
RISCOS

PROGRAMMER'S REFERENCE MANUAL
Volume II

!! i) Ill @
!Uiost !llita !tile !Cloclr

ll ~ ~ Q
!LMI4tr !lloetss !lllfstro !~tllifitr

I ~ II lr
!~il~ !htitoct !Puztlt !Ti.,..irs

~

Acornt
The choice of experience.

RISC OS

PROGRAMMER'S REFERENCE MANUAL
Volume II

Acorn$
The choict-of f'xperience.

ii

Copyright© Acorn Computers Limited 1989

Neither the whole nor any p;JTt of the informati0n contained in, or the product
described in this manual m;Jy be adapted or reproduced in any material form
except with the prior written approval of Acorn Computers Limited.

The product described in this manual and products for usc with it are subject
to continuous development and improvement All information of a technical
nature ;md particulars of the products and their u~ (including the inform<~tion
and particulars in this manual) are given by Acorn C..omputers Limited in
good faith. However, Acorn C..omputers Limited c:mnot accept any liability for
any loss or damage arising from the usc of any information or particulars in
this manual.

All correspondence should be addressed to:

Customer Service
Acorn Computers Limited
Fulbourn Road
Cambridge CB1 4JN

Information can also be obtained from the Acorn Support Information
Database (SID). This is a direct dial viewdata sy~tem available to registered
SID users. Initially, access SID on Cambridge (0223) 243642: this will allow
you to inspect the system and usc a response frame for registration.

Within this publication, the term 'BBC' is used as an abbrevintion for 'British
Broadcasting Corporation'.

ACORN, ACORNSOFT, ACORN DESKTOP PUBLISHER, ARCHIMEDES,
ARM, ARTHUR, ECONET, MASTER, MASTER COMPACT, THE TUBE,
VIEW and VIEWSHEET arc trademarks of Acorn Computers Limited.

DBASE is a trademark of Ashton Tate Ltd
EPSON is a trademark of Epson C..orporation
ETHERNET is a trademark of Xerox Corporation
LASER JET is a trademark of Hewlett-Packard Company
LASER WRITER is a trndemnrk of Apple Computer Inc
LOTUS 123 is a trademark of The Lotus Corporation
MUL TISYNC is a trademark ofNEC Limited
POSTSCRIPT is a trademark of Adobe Systems Inc
SUPER CALC is a trademark of Computer As!'Oeiatcs
UNIX is a trademark of AT&T
1ST WORD PLUS is a trademark of GST Holdings Ltd

Edition 1
Published 1989: Issue I
ISBN 1 85250 061 1
Published by Acorn Computers Limited
Part number 0483,021

S ontents

\bout this manual

Part 1: Introduction An introduction to RISC OS 3
ARM Hardware 7
An introduction to SWis 11
*Commands and the CLI 31
Generating and handling errors 37
OS_Byte 43
OS_ Word 51
Software vectors 55
Hardware vectors 85
Interrupts and handling them 91
Events 113
Buffers 115
Communications within RISC OS 135

Part 2 : The kernel Character output 149
VDU drivers 107
Sprites 379
Character input 461
Time and date 549
Conversions 579
TheCLI 613 In
Modules 611 this
Program Environment 729 volume

Memory Management 773
The rest of the kernel 815

ontents iii

Part 3: Filing systems FilcSwitch 831
FilcCore 1007
AOFS 1051
RamFS 1067
NctFS 1075
NctPrint 1105
DcskFS 1117
System devices 1119

Part 4: The Window The Window Manager 1125
manager

Part 5: System Econet 1333
extensions Hourglass 1389

NetStatus 1397
ColourT rans 1399
The Font Manager 1425
Draw module 1487
Printer Drivers 1513
The Sound system 1571
WaveSynth 1633
Expansion Cards 1635
International module 1665
Debugger 1679
Floating point emulator 1695
ShellCLI 1709
Command scripts 1713

Appendices ARM assembler 1723
Linker 1743
Procedure Call standard 1749
ARM Object Format 17771
File formats 1787

Tables YOU codes 1815
Modes 1817
File types 1819
Character sets 1823

iv Contents

Character Input

Introduction

Character Input: Introduction

The Character Input system can get characters from rhe computer's input
devices. They can be any one of the following:

• rhe keyboard

• the serial port

• a file on any filing system

It gives full control of the operation of each of these devices. Since they all
have different characteristics, they must be controlled in different ways.

It provides a means of directing characters from rhe selected device to the
program that requests them. It can also hold them, waiting until the program
is ready to take them.

461

Overview

Streams

OS_ReadC

Buffers

Keyooard

Keyboard handlers

462

Before you read this chapter, you should have read the chapter entitled
Character output. In many ways, character input and output arc one entity,
which has been logically split in this manual. So there are some things which
arc mentioned there and not here that apply to both chapters.

· Like character output, a stream system is used by character input. Here, you
can select from one of three streams; keyboard, serial and file. Only one
stream can be selected at once otherwise data coming from two places would
get jumbled. Direct control of devices is available, especially in the case of
the keyboard.

Any program taking input from the stream system doesn't have to know where
characters are coming from. Most programs don't since it will not affect the
way they run.

The core of the input stream is OS_ReadC which gets a single character from
the currently selected input stream. It is in turn called by many other SW!s,
OS_ReadLine (SWI &E) for example. This device independence makes
programs much easier to write.

Like character output, all input streams are buffered. Input devices arc
asynchronous to programs and must have their characters stored in a
temporary place in memory until required. A good example of buffering in
use is a terminal emulator program. It waits until something appears at the
serial input buffer, then sends it to the VDU. At the same time, it waits until
something appears in the keyboard buffer and sends it to the serial output
buffer. Because of the buffering of inputs and outputs, the pmgram can do all
this at its own pace.

The keyboard is the most used part of character input, and irs driver the most
complex. In principle it is simple enough, but many features are changeable
and key presses can be looked at in a number of ways.

The keyboard driver is actually two sections. One, which is fixed, handles the
keyboard interrupt and low-level control. It feeds the raw code onto the
second part, the keyboard h::mdlcr.

Character Input: Overview

Basic operation

Advanced features

The keyboard handler converts the keycode into an ASCII form, with
extensions for special characters. This can be replaced by a custom version if
required.

At a basic level, the keyboard works like this:

One or more keys arc pressed, which cause an interrupt.

2 The keyboard driver gets a raw key number from the keyboard.

3 The raw key number is passed to the keyboard handler, where it is
converted into a form more like the program expects. This can be:

• an ASCII char.1cter.

• a non-ASCII character, such as a function key or arrow.

• a special key, such as Escape or Orcak that must be acted on
immediately.

4 Apart from some special keys, this · char.:~cter is then stored in the
keyboard buffer.

When a program wants a character from the input stream (in this example,
the keyboard):

• When called by a program, the stream system gets the first character
from the keyboard buffer (or waits if there is none there).

• Return the character to the program or perform the appropriate action if
it is a function key, arrow, ere.

Also, there arc a number of extra operations that the keyboard driver can
perform:

• The interpretation of function keys, arrow keys and the numeric keypad
can all be changed to various modes.

• The auto-repeat of keys can be adjusted, both the initial delay and the
rate of repeat.

• The keyboard can be scanned directly, rather than going through any
buffering.

• The keyboard handler can even be completely replaced with a custom
handler.

Character Input: Overview 463

Reset, Break and
Escape

Reset

Break

About 30 SW!s and six * Commands exist purely f0r keyboard control. The
Technical Detail.<; section covers how they work tog-ether.

These three terms can become very confused, c~pecially ro when talking ahout
the keyboard versus a pro~r:-tms view of the keyboard driv<'r.

Reset is a unique key. Unlike all others it docs nor send a key code to the
keyboard driver. It is connect(.-d to a separate tnc on the keyboard connector
and physically resets the computer. This cannot be stopped by a prog~<~m.
When a reset occurs, some pam of the system :~rc iniri:lliscd.

There arc three kinds of reset:

• A soft reset (with no orher modifying keys} will initialise rome parts of
the system, but allow a lot to resume unaffected.

• If Shift is pressed at the ~arne time, this is c<~llcd a Shift· reset. Thil'
causes the machine to do a soft reset and then attempt an auto-boot fmm
the default filing system (provided the wmrutcr and filing system ha"e
been configured for this using *Configure Ooot).

• Ctrl ·reset is a h:-trd re:;et. This will initi;tli~e f:tr more of the system :md
should only be ncce~sary if something serinus has occurred. It will put rhc
computer into a 'just turned on' sratc in most c;Jsc:;.

BBC/Master users note that Reset is what used to he calkd 11re:-tk on those
machines.

Break is a key. You can separately configure Orc:-tk, Shift· 11rcak, Ctrl • Rreak
and Crrl ·Shift· Break to G ill<;<: a reset, an c.o;cape c0ndinon 0r do nothing. Ry
default:

• Break generates an escape condition

• Shift· Break causes a reset

• Ctrl · Break causes a reset

• Ctrl ·Shift· Break cause~ a reset

464 Ct1aracter Input: Overview

Escape

Serial port

*Exec

Character Input. Overview

Escape is a way of the user sending a signal to a program or its runtime
environment. From a program's point of view, we talk about an c~:1pc

condition. This can be caused by an escape key or rhe program itself.

By default, the key thar causes an escape condition is Escape. RISC OS can be
confi~rurcd so that the escape key is any key on the keybrord.

When an escape condition occurs, RISC OS will call the escape handler of
the program or the language environment Sec the description of handlers in
Program Environment chapter. The escape handler or running program should
then clear the escape condition and act in an appropriate way. Note that it is
perfectly valid for a program to ignore Jn e~ape condition as long as it is
cleared.

The escape event can also be enabled. This is c;tllcd in place of the escape
handler. (Refer to rhc description of evcnrs in rhe introductory part of this
manu:1l.)

A character which comes into rhe serial porr interrupts the computer. It is then
placed into the serial inpur buffer, if it is enabled. RISC OS can be
configured so that serial input is ignored.

The computer can be set up ~ that input coming in from rhe serial port is
treated exactly as if it had come from the keyboard. This means that the
escape character and function key codes will he recogni<.(;d.

If characters come in the serial port roo quickly to be processed, then the
serial input buffer would become full. After this point, data would be lost.
To solve this problem, the <;('rial driver will notify the sender to stop
transmitting bt·fore it gets full. From a program's point of view, this all
happens invisibly.

Exec is the opposite of spooling, which is used in character output. Exec makes
a file the current input srre:1m. Keyboard and serial input is ignored.

A SWI is prov•ded ro allow the Exec file to be ch::~ngcd or stopped under
program coni rol.

465

Technical Details

Events

Streams

OS_Readline

Keyboard

466

There arc a number of events associated with the character input system. In
particular:

• input buffer has become full

• character placed in input buffer

• a key has been pressed/released

• serial error has occurred

• escape condition detected

See the chapter entitled Events in the introductory part for more details of
these events.

OS_ReadC is the core of the input stream system. It is called by many SWls
and it uses one of the three streams as an input source. The stream that it uses
can be controlled by OS_Byte 2 for keyboard and serial port. To use the
third stream, the file, then •Exec or OS_Byte 198 can be used. OS_Byte 177
can be used to read the setting of the last OS_Byte 2.

OS_RcadC is also responsible for handling cursor-editing during input.

OS_ReadLine, and its obsolete equivalent OS_ Word 0, will read a line of
input from the current input mcam. It copes with the deleting of characters or
the whole line. Thus, a single call which rcn1rns a simple string to the
program allows the user much flexibility.

When a key is pressed (or released), a code unique to that key is transmitted
to the computer through the keyboard connector cable. This cooc is read into
some hardware, which causes an interrupt to occur. The keyboard driver
responds to this interrupt by reading the kcycodc. and passing it on to the
keyboard handler for further processing.

Character Input: Technical Details

Keyboard buffer

Disabling buffering

Keyboard status

Scanning keys

At this stage, a key press/release evcnt may be gener&ted, which you can
handle as required. Also, at this level mouse button presses look exactly the
same as any other key press. lr is only when thc mouse button presses reach
the keyboard handler that they arc recognic;cd as such, and RISC OS is
informed that the mouse button state has changed.

The keyboard buffer in RISC OS is 255 characters long. It is often termed a
type-ahead buffer, as it enables the user to type commands ahead of the
program being ready for them

OS_Byte 201 will stop the keyboard handler from putting any characters it
gets into the keyboard buffer. This means that most keyboard reading c:ll ls
will not work. Where this function is useful is if you want a progmm to insert
codes directly into the buffer without any of the user's key strokes appearing
in the middle of them.

If the key pressed (or released) is one of the shifting keys (Shift, Ctrl or Air)
or one of the locking keys (Caps Lock, Num Lock or Scroll Lock) is pressed,
rhen the key handler just m:-~kes a nore of this fact by updating its st:-~tus

information. Normally this doc~n't cause any char.1crcr to be inserted into the
keyboard buffer; although the Alt key c:1n in combination with the numeric
keypad- sec rhc Table entitled Character set.s.

OS_Byte 202 allows reading and writing of the keyboard status byte. This is a
birficld that represents the sr:lte of Shift, Ctrl, Alt and all the Lock keys. If it
is written and any of the Lock keys with LEOs are ch;mgcd, then this will not
be reflected in the LEOs. OS_Hyte 118 must be called to do rh is.

The next time a key goes down or up, tlwn the Shtft, Air and Ctrl stares will
reflect thetr real positio n ;md rhe LEOs will be updated to rhetr current status.

The Caps Lock key state c:1n be set up using *Configure Caps, NoCaps and
ShCaps.

Scanning refers to hcmg ahle to get the low lc"d key codes without the
buffering and interpretation that i~ placed on keys by the hi~hcr level
routines. The internal key number returned is not the code rhat the keyboard
itself sends the compurt·r This i~ tr.msbred to a standard internal key
nu.nbcr thar mainraim wmpatihiliry With nnCh-1.t<;t('r '>(.'tiCS keyl--oard ccxlcs.

Character Input: Technical Details 467

Key handler

Custom key handler

Read with time limit

Tab key

468

There are three OS_Bytes that can scan the keyboard. OS_fiyte 121 can scan a
particular key or a range or keys. Like this call, OS_Byre 122 can scan a fixed
range of keys, all but the Shift, Alt, Ctrl and mouse keys. OS_Byte 129 can
scan a particular key, like OS_Byte 121. It can also read a key with a time
limit. This is discussed later.

The character stored in the keyboard buffer is derived from a table in the key
handler, which maps keycodcs into buffer codes, using the srare of the various
shifting and locking keys to alter the character if appropriate. In addition, the
key-press is recorded in a 'last key pressed' location. This is to enable auto·
repeating keys to be implemented, as described below.

For the standard keys, cg. the letters, digits, puncnJation m:~rks ere, the buffer
code is the ASCII code of the symbol. Thus when the code comes to be
removed from the keyboard buffer (by OS_ReadC, for example), it is
returned directly to the user. The other keys. such as the function keys and
cursor keys, are entered as top-bit set characters, in the r:mge &80 · &FF.

The SWI OS_InstaiiKeyHandler allows replacing the module that decodes
key numbers into ASCII. It is outside the scope of this manual to discuss this
procedure in depth.

OS_Byte 129 supports two operations, one of which, low level keyboard
scanning, was discussed in the earlier section on scanning keys.

The other allows reading a character from the keybo;~rd buffer within a time
limit. This is useful in cases where a program waits for a response for a time,
and if none is entered, continues. It can be used in a sinmtion where the
keyboard buffer needs to be checked periodically, but the program doesn't
wish to be trapped waiting in OS_ReadC for a character to be entered. To
achieve this, this call would be used with a very brief waiting time, so if no
characters are available in the buffer, then the progr.tm can continue.

OS_Byte 219 reads or modifies the code inserted into the keyboard buffer
when the Tab key is pressed (the default is 9). If the value specified is in the
range &80 to &FF, then the value to be inserted is modified by the state of
the Shift and Ctrl keys, in a similar fashion to the function keys.

Character Input: Technical Details

Auto-repeat

Arrow and Copy keys

Numeric keypad

Interpreting characters
&80- &FF

The auto-repeat of keys has two aspects. The delay before the key starts
repeating and the rate or repeating. The delay can be read and changed with
OS_Byte 196, or changed with OS_Byte II. The rate can be read and chant:;ed
with OS_Bytc 197, or changed with OS_Byte 12. Both arc adjustable from 1 to
255 centiseconds. Auto-repeat can also be disabled.

You can use OS_Byte 120 to lock auto-repeat until the key(s) currently
depressed are released. An example of use would be where one place of
input has changed to another and the progrt~m doesn't want any characters
from one place auto-repeating and confusing the next.

The delay and rate can be set up using *Configure Delay and Repeat, which
usc the same parameter as rhe appropriate OS_Byrcs.

In a default system, these keys are uS<..-d for on-screen editing. The arrows
move a cursor and Copy copies the character that it is on to the second cursor.

OS_Byte 237 allows reading and changing how cursor keys are interpreted.
As well as the default editing state, they can be in two other modes. In one,
the keys return characters in the range 135 to 139. In the other, they act as
function keys, and can be treated as all the other function keys.

OS_Byte 4 also allows changing this st-are.

There is a base value for the numeric keypad. A key on rhe numeric keyp:1d
adds an offset to this to get the character that is pbced in the keyboard
buffer. The offset of each key is such that the default base value of 48 will
give each key the ASCII value of the character on the key.

This base value can be chant:;ed with OS_Rytc 238. See the documentation on
this call for derails of the offsets of each key.

Shift and Crrl can alter the value returned from the keypad. Ry default, this
feature is disabled, but you can enabl it with OS_Byte 254.

When referring to function keys, we are talking about two separate things.
There are the keys, many discussed earlier, that t:;enerate buffer codes in the
range &80 to &FF. Then there is the interpretation placed upon these buffer
codes by RISC OS as it reads them from the buffer.

Character Input: Technical Details 469

Function keys

Setting and clearing

Interpreting these keys as function keys is only one wny of using them.
OS_Bytcs 221- 228 allow control over how buffer codes from &80 to &FF
are interpreted by RISC OS. Each OS_Byte handles a group of 16 characters.
Each group can be configured so that its characters arc:

• interpreted as function keys

• preceded by a NULL (ASCII 0)

• offset by any number from .3 - &FF

• discarded

If a character is read from the keyboard buffer and is in a group th<~r is
configured as function keys, then a special action is taken by the keybo;~rd
handler. First of all, it looks up the value of the Key$ system variable which
corresponds to the function key. The function key number is the lower nibble
of the character. Thus, if the charJcter is &81, the variable read is Key$1.

The variable refers to a string, which is copied into the function key buffer. If
the string was a null string (the function key w<l1'n't set), then RISC OS
continues, removing the next chardctcr from the input buffer.

Otherwise, the first character is removed from the function key buffer and
returned to the calling program. Character~> read from this buffer arc
returned without interpretation in any way.

Subsequent calls to OS_ReadC and OS_Bytc 129 spot that a function key is
being read, and remove characters from the function key buffer instead of
looking in the input buffer. This continues unti l the last character has been
read from the buffer. Input then revertS to the normal input buffer.

OS_Byte 216 is used to see how much of a function key string remains to be
read from the function key buffer. It can also change this value, to terminate
for instance, but must be used with care.

To set a function key, a number of commands can be called:

• *Key <n> <string>

• *Set Key$n <string>

470 Character Input: Technical Details

Reset, Break and
Escape

Neset

Break

Escape

*SctMacro Kcy$n <expression> This is passed through OS_GSTrans when
it is copied to the function key buffer. This is interesting because it means
that the string genermed by a function key can ch:mgc every time it is used.

To reset one or more function keys, there is also a variety of commands that
can be used:

• *Key <n> will reset function key n

• *Unset Key$n same effect

• *Unset Key$*will reset all function keys

• OS_Byte 18 same effect

When you press the Reset burton, then the RISC OS ROM is paged into the
bottom of memory and performs certain housekeeping actions. It then pages
itself out and restarts the system.

A soft reset distingui~hes itsdf from a hard reset in a matter of degree. A
hard re~t will initialise far more things in the system. A soft reset, for
instance, will nor change the settings for PrinterType and the printer ignore
character. It wi II reset vectors th:n have been claimed however.

OS_Byte 200 sets whether a re1iet will act as described above or will cause <1

complete memory clear. This makes it a power-on reset. If this is used, then
all things kept in memory will be lost and *Configure settings restored. This
command should be used with discretion because of it!i powerful effects.

OS_Byte 253 can be used to sec what kind of reset the h1st one was.

Break is configurablc with OS_Byrc 247. This sets how Break, Shift Brc;~k,
Crrl Break and Ctrl Shift Break act. They can e<~ch be set to c;~usc a reset or
an escape or have no effect. A reset caused by the break key docs not page
the ROM into the bottom of memory (as one caused by the Reset button
docs); in~read, it just jumps to the correct location in the ROM.

On the next page is a diagram illustrating how all the calls in the escape
system work together. A description of this intemction follows the diagram .

. haracter Input: Technical Details 471

Input stream

discard

472

Escape event

Set escape flag

Language environment
or Program E.c;c<Jpe
Handler

Character Input: Technical Details

Causing escape

Disabling escape

After an escape

Serial Port

Input buffer

An escape condition can be caused by a key or under program control. By
default, the escape key is Escape. OS_Byte 220 can read or alter which key
will cause an escape condition. OS_Byte 247 can alter the Break key (or Shift
and Ctrl modifiers of it) so that it causes an escape condition. Thus, it is
possible to have two escape keys on the keyboard. and this is indeed the
default state.

Under program control, OS_Byte 125 can force an escape condition to occur.
Note that it will not genemte an event, but the escape handler is called.

OS_ReadEscapcState can check whether an escape condition has occurred. It
can be called at any time, even from within interrupts.

OS_Byte 229 controls recognition of this escape character. It can disable the
effect of the escape char.tcter and allow it to pass throus::h the input stream
unaltered. OS_Byte 200 can disable all escape conditions apart from those
caused by OS_Byte 125. In this case, any esc:1pe characters would be
discarded.

OS_Byte 14,6, which is described in the chapter entitled An introduction to
RISC OS controls whether the escape event is ennblcd or not. If the escape
event is enabled, then it will be called and not the esc:1pc handler.

OS_Byte 126 will acknowledge an escape condition and call the escape
handler to clear up. OS_Byte 124 will clear an escape condition without
calling the escape handler.

OS_Byte 230 controls whether the normal effects of an escape occur or not
when it is acknowledged. These include flushins:: buffers, closing the Exec file,
terminating any sounds and so on.

The serial driver will artempt to srop the sender transmitting when the amount
of free space in the serial input buffer falls below a set level. The idea is
that this space gives enough time for the sender to recognise the command and
stop without overflowing the buffer. OS_Byte 203 can change the setting of
this level.

Character Input: Technical Details 473

Baud rates

Control

Direct reading

*Exec

Internal key numbers

By category

474

The baud rate of the serial input can be ch:mged with OS_SeriaiOp 5 or
OS_Byte 7. It can be re"d with OS_Serial0p5, or with OS_Byte 242, which is
described in the chapter entitled Character output.

The description of the serial port in the chapter entitled character outfntt
covers the handshaking control of the serial port.

OS_Byte 204 can be used to stop any incoming d:m being buffered by the
serial driver. The port is still active, and serial errors can still occur, but the
data is discarded.

OS_Byte 181 allows the dClt" that comes in from a serial port to be acted on
by RISC OS as if it had been typed at the keyboClrd.

OS_SeriaiOp 4 allows directly getting a byte fmm the serial input buffer.
This means that input from the keyboard could be read from the main input
stream concurrently. Thus, a means of having two separate channels of input
would exist.

There are two ways of CClusing a file to be made the input stream. The
simplest is to use *Exec, which will open the specified file and attach it as the
input stream. For more control, OS_Byte 198 docs what *Exec does and can
also terminate the Exec stream at ;my time or change to another file.

Here is a list of the BBC/Masrer compatible internal key numbers in order of
key category and in numerical order.

Key

Print (FO)
F1
F2
F3
F4
F5
F6
F7
F8
F9

Internal key number

32
11.3
114
115
20
116
I 17
22
118
119

Character Input: Technical Details

10 30
Fl 1 28
Fl2 29
A 65
I3 100
c 82
D 50
E 34
F 67
G 83
H 84
I 37
1 69
K 70
L 86
M 101
N 85
0 54
p 55
Q 16
R 51
s 81
T 35
u 53
v 99
w 33
X 66
y 68
z 97
0 39

48
2 49
3 17
4 18
5 19
6 52
7 36
8 21
9 38

102

Character Input: Technical Details 47fi

23
103

I 104
[56
\ 120
J 88

87
Escape 112
Tab 96
Caps Lock 64
Scroll Lock 31
Num Lock 77
Break 44
Back tick/- 45
£/currency 46
Back space 47
Insert 61
Home 62
Page Up 63
Page Down 78
Single or double
quotes 79
Shift (either or horh) 0
Ctrl (either or borh) I
Alt (either or both) 2
Shift (left-hand) 3
Ctrl (left-hand) 4
Alt (left-hand) 5
Shift (right-hand) 6
Ctrl (right-hand) 7
Alt (right-hand) H
Space Bar 98
Delete 89
Return 7.3
Copy 105
Up arrow 57
Right arrow 121
Left arrow 25
Down arrow 41
keypad 0 i(l6

476 Character Input· Technical Details

In order

keypad I 107
keypad 2 124
keypad .3 108
keyp:Jd 4 122
keypad 5 123
keypad 6 26
keypad 7 27
keypad 8 42
keypad 9 43
keypad+ 58
keypad 59
keypad . 76
keypad I 74
keypad tr 90
keypad • 91
keypad Enter 60
Left mouse button 9
Centre mouse button 10
Right mouse button II
(extra) 94

Some international keyboards have an extra key to the right of the left hand
shift key. This is the extra key 94

Key Intcmal key number

Shift (either or hoth) 0
Ctrl (either or hoth) 1
Air (either or both) 2
Shift (left-hand) 3
Ctrl (left-hand) 4
Alt (left-ha nd) 5
Shift (righr-hand) 6
Ctrl (right-hand) 7
Air (righ r-hand) 8
Left mouse button 9
Centre mouse button 10
Right mouse button II
Q 16
3 17
4 IH

Character Input: Technical Details 477

5 19
F4 20
8 21
F7 22

23
1\ 24 (synonym, kept fnr MaHer comp:nihility)
Left arrow 25
keypad 6 26
keypad 7 27
Fll 28
Fl2 29
FlO .30
Scroll Lock 31
Print (FO) 32
w 3.3
E 34
T 35
7 36
I 37
9 .38
0 39

40 (synonym, kept fnr M;~srer comp;~tibiliry)
Down arrow 41
keypad 8 42
keypad 9 43
Break 44 (but sec OS_P.ytc 24 7 - it m:1y c:1usc a reset).
Back tick/- 45
£/currency 46
Back space 47
I 48
2 49
D 50
R 51
6 52
u 53
0 S4
p))

I 56
Up arrnw 57
keypad+ 5H

47R Character Input : Technical Details

keypad- 59
keypad Enter 60
Insert 61
Home 62
Page Up 63
Caps Lock 64
A 65
X 66
F 67
y 68
J 69
K 70
@ 71 (:.ynonym, kept for Master compatibility)

72 (synonym, kept for Master compatibility)
Return 73
keypad I 74
keypad. 76
Num Lock 77
Page Down 78
Single or double
quotes 79
s 81
c 82
G 83
H 84
N 85
L 86

87
88

Delete 89
keypad# 90
keypad* 91

93
(cxrr.J) 94

Some international keyho:1rd~ have an extra k<'y to the right of the left h;md
shift key. This is the extra kq 94

Tab 96
z 97
Space nar 98

Character Input: Technical Details 479

v 99
13 100
M 101

102
10.1

I 104
Copy lOS
keypad 0 106
keypad I 107
keypad 3 108
Escape 11 2
Fl 113
F2 114
F3 11 5
FS 11 6
F6 11 7
F8 11 8
F9 119
\ 120
Right arrow 121
keypad 4 122
keypad 5 123
keypad 2 124

480 Character Input: Technical Details

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Read a character from the input stream

if C flag = 0 then RO = ASCII ccxle

OS Reade
(SWI &04)

if C flag = 1 then RO = error type. & 1 I3 in RO means an escape.

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call will read a character from the input strc:~m. OS_I3ytc 2 can be used
to change the selection of the current input stream.

Cursor key presses go into the buffer. When OS_ReadC reads a cursor key
code from the buffer it handles the cursor editing for you, assuming the cursor
keys are set up to do cursor editing. That is, if one of the arrow keys •s
pressed, cursor edit mode is entered, indicated by the presence of two cursors
on the screen. You can copy characters from underneath the input cursor by
pressing Copy. The character read is returned from the routine as if you had
typed it explicitly.

Cursor editing only applies if enabled (sec *FX 4) and is cancelled when
ASCII 13 is sent to the YOU driver.

Related SWis OS_Byte 2 (SWI &06), OS_Rcadlinc (SWI &OE)

Related vectors ReadCY

Character Input : SWI Calls 48~

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

482

Specify input meam

RO = 2
Rl =stream selection (0, 1 or 2)

RO = preserved
R I = value before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

OS_Byte 2
(SWI &06)

This call selects the device from which all subsequent input is taken by
OS_ReadC. This is determined hy the value of R I pa~~d :ts follow~:

• 0 for keyboard input with serial input buffer dis:1bled

• I for serial input

• 2 for keyboard input with serial input buffer enabled

The difference between the 0 and 2 values is that the latter t~llows characters
to be received into the serial input buffer under interrupts at the same time as
the keyboard is being used as the primary input. If the input stream is
subsequently switched to the serial device, then those characters can then be
read.

Note that the value returned in R I from this call is:

• 0 when input was from the keyboard

• I when input was from the seria l pore

The state of this variable can be read by OS_Bytc 177.

The write command can also he performed by *FX 2, <value>

Character Input: SWI Calls

Related SWis OS_Bytc 177 (SWI &06)

Related vectors ByrcV

Character Input: SWI Calls 483

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

484

Cursor key starus

RO = 4
Rl =new state

RO = preserved
Rl =stare before beinJ! overwritten
R2 = corrupted

Interrupt status is not <Jl tercd
Fast interrupts arc enahlcd

Processor is in SYC mode

Not defined

OS_Byte 4
(SWI &06)

This call alters the effect of the four arrow keys and the Copy key. The value
ofRI determines their state:

0 Enahles cursor editing. This is the default state.

Disables cursor editing. When pressed, the keys rerum the following
ASCII values:

Copy - > 115
Left :~rrow => 136
Right arrow => 137
Down arrow => 138
Up arrow=> 139

2 Cursor keys act as function keys.The function key numbers as.~igncd
arc:

Copy => ll
Left arrow => 12
Right arrow => 13
Down arrow => 14
Up arrow=> IS

OS_Byte 237 may be used ro write and read this state.

Character Input: SWI Calls

This command ctJn also be pcrformctl by *FX 4, <state>

Related SWis OS_Ryte 237 (SWI &06)

Related vectors BytcV

Character Input : SWI Calls .we:;

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

486

Write serial port receive rate

RO = 7
R 1 = baud rate code

RO = preserved
R I = comJptcd
R2 = corrupted

Imerrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 7
(SWI &06)

This call sets the serial port baud rate for receivin,:: dnra as follows:

Value Baud rate

0 9600
1 75
2 ISO
3 300
4 1200
5 2400
6 4800
7 9600

.8 19200

9 50
10 110
11 134.5
12 600
13 1800
14 3600
15 7200

Character Input: SWI Calls

The settings from 0 to 8 arc in an order comp:niblc wirh earlier operating
systems. The other speeds from 9 to 15 provide ~II the other standard baud
rates.

The default rate is that set by *Configure Baud.

This command can also be performed by *FX 7 , <baud rate>

Related SW!s OS_Bytc 8 (SWI &06)

Related vectors ByteY

,haracter Input: SWI Calls -187

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

488

Write keyboard auto-repeat delay

RO = 11 (SWI &OB)
Rl =delay period in ccnti<;econds

RO = preserved
R 1 = previous delay period
R2 = corrupted

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SVC mcxle

Not defined

OS_Byte 11
(SWI &06)

You must hold down e<!ch key on the kcybo<!rd for <l number of centiseconds
before it begins to autorepeat. This call enablcl' y0u to change the initial
delay from the default ~t by *C""~nfigure Delay.

If the delay period is zero, then auto-repeat is disabled.

This variable may also be read and set using OS_Byte 196.

The write command can alro be performed by *FX 11 , <delay >

OS_Bytc 12 (SWI &06), OS_I'ytc 196 (SWI &06)

ByteV

Character Input : SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Write keyboard auto-repeat r.Hc

RO = 12 (&OC)
R I = repeat rare in centiseconds (unless R I =0)

RO = preserved
R I = previous repeat rate
R2 = corrupted

Interrupt status is not altered
Fast i ntcrrupts arc enabled

Processor is in SVC mode

Not defined

OS_Byte 12
(SWI &06)

After the auto-repeat del<Jy specified by OS_Bytc 11, each key will repeat
until released at the rate pas.c;cd to this c;~ll. This call enables you ro change
the initial rate from the dcf:wlr ser by *C'..onfigure Repeat. One particular usc
of this is to speed up cursor editing.

If the rate is zero, then the auto-repeat and dday values arc reset to their
configured settings.

This variable may also be read and set using os_nyre 197.

The opcr.nion can also be performed by *FX 12 , <rate>

Related SWis None

Related vectors l3yreV

Character Input: SWI Calls 489

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

4~0

Reset function key definitions

RO = 18 (&12)

RO = preserved
R I = corrupted
R2 = corrupted

Interrupt status is not altcrcJ
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 18
(SWI &06)

This call removes all of the Key$n variables, whil:h conmin the function key
definitions. It also cancels any key string currently bcin~ read.

You can also cle;)r individual strings by *Key n, or all of them by
Unset Key$. Neither of these commands cancel the current key expansion,
though.

This opcr.!tion can also be performed by * FX 18

None

ByteV

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Reflect keybo<Jrd status in LEOs

RO = 118 (&76)

RO = preserved
R 1 = corrupted
R2 = corrupted

Interrupt srarus is not altered
Fast interrupts arc enabled

Processor is in SYC mode

Not defined

OS_Byte 118
(SWI &06)

The settings of Caps Lock, Scroll Lock and Num Lock arc held in a location
referred to as the keyboard sratus byrc. Sec OS_Bytc 202 in this chapter for
derail of this.

Under normal circumstances they are shown by rhe keyboard LEDs which arc
set into the keycaps. However, rhe keyboard !'>tarus byte is written to using
OS_I3ytc 202, then rhc LEOs will not update. This call ensures rhat the current
contents of the keyboard status byrc arc reflected in the LEOs.

This operation can also be performed by *FX 118

Related SWis None

Related vectors I3yteY

Character Input: SWI Calls 491

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

492

Temporarily lock auto-repeat

RO = 120 (&78)
Rl = O
R2 =0

RO = preserved
R 1 = corrupted
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 120
(SWI &06)

This call locks the auto-repeat mechanism for the duration of a key being
down . This is useful when input is followed by further input, but no auto
repeat is desired from the key that m~y still be down.

This call is kept for compatibility with the BBC/Mastcr series.

This command can also be performed by *FX 120

None

By reV

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Single key

Key range

Keyboard scan

RO == 121 (&79)
R 1 == key(s) to be detected

RO == preserved
R 1 == if/which key has been detected
R2 == corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 121
(SWI &06)

This call allows checking the keyboard to see whether a particular key or a
range of keys is being pressed. It uses the internal key number {see the tables
in the Technical Details of this chapter for a complete list).

To check for a single key, R I must contain the internal key number exclusive
ORd with &80 (Rl EOR &80). The value returned in Rl will be &FF if that
key is currently down and zero if it is not.

To check for a range of key values, it is possible to set the 'low tide' mark .
That is, no internal key number below the \':Jluc in R1 on entry will be
recognised. Since Shift, Ctrl, Air and the mou~ keys arc at the bottom then
this is very convenient.

The value returned in Rl will be the internal key number if a key is currently
down or &FF if no key is down.

Related SWis OS_Bytc 122 (SWI &06)

Related vectors I3yteV

Character Input : SWI Calls 493

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

494

OS_Byte 122
(SWI &06)

Keyboard scan (other than Shift, Ctrl, Alt and mou~ keys)

RO = 122 (&7A)

RO = preserved
R 1 = internal key number of key or &FF if none
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call allows checking the keyboard to sec whether any key is being
pressed. It uses the internal key number (sec the tables in the Technical
Details of this chapter for a complete list). All key numbers below 16 arc
ignored. This excludes all Shift, Ctrl, Alt and mouse keys. It is equivalent to
OS_Oyte 121 with R1 =16.

OS_Byte 121 (SWI &06)

BytcV

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Clear escape condition

RO = 124 (&?C)

RO = preserved
R I = corrupted
R2 = corn1ptcd

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

OS_Byte 124
(SWI &06)

This call clears any escape condition and returns, without calling the csc<~pc
handler.

This command can also be performed by *FX 124

Related S Wis OS_Byte 125 (SWI &06), OS_Byrc.: 126 (SWI &06)

Related vectors l3yteV

C haracte r Input: SWI Calls 495

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Set escape condition

RO = 125 (&70)

RO = preserved
R 1 = corrupted
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 125
(SWI &06)

This call is used to set the escape flag and c:11l the e!'<:<lpc handler. An
escape event is not generated.

This command can also be performed by *FX 125

OS_Byte 124 (SWI &06), OS_Bytc 126 (SWI &C6)

ByteV

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Acknowledge escape condition

RO = 126 (&7E)

RO = preserved

OS_Byte 126
(SWI &06)

Rl = indicates if the escape condition has been cleared
R2 = corrupted

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

This call attempts to clear an escape condition if one exists. It may or may not
need to perform various actions to tidy up after the escape condition
depending on whether rhe escape condition side effects (see OS_Byte 230)
have been enabled or not.

The escape handler is called to indicate clearing of the escape condition.

