
ruse os
PROGRAMMER'S REFERENCE MANUAL

Volume IV

--
! ~ II 0

!Uiost !llira !tile ltlecl

ll ~ ~ Q
!l~Mtt !!liMn !IIHstrt !llittlhtt

I ~ II W
! l!iilllift !P~titoct !Pmlt ITiatltrs

• Acoml
The~ of experienoe.

ruse os
PROGRAMMER'S REFERENCE MANUAL

Volume IV

Acorne
The choire of ~perience

Copyright© Acorn Computers Limited 1989

Neither the whole nor any part of the information contained in, or the product
described in this manual may be adapted or reproduced in any material form
except with the prior written approval of Acorn Computers Limited.

The product described in this manual and products for use with it are subject
to continuous development and improvement. All information of a technical
nature and particulars of the products and their use (including the information
and particulars in this manual) are given by Acorn Computers Limited in
good faith. However, Acorn Computers Limited cannot accept any liability for
any loss or damage arfsing from the use of any information or particulars in
this manual.

All correspondence should be addressed to:

Customer Service
Acorn Computers Limited
Fulbourn Road
Cambridge CBl 4]N

Information can also be obtained from the Acorn Support Information
Database (SID). This is a direct dial viewdata system available to registered
SID users. Initially, access SID on Cambridge (0223) 243642: this will allow
you to inspect the system and use a response frame for registration.

Within this publication, the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

ACORN, ACORNSOFT, ACORN DESKTOP PUBLISHER, ARCHIMEDES,
ARM, ARTHUR, ECONET, MASTER, MASTER COMPACT, THE TUBE,
VlEW and VIEWSHEET are trademarks of Acorn Computers Limited.

DBASE is a trademark of Ashton Tate Ltd
EPSON is a trademark of Epson C'...orporation
ETHERNET is a trademark of Xerox Corporation
LASER JET is a trademark of Hewlett· Packard Company
LASER WRITER is a trademark of Apple Computer Inc
LOTUS 113 is a trademark of The Lotus Corporation
MUL TISYNC is a trademark ofNEC Limited
POSTSCRIPT is a trademark of Adobe Systems Inc
SUPER CALC is a trademark of Computer Associates
UNIX is a trademark of AT&T
1ST WORD PLUS is a trademark of GST Holdings Ltd

Edition 1
Published 1989: Issue 1
ISBN 1 85250 063 8
Published by Acorn Computers Limited
Part number 0483,023

Contents

About this manual

Part 1: Introduction

Part 2: The kernel

Contents

An introduction to RISC OS
ARM Hardware
An introduction to SWis
• Commands and the CLI
Generating and handling e rrors
OS_Byte
OS_ Word
Software vectors
Hardware vectors
Interrupts and handling them
Events
Buffers
Communications within RISC OS

Character output
YOU drivers
Sprites
Character input
Time and date
Conversions
TheCLI
Modules
Program Environment
Memory Management
The rest of the kernel

3
7
21
31
37
43
51
55
85
91
113
125
135

149
207
379
461
549
579
613
621
729
773
815

iii

Part 3: Filing systems FileSwitch 831
FileCore 1007
ADFS 1051
RamFS 1067
NetFS 1075
NetPrint 1105
DeskFS 1117
System devices 1119

Part 4: The Window The Window Manager 1125
manager

Part 5: System Econet
"•:

1333
extensions Hourglass . ·.;.;:;:·.;.; 1389

NetStarus :;.; 1397
O>lourTrans ,•:;:·., ·: ···::·.·=:: 1399
The Font Manager 1425
Draw module ·.· · .· 1487
Printer Dnvet'$ ·. ·::·· ·. 1513
The Sound syste!'Q 1571
WaveSynth 1633
Expansion tar& 1635
International module 1665
Debugger 1679

In Floating point emulator 1695
ShellO.l 1709 this

O>mmand scripts 1713 volume

Appendices ARM asse~bler 1723
Linker . :· . 1743
Procedure Clll sf.lndard 1749
ARM Object Format 1771
File formats 1787

Tables VDUcodes 1815
Modes 1817
File types . . ;:; · .. 1819
Olaracter sets 1823

Contents

Part 5 ... System extensions

1331

1332

Econet

Introduction

Econet: Introduction

The Econet module provides the software needed to use Acorn's own Econet
networking system. The software allows you to send and receive data over the
network.

It is used by RISC OS modules such as NctFS and NetPrinr, which provide
network filing and printing facilities respectively. It is also used by various
other Acorn products that usc Econet, such as FilcStores, Econet bridges, and
soon.

Note that to use the Econet you must have an Econet expansion module fitted
to your RISC OS computer. If you do not already have one, they are available
from your Acorn supplier.

1333

Overview

1334

Econet is Acorn's own n~tworking system, and the Econet module provides the
necessary software to use it.

The main purpose of any networking system is to transfer data from one
machine to another. Econet breaks up the data it sends into small parts which
are sent using a well defined protocol.

Econet does not use buffers in the same way as most other input and output
facilities that RISC OS provides. Instead the data is moved directly between
the Econet hardware and memory. This means that each time data is
transmitted or received, there has to be a block of memory available for the
Econet software to use immediately, either to read data from or place data in.

These blocks of memory arc administered by the Econet software, which uses
control blocks to do so. Many of the SWis interact with these control blocks,
so you can set them up, read the status of an Econet transmission or reception,
and release the control blocks memory when you have finished using them.

In the same way as files under the filing system usc file handles, these
control blocks also use handles. just like file handles, your software must
keep a record of rhem while you need to use them.

The Econct also provides a range of immediate operations, which allow you to
exercise some control over the h:1rdware of remote machines, assuming you get
their co-operation. Some of these will work across the entire range of Acorn
computers, whereas others arc more hardware-depend:mt and so may only be
possible on IUSC OS machines.

Econet: Overview

Technical Details

Packets and frames A single transmiSSion of data on an Ec.onet is called a packet. Packets mvel
across the network from the transmitting station to the receiving station. The
most common form of packet is called a 'four way handshake'. A 'four way
handshake' consists of four frames. Each of these four frames starts with the
following four bytes:

• the station number of the destination station

• the network number of the destination station

• the station number of the source station

• the network number of the source station.

These four bytes are sent in this order to facilitate decoding by the softw<~re
in the receiving station.

The first frame is sent by the transmitting station, it contains the usual first
four bytes, the port byte (described later), and the flag byte {also described
later). This first frame is called the scout. The receiving station then replies
with the scout acknowledge, which consists ci just the usual first four bytes. The
third frame is the data frame; this frame has the usual first four bytes,
followed by all the data to be transferred. Lastly there is a final acknowledge
frame which is identical to the scout acknowledge frame.

t

This exchange of frames can be seen with the NetMonitor and is displayed
something like this.

FE0012008099 1200FEOO FE00120048454CSOOD 1200FE00

• the transmitting station is &12 (18 in decimal)

• the receiving station is &FE (254 in decimal)

• both stations are on network zero

• the flag byte is &80

• the port byte is &99

• the data tha.t is transmitted is &48, &45, &4C, &50, &00.

Econet: Technical Details 1335

Receiving data and
using RxCB's

Status of RxCB's

Successful transm1ss1on of data requires co--operation from the receiving
station. A station shows that it is ready to receive by setting up a receive control
block (or RxCB). All RxCAs are kept by the Econct software and don't need
to concern you. To create an RxCB all you need to do is call a single SWI
(Econet_CreateReceive - SWI &40000), telling the Econet software all the
required information. The Econet software will return to you a handle which
you then use to refer to this particular RxCB in any further dealings with the
Econet software.

The information required by the Econet software is:

• which station(s) to accept data from

• which port number(s) to accept data on

• where to put the data when it arrives.

It is important you note that when the data arrives from the transmmmg
station it is not buffered at all - it is taken directly from the hardware and
placed in memory at the address you specify. This area of memory is
referred to as a buffer (in this case a receive buffer). A consequence of this is
that memory used for receiving Econct packets must be available at all times
whilst the relevant RxCI3 is open. You must not use memory in application
space if your program is to run within the Desktop environment.

The Econet software keeps a list of all the open RxCBs. When a packet
comes in it is checked to sec if it matches any of the currently open RxCBs:

• if it doesn't then the receiving software indicates this to the transmitting
software by not sending a scout acknowledge frame

• if it does then the receiving software sends out a scout acknowledge, and
then copies the data frame into the corresponding buffer

• if the data frame overruns the buffer then the receiving software does not
send the final acknowledge frame.

All RxCBs have a status value. These values arc tabulated below.

7 Status_RxReady
8 StanJs_Receiving
9 Status_Rcceived

1336 Econet: Technical Details

Abandoning RxCB's

Receiving data using a
single SWI

The status of a particular RxCB can be read using the Econet_ExamineReccive
call (SWI &40001); this takes the receive handle of an RxCB and returns its
status.

When an RxCB has been received into, its status will change from RxRcady
to Received; usually, you will then call Econet_ReadReceive (SWI &40002).
This returns information about the reception; most importantly it tells you how
much data was received - which can be anything from zero to the size of the
buffer. It also returns the value of the flag byte.

The port, station, and network are also returned; these are useful because you
can open an RxCB that allows reception on any port or from any station.

It is very important that when RxCBs are no longer required, either because
they have been received into, or because they have not been received into
within a certain time, that they are removed from the system. You do so by
calling the SWI Econet_AbandonReceive (SWI &40003). The major function
of this call is to return to the RMA the memory that the Econet software used
to hold the RxCB; obviously if RxCBs are not abandoned, they will consume
memory which will not automatically be recovered by the system.

The usual sequence of operations required for software to receive data is as
follows: First call SWI Econet_CreateReceive, then make numerous calls to
SWI Econet_ExamineReceive until either a reception occurs, a time out occurs,
or the user interferes (by pressing Escape for instance). Then read the RxCB if
it has been received into. Finally, abandon the RxCB.

To make this task easier the Econet software provides a single SWI
(Econet_ WaitForReception - SWI & 40004) which docs the polling, the
reading, and the abandoning for you. To call SWI Econet_ WaitForReception
you must pass in:

• the receive handle

• the amount of time you arc prepared to wait

• a flag which indicates whether you wish the call to renJrn if the user
presses the Escape key.

Econet: Technical Details 1337

Transmitting data and
using TxCB's

Status of TxCB's

1338

Econet_ WaitForReception returns one of four status values:

8 Sratus_Receiving
9 Status_Received
10 Starus_NoReply
11 Status_Escape

The call will return as soon as a reception occurs; when this happens the
status is Received. If the time limit expires then the status is usually NoReply,
but if reception had started just after the timeout, and so was then abandoned,
the status will be Receiving. This is not a very likely case. If the escapable
flag is set then pressing the Escape key causes the call to return with the
Escape status.

Transmission is roughly similar to reception; a single SWI
(Econet_StartTransmit - SWI &40006) is all that is required to get things
started. This call requires the following information:

• the destination station (and network)

• the port number to transmit on

• the flag byte to send

• the address and length of the data to send.

SWI Econet_StartTrasmit returns a handle. These handles are distinct from
the handles used by the receive SW!s.

There is a limit of 8 kbytes on the size of data you can send with this call.

To check the progress of your transmission you can call Econet_PoliTransmit
(SWI &40007). This returns the status of the particular TxCB, which will be
one of seven possible values:

0 Status_ Transmitted
l Status_Line)ammed
2 Starus_NetError
3 Srarus_NotListening
4 Status_NoCiock
5 Status_ T xReady
6 Status_ Transmitting

Econet: Technical Details

Retrying transmissions

Econet: Technical Details

Status_ Transmitted means that your transmtsston has completed OK and that
the data has been received by the destination machine. Status_ TxReady means
that your transmission is waiting to start, either because the Econet is busy
receiving or transmitting something else, or your tr:msmission is queued (sec
later for more details of this). Status_ Transmitting is obvious; so too is
Status_NoCwck, which means that the Econet is not being clocked, or more
likely your station is not plugged into the Econet. Status_Lin~ammed means
that the Econet software was unable to gain access to the Econet; this may be
because other stations were transmitting, but it is more likely that there is a
fault in the Econet cabling somewhere. Status_NotListening is returned when
the destination station doesn't send back a scout acknowledge frame; this is
usually because the destination station doesn't have a suitable open receive
block. Status_NetError will be returned if some part of the four way
handshake is missing or damaged; the usual cause of this status is the sender
sending more data than the receiver has buffer space for, so the receiver
doesn't send back the final acknowledge frame.

Status returns like NotListening and NetError can also be caused by transient
problems with the Econct such as electrical noise, or by the receiving station
using its floppy disc. Because of rhis it is usual to try more than once to send a
packet if these status returns occur. To make this easier for you the Econct
software can automatically perform these extra attempts for you. These
retries arc controlled by passing two further values in to the
Econet_StartTransmit SWI:

• the number of times to try, referred to as the Count

• the amount of time to wait between tries, referred to as the Delay.

If the Count is either zero or one then only one attempt to transmit will take
place. If the Count is two or more then retries will occur, at the specified
interval (given in centi-seconds). To give an example as it would be written in
BASICV:

10 DIM But\ 20
70 Port , •99 : Station\ 7 : Network\ 0
50 SYS "Econet_StartTransmit",O,Port\,Station\,Networ\\,Buf\,70,3,100 TO Tx\
60 END

When this partial program w·as RUN it would try to transmit immediately,

probably before the program rcach<.-d the END statement. If this transmtsston
failed with either Status_NotListening or Status_NetError, then the Econet

1339

Abandoning TxCB's

Transmitting data
using a single SWI

1340

software would wait for one second (100 centi-seconds) and try again. If this
also failed then the software would wait a further second and try for a third
time. The status of the final (in this case third) transmission would be the
status finally stored in the TxCB; this could be read using SWI
Econet_PoiiTransmit. To see this we could add some extra lines to the
example program.

30 TxReady\ S
40 Transmitting\•6
60 REPEAT
70 SYS "Econet_PollTransmlt", Tx\ TO Status\
80 PRINT Status\
90 UNTIL NOT ((Status\ • TxReady\) OR (Status\ •Transmlt~lng\))

100 END

Now the program will show us the status of the TxCB. We would be very
unlikely to see the status value ever be Status_ Transmitting since it will only
have this value for about 90J..LS during the two seconds it is retrying for. But it
is most important that your software should be able to handle such a situation
without error.

As with receptions it is most important that memory used for transmtttmg
Econet packets must be available at all times whilst the relevant TxCB is
open. You must not use memory in application space if your program is to
run within the Desktop environment. This is because like receptions,
transmissions move data directly from memory at the address you specify to
the hardware. Also, as with receptions, it is important to inform the Econet
software that you have finished with your transmission and that memory
required for the internal TxCB may be returned to the RMA. You do this by
calling Econet_AbandonTransmit (SWI &40008) with the appropriate
TxHandle.

100 SYS "Econet_AbandonTransml L'', Tx\ TO Fl na lStatus\
110 PRINT "The final status was ";Flna~Status\

To make this start, poll, and abandon sequence easier for you the Econet
software provides it all as a single call (Econet_DoTransmit
SWI &40009)). This call has the same inputs as SWI Econet_StartTransmit,
but instead of returning a handle it returns the final status. Using this call our
program would look like this:

Econet: Technical Details

Converting a status to
an error

Copying the error to
RAM

Adding station and
networ1< numbers

Econet: Technical Details

10 DIM But\ 20
20 Port \ • 99: Station\ •7 : Nctwork\•0
40 SYS"Econet_DoTra nsmit ", O , Port \, Station\, Networ~\, Bu!\, 20 , 3 , 100 TO Status\
50 PRI NT "The fina l s t a tus was "; Status\

As you can see this makes things a lot easier. As an aid to presenting these
status values to the user there arc two SWI calls to convert status values to a
textual form, the most frequently used of which is the call
Econet_ConvertStarusToError (SWI &4000C). This call takes the status and
returns an error with the appropriate error number and an appropriate string
describing the error. For instance we could add an extra line to our final
program.

