
ruse os
PROGRAMMER'S REFERENCE MANUAL

Volume I

Acorn-
The choire of experience

RISC OS

PROGRAMMER'S REFERENCE MANUAL
Volume I

Acorn$
1hf ('~of t'XJ}f'rWnce

ii

Copyright© Acorn Computers Limited 1989

Neither the whole nor any part of the information contained in, or the product
described in this manual may be adapted or reproduced in any material form
except with the prior written approval of Acorn Computers Limited.

The product described in this manual and products for use with it are subject
to continuous development and improvement. All information of a technical
nature and particulars of the products and their usc (including the information
and particulars in this manual) are given by Acorn Computers Limited in
good faith. However, Acorn Computers Limited cannot accept any liability for
any loss or damage arising from the use of any information or particulars in
this manual.

All correspondence should be addressed to:

Customer Service
Acorn Computers Limited
Fulbourn Road
Cambridge CBl 4JN

Information can also be obtained from the Acorn Support Information
Database (SID). This is a direct dial viewdata system available to registered
SID users. Initially, access SID on Cambridge (0223) 243642: this will allow
you tO inspect the system and usc a response frame for registration.

Within this publication, the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

ACORN, ACORNSOFf, ACORN DESKTOP PUBLISHER, ARCHIMEDES,
ARM, ARTHUR, ECONET, MASTER, MASTER COMPACT, THE TUBE,
VIEW and VIEWSHEET are trademarks of Acorn Computers Limited.

DBASE is a trademark of Ashton Tate Ltd
EPSON is a trademark of Epson Corporation
ETHERNET is a trademark of Xerox Corporation
LASER JET is a trademark of Hewlett-Packard Company
LASER WRITER is a trademark dApple Computer Inc
LOTUS 123 is a trademark of The Lotus Corporation
MUL TISYNC is a trademark ofNEC Limited
POSTSCRIPT is a trademark of Adobe Systems Inc
SUPER CALC is a trademark of Computer Associates
UNIX is a trademark of AT & T
1ST WORD PLUS is a trademark of GST Holdings Ltd

Edition 1
Published 1989: Issue 1
ISBN 1 85250 060 3
Published by Acorn Computers Limited
Part number 0483,020

Contents

About this manual

Part 1: Introduction An Introduction ro RISC OS 3
ARM Hardware 7
An introduction to SWis 21
• Commands and the CLI 31
Generating and h,andling errors 37
OS_Byte 43 In OS_ Word 51 this
Software vectors 55 volume
Hardware vectors 85
Interrupts and handling them 91
Events 113
Buffers 125
Communications within RISC OS 135

Part 2: The kernel Character output 149
VDU drivers 207
Sprites 379
Character input 461
Time and date 549
Conversions 579
TheCLI 613
Modules 621
Program Environment 729
Memory Management 773
The rest of the kernel 815

Contents iii

Part 3: Filing systems FileSwitch 831
FileCore 1007
ADFS 1051
RamFS 1067
NetFS 1075
NetPrint 1105
DeskFS 1117
System devices 1119

Part 4: The Window The Window Manager 1125
manager

Part 5: System Econet 1333
extensions Hourglass 1389

NetStatus 1397
Colour Trans 1399
The Font Manager 1425
Draw module 1487
Printer Drivers 1513
The Sound system 1571
WaveSynth 1633
Expansion Cards 1635
International module 1665
Debugger 1679
Floating point emulator 1695
SheiiCLI 1709
Command scripts 1713

Appendices ARM assembler 1723
Linker 1743
Procedure Call standard 1749
ARM Object Format 1771
File formats 1787

Tables VDU codes 1815
Modes 1817
File types 1819
Character sets 1823

iv Contents

About this manual

Summary of contents

Part1

Parts 2 to 5

This manual gives you detailed information on the RISC OS operating system,
so that you can write programs to run on Acorn computers that use it.

Part 1 introduces you to the hardware used to run RISC OS, and to the
fundamental concepts of how RISC OS works.

Parts 2 to 5 inclusive give you more detailed information on separate parts of
RISCOS:

• Part 2 describes the kernel (or central core) of RISC OS

• Part 3 describes the filing systems

• Part 4 describes the window manager

• Part 5 describes the system extensions to RISC OS

The information in these parts has been laid out as consistently as possible, to
help you find what you need. Each chapter covers a specific topic, and in
general includes:

• an Introduction, so you can tell if the chapter covers the topic you arc
looking for

• an Overview, to give you a broad picture of the topic and help you to
learn it for the first time

• Technical Details, to use for reference once you have read the Overview

• SWI calls, described in detail for reference

• *Commands, described in detail for reference

• Application notes, to help you write programs

• Example programs, to illustrate the points made in the chapter, and for
you to base your own programs on.

About this manual v

Appendices

Tables

Indices

Conventions used

Hexadecimal numbers

Typefaces

vi

The Appendices contain:

• an introduction to writing assembler for the ARM chip, on which
RISCOS runs

• information of interest to RISC OS programmers writing compilers and
other language-based tools

• file formats used by current RISC OS applications.

The tables gather together information from the whole manual, giving lists
that you will find useful for quick reference.

The separate volume of indices contains:

• an index of* Commands

• an index of OS_Byte calls

• an index of OS_ Word calls

• a numeric index ofSWI calls

• an alphabetic index ofSWI calls

• a main index .

Certain conventions arc used in this manual:

Hexadecimal numbers are extensively used. They are always preceded by an
ampersand. They are often followed by the decimal equivalent which is given
inside brackets:

&FFFF (65535)

This represents FFFF in hexadecimal, which is the same as 65535 in ordinary
decimal numbers.

Courier type is used for the text of example programs and commands, and
any extracts from the RJSC OS source code. Since all characters are the same
width in Courier, this makes it easier for you to tell where there should be
spaces.

Conventions used

Command syntax

Programs

Finding out more

Finding out more

Special symbols arc used when defining the syntax for commands:

• Angle brackets indicate that an actual value must be substituted. For
example, <filename> means that an actual filename must be supplied.

• Braces indicates that the item enclosed is optional. For example, fK]
shows that the letter 'K' may be omitted.

• A bar indicates an option. For example, 0 II means that the value 0 or 1
must be supplied.

Many of the examples in this manual are not complete programs. In general:

• BBC BASIC examples omit any line numbering

• BBC BASIC Assembler programs do not show the structure needed to
perform the assembly

• ARM Assembler programs assume that header files have been included
that convert SWI names to SWI numbers (see the chapter entitled An
introduction to SWls)

• C programs assume that similar headers are included; they also do not
show the inclusion of other headers, or the calling of main().

For how to set up and maintain your computer, refer to the Welcome Guide
supplied with your computer. The Welcome Guide also contains an
introduction to the desktop which new users will find particularly helpful.

For details on the use of your computer and of its application suite, refer to
the User Guide supplied with it.

If you wish to write BASIC programs on your RISC OS computer you will
find the BDC BASIC Guide useful. Other specialist progrnmming languages
available from Acorn suppliers for RISC OS computers include:

• ANSIC

• Foreran 77

• I SO-Pascal

• Lisp

• Pro log

vii

Reader comments

vii i

If you wish to write programs in assembly language, the ARM Assembler is
available from your Acorn supplier.

If you have any comments on this Manual, please complete and return the
form on the last page of the volume of Indices to the address given there.

Finding out more

Part 1 , Introduction

?

An introduction to RISC OS

Introduction

Structure

RISC OS is an operating system written by Acorn for its computers. Like any
operating system, it is designed to provide the facilities that you, the
programmer, need to control your computer and to get the most out of the
programs you write for it.

RISC OS has a kernel which contains the main functions that the operating
system needs. To this are added various modules that extend the system,
adding such facilities as filing systems, a window manager, a font manager,
and so on. These are called system extension modules:

System
~-------'~ extension

modules

An introduction to RISC OS: Introduction 3

Facilities

Altering and extending
RISC OS

Modules

4

The modules and the kernel provide their facilities very similarly, and there
arc few occasions when you will be able to di~tinguish whether the facilities
you are using arc provided by the kernel or by a system extension module.
You arc most likely to notice the difference if you wish to alter or replace
part of the operating system.

You can view RISC OS as a collection of routines that provide you with a
wide range of facilities. You can get a good overview of the range that is
covered from the earlier Contents pages of this manual.

This collection of routines can be broadly divided into three levels:

• those that RISC OS itself uses to automatically perform low-level tasks,
such as interrupt handling

• those that provide sophisticated and powerful interfaces for you to use
from programs, which arc known as Softv.Jare lntemtf>ts, or SWls for short

• those that provide simpler calls that can be used from the command line
as well as from progrnms - these arc the *Commands that you arc
probably already familiar with.

There arc chapters later in this part of the manu:~! thnt cover .the above topics
in more detail. They are entitled:

• lnterrut>ts and handling them

• An introduction to SWis

• * Commands and the CLI.

You can easily alter or extend RISC OS, becau!'C so much of it is written as
modules.

Each of these modules conforms to a standard, which means that the facilities
provided by the module arc inrcgrated into the system as if they were 'built­
in'. You too can write modules that conform to this standard, so you can add
things to RISC OS as you please.

You can also rewrite any of the standard RISC OS modules. Your
replacement must provide the same entry points, and return values in the
same way - but its intern:~! workings can be functionally different. Sec the
chapter entitled Modules for further details.

An introduction to RISC OS: Facilities

Vectors

How RISC OS Is written

How RISC OS Is
supplied

Because the kernel is so large, it would not be easy for you to change it in the
same way. You can instead make changes by using vectors.

A vector is a chain of entries that RISC OS uses to decide where to pass
control to so it can perform a given function. Most vectors arc used by SWis.
You can claim a vector, and redirect those SWls to code of your own. Your
code must accept the same input and provide simil<tr output to the original
SWI, but it can behave in a totally different manner - just like if you are
replacing a module.

Some vectors are used by just one SWI, but others are used by several SWis
that perform similar functions. You can change how a whole group of SWis
behave by just claiming one vector- for example, SWis that output characters.

A few vectors are not used by SWis at all, but instead by other parts of
RISC OS, to perform functions for which SWis do not provide an interface.

See the chapter entitled Software vectors for more information.

RISC OS is written in ARM assembler. This gives it some important
advantages compared to writing it in a high level language such as C:

• the code produced is much more compact

• the operating system is faster, because there is less code involved in each
task.

Of course, RISC OS can only be used on ARM-based computers.

To use RISC OS effectively, you should have <1 working knowledge of ARM
assembler yourself. The chapter entitled ARM• Hardware provides a brief
introduction to the ARM processor and the set of chips that support it. The
appendix entitled ARM assembler will give you a more detailed introduction
to the ARM's assembly language.

Because RISC OS is relatively compact, it is cost-effective to supply it in
ROM chips. This also has advantages:

• it is much faster to start, as it does not need to be loaded into memory

• it cannot be easily lost or damaged, unlike disc-based operating systems.

An introduction to RISC OS: How RISC OS is written 5

RISC OS and Arthur

Arthur documentation

Your old manuals

6

There is an attendant disadvantage:

• it is harder to upgrade ROMs than a disc.

In practice, upgrades are done by patches that claim vectors or replace
modules, as outlined above.

RISC OS was developed from the Anhur operatin~ system, which was the
original operating system written for the Archimedes computer.

RISC OS is designed to be as compatible as possible with Arthur.
Consequently, it supports some features of Arthur which have now been
superseded. One example is the interrupt handling system, which has been
much improved under RISC OS. However, old-style interrupt handlers
written to run under Anhur will still work.

You will find that some minor pans of the Arthur operating system, which
were in the old Programmers Reference Manual, arc not in this manual. Instead,
we've documented the new and preferred way of doing things. In general,
we've only missed out the bits of RISC OS which have been included solely
for compatibility with the Arthur operating system.

Some more major parts of the Arthur operating system are only referred to in
passing. Again this is because they've been superseded.

In general though, RISC OS has extended most of the features ci Arthur, as
well as adding many of its own. So you will find most of the facilities ci
Arthur described in here, as well as a lot of new facilitic.<;.

If you need full details of the old ways of doing things, so you can maintain
old programs, you'll have to refer to your old manuals. So don't throw them
away -keep them!

An introduction to RISC OS: RISC OS and Arthur

ARM Hardware

Introduction

ARM chip set

Other components

ARM Hardware: Introduction

To get the most out of your RISC OS computer, some knowledge of the
hardware is important. This chapter introduces you to those features that are
common to all RISC OS computers.

Each RISC OS computer has a set of four chips in it, all designed by Acorn
Computers Limited:

• an ARM (Acorn RISC Machine) processor, which docs the main
processing of the computer

• a YIOC (Video Controller) chip, which provides the video and sound
ourputs of the computer

• an ICX::: (Input Output ControUer) chip, which provides the facilities to
manage interrupts and peripherals within the computer

• a MEMC (Memory Controller) chip, which acts as the interface between
the ARM, the YIDC chip, Input/Output controllers (including the IOC
chip), and the computer's memory.

Together these chips are known as the ARM chip set.

The other main electronic components of a RISC OS computer arc:

• ROM (Read Only Memory) chips containing the operating system

• RAM (Random Access Memory) chips

• Peripheral controllers (for devices such as discs, the serial port, networks
and soon).

Exactly which components and devices are present will depend on the model
of computer that you have; see the Guides supplied with your computer for
further details.

7

Schematic

The ARM processor

RISC and CISC
processors

8

The diagram below gives a schematic of an Archimedes computer, which may
be viewed as typical of a RISC OS computer:

---r----+---------r-----~~ MEMC
Address Bus

ARM

Data Bus

110 Data Bus

)

110
Podules

The ARM is a RISC (Reduced Instruction Set Computer) processor - it has a
comparatively small set of instructions. This simplici ty of design means that
the instructions can be made to execute very quickly.

A traditional CISC (Complex Instruction Set Computer) processor, as is
commonly used as the main processor of a computer, provides a much larger
and more powerful range of instructions, but executes them more slowly.

ARM Hardware: The ARM processor

Summary

Word size

Processor modes

A CISC processor typically spends most of the time executing a small and
simple subset of the available instructions. The ARM's instruction set closely
matches this most commonly used subset of instructions. Thus, for the majority
of the time the performance of the ARM is higher than that of comparable
CISC chips; it is executing similar instructions more quickly.

The more complex instructions of a CISC chip are generally only
occasionally used. For the ARM to perform the same task, several instructions
may be necessary. Even then, the ARM still has a comparable performance,
as it is replacing a single slow instruction by several fast instructions.

In summary, the simple RISC design of the ARM has these advantages:

• it has a high performance (four to five million instructions per second, or
MIPS)

• it is cheaper to produce than CISC processors, making RISC OS
computers cheaper for you to buy

• it is much simpler to team how to program the chip effectively.

• The ARM uses 32 bit words. Each instruction fits in a single word. At any
one time, the processor is dealing with three instructions:

• one instruction is executed

• the next instruction is simultaneously decoded

• the one after that is fetched from memory.

The ARM has a 32 bit data bus, so that complete instructions can be fetched
in a single step. Its address bus is 26 bits wide, so it can address up to 64
Mbytes of memory (16 Mwords).

The ARM has four different modes it can operate in:

• User Mode, the mode normally used by applications

• Supervisor Mode (SVC Mode) used mainly by SWI instructions

• Interrupt Mode (IRQ Mode) used to handle peripherals when they issue
interrupt requests

• Fast Interrupt Mode (FIQ Mode) used to h;~ndle peripherals that issue
fast interrupt requests to show that they need prompt attention.

ARM Hardware: The ARM processor 9

Changing mode

Registers

The last three modes are privileged ones that allow extra control over the
computer. They have been used extensively in writing RISC OS.

Note that if you force the ARM to change mode (usually done using a variant
of the TEQP instruction) you must follow this with a no-op (usually done
using MOVNV RO, RO). This is to avoid contention, giving the ARM time to

finish writing to the registers for one mode before switching to the other mode.

The ARM contains twenty-seven 32 bit registers; you can access sixteen of
these in each of the modes. Some of the registers are shared across different
modes, whilst others are dedicated to one mode. In the diagram below,
registers dedicated to a privileged mode have been shaded grey:

RO

Rl... R6

R7

R8 RS_fiq

R9 R9_fiq

RIO RIO_fiq

Rll Rll_fiq

R12 Rl2_fiq

R13 R13_svc Rl3_irq R13_fiq

R14 Rl4_svc R14_irq R14_fiq

Rl5 (PC/PSR)

Only two of the registers have special functions:

• Rl5 is used as the program counter (PC) and program Status register
(PSR)

• Rl4 (and Rl4_svc, RI4_irq) are used as subroutine link registers.

1 o ARM Hardware: The ARM orocessor

R15- program counter
and status register

R14- subroutine link
registers

One other set of registers is conventionally used by RISC OS for a special
purpose:

• R13 (and Rl3_svc, RI3_irq) are used as private stack pointers for the
different processor modes.

All the remaining registers are general purpose.

R15 contains 24 bits of program counter and 8 bits of processor status register:

31 30 29 28 27 26 25 ...

Program counter (PC)

• bits 0 and 1 are the proces.<;Or mode flags MO and M 1

00 User mode
01 FIQ mode
10 IRQ mode
11 SYC mode

• bits 2 - 25 are the program counter

• bit 26 is the RQ disable flag F

0 Enable
1 Disable

• bit 27 is the IRQ disable flag 1

0 Enable
1 Disable

• bits 28 • 31 are condition flags:

V oVerflow flag
C Carry flag
Z Zeroflag
N Negative flag

. .. 2 l 0

R14 is used as the subroutine link register, and receives a copy of the rerum
PC and PSR when a Branch and Link instruction is executed. It may be treated
as a general purpose register at all other times. Similarly, R14_svc, R14_irq

11

R13- private stack
pointers

Instruction set

The VIDC chip

12

and R 14_fiq are used to hold the return values of R 15 when interrupts and
exceptions arise, when Branch and Link instructions are executed within
supervisor or interrupt routines, or when a SWI instruction is used.

R13 (and Rl3_svc, Rl3_irq and Rl3_fiq) are conventionally used by RISC OS
as private stack pointers for each of the processor modes.

If you write routines that are called from User mode and that run in SVC or
IRQ mode, you will need to use some of the shared registers RO to R12. You
will therefore need to preserve the User mode contents on a stack before you
alter the registers, and restore them before returning from your routine.

Note that the SVC and IRQ mode stacks must be full descending stacks,
ending at a megabyte boundary. You are strongly advised not to change the
system stack locations; if you do have to, you must be aware that they are reset
to their default positions when errors are generated, and when applications
are started.

FIQ routines need a faster response, so there are seven private registers in
FIQ mode. In most cases these will be enough for you not to need to use any
of the shared registers, and so you will be spared the overheads of saving
them to a stack. If you do need to do so, you should for consistency use
Rl3_fiq as the stack pointer.

You can use RlJ and/or R 13_fiq as conventional registers if you do not need
to usc them as stack pointers.

You will find details of the ARM's instruction set in Appendix A - ARM
Assembler.

The VIDC chip controls and provides the computer's video and sound outputs.
The data to control these systems is read from RAM into buffers in the chip,
processed, and converted to the necessary analogue signals to drive the
display's CRT guns and the sound system's amplifier.

The VIOC chip can be programmed to provide a wide range of different
display formats . RISC OS uses this to give you 27 different screen modes.
Likewise, you can program the way the sound system works.

ARM Hardware: The VIDC chip

Buffers

Video

Cursor

The VIOC chip has three buffers for its input data. These arc used for:

• video data

• cursor data

• sound data.

Each of these buffers is first-in first-out (FIFO). The VIOC chip requests data
from RAM as it is required, using blocks of four 32-bit words at a time. The
MEMC chip controls the addressing and fetching of the data under direct
memory access (DMA) control.

Data from the video buffer is serialised by the VIOC chip into 1, 2, 4 or 8
bits per pixel. The data then passes through a colour look-up palette. The
output from the palette is passed on to three 4-bit digital to analogue
converters (DACs), which provide the analogue signals needed to drive the
red, green and blue cathode ray tube (CRT) guns in the display monitor.

The palette has 16 registers, each of which is 13 bits wide. This supports a
choice from 4096 different colours or an external video source.

The registers that control the video system give a wide choice of display
formats:

• the pixel rate can be selected as 8, 12, 16 or 24 MHz

• the horizontal timing can be controlled in units of 2 pixels

• the vertical timing can be controlled in units of a raster

• the screen border can be set to any of the 4096 possible colours

If needed, support is provided for:

• interlaced displays

• external synchronisation

• very high resolution monochrome modes (up to 96 MHz pixel rate).

The cursor data controls a pointer that is up to 32 pixels wide, and any
number of rasters high (although RISC OS restricts the cursor to a maximum
of 32 rasters in height). The cursor can use any three of the 4096 possible
colours to colour its pixels. Alternatively, pixels can be marked as
transparent, so that cursors can be any shape you desire.

ARM Hardware: The VIDC chip 13

Sound

The IOC chip

Internal functions

Peripheral control

The cursor may be positioned anywhere on the screen.

The sound data consists of digital samples of sound. The YIDC chip can
support up to eight separate channels cJ sound. It provides eight stereo image
registers, so the stereo position of each channel can be independently set.

The YIDC chip reads data from the buffer at a programmable rate. The data
is passed to an eight bit DAC, which uses the stereo image registers to convert
the digital sample to a stereo analogue signal. This is then output to the
computer's internal amplifier.

The IOC chip provides the facilities to manage interrupts and peripherals
within your RlSC OS computer. It controls an 8 to 32 bit lnput/Ouput (l/0)
data bus to which on-board peripherals and any l/0 expansions are
connected. It also provides a set of internal functions that are accessed without
any wait states, and a flexible control port.

The following internal functions are provided by the IOC chip:

• Four independent 16 bit programmable counters. Two are used as baud
rate generators - one for the keyboard, the other for the serial port.
Another (Timer 0) is used to generate system timing events. The last timer
(Timer 1) is unused by RlSC OS, and you can program it for your own
purposes.

• Six programmable bidirectional control pins.

• A full-duplex, bidirectional serial keyboard interface.

• Interrupt mask, request and status registers for both normal and fast
interrupts.

The IOC is connected to the rest of the ARM chip set by the system bus. It
provides all the buffer control required to interface this high speed bus to the
slower 1/0 or expansion bus. The lOC supports:

• sixteen interrupt inputs (I 4 level sensitive, 2 edge-triggered)

• seven external peripheral select outputs

• four programmable peripheral timing cycles (slow, medium, fast and
2 MHz synchronous).

The MEMC chip

Memory support

Memory mapping

Both the IOC and peripherals are viewed as memory-mapped devices. Most
peripherals are a byte wide, and word aligned. A single memory instruction
(LDRB to read, or STRB to write) can be used to:

• access the IOC control registers, or to

• select both a peripheral and the timing cycle it requires, and access it.

The IOC can support a wide range of peripheral controllers, including
slower, low-cost periperal controllers that require an interruptable 1/0 cycle.

The MEMC chip interfaces the rest of the ARM chip set to each other and to
the computer's memory. It uses a single clock input to provide all the timing
signals needed by the chip set.

MEMC provides the control signals needed by the memory:

• timing and refresh control for dynamic RAM (DRAM)

• control signals for several access times of read-only memory (ROM)
450ns, 325ns, and 250ns.

Up to 32 standard DRAMs can be driven, giving 4 Mbytes of real memory
using I Mbit devices.

Fast page mode DRAM accesses are used to maximise memory bandwidth, so
that slow memory does not slow the system down too much.

RISC OS computers use MEMC to map the physical memory into 16 Mbytes
of logical memory. The base of this logical memory is at 32 Mbytes.
RISC OS does not address this space directly, though; instead it addresses
another 32 Mbyte logical slot within the 64 Mbytes logical address space
supported by the ARM's 26-bit address bus. Each page of this slot can be:

• unmapped

• mapped onto one page of the logical memory

• mapped onto many pages of the logical memory.

ARM Hardware: The MEMC chip 15

Page size

RISC OS can only read and write from pages that have a one-to-one mapping.
One-to-many mapping is used to 'hide' pages of applications away when
several applications are sharing the same address (&8000 upwards) under
the Desktop.

The computer's physical memory is divided into physical pages. Likewise, the
32Mbytes of logical space is divided into logical pages of the same size.
MEMC keeps track of which logical page corresponds to which physical page,
mapping the 26 bit logical addresses from the ARM's address bus to
physical addresses within the much smaller size of RAM.

MEMC has 128 pages to use for its memory mapping. Each page has its own
descriptor entry held in content-addressable memory. This simple structure
allows the translation (of logical address to physical address) to be
performed quickly enough that it does not increase memory access time.

In general, all 128 pages are used to map the RAM. Note that this is not
always the case; for example, the Archimedes 305 uses only 64 pages.

IfMEMC does use all128 pages (or any other constant number), then:

• as the size of the computer's physical memory increases, the size of each
page increases - a larger amount of physical memory is being split into
the same number of pages

• as the size of each page increases, the number of logical pages decreases -
the same amount of logical memory (32 Mbytes) is being split into larger
pages.

16 ARM Hardware: The MEMC chin

Number of pages
programmed

Protection levels

The table below shows this. The values are those used in Archimedes
computers, and may be viewed as typical of RISC OS computers. They should
not be relied on for programming though; future RISC OS computers may not
use 128 pages, leading to anomalies such as those in the first row (the
Archimedes 305):

0.5 Mbyte 8 Kbytes 4K

1 Mbyte 8 Kbytes 4K

2 Mbytes 16 Kbytes 2K

4 Mbytes 32 Kbytes IK

If you need to find out a machine's page size and so on, use
OS_ReadMemMapinfo (SWI &51).

RISC OS always programs 256 pages, even if it actually uses fewer pages.
This is so that:

• random hits in the unused pages don't happen

• a second MEMC chip can be slaved to the master MEMC chip, allowing
future machines to support 8 Mbytes of real memory.

Three protection levels are provided:

• Supervisor mode - this is the most privileged mode, that allows the whole
address space to be freely accessed; it is available from all the ARM
privileged modes (SVC, IRQ and FIQ)

• Operating System mode - this is more privileged than User mode when
accessing logically mapped RAM, but acts as User mode in all other
cases

• User mode - this is the least privileged mode, allowing access only to
unprotected pages in the logically mapped RAM, and read cycles to the
ROM space.

ARM Hardware: The MEMC chip 17

Memory map

DMA support

If an attempt is made to access protected memory from an insufficiently
privileged mode, MEMC trnps the exception and sends an abort signal to the
ARM.

RISC OS does not use the Opernting System mode.

The resulting memory map is shown below. You can only access the areas
shaded grey if you are in one of the ARM's privileged modes (SVC, IRQ or
FIQ), which force MEMC to Supervisor mode by holding a pin high:

Read Write

ROM (high} ~ical to Physical
dress Translator

DMA . Address

ROM (low}
Generators

Video O,nrroller

Input/Output O,n trollers

Physically Mapped RAM

Logically Mapped RAM

Hex address
3FFFFFF

3800000

3600000

3400000

3000000

2000000

0000000

MEMC also provides three programmable address generators to support
direct memory access (DMA}. They support:

• a circular buffer for video refresh

• a linear buffer for the cursor sprite

• double buffers for sound data.

18 ARM Hardware: The MEMC chio

Finding out more If you need to find out more about ARM assembler and the ARM chip set,
there are a number d sources you can tum to:

• ARM assembler is summarised in Appendix A - ARM Assembler

• ARM assembler is thoroughly covered in the manual supplied with the
ARM Assembler, available from your Acorn supplier

• The ARM chip set is described in much greater detail in the VL86COIO
32-Bit RISC MPU and Peripheral User's Manual, published by Prentice
Hall.

In addition, a number of other publishers have produced books covering these
topics- such is the interest in the ARM chip set.

ARM Hardware: Finding out more 19

20

An introduction to SWis

Introduction

SWI numbers and
names

Parameters and results

The main way you can access the routines provided by RISC OS is to use a
SWI instruction. SWI stands for SoftWare Interrupt, and is one of the
ARM's built-in instructions.

In brief, when you issue a SWI instruction, the ARM leaves your program. It
jumps to a fixed location in memory, where there is a branch instruction into
the RISC OS kernel code. This code examines the SWI instruction, and
determines which particular OS routine you wanted. This is called, and when
it is finished, control returns to your program.

The rest of the chapter will explain how to call SWis from different
languages, and follow how a SWI works in rather more detail.

RISC OS can work out what routine you require because the SWI instruction
code contains a 24-bit information field which identifies a routine uniquely.
This field is known as the SWI number. A section later in this chapter
describes how SWI numbers are allocated.

RISCOS provides several hundred different SWis. You would find it
difficult to remember what function each SWI number corresponds to, so
each SWI also has a name. These names are held in the RISC OS ROMs,
and in any system extension modules that have been loaded.

Obviously, you need to be able to pass values to SWI routines (parameters),
and must be able to read values back (results). The ARM registers are used to
pass information between the user and RISC OS. In general, you will use RO
to pass the first parameter, and then enough registers after that to pass the
rest. It is rare for a routine to use more than 4 or 5 registers.

An introduction to SWis: Introduction 21

An example

Calling from Assembler

Calling from BBC
BASIC

BBC BASIC Assembler

22

When the information passed is numeric, character or address, you generally
store the data itself in the register. However, if the data is a string, or a large
amount of numeric data, then you pass a pointer to the data instead. For
example, filenames are passed as a pointer to the characters in memory, and
the window manager uses pointers to large window descriptors.

As an example of how to use a SWI, we will look at one called OS_ WriteC.
Its SWl number is &00. It is used to output a character. It rakes a single
parameter - the character you want to output - which is passed in RO. Suppose
you wanted to output the character 'A', the ASCII code of which is 65.

In assembler you could write:

MOV
SWI

R0,#65
0

Load RO with 'A'
and output it

It would be dearer if you set a constant named OS_WriteC to &00. We
suggest you do so in a standard header file that contains all SWl names and
numbers. Using such a file, you could then write:

MOV
SWI

R0,#65
OS WriteC

Load RO with 'A'
; and output it

When this is assembled, the bottom 24 bits of the SWI instruction are set to
zero- the SWI number for OS_ WriteC.

From BBC BASIC you can call a SWI routine in two different ways:

• use the built in assembler

• call it directly from BASIC.

BASIC's built in assembler is very similar to the standard ARM assembler.
However, the SWI names are available as strings; note that this means you
must enclose them in double quotes. The case of the letters is significant:

MOV
SWI

RO,t65 Load RO with 'A'
"OS WriteC" ; and output it

An intrrvi11rtinn tn ~Wic:· An ov~rnnlo

BBC BASIC

calling from c

More about SWI
numbers and names

SWI name prefixes

Error handling - an
Introduction

You can use the BASIC keyword SYS to call SWI routines directly from
interpreted BASIC. BASIC just asks RISC OS what SWI number the given
string corresponds to; you will find full details of the syntax in the BBC
BASIC Guide. Our example would be written:

SYS "OS_WriteC",65

The Acorn C library provides a similar procedure to call a SWI routine.
Again, you should see the ANSI C manual for full details of rhe syntax, and
how errors are handled. The example below assumes that relevant header
files have been fincluded:

_kernel_swi_reqs regs;

regs.r(OJ • 65;
_kernel_swi (OS_WriteC, ®s, ®s);

1• declare register structure •/

1• set pseudo RO to 'A' •1
!• call SWI • I

In general, you don't have to worry about the exact mechanism used by
RISC OS to decode the SWI instructions. As long as you use the right SWI
number, and pass the correct parameters, the correct result will be obtained.

We strongly advise you to use SWI names in your code, for added clarity.
This is easy from BASIC, as the names are already set up; from other
languages (such as assembler and C above) you will find this easiest if you
set up header files. Examples in the rest of this manual will assume you
have done so.

The prefix of the SWI name (OS in the example above) determines which
part of the system will deal with the SWI. OS obviously refers to the calls
handled directly by RISC OS. Examples of other prefixes are Font, Wimp,
and ADFS. The prefix is determined by the module which implements the
SWI.

RISCOS provides full error handling facilities for SWis. In general, if a
SWI has no errors, the V fbg in Rl5 is clear as the routine exits; if there is
an error, the V flag is set and RO points to an error block on exit.

An introduction to SWis: More about SWI numbers and names 23

SWI numbers In detail

Bits 20-23

24

As the routine exits, RISC OS checks the V flag. If it is set (meaning there
was an error), then RISC OS looks at bit 17 (the X bit) of the SWI number:

• if it is set then control returns to your program, and you should deal with
the error yourself

• if it is clear control is passed to the system error handler, which reports
the error to you. You can of course replace the system error handler with
one of your own; indeed, most programs do.

For further details, see the chapter entitled Generating and handUng errors.

The 24 bits used to encode the SWI number in the instruction allow SWis in
the range 0 • &FFFFFF (16777215) to be used. This SWI 'address range' is
divided up into several parts under RISC OS. For example, SWis in the
range 0 • &JFFFF (262143) provide the basic operating system functions.
(Fewer than 150 of these arc currently used, however.) Modules can provide
their own SWis, and these must be given unique numbers to avoid clashes.

You can also define your own SWI calls. When a program executes a SWI
whose number is not recognised by the OS or any of the modules in the
machine, the OS calls a special routine called the 'Unused SWI vector'.
Usually, this will just return the error No such SWI. However, a user
program can claim this and, if the SWI number is one that it recognises,
perform the appropriate task.

This section explains in detail how SWI numbers are allocated. The bottom
24-bit section of the SWI op-code is divided up as follows:

These arc used to identify the particular operating system that the SWI
expects to be in the machine. All SWis used under RISC OS have these bits
set to zero. Under RISC iX, bit 23 is set to 1 and all other bits are set to zero.

An introduction to SWis: SWI numbers in detail

Bits 18 - 19

Bit 17

Bits 6- 16

Bits 0- 5

These are used to identify which part of the system software implements the
SWI, as follows:

Bit number
19 18

0 0
0 1
1 0

Meaning

Operating system
Operating system extension modules
Third party resident applications
User applications

Thus OS SWis, such as OS_ WriteC, have both bits clear.

Modules such as filing systems, device drivers for expansion cards, and the
Font manager have bit 18 of their SWis set, so their SWI numbers start at
&40000. Note that this can include system extension modules written by third
parties.

Any SWis provided by application software that is distributed by other
software houses should have bit 19 set and bit 18 clear.

This is used to determine the action taken on errors. It is the 'X' bit. Error
handling in SWis is described in the chapter entitled Generating and handling
errors.

These are the SWI Chunk Identification numbers. They identify a block of 64
consecutive SWis, for use within a single application or system extension
module. Anyone wishing to use one of these blocks of SWls for distributed
software should apply in writing to Acorn Customer Service, who will
allocate a unique value.

These identify individual SWis in a chunk. Hence a third party application
may use SWis in the following binary range:

OOOOlOnnnnnnnnnnnnOOOOOOto
000010nnnnnnnnnnnnl11111

where nnnnnnnnnnnn is the chunk number that the software house has been
allocated for the application or module.

An introduction to SWls: SWI numbers in detail 25

Technical details

26

Although in general you don't need to know how a SWI is decoded and
executed, there are some more advanced cases where you will need to know
more. This is what happens:

The contents d R15 are saved in RH_svc (the SYC mode subroutine link
register).

2 The MO and Ml bits d Rl5 are set (the processor is forced to SYC
mode) and the I bit is also set (IRQ is disabled).

3 The PC bits ofR15 are forced to &08.

4 The instruction at &08 is fetched and executed. It is a branch to the code
that RISC OS uses to decode SWis.

5 RISC OS uses the PC bits of the rerum address held in R 14_svc to pick
up a copy of the SWI instruction.

6 Interrupts are restored to the state they were in when the SWI was
issued. This is done by setting the I bit in R15 to the value of the
equivalent bit in Rl4_svc.

7 The V bit of the rerum address held in R14_svc is cleared, unless the
SWI was OS_BreakPt or OS_CaiiAYector. (This is done for the error
handling system- see the chapter entitled Genemting and handling errors.)

8 RISC OS looks at the 24 bit SWI number field held in the SWI
instruction, and uses it to decide where to branch to.

9 If the SWI does not use a vector, RISC OS will branch directly to the
actual SWI routine.

If the SWI does use a vector, RISC OS branches to the routine that calls
the vector. Unless you have claimed the vector, this will execute the actual
SWI routine.

10 The SWI routine is executed.

11 Any error handling is performed.

12 Any call back handling is performed.

13 Control is returned to your program by using the instruction
MOVS RlS, Rl4_svc . This restores both the mode you were in when
you called the SWI, and the interrupt status. Note however that a few
SWls (such as OS_IntOn, which enables interrupts) deliberately alter
the mode and/or interrupt status so they are not restored on exit.

An introduction tn SWI~· TAr.hni,.~l rlllt::~ilc

An example of
documentation

If an error is being returned by setting the V bit, the instruction
ORRS RlS, Rl4_svc, fV bit is used instead.

Below is an example of how a SWI is documented. Comments are provided
in grey boxes so you can understand exactly what each bit means.

Some things are assumed to be consistent for all SWis, and only exceptions
are documented:

• SWis are decoded and executed as outlined above

• The V flag is cleared if there is no error; it is set if there is an error, and
RO will then point to an error block. See the chapter entitled Generating
and handling errors for further details

Other registers and flags are preserved across the call unless stated otherwise.

Note that the description of the SWI refers to the routine itself - in other
words, what happens during step 10 above. Thus headings such as
Processor mode and Interrupts refer to what happens in the SWI routine itself -
not what happens when the SWI is decoded etc.

An introduction to SWis: An example of documentation 27

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

28

...__s_w_l N_am_e___,t------__.... OS w ri teC

.___sw_I_Nu_m_be_r __r-------... (SWI &00)

Write a charact er to all of the active output streams,__ Summary

RO = character to write Entry and exit
condHions for

RO preserved SWI routine

Interrupts are enabled
Fast interrupts are enabled

Interrupt status J---- ---- ~

Processor is in SVC mod e Processor mode

SWI is not re-entrant R•entrancy In
Interrupt routines

This call sends the by te in RO to all of the active output streams. ·1 his is
called as a low level writer by several other routines.

It is the routine used on the default system after passing through the Write
Character vector WrchV. If this vector is replaced, using OS_Ciaim, then all
of the SWis that use this vector will be funnelled into the replacement
routine.

OS_ WriteS (SWI &01), OS_ WriteO (SWI &02),
OS_NewLine (SWI &OJ), OS_prettyPrint (SWI &44) ,
OS_Writel (SWI &100- &IFF) , OS_Byt 3 (SWI &06)

WrchV

Main vectors
used by the SWI

If an

Notes:

Closely related
SWis (If any)

Full description
of use of this

SWI

................ .,

'

' ' '

The concept of re-entrancy and its application to interrupt handling
routines Is explained in the chapter entitled Interrupts and handling them

~--:

'

The Interrupts and Processor mode entries define how the SWI routine
affects these, not how RISC OS does. See above for further details.

~------:

An introduction to SWis: An example of documentation

Important notes

Calling SWis from SWI
routines

There are some important points to note if you are writing your own SWI
routines. These apply if:

• you call a SWI from your own SWI routine

• you claim a vector and replace a routine with one of your own.

Normally SWis are executed in SVC mode. If you call another SWI from
this mode without taking precautions, it will use R14_svc and crash the
computer as follows:

The first SWI is executed from a program that is running in User mode.
R15 (the return address to the program) is copied to Rl4_svc, and the
processor is put into SVC mode.

2 The first SWI routine is entered.

3 This routine ca1\s the second SWI from SYC mode. Rl5 is copied to
R14_svc, overwriting the return address to the program. The processor
remains in SYC mode.

4 The second SWI executes, and control is returned to the first SWI
routine by loading R14_svc back into R15.

5 The first SWI routine fini shes executing, and tries to return control to the
program by loading R14_svc back into RI5 .

6 Because R14_svc was overwritten by the second SWI, control is not
returned to the program. Instead, the computer just repeatedly loops
through the end ci the first SWI routine.

The cure is simple; you must save R14_svc before you call a SWI from within
another SWI routine, and restore it after control., returns to the SWI routine.
This is typically done using a full descending stack pointed to by Rl3_svc,
like this:

STHfD Rl31, {Rl4)
SWI •••
LDHfD Rl31, (Rl4)

Save return address
Call the SWI (corrupts Rl4l
Restore return address

Of course if you call several SW!s, you don't have to save and restore R14
around each call - instead you should save it before calling the first SWI,
and restore it after the last one.

An introduction to SWis: Important notes 29

Error handling with
vectored SWis

30

Normally, you can assume that the V flag of the return address held in
R14_svc has been cleared by RISC OS before a SWI routine is entered. This
leaves the return address in the correct format to indicate that no errors
occurred.

You cannot make this assumption for SWI routines that are vectored. This is
because any of these routines might be called using the SWI
OS_CallAYector, for which RISC OS does not clear the V bit.

Therefore, if you claim a vector and replace a SWI routine with one of your
own, that routine must not assume the state of the V flag. Instead, you must
explicitly clear the V flag if there was no error, or explicitly set it {and set
up an error block) if there was an error.

An introduction to SWis: lmoortant notP.~

* Commands and the CLI

Introduction

Command Line mode

OS_CLI and the CLI

• Commands provide you with a simple way to access the facilities of
RISC OS by using text- for example:

*Time

will display the time and date. If you have read your computer's User Guide,
you will already be familiar with many of these commands.

This chapter introduces you to • Commands and the CLI; a later chapter
entitled The CLI describes them in more detail.

Perhaps the most common way of issuing a • Command is to type it when the
computer is in Command Line mode - also called Supervisor mode by some
screen displays. Each line starts with a • character prompt, so you don't need
to type it yourself. In the above example, all you need to type is the text
Time.

When you type a • Command, the text is passed to RlSC OS by a SWI,
named OS_CLI. The text is then interpreted by a part of RISC OS called the
Command Line Interpreter - or CLI for short. This converts the text to one or
more SWls that do the work of the • Command.

For example, the *Time command just calls three SWls. You can achieve the
same effect with a few lines of BASIC:

DIM block 24
?block • 0
SYS •os_word",l4,block
SYS •os_writeN",block,24
SYS •os_NewLine•

The • Command version is obviously more convenient.

* Commands and the CLI: Introduction 31

* Commands v. SWis

Documentation

An example of
documentation

32

*Commands have a number of advantages when compared to SWls, mainly
because of their simplicity:

• they are simple for novice users to use

• they can be easily typed in directly, either from the command line or
from applications

• they are simpler to call from programs

• they provide simple access to powerful features.

Their simplicity also leads to some disadvantages:

• they arc not as flexible as SW!s

• they cannot easily pass information back to a program, as they usually
output results to the screen.

It is up to you whether you use * Commands or SWis. Sometimes you will
have to use SWis, so you can do something that • Commands do not cater for.
There will be other times when you use *Commands for their simplicity and
ease of use.

Each *Command is documented in the relevant chapter. For example, *Time
is described in the chapter entitled Time and date. You will find many of the
miscellaneous *Commands that the kernel supplies, in the chapter entitled
The CLI. (This chapter also details the OS_CLI SWI.)

The next page gives an example of how a * Con;~mand is documented. Again,
comments are provided in grey boxes so you can understand exactly what each
bit means:

• Commands and the CLI: • Comm::~nn~ v ~WI~

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

I Name of • Command lt----------.• *Time

Display s the day, date and time. Summary

*Time syntax

None Parameters

*Time displays the day, date and time of day. It is displayed in the same

formatasOS_Word 14,0. ,.,___ ---------11 Fullu::~.s.of I
*Time

*Command
None

OS_ Word 14 and 15 (SWI &07),
OS_ConvertStandardDateAndTime (SWI &CO),
OS_ConvertDateAndTime (SWI &Cl)

WordY, WrchV

Main veCtor.$.
··used by thi (.. •

* Command.(lf
any)

Closely related
SWis (If any)

• Commands and the CLI: An example of documentation 33

Using * Commands

Issuing * Commands
from applications

Issuing * Commands
from assembler

Issuing * Commands
from BASIC

Directly from programs

The OSCLI keyword

34

You don't have to be in Command Line mode to use • Commands. In fact, you
can call • Commands in a number of other ways - both from applications and
programming languages. The sections below outline these.

You can issue • Commands from most applications by typing a • at the start
of a command. The application recognises the • prefix and calls os_cu.
instead of trying to execute it itself.

When you write applications, they too should recognise any • prefixes, and
call OS_CLI.

You can issue • Commands from assembler by passing the string directly to
the SWI OS_CLL Note the terminating null byte:

TIME:STR

ADR RO,TIME:STR
SWI OS CLI

DCB "Time",O
ALIGN

Make RO point to the text
and call os_CLI

Define the • Command text

There are a number of different ways you can issue • Commands from BBC
BASIC.

You can issue them directly from your program:

•TIME

Sometimes you won't know all the text of the • Command you want to use; for
instance, you might want the user of your program to give the name of a file.
Instead d issuing the command directly, you can build up the text of the
• Command, and then use the OSCLI keyword:

INPUT "Name o! !ile to delete•: file$
OSCLI "Delete "+!ile$

• ~nmm::~nric: ::~nri tho r.1 I· llein,.. • """""""'rv4"

Calling OS_CLI directly

Issuing * Commands
from C

The procedure system ()

Calling OS_CLI directly

Of course, you can also call OS_CLI directly, as outlined in the chapter An
introduction to SWis. You can either use the SYS keyword:

DIM TIHESTR 4
$TIHESTR • "TIME"
SYS "OS_CLI " , TIHESTR

or more simply:

SYS "OS_CLI", "TI ME"

or you can use BBC BASIC's built-in assembler:

.TIH£STR

ADR RO,TIHESTR
SWI "OS_CLI"

EQUS "TIME"
EOUS 0

Hake RO point to the t ext
and call OS_CLI

1 Define t he • Comma nd text

See the BBC BASIC Guide for full details of all the above syntax.

Similarly, the Acorn C library provides different ways for you to issue
• Commands.

You can use the procedure sys tem, which takes as a parameter the text of the
•Command:

system("Tlme") ;

You cannot run a replacement application using this call, unless prefixed with
"CHAIN: ". So:

aystem("BASIC") ;

would start up BBC BASIC, but when BASIC quits control returns to the
C application rather than its parent.

Alternatively, you could directly call OS_CLI:

_kerne l _swi_reqs reqs;
char tlmestr[] • "Time•;

reqs . r[O] • (lnt) tlmest r ;
_ke r nel_swi (OS_CLI , ®s , &reqs) ;

·Commands and the CLI: Issuing • Commands from C 35

Changing and adding
*Commands

Using vectors

Replacing modules

Adding modules

36

One of the keynotes of RISC OS is the ease with which you can alter and
extend it. You've already been introduced to how you can alter, replace or
add SWis. The techniques that can be used for this are:

• claiming vectors

• replacing modules

• adding new modules.

In just the same way, you can use these techniques to alter, replace or add
• Commands.

If you claim a vector, and hence change how the SWI that uses it works, you
will also alter all functions of RISC OS that call that SWI - including
•Commands.

As an example, let's assume that you have changed OS_ WriteC so that all
letters are converted to capitals. You'd do this by claiming WrchV, the vector
used for character output, so that it passes on calls made to OS_ WriteC to
your routine instead.

This would mean that all • Commands that output their results via WrchV
would now do so in capitals only. This is true of all • Commands that output
characters, and our example of *Time is no exception.

See the chapter entitled Software tJectors for further details of how to use
vectors.

If you replace a module, you must provide the same services that the old
module did. So your replacement module should have the same • Commands,
each of which must have the same syntax and accept the same parameters as
before. However, they can be functionally different.

There is no reason why a replacement module cannot add extra • Commands
as well.

If you write a new module, it can provide • Commands, in exactly the same
way as any of the system modules. Sec the chapter entitled Modules, for
details of how to write a module.

• Commands and the CLI: Chanaina and ~ddinn • r.nmm::lnrlc::

Generating and handling errors

Introduction

Error handling

Types of SWis

It is reasonable to expect that most SWis can generate an error. For example,
if you pass poor parameters you would expect the SWI routine to tell you
about it.

SWis report errors in a consistent way. If no error occurred, and the desired
action was performed, the SWI routine will clear the ARM's V (overflow)
flag on exit. If an error did occur, the SWI routine will set V on exit.
Furthermore, RO will contain a pointer to an error block, which is described
below.

Just before RISC OS passes control back to your program, it checks the V
flag. If it is clear (no error occurred) control passes directly back.

If V is set (an error occurred), RISC OS looks at a copy of the original SWI
instruction you used:

• If you had cleared bit 17 of the SWI number, RISC OS deals with the
error itself. Control docs not return normally to your program; instead
the error is passed to the error handler used by your program, which
normally will report the error to you.

• If you had set bit 17 of the SWI number, RISC OS returns control
directly to your program. The V flag will still be set to indicate an error,
and RO will contain the error pointer. It is up to you to deal with the error.

These two typeS of SWI are known respectively as error,generating and error,
returning SWis. For every SWI, you can call either version, depending on
whether you want to detect the error yourself, or leave the current error
handler to deal with it. All the examples in the chapter entitled •Commands
and the CLI were error,generating SWis. If you want to call an error­
returning SWI, with bit 17 set:

Generating and handling errors: Introduction 37

Error blocks

Error numbers

38

• add &20000 to the SWI number you use, or:

• put the letter X in front of the SWI name, thus:
XOS_ WriteC, XWimp_OpenWindow, and so on.

The error block pointed to by RO has the following format:

RO+O
R0+4

a word containing the error number
error message, terminated by a zero byte.

An error block must be word-aligned, and must be no more than 256 bytes
long.

just as the 24-bit SWI number is divided into different fields, 32-bit error
numbers are also split up.

The bottom byte is often a basic 'error number'.

The middle two bytes identify what generated the error. Third parties
generating their own errors should apply to Acorn for an identifier. The
following error ranges have been reserved:

Range

&000-&0FF
&100 • &11F
&120 • &l3F
&140 • &15F
&160 • &17F
&180 • &lAF
&lBO· &lBF
&lCO. &lDF
&lEO· &lEF
&200. &27F
&280 -&2BF
&2CO- &2FF
&300- &3FF
&400 • &4FF
&500 • &SBF
&SCO- &SFF

Error generator

Operating system • BBCcompatible error
OS_Module errors
OS_ReadVarVal/SetVarVal errors
Redirection manager errors
OS_EvaluateExpression errors
OS_Claim/Release errors
OS_ChangeDynamicArea errors
OS_ChangeEnvironment errors
OS_CLI/miscellaneous errors
Font manager errors
Wimp errors
Date/time conversion errors
Econet errors
FileSwitch errors
Podule errors
Printer driver errors

Technical details of
error-generating SWis

&600- &63F
&640- &6FF
&700- &7FF
&800- &8FF
&lXXOO- &IXXFF
(eg &10800- &108FF
&20000 - &200FF

The top byte contains flags:

General OS errors
International module errors
Sprite errors
Debugger errors
Errors from filing system number &XX
ADFS errors)
Sound errors

• Bit 31, if set, implies that the error was a serious one, usually a hardware
exception (eg the program tried to access non-existent memory) or
floating point exception, from which it wasn't possible to sensibly return
with V set. In such cases different error ranges are used:

&80000000- &800000FF
&80000100- &800001FF
&80000200 - &800002FF
&80000300- &800003FF

Machine exceptions
CoProcessor exceptions
Floating Point exceptions
Econet exceptions

• Bit 30 is defined to be clear, and can therefore be used by programmers
to flag internal errors.

