«cond»«S)) Rd, Rn. (#expiRm)«,shift»

The instructions avai lable are given below: again, 'Op2' means '(#expiRm)«.shift»':

Instruction

ADC
ADD
SBC
SUB
RSC
RSB

AND
SIC
ORR
EOR

Add with carry
Add without carry
Subtract with carry
Subtract without carry
Reverse subtract with carry
Reverse subtract without carry

Bitwise AND
Bitwise AND NOT
Bitwise OR
Bitwise EOR

Calculation performed

Rd = Rn + Op2 + C
,Rd=Rn+Op2
Rd = Rn - Op2 - (I - C)
Rd = Rn - Op2
Rd = Op2 - Rn - (I -C)
Rd = Op2 - Rn

Rd = Rn AND Op2
Rd = Rn AND NOT (0p2)
Rd = Rn OR Op2
Rd = Rn EOR Op2

Each of these instructions produces a result which it places in a destination
register (Rdi . The instructions do not affect bytes. in memory directly

As was seen above, all of these instructions can be performed conditionally. In
add ition. if the'S' is present. they can cause the condition codes to be set or
cleared. The condition codes N. z. C and V are set by the arithmetic logic unit
(ALU) in the arithmetic operations. The logical (bitwise) operations set Nand Z
from the ALU. C from the shifter (but only if it is used), and do not affect V.

Examples:

1\CDEQ R . , Rl , #'I

S3CS R2, R3 , R4

AND R3 , Rl , R2 , LSR ~ 2

I f ~r.e /e ro •lag i s sec ~hen add 7
:o :r.e ccn=ents of reg'ster Rl .

Subc."'act · .. ; i Lh ca::-ry Lhc con Lents of register R.; (ron
:~e ccnten:s of ::-egister RJ and place t he res~lt in
reg!s t e::- R2 . The flags wi 'l be ~pdated .

Perforn a ogica : AK~ on the conte~ts o• •eg'ste~ Rl
and :he content s of ::-eg ister R2 1 4 , and pl ace the
resul L i~ register R3 .

Appendix J- ARM assembler

Special actions are taken if any of the source registers are R 15: the action is as
follows:

• If Rm=R 15 all 32 bits of R 15 are used in the operation i e. the PC + PSR.

• If Rn= R I 5 only the 24 bits of the PC are used in the operation .

If the destination register is R I '5, then the action depends on whether the optional
·s· has been used

• If Sis not present only the 24 bits of the PC are set

• If Sis present the whole result is written toR I 5, the flags are updated from the
result. (However the mode, I and F bits can only be changed when in non-user
modes.)

Comparisons

Syntax:

opcode«cond»«SIP» Rn, (#expiRm)«.shift>>

There are four comparison instructions: again , ·op2' means '(#expiRml<< ,shift»·

Instruction

CMN
CMP
TEO
TST

Compare negated
Compare
Test equal
Test

Calculation performed

Rn + Op2
Rn- Op2
Rn EOR Op2
Rn AND Op2

These are similar to the arithmetic and logical instructions listed above except that
they do not take a destination register since they do not return a result. Also. they
automatica l ly set the condition flags (since they would perform no useful purpose
if they didn't) Hence. the'S' of the arithmetic instructions is implied You can put
an ·s· after the instruction to make this clearer.

These routines have an add itiona l function wh ich is to set the whole of the PSR to
a given value. This is done by using a ·p· after the opcode, for example TEOP.

Normally the flags are set depending on the value of the comparison. The I and F
bits and the mode and register bits are unaltered. The ·p· option allows the
corresponding eight bits of the result of the ca lculation performed by the
comparison to overwrite those in the PSR (or just the flag bits in user mode)

Example

'TFQP :)C , ~ E.·SO·:jO •J·:::G H ; Sr·t t\ I <"HJ , c I C rl l d I ' o l ~h ~r ~,; . :\ ~_coo er d l J l '

; ''<~·~; , ~- Q:., sc. PC JfiP r :l•OdP i p1 : 1 I t Jl'd

The above example (as well as setting theN flag and clearing the others] will alter
the IRQ. FlO and mode bits of the PSR- but only if you are in a privileged mode.