60 SYS "Econe t_Conver t St a t usTo£rror ", Sta tus\

Our program will now RUN and always have an error, in this case the error
"Not listening at line 50". This error block is actually in the ROM
so it is not possible to add to it, but it is possible to have the call to
Econet_ConvertStatusToError copy the error into RAM by specifying in the
call where this memory is, and how much there is:

60 DIM Error\ 30
80 SYS "£cone t_ConvertSta tusToError ", Sta tus\, Er ror\, 30

This new program will function in the same manner as the previous program
except that the error block will have been copied from the Econet part of the
ROM into RAM (at the address given in Rl). The main reason for this is to
allow the Econet software to customise the error for you.

If the station and network numbers are added as inputs to the call, the Econet
software will add them to the output string:

80 SYS "£cone t_ConvertSta tusTof. r ror", Status\, Error\, 30, Statlon\,Nctwork\

Now the error reported will be "Station 7 not li s tening at line
50" . It is important to stress that this is a general purpose conversion. It will
convert Status_ T ransmittcd just as well as Sratus_Norlistcning, so usually you
would test the returned status from Econet_DoTransmit, and only convert
status values other than Status_ Transmitted into errors:

30 Transmltted\=0
70 I F Sta t us\• Transmitted \ THEN PRI NT "OK": END

1341

1342

The same program fragment could be written in assembler (this example,
like all others in this chapter, uses the ARM assembler rather than the
assembler included with BBC BASIC V- there are subtle syntax differences):

TX MOV rO, tO
MOV rl , 199
MOV r2, t7
MOV r3 , t O
LOR r4, Buffer
MOV rS, 120
MOV r6, f3
MOV r7, 1100
SWI Econet_DoTransmit
BEO rO, tStatus Transmitted
LDRNE rl , ErrorBuffer
MOVNE r2, 130
SWINE Econet_ConvertStatusToError
MOV pc, lr

Notice here in the assembler version how the return values from
Econet_DoTransmit fall naturally into the input values required for
Econet ConvertStatusToError. This code fragment is not really satisfactory
since no code written as either a module or a transient command should ever
call the non-X form of SWls. If the routine Tx is treated as a subroutine then
it should look more like this:

Tx STMFD sp!, (I r}
MOV rO, t O
MOV rl, 199
MOV r2, f7

MOV r3, tO
ADR r4, Buf!er
MOV rS , t 20
MOV r 6, 13
MOV r7, 1100
SWI XEconet_DoTransmit
BVS TxExit
TEO rO, f Status_Transmitted
A ORNE rl, ErrorBuffer
MOVNE r2, 130
SWINE XEconet _ConvertStatusToError

TxExit LDMFD sp!, {pc}

This routine returns with V clear if all went well; if V is set, then on return
RO will contain the address of a standard error block.

Econet: Technical Details

Converting a status to a
string

Flag bytes

Econet: Technical Details

The second error conversion call is Econet_ConvertStarusToString
(SWI &4000B), which does exactly what its name suggests. The input
requirements are very similar to the string conversion SWis supported by
RISC OS. In this case you pass the starus value, a buffer address, and the
length c:i the buffer. As with Econet_ConvertStatusToError you can also pass
the station and network numbers, which will be included in the output string.
To illustrate this the assembler routine shown above is changed to print the
starus on the screen:

Tx STHrD
MOV
MOV
MOV
MOV
ADR
MOV
MOV
MOV
SWI
BVS
TEO
B£0
ADR
MOV
MOV
SWI
MOWC
SWJVC
ADRVC
SWIVC

Tx£x1t LDMrD

sp!, (I r}

rO, t O
rl , t 99
r2 , t 7
r3 , t O
r 4, Buff('r
rS , f 20
r6 , 1 3
r7, t lOO
XEconet_OoTransmit
TxExit
r O, t Status_Tra nsmittod
TxExit
rl, TextBu f fer
r2 , 150
r5 , rO
XOS ConvertCardinall
ro, rS
XEconet_ConvertStatusToString
rO , TextBuffer
XOS WrltcO
sp!, (pel

save the status value

Recnll status lf no error

The flag byte is sent from the transmitting station to the receiving station and
can be treated as an extra seven bits of data. By convention, it is used as a
simple way of distinguishing different types of packet sent to the same port,
and it is worth you doing the same.

This is most useful in server type applications where it is often the case that
similar data can be sent for different purposes, or some sorts of data are
outside the normal scope. An example is a server that takes requests for
teletext pages, but can also rerum the time. A different value for the flag
byte allows the server to differentiate time requests from normal traffic.
Another example is the printer server protocol, which uses the flag byte to
indicate the packet that is the last in the print job, without having to change the
data part cJ the packet.

1343

Port bytes

Freeing ports

1344

The port byte is used in the receiving station to distinguish traffic destined for
particular applications or services.

For instance the printer server protocol uses port &D I for all its connect, data
transfer, and termination traffic, whereas the file server uses port &99 for all
its incoming commands. This usc of separate pom for separate tasks is also
exploited further by the file server protocol in that every single request for
service by the user can use a different port for its reply. This prevents traffic
getting confused.

The Econet software provides some support for you to usc ports by providing
an allocation service for port numbers. Port numbers should, if possible, be
allocated for all incoming data.

Software that requires the use of fixed port numbers, like NetFS and
NctPrint, can claim these fixed ports by calling Econet_CiaimPort
(SWI &40015). This call takes a port number as its only argument. When
these claimed ports arc no longer required (when the module dies for
instance) it can be 'returned' by calling SWI Econet_ReleascPort
(SWI &40012).

Other software that would like a port number allocated to it can call
Econet_AIIocatePort (SWI &40013), which will renJrn a port number. While
this port number is allocated no other calls to Econct_AIIocatePort will
return that number, until it is 'returned' by calling Econct_DcAIIocatePort
(SWI &40014) with the port number as an input. The NetFS software uses
this method of allocation and dcallocation to get ports to usc as reply ports in
the file server protocol. The Econct software keep~ a rable in which it records
the state of each port number: this can be either free, claimed or allocated.

Ports that have been claimed will not be allocated, and can only be freed by
calling SWI Econet_ReleasePort. Calling SWI Econet_DcAIIocatePort will
return an error if the port is- claimed rather than allocated. Ports that have
been allocated can not be claimed, and in fact an attempt to claim an
allocated port will return an error. You shoulc.l be careful with software that
uses allocated ports to make sure that all ports arc deallocated when they
arc no longer required, especially after an error. The claiming and releasing
of ports should likewise be carefully checked.

Econet: Technical Details

An example of use of the
port allocator

Econet: Technical Details

A typical example of the use of the port allocar0r would be a multi-player
adventure game server. The server would claim one port (eg port &IF). This
port number would then be the only fixed port number in the entire protocol.
When a player wished to join the game she should ask for a port to be
allocated in her machine and send this port, along with all the information
required to enter the game, to the game server on port &IF. If the server can't
be contacted or doesn't reply within the required time the port should be
deallocated and an error returned. When the server receives this packet it
should check the user's entry data; if this is OK it should then allocate a port
for that user and return it, along with any other information required to start
the game off. When the user wants to quit the game the server should
deallocate its user's port, then send the last reply to the user. The user should
deallocate the port when the reply arrives or if the server doesn't reply soon
enough.

To illustrate this example the user entry routine is shown below; note that this
routine is coded for clarity rather than size or efficiency.

Entry STMFD
SWI
BVS

STRB
LOR
LOR
ADR
MOV
SWI
BVS
MOV

LOR
ADR
MOV.
LDRB
STRB

Copy Loop
ADD
CMP
BHS
LDRB
CMP
MOVLE
STRB
BGT
ADD

MOV

sp!, (r0-r8, lr) ; RO points to the text string
XEconet_Ai locatePort
Exit

rO, Server ReplyPort
rl, Server Station
r2, Server Network
r3, Buffer
r4, t?Buffer
XEconet_CreateReceive
DeAllocateExit
r8, ro

rl, [sp, tO
r4, Buffer
rS, 10

Preserve the RxHandlc

Address of text string to copy
Get buffer to copy into
Index into Tx Buffe r

ro, Server_Rep l yPort
rO, [r4, rS I ; Send the port for the server

rS, r5, fl
r5, f?Buffer
Buf ferOvcrtlow
ro, 1 rl J, t1
rO, I •• "
rO, ICR
rO, (r4, r5
Copy Loop
r5, r5, 11

rO, tO

Have we run out of buffer?

Plcx up byte and move to next one
Is this a control character?
Terminate as the server expects

Loop back for the next byte
Set entry conditions for Tx

1345

1346

MOV rl, tEntryPort ; A constant
LOR r2, Server_Station
LOR r3, Server_ Networl<
LOR r6, Server_TxDelay
LOR r7, Server_TxCount
SWI XEconet_DoTransmit
BVS DeAllocateExit
TEQ rO, t Status Transmitted
BEQ WaitforReply

ConvertEconetError
ADR rl, Buffer ; Convert status and exit
MOV r2, I ?Buffer
SWI XEconet_ConvertStatusToError
B DeAllocateExit

WaitforReply

Exit

MOV rO, r8
LOR rl, Server_ RxDelay
MOV r2, tO ; Don't allow ESCape
SWI XEcone t _WaitforReception
BVS DeAllocateExit
TEQ rO, fSta tus_Received
BNE ConvertEconetError

LOR
CMP
ADR
BNE
LDRB
STRB

rO, Buffer Get
rO, 10 Has
rO, Buffer Get
DeAllocateExit Yes,
rl, [rO, 14) Load
rl, Server_CommandPort

server return code
there been an error?
address of reply

process error
server's port

STRVS
LDMFD

ro, (sp, I 0 J
sp!, [r0-r8,pc}

Poke error into return regs
Return to caller

BufferOverflowError
& ErrorNumber BufferOvarflow

•command too long for buffer" , 0
ALIGN

Bufferoverflow
ADR rO, BufferOverflowError

DeAllocateExlt
MOV
LDRB
SWI
MOV
CMP
8

rl, rO ; Preserve the original error
rO, Server_ReplyPort
XEconet_DeA llocatePort
rO, rl
pc, HSOOOoooo
Exit

Ignore deallocation errors
Set v
Exit through common poi nt

Econet: Technical Details

Econet events

Using events from the
Wimp

Econet: Technical Details

Points to notice in the example are:

• the careful use of a single exit point

• the consistent return of errors (no matter what type)

• the opening of the receive block before doing the transmit

• the use of the 'X' form of SWis.

It should be noted that the routine uses and manipulates global state as well
as taking specific input and returning specific output.

To allow Econet based programs to be kinder to other applications within the
machine, it is possible for your program to be 'notified' when either a
reception occurs or a transmission completes. This means that other
applications can be using the time that your program would have spent
polling, either inside Econet_DoTransmit or inside Econet_ WaitforRcception .
This 'notification' is carried by an event. There are separate events for
reception and for completion of transmission. These two events arc:

14 Event_Econet_Rx
15 Event_Econet_ Tx

On entry to the event vector:

• RO will contain the event number, either Event_Econet_Rx or
Event_Econet_ T x

• Rl will contain the receive or tr • .msmit handle as appropriate

• R2 will contain the status of the completed operation.

The status for receive will always be Status_Recei1-oed, but for transmtt tt will
indicate how the transmission completed. These events can be enabled and
disabled in the normal way using OS_Byte calls.

If your program is a client of the Wimp then all your event routine need do
is set a flag that your main program polls in its main Wimp polling loop,
when the event happens.

1347

Setting up background
tasks

1348

Event TEO
TEOSE
MOVNE

STMFD
ADR
STR
LDMF'D

rO , tEven t_Econet_Rx
rO, t Event_Econel_Tx
pc, lr If not, exlt as fast as possible

sp!, (l r } Musl preserve all regs (or others
rl4, ForegroundFlag
pc, [rl4 1 Set flag with non-zero value
sp!, { pc } ; Return, wi thout claiming vector

Since rhe interfaces required for reception and transmiSSIOn can be called
from within event routines, you can set up background tasks that make full use
of the facilities offered by Econet. Note that it is important to check that the
handle offered in the event belongs to your program, since there may well be
many programs using this facility. The example given below is of a simple
background server for sending out the time. Not all of the code needed is
shown, just the event routine:

Start MOV
ADR
MOV
SWI

MOWC
MOV
SWIVC
MOWC
MOV
SWI VC

MOVVC
MOV
MOV
ADR
MOV
SWIVC
STRVC
MOV

Event T£0
BNE
LOR
TEO
MOVNE
MOVNE

STMfD
MOV
SWI
BVS

rO , H.ventV
rl, Event
r2, t O
xos_cla!m

Tho vector wo want to get on Is the Event
Where to got when it happens
Required so that we can release

r O, 114 ; Enable event
rl, I Event - Econet - Rx
xos_Byte
ro, 114 ; Enable event
rl, f Event -Econet_Tx
XOS _Byte

rO, ICommandPort ; first open the reception
rl , t o From any station
r2, 10 ; From any ne t
r3 , Buffer
r4 , I ?Buffer
XEconet_CreateRece!ve
rO, RxHandle
pc, lr

rO, I Event £conet Rx -
LookForTx
rO, RxHandl e Get
rO, rl Is
rO, I Event -£conet -Rx
pc, lr If

our globa 1
it for us?

not , exit as

state

fast as possible

sp!, { r3-r7 I Only Rl and R2 are free for use
rO, rl Rece1 ve handle
XEconet_ReadReceive ; R4.R3 Is the reply address
Exit

Econet: Technical Details

Econet: Technical Details

MOV
MOV
MOV
SWI
BVS

ADD
MOV
STRB
MOV
SWI
BVS

MDV
MOV
MOV
LDRB
MOV
MOV
MOV
MOV
SWI
BVS

SUB
STR
AOR
LOR
STR
STR

MOV
MOV
MDV
ADR
MOV
SWI
STRVC

Exit
LDMF'D

LookForTx

NextTx

TEQ
MOVNE:
STMFD
ADR
LOR
B

MOV
LOR

StartLooking

r6, r3 Save the station number for later
rO, IModule_Claim
r3, f8 + 5 Two words and five bytes required
xos Module Memory MUST come ~rom RMA
Exit

rl, r2,
ro, 13
rO, (rl
ro, 114

XOS_Word
Exit

rO,
r3,
r4,
rl,
r2,
rS,

10
r4
rl
I rS
r6
15

18

r6, IReplyCount
r7, fReplyDelay

Get the address o! the 5 bytes
Set OS Word reason code
Read as a five byte time
Read from the real time clock

Flag byte
Net work number
Get tho address of the 5 bytes
The reply port the client sent
Station nu,ber
Number of bytes to send

XEconet_StartTransmit
Exit

r4, r2, 18
rO, [r4, f4
rl, TxList
r2, I rl, 10

r7, I r4, t O
r4, I rl, t O

Note that the exit register Is R2 not R4
Save TxHandle in record
Address of the head of the list
Head o! the list
Add the list to new record
Make this record the list head

rO, fCommandPort ; Now re-open tho reception
rl, 10 From any station
r2, 10 ; From any net
r3, Buffer
r4, t?Buffer
XEconet_CreateReceive
rO, RxHandl c

sp!, (r3-r7, pc 1 Return claiming vector

rO, IEvent_Econet_Tx
pc, lr
sp!, I r3, I r
r3, TxList
rl4, I r3 I
StartLoo~ I ng

r3, r14
rl4, (r3

Get two extra registers
The address of the head of list
The first record in the list

Search the next list entry
Get the link address

1349

Broadcast
t ransm issio ns

1350

CMP rl4 , fO ; Is this the end of the list?
MOVLE rO, f Event_Econet_Tx ; Restore entry conditions
LDMLE FD sp!, t r3 , pc I Return, continu i ng to next owner
LOR ro, (r14, 14 1 Cct t~e ~andle for this record
TEO rO, rl Is this event one of ours?
BNE

LOR
STR

NextTx

r2, (rH I
r2, [r3 I

No, try next record in List

Get the remainder of the list
Remove this record from list

MOV r2, rl4 The record address for later
SWI XEconet_AbandonTransmlt
MOV cO, IHodule_frec
SWI XOS_Module ; Return me~ory to RHA, lqnore error
LDMFD sp!, { r3, l r, pc 1 ; Return, clalminq vector

This program also illustrates some of the more advanced features of Econet.
In particular; it shows the ability to specify reception control blocks that can
accept messages from more than one machine, or on more than one port.
Receive control blocks like this arc referred to as wild, as in wild rord
matching used in file name look up. Specifying either the station or network
number (usually both) as zero means 'match any'. The same is true of the port
number, although this facility is much less useful! This wild facility does not
mean that more than one packet can be received, but rather that more than one
particular packet will be acceptable. Once a packet has been received, the
RxCB has Starus_Received and is no longer open.