The value returned in R 1 indicates whether or not the escape condition has
been cleared. &FF indicates success, while zero means that there wasn't an
escape condition to clear.

This command can also be performed by *FX 126

Related SWis OS_Byte 124 (SWI &06), OS_Byte 125 (SWI &06)

Related vectors BytcV

Character Input: SWI Calls 4a7

On entry

On exit

498

Read keyboard for information

RO = 129 (&81)
To read a key within a time limit:

Rl =time limit low byte

OS_Byte 129
(SWI &06)

R2 = time limit high byte (in range &00- & 7F)
To read the OS version identifier

Rl=O
R2 = &FF

To scan the keyboard for a ran~e of keys:
Rl =lowest internal key number EOR &7F (ie" value of &0 1 . &7F)
R2 = &FF

To scan the keyboard for a particular key:
Rl = internal key number EOR &FF (ie a value of &80. &FF)
R2 = &FF

RO preserved
If reading a key within a time limit:

R I =ASCII code if char.lcter read, else undefined
R2 = &00 if ch:mcter read

& 1 B if an eocape condition exists
&FF if timeout

If reading the OS version identifier
Rl = &AO (Arthur 1.20) or &A 1 (RISC OS 2.0)
R2 = &00

If scanning the keyboard for a ran,:;e of keys
Rl = internal key number or &FF if none pre~c:cd
R2 is corrupted

If scanning the keyboard for a particular key:
R 1 = &FF if the required key was pressed, 0 otherwise
R2 = &FF if the required key was pressed, 0 otherwise

Character Input: SWI Calls

Interrupts

?rocessor Mode

Re-entrancy

Use

lead key with time limit

~haracter Input: SWI Calls

Interrupt status:

• Enabled when reading a key within a time limit

• Not altered for remaining three operations

Fast intcm1pts arc enabled for all operations

Processor is in SVC mode

Not defined

This OS_Rytc is four separate operations in one:

• read an ASCII key value rc:Jd from the keyboa rd with a timeout

• read the OS version identifier

• scan the keyboard for a range of keys

• scan the keyboard for a particular key

In this operation, RISC OS waits up to a ~pecified time for a key to be
pressed, if there a rc none in the keyboard buffer.

The time limit is set according to the following calculation:

Rl +(R2*256) cen tiseconds

The upper limit is 32767 centiseconds. To indicate the time of (n)
centiseconds, then:

Rl = n MOD &100
R2 = n DIV &100

If an escape condition is detected during this opemtion it should be
acknowledged by the application using OS Ryte 126, or cleared using
OS Byte 124.

While RISC OS is wattmg for J keyboard char:1cter during one of these calls,
it also deals with cursor key pres.-.cs That .,, if one of the arrow keys is
pressed, cursor edit mode is entered, indicated hy the presence of two c ursors
on the screen. You can copy chamctcrs from underneath the input c ursor by
pressing Copy. The charnctcr read is rerumcd from the routine as if you h :1d
typed it explicitly. Cur\Or editing 1s cancelled when Return (ASCII 13) is
sent to the VDU driver. Cursor editing c:1n be d•-,ai--1<-d with OS_Bytc 4.

499

Read the OS version
identifier

Scan for a range of
characters

Scan for a particular key

Related SWis

Related vectors

500

IfR2=&FF and RI=O, then the OS version identifier is rc:~d.

If R2=&FF and Rl is in d1e range &1 to &7F, then the keyboard is scanned
for any keys that arc being pressed, which ha,·e :~n internal key number
greater than or equal to Rl EOR &7F. If found, the intcrnfll key number is
returned. If no key is found, then &FF is returned.

If R2=&FF and Rl is in the range &80 to &7F, then the keyboard is scanned
for a parricular key with internal key number equal toR I EOR &FF.

The relationship of keys to internal key numbers is the keyboard scan
numbers in BBC/Masrcr series computers but is different for other Acorn
series computers.

A list of all internal key numbers can be found in the Technical Details section
of this chapter.

None

ByteV

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Read input stream selection

RO = 177 (&BI)
Rl = 0
R2 = 255

RO = preserved
R I = value of stream selection
R2 = cormpted

Interrupt st:<anJs is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 177
(SWI &06)

This rerums the number of the buffer that character input gets its characters
from:

•

It must never be altered with this call by changing the values in R I and R2.

Related SWis OS_I3yte 2 (SWI &06)

Related vectors BytcV

Character Input: SWI Calls 501

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

502

Read/write keyboard semaphore

RO = 178 (&B2)
Rl = 0 to read or new value to write
R2 = 255 to read or 0 to write

RO = preserved
Rl =value before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

This call is obsolete and should not be used.

None

ByteY

OS_Byte 178
(SWI &06)

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Character Input: SWI Calls

OS_Byte 181
(SWI &06)

Read/write serial input interpretation status

RO = 181 (&85)
Rl = 0 to read or new state to write
R2 = 255 to read or 0 to write

RO = preserved
Rl =state before being overwritten
R2 = Nolgnorc state (sec OS_Byte 182 in the Character output chapter)

Interrupt status is not ;~\tcred
Fast interrupts are enabled

Processor is in SVC mode

Not defined

The state stored is changed by being masked with RZ and then exclusive ORd
with Rl. ie. ((state AND R2) EOR Rl). This means that R2 controls which bits
arc changed and RJ supplies the new bits.

Usually, top-bit-set charncters read from the serial input buffer are not
treated specially. For example, if the remote device sends the code &85,
when this is read, using OS_ReadC for example, that ASCII code will be
returned to the caller immediately. It is sometimes u~ful to be able to treat
serial input characters in exactly the same way as keyboard characters.
OS_Ryte 181 allows thi:..

The state v<~lue pasS<.'<.! to this call has two values:

0 In this state the keyboard interpretation is placed on characters read
from the serial input buffer.

This is the default ~tate in which no keybo;Jrd interpretation is done.
This means that:

-the current c~capc char:Jctcr is ignored,
-the function key codes arc not exp:mdcd,
- events arc not gencrnted.

503

Related SWis

Related vectors

504

The write command can also be performed by *FX 181, <state>

None

ByteV

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Read/write keyboard auto-repeat delay

RO = 196 (&C4)
Rl = 0 to read or new delay to write
R2 = 255 ro read or 0 to write

RO = preserved
Rl = value before being overwritten
R2 =keyboard auto-repeat rare (~e OS_Byte 197)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 196
(SWI &06)

The delay stored is changed by being masked with R2 and then exclusive
ORd with Rl. ic. ((delay AND R2) EOR Rl). This means that R2 controls
which bits arc changed and R I supplies the new bits.

This call can read and set the keyboard auto-repc:lt delay value. OS_Byte 11
can also write this variable, and has more information ;~bout it.

The write command can also be performed by *FX 196, <delay>

Related SWis OS_Byte II (SWI &06), OS_Ryte 12 (SWI &06)

Related vectors ByteV

Cha racter Input: SWI Calls 505

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Read/write keyboard auto-repeat r<Jtc

RO = 197 (&CS)
R I = 0 to read or new r.lte to write
R2 = 255 to read or 0 to write

RO = preserved
Rl =value before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

OS_Byte 197
(SWI &06)

The rate stored is chan~ed by being masked with R2 <~nd then exclusive ORd
with Rl. ie. ((rate AN[) R2) EOR Rl). This me;:~ns that R2 controls which bits
arc changed and Rl supplies the new bits.

This call can read and set the keyboard auto-repeat rate value. OS_Byte 12
can also write this variable, and has more information about it. Note the
difference between *FX 12, 0 (which sets the auto-repeat rate and delay to
their configured values) and *FX 197,0 (which sets the auto-repeat rate to
zero).

The write command can also be performed by *FX 197, <rate>

OS_Byte II, OS_Byte 12 (SWI &06)

ByteV

Cht)racter lnout: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Character Input: SWI Calls

Read/write *Exec file h;mdle

RO - 198 (&C6)
R 1 = 0 to read or new handle ro write
R2 = 255 to read or 0 to write

RO = preserved
Rl = value before being overwritten
R2 = corrupted

Interrupt starus is not altered
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

OS_Byte 198
(SWI &06)

The h:mdle stored is changed by being masked \\ ith R2 and then exclusive
ORd with R 1. ie. ((handle AND R2) EOR R I). This means that R2 controls
which bits are changed and RI supplies the n<'w bits.

This command can be w.cd to read or write the location that holds the Exec
file handle.

If reading, it can tell whether an Exec file is the current input stream or not.
Any non-zero number is a handle and hence the input stream.

If writing a handle over a zero, then it causes the same effect as a *Exec
command.

If writing over a Exec file handle, the current Ex('C file will be switched off.
This handle, which is returned, should then be pr0perly closed after usc. If
you write a new handle value in its place, then thi~ has the effect of switching
input in mid-stream. If you write a zero in this ca~e, rhcn it will have rcrmin:nc
the current input stream.

In both these cases care mmt he t:Jken not to cau<.e the Exec file to stop at an
inconvenient point.

507

Related SWis

Related vectors

If you arc wrtttng a file h;mdle, the new file mu~t be open for input or
update, otherwise a Channel error occurs. If an :mcmpt is made to usc a write
only file for the *Exec file, a Not open for reading error is given.

The write command can also be performed by * FX 19 8, <handle>

None

ByteV

Character lnout: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis
Related vectors

Character Input: SWI Calls

OS_Byte 200
(swr &06)

Read/write Break and Escape effect

RO = 200 (&C8)
R 1 = 0 to read or new state to wri tc
R2 = 255 to read or 0 to write

RO = preserved
Rl =state before being overwritten
R2 =keyboard disable flag (sec OS_Byte 201)

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SYC mode

Not defined

The state stored is changed by being masked with R2 and then exclusive ORd
with Rl. ic. ({state AND R2) EOR R l). This means that R2 controls which bits
are changed and R 1 supplies the new bits.

This call can read or change the effects of a reset (including resets caused by
Break) and of Escape.

The bottom two bits of R 1 have the following significance:

Bit Value Effect

0 0 Normal escape action
1 Escape disabled unless caused by OS_Byte 125
0 Normal reset action

Power on reset (only if bits 2-7 ofRl are zero)
This means a value of 2_000000 I x causes a memory clear.

The write command can also be performed by *FX 200, <state>

None

ByteY

509

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

510

Read/write keyboard disable flag

RO = 201 (&C9)
R I = 0 to read or new flag t0 write
R2 = 255 to read or 0 to write

RO = preserved
R 1 =flag before being overwritten
R2 = corrupted

Interrupt status is not al tcrcd
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 201
(SWI &06)

The flag stored is changed by being masked with R2 and then exclusive ORd
with Rl. ie. ((flag AND R2) EOR Rl). This me:1ns that R2 controls which bits
are changed and Rl supplies the new bits.

This call allows you to ~cad and change the keyhoatd st<lte (ie. whether the
keyboard is enabled or disabled). When it is enabled, all keys are read as
normal. When it is disabled, the keyboard interrupt service routine docs not
place these keys into the keyboard buffer.

A value of zero will emhlc keyboard input, while any non-zero value will
disable it.

The write command can also he performed by *FX 201, <flag>

None

BytcV

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Ae-entrancy

Use

..;haracter Input: SWI Calls

Read/write keyboard status byte

RO = 202 (&CA)
R 1 = 0 to read or new status to write
R2 = 255 to read or 0 to write

RO = preserved
R 1 = status before being overwritten
R2 = serial input buffer space (see OS_Byte 203)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 202
(SWI &06)

The status stored is chan!;cd by being masked with R2 and then exclusive
ORd with Rl. ie. ((status AND R2) EOR Rl). This means that R2 controls
which bits are changed and R 1 supplies the new bits.

The keyboard status byte holds information on the current status of the
keyboard, such as the setting of Caps Lock. This call enables you to read ;md
change these settings.

The bit pattern in R 1 determines the settings. In this table, the State column
has on and off in it. on means a LED is lit or a key is pressed, and off means
the opposite. Take c<~rdul note of the stare, becau:;c rhcy arc not all in the
same order:

Bit Value State Meaning

0 0 off A It
1 on
0 off Scroll Lock
l on

2 0 on Num Lock
off

511

Related SWis

Related vectors

512

3 0 off Shift
1 on

4 0 on Caps Lock
off

5 Normally set
6 0 off Crrl

I on
7 0 off Shift Enable

on

If Caps Lock is on, then Shift will have no effect. If Shift Enable and Caps
Lock are on, then Shift will ~::cr lower case. You can enter rhis state from the
keyboard by holding Shift down and pressing Cap~ Lock.

This call docs not update the LEOs. l11e next k<.'y down or up event will
update them, or you can call OS_Bytc 118.

The write command can also be performed by *FX 202, <status>

None

By reV

Character Input: SWI C<llls

O n e ntry

On exit

Inte rrupts

Processor Mode

Re-entrancy

Use

Read/write serial input buffer minimum space

RO = 203 (&CB)
Rl = 0 to read or new value to write
R2 = 255 to read or 0 to write

RO = preserved
Rl = value before being overwritten
R2 = serial ignore flag (see OS_T3yte 204)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 203
(SWI &06)

The value stored is changed by being masked with R2 and then exclusive ORd
with Rl. ie. ((value AND R2) EOR Rl). This means that R2 controls which
bits arc changed and R I supplies the new bits.

The serial input routine attempts to halt input when the amount of free space
left in the input buffer falls below a certain level. This call allows the value
at which input is halted to be read or changed.

OS_SerialOp 0 can be used to examine or change the handshaking method.

The default value is 9 characters.

The write command can also be performed by *FX 203, <value>

Related SWis None

Related vectors BytcV

Character Input: SWI Calls 513

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

514

Read/write serial ignore flag

RO = 204 (&CC)
R I = 0 to read or new flag to write
R2 = 255 to read or 0 to write

RO = preserved
Rl = value before being overwritten
R2 = corrupted

Interrupt status is not alrered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 204
(SWI &06)

The flag stored is changed by being masked with R2 and then exclusive ORd
with Rl. ie. ((flag AND R2) EOR Rl). This means that R2 controls which bits
are changed and R I supplies the new bits.

This call is used to read or change the flag which indic<Jtes whether serial
input is to be buffered or not. Although this call can stop dat<J being placed
in the serial input buffer, d:Jt<J is still received by the serial driver. Errors
will still generate events unless they have been disabled by OS_Byte 13.

If the flag is zero, then serial input buffering is enabled. Any non-zero value
disables it.

The write command can also he performed by *FX 204 , <flag>

None

ByteV

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Read/write length of function key string

RO = 216 (&08)
R I = 0 to read or new length to write
R2 = 255 to read or 0 to write

RO = preserved
R 1 = length before being overwritten
R2 = paged mode line count (sec OS_Byte 217)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 216
(SWI &06)

The length stored is changed by being masked with R2 and then exclusive
ORd with R I. ie. ((length AND R2) EOR R I). This means that R2 controls
which bits are changed and Rl supplies the new bits.

This call reads and changes the count of chai(Jcters left in the currently active
function key definition. An active function key is one that is being read by
OS_ReadC instead of the current input stream.

If the length is zero, then no function key string is being re;~d. A zero length
must never be changed with this call.

A non-zero val ue shows that a function key string is active. Setting it to zero
effectively cancels that function key from thar poinr. Changing it to any non·
zero value will have an indeterminate effect.

The write command can also be performed by *FX 216 , <length>

Related SWis None

Related vectors ByreV

Character Input: SWI Calls 515

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

516

Read/write Tab key value

RO = 219 (&013)
R 1 = 0 to r~d or new value to write
R2 = 255 to read or 0 to write

RO = preserved
R 1 = value before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 219
(SWI &06)

The value stored is changed by being masked with R2 and then exclusive ORd
with Rl. ie. ((value AND R2) EOR Rl). This means that R2 controls which
bits are changed and R I supplies the new bits.

OS_I3yte 219 reads or modifies the code inserted into the keyboard buffer
when the Tab key is pressed (the default is 9). If the value specified is in the
range &80 to &FF, then the value to be inserted is modified by the state of
the Shift and Ctrl keys as follows:

• Shift exclusive ORs the value with & 10

• Ctrl exclusive ORs the value with &20

The value inserted wi ll be interpreted by OS_ReaJC in the normal way. For
example, if the value spccifiL-d is &82, then the Tab key behaves in an
identical way to the function key F2.

The write command can Hlso be performed by *FX 219 , <value>

Character Input: SWI Calls

Related SWis None

Related vectors ByteV

Character Input: SWI Calls 517

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis
Related vectors

Read/wri te escape character

RO = 220 (&DC)
Rl = 0 to read or new value to write
R2 = 255 to read or 0 to write

RO = preserved
R 1 = value before bein~ ovenvritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 220
(SWI &06)

The value stored is changed by being masked with R2 and then exclusive ORd
with Rl. ie. ((value ANO R2) EOR RJ). This means that R2 controls which
bits are changed and Rl supplies the new bits.

This call can read and change the character that will cause an escape
condition when it is read from the input srrenm. Escape (ASCII 27) is the
default.

For example:

Value

27
53
&81
&Al

Key that causes an escape condition

Escape
'5'
Fl
Ctrl Fl

The write command can alw be performed by *FX 220 , <value>

None

ByteV

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Ae-entrancy

Use

~haracter Input: SWI Calls

OS_Bytes 221 , 228
(SWI &06)

Read/write interpretation of buffer codes

RO = 221-228 (&DD- &E4)
Rl = 0 to read or new value to write
R2 = 255 to read or 0 to wri tc

RO = preserved
R 1 = value before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

The value stored is changed by being masked with R2 and then exclusive ORd
with Rl. ie. ((value AND R2) EOR Rl). This means that R2 controls which
bits are changed and Rl supplies the new bits.

This call provides a way of rc:-tding and changing how the codes from &80 to
&FF are interpreted when read from the input buffer.

They are split into eight groups as follows:

OS_Bytc

221
222
223
224
225
226
227
228

Range of buffer codes controlled

&CO-&CF
&DO-&DF
&EO- &EF
&FO- &FF
&80- &8F
&90- &9F
&AO- &AF
&BO- &BF

519

The list below shows the keys th:n can produce codes in these groups:

Key

Print
Fl
F2

F9

Copy
~

---7

J,
i

Page Down
Page Up

FlO
Fll
F12
Insert

Code

&80
&81
&82

&89

&8B

&8C
&8D
&8E
&8F

&9E
&9F

&CA
&CB
&CC
&CD

+Shift

&90
&91
&92

&99

&9B
&9C

&9D
&9E
&9F

&8E
&8F

&DA
&DI3
&DC
&DD

+Ctrl

&AO
&AI
&A2

&A9

&AB
&AC

&AD
&AE
&AF

&BE
&BF

&EA
&EB
&EC
&ED

+Ctri-Shift

&130
&131
&132

&B9

&BB
&BC

&BD
&13E
&BF

&AE
&AF

&FA
&FB
&FC
&FD

These SWis only affect the codes generated by the Copy and arrow keys if
they have been set up to <Kt as function keys by calling OS_I3yte 4 with R 1 =2.
Normally this is not rhe case. and you should use OS_Byte 4 to control the
action of these keys.

Also, when a reset occurs, the code &CA is inserted into the input buffer. This
causes the key definition for function key 10 to be used for subsequent input if
it is defined.

Some of these codes cannot be generated from the main keyboard, but must
be produced via one of the following techniques:

• use these calls to generate them with keys

• re-base the numeric keypad with OS_Byte 238

• insert into the buffer with OS_Byte 138

!;?0 Character Inout: SWI Calls

• insert into the buffer with OS_Byte 153

• receive via the serial input port

The interpretation of these codes depends upon the value of Rl passed. This
is the interpretation value. It determines what action will be taken with a code
in the appropriate block:

Value Interpretation

discard the code 0
1
2

generates the string assigned to function key (code MOD 16)
generates a NULL (ASCII 0) followed by the code

3- &FF acts as offset. ie. (code MOD 16) + value

If any block has been set to interpretation value 2, then a Ctrl-® (ASCII 0)
will be passed as two zeros to differentiate it from a high code. This mode is
used with software that can cope with the international character set in the
range &AO- &FF. It is recommended that the function keys return a NULL
followed by the key code, so that they can be distinguished from actual
ASCII characters in this range.

This is the default setting for each of the blocks:

Block Default

&80- &8F
&90- &9F &80
&AO- &AF &90
&BO- &BF 0
&CO- &CF I
&00-&DF &DO
&EO- &EF &EO
&FO- &FF &FO

Interpretation

function keys
return (buffer code- & I 0)
return (buffer code - & 10)
discard
function keys
return buffer code unchanged
return buffer code unchanged
return buffer code unchanged

The write command can also be performed by *FX <221 - 228>, <value>

Related SWis None

Related vectors ByteV

Character Input: SWI Calls "?1

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

522

Read/write Escape key status

RO = 229 (&E5)
R 1 = 0 ro read or new status to write
R2 = 255 to read or 0 to write

RO = preserved
R I = status before being overwrirren
R2 =escape effects (see OS_Byte 230)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

OS_Byte 229
(SWI &06)

The status stored is changed by being masked with R2 and then exclusive
ORd with Rl. ie. ((srnrus ANO R2) EOR Rl). This means that R2 controls
which bits are changed and R I supplies the new bits.

This call allows you to enable or disable the generation of escape conditions,
and to read the current setting. Escape conditions may be caused by pressing
the current escape character or by the inserting it into the input buffer with
OS_Byte 153.

If the value of R1 passed is zero, which is the default, then e!'Capc conditions
arc enabled. Any non-zero value will disable them. When they arc disabled,
the current escape character set by OS_Bytc 220 will pass through the input
stream unaltered.

OS_Byte 200 can also control the enabling of escape conditions.

The write command c<~n also be performed by *FX 229, <status>

Character Input: SWI Calls

Related SWis OS_Byte 153
(SWI &06)

Related vectors BytcY

(SWI &06), OS_Bytc 200 (SWI &06), OS_Bytc 220

~haracter Input: SWI Calls 523

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

524

Read/write escape effects

RO = 230 (&E6)
R 1 = 0 to read or new status to write
R2 = 255 to read or 0 to write

RO = preserved
R I = status before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 230
(SWI &06)

The status stored is ch;-~nged by being masked with R2 and then exclusive
ORd with R 1. ie. ((smus AND R2) EOR Rl). This means that R2 controls
which bits arc changed <tnd R I supplies the new bits.

By default, the acknowledgement of an escape condition produces the
following effects:

• Flushes all active buffers

• Closes any currently open *Exec file

• Clears the VDU queue

• Clears the VDU line count used in p;-~gcd mode

• Terminates the sound hcin£! produced.

This call enables you to dt•terminc whether the esc:1pc effects arc currently
enabled or disnbled, and to change the setting if required.

If the value of R l passed is zero. which is the default, then escape effects ;-~re
enabled. Any non-zero value will disable d1em.

Character Input: SWI Calls

The write command can also be performed by *FX 230, <status>

Related SWis None

Related vectors l3yrcV

Character Input: SWI Calls 525

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

526

Read/write cursor key Sljl£US

RO = 237 (&ED)
R 1 = 0 to read or new state to wri tc
R2 = 255 to read or 0 to wri tc

RO = preserved
Rl =value before being overwritten

OS_Byte 237
(SWI &06)

R2 = numeric keypad interpremtion (sec OS_Byte 238)

Interrupt status is nor altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

The state stored is ch:mgcd by hcing masked with R2 and then exclusive ORc.l
with Rl. ic. ((state AND R2) EOR Rl). This mc:~ns that R2 controls which hits
are changed and Rl supplies the new bits.

This can read and modify the cursor key status. OS_Bytc 4 can perform an
identical write operation. Sec the description of rhat SWI in this chapter for
derails of the status.

The write command can also 1->c rcrformcd by *FX 237, <state>

OS_Byrc 4 (SWI &06)

13yteY

Character Input: SWi Calls

On ent ry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Character Input: SWI Calls

Read/write numeric keypad interpretation

RO = 238 (&EE)
Rl = 0 to read or new value to write
R2 = 255 to read or 0 to write

RO = preserved
Rl = value before being overwritten
R2 = cormpted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

OS_Byte 238
(SWI &06)

The value stored is changed by being masked with R2 and then exclusive ORd
with Rl. ie. ((value AND R2) EOR Rl). This means that R2 controls which
bits are changed and Rl supplies the new bitS.

This call controls the character which is inserted into the input buffer when
you press one of the keypad keys. The inserted character is derived from the
sum of a base value (set by this call) and an offset, which depends on the key
pressed. The inner (lighter) keys have two different offsets. The offset used
depends on the state of N um Lock.

By default, the base number is 48. ie. they generate codes which arc
displacements from 48 (ASCII '0').

This table shows the effect of the default settings on rhe keypad:

527

Base Character Num Lock Character
Key Offset Generated Offset Generated

0 0 "0'' +157
1 +1 "I" +91 Copy
2 +2 f12H +94 Down
3 +3 "3" +110 Page Down
4 +4 ''4'' +92 Left
5 +5 "5" ignored
6 +6 "6'' +93 Right
7 +7 ''7'' -18 Home
8 +8 ''8'' +95 Up
9 +9 "9" +111 Page Up

-2 , ... +79 Delete
I -I ''/" unchanged
• -6 "*" unchanged
-13 "#" unchanged

-3 " " unchanged
+ -5 ~I+ It unchanged
Enter -35 Return unchanged

Unlike the function keys, you can set the numeric keypad base number to any
value in the range 0- 2.55. (If a generated code lies outside this range it is
reduced MOD 256). If a character generated by the numeric keypad is in the
range &80 to &8F, then it will act like a soft function key.

OS_Byte 254 controls how Shift and Ctrl act upon numeric keypad characters.

The write command can also be performed by *FX 238, <status>

Related SWis None

Related vectors ByteY

528 Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Character Input: SWI Calls

Read/write Break key actions

RO = 247 (&F7)
Rl = 0 to read or new value to write
R2 = 255 to read or 0 to write

RO = preserved
Rl =value before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 247
(SWI &06)

The value stored is changed by being masked with R2 and then exclusive ORd
with RI. ie. ((value AND R2) EOR Rl). This means that R2 controls which
bits are changed and Rl supplies the new bits.

This call reads and changes the result of pressing Break. The value byte
alters Break and modifiers of it as follows:

Bits Key Combination

0,1 Break
2,3 Shift Break
4,5 Ctrl Break
6,7 Ctrl Shift Break

Each two bit number may take on one of these values:

Value

0
Ol
10
11

Effect

Aetas Reset
Act as escape key
No effect
Undefined

529

Related SWis

Related vectors

530

The default is 2_00000001, so Break causes an esc:~pe condition.

The write command can also be performed by *FX 24 7, <value>

None

ByteV

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Read last reset type

RO = 253 (&FD)
Rl = O
R2 = 255

RO = preserved
Rl = break type

RZ = effect of Shift on keypad (sec OS_Bytc 254)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 253
(SWI &06)

Re-entrancy

Use This call returns the type of the last reset performed in R l:

Value Reset type

0 Soft reset
I Power-on reset
2 Hard reset

Related SWis None

Related vectors BytcY

Character Input: SWI Calls 531

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

532

OS_Byte 254
(SWI &06)

Read/write effect of Shift and Crrl on numeric keyp:1d

RO = 254 (&FE)
Rl = 0 to read or new value to write
R2 = 255 to read or 0 to write

RO = preserved
R 1 =value before being overwritten
R2 = corrupted

Interrupt status is notal rered
Fast imemJpts are enabled

Processor is in SYC mode

Not defined

The value stored is changed by being masked with R2 and then exclusive ORd
with Rl. ie. ((value AND R2) EOR Rl). This means that R2 controls which
bits are changed and R I supplies the new bits.

This call allows you to enable or disable the effect of Shift and Ctrl on the
numeric keypad or to read the current state. These keys may modify the code
just before it is inserted into the input buffer.

If the value of Rl passed is zero, then Shift and .. ·Ctrl are enabled. Any non
zero value will disable them; this is the default.

If they are enabled then the following actions occur depending on the value
generated by a key:

• if the value>= &80:
Shift exclusive ORs the value with &10
Ctrl exclusive ORs the value with &20

• if the value < &80:
Shift and Ctrl still have no effect

The write command can also be performed by *FX 254, <value>

Character Input: SWI Calls

Related SWis None

Related vectors ByteY

Character Input: SWI Calls 533

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Read a line from input stream to memory

RO = 0
R I = pointer to parameter block

RO = preserved

OS WordO
(SWI &07)

R 1 = preserved (and parameter block unaltered)
R2 = length of input line, not including the Return
the C flag is set if input is terminated by an escape condition

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call is equivalent to OS_ReadLine, but has the resrnwon that the
parameter block must lie in the bottom 64k of memory .. It is provided for
compatibility with older Acom operating systems.

The parameter block pointed to has the following StnJCture.:

Offset

0
1
2
3
4

Purpo!\c

LSn of buffer address
MSn of buffer address
size of buffer
lowest ASCI! code
highest ASCI! code

Equivalent in OS_RcadLine

RO

Rl
R2
R3

Note that the p<~rameter block must lie between &8000 and &FFFF in
memory, never in &0000 to & 7FFF, as this memory is reserved for RISC OS.

OS_ReadLine (SWI &OE)

WordY

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Read a line from the input stream

RO =pointer to buffer to hold the line
R 1 = size of buffer
R2 = lowest ASCII value to pass
RJ = highest ASCII value to pass

RO = corrupted
Rl = length of buffer read, not including Return.
R2 = corrupted
R3 = corrupted

OS ReadLine
(SWI &OE)

the C flag is set if input is terminated by an escape condition

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_ReadLine reads a line of text from the current input stream using
OS_ReadC.

Input can be terminated in a number of ways:

• Return (ASCII 13). The length returned in Rl will not count the Return
character, even though it is placed in the read buffer.

• Ctri-J (ASCII 10 or linefeed). Acts much like the Return case above. Even
the last character in the buffer is a Return, not a linefeed as you might
expect.

• Escape condition. This can represent the escape key being pressed. But it
can be caused by other means, such as an OS_f3ytc 125.

Character Input: SWI Calls 535

Related SWis

Related vectors

536

With the exception of the above characters, and three more noted below, all
characters received by OS_ReadLine will be echoed to OS_ WritcC.
Characters in the range R2 to IU are also written into the read buffer that RO
points to on entry. These arc the three charactrs that have a special function so
are not placed in the buffer::

• Delete (ASCII127) or Backspace (ASCII8) act in the same way. They
cause a Delete to be sent to OS_ WriteC and the character last written
into the buffer is removed.

• Ctrl-U (ASCII 21) deletes all the characters placed in the buffer and
sends that many Deletes to OS_ WriteC, effectively erasing the line.

If the number of characters input reaches the number passed in Rl, further
characters are ignored and cause Ctrl-G (ASCII?) to be sent to OS_WritcC,
which will normally cause a sound to be emitted. The deleting keys
mentioned above will still function.

OS_RcadLine must not be called from an interrupt or event routine.

OS_ReadC (SWI &04), OS_ Word 0 (SWI &07), OS_ WriteC (SWI &00)

ReadLineV, WrchV

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

OS_ReadEscapeState
(SWI &2C)

Check whether an escape condition has occurred

the C flag is set if an escape condition has occurred

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_ReadEscapeState sets or clears the carry flag depending on whether
escape is set or not. Once an escape condition has been detected (either
through this call or, for example, with OS_ReadC), it should be
acknowledged using OS_Bytc 126 or cleared using OS_Byte 124.

This call is useful if a program is executing in a loop which the user may want
to escape from, but isn't performing any input operations which would let it
know about the escape.

Note that OS_ReadEscapeState may be called from an interrupt routine.
However, OS_Byte 126 may not be, so if an escape is detected under
interrupts, the interrupt routine must set a flag which is checked by the
foreground task, rather than attempt to acknowledge the escape itself.

Related SWis OS_Byte 124 (SWI &06) OS_Byte 126 (SWI &06)

Related vectors None

Character Input: SWI Calls 537

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

538

OS_InstallKey Handler
(SWI &3E)

Install a key handler or read the address of the current one

RO = 0 to read address of current keyboard handler
1 to read keyboard ID from keyboard (I for UK keyboards)
> 1 to set address of new keyboard handler

RO = address of current/old keyboard handler, or keyboard ID

Interrupt status is undefined
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

OS_InstaiiKeyHandler installs a new kcybo<~rd handler to replace d1e
default code.

None

None

Character Input: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Get a byte from the serial buffer

RO = 4

RO is preserved
if C flag = 0 then R 1 =character received
if C flag = 1 then R 1 preserved.

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_SerialOp 4
(SWI &57)

This call removes a character from the serial input buffer if one is present. If
removing a character leaves the input buffer with more free spaces than are
specified by OS_Byte 203, then transmission is re-enabled in the way
specified by the state set by reason code 0.

Note that reception must have been enabled using OS_Byte 2 before this call
will have any effect.

For a general description of OS_SerialOp, sec the chapter entitled character
output.

Related SWis None

Related vectors None

Character Input: SWI Calls 539

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

540

Read/write RX baud rate

RO = 5
R 1 = -1 to read or 0 - 15 ro set ro a va I uc

RO is preserved
Rl =old receive baud rnte

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call has the same effect as an OS_Byte 7.

OS_SerialOp 5
(SWI &57)

The value that is pas.c;cd in R 1 uses the same table of baud rates as this
OS_Byte.

For a general description of OS_Seria!Op, sec the chapter entitled cl1aracter
output.

OS_Bytc 7 (SWI &06)

None

Character Input: SWI Calls

*Commands *Configure Caps
Configures Caps Lock ON

Syntax *Configure Caps

Parameters None

Use This command configures Caps Lock to be on, so that when you switch on or
reset, you will start typing in capital letters. This is the default setting.

Example *Configure Caps

Related commands *Configure NoCaps, *Configure ShCaps

Related SWis OS_Byte 202 {SWI &06)

Related vectors None

Character Input: ·commands 541

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

542

*Configure Delay
Configures the delay before keys sr:m to auto-repeat

*Configure Delay <n>

<n> 0 to 255

This command specifics the configured keybonrd auto-repeat delay in
centiseconds. A value of zero disables auto-repeat. 1l1e def:lUit value is 32.

*Configure Delay 20

*Configure Repeat

OS_Byte II (SWI &06)

None

Character Input: · c ommands

*Configure NoCaps
Configures Caps Lock OFF

SyMax *Configure NoCaps

Parameters None

Use This command configures Caps Lock to be off, so that when you switch on or
reset, you will start typing in lower case. Caps is the default setting.

Example *Configure NoCaps

Related commands *Configure Caps, *Configure ShCaps

Related SWis OS_Byte 202 (SWI &06)

Related vectors None

Character Input: ·commands 543

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Configure Repeat
Sets the configured interval between the generation of :-.uto-repeat keys

*Configure Repeat <n>

<n> 0 to 255

This command specifics the configured keyboard auto-repeat interval in
centiseconds. A value of zero sets an infinite intcrv:-.1, so the character repeats
just once, after the auto-repeat delay. To completely disable auto-repeat, set
the Delay to zero.

The default value is 8.

T his option can also be ~t from the desktop, u~ing rhc Configure application.

*Configure Repeat 3

*Configure r>clay

OS_Byte 12 (SWI &06)

None

Cht:~racter lnout: •commands

*Configure ShCaps
Configures Caps Lock ON, Shift producing lower case letters

Syruax *Configure ShCaps

Parameters None

Use This command configures Caps Lock to be on, so that when you switch on or
reset, you will start typing in capital letters. Holding down the Shift key will
produce lower case letters, which does not happen when Caps is the
configured value. Caps is the default value.

Example *Configure ShCaps

Related commands *Configure NoCaps, *Configure Caps

Related SWis OS_Byte 202 (SWI &06)

Related vectors None

Character Input: *Commands 545

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

546

*Exec
Executes a command file

*Exec [<pathname>]

<pathname> a v:1lid p:nhname specifyin~ :1 file

*Exec <pnthname> opens the specified file for input. This comm:~nd is mainly
used for executing a list of operating system commands contained in a
command file. The file, once open, takes priority over the keyboard or serial
input streams.

*Exec with no parameter cloc;cs the exec file.

*Exec !Boot

*Obey

OS_Byte 198 (SWI &06)

None

Character Input: ·commands

Syntax

Parameters

use

Example

Character Input: 'Commands

Assigns a string to a function key

*Key <keynumber> [<value>)

<keynumber>

<value>

number from 0 to 15
any GSTrans-compariblc string

*Key

This command assigns a string to a function key. Any string up to 255
characters long can be used.

The text is transformed by GSTrans before being stored. This means that you
can represent Return using 'I M' as in the example below. Sec the section on
GST rans for details.

The string is stored in a system variable, Key$<numbcr>, for example Key$1
for function key 1. This enables a key's definition to be read before it is used,
and manipulated like any other variable. Also, because a key string can be
set as a macro, its value may be made to change each time it is used.

In addition to Fl to F12, these keys can act as function keys by default:

• Print as FO

• lnsertasF13

and these keys can be made to act as function keys by the command *FX4,2:

• Copy as Fll

• left arrow as F 12

• right arrow as F!J

• down arrow as F1 4

• up arrow as F15

Function keys are generally unaffected by a soft break, but lost following a
hard break.

*Key 8 *Audio OniM *Speaker Onlm *Volume 1271m

*SetMacro Key$1 *i !The time is <SysSTime>lm

547

Related commands

Related SWis

Related vectors

548

*Set, *SctMacro

None

None

ChMacter Input: ·commands

Time and Date

Introduction

Time and Date: Introduction

There are two basic aspects of time dealt with in this chapter. Passive aspects,
such as reading various clock settings and active ones, where an event occurs
when a given time is reached. In this chapter, a clock is a place where a stored
value is incremented on a regular basis. The time is the name of the value as
it is read or written.

There are several clocks that increment every 1/100th of a second
(centisecond). One of them cannot be changed except by a hard reset. This is
useful for time-stamping events, such as mouse moves. Anothe r can be changed
by a program, so is useful for elapsed time calculations.

The real time clock keeps the real-world time, and represents time in
centiseconds since 00:00:00 on January 1 1900. There arc calls to present this
information in a number of ways. The real-time can be converted to a string
with complete program control over its format.