457

The instruction set

458

The ·p option is also usefu l in user mode. for example to collect errors:

!:!t

Sl'RVS

MO'.-'

il

SIRVS
TFQVCP
J.DVFD

Multiply instructions

Syntax:

rou:inel
rO. (sp. ~ :J

t'l • pc
ro;.:ine2
nJ, lsp , ~: ,

r 1, ~ 0
sp ! • (r: . r 1 , pc}

MUL«cond»«S» Rd.Rm.Rs
MLA«cond»«S» Rd,Rm.Rs.Rn

There are two multiply instructions:

Instruction

MUL
MLA

Multiply
Multiply-accumulate

HdV~ ~rrtr 0 >CK rt• in YE" 1rn "

otack f:an :t C!'"'Cr

sav~ psr ' ag in •
called even it er•< r <r ,,- r >.t r>•l

t.-:> do S(•rre l lay up c L > (tc .

: t to .. t.t..,c.t d.o.dr.''" y vc ~"'rr J!" ,

leStOJ€' ~ ~ t ror l"'d co:..~jcn f r -::>:11 r:

Calculation performed

Rd = Rm x Rs
Rd = Rm x Rs + Rn

The multiply instructions perform integer multiplication. giving the least
significant 32 bits of the product of two 32-bit operands

The destination register must not be R 15 or the same as Rm Any other register
combinations can be used.

If the'S' is given in the instruction. theN and Z flags are set on the result. and the
C and V flags are undefined

Examples:

Branching instructions

Syntax:

B«cond» express ion
BL<<Cond» expression

Appendix J - ARM assembler

There are essential ly on ly two branch instructions but in each case the branch can
take place as a result of any of the I 5 usable condition codes:

Instruction

B
BL

Branch
Branch and link

The branch instruction causes lhe execution of the code to jump to the instruction
given at the address to be branched to. This address is held relative to the current
location.

Example:

3EQ l abe:l branch i: zero flag set

bra~ch if neqa~ive f:ag se~

The branch and link instruction performs the additional action of copying the
address of the instruction following the branch. and the current flags. into register
R 14. R 14 is known as the 'link register' . This means that the routine branched to
can be returned from by transferring the contents of R 14 into the program counter
and can restore the flags from this register on return. Hence instead of being a
simple branch the instruction acts like a subroutine ca l l

Example:

31 EQ ec·.1al

. ec.:al

'~OVS RIS ,R:4

address of Lhis instrucL io~

moved ·_o Rl ~ at<:omaL ica l y

start of s.:broutine

end ofsubrou~ine

Single register load/save instructions

Syntax:

opcode«cond»«B»«T» Rd. address

The single register load/save instructions are as follows:

Instruction

LDR
STR

Load register
Store register

These instructions allow a single register to load a value from memory or save a
value to memory at a given address.

459

The instruction set

460

The instruction has two possible forms:

• the address 1s specified by register(s). whose names are enclosed in square
brackets

• the address is specified by an expression

Address given by registers

The simplest form of address IS a register number. in which case the contents of the
register are used as the address to load from or save to. There are two other
a ltcrnatives:

• pre-indexed addressing (with optional write back)

• post-indexed addressing (always with write back)

With pre-indexed addressing the contents of another register. or an immedie~te
va lue, are added to the contents of the first register. This sum is then used as the
address. It is known as pre-indexed addressing because the address being used is
calculated before the load/save takes place The first register (Rn below) can be
optionally updated to contain the address which was actually used by addmg a '! '
aher the closing square bracket.

Address syntax:

[Rn]
!Rn #m]«!»
[Rn,c<-»Rm]«!»
!Rn.«-»Rm.shift #s]« 1»

Address

Contents of Rn
Contents of Rn + m
Contents of Rn ±contents of Rm
Contents of Rn ±(contents of Rm shifted by s places)

With post-indexed addressing the address being used is given solely by the
contents of the register Rn. The rest of the instruction determines what value is
written back into Rn. This wnte back is performed automatice~lly. no'!" 1s needed
Post-indexing gets its name from the fact that the address that is written back to
Rn is ca lculated after the load/save takes place.