It is worth noting an implementation detail here. Receive control blocks are
kept by the Econet software in a list, when an incoming scout has been
received the list is scanned to find the first RxCB that matches it. To ensure
that things go as one would expect the Econct software that implements the
SWI Econet_CreateReceive always adds wild RxCBs to the tail of the list,
and normal RxCBs to the middle of the list (between the normal and the
wild ones). This ensures that when packets arrive they will be checked for
exact matches before wild matches, and that if there is more than one
acceptable RxCB then the one used will be the one that was opened first, i.e.
first in first served.

As a complement to this concept of wild receive control blocks there are
broadcast transmissions. A broadcast has both its destination station and
network set to &FF, it can then be received by more than one machine. To
achieve this it docs not use the normal four way handshake, it is in fact a
single packet. On the NetMonitor it would look something like this:

Econet: Technical Details

Immediate operations

Econet: Technical Details

FFFF1200809F5052494E54200100

The broadcast address at the beginning (&FF, &FF), the source station and
network (&12, &00), the control byte (&80), and the port (&9F) are the same
as a normal scout frame, but then the data follows, in this case eight bytes.

Although the Econet software within RISC OS can transmit and receive
broadcast messages of up to about a thousand bytes, other machines on Econet
can't cope with messages of more than eight bytes without getting confused;
this confusion causes them to corrupt such broadcasts. These other machines
include things like FileStores and bridges, so beware! It is possible to
transmit and/or receive zero to eight bytes without them being corrupted, but
only broadcasts of exactly eight bytes can be received by BBC or Master
computers, as well as being transported from network to network by bridges.

Transmitting a broadcast is exactly the same as transmitting a nonnal packet,
all you need to do is set the destination station and network to &FF (not -1).
Broadcasts don't return the sranJs Status_NotListening, since there is no way for
the transmitting station to determine whether or not its broadcast was received.
Broadcasts are basically designed for locating resources, i.e. to transmit your
desire to know about a particular class c:i thing. Anything recognising the
broadcast will reply, so you know what's what and where it is. NetFS uses
broadcast to find file servers by name, and NetPrint uses broadcast to find
printer servers. The above example contains the ASCII text 'PRINT' and is,
not surprisingly, a request for all printer servers to respond.

There is a second class of network operations called immediate operations.
These operations don't require the explicit co-operation of the destination
machine; instead the co-operation is provided by the Econet software in that
machine. Immediate operations are similar semantically to nonnal
transmissions but, because they have no need for a port number, have a type
instead of a flag; and most also require an extra input value. They have a
separate pair of SWI calls to cause them to happen: Econet_Startlmmediatc
(SWI &40016) and Econet_Doimmediate (SWI &40017).

The call Econet_Startlmmediate rerums a transmit handle in exactly the same
way as Econet_StartTransmit and that handle should be polled and
abandoned in the same way. The call Econet_Doimmediatc returns a sran1s
just as Econet_DoTransmit docs.

1351

Econet_Peek and Poke

Econet_JSR,
UserProcedurecall and
OSProcedureCall

1352

There arc nine types of immediate operations:

I Econet_peck
2 Econet_Poke
3 Econet_jSR
4 Econet_UserProcedurcCall
5 Econet_OSProcedurcCall
6 Econet_Halt
7 Econct_Continue
8 Econct_~achinePcek

9 Econet_GetRegisters

Copy memory from the destination machine
Copy memory ro the destination machine
Cause JSR/BL on the destination machine
Execute User remote procedure call
Execute OS remote procedure call
Halt the destination machine
Continue the destination machine
Machine peek of the destination machine
Return registers from the destination machine

The last one, Econet_GctRegistcrs, can only be transmitted by or received on
RISC OS based machines, whereas all the others can be transmitted or
received by BBC or Master series computers. The reason for this is that
Econet_GetRegisters is specific to the ARM processor.

The poke operation is very similar to a transmit, in that data is moved from
the transmitting station to the receiving station. The difference is that the
address at which the data is received is supplied by the transmitting station.
Peek is the inverse of poke; data is moved from the receiving station into the
the transmitting station.

JSR, UserProccdur<:Call, and OSProcedureCall are all very similar. They
send a small quantity of data, referred to as the argument buffer or
arguments, to the destination machine; they then force it to execute a particular
section of code. When received a JSR actually does a BL to the address given
in Rl, whereas UserProcedureCall and OSProcedureCall cause events to
occur. These events are:

8 Event_Econet_UserRPC
16 Event_Econet_OSProc

After reception the arguments are buffered so that they may be used by the
code that is called, either directly by a BL or indirectly via an event. The
format of the Arguments buffer is as follows: word 0 is the length (in bytes)
of the arguments, then the arguments follow this first word and may be null
(ie the length may be zero).

Econet: Technical Details

Conditions on entry to
event code

Conditions on entry to
JSR code

Format of the argument
buffer

Econet_ UserProcedure
calls

Econet: Technical Detai ls

The conditions on entry co the event code arc:

RO = Event number (either Event_Econct_UserRPC or Evcnt_Econct_OSProc)
R I = Address of the argument buffer
R2 = RPC number (passed in in Rl on the transmitting station)
RJ = Station that sent the RPC
R4 =Network that sent the RPC

The conditions on entry to code that is BL'd to for a JSR are:

R I = Address of the argument buffer
R2 = Address of the code being executed
R3 = Station that sent the JSR
R4 =Network that sent the JSR

The format of the argument buffer is exactly the same in all cases. If, in the
case of a JSR, the call address transmitted from the remote station is - 1
(&FFFFFFFF) then the execution address will be the argument buffer itself;
this means that relocatable ARM code can be sent as a JSR. Registers RO to
R4 can be used as they arc preserved by the Econct softw:ctrc, and RIJ can
also be used as an FD stack.

The transmission of Econct. OSProcedurcCall is not intended for usc by other
than system software, and is only documented here for completeness. The
transmission of Econct_JSR is only provided as a compatibility feature to
allow interworking with BBC and Master computers.

The Econct_UserProccdureCall is the best method for this style of
communications. It docs however have some rc~trictions. The first of these is
the most important - it is executed in the destination machine as an event
caused by an interrupt, and so it has all the normal restrictions applied to
interrupt code. This means that code directly executed as a result of
Event_Econet_UscrRPC must be fast and clean, and must not call any of the
normal input or output SWI routines nor call the filing system, either directly
or indirectly. This is paramount if the integrity of the destination machine is to
be ensured. However, you can copy away the arguments passed and signal to a
foreground task (by altering a flag) that the procedure call h;1s arrived. It is
most important that you copy the arguments away, because the buffer that they
arc in is only valid for the duration of the event call. This means that RI will

1353

1354

point to the arguments whilst you are processing the event, but afterwards the
argument buffer may be overwritten. If the requirements for the processing of
the call are small then it is possible to do it all within the event. An example
of this is a modification of the program presented earlier that returned the
time. This new program sends the time in response to a User RPC, rather than
a normal packet:

Start MOV
AOR
MOV
SWI

MOVVC
STRVC

rO, I EventV
rl , Event
r2, 10
XOS Claim

rO, 114
rO, Claimedrlag

The vector we want to get on is the Event
Where to got when it happens
Required so that we can release

Enable event
Set it to a non-zero value

MOV rl, I Event_Econet_UserRPC
SWIVC XOS_Byte
MOVVC ro, 114 ; Enable event
MOV rl, I Event Econet_Tx
SWIVC XOS_Byte
MOV pc, l r

Event TEO rO, I Event_Econet_UserRPC
BN£ LookrorTx
TEO r2, I RPC SendTime ; Is it !or us?
MOVNE pc, lr If not, exit as fast as possible

LOR
TEO

ro, [rl, 10 I
rO, f1

Get size of arguments
Check that it is right

MOVNE rO, I Event_Econet UserRPC ; Restore exit registers
MOVNE pc, lr If not, exit as fast as possible

STMrD sp!, (r5-r7 I

MOV r6, r3
MOV r5, rl
MOV rO, IModulc_Claim
MOV r3, 18 + 5
SWI xos Module
BVS EXIt

ADD rl, r2, 18
MOV rO, 13
STRB ro, [rl
MOV rO, f14
SWI XOS_Wo!"d
BVS F.xlt

MOV rO, 10
MOV r3, r4
MOV r4, rl
LDRB rl, (r5, 14 I
MOV r2, r6

Only Rl to R4 are free for use
R4.R3 Is the reply address
Save the station number for later
Preserve arguments pointer

Two words and five bytes required
Memory MUST come from RMA

Get the address of the 5 bytes
Set OS Word reason code
Read as a five byte time
Read from the real time clock

Flag hyte
Network number
Get the address of the 5 bytes
The reply port the client sent
Station number

Econet: Technical Details

Econet: Technical Details

MOV
MOV
MOV
SWI
evs

SUB
STR
II OR
LOR
STR
STR

Exit
LOMf"D

LookForTx

NextTx

TEO
MOVNE
STMFD
1\0R
LOR
B

MOV
LOR

Start Looking

rS , I S N~mber o~ byt~s to serd
r6, I Rep! yCount
r7, I Rep! yOe lay
XEconet StartTransmlt
Exit

r4, r2 , 18 Note chat the exit n•ql ster Is
rO, (r ~. 14 Save 7xHa'1d le In record
rl , TxT. I SL Address or Lh<' head or th(' 11 st
r2 , I rl, 10 Head of the list
r2, I r4, 10 Add the 1 ist to new TC'CO~d

r4, rl, IC l Ma~e this record thr lIst head

sp!, I r5-r7 , pc I ; Ret~rn c!a!~!nq vector

rO, t Event_Econet_rx
pc, lr This event has only RO to R2
sp!, (r3 , lr Get two extra req!strrs
r3 , Txtlst The address of the head of llst
rl 4, (r3 I
Stan J.oo~ I ng .

r3, rl4
r14, [r3

The first rrcord In t~r l ist

Search :he nex: J 1st e>~try
Get the lin~ address

CMP rl4, 10 Is this the end of thl' lIst?
MOVLE r O, 1Ever.t_£conet_Tx ; Restore entry conditions

R2

LDMLEFD sp!, I r3, pc Return, continuing to next owner
LOR rO, I rl4 , 14 1 Get the hand!e Cor this rrcoro
TEO rO, rl Is th!s ever.: or.e o! ours?
BNE NextTx No, try next record In lIst

LOR
STR
SWI
MOV
MOV
SWI
LOM!'D

r2, (rl 4 Get the remainder of thr ll st.
r2, I r3 I Remove this record from list
XEconet llbandonTransmit
rO , IModule _Free
r2, rl4 The record adarcss
XOS Module Return fficmory to RMII, Ignore error
sp!, (r3 , lr, pc 1 ; Return , clalmlng Vl"ctor

r.o:. R4

You will notice how much simpler this program is when compared to the
program shown earlier.

1355

Econet_ OSProcedure
calls

OSCharacterFromNotify

OSCauseFataiError

Econet_Halt and
Continue

Econet_MachlnePeek

1356

There are five defined OS procedure calls for which only two have
implementations under RISC OS. The five arc:

0 Econet_OSCharactcrFromNotify
Econet_ OSlni rial iscRcmote

2 Econet_OSGetYiewParameters
3 Econet_OSCauseFat:alError
4 Econet_OSCharacterFromRcmote

Econet_OSCharacterFromNotify causes the character received to be inserted
in to the keyboard buffer; the code that does so looks like this:

I ~sertChara cter

MOV rO ,
LDRB r 2,
MOV rl ,
SWI XOS

11 38

I rl ,
t O
RytP

f4 I

Rl ~lrPady oc!ntlnq at arqume nt bu!fe r
Insert i~:o buffer OS_Byt e
Cet charactc- !rom buffer
Bu!•e~ Is keyboard

The NctFilcr module provides a different implementation whilst the desktop
is running.

Econet_OSCauscFatalError docs exactly what its name implies. In fact it
calls SWI OS_GenerateError directly from the event routine; normally this
would be illegal, but since this is what the RPC is for, that is what it docs. It
should be observed that this can have a disastrous effect on the integrity of the
machine and is not a recommended action; it is provided only for
compatibility reasons.

Halt and continue are only acted upon by BOC and Master series machines;
there is no implementation for receiving hal(or continue on RISC OS
machines or RISC iX machines.

Machine peck is similar to peck, except that it is not possible to specify the
address to be pecked, but rather four bytes are returned that identify the
machine that is being machine peeked. Machine peck is used by some of the
system software in RISC OS to quickly decide if a particular machine is
present or not. The four bytes returned by machine peck are as follows:

Econet: Technical Details

Machine type numbers

Software version and
release number

Econet: Technical Details

Byte(s)

1 and 2
3
4

Value

Machine type number
Software version number
Software release number

Machine type numbers are as follows:

&0000 Reserved
&0001 Acorn BBC Micro Computer (OS 1 or OS 2)
&0002 Acorn Atom
&0003 Acorn System 3 or System 4
&0004 Acorn System 5
&0005 Acorn Master 128 (OS 3)
&0006 Acorn Electron (OS 0)
&0007 Acorn Archimedes (OS 6)
&0008 Reserved for Acorn
&0009 Acorn Communicator
&OOOA Acorn Master 128 Econet Terminal
&OOOB Acorn FileStore
&OOOC Acorn Master 128 Compact (OS 5)
&OOOD Acorn Ecolink card for Personal Computers
&OOOE Acorn Unix WorkStation
&OOOF to &FFF9 Reserved
&FFF A SCSI I nrerface
&FFFB SJ Research IBM PC Econet interface
&FFFC Nascom 2
&FFFD Research Machines 480Z
&FFFE SJ Research File Server
&FFFF Z80 CP/M

The software version and release numbers are stored in two bytes. These two
bytes are encoded in packed ·BCD (Binary Coded Decimal) and represent a
number between 0 and 99. The easiest way to display packed BCD is to print
it as if it was hexadecimal data:

ReportSt a tionVe rs ion
MOV r 2, r O ; Station number in RO
MOV r3 , rl ; Network number Ln Rl
MOV r O, IEco net _MachinePeek
ADR r 4, Buffer
MOV
MOV

r5 , f ?Buffer
r&, JO

1357

Econet_ Get Reg lsters

Protection against
Immediate operations

1358

MOV
SWI
MOVVS
TEO
B£0
TE:O

r7 , fD
XEconeL Dolmmed1ate
pc, lr
rO , t Status_Transmltted
PrintVerslon
rO, fStatus_Not Listenlnq ; "Not listening " from Machine peek

MDVEO rO, I Status NotPrese~~ ; sr.o~Jd retur~ "Not present "
AOR rl , Bu ffer
MDV r2 , f?Bu(fer
SWI XEconet ConvertStatusToF.rror
MOV pc, lr

Print Vers ion
LOR r3, [r2 I
MDV rO , r3, ASR 124

ADR rl, Buffer
MOV r2 , f ?Buffer
SWI XOS ConvertHex2
SWI VC XOS_Wr ltoO
swrvc XOS_Wrl tPf+ "."