A variety of timer events can be set up. There arc SW1s that will call your
application after a given delay has passed or every time that delay has
elapsed. You can set up a routine to sit on the ticker vector, to enable it to be
called every centisecond.

A specialised form of timer event is one that will occur every time the screen
driving hardware reaches the bottom of the screen. This event is useful for
flicker-free redrawing. Sec the chapter entitled VDU drivers for further
derails.

549

Overview and
Technical Details

Monotonic timer

System clock

Real-time

Standard format

550

There are four timers, which increment at a centisecond r:-~te. They arc:

• the monotonic timer (re;Jd-only)

• the system timer (read/write)

• the interval time (read/write)

• the real-rime clock (read only, in general. ie. only u~ers should change it)

A monotonic timer cannot be written, except by a hard re~et or when the
machine is turned on. OS_ReadMonotonicTimc (SWI &42) allows you to
read this value. It is useful for time-stamping within an application, such as
event times. Because it can never be changed, the order of events cannot he
confused.

It is stored as a 4-byte value with least signific:-~nt byte first. It is incremented
every centisecond, which means that it would take nearly 500 days for it to

wrap around.

The system clock is stored as a 5-byte value. Like the monotonic timer it is
reset by hard resets and increments every centisecond. However it can be
altered. This is useful for measuring elapsed times in an application.
OS_ Word 1 reads the value and OS_ Word 2 writes it.

The real-time clock is stored as a 5-byte value in the CMOS clock chip and
reflects the normal us;1ge cl the word clock. That is. it stores :m elapsed time
since 00:00:00 on Janmll)' I 1900. It can be ~t u"ing the Clock or Alarm
applications on the desktop.

A soft-copy of the real time clcck is also kept hy RISC OS and is used by the
filing system to datc-st::Jmp fib. This soft-copy is updated fmm the CMOS
clock chip following a hard reset

*Time will display the time and d<Jte from the CU. It uses OS_ Word 14,0 to
display the information. Here is an example of the format that they present it
in:

T uc,28 lvlar 1989.1 32) 54

Time and Date: Overview and Technical Details

5-byte format

Changing real-time

Format field names

The real-time can be read in the standard 5-bytc format using OS_ Word 14,3.
This, or any, 5-byte time can be converted into the standard time string using
OS_ConvcrtStandardDateAndTime (SWI &CO).

The real-time time can be altered with OS_ Word 15,8, the date with
OS_Word 15,15, or both with OS_Word 15,24. These calls all usc the time in
a fixed string format the same as that above.

The above standard time string is not flexible. To allow programs and users
to customise the way that the time and date is presented, it is possible to
supply a format string. The string is copied character for character to the
output buffer unless a '%' is found. If this character is followed by any of the
following codes, then the appropriate value copied to the output buffer.

Name Value Example

cs Centi-seconds 99
SE Seconds 59
MI Minutes 05
12 Hours in 12 hour format 07
24 Hours in 24 hour format 23
AM 'am' or 'pm' PM
PM 'am' or 'pm' AM

WE Weekday, in full Thursday
WJ Weekday, in three characters Thu
WN Weekday, as a number 5

DY Day of the month 01
ST "st", "nd", "rd" or "th" St

MO Month name, in full September
MJ Month name, in three characters Sep
MN Month as a number 09

CE Century 19
YR Year within century 87

WK Week of the year, Mon to Sun 52

Time and Date: OveNiew and Technical Details 551

BCD conversions

Timer events

Interval timer

Timer chain

552

DN

0
%

Day of the year

Insert an ASCII 0 zero byte
Insert a'%'

364

To cause leading zeros to be omitted, prefix the field with the letter Z. For
example, o/ozmn means the month number without leading zeros. %0 may be
used to split the output into several zero-terminated strings.

For example, the standard time string would be produced using the following
format string:

%W3,%DY %M3 o/oCE% YR.%24:%MI:%SE

OS_ConvertDateAndTime (SWI &Cl) will convert 3 5-byte time into a string
using a supplied format string.

The CMOS clock chip stores the time internally in a Bin:Jry Coded Decimal
(BCD) format. OS_Word 14,1 will read the time 3S a 7-byte BCD block.
OS_ Word 14,2 will convert this BCD block into the standard string format.

There are three different causes of timer event~: the interv:JI timer, the timer
chain and the VSync timer.

The interval timer is a 5-byte clock that increments every centisecond. If
enabled by OS_Byte 14, an event will occur when the counter reaches zero.
Thus to wait for a given time, the inte rval timer must be set to the negative of
it using OS_ Word 4. OS_ Word 3 can read the current setting of the interval
timer.

For example, to wait 10 seconds, - 1000 .must be pasS<.-d to OS_ Word 4.

The interval timer is kept for compatibility with earlier Acorn operating
systems. Its use should be avoided if possible. It is especially important that
this is not used under the Wimp, since it is cannot cope with more than one
program using it at once.

An easier to use and more sophisticated way for an appl ic:ltion to be called
at a given time is the timer chain. These arc independent of event routines, but
arc used in a similar manner. OS_CaiiAfter (SWI & 1B) can be used to get a

Time and Date: Overview and Technical Details

VSync timer

Obsolete timers

given address to be called after a certain time has elapsed. OS_CallEvery
{SWI &3C) is like this, but automatically reloads the counter when it has
expired. OS_RemoveTickerEvent {SWI &30) will cancel either
OS_CaiiAfter before it occurs or OS_ CallE very to stop it repeating forever ..

OS_CaiiAfter and OS_CaiiEvery are passed an address to call, the delay to

wait and an identification word to return in R 12. Thus, many timers can be
running concurrently.

These are stored in a list which can be any size up to the machine memory
limit.

The screen is refreshed 50 times a second in Standard monitor type modes.
From the time that the bottom of the screen is complete till the top of the
screen commences again is a delay called the vertical sync period. This
allows the electron beam to go to this start position. The VSync event
coincides with the vertical sync beginning. You can use OS_Dyte 14 to enable
this event, so that flicker-free re-drawing can be done while the YOU is not
being written to.

OS_Byte 176 provides access to a one byte counter in 50Hz periods. ic. it
decrements at the rate of the VSync event.

OS_Byte 243 reads a temporary location used by rhe timer software. It is kept
for compatibility with earlier Acorn operating systems and must not be used.

Time and Date: Overview and Technical Details 553

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

554

Read/Write 50Hz counter

RO = 176 (&BO) (reason code)
R I = 0 to read or new value to write
R2 = 255 to read or 0 to write

RO = preserved
R I = value before being overwritten
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 176
(SWI &06)

The value stored is changed by being masked with R2 and then exclusive ORd
with Rl. ie. ((value AND R2) XOR Rl). This means that R2 controls which
bits are changed and R l supplies the new bits.

This call reads or writes a one-byte counter which is decremented at a 50Hz
rare; or more precisely at the rate of the VSync interrupt.

The write command can also be performed by *FX 17 6, <value>

None

BytcV

Time and Date: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Time and Date: SWI Calls

Read timer switch state

RO = 243 (&F3) (reason code)
Rl = 0
R2 = 255

RO = preserved
Rl =switch state
R2 = corrupted

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

OS_Byte 243
(SWI &06)

In order to protect the centi-second clock agaimt corruption during reset, the
OS keeps two copies. One of them is the one which will be read or written
when one of the OS_ Words is called, the orhcr is the one which will be
updated during the next 1OOHz interrupt. When the update has been
performed correctly, the values are swapped. This OS_Bytc enables you to
read the byte which indicates which copy is bcin~ uc;cd. Its only practical usc
is as a location which changes 100 times a second.

This call is obsolete and should not be used.

OS_ Word 3 (SWI &07), OS_ Word 4 (SWI &07)

ByteV

555

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

556

Read system clock

RO = 1 (reason code)
R 1 = pointer to five byte block

RO = preserved
R 1 = preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS Word 1
(SWI &07)

On exit, the parameter block contains the value of the system clock at the
instant of the call.

R l +0 = time (least significant byte)
Rl +I =
Rl +2 = .. .
Rl+3 = .. .
R I +4 = time (most significant byte)

The clock is incremented every centi-second. The value of the clock is
preserved over a soft break and set to zero after a hard break.

OS_ Word 2 (SWI &07)

WordY

Time and Date: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Write system clock

RO = 2 (reason code)

OS Word 2
(SWI &07)

Rl =pointer to five byte block with centi-second clock value in it

RO = preserved
R I = preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

On entry, the parameter block conrains the value ro set the system clock.

R l +0 = time Oeast significant byte)
Rl+l= .. .
Rl +2 = .. .
R1+3 = .. .

R 1 +4 = time (most significant byte)

This allows the clock to be set to a specified value.

Related SWis OS_ Word 1 (SWI &07)

Related vectors WordY

Time and Date : SWI Calls 557

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

558

Read interval timer

RO = 3 (reason code)
R 1 =pointer to five byte block

RO =-- preserved
R 1 = preserved

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

OS Word 3
(swr &07)

On exit, the parameter block contains the vnlue of the interval timer at the
instant of the call.

R 1 +0 = time (least significant byte)
R1 + 1 =
Rl+2 = .. .

Rl+3 = .. .
R I +4 = time (most significant byte)

Like the system clock, the interval timer is incremented 100 times a second.
The interval timer can be made to cause an event when its value reaches zero.
To do this, it must be set to minus the numhcr of centi-seconds that arc to

elapse before the event takes place.

To produce repeated events, the routine scrv1c1ng the timer event should
reload the timer with the appropriate number. For example, to produce <~n
event every 10 seconds, rclo:~d it with 1000 (&FFFFFFFC18). An alternative
is to use the special ticker event, described in the chapter entitled Events.

OS_ Word 4 (SWl &07)

WordY

Time and Date: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

nme and Date: SWI Calls

OS_Word4
(SWI &07)

Write interval timer

RO = 4 (reason code)
R1 = pointer to five byte block

RO = preserved
R I - preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

On entry, the parameter block contains the value to ~t the interval timer.

R I +0 = time (least significant byte)
Rl+l = .. .
Rl+2 = .. .
R1+J = .. .
R 1 +4 = time (most significant byte)

This call resets the interval timer to a specified value.

Note that you must usc OS_I3yte 14 to enable the intel\·al timer event.

OS_Word3 (SWI &07)

WordY

559

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

560

OS_Word 14,0
(SWI &07)

Read soft-copy of the CMOS clock in string format

RO = 14 (reason code)
Rl =pointer to parameter block

R 1 +0 = 0 (reason code)

RO = preserved
R 1 = preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

On exit, the parameter block contains a 25-byte character string in the form:

ddd,nn mmm yyyy.hh:mm:ss<Return> (starting from ;~ddrcss R I)

where

ddd is a three-character abbreviation for the day
nn is the day number
mmm is a three-character abbreviation for the month
yyyy is the year
hh is the hour (in 24-hr clock notation)
mm is the number of minutes past the hour
ss is the number of :;econds

<return> a carriage return character (&OD).

This time string comes from rhe soft-copy of the 5 byte time maintained by
RISC OS, not the CMOS clock chip itself.

This call is equivalent to the *Time command.

OS_ Word 15 (SWI &07)

Time and Date: SWI Calls

Related vectors WordY

Time and Date: SWI Calls 561

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

562

OS_Word 14,1
(SWI &07)

Read CMOS clock in llinary Coded Decimal (I3CD) format

RO = 14 (reason code)
R I = pointer to parameter block

R I +0 = 1 (reason code)

RO = preserved
R 1 = preserved

Interrupt srarus is not altcn.-d
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

On exit, the parameter block contains the scvcn-byrc nco clock value:

R 1 +0 =year
Rl+l =month
Rl +2 =day of month
R I + 3 = day of week
R1 +4 =hours
Rl+5 =minutes
R I +6 =seconds

(00- 99)
(0 1 - 12; 0 I -january etc)
(0 1 - 31)
(01 - 07; 01 = Sunday etc)
(00- 23)
(00- 59)
(00- 59)

The clock value is read directly from the CMOS clcxk chip.

OS_ Word 15 (SWI &07)

WordY

Time and Date· SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

OS_Word 14,2
(SWI &07)

Convert BCD clock value into string format

RO = 14 (reason code)
RI =pointer to parameter block

Rl +0 = 2
Rl +I =year
Rl +2 =month
RI +3 =day of month
Rl +4 =day of week
Rl +5 =hours
R 1 +6 = minutes
Rl +7 =seconds

RO = preserved
R 1 = preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

reason code
(00- 99)
(01 - 12; 01 =January etc)
(01-31)
(01- 07; 01 =Sunday etc)
(00- 23)
(00- 59)
(00- 59)

On entry, the parameter block contains the 7 -byte nco clock value:

On exit, the parameter block contains a 25-byte character string in the form:

ddd,nn mmm yyyy.hh:mm:ss<Return> (starting from address R I)

where:

ddd is a three-character abbreviation for the day
nn is the day number
mmm is a three-character abbreviation for the month
yyyy is the year
hh is the hour (in 24-hr clock notation)
mm is the number of minute~ past the hour
ss is the number of seconds

Time and Date: SWI Calls 563

Related SWis

Related vectors

564

<rerum> a carriage ren1rn charncrcr (&OD).

OS_ Word 15 (SWI &07)

WordY

Time and Date: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Time and Date: SWI Calls

Read real-time in 5-byte format

RO = 14 (reason code)
R1 =pointer to parameter block

R1 +0 = 3 (reason code)

RO = preserved
R 1 = preserved

R1 +0 = LSB of time
R1 + 1 = .. .
Rl +2 = .. .
Rl +3 = .. .
Rl +4 = MSB of time

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

os_w ord 14,3
(SWI &07)

The parameter block contains the 5-byte real time read from the soft copy of
the system time clock. This number is in centi-seconds since 00:00:00 I st
January 1900. It is used for time/date stamping by the filing system. It is also
useful for utilities which are used for building consist~nt systems, eg 'Make'.

OS_ Word 15 (SWl &07)

WordY

565

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

566

os_w ord 15,8
(SWI &07)

Write the time only in the real-time and the CMOS clock settings

RO = 15 (reason code)
Rl =pointer to parameter block

Rl +0 = 8 (reason code)
R 1 +I = ASCII code for first hours digit
Rl +2 = ASCII ccxic for second hours digit
R I + 3 = 58 (ie ASCII code for :)
Rl +4 = ASCII code for first minutes digit
R I +5 = ASCll code for second minutes digit
Rl+6 = 58
R I + 7 = ASCII code for first seconds digit
R 1 +8 = ASCII code for second seconds cligit

RO = preserved
R I = preserved

The C flag will be set on exit, if the parameter block contained a format
error.

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

Change the time settings in the real-time value and the CMOS clock.

OS_ Word 14 (SWI &07)

WordY

Time and Date: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

nme and Date: SWI Calls

OS_Word 15,15
(SWI &07)

Write the date only in the real-time and the CMOS clock settings

RO = 15 (reason code)
Rl =pointer to parameter block

R1 +0 = 15 (reason code)
R 1 + 1 = ASCII code for first day ch a rae tcr
Rl +2 =ASCII code for second day character
R 1 + 3 = ASCII code for third day character
Rl +4 = 44 (ie ASCII code for',')
Rl+5 =ASCII codcforfirstdaydigit
R I +6 =ASCII code for second day digit
R 1 + 7 = 32 (ic ASCII code for space)
Rl +8 =ASCII code for first month character
Rl +9 =ASCII code for second month char:tcter
R l +I 0 = ASCII code for third month char:tctcr
Rl + 11 = 32
R I+ 12 = ASCII code for first year digit
R 1 + 13 = ASCII code for second year digit
R1 + 14 = ASCII code for third year digit
R I+ 15 = ASCII code for fourth year digit

RO = preserved
R 1 = preserved

The C flag will be set on exit, if the parameter block contained a format
error.

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

Change the date settings in the real-time value and the CMOS clock.

567

Related SWis

Related vectors

568

OS_ Word 14 (SWI &07)

WordY

Time and Date: SWI Calls

OS_Word 15,24
(SWI &07)

Write the time and date in the real-time and the CMOS clock settings

On entry RO = 15 (reason code)
R 1 = pointer to parameter block

R1 +0 = 24 (reason code)
R1 + 1 = ASCII code for first day character
R 1 + 2 = ASCII code for second day character
R 1 + 3 = ASCll code for third day character
R1 +4 = 44 (ie ASCII code for ',')
R I +5 = ASCII code for first day digit
Rl +6 = ASCII code for second day digit
R I+ 7 = 32 (ie ASCII code for space)
Rl +8 =ASCII code for first month character
Rl +9 =ASCII code for second month character
Rl + 10 =ASCII code for third month charncter
Rl + 11 = 32
Rl + 12 = ASCll code forfirst year digit
R 1 + 13 = ASCII code for second year digit
R 1 + 14 = ASCII code for third year digit
R 1 + 15 = ASCII code for fourth year digit
R 1 + 16 = 46 (ie. ASCII codcfor period)
R I+ 17 = ASCII code for first hour's digit
R 1 + 18 = ASCII code for second hour's digit
R l + 19 = 58 (ic ASCll code for:)
Rl +20 = ASCII code for first minute's digit
Rl +21 = ASCII codcfor second minute's digit
Rl +22 = 58
R I +23 = ASCII code for first second's digit
R1 +24 =ASCII code for second second's digit

On exit RO = preserved
R 1 = preserved

nme and Date: SWI Calls 569

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

570

The C flag will be set on exit , if the par:1mercr block conrnincd a format
error.

lmerrupt status is not altered
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

Change the time and date settings in the real-time value and the CMOS clock.

OS_ Word 14 (SWI &07)

WordY

Time and Date: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Time and Date: SWI Calls

Call a specified address after a delay

RO = time in centi-seconds
R 1 = address to call
R2 =value ofRI2 to call code with

RO = preserved
R 1 = preserved
R2 = preserved

Interrupts arc disabled
Fast interrupts arc enabled

Processor is in SYC mode

SWI is re-entrant

OS CallAfter
(SWI &3B)

OS_CaiiAfter calls the code pointed to by R I after the delay specified in
RO. The code should regard itself as an intem1pt routine, and behave
accordingly.

OS_RcmoveTickerEvent can be used to cancel a pending OS_CaliAftcr

OS_CaiiEvcry (SWI &JC), OS_RcmovcTickerEvcnt (SWI &JD)

None

571

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

572

Call a specified address every time a delay clap~es

RO = time in centi-seconds
R 1 = address to call
R2 = value of Rl2 to call code with

RO = preserved
R I = preserved
R2 = preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_CallEvery
(SWI &3C)

OS_CaiiEvery calls the code pointed to by Rl every RO centiseconds, until
OS_RemoveTickcrEvcnt is executed or Break is pressed. The code should
regard itself as an interrupt routine, and behave accordinr;ly.

OS_CaiiAfter (SWI &313), OS_RemoveTickcrEvcnt (SWI &30)

None

Time and Date: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

nme and Date: SWI Calls

OS RemoveTickerEvent
(SWI &3D)

Remove a given call address and R 12 value from the ticker event list

RO = call address
R I = value of R 12 used in OS_CaiiEvery or OS_CallAfter

RO = preserved
R 1 = preserved

I ntcrrupts arc disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_RemoveTickerEvent takes RO as the address and Rl as the R12 value of
the event to find and remove from its list.

It is used to stop an event set up by a call to OS_CaiiAftcr or OS_CallEvery.
The parameters passed must match those originall~· passed to OS_CallEvcry
or OS_CallAfter for it to remove the correct event.

OS_CaliAfter (SWI &JB), OS_CaliEvery (SWI &JC)

None

573

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

574

OS ReadMonotonicTime
(swr &42)

Number of centi-seconds since the last hard reset

RO = time in centi-seconds

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_ReadMonotonicTime returns the number of centi-seconds since the b 1>t
hard reset, o r switchin~ on of the machine. 'Monotnnic' refers tO the fact rh;~t
this timer is guaranteed to increase with time. It is used, for exnmple, to time
stamp mouse events.

None

None

Time and Date: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Time and Date: SWI Calls

OS ConvertStandard
DateAndTime

(SWI &CO)
Convert 5-byte time into a string

RO = pointer to 5-byte time block
Rl = pointer to buffer for resulting string
RZ = size of buffer

RO = pointer to buffer (Rl on entry)
Rl = pointer to terminating zero in buffer
R2 = number of free bytes in buffer

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SVC mode

SWI is re-entrant

OS_C'..onvertStandardDateAndTime converrs a five-byte value representing the
number of centi-seconds since 00:00:00 on Janu;~ry 1st 1900 into a string. It
converts it using a standard format string stored in the system variable
'SYS$DateFormat' and places it in a buffer (which should be at least 20
bytes).

See the Technical Details section of this chapter for details of the format field
names.

OS_ConvertDateAndTime (SWI &Cl)

None

575

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

576

OS ConvertDateAndTime
(SWI &Cl)

Convert 5-byte time into a string u~ing a supplied form:lt string

RO =pointer to 5-byte time block
Rl =pointer to buffer for resulting string
R2 = size of buffer
RJ =pointer to format string (null terminated)

RO =pointer to buffer (RI on entry)
Rl =pointer to terminating zero in buffer
R2 = number of free bytes in buffer
RJ = preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mcxle

SWI is re-entrant

OS_ConvertDateAndTime converts a five_byte value representing the number
of centi-seconds since 00:00:00 on January 1st 1900 into a string. It converts it
using the format string supplied.

Apart from the following exception, the format srring is copied directly inro
the result buffer. However, whene\'er '%' appears in the format string, the next
two characters arc treated as a special field n:Jme which is replaced by a
component of the current time.

See the Technical Details section of this chapter for details of the format field
names.

OS_ConvcrtStandardDateAndTime (SWI &CO)

None

Time and Date: SWI Calls

*Commands *Time
Displays the day, date and time

Syntax *Time

Parameters

Use *Time displays the day, date and time of day. It is displayed in the same
format as OS_ Word 14,0.

Related commands None

Related SWis OS_ Word 14,0 (SWI &07)

Related vectors None

Time and Date: ·commands 577

578 Time and Date: ·commands

Conversions

Introduction This chapter is a collection of SWls that convert from one form to another.
Here is a summary of the conversions that can be done:

• convert a number to a string in binary, decimal or hex, with some format
control. You can specify that the source numher in a variety of sizes. ie. I,
2, 3 or 4 bytes in length in most cases.

• convert a string containing a number in any base from 2 to 36 to a number.

• process a string with control codes and other special characters. This
allows a string with any control codes to be created by passing a string
with only printable characters in it.

• substitute a string containing arguments with the given values. Used with
command line arguments to an application.

• evaluate an expression with logical, arithmetic, bit and string operations,
giving a logical, numeric or string result.

• given a key, extract options from a command line

• convert a SWI number to a string with its full name and vice versa.

• convert a network station pair of numbers number into a string.

• convert a file size into a string, for example "12 Kbytes"

Conversions: Introduction ~7o

Overview and
Technical Details

Numbers to strings

Strings to numbers

GS string operations

580

This section leads through the details of the differing convcr!'ion calls. Whilst
most arc mutually independent, some SWis m:ty usc others within this
chapter to give a multi-layered functionality.

The simplest option to con\'Crt a signed 32-bu mtcgcr into a string, the most
common operation, is to usc OS_OinaryToOccimal (~\XII &28).

For a far greater functionality, there is a set of 24 SW!s with a common
calling convention that allow a wide ranging list of conversions. Generically,
these SW!s are called OS_Convert<name><number> (SWI &DO- E8).
<name> refers to the destin:ttion format of the string. It can be hex, signed
and unsigned integer (optionally with spaces between the thousands, millions
and so on), or binary. The <number> is the number of bytes to usc on input.
For all apart from hex, this is I, 2, 3, or 4 byres. Hex can be I, 2, 4, or 8
nibbles long. See the description of these SW!s for detail.

Note that OS_BinaryToDecimal is equivalent to OS_Convertlntq;er4
(SWI &OC) from these SW!s.

OS_ReadUnsigned (SWI &21) will read a number in ASCII in a string and
convert it into an unsigned integer. The number in the string can be specified
to be in any base from 2 to 36. Rase 36 has 0- 9,A - Z as numbers. No prefix
means that the number is decimal by def<HJit, while rhe conventional '&' is
used to indicate hex. All bases can be specified h~ the ba.;c_numbcr form.
eg. 2_1100 is 12 in binary.

The GS operations arc a w:ty of putting ;my ch:tr.Jctcrs from 0- 255 into a
string using only the printable character set. OS GS!nit (SWI &25) and
OS_GSRead (SWI &26) work together to scan a string on a character at a
time basis. OS_GSTrans (SWI &27) performs borh these functions and sct~ns
the string. Unless you need character by ch:tracrer control, OS_GSTrans is
easier to use.

Conversions: Overview and Technical Details

I character

Substitute arguments

The 'I' character is used by the OS_GSRead and OS_GSTrans as a flag for a
special character. It affects how the character following it is interpreted. Here
is a list of its effects:

ASCll code

0
I - 26
27
28
29
30
31
32. 126

<
127
128. 255

Symbols used

I@
I <letter> eg I A (or I a) = ASCll I, I M (or I m) = ASCII l3
I [or I {
I\
I] or I}
I 1\ or 1-
l_or I'
keyboard character, except for:
I''
II
I<
I ?
I ~<coded symbol> eg ASCII 128 = I ! I@ ASCll I 29 = I! I A

Note that 'I !' means set the top bit of the following character, even if it is set
by another' I' character.

To include leading spaces in a definition, the string must be in quotation
marks, "", which arc not included in the definition. To include a single "
character in the string, use I" or ''".

The reason why '<' must be preceded by a 'I' is that you can put values and
variables inside angle brackets.

You can use the form <number>, where the number between the angle
brackets will be interpreted as if it was a parameter to OS_ReadUnsigncd.
That is, a number in any ba~ from 2 to 36. The value returned from this SWJ
will be placed as a character in the output stream. ic. any values above bit 7
will be ignored.

A string with a name enclosed in '< >' characters will be used to look up a
system variable. You must have used *Set, *SetMacro or *SctEval to set the
variable. The value of the variable will be substituted using OS_ReadVarVal
for the name and the angle brackets. eg. if "hisname'' had been set to "Fred",

Conversions: Overview and Technical Details 581

Flags

·Echo

Evaluation operators

!';R2

will be used. ie. the same limitation as the numbers above. System variables
and the calls that operate on them arc described in the chapter entitled
Program Environment.

There are options which can he used to determine the way in which the string
is interpreted. This is done by setting the top three bits in R2 passed to
OS_GSinit or OS_GSTrans, as follows:

Bit Meaning

29 If set then a space is treated as a string terminator
30 If set control codes arc not converted (ie' I' syntax is ignored)
3 i Double quotation marks (") are not to be treated specially,

ie they are not stripped <~round strings.

The *Echo command will pass <1 string through OS_GSTrans and then send it
to the display.

A string containing an expression can be evaluated. An expression consists of
any of the operators listed below and strings ;~nd numbers. It can return <1

result that is a number or a string. OS_EvaluateExprcssion (SWI &2D) is the
core routine here. It is in turn called by *Eva!. This allows you to perform
evaluations from the command line. *If uses this call to perform a logical
decision about which *Command to perform.

Any strings in the evaluation string arc passed to OS_GSTrnns, so all its
opcrntors will be used. This of course means that OS_RcadUnsigned and
OS_ReadVarVal will in turn be called if you usc a string that requires them.
Note, however, that vertical bar escape sequences (cg " I G" for ASCII 7) are
not recognised.

As well as passing <name> operators in strings to OS_RcadVarVal, any item
which cannot immediately be treated as a string or a number is also looked
up as a system variable. For example, in the expression FRED+ 1, FRED will
be looked up as a variable.

Conversions: Overview and Technical Details

Arithmetic operators

Logical operators

Bit operators

String operators

Conversions

The operators recognised by the expression evaluator arc as follows:

+

*
I
MOD

<>
>=
<=
<
>

>>
>>>
<<
AND
OR
EOR
NOT

Add two integers
Subtract two integers
Multiply two integers
Integer part of division
Remainder of a division

Equal -1 isTRUE
Not equal 0 is FALSE
Greater than or equal
Less than or equal
Less than
Greater than

Arithmetic shift right
Logical shift right
Logical shift left
AND
OR
Exclusive OR
NOT

+ Concatenate two strings
RIGHT n Take 'n' characters from the right.

LEFTn

LEN

STR
VAL

Take 'n' ch;uacters from the left.

Return the length of a string

Convert a number into a string
Take the value of a string

eg "HI" + "LO" = "HILO"

eg "HELLO" RIGHT 2 = "LO"

eg "HELLO" LEFT 3 = "HEL"
eg LEN "HELLO" = 5

eg STR 24 = ''24"
eg VAL "12d3'' = 12

Where appropriate, type conversions arc performed automatically. For
example, if an integer is subtracted from a string, then the string is evaluated
and an integer result is produced ("2" -I gives the result I). The null string ""
is converted to 0 by both the implicit and explicit (VAL) conversions.

Similarly, integers will be converted to strings if necessary: the expression
1234 LEFT 2 will yield "12".

The operators have the snme relative priorities a~ their equivalents in ROC
BASIC, eg *is higher th:m +which is higher than>, etc.

Conversions: Overview and Technical Details 583

Parameter substitution

SWI number to string

Econet numbers

File size

584

Given a list of space separated arguments, OS_SubstituteArgs (SWI &43)
will replace references to those parameters in a string. o/oO refers to the first
string in the argument list and so on. This is generally used when processing
command lines.

For a more powerful handling of command lines, usc OS_ReadArgs
(SWI &49). This is passed a list of parameter definitions and an input string.
The parameters can be described as being in any order or in a fixed order.
They can handle on/off switches (ie. presence is indicated), or values. The
values can also be automatically passed rhrough OS_GSTrans or
OS_EvaluateExpression if required.

Two calls can be used to translate a SWI number to and from its full name
as a string. OS_SWINumberToString (SWI &38) will go to a string and
OS_SWINumberFromString (SWI &39) will convert from a string to a SWI
number.

Note that having bit 17 set will result in the string being prefixed with an 'X'
and vice versa.

The pair of numbers that refer to the network number and smtion number can
be converted into a string by OS_ConvertFixedNetSration (SWI &E9). This
will pad the string with leading zeros where required. If you don't want this
padding, then OS_ConvertNetStation (SWI &EA) will do this.

There are two SWis that will convert a file size from an integer into a string.
They can decide whether to display as bytes, Kbytes or Mbytes.
OS_ConvertFileSize (SWI &EC) will convert an int<'ger into a number up to
4 digits followed by an optional 'K' if it is in kilobytes or 'M' if in
megabytes, followed by the word "bytes'' and a null to terminate.

OS_ConvertFixedFilcSize (SWI &EB) is exactly the same, except that it will
always print the numeric field as fours charncters, padding with spaces if
necessary.

Conversions: Overview and Technical Details

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Conversions: SWI Calls

OS_ReadU nsigned
(swr &21)

Convert a string to an unsigned number

RO =base in the range 2- 36 (else 10 assumed), and flags in top 3 bits
Rl = pointer to string
R2 =maximum value ifRO bit 29 set

RO preserved
Rl =pointer to terminator charnctcr
R2 =value

lntermpts arc enabled
Fast interrupts arc enabled

Processor is in SVC mode

SWI is re-entrant

OS_ReadUnsigncd takes a pointer to a string flnd tries to convert it into an
integer value which is returned in R2.

Valid strings may start with a digit (where 'digits' may also be letters,
depending on the base) or one of the following:

& The number is in hexadecimal notation

base_ The number is in a given base, where 'base' is in the range 2
to 36. For example, 2_101 0 is a base two (binary) number.

These override any base specified in RO. (If RO cont:Jins an illegal base, 10 is
assumed.) Characters following them arc read until a character is reached
which is not consistent with the base in usc. For example, assuming RO= 10 on
entry, the terminator of 43AZ is A, whereas the terminator of &43AZ is z.

585

Related SWis

Related vectors

586

In addition, RO contains three flags which cause checks to be performed on the
terminator and the range of the number obtained:

Bit Meaning if set

3 I Check terminator is a control character, space
30 Restrict value range to 0- 255
29 Restrict range to 0- R2 inclusive; a Number too big error is given

otherwise

If either of these checks fail, a Bad number error is given. This error also
occurs if the first character is not a valid digit. If a base is given at the start of
the number and isn't in the range 2 - 36, a Bad base error is given.

None

None

Conversions: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Conversions: SWI Calls

Ini tialises registers for use by OS_GSRead

RO = pointer to string to translate
R2 =flags

RO = value to pass back in to OS_GSRead
Rl =first non-blank character
R2 = value to pass back in to OS_GSRcad

Interrupt state is not altered
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

OS GSinit
(SWI &25)

OS_GSinit is one of the string routines which <lrc used by the operating
system command line interpreter to process the strin~:s sent to it. One of the
advantages of these routines is that they enable you to usc the character 'I' to
introduce control characters which would otherwise be difficult to enter
directly from the keyboard.

Sec the Technical details section of this chapter for a list of the conversions that
arc performed by the routines and the flags pas.o;cd in R2.

OS_GSinit also returns the first non-blank ch<lrncrcr in the string. However,
this is not necessarily the same as the output from the first OS_GSRead since
OS_GSinit doesn't perform any expansion.

OS_GSRcad (SWI &26), OS_GSTrans (SWI &27)

None

587

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

588

OS GSRead
(SWI &26)

Returns a character from a string which has been initialised by OS_GSinit

RO from last OS_GSRead/OS_GSinit
R2 from last OS_GSRead/OS_GSinit

RO =updated
R I = next translated character
R2 =updated
C flag is set if end of string reached

Interrupt srate is not altered
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

OS_GSRead reads a character from a string, using registers initialised by a
OS_GSinit immediately prior to this call. The next expanded character is
returned in R 1. The values in RO and R2 are updated so they arc set up for
the next call to OS_GSRead.

The interpretation of characters which pass through OS_GSRead is described
in the Technical details section of this chapter.

An error is returned for a bad string - for example, mismatched quotation
marks.

OS_GSinit (SWI &25), OS_GSTrans (SWI &27)

None

Conversions: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Conversions: SWI Calls

OS GSTrans
(SWI &27)

Equivalent to a call to OS_GS!nit and repeated calls to OS_GSRcad

RO =string pointer, terminated by 10 or 13 orO
Rl = buffer pointer
R2 = buffer size (max len) and flags in top 3 bits

RO = pointer to character after terminator
Rl = pointer to buffer, or 0
R1 = number of characters or max len+ 1 if it overflowed
C flag is set if buffer overflowed

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_GSfrans is equivalent to a call to OS_GSinit followed by repeated calls
to OS_GSRead until the end of the source string is reached. Each time it
obtains a character and translates it, OS_GSTrans then places it in a buffer.

The flags in R1, on entry, are the same as those supplied to OS_GSinit. On
exit, RO points to the character after the terminator of the source string, and
Rl +R2 points to the terminator of the translated string. If C=l on exit, R2 is
set to the length of the translated string buffer plus o~e.

The flags and interpretation of characters which pass through OS_GSTrans
are described in the Technical details section of this chapter.

An error is returned for a bad string - for example, mismatched quotation
marks.

OS_GS!nit (SWI &25), OS_GSRead (SWI &26)

None

589

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

590

OS_Binary T a Decimal
(SWI &28)

Convert a signed number to a string

RO = signed 32-bit integer
R I = pointer to buffer
R2 = maximum length

RO, R I preserved
R2 = number of characters given

Interrupt state is not altered
Fast interrupts arc enabled

Processor is in SVC mode

SWI is re-entrant

OS_I3inaryToDecimal takes a signed 32-bit integer in RO and converts it to a
string, placing it in the buffer. Rl points to the buffer and R2 contains its
maximum length. Leading zeros are suppressed and the string will start with
a minus sign, '-', if RO was negative. The number of characters given is
returned in R2.

The error Buffer overflow is given if the converted string is too long to fit

in the buffer. An error is also given for a bad string - for example,
mismatched quotation marks.

None

None

Conversions: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWi s

Related vectors

Conversions: SWI Calls

OS_E val ua teExpress ion
(SWI &2D)

Evaluate a string expression and return an integer or string result

RO =pointer to string
R 1 = pointer to buffer
RZ = length of buffer

RO preserved
R I = 0 if an integer returned, else preserved
RZ = integer result, or length of string in buffer

Interrupts arc enabled
Fast intemJpts arc enabled

Processor is in SVC mode

SWI is not re-entrant

OS_EvaluatcExpression takes a string pointed to by RO, evaluates it and
places the result in the buffer which is pointed to by Rl. Its maximum length
is RZ. The type of the result is given by Rl as follows:

Value

0
NotO

Mean in~

Integer result returned in R2
String is returned in buffer, length returned in R2, RO and Rl
preserved

If the buffer is not large enough to hold the resulting string, then a Buffer

overflow error is generated.

Sec the description in the Technical details of the opcr;nors that you can use.

None

None

591

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

592

OS_SWINumberToString
(swr &38)

Convert a SWI number to a string containing its name

RO = SWI number
R I =pointer to buffer
R2 = buffer length

RO, R I preserved
R2 = length of string in buffer

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is re-entrant

OS_SWINumberToString converts a SWI number to a SWI name.

The returned string is null~terminated, and starts with an X if the SWI
number has bit 17 set.

SWI numbers < &200 have an 'OS_' prefix to the main part, and a SWI
dependent end section (which is 'Undefined' for unknown OS SWis).

SWI numbers in the range &100 to &IFF are converted in the form
OS_ Write+" A", or OS_ Writcl+2J if the character is pot a printable one.

SWI numbers &200 are looked for in modules. If a suitable name is
found, it is given in the form modulc_name or module_number, eg.
Wimp_lnitialise, Wimp_32. If no name is found in the modules, the string
'User' is returned.

OS_SWINumberFromString (SWI &39)

None

Conversions: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Conversions: SWI Calls

OS_SWINumberFromString
(SWI &39)

Convert a string to a SWI number if valid

R 1 =pointer to name (which is terminated by a character:::;; 32)

RO = SWI number
R 1 preserved

Interrupts arc enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_SWINumberFromString converts a SWI name to a SWI number. An
error is given if the SWI name is not recognized.