• Bits 24 - 29 are reserved. They should be cleared for compatibility with
any future extensions.

If bit 31 is set then these bits are sometimes used as a suberror indicator;
for example ADFS uses them to show what kind of disc error has
occurred.

You may need to know in more detail how RISC OS handles an error that an
error-generating SWl creates.

First it informs modules of the error using the SWI OS_ScrviceCall, with
reason code 6 (Error). This is for the module's information only, so that it
can tidy up (close files, and so on) before RISC OS handles the error.
The module must not try to handle the error.

2 It then calls the error vector (see the later chapter entitled Software
vectors). By default, this calls the current error handler. You may claim
this vector, but again this should be for information only - for example,
so that your program can tidy up. The call must subsequently be passed
on to the error handler; your program must not try to handle the error.

Generating and handling errors: Technical details 39

Generating errors

Writing system
extension code

40

If you want to handle an error yourself, you must instead use the error­
returning version of the SWI.

In addition to detecting errors, you might want to generate an error which
calls the current error handler, so you can find out about a problem. A
common example would be if you detect that Esc is pressed. This is usually
a sure sign that the user wants to abandon the current operation. The standard
response is for you to acknowledge the escape (see the chapter Character
input for details), and generate an Escape error. This is then dealt with by
the current error handler.

To generate the error, you should call the SWI OS_GenerateError. On entry,
RO contains a standard error block pointer. The routine never returns. For
example, BASIC's error handler will cause the current BASIC program to
terminate, returning control to the command mode, or to execute an ON

ERROR statement, if one is active.

You must not write system extension code (such as a module, interrupt
handler or transient) that generates errors - users of this code have a right to
expect it to work. This means that you must always use the X form of SWis in
such code.

The only time you should call OS_GenerateError from system extension code
is to report exception-type errors - that is, when bit 31 of the error number is
set. For example, the Floating Point Emulator uses this mechanism to report
exceptions from both the hardware and software floating point processors, as
coprocessor instructions obviously cannot return with the V bit of the ARM
processor set to indicate an error.

Generatina and handlina errors: Generatino errors

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

OS GenerateError
(SWI &2B)

Generates an error and invokes the error handler

RO =pointer to error block

Doesn't return- OS_Generate Error (SWI &..2B)
V flag is set- XOS_Generate Error (SWI &2002B)

or

Interrupts are enabled by OS_GenerateError, but unaltered by the X form
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_GenerateError generates an error and invokes the error handler. Whether
or not it returns depends on the type of SWI being used. If
XOS_GenerateError is used, the only effect is to set the V flag. This is not
very useful.

Here is an example of how OS_GenerateError would be used:

SWI "OS_ReadEscapeState"
ADRCS RO,escapeBlock
swrcs •os_GenerateError"

. noEs cape

.escapeBlock
EOUD 17
EQUS "Escape"+CHR$0
ALIGN

None

ErrorV

Sets c if escape
Get ptr. to error block
Do the error - doesn't
return

Error number for escape
Error string

{'::,;on,;or.::ttinn ::anrf h.::tnrflinn Arm~· ~WI r.::~ll 41

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

42

Returns errors

*Error [<number>] <text>

<number>

<text>

a number
a string of printable characters

*Error

•Error returns an error with the specified error number and the explanatory
text. This is normally then printed on the screen. Programmers will find this
command useful for reporting errors after trapping them within a command
script.

If the error number is omitted it is set to the default value of 0.

*Error 100 No such file

will print 'No such file (Error number &64)'

None

OS_GenerateError (SWI &2B)

ErrorV

Generatino ancf h~ntilinn Arrnr~ · ·~rmr

OS_Byte

Introduction

Parameters

()~ RvtA". ()~ RvtA

Most SWls deal with only one task. For example, OS_Module deals with
modules, OS_RemoveCursors just removes cursors, and so on. However, there
are two SWls which perform a wide variety ci operations. They are called
OS_Byte and OS_ Word. They exist, principally, to ease the conversion of
software from the older BBC and Master series of computers. The operating
systems on these machines have two corresponding routines called OSBYTE
andOSWORD.

Because the calls are multi-purpose, they tend to appear in more than one
chapter of this manual. This chapter documents OS_Byte in general terms, so
that when examples of its use are given later on, you will understand the
entry and exit conditions better. The next chapter outlines how OS_ Word
works.

OS_Byte takes one, two or three parameters. The first parameter, passed in
RO, is the reason code. This indicates which particular action you require
OS_Byte to take. It has the range 0 • &FF. Thus when we talk about
'OS_Byte81', this is shorthand for 'OS_Byte with RO set to 81 on entry'. A
complete list of the OS_Byte numbers may be found in the table entitled
OS_Bytes, which you will find at the end of the manual.

The second and third parameters are passed in Rl and R2. These too are in
the range 0 • &FF; the name OS_Byte comes from the fact that it deals with
byte-wide parameters.

In fact, all OS_Byte routines mask out the top 24 bits of the parameters when
they use them. Although these top bits are not used, calls to OS_Byte always
preserve them in RO; the same applies for Rl and/or R2 where they are
documented as preserved. If you are writing an OS_Byte routine (or one to

43

.. ::.·:

calling OS_Byte

cans where RO Is less
than 128

cans where RO Is
between 128 and 165

44

decode them), you must make sure you preserve the top 14 bits, at least in RO.
This means you will have to mask the parameter(s) into a temporary register,
rather than back into the passed parameters.

Some OS_Byte calls rerum values. On earlier Acorn computers these were
always byte-wide, but on RISC OS computers some of these values may now
be too large to fit in a single byte, and should be rreated as whole words. For
example, if you were reading the number of spaces left in a buffer using
OS_Byte 128, you might read the two 'byte' result rcrumed in Rl (low byte)
and R1 (high 'byte' - in fact 14 bits) like this:

ADD Rn,Rl,R2,LSL#8

You call the OS_Byte SWI in exactly the same way as any other SWI. See
the chapter entitled An introduction to SWls for details.

The calls may be grouped into three main classes, according to the value of
ROonentry.

If RO is less than 118, then only RI is used to pass further information.
However, R1 is often used as a temporary register and corrupted in the
process. You use these calls to set status ooriables, which the computer uses to
control its operation. For example, OS_Byte 5 sets the status variable for the
type of printer that is connected.

In addition to setting the appropriate starus variable, these calls may also
perform some other task. For example, OS_Byte 5 also waits for the current
printer buffer to become empty before reruming. Although these calls
sometimes rerum the 'previous' state of the srarus variable, they are normally
used for the action they perform, rather than the information they rerum.

If RO is between 118 and 165, both Rl and R1 are used to hold parameters,
and both registers may contain information on exit from the call . The calls are
often used for the results they rerum, rather than to perform particular actions.

~~ n ... -. ,..,.- ••:- - ,....,.... - .

cans where RO Is
between 166 and 255

Reading and writing
values

Altering selected bits

For calls with RO between 166 and 255 on entry, the action is always the same.
RO acts as an index into the RAM which holds the status variables. They are
held in consecutive memory locations, so RO= 166 accesses the first one,
R0=167 accesses the second one, and so on. The contents of Rl and R2
determine what happens to the status variable:

New Value= (Old Value AND R2) EOR R1

On exit, R1 holds the old value of the status variable, and R2 holds the value
of the status variable in the next memory location.

The most useful application of this rule occurs when the old value is returned
without being altered (allowing the status to be read 'non-destructively') as
shown below:

R2 = &FF and R1 = &00

and where the value is set to a particular number:

R2 = &00 and R1 =new value

These are the only cases which are stated in the descriptions of OS_Bytes in
this guide. Other values of R1 and R2 may be used to alter only selected bits
of the status variable. You should:

• clear the bits ofR2 corresponding to the bits you want to alter

• set the corresponding bits of R1 to the new value you want these bits to
have.

For example, to set bits 2- 4 of a status variable to the binary pattern 101,
and leave the rest unaltered, you would use:

R2 = &E3 (11100011 in binary) and
R1 = &14 (00010100 in binary)

In all cases, the calls in the range 166- 255 return with the previous value c:i
the variable in Rl and the value of the next variable in RAM (ie the one
which would be accessed with RO+ 1) in R2. The exception is where RO = 255,
where there is no defined 'next' location, and so the value of R2 is undefined.

Altering any of these variables does not have any immediate effect, but may
often seem to, as many are acted upon by interrupt routines.

OS Bvte: Calls where RO is between 166 and 255 45

Which call to use when

OS_Byte and Interrupts

Adding OS_Byte calls

46

Many of the calls in this last group access the same status variable as the low­
numbered calls, between 0 and 127. However, as noted above, the lower
group may also perform some other action in addition to changing the
variable value. This means that the lower group should be used to alter a
variable, whereas the upper group may be used for reading the current value
without changing it.

Like most important SWis, OS_Byte is vectored so you can alter how it works.
Before its vector is called, interrupts are disabled. Most OS_Byte routines are
so short that there is no need for them to re·enable interrupts - instead they
rely on RISC OS doing this when control is returned to you. Because these
OS_Byte routines do not re-enable interrupts they are also used by interrupt
handling routines

If you replace or alter an OS_Byte routine, make sure that:

• you do not change the way it alters the interrupt status

• you do not make it take so long that interrupts are disabled for an
unreasonably long time.

You can add your own OS_Byte calls to RISC OS by installing a routine on
the software vector that OS_Byte calls use. For full details, see the chapter
entitled Software vectors.

There is an alternative, but less preferable way of adding OS_Byte calls. If
you issue an OS_Byte with a number that RISC OS doesn't recognise, it issues
an Unknown OS_Byte service caU to all modules. Your module can then trap
this service call and implement the new OS_Byte. For full details, see the
chapter entitled Modults.

0~ RvfA" Whir.h r.::all tn "~" \.Uhon

The *FX command Because OS_Bytes perform many useful functions, a * Command is provided
to call the routine directly. It has the syntax:

*FX <reason code>((,] <rl> (,) <r2>))

The command is followed by one, two or three parameters, which may be
separated by spaces or commas. The values reason code, rl and r2 are
loaded into register RO, R 1 and R2 respectively; then OS_Byte is called. Any
omitted values are set to zero. So:

MOV RO,f218
MOV Rl,fO
MOV R2,f255
SWI OS_Byte

has the same effect as:

*FX 218,0,255

C8111ng *FX The *FX command does not display any returned values; you cannot use it to
read the values ci. status variables from the command line. It is called in the
same way as any other * Command; see the chapter entitled * Commands and
the CLl for details.

OS_Byte: The ·Fx command 47

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

48

OS_Byte
(SWI &06)

General purpose call to alter status variables, and perform other actions

RO = OS_Byte number (so for OS_Byte 1, RO = 1)
Rl, R2- as required by individual OS_Byte

RO preserved
Rl, R2- as returned by individual OS_Byte

Interrupts are disabled by the OS_Byte decoding routine
Interrupt status is unaltered (ie remains disabled) for most values of RO
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant for some values ofRO

The action taken by this SWI depends on the reason code passed in RO. You
should see the individual documentation of each OS_Byte for full details:

• If RO is less than 128, then generally only R 1 is used to pass further
information. These calls set a status variable, and may also perform some
other task. R2 is corrupted unless stated otherwise.

• If RO is between 128 and 165, both Rl and R2 are used to hold
parameters, and both registers may contain information on exit from the
call. The calls are often used for the results they return.

• For calls with RO between I 66 and 255 on entry, the action is always the
same. RO acts as an index to a status variable, which is altered using the
contents ofRI and R2:

New Value= (Old Value AND R2) EOR RI

To read the status variable, use R1 = &00 and R2 = &FF. To write to the
status variable, use Rl = <new value> and R2 = &00.

OS_ Word (SWI &07)

ByteV

OS_Byte: SWI Call

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

OS_Byte: *FX

*FX
General purpose *Command to alter status variables, and perform other
actions

*FX <reason code> [[,] <r1> [(,] <r2>]]

<reason code> from 0 to 255
<rl> from 0 to &FF (255)
<r2> from 0 to &FF (255)

Default is decimal, but any base may be used if specified eg *FX 24 7 4 01

This command is used to alter status variables, which the computer uses to
control its operation They can be either read or written to. Some *FX
commands will also perform other actions closely related to the status
variable that is being altered.

This command merely calls the SWI XOS_Byte, passing the reason code in
RO, rl in Rl, and r2 in R2. The reason code determines which status variable
is affected.

Individual *FX commands are not documented. You should instead refer to
the documentation of individual OS_Bytes. For example, to see what
*FX 218, ... will do, see the entry for OS_Byte 218.

*FX 218,0,255

None

OS_Byte (SWI &06)

ByteY

49

50 OS BvtP. · OS RvtP.

OS Word

Introduction

Parameters

OS_Word: OS_Word

The OS_ Word call is very similar to the OS_Byte call. It is also used to read
from, or write to, values held in RAM by RISC OS. Much of what is said in
the chapter entitled OS_Byte also applies to OS_ Word.

You can add new OS_ Word calls by installing a routine on the software
vector that OS_ Word uses - see the chapter entitled Software vectors.
Alternatively you can use the Unknown OS_ Word service call, although this
is not such a good way to do so- see the chapter entitled Modules.

Like OS_Byte, interrupts are disabled when most OS_ Word routines are
entered.

The major difference between the two calls is that an OS_ Word call deals
with larger amounts of data than an OS_Byte call. You therefore need to pass
your data in a different way.

OS_Word always takes two parameters. RO is a reason code (as it is for
OS_Byte). Rl, however, is a pointer to a parameter block. This is an area of
memory where you store parameters that you want to pass to OS_ Word, and
where OS_ Word can store its results. The size of the parameter block varies
from call to call, and is documented with each OS_ Word description. Often
the parameter block contains a sub-reason code, which can specify the length
of the parameter block; so the size can also vary for a given reason code in RO.

Like OS_Byte, OS_ Word is multi-purpose, and covers such areas as reading
the time and date, setting the screen's 'palette', and reading the definition of a
re-definable character.

There are far fewer OS_ Words than OS_Bytes; 0- 22 is the current range of
RO on entry. Most of these OS_ Word calls are provided to ease the task of
porting software from the earlier BBC and Master series computers.

51

Calling OS_ Word

OS_ Word and
*Commands

52

You call the OS_ Word SWI in exactly the same way as any other SWI. See
the earlier entitled An introduction to SWls for details.

Unlike OS_Byte, no • Command equivalent to OS_ Word is provided.

OS Word: Callinn 0~ Wnrrl

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

OS Word
(SWI &07)

General purpose call to alter status variables, and perform other actions

RO = reason code
Rl =pointer to parameter block

RO preserved

Interrupts are disabled by the OS_ Word decoding routine
Interrupt status is unaltered (ie remains disabled) for most values of RO
Fast interrupts are enabled

Processor is in SVC mode

Not defined

The action taken by this SWI depends on the reason code passed in RO. In
general, OS_ Word is used to either read or write a large number of status
variables at once. Rl points to a parameter block, the length of which varies
depending on the reason code. You should see the individual documentation
of each OS_ Word for full details.

OS_Byte (SWI &06)

WordY

53

54 OS Wort1: OS Wnrt1

Software vectors

Introduction

Claiming vectors

We have already seen that one of the most important features of RISC OS is
the ease with which it can be altered and extended. Most of RISC OS is
written as modules; these can be replaced, and extra ones can be added.

The exception to this is the kernel, which provides the central core of functions
necessary for RISC OS to work. You cannot replace the entire kernel. Instead,
you can change or replace how certain fundamental routines of the RISC OS
kernel work. You do this by using software \leCtors, or t~eetors for short. These
are held in the computer's RAM; RISC OS uses them to record where it can
find these routines.

Many of these routines perform all the functions ci a given SWI. The
corresponding SWI is then known as a vectored SWl.

When you call a SWI, RISC OS uses the SWI number to decide which
routine in the RISC OS ROMs you want. For an ordinary SWI, RISC OS
looks up the address of the SWI routine and then branches to it. However, if
you call a vectored SWI, it instead gets the address from the corresponding
vector that is held in RAM. Normalty this would be the address of the
standard routine held in ROM.

You can change this address by using the SWI OS_Ciaim, documented later
in this chapter. RISC OS will then instead branch to your own routine, held at
the address you pass co OS_ Claim.

Software vectors: vectors:software 55

An example

Vector chains

56

Your own routine can do one of the following:

• replace the original routine, passing control directly back to the caller

• do some processing bd.ore calling the standard routine, which then passes
control back to the caller

• call the standard routine, process some of the results it returns, and then
pass control back to the caller.

If your routine completely replaces the standard one, it is said to intercept the
call; otherwise it is said to pass on the call.

As an example, let's look at the OS_ WritcC routine. When RISC OS
decodes a SWI with SWI number &00, it knows that you are requesting a
write character operation. RISC OS gets an address from a vector - in this
case called WrchV- and passes control to the routine.

Now by default, the WrchV contains the address of the standard write
character routine in ROM. If you claim the vector using OS_Claim, whenever
an OS_ Write\ i~ executed, your own routine will be called first.

So far, we've deliberately been vague about how vectors store the addresses
of the routine. In fact, the vector is the head of a chain of structures, which
point to the next claimant on the vector, and to both the code and the data
associated with this claimant. Consequently:

• there may be more than one routine on a given vector

• no claimant has to remember what the previous owner of the vector was

• vectors can be claimed and released by many different pieces d
software in any order, not just in a stack-like order.

The routines arc called in the reverse order to the order in which they called
OS_Claim. The last routine to OS_Claim the vector will be the first one
called. If that routine passes the call on, the next most recent claimant will
get the call, and so on. If any of the routines on the vector intercept the call,
the earlier claimants will not be called.

~oftw::lrl> v~>Mnrc:· An ov~rnnlo

When not to Intercept a
vector

Multiply Installing the
same routine

There are some vectors which should not be intercepted; they must always be
passed on to other claimants. This is because the default owner, ie the routine
which is called if no one has claimed the vector, might perform some
important action. The error vector, ErrorV, is a good example. The default
owner of this vector is a routine which calls the error handler. If you intercept
ErrorV, the error handler will never be called, and errors won't be dealt with
properly.

When OS_Ciaim adds a routine to a vector, it automatically removes any
earlier instances of the same routine from the chain. If you don't want this to
happen, use the SWI OS_AddToYector instead.

Software vectors: When not to intercept a vector 57

SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

58

Adds a routine to the list of those that claim a vector

RO =vector number
Rl =address of claiming routine
R2 = value to be passed in R 12 when the routine is called

RO • R2 preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI cannot be re-entered as it disables IRQ

OS Claim
(SWI &lF)

This call adds the routine whose address is given in Rl to the list of routines
claiming the vector. This becomes the first routine to be used when the vector
is called.

Any earlier instances of the same routine are removed. Routines are defined
to be the same if the values passed in RO, Rl and R2 are identical.

The R2 value enables the routine to have a workspace pointer set up in Rl2
when it is called. If the routine using the vector is in a module (as will often
be the case), this pointer will usually be the same as its module workspace
pointer.

See below for a list of the vector numbers.

Example:

MOV RO, fByteV
ADR Rl, MyByteHandler
MOV R2, tO
SWI "OS Claim"

OS_Release (SWI &20), OS_ CaliA Vector (SWI &34),
OS_AddToVector (SWI &47)

All

~nftuJ!;lro \IOI"tnrc. · C::\A/1 ('<>II<'

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

OS Release
(SWI &20)

Removes a routine from the list of those that claim a vector

RO = vector number
Rl =address of releasing routine
R2 =value given in R2 when claimed

RO • R2 preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI cannot be re-entered as it disables IRQ

This removes the routine, which is identified by both its address and
workspace pointer, from the list for the specified vector. The routine will no
longer be called.

Example:

MOV RO, t ByteV
ADR Rl, MyByteHandler
MOV R2, t O
SWI "OS_Release•

Related SWis OS_Claim (SWI &lF), OS_CaiiAVector (SWI &34),
OS_AddToVector (SWI &47)

Related vectors All

Software vedors: SWI Calls 59

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

60

OS CallA Vector
(SWI &34)

Calls a vector directly

RO- R8 =vector routine parameters
R9 = vector number
V and C flags in R15 =flags to pass to vector

Dependent on vector called

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant- but not all vectors it calls are re-entrant

OS_CaiiA Vector calls the vector number given in R9. RO- R8 are parameters
to the vectored routine; see the descriptions below for details.

This is used for calling vectored routines which don't have any other entry
point, such as some calls tp RemV or CnpV. It is also used by system
extensions such as the Draw, ColourTrans and Econet modules to call their
corresponding vectors.

You must not use this SWI to call ByteV and other such vectors, as the vector
handlers expect entry conditions you may nor provide.

OS_Ciaim (SWI &IF), OS_Rclease (SWI &20),
OS_AddToVector (SWI &47)

All

Software vectors: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

OS AddT o Vector
(SWI &47)

Adds a routine to the list of those that cLP'11 a vector

RO = vector number
R I = address of claiming routine
R2 = value to be passed in R 12 when the routine is called

RO - R2 preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SYC mode

SWI cannot be re-entered as it disables IRQ

This call adds the routine whose address is given in Rl to the list of routines
claiming the vector. This becomes the first routine to be used when the vector
is called.

Unlike OS_Claim, any earlier instances of the same routine remain on the
vector chain.

The R2 value enables the routine to have a workspace pointer set up in R12
when it is called. If the routine using the vector is in a module (as will often
be the case), this pointer will usually be the same as its module workspace
pointer.

See below for a list of the vector numbers.

Related SWis OS_Ciaim (SWJ &IF), OS_Rclease (SWI &20),
OS_CaiiA Vector (SWI &34)

Related vectors All

Software vectors: SWI Calls 61

Use of registers

Processor modes

SVC mode

IRQ mode

Returning errors

62

If you write a routine that uses a vector, it must obey the same entry and exit
conditions as the corresponding RISC OS routine. For example, a routine on
WrchV must preserve all registers, just as the SWI OS_ WriteC does.

If you pass the call on, you can deliberately alter some of the registers to
change the effect of the call. However. if you do so, you must arrange for
control to return again to your routine. You mu5t then restore the register
values that the old routine would normally have returned, before finally
returning control to the calling program. This is because some applications
might rely on the returned values being those documented in this manual.

The processor mode in which the routine is entered depends on the vector:

• routines vectored through lrqV (Vector &02) are always executed in IRQ
mode

• routines vectored through EventV, InsV, RemV, CnpV (Vectors &10-
&16) and TickerV (Vector &I C) are generally executed in IRQ mode,
but may be executed in SVC mode if called u~ing OS_CaiiAVector, and
in certain other unspecified circumstances

• all other routines are executed in SVC mode - the mode entered when
the SWI instruction is executed.

Note that if you call a SWI from a routine that is in SVC mode, you will
corrupt the return address held in Rl4. Consequently, your routine should use
the full, descending stack addressed by R13 to save Rl4 first. See the earlier
chapter entitled An introducticm to SWis for a more complete explanation of
this.

If your routine will be entered in IRQ mode there are other restnctlons.
These are detailed in full in the later chapter entitled Interrupts and handling
them.

Routines using most of the vectors can return errors by setting the V flag, and
storing an error pointer in RO. The routine must not pass on the call, as one of
the parameters (RO) has been changed; this would cause problems for the
next routine on the vector. The routine mu~t instead intercept the call,
returning control back to the calling program.

Software vectors: Use of registers

Returning from a
vectored routine
Passing on the call

Intercepting the call

List of software vectors

You can't do this with all the vectors; some of them (those involving IRQ calls
in particular) have nowhere to send the error to.

You should use one of two methods to return from a vectored routine.

If you wish to pass on the call (to the previous owner), you should return by
copying RH into the PC. Use the instruCtion:

MOVS PC,Rl4

When you pass on a call, you must preserve the Y and C flags for the next
routine. Note especially that the CMP instruction corrupts these flags; arrange
your code to instead use the TEQ instruction with unshifted operands.

If you wish to intercept the call, you should pull an exit address (which has
been set up by RISC OS) from the stack and jump to it. Use the instruction:

LDMFD R13! , {PC)

Control will return to the caller of the vector.

The software vectors are listed below. The names ci the routines which can
cause the vector to be called are in brackets:

Vector No Description

UserY (&00) User vector (reserved)
ErrorY (&01} Error vector (OS_GcncratcError)
IrqY (&02) Interrupt vector
WrchY (&03) Write character vector (OS_ WriteC)
ReadCV (&04) Read character vector (OS_ReadC)
CLIY (&05) Command line interpreter vector (OS_CLI)
ByteY (&06) OS_Byte indirection vector (OS_Byte)
WordY (&07) OS_ Word indirection vector (OS_ Word)
FileY (&08) File read/write vector (OS_File)
ArgsY (&09) File arguments read/write vector (OS_Args)
BGetY (&OA) File byte read vector (OS_BGet)
BPutY (&OB) File byte put vector (OS_BPut)
GBPBY (&OC) File byte block get/put vector (OS_GBPB)

Software vectors: Returning from a vectored routine 63

Summary of vectors

About the filing system
vectors

64

FindV
ReadLineV
FSControiV
Even tV
InsV
RemV
CnpY
UKVDU23V
UKSWIV
UKPLOTY
MouseY
YOU XV
TickerV
UpcaiiY
ChangeEnvironmentY

SpriteY
DrawY
EconetV
ColourV

(&OD} File open vector (OS_Find)
(&OE) Read a line of text vector (OS_ReadLine)
(&OF) Filing system control vector (OS_FSControl)
(& 10) Event vector (OS_GenerateEvent)
(&14} Buffer insert vector (OS_Bytc}
(&15} Buffer remove vector (OS_Byte}
(&16) Count/Purge Buffer vector (OS_Byte)
(&17) Unknown VDU23 vector (OS_ WriteC)
(&18) Unknown SWI vector (SWI)
(&19) Unknown VDU25 vector (OS_ WriteC)
(& 1 A) Mouse vector (OS_Mouse)
(&1 B) VDU vector (OS_ WritcC)
(& 1 C) 1OOHz pacemaker vector
(&1 D) Warning vector (OS_UpCall)
(& 1 E) Environment change vector

(OS_ChangeEnvironment)
(& 1 F) OS_SpriteOp indirection vector
(&20) Draw SWI vector (Draw_ ...)
(&21) Econet activity vector (Econet_ ...)
(&22} ColourTrans SWI vector (ColourTrans_ ...)

Brief details ci these vectors are given below.

Many ci them are by default used to indirect calls of SWis, and so the
routine they call is the same as that the SWI calls. In these cases, you should
see the description of the SWI for details of entry and exit conditions.
Vectors which do not have corresponding SWis are instead documented in
more detail later in this chapter.

As an example, the default routine called by WrchV is the same as that used
by OS_ WriteC, and so you should see the description of OS_ WriteC for
details of it.

Note that the filing system vectors FilcY (Vector &08) to FindV
(Vector &OD) have 'no default action', ie they rerum immediately. However,
the FileSwitch module (described in the chapter of the same name)
OS_Ciaims the vectors whenever the machine is reset, so effectively the
default action is to perform the appropriate filing system routine.

Software vectors: Summarv of vectors

Other vectors and resets

UserV

ErrorV

lrqV

WrchV

RdchV

CLIV

ByteV

WordV

Vectors are freed on any kind of reset, and system extension modules must
claim them again if they need to- just as FileSwitch does.

UserY is a reserved vector. Its default action is to do nothing.

ErrorV is used to indirect all errors from error-generating SWis and from
OS_GenerateError - see its entry for full details. The default action is to call
the error handler.

See also the rest of the chapter entitled Generating and handling errors; and the
chapter entitled Program Environment for more about handlers.

lrqV is called when an unknown IRQ is detected. It enables you to add
interrupt generating devices of your own to the computer. The default action is
to disable the interrupting device. See later in this chapter for full details.

See also the chapter entitled Interrupts and handling them, and the chapter
entitled Program Environment for more about handlers.

WrchV is used to indirect all calls to OS_ WriteC - see its entry for full
details. The default action is tci call the ROM write character routine.

RdchV is used to indirect all calls to OS_ReadC - see its entry for full
details. The default action is to call the ROM read character routine.

CLIV is used to indirect all calls to OS_CLI - see its entry for full derails.
The default action is to call the ROM command line.,nterpreter.

ByteV is used to indirect all calls to OS_Byte - see its entry for full details.
The default action is to call the ROM OS_Byte routine.

Note that interrupts are disabled when an OS_Byte is called. If you claim
this vector, your routine must enable interrupts if its processing rakes a long
time (over lOOJ..LS).

WordY is used to indirect all calls to OS_ Word - see its entry for full
details. The default action is to call the ROM OS_ Word routine.

Software vectors: Summary of vectors 65

FileV

ArgsV

BGetV

BPutV

GBPBV

FindV

ReadlineV

FSCV

EventV

lnsV

66

Note that interrupts are disabled when an OS_ Word is called. If you claim
this vector, your routine must enable interrupts if its processing takes a long
time (over lOOjJS).

FileV is used to indirect all calls to OS_File - see its entry for full details.
The default action is to call the ROM OS_File routine (sec the note above).

ArgsV is used to indirect all calls to OS_Args - see its entry for full details.
The default action is to call the ROM OS_Args routine (see the note above).

BGetV is used to indirect all calls to OS_BGct - sec its entry for full details.
The default action is to call the ROM OS_BGet routine (see the note above).

BPutV is used to indirect all calls to OS_BPut - see its entry for full details.
The default action is to call the ROM OS_BPut routine (see the note above).

GBPBV is used to indirect all calls to OS_GBPB - see its entry for full
details. The default action is to call the ROM OS_GBPB routine (see the note
above).

FindV is used to indirect all calls to OS_Find - see its entry for full details.
The default action is to call the ROM OS_Find routine (see the note above).

ReadLineV is used to indirect all calls to OS_RcadLine - see its entry for
full details. The default action is to call the ROM OS_ReadLine routine.

FSCV is used to indirect calls to OS_FSControl - see its entry for full
details. The default action is to call the ROM OS_FSC'..ontrol routine.

EventV is used to indirect all calls to OS_GeneratcEvent - see its entry for
full details. The default action is to call the event handler.

See also the rest of the chapter entitled Euents; and the chapter entitled
Program Environment for more about handlers.

lnsV is called to place a byte in a buffer. See later in this chapter for full
details.

Software vectors: Summarv of vectors

RemV

CnpV

UKVDU23V

UKSWIV

UKPLOTV

MouseY

VDUXV

See also the chapter entitled Buffers.

Rem V is called to remove a byte from a buffer. See later in this chapter for
full details.

See also the chapter entitled Buffers.

CnpV is called to count the number of entries in a buffer, or to purge the
contents of a buffer. See later in this chapter for full details.

See also the chapter entitled Buffers.

UKVDU23V is called when a VDU 23,n command is issued with an unknown
value of n. The default action is to do nothing - unknown VDU 23s are
usually ignored. See later in this chapter for full details.

UKSWIV is called when a SWI is issued with an unknown SWI number.
The default action is to call the unknown SWI handler, which by default
generates a No such SWI error. See later in this chapter for full details.

See also the the chapter entitled An introduction to SWls; and the chapter
entitled Program Environment for more about handlers.

UKPLOTV is called when a VDU 25,n (Plot) command is issued with an
unknown value of n. The default action is to do nothing- unknown VDU 25s
(Plots) are usually ignored. See later in this chapter for full details.

MouseY is used to indirect all calls to OS_Mouse - see its entry for full
details. The default action is to call the ROM OS_Mouse routine.

VDUXV is called when VDU output has been redirected by setting bit 5 of
the OS_ WriteC destination flag. This vector is normally claimed by the Font
Manager, to implement the Font system. If the Font module is disabled, the
default action is to do nothing - no output is sent to the VDU. See later in this
chapter for full details.

See also the chapters Character output, VDU drivers and The Font manager.

Software vectors: Summary of vectors 67

TickerV

UpCaiiV

Change En vi ronmentV

SpriteV

DrawV

EconetV

ColourV

Vector descriptions

68

TickerV is called every centi-second. It must never be intercepted. See later
in this chapter for full details.

UpCaliY is used to indirect all calls to OS_UpCall - see its entry for full
details. The default action is to call the UpCall handler.

ChangeEnvironmentV is used ro indirect all calls to OS_ChangeEnvironment -
see its entry for full details. The default action is to call the ROM
OS_ChangeEnvironment routine.

SpriteY is used to indirect all calls to OS_SpritcOp - see its entry for full
details. The default action is to call the ROM OS_SpritcOp routine.

DrawV is used to indirect all SWI calls made to the Draw module. The
default action is to call the ROM routine in the Draw module that decodes
and executes SWls. See later in this chapter for full derails.

See also the chapter entitled Draw module.

EconetV is called whenever there is activity on the Econet. The default action
is to display the Hourglass on the screen. See later in this chapter for full
details.

See also the chapters entitled Econet, Hourglass and NetStatus.

ColourY is used to indirect all SWI calls made to the ColourTrans module.
The default action is to call the routine in the ColourTrans module that
decodes and executes SWls. See later in this chapter for full details.

See also the chapter entitled ColourTrans.

The next section describes in detail those vectors which do more than
indirecting a single RISC OS SWI.

In most cases, the interrupt status is given as undefined. This is because the
vectors may be called either by the SWI(s) which normally use them, many
of which ensure a given interrupt status, or by OS_CaliAVector, which does
not alter the interrupt status.

Software vectors: Vector descriptions

On entry

On exit

Interrupts

Processor mode

Use

Related SWis

Called when an unknown IRQ is detected

No parameters passed in registers

Interrupts are disabled
Fast interrupts are enabled

Processor is in IRQ mode

lrqV
(Vector &02)

This vector is called when an unknown IRQ is detected.

It was provided in the Arthur operating system so you could add interrupt
generating devices of your own to the computer. RISC OS provides a new
method of doing so that is more efficient, which you should use in preference.
This vector has been kept for compatibility.

The default action is to disable the interrupt generating device by masking it
out in the IOC chip.

Routines that claim this vector must not corrupt any registers. You must not
call this vector using OS_ CaliA Vector

You must intercept calls to this vector and service the interrupt if the device is
yours. You must pass them on to earlier claimants if the device is not yours, so
that interrupt handlers written to run under Arthur can still trap interrupts
they recognise.

Old software that handled Sound interrupts using this vector will no longer
work, as the new Sound module exclusively uses the RISC OS SoundiRQ
device handler.

See the chapter entitled Interrupts and handling them for details of how to add
interrupt generating devices to your computer, and the chapter entitled
Program Environment for more about handlers.

None

Software vectors: Vector descriptions 69

On entry

On exit

Interrupts

Processor mode

Use

Related SWis

70

Called to place a byte in a buffer

RO =byte to be inserted
Rl =buffer number

RO, R1 preserved
R2 corrupted
C = 1 implies insertion failed

Interrupt status is undefined
Fast interrupts arc enabled

Processor is in IRQ or SYC mode

lnsV
(Vector &14)

This vector is called by OS_Byte 138 and OS_Byre 153. The default action is
to call the ROM routine to insert a byte into a buffer from the system
buffers. To use different sized buffers, you must provide handlers for all of
InsY, RemV and CnpV.

It may also be called using OS_CaiiAVector. It must be called with
interrupts disabled (the OS_Bytes do this automatically), therefore code on
the vector can only be entered with interrupts disabled and is not re-entrant.

See also the entitled Buffers.

OS_Byte 138 and 153 (SWI &06)

Software vector~: VP.r.tnr ciA~r.rintinn~

On entry

On exit

'rtterrupts

Processor mode

Use

Related SWis

Called to remove a byte from a buffer

R 1 = buffer number
V flag= 1 if buffer to be examined only, else V flag = 0

RO = next byte to be removed (for examine option)
Rl preserved
Rl =byte removed (for remove option)
C = 1 means buffer was empty on entry

Interrupt status is undefined
Fast interrupts are enabled

Processor is in IRQ or SVC mode

RemV
(Vector &15)

This vector is called by OS_Byte 145 and OS_Byte 152. The default action is
to call the ROM routine to inspect or remove a byte from the system buffers.
To use different sized buffers, you must provide handlers for all of lnsV,
RemVand CnpV.

It may also be called using OS_CallAVector. It must be called with
interrupts disabled (the OS_Bytes do this automatically), therefore code on
the vector can only be entered with interrupts disabled and is not re-entrant.

If the remove option is used men the byte is returned in RZ. If the buffer was
empty then the carry flag is returned set.

See also the entitled Buffers.

OS_Byte 145 and 152 (SWI &06)

.:>ottware vectors: Vector descriptions 71

On entry

On exit

Interrupts

Processor mode

Use

Related SWis

7?

CnpV
(Vector &16)

Called to count the number of entries in a buffer, or to purge the contents of a
buffer

R 1 = buffer number
V flag= reason code
C = return value flag, if V flag = 0

RO corrupted
Rl =least significant 8 bits of count, ifV flag= 0 on entry
R2 = most significant 24 bits of count, if V flag = 0 on entry
R 1, R2 preserved if V flag = 1 on entry

Interrupt status is undefined
Fast interrupts are enabled

Processor is in IRQ or SVC mode

This vector is called by OS_Byte 15, OS_Byte 21 and OS_Byte 128. The
default action is to call the ROM routine to count the number r:i entries in a
buffer, or to purge the contents of a buffer.

It may also be called using OS_CallAVector. It must be called with
interrupts disabled (the OS_Bytes do this automatically), therefore code on
the vector can only be entered with interrupts disabled and is not re-entrant.

The V flag gives a reason code that determines the operation:

V flag = 0 count the entries in a buffer
V flag = 1 purge the buffer

If the entries are to be counted then the result returned depends on the C flag
on entry as follows:

Cflag = 0
C flag= 1

return the number of entries in the buffer
return the amount of space left in the buffer

See also the entitled Buffers.

OS_Byte 15,21 and 128 (SWI &06)

On entry

On exit

Interrupts

Processor mode

Use

Related SWis

UKVDU23V
(Vector &17)

Called when an unrecognised VDU 23 command is issued.

RO = VDU 23 option requested
Rl = pointer to VDU queue

RO, Rl preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

This vector is called when a VDU 23,n command is issued with an unknown
value rin, ie it is in the range 18- 25 or 28-31.

The nine parameters sent after the VDU 23 command are stored in the VDU
queue. R 1 points to the byte holding n, and RO also contains n.

The default action is to do nothing - unknown VDU 23s are ignored.

None

Software vectors: Vector descriptions 73

On entry

On exit

Interrupts

Processor mode

Use

Related SWis

74

UKSWIV
(Vector &18)

Called when an unknown SWI instruction is issued

RO - R8 as set up by the caller
R 11 = SWI number

Generates an error by default

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

This vector is called when a SWI is issued with an unknown SWI number.
Before this vector is called, the OS tries to pass the call to any modules which
have SWI table entries in their header.

The default action is to call the unknown SWI handler, which by default
returns a No such SWI error. Sec later in this for full details.

This vector can be used to add large numbers of SWis to the system from a
single module. Normally only 64 SWis can be added by a module; if you
claim this vector, you can then trap any additional SWis you wish to add.
(You should always use the module mechanism to add the first 64 SWis that
a module adds, as it is more efficient than using this vector.) Note that you
must get an allocation of SWI numbers from Acorn before adding any to
commercially available software. This will avoid clashes between your own
software and other software.

See also the the entitled An introduction w SWls; and the chapter entitled
Program Environment for more about handlers.

OS_UnusedSWI (SWI &19)

Softw::~re vec:tor~ : Vec:tor de~c:riotions

On entry

On exit

Interrupts

Processor mode

Use

Related SWis

Called when an unknown PLOT command is issued

RO =PLOT number

RO preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

UKPLOTV
(Vector &19)

This vector is called by the VDU drivers when a VDU 25,n (PLOT) or SWI
OS_Piot command is issued with an unknown value of n.

By using OS_ReadVduVariables you can read the co-ordinates of the last
three points that have been visited, and the one specified in the unknown
PLOT command. These are held in the VDU variables 138- 147. See the
entry for OS_ReadVduVariables for full details.

When the call returns to the VDU drivers they update the variables, so that
the point given in the unknown plot becomes the graphics cursor position. The
previous graphics cursor becomes the last point but one, the previous last
point but one becomes the last point but two, and the previous last point but
two is lost.

The default action is to do nothing- unknown VDU 25s (Plots) are ignored.

None

~ftw::m~ vP.r.tnrs · VP.r.tnr nP.sr.rintions 75

On entry

On exit

Interrupts

Processor mode

Use

Related SWis

76

Called when VDU output has been redirected

RO = byte sent to the VDU

RO preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

VDUXV
(Vector &lB)

This vector is called when VDU output has been redirected by setting bit 5 of
the OS_ WritcC destination flag. When this bit is set, all characters sent to
the VDU driver are routed through this vector instead. Note that this only
affects the display driver: other output streams such as the printer and
*SPOOL file are called as u5ual, even when VDUXV is used for screen
updating.

It is up to the owner of the vector to perform the usual queuing of parameter
bytes etc. The default owner of this vector does nothing, so issuing a *FX3,32
call is much the same as disabling the VDU using ASCII 21.

This vector is normally claimed by the Font Mana~er, to implement the Font
system. If the Font module is disabled, the default action is to do nothing - no
output is sent to the VDU.

See also the chapters Character output, VDU drivers and The Font manager.

None

Software vectors: Vector descriptions

On entry

On exit

Interrupts

Processor mode

Use

Related SWis

Called every centi-second

No parameters passed in registers

Interrupts are disabled
Fast interrupts are enabled

Processor is in IRQ or SYC mode

TickerV
(Vector &lC)

This vector is called every centi-second. It must never be intercepted, as this
might prevent other users from being called.

Routines that take a long time (say > lOOJ.!S) may re-enable IRQ so long as
they disable it again before passing the call on. If you do so, other calls may
be made to TickerV in the meantime. Your routine needs to prevent re­
entrancy. One way of doing so is:

• to use a flag in its workspace to note that it is currently threaded, and:

• to keep a count of how many calls to TickerY have been missed while it
was threaded, so the count can be examined on exit and corrected for.

None

~ftw;trP. vP.ctor~ : VP.ctor descriotions 77

On entry

On exit

Interrupts

Processor mode

Use

Related SWis

78

DrawV
(Vector &20)

Used to indirect all SWI calls made to the Draw module

RO - R 7 dependant on SWI issued
R8 = index of SWI within the Drnw module SWI chunk

Dependant on SWI issued

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

This vector is used to indirect all SWI calls made to the Draw module. The
default action is to call the ROM routine in the Draw module that decodes
and executes SWis.

The index held in R8 is decoded as follows:

0
2

Draw_ProcessPath
Draw_Filt

4 Draw_Stroke
6 Draw_StrokePath
8 Draw_FlattenPath
10 Draw_TransformPath

See also the chapter entitled Draw module.

Draw_ ... (SWis &40700 • &4073F)

On entry

On exit

Interrupts

Processor mode

Use

EconetV
(Vector &21)

Called whenever there is activity on the Econet

RO = reason code
Rl = total size of data, or amount of data transferred, or no parameter passed

RO, R1 preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

EconetV is called whenever there is activity on the Econet. The reason code
tells you what the activity is.

The bottom nibble of the reason code indicates whether the activity has
started (0), is part way through (1) or finished (2). The next nibble gives the
type of operation.

The table below shows the reason codes that are passed. The right hand
column shows what is passed in R 1, or (for the less obvious cases) when the
reason code is passed:

&10 NetFS_StartLoad R 1 = total size of data
&11 NetFS_partLoad R 1 = amount of data transferred
&12 NetFS_FinishLoad
&20 NetFS_StartSave Rl = total size of data
&21 NetFS_PartSave R1 =amount of data transferred
&22 NetFS_FinishSave
&30 NetFS_StartCreate R1 = total size of data
&31 NetFS_PartCreate R1 =amount of data transferred
&32 NetFS_FinishCreate
&40 NetFS_StartGetBytes R 1 = total size of data
&41 NetFS_PartGetBytes R1 =amount of data transferred
&42 NetFS_FinishGetBytes
&SO NetFS_StartPutBytes R 1 = total size of data
&51 NetFS_partPutBytes R 1 = amount of data transferred

Software vectors: Vector descriptions 79

Related SWis

80

&52
&60
&62
&CO
&CZ
&DO
&DZ

NetFS_FinishPutBytes
NetFS_StartWait
NetFS_Finish Wait
Econet_StartT rnnsmission
Econet_Finish Transmission
Econet_StartReception
Econet_FinishReception

start of a Broadcast_ Wait
end of a Broadcast_ Wait
start to wait for a transmis.~ion to end
DoTrnnsmit returns
start to wait for a reception to end
WaitForReception returns

This vector is normally claimed by the NetStatus module, which uses the
Hourglass module to display an hourglass while the Econet is busy. It passes
on the call. 11 the Hourglass module is disabled, the default action is to do
nothing. See the chapters entitled Hourglass and NetStatus.

See also the chapters entitled NetFS, NetPrint and Econec.

NetFS_ ... (SWis &40040- &4007F),
Econet_ ... (SWis &40000- &4003F),
NetPrint_ ... (SWls &40200- &4023F) and
Hourglass_ ... (SWis &406CO- &406FF)

Software vectors: Vector desr.rintions

On entry

On exit

Interrupts

Processor mode

Use

Related SWis

Co lourY
(Vector &22)

Used to indirect all SWI calls made to the ColourT rans module

RO - R 7 dependant on SWI issued
R8 = index of SWI within the ColourT rans module SWI chunk

Dependant on SWI issued

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

This vector is used to indirect all SWI calls made to the ColourTrans module.
The default action is to call the routine in the ColourTrans module that
decodes and executes SWis.

See also the chapter entitled Colour Trans.

Colour Trans_ ... (SWis &40740 • &4077F)

~ftw!:lre> ve>rtnrc:· VAMnr rtAc:r.rintinnc: 81

More complex uses of
vectors

An example program

82

Sometimes, you may want to do more complex things with a vector, such as:

• preprocessing registers to alter the effect of a st.lndard routine

• postprocessing to change the effect of future calls

• repeatedly calling a routine or group of routines.

There are a number of important things to remember if you are doing so. You
must make sure that:

• the vector still looks exactly the same to a program that is calling it, even
if it now does different things

• your routine will cope with being called in all the processor modes that
its vector uses (for example, SVC or IRQ mode for a routine on InsV)

• the values of R 10 and R 11 are preserved when earlier claimants of the
vector are repeatedly called.

The example program below illustrates all these important points. You can
adapt it to write your own routines.

The program claims WrchV, adding a routine that:

• changes the case of the character depending on the state of a flag (pre-
processing)

• calls the remaining routines on the vector to write the altered character

• toggles the flag (post-processing)

• ensures that all registers are set to the values that would be returned by
the default write character routine

• returns control to the calling program.

Note that the program releases the vector before ending, even if an error
occurs.

DIM code\ 100
FOR pass\ •0 TO 3 STEP 3
P\ •code\
[OPT pass\
.vectorcode\

save the entry value, the necessary state for the repeated call,
and our workspace pointer

STHFD rl3! , {rO, rl0-r12, rl41

do our preprocessing; as a trivial example, convert to the current case
LDRB rl4, [r12) ; pick up upper/lowercase !lag
CMP rl4, fO
BEQ uppercase\
CMP rO, fASC"A" ; lowercase the character
RSBGES rl4, rO, fASC"Z"
ADDGE
B

rO, rO, fASC"a"-ASC"A"
done_preprocess\

rO, IASC"a" ; uppercase the character
rl4, ro, fASC"z"

.uppercase\
CMP
RSBGES
SUBGE rO, rO, IASC"a 11 -ASC"A"

.done _preprocess\

now do the call to the rest o(the vector. Since this is WrchV, we know that
we are in SVC mode; however, the code below will correctly call the rest of
the vector whatever the mode.

STMFD
ADD

LDMIA

rl3! , {rlSJ
rl2, r13, f8

rl2, {r10-r12, r15)

pushes PC+l2, complete with flags and mode
stack contains pc,rO,rlO,rll,rl2,r14
so point at the stacked rlO
and restore the state needed to call the
rest of the chain (rlO and rll), and
"return" to the non-vector claiming address.
The load of r12 wastes one cycle.

we are now at the pc+l2 that we stacked; this is therefore where the
rest of the vector returns to when it has finished.

LOR r12, [r13, 112) reload our workspace pointer
Note that the offset of 112 (and the earlier
f8 when we pushed onto the stack) refer to
this example only and are not general
Note also that the pc we pushed was
pulled by the vector claimer.

we could now do some more processing, set rO up to another character,
and loop round to done_preprocess\ again; instead, we'll just do some
example postprocessing; we' 11 toggle our upper/lowercase flag .

LDRB r14, (r12)
EOR
STRB

rl4, rl4, f1
r14, (r12)

now return; if there was no error then intercept the call to the
vector, returning the original character .

LDMVCFD rl3!, /rO, rl0-r12, r14, rlS)

could pass the call on instead by omitting rl4 from the addresses

Joftware vectors: An example program 83

84

to pull - ie use IDHVCFD rlJ!, (ro, r10-r12, r151

there was an error; set up the correct error pointer, !lags, and
claim the vector.

STR
LDMFD

rO, [rl3] ; s ave the error pointer
rl3!, (rO, r10-r12, rl4, rl5}

; return with V still set, and claim the vector

NEXT
DIM !lag\
?flag\•0
WrchV\ •3
ON ERROR SYS "XOS_Release•, WrchV\, vectorcode\, flag \: PRINTREPORTS:£ND
SYS "OS_Claim", WrchV\, vectorcode\, flag\
REPEAT

INPUT commandS
OSCLicorrrnandS

UNTILcommandS•""
SYS •xos_Release• , WrchV\, vectorcode\, flag\
END

Software vectors: vectors:software

Hardware vectors

Introduction

Reset vector

The hardware vectors are a set of words starting at logical address &0000000.
The ARM processor branches to these locations in certain exceptional
conditions - in general, either when a privileged mode is entered or when a
hardware error occurs. These conditions are known as exceptions. Usually, each
vector will contain a branch to a routine to "handle the exception. The vectors,
their addresses and their default contents are:

Addr Vector Default contents

&00 Reset B branchThruOError
&04 Undefined instruction LDR PC, UndHand1er
&08 SWI B decodeSWI
&OC Prefetch abort LDR PC, PabHand1er
&10 Data abort LDR PC, DabHandler
&14 Address exception LDR PC, AexHandler
&18 IRQ B handle IRQ
&lC FIQ FIQ code ...