HOVVC rO, r3, ASR 116
ANDVC r o, ro, IH'F'
ADRVC rl, Buf fer
MOVVC r2, f ?Butfer
swrvc XOS ConvertHex2
SWIVC XOS Wr lteO
HOV pc, lr

Buffer address on exit from SWI
Get top byte

Print BCD as hex
Display out put
Divide releasE> from version number
Get version number In place
Only the version number

Print BCD as hex
Display output

Econet_GetRegistcrs is similar to machine peck, in that a fixed amount of
information is rerurned from the destination machine; in this case it is 80 bytes
(20 words). The registers are returned in the following order: RO to Rl4, PC
plus PSR, Rl3_irq, R14_irq, RIJ_svc, and Rl4_svc. The FIQ registers arc not
returned because they are used by the Econct software, and so would always
be the same, and of no interest since they would reflect the state of the part
of the Econet software that transmits data. It is worthwhile aligning the receive
buffer for a machine peck so that each of the 20 words is on a word boundary;
this makes loading them easier.

Because these immediate operations can be quite intrusive it is possible to
prevent their reception by manipulating an internal variable of the Econet
software. There is one bit in this internal variable for each operation, and you
can set or clear each bit. There is also a default value for each bit which is

Econet: Technical Details

Altering the protection
held in CMOS RAM

Reading your station
and network numbers

Econet: Technical Details

held in CMOS RAM. The SWI that allows you to manipulate this intern:~!
variable is Econet_SetProtcction (SWl &4000E}. These bits are held in a
single word; the bit assignments 11re as follows:

Bit Immediate operation protected against

0 Peek
1 Poke
2 RemoteJSR
3 User procedure call
4 OS procedure call
5 Halt - must be zero on RISC OS computers
6 Continue- must be zero on RISC OS computers
7 Machine peck
8 Get registers
9 • 30 Reserved - must be zero.
31 Write new value to the CMOS RAM

To protect against or disable the reception of a particular immedi<Jtc
operation, the appropriate bit should be set in the internal variable. The SWI
Econet_SetProtection call replaces the OldValue with the NewYalue, The
New Value is calculated like this:

NewYalue := (OldYalue AND RI) EOR RO.

When the Econet software is started up (as a resul t of Ctri-Break, or
*RMRelnit) then the value held in CMOS RAM will be usee) to initialise the
internal variable. To alter the value held in CMOS RAM the entry value of
RO to SWI Econet_SetProtection should have bit 31 set, which causes the
resultant value to be written not only to the internal variable, but also to the
CMOS RAM. Note that the usc of Econet_ReadProtection (SWI &40000} is
deprecated; if you need to read the current value you should usc SWI
Econet_SetProtection with RO=O, and R 1 =&FFFFFFFF.

To establish what your station number is and which network you are connected
to (if you have more than one), the Econet software provides a call to return
these two values: Econet_ReadLocaiStationAndNet (SWl &4000A}. If you
don't have more than one network then the network number (returned in R I)
will be zero.

1359

Extracting station
numbers from a string

1360

These values are the same as those reported by *Help Station (in fact *Help
Station calls SWI Econet_ReadlocalStationAndNer to get the values).

To ensure that all Econet oriented software presents a consistent user
intetface rhere is a SWI call to read a station and/or network number from a
5upplicd string. This call, Econet_ReadStationNumber (SWI &4000F), is
used by both NetFS and NetPrint for all their command line processing. In
the case of software that has a concept of a current station (and network)
number the return value of -1 ~hould mean 'usc the existing value' - this is
how *FS works, for example. Where there isn't a current value, as would be
expected in a transient command such as *Notify, the return of -1 for the
station number should be treated as an error and the return of -1 as a
network number should imply the usc of zero as a network number. The
following ts the beginning (and some of the end) of a transient command:

Co:--.andSlart
LDRB
TEO
BEO

SWl
MOVVS
CM?
llfo',Q

CMP

rO, [rl '
rO, 10
SyrtaxError

Chock the first argument exists
7.cro ~ea~r. r.o arg~e~:s

Exit wlt!'> er!'or

Xl:cone~ _1\<'il dStat 1 on Number
pc, lr
r?, t-1

; Hus~ be ao!e to cope
; ~o station nu~bcr given

NoStatio~N~mbcr~rror

r1, f-1 No net numbP.r given
!oiOVEQ r:l, 10 ; ~ear.s use ze~o

MDV

Syntaxt:rror
ADR
ORRS

pc, lr

rO, ErrorGcLRcgsSy~tax

pc, lr, IVrlag

E~rorGetRegssyntax

' ~rror~u,..ocr Syntax
" Syntax: •command <Stat ion n·J-ber>"
0

NoStatlonNumberError
AI~R rO, ErrorUnilbleToDe filU! t
ORRS pc, lr, IVFlaq

Econet: Technical Details

Converting station and
network to a string

Conventions and values

Station numbers

Network numbers

Port numbers

Econet: Technical Details

ErrorUnableToDe~au lt

& Erro r Numbe r UnableToDe t au lt

AL IGN

"Ei t he r a station numbe r o r a full "
" net work add ~ess Is requ irad"
0

There exist two inverse functions that convert a station and network number
pair into a string, see the section on conversions for exact details.

The following conventions apply to the various values that the Econet uses:

Station numbers are normally in the range 1 to 254. The station number zero
is used in SWI Econct_CrcatcRcceive to indicate that reception may occur
from any station. The station number 255 is used in SWI
Econet_StartTransmit and in SWI Econet_DoTransmit to indicate that a
broadcast is to take place; it is also used in SWI Econet_CrcateReccivc to
indicate that reception may occur from any station, and is to be prcfcrcd over
the value zero for this purpose.

Network numbers are normally in the range 1 to 254. The value zero means
the local network; in a SWI Econct_CreatcRcccivc it is taken to indicate that
reception may occur from any network. The network number 255 is used in
SWI Econet_StartTransmit and in SWI Econct_DoTransmit to indicate that a
broadcast is to take place. It is also used in SWI Econct_CreateReceivc to
indicate that reception may occur from any station; the usc of zero to indicate
wild reception is deprecated.

Although RISC OS fully supports top-bit-set network numbers (ie 128- 254),
certain Econet devices - such as bridges - will not propagate them, leading to
problems. You should beware of this.

Port numbers arc normally in the range I to 254, although the values &90
through &9F and &00 through &D2 arc rc~rved by Acorn for existing
protocols. Port number zero is reserved. A port number of either zero or 255
in a reception indicates that the reception may occur regardless of the port
number on the incoming packet. The use of zero to indicate wild reception is
deprecated.

1361

Flag bytes

Transmission
semantics

1362

Flag byte values are in the range 0 to 255 (&FF), but only the bottom seven
bits are signifigant.

The transmission semantics are simple. When a transmtsston is started the
client's control information (passed in registers) is stored in a record in a
linked list within Econet workspace. At regular inrervals the list is scanned,
and those records that should be actually transmitted at that moment are
passed to the FIQ software. When that particular transmission attempt
completes the status of the record is changed accordingly. This means that if
two transmissions are started at the same time, they will interleave their
transmission retries.

When a transmission has completed but failed:

• if the count is non-zero the delay is added to the predicted start time to
give the next start time

• otherwise the status is set to Suuus_NotListening (or Sr.atus_NetError).

This means that as far as possible the time out time will be the Delay
multiplied by the Count.

Econet: Technical Details

SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Econet: SWI Calls

Econet CreateReceive
(SWI & 40000)

Creates a Receive Control Block

RO = port number
Rl =station number
R2 = network number
R3 = buffer address
R4 =buffer size in bytes

RO =handle
R2 = 0 ifR2 on entry is the local network number

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mcx:le

SWI is re-entrant

This call creates a Receive Control Block (RxCB) to control the reception of
an Econet packet. It returns a handle to the RxCB.

The buffer must remain available all the time that the RxCB is open, as data
received over the Econct is read directly from hardware to the buffer. You
must not use memory in application space if your program is to run under the
Desktop. Instead, you should use memory from the RMA.

None

None

1363

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1364

Econet ExamineReceive
(SWI &40001)

Reads the status of an RxCI3

RO = handle

RO =status

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call reads the status of an RxCI3, which may be one of the following:

7 Status_RxRcady
8 Status_Receiving
9 Status_Received

Ec.onet_ WaitforReception {SWI &40004)

None

Econet: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Econet: SWI Calls

Econet ReadReceive
(SWI & 40002)

Returns information about a reception, including the size of data

RO =handle

RO =status
R 1 = 0, or flag byte ifRO = 9 (Status_Received) on exit
R2 = port number
R3 = station number
R4 =network number
RS = buffer address
R6 = buffer size in bytes, or amount of data received if RO = 9 on exit
(Status_Received)

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call returns information about a reception; most importantly, it tells you
how much data was received, if any, and the address of the buffer in which it
was placed. The buffer address is the same as that passed to
Econct_CreateReceive (SWI &40000). You can call this OWl before a
reception has occurred.

The returned values in IU and R4 (the network and station numbers) are those
of the transmitting station if the status is Status_Rcccived, otherwise they arc
the same values that were passed in to SWI Econet_CrcatcReceive.

Econet_ WaitForReception (SWI &40004)

None

1365

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1366

Econet AbandonReceive
(SWI &40003)

Abandons an RxCB

RO =handle

RO =status

Interrupts arc disabled
Fast interrupts arc enabled

Processor is in SVC mode

SWI is re-entrant

This call abandons an RxCI3, returning its memory to the RMA. The reception
may have completed (RO = 9 - Status_Received - on exit), in which case the
data is lost.

Econet Wai tForReception (SWI & 40004)

None

Econet: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Econet: SWI Calls

Econet_WaitForReception
(SWI & 40004)

Polls an RxCB, reads its status, and abandons it

RO =handle
Rl =delay in centiseconds
R2 = 0 to ignore Escape; else Escape ends waiting

RO =status
Rl = 0, or flag byte if RO = 9 (Status_Received) on exit
R2 = port number
R3 = station number
R4 = network number
R5 = buffer address
R6 =buffer size in bytes, or amount of data received if RO = 9 on exit
(Status_Received)

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call repeatedly polls an RxCB (that you have already set up with
Econet_CreatcReceive) until a reception occurs, or a timeout occurs, or the user
interferes (say by pressing Escape). It then rc:tds the status of the RxCB
before abandoning it.

The returned values in R3 and R4 (the network and station numbers) are those
of the transmitting station if the status is Status_Rcccived, otherwise they are
the same values that were passed in to SWI Econet_CreateReceive.

Note that this interface enables interrupts and so can not be called from
within either interrupt service code or event routines.

Econet_ExamineReceive (SWI &40001), Econet_ReadReceive (SWI &40002),
and Econct_AbandonReceive (SWI &40003)

None

1367

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1368

Econet EnumerateReceive
(SWI &40005)

RO = index (I to start with first receive block)

RO = handle {0 if no more receive blocks)

Interrupt Status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call returns the handles of open RxCBs. On entry RO is the number of
the RxCB being asked for (1, 2, 3 ...). If the value of RO is greater than the
number of open RxCBs, then the value returned as the handle will be 0, which
is an invalid handle.

Econet_CrcateReceive (SWI &40000),
Econet_AbandonReceive (SWI &40003), and
Econet_ WaitForReception (SWI &40004)

None

Econet: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Econet: SWI Calls

Econet StartTransmit
(SWI & 40006)

Creates a Transmit C'..ontrol nlock and starts a transmission

RO = flag byte
R 1 = port number
R2 = station number
R3 = network number
R 4 = buffer address
RS = buffer size in bytes (less than 8 k)
R6 =count
R7 =delay in centiseconds

RO =handle
Rl corrupted
R2 = buffer address
RJ = station number
R4 = network number

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call creates a Transmit Control Block (TxCB) to control the transmission
of an Econet packet. It then starts the transmission.

The value returned in R4 (the network number) will be the same as that
passed in in R3 unless that nutTlber is equal to the local network number; in
that case the network number will be returned as zero.

Econet_DoTransmit (SWJ &40009)

None

1369

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1370

Reads the status of aT xCB

RO = handle

RO = status

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

Econet PollTransmit
(SWI &40007)

This call reads the status of a TxCB, which may be one of the following:

0 Status_ Transmitted
l Starus_LineJammed
2 Status_NetError
3 Status_Notlistening
4 Starus_NoCiock
5 Status_ T xReady
6 Status_ Transmitting

Econet_DoTransmit (SWI &40009)

None

Econet: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Econet: SWI Calls

Econet AbandonTransmit
(SWI & 40008)

Abandons a T xCB

RO = handle

RO =status

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call abandons aT xCl3, returning its memory to the RMA.

Econet_DoTransmit (SWI &40009)

None

1371

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1372

Econet DoTransmit
(SWI & 40009)

Creates a TxCB, polls it, reads its status, and abandons it

RO = flag byte
R 1 = port number
R2 =station number
R3 = network number
R4 =buffer address
R5 =buffer size in bytes (less than 8k)
R6 =count
R7 =delay in centiseconds

RO =status
R 1 corrupted
R2 = buffer address
R3 = station number
R4 = network number

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call creates a TxCB and repeatedly polls it until it finishes transmission,
or it exceeds the count of retries. It then reads the flnal status of the TxCB
before abandoning it.

The value returned in R4 (the network number) will be the same as that
passed in in R3 unless that number is equal to the local network number; in
that case the network number will be returned as zero.

Econet_StartTransmit {SWI &40006), Econet_PoliTrnnsmit (SWI &40007),
and Econet_AbandonTransmit (SWI &40008)

None

Econet: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Econet: SWI Calls

Econet
ReadLocalS ta tionAndN et

(SWI &4000A)
Returns a computer's station number and network number

No parameters passed in registers

RO = station number
R 1 = network number

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call returns a computer's station number and network number. The
network number will be zero if there are no Econet bridges present on the
network.

None

None

1373

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1374

Econet_ConvertStatusT oString
(SWI &4000B)

Converts a status tO a string

RO = srntus
Rl =pointer to buffer
R2 = buffer size in bytes
R3 = srntion number
R4 =network number

RO =buffer
R I = updated buffer address
R2 = updated buffer size in byres

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWl is re-entrant

This call converts a status to a string held in the RISC OS ROM. This is then
copied into RAM, preceded by the station and network numbers, giving a
string such as:

Station 59.254 not listening

Econet_ConvertStatusToError (SWI &4000C)

None

Econet: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Econet: SWI Calls

Econet ConvertStatusToError
(SWI & 4000C)

Converts a status to a string, and then generates an error

RO =status
R 1 = pointer to error buffer
R2 = error buffer size in bytes
R3 = station number
R4 = network number

RO = pointer to error block
V flag is set

Interrupt status is unaltered
Fast interrupts a re enabled

Processor is in SVC mode

SWI is re-entrant

This call converts a status to a string held in the RISC OS ROM. This is then
copied into RAM, preceded by the station and network numbers, giving a
string such as:

Station 59.254 not listening

Finally this call returns an error by setting the V flag, with RO pointing to the
error block.

If you use a buffer address of zero, then the string is not copied into RAM.
On exit, RO will point to the ROM string instead (which, of course, excludes
the station and net\vork numbers).

Econet_ConvertStatusToString (SWI &400013)

None

1375

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1376

Econet ReadProtection
(SWI & 4000D)

Reads the current protection word for immediate operations

No parameters passed in registers

RO =current protection value

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call reads the current protection word for immediate operations. Various
bits in the word, when set, disable corresponding immediate operations:

Bit Immediate operation

0 Peek
I Poke
2 Remote)SR
3 User procedure call
4 OS procedure call
5 Halt - must be zero on RISC OS computers
6 Continue- must be zero on RISC OS computers
7 Machine peek
8 Get registers
9 - 31 Reserved - must be zero

Note You should preferably use the call Econet_SetProtection
(SWI &4000E) to read the protection word instead of this call.