The conversion is as follows:

• A leading X is checked for and stripped. If present, it will cause &20000
to be added to the number returned. (Bit 17 will be set.)

• System names are checked for. Note that the conversion of SWis is not
quite bidirectional: the name OS_ Writci +" '' can be produced, but only
OS_ Write! is recognized.

• Modules are scanned. If the module prefix matches the one given, and the
suffix to the name is a number, then that number is added to the module's
SWI 'chunk' base, and the sum returned. For example, Wimp_&2J
returns &400E3, as the Wimp's chunk number is &400CO.

• If the suffix is a name, and this can be matched by the module, the
appropriate number is returned. For example, Wimp_Poll returns
&400C7.

See the chapter entitled Modules for more information on how modules
provide the conversion.

593

Related SWis

Related vectors

594

Note that SWI names arc case scnsmve, so you must spell them exactly as
returned by OS_SWINumbcrToString.

OS_SWINumberToString (SWI &38)

None

Conversions: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Conversions: SWI Calls

OS_SubstituteArgs
(SWI &43)

Substitute command line arguments

RO =pointer to argument list, and flag in top bit
Rl =pointer to buffer for result string
R2 = length of buffer
RJ =pointer to template string
R4 = length of template string

RO, Rl preserved
R2 = number of characters in result string (inc. terminator)
RJ, R4 preserved

lntermpts arc enabled
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

This call performs the hard work involved in substituting a list of arguments
into a 'template' string. Irs main use is in the processing of command Alias$
variables by the system. As it is also useful in orhcr situations, it has been
made available to users. For example, FileSwitch uses it in the processing of
Alias$@LoadType_ TTT variables.

The argument list is a string consisting of space-separated items which will be
substituted into the template string. Spaces within double quotation marks arc
not counted as argument separators. Typically, the arr,rument string will just
be the tail of a* Command. It is control-character termin;~ted.

The result of substituting the arguments into the template string is placed in
the buffer. The length of the buffer is given so that the call can check for
buffer overflow.

The template string is copied into the result buffer character for character.
However, when a '%' appears in the template string (even within quotation
marks), it marks where an argument should be placed into the output buffer.

595

Related SWis

Related vectors

596

The '%' is followed by a single digit from 0 to 9. %0 stands for the first
argument in the argument list, and so on. o/o*n means all of the arguments
from number n onwards. %% means a single '%'. Anything else following the
'%'is not treated specially, ie both the 'o/o' and the character are copied over.

The template string does not have a terminator; instead its length is given. At
the end of the substitution, any arguments after the highest one mentioned in
the template string arc appended to the result string. This can be stopped by
setting the top bit ofRO on entry.

If a non-existent argument is specified in the template string, then the
substitution process is terminated. No error is given.

None

None

Conversions: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Keyword definition

Conversions: SWI Calls

OS_ReadArgs
(SWI &49)

Given a keyword definition, scan a command string

RO =pointer to keyword definition
Rl =pointer to input string
RZ = pointer to output buffer
R3 = size of output buffer

RO - RZ preserved
R3 = bytes left in output buffer

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is re-entrant

This SWI processes a command string using a keyword definition for syntax.
The results arc written out to the output buffer using a specialised format for
this command.

The keyword definition defines the parameters that can be in the command
string. It is composed of a sequence of keywords, separated by commas. Each
of these is made up of one or two names, followed by a sequence of
qualifiers. The syntax of a keyword is:

[<keyword_ name>[=<alias_name>]lf/<qual ificr> ... 1

The kcyword_name is what you want users to identify the parameter with. This
can be any string composed of alphanumerics and the '_' character. The alias
name is an optional alternative name for the same keyword. You can have a
keyword with no name. Sec the command string description below of how to
set it.

597

Command string

598

The qualifier describes wh:~t kind of a parameter it is. There can be as many
qualifiers as you like with one parameter, but some arc mutually exclusive.
The qualifiers can be any one of the following char;~ctcrs in upper or lower
case:

• /A- keyword must always be given a value

• {K. - keyword must always precede its value

• /S- the option is a switch. ic. presence only is reported

• /E - OS_EvaluatcExprcssion will be called to transform the value. This
can return a number or a string. Note that numeric evaluations only can he
performed.

• /G- OS_GSTrans will be called to transform the value

The command string contains a sequence of commands using the syntax
defined by the keyword definition. A command string is m:~de of definitions
of the following syntax:

f-<keyword_name>] <value>

If the keyword name is used, then the value will be attached to the named
keyword. These can appear in any arbitrary order in the comm:md string. The
name after the '-' can be the full name of the keyword or its fllias, or the first
letter of either. For ex:1mplc, if the keyword <kfinition cont:-~ins "name=title",
then all of the following fire valid in the commflnd string:

"- name fred", "-title fred", "- n fred'', "- t fred"

Note that if more th:m one keyword has the same first letter, then the single
letter form will be used by the first occurrance of a gh·en letter in the
keyword definition.

Also note that case is ignored, so" FI LE" and" -file" arc identical

If a definition has no -kcyuoord_name preceding it, then the first unused
keyword that is not a switch in the definition srring will be given that value.
This is how nameless keywords arc set. For example, if the definition string is
"infile,/a,outfile'' and the command string is "- infilc one -{)lJtfilc two three",
then the first and nameless keyword will be set to three, because it was the
first undefined keyword in rhe definition.

Conversions: SWI Calls

Output buffer

Conversions: SWI Calls

Keywords are marked by a preceding '- ' character, but this does not disallow
these characters from appearing in values anywhere but at the start For
example, if the keyword definition is "formulaic", then ''- formula 6-3" will
set it to the value of 3. If the command is "- formula -3+6", then this will
cause an error.

Whilst some evaluated expressions can be done without spaces (1 +2 for
example), there are many that cannot. You can evaluate an expression in
quotes, which allow spaces, as in this example:

"&JF AND &17''

With GSTransed strings, if you want to put a quoted string inside quotes then
you must use double quotes, as follows:

"This is ""IT"""

The output buffer contains the results for all of the possible keywords. For N
keywords in the keyword definition, the first N words of the output buffer
contain the results of the parsing of the command line. If the keyword was a
switch (with /S qualifier), then a non-zero value indicates that the switch was
used. For all other kinds of result, then it is a pointer. These results are
appended sequentially to the output buffer.

The following example uses a keyword definition of "ax,bx,on/s,cx" and a
command string of"one two three -on". The output buffer looks like this:

ax bx on ex

' ' &FFFF
,

'one' 'two' 'three'

The results of GST ranscd strings and evaluated expressions are stored
differently. In a GSTransed string, the result pointer points to a block of the
following format:

length two byte length
string length bytes of string

599

Examples

Related SWis

Related vectors

600

In an evaluated expression, the pointer points to a block like the following:

type one byte result type.
At present, this can only be zero, an integer

value four byte integer

For an example showing /e and /g switches, if the keyword definition was
"formula/e,time/g" and the command string was "-f 6+6- 1 -t ""Time is
<Sys$Time>""", then d1e result looks like this:

formula stringstuff type value length

I 4
0 11 16 'Time is 11:14:53'

Keyword definition: number=times/e,file/k/a,expandtabs/s

can be matched by:

-n I 0 -file jeff
- times 1 +7 -file jeff -expandtabs
-file thingy -e

but not by:

thingy - number 4
- number 20 -times 4 - file jeff

None

None

Conversions: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Conversions: SWI Calls

OS Convert<name><number>
(SWis &DO ., E8)

These calls convert a number into a string

RO = value to be converted
Rl =pointer to buffer for resulting string
R2 = size of buffer

RO =pointer to buffer (Rl on entry)
Rl =pointer to terminating null in buffer
R2 = number offree bytes in buffer

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

SWis are re-entrant

This range of SWis use a common form and can convert a number into a
string in a variety of ways.

RO returns pointing to the start of the buffer. This is convenient for calling
OS_ WriteO. R 1 points to the null at the end of the buffer. This is convenient
for adding further text after it.

The <name> part of the SWI name can be any of the following groups:

601

Hex

Cardinal

Integer

602

Convert to a hexadecimal string.

The <number> is the number of ASCII digits in the output string, either I, 2,
4, 6 or 8. Only enough significant bits to perform the conversion are used, and
leading zeros are always included, so the string is fixed length. No
ampersand('&') is included in the string. The SWis used in this group arc:

SWI name SWI Output for ...
No. zero largest val.

OS_ Convert Hex I &DO '0' 'F'
OS_ConvertHex2 &01 '00' 'FF'
OS_ ConvertHex4 &02 '0000' 'FFFF'
OS_ ConvertHex6 &D3 '000000' 'FFFFFF'
OS_ConvertHcx8 &04 '00000000' 'FFFFFFFF'

Convert to an unsigned decimal number.

The <number> is the number of byres to be used from the input value. The
string is not padded with zeros, so is of variable length. The SWis used in
this group are:

SWI name SWI Output for ...
No. zero largest value

OS_ConvertCardina\1 &OS '0' '255'
OS_ConvertCardinal2 &06 '0' '65535'
OS_ConvertCardinal3 &07 '0' '16777215'
OS_ConvertCardinal4 &08 '0' '4294967295'

Convert to a signed decimal number.

The <number> is the number of bytes to be used from the input value. The
string is not padded with zeros, so is of variable length. If the most significant
bit of the N bytes used is set, the number is taken to be negative, and a
leading'-' is produced. The SWis used in this group are:

SWI name SWI Output for ...
No. largest -ve largest +ve value

OS_Convertlntegerl &D9 '-128' '127'
OS_Convertlnteger2 &DA '-32768' '32767'
OS_Convertlnteger3 &DB '-8388608' '8388607'
OS_ Convertln teger4 &OC '-2147483648' '2147483647'

Conversions: SWI Calls

Binary

SpacedCardinal

Spaced Integer

Conversions: SWI Calls

Convert to a binary number.

The <number> is the number of bytes to be used from the input value. The
string is padded with leading zeros, so the length is N*8. The SWis used in
this group are:

SWI name

OS_ConvertBinary I
OS_ConvertBinary2
OS_ConvertBinary3
OS_ConvertBinary4

SWI
No.

&DO
&DE
&DF
&EO

Output for
largest value

'11111 I 11'
'1111111111111111'
'111111111111111111111111'
'1 I I I 11111111111 I lllllllllll11111'

Convert to an unsigned decimal number, with spaces every three digits.

The <number> is the number of bytes to be used from the input value. The
string is not padded with zeros, so is of variable length. In addition, every
three digits from the right, a space is inserted. The SWis used in this group
arc:

SWI name

OS_ConvertSpacedCardinall
OS_ConvertSpacedCardinal2
OS_ ConvertSpacedCardi nal3
OS_ConvertSpacedCardinal4

SWI
No.

&EI
&E2
&E3
&E4

Output for •••
zero largest value

'0' '255'
'0' '65 535'
'0' '16 777 215'
'0' '4 294 967 295'

Convert to a signed decimal number.

The <number> is the number of bytes to be used from the input value. The
string is not padded with zeros, so is of variable length. If the most significant
bit of the N bytes used is set, the number is taken to be negative, and a
leading'-' is produced. The SW!s used in this group are:

SWI name

OS_ ConvertSpacedl nteger 1
OS_ ConvertSpacedl nteger 2
OS_ ConvertSpacedi nteger 3
OS_ ConvertSpacedi ntegcr4

SWI
No.

&09
&DA
&DB
&DC

Output for ...
largest - vc largest +ve val.

'-128'
'-32 768'
'-8 388 608'
'-2 14 7 483 648'

'127'
'32 767'
'8 388 607'
'2 147 483 647'

603

Related SWis

Related vectors

604

OS_BinaryToDecimal (SWI &28)

None

Conversions: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Conversions: SWI Calls

OS ConvertFixedNetStation
(SWI &E9)

Convert from an Econet station/network number pair to a string

RO =pointer to two word block (value to be converted)
R 1 = pointer to buffer for resulting string
R2 = size of buffer

RO = pointer to buffer (R I on entry)
Rl =pointer to terminating null zero in buffer
R2 = number of free bytes in buffer

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SYC mode

SWI is re-entrant

RO points to two words in memory. The fi rst word contains the station number
and the second word contains the network number.

This call always converts into a form nnn.sss, where nnn is the network
number. If it is zero, the first four characters arc spaces. If it is non-zero,
leading zeros arc converted to spaces. sss is the station number. If the network
was zero, leading zeros in the station number :-~re converted to spaces,
otherwise they are left as zeros.

RO returns pointing to the start of the buffer. This is convenient for calling
OS_WriteO. Rl points to the null at the end of the buffer. This is convenient
for adding further text after it.

OS_ConvertNetStation (SWI &EA)

None

605

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

606

OS ConvertNetStation
(SWI &EA)

Convert from an Econet station/network number p3ir ro a string

RO =pointer to two word block (value to be convened)
R 1 =pointer to buffer for resulting string
R2 = size of buffer

RO = pointer to buffer (R 1 on entry)
Rl =pointer to terminating null in buffer
R2 = number of free bytes in buffer

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

RO points to two words in memory. The first word contains the station number
and the second word contains the network number.

This call performs the same conversion as OS_ConvertFixcdNctStation, but
suppresses zeros and spaces wherever possible, to yield the shortest possible
string.

RO returns pomttng to the start of the buffer. This is convenient for calling
OS_WriteO. RI points to the null at the end of the buffer. This is convenient
for adding further text afrer it.

OS_ConvertFixedNetStation (SWI &E9)

None

Conversions: SWI Calls

On entry

On exit

'nterrupts

Processor Mode

Re-entrancy

'Jse

Related SWis

lelated vectors

Conversions: SWI Calls

OS ConvertFixedFileSize
(SWI &EB)

Convert an integer into a filesizc string of a fixed length

RO = filesize in bytes
Rl =pointer to buffer
R2 =length of buffer in bytes

RO = pointer to buffer (R 1 on en try)
R 1 = pointer to terminating null in buffer
R2 =number of free bytes in buffer

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This SWI will convert an integer into a filcsize string of a fixed length. The
format of the string is:

<4 digit number><spacc><spacc I K I M>"bytcs"<null >

The four digit number at the start is padded with spaces if there aren't enough
in the number.

RO returns pointing to the start of the buffer. This is convenient for calling
OS_ WriteO. R I points to the null at the end of the buffer. This is convenient
for adding further text after it.

OS_ConvertFileSize (SWI &EC)

None

607

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

608

OS ConvertFileSize
(SWI &EC)

Convert an integer into a filcsize string

RO = fi lesize in bytes
Rl =pointer to buffer
R2 = length of buffer in byres

RO =pointer to buffer (Rl on entry)
Rl =pointer to terminating null in buffer
R2 = number of free byres in buffer

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SVC mode

SWI is re-entrant

This SWI will convert an integer into :1 filcsize string. The format of the
string is:

<numbcr><spacc><spacc I K I M>"bytcs"<null>

The number at the start is up to four digits in length.

RO returns pointing to the smrt of the buffer. This is con\'enient for calling
OS_ WriteO. Rl points ro the null at the end of the buffer. This is convenient
for adding further text after it.

OS_ConvcrtFixedFilcSizc (SWI &ED)

None

Conversions: SWI Calls

*Commands

Syntax

Parameters

*Echo
Display a string on the screen

*Echo <string>

<string> string to display

Use *Echo takes the string following it, translates it using OS_GSTrans and then
displays it on the screen.

Example *Echo 1 GError! I M

Related commands None

Related SWis None

Related vectors None

Conversions: ·commands 609

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

610

*Eval
Evaluates an integer, logical or string expression

*Eval <expression>

<expression> any combination of the operations listed below

*Eva! evaluates an integer, logical, bit or string expression, carrying out type
conversions where necessary, in a similar w<~y to the BASIC EVAL comm:md.
It will not handle floating point numbers. You can usc *Eval to do simple
arithmetic (although the desktop Calculator is easier to use for four-function
arithmetic), or to evaluate more complex expressions. Progr<~mmers may find
the command useful for doing 'offline' calculations (checking on space left,
for example).

Sec the description in the technical description of rhe operators that you can
use.

*Eval 127 * 23 >> 2

*If, *SetEval

OS_EvaluateExpression (SWI &20)

None

Conversions: ·commands

Syntax

Parameters

Use

Example

Allows you to execute* Comm;~nds conditionally

*If <expression> Then <command> [Else <command>)

<expression>
<command>

an integer expression
any valid * Command

*If

The *If command allows you to execute *Commands conditionally.
<expression> can be any integer expression, including variable names
enclosed in angled brackets. The expression is evaluated by the operating
system's expression evaluarion.lf the If-expression evaluates to a non-zero
value, the Then-clause is executed. If the If-expression evaluates to z.ero, and
there is an Else-clause, the Else-clause is evaluated.

If you wish to compare a variable to a string both must be enclosed in double
quotes to ensure a string comparison is performed; sec the first example.

Sec the description in the technical description of the operators that you c:m
usc.

*If "<name>" = " Zaphod" Then echo Hello Zaphod! Else
Echo Go away <name>!

If <Sys$Year>=1988 Then Run Calendar

Related commands *Eva!

Related SWis None

Related vectors None

Conversions: ·commands 611

612 Conversions: ·commands

The CLI

Introduction

The CLI: Introduction

There arc two ways in which you can interact with the OS and the various
modules which provide extensions to it. The first way is to call one of the
many SWI routines provided, such as OS_Byte, OS_ReadMonotonicTime,
Wimp_lnit etc. The SWI interface provides an efficient calling mechanism
for usc within programs in any language.

However, for users wishing to issue commands to the operating system, the
SWI interface is not so convenient. As it is difficult to remember SWI names,
reason codes, register contents on entry and exit, etc, the command line
interpreter (CLI) interface is often used. Using this technique, you enter a
textual command string, possibly followed by parameters, which is then
passed by the application to the OS. The OS tries to decode the comm:md
and carry out the appropriate action. If the command is not recognised by the
OS, the other modules in the system try to execute the command instead.

The CLI interface is a powerful one because the OS performs a certain
amount of pre-processing on the line before it attempts to interpret it. For
example, variable names may be substituted in the parameter part of the
line, and command aliases may be used.

By convention, an application passes commands to the OS if they are prefixed
by the * character. For example, from the BASIC '>' prompt, any OS
command may be issued simply by making * the first non-space character on
the line. The * is not part of the command; the OS, in fact, strips any leading
*sand spaces from a command before it tries to decode it.

Some languages also provide built-in statements which can be used to
perform an OS command. Again, BASIC provides the OSCLI statement,
which evaluates a string exprcs.~ion and passes this to the OS command line
interpreter. The 'C' language provides the system() function for the same
purpose.

613

Overview and
Technical Details

CLI effects

Leading characters

Context overriding

614

A program can call the CLI using the SWI OS_CLI. This simply passes a
string from the program to the CLI to be interpreted. If you wish to allow the
user to type a number of CLI commands, then you can pass 'GOS', described
in this chapter, as the string to OS_CLI. See the chapter entitled Program
Environment, for information on how to set up RISC OS to return to your
program when the user types *Quit.

When a CLI command is received by rhe kernel, it performs a number of
operations upon it. Note that in most cases, the case of commands is ignored.
Only if you are creating something with a name is the case kept. The sections
below go through each of these.

Certain leading characters will be treated in a special way:

'*' all leading stars are discarded
all leading spaces are discarded ''

' I' this indicates that the line is a comment, and will be ignored
'/' treat the rest of the command as if it had been prefixed with *Run

skip alias checking. '%'
' ' override current filing system name. eg. -adfs

check for Alias$. and use *Cat if it doesn't exist

Apart from '%' and '- ', the above comm<lnds ~hould be self-explanatory. '%'
is used to access a built-in command that currently has an alias overriding it ..
See the section below on aliases.

The currently selected filing system can be overridden in two different ways.
The command can be prefixed with -name- and n<lme:, where name is the
name of a filing system or module. That is, you supply an absolute name of
the filing system or module to send the command to. This gets around the
problem of having to select the other filing system, perform the command and
then re-enter the original filing system. For ex<~mplc, if you are on the net <lnd
want to look at a file on the current adfs device, the sequence of commands:

*adfs
*Info Fred
*net

The CLI: Overview and Technical Details

Redirection

can be replaced with either:

*-adfs-Info Fred

or even more succinctly:

*adfs:Info Fred

Here are some examples of overrides:

*-net-cat
*SpriteUtils:Slist
*-ModulefSpriteUtils-Sinfo

Note that if you are using -net- or net:, you cannot specify nodes on the net.
eg. -net#spqr-. This is because the command prefix only alters the filing
system selected for the comm:md. The part of an object specification after the
'#' character is not part of the filing system name but is part of the object
name. For example, if you wish to issue a command such as:

*netfoz:info fred

you can use instead:

*net:info foz:fred

Normally, input comes from the keyboard and output goes to the screen.
Redirection allows this source and destination to be changed to any file or
device. Output redirection can be viewed as having a *Spool file open for the
duration of the command, :md disabling all streams except for that one. Input
redirection is like having a *Exec file open for the duration of the command.

Here arc the possible commands:

> filename } Output goes to filename
< filename } Input read from filename
>> filename } Output appended to filename

A redirection command can appear anywhere in a line. Note that there must
only be one space between all the elements in a redirection command or it
will not be recognised as one. After being decoded, it is stripped before the

The CLI : Overview and Technical Details 615

Aliases

616

rest of the command is interpreted. You can put as many redirection
commands as you like on a line, however only the la~t one in a given direction
will be acted on.

Here are some examples of redirection:

*Cat (> mycat l
*Lex I > printer:
*BASIC -quit I < answers l prog
*fred 1 < infile > outfile l
*Cat (> outl l (< infile }I > out2

In the third example, outl will be created with nothing in it, input will be

read from infile and ourpurwill go to out2.

The final example shows how redirections can be conc::~tcnatcd within the
same pair of braces.

An alias is a variable of the form Alias$cmcl, where cmcl is the command
name to match. If an alias exists which matchc!\ the current *Command, rhe
following takes place: the OS obtains the value of the variable and repl:~ccs
any of %0 to %9 in the value by the parameters, separated by spaces, that it
reads on the rest of the input line. %*n in an alias stands for the rest of the
command line, from parameter 'n' onwards.

Any unused parameters, which are given, arc directly appended to the alias.
The OS then recursively calls OS_CLI for all lines in the expanded v:~lue.
However, it may give up at this stage if either the stack or its buffer space
becomes full. For example, suppose the command

*SetpS 0.235

is issued. Suppose further that a variable exists c::~llcd Alias$SetPS, and th::~t
this has the value -NET-PS %0 I MConfigurc PS %0. The OS will match the
command name against the alias variable. It will then substitute all
occurrences of %0 in the variable's value by 0.235. Then, the two lines of the
variable will be executed thus:

-NET-PS 0.235
Configure PS 0.235

The Cll: Overview and Technical Details

Look-up the command

So, the net effect of executing the original command is to set the network
printer server both temporarily, and also in the permanent configuration.

Another example using the parameter substitution is

*Set Alias$Mode Echo 1<22> 1<%0>

The 'l's before the angle brackets are to stop them from being evaluated
when the *Set command is entered. Typing *Mode n will then set the display

to mode 'n'.

After all the previous steps have been completed, the command that is left
after pre-processing must be executed. This is a list in order of the things that
RISC OS will check to execute a command:

• is it a command internal to RISC OS

• kernel checks the first module in turn to sec whether it contains the
command

• kernel moves onto the next module and so on until the end of the module
list

• one of the modules is the filing system manager, File Switch, which has its
command table checked by the kernel. The commands contained by this
module arc the commands that apply to all filing systems, such as *Cat.

• after the module search is complete, the kernel inspects the filing system
specific commands in the current filing system module

• If the command is not recognised by the filing system module, the kernel
issues an 'unknown command' service call. If the net is the current filing
system, the command is sent to the file server, to see if the command is
implemented on the fileserver. For example, *pass.

• if the command is still not recognised, then an attempt will be made to
*Run it using the current path. The result of this *Run is passed back to
rhe user.

The CLI: Overview and Technical Details 617

Reading CLI parameters

618

If you are wnttng a module, the chances arc that you will want to recognise
one or more * Commands. The chapter entitled 1--.1odules explains how you can
cause the OS to recognise commands for you, and pass control to your module
when one has been found. This section describes the OS calls which arc
available to facilitate the decoding of the rest of the command line.

The calls mentioned here may also be used by *Commands activated in other
ways, eg a transient command loaded from disc. However, the way in which
the tail of the command line is discovered will vary for these types of
commands. See the chapter entitled Program Environ!'lWlt for derails.

On entry to your * Command routine, RO contains a pointer to the 'tail' of the
command, ie the first charnctcr after the command name itself (with spaces
skipped). Rl contains the number of parameters, where a parameter is
regarded as a sequence of characters separated by spaces.

The way in which the command uses the par:~mctcrs depends on what it is
doing. First, if there are too many or too few parameters, an error could be
given. (A module can arrange for the OS to do this automatically.)

If a parameter is to be regarded as a srring-, OS_GSTrans may be used to

decode any special sequences, cg control codes, variable names etc. If the
parnmeter is a number, OS_ReadUnsigncd might he used to convert it into
binary. Finally, OS_EvaluatcExpression could be used to read a whole
arithmetic or string expression, and return the result in a buffer.

These calls arc documented in the chapter entitled Conversions, along with
other useful conversion routines such as OS_ReadUnsigncd.

Note that the convention on the Archimedes is to have parameters separnted
by spaces. Some of the built-in commands which have been carried over from
the BBC/Mastcr machines also allow commas. You should not support this
option.

The CLI: Overview and Technical Details

SWI Calls

On entry

Jn exit

Interrupts

Processor Mode

le-entrancy

Use

lelated SWis

Related vectors

The CLI: SWI Calls

Process a supervisor command

RO = pointer to string terminated by Null, Linefeed or Return

RO = preserved

Interrupts arc enabled
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not-re-cntr.mt

OS CLI
(&05)

OS_CLI will execute a string passed to it as if it had been typed in at the
supervisor command line. When it is called, it performs the following actions:

Check stack space - The OS needs a certain amount of workspace to deal
correctly with a comm<~nd . If this is not available, the error No room on
s uperviso r s tack will be generated.

Check command length - A *Command line must be less rhan or equal to

256 bytes long, including rhe terminating character. If it is not, the line is
ignored. No error is generated.

The command is then executed 3S any other * C'.ommand. This is described in
the technical description.

None

CLIV

* Commands

Syntax

Parameters

Use

Related commands

Related SWis

Related vectors

*GOS
Calls C'.,ommand Line Mode and allows you to type * Commands

*GOS

None

*Gos starts the RISC OS Supervisor application from the current environment.
The supervisor can only execute *Commands.

This is useful for entering simple commands for immediate execution, or for
testing longer sequences of commands - while building command line scripts -
on a line-by-line basis.

However you should be careful when calling it from the middle of an
application which docs not 'shell' new applications. For example, calling
*Gos in the middle of writing a BASIC program will mean that you will lo~c

all of your un-saved work.

See the technical description section in this chapter for a description of how
the command line interface works.

*Quit, *Desktop

None

None

·"""- /"'1 •.• ,... _____ ,...,_

Modules

Introduction

621

A relocatable module is a piece of software which, when loaded into the
machine acts as either an extension to the operating system or a replacement
to an existing module in the operating system. Modules can contain
programming languages or filing systems; they can be used to add new SWis
and * Commands.

Rclocarable modules run in an area of memory known as the Rclocatablc
Module Area (RMA) which is maintained by RISC OS. They arc
'relocatable' because they can be loaded at any particular location in
memory. Their code must therefore also be rclocamble.

RISC OS provides facilities for integrating modules in such a way that, to the
user, they app<.--ar to be a full part of the system. For instance, the operating
system responds to the *Help command, extracting automatically any relevant
help text.

Several SWls and *Commands are provided by the operating system for
handling modules. For example, loading a module file from the filing ~ystem.

A major piece of software written for RISC OS should only be designed as a
module if it fulfills the following requirements:

• it is an extension to RISC OS or an enhancement to an existing RISC OS
module

• it is shared by many applic:nions; for example the shnrcd C library

• it needs to be persistently RAM resident over many invocations (even
then you should try to do this another way)

• it is small enough.

This chapter describes what is needed to write a module.

Modules: lntrorlJJr.tinn

Overview

Using modules

Instantiation

This chapter is divided into two basic areas; using modules and writing them.

Usc of modules is ccntr.Jiised around the SWI OS_Module. This contains 14
oper:nions that can:

• Load, initialise, run and remove a module

• Examine and change the amount of RMA space u~cd by a module

• Examine module details

• Modify instantiations of modules

All of the operations that a progr.Jm is likely to need to operate with
modules are in this SWI. You could treat the RMA as a kind of filing
system, since there arc commands to load things into it, remove them and run
them.

Some modules are supplied with the computer in ROM. The may be
'unplugged' and upgraded versions of them loaded into RMA. They may al~o
be deliberately copied from ROM into RMA, since modules in RAM will
execute significantly quicker th:m in ROM.

There arc a number of *Commands d1at replicate scvcr.Jl OS_Module
commands at a command line level. You can also obtain convenient lists of
all modules currently in the RMA and the system ROM using a * C'.-ommand.

A module may be initialised more than once. This means th:Jt whilst only a
single copy of the code is kept in memory, multiple copies of its workspace
are created. The workspace is the area where all the data u10ed by the module
for dynamic storage is kept. Note that constant data, such as ICXJkup tables is
kept inside the main b<XIy of the module, with the code. Changing which
workspace is used changes the context of the module and allows it to be used
for several purposes concurrently. Each copy of the workspace, coupled with
the code, is referred to as an instantiation. A module is deemed to be
reincarnated when a new instantiation is created.

Only a single copy of the code is needed because it is not changed by being
used concurrently. The data is the only thing that provides the context for an
initialised module.

Modules: Introduction

Writing a module

Module header

623

An example of the usc of instantiations is in the module FilcCore. This
module provides a core of commands that are common to all filing systems
with an ADFS structure, ie ADFS and RAMFS. It appears in one instantiation
for each filing system that is using it.

For example, typing *Modules, you can sec all the modules that are currently
loaded, including the various insrantiations of the FilcC' .. ore module:

*Modules

6 03839698
03839698

01803FE4
01800F34

FileCore%RAM
FileCore%ADFS

03839698 01803FE4 FileCore%Base

This enables you to refer to particular instantiations of a module. For
example:

*RMKill WaveSynth%Base

The core of all modules is the module header. It is a table of 11 entries, each
a word in length. These arc called by RISC OS to communicate with the
module.

The entries in the header table describe the following things in the module.
All but one are pointers to code or some larger piece of data, such as a string,
or table:

• Where to start executing in the module. lllis is used by languages and
applications.

• Where to call initialisation code. l11is has to be called before all the
others.

• Where to call fi nalisation code. lllis is called before removing the
module. It allows rhe module to shutdown :my hardware it is using and
generally tidy up.

• A tide for the module

• A help string. This is used automatically by RISC OS when help is
requested.

Mnrlttlt>c: · lntrnrlttf'til"ln

Service calls

• Detailed help on * C..ommands

• Entry points for * Commands. RISC OS will decode the * Commands
and call the right entry point for a command for you.

• A table to convert to and from SWI names and numbers

• Entry points for all the SWis in the module

• The chunk number for the module. This is the number that is the base for
SWI numbers. There can be up to 64 SW!s in a module, all offsets from
this chunk number. This is the only entry in the header that isn't a pointer.

• Service call entry (sec below)

All communication from RISC OS to a module t:-Jkes place through this table.
As you can see, several features are used by RISC OS without you having to
write code to deal with them, such as the help text, and SWI names to
numbers conversion.

A number of special occurrences in RISC OS arc passed around all the
modules by RISC OS. Some of these can be claimed. This means that if a
module decides that it wants to take control of that occurrence then it stops it
being passed on to the rest of the modules. Others cannot be claimed and arc
used by RISC OS to broadcast some occurrence to all modules. Here is a
brief list of the kinds of things that can be sent as service calls. The first p:~rt
are claimable service calls:

• Unknown command, OS_Bytc, OS_ Word, *Configure or *Status.

• *Help has been called. This allows you to replace this command when
you detect a particular help call being made.

• Memory controller about to be remapped. This allows an application to
stop a memory remapping if it doesn't want it to h:1ppcn.

• Application is about to sr<~rt. This allows a module to prevent an
application from sr<~rting. With this, a module could prevent any other
tasks running.

• Lookup file type. This converts the 3 byte file type into a string, such as
'BASIC' or 'Text'.

• Various international services, such as handling different alphabets and
keyboards.

624 Modules: Introduction

625

• The fast interrupt h;mdler has been claimed/released. This is used by
device drivers for high data rate devices that depend on the state of the
fast interrupt system.

These are the service calls that cannot be claimed and arc used to allow
modules to perform some action ro cope with the occurrence, without stopping
it being passed on to all modules:

• An error has occurred. This is called before the error handler, bur is only
for module's information, not claiming.

• Reset is about to happen/has just happened.

• Filing system re-initialise. This is called when FileSwitch has been re
initialised and this is broadcast to all filing systems that usc it to do the
same. This is necessary, because otherwise a filing system could get out of
sync with the context in FileSwitch.

• A screen mode change has occurred. This me:1ns that all modules can be
aware of the screen state and re-read YOU variahles, for insrance.

13y monitoring these service calls, a module can be aware of many things that
arc occurring outside its control in the system.

Modules: Introduction

Technical Details

Using modules

626

OS_Module (SWI & I E) is the main application interface to modules. In its
description you will find a complete list of its calls and details of each.

A number of * C'..ommands exist, most of which usc OS_Module directly.
Below is a table summarising OS_Module entries and the *Command
equivalent.

Entry Meaning

0 Run
I Load
2 Enter

3 Reinit
4 Delete
5 Describe RMA
6 Claim RMA space
7 Free RMA space
8 Tidy modules
9 Clear
10 Insert module from memory
II As above, and move to RMA
12 Extract module information
13 Extend block in RMA
14 Create new inmmtiation
15 Rename instantiation
16 Make preferred instantiation
17 Add expansion card module
18 Look-up module name
19 Enumerate ROM modules

*Command equivalent

*RMRun
*RMLoad
module-dependent - usually
provided by the module, ie *BASIC
*RMRclnit
*RMKill

*RMTidy
*R~1Clcar

*RMFastcr (if in ROM)
*Modules & *ROMModules

Tidying, mentioned above refers to finalising all the modules, moving them
together, so that free RMA sp:1cc is in a single block and then re-initialising
them. This solves the memory fragmentation problem.

*RMEnsure is a command that will check that a given module and version
number is loaded into memor,• and will try and load it if it is not.

Modules: Technical Details

Workspace

Errors in module code

627

*UnPlug will disable the ROM version of a given mcxlulc. This is used if an
upgraded version of a module is released and can he loadcJ from a filing
system.

The opernting system allocates one word of private workspace to each module
instantiation. Normally, the module will require more and it is expected th:lt
it will use this priv:lte word as a pointer to the workspace which it claims
from the RMA using OS Module 6. Whenever the system calls a module
through one of its header fields, it sets Rl2 to potnt at this pnvatc word.
Hence, if this word is a pointer to workspace, the mcxlulc can obtain a pointer
to its true workspace by performing the instruction: LDR Rl2, [R12] .

The system works on the assumption that the private word is a pointer ro
workspace claimed in the RMA. It therefore provides suitable default actions
on that basis. For example, the system will attempt ro free any workspace
claimed using this pointer.

Also, the system relocates the value held in a module's workspace pointer
when the RMA is 'shuffled' as a result of an RMTIDY call.

Note that workspace allocated through XOS_Module will always lie on an
address &XXXXXX4. This enables code written for time-critical softw:lre
(eg sound voice genemtors and FIQ handlers) to be aligned within the
module body.

Any module code which provides system extensions (SWis and * Commands)
must behave in a manner which is compatible with the opcrnting system if an
error occurs. This means that only X SW!s arc called, and if anything goes
wrong, the module must:

• Set up RO to point to the error block

• Preserve all appropri<Jte registers

• Return with V set.

If no error has been encountered, V must be clc:u, and appropriate registers
preserved on exit.

The above docs not apply to application code within the mcxlulc; this can
follow any convention it wishes.

Modules: Technical Details

Module header format

Service calls

628

The module indicates to the system if and where it wishes to be called by a
module header. This conr-<~ins offsets from the start of the module to code ami
information within the bcxly of the module.

Offset Type Contains

&00 offset to code start code
&04 offset to code initialisation code
&08 offset to code finalisation code
&OC offset to code service call handler
&10 offset to string title string
&14 offset to string help string
&18 offset to table help and command keyword table
&IC number SWI chunk base number (optional)
&20 offset to code SWI handler code (optional)
&24 offset to table SWI decoding table (optional)
&28 offset ro code SWI decoding code (optional)

All modules must have fields up to & 18. However, any of these offsets can
be zero, (which means don't use this entry since the module does not contain
the relevant data/code), apart from the title string. This is the offset to the
zero-terminated name and if it is zero, the module cmnot be referenced.

All code entries must be word aligned and inside the module code area,
otherwise the checking performed by RISC OS will consider it invalid. All
tables and strings must similarly be within the module or else it will be
rejected.

The SWI handler fields are optional and arc only used if they contain valid
values.

The module header entries arc described in detail in the following section of
this chapter.

Service calls are made from RISC OS to a module to indicate an occurrence
of some kind. Some are claimable, and some arc intended as broadcasts of
the occurrence only. See the description in OS_Scrvice (SWI &30) for a
complete list of all service calls. It is followed by derails of each call. Some
of these service calls will also be relevant to other parts of this manual that
describe modules. For example, there arc service calls that arc provided
explicitly to serve the International module.

Modules: Technical Details

629

OS_Byte 143 is an obsolete way of calling OS_Service. It is documented, but
must not be used, as it is here only for compatibility with earlier Acorn
operating systems.