When the computer is reset, amongst other things:

• the ROM is temporarily switched into location zero

• the program counter is loaded with &00.

The reset vector is hence read from the ROM and will always be the same.

Any attempt to jump to location zero in RAM will result in a Branch
through zero error.

Hardware vectors: vectors:hardware 85

Hardware exception
vectors

Undefined instruction
vector

Prefetch abort vector

Data abort vector

86

The middle group of vectors, except SWI, are under the control of various
'environment' handlers. These may be set and read as described in the
chapter Program Environment. Very few programs need to take account of
these vectors.

The usual action of these exceptions is to cause an error. The default handlers
for these exceptions also dump the aborting mode's registers into the current
ExceptionDumpArea, and test to see if the exception occurred while the
processor was in FIQ mode. If it was then FIQs are disabled on the IOC chip
so that the exception does not recur - this would overwrite the original
register dump, and probably hang the machine.

The undefined instruction vector is called when the ARM attempts to execute
an instruction that is not a part of its normal instruction set. Before calling this
vector, the ARM is forced to SVC mode, and interrupts are disabled. If the
floating point emulator (either hardware or software) is active, tt mtercepts
the undefined instruction vector to interpret floating point instructions, and
passes on those that it does not recognise.

The prefetch abort vector is called when the MEMC chip detects an illegal
attempt to prefetch an instruction. There are two possible reasons for this:

• an attempt was made to access protected memory from an insufficiently
privileged mode

• an attempt was made to access a non-existent logical page.

Before calling this vector, the ARM is forced to SVC mode, and interrupts
are disabled.

The data abort vector is called when the MEMC chip detects an illegal
attempt to fetch data. There arc two possible reasons for this:

• an attempt was made to access protected memory from an insufficiently
privileged mode

• an attempt was made to access a non-existent logical page.

Before calling this vector, the ARM is forced to SVC mode, and interrupts
are disabled.

Hardware vectors: Hardware exception vectors

Address exception vector

SWI vector

IRQ vector

FIQvector

The address exception vector is called when a data reference is made outside
the range 0- &3FFFFFF. Before calling this vector, the ARM is forced to
SYC mode, and interrupts are disabled.

The SWI vector is called when a SWI instruction is issued. It contains a
branch to the RISC OS code which decodes the SWI number and branches to
the appropriate location. Before calling this vector, the ARM is forced to
SYC mode, and interrupts are disabled.

You are strongly recommended not to replace this vector.

For full details, see the earlier chapter entitled An introduction to SWis.

The IRQ vector is called when the ARM receives an interrupt request. It also
contains a branch into the RISC OS code. This code attempts to deal with the
interrupt by examining the IOC chip, to find the highest priority device that
has interrupted the processor. If no interrupting device is found then the
software vector IrqV is called.

Before calling the hardware IRQ vector, the ARM is forced to IRQ mode,
and interrupts are disabled.

For full details, see the chapter entitled Interrupts and handling them.

Finally, the FIQ vector is called when the ARM receives a fast interrupt
request. For some claimants (such as ADFS) this is the first instruction of a
RAM-based routine to deal with the fast interrupt requests. For other
claimants (such as NetFS) this is a branch instruction to the code that deals
with the fast interrupt requests. (NetFS uses FIQs to drive a state machine, so
the overhead of copying code to the FIQ vector is much more than that of
putting a Branch instruction there.)

Before calling this vector, the ARM is forced to FIQ mode, and both nonnal
and fast interrupts are disabled.

For full details, see the chapter entitled Interrupts and handling them.

Hardware vectors: SWI vector 87

Claiming hardware
vectors

Passing on calls to
hardware vectors

Releasing hardware
vectors

88

If you are the current application, you can change the effect of most of the
hardware vectors by installing the appropriate handler. If you are not, then
you will have to 'claim' the vector yourself. This is most likely to occur if you
are a system extension module. There is no SWl to claim a hardware vector;
instead you have to overwrite it with a B myHandler or a
LDR PC, [PC , fmyHandlerOffset] instruction, and do all the
'housekeeping' yourself.

You must make sure that if your own handler cannot process what caused the
vector to be called, the 'next' handler for the vector is called. The address d
the next handler can be dynamic, so you must be careful:

• If the instruction in the hardware vector location when you come to claim
it is B oldHandler, then you need to compute the address of the old
handler and store it in your workspace. You then need to store a pointer
to this address.

• If the instruction is LDR [PC , toldHandlerOffset], then you need
to compute the address of the variable where RISC OS stores the
installed handler's address, and store this pointer. You must not
dereference this pointer to get the actual address of the handler, as this
value may change as different applications are run.

In both cases above you now have a pointer to a variable which holds the
address of the next handler to call; you can then use identical code in both
cases to pass on a call to the hardware vector that you cannot handle.

If your module is killed, so you need to release a hardware vector, you must
first check to see that the instruction that is in the hardware vector location
points to your own handler. If it does not, your module must refuse to die, as
another piece of software has stored away the address of your handler, and
may try to pass on a call to your handler or to restore you when it exits.

Hardware vectors: Claiming hardware vectors

Vector priorities The hardware vectors have different pnonncs, so that if exceptions occur
simultaneously they are sensibly handled. This list shows the vectors in order
of priority:

Reset
Address exception
Data abort
FIQ
IRQ
Prefetch abort
Undefined instruction
SWI

i High priority

J. Low priority

Hardware vectors: Vector priorities 89

Interrupts and handling them

Introduction

Devices handled

Expansion cards

An interrupt is a signal sent to the ARM processor from a hardware device,
indicating that the device requires attention. They are sent, for example, when
a key has been pressed or when one of the software timers needs updating.
This sending of a signal is known as an interrupt request.

RISC OS deals with the interrupt by temporarily halting its current task, and
entering an interrupt routine. This routine deals with the interrupting device
very quickly - so quickly, in fact, that you will never realise that your program
has been interrupted.

Interrupts provide a very efficient means of control since the processor doesn't
have to be responsible for regularly checking to see if any hardware devices
need attention. Instead, it can concentrate on executing your code or whatever
else its current main task may be, and only deal with hardware devices when
necessary.

Amongst the devices which are handled under interrupts on the Archimedes
are the:

• keyboard

• printer

• RS423 port

• mouse

• disc drives

• built-in timers .

Additionally, external hardware such as expansion cards may cause new
interrupts to be generated. For example, the analogue to digital convertor on
the BBC l/0 expansion card can interrupt when it has finished a conversion. It
is therefore possible to install routines which deal with these new interrupts.

Interrupts and handling them: Introduction 91

Device numbers

Device vectors

92

Each potential source ci interrupts has a device number. There are
corresponding device vectors; installed on each vector there is a default device
driver that receives only the interrupts from that device.

Unless you are adding your own interrupt-gencrntin~ devices to the computer,
you should not need to alter the interrupt system.

The device numbers are:

0 Printer Busy
1 Serial port Ringing Indicator
2 Printer Acknowledge
3 VSync Pulse
4 Power On- this should never appear
5 IOCTimerO
6 IOCTimer 1
7 FIQ Downgrade - reserved for the use of the current owner of FIQ
8 Expansion card FIQ Downgrnde- this should normally be masked

off
9 Sound system buffer change
10 Serial port controller
11 Hard disc controller
12 Floppy disc changed
13 Expansion card
14 Keyboard serial trnnsmi t register empty
15 Keyboard serial receive register full

The device numbers correspond to bits of the interrupt registers held in the
IOC chip - see the end of this chapter for more details.

Just like other vectors in RISC OS, you can claim the device vectors and get
them to call a different routine. You do this using the SWI
OS_ClaimDeviceVector.

Most of the device vectors only call the most recent routine that claimed the
vector. There is no mechanism to pass on the call to earlier claimants, as it is
not sensible to have many routines handling one device. However, old
claimants remain on the vector, and if you release the vector using
OS_ReleaseDeviceVector, the previous owner of the vector is re-installed.

Interrupts and handling them: Device numbers

Avoiding duplication of
drivers

Automatic interrupt
disabling

The exceptions to this are device vectors 8 and 13, which handle FIQs and
IRQs (respectively) which are generated by expansion cards. These can have
many routines installed on them, as it is possible to add many expansion
cards to the computer. Each claimant specifies exactly which interrupts it is
interested in; RISC OS then ensures that only the correct routine is called.

Note that when you claim a device vector, RISC OS will automatically remove
from the chain any earlier instances of the exact same routine.

If you release a device vector, and there are no earlier claimants of that
vector, RISC OS will automatically disable intem1pts from the corresponding
device. You must not attempt to disable the interrupts yourself. There is thus
guaranteed to be a device driver for each device number that can generate
interrupts.

Interrupts and handling them: Device vectors 93

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

94

OS ClaimDevice Vector
(SWI &4B)

Claims a device vector

RO = device number
Rl = address of device driver routine
R2 = value to be passed in R 12 when device driver is called
R3 =address of interrupt status, ifRO = 8 or 13 on entry
R4 =interrupt mask to use, ifRO = 8 or 13 on entry

RO • R4 preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This calt installs the device driver, the address of which is given in Rl, on the
device vector given in RO. If the same driver has already been instalted on the
vector (ie the same parameters were used to install a driver) then the old
copy is removed from the vector. Note that this calt does not enable interrupts
from the device (cfOS_ReleaseDeviceVector).

The previous driver is added to the list c:i earlier claimants.

If RO = 8 or 13 then the device driver routine is for an expansion card. R3
gives the address where the expansion card's interrupt status is mapped into
memory - see the chapter entitled Expansion Cards. Your device driver is
called if the IOC chip receives an interrupt from an expansion card, and
(LDRB [R3] AND R4) is non-zero.

For all other values of RO, your driver is called if the IOC chip receives an
interrupt from the appropriate device, the corresponding IOC interrupt mask
bit is set, and your driver was the last to claim the vector.

OS_ReleaseDeviceVector (SWi &4C)

None

Interrupts and handling them: SWI calls

On entry

On exit

Interrupts

Processor rnoae

Re-entrancy

Use

Related SWis

Related vectors

OS ReleaseDevice Vector
(SWI &4C)

Releases a device vector

RO = Device number
R l = call address
R2 = Rl2 value
R3 = interrupt location ifRO = 8 or 13 on entry
R4 = interrupt mask ifRO = 8 or 13 on entry

RO • R4 preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call removes a driver from from the list of claimants of a device vector.
The device driver is identified by the contents of the registers on entry; RO •
R3 (RO • R5 if RO = 8 or 13) must be the same as when the device driver was
installed on the vector.

The previous owner of the vector is re-installed at the head of the chain. If
there is no previous owner, then IRQs from the corresponding device are
disabled.

You must not attempt to disable a device's IRQs yourself when you release
its vector.

OS_ClaimDeviceVector (SWI &48)

None

Interrupts and handling them: SWI calls 95

Technical details

How a device driver Is
called

96

This section gives you more technical details of how the RISC OS interrupt
system works. You should refer to it if:

• you are adding an intermpt generating device to your computer - such as
an expansion card

• you wish to use Timer 1 from the IOC chip, which is not used by RISC OS

• you wish to change one of the default RISC OS device driving routines.

Interrupts are generated and the device driving routine called as follows:

The device that needs attention alters the status of its interrupt request
pin, which is connected to the IOC chip

2 The corresponding bit of one of the IOC's interrupt status registers is set

3 The IOC's interrupt status registers are ANDcd with its intermpt mask
registers, and the results put in its interrupt request registers

4 If the result was non-zero (ie the device's bit was set in the mask) then an
interrupt is sent to the ARM processor

5 If interrupts are enabled, the ARM saves R15 in R14_irq

6 It then forces IRQ mode by setting the Ml bit and clearing the MO bit of
R15, and disables intemJpts by setting the I bit

7 The ARM then forces the PC bits ofR15 to &18

8 The instruction at &18 is fetched and executed. It is a branch to the code
that RISC OS uses to decode IRQs

9 RISC OS examines the interrupt request registers of the IOC chip to see
which device number generated the interrupt

10 If the device number was not 8 or 13 (ie the device was not an expansion
card) then RISC OS calls the last routine that claimed the corresponding
device vector

If the device was an expansion card, RISC OS checks each routine on the
expansion card device vector, starting with the most recent claimant. The
contents of the interrupt status byte are ANDed with the mask (as passed
in R3 and R4 when the routine was installed). If the result is non-zero, the
routine is called; otherwise the next most recent claimant is checked.

Interrupts and handling them: Technical details

How a device driver Is
entered

Restrictions

Speed of .execution

Whatever the device number, if no routine is found to handle the
interrupt then IrqV (the unknown IRQ vector) is called. By default this
disables the interrupting device by clearing the corresponding bit ci its
interrupt mask - but the call may be claimed by routines written to work
under the old Arthur operating system.

11 The device driving routine is executed and returns control.

The addresses of the IOC registers are given at the end of the chapter.

When a routine that has claimed a device vector is called:

• the ARM is in IRQ mode with interrupts disabled

• R3 points to the base of the IOC chip memory space

• Rl2 has the same value as RZ had when the vector was claimed - this is
usually used to point to the routine's workspace.

Your routine must:

• service the interrupt

• stop the device from generating interrupts, where necessary

• return to the kernel using the instruction MOV PC, R14.

In doing so, you may corrupt registers RO - R3 and R 12.

There are more restrictions on writing code to run under IRQ mode than there
are under SVC mode. These apply to:

• speed of execution

• re-enabling interrupts

• calling SWis

• not using certain SWls.

Interrupt handling routines must be quick to execute. This is because they are
entered with interrupts disabled, so while they are running other hardware
may be kept waiting. This slows the machine down considerably.

Interrupts and handling them: How a device driver is entered 97

Calling SWis

In practice, lOOilS is the longest you should leave interrupts disabled. If your
routine will take longer than this, try to make it shorter. If all else fails, your
routine must re-enable interrupts. It should do so by clearing the I bit of Rl5,
using for example:

MOV

TEOP
Rtemp, PC
Rtemp, ti_bit

; l_Bit aet in PSR
1 Note TEO is llke EOR: 10 clears I Blt in PSR

where I_bit is a constant having only the I bit set. You must not use the 1CQ
instruction directly on the PC, as this might lock out other interrupting devices
that need immediate attention before their hardware buffers overflow; for
example, MIDI or the serial port.

If your routine does re-enable interrupts, i[must be able ro cope if a second
interrupt occurs, and hence the routine being entered for a second time.

Calling SWis from device driver routines is quite similar to calling them
from SWI routines. Again the problem is that Rl4_svc (the return address for
SWis) may get corrupted. For example:

1 A SWI is called by a program that is running in User mode. R15 (the
return address to the program) is copied to R 14_svc, and the processor is
put into SVC mode. The SWI routine is then entered.

2 While this routine is running, an interrupt occurs. The device driver
routine calls a second SWI. The ARM enters SVC mode, and R15 is
copied to R14_svc, overwriting the return address to the program. The
second SWI executes.

3 Control is returned to r:he interrupt handler.

4 When it finishes, control passes bade to the first SWI routine by loading
R14_irq back into R15.

5 The first SWI routine finishes executing, and tries to retum control to r:he
program by loading R14_svc bade into Rl5.

6 Because R14_svc was overwritten by the second SWI, control is not
returned to the program; instead it passes back to the second SWI again,
crashing the computer.

98 lnterruots and handlina them: Callina SWis

Recommended procedure

Error handling

Re-entrancy

The solution used with device driver routines is the same as that for SWI
routines. R14_svc is pushed on the stack before the SWI is called, and pulled
afterwards. However, this is more complex as you have to first change from
IRQ to SVC mode. The recommended way ci doing so is:

HOV R9, PC save current status/mode
ORR R8, R9, f SVC_Hode; Derive SVC-mode version of it
T£0P R8, tO Enter SVC mode
MOVNV RO, RO No-op to prevent contention
STMFD R13! I (Rl41 Save R14 -svc
SWI xxxx Do the SWI
LDHFD Rl3!, IR141 Restore Rl4_SVC
T£0P R9, t O Re-enter original processor mode
HOVNV RO, RO No-op to prevent contention

SVC_Mode is 3. Of course, you must preserve R8 and R9 as well, using the
full descending IRQ stack.

Interrupt handling routines must only call error-returning SWis ('X' SWls).
If you do get an error returned to the routine, you cannot return that error
elsewhere. Instead you must take appropriate action within the routine. You
may also like to store an error indication, so that the next call to a SWI in the
module that provides the routine (or the current call, if already threaded)
will generate an error.

There are some SWls you shouldn't call at all from an interrupt handling
routine, even with the above precautions. This is because they are not re­
entrant; that is, they can't be entered while an e:ulier call to them may still be
in progress. One common reason for this is if the routine uses some private
workspace. For example:

The SWI is called from a program. It stores some values in the
workspace.

2 An interrupt occurs. The interrupt handling routine calls the same SWI a
second time.

3 The old values in the workspace are overwritten

4 When control returns to the first instance of the SWI, the workspace is
corrupted and so the routine does not work correctly .

Interrupts and handling them: Error handling 99

Documentation

Clearing Interrupt
condltons

100

The documentation of e;~ch SWI clearly states if it is re-entrant - ie if you can
call it from an interrupt handling routine. There are three common entries:

• re-entrant

• not re-entrant

• undefined

can be used

must not be used

the SWI's re-entrancy depends on how you call it,
or it is subject to future change

In general, OS_Byte and OS_ Word calls can be used. OS_ WriteC and
routines which use it should never be called.

Before your routine returns, it must service the interrupt - that is, give the
device the attention it needs, which originally caused it to generate the
interrupt. You must then clear the interrupt condition, to stop the device
carrying on generating the same interrupt. How you do this depends on the
device, but will usually involve accessing the hardware that Is generating the
interrupt. See the relevant hardware data sheets for information.

Interrupts and handling them: Clearing interrupt conditons

Fast Interrupt requests

FIQdevlces

Similarities between
FIQs and IRQs

Differences between
FIQs and IRQs

There are actually two classes of interrupt requests. So far we have been
looking at the normal IRQ. The second type is a fast interrUPt request, or FlQ.
Fast interrupts are generated by devices which demand that their request is
dealt with as quickly as possible. They are dealt with at a higher priority than
normal IRQs.

Fast interrupts are a separate system. There are separate registers in the IOC
chip, separate inputs to the chip, and a separate connection to the ARM. The
ARM has a processor mode reserved for FIQs, and a hardware vector.

The devices handled under FIQs are as follows:

0 Floppy disc data
1 Floppy disc interrupt
2 Econet
3 C3 pin on IOC
4 C4 pin on IOC
5 C5 pin on IOC
6 Expansion card
7 Force FIQ- this bit is ·always set, but usually masked out

Again, the device numbers correspond to the bits in IOC registers: these are
the FIQ interrupt registers.

In many ways FIQs are similar to IRQs. So FIQ routines must:

• keep FIQ and IRQ disabled while they execute - if you're taking so long
that you need tore-enable them, you should be llSing IRQs, not FIQs

There are three important differences:

• FIQs must be handled more quickly

• FIQs are vectored differently

• FlQs must never call SWls.

Interrupts and handling them: Fast interrupt requests 101

The default owner

Using FIQs

When a AQ is generated execution passes directly to code at the FIQ
hardware vector. By default, the code that is installed here handles AQs
generated by the Econet module, if it is present. The Econet module is the
default owner of the FIQ vector.

When other parts of RISC OS want to use FIQs, for example to perform a
disc transfer under interrupts, they claim the vector, replace the default code,
and then release the vector. RISC OS automatically re-installs the default
code.

Obviously only one current FIQ owner is supported.

It is vital that you only claim the FIQ vector for the absolute minimum time
necessary. For example, ADFS uses FIQs to perform disc transfers; but it
releases the AQ vector between each sector.

You must follow a similar procedure if you want to use FIQs. This is the
sequence you must follow:

Claim FIQs using the module service call OS_ServiceCall. You can claim
FIQs either from the foreground, or from the background.

To claim from the foreground, the reason code in Rl must be &OC
(Claim FIQ). This service call will always succeed, but will wait for any
current background FIQ process to complete.

To claim from the background, the reason code in Rl must be &47
(Claim FIQ in background). This service call may fail, but this failure
does not imply an error - merely that FIQs could not be claimed. You
must leave your routine to allow the foreground routine to finish using
FIQs and release them. You should schedule a later retry; for example
with a disc, you would retry next revolution of the disc. If Rl = 0 on
return, you successfully claimed the FIQ vector.

2 Set the IOC fast interrupt mask register to &00, to prevent fast interrupts
while you are changing the FIQ code.

3 Poke your FIQ handling routine into addresses &lC upwards. You may
use memory up to location &100 (ie the last possible instruction is at
&FC).

4 Enable FIQ generation from your device.

How the FIQ vector Is
called

5 Set the bit corresponding to your device in the IOC fast interrupt mask
register.

6 Start your FIQ operation. You must either poll for its completion, or rely
on the completion starting the finalise process in the steps below.

7 End your FIQ operation

8 Set the IOC fast interrupt mask register to zero.

9 Disable FIQ generation from your device.

10 Release FIQs using the module service call OS_ServiceCall. The reason
code in Rl must be &OB (Release FIQ). It doesn't matter which way you
originally claimed the FIQ hardware vector.

For full details of OS_ServiceCall, see the chapter entitled Modules.

You may need to know in more detail how fast interrupts are generated and
the FIQ hardware vector is called:

The device that needs attention alters the status of its fast interrupt
request pin, which is connected to the IOC chip

2 The corresponding bit of one ci the IOC's fast interrupt status registers is
set

3 The IOCs fast interrupt status registers are ANDcd with its fast interrupt
mask registers, and the results put in its request registers

4 If the result was non-zero (ie the device's bit in the mask was also set)
then a fast interrupt is sent to the ARM processor

5 The ARM saves R15 in R14_fiq

6 It then forces FIQ mode by clearing the Ml bit and setting the MO bit of
Rl5, and disables all interrupts by setting both the I bit and the F bit

7 The ARM then forces the PC bits ofR15 to &IC

8 The FIQ handling routine at &lC is entered

The addresses of the IOC registers are given at the end of the chapter.

Interrupts and handling them: How the FlO vector is called 103

Disabling Interrupts

SWis provided

More advanced cases

104

There will be times when you want to disable intemJpts. You must only do so
with great care; and particularly not for long periods of time since this will
have various unwanted effects such as stopping the clock, disabling the
keyboard, etc.

The easiest way to disable and re-enable intemJpts from user mode is to use
the SWis provided. These are OS_IntOff and OS_IntOn. They have no entry
or exit conditions, and are described in full below.

To disable specific devices, or fast intemJpts, you need to be in a privileged
mode. The example below shows you how to usc the SWI OS_EnterOS to
enter SVC mode. This is described in more detail below.

Normally you won't need to do this, because RISC OS places you in a
privileged mode during module initialisation, service and finalisation entries -
the times you are most likely to want to disable devices, or fast interrupts.

Once you are in a privileged mode, you can disable intemJpts by setting the
I bit in Rl5 . You can also disable fast intem1pts by setting the F bit.

To disable specific devices you must first have disabled all intemJpts. You
then clear the relevant bits in any of the the IOC's intem1pt mask registers.
This must be done in very few (no more than five) instructions Finally, you
must re-enable intem1pts:

MOV R2, flOC Point R2 at roc before disabling Interrupts
SWI •os Enteros• Enter svc mode
MOV RO, PC Get status in RO
ORR Rl,RO, f ,OCOOOOOO Set the interrupt maaks
TEQP Rl, 10 Update PSR

Write to roc here in < 5 Instructions, eg:

LDRB Rl, [R2, f iOCrRQHskA)
ORR Rl,Rl, IT1mer181t ; Enable Timerl

; If BIC is used instead of ORR, Timerl is disabled
STRB Rl,[R2, f iOCIRQMskA)

TEQP RO, 13
MOVNV RO,RO

End of write to IOC

Restore entry state and return to user mode
NOP to avoid contention

Interrupts and handling them: Disabling interrupts

FIQs must be disabled because the mask has FIQ downgrade bits. If the
current FIQ owning process alters these bits between your reading the mask
and writing it, the process will not then get the IRQ that it just requested the
FIQ be downgraded to.

Interrupts and handling them: Disabling interrupts 105

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

106

Enables interrupts

No parameters passed in registers

Registers preserved

Interrupt status is undefined on entry
Interrupts are enabled on exit
Fast interrupt status is unaltered

Processor is in SVC mode

SWI is re-entrant

OS lntOn
(SWI &13)

This call enables interrupts and returns to the caller with the processor mode
unchanged.

OS_IntOff(SWI &14)

None

lnterruots and handlino them: FurthAr ~WI r.~IIJ::

On entry

')n exit

Interrupts

Processor mode

Ae-entrancy

Use

Related SWis

Related vectors

Disables interrupts

No parameters passed in registers

Registers preserved

Interrupt status is undefined on entry
Interrupts are disabled on exit
Fast interrupt status is unaltered

Processor is in SVC mode

SWI is re-entrant

OS lntOff
(SWI &14)

This call disables interrupts and returns to the ca1lcr with the processor mode
unchanged.

OS_IntOn (SWI &13)

None

.nterrupts and handling them: Further SWI calls 107

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

108

Sets the processor to SVC mode

No parameters passed in registers

Registers preserved

Interrupt status is unaltered
Fast interrupt status is unaltered

OS EnterOS
(SWI &16)

Processor is in SVC mode during the routine, and on exit.

SWI is re-entrant

This call returns to the caller in SVC mode. The interrupt states remain
unchanged.

None

None

Interrupts and handlina them: Further SWI calls

Hardware addresses

Finding out more

It will help you to use interrupts to their full potential if you have a good
knowledge of the hardware used to build the computer. We don't have the
space to give you full details of every RISC OS computer built by Acorn in
this manual.

Below we tell you where the IOC chip and some of the various peripheral
controllers of a RISC OS computer are mapped into memory on an
Archimedes computer. Although these may be taken as typical of RISC OS
computers, there is no guarantee that other computers will be similarly
mapped. Indeed, even the derails below are subject to change; the peripheral
controllers may be changed as improved ones become available, or the
mapping may be redefined.

Always use defined software interfaces in preference to directly accessing
the hardware.

If you need to know more, you can:

• refer to the earlier chapter entitled ARM Hardware

• consult the VL86C010 32-Bit RISC MPU and Peripheral User's Manual,
published by Prentice Hall

• consult the datasheets for the various peripheral controllers used,
available from their manufacturers

• contact Acorn Customer Support and Services.

Interrupts and handling them: Hardware addresses 109

IOC registers

110

The IOC registers are a single byte wide, and are mapped into memory like
this:

Add >··· .. } . ·. ress
'::;.;,;.:;;:;:;:;:;:;:: . '

Read Write

&3200000 Control Control
&3200004 Kbd serial receive Kbd serial transmit
&3200008 - -
&320000C - -
&3200010 IRQ status A -
&3200014 IRQ request A IRQ clear
&3200018 IRQ mask A IRQ mask A
&320001C - -
&3200020 IRQ status B -
&3200024 IRQ request B -
&3200028 IRQ mask B IRQ mask B
&320002C - -
&3200030 FIQ status -
&3200034 FIQ request -
&3200038 FIQ mask FIQ mask
&320003C - -
&3200040 TO count low TO latch low
&3200044 TO count high TO latch high
&3200048 - TO go command
&320004C - TO latch command
&3200050 Tl count low Tllarch low
&3200054 Tl count high Tl larch high
&3200058 - Tl go command
&320005C - Tl latch command
&3200060 T2 count low T2latch low
&3200064 T2 count high T2 larch high
&3200068 - T2 go command
&320006C - T2 latch command
&3200070 T3 count low T3latch low
&3200074 T3 count high TJ latch high
&3200078 - T3 go command
&320007C - TJ larch command

lntP.rntnt~ ;:mrf h~nrllinn th~m · 1-l::~rti.AI!lro !li'Mroeeoe

Other devices The devices and peripheral controllers are mapped into memory in these
locations:

Address Type Bank IC Use

&3240000 Slow 4 - Internal Expansion cards
&3270000 Slow 7 - External Expansion cards
&32COOOO Med 4 - Internal Expansion cards
&32DOOOO Med 5 HD63463 Hard Disc register write
&3200008 Med 5 HD63463 Hard Disc DMA read
&3200020 Med 5 HD63463 Hard Disc register read
&3200028 Med 5 HD63463 Hard Disc DMA write
&3310000 Fast 1 1772 Floppy disc controller
&3340000 Fast 4 - Internal Expansion cards
&3350010 Fast 5 HC374 Printer Data
&3350018 Fast 5 HC574 Latch A
&3350040 Fast 5 HC574 Larch B
&J3AOOOO Sync 2 6854 Econet controller
&J3BOOOO Sync 3 6551 Serial port controller
&33COOOO Sync 4 - Internal Expansion cards

Interrupts and handling them: Hardware addresses 111

112 Interrupts and handling them: Hardware addresses

Events

Introduction

Events: Introduction

Events are used by RISC OS to indicate that something specific has occurred.
These are typically generated when RISC OS services an interrupt. The SWI
OS_GenerateEvent is used to do so. The following events are available:

Number

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Event type

Output buffer has become empty
Input buffer has become full
Character has been placed in input buffer
End of AOC conversion on a BBC I/0 expansion card
Electron beam has reached last displayed line (VSync)
Interval timer has crossed zero
Escape condition has been detected
RS423 error has been detected
Econet user remote procedure has been called
User has generated an event
Mouse buttons have changed state
A key has been pressed or released
Sound system has reached the start of a bar
PC Emulator has generated an event
Econet receive has completed
Econet transmit has completed
Econet operating system remote procedure has been called
MIDI system has generated an event

Note that you may generate events yourself, using event number 9, which is
reserved for users. You may also get an allocation of an event number from
Acorn if you need one - for example, if you are producing an expansion card
that generates events.

113

Enabling and disabling
events

Expansion card modules

Using events

The event routine

114

Generating events all the time would use a lot ci processor time. To avoid
this, events are by default disabled. You can enable or disable each event
individually.

To avoid problems with several applications using events at the same time,
RISC OS keeps a count for e;~ch event. This count is increased each time an
event is enabled, and decreased when an event is disabled. Thus disabling an
event will not stop it being generated if another program still needs the event.

RISC OS sets all event counts to zero at each reset, although some ci its
system extension modules may need events, and so immediately increment the
counts.

If the module that is using events has been loaded from an expansion card, it
must behave as follows:

• enable the event on all kinds of initialisation

• call OS_Byte 253 on a reset to find out what type it was:

• if it was a soft reset, enable the event

• if it was a hard reset or power-on do nothing, as the module will just
have been initialised, and so will already have enabled the event

• disable the event on all kinds ci finalisation.

To use event(s), you must first OS_Claim the event vector EventY. See the
chapter entitled Sofuoore vectors for further details. You must then call
OS_Byte 14 to enable each of the events you wish to use.

When an event occurs, your event routine (that claimed the event vector) is
entered. The event number is stored in register RO; other information may be
stored in Rl onwards, depending on the event- see below.

The restrictions which apply to interrupt handlers also apply to event
handlers - namely, event routines are entered with interrupts disabled, with
the processor in a non-user mcx:ie. They may only re-enable interrupts if they
disable them again before passing on or intercepting the call, and they must
ensure that the processing of one event is completed before another is started
on. The use of certain operating system calls must be avoided. See the chapter
entitled Interrupts and handling them for funher details.

Events: Enablino and disablinn P.vP.nt~

Finishing with events

Events: Using events

When you finish using the events you must first call OS_Bytc 13 to disable
each event that you originally enabled. You must then OS_Rclease the event
vector Even tV.

115

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

116

Disables an event

RO = 13
Rl = event number

RO preserved
R 1 = old enable state
R2 corrupted

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_Byte 13
(SWI &06)

This call disables an event by decreasing the count of the number of times
that event has been enabled. If the count is already zero, it is not altered. The
previous enable state of the event is returned in R 1:

Rl = 0
Rl>O

previously disabled
previously enabled

Note that to disable an event totally, you must usc OS_Dyte 13 the same
number of times as you use OS_Byte 14.

OS_Byte 14 (SWI &06), OS_GenerateEvent (SWI &22)

EventV, ByteV

Events: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Events: SWI Calls

Enables an event

RO = 14
R 1 = event number

RO preserved
R 1 = old enable state
R2 corrupted

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_Byte 14
(SWI &06)

This call enables an event by increasing the count ci the number of times that
event has been enabled. The previous enable state of the event is returned in
Rl:

RI =O
Rl>O

previously disabled
previously enabled

When you finish using the vector, you should disable it again by calling
OS_Byte 13.

OS_Byte 13 (SWI &06), OS_GenerateEvent (SWI &22)

EventV, ByteV

117

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

118

Generates an event

RO = event number
R l ... = event parameters

All registers preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS GenerateEvent
(SWI &22)

Note that, as usual, the event vector will only be called if the event number
given in RO has previously been enabled using OS_Byte 14.

OS_Byte 13 and 14 (SWI &06)

Even tV

1letalls of events

.:>utput buffer e111>ty
event

Input buffer full event

Character input event

ADC end conversion
event

Vertical sync event

events: Details of events

Details of all the events and the values they pass to the event routines are
given below .

RO =0
Rl =buffer number

This event is generated when the last character has just been removed from an
output buffer (eg printer buffer, serial port output buffer). See the next
chapter entitled Buffers.

RO = 1
R 1 = buffer number
R2 = byte that could not be inserted into buffer

This event is generated when an input buffer is full and when the operating
system tries to enter a character into the buffer but fails. See the next chapter
entitled Buffers.

RO = 2
R2 = byte to be inserted into keyboard buffer

This event is generated when a key is pressed, independent ci the input
stream selected. See the chapter entitled Character input for a description of
buffer values for the keyboard buffer.

RO =3
Rl =channel that just converted

This event is generated when the analogue-to-digital convertor on the BBC 1/0
expansion card finishes a conversion. See the documentation supplied with the
card.

RO = 4

This event is generated when the electron beam reaches the bottom of the
displayed area and is about to start displaying the border colour. This event
corresponds to the time when the OS_Byte 19 call returns to you. In low­
resolution modes this will be every fiftieth of a second; in modes requiring a
multisync monitor it will be more frequent.

119

Interval timer event

Escape event

RS423 error event

Econet user remote
procedure event

120

You could use it, for example, to start a timer which will cause a subsequent
interrupt. On this interrupt you could change the screen palette, to display
more than the usual number of colours on the screen at once.

RO = 5

This event is generated when the interval timer, which is a five-byte value
incremented 100 times a second, has reached zero. See OS_ Word 3 for
details of the interval timer.

R0=6

This event is generated when either Esc is pressed or when an escape
condition is received from the RS423 input port. See the chapter entitled
Character input for a discussion of escape conditions.

RO = 7
Rl =pseudo 6850 status register shifted right I place
R2 =character received

This event is generated when an RS42J error is detected. Such errors are
parity errors, framing errors etc. On entry, the bits of Rl have the following
meanings:

Bit Meaning when set

5 Parity error
4 Over-run error
3 Framing error

R0=8
R I = pointer to argument buffer
R2 = remote procedure call number
R3 = stltion number
R4 = network number

This event is generated when an Econet user remote procedure call occurs. See
the chapter entitled Econet for further details.

t:\JL:J.nt~· n.at tl ... "' "''~--·-

User event

Mouse button event

RO = 9
R 1 ... = values defined by user

This event is generated when you call OS_GcnerateEvent with R0=9. The
other registers are as set up by you. Note that this is entered in SYC mode,
not IRQ mode.

RO = 10
Rl = mouse X co-ordinate
RZ = mouse Y co-ordinate
R3 = button state
R4 = 4 bytes of monotonic centi-second value

This event is generated when a mouse button changes, ie when a button is
pressed or released. The button state is given in R3 as follows:

Bit Meaning when set

0 Right-hand button down
1 Centre button down
2 Left-hand button down

Events : Details of events 121

Key up/down event

122

RO = 11
R 1 = 0 for key up, 1 for key down
R2 = key number
R3 = keyboard driver 10

This event is issued whenever a key on the keyboard is pressed or released.
The key number, R2, is an low-level internal key number, which does not
relate to other codes used elsewhere. The table below lists the values for
each possible key, giving the high and low hex digit of the key code:

low 0 2 3 4 5 6

high 0 Esc Hme p G c AIR
1 Fl PgU [H v CtR
2 F2 2 NL) J B Lft

3 F3 3 I \ K N Own
4 F4 4 • Del L M Rt
5 F5 5 # Cpy 0
6 F6 6 Tab PgD
7 F7 7 Q 7 Ret I Ent
8 F8 8 w 8 4 ShR
9 F9 9 E 9 5 Up
A FlO 0 R 6 1
B Fll T CtL + 2
c F12 = y A ShL 3
D Pr u s CapL

E SL ~ I D z AIL
F Brk Ins 0 F X Spc

Where there is some ambiguity, eg the digit keys, it should be clear from
referring to the keyboard layout which code refers to which key. The keys are
numbered top to bottom, left to right, starting from Esc at the top left comer.

Note that the keycodes given in this event bear no relationship to any other
code you will see. They are not, for example, related to the INKEY numbers
described in the chapter Character input. They apply to the keyboard
supplied on the UK model.

Events: Detail~ nf P.vP.nt~

Sound start of bar event

PC Emulator event

Econet receive event

Econet transmit event

Events: Details of events

RO = 12
Rl=2
R2 =0

This event is generated whenever the sound beat counter is reset to zero,
marking the start of a bar. See the chapter entitled The Sound system for more
details.

The 0 in R2 may change in future versions to give the invocation number of the
task causing the event.

RO = 13

This event is claimed by the PC Emulator package.

RO = 14
R 1 = receive handle
R2 = status of completed operation

This event is generated when an Econet reception completes. The status
returned in R2 will always be 9 (Status_Reccivcd). See the chapter entitled
Econet for furhtcr details.

RO = 15
Rl =transmit handle
R2 = status of completed operation

This event is generated when an Econet transmission completes. The status
returned in R2 can have the following values:

0 Transmitted
1 Line jammed
2 Net error
3 Not listening
4 Noclock

See the chapter entitled Econet for furhter details.

123

Econet OS remote
procedure event

MIDI event

124

RO = 16
R 1 = pointer to argument buffer
R2 = remote procedure call number
R3 = station number
R4 = network number

This event is generated when an Econet operating system remote procedure
call occurs. Current remote procedure call numbers are:

0 Character from Notify
1 Initialise Remote
2 Get View parameters
3 Cause fatal error
4 Character from Remote

See the chapter entitled Econet for further details.

RO = 17
R 1 = event code

This event is generated when certain MIDI events occur. The values Rl may
have are:

0 A byte has been received when the buffer was previously empty
1 A MIDI error occurred in the background
2 The scheduler queue is to empty, and you can schedule more data.

These events only occur if you have fitted an expansion card with MIDI
sockets. See the manual supplied with the card for further details.

Events: Details of events

Buffers

Introduction

Filing system buffers

Use of buffers

The interrupt system on a RISC OS computer makes extensive use of buffers.
These act as temporary holding areas for data after you (or a device)
generate it, and before a device (or you) consume it. For example, whenever
you type a character on the keyboard, that character is stored in the keyboard
input buffer by the keyboard interrupt handler, and it remains there until
your program is ready to use it.

We are not concerned with filing system buffers in this section. However,
these are areas where RISC OS holds whole areas of files in memory to
increase the efficiency of file access. The use of file buffers is generally
invisible to you; there is no direct way of accessing their contents.

The buffers we are looking at are known as first-in first-out, or FIFO, buffers.
This is because the characters are removed from the buffer in the same order
in which they were inserted. Many operations on buffers are implicit. For
example, when you send a character to the printer or RS423 port, a character
is inserted into a buffer. When you read from the keyboard or RS423 port
using OS_ReadC, a character is removed from the bqffcr.

Additionally, there are several explicit buffer operations available. These
include:

• inserting a character into a buffer

• removing a character

• counting the space in a buffer

• examining the next character without removing it

• purging a buffer (clearing its contents).

Buffers: Introduction 125

Details of buffers

Buffers 4 to 8

Data format

126

All these oper.nions are implemented as OS_Bytes- sec below.

The buffer is also purged implicitly when the c.c;cape condition is cleared -
see the chapter entitled Character input.

There are ten buffers, numbered 0- 9. Their uses are as follows:

Number

0
1
2
3
4
5
6
7
8
9

Use

Keyboard
RS423 (input)
RS423 (output)
Printer
Sound channel 0
Sound channel 1
Sound channel 2
Sound channel 3
Speech
Mouse

Size

255
255
191

1023
3
3
3
3
3
63

Buffers 2 to 8 are output buffers. They hold data you generate until a device
is ready to consume it. The others are input buffers. These store bytes
generated by the keyboard, RS423 and mouse respectively until you are
ready to read them.

Currently, buffers 4 to 8 arc not used. They are provided for compatibility
with BBC Micro software. Sound buffering and speech are implemented
differently on RISC OS hardware than they were on BBC hardware. These
buffers are not considered further.

The format of data in all buffers in current usc, except for the mouse buffer,
is byte-oriented ASCII data. The mouse buffer contents refer to buffered key
clicks. The format is as follows:

Buffers: Details of buffers

OS_Byte calls provided

Buffers: Details of butters

Byte Value

0 Mouse x coordinate low
1 Mouse x coordinate high
2 Mousey coordinate low
3 Mousey coordinate high
4 Button state
5 Time of button change, byte 0
6 Time of button change, byte 1
7 Time of button change, byte 2
8 Time of button change, byte 3

The bytes are listed in the order in which they would be removed using
OS_Byte 145.

Usually OS_Mouse reads data from the mouse buffer. If none is available, it
returns the current state instead. The mouse buffer is 63 bytes long, so 7
entries may be held at once.

The OS_Bytes used to control buffers are described below.

They are, in fact, just an interface to the vectored buffer routines described in
the chapter entitled Software vectors. Usually, the OS_Bytes are easier to use.
However, there are times when it is preferable, or necessary (for example to
read the number of bytes free in an input buffer) to use the vectors. They can
be called directly using OS_CaiiAVector.

It is possible to change the operation of the machine by replacing these calls.
In particular, you could write a module which OS_Claims all three buffer
vectors, then replaces, say, the printer buffer with a much larger one. You
would claim the memory for this from the rclocatable module area. The
module could have its own configuration byte held in CMOS RAM to specify
the siz.e of the buffer, which it would claim on initialisation.

127

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

128

Flushes all buffers, or the current input buffer

RO = 15
R I = reason code

RO preserved
R 1, R2 corrupted

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 15
(SWI &06)

This call flushes either all the buffers or only the current input buffer:

RI=O
Rl = 1

flush all buffers
flush the current input buffer (kcyboard/RS423)

The contents of the buffcr(s) are discarded. Individual huffers may be
flushed using OS_Byte 21.

OS_Byte 21 (SWI &06)

ByteV

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Buffers: SWI Calls

Flushes a specified buffer

RO = 21
Rl = buffer number

RO, Rl preserved
R1 corrupted

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call flushes the specified buffer.

OS_Byte 15 (SWI &06)

By reV

OS_Byte 21
(SWI &06)

129

Writing code to handle
UpCalls

130

They are called UpCalls because they are calls that RISC OS makes up to
an application, rather than calls that the application makes down to RISC OS.
They occur in the foreground, and are hence different to Events, which occur in
the background.

There are a number ci different reason codes, each of which is described
below: Some are made for information only, others allow the application to
take appropriate action (such as to prompt for a missing floppy disc to be
inserted in the drive). The caller ci the UpCall (normally RISC OS) may
then look at any returned state, and decide what action to take next. In many
cases it will generate an error if the application has not dealt appropriately
with the situation.

Routines that deal with UpCalls should be viewed as system extensions, and
so should only call error-returning SWls ('X' SWis).

If a routine installed on the vector does deal with the situation it should
intercept the call to the vector, as there is no longer any point informing any
other routines or the UpCall handler of the situation. If it cannot deal with
the situation it must pass the call on, as another may be able to do so.

Communications: Uo c~n~

On entry

On exit

1terrupts

0 rocessor mode

Re-entrancy

lse

Related SWis

~elated vectors

Inserts a byte into a buffer

RO = 138
R 1 = buffer number
R2 = byte to insert

RO - R2 preserved
C flag = 0 if character inserted
C flag= 1 if buffer was full

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 138
(SWI &06)

This call inserts the byte specified in R2 into the buffer identified by R 1. If
C=l on exit, the byte was not inserted as there was no room.

Inserting bytes into the mouse buffer isn't recommended, but if you must, you
should be careful to insert all nine bytes with intem1pts disabled, to prevent
a real mouse transition from entering data into the middle d your data. You
must do so as quickly as possible to prevent latency in the interrupt system.

OS_Byte 153 (SWI &06)

ByteV, lnsV

131

Related SWis

Related vectors

1~?

To use OS_UpCall 1 or 2, you must either claim UpCallV and install a
routine on the vector, or install an UpCall handler. Your routine should:

• prompt you to supply the media with a string built up using:

• the media type string (passed in R6}

• the filing system name (obtained by calling XOS_FSConrrol33
acting on the value c:l R 1)

• the media name (passed in R2)

for example:

Please insert disc adfs:Mikc and press Space (Esc to abort)

• give you a way of indicating that you have either supplied the media, or
wish to cancel the operation

• intercept the vector with RO = -1 if you wish to cancel the operation.

• intercept the vector with RO = 0 if the timeout limit is reached, or if you
say you have supplied the media

When you intercept the call to the vector, control passes back to the filing
system routine that called OS_UpCall:

• If RO = -1, then the routine calls OS_UpCall4; it then returns an error to
say that the media was not found.

• If RO = 0, then the routine checks for you that the media has been changed
and the correct one supplied. If so, it calls OS_UpCall4; otherwise it
just calls OS_UpCall1 or 2 again, after incrementing R4.

The timeout period in R5 is set to a small value for media that can detect
when the media has been changed (such as floppy disc drives) and to a large
value (typically &FFFFFFFF) for other media. In the former case, this means
that RISC OS will automatically detect that new media has been supplied,
and check that it is the correct one.

The most common use of OS_UpCal11 and 2 is to request that a floppy disc
is inserted.

OS_UpCall 4 (SWI &33)

UpCaliY

('""' .._.,_ . . -: t:---· l""\AII "-"-

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Buffers: SWI Calls

Examines the status of a buffer

RO = 152
R1 =buffer number

RO, RI preserved

OS_Byte 152
(SWI &06)

R2 = next byte in buffer, or corrupted if buffer was empty
C flag= 0 if bytes were in buffer
C flag = 1 if buffer was empty

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

This call returns the status of a specified buffer; the carry flag is set if the
buffer is empty. If a byte is available, it is returned in R2 but is not removed
from the buffer.

None

BytcV, RemV

133

R9= 0

R9 = 1

134

It is made when a program calls one of several SW!s provided by the
FileSwitch module:

• reason codes 0 • 9 are caused by calls to OS_File (SWI &08)

• reason codes 157- 259 are caused by calls to OSFind {SWJ &00)

• reason codes 520- 521 are caused by calls to OS_FSControl (SWI &29).

You may find it helpful to examine the documentation of the above
FileSwitch SWI calls.

The following general points apply:

• all strings are null terminated except where specified

• all object names will already have been expanded by FileSwitch,
checked for basic validity, and had filing system prefixes stripped.

Note that if a filename is invalid for a given operation {eg you try to create a
file with a wildcarded leafname) FileSwitch will generate an error, and no
UpCall will be generated.

The call is used by the desktop filer to maintain its directory displays. It is
provided for information only; if you wish to use this UpCall, you must not
intercept it, nor must you alter the contents of any of these registers used to
pass parameters:

Saving memory to file

Rl =pointer to filename
R2 = load address
R3 = execution address
R4 =pointer to start of buffer
RS = pointer to end of buffer
R6 = pointer to special field {or 0)

Writing catalogue information

Rl =pointer to filename
R2 = load address
R3 = execution address
R5 = attributes
R6 =pointer to special field {or 0)

Communications within RISC OS

Introduction

Service calls

Window manager SWis

There arc some important SWI calls that RISC OS uses to communicate
between different parts of itself, or to communicate with application
programs. Because these SWI calls are used by lots ci different parts of
RISC OS, you will find they are referred to in many different places in the
manual. It's therefore important that you know ci these SWls to understand
such references. Most of the SWis belong to modules that are described
elsewhere in the manual, so we just cross reference them here.

OS_ServiceCall is used to pass a service around modules. Modules can
decide whether they wish to provide the service, and if so whether they will
then pass the service call on to other modules. A reason code in Rl indicates
the type of service. You have already seen two examples ci OS_ServiceCall -
the reason codes to Claim and Release FIQs.

This call is fully documented in the chapter entitled Modules.

The window manager provides various SWis that enable it to communicate
with window based programs (notably Wimp_Po\1); and further SWis so
that programs can communicate with and pass data to each other (notably
Wimp_Message).

These calls are all fully documented in the chapter ent•tlcd The Window
Manager.

UpCalls The kernel provides the SWI OS_UpCall, which warns applications of
particular situations. It calls the vector UpCaiiV. To use UpCalls, you must
either claim the vector and install a routine on it (sec the chapter entitled
Software vectors), or install an UpCall handler (sec the chapter entitled
Program Environment).

r.nmmunir.~tinns· Introduction 135

Writing code to handle
UpCalls

136

They are called UpCalls because they are calls that RISC OS makes up to
an application, rather than calls that the application makes doum to RISC OS.
They occur in the foreground, and are hence different to Events, which occur in
the background.

There arc a number of different reason codes, e<~ch of which is described
below: Some are made for information only, others allow the application to
take appropriate action (such as to prompt for a missing floppy disc to be
inserted in the drive). The caller of the UpCall (normally RISC OS) may
then look at any returned state, and decide what action to take next. In many
cases it will generate an error if the application has not dealt appropriately
with the situation.

Routines that deal with UpCalls should be viewed as system extensions, and
so should only call error-returning SWis ('X' SWis).

If a routine installed on the vector does deal with the situation it should
intercept the call to the vector, as there is no longer any point informing any
other routines or the UpCall handler of the situation. If it cannot deal with
the situation it must pass the call on, as another may be able to do so.

r.omm11nit';afinn~· lin 1"'<>11~

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Communications: SWI Calls

OS_UpCalll and 2
(SWI &33)

Warns your program that a filing media is not present {OS_UpCalll} or
not known {OS_UpCal11}

RO = 1 {Media not present} or 2 (Media not known)
Rl = flling system number {for a list, see the chapter entitled FileSwitch)
R1 =pointer to a null-terminated media name string, or -1 if irrelevant
R3 =device number, or-1 if irrelevant
R4 =iteration count for repeated issuing of the call (0 initially)
R5 = minimum timeout period (in centiseconds}
R6 = pointer to a null terminated media type string

RO = 0 if media changed, -1 if media no longer required, else preserved
R 1 • R6 preserved

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call is made by RISC OS filing systems when a program tries to access:

• a filing media that it has previously used but can no longer access
(RO = 1}

• a flling media that it has not previously used {RO. = 1).