Econet_SetProtection (SWI &4000E)

None

Econet: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Econet: SWI Calls

Econet SetProtection
(SWI &4000E)

Sets or reads the protection word for immediate operations

RO = EOR mask word
Rl =AND mask word

RO = old value

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call sets the protection word for immediate operations as follows:

New value= (old value AND Rl) EOR RO

Various bits in the word, when set,
operations:

disable corresponding immedi:ne

Bit

0
1
2
3
4
5
6
7
8
9-30
31

Immediate operation

Peck
Poke
Rcmote]SR
User procedure call
OS procedure call
Halt- must be zero on RISC OS computers
Continue- must be zero on RISC OS computers
Machine peck
Get registers
Reserved - must be zero
Write new value to the CMOS RAM

Normally this call sets or reads the current value of the word. A default
value for this word is held in CMOS RAM.

1377

Related SWis

Related vectors

1378

The most useful values of RO and R 1 are:

Action

Set current value
Read current value
Set default value

RO

new value (0 • &1 FF)
0
&80000000 + new value

Rl

0
&FFFFFFFF
0

You should use this call to read the value of the protection word, rather than
Econct_ReadProtection (SWI &40000).

None

None

Econet: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Econet: SWI Calls

Econet ReadStationNumber
(SWI &4000F)

Extracts a station and/or network number from a supplied string

Rl =address of string to read

R 1 = address of terminating space or control character
R2 =station number (-1 for not found)
RJ =network number (-1 for not found)

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call extracts a station and/or network number from a supplied string

None

None

1379

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1380

Econet PrintBanner
(SWI &40010)

Prints the string "Acorn Econet" followed by a newline

No parameters passed in registers

No values returned in registers

Interrupts are enabled
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

This call prints the string "Acorn Econet" followed by a newline. It calls
OS_ WritcO and OS_NewLinc and so can not be called from within either
interrupt service code or event routines.

If the Econet danetwork dara clock is not present then the text " no clock" is
appended to the banner.

None

None

Econet: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Econet: SWI Calls

Econet ReleasePort
(SWI &40012)

Releases a port number that was previously claimed

RO = port number

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call releases a port number that was previously claimed by calling
Econet_ClaimPort (SWI &40015).

You must not use this call for port numbers that have been previously
claimed using Econet_AllocatePort (SWI &40013); instead, you must call
Econet_DeAllocatePort (SWI &40014).

Econet_ClaimPort (SWI &40015)

None

1381

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1382

Allocates a unique port number

No parameters passed in registers

RO = port number

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Econet AllocatePort
(swr &40013)

This call allocates a unique port number that has not already been claimed or
allocated.

When you have finished using the port number, you should call
Econet_DeAIIocatePort (SWI &40014) to make it available for usc again.

Econet_DeAllocatcPort (SWI &40014)

None

Econet: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Econet: SWI Calls

Econet DeAllocatePort
(SWI &40014)

Deallocates a port number that was previously allocated

RO =port number

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call deallocates a port number that was previously allocated by callin~
Econet_AIIocatePort (SWI &40013).

You must not use this call for port numbers that have been previously
claimed using Econet_ClaimPort (SWI &40015); instead, you must call
Econet_RcleasePort (SWI &40012).

Econet_AIIocatePort (SWI & 40013)

None

1383

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1384

RO = port number

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Econet ClaimPort
(SWI &40015)

This call claims a specific port number. If it has already been claimed or
allocated, an error is generated.

When you have finished using the port number, you should call
Econet_ReleasePort (SWI &40012) to make it available for use again.

Econet_ReleasePort (SWI &40012)

None

Econet: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Econet: SWI Calls

Econet Startlmmediate
(SWI &40016)

Creates a TxCB and starts an immediate operation

RO = operation type
R 1 = remote address or Procedure number
R2 = station number
R3 = network number
R 4 = buffer address
RS = buffer size in bytes (less than 8k)
R6 =count
R7 =delay in centiseconds

RO =handle
R 1 corrupted
R2 = buffer address
R3 = station number
R4 = network number

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call creates a TxCB and starts an immediate operation. For full details
see the description in the Technical Details earlier in this chapter.

The value returned in R4 (the network number) will be the same as that
passed in in R3 unless that number is equal to the local network number; in
that case the network number will be returned as zero.

Econet_Dolmmediate (SWI &40017)

None

1385

.. · .. :::;:
·.·:··

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1386

Econet Dolmmediate
(SWI &40017)

Creates a TxCB for an immediate operation, polls it, reads its status, and
abandons it

RO = operation type
Rl = remote address or procedure number
R2 = station number
R3 = network number
R4 =buffer address
RS = buffer size in bytes (Jess than 8k)
R6 =count
R7 =delay in centiseconds

RO =status
R I corrupted
R2 = buffer address
R3 = station number
R4 =network number

Interrupts arc enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call creates a TxCB for an immediate operation, and repeatedly polls it
until it finishes transmission ('r it exceeds the count of retries. It then reads the
final status of the TxCB before abandoning it. For full details sec the
description in the TechniClll Details earlier in this chapter.

The value returned in R4 (the network number) will be the same as that
passed in in R3 unless that number is equal to the local network number; in
that case the network number will be returned as zero.

Econct_Startlmmediate (SWI &40016)

None

Econet: SWI Calls

* Commands

Econet: • Commands

The only • Command the Econct module responds to is *Help Station, which
displays the current network and station numbers of the m<~chinc. For more
details of the *Help command, sec the chapter entitled The rest of the kernel.

1387

1388 Econet: * Commands

Hourglass

Introduction and
Overview

The Hourglass module will change the pointer shape to that of an Hourglass.
You can optionally also display:

• a percentage figure

• two "LED" indicators for status information (one above the Hourglass, and
one below).

Note that cursor shapes 3 and 4 are used (and hence corrupted) by the
Hourglass. You should not use these shapes in your programs.

Normally the Hourglass module is used to display an hourglass on the screen
whenever there is prolonged activity on the Econet. The calls to do so arc
made by the NetStatus module, which claims the EconetV vector. See the
chapters entitled Software vectors and NetSwtus for further details.

The rest of this chapter details the SWis used to control the Hourglass.

Hourglass: Introduction and Overview 1389

SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1390

Turns on the Hourglass

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

Hourglass_On
(SWI & 406CO)

This turns on the Hourglass. Although control return immediately there is a
delay of 1/3 of a second before the Hourglass becomes visible. Thus you can
bracket an operation by Hourglass_On/Hourglass_Off so that the Hourglass
will only be displayed if the operation takes longer than 1/3 of a second.

You can set a different delay using Hourglass_Start (SWl &406C3).

Hourglass_On's are nestable. If the Hourglass is already visible then a count
is incremented and the Hourglass will remain visible until an equivalent
number of Hourglass_Offs are done. The LEOs and percentage indicators
remain unchanged.

Hourglass_ Off (SWI &406Cl), Hourglass_Start (SWI &406C3)

None

Hourglass: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Hourglass: SWI Calls

Turns off the Hourglass

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not deflned

Hourglass_Off
(SWI &406Cl)

This call decreases the count of the number of times that the Hourglass has
been turned on. If this makes the count zero, it turns off the Hourglass.

When the Hourglass is removed the pointer number and colours are restored
to those in use at the first Hourglass_ On.

Hourglass_On (SWI &406CO), Hourglass_Smash (SWI &406C2)

None

1391

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1392

Turns off the Hourglass immediately

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

Hourglass_Smash
(SWI & 406C2)

This call turns off the Hourglass immediately, taking no notice of the count of
nested Hourglass_On's. If you usc this call you must be sure neither you, nor
anyone else, should be displaying an Hourglass.

Hourglass_ Off (SWI &406Cl)

None

Hourglass: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Hourglass: SWI Calls

Turns on the Hourglass after a gi vcn delay

Hourglass_Start
(SWI & 406C3)

RO = delay before startup (in centi-seconds), or 0 to suppress the Hourglass

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call works in the same way as Hourglass_On, except you can specify your
own startup delay.

If you specify a delay of zero and the Hourglass is currently off, then future
Hourglass_O n and Hourglass_Start calls have no effect. The condition is
terminated by the matching Hourglass_Off, or by an Hourglass_Smash.

Hourglass_On (SWI &406CO), Hourglass_Off (SWJ &406Cl)

None

~393

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1394

Hourglass_Percentage
(SWI & 406C4)

Displays a percentage below the Hourglass

RO =percentage to display (if in range 0 • 99), else turns off percentage

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call controls the display of a percentage below the Hourglass. If RO is in
the range 0-99 the value is displayed; if it is outside this range, the percentage
display is turned off.

The default condition of an Hourglass is not to display percentages.

None

None

Hourglass: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Hourglass: SWI Calls

Hourglass_LEDs
(SWI & 406C5)

Controls the display indicators above and below the Hourglass

RO, R I = values used to set LEDs' word

RO = old value of LEDs' word

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call controls the two display indicators above and below the Hourglass,
which can be used to display status information. These arc controlled by bits
0 and 1 respectively of the LEDs' word. The indicato r is on if the bit is set,
and off if the bit is clear. The new value of the word is set as follows:

New value = (Old value AND R 1) XOR RO

The default condition is all indicators off.

None

None

1395

1396 Hourglass: SWI Calls

NetStatus

Introduction and
Overview

The NetStatus module controls the display of an hourglass on the screen
whenever there is prolonged activity on the Econet.

It claims Eco~etY, and examines the reason for each call that is made to the
vector. It in turn makes an appropriate call to the Hourglass module, so that
the appearance of the Hourglass indicates the status of the net. The Hourglass
has two 'LEOs', one on top and one on the bottom:

• if only the top LED is on, then your station is trying to receive

• if only the bottom LED is on, then your station is trying to transmit

• if both LEOs arc on, then your station is waiting for a broadcast reply.

It also displays percentage figures {when it is able to do so meaningfully)
which show the percentage of a transfer that has completed.

NetStatus: Introduction and Overview 1397

Technical Details

1398

This table shows how NctStarus converts the reason codes for calls tO EconetV
(listed in the chapter entitled Software vectors) into the SWI calls that it
makes to the Hourglass module:

Reason code

NetFS_Start .. .
NctFS_part .. .
NctFS_Finish ...
NctFS_StartWait
Econet_Start T ransm iss ion
Econet_StartReception
NetFS_Finish Wait
Econet_Finish Transmission
Econet_FinishReception

SWI call

Hourglass_ On
Hourglass_ Percentage
Hourglass_ Off
Hourglass_LEDs (both on)
Hourglass_LEDs (only top one on)
Hourglass_LEDs (only bottom one on)
Hourglass_LEDs (both off)
Hourglass_LEDs (both off)
Hourglass_LEDs (both off)

NetStatus: Technical Details

Colour Trans

Introduction

ColourTrans: Introduction

ColourTrans allows a program to select the physical red, green and blue
colours that it wishes to usc, given a particular output device and palette.
ColourTrans then calculates the best colour available to fit the required
colour.

Thus, an application doesn't have to be aware of the number c:1 colours
available in a given mode.

It can also intelligently handle colour usage with sprites and the font
manager, and is the best .,.,.ay to set up colours when printing.

Before reading this chapter, you should be familiar with the YOU, sprite and
font manager principles.

1399

Overview

Definition of terms

Finding a colour

1400

The ColourTrans module is currently provided in RAM in Release 2.0 of
RISC OS in System:Modulcs.Colours, but may be moved into ROM in later
releases of the OS. Any application which uses it should ensure it is present
using the *RMEnsure command, say from an Obey file:

RMEnsure ColourTrans 0.51 RMLoad System:Modules.Colours
RMEnsure ColourTrans 0.51 Error You need ColourTrans 0. 51 or later

Here are some terms you should know when using this chapter.

GCOL is like the colour parameter passed to YOU 17. It uses a simple
format for 256 colour modes.

Colour number is what is written into screen memory to achieve a given colour
in a particular mode.

Palette entry is a word that contains a description of a physical colour in red,
green and blue levels. Usually, this term refers to the required colour that is
passed to a ColourTrans SWI.

Palette pointer is a pointer to a list of palette entries. The table would have
one entry for each logical colour in the requested mode. In 256 colour mode,
only 16 entries are needed, as there are only 16 palette registers.

Closest colour is the colour in the palette that most clost:ly matches the
palette entry passed. Furthest colour is the one furthest from the colour
requested. These terms refer to a least-squares test of closeness.

There are many SWis that will find the best fit colour in the palette for a set
of parameters. Here is a list of the different kinds of parameters that can
return a best fit colour:

• Given palette en try, return nearest or furthest GCOL

• Given palette entry, return nearest or furthest colour number

• Given palette entry, mode and palette pointer, return nearest or furthest
GCOL

• Given palette entry, mode and palette pointer, return nearest or furthest
colour number

ColourTrans: Overview

Setting a colour

Conversion

Sprites and Fonts

Using other palette
SWIS

Wimp

Printing

ColourTrans: Overview

Some SWis will set the VDU driver GCOL to the calculated GCOL after
finding it.

• Given palette entry, return nearest GCOL, and set that colour

• Given palette entry, return furthest GCOL, and set that colour

There is a pair of SWis to convert GCOLs to and from colour numbers. Note
that this only has meaning for 256 colour modes.

The colour control commands in sprites and the font manager can be
controlled from ColourTrans. Thus, the selection of logical colours within
these modules is handled by ColourTrans, rnther than an application
selecting an explicit range.

If an application has to usc other SWis to change the palette, then there is a
SWI in ColourTrans to infonn it. This is because C'..olourTrans maintains a
cache used for mapping colours. If the palette has ind('pcndently changed,
then it has no way of telling.

If the screen mode has changed there is no need to usc this call, since the
ColourTrans module detects this itself - but if output is switched to a sprite
(and ColourTrans will be used) then the SWI must also be called.

If you arc using the Wimp interface, then the C'.-elourTrans calls are fine to

usc, because they never modify the palette.

Because ColourT rans allows an application to request an RGB colour rnther
than a logical colour, it is ideal for use with the printer drivers, where a
printer may be able to represent some RGB colours more accurately then the
screen.

1401

Technical Details

COlours

GCOL

Colour number

1402

Two different colour systems are used In 256 colour modes. The GCOL form
is much easier to use, while the colour number Is optimised for the hardware.
In all other colour modes, they arc identical.

The palette entry used to request a given physical colour Is in the same format
as that used to set the anti-alias palette in the font manager.

The 256 colour modes use a byte that looks like this:

Bit Meaning

0 Tint bit 0 (red+green+blue bit 0)
1 Tint bit 1 {red+green+blue bit 1)
2 Red bit 2
3 Red bit 3 (high)
4 Green bit 2
5 Green bit 3 (high)
6 Blue bit 2
7 Blue bit 3 {high)

This format is converted into the internal 'colour number' format when stored,
because that is what the VIDC hardware recognises.

The 256 colour mode in the colour number looks like this:

Bit Meaning

0 Tint bit 0 (red+green+blue bit 0)
1 Tint bit 1 {red+green+blue bit 1)
2 Red bit 2
3 Blue bit 2
4 Red bit 3 (high)
5 Green bit 2
6 Green bit 3 (high)
7 Blue bit 3 (high)

In fact the bottom 4 bits of the colour number arc obtained via the palette,
but the default palette in 256 colour modes is set up so that the above settings
apply, and this is not normally llltercd.