Address syntax:

[Rn].#m
[Rn].«-»Rm
[Rn].«-»Rm.shift #s

Value written back

Contents of Rn + m
Contents of Rn ±contents of Rm
Contents of Rn ±(contents of Rm shifted by s places)

Address given as an expression

If the address IS given as a simple expression. the assembler will generate a
pre-indexed instruction using R 15 (the PC) as the base register If the address 1s
out of the range of the instruction (±4095 bytes). an error is given.

Appendix J - ARM assembler

Options

If the 'B' option is specified after the cond ition. on ly a single byte is transferred,
instead of a whole word. The top 3 bytes of the destination register are cleared by
an LDRB instruction.

If the 'T' option is specified after the condition. then the TRANs pin on the ARM
processor will be active during the transfer. forcing an address translation. This
allows you to access User mode memory from a privileged mode. This option is
invalid for pre-indexed addressing.

Using the program counter

If you use the program counter (PC. orR I 5) as one of the registers. a number of
special cases apply:

• the PSR is never modified. even when Rd or Rn is the PC

• the PSR flags are not used when the PC is used as Rn. and (because of
pipelining) it wi ll be advanced by eight bytes from the current instruction

• the PSR flags are used when the PC is used as Rm. the offset register.

Multiple load/save instructions

Syntax:

opcode«cond»type Rn«!». {Rlist)«"»

These instructions allow the loading or saving of several registers:

Instruction

LDM
STM

Load multiple registers
Store multiple registers

The contents of register Rn give the base address from/to which the value(s) are
loaded or saved. This base address is effectively updated during the transfer. but is
only written back to if you follow it with a '!'.

Rlist provides a list of registers which are to be loaded or saved. The order the
registers are given. in the list. is irrelevant since the lowest numbered register is
loaded/saved first, and the highest numbered one last. For example. a list
comprising {R5,R3.R I .R8) is loaded/saved in the order R I. R3. R5, R8. with R I
occupying the lowest address in memory. You can specify consecutive registers as
a range; so {RO-R3} and {RO.RI.R2,R3) are equivalent.

The type is a two-character mnemonic specifying either how Rn is updated, or what
sort of a stack results:

461

The instruction set

462

Mnemonic

DA
DB
lA
IB

f:.A
ED
FA
FD

Meaning

Decrement Rn After each store/load
Decrement Rn Before each store/load
Increment Rn After each store/load
Increment Rn Before each store/load

Empty Ascending stack is used
Empty Descending stack is used
Full Ascending stack is used
Full Descending stack is used

• an empty stack is one in which the stack pointer points to the first free slot in it

• a full stack is one in which the stack pointer points to the last data item written
to it

• an ascending stack is one which grows from low memory addresses to high
ones

• a descending stack is one which grows from high memory addresses to low
ones

In fact these are just different ways of looking at the situation - the way Rn is
updated governs what sort of stack results. and vice versa. So. for each type of
instructiOn in the first group there is an equivalent in the second

LDMEA is the same as LDMDB
LDMED is the same as LDMIB
LDMFA is the same as LDMDA
LDMFD is the same as LDMIA

STMEA is the same as STMIA
STMED is the same as STMDA
STMFA is the same as STMIB
STMFD is the same as STMDB

All Acorn software uses an FD (full. descending) stack. If you are writing code for
SVC mode you should try to use a full descending stack as well- although you can
use any type you like.

A '"' at the end of the register list has two possible meanings:

• For a load with R 15 in the list. the'"' forces update of the PSR

• Otherwise the "'forces the load/store to access the User mode registers The
base is still taken from the current bank though , and if you try to write back the
base it will be put in the User bank - probably not what you would have
intended

Appendix J • ARM assembler

Examples:

LD"lA ;<:,, {HO, Hl, R2)

:,o~IDB R5, { RC -Ft:?. •

,...,,.,,, <' H'> corl a1~. th£ v u

& 148·1
~1- is w. II o C1 HO lr '">II' '> • 4 8·1

H fr'>m & 48o
I< f rOll' & 14 8('

~··1.C"r ._-.. R '"Or~ tin<- l he v 1l t.

t,J ~<H

'.')ifl '·•il l! lc lO HO •r•r- &1 41M

HI •c•r' '.l41C
P~ r..-or ',14M

If there were a.,. after R5, so that it were written back to, then this would leave R5
containing &1490 and & 1478 after the first and second examples respectively.