It calls the UpCall vector.

137

Related SWis

Related vectors

1~A

To use OS_UpCalll or 2, you must either claim UpCaiiV and install a
routine on the vector, or install an UpCall handler. Your routine should:

• prompt you to supply the media with a string built up using:

• the media type string (passed in R6)

• the filing system name (obtained by calling XOS_FSControl33
acting on the value ofRI)

• the media name (passed in R2)

for example:

Please insert disc adfs:Mikc and press Space (Esc to abort)

• give you a way of indicating that you have either supplied the media, or
wish to cancel the operation

• intercept the vector with RO = -1 if you wish to cancel the operation.

• intercept the vector with RO = 0 if the timeout limit is reached, or if you
say you have supplied the media

When you intercept the call to the vector, control passes back to the filing
system routine that called OS_UpCatl:

• If RO = - 1, then the routine calls OS_UpCall4; it then returns an error to
say that the media was not found.

• If RO = 0, then the routine checks for you that the media has been changed
and the correct one supplied. If so, it calls OS_UpCall4; otherwise it
just calls OS_UpCall I or 2 again, after incrementing R4.

The timeout period in RS is set to a small value for media that can detect
when the media has been changed (such as floppy disc drives) and to a large
value (typically &FFFFFFFF) for other media. In the former case, this means
that RISC OS will automatically detect that new media has been supplied,
and check that it is the correct one.

The most common use of OS_UpCalll and 2 is to request that a floppy disc
is inserted.

OS_UpCall4 (SWI &33)

UpCallV

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

r.nmmunir.;~tinns : SWI Calls

Warns your program that a file is being modified

RO = 3 (Modifying file)
R1 • R7 vary, depending on the value ofR9
R8 = filing system information word
R9 = reason code

All registers preserved

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_UpCall3
(SWI &33)

This call warns your program that a file is being modified. The reason code
in R9 tells you how:

R9

0
1
2
3
4
6
7
8
257
259
520
521

Meaning

Saving memory to file
Writing catalogue information
Writing load address only
Writing execution address only
Writing attributes only
Deleting file
Creating empty file
Creating directory
Creating and opening for update
Closing file
Renaming file
Setting attributes

139

A9= 0

A9 = 1

140

It is made when a program calls one of several SWis provided by the
FileSwitch module:

• reason codes 0- 9 arc caused by calls to OS_Filc (SWI &08)

• reason codes 257 - 259 are caused by calls to OSFind (SWI &OD}

• reason codes 520- 521 are caused by calls to OS_FSControl (SWI &29).

You may find it helpful to examine the documentation of the above
FileSwitch SWI calls.

The following general points apply:

• all strings are null terminated except where specified

• all object names will already have been expanded by FileSwitch,
checked for basic validity, and had filing system prefixes stripped.

Note that if a fllename is invalid for a given operntion (eg you try to create a
file with a wildcarded leafname) FileSwitch will generate an error, and no
UpCall will be generated.

The call is used by the desktop filer to maintain its directory displays. It is
provided for information only; if you wish to use this UpCall, you must not
intercept it, nor must you alter the contents d any of these registers used to
pass parameters:

Saving memory to file

Rl =pointer to filename
R2 = load address
R3 = execution address
R4 = pointer to start of buffer
RS = pointer to end of buffer
R6 = pointer to special field (or 0)

Writing catalogue information

Rl =pointer to filename
R1 = load address
R3 = execution address
R5 = attributes
R6 = pointer to special field (or 0)

"---···-:--··--- ,.,.,. ... - ..

A9= 2

A9=3

A9=4

A9= 6

A9=8

A9 = 257

Writing load address only

Rl = pointer to filename
RS = pointer to end of buffer
R6 = pointer to special field (or 0)

Writing execution address only

Rl = pointer to filename
R3 = execution address
R6 = pointer to special field (or 0)

Writing attributes only

Rl = pointer to object name
R5 = attributes
R6 = pointer to special field (or 0)

Deleting file

Rl = pointer to object name
R6 = pointer to special field (or 0)

Creating empty file

R 1 = pointer to filename
R2 = load address
R3 = execution address
R4 = stan address
RS = end address
R6 = pointer to special field (or 0)

Creating directory

Rl = pointer to directory name
R2 = load address (to be used as timestamp)
R3 = execution address (to be used as timestamp)
R6 = pointer to special field (or 0)

Creating and opening for update

Rl = pointer to filename
R2 = external handle file will be given (if successfully opened)
R6 = pointer to special field (or 0)

R9 = 259

R9 = 520

R9 = 521

Related SWis

Related vectors

142

Closing file

Rl = external handle

Renaming file

Rl = pointer to current object name
R2 = pointer to desired object name
R3 = execution address
R6 =pointer to current special field (or 0)
R7 =pointer to desired special field (or 0)

Setting attributes

Rl = pointer to object name
R2 = pointer to attribute string (control character terminated)

None

UpCaiiV

Communications: SWI r.::au~

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

OS_UpCall4
(SWI &33)

Informs your program that a missing filing media has been supplied, or that
an operation involving one has been cancelled

RO = 4 (Media search end)

RO preserved

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call is made by RISC OS to inform your program that a missing filing
media has been supplied, or that an operation involving one has been
cancelled. It is always preceded by catl(s) c:i OS_UpCalll or
OS_UpCall 2. It calls the UpCall vector.

To use OS_UpCall4, you must either claim UpCaiiV and install a routine
on the vector, or instatl an UpCall handler. This call is typically used to
remove error messages displayed when OS_UpCalll or 2 was first
generated.

Related SWis OS_UpCalll and 2 (SWI &33)

Related vectors UpCaiiV

Comrrunications: SWI Calls 143

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Relared SWis

Related vectors

144

OS_UpCall 256
(SWI &33)

Warns your program that a new application is going to be started

RO = 256 (New application)
R2 = proposed Currently Active Object pointer

RO = 0 to stop application, else RO is preserved

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call is made just before a new application is going to be started - for
example due to a *RUN or module command. It calls the UpCall vector.

To use OS_UpCall 256, you must either claim UpCallV and install a routine
on the vector, or install an UpCall handler.

One reason to use this call is so that an application can tidy up after itself
before a new one starts, eg removing routines from vectors. For more details,
see the chapter entitled The Program Environment.

Another reason to use this UpCall is to prevent an application from starting.
If you don't want the application to start, your routine should set RO to 0, and
intercept the call to the vector. This will cause the error Unable to start
application to be given. Otherwise, you must pass the call on with all
registers preserved.

None

UpCallV

Communications: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

OS_UpCall 25 7
(SWI &33)

Informs your program that RISC OS would like to move memory

RO = 257 (Moving memory)
R 1 = amount that application space is going to change by

RO = 0 to permit memory move, else RO is preserved
R 1 is preserved

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call is made just before OS_ChangeDynamicArea tries to move memory.
The call is only made if the currently active object is in the ·application space.
It calls the UpCall vector. By default (if you do not claim the vector) the
memory is not moved.

To allow the memory to be moved, you must either claim UpCallV and
install a routine on the vector, or install an UpCall handler. Your routine
must shuffle your application's workspace so that the memory move can go
ahead. It must then set RO = 0, and pass on the call to the vector.

Related SWis None

Related vectors UpCallV

Communications: SWI Calls 145

146 Communications: SWI Calls

Part 2 , The kernel

147

148

Character Output

Introduction

Character Output: Introduction

The Character Output system can send characters to the computers' output
devices. They can be any or all of the following:

• the VDU

• the serial port

• a flle on any filing system

• the currently selected printer

The Character Output system gives full control of the operation of each of
these devices. Since they all have different characteristics, they must be
controlled in different ways.

Olaracter Output provides a means ci directing characters to the device(s)
that are required. It is like a train shunting yard that can send characters, like
trains, to the right destination. It can also hold them, waiting until the
destination is free to take them.

149

Overview

Terminology used

Back-doors

Device Independence

OS_WriteC

Buffers

150

The Character Output system can be divided by an imaginary horizontal line.
Above it is the part independent of the device(s) that the characters will end
up at. Below the line is the control of each of the devices.

• A device is the hardware that is used to send characters to some external
form, such as shapes on a VDU or voltages on a seri:~l line or onto a
floppy disk and so on.

• A port is like a device, though it really refers more to the actual
connection to the outside.

• A device driver is the low level code that operates a device.

• A stream is like its normal usage. It is a connection between a program
and a device. Streams can also go from one program to many devices.

Normally, a program will go through the stream system to access output
devices. However, 'back-doors' are provided to allow directly writing to a
given device. A major reason for wanting to do this is speed, since the stream
system necessarily takes time. Another is that this back-door approach gives
much more direct control of the device and more immediate feedback on
problems. A modem driving program, for example, needs to be able to react
quickly to information on the serial line.

Device independence means that any program using the stream system doesn't
have to know the destination of the characters it is outputting. Most programs
don't, since it will not affect their actions. If they do need to, then back-doors
are available.

The core of the stream system is the SWI OS_ WritcC which outputs a single
character. It looks at which of the devices have been enabled and sends a copy
of the character to each of them. It is in tum called by many other SWis,
printing a string for example. Characters from these other SWis stream into
OS_ WriteC and from there out to the correct device.

A program running in RISC OS works at one rate, while the hardware
devices all work at different rates. This is called asynchronous operation,
since the two are not synchronised. To solve this problem, buffers are used. A
buffer is simply an area of memory that has been set aside to temporarily
hold data. RISC OS provides buffering for all the devices used by the stream

Devices

Printer stream

Character Output:Overview

system. A program will write into a buffer, while interrupts asynchronously
read it out. If a buffer became full, then RISC OS would wait until it had
emptied somewhat, then continue, without the calling program ever being
aware it had happened.

OS_ WriteC can be setup to send to one or many ci the following list of
devices:

• the printer stream

• the serial driver

• the spool (filing system) driver

• the VDU driver

The control of which devices are enabled at any time is very simple and can
be changed as frequently or infrequently as desired.

These are briefly summarised below, and described in depth in later sections.

There are several ways in which the printer stream may be directed. Unlike
the high level output streams previously discussed, where several devices may
be used at once, only one printer device may be active at any one time. The
printer stream is, in effect, a subpart of the full stream system.

Like the stream system, the printer stream has a number ci devices it can use.
The ones available are:

• Printer sink

• Centronics parallel

• serial port

• network printer

• user printer driver

The printer sink is a special case. Unlike the other drivers, which operate
some hardware, the printer sink is a null printer device. This simply absorbs
any characters sent to it. For example, it is a device that can be used when you
don't want any form of printer output with an application that uses the printer.

151

Serial output device

Spool device

152

The Centronics parallel device allows pnntmg on any standard parallel
printer. This includes virtually all of the low cost printers sold.

The RS423 serial device can be connected to any serial printer. RS423 is like
the more usual RS232 serial standard, but is better whilst still being
compatible with any RS232 device.

The networlc printer is the one that is accessed remotely across a network. See
the chapter entitled NetPrint for details of this.

Finally, the user printer driver allows programmers to write a driver to
support a device not listed here.

Note that this chapter concerns itself only with the character print routines.
See the chapter entitled Printer Dri4Jers for information on the drivers that
must be used for any graphical printing.

The device driver software takes characters from the stream system and puts
them into the serial hardware, manipulating it to send them off.

The serial hardware itself changes the character into a series of voltage
changes on its connection with the outside. These voltages and other control
lines worlc together to communicate with another serial port on another
machine. The baud rate of a serial port is the number of bits per second that
it is sending or receiving. Under RISC OS, these rates can be controlled
independently.

In this chapter, the output-specific and general calls to this device are covered.
In the chapter entitled Character 1nput, the input-specific calls are described.

In RISC OS, you can spool characters to a file on a filing system as if it were a
sequential device. The term itself is an archaic one that has passed down from
early mainframe computers.

It is very easy to use a spool file. There is a command to start spooling output
to a named file, and another to stop spooling and close the file. Also, you can
change the file you are spooling to at any time, without having to close and re­
open it.

\'DU device The VDU device driver will put any characters or graphics onto the screen.
Some characters are displayed directly, while others are interpreted as
graphics commands. This chapter contains details of the interface to the VDU
system, but for a detailed description of the VDU system, refer to the
chapter entitled VDU drit~ers.

Technical Details

Device Independence

Printer stream

OS_Byte 3

VDU printer control

154

The core of the output stream is the SWI OS_ WriteC. This is called via
WrchV, the Write Character vector. Note that if this vector is ever replaced
then all of the other routines that use it will also be redirected. OS_ WriteC
is called by many, many routines; in this chapter OS_ WriteS, OS_ WriteO,
OS_ WriteN, OS_NewLine, OS _pretty Print and OS_ Writel.

OS_Byte 3 controls which devices characters get sent to. It sets a byte in which
each bit represents a different output device srate. Some of these bits enable
whether a device gets characters or not. There are complications however,
which are described fully in the following sections.

The printer stream can be enabled by OS_Byte 3 or using VDU codes. The
selection of the printer is done by OS_Byte 5. The printer can be made to
ignore a specific character by using OS_Byte 6.

Three bits in the byte sent to OS_Byte 3 to select output streams control
whether a character is sent to the printer. In addition, a character may also be
sent to the printer under the control of the VDU stream.

Bit 2 provides global control over the printer. If this bit is set, then it is not
possible for OS_ WriteC to cause a character to be inserted into the printer
buffer. If it is clear, then the character may or may not be sent to the printer,
depending on the state of the other bits.

Bit 6 acts in a similar way: if it is clear, characters may be sent to the printer,
but if it is set, they are stopped. There is one way of still getting characters to
the printer if bit 6 is set; mis is described below.

Assuming bits 2 and 6 are clear, then the simplest way of enabling the printer
is by setting bit 3. When this is done, all characters sent to OS_ WriteC
(except the printer ignore character) will be inserted into the printer buffer
too.

The most common way of controlling the printer is through the VDU driver. If
the VDU stream is enabled (bit 1 of the output stream's byte is clear), then
sending the code ASCII 2 (Ctri-B) to OS_ WritcC enables the VDU printer

Character Cutout: Technical Detail~

stream. Once this is done, all printable characters and some control characters
sent to the VDU stream will also go to the printer. Sending ASCll 3 (Ctri-C)
to the VDU disables the copying of characters to the printer.

A further control code, ASCII 1 (Ctrl-A), causes the next character to be sent
to the printer (if enabled by Ctri-B), but not to the screen. All characters may
be sent this way, including the control codes which are usually ignored by the
VDU printer stream, and the printer ignore character.

If either bit 6 or bit 2 of the streams byte is set, then the VDU printer stream
has no effect. The exception is when the character is preceded by a Ctri-A. In
this case, bit 6 will not prevent the character from being sent, although bit 2
will .

More details of the YOU printer stream control codes are given in the
chapter entitled VDU dri"er.

The flow of control is summarised by the diagram on the following page:

Character Output: Technical Details 155

OS_WriteC I
I

I
I Bit 3 set I I Bit 1 clear I

I

Bit 5 set I I Bit 5 clear I

YOUXY I YOU 2 model returns with C= 1
I

r
Not in a YOU seq. Character n in
Character in ran~e a YOU l,n
8. 13,32. 126,12 . 255

I
I Bit 6 clear I

Not printer ignore char
(if any)

I Bit 2 clear I
1

Printer I

156 Character Output: Technical Details

OS_Byte 5

OS_Byte 245

Ignore character

No ignore

Regardless of how a character gets to the printer stream, it is then sent to the
current printer device . This is set by OS_Byte 5. It is passed a byte which can
select one of 256 potential drivers, 4 d which are supplied with RISC OS.

• printer sink

• parallel

• serial

• network

When an OS_Byte 5 is used, the new destination streams come into effect
only when all the current contents of the printer buffer have been sent to the
previously-selected driver. This means that when you issue this OS_Byte, the
calling task may appear to hang until the current printer buffer's contents are
cleared. This may be forced by generating an escape condition.

The default printer device is stored in CMOS RAM and is set by
*Configure-Print.

OS_Byte 245 (SWI &F5) may be used to read the current printer type, but
not to set it, as it does not wait for the printer buffer to empty first. Because
of this, it does not enable interrupts, so may be used to read me printer type

from within an interrupt routine.

The printer ignore character is one which is suppressed from the printer
stream, unless it got there via the YOU printer stream and was preceded by
ASCill (Crrl-A). The character can be set and read using OS_Byte 246. For
compatibility with older Acom operating systems, OS_Byte 6 can also set it
and OS_Byte 245 can read it.

*Ignore <number> can be used to set it from the CU. *Configure
Ignore <number> will set it permanently in CMOS RAM. The default
value is 10, an ASClllinefeed.

There may be no printer ignore character, in which case all characters are
sent. This is called the NO IGNORE state and can be set with OS_Byte 182.

*Ignore with no parameter has the same effect from the CU. *Configure
Ignore will set it permanently in CMOS RAM.s

Character Output:Technical Details 157

Serial Device

Sending a byte

Controlling the port

Control commands

The serial device driver provides facilities to send and receive a byte, control
the handshake lines and alter the protocol of the data. RISC OS provides a
number of SWis that allow access to these facilities.

There are two fundamental ways of communicating with the serial port.

• OS_Bytes 3 and 5 can be used to select it as an output stream.
OS_ WriteC and the SWis that use it would be used to write to its
buffer, with RISC OS handling buffer full conditions and so on.

• The OS_Seria\Op SWI contains routines to access the serial device driver
directly. This SWI is like OS_Byte in that it contains a number of
operations, determined by the reason code passed in RO. The advantages
of using this approach are the speed of not going through several routines
in the stream system and no possibility of confusion about where the data
is going.

Sending characters is, of course, only the start. The control of the state of the
serial device can likewise be handled in two ways. The OS_Byte serial port
commands are in RISC OS mainly for compatibility with earlier Acorn
operating systems. It is recommended that the OS_SeriaiOp commands are
used in preference to the OS_Bytes because they are more complete and
consistent.

Note that the serial device's input and output sides may be controlled
independently. For example, you can transmit at a different baud rate from
the one which is being used to receive.

Here is a summary of the OS_Byte and OS_SeriaiOp commands:

• OS_Byte 156 is a hit mask that reads and writes various state information.

• OS_Byte 192 reads the above state byte.

• OS_Byte 8 sets the transmit baud rate {7 handles the receive rate).

• OS_Byte 191 reads and writes the busy flag (obsolete 13BC us.1ge)

• OS_Byte 242 reads both baud rates.

• OS_SerialOp 0 reads and writes the handshaking status.

• OS_Seria\Op 1 reads and writes the data format.

1 1:\A Character Out out : Technical Details

OS_Byte 3 and 5

Serial output buffer

Handshaking and
protocol

• OS_Seria!Op 2 sends a break.

• OS_Seria!Op 6 reads and writes the transmit baud rate (5 for receive).

When bit 0 of the OS_Byte 3 streams byte is set, characters sent to
OS_ WriteC are passed to the serial output stream. In particular, they arc
inserted into the serial output buffer (buffer number 2), where they remain
until removed by the interrupt routine dealing with serial transmission.

Note that if the serial port is selected as the printer by OS_Byte 5, and the
serial port is enabled by setting bit 0 of the stream's byte with OS_Byte 3,
then the character is insetted into both buffers. This means that eventually the
character is printed twice, first from the serial output buffer and then from
the printer buffer. To solve this problem, make the printer another device
type, such as the printer sink, which allows data sent to the printer to be
ignored.

If the output buffer is already full and there is nothing communicating with
the serial port, when you insert another character the machine temporarily
halts while it waits for a character to be removed to make space for the new
character. An escape condition abandons this wait.

When trying to get communications working with an external device using the
serial device, there are several important factors to remember:

• The receiver must be electrically compatible with RS423 or RS232.

• The handshaking lines must be connected between the sender and receiver
in exactly the right way.

• The sender must match baud rates with the receiver.

• They must also match the transmission protocol. Each byte sent is
packaged up in some variation of the following sequence:

A start bit synchronises the receiver with the sender.

2 The number of bits of actual data sent is variable from 5 to 8.

3 There can be an optional parity bit, which is used to check that no errors
have taken place during tr,msmission.

4 It ends with a stop bit, either 1, 1.5 or 2 bits long.

Character Output:Technical Details 159

Serial line names

Spool device

Opening and closing

Note that the default setup c:i the serial protocol (configured in CMOS
RAM) is different from some earlier Acorn machines. For example, the setup
for RISC OS machines is the same as the Master series (8 data bits, no
parity, 2 stop bits), but different from the original BBC series (8 data bits, no
parity, 1 stop bit).

Coming out of the serial connector are many lines. This is a list of their names
and common abbreviations:

• data receive (RxD)

• data transmit (T xD)

• ground (OV)

• request to send (RTS)

• confirm to send (CfS)

• data carrier detect (OCD)

• data terminal ready (DTR)

• data set ready (DSR)

Refer to the documentation accompanying your particular communications
device for information on how to wire these lines correctly with the serial
port. For further information, contact Acorn Customer Support.

When a spool file is opened, all characters subsequently displayed using
OS_ WriteC are also sent to that Ale, using the OS_BPut routine. This action
continues until the file is closed.

There are two ways of opening and dosing a spool file. The simplest is to use
the CLI commands *Spool <pathname> or *SpoolOn <pathname> to
start output going into the named file.

To stop spooling and close the file, a *Spool or *SpoolOn command with

no parameters must be issued, or you can stop it directly by using
OS_Byte 199 documented below.

OS_Byte 3

OS_Byte 199

VDU device

Disabling VDU driver

The spool file stream can be temporarily disabled by setting bit 4 of the
streams byte in OS_Byte 3. This does not close the file, but prevents
OS_ WrireC from trying to send the character to file.

OS_Byte 199 (SWI &C7) provides direct control over the spool file, without
the necessity of using the CLI. It reads and writes the location which holds the
handle d the current spool file. If this is zero, OS_ WriteC makes no attempt
to use the spool stream, as no file is open. You will only need to use this
command for sophisticated programs that, say, keep swapping between
several spool files.

The VDU driver will display characters and graphics on the screen. The
value of the character sent determines its effect. Below is a list of the
meanings of different characters. Note that in Teletext modes, a different set
is in use.

• 0-31 - VDU commands (graphics and control)

• 32- 126 - ASCII .characters

• 127 -Delete

• 128- 159 -User definable characters

• 160- 255 -ISO international characters

Note that if defining characters in the range 128- 159 under the Desktop, you
should always read the current definition of the character first using
OS_ Word 10 and then redefine it for the duration of the redraw. Always
ensure that the character definition is restored (not set to the default using
*FX 25) before calling XWimp_Poll again.

If an OS_Byte 3 with bit 1 set is sent, then the VDU driver is disabled. This
prevents all output from appearing on the screen. Also, as control codes will
not be acted on, it disables the VDU printer stream, described in an earlier
section.

Disabling the VDU, by setting this bit, is independent of the ASCII 21 (Ctri­
U), which will disable the VDU drivers. The main difference is that the
VDU printer stream will still work, if already enabled by ASCII 2 (Ctri-B),
after an ASCII 21.

Character Output:Technical Details 161

VDUXV

Direct Control

1R?

VDUXV is the VDU extension vector. When an OS_Byte 3 with bit 1 clear
(YOU-enabled) and hit 5 set (VDUXV enabled) is issued, characters that
would usually be sent to the VDU drivers are sent instead to the routine on
the VDU extension vector. This allows you to replace the VDU drivers,
usually temporarily. The font manager, for example, uses this facility.

The character sent to VDUXV can be sent to the printer stream by setting the
carry flag on rerum from the vector.

See the chapter entitled Software vectors for more details on installing a
routine on this vector.

OS_Plot can be used to write to the VDU directly rather than going through
the stream system. It is consequently faster. It is described in the chapter
entitled VDU drivers.

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Write a character to all of the active output streams

RO =character to write

RO = preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS WriteC
(SWI &00)

This call sends the byte in RO to all of the active output streams. This is
called as a low level writer by several other routines.

OS_WriteC calls the Write Character vector WrchV, the default action of
which is to send the character to all active output streams. If this vector is
replaced, using OS_Ciaim, then all of the SWis that use this vector will be
funnelled into the replacement routine.

All the routines that call OS_ WriteC may not actually call OS_ WriteC or
even Wrch V unless there is some pressing reason to do so. For example, if
WrchV is being intercepted by someone else as well as the defualt ROM
routine, if a spool file is active or the printer is active etc.

Related SWis OS_ WriteS (SWI &01), OS_WriteO (SWI &02}, OS_NewLine (SWI &03},
OS_PrettyPrint (SWI &44 }, OS_ WriteN (SWI &46},
OS_ Writel (SWI &100- SWI &lFF}, OS_Byte 3 (SWI &06)

Related vectors WrchV

Character Output:SWI Calls 163

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

164

OS WriteS
(SWI &01)

Write the following string to all of the active output streams

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call sends the string that immediately follows the SWI instruction to all
of the active output streams. It uses OS_ WriteC directly a character at a time.
The string is terminated by a null.

This SWI alters its return address so that execution continues at the word
after the end of the string. Consequently you must not conditionally execute
this SWI.

OS_ WriteC (SWI &00)

WrchV

Character Cutout: SWI Call~

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Write a indirect string to all of the active output streams

RO = pointer to null-terminated string to write

RO = points to the byte after the null byte

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS WriteO
(SWI &02)

This call sends the string pointed to by RO to all of the active output streams.

It uses OS_ WriteC directly a character at a time.

Related SWis OS_ WriteC (SWI &00)

Related vectors WrchV

Character Output:SWI Calls 165

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

166

OS NewLine
(SWI &03)

Write a line feed followed by a carriage return to all of the active output
streams.

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call uses OS_ WriteC. It is equivalent to two calls to OS_ Writel. For
example:

SWI OS_Writei + 10 ; VDU 10 ie 1inefeed
SWI OS_Writei + 13 ; VDU 13 ie carriage return

This can now be replaced by a single call:

SWI OS_NewLine ; VDU 10,13

OS_ WriteC (SWI &00), OS_ Writel (SWI &100- SWI &IFF)

WrchV

Character Outout: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Character Output:SWI Calls

OS_Byte 3
(SWI &06)

Specify output streams

RO = 3 (reason code)
R1 =determines the output stream(s)

RO = preserved
R 1 = previous stream specification
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call selects the device(s) to which all subsequent output will be sent. The
output stream(s) are determined by which bits are set in R 1 as follows:

Bit Effect if set

0 Enables serial driver
1 Disables VDU driver
2 Disables VDU printer stream
3 Enables printer (independently of the VDU)
4 Disables spooled output
5 Calls VDUXV instead ofYDU driver (see the chapter on VDU)
6 Disables printer apart from VDU l,n
7 Notused

The interpretations of all of these bits are described in subsequent sections.
All bits are zero by default. This means that the VDU is enabled, the VDU
printer stream is enabled, and the spool stream is enabled.

Details d how bits 1, 2, 3 and 6 interact is described in the Technical Details
section of this chapter.

This command can also be performed by *FX 3, <stream byte>

167

Related SWis

Related vectors

168

OS_Byte 236 (SWI &06)

ByteV, VDUXV, WrchV

Character Output: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Character Output:SWI Calls

Write printer driver type

RO = 5 (reason code)
Rl =driver type

RO = preserved
Rl =previous driver type
R2 = corrupted

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

Not defined

The driver is determined as follows:

Value

0
1
2

Type

Printer sink
Parallel (Centronics) printer driver
Serial output

OS_Byte 5
(SWI &06)

3- 255 Files in system variables PrinterType$n (eg the NetPrint
module sets up PrinterType$4)

This call determines which printer driver type (and hence printer port) is
selected for subsequent printer output. The default state is set by
*Configure Print.

Note that if the serial port is selected as the printer, and the serial port is
enabled by setting bit 0 of the stream's byte, then the character is inserted
into both buffers. This means that eventually the character is printed twice
(first from the serial output buffer), so this practice is not recommended.

Instead of choosing an actual device type, for example a parallel printer
driver, a 'printer sink' may be selected. This means that all characters sent to
the printer are ignored.

169

Related SWis

Related vectors

170

The new destination type comes into effect only when all the current contents
of the printer buffer have been sent to the previously-selected driver. This
means that when this OS_Byre is issued, or the corresponding *FX command,
the machine may appear to hang until the current printer buffer's contents are
cleared. (This may be forced to happen by acknowledging an escape
condition from the foreground provided that the escape side effects are
enabled.)

This command can also be performed by *FX 5, <driver type>

OS_Byte 8 (SWI &06), OS_Byte 245 (SWI &06)

ByteV

Character Output: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Write printer ignore character

RO = 6 (reason code)
Rl =ASCII value of ignore character

RO = preserved
R 1 = previous ignore character
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 6
(SWI &06)

The default value of the printer ignore character is set by *Configure
Ignore. It may be changed temporarily using this OS_Byte, or by the
associated command *Ignore. The latter has the advantage that it also
allows a no ignore state to be set.

This command can also be performed by *FX 6, <ignore character>

Related SWis OS_Byte 246 (SWI &06), OS_Byte 182 (SWI &06)

Related vectors ByteV

Character Output:SWI Calls 171

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

172

Write serial port transmit rate

RO = 8 (reason code)
R 1 = baud rate code

RO = preserved
R 1 = corrupted
R1 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 8
(SWI &06)

This call sets the serial baud rate for transmitting data as follows:

Value Baud rate

0 9600
1 75
2 ISO
3 300
4 1200
5 2400
6 4800
7 9600
8 19200
9 50
10 110
11 134.5
12 600
13 1800
14 3600
15 7200

Character Output: SWI Calls

The settings from 0 to 8 are in an order compatible with earlier operating
systems. The other speeds from 9 to 15 provide all the other standard baud
rates.

The default rate is that set by *Configure Baud.

This command can also be performed by *FX 8, <baud rate>

Related SWis OS_Byte 7 (SWI &06)

Related vectors ByteV

Character Outout:SWI Calls 173

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

~"7A

Read/write serial communications state

RO = 156 (SWI &9C) (reason ccx:ie)
Rl = 0 or new value
R2 = 255 orO

RO = preserved
Rl =value before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mcx:ie

Not defined

OS_Byte 156
(SWI &06)

The value stored is changed by being masked with R2 and then exclusive ORd
with Rl. ie ((value AND R2) XOR Rl). This means that R2 controls which
bits are changed and Rl supplies the new bits.

This call accesses the control byte of the serial port. In addition to updating
the status byte in RAM, it also updates the hardware register which controls
the serial port characteristics.

The call enables the current settings of the transmitter, receiver, interrupts
and the serial handshake line Request To Send (RTS) to be read or altered.

When writing, the effect depends on the bits in Rl:

Bit 1
0
0
1
1

Bit 0
0
1
0
1

Effect
No effect
No effect
No effect
Reset transmit, receive and control registers

"1..----.a-- ""'--.&-.. .&. "'··· """' - U -

Bit 4 Bit 3 Bit 2 Word length Parity Stop bits
0 0 0 7 even 2
0 0 1 7 odd 2
0 1 0 7 even 1
0 1 1 7 odd 1
1 0 0 8 none 2
1 0 1 8 none 1
1 1 0 8 even 1
1 1 1 8 odd 1

Bit 6 Bit 5 Transmission control
0 0 RTS low, transmit interrupt disabled
0 1 RTS low, transmit interrupt enabled
1 0 RTS high, transmit interrupt disabled
1 1 RTS low, transmit break level on transmit data, transmit

interrupt disabled

The above bits should not be modified as they are controlled by the OS. Use
the OS_Seria!Op SWis instead to control transmission.

Bit 7 Receive interrupt
0 Disabled
1 Enabled

The default setting for bits 2- 4 comes from the *Configure Data value,
shifted left by two bits. The current value of this byte may be read (but not
set) using OS_Byte 192. The write command can also be performed by *FX
156,<new value>.

OS_SerialOps 0 and 1 provide all of these facilities and more, with the
exception c:i the interrupt control bit. The receive interrupt/control bit can be
set/cleared via OS_Byte 2. You should not change the RTS/transmit IRQ bits;
RISC OS handles this function.

This call is provided for compatibility only and should not be used. In all
cases you should use OS_SeriaiOp to provide these functions.

Related SWis OS_Seria!Op (SWI &57) OS_Byte 192 (SWI &06)

Related vectors ByteV

Character Output:SWI Calls 175

·::.

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

17~

Read/write NOIGNORE state

RO = 182 (&B6} (reason code}
Rl = 0 to read or new state to write
R2 = 255 to read or 0 to write

RO = preserved
Rl =state before being overwritten
RZ = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

OS_Byte 182
(SWI &06)

The state stored is changed by being masked with RZ and then exclusive ORd
with Rl. ie ((state AND RZ) XOR Rl). This means that R2 controls which bits
are changed and Rl supplies the new bits.

This call allows reading the current NOIGNORE state or changing it to a new
value.

If the value read or written is >=&80 (i.e has bit 7 set), then the printer
ignore character is not used. If bit 7 is clear, then the current printer ignore
character is filtered out.

The default setting of this flag is controlled by *Configure Ignore and
may be changed temporarily using *Ignore.

The write command can also be performed by *FX 182, <new state>

OS_Byte 6 (SWI &06), OS_Byte 246 (SWI &06)

ByteV

Read/write serial busy flag

On entry RO = 191 (&BF) (reason code)
Rl = 0 or new value
R2 = 255 orO

On exit RO = preserved
Rl =state before being overwritten

OS_Byte 191
(SWI &06)

R2 = value of serial port control byte (see OS_Byte 192)

Interrupts Interrupt status is not altered
Fast interrupts are enabled

Processor Mode Processor is in SVC mode

Re-entrancy Not defined

Use This call is provided for compatibility reasons only; the cassette interface and
RS423 serial port shared the same hardware on the BBC/Master 128
machines. It performs no useful function under RISC OS.

Related SWis None

Related vectors ByteV

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

178

Read serial communications st<~te

RO = 192 (&CO) (reason code)
Rl = 0
R2 = 255

RO = preserved
Rl =value of communications state
R2 =value of flash counter {see OS_Byte 193)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 192
(SWI &06)

This call reads the control byte of the serial port. It is equivalent to a read
operation with OS_Byte 156.

This call should not be used to write the value back, as to do so would make
the RISC OS copy of the register inconsistent with the actual register in the
serial hardware.

OS_SerialOp {SWI &57) OS_Byte 156 {SWI &06)

ByteV

Character Cutout: SWI Calls

On entry

On exit

'nterrupts

Processor Mode

Ae-entrancy

'Jse

Read/write spool file handle

RO = 199 (&C7) (reason code)
Rl = 0 to read or new handle to write
R2 = 25-5 to read or 0 to write

RO = preserved
Rl =handle before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

OS_Byte 199
(SWI &06)

The handle stored is changed by being masked with R2 and then exclusive
ORd with Rl. ie ((handle AND R2) XOR Rl). This means that R2 controls
which bits are changed and Rl supplies the new bits.

This call is used to set where spooled data is sent. If its value is zero or if
spooling is disabled by OS_Byte 3, then no data is sent.

A handle must be correctly returned from a call to OS_Find. If this handle is
then passed to this routine then data will be sent to that file if spooling is
enabled.

The write command can also be performed by *FX 199, <handle>

~elated SWis OS_Byte 3 (SWI &06), OS_Find (SWI &OD)

Related vectors ByteY

..;haracter Output:SWI Calls 179

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

180

Read/write character destination status

RO = 236 (&EC) (reason code)
Rl = 0 when reading or new status when writing
R2 = 255 to read or 0 to write

RO = preserved
Rl = status before being overwritten
R2 =cursor key status (see OS_Byte 237)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 236
(SWI &06)

The status stored is chan~:Cd by being masked with R2 and then exclusive
ORd with Rl. ie ((status AND R2) XOR Rl). This means that RZ controls
which bits are changed and R 1 supplies the new bits.

This call reads and writes the output streams value. This can also be written
by OS_Byte 3. See OS_Byte 3 for a list of the bit values.

The write command can also be performed by *FX 236, <status>
'

OS_Byte 3 (SWI &06)

ByteY

Character Output: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Character Output:SWI Calls

Read serial baud rates

RO = 242 (&F2) (reason code)
R1=0
R2 = 255

RO = preserved
RI = baud rates
R2 =timer switch state (see OS_Byte 243)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 242
(SWI &06)

R1 returns an encoded value which gives the baud rate for serial receive and
transmit. Originally, in the BBC/Master operating systems, only eight baud
rates were available. These could be encoded in three bits each for receive
and transmit. Under RISC OS, 15 are available, which requires four bits to
encode. For compatibility with this earlier format, the layout of this byte
looks unusual:

Bit Meaning

0 TransmitbitO
1 Transmit bit 1
2 Transmit bit 2
3 Receive bit 0
4 Receive bit 1
5 Receive bit 2
6 Receive bit 3
7 Transmit bit 3

These four bit groups are encoded with baud rates. Note that this order is not
the same as the order used by any other baud rate setting SWI. This order is
based on the original hardware:

181

Related SWis

Related vectors

182

Value Baud Rate

0 19200
1 1200
2 4800
3 150
4 9600
5 300
6 2400
7 75
8 7200
9 134.5
10 1800
11 50
12 3600
13 110
14 600
15 undefined

The value stored must not be changed by making Rl and R2 other than the
values stated above.

This call is provided for backwards compatibility with the BBC and Master
operating systems. You should in preference use OS_SeriaiOps 5 and 6 to
read and write baud rates.

OS_Byte 7 (SWI &06), OS_Byte 8 (SWI &06), OS_ScriaiOp (SWI &57)

ByteY

Character Output: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Read printer driver type

RO = 145 (&F5) (reason code)
Rl=O
R2 = 255

RO = preserved
Rl = value before being overwritten

OS_Byte 245
(SWI &06)

R2 = value printer ignore character (see OS_Byte 146)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

The value stored must not be changed by making R 1 and R1 other than the
values stated above. Use OS_Byte 5 instead to write.

This call will return values in Rl in the following runge:

Value

0
1
2
3-255

Type

Printer sink
Parallel {Centronics) printer driver
Serial output
Files in system variables PrinterType$n (eg the NctPrint
module uses PrinterType$4)

This call does not wait for the printer buffer to empty first. Because of this, it
does not enable interrupts, and so may be used to read the printer type from
within an interrupt routine.

Related SWis OS_Byte 5 (SWI &06)

Related vectors ByteY

Character Output :SWI Calls 183

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

184

Read/write printer ignore charncter

RO = 246 (&F6) (reason code)
Rl = 0 to read or new ASCII value to write
R2 = 255 to read or 0 to write

RO = preserved
Rl = value before being overwritten
RZ = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 246
(SWI &06)

The value stored is changed by being masked with RZ and then exclusive ORd
with Rl. ie ((value AND RZ) XOR Rl). This means that RZ controls which
bits are changed and R 1 supplies the new bits.

This call allows reading the current state of the printer ignore character or
changing it to a new value.

The write command can also be performed by *FX 2 4 6, <value>

OS_Byte 6 (SWI &06), OS_Byte 182 (SWI &06)

By reV

Character Output: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

OS_PrettyPrint
(SWI &44)

Write an indirect string with some formatting to all of the active output
streams

RO = pointer to null-terminated string to write
Rl =pointer to dictionary (0 means use the internal RISC OS dictionary)
R2 = pointer to null-terminated special string

RO = preserved
R 1 = preserved
R2 = preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call acts like OS_ WriteO, with several differences:

• Several characters have special meanings to OS_PrettyPrint.

• It will break a line at a SPACE (ACSII 32) if the next word will not fit
on the line; it will not do this at hard spaces.

• Compacted text is handled.

The following characters in the string have special meanings:

• CR (ASCII 13) causes a newline to he generated.

• TAB (ASCII 9) causes a tabulation to the next multiple of eight columns.

• SPACE (ASCII 31) is a hard space.

• ESC (ASCII 27) indicates that a dictionary entry should he substituted.

Character Output:SWI Calls 185

186

Compacted text uses an escape character in the print string to indicate a
dictionary entry. It is followed immediately by a byte which is the dictionary
entry number. If this byte is in the range 1 to 255, then the appropriate string
in the dictionary is substituted. If it is 0, then the special string pointed to by
R2 on entry is substiruted. (This is used in particular by the *Help command.)

The format of a dictionary is a linear list c:i entries, these entries can
recursively refer to other dictionary entries; each entry is a length byte
followed by a null-terminated string. This means that a d ictionary does not
have to have 255 entries. It can be ended at any point with a zero length entry.

The contents of the RISC OS dictionary is summarised below:

Token

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
23
24
25
26

String

<string pointed to by R2>
•syntax: •·<string pointed to by R2>
II the M

"director.,

"filing system"
"current"

" to a variable. Other types of value can be assigned with ••
••tile"

"default "

• •configure •
"name"

" server"

"number"

•syntax: •·<string pointed to by R2>• <"
• one or more files that ma tch the given wildcard"
• and "

"relocatable module"
<CR>•c (on firm) "<T AB>" Prompt for con!1rmat ton of each •
"sets the "

•syntax: •·<stringpointed tobyR2>· (<disc spec.>)"
")·<CR>•vrerbose)"<TAB>•print information on each tile •
•spriteLandscape (<XScale> (<YScale> (<Harqln> (<Threshold>lllll "
• is used to print a hard copy of the screen on EPSON-"
•. •<CR>•ept Ions : (use - to force off, eq. -·
"printe•

Ch:u~r.tP.r n••tn~•t · ~WI r.~u~

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

•syntax: •"<string pointed tO by R2>• <filename>"

•select•

•xpreaalon•

•syntax: •"<string pointed to by R2>• I"

•sprite•

• displays"

• tree space•

• Iotti"

"library•

•parameter•

"object •

• all •

"disc•

• to •

• is "

Related SWis OS_ WriteC {SWI &00)

Related vectors None

Character Output:SWI Calls 187

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

188

Send a character to the printer stream

RO = character to print

RO = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS PrintChar
(SWI &5D)

This call will send a character to the printer. OS_Bytes 3 and 5 control
whether there is a printer selected and which device it is.

Note that the printer ignore character (see OS_Bytc 6) is not used by this call.

None

None

Character Cutout: SWI Calls

Write a counted string to the VDU

On entry RO = pointer to string to write
Rl = number of bytes to write

On exit RO, R 1 preserved

Interrupts Interrupt status is undefined
Fast interrupts are enabled

Processor Mode Processor is in SVC mode

Re-entrancy SWI is not re-entrant

OS WriteN
(SWI &46)

Use If the VDU is the only active stream, this catl uses the low-level VDU
drivers directly, and is therefore much more efficient than using multiple
calls to OS_ WriteC. Also, because no special character is used to mark the
end of the string, any VDU sequence may be sent.

Related SWis None

Related vectors WrchV

Character Output:SWI Calls 189

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

190

Low level serial operations

RO = reason code
other input registers as determined by reason code

RO preserved

OS_SerialOp
(SWI &57)

ocher registers may rerum values, as determined by the reason code passed.

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call is like OS_Byte in that it is a single call with many operations within
it. The operation required, or reason code, is passed in RO. It can have the
following meanings:

• RO = 0 - Read/write serial states

• RO = 1- Read/write data format

• RO = 2 - Send break

• RO = 3 - Send byte

• RO = 4 - Get byte

• RO = 5 - Read/write receive baud rate

• RO = 6 - Read/write transmit baud rate

On the following pages is a detailed explanation of each of these reason
codes in tum. Reason codes 4 and 5 can be found in the chapter entitled
Character int>ut.

None

None

Character Outout· SWI r.::.n~

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Character Output:SWI Calls

OS_SerialOp 0
(SWI &57)

Read/write serial status

RO = 0 (reason code)
Rl =XOR mask
R1 =AND mask

RO preserved
Rl =old value of state
R1 = new value of state

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The structure of this call is very similar to that of OS_Bytes between
SWI &A6 and SWI &FF. The new state is determined by:

New state = (Old state AND R2) XOR Rl

This call is used to read and write various states of the serial system. These
states are presented as a 31-bit word. The bits in this word represent the
following states:

Read/Write or
Bit ReadOnly Value Meaning

0 R/W 0 No software control. Must rely on hardware
handshaking.
Use XON/XOFF protocol. The hardware
will still do crs handshaking (ie if crs
goes low, then transmission will stop), but
RTS is not forced to go low.

191

1 R/W 0 Use the -DCD bit. If the -DCD bit in the
status register goes high, then cause a serial
event. Also, if a character is received when
-DCD is high , then cause a serial event, and
do not enter the character into the buffer.
Ignore the -DCD bit Note that some serial
chips (GTE and CMD) have reception and
transmission problems when this bit is high.

2 R/W 0 Use the -DSR bit. If the - DSR bit in the
status register is hi~h. then do not transmit
characters.

1 Ignore the state of the -DSR bit.
3 R/W 0 DTR bit is 0.

DTR bit is I.
4. 15 These bits arc undefined. Do not modify

them.
16 RO 0 XOFF not received.

XOFF has been received. Transmission is
stopped by this occurrence.

17 RO 0 The other end is intended to be in XON
state.
The other end is intended to be in XOFF
state. When this bit is set, then it means that
an XOFF character has been sent and it will
be cleared when an XON is sent by the
buffering software. Note that the fact that
this bit is set does not imply that the other
end has received an XOFF yet.

18 RO 0 The-OCD bit is low, ie carrier present.
1 The -OCD bit is high, ie no carrier.

19 RO 0 The -DSR bit is low, ie 'ready' state.
1 The -DSR bit is high, ie 'not-ready' state.

20 RO 0 The ring indicator bit in IOC is low.
The ring indicator bit in IOC is high.

21 . 31 These bits are undefined. Do not modify
them

Note that if XON/XOFF handshaking is used, then OS_Byte 2,1 or 2,2 must
be called beforehand.

192 Character Cutout: SWI Calls

Related SWis OS_Byte 156 (SWI &06)

Related vectors None

Character Output:SWI Calls 193

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

194

Read/write data format

RO = 1 (reason code)

OS_SerialOp 1
(SWI &57)

R1 = -1 to read or new format value

RO = preserved
Rl =old format value.

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call sets the encoding of characters when sent and received on the serial
line. The bits in this word represent the following formats:

Read/Write or
Bit ReadOnly Value Meaning

0,1 R/W 0 8 bit word.
1 7 bit word.
2 6 bit word.
3 5 bit word.

2 R/W 0 1 stop bit.
1 2 stop bits in most cases.

1 stop bit if 8 bit word with parity.
1.5 stop bits if 5 bit word without
parity.

3 R/W 0 parity disabled.
1 parity enahlcd.

4,5 R/W 0 odd parity.

Character Output: SWI Calls

6-31

Related SWis OS_Byte 156 (SWI &06)

Related vectors None

1
2

3

even parity.
parity always 1 on TX and ignored
onRX.
parity always 0 on TX and ignored
onRX.
reserved- must be set to zero

Character Output:SWI Calls 195

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

196

Send break

RO = 2 (reason code)
Rl =length ofbreak in centiseconds

RO = preserved
R 1 = preserved.

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

OS_SerialOp 2
(SWI &57)

This call sets the ACIA to transmit a break, then waits R 1 centiseconds before
resetting it to normal. Any character being transmitted at the time the call is
made may be garbled. After sending the break the transmit process is either
awakened if the buffer is not empty, or made dormant if the buffer is empty.

None

None

Character Cutout: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Send byte

RO = 3 (reason code)
Rl =character to be sent

RO = preserved
Rl =preserved.
if C flag = 0 then character was sent

OS_SerialOp 3
(SWI &57)

if C flag = 1 then character was not sent because the buffer was full

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call puts a character in the serial output buffer, and re-enables the
transmit interrupt if it had been disabled by RISC OS.

If the serial output buffer is full, the call returns immediately with the C
flag set.

Related SWis None

Related vectors None

Character Output:SWI Calls 197

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

198

Read/write TX baud rate

RO = 6 (reason code)
Rl = - 1 to read or 0 • IS to set to a value

RO = preserved
Rl =old transmit baud rate

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_SerialOp 6
(SWI &57)

This call has the same effect as an OS_Byte 8 for writing.

The value that is passed in R 1 uses the same table of baud rates as this
OS_Byte.

OS_Byte 8 (SWI &06)

None

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

OS Write!
(SWI &100-lFF)

Write an immediate byte to all of the active output streams

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call writes the character contained in the bottom byte of the SWI
number, using OS_ WriteC. It has the advantage ci being more compact and
quicker for a program using it than the equivalent usage ci OS_ WriteC. For
example, to write a "J" character, you would use:

SWI OS Write! + ASC"J"

Related SWis OS_ WriteC (SWI &00)

Related vectors WrchV

Character Output:SWI Calls 199

*Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

200

*Configure Baud
Sets the configured serial port baud rate.

*Configure Baud <n>

<n> 0 to 8

This command sets the configured baud rate.

The values ci n passed with this command correspond to the following baud
rates:

n baud rate

0 9600
1 75
2 150
3 300
4 1200
5 2400
6 4800
7 9600
8 19200

The default value is 4 (1200 baud).

The receive and transmit baud rates are set from this configured value on any
reset.

*Configure Baud 7 sets the configurcB baud rate to 9600

None

OS_Byte 7 (SWI &06), OS_Byte 8 (SWI &06),
OS_SeriaiOp 5 (SWI &57), OS_Seria!Op 6(SWI &57)

None

Character Outout: •commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Configure Data
Sets the configured data protocol for the serial port.

*Configure Data <n>

<n> 0 to8

This command sets the configured protocol state in CMOS RAM.

The values of n passed with this command correspond to the following states:

n Word length Parity Stop bits

0 7 even 2
I 7 odd 2
2 7 even 1
3 7 odd 1
4 8 none 2
5 8 none 1
6 8 tven 1
7 8 odd

4 (8 bits, no parity, 2 stop bits) is the default state on RISC OS.

The data protocol is set from this configured value on any reset.

*Configure Data 0 (7 bits, even parity, 2 stop bits)

None

OS_Byte 156 (SWI &06), OS_SeriaiOp 1 (SWI &57)

None

Character Output:*Commands 201

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

202

*Configure Ignore
Specifies the configured printer ignore character.

*Configure Ignore (<n>]

<n> ASCII code, from 0 to 255

*Configure Ignore specifies the configured ASCll code for the printer
ignore character, used when printing is enabled via the YOU printer stream
or OS_Byte 5.

The default value is 10 (ASCII linefeed). On some printers, you may find
this causes lines to overprint each other, in which case you should omit the
character code so all characters are sent to the printer.

The ignore character is set from this configured value on a hard reset.

*Configure Ignore 10
*Configure Ignore

None

Do not print ASCII character 10.
Print all characters.