ColourTrans: Technical Details

Palette entry

Finding a colour

Palette pointers

The palette entry is a word of the form &BBGGRROO. That is, it consists of
four bytes, with the palette value for the blue, green and red gun in the top
three bytes. Bright white, for instance would be &FFFFFFOO, while half
intensity cyan would be &77770000. The current graphics hardware only uses
the upper nibbles of these colours, but for upwards compatibility the lower
nibble should contain a copy of the upper nibble.

The SWis that find the best fit have generalty self explanatory names. As
shown in the overview, they follow a standard pattern. All of the SWI names
that follow are prefixed with C".-olourT rans_. They are as follows:

RerurnGCOL (SWI &40742)
Given palette entry, return nearest GCOL

RerumOppGCOL (SWI &40747)
Given palette entry, return furthest GCOL

ReturnColourNumber (SWI &40744)
Given palette entry, return nearest colour number

ReturnOppColourNumber (SWI &40749)
Given palette entry, return furthest colour number

RerurnGCOLForMode (SWI &40745)
Given palette entry, mode and palette pointer, rerum nearest GCOL

RerurnOppGCOLForMode (SWI .&4074A)
Given palette entry, mode and palette pointer, return furthest GCOL

RerurnColourNumberForMode (SWI &40746)
Given palette entry, mode and palette pointer, return nearest colour
number

RerurnOppColourNumberForMode (SWI &4074B)
Given palette entry, mode and palette pointer, return furthest colour
number

Where a palette pointer is used, certain conventions apply:

• a palette pointer of -1 means the current palette is used

• a palette pointer of 0 means the default palette for the specified mode.

ColourTrans: Technical Details 1403

Best fit colour

Setting a colour

Conversion

Sprites and Fonts

1404

Where modes arc used:

• mode -1 means the current mode.

These calls use a simple algorithm to find the colour in the palette that most
closely matches the high resolution colour specified in the palette entry. It
calculates the distance between the colours, which is a weighted least squares
function. If the desired colour is (Rd, Bd, Gd) and a trial colour is (R1, 811 GJ,

then:

where redweight = 2, greenwcight = 3 and blueweight = 1. These weights are
set for the most visually effective solution to this problem.

ColourTrans_SetGCOL (SWI &40743) will act like ColourTrans_
ReturnGCOL, except that it will set the graphics system GCOL to be as close
to the colour you requested as it can. Note that ECF patterns will not yet be
used in monochrome modes to reflect grey shades, as they are with
Wimp_SetColour.

Similarly, ColourTrans_SetOppGCOL (SWI &40748) will set the graphics
system GCOL with the opposite of the palette entry passed.

To convert between the GCOL and colour number format in 256 colour
modes, the SWis ColourTrans_GCOLToColourNumber (SWI &4074C) and
ColourTrans_ColourNumberToGCOL (SWI &40740) can be used.

ColourTrans_SelectTable (SW I &40740) will set up a translation table in
the buffer. ColourTrans_SelectGCOLTable (SWI &40741) will set up a list
of GCOLs in the buffer. See the chapter eoritled Sprites for a definition of
these tables (although the latter call does not in fact relate to sprites).

ColourTrans_ReturnFontColours (SWI &4074E) will try and find the best
set of logical colours for an anti-alias colour range.
ColourTrans_SetFontColours (SWI &4074F) also does this, but sets the font
manager plotting colours as well. It calls Font_SetFontColours, or

ColourTrans: Technical Details

Using other palette
SWis

Font_SetPalette in 256 colour modes - but it works out which logical colours
to use beforehand. See the chapter entitled The Font Manager for details of
this call and the anti-aliasing colours.

If a program has changed the palette, then ColourTrans_InvalidateCachc
(SWI &40750) must be called. This will reset its internal cache. This applies
to Font_SetFontPalette or Wimp_SetPalette or VDU 19 or anything like that,
but not to mode change, since this is detected automatically.

You must also call this SWI if output has been switched to a sprite, and
ColourTrans is to be called while the output is so redirected. You must then
call it again after output is directed back to the screen.

ColourTrans: Technical Details 1405

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1406

ColourTrans SelectTable
(SWI &40740)

Set up a translation table in the buffer

RO = source mode
Rl = source palette pointer
R2 = destination mode, or -1 for current mode
R3 = destination palette pointer, or -1 for current palette, or 0 for default for

the mode
R4 = pointer to buffer

RO • R4 preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Given a source mode and palette, and destination mode and palette, and a
buffer, set up a translation table in the buffer - that is, a set of colour
numbers as used by scaled sprite plotting. See the chapter entitled Sprites for
details of such tables.

None

ColourV

ColourTrans: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrant

Use

Related SWis

Related vectors

ColourTrans: SWI Calls

ColourTrans SelectGCOLTable
(SWI &40741)

Set up a list ofGCOLs in the buffer

RO = source mode
Rl =source palette pointer
R2 = destination mode, or -1 for current mode
R3 =destination palette pointer, or -1 for current palette, or 0 for default for

the mode
R4 =pointer to buffer

RO • R4 preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Given a source mode and palette, and destination mode and palette, and a
buffer, set up a list of GCOLs in the buffer. The values can subsequently be
used by passing them to GCOL and Tint.

None

ColourV

1407

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1408

ColourTrans ReturnGCOL
(SWI &40742)

Get the closest GCOL for a palette entry

RO = palette entry

RO =GCOL

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Given a palette entry, return the closest GCOL in the current mode and
palette.

This call is equivalent to ColourT rans_ReturnGCOLForMode for the given
palette entry, with parameters of - l for both the mode and palette pointer.

ColourTrans_ReturnGCOLForMode (SWI &40745)

ColourV

ColourTrans: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

ColourTrans: SWI Calls

ColourTrans SetGCOL
(SWI &40743)

Set the closest GCOL for a palette entry

RO = palette entry
R3 = 0 for foreground or 128 for background
R4 = GCOL action

RO=GCOL
R2 = log2 cibits-per-pixel for current mode

R3 = initial value AND &80
R4 = preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Given a palette entry, work out the closest GCOL in the current mode and
palette, and set it.

The top three bytes of R3 and R4 should be zero, to allow for future
expansion.

None

ColourV

1409

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1410

Colour Trans
Return Colour Number

(SWI &40744)
Get the closest colour for a palette entry

RO = palette entry

RO = colour number

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

Given a palette entry, rerum the closest colour number in the current mode
and palette.

None

ColourY

ColourTrans: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

ColourTrans: SWI Calls

Colour Trans
RetumGCOLForMode

(SWI &40745)
Get the closest GCOL for a palette entry

RO = palette entry
R 1 = destination mode, or -1 for current mode
R2 = palette pointer, or - 1 for current palette, or 0 for default for the mode

RO=GCOL
R 1 = preserved
R2 = preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Given a palette entry, a destination mode and palette, return the closest
GCOL.

None

ColourV

1411

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1412

Colour Trans
ReturnColourNumberForMode

(SWI &40746)
Get the closest colour for a palette entry

RO = palette entry
Rl =destination mode, or - 1 for current mode
R2 =palette pointer, or-1 for current palette, or 0 for default for the mode

RO = colour number
R 1 = preserved
R2 = preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Given a palette entry, a destination mode and palette, return the closest
colour number.

None

ColourV

ColourTrans: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

ColourTrans: SWI Calls

Colour T rans_ReturnOppGCOL
(SWI &4074 7)

Get the funhest GCOL for a palette entry

RO = palette entry

RO =GCOL

Interrupts arc enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

Given a palette entry, rerum the furthest GCOL in the current mode and
palette.

This call is equivalent ro ColourTrans_RctumOppGCOLForMode for the
given palette entry, with parameters of -1 for both the mode and palette
pointer.

None

ColourY

1413

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1414

ColourTrans_SetOppGCOL
(SWI &40748)

Set the furthest GCOL for a palette entry

RO = palette entry
R3 = 0 for foreground or 128 for background
R4 = GCOL action

RO =GCOL
R2 = log2 r:i bits-per-pixel for current mode

R3 = initial value AND &80
R4 = preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Given a palette entry, work out the furthest GCOL in the current mode and
palette, and set it

The top three bytes of R3 and R4 should be zero, to allow for future
expansion.

None

ColourV

ColourTrans: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

ColourTrans: SWI Calls

Colour Trans
ReturnOppColourNumber

(SWI &40749)
Get the furthest colour for a palette entry

RO = palette entry

RO = colour number

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Given a palette entry, return the furthest colour number in the current mode
and palette.

None

ColourV

1415

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1416

Colour Trans
ReturnOppGCOLForMode

(SWI &4074A)
Get the funhest GCOL for a palette entry

RO = palette entry
Rl = destination mode or -1 for current mode
R2 = palette pointer, -1 for current palette or 0 for default for the mode

RO =GCOL
R l = preserved
R2 = preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Given a palette entry, a destination mode and palette, return the funhest
GCOL.

None

ColourV

ColourTrans: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

ColourTrans: SWI Calls

ColourTrans Return
OppColourNumberForMode

(SWI &4074B)
Get the furthest colour for a palette entry

RO = palette entry
Rl =destination mode or - 1 for current mode
R2 =palette pointer, - I for current palette or 0 for default for the mode

RO = colour number
R 1 = preserved
RZ = preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Given a palette entry, a destination rriode and palette, return the furthest
colour number.

None

ColourV

1417

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1418

Colour Trans
GCOL T oColourNumber

(SWI &4074C)
Translate a GCOL to a colour number

RO= GCOL

RO = colour number

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call will change the value pnssed from a GCOL to a colour number.

You should only call this SWI for 256 colour modes; the results will be
meaningless for any others.

None

Co lourY

ColourTrans: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Colour Trans
ColourNumberToGCOL

(SWI &4074D)
Translate a colour number to a GCOL

RO = colour number

RO = GCOL

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call will change the value passed from a colour number to a GCOL.

You should only call this SWI for 256 colour modes; the results will be
meaningless for any orhers.

None

ColourV

1419

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1420

ColourTrans ReturnFontColours
(SWI &4074E)

Find the best range of anti-alias colours to match a pair of palette entries

RO = font handle, or 0 for the current font
Rl =background palette entry
R2 = foreground palette entry
R3 = maximum foreground colour offset {0- 14)

RO = preserved
Rl =background logical colour {preserved if in 256 colour mode)
R2 = foreground logical colour
RJ = maximum sensible colour offset {up to RJ on entry)

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Given background and foreground colours and the number of anti-aliasing
colours desired, this call will find the maximum range of colours that can
sensibly be used. So for the given pair of palette entries, it finds the best fit
in the current palette, and then inspects the other available colours to deduce
the maximum possible amount of anti-aliasing up to the limit in RJ .

If anti-aliasing is desirable, you should set R3 = 14 on entry; otherwise set
R3 = 0 for monochrome.

The values in Rl - R3 on exit are suitable for passing to Font_SctFontColours,
or including in a font string in a command {18) sequence.

Note that in 156 colour modes, you can only set 16 colours before previously
returned information becomes invalid. Therefore, if you are using this SWI to
obtain information to subsequently pass to the font manager, do not use more
than 16 colours.

Also note that in 156 colour modes, the font manager's internal palette will
be set, with all 16 entries being cycled through by ColourTrans.

ColourTrans: SWI Calls

Related SWis

Related vectors

ColourTrans: SWI Calls

See the chapter entitled The Font Manager for further derails of the
parameters used in this call.

ColourTrans_SetFontColours (SWI &4074F},
Font_SetFontColours (SWI & 40092}

ColourV

1421

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1422

ColourTrans SetFontColours
(SWI &4074F)

Set the best range of anti-alias colours to match a pair of palette entries

RO = font handle, or 0 for the current font
Rl =background palette entry
R2 = foreground palette entry
lU = maximum foreground colour offset (0 • 14)

RO = preserved
Rl =background logical colour (preserved if in 256 colour mode)
R2 = foreground logical colour
lU = maximum sensible colour offset (up to R3 on entry)

Interrupts arc enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

For a given pair of palette entries, find the best available range of anti-alias
colours in the current palette, and set the font manager to use these colours.

This SWI is equivalent to a call to ColourTrans_RctumFontColours followed
by a call to Fom_SetFontColours.

ColourTrans_ReturnFontColours (SWI &4074F)

ColourV

ColourTrans: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

ColourTrans: SWI Calls

ColourTrans lnvalidateCache
(SWI &40750)

Inform ColourTrans that the palette has been changed by some other means

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call must be issued whenever the palette has changed since ColourTrans
was last called. Note that colour changes due to a mode change are detected.
You only need to use this if another of the palette change operations was used.

You must also call this SWJ if output has been switched to a sprite, and
ColourTrans is to be called while the output is so redirected. You must then
call it again after output is directed back to the screen.

As an example, the palette utility on the icon bar calls this SWI when you
finish dragging one of the RGB slider bars.

None

Co lourY

1423

1424 ColourTrans: SWI Calls

The Font Manager

Introduction This chapter describes the outline font manager that is supplied with Release
1.02 of Acorn Desktop Publisher. Releases of RISC OS upto 2.00 contain an
earlier version of this font manager called the bitmap font manager. All
future releases ofRISC OS will contain the outline font manager.

A font is a complete set of characters of a given type style. The font manager
provides facilities for painting characters of various sizes and styles on the
screen.

To allow characters to be printed in any size, descriptions of fonts can be
held in files as size-independent outlines, or pre-computed at specific sizes.
The font manager allows programs to request font types and sizes by name,
without worrying about how they are read from the filing system or stored in
memory.

The font manager also scales fonts to the desired size automatically if the
exact size is not available. The fonts are, in general, proportionally spaced,
and there is a facility to print justified text - that is, adjusting spaces between
words to fit the text in a specified width.

An anti-aliasing technique can be used to print the characters. This technique
uses up to 16 shades of colour to represent pixels that should only be
partially filled-in. Thus, the illusion is given of greater screen resolution.

The font manager can use hints, which help it scale fonts to a low resolution
while retaining maximum legibility.

The Font Manager: Introduction 1425

Overview

Measurement systems

OS coordinates

Referencing fonts by
name

1426

The font manager can be divided internally into the following components:

• Find and read font files

• Cache font data in memory

• Get a handle for a font style (many commands use this handle)

• Paint a string to the YOU memory

• Change the colours that the text is painted in

• Other assorted SW!s to handle scaling and measurements

Much of the font manager deals with an internal measurement system, using
millipoints. This is 1/1000th of a point, or 1/72000th of an inch. This system is
an abstraction from the physical characteristics of the YOU. Text can
therefore be manipulated by its size, rather than in terms of numbers of
pixels, which will vary from mode to mode.

OS coordinates is the other system used. There are defined to be 180 OS units
per inch. This is the coordinate system used by the YOU drivers, and is
related to the physical pixel layout of the screen. Calls are provided to
convert between these two systems, and even change the scaling factor between
them.

A SWI is provided to scan through the list of available fonts. This allows a
program to present the user with a list to select from. It is a good idea to
cache this information as reading the font list with the SWI is a slow process.
Another SWI will return a handle for a given font style. A handle is a byte
that the font manager uses as an internal reference for the font style. This is
like an Open command in a filing system. The equivalent of Close is also
provided. This tells the font manager that the program has finished with the
font.

There is a SWI to make a handle the currently selected one. This will be
used implicitly by many calls in the font manag~r. It can be changed by
commands within a string while painting to the YOU.

The Font Manager: Overview

Cachelng Cacheing is the technique of sroring one or more fonts in a designated space in
memory. The cacheing system decides what gets kept or discarded from its
space. Two CMOS variables control how much space is used for cacheing.
One sets the minimum amount, which no other part of the system will use. The
other sets the maximum amount , which is the limit on what the font manager
can expand the cache to.

You should adjust these settings to suit the font requirements of your
application. If too little is allowed, then the system will have to continu:JIIy
re-load the fonts from file. If it is too large, then you will usc up memory that
could be used for other things.

The command *FontList is provided to show the ro~l and used space in the
cache, and what fonts are held in it. This is useful to check how the cache is
occupied.