The examples below show directly equivalent ways of implementing a full
descending stack. The first uses mnemonics describing how the stack pointer is
handled

S';'MDil JltH:kpo i nt.er!, I RCI H3} pu 11 0 11 ~0 :11 •h..k

.DI~I A St<>ckpo'nter !, (RO P1} DlJ I I 1 ..,)11 :-., 1 (' k

and the second uses mnemonics describing how the stack behaves:

STH ',J S,ac<pci.o:te::-!, IRJ,Rl,R2,Hj) pu!'h on o • au,

L"':H'D Stackpoir.ter!, tRO,Kl,R),R"i\ pull trOll' Sl k

Using the base register

• You can always load the base register wtthout any side effects on the rest of
the LDM operation. because the ARM uses an internal copy of the base. and so
will not be aware that it has been loaded with a new value

However. you should see Appendix B Warnings on the use of ARM assembler in the
Programmers' Reference Manual for notes on using writeback when doing so

• You can store the base register as well. If you are not using write back then no
problem will occur. If you are. then this is the order in which the ARM does the
STM:

I write the lowest numbered register to memory

2 do the write back

3 write the other registers to memory in ascend ing order.

So. if the base register is the lowest-numbered one in the list. its original value
is stored:

.>JM 1\ R2!, IR2-R6} ; ~ ,t ~~ <l ir vi>llle bcfor£' wrrl< bac-t

Otherwise its written back value is stored
~~ tr •"'d iSVdl.UCClflCr oH ll<'baCK

463

The mstruction set

Using the program counter

If you use the program counter 1 PC. or R I 5) in the I ist of registers

• the PSR is saved with the PC: and (because of pipelining) it will be advanced by
twelve bytes from the current position

• the PSR is only loaded if you follow the register list with a'/\', and even then.
on ly the bits you can modify in the ARM's current mode are loaded.

It is generally not sensible to use the PC as the base register If you do·

• the PSR bits are used as part of the address. which will give an address
exception un less all the nags are clear and all interrupts arc enabled.

SWI instruction

464

Syntax:

SWI«cond» expression

SWI«cond» "SWiname" (BBC BASIC assembler)

The SWI mnemonic stands for SoftWare Interrupt On encountering a SWI. the
ARM processor changes into SVC mode and stores the address of the next location
in R 14_svc- so the User mode value of R 14 is not corrupted. The ARM then goes to
the SWI routine handler via the hardware SWI vector containing 1ts address

The first thing that this routine does is to discover which SWI was requested It
finds this out by using the location addressed by (R 14_svc- 4) to read the current
SWimstruction. The opcode for a SWI is 32 bits long, 4 bits identify the opcode as
being for a SWI. 4 bits hold all the condition codes and the bottom 24 bits identify
which SWI it is. 1 lence 224 different SWI routines can be distinguished.

When it has found which particular SWI 1t is, the routme executes the appropnate
code to deal with it and then returns by placing the contents of R 14_svc back into
the PC. which restores the mode the caller was in .

.
This means that R 14_svc will be corrupted if you execute a SWI in SVC mode-
which can have disastrous consequences unless you take precautions.

The most common way to call this instruction is by using the SWI name. and
letting the assembler translate this to a SWI number The BBC BASIC assembler
can do this translation directly

See the chapter entitled An Introduction to SWis in the Programmers' Reference Manual
for a full description of how RISC OS handles SWis. and the index of SWis for a full
list of the operating system SWis.