OS_Byte 246 (SWI &06), OS_Byte 182 (SWI &06), OS_Byte 6 (SWI &06)

None

Character Cutout: •comm;:uvi~

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Configure Print
Selects the default destination for printed output.

*Configure Print <n>

<n> 0 to 7

This command sets the default printer destination in CMOS RAM.) ..
::'::·

The values of <n> passed with this command correspond to the following
printers: .::·:

n Printer

0 Printer sink (no output)
1 Parallel port
2 Serial port
3 User printer driver
4 Network printer (handled through NetPrint)
5-7 Files in system variables PrinterType$<5 1617>

This option can also be set to 0, 1, 2 or 4 from the desktop, using the
Configure application.

The default destination is set from this configured value on a hard reset.

*Configure Print 1 select the parallel printer port

None

OS_Byte 5 (SWI &06)

None

Character Output:• commands 203

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

204

*Ignore

Sets the printer ignore character to the given ASCII code.

*Ignore [<number>]

<number> an ASCII code, a number from 0 to 255

*Ignore specifies the ASCII code for the prinrer ignore character, used
when printing is enabled via the VDU printer srre:~m or OS_Byte 5.

The default value is 10 (ASCII linefeed). On some printers, you may find
this causes lines to overprint each other, in which c:~se you should omit the
character code so all characters are sent to the printer. *Ignore 0 will not
ignore all characters; it will ignore the null character.

OS_Byte 246 will read and write this value. OS_Byte 182 controls the
Nolgnore state. OS_Byte 6 performs the same action as this command.

*Ignore 10 Do not print ASCII character 10.
*Ignore Print all characters.

None

OS_Byte 5 (SWI &06), OS_Byre 246 (SWI &06), OS_Byte 182 (SWI &06),
OS_Byte 6 (SWI &06)

None

Character Output: *Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Spool
Sends everything appearing on the screen to the named file

*Spool [<pathname>)

<pathname> a valid pathname specifying a file

*Spool <pathname> opens the specified file for output. Any existing file
of the same name will be overwritten. All subsequent characters sent to the
YOU drivers will also be copied to the file, using OS_BPut. (If OS_BPut
returns an error, the spool file is closed (thereby restoring the spool handle
location) and this error is returned from OS_ WriteC.)

This continues until either a *Spool command (with or without a file name)
is issued or a *Spool On is issued which will terminate spooling started by
*Spool.

If the pathname is omitted, the current spool file, if any, is closed, and
characters are no longer sent to it. If the pathname is given, . then the existing
spool file is closed and the new one opened.

You can temporarily disable the spool file, without closing it, using
OS_Byte 3.

*Spool %.Showdump
*Spool

*Spool On

OS_Byte 3 (SWI &06), OS_Byte 199 (SWI &06) OS_BPut (SWI &013)
OS_File (SWI &08)

ByteY, BPutY

Character Output:*Commands 205

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

206

*Spool On
Add data sent to the screen to the end of an existing file

*SpoolOn [<pathname>]

<pathname> a valid pathname specifying a file that exists

*SpoolOn <pathname> is similar to *Spool, except that it takes the name
of an existing file. An error will occur if the name of a non-existent file is
given. All subsequent characters sent to the YOU drivers will also be copied
to the end of the file, using OS_BPut. (If OS_BPut returns an error, the spool
file is closed (thereby restoring the spool handle location) and this error is
returned from OS_WriteC.)

This continues until either a *SpoolOn command (with or without a file
name) is issued or a *Spool is issued which will terminate spooling started
by *Spool On.

If the pathname is omitted, the current spool file, if any, is closed, and
characters are no longer sent to it. If the pathname is given, then the existing
spool file is closed and the new one opened for appending.

You can temporarily disable the spool file, without dosing it, using
OS_Byte 3.

*SpoolOn %.Showlist
*Spool On

*Spool

OS_Byte 3 (SWI &06), OS_Byte 199 (SWI &06) OS_BPut (SWI &OB)
OS_File (SWI &08)

ByteV, BPutV

Character Output: ·commands

VDU Drivers

Introduction

VDU Drivers: Introduction

Though strictly speaking part of the character output system, the YOU drivers
are quite complex, and deserve a chapter of their own. This chapter introduces
the important concepts relating to the YOU, such as:

• screen modes

• graphics and text windows

• colour palette

• colour patterns

• the mouse

• putting text and graphics on the screen

• multiple display pages

The chapter entitled character output described how to write to the YOU. This
chapter describes what special effects occur when particular characters arc
sent.

There are also a large number of YOU specific commands that allow fine
control of its operation.

There are five important aspects of YOU interaction which are not described
in this chapter. These are:

• the Font manager

• the Window manager

• the Draw module

• Sprites

• the ColourTrans module

These are implemented as modules separate from the RISC OS kernel, and
are described in their own chapters.

207

Overview

vou commands

Modes

The m05t important call relating to the VDU is OS_ WriteC, as this is used in
nearly all programs which have to output to the screen. Other calls can be
used for more direct control of the VDU facilities.

The VDU display on RISC OS comes from the VIDC chip. This reads the
contents of a block of memory and converts it into a form that can drive a
video monitor.

This chapter differs from others in this manual in that, in addition to a list of
SWis and *commands, there is also a list of VDU commands. To issue VDU
commands, simply usc OS_ WriteC to send characters to the VDU stream.
All characters are strictly VDU commands, but those between 0 and 31, and
127 are of special interest because they cause special actions to take place.
The others are simply printed on the screen as a character.

These special characters are used as commands. They can be followed by a
sequence of characters, the length of which depends on the command. In some
cases, the character on its own is sufficient, but it can require up to 9 following
bytes to complete the command. These bytes are queued until the required
number are in the queue before the command is executed.

To represent these sequences of characters sent to the VDU using
OS_WriteC, a shorthand is used in this chapter. You will sec VDU followed
by numbers separated by commas. This represents each character being sent
through OS_ WriteC.

For example, VDU 65 sends character 65, an ASCII 'A', to OS_ WritcC.
VDU 17,3 sends character 17 followed by character 3.

RISC OS supports many different ways of displaying information on the
screen. Each of these different ways' is called a mode. The exact number of
modes available depends on the type of monitor you have. They are all bit·
mapped displays, in which one or more bits cl screen memory control the
colour of a dot, or pixel, on the screen. Two main characteristics distinguish
the modes.

• The resolution of a mode relates to the number of pixels which can be
displayed horizontally and vertically.

208 VDU Driver~: OvArviAw

Text and graphics

Windows

Text VDU

vm J Drivers: Overview

• The number of colours that can be displayed at once is determined by the
number of bits used to store each pixel. Typically, this can be 1, 2, 4 or 8
bits, leading to 2, 4, 16 or 256 colours on the screen at once.

Between them, the resolution and number of colours determine the amount of
screen memory used by a mode.

A complete list of the available modes is given in the description of YOU 22,
which is the command that changes modes.

There are two distinct types of object that the YOU drivers can draw onto the
screen.

• The text YOU deals with drawing text characters

• The graphics YOU handles any arbitrary drawing of dots, lines, shapes,
etc.

Different commands will act to either text or graphics areas. Each has a
window, or area where their output will go. After a mode change, both text
and graphic windows fill the screen and overlap each other exactly. There is
no conflict in having them overlap, since the window is just a declaration of
boundaries. Either window can be changed at any time to be any size. Any
output to a window will be clipped to it. For example, if only part of a line
appears in the graphics window, then only that part will be shown and the
rest ignored.

A cursor is the place at which the next output will go. There are independent
text and graphics cursors, which must remain inside their relevant window.

Various control commands are provided to affect the output in text and
graphics windows. Examples of such actions are:

• changing the colours in which output occurs,

• moving the appropriate cursor,

• clearing the window.

Text characters are patterns of pixels which are positioned on the screen at
character-aligned positions. That is, the screen is treated like an array of
character sized boxes, into which can go any printable character.

209

Graphics VDU

Joining text and graphics

Cursor editing

210

All text display is normally confined to the text window. All scrolling is
confined to this region, sometimes called the scrolling window, because text
can be scrolled within it. The graphics window cannot be scrolled
automatically; but you can usc block move to perform scrolling.

The text cursor shows the position on the screen ci the next character to be
displayed. This is usually a flashing underline. There can be a second cursor
which is used with cursor editing (this is described later).

Note that there are some screen modes that will only display text.

The graphics YOU handles the drawing of objects such as points, lines,
circles, ellipses, etc. The graphics window, like the text window, starts as the
whole screen after a mode change. The graphics cursor, which is invisible,
marks the last point at which a graphics operation ended.

The YOU driver can be configured to print text at the graphics cursor instead
of the text cursor. This means that text will be drawn using the current
graphics cursor for positioning, and using the graphics colour, etc. The
advantage of this mode is that it enables characters to be drawn at any pixel
alignment, and to be clipped to the graphics window (important when you use
the Wimp environment). The disadvantages are that the characters take longer
to draw and scrolling is not available. Generally, when text is printed at the
graphics cursor, this is referred to as YOU 5 mode because this is the
command that enables it.

Although the cursor editing facility isn't strictly part of the YOU drivers, its
presence does have some interaction with the YOU.

Usually there is only one text cursor, but when you press one of the four
cursor direction keys, cursor editing mode starts. There are now two cursors;
the output cursor, which is now shown as a steady 'blob', and the input cursor,
which is an underline flashing at twice the usual rate. The Copy key has the
action ci copying what is under the input cursor to the output cursor as if it
was typed.

See the chapter entitled Character input for a full description of these keys
and their control.

VOU OrivAr~· OvArviAw

Colours

256-colour modes

Foreground and
background

The palette

VDU Drivers: Overview

Cursor editing mode is not available in VDU 5 mode, and it is cancelled
when you send an ASCII 13 (carriage return) to the VDU stream. This is
usually done when you press Return at the end of an input line.

The number of colours available on the screen at any time is either 2, 4, 16 or
256. When you first enter a mode, the default colours are assigned. These can
subsequently be changed with the palette.

In 156 colour modes, there are 64 different colours, and each colour may have
four different shades, resulting in a total of 256 different colours.

You may choose to display your text or graphics in a different colour from
the defaults. To do this, there are commands to change the foreground and
background of each. Usually, the foreground colour is that in which the text or
graphics drawing is done, and the background colour is used for all other
drawing, such as a screen clear. RISC OS can be changed so that the
background colour is used for drawing if required.

Another important part of the VDU is the palette. This is the control of what
colours appear on the screen. The palette is a table built into the VIDC chip
which determines the relationship between the colour number stored in the
screen memory {logical colour), and the actual colour information sent to the
monitor (physical colour). Care should be taken not to confuse logical and
physical colours. Thus, while colour 0 on RISC OS is black by default, it can
be made to be any colour by changing how the palette maps it.

The palette is programmed in terms of the intensity of the signal on each of
the red, green and blue guns in a colour monitor. These intensities have 4 bits
each, which gives twelve bits altogether, hence the 4096 (112) physical colours.
Flashing colours are accomplished by a logical colour having 2 physical
colours associated with it. These are swapped at a programmable rate,
causing flashing.

The palette also controls the colour of the border around the screen and the
colours d the mouse pointer. These can be set independently of any other
colour on the screen. The border and mouse colours are always 1bpp (4
colours) in all screen modes.

211

Tints

ECF patterns

Bell

Mouse and pointer

212

In 256 colour modes, each pixel is represented by an 8-bit value. Six bits are
the logical colour, and the other two bits arc the tint. The tint is is a direct
control of the amount of grey which is added to the base colour, ro one of 4
levels.

The six bits in the logical colour set the basic colour from the range of
different shades of colours provided by the palette. The tint is the fine
control within this range.

The Extended Colour Fill patterns are a means of increasing the apparent
number of colours by producing a fine chcquerboard mix of colours. This is of
most use in modes where there are few colours available, because it gives the
effect of having more colours on the screen than there are.

Four different ECF patterns are provided, and can be independently defined.

Normally, the origin of the ECF patterns is based on the bottom left corner of
the screen. This can be changed, so that it aligns with any point on the screen,
such as the current graphics window.

The VDU drivers control how the bell will sound. The bell is a sound that is
made when the standard ASCII character 7 (Ctri-G) is sent to the VDU. Its
volume, pitch and duration can all be customised.

The mouse is a device that is moved on a surface, rolling an internal ball,
usually with several buttons. The pointer is a reflection on the screen of the
mouse's movements. Normally, it appears as a small arrow, but can be
programmed to be any shape. It is also possible to disconnect the pointer
from the mouse and move the pointer to where the program wants it to be.
This is useful when switching between windows under program control.

RISC OS provides control over how much the pointer moves in response to a
mouse movement. This sensitivity control can be useful in situations where fine
or coarse movement is required by different programs.

VDU DrivAr~ · ClvArviAw

Screen configuration

Multiple banks

Writing to the screen

Writing text

VDU Drivers: Overview

Full control is given over how video information is generated. Depending on
how it looks on screen, the display can be shifted up or down. Some monitors
do not allow for this adjustment, so this facility is provided.

Also, the interlace can be switched on or off. Interlace means that images sent
to a monitor alternate one scan line up and down on alternate frames. On a
monitor which has a long persistence phosphor (images take some time to
fade), an interlaced image eliminates the 'lined' effect of a screen image. On
a short persistence screen interlace can cause a flicker, because the first image
has faded before the second one is finished.

RISC OS supports many different kinds of monitor. Depending on the type of
monitor used, only a subset of all possible modes are available on it. Thus
there is a command to set which monitor is connected, so that incorrect modes
are not accidentally entered.

Normally, there is one bank of memory that is used for the screen. If it is
changed, then this is reflected on the screen as it is refreshed by VIOC.
Sometimes it is useful t0 write to one bank of screen memory, while another is
displayed and then swap when finished. This produces an 'instant draw'
effect, which is visually pleasing.

Whilst normally only two banks would be used for this kind of application,
you can have as many banks as will fit in the allocated screen RAM area.
This requires copies c:i the screen RAM requirements for each bank. For
example, with two banks of screen memory, an 80K mode will require 160K.

Many different kinds of things can generate output on the screen, or more
strictly speaking, the current screen bank. Text or graphics can be written, and
many commands exist to alter where and how output will appear on the
screen.

Sending printable characters through OS_ WriteC will result in it appearing
at the text cursor position in the current window. It will wrap around to
following lines when it reaches the right hand side of the window. Certain
control commands can move the text cursor in all directions or to a given place
in the window. Usually, the cursor moves right after a character is printed.
This can be changed so it moves in any of the four directions.

213

Writing graphics

Clearing the screen

Synchronised writing

214

Many different kinds of graphics can be put onto the screen, such as:

• circles, ellipses, arcs, segments, and sectors

• triangles, rectangles and parallelograms

• filled areas, such as all those above and any irregular shape

• dots

• solid and dotted lines

• text in YOU 5 mode

See the chapter on sprites to see how any sized array of pixels can be written
to the screen.

As well as different shapes, there is control over how it is written over what is
already on the screen. It can be configured to:

• overwrite existing graphics,

• OR with it,

• AND with it,

• exclusive OR with it,

• invert it,

and soon.

As well as having control over the colour and writing mode, you can use any
of the ECF patterns to write with.

The graphics or text windows can either be completely or partially cleared.
This will be done with the current graphics or text background colour as
appropriate.

There is a mechanism under RISC OS of waiting until a Ysync event occurs
and then writing to the screen. This can make screen update very smooth, as
writing to the screen memory does not clash with the VIDC chip reading it to
send to the monitor. If they do clash, then a 'tearing' can appear briefly. This
is because one part of the memory being written to is displayed in its old
state and the other part in the new.

vnt I nrivA~· ()vArviAW

Reading from the
screen

Information about the
VDU

VDU extension vector

VOU Drivers: Overview

Unless you plan to use multiple paging techniques, then this is a good way of
achieving smooth animation.

As well as wntmg to the screen, it is possible to read some information back
from it. There is a command to read a character from under the text cursor
and work out what its ASCII value is. Cursor editing uses this facility.

You can also read the logical colour and tint of a point. Given that there is
another call to return the palette setting for a colour, it is easy to combine the /:
two and work out the 'real' colour of pixels on the screen.

The screen can be saved as a file, which can be subsequently treated as a
sprite, or edited with Paint for example. There is a corollary command to
load it back onto the screen.

There are a number of calls to get all kinds of information about the
configuration and status of the YOU driver. Here is some of the information
that can be read:

• size and position of graphics and text windows

• position of graphics and text cursors

• description of current screen mode

• size of screen memory

• palette mapping

• foreground and background text and graphics colours

• banks used by YOU and screen

• number of bytes queued for a YOU command being composed

• number of lines printed since last page halt

• in YDU 5 mode or not

The normal YDU driver can be completely replaced with a custom driver if
required. The YDU extension vector, called YDUXY, can be called instead
of the normal YDU vector. This can be useful if you want to change the

215

216

characteristics of screen output in a dramatic way. For example, the font
manager module uses this to quickly display complex fonts. Going through the
normal VDU mechanism would be too slow, because it would have to be
done a dot at a time.

VDLJ Oriwm:· ()vP.rviP.w

Technical Details

VDU commands

Screen modes

As mentioned earlier, 'YOU' followed by a series of numbers separated by
commas is used in this chapter to represent a character being sent to
OS_ WriteC. For convenience, we will use the shortcuts that BBC BASIC uses
with its YOU statement. Here is a brief reminder of the syntax of that
statement:

YOU n sends character n to OS_ WriteC. YOU m,n sends ASCII m followed
by ASCII n .

YOU n; sends the number n as two bytes, first n MOD &100, then
n DIY &100. This sends 16-bit numbers to the YOU drivers. eg. coordinates
in graphics commands.

YOU n I sends n as a single byte, followed by nine 0 bytes. This is used as
shorthand in calls in which not all of the parameter bytes are needed. As nine
is the largest number of bytes required by any YOU sequence, ending the
command with 'I' guarantees enough bytes to complete it. Any extra zeros are
ignored by the YOU drivers.

Of course, as long as the correct characters are sent to the YOU, it doesn't
matter how they get there. For example, the assembly language equivalent to
YOU 12 (clear screen) is:

SWI OS Writei+12

The effect is the same in both cases.

When changing mode, a great many things are initialised. For a complete list
of these and other mode notes, see YOU 22.

*Configure Mode will set up the screen mode to be used after a hard reset.

When a program wishes to change mode, it must check that there is enough
memory allocated for the screen for that mode and that the monitor being
used is compatible with the mode. OS_CheckModeValid must be called to
check these two things. If you don't, then YOU 22 will do it anyway, but it is

VDU Drivers: Technical Details 217

SCreen configuration

Multiple bank modes

218

better for the program to be aware of what's happening. If the mode
requested cannot be used, OS_CheckModeValid will also return a suggestion
for a mode to usc in place of it.

The computer can adjust its output to suit its attached monitor in a number of
ways.

*Configure Monitor Type is used to tell RISC OS what kind of monitor is
attached, since the system has no way of detecting this from hardware. This
command allows the system to subsequently disallow any modes that are not
compatible with the attached monitor.

*Configure Sync will set up the vertical sync output of the video connector to
be vertical or composite sync. Different monitors may require either of these,
though most use composite sync.

*Configure TV, •TV and OS_Byte 144 can all adjust the position of the video
output up or down by several lines, and switch interlace on and off.
VDU 23,0 can also control the interlace setting.

There are two main commands that can be used to handle multiple banks of
screen memory. OS_Byte I 12 selects which bank of memory to send VDU
output to. OS_Bytc 113 selects which bank of memory is used by the VIDC
hardware to write out to the screen. By using these two, it is simple to swap
screens at will.

OS_Byte 250 reads the current OS_Byte 1 I 2 setting, and OS_Byte 251 reads
the current OS _Byte 113 setting.

In order to use multiple banks, you will probably have to use *Configure
ScreenSize to set the amount of memory to reserve for <1ll rhe banks.

*Shadow exists mainly for compatibility with 1313C/Master operating systems.
Under RISC OS, it can select between two banks of memory to be used on
the next mode change. OS_Byte 114 has the s<~me effect as *Shadow.
OS_Bytes 112 and 113 support the shadow system, but you are better off
using bank numbers directly.

For those who want low level access to screen banks, OS_ Word 22 allows
setting the addresses of the YOU bank and the VIOC bank directly.

VDU Drivers: Technical Details

Colours

Two-colour modes

Four-colour modes

16-colour modes

256-colour modes

These are the colours as set up after a mode change:

0 =black
1 =white

0 =black
1 =red
2 =yellow
3 =white

0 =black
1 = red
2 =green
3 =yellow
4 = blue
5 = magenta
6 =cyan
7 =white
8 = flashing black-white
9 = flashing red-cyan
10 =flashing green-magenta
11 = flashing yellow-blue
12 = flashing blue-yellow
13 =flashing magenta-green
14 =flashing cyan-red
15 = flashing white-black

256 colour modes are treated differently from the others. Instead of using the
standard 16 entry physical colour table, there are two systems which are used
by different commands. The internal format is the less easy to use of the two.
In it, the bits are structured as follows:

Bit Meaning

0 Bit 0 r::i palette index
1 Bit 1 r::i palette index
2 Bit 2 r::i palette index
3 Bit 3 r::i palette index
4 Red bit 3 (high)
5 Green bit 2
6 G reen bit 3 (high)
7 Blue bit 3 (high)

VDU Drivers: Technical Details 219

To change colour

220

where the palette index (0- 15) controls which VIOC palette entry is used,
but with some bits of the palette entry then being overridden by the top 4 bits
of the memory byte. With the default palette setting, this becomes:

Bit Meaning

0 Tint bit 0 (red+green+blue bit 0)
1 Tint bit 1 (red+green+blue bit 1)
2 Red bit 2
3 Blue bit 2
4 Red bit3 (high)
5 Green bit 2
6 Green bit3 (high)
7 Blue bid (high)

Each primary colour has 4 bits of intensity, but the two least significant bits
(the tint bits) are shared between the three colours. Therefore, some
intensities of a primary colour (for example, red) can only be obtained at the
expense of adding in a certain amount of grey.

The second form for 256 colours, which is used by some commands is
structured as follows:

Bit Meaning

0 Red bit 2
1 Red bit 3 (high)
2 Green bit 2
3 Green bit 3 (high)
4 Blue bit 2
5 Blue bit3 (high)
6 Tint bit 0 (red+grcen+blue bit 0)
7 Tint bit 1 (red+green+blue bit 1)

The tint is controlled separately in most command~; bits 6 and 7 are only
used in the native ECF setting, which is not often used in 256 colour modes.

This format is converted into the internal format when stored, because that is
what the VIOC hardware recognises.

VDU 17 can be used to change the text colour. VDU 23,17,5 I will exchange
the text foreground and background colours.

VDU Drivers: Technical Details

Palette

Flashing colour

ECF patterns

VDU 18 can change the graphics colour, and much more than just that.
Because graphics can interact with what is already is on the screen, then
VDU 18 can set up the graphics to be ORd, ANDcd, XORd, inverted and so
on.

In 256 colour modes, VDU 23,17,0 • 3 can be used to set the tints to be used
when next printing/plotting.

VDU 19 can be used to change the way that the palette defines the logical to
physical colour relationship. It has many modes and as well as changing the
logical colours, can also set the border, flashing and cursor colours.
OS_ Word 12 can also be used to write the palette.

VDU 20 will return the palette to the condition that it was just after a mode
change. This would be used by a program just before finishing, if it had
altered the palette during running.

If you want to read the palette setting of a colour, OS_ReadPalette or the
BBC/Master compatible OS_ Word 11 can be used.

RISC OS will swap two colours at a programmed interval. If they are the
same colour, then there is no noticeable effect. If they are different, then
flashing will result. VDU 19 can individualty set these colours to be any
colour from the palette.

The speed at which flashing occurs can be controlled by OS_Bytes 9 and 10.
They set the duration in video frames. VDU 23,9 and VDU 23,10 have the
same effect as these calls. The duration settings ean be read by OS_Bytes 194
and 195.

OS_Byte 193 allows a program to read or alter the flash counter. This is a
decrementing counter that swaps colours when the count reaches zero.

There are several different ways of changing ECF patterns. The main
command is VDU 23,2-5. This can operate in two modes depending on the
setting of YOU 23, 17,4. Also, VDU 23,12-15 can be used for simpler patterns.

VDU Drivers: Technical Details 221

Colours and resolution

256 colour patterns

VDU 23,12-15

VDU 23,2-5

222

Both commands are passed 8 bytes that define the pattern. The number of
pixels depends how many colours are available in the screen mode you are
using:

Colours
available

2
4
16
256

Number of pixels set by each line
VDU 23,2-5 VDU 23,12-15

8 2
4 2
2 2
1 1

You can see that while the number of pixels in the pattern diminishes, the
number of potential colours increases.

As you can see, in a 256 colour mode, the pattern is simply a colour
description for each line. VDU 23,2-5 uses the internal 256 colour map, while
VDU 23,12-15 uses the simpler colour map. When stored, the internal form
is used. This should be borne in mind if you use OS_ Word 10 to read the
ECF definitions.

This call uses a simpler pattern. The 8 parameters passed form a pattern as
follows:

1 2

3 4

5 6

7 8

So it describes a simple 2 by 4 pattern for all but 256 colour modes. Here it
is one colour per line, for a118lines, like VDU 23,2-5.

This call is more complex. It uses one line per parameter, and there is a
direct tradeoff between colours and resolution. Thus, for a 2 colour mode, it
can display an 8 by 8 pattern ci on or off pixels, in 256 colour mode, it can
only generate 8 lines of a single different colour each.

VDU 23,17,4

Initialisation

Setting the origin

Bell

Cursors

VDU 23,17,4 is used to select between BBC/Master compatible mode and
native RISC OS mode. These modes describe how ECF colour descriptions
are mixed when using VDU 23,2-5. For some examples, see the Application
Notes at the end d this chapter.

VDU 23,11 will reset the ECF pattern definitions to their default values. It
will also reset the VDU 23,17,4 flag to the default BBC/Master compatible
state.

By default, patterns are written as if their bottom left hand comer aligned
with the bottom left hand comer of the screen. Using OS_SetECFOrigin, you
can adjust this to be any point on the screen. Thus, an ECF pattern can now be
aligned with any object, such as the graphics window. VDU 23,17,6 has the
same effect as this call.

The bell can be made to sound by sending a VDU 7 to OS_ WriteC.

To configure how it will sound:

• OS_Byte 211 will select the sound channel used

• OS_Byte 212 will adjust the volume

• OS_Byte 213 will adjust the frequency

• OS_Byte 214 will adjust the duration

*Configure Quiet will select a medium volume •. while •Configure Loud will
select the loudest volume.

VDU 5 will link text and graphics cursors and cause all subsequent output to
be printed at the graphics cursor position. This command can be cancelled
using VDU 4. The text input cursor is normally displayed unless disabled by
VDU 23,1. Both this and VDU 23,0 can be used to change the appearance of
the cursor.

There are a number of VDU commands that affect the position of the text
cursor directly:

VDU Drivers: Technical Details 223

Mouse and pointer

224

• YOU 30 - send the text cursor to its home position, which is usually the
top left comer of the current window.

• YOU 31 -set the text cursor to any position on the screen.

• YOU 8 - back space

• YOU 9- horizontal tab

• YOU 10 -line feed. That is, move down.

• YOU 11 -vertical tab. That is, move up one line.

• YOU 13 - move back to the start of the line.

• YOU 127 - delete. That is, backspace, print a space then backspace again

The position of the text cursor can be read with OS_Byte 134. If cursor editing
is in progress, then OS_Byte 165 can be used to read the position of the output
cursor, usually displayed as a solid blob.

Normally, when a character is printed, the cursor currently used will move to
the right. This action can be controlled by YOU 23,16. It can set the cursor to
move in any ci four directions. It also controls how cursors act at the end of
lines, and so on.

OS_RemoveCursors will remove the input and output cursors and store their
state internally. A subsequent call to OS_RestoreCursors will restore them
exactly. These calls are used mainly by low-level draw routines to avoid
mixing the cursors with what is drawn on the screen.

OS_ Word 13 will return the current and previous graphics cursor positions.
Using OS_ReadYduYariables, even earlier coordinates can be read.

When a mouse button is pressed or released a record is kept in the mouse
buffer. OS_Mouse will read a mouse record from this buffer. It stores the
position of the mouse, the state of its buttons and the time the record was put
into the buffer. OS_Byte 128 can also be used for this as well as reading how
much free space is in the mouse buffer.

OS_Word 21.3 will set the mouse position, so subsequent writes to the mouse
buffer will assume the mouse is at the specified location, and move from
there.

VDU Drivers: Technic;~! nAt~il~

Pointer

Getting Information

OS_ Word 21,4 will read the unbuffered mouse pos1non. That is, where it is
at the moment of calling this function. This bypasses the buffer, so subsequent
reads of the buffer may not tic up with this position. It is better to use one or
the other method exclusively in a program.

The ratio of mouse movement to pointer movement on screen can be
controlled by OS_ Word 21,2 or permanently set by •Configure MouseStep.

The pointer that appears on the screen can be defined in four shapes.
OS_Word 21,0 can define the shape and colour of each of these. OS_Byte 106
is used to select which pointer to use, or switch it off completely. •Pointer can
also be used to switch it on or off.

The pointer will be confined to the box defined by OS_Word 21,1. This
would usually be set to the graphics window.

The pointer's position on the screen can be set with OS_ Word 21,5 and read
with OS_ Word 21,6.

There are many ways of extracting information about the state and
configuration of the YOU system.

OS_Byte 217 will read the number of lines since the display was last
stopped scrolling if it was in paged mode.

OS_Byte 218 returns how many bytes are in the VDU queue. This is used
when a multiple byte VDU command is being collected.

OS_Byte 163 will return the current dot-dash line length and the amount of
memory allocated for sprites. It can also set the dot-dash length.

OS_ReadDynamicArea is a better way to read the amount of memory
allocated for system sprites - this call will also return the memory allocated
for screen bank use.

OS_Byte 117 reads the VDU status. This involves:

• whether the printer output is enabled

• if paged scrolling is enabled

• if in shadow mode

VDU Drivers: Technical Details 225

Reading from the
screen

Writing to the screen

Text

226

• if in VDU 5 mode

• if cursor editing

• if the screen is disabled with VDU 21

OS_ReadVduVariables provides a large number of variables that can be
read. OS_Byte 160 is a subset of this, kept for BBC/Master compatibility
reasons. Almost all information about windows, cursors and colours can be
accessed here. Two special variables provided are a pointer to a fast
horizontal line draw routine and access to colour blocks.

OS_ReadModeVariable returns the fixed information about a mode, such as
how many pixels across and down it is, and how many colours it supports.

OS_Byte 135 will read the ASCII value of the character at the text cursor
position and also reads the current screen mode.

OS_ReadPoint will read the logical colour of a pixel. OS_ Word 9 performs
much the same function, but is kept mainly for compatibility with BBC/Master
series.

*ScreenSave will copy the screen contents into a file where it can
subsequently be edited with Paint or reloaded to the screen with *ScrcenLoad.

Output to the screen can be disabled by VDU 21. It can be restored by
VDU6.

VDU 26 will restore the graphics and text windows to their default states.
That is, both filling the screen.

Text can be sent to the screen with any VDU command from 32 to 255,
excepting 127 which is the delete command.

VDU 28 defines the text window. VDU 12 will clear the window that the text
cursor is in. After a VDU 12, the text cursor is moved to its home position,
usually the top left hand comer. YOU 23,8 will clear a block within the text
window.

Vnll nriv Arc:: · T"l'hnil' .::al r"\ot<>il.-

Redefining c ha racters

Printe r

Graphics

Page mode means that when about 75% of a screenful has been shown, then
the system will pause and wait for Shift to be pressed before starting again.
This stops text being lost from scrolling off the top of the screen too quickly
Paged mode can be enabled by YOU 14 and disabled with YOU 15. By
default, paged mode is off.

*Configure Scroll and NoScroll configure whether text will scroll when it
reaches the bottom of the text window. This means that when NoScroll is set a
character can be printed at the bottom right of the screen without immediately
scrolling the screen. This feature can also be controlled with YDU 23,16 and
allows a full screen of text to be simply printed.

YDU 23,7 can scroll the text window or the whole screen in any direction.

In YDU 5 mode, it is possible to change the size and spacing d text with
YDU 23,17,7. This is how you would generate a message with large gaps
between the characters.

Each printable character (one that is not a command) is an array of 8 by 8
pixels that is defined in the shape of standard ASCII and ISO characters.
All of these characters can be redefined to be any pattern.

To change the definition of a printable character, YDU 23,32-255 must be
used. The character number that you wish to redefine is the second parameter,
in the range 32-255 . It is followed by 8 bytes that define the bit pattern to be
used.

OS_Byte 20 will reset all character definitions to their default. OS_Byte 25
will reset a given group of them. OS_ Word 10 can read the definition of any
character from the current system font.

YDU 1 will send the following character to the printer stream. YDU 2 will
enable the stream, so that all characters sent to the YDU are also sent to the
printer stream. This state can be disabled by YDU 3.

YDU 24 will define the position of the graphics window. YDU 16 will clear
it to the current graphics background colour.

YDU 25 is the main graphics plot command. OS_Piot has the same effect as
it, but is much faster, avoiding the delays inherent in the YDU stream. They
both have a type parameter followed by x and y coordinates. The type covers

VDU Drivers : Technical Details 227

Vsync

228

moving the graphics cursor, plotting points, lines (solid and dotted), triangles,
rectangles, parallelograms, circles, arcs, sectors, segments, ellipses and other
graphic forms. These figures can be hollow or filled with the graphics
foreground colour. It handles relative or absolute drawing That is, the x and y
are relative to the current x and y or moving to a new absolute position on the
screen.

When plotting dotted lines, the default pattern is a dot-space pattern
repeated. This can be changed to any pattern. VDU 23,6 is passed 8 bytes
that define a pattern up to 64 bits in length to be repeated. OS_Byte 163 sets
how many bits are to be used. Simple patterns like &FF (solid line), &AA
(the default dot-space) and &EE (dashed line : dot-dot-dot-space) can be
used or any more complex pattern up to 64 bits in length. OS_ Word I 0 can
read the current definition.

YOU 29 sets the graphics origin. This is the point on the screen that becomes
the 0,0 point for all subsequent graphics operations.

OS_ChangedBox will tell you what area of the screen has been changed. This
can be used to reduce the amount of redrawing that needs to be done by an
application.

*ScreenLoad complements *ScreenSave, discussed earlier and load a file
into the screen memory.

OS_Byte 19 will wait until a Vsync occurs before returning. This allows
programs that are quick enough to write to the screen without any kind of
flickering or tearing of images.

VDU Drivers: Technical Details

VDU Calls

Syntax

Parameters

Use

VDU Drivers: VDU Calls

VDUO
Null Operation

YOUO

YOU 0 does nothing. It is this that enables the ' I' character in the YOU
statement to work. Any of the nine zeros that are sent which aren't required by
the current YOU command are 'swallowed up'.

229

Syntax

Parameters

Use

Example

230

Next character to printer only

VDU !,<character>

<character> to send to the printer stream

VDUl

VDU 1 sends the next character to the printer stream only, provided that the
printer has been enabled by VDU 2. Othetwise, the next character is ignored.
This enables the printer ignore character, and any other character which is not
usually passed on by the VDU printer driver, to be sent to the printer
through the VDU.

VDU 1,10 Send a line feed to the printer stream, if enabled

VDU Drivers: VDU Calls

Syntax

Parameters

Use

VDU Drivers: VDU Calls

VDU2
Enable printer stream

VDU2

VDU 2 enables the printer stream. After this call, most characters sent to the
screen will also be sent to the currently selected printer device. OS_Byte 5
controls this, and is described in the character output chapter. Only characters
in the following ranges are sent to the printer: 32 - 126, 128- 255 (ie. the
printable characters), 8- 13 (backspace, horizontal tab, line feed, vertical tab,
form feed and carriage return, respectively). No multi-byte control sequences,
·except the argument of VDU 1, are sent to the printer.

Even if the VDU drivers are disabled (using VDU 21) the characters sent to
the VDU drivers will still be sent to the printer although they will no longer
affect the screen. However, if the VDU is disabled using OS_Byte 3, then
VDU 2 printing will not take place.

The effect ofVDU 2 can be cancelled using VDU 3.

You can determine whether VDU printing is enabled using OS_Byte 117.

231

Syntax

Parameters

Use

232

VDU3
Disable printer stream

VDU3

VDU 3 cancels the effects of VDU 2 so that all subsequent printable
characters are not passed through the kernel printer driver.

VDU Drivers: VDU Calls

Syntax

Parameters

Use

VDU Drivers: VDU Calls

VDU4
Split cursors

VDU4

VDU 4 cancels VDU 5 mode. It causes all subsequent printable characters to
be printed at the current text cursor position using the current text foreground
and background colours. The text cursor is normally displayed (unless it has
been disabled using VDU 23,1) and after each character has been printed the
cursor moves on by one character. The direction of cursor movement is
normally to the right but may be altered using VDU 23, 16.

After a character has been printed at the end of a row (or column if vertical
printing is used) the cursor moves on to the start of the next screen line (or
column), scrolling the &creen when there are no more rows (or columns),
providing scrolling is enabled. Cursor editing is allowed in this mode.

You can determine whether the cursors are split or joined using OS_Byte 117.

233

Syntax

Parameters

Use

234

VDUS
Join cursors

YOU5

This enters YOU 5 mode. It links the text and graphics cursors and causes all
subsequent printable characters to be printed at the current graphics cursor
position, the topmost row, lcfthand edge of the character being placed there.
Characters are displayed in the current graphics foreground colour using the
current graphics action. The background pixels in the character shape are not
plotted.

You can set the character sizing and spacing using YOU 23,17,7 .. .

After the character has been printed, the graphics cursor is moved by one
character position. The direction of cursor movement is normally to the right
but may be altered (u~ing YOU 23,16). It moves to a new row (or column if
vertical printing is being used) when necessary, or to the opposite comer of
the graphics window if there arc no more rows (or columns). Scrolling does
not occur.

This command allows characters to be placed at any position on the screen,
but means that the text is printed somewhat slower than when the cursors are
split. In addition, each character is superimposed onto the existing text or
graphics. Hence, printing a backspace character followed by a space moves
the graphics cursor back by one character and then superimposes a space onto
the character already there, thereby leaving it unaltered.

Cursor editing is not possible in this mode.

YOU 5 has no effect in text-only or Teletext modes. In other modes it may be
cancelled using YOU 4.

VDU Drivers: VDU Calls

Syntax

Parameters

Use

VDU6
Enable screen output

VDU6

VDU 6 restores the functions of the VDU driver after it has been disabled
by VDU 21. It causes all subsequent printable characters to be sent to the
screen and control sequences to be obeyed.

You can determine whether the VDU is enabled or disabled using
OS_Byte 117.

VDU Drivers: VDU Calls 235

Syntax

Parameters

Use

236

Bell

VDU7

VDU7

VDU 7 generates either the default bell sound (as specified by *Configure
Loud/Quiet and *Configure SoundDefault) or the bell sound defined using
OS_Bytes211-214.

VDU DrivAr~· Vnll ~::~II!:

Syntax

Parameters

Use

VDU Drivers: VDU Calls

VDU8
Back space

VDU8

VDU 8 causes either the text cursor (by default) or the graphics cursor (in
VDU 5 mode) to be moved back one character position (ie. in the negative X
direction). This normally means moving it to the left but will be different if
the direction of cursor movement is altered (using VDU 23,16) .

If the cursor was at the start of a row (or column if vertical printing is is used)
then it is moved back to the end of the previous row (or column), scrolling the
screen if necessary. It does not cause the last character to be deleted.

237

Syntax

Parameters

Use

238

VDU9
Horizontal tab

VDU9

VDU 9 causes either the text cursor (by default) or the graphics cursor (in
VDU 5 mode) to be moved on one character position (ie. in the positive X
direction). This normally means moving it to the right but is different if the
direction of cursor movement is altered (using VDU 23, 16).

If the cursor was at the end of a row (or column if vertical printing is used)
then it is moved on to the start of the next row (or column), scrolling the
screen if necessary.

VDU Drivers: VDU Calls

Syntax

Parameters

Use

VDU Drivers: VDU Calls

VDUlO
Line feed

VDU 10

VDU 10 causes either the text cursor (by default) or the graphics cursor (in
VDU 5 mode) to he moved on one line (ie. in the positive Y direction). This
normally means moving it down hut is different if the direction of cursor
movement has been altered (using VDU 23,16).

If the cursor was on the last line then the screen will he scrolled provided
that scrolling is enabled.

239

Syntax

Parameters

Use

240

VDU 11
Vertical tab

VDU 11

VDU 11 causes either the text cursor (by default) or the graphics cursor (in
VDU 5 mode) to be moved back one line (ie. in the negative Y direction).
This normally means moving it up but will be different if the direction of
cursor movement has been altered (using VDU 23,16).

If the cursor was on the first line then the screen will be scrolled, if scrolling
is enabled.

VDU Drivers: VDU Calls

Syntax

Parameters

Use

VDU Drivers: VDU Calls

VDU 12
Form feed/clear screen

VDU 12

By default, VDU 12 clears either the current text window or, in VDU 5
mode, the current graphics window to the current text or graphics background
colour respectively. The text or graphics cursor is moved to the text home
position (see VDU 30) .

When sent to a printer, this character generally causes a new page to be
started.

241

Syntax

Parameters

Use

?.d.?

VDU13
Carriage return

VDU13

VDU 13 causes the text cursor or, in VDU 5 mode, the graphics cursor to be
moved to the negative X edge of the relevant window at the same Y value.
The negative X edge is normally the left edge but it may be changed using
VDU 23,16.

When sent to a printer, this character generally causes the print head to move
to the start of the current line. Additionally, some printers may also generate
a line feed.

vntt nnww::· vntt r.;!ll!::

Syntax

Parameters

Use

VDU Drivers: VDU Calls

VDU14
Page mode on

YOU 14

YOU 14 causes the screen display to wait for Shift to be pressed before the
next Scroll and periodically thereafter. Normally, approximately 75% of the
number of lines in the current window is scrolled before it waits again. The
effects of the command may be cancelled using YOU 15.

OS_Byte 117 may be used to determine whether page mode is enabled. See
also OS_Byte 217.

243

Syntax

Parameters

Use

244

Page mode off

VDU 15

VDU 15

VDU 15 cancels the effect of VDU 14 so that scrolling is unrestricted.

VDU Drivers: VDU Calls

Syntax

Parameters

Use

VDU Drivers: VDU Calls

YOU 16
Clear graphics window

YOU 16

YOU 16 clears the current graphics window to the current graphics
background colour using the graphics background action. It does not affect the
position of the graphics cursor.

245

Syntax

Parameters

Use

Example

VDU 17
Set text colour

YOU 17 ,<colour>

<colour> logical text colour

YOU 17 is used to assign a logical colour to either the text foreground or
background according to the valued colour, as follows:

Value

0- 127
128- 255

Colour

foreground
background (colour in range 0- I 27)

If the absolute value of the parameter lies outside the allowed set for the
current mode, it is treated MOD (the number of colours - 64 in 256 colour
mode) so that it lies within that range. For example, in mode 1, which allows
four colours, the commands YOU 17,9 and YOU 17,5 are equivalent to
YOU 17,1.

The interpretation of colour depends on the type of mode:

Colours

2,4,16
256

colour parameter meaning

Logical colour for that pixel
Bottom 6 bits d colour provide CCJiour information:

Bit 5 Blue High component
Bit 4 Blue Low component
Bit 3 Green High component
Bit 2 Green Low component
Bit 1 Red High component
Bit 0 Red Low component

This allows 64 different colours to be obtained. Each of these can be used in
one of four different tints, giving 256 available shades. See YOU 23,17 for
more details. The current text colours may be read using
OS_ReadYduVariables.

VDU 17,12 Set to logical colour 12

\Jnt t n..:.·-·-· ''"'• 1 1'"'-n-

Syntax

Parameters

Use

Set graphics colour and action

VDU 18, <action>, <colour>

<action>
<colour>

operation to perform
colour to use

VDU 18

VDU 18 is used to define either the graphics foreground colour or the
graphics background colour, and the way in which it is to be plotted on the
screen.

The graphics plotting action is determined by action as follows:

Value

0
1
2
3
4
5
6
7
8. 15
16.31
32.47
48.63
64.79
80.95

Action

Overwrite colour on screen with colour
OR colour on screen with colour
AND colour on screen with colour
exclusive OR colour on screen with colour
Invert colour on screen
Leave colour on screen unchanged
AND colour on screen with (Naf colour)
OR colour on screen with (NOT colour)
As 0 to 7, but background colour is transparent
Colour pattern 1 using action 0 • 15
Colour pattern 2 using action 0 • 15
Colour pattern 3 using action 0 • 15
Colour pattern 4 using action 0 • 15
Giant colour pattern (patterns 1 • 4 placed side by side)

The range 8 • 15 is used in the following circumstances:

• If a sprite has a transparency mask, then plotting it using one of these
actions causes the mask to be used.

• Where the mask has a 0 bit, nothing is plotted; where it has a 1 bit, the
appropriate sprite colour is plotted. If an action in the range 0 • 7 is used,
the sprite mask is ignored. See the chapter on sprites for more details.

VDU Drivers: VDU Calls 247

Example

248

These actions are also used in colour pattern plotting. If a pixel in the pattern
has the same colour as the current graphics background colour, it is not
plotted but left transparent instead. (If the action is used when setting a
background colour pattern, then the pixel is left unplatted if it has the same
colour as the current graphics foreground colour.)

The graphics colour is dctennincd by colour as follows:

Value

0. 127
128. 255

Meaning

Foreground colour specified
Background colour specified (colour in range 0 · 127)

If the absolute value of the parameter lies outside the allowed set for the
current mode, it is altered so that it lies within the range (as for YOU 17).

Where action has specified a colour pattern, then colour is used only to
determine whether the pattern is used for the graphics foreground or
background colour (depending on whether it is less than 128 or not).

The interpretation of colour depends on the type of screen mode. See the
table for YOU 17 above for details.

The current graphics colours and actions may be read using
OS_ReadYduYariables.

VDU 18,1,6 Write, ORing with the screen in colour 6

YOU Drivers: VDU Calls

Syntax

Parameters

Use

vn11 nrivAr~· vn11 c;~u~

VDU 19
Set palette

VDU 19,<logical colour>,<mode>,<red>,<green>,<blue>

<logical colour>
<mode>

colour to set
how to set the colour

<red>,<green>,<blue> physical colour information

VDU 19 defines the colour palette relationship. It causes a specified logical
colour for either the screen, border or pointer to be represented by a given
physical colour.

The action depends on the value of 'mode' as follows:

mode = 0- 15

mode = 16

mode = 17

mode = 18

mode = 24

mode = 25

logical colour = actual colour
red, green and blue are ignored

logical colour =
red units red
green units green
blue units blue
This sets both flash palettes for logical colour

Defines first flash palette for logical colour

Defines second flash palette for logical colour

Defines border colour =
red units red
green units green
blue units blue
logical colour is not used

Define logical colour (1 - 3) of pointer =
red units red
green units green
blue units blue

249

250

If you add 128 to the 'mode' value, you also set the 'supremacy' bit of the
appropriate palette entry. This is used when the computers' video is mixed
with an external video source, to provide a superimposed image.

In all cases, the red, green and blue parameters have a range 0- 255.
However, as only the top four bits are significant, the 16 possible values are
&OX, &IX, &2X, ... &FX, where X means 'don't care'. The bottom nibble may
be significant in future versions of the hardware - to cater for this you should
replicate the top nibble in the bottom nibble, by multiplying each RGB
component by 17/16. Therefore, &FOFOFOOO becomes &FFFFFFOO.

In normal non-flashing colours, what this means is that both of the flash
colours are the same. RISC OS will swap colours at a programmed interval.
If they are the same colour, then there is no noticeable effect. 'mode' values
of 17 and 18 allow any colour to be made to flash with any combination of
colours.

There are 16 palette registers, which means that in modes with one, two and
four bits per pixel, there is a register available for each of the logical
colours. Therefore, each can be assigned a physical colour by a simple one-to­
one relationship.

By default (after a mode change or VDU 20), the palette is set up using a
setting where the 'mode' value is in the range 0- 15. The actual colour number
depends on the logical colour and the number of bits per pixel used in a
given screen mode as follows:

Logical
colour

0
1
2
3
4
5
6
7
8
9
10
11

Bits per pixel in a screen mode
1 2 4

0 0 0
7 1 1

3 2
7 3

4
5
6
7
8
9
10
11

VDU Drivers: VDU Calls

VDU Drivers: VDU Calls

12
13
14
15

12
13
14
15

The meanings of the mode type colours are:

Physical colour

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Colour

Black
Red
Green
Yellow
Blue
Magenta
Cyan
White
Black-white flashing
Red-cyan flashing
Green-magenta flashing
Yellow-blue flashing
Blue-yellow flashing
Magenta-green flashing
Cyan-red flashing
White-black flashing

In modes with ei~ht bits per pixel the situation is more complex. A simple
mapping d the logical colour to the physical colour via the palette is not
possible. Instead, the eight bits d the logical colour are treated as two
nibbles as follows:

7 6 5 4 3 2 0

I I I I I I I I I
~~------~ ~------~~~----~ ------~/ v v

passed directly to the digital passed to the palette registers
to analogue converrer (DAC)

251

Example

252

Bit 7 goes directly to the top bit of blue
Bit 6 goes directly to the top bit of green
Bit 5 goes directly to the second bit of green
Bit 4 goes directly to the top bit of red

The default palettes are set to have the following effect:

Bit 3 is sent to the second bit of blue
Bit 2 is sent to the second bit of red
Bit 1 is sent to the third bits of blue, green and red
Bit 0 is sent to the fourth bits of blue, green and red

Hence the palette can only be used to produce subtle effects upon the colour;
it does not have any effect upon the top (most significant) bits of any colour or
the second bit of green. It can only control the second bits of blue and red
and the white· tint which is obtained by the settings of all three of the third
and fourth (least significant) bits.

You can also set the palette using OS_ Word 12, and read the current palette
using OS_ Word 11 and OS_ReadPalette.

VDU 19,5,12,0,0,0 Set logical colour 5 to be physical colour 12

VDU Drivers: VDU Calls

Syntax

Parameters

Use

VDU Drivers: VDU Calls

VDU20
Restore default colours

VDU20

YOU 20 restores the default palette for the current mode. It also resets the
default text and graphics background colour to black, and the text and
graphics foreground colour to white. The graphics foreground and background
actions are set to 0 (overwrite). In 256-colour modes the tints are set to their
default values (0 for background tints and &CO for foreground ones).

253

Syntax

Parameters

Use

254

VDU21
Disable screen display

YDU21

YOU 21 prevents the YOU screen drivers performing any of their normal
functions until a YOU 6 is issued. Any control sequences sent to the YOU
drivers are queued in the usual way. Therefore, sending the character YOU 19
causes the next 5 characters to be treated as parameters for this (ignored)
command.