Colours The anti-aliasing system uses up to 16 colours, depending on the screen mode.
It will try, as intelligently as possible, to use these colours to shade a
character giving the illusion of greater resolution.

Logical colours The colour shades start with a background value, which is u~ually the colour
that the character is painted onto. They progress up to a foreground colour,
which is the desired colour for the character to appear in. This is usually what
appears in the centre of the character. Both of these can be set to any valid
logical colour numbers.

Palette In between background and foreground colours can be a number of other
logical colours. There is a call to program the palette so that these are set to
graduating intermediate levels. The points of transition arc called thresholds.
The thresholds are set up ~ that the gradations produce a smooth colour
change from background to foreground.

The Font Manaoer: Overview 1427

Painting

Measuring

VDU calls

1428

A string can be painted into the YOU memory. As well as printable
characters which are displayed in the current font style, there arc non-printing
command characters, used in much the same ·way as those in the YOU driver.
They can petform many opernrions, such as:

• changing the colour

• altering the write position in the x andy axes

• changing the font handle

• changing the appearance and position of the underlining

By using these command charncters, a single string can be displayed with as
many changes of these characteristics as required

Many SWis exist to measure various attributes of fonts and strings. With a
font, you can determine the largest box needed ro contain any character in the
set. This is called its bounding box. You can also check the bounding box of
an individual character.

With a string, you can measure its bounding box, or check where in the string
the caret would be for a given coordinate. The caret is a special cursor used
with fonts. It is usually displayed as a vertical bar with rwiddlcs on each end.

A number of font manager operations can be performed through YOU
commands. These have been kept fo r compatibility and you should not use
them, as they may be phased out in future versions.

The Font M~n~nP.r· ()vPrviPw

Technical Details

Measurement systems

Internal coordinates

OS coordinates

An easy way to introduce you to programming with the font manager is to use
a simple example. It shows how to paint a text string on the screen using font
manager SWis. Further on in this section is a more detailed explanation of
these and all other font SWis.

Here is the sequence that you would use:

• Font_FindFont -to 'open' the font in the size required

• Font_SctFont -to make it the currently selected font and size

• Font_SetPalette - to set the range of colours to use

• Font_Paint -to paint the string on the screen

• Font_LoseFont - to 'close' the font

The description of character and font sizes comes from specialist files called
metrics files. The numbers in these files are held in units of 1/1000th of an
em. An em is the size of a point multiplied by the the point size of the font.
For example, in a 10 point font, an em is 10 points, while in a 14 point font it
is 14 points. The font manager converts lOOOths of ems into IOOOths of points,
or millipoints, to usc for its internal coordinate system. A millipoint is equal
to 1/72000th of an inch. This has the advanmge that rounding errors are
minimal, since coordinates are only converted for the screen at the last
moment. It also adds a level of abstraction from the physical characteristics
of the target screen mode.

Unfortunately, the coordinates provided for plot calls are only 16 bits, so this
would mean that text could only be printed in an area of about 6/7ths of an
inch.

Therefore, the font painter takes its initial coordinates from the user in the
same coordinates as the screen uses, which are known as OS units. To make the
conversion from OS units to points, the font painter assumes by default that
there are 180 OS units to the inch. You can read and set this scale factor,
which you may find useful to accurately calibrate the on screen fonts, or to

build high resolution bitmaps.

The Font Manager: Technical Details 1429

Internal resolution

SWis

Scaling factor

Font files

1430

When the font painter moves the graphics point after printing a character, it
does this internally to a resolution of millipoints, to minimise the effect of
cumulative errors. The font painter also provides a justification facility, to
save you the trouble of working rhe positions out yourself. The application can
obtain the widths of characters to a resolution of millipoints.

A pair of routines can be used to convert to and from internal millipoint
coordinates to the external OS coordinates. Fonr_ConvcrrroOS (SWI &40088)
will go from millipoints, while Font_Converttopoints (SWI &40089) will go
to them.

The scaling factor that the above SWis (and many others in the font manager)
use can be read with Font_RcadScalcFacror (SWI &4008F), or set with
Font_SetScaleFactor (SWI &40090).

The font files relating to a font arc all contained in a single directory:

Filename

lntMetrics
x90y45
f9999x9999
b9999x9999
Outlines

Contents

metrics information (character widths etc)
old format pixel file (4-bits-per-pixcl)
new format pixel file (4-bits-per-pixcl)
new format pixel file (!-bits-per-pixel)
new format outline file

The '9999's referred to above mean 'any decimal number in the range I -
9999'. They refer to the pixel siz.c of the font conrained within the file, which
is equal to:

(font she in l /16ths of a point) *dots per inch /72

so, for example, a file containing 4-bbits-pcr-pixcl 12 point text at 90 dots
per inch would be called f240x240, because 12 * 16*90/72 = 240.

The formats of these files are derailed in the appendix entitled File formats.

The minimal requirement for a font is that it should contain an lntMetrics file
and an x90y45 or Outlines file. In addition, it can have any number of
f9999x9999 or b9999x9999 files, to speed up the cacheing of common sizes.

The Font Manaaer: Technical Details

Master and slave fonts

Referencing fonts by
name

Changing the font path

If outline data or scaled 4-bpp data is to be used as the source of font data it
is first loaded into a 'master' font in the cache, which can be shared between
many 'slave' fonts at various sizes. There can be only one master font for a
given font name, regardless of size, whereas e:1ch size of font requires a
separate slave font. If the data is loaded directly from the disc into the slave
font, the master font is not required.

The font f!!anager uses the path variable Font$Path when it searches for fonts.
This contains a list of filename prefixes which are, in tum, placed before the
requested font name. The font manager uses the first directory that matches,
provided it also contains an lntMetrics file. Because the variable is a list of
path names, you can keep separate libraries of fonts.

The old font manager used the variable Font$Prefix to specify a single font
directory. For compatibility, the font manager looks when it is initialised to
see ifFont$Path has been defined- if not, it initialises it as follows:

*SetMacro Font$Path <Font$Prefix>.

This ensures that the old Fonr$Prefix directory is searched if you haven't
explicitly set up the font manager to look elsewhere. The '.' on the end is
needed, as Font$Path is a prefix rather than a directory name.

*FontCat will list all the fonts that can be found using the path variable.

Applications which allow the user access to fonts should call Font_ListFonts
repeatedly to discover the list of fonts available. This is normally done when
the program starts up.

However, it often happens that families of fonts arc to be found in separate
font "application" directories, whose !Run file RMEnsures the correct font
manager module from within itself and then either adds itself to Font$Path or
resets Font$Path and Font$ Prefix so that it is the only directory referenced.

In order to ensure that the user can access the new fonts available,
applications should check whether the value of Font$Path or Font$Prefix has
changed since the list of fonts was last cached, and recache the list if so. A
BASIC program could accomplish this as follows:

The Font Manaaer: Technical Details 1431

Opening and closing a
font

Handles

1432

size\ • '200
DIM buffer\ size\ R£~ this could be a scratch buffer

SYS •os_GSTrans", "<FontSPrefix> and <FontSPath>", buffer\, sizc\-1 TO , , length\
bu!!er\? lenqth\ • 13 :REM ensure there is a terminator (13 for BASIC)
IF Sbu!Cer\<>oldfontpath$ THEN

old!ontpathS • Sbuffer\
PROCcache l ist of fonts - -

END I E'

Note that if the buffer overflows the string is simply truncated, so it is
possible that the check may miss some changes to Font$Prefix. However, since
new elements are normally added to the front of Font$Path, this will
probably not matter.

The application could scan the list of fonts when it started up, remembering
the value of Font$Path and Font$Prefix in oldfontpath$, and then make
the check described above just before the menu tree containing the list of
fonts was about to be opened.

Alternatively the application could scan the list of fonts only when required,
by setting oldfontpath$='" ' when it started up, and checking for Font$Path
changing only when the font submenu is about to be opened (using the
Message_MenuWarning message protocol.)

In order to use a font, Font_FindFont (SWI &40081) must be used. This
returns a handle for the font, and can be considered conceptually like a file
open. In order to close it, Font_LoscFont (SWI &40082) must be used.

Font_ReadDcfn (SWI &40083) will read the description of a handle, as it
was created with Font_FindFont.

In order for a handle to be used, it should be set as the current handle with
Font_SetFont (SWI &4008A). This setting stays until changed by another call
to this function, or while painting, by a character command to change the
handle.

Font_CurrentFont (SWI &40088) will tell you what the handle of the
currently selected font is.

The Font Manager: Technical Details

Cachelng

Setting cache size

Cache size

Font_LoseFont

Colours

Logical colours

The size of the cache can be set with two commands. *Configure FontSize sets
the minimum that will be re.c;erved. This allocation is protected by RISC OS
and will not be used for any other purpose. Running the Task Display from
the desktop and sliding the bar for font cache will change this setting until the
next reset.

Above this amount, *Configure FontMax sets a maximum amount of memory
for font cacheing. The difference between FontSize and FontMax is taken
from unallocated free memory as required to accomodate fonts currently in
use. If other parts of the system have used up all this memory, then fonts will
be limited to FontSize. If there is plenty of free unallocated memory, then
FontMax will stop font requirements from filling up the system with cached
fonts.

*FontList will generate a list of the size and free space of the cache, as well
as a list of the fonts currently cached. Font_CacheAddr (SWI &40080) can
be used in a program to get the cache size and free space.

When a program calls Font_LoscFont, the font may not be discarded from
memory. The cacheing system decides when to do this. A usage count is kept,
so that it knows when no task is currently using it. An 'age' is also kept, so that
the font manager knows when it hasn't been used for some time.

Colour selection with the font manager involves the range of logical colours
that are used by the anti-aliasing software and the physical colours that are
displayed.

The logical colour range required is set by Font_SetFontColours
(SWI &40092). This sets the background colour, the foreground colour and
the range of colours in between.

The Font Manager: Technical Details 1433

Physical colours

Wimp environment

Thresholds

Painting

1434

Font_SetPalette (SWI &40093) duplicates what Font_SetFontColours does,
and uses two extra parameters. These specify the foreground and background
physical colours, using 4096 colour resolution. Given a range of logical
colours and the physical colours for the start and finish of them, this SWI
will program the palette with all the intermediate values.

It must be strongly emphasised that if the program you are writing is going to
run under the wimp environment then you must not use Font_SetPalette. It
will damage the wimp's colour information. It is better ro use
Wimp_SetFontColours (SWI &400F3) or ColourTrans_SetFontColours
(SWI &4074F) to use colours that are already in the palette.

The setting of intermediate levels uses threshold tables. Thesecan be read
with Font_RcadThresholds (SWI &40094) or set with Font_SctThresholds
(SWI &40095). They use a lookup table that is described in
Font_ReadThrcsholds.

Font_Paint (SWI &40086) is the central SWI that puts text onto the screen. It
commences painting with the current handle, set with Font_SetFont. Printable
characters it displays appropriately, using the current handle. The embedded
character commands are as follows:

Number

9
11
17
18
21
25
26

Effect

x coordinate change in millipoints
y coordinate change in millipoints
change foreground or background colour
change foreground, background and range of colours
comment string that is not displayed
change underline position and thickness
change font handle

Note that these are not compatible with VDU commands. Any non-pnntmg
characters not in the above list will generate an error, apart from 0, 10 and 13
(which are the only valid terminators).

The Font Manager: Technical Details

Measuring

Font and character size

String size

Caret

When reading about these measuring calls, take particular notice of the units
of measurement, because they are not the same for all SWis.

Font_Readinfo (SWI &40084) will find the bounding box in pixels for a
font - the maximum area used by any character within the font.
Font_CharBBox (SWI &4008E) will get the bounding box for a particular
character in a font. This can be in OS coordinates or millipoints.

Font_StringBBox (SWl &40097) will measure the bounding box of a string in
millipoints without actually printing it.

Font_StringWidth (SWl &40085) performs a similar function, but with more
control. You pass it a maximum x and y size in millipoints and a character to
split the string on, and it works out where to break it. It returns the size in
millipoints and the index into the string at the break point.

After using this SWl, you can call Font_FutureFont (SWl &4008C). This will
return what the font and colours would be if the string was passed through
Font_Paint.

If the pointer is clicked on a string, and the caret needs to be placed on a
character, it is necessary to calculate where on the string it would be.
Font_FindCaret (SWI &4008D) will do this, though it must be passed
coordinates in millipoints offset from the base of the string. Font_FindCaretJ
(SWI &40096) performs the same function as Font_FindCaret, except that it
compensates for a justified string.

You can plot the caret at a given height, position and colour using Font_Caret
(SWI &40087). Its height should be adjusted to suit the point size of the font
it is placed with. The information returned from Font_Readlnfo would be
appropriate for this adjustment.

The Font Manager: Technical Details 1435

Mixing fonts' metrlcs
and characters

1436

Where you arc using an external printer (eg. PostScript) which has a larger
range of fonts than those available on the screen, it can often be useful to use
a similar-looking font on the screen, using the appropriate metrics (ie.
spacing) for the printer font.

The font manager provides a facility whereby a font can be created which has
its own lntMetrics file, matching the appropriate font on the printer, but uses
another font's characters on the screen.

This is done by putting a file called 'Outlines' in the font's directory which
simply contains the name of the appropriate screen font to use. The font
manager will use the lntMetrics file from the fonts own directory, but will
look in the other font's directory for any bitmap or outline information.

The Font Manager: Technical Details

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Font CacheAddr
(SWI & 40080)

Get the version number, font cache size and amount used

RO = version number
R2 = total size of font cache (byres)
R3 = amount of font cache used (byres)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The version number returned is the actual version multiplied by 100. For
example, version 2.42 would return 242.

This call also returns the font cache size and the amount ri space used in it.

*FontList can be used to display the font cache size and space.

Related SWis None

Related vectors None

The Font Manager: SWI Calls 1437

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1438

Get the handle for a font

Font FindFont
(SWI &40081)

Rl =pointer to font name (terminated by a Ctrl char)
R2 = x point size • 16 (ie. in l/16ths point)
R3 = y point size • 16 (ie. in l/16ths point)
R4 = x resolution in dots per inch (0 = use default)
R5 = y resolution in dots per inch (0 =use default)

RO = font handle
R I = preserved
R2 = preserved
R3 = preserved
R4 = x resolution in dots per inch
R5 = y resolution in dots per inch

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call returns a handle to a font whose name, point size and screen
resolution are passed. It also sets it as the current font, to be used for future
calls to Font_paint etc.

The VDU command:

VDU 23,26,<!ont handle>,<pt slze>,<x dpl>,<y dpi>,<x scale>,<y scale>,O,O,<!ont nam~~

is an equivalent command to this SWI. As with all VDU font commands, it
has been kept for compatibility with earlier versions of the operation system
and must not be used.

Font_LoscFont (SWI &40082)

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

The Font Manager: SWI Calls

Finish use of a font

RO = font handle

RO = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

Font LoseFont
(SWI &40082)

This call tells the font manager that a particular font is no longer required.

Font_FindFont (SWI &40081)

None

1439

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1440

Read details about a font

RO = font handle
Rl =pointer to buffer to hold font name

Font ReadDefn
(SWI & 40083)

Rl =pointer to buffer (now contains font name)
RZ = x point size • 16 (ie in l/16ths point)
R3 = y point size • 16 (ie in 1/16ths point)
R4 = x resolution (dots per inch)
R5 = y resolution (dots per inch)
R6 = age offont
R 7 = usage count of font

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call returns a number of derails about a font. The usage count gives the
number of times that Font_FindFont has found the font, minus the number of
times that Font_LoseFont has been used on it. The age is the number of font
accesses made since this one was last accessed.

Note that the x resolution in a 132 column mode will be the same as an 80
column mode. This is because it is assumed that it will be used on a monitor
that displays it correctly, which is not the case with all monitors.