Modules: Technical Details

Module entry
points
Start code

Offset in header

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

630

Start executing at the start point of code in a module

&00

RO =pointer to command ~tnng, including module n:-~me
R 12 = pointer to currently preferred instantiation of the module

Doesn't return unless error occurs.

Interrupts arc enabled on entry
Fast interrupts are enabled

Processor is in USR mode

Entry point is not re-entrant

This is the offset to the code to call if the module is to be entered as the
current application. An off~et of zero implies that the module cannot be
started up as an application, ic. it is purely a ~rvice mcxlulc and contains
only a filing system or • Commands, etc.

This field need not actually he an offset. If it cannot be interpreted as such,
ie it is not a multiple of four, or any bits arc set in the top byte, then calling
this field will actually execute what is assum<..·d to be an instruction at word 0
in the module. This allows applications to have a branch at this position and
hence be run directly, eg for testing. Once cnrercd, a module may get the
command line using OS_GecEnv

Whenever the module IS entered via thi~ field, it becomes the preferred
instantiation. Therefore R II docs not refer ro the insr.mri;~rion number.

You must exit using OS_Exit, or by starting another application without setting
up an exit handler.

Start code is used by OS_Mcxlule with Run or Enter re:1son codes.

Modules: Module entry points

litialisation Code

Offset in header

Jn entry

On exit

Interrupts

Processor Mode

.e-entrancy

Use

o31

Set up the module, so that all other entry points arc opcr.~tin!!

&04

R I 0 = pointer to environment string (ie initialisation parameters supplied by
caller of OS_Module)
R II = 1/0 base or instantiation number
R 12 = pointer to currently preferred instantiation of the module. If the word

-:;:. 0, this implies reinitialisation
R 13 = supervisor stack

Must preserve processor mode and interrupt state
Must preserve R7- Rll and Rl3
RO- R6, R 12, R 14 and the flags (except V of cour~) can be corrupted

Interrupts arc enabled
Fast interrupts arc enabled

Processor is in SVC mode

Entry point is not re-entrant

This code is called when the module i5 loaded and also after the RMA ha~
been tidied (OS_Module with Tidy n:ason c<xlc). It is defined thar the
module will not be called via <my other entry point until this entry point has
been called. Thus the inirialis;1rion code is expected to "Ct up enough
information to make all other entry points safe.

An off.sct of zero means that the module docs not need any initialisation The
system docs not provide any default ;-sctions.

The Initialisation code is used by OS_Module with Run, Load, Rclmt and
Tidy reason codc5.

If the module is being re-entered after a OS t--1cxlulc 'tidy', the private word
may contain a non-zero value. This is the contt•nrs of the pri,atc word before
the finalisation, relocated (if neccs~ary) by the system.

Typical actions arc claiming workspaLe ("ia OS_t--.lcxlule) and storing rhe
workspace pointer in the private word. Orher actions may include linking onro
vectors, decl<~ring the mcxlule as a filing sysrem, etc.

Modules: ModtJIP. P.ntrv t"'()intc:

Flnalisatlon Code

Offset in header

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

632

The module can refuse to be initialised. If an error is generated during
initialisation, the system removes the module and any workspace pointed to

by its private word from rhe RMA. Any error should be dealt with by setting
RO to be an error indicator and returning to the module h:mdlcr with V set.

The module is also passed an 'environment string' pointer in RlO on
initialisation. This points at any string passed after rhc module name given to
the SWI.

Rll indicates where the module has come from: if R II = 0, then the module
was loaded from the filing system or ROM or is already in memory; if R II is
> &03000000, then the module was loaded from :~n expansion card and R II
points at the synchronous base of the cxp:msion card. Other values of R II
mean that the module is being reincarnated ;md there arc <R II> other
instantiations of the module.

On exit, usc the link register passed in Rl4 to return:

MOV PC,R14

Return V set or clear depending on whether an error has occurred or not. If
an error has occurred, it returns RO as the error indicator.

Called before killing the module

&08

RIO= fatality indication . 0 is non-fatal, I is fatal
Rll =instantiation number
R 12 = poi ntcr to currently preferred instantiation of tlw module.
Rl3 =supervisor stack

Must preserve processor mode and inrernJpt state
Must preserve R7- Rll and R 13
RO - R6, R 12, R 14 and the fl;,gs can be corrupted

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SVC mode

Entry point is not re-cnrrant

Modules: Module entry points

Use

633

This is rhe reverse of imtialisarion. This code is called when the system is
about to kill all insrannanons of the m0dule either completely or
temporarily whilst it tidies the RMA.

If the call is fatal, the module's workspace is freed, and the workspace
pointer is set to zero. If the call is non-fatal (eg the call is due to a tidy
operation), the workspace (and the pointer) pointer will be relocated by the
module handler, assumin~ rhcy were alloc:ueJ using OS Module's 'claim'
entry.

The module is told whether the call is fatal or n0r by the contents of RIO as
follows:

RlO "' 0 means a non-fatal finalisarion
RIO = I means a f.:! tal finalisanon

Rll contains the dynamic instantiation number. ie. the poSitiOn of the
instantiation in the instantiation list. This will not be the same as the Rll given
to initialisation. Position in the chain c:m v<~ry and the length of the
instantiation list can also change.

If the module generates an error on finali~ation, then it remains 10 the R}.IA,
and is assumed to still be initialised. The only w:-~y to remove the module
from RMA in this state is hy a hard reset.

If the module has no finalis:nion entry, its \\'0fkspace is freed automatically,
if the pointer contains a non -zem value.

Use link register given for normal exit. Set RO and return with V set if
refusing to die.

The module is (possibly temporarily) 'de-linked' when called, so you can't,
for example, execute SWis that you recognise your~clf.

Used on OS_Module with Rcinit, Delete, Tidy and Clear reason codes. Also
when a module of the same name is loaded the old one is killed.

Modules: Module entry points

Service call handler

Offset in header

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Called when a service call is issued

&OC

R I = service number
R 12 = pointer to currently preferred instantiation of the mcxlule
Rl3 =a full, descending stack

Rl can be set to zero if the service is being claimed
RO, R2- R8 can be altered to pass back a result, depending on the service call
Registers must not be corrupted unless they arc returning values.
Rl2 may be corrupted

Interrupts arc undefined on entry
Fast interrupts arc enabled

Processor is in SVC or IRQ mode

Entry point is not re-entrant

This allows service calls to be rewgnised and acted upon. If the mcxlulc does
not wish to provide the service it should exit with R I preserved. If it wishes to
perform the service and to prevent other mcxlulcs also performing it, it should
set Rl to zero before returning, otherwise it should preserve the registers in
order that other m<Xlulcs may have a chance to <kal with the call. An offset of
zero means that the module is not interested in any service calls.

Some service calls can indicate an error condition by the contents of registers
on exit (the V set convention cannot be used). Others, like unknown OS_Byte,
can either claim the service, in which case there is no way of indicating an
error, or ignore it, in \\-·hich case an error will he given (if all mcxlulcs ignore
it). If you want to provide things like unknown OS_13ytcs, and be able to
generate an error for, say, invalid parameters, you should usc the OS_Byte
vector instead.

Note that only RO- R8 can be passed into a service call.

The ser;ice call handler is used when a service call is issued or via an
OS_Bytc 143 (SWI &06) or OS_ServiccCall (SWI & 30). The service calls
arc described in the section on OS_Service.

Modules: Module entrv ooints

Title string

Offset in header

Use

Help string

Offset in header

Use

635

Offset of a null-terminated module name

&10

This is the offset of a null-terminated string which is used to refer to the
module when OS_Module is called. The module name should be made up of
alphanumeric characters amd should not contain any spaces or control
characters. This must be present for the module to be recognised.

Module names which contain more than one word should follow the
convention of the system modules, eg 'FileSwitch', 'SpriteUtils'. The case of
the letters in a module name isn't significant for the purposes of matching.

The string should be fairly short and descriptive, CR WindowManager or
Disc ToolKit.

Used by OS_Module with reason codes Delete, Enter and Rclnit. Also
printed by the *Modules command.

Used when *Help prints information from the module

&14

This is the offset of a null-terminated string printed out by *Help before :my
information from the module, eg *Help M<Xlulcs, *Help Commands. It is
advisable that this string is present to avoid confusion. The string must not
contain any control characters (except Tab, which t:.tbs to the next multiple of
eight column, or character 3 I which acts as a 'hard' space) but may contain
spaces.

To make the output of *Help Modules look near, you should adopt the s:Jmc
spacing and naming conventions as the system modules. The format is as
follows:

Module name <Tab>[<Tab>l v.vv (DD MMM YYYY)

The module name is followed by one or two T;-~b ch;-~racters to make it appear
sixteen characters long. The version number contains three digits and a full
stop, eg 1.00. The creation date is of the form 06 Jun 1987.

Modules: Module entry points

Help and command
keyword table

Offset in header

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

636

Get help on • Commands or enter them

&18

R 12 =pointer to currently preferred instantiation of the module
R 13 = pointer to a full clcscendin~: ~rack
R 14 = rerum address

RO =error pointer if anything goes wrong
R 7 - R 11 must be preserved

Interrupts arc enabled on entry
Fast interrupts are enabled

Processor is in SVC mode

Entry point is not re-entrant

This table contains a list of keywords with nsroci:lted help text and, in the
case of commands, an entry address to the command code. Other associated
data provides information on the type of command, the limits on the number
of parameters it can take, ere.

Used when OSCLI, *Status, *Configure and *llclp wish to look for user
supplied keywords.

The string to match should contain only the vnlid chnracrers for its entry type.
For example, commands matched by OSCLI cannot contain any characters that
have a special meaning in filenames. In general it is hcst to stick to
alphanumeric characters and the '_' character. The case of the letters docs not
matter in command matching, but should be chosen for neat output from
*Help. The standard adopted by the system modules is the form 'Echo',
'SctT ypc' etc

Modules: Module entry points

Information word

637

The table consists of a sequence of entries, terminated by a zero byte. Each
entry has the following format:

String to match, null terminated

ALIGN to word boundary

Offset of code from module start, or zero if no code

Information word

Offset of invalid syntax message from module start,
or zero for default message

Offset of help text from module start, or zero for no help

The code offset is used for commands. A zero entry means that the string has
help text only associated with it. The code is entered with RO pointing at the
command tail and R 1 set to the number of pam meters (as counted by OSCLI,
which means space(s) separate parameters except within double quotation
marks).

The information word contains limits on the number of parameters accepted
by the command, and also 16 flags. The format is:

Byte Contents

0 Minimum number of parameters (0 • 255)
I OS_GSTrans map for first 8 parnmeters
2 Maximum number of parameters (0 · 255)
3 Flags

The command can, therefore, accept between zero and 255 parameters. OSCLI
counts parameters by starting at the start of the command tail and looking for
items (quoted strings or continuous characters) separated by spaces. This is
why it is advisable to use spaces as parameter separators and not commas, as
in commands which are compatible with the BBC series of microcomputers.

Modules: Module entry points

Bit 31 = 1

Bit 30 = 1

638

Byte I works as follows. Each bit corresponds to one parameter (bit zero of
the byte equals the first parameter and so on). If the bit is set, the parameter
is OS_GSTransed before being passed on to the module. If the bit is clear,
the parameter is passed directly to the module. This is useful for filing
system commands which need to do filename transformation that is normally
done by FileSwitch.

The flags are as follows:

The match string is a filing system command and is therefore only matched
after OSCLI has failed to find the command in :my of the module tables as a
'normal' command. OSCLI only looks at filing system commands in the filing
system currently active. C'..ommands that need this flag set are, therefore, the
filing system-specific ones such as *Bye, *Logon, etc.

The string is to be matched by *Status and *Configure. The code in this case
should scan the command tail and return a st:ltus string or set non-volatile
memory as appropriate. The code is called with RO set as follows:

RO = 0 *Configure with no option has been received
The module prints a syntax string and return.

RO = 1 *Status <keyword> has been issued. The module
should print the currently configured status for this
keyword.

If RO is neither of the above, it means that the *Configure <option> has
matched <option> against the keyword and RO is a pointer to the command
tail with leading spaces skipped. The arguments are decoded and the
configuration set accordingly. If the command tail is incorrect, the module
should return withY set and RO indicating the error as follows:

RO = 0
RO =I
RO = 2
RO = 3
RO >3

Bad configure option error
Numeric parameter needed error
Configure par<~mcter too large
Too many parameters
RO is a pointer to an error block for *Configure to return

Note that this facility duplicates two of the service code entries. You should
use this method in preference, as the OS performs decoding of the option
keywords for you.

Modules: Module entry points

Bit 29 = 1

Other comments

SWI chunk base number

Offset in header

Use

SWI handler code

Offset in header

639

*Help offset refers to a piece of code to call for thnt keyword, instead of the
offset of a text string. The code is called with the following entry conditions:

RO points at a buffer
R l is the buffer length
Rl • R6 and Rl2 can be corrupted

On return, if RO is non-zero, it is assumed to point at a zero-terminated string
to pretty-print (see below).

Other flags should be zero for upwards compatibility. The invalid syntax
message is used by OSCLI as the text of an error message. If the parameters,
which are given, fall outside the range specified. If a zero offset is given, a
default Invalid number of parameters error is given instead.

The help text is used by *Help. If a keyword in the *Help command tail
matches the match string, then the help text is pretty-printed using the
RISC OS internal token dictionary. Refer to OS_PrettyPrint (SWI &44) for a
full list of the token dictionary.

A zero offset means no help text is to be printed. The string may contain
carriage returns to force newlines. Tab (ASCII 9) is also a special character;
it forces alignment to the next multiple of eight columns. Finally, ASCII 31 is
a 'hard space', around which words lines will not be split.

The base of chunk numbers for the module

&lC

This offset contains the base of chunk numbers for the module. Note that it is
the only offset that docs not contain a pointer. RISC OS reads this offset to
enable it to call the module when a SWI using its chunk range is issued.

Called to handle SWls belonging to the module

&20

Modules: Module entry points

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Rll = SWI number modulo Chunk Size (ie 0 · 63)
Rl2 =private word pointer
R 13 = supervisor stack
R14 contains the flags of the SWI caller

R 10 · R 12 may be corrupted
Use MOVS PC, Rl4 to return, having altered R 14 flags as appropriate

(eg. setting V for an error).

Interrupts are disabled on entry
Fast interrupts are enabled

Interrupts should always be enabled if SWI processing will take a long time
(say > 20us) and the routine can cope with IRQs being enabled. The code to
enable IRQs is:

MVN Rn, #I bit;
TSTP Rn, PC

To disable IRQs explicitly:

MOV Rn, PC
ORR Rn, #I bit
TEQP Rn, #0

Processor is in SVC mode

Entry point is not re-entrant

&08000000
preserves other flags

These entries allow a module to ask to be given a range of otherwise
unrecognized SWis. The SWI chunk number is the base of the range to be
intercepted. SWis in the range:

Base to base + (SWI chunk size - 1)

are passed to the handler code. The module SWI chunk size is defined by the
operating system to be &40 (64). For example, this entry in the Wimp
module is &400CO, implying that it can accept SWis in the range &400CO.
&400FF.

These fields are optional; if they contain implausible values, the system will
ignore them. The checks made are:

• Base is a multiple of the chunk size and has a 0 top byte

640 Modules: Module entry points

641

• Code offset is a multiple of four with the top six bits zero

Sec the introductory section of this manual for more derails on how to choose
a chunk number.

When the SWI handler code is called, the SWI number reduced to the
range 0 to (chunk size - I) is pa~<.ed in R 11. The module then checks whether
it is one which it recognises and if so, deals with it appropriately. The
suggested code for doing this is:

.SWientry
LOR R12, [R12] ; get workspace pointer
CMP Rll, f(EndOfJumpTable- JumpTable)/4
ADDCC PC, PC, Rll, LSL #2 ; dispatch if in range
B

.JumpTabl e
B

B

UnknownSWierror

MySWI_ O
MySWI_ l

B MySWI_ n
.EndOfJumpTable
.UnknownSWIError

ADR RO, errMesg

; unknown SWI

ORRS PC, Rl4, fOverflow_Flag
.errMesg

EQUD
EQUS
EQUB

&1E6 ;Same as system message
"Unknown <module> operation"
0

Note that the address calculation on the PC to jump to the appropriate branch
instruction relics on there being exactly one instruction between the ADDCC
and the B MySWI_O instruction.

The Rl4 given to the SWI code contains the flags of the SWI caller, except
that V has been cleared. So, to return without updating the flags, use MOVS
PC, Rl4. Otherwise alter the link register (for example by executing ORRS
PC, R14, fCarry_ Flag). Note that all the flags returned to the system
arc returned to the caller, so user's conditional code must be written with this
in mind.

Modules: Module entry points

SWI decoding table

Offset in header

Use

642

Bit 17 in the given SWI number is not significant. The code is called on the
assumption that it is the 'bit 17 set' version of the SWI. This means that the
code must set RO and return V set on encountering an error. Any error is then
automatically dealt with by the system if the u~r actually asked for the 'bit
17 clear' version.

Pointer to table of SW1 names

&24

When the SW!s OS_SW1NumberFromString and OS_SWlNumberToString
arc called, there are two ways that the conversion can occur. If the table
pointed to by this offset contains the string for rhe required entry is there, rhen
that is used. If it isn't there and the table pointer is 0, then the following
offset is called, to allow the module code ro perform rhe conversion.

The table format is:

SWI group prefix
Name of Oth SWI
Name of 1st SWI

Name of nth SWI
0 byte to terminate

All names are null terminated. The group prefix is the first part of the full
SWI name. ic. the first SWI's full name is <group prefix>_ <name of 1st>.
For example, the shell module's table is:

EQUS "Shel l "
EQUB 0
EQUS "Create"
EQUB 0
EQUS "Destroy"
EQUB 0
EQUB 0

Modules: Module entrv ooints

SWI decoding code

Offset in header

On entry

On exit

643

In this example, the chunk base number is 405CO. The SWI 405C1 would
therefore be converted into 'Sheli_Destroy' is passed to
OS_SWINumberToString.

The OS adds an 'X' if the SWI has bit 17 set, followed by the group prefix,
followed by '_', then the individual SWl name. If the table does not contain
enough entries, then the SWI name field is fi lled in by the offset from the
chunk base (in decimal).

If the table field is zero, then the code field is used (see above) . This field is
also used when convening from strings to numbers.

Entry for code to convert to and from SWI number and string

&28

R12 =private word pointer
R 13 = supervisor stack
R 14 = return address

Text to number
RO = any number less than zero
Rl =pointer to the string to convert (terminated by a control character)

Number to text
RO = SWI number ANDed with 63. ie. offset within module's chunk
Rl =pointer to output buffer
R2 =offset within output buffer at which to place rhe rext
R3 = size of buffer

R 12 preserved

Text to number
RO =offset into chunk (0 • 63) ifSWI recognised, <0 otherwise
R 1 • R6 preserved

Number to text
RO preserved
R 1 preserved
R2 =updated by length of rcxt
R3 • R6 preserved

Modules: Module entry points

Interrupts

Processor Mode

Re-entrancy

Use

644

lntemJpts are enabled on enrry
Fast interrupts are enabled

Processor is in SVC mode

Entry point is not re-entrant

This entry is used where a SWI name is not defined in the SWI decode
table. If it cannot be decoded, and the table poinrer is 0, then return with the
registers unchanged and RISC OS will provide a suitable default.

When converting from number to text, RISC OS will append a null at the
position after the lengrh you rerurncd.

Modules: Module entry points

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

645

Issue module service call

RO = 143 (&SF) (reason code)
R 1 = service type
R2 = argument for service

RO preserved
R I preserved
R2 = may contain a return argument

Interrupt status is not altered
Fast interrupts arc enabled

Processor is in SYC mode

Not defined

OS_Byte 143
(SWI &06)

This call is provided for compatibility with the nne series of microcomputers,
and is used for calling the modules' service entries. Only OS_ServiceCall
should be used in new code.

OS_ServiceCall (SWI &30)

ByteV

Modules: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Perform a module operation

RO = reason code

OS Module
(SWI &lE)

other registers are parameters and depend upon the reason code

RO preserved
other register states depends on the reason code

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This SWI provides a number of calls to manipulate modules. The value in RO
describes the operation to perform as below:

RO Meaning

0
1
2
3
4
5
6
7
8
9

Run
Load
Enter
Rein it
Delete
Describe RMA
Claim
Free
Tidy
Clear

10 Insert module from memory
11 Insert module from memory and move into R~1A
12 Extract module inform<~rion
13 Extend block
14
15
16

Create new inst:mti:nion
Rename instantiation
Make preferred imt:mriarion

Related SWis

647

17 Add expansion card module
18 Lookup module name
19 Enumerate ROM modules

This call performs simple checks when deleting and moving modules. These
actions give an error if the system 'thinks' you arc applying them to a module
currently active, for example, if you try to *RMKill BASIC from within
BASIC.

This check is applied whenever the system is about to call a module's fin;~lisc
entry. Hence simple applications need not keep checks on this explicitly.
More complex modules which, for example, run subt:Jsks, need to keep their
own state checks in order to avoid being removed when they arc due to be
returned to at some point.

Many of the OS_Module calls refer to a module title. This has some general
restrictions. The name passed is terminated by nny control character or space
and can be abbreviated with a full stop. For example, 'Eco.' is an
abbreviation for 'Econct'. The title field in the module is similarly terminated
by control characters and spaces. The pattern matching ignores the case of
both strings, and allows any characters other than space or full stop. You
should restrict your titles, however, to alphanumerics and for future
compatibiliry.

As usual , errors are indicated by V being scr and an error pointer in RO.
These errors may be generated by one of the modules, and the error block
addressed by RO might reside in a module's code. You should therefore not
rely on the error block remaining in rhc s;~me place across calls to
OS_Modulc.

As the checks within this call c:Jnnot tell which instantiation of a module is
active, no instantiation may die when one of them is the current application .
The module name can also have an instantiation postfix. This consists of '%'
followed by the instantiation name. This name field can be abbreviated in the
same way as the module name. If no instantiation is given, the currenrly
preferred instantiation is referenced.

In the following pages, the reason codes for this command are fully
explained. The details of gcner<~ l SWI operation nrc as per this description.

None

Modules: SWI Calls

Related vectors None

648 Modules: SWI Calls

On entry

On exit

Use

Related reason codes

649

Run

RO = 0 (reason code)

OS Module 0
(SWI &lE)

Rl =pointer to pathname plus optional parameters

Does not return unless error occurs

This call is equivalent to loading then entering the module. If the module can
be started as an application, it will be, and so the call will not return.

Possible errors are File not found, No room in RMA, Not a module,
Duplicate module refused to die, and Module refuses to
initialise.

11 2

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

650

Load

RO = 1 (reason code)

OS Module 1
(SWI &lE)

Rl =pointer to pathname and optional parameters

RO preserved
R 1 preserved

This reason code attempts to ch1im a block of the RMA and *Loads the file if
it has the correct file type of &FFA. The header fields of the module are
then checked for validity.

If another module has the same name, it attempts to kill the duplicate
module. This will give an error if the module refuses to die. Note that this
allows system modules to be upgraded with new versions simply by loading
the new version. All instantiations of the duplicate arc killed.

It sets the private workspace word to 0, calls the module through its initialise
address and links it to the end of the module list, or replaces the old module
of the same name. The module is initialised as instantiation 'Base'.

The filename should be terminated suitably for OS_File. The terminator can
be space, in which case there can be a parameter string after the filename to
pass to the module initialisation.

Possible errors are File not found, No room in RMA, Not a module,
Duplicate module refused to die, and Module refuses to
initialise.

0,2

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

651

Enter

RO = 2 (reason code)
R l = pointer to module name
R2 = pointer to parameters

Does not return unless error occurs

OS Module 2
(SWI &IE)

If the module doesn't have a start address, then this call simply returns. If it
does, this call resets the supervisor stack, sets user mode and enters the
module, hence making it the current application. Any specified instantiation
will become the preferred instantiation. The possible error is Module not
found.

For a description of how a module is started up as an application, refer to
OS_FSControl 2 (SWl &29).

0

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

652

Re-Initialise

RO = 3 (reason code)

OS Module 3
(SWI &lE)

Rl =pointer to module name plus any parameters for initialisation

RO preserved
R 1 preserved

This is equivalent to relo:Jding the module. It is intended for use in forcing
modules that have become confused into a sensible state, without having to
reload them explicitly from the filing system. The instruction calls the
module through its finalise address and deletes any workspace. It then calls
it through its initialisation address to reinitialise it. If the module fails to
initialise it is removed from the RMA. Possible errors are Module not
found and others dependent on the module.

8,9

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

653

Delete

RO = 4 (reason code)
R I = pointer to module name

RO preserved
R 1 preserved

OS_Module 4
(SWI &lE)

This reason code (and *RMKill) kill off the currently preferred instantiation
of the module or the one specified in the name. For ex:-~mple:

*RMKill FileCore%Base

This calls the module through its finalise address, frees any workspace
pointed at by the private word, dclinks the module from the module list and
frees the space it was occupying. Possible errors arc Module not found and
others dependent on the module.

None

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

654

Describe RMA

RO = 5 (reason code)

RO preserved
R2 = size of largest block available in bytes
RJ = total amount free in RMA in bytes

OS Module 5
(SWI &lE)

This call returns information on the state of the RMA. It does this by calling
OS_Heap with the appropriate descriptor.

6

Modules: SWI Calls

On entry

On exit

Use

1elated reason codes

JSS

Claim

RO = 6 (reason code)
RJ = required size

RO preserved
R2 = pointer to claimed block
RJ preserved

OS Module 6
(SWI &lE)

This calls the heap manager to claim workspace in the RM~. If it fails and
application workspace is not currently being u~d then it will attempt to
reallocate this memory and retry. It returns with V set if it is still
unsuccessful. This call is useful for claiming workspace during the module's
initialisation, but may also be used from other module entries.

The possible error is No room in RMA.

5, 7

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

656

Free

RO = 7 (reason code)
R2 = pointer to block

RO preserved
R2 preserved

OS Module 7
(SWI &lE)

This calls the heap manager to free a block of workspace claimed from the
RMA.

The possible error is Not a heap block.

6

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

657

Tidy

RO = 8 (reason code)

RO preserved

OS Module 8
(SWI &lE)

This gives each instantiation of all modules in turn, from the end of the
module list and working backwards, a non-fatal finalisation call.
Instantiations of a particular module are killed in the order they appear on
the current instantiation list.

Should any instantiation refuse to die (temporarily), and another module be
called, then the module that has already been called with a non-fatal
finalisation is re-initialised. If it cannot be re-initialised, then then that
module is deleted from the system.

The SWI then exits with the original error. If it succeeds, then it collects the
RMA together into one large unfragmentcd block and reinitialises the
modules again. Any private words containing pointers to workspace blocks in
the RMA are relocated. This should enlarge applic:Hion space.

3,9

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

658

Clear

RO = 9 (reason code)

RO preserved

OS Module 9
(SWI &lE)

This deals with each module in turn, removing- it from the module list and
calling it through its fin:-tlisc address, if it isn't a ROM module. Errors arc
generated if modules f:lil to die.

3,8

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

659

Insert module from memory

RO = 10 (reason code)
Rl = pointer to start of module

RO preserved
R 1 preserved

OS Module 10
(SWI &lE)

This takes a pointer to a block of memory and links it into the module chain,
without moving it. Header fields arc checked for validity. All duplicate
modules are killed. If it is successful, then rhc module is called at its
initialisation entry.

Possible errors are Duplicate module refuses to die and Module
refuses to initialise.

The word immediately before the module start (ic at address Rl-4) must
contain the length of the module in bytes.

11

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

660

OS Module 11
(SWI &1E)

Insert module from memory and move into RMA

RO = (reason code)
Rl =pointer to start of module
R2 =length of module in bytes

RO preserved
R 1 preserved
R2 preserved

This takes a pointer to a block of memory, and checks its header fields for
validity. It then kills any duplicate module, copies the block into the RMA,
initialises it and links it into the module chain.

Possible errors are Duplicate module refuses to die, No room in
RMA and Module refuses to initialise.

10

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

661

Extract module information

RO = 12 (reason code)
R I = pointer to module, or 0 for first call
R2 = instantiation number or 0 for all

RO preserved
R I = updated module number
R2 =updated instantiation number
RJ = module base
R4 =private word (usually workspace pointer)
R5 = pointer to instantiation postfix

OS Module 12
(SWI &lE)

This returns pointers to modules and the contents of their private word. It
searches the list of modules to sec if the module pointer given in Rl is vnlid.
If it is valid, the next descriptor in the module chain is referenced, o therwise
the first module descriptor is referenced. Information from the referenced
descriptor is then returned. The information returned is exactly that printed
by the *Modules command.

Specifying the instantiation number and index in the module list allows all
module instantiations to be enumerated. Enumeration can be started with 0 in
Rl and R2. This call will:

• count down the module list to find the R 1 th entry; error if list runs out

• count down the instantiation list to R2th entry; error if list nms out

• set up return information

If the module has more instantiations, R2 +=I else Rl += l, R2 = 0

Possible errors are No more modules or No more instantiations.

13

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

662

Extend block

RO = l3 (reason code)
R2 = pointer to workspace block
RJ = new size in bytes

RO preserved
R2 = pointer to new allocated block
R3 preserved

OS Module 13
(swr &lE)

This allows modules to extend workspace blocks claimed in the RMA. It
calls OS_Heap with the appropriate descriptor and attempts to enlarge the
RMA if this fails.

The possible error is No room in RMA.

12

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

663

Create new instantiation

RO = 14 (reason code)
R1 =pointer to full name of new instantiation

RO preserved
R 1 preserved

OS_Module 14
(SWI &lE)

This creates new instantiations of existing modules, u~ing- the syntax:

<Module name>%<instantiation name>

For example:

FileCore%RAM

15, 16

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

664

Rename instantiation

RO = 15 (reason code)

OS Module 15
(SWI &lE)

Rl =pointer to current module%instantiation name
R2 =pointer to new posrfix string

RO preserved
R I preserved
R2 preserved

This renames an existing instantiation of a module. For example:

FileCore%RAM

to

FileCore%ADFS

14, 16

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

665

Make preferred instantiation

RO = 16 (reason code)

OS Module 16
(SWI &lE)

R 1 = pointer to full modulc%instanti::nion name

RO preserved
R I preserved

This enables you to select the preferred instantiation of a particular module.

14, 15

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

666

Add expansion card module

RO = 17 (reason code)
R I = pointer to environment string
R2 = chunk number
RJ = expansion card number

RO preserved
R I preserved
R2 preserved
R3 preserved

OS_Module 17
(SWI &lE)

This allows expansion card modules to be added ro rhe module lisr.

10

Modules: SWI Calls

On entry

On exit

Use

• ~elated reason codes

667

Look-up module name

RO = 18 {reason code)
Rl =pointer full modulc%insrantiation name

RO preserved
Rl =module number
R2 = Instantiation number
RJ = pointer to module code
R4 = private word contents
RS =pointer to postfix string

OS Module 18
(SWI &IE)

This returns pointers to modules and the contents of their private word. It
searches the list of modules to sec if the module pointer given in R I is valid.
If it is valid, the module descriptor is referenced. Information from the
referenced descriptor is then rcnJTncd .

12,19

Modules: SWI Calls

On entry

On exit

Use

Related reason codes

668

OS Module 19
(SWI &lE)

Enumerate ROM modules

RO = 19 (reason code)
R1 =module number (as returned by OS_Module 19)
R2 = -1 for ROM or expansion card number

RO preserved
Rl =incremented
R2 preserved
R3 = pointer to module name
R4 = - 1 (unplugged)

0 (inserted but not in rhe module chain ic dormant)
1 (active)
2 (running)

R5 = chunk number of exp:ln~ion c:1rd module

This returns inform:Jtion about the modules that arc currently in ROM, along
with their status.

12,18

Modules: SWI Calls

Service Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

669

Issue a service call to a module

R I =service number

OS ServiceCall
(SWI &30)

other registers are parameters and depend upon the scrYice number

R I = 0 if service was claimed, preserved otherwise
other registers up to R8 may be modified if the service was claimed

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_ServiccCall is used ro isc:.ue a service c:JIL It c:-~n be used by any program
(including a module) which wishes to pass a service around the current
module list. For example, someone wishing to u!'C FIQs might issue the
claim/release service calls. The service calls available in the default system
arc:

Number

&00
&04
&06
&07
&08
&09
&OB
&OC
&II

&12
&27
&28
&29

Name

Service_Serviccd
Service_ UK Command
Service_Error
Service_ UKI1yte
Service_ UK Word
Service_Hclp
Service_ReleaseFIQ
Service_CiflimFJQ
Service_Memory

Service_St::mUpFS
Service_Rescr
Service_ UK Con fig
Service_ UKSr;~n1s

Meaning

Service cflll has been claimed
Unknown command
Error has occurred
Unknown OS_I1yte
Unknown OS_ Word
*Help h;~s been called
Rcle:Jsc FJQ
Cbim FIQ
Memory controller <~bout to be
rem;~pped

Smt-UpFiling System
Po~t-Resct

Unknown *Configure
Unknown *Status

Modules: Service Calls

Related SWis

Related vectors

n70

&2A Service_NewApplication Applicnt ion about to start
&40 Service_FSRcclecb re FilinJ.: system re-initialise
&41 Service_Print For internal usc cmly
&42 Servicc_LookupFi lc Type Lookup file type
&43 Service_ I ntema tiona I I ntern;nional service
&44 Service_Kcyh:mdlcr Kcyboord handler
&45 Servicc_PrcRc~t Prc-rc~et
&46 Service_ModcChangc Mode ch:mge
&47 Scrvice_ClaimFIQinnackground Cl:!im FIQ in b:1ckground
&48 Scrvice_ReAilocarePorts Econcr restarting
&49 Service_StartWimp Srarr the Wimp
&4A Service_SrarredW imp Started rhe Wimp
&4B Service_SrartFiler Start the Filer
&4C Service_SrartedFilcr Started the Filer
&40 Service_PreModcChange Mcxlc change
&4E Servicc_MemoryMovcd OS ChangcDynamicArea has

just finished
&4F Service_FilcrDying Filer is dying
&50 Service_ModeExtension Allow soft modes
&51 Scrvice_Mode T ranslarion T nmslate modes for unknown

monitor types
&52 Service_Mousc T r.:~p For non-cl ick mouse warnings
&53 Service_ Wi mpCioscDown Tr.tp WimpCioscDown calls
&54 Service_Sound Parts of the Sound system

starrinw'dying
&55 Service_NetFS Either a *Logon or a *Bye has

occurred
&56 Service_EconetDyi ng Econcr a hour ro lc:1ve
&57 Service_ WimpReportError Wimp is opcninw'closing a

ReportError window

This section describes each of the above service calls or indicates where to
find out information about the service c:~lls that relate to a specific module.

OS_Byte 143 (SWI &06)

None

Morl11IP.~· ~P.rvir.P. r.::~lls

On entry

On exit

Use

671

Service call has been claimed

Rl=O

R I preserved

Service Serviced
(Service Call &00)

This call is passed around following a successful claiming of a service call by
a module.

Modules: Service Calls

On entry

On exit

Use

672

Service UKCommand
(Service Call &04)

Unknown command

RO = pointer to command
Rl = &04 (reason code)

RO = 0 for no error, else error pointer
R I = 0 ro claim the command, or preserved to pass on

If you claim the call and execute the command successfully you should set Rl
to 0. If an error occurs during execution then you should return with the
pointer to the error buffer in RO. This call is issued after OSCLI has searched
modules but before the filing system is called to try to *Run. It is also used
to implement NetFS file server commands.

Note that this is the 'historical' way of dealing with unknown commands. You
should, in preference, usc the command string entry point.

Modules: SeNice Calls

On entry

On exit

Use

673

Error has occurred

RO =pointer to error block
R 1 = &06 (reason code)

RO preserved

Service Error
(Service Call &06)

Rl preserved to pass on (must never be claimed)

This call is issued after an error has occurred but before the error handler is
called. It is included 'for your information', and must not be claimed.

Modules: Service Calls

On entry

On exit

Use

674

Unknown OS_Byte

R 1 = &07 (reason code)
R2 = OS_Byte number
R3 = first parameter
R4 =second parameter

Rl = 0 to claim, else preserved to pass on
RJ = value to return in R I to caller
R4 = value to return in R2 to caller
Errors cannot be returned

Service_UKByte
(Service Call &07)

If the OS_Byte number is one used by the module it is passing through, you
should execute it and claim the call by setting R 1 to zero.

If you don't recognise the OS_Byte number, JY.lSS the call on by returning with
the registers preserved.

Modules: Service Calls

On entry

On exit

Use

675

Unknown OS_ Word

Rl = & (reason code)
R2 =OS_ Word number

Service UKW ord
(Service Call &08)

R3 = pointer to OS_ Word parameter block

R 1 = 0 to claim, else preserved to pass on
Errors cannot be returned

The same action applied as the OS_Byte entry.

Modules: Service Calls

On entry

On exit

Use

676

*Help has been called

RO =pointer to command
Rl = &09 (reason code)

RO preserved
Rl = 0 to claim, else preserved to pass on

Service_Help
(Service Call &09)

This is issued at the start of *Help. You should claim this call only if you
wish to replace *Help completely. The usual way for a module to provide
help is through its help text rable.

Modules: Service Calls

On entry

On exit

Use

677

Release FIQ

Rl = &OB (reason code)

Rl preserved

Service_ReleaseFI Q
(Service Call &OB)

This is issued immediately after the FIQ handler is released.

See the chapter entitled Hardware vectors for information about FIQ.

Modules: Service Calls

On entry

On exit

Use

678

ClaimAQ

Rl = &OC (reason code)

R 1 preserved

Service_ClaimFI Q
(Service Call &OC)

This is issued before the FIQ handler is claimed. It must only be issued from
foreground tasks.

See the chapter entitled Hardware vectors for information about FIQ.

Modules: Service Calls

679

Service_Memory
(Service Call & 11)

For more information about this service call, refer to the chapter entitled The
Window Manager

Modules: Service Calls

On entry

On exit

Use

680

Start up Filing System

Rl = &12 (reason code)
R2 = filing system number

R 1 preserved (never claim)
R2 preserved

Service_StartUpFS
(Service Call & 12)

This is an old way to start up a filing system. It must not be claimed See the
chapter on fi ling systems for the correct way to start up a filing system.