For example, the sequence YOU 22,6 is treated as one whole command in the
usual way and not as YOU 22 followed by YOU 6 which would re-enable
the YOU drivers.

This command does not prevent characters from being sent to the YOU
printer driver (if already enabled by a YOU 2), or any of the other output
streams.

You can use OS_Byte 117 to determine whether the YOU driver is currently
enabled or disabled.

VDU Drivers: VDU Calls

Syntax

Parameters

Use

VDU Drivers: VDU Calls

VDU22
Change display mode

VDU 22,<mode>

<mode> the screen mode to select

VDU 22 is used to select a screen mode. The modes available depend on the
configured monitor type (see *Configure MonitorType in this chapter). The
three types are:

Type Monitor

0 'TV' type monitor
1 multi-sync monitor
2 61.2 kHz high-resolution monochrome monitor
3 60Hz VGA-type monitor

The bottom seven bits of mode arc used to select the mode.

Below is a list of the modes available to type 0 and 1 monitors.

• The refresh rate is 50Hz, or 60Hz for modes 25 - 28

• Modes 3, 6 and 7 do not display graphics for compatibility with
BBC/Master series computers.

• Modes 11, 14 and 17 are not a multiple ci eight pixels high. By default,
in these modes the bottom of the screen corresponds to the bottom line of
ECF patterns, but the top line will not correspond to the top line of ECF
patterns.

• In modes 16, 17 and 24 circles, arcs, sectors and segments do not look
circular. This is because the aspect ratio of the pixels is not in a 1:2, 1:1 or
2:1 ratio.

Mode Text Resolution Logical Bits per Memory
col x row hor x ver colours pixel used

0 80x32 640 X 256 2 1 20K
1 40x32 320 X 256 4 2 20K
2 20 X 32 160 X 256 16 4 40K
3 80 X 25 Text only 2 2 40K

255

4 40x32 320 X 256 2 1 20K
5 20x32 160 X 256 4 2 20K
6 40x25 Text only 2 2 20K
7 40x25 Teletext 16 SOK
8 80x32 640 X 256 4 2 40K
9 40x32 320 X 256 16 4 40K
10 20 x32 160x256 256 8 SOK
11 80x 25 640 X 250 4 2 40K
12 80x32 640 X 256 16 4 80K
13 40x32 320 X 256 256 8 SOK
14 SOx 25 640 X 250 16 4 SOK
15 SOx32 640 X 256 256 8 160K
16 132 X 32 1056 X 256 16 4 132K
17 132 X 25 1056 X 250 16 4 132K
24 132 X 32 1056 X 256 256 8 264K

There are further modes which are only available for use on monitor type
(multi-sync). Modes 25 · 28 are the YGA modes and can also be used with a
type 3 monitor.

Mode Text Resolution Logical Bits pee Memory
col x row hor x ver colours pixel used

18 SOx 64 640 X 512 2 1 40K
19 SOx64 640 X 5)2 4 2 SOK
20 SOx64 640 X 5)2 16 4 160K
21 SOx64 640 X 512 256 8 320K
25 SOx 50 640 X 480 2 I 37.5K
26 80x50 640 X 480 4 2 75K
27 80x50 640 X 480 16 4 150K
28 80 x50 640 X 480 256 8 300K

The following mode is available if the configured monitor type is 2 and only
on some machines. These monitors may only display this mode. The refresh
rate is 64.4Hz and the line rate is 61.2kHz. In this mode, YOU 5 text is single
height, while YOU 4 text is double height.

Mode Text Resolution Logical Bits per Memory
col x row hor x ver colours pixel used

23 144 X 56 1152 X 896 2 126K

256 VDU Drivers: VDU Calls

Notes on display modes

If an attempt is made to select a mode which is not appropriate to the current
monitor type (or OS version), a suitable mode for that monitor is used. For
example, an attempt to select mode 23 on a type 0 monitor will result in
mode 0 being used.

If 118 is added to the mode number, the so-called shadow bank is used if
possible. Any display mode may have several banks of memory available.
The number of banks depends on the size of the screen memory (as allocated
by *Configure ScreenSize) and the size of the current mode. For example, if
160K is allocated, and 20K is used for the display, eight banks are available.

Usually, bank 1 is used. However, if 128 is added to the mode number, or a
*Shadow command has been issued, bank 2 is used after a mode change.
Shadow memory can only be used if ScrecnSize is at least twice the memory
for the required mode.

The sire of the screen in a given mode can be determined by reading YOU
variables XWindLimit, YWindLimit, XEigFactor, YEigFactor.

The other banks may be accessed using OS_Bytes 112 - 113.

The mode command causes the following actions:

• Cursor editing is terminated if currently in usc

• YOU 4 mode is entered

• The text and graphics windows are restored to their default values

• The text cursor is moved to its home position

• The graphics cursor is moved to (0,0)

• The graphics origin is moved to (0,0)

• Paged mode is terminated if currently in use

• The logical-physical colour map is set to the new mode's default

• The text and graphics foreground colours are set to white

• The text and graphics background colours are set to black (colour 0)

• The colour patterns are set to their defaults for the new mode

• The ECF origin is set to (0,0)

VDU Drivers: VDU Calls 257

Example

• The dot pattern for dotted lines is reset to &AAAAAAAA

• The dot pattern repeat length is reset to 8

• The screen is cleared to the current text background colour (ie black).

If there is not enough configured screen RAM for the mode you have selected,
and the application workspace area is not in use, then memory is moved out of
the application workspace area to the screen area.

The current screen mode may be read using OS_Byte 135.

VDU 22,7 Select Teletext mode

Syntax

Parameters

Use

Examples

VDU Drivers: VDU Calls

Miscellaneous commands

VDU 23,<command>,<parl >-<parS>

<command>
<pari> - <parS>

The command to perform
the S parameters which follow it

VDU23

VDU 23 is a multi-purpose command taking nine parameters, of which the
first identifies a particular function. Each of the available functions is
described below. Eight additional parameters are required in each case,
though often most of these are ignored. This enables you to use 'I ' as
shorthand in VDU statements, eg:

VDU 23,0,101 These two lines have the same effect
VDU 23,0,10,0,0,0,0,0,0,0

259

Syntax

Parameters

Use

Example

260

Set the interlace and controls cursor appearance

YOU 23,0,<action>,<mode>,O,O,O,O,O,O

<action>
<mode>

Sets which action to perform
Defines the mode for a given action

If action= 8, this sets the interlace as follows:

mode Effect

VDU 23,0

0 sets the screen interlace state to the opposite ci the current
*TV setting

1 sets the screen interlace state to the current *TV setting
&80 turns the screen interlace off
&81 turns the screen interlace on

If action= 10 or 11, this controls the height of the cursor on the screen and its
appearance.

action= 10 mode defines the start line for the cursor and its appearance:

BitsO • 4 define the start line (0 being the top)
Bits 5 • 6 define its appearance as follows:

Bit 6 Bit 5 Meaning

0 0 Steady
0 1 Off
1 0 Fast flash
1 1 Slow flash

action= 11 mode defines the end line for the cursor.

The bottom line of the cursor is 7 for 'normal' modes, 9 for standard 'gap'
modes, and 19 for mode 7.

VDU 23,0,8,&811 Turn the screen interlace on

VDU -Drivers: VDU Calls

Syntax

Parameters

Use

Example

YOU Drivers: YOU Calls

VDU 23,1
Control the appearance of the cursor

YOU 23,l,<mode>,O,O,O,O,O,O,O

<mode> determines which cursor mode

YOU 23,1 controls the appearance of the cursor on the screen depending on
the valued mode:

mode Meaning

0 stops the cursor appearing
l makes the cursor re-appear
2 makes the cursor steady
3 makes the cursor flash

The effect of this call is cancelled when cursor editing occurs. The effect of
the previous call is not changed by cursor editing. See also SWI
OS_RemoveCursors and SWI OS_ResroreCursors.

VDU 23,1,31 makes the cursor flash

261

Syntax

Parameters

Use

262

VDU 23,2~5
Define ECF pattern and colours

YOU 23,<2131415>,<nl>,<n2>,<n3>,<n4>,<n5>,<n6>,<n7>,<n8>

<nl>,<n2>,<n3>,<n4>,<n5>,<n6>,<n7>,<n8> colour for each row

YOU 23,2- YOU 23,5 are used to define the four colour patterns:

YOU 23,2
YOU 23,3
YOU 23,4
YOU 23,5

sets pa ttcrn 1
sets pattern 2
sets pa rtem 3
sets pattern 4

Each of the integers n1 to n8 defines the colours of one row of the pattern, n1
being the top row and n8 beint:: the bottom. For a given parameter, the logical
colours of the pixels in each row depend upon the number of colours
available in the current screen mode and which pattern mode is used. There
are two available pattern modes. The default is the BBC/Master compatible
mode. The other is the native RISC OS mode which decodes the values in a
simpler fashion. To change bcrween these modes u~ YDU 23,17,4.

If the bit settings in one of the n parameters is denoted by 76543210, then the
logical colours of the pixels in each row (from left to ri~ht) are:

Bits per No. of No. of pixels BBC/Master RISC OS
pixel colours in a line colours colours

1 2 8 7,6,5,4,3,2,1,0 0,1 ,2,3,4,5,6,7
2 4 4 73,62,51,40 10,32,54, 76
4 16 2 7531,6420 3210,7654
8 256 76543210 76543210

There are many examples of using these and the YOU 23,12-15 commands to
alter ECF functions in the application notes section at the end of this chapter.

In any 256 colour mode, each parameter refers to the colour of each line. Use
the colour byte as described by YDU 19.

VDU Drivers: VDU Calls

Syntax

Parameters

Use

Example

VDU Drivers: VDU Calls

VDU 23,6
Set dot-dash line style

YOU 23,6,<nl>,<n2>,<n3>,<n4>,<n5>,<n6>,<n7>,<n8>

<nl >,<n2>,<n3>,<n4>,<n5>,<n6>,<n7>,<n8> bit pattern for style

YOU 23,6 sets the dot-dash line style used by dotted line PLOT commands
(see also YOU 25 and OS_Byte 163).

Each of the integers nl to n8 defines eight clements of the line style, nl being
at the start and n8 at the end. The bits in each byte arc read from most
significant to least significant, each 1-bit indicating a dot and each O-bit a
space. The default is &AAAAAAAA (alternating dots and spaces) with a
repeat length of eight (so only n 1 is used).

VDU 23,6,&FO,&FO,&FO,&FO,&FO,&FO,&FO,&FO

263

Syntax

Parameters

Use

264

Scroll text window or screen

VDU 23,7,<extent>,<direction>,<movement>,O,O,O,O,O

<extent>
<direction>
<movement>

text window or screen
direction to scroll
how much movement

VDU 23,7

VDU 23,7 allows the current text window or whole screen to be scrolled
directly in any direction without moving the cursor. The <extent>, <direction>
and <movement> determine the area to be scrolled, the direction of scrolling
and the amount of scrolling as follows:

extent Effect

0 scroll the current text window
scroll the entire screen

direction Effect

0 scroll right
1 scroll left
2 scroll down
3 scroll up
4 scroll in positive X direction
5 scroll in negative X direction
6 scroll in positive Y direction
7 scroll in negative Y direction

movement Effect

0 scroll by one character cell
I scroll by one character cell vertically or one byte horizontally

If movement is 1, the horizontal movement depends on the number of colours
in the current mode as follows:

VDU Drivers: VDU Calls

Number of colours Number of pixels moved

2 8
4 4
16 2
256 1

Example VDU 23,7,0,3,0 1 Scroll window up one character

VDU Drivers: VDU Calls 265

Syntax

Parameters

Use

266

VDU 23,8
Clear a block of the text window

'VDU 13,8,<base start>,<base end>,<xl>,<yl>,<x2>,<y2>,0,0

<base start>
<base end>
<xl>,~yl>,<x1>,<y1>

base position of start of block
base position of end of block
displacements of block

YOU 23,8 causes a block of the current text window to be cleared to the text
background colour. The parnmeters base start and base end indicate base
positions relating to the start and end of the block to be cleared respectively:

Value

0
1
2

4
5
6

8
9
10

Meaning

top left of window
top of cursor column
off top right of window

left end of cursor line
cursor position
off right of cursor line

bottom left of window
bottom of cursor column
off bottom right of window

References to 'left', 'up' and so on are dependent upon the cursor movement
control set by YOU 23,16. 'Off' means 'one charncter beyond (in the positive
x direction)'. The effects of other values, ie. 3, 7 and any number over 10, are
undefined.

The parameters x l,y 1 and x2,y2 are displacements from the positions
specified by the base start and base end; they determine the start and end of
the block:

x 1 Displacement from base start in x direction
yl Displacement from base srart in y direction
x2 Displacement from b<JSC end in x direction
y2 Displacement from base end in y direction

VDU Drivers: VDU Calls

Example

VDU Drivers: VDU Calls

The result is undefined if the absolute values defining the start and end of
the block produce values outside the range -128 to 127. If the end point of the
block lies before the start point then no clearing takes place. ·

The action of this command can be viewed as equivalent to moving the text
cursor to the start of the block, then printing spaces until the end of the block
is reached (but without printing a space at the last position).

VDU 23,8,5,10,0,0,0,01 Clear from cursor to end of screen

267

Syntax

Parameters

Use

Example

268

VDU 23,9
Set flash time for first flashing colour

VDU 23,9,<duration>,O,O,O,O,O,O,O

<duration> number ofVsyncs

VDU 23,9 sets the flash time for the first flashing colour. The length is
determined by the value of duration as follows:

n=O
n <>0

sets a steady flash colour I
sets the dur:nion ton Vsyncs

A Vsync is the time between refreshes of the screen display. It varies
between display modes and countries. In the UK for modes 0 · 17 it is
approximately l/50rh second.

This command is equivalent to OS_Byte 9.

VDU 23,9,11 Set to one Vsync

VDU Drivers: VDU Calls

Syntax

Parameters

Use

Example

VDU Drivers: VDU Calls

Set flash time for second flashing colour

VDU 23,10,<duration>,O,O,O,O,O,O,O

<duration> number ofVsyncs

VDU 23,10

VDU 23,10 sets the flash time for the second flashing colour. The length is
determined by the value of duration as follows:

n = 0
n<>O

sets a steady flash colour 2
sets the duration ton Vsyncs

This command is equivalent to OS_Byte 10.

VDU 23,10,21 Set to two V syncs

269

Syntax

Parameters

Use

270

VDl.) 23,11
Set default patterns

VDU 23,11 ,0,0,0,0,0,0,0,0

VDU 23,11 selects the Master 128 compatible pattern mode and causes the
four colour patterns to be reset to their defaults for the current screen mode.
With the default logical-physical map, these defaults arc:

ModeO

1 - Red-orange 2 -Orange

11001100
00000000
11001100
00000000

11110000
00001111
11110000
00110011

Modes 1 ,5,8,11,19,26

I - Red-orange 2 - Orange

2121
1111
2121
1111

2121
1212
2121
1212

Modes 2,9,12,14,16,17,10,27

1-0range 2- Pink

21 61
12 16
11 61
12 16

3- Yel-orange 4 - Cream

11111111
00110011
11111111
01010101

00000011
00001100
01000100
10001000

3- Yel-orange 4 - Cream

2222
1212
2222
1212

3 - Yel-green

32
23
32
23

2323
3232
2323
3231

4 -Cream

37
73
37
73

VDU Drivers: VDU Calls

Example

VDU Drivers: VDU Calls

Modes 4,18,23,25

1 - Dade grey

10101010
00000000
10101010
00000000

2 -Grey

11001100
00110011
11001100
00110011

Modes 10,13,15,21,24,28 ·

1-Grey

3F 00
40
80
co

2-Slate

0 co
80
40
00

3-Light grey

11111111
01010101
11111111
01010101

3 -Green

4 co
80
40
00

4 - Hatching,

00010001
00100010
01000100
10001000

4- Pink

3B 00
40
80
co

All the patterns repeat after four rows, so only the first four are shown.

VDU 23,111

271

Syntax

Parameters

Use

Example

272

VDU 23,12~15
Define simple ECF patterns and colours

VDU 23,<12113114115>,<nl >,<n2>,<n3>,<n4>,<n5>,<n6>,<n7>,<n8>

Define a two by four block of pixels as follows:

n1 n2

n3 n4

n5 n6

n7 n8

VDU 23,12-15 are used to define the four colour patterns in a simpler way
than that provided by YOU 23,2-5. The limitation is that you can only set a
two-by-four pattern of pixels.

VDU 23,12
VDU 23,13
VDU 23,14
VDU 23,15

sets colour pattern 1
sets colour pattern 2
sets colour pattern 3
sets colour pattern 4

The pixels of the top row of the resulting pattern are assigned alternating
logical colours n1 and n2, those of the next row have colours n3 and n4 etc.

In any 256 colour mode, the declared use of the parameters does not apply.
In this case, each parameter refers to the colour ci each line, from 1 to 8. Use
the colour byte as described by VDU 19. •

To set up the following pattern in mode 1 for colour pattern 1:

RedYel 12
WhtRed 31
BlkRed 01
WhtYel 32

the required sequence is VDU 2 3, 12 , 1 , 2 , 3 , 1 , 0 , 1 , 3, 2

VDU Drivers: VDU Calls

Syntax

Parameters

Use

VDU Drivers: VDU Calls

VDU 23,16
Control the movement r:i cursor after printing

YOU 23,16,<x>,<y>,O,O,O,O,O,O

<x>
<y>

exclusive OR value
AND value

YOU 23,16 gives control of the movement of the cursor after a character has
been printed. This movement is under the control r:i a byte ci flags.
YOU 23,16 replaces the byte by:

((current byte) ANDy) exclusive OR x

The interpretation of the flags is as follows:

Bit Value Effect

7 0
1

6 0

5 0

4 0

Normal.
Undefined.

In YOU 5 mode, cursor movements beyond the current edge
of the window cause special actions. For example, they
generate newlines at the end of the line.
In YOU 5 mode, cursor movements beyond the edge of the
window do not cause special actions. This is the most useful
mode of YOU 5; used in the Window Manager.

Cursor moves in the positive X direction after the character is
printed. If this results in the cursor moving beyond the edge
of the window, the settings of bits 6, 4 and 0 define the action
which is taken.
Cursor does not move after the character is printed.

When a cursor movement in the Y direction results in the
cursor moving beyond the window edge, the window is
scrolled if in YOU 4 mode. If in YOU 5 mode, the cursor
moves to the opposite edge of the window.
When a cursor movement in theY direction results in the
cursor moving beyond the window edge, the cursor is always

273

Example

274

3 0
1

2 0
1

moved to the opposite edge of the window.

X direction is horizontal, Y direction is vertical.
X direction is vertical, Y direction is horizontal.

Positive vertical direction is down.
Positive vertical direction is up.

0 Positive horizontal direction is right.
1 Positive horizontal direction is left.

0 0 Disables the scroll-protect option. When printing a character
in YOU 4 mode results in the cursor moving beyond the edge
of the window, the cursor is instead moved to the negative X
edge of the window and one line in the positive Y direction.

1 Enables the scroll protect option. When printing a character
in YOU 4 mode results in the cursor moving beyond the edge
of the window, a 'pending newline' is generated. It is actually
executed just before the next character is printed, provided
that it has not been deleted or executed by another cursor
control character. For example YOU 127 would cancel it;
YOU 9 would execute it.

VDU 23,16,%00000100, %11111011 1 Set vertical direction down

VDU Drivers: VDU Calls

Syntax

Parameters

Use

,.

Example

VDU Drivers: VDU Calls

VDU 23,17,0_,3
Set the tint for a colour

VDU 23,17,<0 111213>,<action>,<tint>,O,O,O,O,O

<action>
<tint>

.determines which colour is to be set
what the tint is to be set to

VDU 23,17,0-3 is used to set the tint for a colour in the 256-colour modes.
action determines which colour is set, as follows:

action

0
1
2
3

Colour

sets the tint for the text foreground colour
sets the tint for the text background colour
sets the tint for the graphics foreground colour
sets the tint for the graphics background colour

This command controls the top two bits of blue, green and red independently
of each other, and also allows the bottom two bits to be controlled. However,
they cannot be set independently. The least significant bits must either alt be
set or alt clear. Hence it determines the amount of white tint given to the
colour. The value of the tint is given by the top two bits of tint:

tint Tint effect

&00 Bit 0 and bit 1 clear (darkest)
&40 Bit 0 set and bit 1 clear
&80 Bit 1 set and bit 0 clear
&CO Bit 0 and bit 1 set {lightest)

When a pixel is plotted the foltowing occurs, in terms of the actual logical
colour stored in the screen memory: the bottom six bits of the colour number·
(set by VDU 17-18) are moved to bits 2-7 of the colour byte, and their order
is changed; the appropriate tint value is shifted down by six bits, into bits 0
and l, and the two parts are then combined.

VDU 23,17,0,&CO\ Set the text foreground colour to lightest tint

275

Syntax

Parameters

Use

Example

?7P..

VDU 23,17,4
Choose the patterns used to interpret subsequent YOU 23,2- 50 0 0 calls

YOU 23,17 ,4,<patterns>,O,O,O,O,O,O

<patterns> which mode of patterns

This command chooses which set of colour patterns are used to interpret
subsequent YOU 23,2- 500 o calls, depending on the value of <patterns>:

patterns

0

Mode

Use 6502 BBC Micro compatible colour patterns
Use native colour patterns

VDU 23,17,4,11 Use native colour patterns

Syntax

Parameters

Use

Example

VDU Drivers: VDU Calls

VDU 23,17,5
Exchange text foreground and background colours

VDU 23,17 ,5,0,0,0,0,0,0,0

This command exchanges the current text foreground and background colours.
After the first time it's called, subsequent characters printed are in inverse
video. After the second time it's called, subsequent characters printed are of
normal appearance.

VDU 23,17,5 1

277

Syntax

Parameters

Use

Example

278

VDU 23,17,6
Set ECF origin

VDU 23,17 ,6,<x>;<y>;O,O,O

<x>,<y>; point coordinates

By default, the alignment of ECF patterns is with the bottom left comer of the
screen: This command changes it so that the bottom left of the pattern
coincides with the bottom left of the specified paint.

The origin is restored to the default after a mode change.

OS_SetECFOrigin (SWI &56) performs the same action.

VDU 23,17,6;200;300;0,0,0

\/nt t n,.;., .. ~ .. . \/nt 1 ,...

Syntax

Parameters

Use

Example

VDU Drivers: VDU Calls

Set character size/spacing

VDU 23,17,7 ,<flags>,<x>;<y>;O,O

<flags>
<x>,<y>;

what to set the size of
size in pixels

VDU 23,17,7

This command allows changing the size and spacing of VDU 5 characters.
They are reset when a mode change occurs. flags bit I refers to the size of
VDU 5 characters. Bit 2 refers to the spacing between VDU 5 characters. x
and y are sizes in pixels.

Sizes d 8xl6 and 8x8 are optimised for speed. All other settings are mt.Jch
slower. The spacing settings do not affect the speed. The default size and
spacing ofVDU 5 characters is 8x8.

VDU 23,17,7,%100,10;8;0,0 change VDU 5 spacing to 10 pixels

279

VDU 23,18--24
Reserved for future expansion

280 VDU Drivers: VOU Calls

VDU Drivers: VDU Calls

VDU 23,25,26
These calls are provided by the Font Manager. See the chapter on that for
details.

281

282

VDU 23,27
This call is provided by the Sprite Manager. See the chapter on this for
details.

VDU Drivers: VDU Calls

Reserved for use by application programs.

VDU Drivers: VDU Calls 283

Syntax

Parameters

Use

Example

284

VDU 23,32;255
Redefine the printable characters

VDU 23,<32-255>,<n1>,<n2>,<n3>,<n4>,<n5>,<n6>,<n7>,<n8>

<32. 255>
<nl>,<n2>,<n3>,<n4>,<n5>,<n6>,<n7>,<n8>

character to define
definition by row

VDU 23,32 to VDU 23,255 redefine the printable ASCII characters. The
redefined character depends on the value of the second parameter. For
example, VDU 23,65 redefines the character whose ASCII value is 65, ie.
capital A. The parameters n I to n8 are integers representing the eight rows d
the character to be redefined, n1 being the top row and n8 the bottom row.
Each bit of a value represents one pixel of the corresponding row, with a '1'
indicating that the corresponding pixel is to be plotted in the foreground
colour and a '0' that it is to be plotted in the background colour (or not at all
in the case of VDU 5 mode printing). The most significant bit of the byte
corresponds to the left-hand pixel of its row, and the others follow linearly.

Although the delete character (ASCII 127) can be redefined, redefining has
no effect as it cannot be displayed.

You can read the pattern for a given character using OS_ Word 10.

VDU 23,65,&AA,&SS,&AA,&55,&AA,&55,&AA,& 55 redefine 'A'

VOtJ .OrivAr~ · Vnt I ~~lie:

Syntax

Parameters

Use

Example

VDU Drivers: VDU Calls

VDU24
Define graphics window

YOU 24,<xl>;<yl>;<x2>;<y2>;

<xl>;<yl>;<x2>;<y2> coordinates of window

YOU 24 allows the user to define a graphics window. Any graphics objects
which are drawn (including YOU 5 mode and fancy-font characters) and
which lie outside this window are clipped to the edges of the window. The
four parameters define the left, bottom, right and top boundaries of the
window respectively, relative to the current graphics origin (the bottom left ci
the screen, by default). The window which you are defining must lie within the
screen boundaries, otherwise the command is ignored.

The coordinates are inclusive - that is, the points you specify lie within the
window.

Use OS_ReadYduYariables to discover the size ci the current graphics
window.

VDU 24,100;150;700;800;

The following example shows how to derive (in this instance, xsize) the size ci
a window in OS units

DIM blk\ 12
VduExt_XEigractor\ • 4
VduExt_XWindLimit\ • 11
blk\!0 • VduExt_XEigractor\
blk\!4 • VduExt_XW1ndL1m1t\
blk\! 8 • -1
SYS •os_ReadVduVarlablea•, blk\, blk\
xelgfactor\ • blk\!0
xwindlimlt\ • blk\!4: REM in pixels
xwindsize\ - (xwlndllmit\ + 1) « xeigfactor\: REM in OS units

285

Syntax

Parameters

Use

286

VDU25
General PLOT command

YOU 25,<type>,<x>;<y>;

<type>
<x>;<y>;

what kind of plot to perform
where to plot

YOU 25 is a multi-purpose graphics plotting command. The first parameter
defines a particular function. The other parameters are the ic coordinate and
the y coordinate. They are relative either to the current graphics origin, or to
the last point visited, depending on the value of type.

The bottom three bits of type determine the manner in which the plot is to be
performed. Thus {type AND 7) has the following effects:

type AND 7

0

Effect

move cursor relative {to last graphics point visited)
plot relative using current foreground colour 1

2
3
4
5
6
7

plot relative using logical inverse colour
plot relative using current background colour
move cursor absolute {ie. move to actual coordinates given)
plot absolute using current foreground colour
plot absolute using logical inverse colour
plot absolute using current background colour

The remaining bits d type determine the action to be performed. The value
given here is added to the 0 - 7 range above to get all the possible
combinations. The value here is the decimal starting value:

Value

0
8
16
24
32
40
48
56

Effect

Solid line including both end points
Solid line excluding the final point
Dotted line including both endpoints, pattern restarted
Dotted line excluding the final point, pattern restarted
Solid line excluding the initial point
Solid line excluding both end points
Dotted line excluding the initial point, pattern continued
Dotted line excluding both end points, pattern continued

VDll nrivA~· vn11 r.~uc::

VDU Drivers: VDU Calls

64 Point Plot
72 Horizontal line fill (left and right} to non-background
80 Triangle fill
88 Horizontal line fill (right only} to background
96 Rectangle fill
104 Horizontal line fill (left and right} to foreground
112 Parallelogram flll
120 Horizontal line fill (right only} to non-foreground
128 Flood to non-background
136 Aood to foreground
144 Circle outline
152 Circle ftll
160 Circular arc
168 Segment
176 Sector
184 Block copy/move •
192 Ellipseoutline
200 Ellipse fill
208 Font printing - see the chapter entitled The Font manager
216 Reserved for Acorn Expansion
224 Reserved for Acorn Expansion
232 Sprite Plot- see the chapter on sprites
240 Reserved for User programs
248 Reserved for User programs

• The eight values in the range 184 • 191, which perform a block copy/move,
have the following meanings:

Value

184
185
186
187
188
189
190
191

Effect

Move relative
Relative rectangle move
Relative rectangle copy
Relative rectangle copy
Move absolute
Absolute rectangle move
Absolute rectangle copy
Absolute rectangle copy

Some of the objects require several . points to be specified in order to define
the shape completely. The last plot does the actual drawing. The sequences of
moves and draws required for each type are:

287

Example

288

Shape

Line

Triangle

Rectangle

Sequence of moves

Move to one endpoint. Plot line to other endpoint.

Move to first vertex. Move to second vertex. Plot
triangle to last vertex.

Move to one corner. Plot rectangle to diagonally­
opposite corner.

Parallelogram Move to first corner. Move to second corner. Plot
parallelogram to third corner. The fourth corner is
derived from the other three, and is opposite the
second one.

Circle Move to centre. Plot circle to point on the
circumference.

Arc, segment, sector Move to centre of circle. Move to start of arc. Plot to
a point on the line from the centre to the end of the
arc. Arcs, etc, are always drawn counter-clockwise.

Block copy/move Move to one corner of source rectangle. Move to
diagonally-opposite corner of source rectangle: Plot
block copy/move to lower left of destination
rectangle.

Ellipse Move to centre. Move to intersection of ellipse
circumference and centre's Y coordinate. Plot
ellipse to highest or lowest point on the ellipse.

VDU 25,69,100;200; plot point absolute

VDU Drivers: VDU Calls

Syntax

Parameters

Use

VDU Drivers: VDU Calls

VDU26
Restore default windows

VDU26

VDU 26 causes the text and graphics windows tO be reset to their default
states, ie. both become the full screen. In addition, the command resets the
graphics origin to (0,0), moves the graphics cursor to (0,0) and moves the text
cursor to its home position. Hardware scrolling of the text window is initiated.

289

Syntax

Parameters

Use

290

No operation

VDU27

This VDU has no effect

VDU27

VDU Drivers: VDU Calls

Syntax

Parameters

Use

~ample

VDU Drivers: VDU Calls

Define text window

VDU 28,<xl>,<yl>,<x2>,<y2>

<xl >
<yl>
<x2 >
<y2 >

left-most x column
bottom-most y row
right-most x column
top-most y row

VDU28

VDU 28 defines (or redefines) a text window. The parameters are integers
specifying the boundary of the window as above.

If the command attempts to define a window which extends outside the screen
boundaries, has xl greater than x2, or has yl less than y2, it will have no
effect. The smallest possible window is one character.

You can read the size of the current text window using
OS_ReadVduVariables.

VDU 28,10,15,20,5

291

Syntax

Parameters

Use

Example

292

VDU29
Set graphics origin

YOU 29,<x>;<y>;

<x>,<y> where the origin is to be set

YOU 29 defines the point specified as the origin to be used for all
subsequent graphics output using YOU 25 commands, and for the graphics
window defined by YOU 24. The parameters are the two pairs d bytes
specifying the absolute x andy coordinates of the new origin.

• Note: changing the graphics origin does not alter the position of the
graphics window on the screen. The window's coordinates in terms of the
origin therefore effectively change after a YOU 29.

You can read the position of the current origin using OS_ReadVduYariables.

VDU 29,100;200;

YOU Drivers: YOU Calls

Syntax

Parameters

Use

VDU Dtivers: VDU Calls

VDU30
Home text cursor

VDU30

VDU 30 moves the text cursor to its 'home' position. This is normally the top
left of the window but may be changed (using VDU 23,16). In VDU 5 mode
the graphics cursor is moved instead. It may have an offset of up to
(character size -I) pixels out c:i the comer along one or both of the axes to
allow for the height or width of the character depending on the direction of
character printing.

293

Syntax

Parameters

Use

Example

294

VDU 31
Positior. text cursor

YOU 3l,<x>,<y>

<x>,<y> text position to move to

YOU 31 moves the text cursor to a specified x and y coordinate on the screen.
The parameters x andy are the column and row numbers.

In YOU 4 mode, x and y are given relative to the text 'home' position which is
at (0,0). If the position lies outside the text window, nothing happens, unless
the scroll protect option is enabled and the x coordinate is just beyond the
positive X edge of the window. In this case, the text cursor is moved to
position (x-1 ,y) and a pending newline is generated.

In YOU 5 mode the graphics cursor is moved to its 'home' position plus
(x character spacing* x) pixels in the positive X direction, plus
(y character spacing* y) pixels in the positive Y direction. It is possible to
move the cursor outside the graphics window in YOU 5 mode.

You can read the position of the text cursor using OS_Byte 134.

VDU 31,10,5

vnll n rivo re· \/nil 1" .. 11 ..

Syntax

Parameters

Use

VDU Drivers: VDU Calls

VDU 127
Delete

VDU 127

Unless the previous use of VDU 23,16 indicates that no cursor movement is to
take place after character printing, the cursor is moved backwards as if by
VDU 8. Then the character under the cursor is deleted by overprinting it with
a space (in VDU 4 mode) or 'a solid block ci graphics background colour (in
VDU 5 mode). These space and solid block characters are selected from the
'hard' (rather than the 'soft') font, so redefining these characters will not
change the results.

295

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

296

Write duration of first flash colour

RO = 9 (reason code)
Rl = new duration to wri te

RO = preserved
Rl =duration before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call sets the duration of the first flash colour.

OS_Byte 9
(SWI &06)

Flashing colours are displayed as a sequence of two alternating colours. By
default, each colour is displayed for 25 video frames at a time, which is
approximately 0.5 seconds for 50Hz screen modes in the UK. This command
allows you to alter the duration for which the first colour is displayed as
follows:

Value Meaning

0 Set an infinite duration (first colour wns~ntly displayed)
n Set the duration ton video frames (approximately n/50 seconds)

This variable may also be set using YOU 23,9. It may be read (but not set)
by OS_Byte 195.

OS_Byte 10 (SWI &06), OS_Bytc 195 (SWI &06)

ByteV

VDU Driver~ : SWI r.;~U~

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

vou Drivers: SWI Calls

Write duration of second flash colour

RO = 10
Rl =duration to write

RO = preserved
Rl =duration before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 10
(SWI &06)

This call sets the duration for the second flash colour. See OS_Byte 9 for an
explanation.

This variable may also be set using VDU 23,10. It may be read (but not set)
by OS_Byte 194.

OS_Byte 9 (SWI &06), OS_Byte 194 (SWI &06)

ByteV

297

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

298

Wait for vertical sync

RO = 19

RO = preserved
R 1 = corrupted
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 19
(SWI &06)

The video display frame is drawn approximately fifty times a second for
most screen modes in the UK. This call synchronises a software routine with
the signal produced when the video output reaches the bottom of the
displayed area of the picture (ie. the stan of the border) .

From this time until the next frame starts to be displayed (.. 3.5ms for modes
0-17 and 14, ... o.Sms for modes 18-11 and 13, and =1.4ms for modes 15-18),
you have this time to redraw the screen.

It is possible to have more than this time by drawing from top to bottom, or
setting a timer to wait until video output has pa$.c;ed the place on the screen
you want to redraw.

If even this is not enough time to produce a flicker-free update of the screen,
you should consider using more than one bank d screen memory and
switching between them (using OS_Bytes 112-113 for example).

OS_Byte 111 (SWI &06), OS_Byte 113 (SWI &06)

ByteV

VDU Driwm~· ~WI ~::aile:

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

Reset font definitions

R0=20

RO = preserved
R 1 = corrupted
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 20
(SWI &06)

The shape of the character displayed when printing ASCII codes 32-255 may
be redefined using the VDU 23,32-255 commands. Any such changes remain
in force until the next hard reset. This command may be used to restore the
default character definitions for ASCII codes in the range 32-127.

Note that you should really only redefine characters in the range 128-159.
This is because all of the other printable characters have standard meanings
which should be preserved for use in applications such as word processors.

I
See OS_Byte 25 for details on how to restore the other codes or how to
restore a smaller selected group.

OS_Byte 25 (SWI &06)

ByteV

299

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

300

Reset group of font definitions

RO = 25
R 1 = group to restore

RO = preserved
R 1 = corrupted
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

OS_Byte 25
(SWI &06)

All ASCII characters between 32 and 255 may be redefined using the
VDU 23 command. This call restores all or a particular group d characters
to their default settings according toR 1, as follows:

Value Range of characters to restore

0 3l-255
1 32-63
2 64-95
3 96-127
4 128-159
5 160-191
6 192- 223
7 224-255

OS_Byte 20 (SWI &06)

ByteV

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

Select pointer/activate mouse

RO = 106
Rl = pointer shape and linkage flag

RO = preserved

OS_Byte 106
(SWI &06)

R1 = shape and linkage flag before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

You can define four 'pointer buffers' using OS_ Word 21; each holding a
different shape definition for the mouse pointer. This call allows you to
select one of these definitions for future use, or to tum off the pointer
depending on the bottom seven bits ofR1:

Value
0
1-4

Meaning
Turn off current pointer
Select given pointer

If a pointer is selected it can be linked to the mouse so the mouse drives it,
depending on bit seven ofR1 as follows:

Value
&00
&80

Meaning
Link pointer to mouse
Pointer unlinked

For example, a value in Rl of &03 selects pointer three and links it to the
mouse, and a value of &82 selects pointer two but leaves it unlinked.

OS_ Word 21 (SWI &07)

ByteV

301

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

302

Write VDU driver screen bank

RO = 112
R 1 = bank number

RO = preserved
Rl = previous bank number
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 112
(SWI &06)

This call selects the bank of screen memory which is to be used by the VDU
drivers according to Rl, as follows:

Value

0
n

Bank

Default for the current screen mode (1 or 2)
Select bank 'n'

The maximum value for 'n' is (T otalScreenSize)/(ModeSize), where
TotaiScreenSize is the amount actually present in screen memory and
ModeSize is the size of the current mode. For example, in mode 0, a 20K
mode with 160K set aside for the screen makes eight banks available, so 8 is
the maximum value for 'n'.

The default bank for a non-shadow mode is bank 1; for a shadow mode it is
bank 2. OS_Byte 250 may be used to read the bank number without writing it

OS_Byte 250 (SWI &06)

ByteV

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

OS_Byte 113
(SWI &06)

Write display hardware screen bank

RO = 113
R 1 = bank number

RO = preserved
Rl =value before being overwritten
R1 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

This call selects the bank of screen memory which is to be used by the
display hardware according to Rl :

Value

0
n

Bank

Default for the current screen mode
Select bank n

The bank may be read (but not set} using OS_Byte 251 .

OS_Byte 251 (SWI &06}

ByteY

303

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

304

Write shadow/non-shadow state

RO = 114
Rl = shadow state

RO = preserved
Rl = value before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 114
(SWI &06)

This call determines whether future MODE commands will be forced into the
shadow state, depending on R 1:

Value

0
1

Meaning

Modes will be shadow
Modes will be non-shadow

Shadow state requires twice the amount of RAM than the equivalent non­
shadow mode since two copies c:1 the screen are stored in memory.
OS_Bytes 112 and 113 control the use of the banks.

To select a shadow state temporarily when in non-shadow mode, you can use
the MODE 128+n convention. tuture MODE commands will not be
influenced by this.

OS_Byte 112 (SWI &06), OS_Byte 113 (SWI &06)

ByteV

VDU Drivers: SWI r.~n~

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis
'
Related vectors

VDU Drivers: SWI Calls

Read VDU status

RO = 117

RO = preserved
R 1 = status byte

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 117
(SWI &06)

This call rerurns the content of the VDU status byte. This byte gives
information on the way in which characters are output according to their bit
settings:

Bit Starus when set

0 Printer output enabled by VDU Z
1 Unused
2 Paged scrolling selected by VDU 14
3 Text window in force (ie. software scrolling)
4 In a shadow mode
5 In VDU 5 mode
6 Cursor editing in progress
7 Screen disabled with VDU 21

None

ByteV

305

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

306

Read text cursor p05ition

RO = 134

RO = preserved
Rl =position in x direction
R2 =position in y direction

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 134
(SWI &06)

This call returns the current text cursor position unless cursor editing is in
progress, in which case the p05ition returned is that of the input cursor.
OS_Byte 165 reads the position of the output cursor irrespective of cursor
editing mode.

Text is printed at x positions 0 to n-1, where 'n' is the number of characters
per line in the current text window. Therefore, the value obtained is normally
in this range. However, if there is a pending newline (see YOU 23,16), a
position of 'n' will be returned.

OS_Byte 165 (SWI &06)

ByteV

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

OS_Byte 135
(SWI &06)

Read character at text cursor position and screen mode

RO = 135

RO = preserved
Rl =ASCII value of character (0 if unreadable)
R2 = screen mode

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call returns the screen mode and the ASCII code of the character at the
text cursor position. If cursor editing is in progress, it returns the character
code returned by the character at the input cursor position (ie. the character
that would be copied as input the next time Copy is pressed).

Note that the screen mode does not have bit 7 set, even if it is a shadow mode.

None

ByteV

307

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

ijelated vectors

308

Set vertical screen shift and interlace

RO = 144
Rl =vertical screen shift (as a signed 8 bit number)
R2 = interlace flag

RO = preserved
Rl =previous vertical screen shift
R2 = previous interlace flag

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 144
(SWI &06)

This call specifies the vertical screen alignment and interlace options after
the next mode change. Rl sets the vertical offset. R2 rums interlace on and off
as follows:

Value

0
1

Meaning

Interlace on
Interlace off

This is equivalent to ~.which is described in this chaprcr.

None

ByteY

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

vou Drivers: SWI Calls

OS_Byte 160
(SWI &06)

Read VDU variable value

RO = 160
Rl = VDU variable number (0-15)

RO = preserved
Rl =value of variable
R2 = value of next variable (R 1 on entry + 1)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

The VDU driver uses a number of locations in RAM to store transient
information. This call allows some of these locations to be examined. Note
that the variables are not necessarily stored in the order implied by the value
of Rl on entry. However, the relationship between Rl and the variable read is
guaranteed to remain the same for all versions of RISC OS.

Value

0
1
2
3
4
5
6
7
8
9
10
11
12

Location

LSB of graphics window left column (ic)
MSB of graphics window left column (ic)
LSB of graphics window bottom row (ic)
MSB of graphics window bottom row (ic)
LSB of graphics window right column (ic)
MSB of graphics window right column (ic)
LSB of graphics window top row (ic)
MSB of graphics window top row (ic)
Text window left column
Text window bottom row
Text window right column
Text window top row
LSB of graphics origin X coordinate (ec)

309

Related SWis

Related vectors

310

13 MSB of graphics origin X coordinate (cc)
14 LSB of graphics origin Y coordinate (cc)
15 MSB of graphics origin Y coordinate (ec)

• (ic) means internal coordinates: the origin is always the bottom left of the
screen. One unit is one pixel wide and one pixel high.

• (ec) means external coordinates: a pixel is (1 • XEigFactor) units wide
and (1 " YEigFactor) units high, where XEigFactor and YEigFactor are
YOU variables.

This OS_Byte is provided mainly for compatibility with the BBC/Master 128.
You can read many more of the YOU variables using
OS_ReadVduVariables and OS_ReadModeYariable.

OS_ReadVduYariables (SWI &31), OS_ReadModcYariable (SWI &35)

ByteY

VOU Drivers: SWI Calls

On entry

On exit

'nterrupts

Processor Mode

Re-entrancy

' Jse

VDU Drivers: SWI Calls

OS_Byte 163
(SWI &06)

Read/write general graphics information

RO = 163
Rl = 242
R2 =dot-dash repeat length or action code

RO = preserved
R 1 = preserved or status
R2 = preserved or status

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call is a general purpose one reserved for Acorn applications. The only
value of Rl which is guaranteed to perform a useful function is 242. The type
of action depends on the value ofR2:

Value

0
1-64
65
66

~eaning

Set default dot-dash pattern and length
Set dot-dash line repeat length to the value given
Return status information
Return information on the current sprite

The status information is returned in Rl and R2 as follows:

Rl bits

Bit 7 = 1
Bit 6 = 1
Bits 0-5

R2 bits

Bits 0-31

Meaning

Sprites are always active
Flood fill is always active
Current dot dash line repeat length (0 means 64)

Meaning

Current size of the system sprite area in bytes.

311

Related SWis

Related vectors

312

The information on the current sprite is returned in Rl and R2 as follows:

R 1 =width in pixels (ie. internal coordinates)
R2 =height in pixels (ie. internal coordinates)

None

ByteV

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

Read output cursor position

RO = 165

RO = preserved
Rl =position in x direction
R2 = position in y direction

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 165
(SWI &06)

This call returns the position of the output cursor, even while cursor editing is
in progress.

None

ByteV

313

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

U~e

Related SWis

Related vectors

314

Read/write flash counter

RO = 193
Rl = 0 to read or new duration to write
R2 = 255 to read or 0 to write

RO = preserved
Rl =duration before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 193
(SWI &06)

The duration stored is changed by being masked with R2 and then exclusive
ORd with Rl. ie. ((duration AND R2) XOR Rl). This means that R2 controls
which bits are changed and Rl supplies the new bits.

This call accesses the location used as a count-down timer for the flashing
colours. The location is loaded with the count for the first colour and
decremented at a Vsync rate, providing that the current flash period is not
infinite. When it reaches zero, the colours are swapped · and the counter is
loaded with the duration of the second colour.

None

ByteV

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

U~e

Related SWis

Related vectors

VDU Drivers: SWI Calls

Read duration of second colour

RO = 194
Rl=O
R2 = 255

RO = preserved
Rl =duration
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 194
(SWI &06)

This command will read the location that has been set by OS_Byte 10.

This must not be used to write this location, as RISC OS would then not match
the location value. This call is only included for compatibility.

OS_Byte 10 (SWI &06)

ByteV

315

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

316

Read duration of first colour

RO = 195
Rl = 0
R2 = 255

RO = preserved
Rl = duration
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 195
(SWI &06)

This command will read the location that has been set by OS_Byrc 9.

This must not be used to write this location, as RISC OS would then not match
the location value. This call is only included for compatibility.

OS_Byte 9 (SWI &06)

ByteY

VOl I OrivArc:· ~WI r.~llc:

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWJ Calls

Read/write bell channel

RO = 211
R 1 = 0 to read or new channel to write
R2 = 255 to read or 0 to write

RO = preserved
Rl =channel before being overwritten
R2 = bell sound information (see OS_Byte 212)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

OS_Byte 211
(SWI &06)

The channel stored is changed by being masked with R2 and then exclusive
ORd with Rl. ie. ((channel AND R2) XOR Rl). This means that R2 controls
which bits are changed and Rl supplies the new bits.

The bell (YOU 7) sound is output on channel 1 by default. This call provides
a means of determining the current channel or changing it if required.

OS_Byte 212 (SWI &06), OS_Byte 213 (SWI &06)
OS_Byte 214 (SWI &06)

ByteY

317

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

318

Read/write bell volume

RO = 212
Rl = 0 to read or new volume to write
R1 = 255 to read or 0 to write

RO = preserved
Rl = volume before being overwritten
R1 = bell frequency (see OS_Byte 2 p)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 212
(SWI &06)

The volume stored is changed by being masked with R1 and then exclusive
ORd with Rl. ie. ((volume AND R1) XOR Rl). This means that R1 controls
which bits are changed and R 1 supplies the new bits.

This allows you to read or set the volume d the sound used to make the Ctri­
G bell sound. Values for the amplitude are in the range &80 (loudest) to
&F8 (softest) in steps of &08. The default setting depends on the • Configure
Loud/Quiet setting (&90/&DO respectively).

OS_Byte 111
(SWl &06)

ByteV

(SWI &06), OS_Byte 213 (SWI &06), OS_Byte 114

VOU DriveN':· ~WI (;;~II~

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

Read/write bell frequency

RO = 213
R 1 = 0 to read or new frequency to write
R2 = 255 to read or 0 to write

RO = preserved
R1 =frequency before being overwritten
R2 = bell duration (see OS Byte 214) - '

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Notdeflned

OS_Byre 213
(SWI &06)

The frequency stored is changed by being masked with R2 and then exclusive
ORd with Rl. ie. ((frequency AND R2) XOR Rl). This means that R2
controls which bits are changed and R 1 supplies the new bits.

This call provides a means of reading or changing the frequency associated
with the bell sound. The default value is 100, and it has the same
interpretation as the *Sound command.

Note that all frequencies are provided for compatibility only; new RISC OS
values cannot be used.

OS_Byte2ll
(SWI &06)

ByteV

(SWI &06), OS_Byte 212 (SWI &06), OS_Byte 214

319

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

320

Read/write bell duration

RO = 214
Rl = 0 to read or new duration to write
R2 = 255 to read or 0 to write

RO = preserved
Rl = duration before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast intemJpts are enabled

Processor is in SVC mode

Not defined

OS_Byte 214
(SWI &06)

The duration stored is changed by being masked with R2 and then exclusive
ORd with Rl. ie. ((duration AND R2) XOR Rl). This means that R2 controls
which bits are changed and R 1 supplies the new bits.

This call provides a means of reading or changing the duration of the bell
sound. The default value is 6, and the unit is 20ths of a second.

OS_Byte 211
(SWI &06)

ByteV

(SWI &06), OS_Byte 212 (SWI &06), OS_Byte 213

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Vnt J nrivers: SWI Calls

Read/write paged mode line count

RO = 217
Rl = 0 to read or new count to write
R2 = 255 to read or 0 to write

RO = preserved
Rl =count before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

OS_Byte 217
(SWI &06)

The count stored is changed by being masked with R2 and then exclusive ORd
with Rl. ie. ((count AND R2) XOR Rl). This means that R2 controls which
bits are changed and Rl supplies the new bits.

In the paged output mode, the display is prevented from scrolling {awaiting
the depression of Shift) when approximately 75% of the height ci the current
text window has been scrolled. The number of lines printed since the last
page halt is maintained in the location accessed by this call and it may be
either read or changed {normally to 0 before requesting user input).

If you are using OS_ Word 0 or OS_ReadLine to perform the input, this call
is made automatically. OS_ Word 0 is provided for compatiblity only and
should not be used.

None

ByteY

321

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

322

Read/write bytes in VDU queue

RO = 218
Rl = 0 to read or new count to write
R2 = 255 to read or 0 to write

RO = preserved
Rl =count before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 218
(SWI &06)

The count stored is changed by being masked with RZ and then exclusive ORd
with Rl. ie. ((count AND R2) XOR Rl). This means that R2 controls which
bits are changed and Rl supplies the new bits.