Index

Symbols
I 32. 162
.. 39

s 32, 163
% 33

& 33
(32
) 32
• 32

+ 32
+ (string concatenation) 40

+= 30
+=(string lengthen) 40
+=(with arrays) 49

(matrix multiplication) 51
I 32
< 32. 74
<< 32. 34
<= 32. 74
<> 32. 74
= 30. 32. 74
- 32
-= 31
-= (with arrays) 49
=expression R7
> 24. 32. 74
>= 32. 74
» 32. 35
>>> 32. 34
') 32. 162
(a\ 57

(a'% 57

" 32
I 163
- 45 , 56
I 32

Numerics
256-colour modes I I 0. 112

A
ABS 2 12
abso lutecoord inates 12 1
ACS 2 13
act ua l parameter 88
ADVAL 2 14
ampl itude. sound 157
AND 32. 36, 75.2 15
APPEND 25, 216
arc plot 130
arithmetic operator 31
array 47
array operations 49
ASC 43. 217
ASCII 43
ASN 218
assembler

arithmetic and logical instructions 456-458
branching instruct ions 4 58
condition codes 454
format of language statements 4 5 1-452
imp lemen ti ng passes 449-450
memo ry pointers 448-449
moves 455-456

mu lt ip le load/save inst ructions 46 1-464
multip ly instructions 458
OPT d irect ive 450
registers available 452-453
reserving memory for machine code 448
single register load/save

instructions 4 59-461

465

Index

SWI instructions 464
using BASIC variables 448

assembly language, calling subroutines 226
assignment 29
ATN 219
AUTO 21,220
automatic line numbering 21

8
background colour I I 0, I I 9

teletext I 50
bases 33

base 16 33
base 2 33

•BASIC 21 I
• BASIC64 211
BASIC assembler see assembler
13ASIC interpreter 6
BASIC screen editor 185 187 204

altering text 188
block copy 194
block move 193
cursor movement 188
deleting I i nes 193
deleting text 189
EDIT 187
errors 20 I
i nsert/overtype 196
inserting text 189
keys 198
line commands 193
loading programs 190
marking lines 192
mode 197
renumbering 191
saving programs 190
searching 19'5
status line 188
wildcards 197
windows 198

BEAT 159, 221

466

beat counter 158
BCATS 159, 222
BGET# 102,223
binary 33
block structured IF 75
BPUTII I 02, I 03, 224
BY 121, 225
byte DIM 161
byte indirection 161

c
CALL 226
CASE 82, 239
CHAIN 240
changing colour I 10
changing text size 108
channel number 101
channel. sound 157
'CHANNELVOICE 155
character input 65
CHRS 43.241
CIIKLE I I 8, 242
circle

out l ine 118, 128
solid 118, 128

CIRCLE FILL 14. I 18
CLEAR 243
CLG 244
CLOSE# 102. 245
CLS 246
COLOR 247
COLOUR I 10, 247
colour

changing II 0
modes 109.431
palette I I 0
pattern 133
teletext I 49

command mqde I 2
comments 22
comparison operators 74

concatenation. string 40
conditional structures 73
control variable 77
conversions 43
Copy I 7
copying rectangles 140
cos 249
COUNT 250
CRUNCH 251
cursor

appearance 178
editing 17
keys 68
moving 180
start li ne 178

cursor movement. in editor 188

D
DATA 66. 252
data files 10 1
debugging 170
DEF 87, 253
default

colours I l l
error handler I 66
patterns I 33
viewports 145

defin ing
colour patterns I 35
funct ions 95
procedures 87

DEG 254
DELETE 18, 255
deleting programs 19
DIM 47. 256

as a function 49
byte form 161

dimension 47
disabling error trapping 166
displaying text 55
DIV 32. 258

division. in BASIC 13
dot-dash pattern 125
double-height characters I 09

in teletext 150
DRAW 121,259
duration. sound 158

E
EDIT 260
Edit 185

edi ting BASIC programs 185
Options submenu

Line number increment 186
Strip line numbers 185

print ing a BASIC program 186
tokenised fi les 186

editing a program I 6
ELLIPSE I 18. 261
ELLIPSE FILL I 18
ell ipse plot I 29
ELSE 73 . 76. 262