Modules: Service Calls

On entry

In exit

Use

.31

Post-Reset

Rl = &27 (reason code)

Rl preserved to pass on (do not claim)

Service Reset
(Service Call &2 7)

This is issued at the end of a machine reset. It must never be claimed.

Modules: Service Calls

On entry

On exit

Use

682

Service_UKConfig
(Service Call &28)

Unknown *Configure

RO = pointer to command tail, or 0 if none given
RI = &28 (reason code)

RO = less than 0 for no error,
small integer for errors described below,
or error pointer for other errors

Rl = 0 if configure option recognised and no error, else preserved to pass on

If RO = 0 on entry, you should print your *Configure syntax line(s), if any,
and exit with registers preserved.

If RO <> 0, then RO is a pointer to the command tail. If you decode the
command tail, and recognise it, you should claim the call by setting Rl to 0. If
an error is detected, should also return with V set and return the error in RO
as follows:

Value

0
1
2
3
>3

Meaning

Bad *Configure option
Numeric parameter needed
Parameter too large
Too many parameters
RO is an error pointer returned by *Configure

If you don't recognise the command tail, you should exit with registers
preserved.

Note that it is also possible to trap unknown *Configure commands through
the module's command table (see below). Only one of these mechanisms (and
not this one by preference) should be used.

Modules: Service Calls

On entry

On exit

Use

683

Service UKStatus
(Service Call &2 9)

Unknown *Status

RO = pointer to command tail, or 0 if none given
Rl = &29 (reason code)

RO preserved

R 1 = 0 is status option recognised and no error, else preserved to pass on

!fRO= 0, you should list your status(cs) and pass on the service call.

If RO <> 0, then RO is a pointer to the command tail. If you decode the
command tai l, and recognise it, you should print the associated information
and claim the call. Otherwise you should not claim the call.

Note that it is also possible to trap unknown *St:Jtus comm:~nds through the
module's command table- this is the preferred method.

Only one of these methods should lx: used.

Modules: Service Calls

On entry

On exit

Use

684

Service_N ew Application
(Service Call &2A)

Application about to start

Rl = &2A (reason code)

Rl = 0 to prevent application from starting, else preserved to pass on

This service is called when an application is about to start due to a *Go,
*RMEnter or *Run-type operntion. If you don't want the application to start,
you should claim the call, otherwise pass it on.

Modules: Service Calls

On entry

On exit

Use

685

Filing system re-initialise

Rl = &40 (reason code)

Service FSRedeclare
(Service Call & 40)

R 1 preserved to pass on (do not claim)

This service is called when the FileSwitch module has been re-initialised
(due to an *RMRcinit, for example). If you are in a filing system, you should
make yourself known to FilcSwitch by calling OS_FSControl 'add filing
system' as described in the chapter on Filing systems. You must not claim this
call.

Modules: Service Calls

686

Service Print
(Service Call & 41)

This service call is for intcrnalul'oe only. You must not usc it in your own code.

Modules: Service Calls

On entry

On exit

Use

Lookup file type

Rl = &42 (reason code)

Service_LookupFile Type
(Service Call & 4 2)

R2 =file type (in lower three nibbles)

Rl = 0 if the module knows the file type, else preserved to pass on
R2 = first four characters, if known, else preserved
RJ = last four characters, if known, else preserved

This call is passed round when FileSwitch would like to convert a twelve-bit
file type into a textual name. If the file type passed in R2 is known to you,
you should return with Rl =0, and R2, R3 containing the eight characters in the
name. If no-one claims the call, FileSwitch will convert the number into a
three-digit hex value padded with spaces. This might be loaded as follows:

ADR Rl, nameString
LDMIA Rl, {R2,R3)
MOV Rl, tO
MOV PC, Rl4

.nameString
EQUS "MY TYPE "

687 Modules: Service Calls

On entry

On exit

Use

Sub-reason code 0

688

Service International
(Service Call & 4 3)

International service

Rl = &43 (reason code)
R2 = sub-reason code
R3 - R5 depend on R2

Rl = 0 to claim, else preserved to pass on
R4- 5 depend on R2 on entry

This call should be supported by any modules which add to the set of
international character sets and countries. It is used by the international
system module *Command interface, and may be called by applications too.
See the chapter entitled International module for details.

R2 contains a sub reason code which indicates which service is required:

R2 Service required

0 Convert country name to country number
1 Convert alphabet name to alphabet number
2 Convert country number to country name
3 Convert alphabet number to alphabet name
4 Convert country number to alphabet number
5 Define range of characters
6 Informative: New keyboard selected for usc by keyboard handlers

The following pages give details of each of the~ sub-reason codes. Most
users will not need to issue these service calls directly, but the OS_Byte calls
and * Commands usc these. The information is provided mainly for writers of
modules whixh provide additional alphabets etc.

Modules: Service Calls

On entry

On exit

Use

689

Service International 0
(Service Call & 4 3)

Convert country name to country number

RI = &43 (reason code)
R2 = 0 (sub-reason code)
R3 = pointer to country name terminated by a null

RI = 0 if claimed, otherwise preserved
R2 preserved
R3 preserved
R4 = country number recognised, preserved if not recognised

Any module providing additional countries should compare the given country
name with each country name provided by the module, ignoring case
differences between letters and allowing for abbreviations using '.'. If the
given country name matches a known country name, then it should claim the
service (by setting RI to 0), and set R4 to the corresponding country number.

If the given country name is not recognised, all registers should be preserved.

Modules: Service Calls

On entry

On exit

Use

690

Service International!
(Service Call & 4 3)

Convert alphabet name to alphabet number

Rl = &43 (reason code)
R2 = 1 (sub-reason code)
R3 = pointer to alphabet name terminated by a null

Rl = 0 if claimed, otherwise preserved
R2 preserved
RJ preserved
R4 =alphabet number recognised, preserved if not recognised

Any module providing additional alphabets should compare the given
alphabet name wirh each alphabet name provided by the module, ignoring
case differences between letters and allowing for abbreviations using '.'. If
the given alphabet name marches a known alphabet name, then it should
claim the service (by setting Rl to 0), and set R4 to the corresponding
alphabet number.

If the given alph<~bet n::1me is not recognised, all registers should he
preserved.

Modules: Service Calls

On entry

On exit

Jse

o91

Service International 2
(Service Call & 4 3)

Convert country number to country name

Rl = &43 (reason code)
R2 = 2 (sub-reason code)
R3 = country number
R4 = pointer to buffer for name
RS =length of buffer in bytes

Rl = 0 if claimed, otherwise preserved
R2 preserved
R3 preserved
R4 preserved
RS = number of characters put into buffer if recognised, otherwise preserved

Any module providing additional countries should compare the given country
number with each country number provided by the module. If the given
country number matches a known country number, then it should claim the
service (by setting Rl to 0), put the country nnme in the buffer, and set RS to
the number of charncters put in the buffer.

If the given country number is not recognised, all registers should be
preserved.

Modules: Service Calls

On entry

On exit

Use

692

Service lnternational3
(Service Call & 4 3)

Convert alphabet number to alphabet name

Rl = &43 (reason code)
R2 = 3 (sub-reason code)
R3 = alphabet number
R4 =pointer to buffer for name
R5 =length of buffer in bytes

Rl = 0 if claimed, otherwise preserved
R2 preserved
R3 preserved
R4 preserved
R5 = number of characters put into buffer if recognised, otherwise preserved

Any module providing additional alphabets should compare the given
alphabet number with each alphabet number provided by the module. If the
given alphabet number matches a known alphabet number, then it should
claim the service (by setting Rl to 0), put the alphabet name in the buffer,
and set RS to the number of characters put in the buffer.

If the given alphabet number is not recognised, all registers should be
preserved.

Modules: Service Calls

On entry

On exit

Jse

Service_International 4
(Service Call & 4 3)

Convert country number to alphabet number

Rl = &43 (reason code)
R2 = 4 (sub-reason code)
R3 = country number

Rl = 0 if claimed, otherwise preserved
R2 preserved
R3 preserved
R4 = alphabet number if recognised, otherwise preserved

Any module providing additional countries should compare the given counrry
number with each country number provided by the module. If the given
country number matches a known counrry number, then it should claim the
service (by setting R 1 to 0), and set R4 to the corre~ponding alphabet number.

If the given country number is not recognised, all registers should be
preserved.

Modules: Service Calls

On entry

On exit

Use

t:OA

Service International 5
(Service Call & 4 3)

Define a range of characters from a given alphabet number

R 1 = &43 (reason code)
R2 = 5 (sub-reason ccxlc)
R3 = alphabet number
R4 =ASCII code of first character in range
RS = ASCII ccxle of last character in range

R I = 0 if claimed, otherwise preserved
R2 preserved
R3 preserved
R4 preserved
RS preserved

Any mcxlule providing additional alphabets should compare the given
alphabet number with each alphabet number provided by the module. If the
given alphabet number marches a known alphabet number, then that service
should be claimed (by setting RI to 0) and all the characters should be
defined in the range R4 to RS inclusive, using calls to YOU 23. Any
characters not defined in the specified alphabet are missed out: for example,
characters &80-&9F in Larin I.

If the given alphabet number is not recognised, all registers should be
preserved.

Modules: Service Calls

On entry

Jn exit

Use

695

Service International 6
(Service Call & 4 3)

Notification of a new keyboard selection

Rl = &43 (reason code)
RZ = 6 (sub-reason code)
R3 = new keyboard number
R4 =alphabet number associated with this keyboard

Rl preserved (call must not be claimed)
RZ preserved
R3 preserved
R4 preserved

This service call is for internal use by keyboard handlers. It is sent
automatically after the keyboard selection is changed. You must not claim it.

Modules: Service Calls

On entry

On exit

Use

696

Service_Key Handler
(Service Call & 44)

Keyboard handler

Rl = &44 (reason code)
R2 = keyboard 10: I for AJOO • A400 series keyboard

Rl preserved to pass on (don't claim)
R2 preserved

This call is made on reset, when the OS has established which type of
keyboard is present, and after an OS_InstaiiKeyHandler SWI. It is for the
information of keyboard handler modules which need to know what sort of
keyboard is present; it should not be claimed.

Modules: Service Calls

On entry

On exit

Use

697

Pre-Reset

Rl = &45 (reason code)

R I preserved to pass on (do not claim)

Service PreReset
(Service Call &45)

This call is made just before a software generated reset takes place, when the
user releases Break. This gives a chance for expansion card software to re~t
itS devices, as this type of reset does not actually cau~ a hardware re~t
signal to appear on the expansion card bus. This call must not be claimed.

Modules: Service Calls

On entry

On exit

Use

698

Mode change

R I = & 46 (reason code)

Service_ModeChange
(Service Call & 46)

RI preserved to pass on (do not claim)

This call is made whenever a mode change has raken place. It is made for the
benefit of modules which may want to re-read some VDU variables to keep a
consistent view of the world. It should not be claimed; there is nothing a
module can do to prevent the mode change from t::Iking place.

Modules: Service Calls

On entry

On exit

Use

699

Service_Cla imFI Qin Background
(Service Call & 4 7)

C laim RQ in background

Rl = &47 (reason code)

R 1 preserved to pass on (do not claim)

RISC OS allows FIQ to be clamied in the backs::round. Unlike foreground
FIQ claim, background claim may fail. If you receive this call, you are the
current FIQ owner, and you arc not due to receive a FIQ, then the service
should be claimed, after you have relinquished RQ as usual.

Background claims are released by Service_RelcascFIQ as before.

Modules: Service Calls

On entry

On exit

Use

700

Service ReAllocatePorts
(Service Call & 48)

Econet restarting

Rl = &48 (reason code)

R 1 preserved to pass on (do not claim)

This call is made whenever Econet restarts. It is then up to the Econet software
to allocate ports, set up T xCBs and RxCBs etc.

Modules: Service Calls

701

Service_S tart Wimp
(Service Call & 49)

For more information about this service call, refer to the chapter entitled The
Window Manager

Modules: Service Calls

702

Service_StartedWimp
(Service Call & 4 A)

For more information about this service call , refer to the chapter entitled The
Window Manager

Modules: Service Calls

703

Service StartFiler
(Service Call & 4 B)

For more information about this service call, refer to the chapter entitled The
Window Manager

Modules: Service Calls

704

Service StartedFiler
(Service Call &4C)

For more information about this service call , refer to the chapter entitled The
Window Manager

Modules: Service Calls

On entry

On exit

Jse

105

Service_PreModeChange
(Service Call & 4 D)

Mode change

R 1 = &46 (reason code)
R2 = selected mode (before possible translation)

Case I
R I preserved
R2 preserved
This is the normal action for a module which does not want to interfere

Case 2
R I = 0 (service claimed)
RO= 0
This implies that the module docs not want the mode change to take
place, and has taken an alternative action.

Casc3
RI =O
RO pointer to an error block

This implies that the module does not wnnt the mode change to take
place, and wishes to return the error pointed to by RO.

Case 4
R 1 preserved
R2 = new mode

This implies that the module wants to substitute a mode for the specified
mode. This is not a very good way of doing it, :-ts other modules further down
rhe chain will be offered the service with this new mode. The
Service_ModeTranslation mechanism described above should be used by
modules providing new monitor types.

ln RlSC OS it is possible to load modules which provide additional screen
modes and additional monitor types. This service call is used for mode
change requests.

Modules: Service Calls

On entry

On exit

Use

706

Service_Memory Moved
(Service Call &4E)

OS_ChangeDynamicArca has just finished.

Rl = &46 (reason code)

Rl preserved to pass on (do not claim)

This call is made whenever OS_ChangcDynamicArea (SWI &2A) has just
finished. It is used by the Wimp to tidy up and should never be chimed.

Modules: Service Calls

707

Service_FilerDying
(Service Call & 4 F)

For more information about this service call, refer to the chapter entitled The
Window Manager

Modules: Service Calls

On entry

On exit

Use

708

Service ModeExtension
(Service Call &50)

Allow soft modes

Rl = &50 (reason code)
R2 = mode number that information is requested for
R 1 = monitor type (or -1 for don't care)

All registers preserved (if not claimed)

If claimed:
RI =0
R2 preserved
R3 pointer to YIOC list
R4 pointer to workspace list

In RISC OS it is possible to load modules which provide :-~dditional screen
modes and additional monitor types.

Format of VI DC list (all word values):

Offset

0

4
8
12

n

Value

0 (indicates format of list, to allow for new YIOCs at
a later date)
VI DC base mode
YIDC p:uameter
YIDC parJmeter

The YILX: base mode is the number of an ex1stml! operatin~: system screen
mode which is used to determine the values of YIOC registers not explicitly
mentioned in the list. The YIOC parameters arc in the form that would be
written to the hardware ie the top 6 bits specify which rcgi!'-ter is programmed
and the remainder specify the \'alue to be programmed in that register.

Modules: Service Calls

However, bits 6 and 7 of the control register shouiJ be set to 0 as these will
be modified by RISC OS to take the configured sync and the *TV interlace
setting into account. Similarly the vertical pnrameters for border start,
display start, display end and border end arc modified by RISC OS to take
the *TV vertical offset into account.

YIDC parameters below &80000000 are ignored, since these correspond to
palette registers (detennined by the workspace base mode) and sound
registers (not part of the display system).

Format of workspace list (all word values):

Offset

0
4
8
12
16
20

n

Value

0 (indicates format of list)
Workspace base mode
Mode variable index
Mode variable value
Mode variable index
Mode variable value

-1

The workspace base mode is the number of an exiSting operating system
screen mode which is used to determine the values of mode variables not
explicitly mentioned in the list. The mode variable indices arc the same as for
SWI OS_ReadModeVariable.

Note: for the palette to be set properly, a workspace base mode ~hould be
chosen which has the appropriate palette.

When the service is received, the module should check that R2 contains a mode
that it knows about and that R3 holds a monitor type that is suitable for that
mode. If not, rhe service should be passed on. If R 3 holds -I then the MOS is
making a general enquiry about that mode (eg to determine the attributes of a
sprite defined in that mode) so the module should 0nly check R2.

Note that it is possible for a mode to have rv .. o or more different sets of
VIDC parameters for different monitor types, but the workspace parameter~
MUST be the same, as the mode number is used as an identifier in sprites
and in calls such as OS_ReadModeYariable.

709 Modules: Service Calls

On entry

On exit

Use

710

Service Mode Translation
(Service Call &51)

Translate modes for unknown monitor types

Rl =&51 (reason code)
R2 = mode number that requires tr:mslation
R3 = monitor type

All registers preserved (if not claimed)

If claimed:
RI=O
R2 = substitute mode
R3 preserved

This service is offered during a call to OS_ChcckModeValid or a screen
mode change, if the selected mode is not available with the current monitor
type (this having been ascertained by offering Scrvice_ModcExtension) ::md
the monitor type is not one known to the MOS (ie not in the range 0 . .3).

If the monitor type passed in R3 is known to the module, then the module
should discover what the attributes of the mode in R2 are (by calling
ReadModeVariable) and then choose a mode which is suitable for this
monitor type and is closest in attributes to the selected mode. This mode
number should be returned in R2.

Modules: Service Calls

711

Service_Mouse Trap
(Service Call &52)

For more information about this service call, refer ro the chapter entitled The
Window Manager

Modules: Service Calls

712

Service_WimpCloseDown
(Service Call &53)

For more information about this service call, refer to the ch;1ptcr entitled The
Window Manager

Modules: Service Calls

On entry

On exit

Use

713

Service Sound
(Service Call &54)

Parts of the the Sound system starting or dying

RO = 0 - DMA handler starti ng
1 - DMA handler dying
2- Channel handler st;~ rting
3 - Channel handler dying
4- Scheduler starting
5- Scheduler dying

Rl =&54 (reason code)

Registers preserved

This call is made to signal that a part of the Sound system is about to start up
or finish.

Modules: Service Calls

On entry

On exit

Use

714

Either a *Logon or *I3ye has occurred

Rl =&55 (reason code)

R I preserved to pass on (do not cbim)

Service N etFS
(Service Call &55)

This call is issued by NetFS to indicate to the NetFiler that things may have
changed. For example, a user logged on to a server, while temporarily outside
the Winp.

Modules: Service Calls

On entry

)n exit

Use

715

Econetisaboutto leave

R 1 = &56 (reason code)

Service_EconetDying
(Service Call &56)

R 1 preserved to pass on (do not claim)

This call is made whenever Econet is about to leave. It os then up to the
Econet software to release ports, delete RxCBs and T xCOs etc.

Modules: Service Calls

71 ~

Service_WimpReportError
(Service Call &57)

For more information about this service call, refer to the chapter entitled The
Window Manager

*Commands

Syntax

Parameters

IJse

Example

Related commands

.~elated SWis

Related vectors

7H

*Modules
Displays information about all installed relocatablc modules

*Modules

*Modules lists all the system modules in RO~I ond rclocat:Jblc modules in
RAM which arc currently present in the machine.

The command displays the number allocated ro each installed module (this
may change as other modules arc insttlllcd and removed). its position in
memory, the address of its workspace, and its nflmc.

System modules arc stored in ROM, but mt~y still be *UnPlugged, or
replaced by RAM-based modules. The names listed by this command arc the
module titles which arc supplied to other commflnds, cg *RMKill. This
command also lists the base t~ddresscs and workspace :~rc:Js of the modules.

*Modules
No.

1
2

38
39

Position
0380873C
0381FB94

01819034
0182CD74

*ROM Modules

OS_Module (SWI &lE)

None

Workspace
00000000
01800014

00000000
01817304

Name
UtilityModule
FileSwitch

SharedCLibrary
ColourTrans

Modules: • Commands

Syntax

Parameters

Use

Related commands

Related SWis

Related vectors

71R

*RMClear
Deletes relocarable module~ from the relocatable module :-~rea of memory

*RMClear

*RMCiear deletes rclocat:Jble modules that you have specifically loaded
into the RMA and frees their workspace. ROM resident modules are not
deleted in this way. You must usc *UnPlug for this.

RMCieared modules can be restored with *RMRclnit.

*RMRelnit, *UnPlug, *RMTidy

OS_Module (SWI &IE)

None

Modules: • Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

719

*RMEnsure
Checks the presence and version of a module

*RMEnsure <moduletitle> <version number> [<*command>]

<moduleti tle> the title of any currently insrnllcd module
<version number> number against which the version number will be

checked
<*command> a Command Line comm:md

*RMEnsure checks that a module is present and is the given version (or a
more recent one). A command, optionally given as a third parameter, is
executed if the version is too old. This comm:md is usually used in comm::md
scripts or programs to ensure that modules they need arc loaded.

*RMEnsure WindowManager 2.01 *rmload system:Wimp

None

OS_Module (SWI &IE)

None

Modules: · Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

720

*RMFaster
Makes a module faster by copying it from ROM to RAM

*RMFaster <moduletitle>

<moduletitle> the title of any ROM resident module

*RMFaster makes a copy of the relocatable module and places It m RAM.
The module will run faster because RAM can be accessed faster than ROM.

*RMFaster BASIC

None

OS_Module (SWI & I E)

None

Modules:· Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

721

*RMKill
Deactivates and deletes a reloc:Jtablc module

*RMKill <moduletitle>[<instantiation>)

<moduletitle> the title of any currently installed module

*RMKill deactivates the preferred instantiation of a relocatablc module or
the specified insrnntiation if the second argument is used, and releases its
workspace. If located in RAM, it is also deleted. System modules arc
removed until the next hard reset or call to *RMRclnit.

*RM.Kill Debugger

*RMLoad, *ROMModules, *UnPlug, *RMRelnit

OS_Module (SWI &IE)

None

Modules: • Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

722

*RMLoad
Loads and initialises a relocawblc module

*RMLoad <pathname> [<module init string>]

<pathname> the pathname to a file containing a valid
module

<module init string> optional par:1meren; to the module

*RMLoad loads and initialises a rclocatable module. Ir is then available to
the help system, and can provide * and SWI comm:1nds if available.

The optional initialisation can be used by certain modules to install
themselves in a particular way. For example, it might gi ve the amount of
workspace that the module should claim, possibly overriding configuration
information stored in CMOS RAM.

Note that a file loaded by this command (and *R~!Run) must have file type
FFA. If it doesn't, the module handler will refuse to load ir.

*RMLoad Wave Synt h $. Waves . Brassl4

*RMKil\, *ROMModulcs, *UnPl ug, *RMRcl nit, *R~!Run

OS_Modulc (SWI &IE)

None

Modules: • Commands

Syntax

Parameters

Use

Example

Related commands

qelated SWis

Related vectors

123

*RMRelnit
Reinitialises a relocarable module

*RMREINIT <module title> [<module init string>)

<moduletitle>

<module init string>

the title of any currently installed module,
active or otherwise
optional parameters to the module

*RMRelnit reinitialises a relocatable module, reversing the action of
*UnPlug, *RMKill or *RMClear on a ROM resident module. The module is
returned to the state it was in when it \vas loaded.

*RMReinit Debugger

*UnPlug, *RMKill, *RMCicar, *RMLoad, *ROMModules

OS_Module (SWI &tE)

None

Modules: • Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

724

*RMRun
Runs a rclocatable module

*RMRun <pathname>

<pathname> valid parhname for a moduli.: file

*RMRun loads and initiali!'<!s a rdocatable m<XIule. It is :wailablc to the
help system, and c:-~n prO\'ide SW!s and * Comm:mds. The module is then
run, if it can be.

This cnll is equivalent ro :1 c:Jil to *RMLond followed by :m enter operntion
in OS Module. If the module is alrer~dy resident, then it will simply be
entered.

If a module cannot be run, then this commnnd is equivalent to a *RMLor~d
command.

*RMRun My_Module

*RMKill, *ROMModules, *UnPlug, *RMRclnit, *RMLoad

OS_Modulc (SWI & I E)

None

Modules:· Commands

Syntax

Parameters

Use

Related commands

Related SWis

Related vectors

725

*RMTidy
Compacts and reinitialises the RMA

*RMTidy

*RMTidy compacts the RMA (Rclocatablc Module Area), reinitialising <~II
the modules.

All free space is collected into a consecutive chunk of memory. This command
must be used with extreme caution, as it is so drastic in its effects.

*RMClear

OS_Modulc (SWI &IE)

None

Modules: • Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

726

*ROMModules
Displays information about rclocatable modules currently in ROM

*ROMModules

"'ROMModules lists all the system modules in ROM, whether part of the
system or in expansion cards ('podules'), along with their status: active,
dormant or unplugged.

System modules are stored in ROM, but m<~y still be "'UnPlugged, or
replaced by RAM-based modules. The names listed by this command are the
module titles which arc supplied to other commands, eg *RMKill.

*ROMModules
No. Position Module Name Status

1 System ROM UtilityModule Active
2 System ROM FileSwitch Active
3 System ROM Desktop Active

1 Podule 0 Mail Bleep Dormant
2 Podule 0 ROMBoard Dormant

*Modules

OS_Module (SWl &IE)

None

Modules: • Commands

Syntax

Parameters

lse

;xample

Related commands

rlelated SWis

Related vectors

727

*UnPlug
Disables a module

*Unplug (<moduletitle>]

<moduletitle> the title of any currently installed module

The *Unplug command prevents the named ROM module from being
initialised (and hence available for usc). This setting is stored in the CMOS
RAM, and is therefore permanent in its effects until a *RMRclnit is issued.
The workspace of the module is freed. You should usc this command with
caution, otherwise you may find programs stop working because you have
unplugged a module that the program needs to use.

*Unplug without a module title displays a list of the unplugged ROM
modules.

*Unplug RAMFSFiler disables the RA~IFSFiler module

*RMRelnit

OS_Module (SWI &1 E)

None

Modules: • Commands

7?P. Modules: • Commands

Drogram Environment

'ltroduction The program environment refers to the conditions under which a program or
module executes. There arc three aspects to this environment.

• The memory used by the code and allocated for tr:msient worksp:~ce.

• The handlers used by a program or module. A handler is a piece of code
called when certain conditions occur. RISC OS provides a set of default
handlers, so that something valid will occur. Here is a brief list of rhe
kinds of conditions th<Jt we arc talking about:

• an error

• an escape condi tion

• an event

• certain hardware exceptions, such as an unckfined instruction

• a break poinr

• an unused SWl is called

• when a program or module terminates.

• The system vari<~blcs arc a textual way of finding information about
various aspects of the system. There arc several kinds of variables:

• string variables which contain characters <mly

• integer variables which contai n an integer

• macro variables which arc like Strine v:Jri:Jblcs, except that they can
contain references to special characters and other system vari:~bles.

~rogram Environment: Introduction 729

Overview and
Technical Detai ls
Starting a task

Modules

Programs on file

Programs in memory

730

There are several ways of executing a piece of code. You can:

• *RMRun the program

• OS_Module 'Enter' a module

• *Run the program

• *Go, to execute the program in memory

The first two are described in the chapter entitled Modules. They are really
the same thing. When a file is *RMRun, it is loaded into the relocatahle
module area. Its initialisation code is called, so that it can claim workspace
etc, then its start code is called.

A module can also cause its own start entry point to be called if it wants to
become the current application, using OS_Module. BASIC is an example of
this. The *BASIC command is recognised by the OS using the BASIC
module's * Command mble. The OS calls the routine which handles the
*BASIC command, and this routine calls OS_Module with the reason code
'enter'. See the chapter entitled Modules, for details on calling modules.

The third case applies to files which have no file type, or h:1Ve type FF8. In
the first case, the file is loaded at its load address, then it is started as an
application through its execution address. If the file type is FF8, the file is
loaded at &8000 and st'<lrted as an application there.

Finally, if you call a machine code program using the *Go command, it
becomes the current application. (This implies that you shouldn't use *Go to
call RAM-based routines from a language, as the routine can't return - R 14
contains no return address at this point.)

In all of these cases, the program is called in u~er mode, with internJpts
enabled. Where a module is called, R 12 points to the module's private word.

Program Environment: Overview and Technical Details

rransient programs

Ending a task

A file with type FFC (utility) must contain pos•non independent code. When
such a file is *RUN, it is loaded into the RMA ;Jnd executed. This is used
when you want to run a utility and then return to the program environment that
you were in before running it. On entry to a transient program, registers arc as
follows:

RO = pointer to command line
Rl =pointer to command tail
R 12 = pointer to workspace
R 13 = pointer to workspace end (srnck)
R14 =rerum address
User mode, interrupts enabled

The workspace is 1024 bytes long, in the location given by R12 and Rl.3 on
entry. If more is required, it may be allocated from the RMA. The utility
should return using MOV PC,R 14 (freeing any extrn workspace first). It docs
not become the current application and must nor call OS_Exit.

Note that RO points to the first character of the command name, and Rl points
to the first character of the command tail (widl spnces skipped). This will be
a control character if there were no parameters.

When a utility returns, the space it occupies is freed. Utilities are nestable -
you can execute one utility from within another.

Note that utilities are viewed as system extensions. This me:1ns that they must
only use the X form SWis, so that the error h:1ndler is not called by their
actions. A utility can return with an error by setting V and pomting RO at an
error block as usual.

Before describing the calls which control the application program's
environment, it is worth expl:1ining how to leave :1n :1pplicarion. In general, a
simple 'return from subroutine' using MOV PC,R 14 won't suffice. Instead, you
should use a routine called OS_Exit (SWI &11). This passes control back to
a well-defined place, which defaults to the supervisor * prompt, but could
equally be a location in the previous :1pplication.

*Quit is equivalent to a call to OS_Exit.

OS_ExitAndDie (SWI &50) is like OS_Exit, hut will kill :1 named module
as well. This is used when a module is specific to a pnrticular application.

Program Environment: Overview and Technical Details 731

System variables

Naming

Types

732

The system variables, maintained by the operating system in the system heap,
provide a convenient way by which programs can communicate. Variables arc
accessed by their textual name. The name may contain any non-space, non
control character. When a variable is created, the case of the letters is
preserved. However, when names are looked up the case is ignored, and you
can usc the characters'#' and'*'- just like looking up filenames.

You should avoid the uc;c of wholly numeric n:-.mcs for system variables, such
as 123, as this causes difficulties when the GS stnng operations arc used to
look up a variable's contents. In particular, they will always take < 123> to
mean the ASCII cooe 123, and will not attempt to look up the name as a
variable. Sec the chapter entitled Conversions ch:-~prcr for derails of the GS
calls, specifically OS_GSRcad and OS_GSTrans.

There arc several types of ~ysrcm variable:

• String variables can contain any characters you like; the~ arc returned
when the string is read. They can be set with *Set.

• Integer variables arc four-byte signed integers. They can be set with
*SetEval or *SctMacro.

• Macros arc strings that arc passed through OS_GSTrans when the string
is read. This means that if the macro contains references to variables or
other OS_GSReadablc items, the appropriate translation takes place
whenever the variable is accessed. They can be set with *SetMacro

A classic example of using a macro is to set the command line prompt
CLI$Prompt to the current time using:

*SetMacro CLISprompt <sysStime><&20>

Every time the prompt is displayed, it shows the current time, followed
by a space.

• The final type of variable is machine e<:x.lc r0utines. A routine is called
whenever the variable is to be read, and another when it is set. This
allows great flexibtlity in the way in which such variables behave. For
example, you could make a variable directly control a CMOS RAM
location using this technique. Sys$Time is a good example of a code
variable.

Program Environment: Overview and Technical Details

Miscellaneous
environment features

All the above types can be set with OS_SetVarVal (SWI &24) and read
with OS_ReadVarVal (SWI &23).

Any non-code variable can be removed using *Unset. *Show will list the
setting of one or more variables.

OS_GetEnv (SWI &10) is a multi-purpose SWI that provides three useful
pieces of information:

address of the *Command string. This can be processed with
OS_ReadArgs, which is described in the chapter entitled Conversions.

2 the real time that the program was started

3 the maximum amount of memory allocated for the program. This can be
altered with reason code 0 ofOS_ChangeEnvironment.

OS_ WriteEnv (SWI &48) allows you to set the program smrt time and the
command string.

Program Environment: Overview and Technical Details 733

Handlers

SWis

734

Handlers arc short routines used to cope with special condition5 rhat can occur
under RISC OS. Here is a complete list of the handler5:

Handler

Undefined instruction
Prefetch abort
Data abon
Address exception
Error
Calll3ack
BreakPoint
Escape
Event
Exit
Unused SWl
UpCall

All of the calls that install user handlers pass through ChangcEnvironmcntV.
This can be intercepted to stop a subprogr:1m changing parts of the
environment that its parent wanrs to keep: for example, a debugger.

Before reading this section, you should be familiar with the chapters entitled
Software vectors and Hardware vectors, since many of these handlers arc directly
called from these vectors

OS_ChangcEnvironment (SWI &40) is the central SWI for handlers. There
a(e several other routines that perform subsets of its actions. You are strongly
recommended to use OS_ChangcEnvironmcnt in ;my new applications as the
others arc only provided for compatibility.

The other calls are OS_Control (SWI &OF), OS_SetEnv (SWI & 12),
OS_Calll3ack (SWI &15), OS_BreakCtrl (SWI &18) and OS_UnusedSWI
(SWI &19).

OS_ReadDcfaultHandlcr allows you to get the address and derails of any of
the default handlers. This would be used if you wished to set up a well
defined state before running a 5ubprogram: for example, the Desktop docs so.

Program Environment: Handlers

Oetalls of Handlers

Undefined instruction,
Prefetch abort,
Data abort,
Address exception

Error

When a handler is called, you should not expect to be able to sec the
foreground application's registers. You should only rely on those registers
explicitly defined in each handler as being meaningful on entry.

You should take care not to corrupt Rl4_SVC during handler code. This
implies saving it on the stack if you use SWis. Sec the chapter entitled
Interrupts and handling errorsfor details. The details of each of the handlers
follows:

These handlers are all called from hardware vectors. See the chapter entitled
Hardware vectors for a description of them. These handlers are all entered
with the processor in SVC mode.

All of the default handlers simply generate errors, which arc passed to the
current error handler.

The error handler is called after any error has been generated. It is called
by the default owner of the error vector; thus any routines using this vector
should always 'pass it on'. C..ontinuing after an error is not generally
recommended. You should always use the X form SWis if you wish to stay in
control even when an error occurs.

The error handler is entered in User mode with interrupts enabled. Note that
if the error handler is set up using OS_ChangeEnvironment, the workspace
pointer is passed in RO, not Rl2 as is usual for other handlers.

The error buffer (the address of which should be set along with the handler
address) contains the following:

Offset

0-3
4 -7
8 ...

Contents

PC when error occurred
Error number provided with the error.
Error string, terminated with a 0

The default error handler reports the error message and number - although
applications frequently set up their own error handlers. BASIC is one such
example .

. -'rogram Environment: Handlers 735

BreakPoint

Escape

Event

736

This handler is called when the SWI OS_Bret~kPt (SWI & 17) is called. All
the user mode registers are dumped into a buffer (the address of which
should be set along with the handler addre~s) ;mel then the handler is entered
in SVC mode. You can specify a pointer to workspace to pass in Rl2 when
this handler is called.

The following code is suitable to restore the user regi~rers and rerum:

ADR R14 , saveblock
LDMIA R14, {RO Rl4)"

LDR Rl4, [R14,#15*4];
MOVS PC, R14

get address of saved registers
load user registers from block

Note that user R 13,R 14 arc altered
load user PC into SVC Rl4
return to correct address and mode

The default handler displays the message Break point at &xxxxx and
calls OS_Exit.

This handler is called when an escape condition is detected. Sec the ch:-~pter
entitled Character input for details of rhis. You can specify a pointer to
workspace to pass in R12 when this handler is called.

When the handler is entered, registers have the following values:

Rll bit 6 set, implying escape condition
R 12 pointer to workspace, if set up - never contains I
RIJ a full, descending stack pointer

To continue after an escape, the handler should reload the PC with the
contents of R 14. If R 12 contains I on return then the CallBack handler will be
used. Typically (eg for BASIC), the handler will set an internal flag which is
checked by the foreground program.

This handler is called by the default owner of EventV when an event occurs.
You can specify a pointer to workspace to pass in R 12 when this handler is
called.

When the handler is entered the processor is in either SVC or IRQ mode,
with the following register values:

Program Environment: Handlers

Exit

Unused SWI

UpCall

RO event reason code
Rl... parameters according to event code
R 12 pointer ro workspace, if set up - never contains I
Rl3 a full, descending stack pointer

To continue after an event, the handler should reload the PC with the contents
of R 14. If R 12 contains I on return then the Callnack handler will be used.

This handler is called when the SW!s OS_Exit (SWI & II) or
OS_ExitAndDie (SWI &50) are called. It is entered with the processor in
user mode. You can specify a pointer to workspace to pass in R 12 when this
handler is called.

This handler is called by the default owner of the UKSWIV. (If RISC OS
can't decode the number of a SWI into one which it supports directly, it
offers it as a service call to modules. If none of them claim the service, it then
calls the vector UKSWIV. This allows a user routine on that vector to try to
deal with the SWI. If there is no such routine, or the onc(s) that is present
passes the call on, then the default owner of the vector calls the Unused SWI
handler.)

You can specify a pointer to workspace to pass in R 12 when this handler is
called.

When the handler is entered the processor is in SYC mode, with interrupts in
the same state as the caller. The registers have the following values:

Rll SWI number {nit 17 clear)
RlJ SYC stack pointer
RI4 user PC with V cleared

R I 0, R II and R 12 are stacked and arc free for your own use.

This handler is called by the default owner of UpCallV when OS_UpCall
(SWI &33) is called. OS_UpCaiJ (SWI &33) is used to warn your program
of errors and situations that you may be able to recover from. See the
chapters entitled Software vectors and Communications within IUSC OS in the
introductory part of this manual. You can specify a pointer to workspace to
pass in Rl2 when this handler is caiJcd.