This call affects the count of the number of characters which remain to be
passed to the VDU driver in order to complete the current VDU sequence.
The value is (minus the number d bytes left), and is held in 2's complement
notation (eg. &FF means one byte to go). The call may be used to read the
value or to change it (normally to zero, which has the effect d abandoning an
incomplete VDU command).

You can use this call when an escape condition is acknowledged. This prevents
the first few characters of an error message from being 'swallowed' by an
incomplete VDU sequence.

None

ByteV

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

Read VDU driver screen bank number

RO = 250
Rl = 0
R2 = 255

RO = preserved
Rl =screen bank used by VDU drivers
Rl = display screen bank (see OS_Byte 251)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 250
(SWI &06)

This command will read the location that has been set by OS_Byte 112.

This must not be used to write this location, as RISC OS would then not match
the location value.

OS_Byte 112 (SWr&06)

ByteV

323

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

324

Read display screen bank number

RO = 251
R1 = 0
R2 = 255

RO = preserved
Rl =screen bank used by the display
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 251
(SWI &06)

This command will read the location that has been set by OS_Byte 113.

This must not be used to write this location, as the hardware would then not
match the location value.

OS_Byte 113 (SWr&06)

ByteV

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

Read pixel logical colour

RO = 9 (reason code)
Rl =pointer to parameter block

Rl +0 = LSB of X coordinate
Rl + 1 = MSB of X coordinate
Rl +2 = LSB ofY coordinate
R 1 + 3 = MSB of Y coordinate

RO = preserved
R 1 = preserved

OS Word 9
(SWI &07)

Rl +4 = the logical colour of the pixel specified.

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call determines the logical colour of the pixel at given coordinates on the
graphics screen. If the colour is returned as &FF then either:

• the screen is in a 256 colour mode

• the pixel is off the screen

• the screen is in a non-graphics mode

To overcome the ambiguity caused' by 256 colour modes, you should use
OS_ReadPoint (SWI &32) instead. This returns both the logical colour and
tint. The OS_ Word should be used for compatibility purposes only, since the
tint is discarded.

OS_ReadPoint (SWI &32)

WordY

325

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

326

Read a character definition

RO = 10
Rl = pointer to parameter block
Rl +0 = ASCII code of character required

RO = preserved
R l = preserved

R 1 + 1 = top row of dcfi ni tion

R 1 + 10 = bottom row of dcfi ni tion

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS Word 10
(SWI &07)

The characters displayed in all modes other than Teletext mode arc defined
as an eight-by-eight matrix of dots. This call enables you to read the
definition for a specified ASCII code. However, the definitions returned for
ASCII codes 0 to 31 and 127 (ie. the non-printing characters} are not
meaningful apart from the following characters:

Value

2
3
4
5
6

Information returned

ECF pattern I (in native mode}
ECF pattern 2 (in native mode)
ECF pattern 3 (in native mode}
ECF pattern 4 (in native mode)
Dot-dash pattern

Bits set in each row of the character definition arc displayed in the current
text foreground colour; bits clear in each row arc displayed in the current text
background colour. In VDU 5 mode, bits which are set are plotted in the
graphics foreground colour and action; bits which arc clear are not plotted at
all.

VDU Drivers: SWI Calls

Related SWis

Related vectors

VDU Drivers: SWI Calls

None

WordY

327

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

328

Read the palette

RO = 11
R 1 = pointer to parameter block
R 1 +0 = logical colour to read

RO = preserved
R 1 = preserved

OS Word 11
(SWI &07)

R1 + 1 = physical colour associated with the specified logical colour
R1 +2 = red component
Rl + 3 = green component
Rl +4 = blue component

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

This call allows you to determine the physical colour associated with a
particular logical colour. The call can only return one of the colours
associated with a flashing colour. To read the full information about a logical
colour's palette entry, or to read the border and pointer palettes, you should
use OS_ReadPalette (SWI &2F). The OS_ Word is provided for
compatibility only.

OS_ReadPalette (SWI &2F)

WordY

VOl I nriwm:· ~WI ~::~ lie:

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VOU Drivers: SWI Calls

Write the palette

RO = I2
R1 =pointer to parameter block

R 1 +0 = logical colour to change
R 1 + 1 = new physical colour
R 1 + 2 = red component
RI + 3 = green component
R I +4 = blue component

RO = preserved
R I = preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS Word 12
(SWI &07)

This call allows you to change the physical colour associated with a particular
logical colour. It duplicates the function of VDU 19 command. However, the
OS_ Word call is faster and may be used in interrupt routines. The five bytes
of the parameter block are equivalent to the five parameters l,p,r,g,b
described in the section on VDU 19.

None

WordY

329

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

330

Read current and previous graphics cursor positions

RO = 13
Rl =pointer to parameter block

RO = preserved
R 1 = preserved

R 1 +0 = LSB of previous X coordinate
R1 + 1 = MSB of previous X.coordinate
Rt +2 = LSB of previous Y coordinate
R 1 + 3 = MSB of previous Y coordinate
R1 +4 = LSB of current X coordinate
R1 +5 = MSB of current X coordinate
R1 +6 = LSB of current Y coordinate
R 1 + 7 = MSB of current Y coordinate

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

OS Word 13
(SWI &07)

All the coordinates are in external form. You can read points visited before
the previous one (and many other YOU variables) using
OS_ReadYduYariables (SWI &31).

OS_ReadYduYariables (SWI &31)

WordY

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

VDU Drivers: SWI Calls

OS_Word 21,0
(SWI &07)

Define pointer size, shape and active point

RO = 21
R1 =pointer to parameter block

Rl+O = 0
R1 + 1 = Shape number (1-4)
R1+2 = Width (w) in bytes (0-8)
R1 + 3 = Height (h) in pixels (0-32)
Rl +4 = ActiveX ln pixels from left (O-(w*4-1))
Rl+5 = ActiveY in pixels from top (0-(h-1))
Rl +6 = Least significant byte of pointer (P) to data
Rl+7
R1+8
Rl +9 = Most significant byte of pointer to data

RO = preserved
R 1 = preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

You can define four shapes. These are numbered one to four and may be
selected using OS_Byte 106.

As the pointer is always displayed in 2 bits per pixel (four pixels per byte),
and the maximum width in bytes is 8, the maximum width Is 32 pixels.

The ActiveX and ActiveY entries give the distance of the cursor 'hot spot'
from the top left comer c:i the pointer. If these are zero, then positioning the
pointer at coordinates (x,y) will move the top left comer to that position.
Suppose the shape was a cross-hair 9 pixels in each direction; then making
ActiveX and ActiveY (5,5) would position the hot-spot at the centre of the
cross.

331

Related SWis

Related vectors

332

The data for the shape is pointed to by R 1 +6- R I +9. This data table contains
the information for each row, from top to bottom, and the data within each row
is given from left to right. Each byte contains the colours for four pixels. Bits
0,1 hold the colour number for the left-most pixel, bits 6,7 the colour for the
right-most pixel. (So the pixels are displayed in reverse order to the order in
which the byte would be written down.)

Colour zero is always transparent (ie. the screen information shows through
pixels in this colour). The other three colours may be set independently of
any other colours on the screen using YOU 19 or the equivalent OS_ Word.

However, note that colour two should be used with caution in defining pointer .
shapes, as it does not work correctly on high-res mono screens.

OS_Byte 106 (SWI &06)

WordY

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

VDU Drivers: SWI Calls

Define mouse coordinate bounding box

RO = 21
Rl =pointer to parameter block

Rl +0 = 1 (sub-reason code)
R 1 + 1 = LSB of left coordinate
Rl +2 = MSB of left coordinate
R 1 + 3 = LSB of bottom coordinate
R1 +4 = MSB of bottom coordinate
Rl +5 = LSB of right coordinate
R1 +6 = MSB of right coordinate
R1 +7 = LSB of top coordinate
R 1 +8 = MSB of top coordinate

RO = preserved
R 1 = preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Word 21,1
(SWI &07)

All treated as signed 16-bit
values, relative to screen
origin at the time the
command is issued

The coordinates should be given as signed 16-bit values relative to the
graphics origin at the time the command is issued.

If {left> right) or (bottom> top) then the command is ignored.

An infinite box can be obtained by setting:

left
bottom =
right
top

&8000 (-32768)
&8000 (-32768}
&7FFF (32767}
&7FFF (32767}

333

Related SWis

Related vectors

334

If the current mouse posttton is outside the hox, it is homed to the nearest
point inside the box. The buffer is not flushed, but any buffered coordinates
will be moved inside the bounding box when they are read

When the mode changes, the box is set to the size of the screen.

None

WordY

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

Define mouse multipliers

RO = 21
Rl =pointer to parameter block

Rl +0 = 2

OS_Word 21,2
(SWI &07)

Rl + 1 =X multiplier (these are both treated as signed 8-bit values)
R 1 + 2 = Y multiplier

RO = preserved
R 1 = preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

The multipliers control the ratio between the movement of the mouse and the
change in the coordinates of the mouse. The higher each value, the greater the
amount the pointer moves (if linked to the mouse) for a given movement of the
mouse.

The multipliers should both be given as signed eight-bit values. By specifying
negative values (eg. 255 for -1}, you can make the point move in the opposite
direction from usual.

Both multipliers default to the configured MouscStep value. This is initially
1, when a movement of approximately 15cm of the mouse will move the
pointer across the screen.

None

WordY

335

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

336

Set mouse position

RO = (reason code)
Rl =pointer to parameter block

RI+O = 3
R1 + 1 = LSB of X position
RI+2 = MSBofX position
Rl + 3 = LSB of Y position
R 1 +4 = MSB of Y position

RO = preserved
R 1 = preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_W ord 21 ,3
(SWI &07)

The new values for the X and Y pos1taons of the mouse are given as two
signed 16-bit values. If the new position lies outside the bounding box of the
mouse, this command will be ignored.

Note that this call sets the position of the mouse rather than the pointer. If the
mouse and pointer are not linked, the position of the pointer on the screen is
left unchanged.

None

WordY

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

Read unbuffered mouse position

RO = 21
Rl =pointer to parameter block

Rl +0 = 4

RO = preserved
R I = preserved

Rl + 1 = LSB of X position
Rl +2 = MSB of X position
Rl + 3 = LSB ofY position
R 1 +4 = MSB of Y position

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

OS_Word 21,4
(SWI &07)

This call will read the position of the mouse at the time d the call. That is, it
will not read the position from the mouse buffer.

Care should be taken when reading this position , as the buffer positions may
be significantly out of step.

None

WordY

337

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

338

Set pointer position

RO = (reason code)
Rl =pointer to parameter block

Rl+O = 5
R 1 + 1 = LSB of X position
Rl +2 = MSB of X position
Rl +3 = LSB ofY position
Rl +4 = MSB ofY position

RO = preserved
R I = preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

os_w ord 21 ,5
(SWI &07)

The new values for the X and Y positions of the pointer are given as two
signed 16-bit values.

Note that this call sets the position of the pointer rather than the mouse. If the
mouse and pointer are linked, then the pointer position will be updated with
the mouse po5ition on the next VSync interrupt.

None

WordY

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

Read pointer position

RO = 21
R 1 = pointer to parameter block

R1 +0 = 6

RO = preserved
R 1 = preserved

R1 +1 = LSB of X position
R1 +2 = MSB of X position
R 1 + 3 = LSB of Y position
R 1 +4 = MSB of Y position

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Word 21,6
(SWI &07)

This call will read the position of the pointer. If the mouse and pointer are
not linked, then this call read the position that the pointer was last set to.

If they are linked, then the pointer is updated from the unbuffered mouse
position every Vsync; otherwise 9 clicks while the Desktop is busy would
freeze the pointer.

None

WordY

339

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

340

Write screen base address

RO = 22
Rl =pointer to parameter block

Rl+O =Type
Rl + 1 =Least significant byte d offset
R1+2 .. .
R1+3 .. .
R l +4 = Most significant byte of offset

RO = preserved
R 1 = preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS Word 22
(SWI &07)

This routine sets up a new screen base address. It is given as the offset from
the address cJ the base of the screen buffer to the start of the screen display.
This address can be used as the area of the buffer which is to be updated, ie.
written to by the VDU drivers, or the area which is to be displayed by the
hardware, or both, depending on the bits of the first byte in the parameter
block:

BitO
Bitl

Used by VDU drivers .
Displayed by hardware

VDU Drivers: SWI Calls

Related SWis

Related vectors

VDU Drivers: SWI Calls

This allows multiple screens to be used. For example, in mode 12 two copies
of the screen can be kept. One of these can be updated whilst the other is
being displayed using the following parameter blocks:

R1+0
Rl+l-Rl +4

Rl+O
R1 + 1-R1 +4

Contains2
Contains &00

Contains 1
Contains &14000

Displayed

Updated

Then the two screens can be swapped over (at Vsync) by changing over the
addresses so that smooth animation is obtained.

The configured ScreenSize determines the amount ci RAM initially set aside
for the screen. This can subsequently change, for example if you drag the
screen memory bar in the Task Manager, or call OS_ChangcDynamicArea. You
can read the current amount set aside for the screen by reading the VDU
variable TotaiScreenSize; and you can read the amount needed for a single
screen by reading the mode variable ScreenSize.

A slightly simpler way of achieving bank switching is to use OS_Bytes 112-
113. With these, you only have to specify the bank number, not the actual
offset.

OS_Byte 112 (SWI &06), OS_Byte 113 (SWI &06)

WordY

341

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

342

Read a mouse state from the buffer

RO =mouse X coordinate
Rl =mouseY coordinate
R2 = mouse buttons
R3 = time of button change

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI cannot be re-entered as interrupts are disabled

OS Mouse
(SWI &lC)

OS_Mouse reads from the mouse buffer the mouse X and Y postttons as
values between -32768 and 32767. Unless the graphics origin has been
changed, the coordinates will lie within the mouse bounding box, which
initially defaults to the screen area. The call also returns buttons currently
pressed as a value in the range 0-7:

Bit Meaning when set

0 Right button down
1 Middle button down
2 Left button down

If there is no entry in the mouse buffer, the current status is returned. R3 gives
the time the entry was buffered, or the current time if it is not a buffered
reading. It uses the monotonic timer (see OS_ReadMonotonicTime).

OS_ReadMonotonicTime (SWI &42)

MouseY

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

VDU Drivers: SWI Calls

Read the palette setting of a colour

RO = logical colour
R 1 = type of colour

R2 = setting of first flashing colour
R3 = setting of second flashing colour

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS ReadPalette
(SWI &2F)

OS_ReadPalette reads the setting of a particular colour that is sent to the
hardware. Rl selects whether the normal colour, border colour or pointer
colour is read as follows:

Value

16
24
25

Meaning

Read normal colour
Read border colour
Read pointer colour

The settings for the first flash colour and second flash colour are returned in
R2 and R3 respectively. If these are identical then the colour is a steady, non­
flashing one. The value contained in each of these is interpreted as follows:

Bits

0-6
7
8-15
16-23
24-31

Meaning

Value showing how colour was programmed
Supremacy bit
Amount of red
Amount of green
Amount of blue

343

Related SWis

Related vectors

344

The bottom byte (bits 0-7) returns the value of the second parameter to the
VDU 19 command which defines the palette (bit 7 is the supremacy bit). For
example:

Value

0-15
16
17- 18

None

None

Meaning

Actual colour (BBC compatible)
Defined by giving amounts of red, green and blue
Flashing colour defined by giving amounts of red, green and
blue

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

VDU Drivers: SWI Calls

OS ReadY du Variables
(SWI &31)

Read a series of YOU variables

RO =pointer to input block
R1 = pointer to output block

RO = preserved
R l = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

OS_ReadYduYariables reads in a series of YOU variables and places them
in sequence into a block of memory. The input block consists of a sequence of
words. Each word is the number of the variable to be read. A value of - 1
terminates the list. The value of each variable is put as a word into the output
block, any invalid variables being entered as zero. The output block has no
terminator. Both blocks must be word-aligned.

The possible variable numbers are the same as for OS_ReadModeYariable
(see below) with the following additions:

Name

GWLCol
GWBRow
GWRCol
GwrRow
TWLCol
TWBRow
TWRCol
TWTRow
OrgX
OrgY

Number Meaning

128 Left-hand column of the graphics window (ic)
129 Bottom row d the graphics window (ic)
130 Right-hand column ci the graphics window (ic)
131 Top row of the graphics window (ic)
132 Left-hand column of the text window
133 Bottom row ci the text window
134 Right-hand column d the text window
135 Top row of the text window
136 X coordinate of the graphics origin (ec)
137 Y coordinate of the graphics origin (ec)

345

GCsX ,. 138 X coordinate of the graphics cursor (cc)
GCsY 139 Y coordinate of the graphics cursor (ec)
OlderCsX 140 X coordinate of oldest graphics cursor (ic)
OlderCsY 141 Y coordinate of oldest graphics cursor (ic)
OldCsX 142 X coordinate of previous graphics cursor (ic)
OldCsY 143 Y coordinate of previous grnphics cursor (ic)
GCsiX 144 X coordinate of graphics cursor (ic)
GCsiY 145 Y coordinate of graphics cursor (ic)
NewPtX 146 X coordinate of new point (ic)
NewPtY 147 Y coordinate of new point (ic)
ScreenS tart 148 Address of the start of screen used by VDU drivers
DisplayS tart 149 Address of the start of screen used by display

hardware
T otaiScreenSize 150 Amount of memory currently allocated to the screen
GPLFMD 151 GCOL action for foreground colour
GPLBMD 152 GCOL action for background colour
GFCOL 153 Grnphics foreground colour
GBCOL 154 Graphics background colour
TForeCol 155 Text foreground colour
TBackCol 156 Text background colour
GFTint 157 Tim for graphics foreground colour
GBTint 158 Tint for graphics background colour
TFTint 159 Tint for text foreground colour
TBTint 160 Tint for text background colour
MaxMode 161 Highest mode number available
GCharSizeX 162 X size of VDU 5 chars (in pixels)
GCharSizeY 163 Y size of VDU 5 chars (in pixels)
GCharSpaceX 164 X spacing ofVDU 5 chars (in pixels)
GCharSpace Y 165 Y spacing ofVDU 5 chars (in pixels)
HLineAddr 166 Address ci fast line-draw routine
TCharSizeX 167 X size of VDU 4 chars (in pixels)
TCharSizeY 168 Y size of VDU 4 chars (in pixels)
TCharSpaceX 169 X spacing ofVDU 4 chars (in pixels)
TCharSpace Y 170 Y spacing of VDU 4 chars (in pixels)
GcoiOraEor Addr 171 Address of colour blocks for current GCOLs
WindowWidth 256 Characters that will fit on a row cl the text window

without a newline being generated
Window Height 257 Rows that will fit in the text window without

scrolling it

346 VDU Drivers: SWI Calls

• ic means internal coordinates, where (0,0) is always the bottom left of the
screen. One unit is one pixel.

• ec means external coordinates, where (0,0) means the graphics origin, and
the size of one unit depends on the resolution. The number of external
units on a screen is dependent upon the video mode used; for example
MODE 16 has 1280 by 1024 external units. The graphics origin is stored
in external coordinate units, but is relative to the bottom left of the screen.

• new point is the internal form of the coordinates given in an unrecognised
PLOT command. When the UKP\ot vector is called, the internal format
coordinates (variables 140-145) have not yet been shuffled down, so the
graphics cursor (144-5) contains the coordinates of the last point visited.
The external coordinates version of the current point (138-9) is updated
from the coordinate given in the unrecognised plot.

• HLineAddr points to a fast horizontal line draw routine. It is called as
follows:

RO = left x-coordinate of end of line
Rl = y-coordinate of line
R2 =right x-coordinate of end of line
R3 = 0 = plot with no action (ie. do nothing)

1 =plot using foreground colour and action
2 = invert current screen colour
3 =plot using background colour and action
>=4 =pointer to colour block (on 64-byte boundary)

Offset Value
0 OR mask for top ECF line
4 exclusive OR mask for top ECF line
8 OR mask for next ECF line
12 exclusive OR mask for next ECF I ine

56 OR mask for bottom ECF line
60 exclusive OR mask for bottom ECF line

R 14 = return address
Must be entered in SVC mode
All registers are preserved on exit

All coordinates are in terms of pixels from the bottom left of the screen.
The line is clipped to the graphics window, and is plotted using the
colour action specified by R3. · The caller must have previously called
OS_RemoveCursors and call OS_RestoreCursors afterwards.

'lA7

Related SWis

Related vectors

348

• GcoiOraEorAddr points to colour blocks for current GCOLs. If the value
returned is n, then:

n+&OO- n+&JF is a colour block for the foreground colour+ action
n+&40--n+&7F is a colour block for the background colour+ action
n+&SO- n+&BF is a colour block for the background colour

with store action
Each colour block is as described above. These are updated whenever a
GCOL or TINT is issued or the ECF origin is ch;mged. They are intended
for programs which want to access screen memory directly and have
access to the current colour/action settings.

OS_ReadModeVariable (SWI &35)

None

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

Read the colour of a point

RO = X coordinate
Rl = Y coordinate

RO = preserved
R I = preserved
R2 =colour
R3 =tint
R4 = screen flag

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS ReadPoint
(SWI &32)

The coordinates passed are in external units and are relative to the current
graphics origin.

OS_ReadPoint takes a point and returns its colour in R2 and its tint setting
(amount of white, in the range 0- 255) in R3. R4 returns the following:

Value

0
- 1

Meaning

Point on the screen
Point off the screen (R2 = - 1 also)

See YOU 19 for a description of colour and tint values.

None

None

349

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

U$e

OS ReadModeVariable
(SWI &35)

Read information about a screen mode

RO = screen mode, or -1 for current mode
Rl =variable number

RO = preserved
R 1 = preserved
R2 = value of variable
the C flag is set if variable or mode numbers were invalid

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

OS_ReadModeYariable allows you to read information about a particular
screen mode without having to change into that mode. The possible variable
numbers are given below:

Name Number Meaning

ModeFiags 0 The bits of the result have the following meanings:
Bit 0 = 0 graphics mode

= 1 non-graphics mode
Bit 1 = 0 non-Teletext mode

= 1 Teletext mode
Bit 2 = 0 non-gap mode

= 1 gap mode
Bit 3 = 0 non-gap mode

= 1 'BBC' gap mode (eg modes 3 and 6)
Bit 4 = 0 not Hi Res mono mode

= 1 Hi Res mono mode
Bit 5 = 0 VDU characters are normal height

= 1 VDU characters are double height
Bit6 =0 harware scroll used

= 1 hardware scroll never used

ScrRCol 1 Maximum column number for printing text ie.
number of columns-I

ScrBRow 2 Maximum row number for printing text ie. number
of rows-I

NColour 3 Maximum logical colour ie. either 1, 3, 15 or 63 (not
255)

XEigFactor 4 This indicates the number ci bits by which an X-
coordinate must be shifted right to convert to screen
pixels. Thus if this value is n, then one screen pixel
corresponds to 2" external coordinates in the X
-direction.

YEigFactor 5 This indicates the number of bits by which a Y-
coordinate must be shifted right to convert to screen
pixels. Thus if this value is n, then one screen pixel
corresponds to 2" external coordinates in they
-direction.

LineLength 6 Number of bytes on a pixel row This is the same as
(characters per row)* (hits per pixel) • (pixel width
of character)/8. For example, in mode 15 it is
80•8*8/8, or 640.

ScreenSize 7 Number of bytes one screen buffer occupies. This
must be a multiple of256 bytes.

YShftFactor 8 Scaling factor for start address of a screen row. This
variable is kept for compatibility reasons and should
not be used.

Log2BPP 9 LOG base 2 of the number of bits per pixel
Log2BPC 10 LOG base 2 of the number of bytes per character

\ ~~• • r'\-!. ·---· t"\AU 1'"'-.11

Related SWis

Related vectors

352

It is in fact the LOO base 2 of the number d bytes per character divided by
eight. So in mode 0, for example, it is LOG base 2 of {8/8), or 0. In mode 15
it is LOO base 2 of (64/8), or 3. It would be exactly the same as Log2BPP,
except for the 'double pixel' modes.

XWindLimit
YWindLimit

11
12

Number of X pixels on screen-I
Number of Y pixels on screen-I

OS_ReadVduVariables (SWI &31)

None

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

OS RemoveCursors
(SWI &36)

Remove the cursors from the screen

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

OS_RemoveCursors removes the cursors (output and copy, if active) from the
screen, saving the old state (their positions, flash rate etc.) on an internal stack
so that it may be recovered later. This instruction must always be balanced
later by a OS_RestoreCursors to restore the cursor again.

This call is provided only for routines that need direct screen access.

Note that routines that directly access the screen may need to run in SYC
mode if the routines are to work with hardware scrolled screens, which may
straddle the logical-physical memory boundary at 32MByte. If the routines
do not need to work with hardware scrolled screens, then USR mode is
adequate ..

OS_RestoreCursors (SWI &37)

None

353

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

354

Restore the cursors to the screen

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mc:xle

SWI is not re-entrant

OS RestoreCursors
(SWI &37)

OS_RestoreCursors restores the cursor state previously saved on the internal
stack using OS_RemoveCursors.

This call is provided only for routines that need direct screen access.

OS_RemoveCursors (SWI &36)

None

VDU Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

OS CheckMode Valid
(SWI &3F)

Checlc if it is possible to change to a specified mcx:le

RO = mode number to check

if C flag = 0 then mode is valid
RO = preserved

if C flag = 1 then mode is invalid
RO = -1 if mcx:le is non-existent
RO = -2 if not enough memory
Rl = mode that would be used
Rl = -2 if unable to select alternative mode

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_CheckModeValid determines whether you can change to a given mode
and return with the appropriate carry set. If the mode you are checking isn't
available on the current type of monitor, then R 1 will contain the mode that
will be used if an attempt is made to select the mode which you are checking,
using VDU 22. If there is insufficient memory or the call is unable to
determine an alternative for another reason, then -2 will be returned.

If this call returns that there is insufficient memory for the required mode,
then it can be borrowed from other areas ci the machine. See the chapter on
memory management for details.

None

None

355

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

356

Direct VDU call

RO = plot command code
Rl = x coordinate
R2 = y coordinate

RO, R 1, R2 = corrupted

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS Plot
(SWI &45)

This call is equivalent to a VDU 25 command. However, it is much more
efficient as only one call is required (instead of six calls to OS_ WriteC). The
call goes directly to the VDU drivers unless spooling has h<:en turned on,
redirection has been turned on or if Wrch V has been claimed.

None

WrchV

VDU OrivAr~· ~WI r.~uc:

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

VDU Drivers: SWI Calls

Set the origin of the ECF patterns

RO = x coordinate
Rl = y coordinate

RO = preserved
R 1 = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

OS_SetECFOrigin
(SWI &56)

By default, the alignment of ECF patterns is with the bottom left comer of the
screen. This command makes the bottom left of the pattern coincide with the
bottom left of the specified point.

The origin is restored to the default after a mode change.

YOU 23,17,6 performs the same action.

None

None

357

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

358

Read screen size after hard reset

RO =0

RO =size in bytes

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_ReadSyslnfo
(SWI &58)

This call will return the screen size in bytes after the next hard reset.

None

None

VOU Drivers: SWI r.;:~n~

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Vnt I Drivers: SWI Calls

OS_ChangedBox
(SWI &SA)

Determine which area of the screen has changed

RO = 0 - disable changed box calculations
1 -enable changed box calculations
2 - reset changed box to null rectangle
-1- read changed box information

RO = previous enable state in bit 0 (0- disabled, 1 -enabled)
Rl points to a fixed block of 5 words, containing the following info

R 1 +0 = new disable/enable flag (in bit 0)
Rl +4 = x-coordinate of left edge of box
Rl +8 = y-coordinate of bottom edge of box
R 1 + 12 = x-coordinate of right edge of box
R 1 + 16 = y-coordinate of top edge of box

The (R1+4) to (R1+16) values are only valid if the change box calculations
were in an enabled state immediately after the call, otherwise they are
undefined.

Interrupt status is undefined
Fast interrupts are epablcd

Processor is in SYC mode

SWI is not re-entrant

This call checks which areas of the screen have changed over calls to the YOU
drivers. When this feature is enabled, RISC OS maintains the coordinates of
a rectangle which completely encloses any areas that have changed since the
last time the rectangle was reset.

This is particularly useful for applications which switch output to sprites, and
then want to repaint the sprite onto the screen after performing YOU
operations on the sprite. The application can make significant speed
improvements by only repainting the section of the sprite which corresponds
to the changed box.

359

Related SWis

Related vectors

360

All coordinates arc measured in pixels from the bottom left of the screen. If
a module provides extensions to the VDU drivers, it should read the address
of this block on initiali~:~rioh, and update the coordinates as appropriate. If an
exact calculation of which are:~s have been modified is difficult, then the
module should extend the rectangle to include the whole of the graphics
window (or indeed the whole screen, if the operntion can affect areas outside
the graphics window).

The disable/enable flag at offset 0 in the block is for information only - it
must not be modified directly, as RISC OS holds the ma~tcr copy of this flag.

Changed box calculations are disabled on a mode change. However, the
disable/enable state and the coordinates of the rectangle form part of the
information held in s<~ve areas when ourput is switched berween the screen
and sprites.

None

None

VOl J Oriwm:: · ~WI r.::allc:

*Commands *Configure Loud
Sets the beep at full volume

Syntax *Configure Loud

Parameters None

Use This command sets the configured volume for the bell to its loudest volume.
The change takes effect on the next reset.

Related commands *Configure Quiet

Related SWis OS_Byte 212 (SWI &06)

Related vectors None

VDU Drivers: •commands 361

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

362

*Configure Mode
Selects the screen mode used after a reset

*Configure Mode <n>

<n> screen mode number

This command selects the screen mode for use after a hard reset, or on
leaving the desktop. Mode 0 is the default.

*Configure Mode 27 selects VGA mode with 16 colours

VDU22

None

None

Syntax

Parameters

Use

*Configure MonitorType
Selects the default monitor type

*Configure MonitorType <n>

<n> 0 to3

This specifics the kind of monitor that is connected to the computer, as follows:

Type Monitor

0 50Hz TV standard colour monitor
1 Multiscan monitor
2 Hi-resolution 64Hz monochrome monitor
3 60Hz YGA-rype monitor

The monitor type can also be configured by holding down the corresponding
key from the numeric keypad while the computer is switched on.

Example *Configure MonitorType 3

R~lated commands YOU 22

Related SWis None

Related vectors None

VDU Drivers: ·commands 363

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

364

*Configure MouseStep
Selects how fast the pointer moves as you move the mouse

*Configure MouseStep <n>

<n> a number between 1 and 127

Useful values for this command are I, 2 or 3 for slow, medium or fast,
respectively.

The mouse position is moved by <n> coordinates for each movement of the
mouse. Although values up to 127 are accepted, anything above 6 is
impractical because the step is too large.

This can also be set from the desktop, using the Configure application.
OS_ Word 21,2 can also be used to dynamically set mouse multipliers.

*Configure MouseStep 3 select a fast speed

None

None

None

YOU Drivers: •comm~nrt~

Syntax

Parameters

Use

*Configure NoScroll
Sets the screen not to scroll upwards at the end of a line

*Configure NoScroll

None

This prevents a newline from being generated when a character is printed at
the end of a line. The default is Scroll.

When printing a character in YDU 4 mode results in the cursor moving
beyond the edge of the window, a 'pending newline' is generated. It is
actually executed just before the next character is printed, provided that it has
not been deleted or executed by another cursor control character. For
example YOU 117 would cancel it; YOU 9 would execute it.

Refer to YOU 13,16 for a lengthier description of noscroll and to show how
to dynamically set this option.

Related commands *Configure Scroll

Related SWis None

Related vectors None

\/1"'11 I l"'lriuor~· •r.nmm::mrl~ 365

Syntax

Parameters

Use

Related commands

Related SWis

Related vectors

366

*Configure Quiet
Sets the beep at half volume

*Configure Quiet

None

This command sets the confi~:urcd volume for the bell to half its loudest
volume. The change takes effect on the next reset.

*Configure Loud

OS_Byte 212 (SWI &06)

None

Syntax

Parameters

Use

*Configure ScreenSize

Reserves an area of memory for screen display

*Configure ScreenSize <n>l<mK>

<n>
<mK>

number of pages of memory; n<=l27
kilobytes of memory reserved

This command reserves an area of memory for screen display. The default
value is 80Kbytes on machines with 0.5Mbytcs and 160Kbytcs for machines
with more than that.

Refer to OS_ChangeDynamicArea for information on how to change the
screen memory allocation dynamically.

Note that the screen memory allocation should not be configured any greater
than 480K, due to limitations in MEMCl and MEMCI a.

Example *Configure ScreenSize 160K

Related commands None

Related SWis. None

Related vectors None

VDU Drivers: ·commands 367

Syntax

Parameters

Use

Related commands

Related SWis

Related vectors

368

*Configure Scroll
Sets the screen to scroll upwards at the end of a line

*Configure Scroll

None

This ~enerates a newline whenever a character i~ printed at the end of a line.
This is the default.

When printing a character in YOU 4 mode re~ults in the cursor moving
beyond the ed~e of the window, the cursor is instead moved to the neg'.Hive X
edge of the window and one line in the positive Y direction.

Refer to YOU 23,16 for a lengthier description of !<:roll and to show how to
dynamically set this option.

*Configure No..<icroll

None

None

*Configure Sync
Selects the type of synchronisation for vertical sync output

Syntax *Configure Sync <Oil>

Parameters 0 or 1 vertical or composite sync

Use This selects vertical sync (0 parameter) or composite sync (1 parameter) on
the vertical sync output of the video connector. For any monitor currently
supplied for use with Acorn computers, the def<~ult should not be changed
from 1.

Example *Configure Sync 1

Related commands None

Related SWis None

Related vectors None

vm J Drivers: •commands 369

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

370

*Configure TV
Adjusts screen alignment and screen interlace

*Configure TV [<vert align> [[,] <interlace))

<vert align>

<interlace>

adjusts the vertical screen alit!nment
0 to 3 lines up, or
255 to 252 (1 to 41ines down)
switches screen interlace on with 0, or off with I

This command sets the vertical alignment and interlace options. The default
values are 0,1 (no vertical a! ignment offset and interlace off).

*Configure TV 0,1 the default value

*TV

None

None

\/nl 1 n"'""'"' . • ,... _____ ...,_

Syntax

Parameters

Use

Example

*Pointer
Turns the mouse pointer on or off

*Pointer [0111

0 or 1 or nothing

This command is used to switch on or off the pointer that appears on screen to
reflect the mouse position. It can also be moved with OS_Word 21,5 if the
mouse and pointer are unlinked. OS_ Word 21,6 can read the pointer position
at any time.

No parameter or 1 will enable the pointer display, while 0 will disable it.

*Pointer 0 tum off the pointer

Related commands None

Related SWis OS_ Word 21 {SWI &07)

Related vectors None

VDU Drivers: ·commands 371

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

372

* ScreenLoad
Copies a sprite file into the grnphics window

*ScreenLoad <pathname>

<pathname> a valid path name, specifying a sprite file

This command copies the contents of a sprite file (for example, saved using
*ScrecnSavc) into the graphics window, which is typically the whole screen.

*ScreenLoad My.Pic

*Screen Save

None

None

VDU Drivers: ·commands

*ScreenSave
Copies graphics window to a file

*ScreenSave <pathname> Syntax

Parameters <pathname> a valid path name, specifying- a file

Use This command copies the conrents of the graphics window (typically the whole
screen) and its palette to a file, which is saved as a sprite. This file can then
be used by Paint or Draw.

Example *ScreenSave My. Pic

Related commands *ScreenLoad

Related SWis None

Related vectors None

VDU Drivers: ·commands 373

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

374

*Shadow
Causes the alternate bank of screen memory to be used

*Shadow [0111

0 or 1 or nothing

*Shadow makes subsequent changes to the screen mode using the alternate
bank of memory, called the shadow memory.

Passing 0 or no parameter causes this command to use the shadow bank on
next mode change. Pas.~ing 1 causes the non-shadow bank to be used.

For the shadow bank to be used, there must be at least double the memory
for the selected screen mode available in the screen :~rca of memory.

*Shadow 1

*Configure ScrccnSize

None

None

/

VOl J n riwm: · •r.nmm~nrfc:

Syntax

Parameters

Adjusts screen alignment and screen interlace

*TV [<vert align> [[,] <interlace]]

<vert align> adjusts the vertical screen alignment
0 to 3 lines up, or
255 to 252 (1 to 4 lines down)

*TV

<interlace> switches screen interlace on with 0, or off with 1

Use This command sets the vertical alignment and interlace options. The default
values arc 0,1 (no vertical alignment offset and interlace off). These are set
by *Configure TV.

Example *TV o, 1

Related commands *Configure TV

Related SWis None

Related vectors None

VDU Drivers: *Commands 375

Application
Notes

Examples of ECF
pattern use

In BBC/Master
compatible mode

376

This section gives some examples of how you might set ECF patterns using the
VDU 23,2-5 ... commands.

For example in modes with four bits per pixel, bits 7, 5, 3 and I of the n
parameter control the logical colour of the left-hand pixel, and bits 6, 4, 2
and 0 control the right-hand pixel. To set the left pixel to colour 2 (green by
default} and the right one to colour 7 (white}, the colours arc combined as
follows:

Pixel l colour {left} Green 2 0010
Pixel 2 colour (right) White 7 0111

Bit 7 6 5 4 3 2 0

Left pixel 0 0 0
Right pixel 0

Result 0 0 0 0

Resulting value = & I D (29)

Whereas in modes with two bits per pixel the methcxl is:

Pixel 1 colour (left) Yellow 2 10
Pixel 2 colour Red l 01
Pixel 3 colour White 3 II
Pixel 4 colour (right) Yellow 2 10

Bit 7 6 5 4 3 2 0

Pixel I 0
Pixcl1 0
Pixcl3
Pixcl4 0

Result 1 0 0 0

Resulting value= &B6 (182)

VDU Drivers: Application Notes

In RISC OS native mode In RISC OS mode, for example, in modes with four bits per pixel, the colour
of the left-hand pixel is formed from bits 3, 2, I and 0 of the n parameter,
and the colour of the right-hand pixel comes from bits 7, 6, 5 and 4 of the
parameter. So, if the pixels arc to be logical colours 2 and 7 again, the
colours are combined as follows:

Pixel 1 colour (left)
Pixel 2 colour (right)

Bit

Right pixel
Left pixel

7

0

Result 0

6

1

Resulting value= &72 (114)

Green
White

5

1

4

1

2
7

3

0

0

Notice that the pixel colours on the left, as displayed,
bits on the right, as written down, and vice versa.

In modes with two bits per pixel the method is:

Pixel I colour (left) Yellow 2
Pixel 2 colour Red 1
Pixel 3 colour White 3
Pixel4 colour (right) Yellow 2

Bit 7 6 5 4 3

Pixe14 0
Pixel3
Pixel2 0
Pixel I

Result 1 0 1 1 0

Resulting value= &136 (182)

0010
0111

2

0

0 1

0

0

0

are derived from the

10
01
11
10

2 0

0

1 1 0

VDU Drivers: Application Notes 377

Further examples of ECF
patterns

~7R

Here are examples of how to produce a pattern of alternating red (colour I)
lines and white (colour 7) lines (with the default palette). Each of the
YOU 23,2 or YOU 23,12 ~ommands alters ECF pattern 1 to cause the same
effect.

in a 2 colour mode (black and white only available):

YOU 23,12,1 ,I ,0,0,1 ,1 ,0,0
YOU 23,2,&FF,O,&FF,O,&FF,O,&FF,O
YOU 23,17 ,4, I I has no effect

in a 4 colour mode:

YOU 23,12,1, I ,3,3, I ,1 ,3,3
YOU 23,2,&0F,&FF,&OF,&FF,&OF,&FF,&OF,&FF
after YOU 23,1 7,4,11
YOU 23,2,&SS,&FF,&55,&FF,&SS,&FF,& SS,&FF

in a 16 colour mode:

YOU 23,12,1, I ,7,7, 1,1,7 ,7
YOU 23,2,3,&.3F,J,&3F,3,&3F,3,&3F
after YOU 23,17 ,4, 1 I
YOU 23,2,&11,&77,&11,&77,&11,&77,&11,&77

in a 256 colour mode:

YOU 23,12,&C3,&FF,&C3,&FF,&C3,&FF,&C'.J,&FF
YOU 23,2,& 17 ,&FF,& 17 ,&FF,& 17 ,&FF,& 17 ,&FF
YOU 23,17 ,4, II has no effect

Sprites

Introduction

Sprites: Introduction

A sprite is an area of memory that can be treated like a small block of
screen memory. It contains a graphic shape made up of an array of pixels.

A sprite has the following attributes:

• a name used to identify the sprite, up to 12 characters in length

• the number of the screen mode whose format the sprite imitates

• a height and a width

• optionally, a transparency mask.

• optionally, a palette defining the colours used in the sprite

If the sprite has a transparency mask, you can cause certain pixels in the
sprite not to be written to the existing screen display. By using this mask, you
can effectively make a sprite any shape.

A sprite can be defined by grabbing some or all of the screen, or defining it
a pixel at a time or by making the VDU plot operations go into a sprite
instead of the screen memory.

Once defined, a sprite can be manipulated in many ways, such as having rows
and columns inserted or deleted, flipping it about the x or y axis and
changing the colour of particular pixels.

A sprite can be plotted onto the screen scaled to any size, and its colours can
be altered using a lookup table.

Sprites are stored in sprite files, which may contain one or more sprites with
different names.

379

0 " rview

Sp te memory areas

System sprite area

User sprite area

Memory operations

RISC OS can use spnrc:' from the system sprite area. or from any number of
user sprite areas

The first is the system sprite area, which is defined by the kernel. Its size can
be controlled by a slider in rhc task manager application on the desktop.

This area is public and can be accessed from any program or module, so is a
convenient place to expcnmcnt using sprites. However, you should not usc the
system sprite area in commercial applications and should instead use a
combination of the Wimp'~ common sprite pool and user sprite area as
appropriate.

Note that the Sprite module *Commands only work with sprites in the system
sprite area.

Alternatively, an applic:~non or a module may reserve its own space. This is
private space, which can only be used by the :~pplicarion or module that
reserved it. For example, the Wimp has a shared sprite pool, which is passed
to OS_SpriteOp :lS a user area.

Unlike the system area, there can be several user areas which arc referenced
via pointers to the start of the areas. In user :~rcas, :~s well as being able to
refer to a sprite by n<lme, you can also refer to it by address. This plainly
will be much faster, since there is no overhead to search through the available
names.

With the spnte module, it is possible to issue calls to:

• clear a sprite area

• check how large an an:a is and how many sprites arc in it

• scan through the list of names of sprites in an area

380 Sprites: Overview

File operations

Creating sprites

Mask control

VDU output to sprite

Sprite manipulation

Sprites can be loaded and saved to any valid pathname. The simplest way of
doing this is to usc the calls to load or save the current graphics window as a
single sprite file.

For more sophisticated control, a sprite area (system or user) can be saved, or
loaded. It is also possible to merge a sprite file with what is already in
memory.

Sprite files can be edited by the Paint application.

You can create a blank sprite of a specified height and width. Subsequently,
individual pixels can be changed within it.

You also have various ways of grabbing some or all of the graphics window
and putting it into a sprite.

The various sprite editing utilities all usc one or other of these techniques.

The mask can be enabled and disabled as required. Like a sprite, it can have
individual pixels set or cleared. A sprite may have up to 256 colours (64
palette entries stored), depending on which mode it was created in; the mask
pixels are either on (solid), in which case the pixel colour is used, or off
(transparent), in which case it is not plotted.

The other way of writing to a sprite or its mask is to redirect the VDU
operations to a sprite. This means that the sprite rectangle is treated like a
graphics window, putting data into the sprite in the same format as the screen
memory.

Once a sprite is in memory, it can be manipulated in a number of ways, for
example you can:

• rename, copy, delete the sprite or append it to another sprite

• insert or delete rows and columns

• flip about the x or y axis

• change an individual pixel's colour.

Cr'\...i+n,..• f"\,,n,n,iou• 381

Plotting a sprite

382

There are several ways of plotting a sprite into the screen memory. There is a
SWI that will simply plot the sprite. You can alro plot it using the mask if
one is attached to it. The scale of the sprite can he changed ro be any desired
size. Thus, zooming into a sprite is made very easy.

The anti-aliasing technique u~d by the font manager with characters can be
used here with sprites. A rang-e of close colours arc used to shade the sprite,
which can be plotted with or without a mask, and scaled to any ~ize.

Sprites: Overview

Technical Details

Common parameters

Pointer to oontrol block
of sprite area and sprite
pointer

Scale factors

Sprites: Technical Details

Several kinds of parameters are used by many SWis within the sprite
module. Rather than repeating their definitions each time, they are described
here.

Many of the sprite SWls use a pointer to control block d sprite area
parameter in R1 or that and a sprite pointer in R2 . When either d these
appear, then bits 8 and 9 in RO control how these two registers are interpreted.

RO bit 8 & 9 values

00 (+0)

01 (+256)
10 (+512)
11 { + 768) is invalid

Rl effect

not used
(system sprite area used)
pointer to user sprite area
pointer to user sprite area

Note that the sprite names are null terminated.

R2 effect

pointer to sprite name

pointer to sprite name
pointer to sprite

For example OS_SpriteOp 256+ JJ,CBlock,NamePtr will interpret CB!ock as
a pointer to the user sprite area and use NamePtr as a pointer to the name of
the sprite to use within that area.

Using a pointer to a sprite in the user area (R0+512) is the quickest way of
using sprites, because the string lookup doesn't need to be done.

The scale factor will change the size of a sprite. It is a pointer to a block d
four words with the following elements:

Offset

0
4
8
12

Meaning

x multiplier
y multiplier
x divisor
ydivisor

The size of the specified sprite on the screen when it has been plotted in
pixels {NOT OS units), is multiplied by the magnitude and divided by the
divisor. ie.:

383

Pixel translation table

Plot action

384

x pixel size = x start size (in pixels) * x magnitude I x divisor
y pixel size= y start size (in pixels)* y magnitude I y divisor

If the plot action is using an ECF pattern, then the pattern will not be scaled
up with the sprite. This is so that the patterning will be correct when used with
a large scale factor. See the chapter entitled VDU drivers for a description ci
ECF patterns.

If the pointer is zero, then no scaling is performed. ie. I : I scale.

This allows a logical colour to be substituted for each colour in the sprite. It
is a pointer to a table of bytes. The number of bytes in the table depends on
the number of colours in the mode in which the sprite was created.

A pixel of colour N in the sprite wilt be translated to the Nth entry in the
pixel translation table. The first entry in the table is at offset 0 (ie the Oth
colour). So Colour J in a pixel will get the value J bytes into the table and
use that as its logical colour.

If the pointer is zero, then the colours in the sprite will be used. However, if
the destination bits per pixel is less than the source bits per pixel, you will
get an error.

The wimp uses a similar system to provide mode independence. See
Wimp_ReadColourTable in the chapter entitled Window MaMger for details.

The ColourTrans module provides facilities for translation rable calculations.
For more information refer to the chapter entitled ColourTrans.

The plot action is the way in which pixels are plotted onto the screen. Some
SWis use the VDU 18 setting, and others can be passed the number directly.
In either case, the form::tt is the same, apart from bit J (&08)

Value

0
I
2
J
4
5
6
7

Action

Overwrite colour on screen
OR with colour on screen
AND with colour on screen
exclusive OR with colour on screen
Invert colour on screen
Leave colour on screen unchanged
AND with colour on screen with NOT of sprite pixel colour
OR with colour on screen with NOT of spri.re pixel colour

Sprites: Technical Details

Save area

Sprites: Technical Details

&08 If set, then use the mask, otherwise don't
&10 ECF pattern 1
&20 ECF pattern 2
&30 ECF pattern 3
&40 ECF pattern 4
&50 Giant ECF pattern (patterns 1 - 4 placed side by side)

When output is switched to a sprite or its mask, it is possible to save the
VDU context in a save area. The save area passed is where the state that has
just been entered will be saved if another redirection of YOU output is made.

The save area is a block of memory, the size of which is obtained from
OS_SpriteOp 62. The contents cannot be directly manipulated, but this is a
list of the things that it stores:

• ECF patterns, BBC/Native ECF flag, ECF origin

• Dotted line pattern and lcngrh, and current position in pattern

• Graphics foreground and background actions, colours and tints

• Text foreground and background colours and tints

• Graphics and text window definitions

• Graphics origin

• Graphics cursor and two previous positions

• Text and input cursor posirions

• VDU status (VDU 2 state, page mode, windowing, shadowing, YOU 5
mode, cursor editing state and VDU disabled/enabled)

• VDU queue and queue pointer

• Character sizes and spacings

• Changed box coordinates and status

• Wrch destinations flag

• Spool handle

Mode variables are reconstitured from the sprite mode number or the display
mode number as appropriate.

385

Memory operations

')OC

The kernel maintains a save area for the screen (ie the system save area with a
value I) . Therefore, if you swap output to a sprite, perform some operntions
and swap back, it will not be necessary to allocate a save area.

A save area that has not yet been used must have a zero in the first word.
Once it has been used, then this is set to a non-zero value, so that when it is
next passed to OS_SpritcOp ffJ or OS_SpriteOp 6 I the graphics state will be
restored from it, rather than being set to the default srnte.

The use of save areas allows the YOU 'context' to be switched between
various destinations, so that each area has its own separate VDU state.

Here are a couple of examples highlighting the above points. The first
example shows how to set-up a once-off drawing into a sprite:

SYS "OS_Sprlte0p", 256•60 , ~yarea , mysprltes , o TO rO,rl , r2 , r3
REM we don ' t nee d a s~ve area, because nobody can swa p outout away from
REM our s prlte ; and we won' t want to r estore the state we ' re in when
REM we've fl nl s hed ou r wo rk on t he s prite .
.... do whatever gra ph ics we wan t
SYS •os_sprlteOp" ,rO, rl , r2 , r3
REM whatever output st<>t!' was in force or. E>nt ~y I~ now rnstored

The second example shows how to draw into a sprite, internet with the user,
while maintaining ECF patterns etc:

SYS •os SprlteOp", 256•67 , myarea, myspriteS :o , ,, size
DIM sa rea si ze
sarea!O 0 : REM mark as ""set
REPEAT

SYS"OS _ Spr It cOp", 7 Sfi •60 , my a rca , myspri tcS , s.orpa TO rO , rl , r2 , r 3
•••• work on the spr!te

SYS •os_sprlteOp", rO , rl , r2 ,r3 : REM r eturn to previous output
REM at this point , our s ave area has been filled with our st ate;
REM tho nPxt time wp s wi tch output to our s prit e the OS var i ables
REM will therefo re be reset from it.

00. tal k to the ust>r 00 00

UNTIL bored

To initialise the system sprite area , you can c::tll OS_SprireOp 9 or *SNew.
To change the system sprite area size , you e::tn call OS_ChangeDynamicArca
(SWI &2A); you can also change the configured size of this area (which is
used on a hard reset) by calling *Configure SpriteSize.