(in ON) 85
END 263
ENDCASE 82, 265
ENDIF 76, 266
ENDPROC 87. 267
ENDWHILE 81. 268
enteri ng a program 15
entering BASIC II
EOF# I 02, 269
EOR 32. 36, 75, 270
ERL 166. 271
ERR 166. 272
ERROR 167. 273
ERROR EXT 167. 273
errors 165

external 167
hand ling 165
t rapping 165

EVAL 44, 274
*EXEC 104

Index

467

Index

executing a command file 104
EXP 27'5
EXT# 276

F
rALSI:. 37. 277
files 101

creat1 ng I 0 I
executing I 04
input 102
output 101

FILL 140, 278
Fixed point numbers 411
nashing colours 179
nashing, teletext 150
noating point coprocessor 41 '5
noating point emulator (FPE) 415
noating point instruction set 41 '5
noating point variable 27 29 411

indirection 163
flood-fill 139
FN 32. 87, 95, 279
FOR 77, 280
foreground colour I I 0, I 19
formal parameter 88
function keys 71

programming 71
special characters 72

funct1on library 95
functions 87
•FX I '5 68
• FX 219 68
•r:x 4 68
*FX commands 437

G
GCOL 110. 119. 281
GET 6'5 283
GETS 6'5. 28'5

468

GETS# 103, 284
giant patterns 138
GOSUB 84, 286
GOTO 83,287
graph ics 115

H

cursor 121
resolution I 09
screen II '5
teletext I '51
UnitS 115
viewport 143. 145

HEI.P 288
hexadecimal 33
HIMEM 289

IF 290
multi-line 75
single line 73
TII EN. ELSE 75

immed iate mode 12
indirection

byte 162
noating point 163
string 163
word 162

INKE.Y 6'5. 292
values 427

INKEYS 65. 293
INPUT 15, 63, 294
INPUT LINE 64, 295
INPUT# 102. 296
INSTALL 96, 297
INSTR 42, 298
INT 299
integer 27 411

variable 29

interactive mode 12
Interlace 177
150·8859 43

K
• KEY 71
keyboard

buffer 67
input 63
programming 67

Keywords 207

L
left shift 34
LEFTS 40, 300
LEN 42 301
LET 13. 30. 302
libraries

function 95
loading 95
procedure 95

LIBRARY 96. 251, 303
LIN E 117. 304
LINE INPUT 64. 305
line number 15
LIST 16. 21. 306
LISTO 73. 308
LN 309
LOAD 24,310
LOCAL 89, 3 11
LOCAL DATA 92. 3 11
LOCAL ERROR 169
loca l erro r handling 168
LOG 313
logical operator 3 l. 37
LOMEM 314
loop structures 73
LVAR 28.99. 170.315

M
machine code. calling subroutines 226
matrix multiplication 53
MID$ 40. 316
MOD 32. 54.3 17
MODE 14. 107.318
mode 12, 107
MOUSE 320
mouse 69
MOVE 121.322
moving rectangles 140
multiplication. in BASIC 13

N
negative IN KEY 69

va lues 427
NEW 323
NEXT 77. 324
NOT 32 75, 325
note synchronisation 158 160
null string 39
Numeric types 411

0
' OBI:.Y 104
OCli:tVe 157
OF 82. 326
OFF 32..7
OLD 328
ON 329
ON ... GOSUB 85. 286
ON ... GOTO 85. 287
ON I)ROC 92, 350
ON ERROR 165. 330
ON ERROR LOCAL 168
ON ERROR OFF 166
OPENIN 102 331
OPLNOUT 101.332
OPr.NUP 333