Program Environment: Handlers 737

CallBack

Callbacks in more detail

Transient CallBacks

Other CallBacks

738

This handler is called whenever RISC OS's internal CallBack flag is set, and
the system next exits to User mode with interrupts enabled. It uses a buffer
(the address of which should be set along with the handler address) in which
all the registers are dumped when the handler is called. You can specify a
pointer to workspace to pass in R 12 when this handler is called. A more
detailed description follows.

There arc two cypes of CallBack usage under ruse OS:

• Transient callbacks are placed in a list by calling OS_AddCaliBack
(SWI &54). They are used to deal with a specific case, and are called
once before being removed.

• The callback handler is permanent and takes all callbacks that arc not
intercepted by transients. These CallBacks arc explicitly requested by
calling OS_SctCaiiBack (SWI &!B). They can also be implicitly
requested by setting Rl2 to 1 on exit from either an escape or event
handler. There is a system default CallBack handler, but you can of
course replace it using OS_ChangeEnvironmcnt.

Transient callbacks may be called on the system being threaded out of - that
is, when it enters User mode with interrupts enabled. They can also be called
when RISC OS is idling; for example, while it is waitin~; in OS_RcadC.

Transient CallBacks are usually set up by an interrupt routine that needs to
do complex processing that would take too long in an interrupt, or that needs
to call a non-re-entrant SWI. OS_AddCaliBack tells RISC OS that the
interrupt routine wishes to be 'called back' when the machine is in a state that
no longer imposes the restrictions associated with an interrupt routine.

Transient CallBacks can safely be used by many clients.

The CallBack handler is only ever called on the system being threaded out
of - that is, when it enters User mode with interrupts enabled. Unlike
transient CallBacks, it is not called when RISC OS is idle. This means that
you cannot rely on being called back within any given time. You must take
this into consideration before using a CallBack handler.

Also, you must not allow a second CallBack before your first one has
completed; see the Application Notes at the end of this chapter for an example
of how to implement a semaphore to prevent this.

Program Environment: Handlers

Currently active object
pointer

Setting up and
restoring the
environment

The CallBack code is called in IRQ or supervisor mode with interrupts
disabled. The PC stored in the save block will be a user mode PC with
interrupts enabled. Note that if the currently active program has interrupts
disabled or is running in supervisor mode, CallBack is not used.

In the simple case the CallBack routine should be exited by:

ADR Rl4, saveblock

LDMIA Rl4, { RO Rl4) "

LOR

MOVS

Rl4, [Rl4,fl5*4];

PC, Rl4

get address of saved registers
load user registers from block

Note that user R13,R 14 are altered
load user PC into SYC R14

return to correct address and mode

This is a pointer to the address of: the last application started the last error
handler called the last exit handler called It is used by OS_Module to
determine whether a module can be killed.

In order to deal correctly with the various ways in which applications can be
run, and killed off, the following approach has been developed for setting up
the program environment when an application starts, and restoring it when it is
killed.

The basic problem is that if a new application is started 'on top' of the
currently active one, it should completely replace the first, and should
therefore have the same 'parent' environment as the first application. In order
for this to happen, run-time language libraries and BASIC must be written so
that they get themselves out of the way as a new application is started up in
the same task space.

This also applies to machine-code programs which run as applications, for
example modules which run as wimp tasks.

There are two possible approaches:

• Do not set up any handlers at all, and always call the 'X' form of SWis,
to avoid calling the' error handler. If the error handler is called, the
application will be terminated, as the parent error handler will be
invoked.

Program Environment: Handlers 739

Starting an application

If your Error handler is
called

If your Exit handler is
called

If your UpCall handler is
called

740

• Set up Error, Exit and UpCall handlers as described below, so that the
program environment can be restored correctly whe n the progr:~m
terminates. You must provide all three of these handlers if you use any
handlers at all.

When you start an application, you must:

4 Check that there is sufficient memory to start up - if not, call
OS_GenerateError ("Not enough application memory")

5 Set up your handlers using the SWI XOS_ChangeEnvironment; store the
values returned in R 1-RJ so you can later restore the old handlers.

Note that you must store the previous values not only for Exit, Error and
UpCall handlers, but also for any other handlers that arc set up.

If your error handler is called and you want to call the 'external' error
handler (eg. BASIC if '-quit' was on the command line), you should:

6 restore all handlers to their original values (R 1 - RJ for each)

7 call OS_General'cError

If your exit handler is called you should:

8 restore all handlers to their original values (R 1 - R3 for each)

9 call OS_Exit

If your UpCall handler is called and RO = UpC::~II_NewApplication (256),
you should:

10 restore all handlers to their original values (R 1 - R3 for each)

11 return to the caller, preserving all registers (ie carry on and start the new
application)

The approach described ensures that it is not possible for the application to
be terminated without it first restoring the handlers to their origin::~ I v::~lues.

Program Environment: Handlers

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Read/write handler addresses

RO =address of error handler, or 0 to read

OS Control
(SWI &OF)

R I = pointer to buffer for the error handler, or 0 to read
RZ = address of escape state change handler, or 0 to read
RJ = address of event handler, or 0 to read

RO = previous error handler address
R I = previous buffer address
RZ = previous escape routine address
R3 = previous event handler address

Interrupts arc not enabled
Fast interrupts are enabled

Processor is in IRQ or SYC mode

SWI cannot be re-entered as interrupts are disabled

OS_Control sets some of the exception handlers. The addresses of the error
handler, error handler buffer, escape state change handler and event handler
are passed in RO- RJ. Zero for any of these means no change. ie. a read-only
operation.

Note that the call OS_ChangeEnvironment provides more control over the
handlers than this call, and should be used in preference. (OS_Control
actually uses OS_ChangcEnvironment.)

OS_ChangeEnvironment (SWI &40)

ChangeEnvironmentY

Program Environment: SWI Calls 741

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

74?

Read environment parameters

RO = address of the * Command string

OS GetEnv
(SWI &10)

R 1 = permitted RAM limit (ie. highest address available + I)
R2 = address of the real time the program was started (5 bytes)

Interrupt status is unaltered
Fast interrupt status is unaltered

Processor is in SVC mode

SWI is re-entrant

This SWI reads some information about the program environment. The value
returned in RO is the address of a copy of the command line. Rl returns the
address of the byte above the last one available to the application. The five
bytes pointed to by R2 give the real time. ic. centiseconds since 00:00:00 01-
Jan-1900.

The memory limit described in Rl can be altered by reason code 0 of
OS_ChangeEnvironment.

OS_ WritcEnv allows you to set these values.

OS_WriteEnv (SWI &48), OS_ChangeEnvironment (SWI &40)

None

Prnnr::~m ~nvirnnml')nf· ~WI r.::~llc:

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Pass control to the most recent exit handler

RO =pointer to error block
R 1 = "ABEX" (&58454241) if return code is to be set
RZ =return code

never returns

Interrupt status is unaltered
Fast interrupt status is unaltered

Processor is in USR mode

SWI is not re-entrant

OS Exit
(SWI &11)

When OS_Exit is called, control returns to the most recent exit handler
address. The nASIC statement QUIT performs <~n OS_Exit. &fore executing
OS_Exit, however, you should restore any of the h:mdlers changed in scarring
the application.

If the exiting program wishes to return with a result code, it must set Rl to the
hex value shown above, and RZ to the desired value. Non-error results must
be in the range 0 to the value of the variable Sys$RCLimit. The return value is
assigned to the variable Sys$ReturnCode, which c;:~n be interrogated by any
program using OS_RcadVarVal.

To return with an error, exit with a value less than zero or greater than
Sys$RCLimit (having restored the previous error h;:~ndler, r~s indicated above).
This gives the error Return code limit exceeded (&I EZ), but still sets

the variable to the required value.

OS_ExitAndDie (SWI &50)

None

Program Environment: SWI Calls 743

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

744

Set environment parameters

RO =address of the handler for OS_Exit, or 0 to read

OS SetEnv
(SWI &12)

Rl =address of the end of memory limit for OS_GetEnv to read, or 0 to read
R4 = address of handler for undefined instructions, or 0 to read
R5 = address of handler for prcfetch abort, or 0 to read
R6 = address of handler for data abort, or 0 to read
R 7 = address of handler for address exception, or 0 to read

RO = address of previous handler for OS_Exit
RI =address of previous end of memory limit for OS_GerEnv to read
R4 =address of previous handler for undefined instructions
R5 = address of previous handler for prefetch abort
R6 = address of previous handler for data abort
R7 =address of previous handler for address exception

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_SetEnv sets several of the handlers for a pro~rnm .

Note that the call OS_ChangeEnvironment provides a superset of the facilities
that this call provides, and should be used in preference. In fact, this call uses
OS_ChangeEnvironment.

OS_ChangeEnvironment (SWI &40)

None

Program Environment: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Set-up the CallBack handler

RO =address of the register save block, or 0 to read
Rl =address of the CallBack handler, or 0 to read

RO = address of previous register save block
Rl =address of previous CallBack handler

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS CallBack
(SWI &15)

OS_CallBack sets up the address of the CallBack handler and the register
save block, zero for either value meaning no change.

Note that the call OS_ChangeEnvironment provides more control over the
handlers than this call, and should be used in preference. (OS_Callnack
actually uses OS_ChangeEnvironment.)

OS_ChangeEnvironment (SWI &40)

ChangeEnvironmentV

Program Environment: SWI Calls 745

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

746

OS BreakPt
(SWI &17)

Cause a break point trap to occur and the BreakPoint handler robe entered

I ntermprsra tus is una I tered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

When OS_l3reakPt is executed, all the user mode registers arc saved in a
block and the 13reakPoint handler is called. The saved registers are only
guaranteed to be correct for user mode.

The default handler displays the message Break point at &xxxxx and
calls OS_Exit.

This SWI would be placed in code by the debugger at required breakpoints.

OS_BK-akCtrl (SWI &18)

None

Program Environment: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Setup the BreakPoint handler

OS BreakCtrl
(SWI &18)

RO = address of the register save block, or 0 for no change
R 1 = address of the control routine, or 0 for no change

RO = address of previous register save block
R 1 = address of previous control routine
V is always clear

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_BreakCtrl sets up the address of the nreakPoint handler and the register
save block, zero for either value meaning no change.

Note that the call OS_ChangeEnvironment provides more control over the
handlers than this call, and should be used in preference. (OS_BreakCtrl
actually uses OS_ChangeEnvironment.)

OS_BrcakPt (SWI &17)

ChangeEnvironmentV

Program Environment: SWI Calls 747

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

748

Set-up the handler for unused SWis

OS UnusedSWI
(SWI &19)

RO = address of the unused SWI handler; or 0 for no ch;mge

RO = address of previous unused SWI handler

Interrupt status is unaltered
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not enabled

OS_UnusedSWI sets up the address of the UnusedSWI handler, zero
meaning no change.

Note that the call OS_ChangeEnvironmcnt provides more control over the
handlers than this call, and should be used in preference. (OS_UnuscdSWI
actually uses OS_ChangeEnvironment.)

OS_ChangeEnvironment (SWl &40)

ChangeEnvironmentV

Proaram Environment: SWI Ce~lls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Cause a call to the CallBack handler

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

OS SetCallBack
(SWI &lB)

SWI cannot be re-entered because interrupts are disabled

OS_SetCallBack sets the CallBack flag and so cau!ies entry to the CallBack
handler when the system next exits to user mode code with interrupts enabled
(apart, of course, from the exit from this SWI). This SWI mny be used if the
code linked into the system (via a vector or as n SWI handler, etc) is required
to do things on exit from the system.

OS_CallBack (SWI &15)

None

Program Environment: SWI Calls 749

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

750

Read a variable value

OS ReadVarVal
(SWI &23)

RO = pointer to name, may be wildcarded (* and#)
Rl =pointer to buffer
R2 = maximum length of buffer
R3 =name pointer (or 0 for first call).
R4 = 3 if an expanded string is to be returned

RO, R 1 preserved
R2 = number of bytes read
R3 = new name pointer, string is null-terminated
R4 = type of variable (string, number or macro)

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is re-entrant

OS_ReadVarYal reads a variable and returns its value and its type. On
entry, R3 should be 0 the first time the call is made for a wildcarded name,
and thereafter preserved from the previous call. This enables all matches of
a wildcarded name to be found. On exit, R3 points to the name of the
variable found. The XOS_ReadVarYal form of the call should be used if
you don't want an error to occur after the last name h<1s been found.

You can call XOS_ReadVarVal to check for the existence of a variable by
setting R2 to a value less than zero (bit 31 set) on entry. If it is still negative
on exit, the variable exists; if it is zero, the variable does not exist.

The type of the variable read is returned in R4 as follows:

Value

YarType_String (0)
YarT ype_Number (1)
YarType_Macro (2)

Type

String
4 byte (signed) integer
Macro

Program Environment: SWI Calls

Related SWis

Related vectors

R4, if set to 3 on entry, indicates that a suitable conversion to a string should
be performed. String variables are unaltered, numbers arc converted to
(signed) decimal strings, and macros are OS_GSTranscd.

If R4 isn't 3 on entry, the un-OS_GSTransed version of a macro is returned,
and the four-byte binary of a number is returned.

See the application notes at the end of this chapter for an example of reading
a variable.

OS_SetVarVal (SWI &24)

None

Program Environment: SWI Calls 751

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

752

Write a variable value

OS SetVarVal
(SWI &24)

RO = pointer to name. This can be wildcarded for update/delete
Rl = pointer to value
R2 = length of value. Negative means destroy the variable
R3 = name pointer or 0 for first call
R4 = type

RO = preserved
R I = preserved
R2 = preserved
R3 = new context pointer
R4 = type created if expression is evaluated

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SW! is not re-entrant

OS_SetVarVal either creates, updates or destroys a variable. The name may
be terminated by any character whose ASCII value is 32 or less and may be
wildcarded if it is to be updated or deleted (ie. if it already exists).

The pointer to the value to be assigned in the case of create/update is given
by R I. If it is a string then it must be terminated by a linefeed (ASCII 10) or
carriage rerum (ASCII 13). The interpretrttion of the value depends on the
type given in R4 as follows:

Value

VarType_String
VarType_Number
VarType_Macro

Type
(0)
(I)
(2)

OS_GST rans the given value
Value is a 4 byte (signed) integer
Copy value (may be OS_GSTransed on usc)

Program Environment: SWI Calls

VarType_Code

VarT ype_Expandcd(J) The value is a string which should be
evaluated as an expression using
OS_EvaluateExprcssion, and assigned to a
number or string variable, depending on the
expression type

VarType_Code (16) Special case (sec below)

If the call is successful, RJ is updated to point to the new context so allowing
the next match of a wildcarded name to be obtained on a subsequent call. R4
returns the type created if an expression was evalu:Jted (ie . if R4 was 3 on
entry).

R2 must be negative on entry to delete a variable. Also, to delete a typc-16
variable, R4 should contain 16 on entry.

When R4 is set to 16 on entry (and R2 >= 0) a code variable may be created.
In this case Rl is the pointer to the code fragment associated with the
variable, and R2 is the length of the code fragment. This code must be word
aligned and takes the following format:

Offset

0
4
8 ...

Contents

Branch instnJction to entry point for write operation
Entry point for read operation
Body of code

Values are always written to (and read from) code variables as strings. The
entry for the write operation is called whenever the variable is to be set, as
follows:

On entry

Rl =pointer to the value to be used
R2 = length of value ·

On exit

Rl, R2, R4, R10- Rl2 may be corrupted

Program Environment: SWI Calls 753

Errors

Related SWis

Related vectors

754

The entry for the read operation is called whenever the variable is to be read
by a call to OS_ReadVarVal, as follows:

On entry

On exit

RO = pointer to value
R I = corrupted
R2 = length of value

Both entries are called in SVC mode. Therefore if any SW!s are used, Rl4
must be saved on the stack so that it does not become corrupted.

See the application notes at the end of this chapter for an example of a code
variable.

Note that when a function key is input, the appropr.iate variable key$n is read
using OS_ReadVarVal. Therefore by creating your own code variables with
these names, you can cause the reading of a function key to cause a routine to
be called instead of just a string being read.

OS_SetVarVal can return the following errors:

• Bad name

• Bad string

• Bad macro value

• Bad expression

• Variable not found

• No room for variable

• Variable value too long

• Bad variable type

OS_ReadVarVal (SWI &23)

None

Wildcards/control characters in name when
creating

OS_GSTtans unable to translate string

Control characters in the value string (Rl)

Expression cannot be evaluated

For deletion or update

Not enough room ro create/update it (system
heap full)

Variables are limited to 256 bytes

Program Environment: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Install a handler

RO = handler number

OS_ChangeEnvironment
(SWI &40)

R 1 = new address, or 0 for no change
R2 = R12 with which to call the routine, or 0 for no change
R3 = buffer pointer, if appropriate

RO preserved
R 1 = previous address
R2 = previous R 12
R3 = previous buffer pointer

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_ChangeEnvironment is a single routine which performs the actions of
OS_Control, OS_SetEnv, OS_Cai\Back, OS_BreakCtrl, and OS_UnusedSWI.
In fact, all of those routines usc this call. In new programs, you should always
use this call in preference to the earlier ones.

For full details of the handlers, sec the section earlier in this chapter.

On entry, RO contains a code which determines which particular handler's
address is to be set up. The new address is passed in Rl. RO also determines
whether R2 and R3 are relevant or not. This is summarised in the t:1ble below:

Program Envi ronment: SWI Calls 755

Related SWis

Related vectors

756

RO Handler R2 R3

0 McmoryLimit Ignored Ignored

1 Undefined ins. Ignored Ignored
2 Prefetch abort Ignored Ignored

3 Data abort Ignored Ignored

4 Address exception Ignored Ignored

5 Other exceptions Ignored Ignored

6 Error RO when called Error buffer address

7 CallBack R 12 when called Register buffer address
8 BreakPoint R 12 when called Register buffer address

9 Escape R 12 when called Ignored
10 Event R12 when called Ignored
11 Exit R 12 when called Ignored
12 Unused SWI R 12 when called Ignored

13 Exception registers Ignored Ignored
14 Application space Ignored Ignored
15 Currently active object Ignored Ignored
16 UpCall R 12 when called Ignored

'Other exceptions' (handler 5) is for future expansion.

Handler 13 sets the address of the area in memory where the registers arc
dumped when one of the exceptions (1 • 5) occurs, if the default handlers are
used.

Note that in order to perform its function, OS_ChangeEnvironment vectors
through ChangeEnvironmentV. A routine linked onto this vector can stop the
change from happening by setting R1 (and if appropriate R2, R3) to zero and
passing the call on. See also the chapter entitled Software t~ectors.

OS_Control (SWI &OF), OS_ScrEnv (SWI &12), OS_CallBack (SWI &15)
OS_BrcakCtrl (SWI &18), OS_UnuscdSWI (SWI &19)

ChangeEnvironmentV

Program Environment: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

OS WriteEnv
(SWI &48)

Set the program environment command string and start time

RO =pointer to environment string
RI =pointer to start time

RO = preserved
R I = preserved

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SYC mode

SWI is re-entrant

This call sets the string that an application would read as its command string,
containing parameters for the application. This SWI also sets the start time,
which is the real-time, stored as a 5 byte value.

This SWI is mainly used for dcbuggers.

OS_GetEnv (SWI &10)

None

Program Environment: SWI Calls 757

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

758

OS ExitAndDie
(SWI &50)

Pass control to the most recent exit handler and kill a module

RO = pointer to error block
Rl = "ABEX" (&58454241) if return code is to be set
R2 =return code
RJ =pointer to module name

never returns

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This SWI is like OS_Exit, except that it will kill a module before exiting. R3
points to a string containing its name.

OS_Exit (SWI &11)

None

Program Environment: SWI Calls

On entry

On exit

Interrupts

?rocessor Mode

Re-entrancy

Use

Related SWis

Related vectors

Add a transient callback to the list

RO = address to call
Rl =value ofR12 to be called with

RO = preserved
R 1 = preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS AddCallBack
(SWI &54)

A transient callback is placed on a list of tasks who want to be called as soon
as RISC OS is not busy. Usually, this will be just before returning from a
SWI or while waiting for a key and so on.

This SWI will place a transient routine on that list. It is usually called from
an interrupt routine that needs to do complex processing that would take too
long in an interrupt, or that needs to call a non-re-entrant SWI. It is usually
called from an interrupt routine that needs to do complex processing that
would take too long in an interrupt, or that needs to call a non-re-entrant
SWI. Note that it is not necessary to call OS_SctCallBack. Using this SWI
means you want to be called. OS_SetCaiiBack is only needed when using the
callback handler.

A routine called by this mechanism must preserve all registers and return by
MOY PC, Rl4.

None

None

Program Environment: SWI Calls 759

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

760

OS ReadDefaultHandler
(SWI &55)

Get the address of the default handler

RO =reason code (0- 16)

RO = preserved
Rl =address of default handler
R2 = workspace address
R3 = buffer address

Interrupt status is unaltered
Fast interrupts arc enabled

Processor is in SVC mode

SWI is re-entrant

Using the same handler nu~ber in RO as those in OS_ChangeEnvironmcnt,
this SWI returns details about the default handler.

Zero in R l, R2 or R3 on exit means that it is not relevant.

OS_ChangeEnvironment (SWI &40)

None

Program Environment: SWI Calls

*Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Go
Calls machine code at a given address

*Go [<hexadecimal address>] [; environment]

<hexadecimal address>
; environment

address of machine code to call
string to pass to machine code

This command is followed by the address of the machine code to call. If the
address is omitted, it defaults to &8000, which is where application programs
(such as the C compiler) are loaded.

*Go enters an application, and you cannot usc it to run machine code
subroutines.

*Go 9000

None

None

None

SrcList Call machine code at &9000, passing it the
string 'SrcList'

Program Environment: ·commands 76~

Syntax

Parameters

Use

Related commands

Related SWis

Related vectors

762

Exit from current application

*Quit

None

*Quit

Exits from the current application- that is, it returns to the previous context.

*GOS

None

None

Program Environment: *Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Run
Loads and executes a file

*Run <filename> (<parameters>}

<filename>
<parameters>

a valid pathname specifying a file
a Command Line tail

*Run loads and executes the named file, together with a list of parameters, if
appropriate.

The filename which is supplied with the *Run command is searched for in the
directories listed in the system variable Run$Path. By default, Run$Path is set
to ',%.'. This means that the current directory is searched first, followed by the
library.

The file's rype (BASIC, Text etc) is looked for:

• If the file has no file type, it is loaded at its own load address, and
execution commences at its execution address.

• If the file has a file type of &FFC or &FF8 it is treated specially - sec
the chapter entitled FileSwitch.

• Otherwise the Alias$@RunType variable corresponding to the file type is
looked up to determine how the file is to be run. A BASIC file has a file
type of &FFB, so the variable Alias$@RunType_FFB is looked up, and
soon.

*Run my_prog

*Run my_prog my_data

*Load, *Exec

None

None

my_data is passed as a parameter to the
program my_prog. The program can then usc
this filename to look up the data it needs.

Program Environment: ·commands 763

Syntax

Parameters

Use

764

*Set
Assigns a string value to a system variable

*Set <varname> <value>

<varname> a variable name, or a wildcard specification for a single
variable name

<value> this parameter depends on the system variable referred to in
the <vamame> specification, and is GSTranscd before use

*Set assigns a string value to a system variable, like an assignment statement
in a programming language. For example:

*Set varname text

assigns the string 'text' to the variable varname.

Another use for the *Set command is to change the name of a command to one
which is more convenient for the user:

*Set Alias$<name> <cname>

establishes <name> as an alternative name for the comm<~nd <cname>; for
example after:

*Set Alias$Aid Help

the command *Aid is now a synonym for *Help; both commands access the
help system.

The command* Show Alias$* lists all aliases. Another example is:

*Set Alias$Mode Echo 1<22>1<%0>
*Mode 12

The command implements a new command Mode, which sets the screen to
mode 12 (in the above case). The Echo command reflects the string which
follows it; I <22> generates the ASCII character 22, Ctrl V, which is
equivalent to the VDU command to change mode. I <%0> reads the first
parameter from the command line, and generates the corresponding ASCII
code.

Program Environment: *Commands

Example

Related commands

Related SWis

Related vectors

*Set Sys$Year 1988

*SetEval, *SetMacro, *Unset

OS_GSTrans (SWI &27)

None

Program Environment: ·commands 765

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

766

Evaluates an expression, assigning it to a system variable

*SetEval <varname> <expression>

<varname>
<expression>

a valid variable name

a valid Command Line expression

*SetEval

*SetEval evaluates an expression and assigns the value to a system variable.

*Set rate 12
*SetEval rate rate + 1
*Show rate
rate (Number) : 13

*SetEval fred "jim"+"sheila "

*Set, *SetMacro, *Unset, *Eva!

None

None

Program Environment: ·commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*SetMacro
Assigns a macro value

*SetMacro <varname> <value>

a valid variable name <varname>
<value> value to be GSTransed at read rime

*SetMacro assigns a value to a system variable. The parameters making up
the value are not interpreted when the command is given, but each time the
variable is used.

*SetMacro CLI$Prompt "<Sys$Time> "
13: 43:17 system time replaces existing prompt
13 : 4 3: 19 Return pressed two seconds later

This resets the Command Line prompt, which appc:m as the first item on each
line, to be the current time whenever the prompt is given. Compare this with
using the *Set command:

*Set fred <Sys$Time>
*Show fred
FRED 13:43:59

the* Show command issued five minutes later will produce:

*Show fred
FRED 13:43:59

Notice that the time is fixed at the time the *Set command is last used, in
contrast to the* SetMacro command.

*Set, *SetEval, *Unser

None

None

Program Environment: ·commands 767

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

768

*Show
Displays the list ci system variables

*Show [<variablespec>)

<variablespec> a variable name or a wildcard specification for a set
of variable names

*Show <name> displays the name, type and current value of any system
variables matching the name given as a parameter. These include the 'special'
system variables, which may be altered, but which cannot be deleted.

If no name is given, all system variables are displayed.

*Show
*Show CLI$Prompt
Show Alias$

lists all system variables

lists all aliases

*Set, *SetEval, *SetMacro

None

None

Program Environment: Using system variables

·.:::
:·:

Syntax

Parameters

Example

Related commands

Related SWis

Related vectors

*Unset
Deletes a system variable

*Unset <varname>

<varname> any currently Set system variable, which may be specified
using wildcards.

*Unset My_var

*Set, *SetEval, *SetMacro

None

None

Program Environment: Using system variables 769

Application
Notes
Reading a variable

Code variable

770

Here is a short example of reading a variable using OS_ReadVarVal:

;Print all syss
ADR
MOV

.loop
ADR
MOV
SWI
MOWSS
MOV
swr
SWI
a

.strName

variable ra-cs
Rl, va I Buffer
R3, 10

RO, strNamc
R2, lbuf!erLen
"XOS ReadVarVal"
PC,R14
RO, R3
"OS_Wrl rcO "
"OS NewLt r.c••
loop

EQUS "SYSS •" • CHRSO

;Buffer to olace val~e
; !rdt 'r~l cor.~rxt

;Wildcarded name to find
; Lengt~ of value buf!er
;Non-error reporting one
;Return and c!ear V
;Get address of name
;Print it
;and r~ew line
;aq;~ln

13clow is a complete example of a program to create a variable called Mode.
The read action is to return the current display mode, and the write action to
to set the mode.

. start ADR
AOR
MOV
MOV
MOV
SWI
MOV

.code
B

.readCode
STMF"O
MOV
SWI
MOV
AOR
MOV
SWI
MOV

LOMFD

.writeCode
STMFO
SWI

RO, varNa me
Rl, code
R2, l endCoce-code
R3, 10
R4, J&l 0
"OS_SetVarVal ''
PC, R! 4

writeCone

Rl3!, !R14)

RO, 1'87
•xos Byte•
RO, R2

Rl, butter
R2, 14

;Polntrr to the name
;Start of code body

;Length o! code body
;Context pointer
; 'special ' type
; Creatc it
;~eturr.

;Branch to write code

;Save return address
;OS Byte rcad mode r.:J:"ber

;Mode 1 n RO for conversion
;Buf fer for ASCII conversion
;Max lcr o' buffer

•xos BlnaryToDec!mal"
RO, Rl ;Po inter In RO

;length already ln R2
;Return Rl3!, I PC I

Rl3!, !Rl41
·xos_ReadUnsign~d"

;Save return address
;Rl set correctly already

Program Environment : Application Notes

OS_AddCaiiBack

SWIVC ' 20100+22
MOWC RO,R2
SWI VC "XOS_Wr i t eC"
LOMfD R1 3 ! , (l'C)

• buffer
EOUD 0

.endCoda

. varName
EQUS ''Mode ••

; VOU mode chan9e
; Ge t 1nteqe r read in RO
;Do mode c hanqe
; Re turn

;Bu f!or fo r strin9 conversion

;Name ot va riable

The routine at 'start' creates the variable. Obviously as the code body is
copied into the system heap, it must be position independent. The two routines
readCode and writeCode are called whenever an access to the variable is
made. For example, a *Set Mode command will call the write code entry,
and *Show sys$mode or *Echo <Mode> will call the read entry.

Notice that in the body ci the code variable, only XOS_ SW!s are used. This
is because it is important that errors are not generated when the read or write
code executes. A more rigorous version of the code above would check V after
each SWI and rerum if it was set.

The next example shows the use of OS_AddCa1113ack; it prints "Run away!"
after 2 seconds:

OIH coda 100
P' •coda
[

.ala rm STHfO r13!, (rl4)
swr •xos_writes•
EQUS "Run away ! "
EQUB 10: EQUB 13 :EQUB 0
ALIGN
LDHfO r13 ! , (rlS)

,timer STMfD r13! , {r O, rl 4)
MOV rO, rl2

swr •xos_AddCallBack"
LDMfO r13l , (r O, r151

set up for us by BASIC bit
rl2 i s not used in alarm, so rl here i s don't-care

SYS • os_callA!ter•, 2oO, t1mer , alarm

Program Environment: Application Notes 771

A CallBack handler

772

The final example shows a callback handler, with a semaphore to prevent
recursive callback; it prints "Run away!" when mouse buttons arc pressed.

DIM code 200
P\=code
r
. sema EQUB 1

ALIGN
.saveblock :) :P\=P\+16'4: [
.callback ; entered here in a privileged mode, with interrupts disabled

; first thing to do is e~able IRQs

.events

TEQP rl5, 13 ; force svc mode, IRQs on .
SWI "XOS_WriteS"
EQUS "Run away! "
EQUB lO:EQUB 13:EQUB 0
ALIGN
ADR rl4, saveblock
LDMIA r14, (r0-r14}"
TEQP rl5, 13+(1<<27)
MOVNV rO, rO
MOV rl4, fl
STRB rl 4, sema
LOR rl4, saveblock+15*4

MOVS rl5, rl4
CMP rO, flO
MOVNES rl5, rl4
STMFD rl3! , (rl4}
LDRB rl2, sema
MOV r14, tO
STRB rl4, sema
LDMFO r13!, (r15}

most registers re loaded
disable IRQs for sema update
and return

must not allow another callback request
until the stashen PC is s"fe
return, enablelnq IRQs etc
mouse button state change?
no - run away

possibly request callback

and disable any futher requests
until that one serviced.

SYS"OS _ ca 11 Back •, savebl ock, callback , 0 TO osave, ocall
REM note that we aren't using r12 in the callback handler;
REM if this was in a module, for example, sema would be in the workspace,
REM and we would have to access it rl2-relative; r12 would therefore be
REM set to be the workspace pointer on entry .
SYS "OS_ChangeEnvironment ",lO,events,O TO ,oldev
•fx 14,10
REPEAT UNTILINKEY -1: REM loop until shift
*fxl3,10
SYS "OS_ChangeEnvironment",lO,oldev,O
SYS "OS_CallBack" ,osave,ocall , O
REM note that in both the above calls , the R12 values are e xplicitly left
REM alone, because we didn't use them earlier.

Program Environment: Application Notes

Memory Management

Introduction This chapter describes the memory management in RISC OS. This covers
memory allocation by a program or module as well as using the MEMC chip
to handle how memory is mapped.

In many environments, such as BASIC and C, you can use the language's
intrinsic memory allocation routines, which usc the calls described in this
chapter transparently. For information, refer to Wimp_SiotSize in the
Window Manager part of this manual.

Similarly, small, transiently loaded utilities may not require any memory
over the 1024 bytes they arc automatically allocated. Some programs and
modules, however, will require arbitrary amounts of memory, which can be
freed after use. For example, filing systems, specialised YOU drivers such as
the font manager and so on. The memory manager provides simple allocation
and dcallocation facilities. Rclocarable modules can use this manager either
directly, to manipulate their own private heap, or indirectly using the module
support calls.

A block of memory can be set up as a heap. This is a structure that allows
arbitrary parts of the block to be allocated and freed. A program simply
requests a block of a given size and is given a pointer to it by the heap
manager. This block can be expanded or contracted or freed by using this
pointer as a reference.

The part of the screen RAM that is not visible on the screen is also available
as a temporary buffer. This memory is temporarily available because of the
way that vertical scrolling is done.

One of the other memory resources available is the battery-backed CMOS
RAM. This is used to hold default system parameters while the power is off.
Modules, applications and users may use spare locations in CMOS RAM for
their own purposes.

Memory Management: Introduction 773

774

The MEMC chip controls how logical addrcs,c;cs (those used by programs or
modules) arc mapped into the physical memory location to use. Numerous
calls arc used to control how it does this, rhouf.(h generally this is something
that most programs would not want to do.

Memory Management: Introduction

Jverview

ieap manager

~eap fragmentation

RISC OS contains a heap management system. This is used by the operating
system to allocate space within the relocatable module area and also to
maintain the system heap. A heap is just an area of memory from which bytes
may be allocated, then deallocated for later use. An area can also be
reallocated, meaning that its size changes.

The heap manager is also available to the user. You provide an area of
memory which is to be used for the heap, which can be any size you require. If
you are a module, then the heap would be a block within the RMA, and if
you are a program, then it would be within the application space.

Thus, it would be a heap within a heap. ie. A block in the RMA, for example,
would be allocated by a module and then declared as a heap. In theory, this
process could continue indefinitely, but in practice this is as far as you need to
go.

At the start of a heap, the heap manager sets up the heap descriptor, which is
a block containing information on the limits of the heap, etc. This descriptor is
updated by the heap manager when necessary.

When a block within this heap is required, a request is made to the heap
manager, which returns a pointer to a suitable block of memory. The heap
manager keeps a record of the total amount of memory which is free in the
heap and the largest individual block which is available.

The heap management system does not provide garbage collection. This is the
technique of moving blocks of allocated memory around so as to maximise the
contiguous free space and avoiding excessive fragmentation of the heap.

Also, the heap management system will never attempt to move a block within
the heap, since it has no knowledge of whether the block contains pointers that
need to be relocated, or whether there arc any pointers to the block which
need updating. Hence, unless an area d contiguous free space of the size
requested is available, a request for a block will fail.

Memory Management: Overview 775

MEMC control

SCreen memory

Battery-backed CMOS
RAM

776

MEMC maps logical onto physical addresses. To do this, it maintains a table
of 128 entries that map a given memory block to a particular address.
Generally, the system will take care of the operation of this mapping for you.
Calls are provided to allow you to read this mapping and alter it, but you
should have a very good reason to do so, and be certain of what you are doing.

The vertical scrolling technique used under RISC OS is to change the memory
location that the screen starts at. This means that part of the screen memory
may be unused, depending on the screen mode and the amount of memory
reserved. You can use this memory temporarily, as long as you don't cause any
output that may scroll the screen. Also remember that this memory is limited
to one program using it at a time, so it may not be available every time you
request it. Omsequently, you cannot count on it being there when writing a
module or application.

A block of 240 bytes of battery-backed CMOS RAM is available under
RISC OS. Each location has a specific meaning and should not be directly
modifed unless you are sure of the meaning of the value. Many of these
locations are changed indirectly using the *Configure commands. These can be
found throughout this manual, in the chapter appropriate to their function.

Some bytes are not allocated, and are reserved for users and applications to
use. If you want to use one or more of the application bytes, you should
request a location in writing from Acorn Computers. This is so that different
applications don't accidentally uoc the same location.

Memory Management: Overview

Technical Details

Heap Manager

Internal format of the
heap

The heap is controlled by a single SWI, OS_Heap (SWI &lD). This has a
reason code and can perform the following operations:

Reason code Meaning

0 Initialise heap
1 Describe heap
2 Allocate a block from a heap
3 Free a block
4 Change the size of a block
5 Change the size of a heap
6 Read the size of a block

A description of the structure used by the heap manager is given below. It
should be noted that this structure is not guaranteed to be preserved between
releases of the software and should not be relied upon. It is given purely for
advanced programmers who may want to interpret the current state of the
heap when testing and debugging their own code.

The heap descriptor is a block of four words:

&00 Special heap word

&04 Free list offset

&08 Heap base offset

&OC Heap end offset

The 'special' heap word contains a pattern which distinguishes correct heap
descriptors. The pattern is made up of the characters 'Heap' - which is
&70616548 in hex.

All other words are offsets into the heap. This means that the heap is
rclocatable unless you place non-rclocatable information in it.

Memory Management: Technical Details 777

778

The free list offset is an offset to the first free block in the heap, or zero if
there are no free blocks. If the word is non-zero, the first free block is at
address:

heap start + free list offset + 4

The other entries are offsets from the stan of the heap which refer to
boundaries within the heap structure. The heap is delimited as follows:

low memory

heap start

~

free list points into here
somewhere, or is zero

I heap blocks unused space 1 high memory

1--------L-- --4---- -----lt
internal information heap base heap end

Blocks in the free list have information in the first two words as follows:

• Word 0 is the link to the next free block or 0 if at the end

• Word 1 is the size of this block (including these two words)

Allocated blocks start with a word which holds the size of the allocated
block. The pointer returned by SWI OS_Hcap when a block is allocated
actually points to the second word which is the start of the memory available.

Allocation forces the block size to be a multiple of eight, to ensure that no
matter what you do, the fragments can always be freed . Therefore, the
minimum size of area that can be initialised is 24 bytes (16 for the fixed
information and 8 for a block).