Reading a sprite area

Finding the names of
sprites

File operations

Creating a sprite

Sprites: Technical Details

In order to setup a user sprite area, you must first allocate space for it using
the usual memory allocation calls. You must then set up the header for the
area before you call OS_SpritcOp 9 to initialise it as a sprite area.

To check the state of a sprite area, *Sinfo or OS_SpritcOp 8 will tell you
how large the area is, how much has been used and how many sprites are in it.
*Slnfo will, of course, only work with the system area.

*SList will list the names of all sprites in the system area. OS_SpriteOp 13
allows you to find the name of a sprite given its number in the list. You
would call OS_SpritcOp 8 first to find out how many sprites there are and
then use this call to get the names one at a time.

The simplest sprite file operations are screen save and load. The screen save
will take the entire graphics window and convert it into a sprite file.
*ScreenSave and OS_SpriteOp 2 will perform this operation. *ScreenLoad
and OS_SpriteOp 3 will load it back again, aligned with the bottom left
hand comer of the current gr.Jphics window.

There is also a set of operations based around loading and saving sprite areas
to a file. "'SLoad and OS_SpriteOp 10 will lo<~d a sprite file into an
initialised sprite area and set up all the pointers within it. To save, "'SSave
and OS_SpritcOp 12 will create a sprite file and write all the sprites from
the specified sprite area into it.

The sprite load operations will delete all sprites currently in memory. If you
wish to keep them, then *SMcrgc and OS_SpritcOp 11 will merge the sprite
file sprites with those in memory. Any name clashes will result in the file
sprite replacing the memory one.

There are two main ways of creating a sprite. You can grab a piece of screen
memory using OS_SpritcOp 14 or 16, or *SGer. Alternatively, you can create
a blank sprite with OS_SpriteOp 15 to be subsequently filled in. With this
blank sprite, you can alter individual pixels or you can direct YOU
operations into it. These are discussed later.

387

Creating a mask

Sprite manipulation

Copy, rename or delete

Insert and delete row or
column

Axis flipping

Remove wastage

388

To create a mask, OS_SprireOp 29 must be u~d. It will initialise all the
pixels solid, so that all of the sprite is plotted. You must alter it afterwards
to set the mask that you require.

The contents of a sprite may be manipulated in many \\'<I)'S .

You can copy, rename or delete a sprite in the following ways:

• To make a copy of a sprite, OS_SpriteOp 27 o r *SCopy can be used.
They will return an error if the designated name already exists.

• To rename a sprite, OS_SpriteOp 26 or *SRennme can be used. Again,
the same error condition applies to existing destination names.

• To delete a sprite, its mask and palette, OS_SpriteOp 25 or *SDclere
can be used You can delete the mask of a sprite only, by calling
OS_SpriteOp 30. Free space is automatically reclaimed in the sprite area.

You can insert and delete rows and columns at any place you wish in the
sprite. These are the operations that you need to do this:

• OS_SpriteOp 31 to in~rr a row

• OS_SpriteOp 32 to delcre a row

• OS_SpritcOp 45 to insert a column

• OS_SpriteOp 46 to delete~~ column

A sprite can be flipped about its x or y axis. Flipped about the x axis using
OS_SpriteOp 33 or *SFiipX will make it appear upside down. Flipping
about the y axis with OS_SprireOp 47 or *SFiipY will make it look back ro
front.

If a sprite is nor a whole number of words wide, it is possible that part of
each row on the left and right is "wasted"; that is, it docs not form part of the
sprite image. To remove this wastage, OS_Sprir<.{)p 54 will align the sprite
with the left hand side. If more than 32 free bits :ue on the right of the sprite,
then these words will be removed.

Appending

Reading and altering
pixels

Reading and altering the
mask

VDU output to sprites

Plotting sprites

Scaled plotting

Sorites: Technical Details

Sprites can be tacked together, either horizontally or vertically using
OS_SpriteOp 35. No extra memory is used to do this.

To check the size of a sprite, OS_SpriteOp 40 will return its width, height,
screen mode and whether it has a mask or not.

If you wish to read a pixel in a sprite, then OS_SpritcOp 41 will return
colour and tint for a given x and y coordinate in the sprite. To write a pixel
colour, OS_SpriteOp 42 must be used. It is given the coordinates, colour and
tint to use.

Similar to these last two SWis, OS_SpriteOp 43 will read a mask bit and
OS_SpriteOp 44 will write it. Remember that a mask has the same number of
bits per pixel as the image, but that the bits for each pixel must either be all
set, or all clear.

The YOU drivers can be directed to put their output into a sprite instead of
the screen. OS_SpriteOp 60 will switch output to a sprite or to the screen.
OS_SpriteOp 61 will switch output to a mask or the screen.

The save area described earlier is used by these calls. The space required for
a save area can be determined by calling OS_SpriteOp 62.

To plot a sprite on the screen, OS_SpriteOp 28 and 34 are the simplest to
use. They plot the sprite at the current graphics cursor position, using the
current GCOL action. OS_SpriteOp 48 and 49 are similar, but the coordinates
and GCOL action are instead passed explicitly.

A sprite can be plotted at any magnification using OS_SpriteOp 50 and 52.

Like these SWis, OS_SpriteOp 53 will plot a sprite using scale factors and a
translation table, but it uses the anti-aliased colour technique that the font
manager uses for characters.

OS_SpriteOp 51 will paint a character onto the screen using scale factors.

389

Format of a sprite area

Format of a sprite

390

The format of a sprite area is as follows:

Control Extension Sprite Sprite Free
Block Area Space

(Optional)

The sprite area control block contains the following:

Word

1
2
3
4
5 ...

Contents

Byte offset to last byte+ 1 (ie total size of sprite area)
Number of sprites in area
Byte offset to first sprite
Byte offset to first free word {ie byte after last sprite)
Extension words (usually null)

The above offsets are relative to the start of the sprite area control block.

The format of the file created by a *ScreenSave or *SSave command is the
same as a sprite area but without word I of the control block. This is because
it is only valid in memory.

The format of a sprite is as follows:

Control Palette Area
Block (Optional)

Sprite Image Plotting Mask
(Optional)

The Sprite Control Block con tains the following:

Word

1
2-4
5
6
7
8
9
10

Content

Offset to next sprite
Sprite name, up to 12 characters with trailing zeroes
Width in words -1
Height in scan lines -1
First bit used (left end of row)
Last bit used {right end of row)
Offset to sprite image
Offset to transparency mask or offset to sprite image if no

Sprites: Technical Details

Format of a sprite image

Format of a sprite mask

Sprites: Technical Details

mask
11 Mode sprite was defined in
12 ... Palette da~ {optional)

The size of the palette data block depends on the number of bits per pixel in
the sprite's mode, since there will be one entry for each potential logical
colour. 256 colour modes are the exception to this rule, because there are only
16 palette registers.

Note that 256 colour sprites created by *ScreenSave actually have 64 palette
entries; the last 16 are the ones that are actually enforced.

'
Each entry is two words long. These are the words returned from
OS_ReadPalette {SWI &2F}. The format of these words is described with
this SWI in the chapter entitled VDU drivers.

The format of a sprite image is as follows:

Left hrd wastage 1 pixel

......__.___...___.____.__~~~ ~
1 word

Right hand wastage
t

The image contains the rows of the sprite from top to bottom, all word­
aligned. Each pixel is a group of <bytes per character> bits {see the section
on YOU variables in the chapter entitled VDU drivers}. The least significant
pixel in a word is the left-most one on the screen.

Note that in the diagram above, bit 0 of each word has been shown on the left,
and bit 31 has been shown on the right; this is to clarify how wastage occurs.
Note also that there will not necessarily be 4 pixels per word.

A sprite mask is the same size as the corresponding sprite image, and the
same bits refer to each pixel. In the mask, the bits of each pixel must either
all be set (the sprite's pixel is solid} or all be cleared {the pixel is
transparent)

391

VDU commands

Plotting a sprite

392

There arc ways of selecting a sprite so that it can ~ubsequcntly be used by the
VDU commands described below to plot sprites.

The VDU commands arc included for compatibility only and in RISC OS
are of very little use since they only allow access to the system sprite area,
whereas you will more likely be using user sprite areas.

Any programs being written for the Wimp must not use these VDU
commands because there is only one location storing the setting for the
selected sprite, not one per process.

As well as *SChoose and OS_SpriteOp 24, a sprite can be selected for VDU
use by:

VDU 23,27,m,nl

where: m = 0 is equivalent to *SChoosc n.
m = 1 is equivalent to *SGet n

Once a sprite has been selected by either of the three techniques above, it can
be plotted using:

VDU 25,232 - 239,x;y;

The range of eight plot numbers are the standard plot options as defined in
VDU 25 in the chapter entitled VDU drivers. x andy arc in OS coordinates.

Sprites: Technical Details

SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Sprites: SWI Calls

Controls the sprite system

RO = reason code
Other registers depend on reason code

RO preserved
Other registers depend on reason code

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_SpriteOp
(SWI &2E)

This ca11 controls the sprite system. It is indirected through SpriteV.

The particular action of OS_SpriteOp is given by the reason code in RO as
follows:

RO

2
3
8
9
10
11
12
13
14
15
16
24
25
26
27
28

Action

Screen save
Screen load
Read area control block
Initialise sprite area
Load spri te file
Merge spri te file
Save sprite file
Return name
Get spri te
Create sprite
Get sprite from user co-ordinates
Select spri te
Delete sprite
Rename sprite
Copy sprite
Put sprite

393

Related SWis

Related vectors

394

29 Create mask
30 Remove mask
31 Insert row
32 Delete row
33 Flip about x axis
34 Put sprite at user coordinates
35* Append sprite
36* See pointer shape
40 Read sprite information
41 Read pixel colour
42 Write pixel colour
43 Read pixel mask
44 Write pixel mask
45 Insert column
46 Delete column
47 Flip about y axis
48 Plot spri re mask
49 Plot mask at user coordinates
50 Plot mask scaled
51* Paint character scaled
52* Put sprite scaled
53* Put sprite ~rey scaled
54 Remove lefthand wastage
60 Switch our:put to sprite
61 Switch output to mask
62 Read save area size

For details of each of these reason codes, sec below.

Note that the reason codes marked with an asterisk cannot be used with
RISC OS 2.00 version of the SpriteExtend module.

None

SpriteOpV

SoritA~ · SWI r.;~llc:.

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Screen save

RO = 2
R2 = pointer to pathname
RJ = palette flag (0 not to save, 1 to save)

RO preserved
R2 preserved
RJ preserved

OS_SpriteOp 2
(SWI &2E)

This saves the current graphics window as a sprite file . The file contains a
single sprite called 'screendump'. If RJ is 0, no palette information is saved
with the file; if it is 1, the current palette is saved. It is equivalent to
*ScreenSave.

See reason code 3 to reverse the operation and load a screen.

OS_SpriteOp 3 (SWI &2E)

SpriteY

395

On entry

On exit

Use

Related SWis

Related vectors

396

Screen load

RO=J
R2 =pointer to path name

RO preserved
R2 preserved

OS_SpriteOp 3
(SWI &2E)

This plots a sprite directly from a file to the screen. It changes mode if
necessary and sets the palette to the setting held in the file. The sprite is
plotted at the bottom left of the graphics window. After a mode change, this
is the bottom left-hand corner of the screen. It is equivalent to *ScreenLoad.

Sec reason code 2 to reverse the operation and save a screen.

OS_SpritcOp 2 (SWI &2E)

SpriteV

Sorites: SWI Calls

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Read area control block

RO= 8
Rl =pointer to control block of sprite area

RO preserved
R 1 preserved
R2 = total size of sprite area in bytes
R3 = number of sprites in area
R4 = byte offset to the first sprite
R5 =byte offset to the first free word

OS_SpriteOp 8
(SWI &2E)

This returns all the information contained in the control block of a sprite area.

Setting bit 8 or 9 of RO alters the interpretation of Rl - see the start of the
earlier section on Technical Details for a description.

None

SpriteY

397

On entry

On exit

Use

Related SWis

Related vectors

398

Initialise sprite area

R0=9
Rl = pointer to control block of sprite area

RO preserved
R l preserved

OS_SpriteOp 9
(SWI &2E)

This initialises a sprite area. It is equivalent to *SNew when used with the
system area.

If you are initialising a user sprite area, then you must first initialise two
words in the area header:

Address

area+ 0
area + 8

Contents of word

total size of area
offset to first sprite (= 16, if the extension area is null)

Setting bit 8 or 9 of RO alters the interpretation of Rl - see the start of the
earlier section on Technical Details for a description.

None

SpriteV

SnritA~· SWI ~~lie:

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Load sprite file

RO = 10 (&OA)
Rl =pointer to control block of sprite area
R2 = pointer to pathname

RO preserved
R 1 preserved
R2 preserved

OS_SpriteOp 10
(SWI &2E)

This loads the sprite definitions contained in the file into the sprite area,
overwriting any definitions stored there already. It is equivalent to *SLoad
when used with the system area.

The first word of the sprite area must be initialised to its size before you call
this SWI.

Setting bit 8 or 9 of RO alters the interpretation of Rl - sec the start of the
earlier section on Technical Details for a description.

None

SpriteV

399

On entry

On exit

Use

Related SWis

Related vectors

400

Merge sprite file

RO= 11 (&OB)
R 1 = pointer to control block of sprite area
R2 = pointer to pathname

RO preserved
R 1 preserved
R2 preserved

OS_SpriteOp 11
(SWI &2E)

This merges the sprite definitions contained in the file with those in the sprite
area. It is equivalent to *SMerge when used with the system area.

Note that there must be enough free space in the sprite area to hold both the
new file and the original sprites, since it is only after the new file has been
loaded that any of the original sprites arc replaced by new ones that have the
same name.

Setting bit 8 or 9 of RO alters the interpretation of R 1 - see the start of the
earlier section on Technical Details for a description.

None

SpriteY

Sorites: SWI r.~u~

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Save sprite file

RO = 12 (&OC)
Rl =pointer to control block of sprite area
R2 = pointer to path name

RO preserved
Rl preserved
R2 preserved

OS_SpriteOp 12
(SWI &2E)

This saves the contents of a sprite area to a file. It is equivalent to *SSave
when used with the system area.

The first word of the sprite area (its size) is not saved.

Setting bit 8 or 9 of RO alters the interpretation of Rl - see the start of the
earlier section on Technical Details for a description.

None

SpriteY

401

On entry

On exit

Use

Related SWis

Related vectors

402

Return name

RO = 13 (&OD)
Rl =pointer to control block of sprite area
R2 =pointer to buffer

OS_SpriteOp 13
(SWI &2E)

R3 =maximum name length (ie. buffer size)
R4 =sprite number (position in workspa~e- the first one is numbered l)

RO preserved
R 1 preserved
R2 preserved
R3 = name length
R4 preserved

This returns the name of the sprite wh05e position in the workspace (eg 3 for
the third sprite) is given in R4. The name is placed in the buffer pointed to by
R2 as a null-terminated string, the length of which is rcrurned in R3.

Setting bit 8 or 9 of RO alters the interpretation of Rl - see the start of the
earlier section on Technical Details for a description.

None

SpriteV

Sorites: SWI Calls

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Get sprite

RO = 14 (&OE)
Rl =pointer to control block of sprite area
R2 =pointer to sprite name

OS_SpriteOp 14
(SWI &2E)

R3 =palette flag (0 to exclude palette data, 1 to include it)
'

RO preserved
R 1 preserved
R2 = address of sprite (if in user sprite area)
R3 preserved

This defines the sprite identified to be the current contents of an area of the
screen. It is delimited by the current and old cursor positions (inclusive). If
the sprite already exists, it is overwritten. It is equivalent to *SGet when used
with the system area.

Any part of the designated area which lies outside the current graphics
window is filled with the current background colour in the sprite.

Setting bit 8 of RO alters the interpretation of Rl - see the start of the earlier
section on Technical Derails for a description. You must not call this SWI with
bit 9 ofRO set; that is, R2 must always point to a sprite name.

OS_SpriteOp 16 (SWI &2E)

SpriteV

403

On entry

On exit

Use

Related SWis

Related vectors

404

Create sprite

RO = 15 (&OF)
RI =pointer to control block of sprite area
R2 =pointer to sprite name

OS_SpriteOp 15
(SWI &2E)

R3 = palette flag (0 to exclude palette data, I to include it)
R4 = width in pixels
RS = height in pixels
R6 = mode number

RO preserved
R 1 preserved
R2 preserved
R3 preserved
R 4 preserved
RS preserved
R6 preserved

This creates a blank sprite of a given size.

Setting bit 8 of RO alters the interpretation of Rl - see the start of the earlier
section on Technical Detai~ for a description. You must not call this SWI with
bit 9 afRO set; that is, R2 must always point to a sprite name.

None

SpriteV

Sorites: SWI Calls

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

OS_SpriteOp 16
(SWI &2E)

Get sprite from user coordinates

RO = 16 (&10)
Rl =pointer to control block of sprite area
R2 = pointer to sprite name
R3 = palette flag (0 to exclude palette data, 1 to include it)
R4 = left hand edge OS screen coordinate (inclusive)
RS = bottom edge OS screen coordinate (inclusive)
R6 = right hand edge OS screen coordinate (inclusive)
R7 =top edge OS screen coordinate (inclusive)

RO preserved
R 1 preserved
R2 =address of sprite (if in user sprite area)
R3 preserved
R 4 preserved
R5 preserved
R6 preserved
R 7 preserved

This picks up an area of the screen, which is delimited by the coordinates
supplied (inclusive), as a sprite. If the sprite already exists, it is overwritten.

Any part of the designated area which lies outside the current graphics
window is filled with the current background colour in the sprite.

Setting bit 8 of RO alters the interpretation of Rl - see the start of the earlier
section on Technical Details for a description. You must not call this SWI with
bit 9 of RO set; that is, R2 must always point to a sprite name.

OS_SpriteOp 14 (SWI &2E)

SpriteY

405

On entry

On exit

Use

Related SWis

Related vectors

406

Select spri tc

RO = 24 (&18)
Rl =pointer to control block of sprite area
R2 =sprite pointer

RO preserved
R 1 preserved

OS_SpriteOp 24
(SWI &2E)

R2 = address of sprite (if in user sprite area), otherwise preserved

Select a particular sprite for subsequent plotting. That is, the YOU 25,232-
239 commands will use the selected sprite. It is equivalent to *SChoose when
used with the system flrea.

Setting bit 8 or 9 of RO filters the interpretation of R I and R2 - see the Stflrt
of the earlier section on Technical Details for a description.

None

SpriteV

Sprites: SWI Calls

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Delete sprite

RO = 25 (&19)
Rl =pointer to control block of sprite area
RZ =sprite pointer

RO preserved
RI preserved
RZ preserved

OS_SpriteOp 25
(SWI &2E)

This deletes the definition of a particular sprite. It is equivalent to *SDelete
when used with the system area.

Setting bit 8 or 9 of RO alters the interpretation of RI and RZ - see the start
of the earlier section on Technic:nl Details for a description.

None

SpriteV

407

On entry

On exit

Use

Related SWis

Related vectors

408

Rename sprite

RO = 26 (&lA)
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = pointer to new name

RO preserved
R 1 preserved
R2 preserved
R3 preserved

OS_SpriteOp 26
(SWI &2E)

This changes the name of a sprite. An error is produced if a sprite of the new
name already exists in the same sprite area. It is equivalent to *SRename
when used with the system area.

Setting bit 8 or 9 of RO alters the interpretation of R I and R2 - see the start
of the earlier section on Technical Details for a description.

None

SpriteV

Sprites: SWI Calls

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Copy sprite

RO = 27 (& 113)
Rl =pointer to control block of sprite area
R2 =sprite pointer
R3 =pointer to new name

RO preserved
R 1 preserved
R2 preserved
R3 preserved

OS_SpriteOp 2 7
(SWI &2E)

This copies a sprite within a sprite area. An error is produced if a spri te of
the new name already exists in the same sprite area. It is equivalent to
•SCopy when used with the system area.

Setting bit 8 or 9 of RO alters the interpretation of R 1 and R2 - see the start
of the earlier section on Technical Details for a description.

None

SpriteV

409

On entry

On exit

Use

410

Put sprite

RO = 28 (&IC)

OS_SpriteOp 28
(SWI &2E)

Rl = pointer to control block of sprite area
R2 = sprite pointer
RS = plot action

RO preserved
R 1 preserved
R2 preserved
RS preserved

This plots the sprite identified with its bottom left corner at the current
graphics cursor position using the plot action specified in RS :

Value

0
1
2
3
4
5
6
7
&08
&10
&20
&30
&40
&50

Action

Overwrite colour on screen
OR with colour on screen
AND with colour on screen
exclusive OR with colour on screen
Invert colour on screen
Leave colour on screen unchanged
AND with colour on screen with NOT of sprite pixel colour
OR with colour on screen with NOT of sprite pixel colour
If set, then use the mask, otherwise don't
ECF pattern 1
ECF pattern 2
ECF pattern .3
ECFpattem 4
Giant ECF pattern (patterns I - 4 placed side by side)

Setting bit 8 or 9 of RO alters the interpretation of R I and R2 - sec the start
of the earlier section on Technical Details for a description.

~nrit l)c: · C::::Wt r.~ttc:

Related SWis

Related vectors

Sprites: SWI Calls

OS_SpriteOp 48 (SWI &2E)

SpritcV

411

On entry

On exit

Use

Related SWis

Related vectors

412

Create mask

RO = 29 (&I D)
Rl =pointer to control block of sptite area
R2 = sprite pointer

RO preserved
R 1 preserved
R2 preserved

OS_SpriteOp 29
(SWI &2E)

This creates a mask for the specified sprite with all pixels set to be solid.

Setting bit 8 or 9 of RO alters the interprcration of R I and R2 - see the start
of the earlier foCCtion on Technical Details for a description.

OS_SpritcOp 30 (SWI &2E)

SpriteV

Sprites: SWI Calls

On entry

On exit

Use

Related SWis

Related vectors

Sorites: SWI Calls

Remove mask

RO = 30 (&lE)
Rl = {'<linter to control block of sprite area
R2 = sprite pointer

RO preserved
R 1 preserved
R2 preserved

OS_SpriteOp 30
(SWI &2E)

This removes the mask definition for a given sprite.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2 - see the start
of the earlier section on Technical Detmls for a description.

OS_SpriteOp 29 (SWI &2E)

SpriteY

413

On entry

On exit

Use

Related SWis

Related vectors

414

Insert row

RO = 31 (&IF)
Rl =pointer to control block of sprite area
R2 = sprite Pointer
R3 = row number

RO preserved
Rl preserved
R2 preserved
R3 preserved

OS_SpriteOp 31
(SWI &2E)

This inserts a row in the sprite at the posttton identified, shifting all rows
above it up one. All pixels in the new row are set to colour zero. Rows are
numbered from the bottom upwards with the bottom row being number zero.
If the row number is equal to the height of the sprite it will go on top. Any
value above this will generate an error.

Setting bit 8 or 9 of RO alters the interpretation of R I and R2 - see the start
of the earlier section on Technical Details for a description.

OS_SpriteOp 32, 45 and 46 (SWI & 2E)

SpriteY

Sorites: SWI C;~ll~

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Delete row

RO = 32 (&20)
Rl =pointer to control block of sprite area
R2 =sprite Pointer
R3 = row number

RO preserved
R l preserved
R2 preserved
R3 preserved

OS_SpriteOp 32
(SWI &2E)

This deletes a row in the sprite at the pos1t10n identified, shifting all rows
above it down one. Rows are numbered from the bottom upwards with the
bottom row being number zero. If the row number is greater than or equal to
the height of the sprite it will generate an error.

Setting bit 8 or 9 ci RO alters the interpretation ci Rl and R2 - see the start
of the earlier section on Technical Detoils for a description.

OS_SpriteOp 31, 45 and 46

SpriteV

415

On entry

On exit

Use

Related SWis

Related vectors

416

Flip about x axis

RO = 33 {&21)
R 1 =pointer to control block of sprite area
RZ =sprite pointer

RO preserved
R I preserved
RZ preserved

OS_SpriteOp 33
(SWI &2E)

This takes the sprite identified and reflects it about the x axis so that it is
upside down. Thus, its top row on entry becomes the bottom row on exit, and
soon.

It is equivalent to *SFiipX when used on the system area sprites.

Setting bit 8 or 9 of RO alters the interpretation of R I and RZ - see the stan
of the earlier section on Technical Details for a description.

OS_SpritcOp 47 {SWI &ZE)

SpriteY

C:nrito<'• C\A/1 1'"' 11~

On entry

On exit

Use

Sprites: SWI Calls

OS_SpriteOp 34
(SWI &2E)

Put sprite at user coordinates

RO = 34 (&22)
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate
R4 = y coordinate
R5 = plot action

RO preserved
R 1 preserved
R2 preserved
R3 preserved
R 4 preserved
R5 preserved

This plots a sprite at the external coordinates supplied, using the plot action
supplied in RS:

Value

0
l
2
3
4
5
6
7
&08
&10
&20
&30
&40
&50

Action

Overwrite colour on screen
OR with colour on screen
AND with colour on screen
exclusive OR with colour on screen
Invert colour on screen
Leave colour on screen unchanged
AND with colour on screen with NOT of sprite pixel colour
OR with colour on screen with NOT of sprite pixel colour
If set, then use the mask, otherwise don't
ECFpattem 1
ECFpattem 2
ECFpattem 3
ECFpattem 4
Giant ECF pattern (patterns 1 - 4 placed side by side)

417

Related SWis

Related vectors

418

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2 - see the start
of the earlier section on Technical Details for a description.

None

SpriteV

Sprites: SWI Calls

On entry

On exit

Use

Sprites: SWI Calls

OS_SpriteOp 35
(SWI &2E)

Append sprite

RO = 35 (&23)
Rl = pointer to control block of sprite area
R2 = sprite pointer 1
R3 = sprite pointer 2
R4 = 0 to merge horizontally, or 1 to merge vertically

RO preserved
Rl preserved
R2 preserved
R3 preserved
R4 preserved

This call can be used to merge two sprites of the same height or width into
one sprite, tacking them together vertically or horizontally.

The sprites are appended horizontally in the following order:

2

The sprites are appended vertically in the following order:

2

419

Related SWis

Related vectors

420

The result of the merge is stored in sprite 1 and sprite 2 is deleted. Thus the
merge does not consume any extra memory.

Attempting to merge two sprites with different vertical or horizontal sizes
will result in an error.

Setting bit 8 or 9 of RO alters the interpretation of R 1 and R2 - sec the start
of the earlier section on Technical Details for a description.

None

SpriteY

Sprites: SWI Calls

On entry

On exit

Use

Sprites: SWI Calls

OS_SpriteOp 36
(SWI &2E)

Set pointer shape

RO = 36 (&24)
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = bitfield (see below)
R4 = x offset of active point
RS = y offset of active point
R6 = scale factors (0 to scale for the mode)
R 7 = pixel translation table

RO preserved
R 1 preserved
R2 preserved
R3 preserved

This call sets any of the hardware pointer shapes to be programmed from a
sprite, with some degree of mode independence. ie. the aspect ratio is catered
for.

Note that in high resolution monochrome modes (eg. mode 23), the pointer
shape resolution is four times worse horizontally than the pixel resolution,
and only colours 0, I and 3 can be used in the pointer shape definition. This
call will cater for this problem by halving the width of the pointer, so that it
is still possible to see what it is, although the pointer will be twice as wide as
usual.

R3 on entry is a bitfield composed of the following fields:

Bit Meaning

0-3 pointer shape number, currently in the range 1 - 4
4 if clear, then set the pointer shape data
5 if clear, then set the palette from the sprite
6 if clear, then program the pointer shape number

421

Related SWis

Related vectors

422

Bits 4, 5, and 6 of this bitfield can be used to defer certain aspects of this call
until later. For example, if you wanted to set up the pointer shape without
displaying the pointer, bits 5 and 6 would be set.

The coordinates in R4 and R5 are relative pixels from the top left comer of
the sprite.

Setting bit 8 or 9 ci RO alters the interpretation ci Rl and R2 - see the start
of the earlier section on Technical Details for a description.

OS_ Word 8 (SWl &07), Wimp_SctPointerShape (SWl &40008)

SpriteY

Sprites: SWI Calls

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Read sprite information

RO = 40 (&28)
Rl =pointer to control block of sprite area
R2 = sprite pointer

RO preserved
R 1 preserved
R2 preserved
RJ = width in pixels
R4 =height in pixels

OS_SpriteOp 40
(SWI &2E)

R5 =mask status (0 for no mask, 1 for mask)
R6 = screen mode in which the sprite was defined

This returns information about the sprite, giving its width and height in pixels,
whether the sprite has a mask and the screen mode in which the sprite was
defined. ·

Setting bit 8 or 9 d RO alters the interpretation d Rl and R2 - see the start
of the earlier section on Technical Details for a description.

None

SpriteV

423

On entry

On exit

Use

Related SWls

Related vectors

424

Read pixel colour

RO = 41 (&29)
R1 =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate (in pixels)
R4 = y coordinate (in pixels)

RO preserved
R 1 preserved
R2 preserved
R3 preserved
R4 preserved
R5 =colour
R6 =tint

OS_SpriteOp 41
(SWI &2E)

Given x and y coordinates in R3 and R4 (in pixels relative to the bottom left
of the sprite definition), this call returns the current colour d the pixel at that
position.

The colour and tint returned depends on the mode. If it is not a 256 colour
mode, then colour is from zero to the number of colours-1 and tint is zero. In
256 colour modes, the colour is from 0 to 63 and tint is either 0, 64, 128 or 192.

Setting bit 8 or 9 of RO alters the interpretation d R 1 and R2 - see the start
of the earlier section on Technical Details for a description.

OS_SpriteOp 42 (SWI &2E)

SpriteV

Sprites: SWl Calls

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Write pixel colour

RO = 42 (&2A)
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate
R4 = y coordinate
RS =colour
R6 =tint

RO preserved
R 1 preserved
R2 preserved
R3 preserved
R4 preserved
R5 preserved
R6 preserved

OS_SpriteOp 42
(SWI &2E)

Given x and y coordinates (in pixels from the bottom left of the sprite
definition), and colour and tint in R5 and R6, this call sets the pixel at the
position given to that colour.

The colour and tint values used depend on the mode. If it is not a 256 colour
mode, then colour is from zero to the number of colours-1 and tint is ignored.
In 256 colour modes, the colour is from 0 to 63 and tint is either 0, 64, 128 or
192. ie. only bits 6 and 7 are used.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2 - see the start
of the earlier section on Technical Details for a description.

OS_SpriteOp 41 (SWI &2E)

SpriteV

425

On entry

On exit

Use

Related SWis

Related vectors

426

Read pixel mask

RO = 43 (&2B)
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate
R4 = y coordinate

RO preserved
R 1 preserved
R2 preserved
R3 preserved
R4 preserved

OS_SpriteOp 4 3
(SWI &2E)

R5 = mask status (0 = transparent, 1 = solid)

Given x and y coordinates in RJ and R4 (in pixels relative to the bottom left
of the sprite definition), this call returns the current state of the mask at that
position.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2 - see the start
of the earlier section on Technical Details for a description.

OS_SpriteOp 44 (SWI &2E)

SpriteV

Sorites: SWI Calls

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Write pixel mask

RO = 44 (&2C)
Rl =pointer to control block of sprite area
R2 =sprite pointer
R3 = x coordinate
R4 = y coordinate

OS_SpriteOp 44
(SWI &2E)

R5 = mask status (0 = transparent, l = solid)

RO preserved
R l preserved
R2 preserved
R3 preserved
R4 preserved
R5 preserved

Given x and y coordinates (in pixels from the bottom left of the sprite
definition), and mask state in R5, this call sets the pixel at the position given
to that mask.

Setting bit 8 or 9 ci RO alters the interpretation ci R 1 and R2 - see the start
of the earlier section on Technical Details for a description .

OS_Sprite()p 43 (SWI &2E)

SpriteV

427

On entry

On exit

Use

Related SWis

Related vectors

428

Insert column

RO = 45 (&20)
Rl =pointer to control block of sprite area
R2 = sprite pointer
IU = column number

RO preserved
R 1 preserved
R2 preserved
IU preserved

OS_SpriteOp 45
(SWI &2E)

This inserts a column at the posltton identified, shifting all columns after it
one place to the right. The new column is set to have either transparent or
colour pixels, depending on whether the sprite has a mask or not. COlumns
are numbered from the left with the left-hand one being number zero.

If the column number is equal to the width of the sprite it will go after the
right hand side. Any value above this will generate an error.

Setting bit 8 or 9 of RO alters the interpretation of R 1 and RZ - sec the start
of the earlier section on Technical Details for a description.

OS_SpritcOp J 1, 32 and 46 (SWI &2E)

SpriteV

Sprites: SWI Calls

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Delete column

RO = 46 (&2E)
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = column number

RO preserved
R 1 preserved
R2 preserved
R3 preserved

OS_SpriteOp 46
(SWI &2E)

This deletes a column from the position identified, shifting all columns after
it one place to the left. Columns are numbered from the left with the left·
hand one being number zero.

If the column number is greater than or equal to the width of the sprite it will
generate an error.

Setting bit 8 or 9 of RO alters the interpretation of R I and R2 - see the start
of the earlier section on Technical Details for a description.

OS_SpriteOp 31, 32 and 45 (SWI &2E)

SpriteY

429

On entry

On exit

Use

Related SWis

Related vectors

430

Flip about y axis

RO = 47 (&2F)
Rl =pointer to control block of sprite area
R2 = sprite poi mer

RO preserved
Rl preserved
R2 preserved

OS_SpriteOp 4 7
(SWI &2E)

This rakes the sprite identified and reflects it about the y axis so that it is
facing in the opposite direction. Thus, its leftmost column on entry becomes
the rightmost column on exit, and so on.

It is equivalent to *SFiipY when used with the system sprite area.

Setting bit 8 or 9 of RO alters the interpretation of R 1 and R2 - see the stan
of the earlier section on Technical Details for a description.

OS_SpriteOp JJ (SWI &2E)

SpriteV

Sprites: SWI Calls

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Plot sprite mask

RO = 48 (&30)
R1 =pointer to control block of sprite area
R2 = sprite pointer

RO preserved
R 1 preserved
R2 preserved

OS_SpriteOp 48
(SWI &2E)

This plots a sprite mask in the background colour and action with its bottom
left comer at the graphics cursor position. That is, all 1 bits in the mask are
plotted in the background colour and action, and all 0 bits are ignored. If the
sprite has no mask, a solid rectangle the same size as the sprite is drawn in
the current background colour and action (as if there was a mask which was
completely solid).

Setting bit 8 or 9 of RO alters the interpretation of R1 and RZ - see the start
of the earlier section on Technical Details for a description.

OS_SpriteOp 28 (SWI &ZE)

SpriteV

431

On entry

On exit

Use

Related SWis

Related vectors

432

Plot mask at user coordinates

RO = 49 (&31)
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate
R4 = y coordinate

RO preserved
R I preserved
R2 preserved
R3 preserved
R4 preserved

OS_SpriteOp 49
(SWI &2E)

This plots in the background colour and action through a sprite mask at the
external coordinates supplied.

Setting bit 8 or 9 of RO alters the interpretation of R I and R2 - see the start
of the earlier section on Technical Details for a description.

OS_SpriteOp 48 (SWI &2E)

SpriteY

Sprites: SWI Calls

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Plot mask scaled

RO =50 (&32)
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate to plot at
R4 = y coordinate to plot at
R6 = scale factors

RO preserved
R I preserved
R2 preserved
R3 preserved
R 4 preserved
R6 preserved

OS_SpriteOp 50
(SWI &2E)

A sprite mask is plotted on the screen, using the current background colour
and action and the scaling factors provided.

Setting bit 8 or 9 of RO alters the interpretation of R I and R2 - see the start
of the earlier section on Technical Details for a description.

None

SpriteY

433

On entry

On exit

Use

Related SWis

Related vectors

434

Paint character scaled

RO =51 (&33)
Rl =character code
R3 = x coordinate to plot
R4 = y coordinate to plot
R6 = scale factors

RO preserved
R 1 preserved
R3 preserved
R4 preserved
R6 preserved

OS_SpriteOp 51
(SWI &2E)

The specified character is plotted on the screen with its lower left hand
comer at the specified coordinate, using the current graphics foreground
colour and action.

See the technical description in this chapter for a description of plot actions.

None

SpriteV

Sorites: SWI Calls

On entry

On exit

Use

Sprites: SWI Calls

OS_SpriteOp 52
(SWI &2E)

Put sprite scaled

RO =52 (&34)
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate to plot
R4 = y coordinate to plot
R5 = plot action
R6 =scale factors
R7 =pixel translation table

RO preserved
R 1 preserved
R2 preserved
R3 preserved
R4 preserved
R5 preserved
R6 preserved
R 7 preserved

This will plot a sprite on the screen using:

• the coordinate specified by R3 and R4

• the plot action specified by R5.

• the scale factor specified by R6

• the pixel translation rable pointed to by R7

The plot actions specified in RS are:

Value

0
1
2
3
4

Action

Overwrite colour on screen
OR with colour on screen
AND with colour on screen
exclusive OR with colour on screen
Invert colour on screen

435

Related SWis

Related vectors

436

5 Leave colour on screen unchan{:cd
6 AND with colour on screen with NOT of sprite pixel colour
7 OR with colour on screen with NOT of sprite pixel colour
&08 If set, then use the mask, otherwise don't
& 10 ECF pattern 1
&20 ECF pattern 2
&30 ECF pattern 3
&40 ECF pattern 4
&50 Giant ECF pattern {patterns 1 - 4 placed side by side)

Setting bit 8 or 9 of RO alters the interpretation of R I and RZ - see the stan
of the earlier section on Technical Details for a description.

OS_SpriteOp 53 {SWI &2E)

SpriteV

Sprites: SWI Calls

On entry

On exit

Use

Related SWis

Sprites: SWI Calls

Put sprite grey scaled

RO =53 (&35)
Rl =pointer to control block of sprite area
R2 =sprite pointer
R3 = x coordinate to plot at
R4 = y coordinate to plot at
R5 =0
R6 = scale factors
R7 =pixel translation table

RO preserved
R 1 preserved
R2 preserved
R3 preserved
R4 preserved
R5 preserved
R6 preserved
R 7 preserved

OS_SpriteOp 53
(SWI &2E)

This call is similar to OS_SpriteOp 52, except that it performs anti-aliasing
on the sprite as it scales it. This is the same technique that the Font Manager
uses on characters. This means that the sprite must have been defined in a 4
bits per pixel mode (16 colours), and the pix~s must reflect a linear grey
scale, as with anti-aliased font definitions.

This call is considerably slower than OS_SpriteOp 52 (Put sprite scaled) and
should only be used when the quality of the image is d the utmost
importance. To speed up redrawing of an anti-aliased sprite, it is possible to
draw the image into another sprite (using OS_SpriteOp 60 - switch output to
sprite), which can then be redrawn more quickly.

Setting bit 8 or 9 d RO alters the interpretation of Rl and R2 - see the start
of the earlier section on Technical Details for a description.

OS_SpriteOp 52 (SWI &2E)

437

Related vectors SpriteV

438 Sprites: SWI Calls

On entry

On exit

Use

Related SWis

Related vectors

Sprites: SWI Calls

Remove left hand wastage

RO =54 (&36)
Rl =pointer to control block of sprite area
R2 = sprite pointer

RO preserved
R 1 preserved
R2 preserved

OS_SpriteOp 54
(SWI &2E)

In general, sprites have a number of unused bits in the words corresponding
to the left and right hand edges of each pixel row. This call removes the left
hand wastage, so that the left hand side of the sprite is word aligned.

The right hand wastage is increased by the number ci bits that were removed.
If this is now more than 32 bits then a whole word is removed from each row
of the sprite, and the rest c:i the sprite area moved down to fill the gap.

Note that when you switch output to a sprite using OS_SpriteOp 60 or 61, the
left-hand wastage is also removed.

Setting bit 8 or 9 ci RO alters the interpretation c:i Rl and R2 - see the start
of the earlier section on Technical Details for a description.

OS_SpriteOp 60 and 61 (SWI &2E)

SpriteV

439

On entry

On exit

Use

440

OS_SpriteOp 60
(SWI &2E)

Switch output to sprite

RO = 60 (&JC)
R 1 = pointer to control block of sprite area
R2 =sprite pointer to switch to sprite or 0 to switch to screen
R3 = save area

0 = no save area
1 =system save area
any other value = pointer to save area

RO set to previous values
Rl set to previous values
R2 set to previous values
R3 set to previous values

This call can cause VDU calls to be sent to the screen memory, or to a
sprite's image.

R2 has its usual function as a sprite pointer or it can be zero. If it is a sprite
pointer, then this call will switch VDU output to a sprite. If it is a zero, then
this call will switch output to the screen.

The save area can have a number of values. If it is zero, then no save area will
be used. If it is one, then the system save area is used, which is the save area
used by RISC OS when output is directed to th~ screen. Y au should not use
the system save area yourself if you wish to pre..;crve the VDU output state
for the screen. Any other value of R3 is considered to be a pointer to me save
area.

If the first word of the save area is zero, then the VDU state will be
initialised to suitable dcf:wlts for the given sprite's mode. When output is
switched away from the sprite, the current VDU state is copied into the save
area, and the first word is overwrittenwith a non-zero value. If output is
subsequently switched back to the sprite, the VDU state will be restored
from the save area.

Sprites: SWI Calls

Related SWis

Related vectors

Sorites: SWI Calls

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2 - see the start
of the earlier section on Technical Details for a description.

OS_SpriteOp 61 and 62 (SWI &2E)

SpriteV

441

On entry

On exit

Use

Related SWis

442

OS_SpriteOp 61
(SWI &2E)

Switch output to mask

RO = 61 (&30)
Rl =pointer to control block of sprite area
R2 =sprite pointer to switch to mask or 0 to switch to screen
R3 = save area

0 = no save area
1 =system save area
any other value = pointer to save area

RO set to previous values
Rl set to previous values
R2 set to previous values
R3 set to previous values

This call can cause VDU calls to be sent to the screen memory, or to a
sprite's mask.

A sprite's mask has the same number of bits per pixel as its image, where a
value of 0 is a transparent pixel and a value of all l's represents a solid
pixel. For example, &OF for 4 bits per pixel. Other values are not permitted.

See OS_SpriteOp 60 for a general description of how this call works.

Note that when plotting into a sprite's mask, the only colours that should be
used are 0 and (number of colours -1), that is:

• in 2 colour modes use colours 0 and 1

• in 4 colour mode~ use colours 0 and 3

• in 16 colour modes use colours 0 and 15

• in 256 colour modes use colour 0 tint 0, and colour 63 tint 192 (&CO)

Setting bit 8 or 9 of RO alters the interpretation of R1 and R2 - see the start
of the earlier section on Technical Details for a description.

OS_SpriteOp 60 and 62 (SWI &2E)

Sprites: SWI Calls

Related vectors SpriteV

Sprites: SWI Calls 443

On entry

On exit

Use

Related SWis

Related vectors

444

Read save area size

RO = 62 (&JE)
Rl =pointer to control block of sprite area
R2 =sprite pointer, or 0 for the screen

RO preserved
R 1 preserved
R2 preserved
R3 = size of required save area in bytes

OS_SpriteOp 62
(SWI &2E)

This calls calculates how large a save area must be for a given sprite.
Remember that a save area must be word aligned.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2 - see the start
of the earlier section on Technical Details for a description.

OS_SpriteOp 60 and 61 (SWI &ZE)

SpriteV

Sprites: SWI Calls

*Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

Sprites: ·commands

*Configure SpriteSize

Reserve a given amount of memory for the system sprite area

*Configure SpriteSize <n>[K)

<n>
or
<n>K

number of pages of memory; n<= 127

number of kilobytes of memory reserved

*Configure SpriteSize is used to reserve an area of memory for the
system sprites. If n=O, then no space is reserved for system sprites. The
default value is one page of memory.

As with all configures, this command does not come into effect until the next
hard break.

You can also use OS_ChangeDynamicArea (SWI &2A) to alter the system
sprite size at runtime. For more information, refer to the chapter entitled
Memory Management.

*Configure SpriteSize 20K

None

None

None

445

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

446

*SChoose
Select a sprite

*SChoose <name>

<name> name of the sprite in the system sprite area

* SChoose selects a particular sprite for use in subsequent sprite plotting
operations. That is, it is used in conjunction with VDU 25,232-239 operations.
See the note in the Technical Details about using this command.

The sprite names are not case-sensitive.

*SChoose fish

None

OS_SpriteOp 24 (SWI &2E)

SpriteV

Sprites: •commands

Syntax

Parameters

Use

Example

Related commands

Related SWls

Related vectors

Sprites: ·commands

*SCopy
Copy a sprite

*SCopy <narnel> <narne2>

name of the original sprite <narnel>
<narne2> name of the new copy both are in the system sprite area

*SCopy makes a copy of namel and renames it name2. An error will occur if
narne2 already exists.

*SCopy acorn squirrel

None

OS_SpriteOp 27 (SWI &2E)

SpriteV

447

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

448

*ScreenLoad
Load a single sprite file into the graphics window

*ScreenLoad <pathname>

<pathname> name of file to load

* ScreenLoad plots a sprite directly from a file into the graphics window. It
changes mode if necessary and sets the palette to the setting in the file. The
first sprite in the file is plotted at the bottom left hand comer ci the graphics
window. After a mode change, this is the bottom left hand corner of the screen.

*ScreenLoad $.sprites.animals.koala

*ScreenSave

OS_SpriteOp 3 (SWI &2E)

SpriteV

Sprites: ·commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

Sprites: ·commands

*ScreenSave
Save the current graphics window and palette as a ~rite file

*ScreenSave <pathname>

<pa thname> full name of file to save

*ScreenS ave saves the contents of the screen bounded by the current
graphics window, along with the current palette, into a file. The sprite file
created will contain one sprite called 'screendump'.

*ScreenSave $.sprites.animals.koala

•Screen Save

OS_SpriteOp 2 (SWI &2E)

SpriteV

449

*SDelete
Delete a sprite

Syntax *SDelete <namel> [<name2> ...)

Parameters <namel > name of sprite in the system sprite area to delete
<name2>. . . optional extra sprites to delete

Use * SDelete deletes one or more sprites from the system sprite area.

*SDelete wilt stop immediately, foltowing an error.

Example *SDelete fish cake elephant

Related commands None

Related SWis OS_SpriteOp 25 (SWI &2E)

Related vectors SpriteV

450 Sprites: ·commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

Sprites: *Commands

*SFlipX
Reflect a sprite about its x axis

*SFlipX <name>

<name> name of the sprite in the system sprite area

*SFlipX reflects the named sprite in the system area about its x axis so it is
upside down.

*SFlipX sloth

*SAipY

OS_SpriteOp JJ (SWI &2E)

SpriteV

451

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

452

*SFlipY
Reflect a sprite about its y axis

*SFlipY <name>

<name> name of the sprite m the system sprire area

*SFlipY reflects the named sprite in the system area about its y axis so it
faces in the opposite direction.

*SFlipY sloth

*SFlipX

OS_SpriteOp 47 (SWI &2E)

SpriteV

Sprites: ·commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

Sprites: ·commands

*SGet
Get a sprite from the screen

*SGet <name>

<name> name of new sprite in the system sprite area

* SGet picks up a rectangular area of the screen, defined by the two most
recent graphics positions (inclusive}. It then saves this as a sprite in the system
area under the name given. If the sprite already exists, it is overwritten.

Any part of the designated area which lies outside the current graphics
window is filled with the current background colour in the sprite.

*SGet screenpart

*ScreenSave

OS_SpriteOp 14 (SWI &2E}

SpriteY

453

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

454

*Slnfo
Get information on the system sprite workspace

*Sinfo

None

* Sinfo prints out the amount of system sprite workspace currently reserved,
the amount of free space in that workspace and the number of sprites defined.

*Sinfo
Sprite status

8 Kbytes sprite wo rkspace
7328 byte(s) free
2 sprite(s) defined

None

OS_SpritcOp 8 (SWI &2E)

SpriteV

Sprites: •commands

Syntax

Parameters

'Jse

Example

Related commands

Related SWis

Related vectors

~nritP~ · • r.nmm::~ nrls

*SList
List all the system sprites

*SList

None

* SList prints a list of the names of all the sprites in the system spri te area.

*SList
!koala
!sloth

None

OS_SpriteOp 8 (SWI &2E)

SpriteV

455

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

456

*SLoad
Load a sprite file into the system sprite area

*SLoad <pathname>

<pathname> full name of file to load

* SLoad loads a file containing sprite definitions into the system sprite area.
If there is insufficient memory, then an error is given and nothing is loaded.
Any sprites which are in memory when this command is given arc lost.

*SLoad S.sprites.animals.koala

*Screen Load

OS_SpritcOp 10 (SWI &2E)

SpriteY

SnritP.c:: · ·~nmm::~nrlc::

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

Sorites: *Commands

*SMerge

Merge a sprite file with those in the system sprite area

*SMerge <pathname>

<pa thname> full name of file ro load

*SMerge merges the sprites in a file with those in the system sprite area. If
there is insufficient memory, then an error is given and nothing is loaded. Any
sprites in memory with the same name as any in the file arc lost.

Note that there must be enough free space in the sprite area to hold both the
new file and the original sprites, since it is only after the new file has been
loaded that any of the original sprites arc replaced by new ones that have the
same name.

*SMerge $.sprites.animals.koala

None

OS_SpriteOp II (SWI &ZE)

SpriteV

457

Syntax

Parameters

Use

Related commands

Related SWis

Related vectors

*SNew
Delete all the system sprites

*SNew

None

* SNew deletes all the sprites in the system sprite area, and so frees all the
sprite workspace.

None

OS_SpriteOp 9 (SWl &2E)

SpriteV

c-...;•,.."'· .,... _____ ..,.._

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

Sorites: •commands

Rename a sprite

*SRenarne <narnel> <narne2>

<narnel>
<narne2>

name of the original sprite
new name of the sprite

*SRename

*SRenarne assigns the new name narne2 to the sprite currently called narnel.
narne2 must not already exist, or an error will occur

A sprite name can contain any sequence of printable characters, other than a
space; although upper-case letters will be changed to lower-case ones.

*SRenarne thong flipflop

None

OS_SpriteOp 26 (SWI &2E)

SpriteV

459

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

460

*SSave
Save the system sprite area as a sprite file

*SSave <pathname>

<pathname> name of file to save

*SSave saves all the sprites currently in the system sprite area to a file
which can later be loaded or merged.

*SSave $.sprites.animals.koala

*SLoad, *SMerge

OS_SpriteOp 12 (SWI &ZE)

SpriteV

C'--:•--· .,... _______ ·-