Index

469

Index

operators 74
arithmetic 31
logica l 31. 74
precedence 32
relational 74

OR 32, 36, 75, 334
ORIGIN 335
OSCLI 336
OTHERWISE 338
OVFRLAY 98. 251

p
PAGE 339
paged mode 176
palette 110
parallelogram plot 127
pa rameter 88
pattern fi II 134
PI 340
pitch. sound 157
pixel 116
PLOT 123. 341

codes 433
POINT 116

function 343
statement 342

pointer 70
POS 344
precedence. of operators 32
PRINT 12 55. 345
PR INT# 101.349
printer 174
PI~OC 87
procedure library 95
procedures 87
program 15

data 65
deleting 19
editing 16
entenng 15
Inserting comments 22

470

listing 21
loading 24
multiple statements 23
numbering lines in 20
running 15
saving 24
window managed 6

prompt 64
PTR# 351

Q
OUIT 12. 167,352

R
RAD 353
READ 65. 354
reading from a file 102
reading text 63
RECTANGLE 117, 355
RECTANGLE ... TO 140
RECTANGLE FILL 11 7
RECTANGLE FILL 000 TO 140
rectangle plot 126
recursion 93
relative coordinates 121
REM 22. 357
RENUMBER 20, 358
REPEAT 80, 359
REPORT 166. 360
REPORTS 361
resequencing programs 20
resident integer variable 31
resolution 107. 11 6
RESTORE 66, 362
J~ESTORE DATA 92 . 362
RESTORE ERROR 169. 363
Rl.STORE+ 99
RETURN 84. 364

parameter 91

right shift
arithmetic 35
logical ~4

RIGHTS 40. 365
RND 366
RUN 15, 367
running a program 15

s
SAVE 24, 368
scaled characters 18 1
screen display I 07
screen ed itor see BASIC screen editor
scrolling 178
sector plot 13 1
segment plot 132
•sETTYPE I 04
SGN 369
shadow mode 108
shift operator 34
simple patterns 138
SIN 370
single-byte file i/o 102
single-character input 65
SOUND 155.371
sound 155

after parameter 160
amplitude 157
channel 157
duration 158
pitch 157
schedu ling 160
synchronisation 160
volume 157

SPC 373
sprites 147-148, 182

loading 147
plotting 148

STEP 77
STEREO 156. 375
STOP 170. 376

STRS 44, 377
STRS- 45
string array 48
stringfilel/0 103
string indirection 163
string variable 27. 39

converting to numbers 43
joining strings together 40
splitting strings 40

STRINGS 42 , 378
subroutines

assembly language 226
machine code 226

subscript 47
substring 40
SUM 54. 379
SUMLEN 54, 380
SWAP 38 1
synchronisation. sound 158. 160
SYS 382

T
TAB 59. 384
Tab key 68
TAN 385
teletext mode 149
TEMPO 159. 386
text

cu rsor 58
defining characters 60
direction 180
input 63
output 55

read ing 63
size 108
viewports 14 3

TEXTLOAD 387
TEXTSAVE 388
THEN 73. 76. 389
TIME 31,390
TIMES 391

Index

471

Index

timed input 65
TINT 113. 392
tints 110
TO 77
TOP 394
TRACE 170. 395
trapping errors 165
triangle plot 126
TRUE 37, 397
TWIN 398
TWINO 398

u
UNTIL 80, 399
user-deft ned

characters 60
function 94
procedure 87

USR 400

v
VAL 44. 401
variable 13. 27
VDU commands 60. 173. 402

VDU 5 122
viewport 143
VOICES 155, 403
volume. sound 157
VPOS 404

w
WAIT 405
WHEN 82. 406
WHILE 81 , 407
WIDTH 408
window managed programs 6
word indirection 162
writingtoafile 101

472

I
I

I

~

Reader's Comment Form
BBC Basic Reference Manual

We would greatly appreciate your comments about th is Manual, which wi ll be taken into account for the
next issue

Old you find the information you wanted?

Do you like the way the Information Is presented?

l
r General comments,

l
If there IS not enough room for your comments, please oontmue overleaf

How would you classify your experience with computers?

u I I
Used computers before Experienced User Programmer Experienced Programmer

Cut out (or pholocop!J) and post to:

Dept RC. Technical Publications
Acorn Computers Limited
645 Newmarket Road
Cambridge CB5 8PB
England

j Your name and address:

I
1
This information will only be used to get in touch with you in case we w1sh to explore your I

1
comments further _

Acorn.