Memory Management: Technical Details

Logical memory map

Setting up the memory
map

The organisation of the logical address space is currently as follows:

32M
0-480K Configured

/Dynamic

Cursor I system space I sound DMA 32K

31M

28M

24M

20M

16M

32K

0

System heap and supervisor stack

Relocatable Module area (RMA)

Sprite area

RAM disk

Application workspace

System workspace

32K-3M Configured
/Dynamic

0-4M Configured
/Dynamic

0-4M Configured
/Dynamic

0-4M Configured

Dynamic

32K

You must not assume that any of the above addresses will remain fixed
(save for the base of application workspace). There are defined calls to read
any addresses you need, and you must use them.

The memory map is set up on hard reset as follows:

• The permanent 32K allocations for system workspace at addresses
&0000000 and & 1 FOOOOO (31 Mbytes) are made, as well as some other
fixed allocations (such as an initial part of the system heap).

• Then space is allocated to the various adjustable size regions, such as the
screen., the system heap, the RMA, etc. Some of these have an absolute
configured size, such as the screen. This is allocated in full. For other
regions (such as the system heap and RMA), the configured size is the
amount of free space that will be left; these only have a minimal
allocation made at this stage.

Memory Management: Technical Details 779

Example memory
allocation

Altering the memory map

780

• The rest of mermory is then allocated to the application workspace, from
address &8000 up.

• System ROM and expansion card modules are then initialised.

• Finally, the regions that have a configured free space get allocated. First
they are shrunk as far as possible (to ensure as close to 0 bytes free as
possible), then a block of the configured size is requested and freed, so
that the heaps contain as close to the configured free space as possible.

Here is an example of how memory might be allocated given some typical
RAM size allocations on an A310 (8K page size):

Area Pages Page size Total

FontSize 20 4K 80K
RamFsSize 0 8K 0
RMASize 16 8K 128K
ScreenSize 20 8K 160K
SpriteSize 10 8K 80K
SystemSize 4 8K 32K+32K
System workspace 32K
Cursor etc. workspace 32K

Total 576K

Application area 1024K- 576K = 448K

A configured screen size of 0 means 'default for this machine', which is 160K
on an A310 (see *Configure ScrcenSize).

As outlined above, the size of the system area (at 28M) is shrunk as far as
possible after all module initialisation and then 'n' extra pages are added.
8K of this is used for the system stack. The rest is for OS variable storage (eg
alias variables) and module informacion. The configured amount is added to
the 32K initially allocated.

While no application is running (ie in the supervisor prompt), the memory
map can be altered as required. For example, if you load a module from disc
and the RMA isn't big enough to hold it, the size of the RMA will be
increased by an appropriate amount. The OS can only do this when there is no

Memory Management: Technical Details

Page size

Controlling memory
allocation

Memory protection

application active, as the extra memory has to be taken from the application
workspace. Most programs don't react too kindly to large areas of their
memory allocation disappearing.

Under an environment such as the Wimp desktop, multiple applications are
run concurrently. The currently running application is mapped into &8000.
When the Wimp decides to swap to another application, it maps the current
one out and maps the new application into that space. Thus, every application
is given the illusion that it is the only one in the system. Before each call your
application makes to Wimp_poll (which is when it may be swapped out), it
must call OS_DelinkApplication (SWl &40) to remove any vectors that
point into the application area - if it has any to remove, that is. When its call
to Wimp_Poll returns (and hence it is swapped back in), it must then call
OS_RelinkApplication (SWI &4E) to reload these vectors.

The SWI OS_ReadMemMaplnfo (SWI &51) returns the pagesize used in
the system and the number of pages present. For more details of page sizes,
see the chapter entitled ARM hardmtre.

OS_ChangeDynamicArea (SWI &2A) allows control of the space allocated
to the system heap, RMA, screen, sprite area, font cache and RAM filing
system. Any space left over is the application space by default. Any of these
settings can be read with OS_RcadDynamicArea (SWI &5C).
OS_ReadRAMFsLimits (SWI &4A) will read the range of bytes used by
the RAM filing system. The size of it can be set in CMOS RAM using
•Configure RamFsSize. See also •Configure RMASize and •Configure
SystemSize.

You have read/write access to much of the logically mapped RAM. There arc
exceptions, such as the 32K system workspace at &lFOOOOO (31M), the
RAMdisc, and the font cache. More areas may become protected in future
releases of RISC OS. The only areas you should directly access are the
application workspace and the RMA. It is very dangerous to write to any
other areas, or rely on certain locations containing given information, as these
are subject to change. You should always use OS routines .to access operating
system workspace.

OS_ ValidateAddress (SWI &JA) will check a range of logical addresses to
see if they are mapped into physical memory.

Memory Management: Technical Details 781

Changing the logical ma~

Screen memory

782

The mapping that MEMC maintains from logical to physical address space
can be read with OS_ReadMemMapEntries (SWI &52). This gives a list of
physical addresses for a matching set of logical page numbers.

The reverse operation, OS_SetMemMapEntries (SWI &53) will write the
mapping inside MEMC. Note that this is an extremely dangerous operation if
you are not sure what you are doing.

OS_UpdateMEMC (SWI & I A) is a lower level operation that alters the
bits in the MEMC control register.

Hardware scrolling is implemented by having the screen workspace at the
end of logical memory, adjacent to the corresponding physical RAM banks
which are mapped onto those addresses. This means that there are two
adjacent copies of the screen memory as follows:

PhysRam + ScreenSize Vend

Vi nit

PhysRam (32M) Vstart (MEMC registers)

VDU writes to

--th"-]-------------
Ystr

PhysRam - ScreenSize

The screen can, therefore, be scrolled vertically by altering the VDU driver
screen start address as shown above. This is usually performed automatically
and you don't have to concern yourself with it.

OS_CiaimScreenMemory (SWI &41) allows you to claim or release this
space.

Memory Management: Technical Details

Non-volatile memory
(CMOS RAM)

The screen-size is configurable in units ci one page (8K or 32K). Hence for a
20K screen on a 400 series machine, 32K will have to be used since it is the
next highest multiple ci 32K. For an 80K screen, 96K would be used, etc. In
addition, if you want to use multiple banks of screen memory (eg for
animation), enough memory must be reserved for each bank.

Because the total screen memory is often much less than what is required at a
given time, a faci lity is available whereby the 'extra' RAM can be claimed
for short periods. It can be used as a buffer, in a data transfer operation, for
example.

240 bytes of non-volatile memory are provided. Some of these are reserved
since they hold default values for certain parameters and are set using various
•Configure options. OS_Byte 161 allows you to read the CMOS memory
directly, while OS_Byte 162 can write to it. The full list is given below:

Location

0
1
2
3
4
5
6-9
10

11

12
13
14
15

Function

Econet station number (not directly configurable)
Econet file server station id (0 =>name configured)
Econet file server net number (or first char of name)
Econet printer server station id (0 => name configured)
Econet printer server net number (or first char of name)
Default filing system number
Reserved for Acorn use
Screen info:

Bits 0 • 3 screen mode number. This is held in 5 bits
The fifth bit is bit l in byte 133

Bit 4 1V interlace (first *1V parameter)
Bits 5 • 7 1V vertical adjust (signed three-bit number)

Shift, Caps mode:
Bits 0 - 2 reserved
Bits 3- 5 ShCaps (001), NoCaps (010), Caps (tOO)
Bit 6 - 7 reserved

Keyboard auto-repeat delay
Keyboord auto-repeat rate
Printer ignore character
Printer information:

Bit 0 reserved
Bit l 0 =>Ignore, l => Nolgnore

Memory Management: Technical Details 783

784

16

17. 29
30.45
46.79
80-111
112-127
128. 129
130
131
132

133

134
135 • 137
138. 139
140. 141
142
143
144
145

Bits 2 • 4 serial baud rate (0=75, ... ,7=19200)
Bits 5 · 7 printer type

Miscellaneous flags
Bit 0 reserved
Bit 1 0 =>Quiet, 1 =>Loud
Bi t2 reserved
Bit 3 0 => Scrotl, 1 => NoScrotl
Bit 4 0 => NoBoot, 1 => Boot
Bits 5 • 7 serial data format (0 .. 7)

Reserved for Acorn use
Reserved for the user
Reserved for applications
Reserved for RISC iX
Reserved for expansion card use
Current year
Reserved for Acorn usc
Reserved for Acorn usc
Dump Format

Bits 0,1 control character print control
00 print in GSTrans format
01 print as a dot
10 print decimal inside angle brackets
11 print hex inside angle brackets

Bit 2 treat top-bit-set characters as valid if set
Bit3 ANDcharacterwith &7F in *Dump
Bit 4 treat TAB as print 8 spaces
Bit 5 Tube expansion card enable
Bits 6,7 Tube expansion card slot (0- 3)

Sync, monitor type, some mode informai:ion
Bit 0 SyncBit
Bit 1 top bit c:i mode configuration number in byte 10
Bits 2- 3 monitor type

Fontsize in units of 4K
ADFS use
Set *Cat format
Set *Examine format
Twin's byte
Screen size in pagesize units.
RAM disc size in pagesize units
System heap size in pagesize to add after initialisation

Memory Management: Technical Details

146
147
148

149- 152
153- 157
158-172
173-176
177- 180
181- 184
185
186
187
188
189
190

191
192

193
194
195.

Memory Management: Technical Details

RMA size in pagesize to add after initialis.1tion
Sprite size in pagesize
SoundDefault parameters

Bits 0- 3 channel 0 default voice
Bits 4- 6 loudness (0- 7 => &01, 13, 25, 37, 49, 5B, 60, 7F)
Bit 7 loudspeaker enable

BASIC Editor
Printer server name
File server name
*Unplug for ROM modules. 32 bits for up to 32 modules
4 * 8 bits for unplugged modules in expansion cards
Wild card for BASIC editor
Configured language
Configured country
VFS
Bottom 2 bits are ROMFS Opt 4 state
Winchester size
Protection state

BitO Peck
Bit 1 Poke
Bit 2 JSR
Bit 3 User RPC
Bit4 OS RPC
Bit 5 Halt
Bit 6 GetRegs

Mouse multiplier
System speed- currently unused

Bits 0- 3 RAM speed
Bit 4 ROM speed
Bit 5 Cache enable for ARM3

Wimp mode
Wimp flags
Desktop state

Bits 0,1
00
01
10
11

Bits 2,3
00

display mode (Filer)
large icons
small icons
full info
reserved
sorting mode (Filer)
sort by name

785

786

196
197. 204
205. 211
224.238
239

01
10
11

Bit4
BitS
Bit6
Bit 7

ADFS dir cache

sort by type
sort by size
sort by date
sorting mode (O=name, 1 =number)
confirm option (1 =confi rm)
verbose option (I =verbose)
reserved

FomMax, FomMaxl • FontMax7
Reserved for RISC iX
Reserved for RISC iX
One byte for CMOS RAM checksum; not used currently

Memory Management: Technical Details

SWI Calls

On entry

On exit

.nterrupts

>rocessor Mode

Re-entrancy

Jse

Related SWis

lelated vectors

Read battery-backed CMOS RAM

RO = 161 (&AI) (reason code)
R 1 = RAM location

RO, Rl preserved
RZ = contents of location

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

OS_Byte 161
(SWI &06)

This call provides read access to any of the locations in the battery-backed
CMOS RAM. For example, this call may be used by a module to read a
default configuration parameter. Moreover, this parameter could be
examined by the user using the *Status command, if the module provides a
suitable entry in its command decoding table. See the chapter entitled
Modules for more details.

OS_Byte 162 (SWl &06)

ByteV

. .Aemory Management: SWI Calls 787

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

788

Write battery-backed CMOS RAM

RO = 162 (&A2) (reason code)
Rl =RAM location
R2 = value to be written

RO, R l preserved
R2 = corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

Not defined

OS_Byte 162
(SWI &06)

This call provides write access to any of the locations in the battery backed
RAM with the exception of location zero, which is protected.

OS_Byte 161 (SWI &06)

By reV

Memory Management: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

OS_UpdateMEMC
(SWI &lA)

Read or alter the contents of the MEMC control register

RO = new bits in field
R 1 = field mask

RO =previous bits in field
R 1 = previous field mask

Interrupts are disabled
Fast interrupts are disabled

Processor is in SVC mode

SWI cannot be re-entered because interrupts are disabled

The memory controller (MEMC) chip is a write-only device. The operating
system maintains a software copy of the current state of the control register
and OS_UpdateMEMC updates MEMC from the software state. To allow
the programming of individual bits the call takes a field and a mask. The new
MEMC value is:

newMemC = (oldMEMC AND NOT Rl) OR (RO AND R1)
RO = oldMEMC

So to read the contents without altering them, Rl and R2 should both be zero.
To set them to 'n', R1 =&FFFFFFFF and R2=n.

None

None

Memory Management: SWI Calls 789

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

790

Initialise Heap

RO = 0 (reason code)
Rl =pointer to heap to initialise
R3 = size of heap

RO, Rl, R3 preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_Heap 0
(SWI &lD)

This call checks the given heap pointer, and then writes a valid descriptor into
the heap it points at. The heap is then ready for use. The value given for Rl
must be word-aligned and less than 32Mbytes (ie must point to an area of
logical RAM). R3 must be a multiple ci four and less than 16Mbytes.

None

None

Memory Management: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Describe Heap

RO = 1 (reason code)
Rl =pointer to heap

RO, Rl preserved
R2 = largest available block size
R3 = total free

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_Heap 1
(SWI &lD)

This call returns information on the space available in the heap. An error is
returned if the heap is invalid. This may be for any of the following reasons:

• the heap descriptor is corrupt

• the information within the heap is not sensible

• Rl does not point to a heap

None

None

Memory Management: SWI Calls 791

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

792

Get heap block

RO = 2 (reason code)
R 1 = pointer to heap
R3 = size required in bytes

RO, Rl preserved
R2 = pointer to claimed block or zero if allocation failed
R3 preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

SWI is re-entrant

OS_Heap 2
(SWI &lD)

This allocates a block from the heap. An error is returned if the allocation
failed for any of the following reasons:

• there is not a large enough block left in the heap

• the heap has been corrupted

• Rl does not point to a heap

None

None

Memory Management: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Free heap block

RO = 3 (reason code)
RJ = pointer to heap
R2 = pointer to block

RO - R2 preserved

Interrupt starus is not altered
Fast interrupts are enabled

Processor is in SVC mode

OS_Heap 3
(SWI &lD)

SWI is re-entrant

This checks that the pointer given refers to an allocated block in the heap, and
deallocates it. Deallocation tries to join free blocks together if at all
possible, but if the block being freed is not adjacent to any other free block it
is just added to the list of free blocks. An error is rerumed if the
dcallocation failed which may be because:

• R I does not point to a heap

• the heap descriptor or heap was corrupted

• R2 does not point to an allocated block in the heap.

None

None

Memory Management : SWI Calls 793

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

794

Extend heap block

RO = 4 (reason code)
Rl =pointer to heap
R2 = pointer to block

OS_Heap 4
(SWI &10)

R3 =required size change in bytes (signed integer)

RO, R 1 preserved
R2 = new block pointer
R3 preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This attempts to enlarge or shrink the given block in its current posttlon if
possible, or, if this is not possible, by reallocatina and copying it. Note that if
the block has to be moved, it is your responsibility to note this (by the fact
that R2 has been altered), and to perform any necessary relocation of data
within the block.

None

None

Memory Management: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Extend heap

RO = 5 (reason code)
R 1 = pointer to heap
RJ = required size change in bytes (signed integer)

RO, Rl, R3 preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_Heap 5
(SWI &lD)

This updates the heap size information to take account of the new size. An
error is returned if it cannot shrink far enough, because of data that has
already been allocated.

None

None

Memory Management: SWI Calls 795

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

796

Read block size

RO = 6 (reason code)
Rl =pointer to heap
R2 = pointer to block

RO - R2 preserved
RJ = current block size

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_Heap 6
(SWI &lD)

This reads the size of a block in the specified heap. An error is returned if
the heap or the block could not be found.

None

None

Memory Management: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

OS_ChangeDynamicArea
(SWI &2A)

Alter the space allocation of a dynamic area

RO = area to alter
Rl =amount to move in bytes (signed integer)

RO = preserved
Rl =number of bytes being given to application

(ie -ve numbers~ application shrinking, so area is growing)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

OS_ChangeDynamicArea allows the space allocated to an area to be altered
in size by removing or adding workspace from the application workspace.

The area to be altered depends on RO as follows:

Value of RO

0
1
2
3
4
5

Area to alter

system heap
RMA
screen area
sprite area
font cache
RAM filing system

The amount to move is given by the sign and magnitude of RI:

+ve means shrink the selected area
-ve means enlarge the selected area

Note that normally, this cannot be used while the application work area is
being used; for example when a language is active outside the RISC OS
desktop. An attempt to do so will result in a Memory in use error. On fact,

Memory Management: SWI Calls 797

Related SWis

Related vectors

798

when this call is made, the OS passes a service call round to modules, which
can veto the change if they can't handle it correctly. See the chapter entitled
Modules for more details.)

Any area size change will fail if the new size is smaller than the current
requirements, but will shrink the area as far as it can. If you need to release
as much space as possible from an area, try to reduce its size by 16 Mbytes.

Expanding, on the other hand, does nothing if it can't move enough. In this case,
if you asked for the extra space you probably need it all; RISC OS assumes
that half the job is no use to you.

This SWI also does an upcall, to enable programs running in application
workspace to allow movement of memory. If the upcall is claimed when the
application is running in application workspace, the memory movement is
allowed to proceed. RI is the amount of memory that is being removed from
the application workspace. RO in the service call contains the amount you are
attempting to move.

An error is returned if not all the bytes were moved, or if application
workspace is being used- ie an application is active.

OS_ReadDynamicArea (SWI &SC)

None

Memory Management: SWI Calls

On entry

On exit

Interrupts

?rocessor Mode

Re-entrancy

use

Related SWis

Related vectors

OS ValidateAddress
(SWI &3A)

Check that a range of addresses are in logical RAM

RO = minimum address
R 1 = maximum address

RO, R I preserved
C flag is clear if the range is OK, set otherwise

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This SWI checks the address range between RO and Rl minus 1 to see if they
are valid. If they are equal, then that single address is checked. Valid
addresses are in logical RAM (0- 32M) and have a mapping into physical
RAM, including screen RAM, throughout the specified nnge.

None

None

.IAemory Management: SWI Calls 799

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

800

OS_ClaimScreenMemory
(SWI &41)

Use spare screen memory

RO = 0 for release, 1 for claim
Rl =length required in bytes (ifRO = 1)

RO = preserved
if the C flag is 0, then memory was claimed successfully

Rl =length available
R2 = start address

if the C flag is 1, then memory could not be claimed
Rl = length that is available

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

There are several restrictions to the use of screen memory. It can only be
claimed by one 'client' at a rime, who gets all of it. It can only be claimed if
no bank other than bank 1 has been used. You can't claim it, for example, if
the shadow bank has been used.

While you have claimed the screen memory, you must not perform any action
which might causes the screen to scroll. This means avoiding the usc of
routines which might cause screen output.

It is important to release the memory after it has been used.

None

None

Memory Management: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

OS ReadRAMFsLimits
(SWI &4A)

Get the current limits of the RAM filing system

RO = start address
R 1 = end address + 1 byte

lnte.rrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This reads the start and end addresses of the RAM filing system. This
information can also be read from OS_ReadDynamicArea.

If the RamFS is configured to zero size then RO and Rl have the same value
on exit.

The size d the RamFS after a hard reset (ie the difference between the two
return values) can be configured using •Configure RamFsSize.

OS_ReadDynamicArea (SWI &5C)

None

.~Aemory Management: SWI Calls 801

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

802

OS_DelinkApplication
(SWI &4D)

Remove any vectors that an application is using

RO = pointer to buffer
R 1 = buffer size in bytes

RO preserved
R 1 = number of bytes left in buffer

Interrupts are disabled
Fast interrupts are enabled

Processor is in SYC mcxle

SWI cannot be re-entrant because interrupts are disabled

When an application running at &8000 is going to be swapped out, it must
remove all vectors that it uses. Otherwise, if they were activated, they would
jump into whatever happened to be at that location in the new application
running in that space.

RO on entry points to a buffer. This is used to store details of the vectors used,
so that they can be restored afterwards. Each vector requires 12 bytes of
storage and the list is terminated by a single byte.

If the space left returned in R 1 is zero, then you must allocate another buffer
and repeat the call; the buffer you have contains valid inform:nion. When you
relink you must pass all the buffers returned by this call..

OS_RelinkApplication (SWI &4E)

None

Memory Management: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

OS_RelinkApplication
(SWI &4E)

Restore any vectors that an application is using from a buffer

RO =pointer to buffer

RO preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

When an application is going to be swapped in, all vectors that it uses must
be restored.

RO on entry points to a buffer, which has previously been created by
OS_DelinkApplication.

OS_DelinkApplication (SWI &40)

None

Memory Management: SWI Calls 803

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

804

OS_ReadMemMaplnfo
(SWI &51)

Read the page size and count

RO = page size in bytes
R 1 = number of pages

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWJ is re-entrant

This call reads the page size used by MEMC and the number of pages in usc.
The valid page numbers arc 0 to R 1 - 1, and the total memory size is RO times
Rl byres.

None

None

Memory Management: SWI Calls

On entry

)n exit

Interrupts

Processor Mode

le-entrancy

Use

lelated SWis

Related vectors

OS_ReadMemMapEntries
(SWI &52)

Read the logical to physical memory mapping used by MEMC

RO = pointer to request list

RO preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

The request list is a series of entries three words long, terminted by a - 1 in
the first word. The three words are used for:

word 1 : page number (set on entry)
word 2 :address page that is is mapped to (set in SWI)
word 3 :protection level. This is a bitfield, which uses the bottom 2 bits

00 readable and writable by everybody
01 read-only in user mode
10 inaccessible in user mode
all other bits are reserved and must be written as zero.

OS_SetMemMapEntrics (SWI &53)

None

. .Aemory Management: SWI Calls 805

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

806

OS_SetMemMapEntries
(SWI &53)

Write the logical to physical memory mapping used by MEMC

RO = pointer to request list

RO preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

The request list is a series of entries three words long, terminted by a - 1 in
the first word. This is described in OS_ReadMemMapEntries. It contains all
fields set on entry.

Any address above J2Mbyte (&2000000) makes that page inaccessible. This
also sets the protection level to minimum accessibility.

This SWI assumes you know what you are doing. It will set any page to any
address, with no checks at all.

If you are using this call, then you can only use OS_ChangeDynamicArea if
the kernel's limits arc maintained, and all appropriate areas contain
continuous memory ..

OS_SetMemMapEntries (SWI &53), OS_ChangeDynamicArea (SWI &2A)

None

Memory Management: SWI Calls

On entry

')n exit

Interrupts

Processor Mode

ne-entrancy

Use

lelated SWis

Related vectors

OS_ReadDynamicArea
(SWI &5C)

Read the space allocation of a dynamic area

RO = area to read

RO corrupted
Rl =current number of bytes in area

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This SWI reads the size of an area. The area read depends on RO as follows:

Value of RO

0
1
2
3
4
5

Area to read

system heap
RMA
screen area
sprite area
font cache
RAM filing system

OS_ChangeOynamicArea (SWI &ZA)

None

/emory Management: SWI Calls 807

*Commands

Syntax

Parameters

Use

808

Set a parameter in the CMOS RAM

*Configure [<paraml>[<param2>))

<paraml>
<param2>

setting to be changed
new value

*Configure

*Configure defines the configuration settings held in the CMOS RAM. These
are made current on initial power-on and after a hard break (Ctrl RESET),
and do NOT take effect immediately.

If the command is given with no parameters at all, then the configuration
options are listed.

If it is given with parameters then it is used to alter a particular setting.
<param-1> identifies the setting to be changed, as defined below. <param 2>
defines the value to be stored in the appropriate location in the CMOS RAM.
Some settings have more than one <param 2>, and sometimes there arc none
at all.

Where a number is required, it may be given in decimal, as a hex number
preceded by &, or a number of the form base_num, where base is the base of
the number in decimal in the range 2 to 36. For example 2_1010 is another
way of saying 10.

Here is a list of the available configure parameters. The details of each
command can be found in the appropriate chapter:

User Preferences

*Configure Boot
*Configure Caps
*Configure Delay
*Configure Dir
*Configure DumpFormat
*Configure FilcSystem
*Configure Language
*Configure Lib
*Configure Loud
*Configure Mode

In the chapter

FileSwitch
Character input
Character input
FileSwitch
FileSwitch
FilcSwitch
The rest of the kernel
FileSwitch
YOU drivers
YOU drivers

Memory Management: ·commands

*Configure MouseStep
*Configure NoBoot
*Configure NoCaps
*Configure NoOir
*Configure NoScroll
*Configure Quiet
*Configure Repeat
*Configure Scroll
*Configure ShCaps
*Configure SoundDefault
*Configure WimpFiags
*Configure WimpModc

Hardware configuration

*Configure Baud
*Configure Country
*Configure Data
*Configure Drive
*Configure Floppies
*Configure FS
*Configure HardOiscs
*Configure Ignore
*Configure Moni torT ype
*Configure Print
*Configure PS
*Configure Step
*Configure Sync
*Configure TV

Memory allocation

*Configure ADFSbuffers
*Configure ADFSDirCache
*Configure FontSize
*Configure RAMFsSize
*Configure RMASize
*Configure ScreenSize
*Configure SpriteSize
*Configure SystemSize

Memory Management: *Commands

YOU drivers
FileSwitch
Character input
FileSwitch
YOU drivers
YOU drivers
Character input
YOU drivers
Character input
The Sound system
The Window M<tnager
The Window Manager

In the chapter

Character output
International module
Character output
ADFS
ADFS
NctFS
ADFS
Character output
YOU drivers
Character output
NetPrint
ADFS
YOU drivers
YOU drivers

In the chapter

AOFS
AOFS
Font manager
Memory management
Memory management
YOU drivers
Sprites
Memory management

809

Example

Related commands

Related SWis

Related vectors

810

*Configure Baud 7

*Status

None

None

Memory Management: •commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Configure RamFsSize

Sets the size of memory for the RAM filing system

*Configure RamFSSize <n> l <mK>

<n>
<mK>

number of pages of memory; n ~ 127

kilobytes of memory reserved

*Configure RamFSSize sets the size of memory that will be used for the
RAM Filing System (when the RAMFS module is present) after the next
hard reset. The default value is 0, which disables the RAM filing system.

*Configure RamFSSize 128K

None

OS_ReadRAMFsLimits (SWI &4A), OS_ChangeDynamicArea (SWI &2A)

None

Memory Management: *Commands 811

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

812

*Configure RMASize
Reserves an extra area of memory for rclocatable modules

*Configure RMASize <n>l<mK>

<n>
<mK>

number of pages of memory; n <= 255
kilobytes of memory reserved

*Configure RMASize is used to reserve an extra area of memory in the
relocatable module area (RMA) after all modules have been initialised . If
<n> = 0, no extra memory is reserved. The default is to reserve 2 extra pages.

*Configure RMASize 128K

None

OS_ChangeDynamicArea (SWI &2A)

None

Memory Management: ·commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Configure SystemSize
Reserves an extra area of RAM for the system heap

*Configure SystemSize <n>l<mK>

<n>
<mK>

number of pages of memory; n < = 63
kilobytes of memory reserved

*Configure SystemSize reserves an extra area of memory for the system heap
after all modules have been initialised. The default value is 0.

*Configure SystemSize 32K

None

OS_ChangeDynamicArea (SWI &2A)

None

Memory Management: ·commands 813

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

814

*Status
Provides information on how the computer is configured

*Status [<name>]

<name> a *Configure option name

*Status displays the configuration status of the computer. Because the
default values of various parameters are held in non-volatile memory (the
battery-backed CMOS RAM), they are preserved even when the computer is
switched off, until reset from the desktop (by using Configure) or by using the
*Configure command.

*Stat us without a parameter list displays all values.

*Stat us <name> displays the value of the *Configure option name.

*Status TV

*Configure

None

None

Memory Management: Configuration commands: Reading settings

The rest of the kernel

Introduction Kernel commands are covered here that do not merit a chapter by themselves.

The following SWis are described:

• OS_ByteO

• OS_Byte 1

• OS_Byte 241

• OS_HcapSort (SWI &4F)

• OS_Confirm (SWI &59)

• OS_CRC (SWI &SB)

• IIC_Control (SWI &240)

display OS version information

write user flag

read/write user flag

a fast and memory efficient sorting routine

get a yes or no answer to a question

calculate a cyclic-redundency check for a
block

control of externalliC devices

The following * Commands are also described:

• *Configure Language

• *Help

The rest of the kernel: Introduction

select the langu:Jge to use at power on

get help on commands

815

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

816

Display OS version information

RO = 0 (reason code)

OS_Byte 0
(SWI &06)

Rl = 0 to display message or other value to return result

RO preserved
R I = OS version number if R l non-zero on entry
R2 corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

If this is called with R l =0, an error is produced, and the text of the error
shows the version number and creation date of the operating system. If it is
called with Rl ~ 0, then a version-dependent result is returned in R I.

This command (display message) can also be performed by *FX 0

None

ByteV

The rest of the kernel: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Write user flag

RO = 1 (reason code)
R1 =new value

RO preserved
R 1 = old value
R2 corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

NotdeAned

OS_Byte 1
(SWI &06)

This OS_Byte accesses a location which is guaranteed to be unused by the OS.
You can use this to pass results between programs. However, system variables
provide much more versatile means of doing this. The byte may also be read
and written using OS_Byte 241.

This command can also be performed by *FX 1 , <value>

OS_Byte 241 (SWI &06)

ByteV

The rest of the kernel: SWI Calls 817

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

818

Read/write user flag

RO = 241 (&Fl) (reason code)
Rl = 0 to read or new value to write
R2 = 255 to read or 0 to write

RO preserved
R 1 = value before being overwritten
R2 corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 241
(SWI &06)

The value stored is changed by being masked with R2 and then exclusive ORd
with Rl; ie ((value AND R2) EOR Rl). This means that R2 controls which bits
are changed and Rl supplies the new bits.

This OS_Byte accesses a location which is guaranteed to be unused by the OS.
You can use this to pass results between programs. However, system variables
provide much more versatile means of doing this. The byte may also be
written to using OS_Byte I.

The write command can also be performed by *FX 241 , <value>

OS _Byte I (SWl &06)

ByteV

The rest of the kernel: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Heap sort a list of objects

RO = number of elements to sort

OS_HeapSort
(SWI &4F)

R 1 = pointer to array ci word size objects, and flags in top 3 bits
R2 = type of object (0- 5), or address of comparison routine
R3 =workspace pointer for comparison procedure (only needed ifR2 > 5)
R4 = pointer to array of objects to be sorted (only needed if flag(s) set in R I)
R5 = size of an object in R4 (only needed if flag(s) set in R 1)
R6 = address of temporary workspace of R5 bytes

(only needed if R5 > 16k or bit29 of R 1 is set)

RO - R6 preserved

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SYC mode

SWl is not re-entrant

This SWI will sort a list of any objects using the heap sort algorithm. Details
of this algorithm can be found in:

Sorting and Searching D.E. Knuth (1973) Addison-Wesley, Reading
Massachusets, pages 14 5 -149.

It is not as fast as a quick sort for average sorts, but uses no extra memory
than that which is initially passed in.

fhe rest of the kernel: SWI Calls 819

Basic usage

Comparison routine

820

Used in the simplest way, only RO, Rl and R2 need be set up. RO contains the
number of objects that arc in the list. Rl points to an array of word-sized
entries. The value ofR2 controls the interpretation of rhis array:

R2 value

0
1
2
3
4
5
>5

Treat R 1 as pointing to an array of ...

cardinal (unsigned integer)
integer
pointer to cardinal
pointer to integer
pointer to characters (case insensitive)
pointer to characters (case sensitive)
pointer to custom object
In this last case, R2 is the address of the comparison routine

If the R2 value is less than 6, then this call will handle sorting for you. If you
want to sort any other kind of object, then you must provide a routine to
compare two items and say which is the greater. Using this technique, any
complex array of structures may be sorted. If you wish to use a comparison
routine, then R2 contains the address of it. RJ must be set up with a value,
usually a workspace pointer.

When called, the comparison routine is entered in SYC mode, with intern1pts
enabled. RO and Rl contain two objects from the array passed to this SWl in
Rl. What they represent depends on what the object is, but in most cases they
would be pointers to a structure of some kind. R12 contains the value
originally passed in R3 to this SWI. Usually this is a workspace pointer, but
it is up to you what it is used for.

Whilst in this routine, RO • RJ may be corrupteQ. but all other registers must
be preserved. The comparison routine returns a less than state in the flags if
the object in RO is less than the object in Rl. A greater or equal state must be
returned in the flags if the object in RO is greater than or equal to the object
inRl.

The rest of the kernel: SWI Calls

Advanced features

Related SWis

Related vectors

In cases where R2 is greater than 1, then there are two arrays in use. The word
sized array of pointers pointed to by Rl and the 'real' object array. You can
supply the address of this real array in R4 and the size of each objec t in it in
R5 . If this is done, then a number of optional actions can be performed. The
top bits in Rl can be used as follows:

Bit Meaning

29 use R6 as workspace
30 build word-array of pointers pointed to by Rl from R4,RS
31 sort true objects pointed to by R4 after sorting the pointers

Bit 30 is used to build the pointer array pointed to by R 1 using R4 and RS
before sorting is started. It will create an array of pointers, where the first
pointer points to the first object, the second pointer to the second object and
so on. After sorting, these pointers will be jumbled so that the first pointer
points to the 'lowest' object and so on.

Bit 31 is used to sort the real objects pointed to by R4 into the order
described by the pointers in the array pointed to by R 1 after sorting is
complete. It may optionally be used in conjunction with bit 30.

If the size in R5 is greater than 16Kbytes or if bit 29 is set in Rl, then a
pointer to workspace must be passed in R6. This points to a block RS bytes in
length. One reason for setting bit 29 is that this SWl will otherwise corrupt
the RISC OS scratch space.

None

None

The rest of the kernel: SWI Calls 821

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

822

Get a yes or no answer

RO = key that was pressed, in lowercase
the C flag is set if an escape condition occurred
the Z flag is set if the answer was Yes

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

OS Confirm
(SWI &59)

This SWI gets a yes or no answer from the u!'Cr. If the mouse pointer is
visible, then it changes it to a three button mouse shape. The left button
indicates yes, while the other two indicate no. On the keyboard, the 'Y' key
inidcates yes and any other key, no.

The result is returned in lowercase, irrespective of the keyboard state.

An escape condition will abort the SWI and return with the C flag set.

None

None

The rest of the kernel: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Calculate the cyclic-redundcncy check for a block of dr~ta

RO = CRC continuation value, or zero to start
Rl =pointer to start of block
R2 = pointer to end of block
R3 = increment (in bytes)

RO = CRC calculated
R 1 - R3 preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS CRC
(SWI &5B)

This SWI calculates the cyclic-redundency check value for a block of data.
This is used to check for errors when, for example, a block of data is stored
on a disk (although ADFS doesn't use this call) or sent across a network and
so on. If the CRC calculated when checking the block is different from the
old one, then some errors arc in the data.

The block described in Rl and R2 is exclusive. That is, the calculation adds
RJ to Rl each step until R 1 equals R2 . If they never become equal, then it
will continue until crashing the machine. For example Rl=lOO, R2=200, R3=3
will never match Rl with R2 and is not permitted.

The value of the increment in RJ is the unit that you wish to usc for each step
of the CRC calculation. Usually, it would be I, 2 or 4 bytes, but any value is
permitted. Note that the increment can be negative if you require it.

None

None

The rest of the kernel: SWI Calls 823

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

824

Control IIC devices

IIC Control
(SWI &240)

RO =device address (bit 0 = 0 => read, bit 0 = I => write)
Rl =pointer to block
R2 = length of block in bytes

RO - R2 preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call allows reading and wrrnng to IIC devices. IIC is an internal serial
protocol. It is used in RlSC OS machines for wririn,:; to the clock chip and IIC
compatible devices on expansion cards.

The possible error is No acknowledge from IIC device (&20300).

None

None

The rest of the kernel : SWI Calls

*Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Configure Language

Selects the language used at power on

*Configure Language <n>

<n> the module number of the language which will be started
after power on. The default is n=J (rhe desktop).

*Configure Language followed by a number sets the module language which
is automatically selected on power on. Choose 3 for the desktop, 4 for BASIC
or 0 for Command Line mode. Use the *Modules command to check the
number of the required language, especially if you have added or removed
modules.

Note that the Desktop exits immediately if a boot file is run at power on
using *Exec. Instead, you should select the Desktop at the end of the boot file,
or use an Obey file .

*Configure Language 0

*Modules

None

None

Stares up in Command Line mode, with
• prompt

The rest of the kernel: ·commands 825

Syntax

Parameters

Use

Example

826

*Help
Gives information about each command

*Help [<keyword>)

<keyword> the command name(s) to get help on

The "'Help command gives brief information about each command in the
machine operating system. "'Help <keyword> dispbys a brief explanation of
the keyword and, if the keyword is a command name, the syntax of the
command.

If you are not sure about the name of a command:

*Help Commands

*Help FileCommands

*Help Modules

*Help Syntax

will list all the available utility commands;

will list all the commands relating to filing
systems;

will list the names of all currently loaded
modules, with their version numbers and
creation dares;

explains the format used for syntax
messages.

The usual usc of *Help is to confirm that a command is appropriate for the
job required, and to check on its syntax (the number, type and ordering of
parameters that the command requires) . When you issue the *Help command
at the normal Command Line prompt, 'paged mode' is switched on: the
computer displays a screenfull of text, then waits until you press Shift before
moving on.

The specification of the keyword can include abbreviations to allow groups of
commands to be specified. For example,

*Help Con. produces information on *Omfigure and *Continue.

*Help gives help on all subjects

The rest of the kernel : ·commands

Related commands None

Related SWis None

Related vectors None

The rest of the kernel: ·commands 827

828 The rest of the kernel: ·commands