None

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

The Font Manaaer: SWI Calls

Font Readlnfo
(SWI & 40084)

Get the font bounding box

RO = font handle

Rl =minimum x coordinate in OS units for the current mode (inclusive)
R2 = minimum y coordinate in OS units for the current mode (inclusive)
R3 = maximum x coordinate in OS units for the current mode (exclusive)
R4 = maximum y coordinate in OS units for the current mode (exclusive)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call returns the minimal area covering any character in the font. This is
called the font bounding box.

Font_Charf3Box (SWI &4008E), Fcnt_Stringf3Box (SWI &40097)

None

1441

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1442

Calculate how wide a string would be

Rl =pointer to string

Font_StringWidth
(SWI & 40085)

R2 = maximum x offset before termination in millipoints
R3 = maximum y offset before tennination in millipoints
R4 ='split' character (-1 for none)
R5 = index of character to terminate by

R 1 =pointer to character where the scan terminated
R2 = x offset after printing string (up to termination)
R3 = y offset after printing string (up to termination)
R4 =no of 'split' characters in string (up to termination)
RS = index into string giving point at which the scan terminated

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call is used to calculate how wide a string would be.

The 'split' character is one at which the string can be split if any of the limits
arc exceeded. If R4 contains -1 on entry, then on exit it contains the number of
printable (as opposed to 'split') characters found.

The string is allowed to contain command sequences, including font-change
(26,) and colour-change (17 ,<colour>). After the call, the
current font foreground and background call arc unaffected, but a call can be
made to Font_FuturcFont to find out what the current font would be after a
call to Font_Paint.

The Font Manager: SWI Calls

The string width function terminates as soon as R2, R3 or R5 are exceeded, or
the end of the string is reached. It then returns the state it had reached, either:

• just before the last 'split' char reached

• if the 'split' char is - 1, then before the last char reached

• ifR2, R3 or RS are not exceeded, then at the end of the string.

By varying the entry parameters, the string width function can be used for any
of the following purposes:

• finding the cursor position in a string if you know the coordinates
(although Font_FindCarct is better for this}

• finding the cursor coordinates if you know the position

• working out where to split lines when forma tting (set R4 =32)

• finding the length of a string (eg. for right-justify}

• working out the data for justification (as the font manager docs).

Related SWis Font_Futurefont (SWI &4008C)

Related vectors None

The Font Manager: SWI Calls 1443

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1444

Write a string to the screen

R 1 =pointer to string
R2 = plot type

Font Paint
(SWI & 40086)

R3 = x coordinate (in OS coordinates or millipoints)
R4 = y coordinate (in OS coordinates or millipoints)

R 1 = preserved
R2 =preserved
R3 = preserved
R 4 = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

The plot type is given by the bits of R2 as follows:

Bit Action if set

0 1 =justify text, 0 = left justify
1 1 = rub-out box required, 0 = no box
2 reserved- must be zero
3 reserved - must be zero
4 1 = OS coordinates supplied, 0 = millipoints
5- 7 reserved- must be zero

To justify text, you must supply a right hand side position, by previously
calling a YDU 25 move command. To use the rub-out box, you must have
called YDU 25 move twice, to describe the rectangle to clear: first the lower­
left coordinate (which is inclusive), then the upper-right coordinate (which is
exclusive). Thus, to usc both, three YDU 25 moves must be made, with the
justify position being last.

The Font Manager: SWI Calls

The string is allowed to contain characters that act as commands, like the
YOU sequences:

• 9,<dx low>,<dx middle>,<dx high>

• 1l,<dy low>,<dy middle>,<dy high>

• 17 ,<foreground colour> (+&80 for background colour}

• 18, <background>, <foreground>,

• 21,<comment string>,<ter:ninator (any Ctrl char}>

• 25,<underline position> ,<underline thickness>

• 26,

After the call, the current font and colours arc updated to the last values set
by command characters.

Characters 9 and 11 allow for movement within a string. This is useful for
printing superscripts and subscripts, as well as tabs, in some cases. They are
each followed by a 3-bytc sequence specifying a number (low byte first, last
byte sign-extended}, which is the amount to move by in millipoints.
Subsequent characters are plotted from the new position onwards.

The Font Manager: SWI Calls

An example of moving in the Y direction (character 11) would look like the
following example, where chr() is a function that converts a number into a
character and mooe is the movement in millipoints:

MoveString = chr(ll)+chr(move AND &FF)+
chr((move AND &FFOO) >> 8)+
chr((move AND &FFOOOO) >> 16)

Character 17 will act as if the foreground or background parameters passed
to Font_SetfontColours (SWl &40092) had been changed Character 18
allows all three parameters to that SWl to be set. See that SWI for a
description of these parameters.

The underline position following a character 25 is the position of the top of the
underline relative to the baseline of the current font, in units of l/256th of the
current font size. It is a sign-extended 8 bit number, so an underline below the
baseline can be achieved by setting the underline position to a value greater
than 127. The underline thickness is in the same units, although it is not sign·
extended.

1445

Related SWis

Related vectors

1446

Note that when the underline position and hci!::ht arc set up, the position of
the underline remains unchanged thereafter, even if the font in use changes.
For example, you do not want the thickness of the underline to change just
because some of the text is in italics. If you actually want the thickness of the
underline to change, then another underline-defining sequence must be
inserted at the relevant point. Note that the underline is always printed in the
same colour as the text, and that to tum it off you must set the underline
thickness to z.ero.

The YOU command YOU 25,&D0-&07,<x coordinate>,<y coordinate>,<text
string> is an equivalent command to this SWI. As with all YOU font
commands, it has been kept for compatibility with earlier versions of the
operation system and must not be used.

Font_StringWidth (SWl &40085)

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Define text cursor for font manager

RO = colour (exclusive ORed onto screen)
RI =height (in OS coordinates)
R2 bit 4 = 0::::) R3, R4 in millipoints

Font Caret
(SWI &40087)

= 1 ::::) R3, R4 in OS coordinates
R3 = x coordinate (in OS coordinates or millipoints)
R4 = y coordinate (in OS coordinates or millipoints)

RO = preserved
R I = preserved
R2 = preserved
R3 =preserved
R 4 = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

The 'caret' is a symbol used as a text cursor when dealing with anri-aliascd
fonts. The height of the symbol, which is a vertical bar with 'twiddles' on the
end, can be varied to suit the height of the text, or the line spacing.

The colour is in fact Exclusive ORed onto the screen, so in 256-colour modes it
is equal to the values used in a 256-colour sprite.

Related SWis None

Related vectors None

The Font Manager: SWI Calls 1447

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1448

Font ConverttoOS
(SWI & 40088)

Convert internal coordinates to OS coordinates

Rl = x coordinate (in millipoints)
R2 = y coordinate (in millipoints)

Rl = x coordinate (in OS units)
R2 = y coordinate (in OS units)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call converts a pair of coordinates from millipoints to OS units, using the
current scale factor. (The default is 400 millipoints per OS uni t.)

Font_Convemopoints (SWI &40089), Font_ReadScalcFactor (SWI &4008F),
Font_SetScaleFactor (SWI &40090)

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

The Font Manager: SWI Calls

Font_Converttopoints
(SWI & 40089)

Convert OS coordinates to internal coordinates

Rl = x coordinate (in OS units)
R2 = y coordinate (in OS units)

RO is corrupted
Rl = x coordinate (in millipoints)
R2 = y coordinate (in millipoints)

Interrupt status is undcfim .. xl
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call converts a pair of coordinates from OS units to millipoints, using the
current scale factor. (The default is 400 millipoints per OS unit.)

Font_ConverttoOS (SWI &40088), Font_ReadScaleFactor (SWI &4008F),
Font_SetScaleFactor (SWI &40090)

None

1449

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1450

Select the font to be subsequently used

RO = handle of font to be selected

RO = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

Font SetFont
(SWI &4008A)

This call sets up the font which is used for subsequent pamtmg or size·
requesting calls (unless overridden by a command 16, sequence in a
string passed to Font_Paint).

Font_SetFontColours (SWI &40091), Font_CurrentFont (SWI &4008B)

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Get current font handle and colours

RO = handle of currently selected font
Rl =current background logical colour
R2 = current foreground logical colour
R3 = foreground colour offset

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

Font CurrentFont
(SWI &4008B)

This call returns the state of the font manager's internal characteristics which
will apply at the next call to Font_Paint.

The value in R3 gives the number of colours that will be used in anti-aliasing.
The colours are f, f+ 1... f+offset, where 'f' is the foreground colour returned in
R2, and offset is the value returned in R3. This can be negative, in which case
the colours are f, f-1... f-1 offset I. Negative offsets are useful for inverse anti·
aliased fonts.

Offsets can range between -14 and +14. This gives a maximum of 15
foreground colours, plus one for the font background colour. If the offset is 0,
just two colours are used: those returned in R 1 and R2.

The font colours, and number of anti-alias levels, can be altered using
Font_SetFontColours, Font_SctPalette, Font_SetThresholds and Font_Paint.

Font_SetFont (SWl &4008A}, Font_SetFontColours (SWl &40092),
Font_SetPalette (SWI &40093), Font_SetThrcsholds (SWI &40095),
Font_Paint (SWl &40086)

None

The Font Manager: SWI Calls 1451

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1452

Font FutureFont
(SWI & 4008C)

Check font characteristics after Font_StringWidth

RO =handle of font which would be selected
R 1 = future background logical colour
R2 = future fore.ground logical colour
R3 = foreground colour offset

Interrupt status is undefined
Fast intem1pts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call can be made after a Font_StringWidth to discover the font
characteristics after a call to Font_P~int, without ~ctually having to paint the
characters.

Font_StringWidth {SWI &40085), Font_paint {SWI &40086)

None

The Font Manager: SWI Calls

Find where the caret is in the string

On entry Rl =pointer to string
R2 = x offset in millipoints
R3 = y offset in millipoints

Font FindCaret
(SWI & 4008D)

On exit Rl =pointer to character where the search terminated
R2 = x offset after printing string (up to termination)
R3 = y offset after printing string (up to termination)
R4 = number of printable characters in string (up to termination)
RS = index into string giving point at which it terminated

Interrupts Interrupt status .is undefined
Fast interrupts are enabled

Processor Mode Processor is in SYC mode

Re-entrancy SWI is not re-entrant

Use On exit, the registers give the nearest point in the string to the caret position
specified on entry. This call effectively makes two calls to Font_StringWidth
to discover which character is nearest the caret position. It is recommended
that you use this call, rather than perform the calculations yourself using
Font_StringWidth, though this is also possible.

Related SWis Font_StringWidth (SWl &40085), Font_FindCaretj (SWI &40096)

Related vectors None

The Font Manager: SWI Calls 1453

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1454

Font CharBBox
(SWI & 4008E)

Get the bounding box of a character

RO = font handle
R 1 = ASCII character code
R2 = flags (bit 4 set=> return OS coordinates, else millipoints)

Rl =minimum x of bounding box (inclusive)
R2 =minimum y of bounding box (inclusive)
RJ =maximum x of bounding box (exclusive)
R4 =maximum y of bounding box (exclusive)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

You can usc this call to discover the bounding box of any character from a
given font. If OS coordinates arc used and the font has been scaled, the box
may be surrounded by an area of blank pixels, so the size returned will not
be exactly accurate. For this reason, you should use millipoints for computing,
for example, line spacing on paper. However, the millipoint bounding box is
not guaranteed to cover the character when it is painted on the screen, so the
OS unit bounding box should be used for this purpose.

Font_Readlnfo (SWI & 40084), Font_Stringl3Box (SWI & 40097)

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

The Font Manager: SWI Calls

Font ReadScaleFactor
(SWI &4008F)

Read the internal to OS conver.;ion factor

R 1 = x scale factor
R2 = y scale factor

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The x and y scale factors arc the numbers used by the font manager for
converting between OS coordinates and millipoints. The default value is
400 millipoints per OS unit. This call allows the current values to be read.

Font_ConverttoOS (SWI &40088), Font_SetScaleFactor (SWI &40090),
Font_Converttopoints (SWI &40089)

None

1455

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1456

Font SetScaleFactor
(SWI & 40090)

Set the internal to OS conversion factor

R l = x scale factor
R2 = y scale factor

R 1 = preserved
R2 = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Applications that run under the Desktop should not usc this call, as other
applications may be relying on the current settings. If you must change the
values, you should read the current values beforehand, and restore them
afterwards. The default value is 400 millipoints per OS unit.

Font_ConverttoOS (SWI &40088), Font_ReadScaleFactor (SWI &4008F),
Font_Converttopoints (SWI &40089)

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Font ListFonts
(SWI &40091)

Scan for fonts, returning their names one at a time

Rl =pointer to 40-byte buffer for font name
R1 =count (0 on first call)
R3 = pointer to path string, or - I to use Font$Path

Rl = preserved
R2 = updated (-1 if no more names)
R3 =preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call searches the path pointed to (or given by the variable Font$Path if
R3 = - 1}, and its sub-directories, for files ending in '.IntMetrics'. When such a
file is found, the full name of the subdircctrory is put in the buffer,
terminated by a carriage return. If the same font name is found via different
path elements, only the first one will be reported.

It is started by passing a zero in R1, and indicates the end ci the list by
returning a - 1 in R1.

The font manager command •FontCat calls this SWI internally.

Related SWis None

Related vectors None

The Font Manager: SWI Calls 1457

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1458

Font SetFontColours
(SWI & 40092)

Change the current colours and (optionally) the current font

RO =font handle (0 for current font)
R 1 = background logical colour
R2 = foreground logical colour
RJ = foreground colour offset (-14 to + 14)

RO = preserved
R 1 = preserved
R2 = preserved
R3 = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call is used to set the current font (or leave it as it is), and change the
logical colours used. In up to 16 colour modes, the three registers are used as
follows:

• R 1 is the logical colour of the background

• R2 is the logical colour of the first foreground colour to use

• RJ specifies the offset from the first foreground colour to the last, which
is used as the actual foreground colour.

The range specified must not exceed the number of logical colours available
in the current screen mode, as follows:

Colours
in mode

2
4
16 or 256

Possible values of R I ,R2,R3
to use all colours

0,1,0
0,1,2
0,1,14

The Font Manager: SWI Calls

In a 16 colour mode, to use the top 8 colours, which arc normally flashing
colours, the values 8,9,6 could be used.

Note that 16 is the maximum number of anti-alias colours. In 256-colour
modes, the background colour is ignored, and the foreground colour is taken
as an index into a table of pseudo-palette entries- see Font_SetPalctte.

Related SWis Font_SetFont (SWl &4008A), Font_CurrentFont (SWI &4008B),
Font_SetPalctte (SWI & 40093)

Related vectors None

The Font Manage r: SWI Calls 1459

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1460

Define the anti-alias palette

Rl =background logical colour
R2 = foreground logical colour
R3 = foreground colour offset
R4 = physical colour of background
RS = physical colour of last foreground

R 1 = preserved
R2 = preserved
R3 = preserved
R4 =preserved
RS = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

Font SetPalette
(SWI &40093)

This sets the anti-alias palette. The values in R 1, R2 and R3 have the same use
as in Font_SetFontColours. See the description of that SWI on the previous
page for the use of these parameters.

Before describing the use of R4 and RS, it must be strongly emphasised that
if the program you are writing is going to run under the wimp environment
then you must not use this call. It will damage the wimp's colour information.
You must instead choose from the range of colours already available by using
Wimp_SetFontColours (SWI &400E6) or C'.olourTrans_SetFontColours
(SWI &400E4) instead.

R4 and R5 contain physical colour setting information. R4 describes the
background colour and RS the foreground colour. The foreground colour is the
dominant colour of the text and generally appears in the middle of each

The Font Manager: SWI Calls

character. This SWI will set the palette colour for the range described in R I,
R2 and R3 using R4 and R5 to describe the colours at each end. It will set the
intermediate colours incrementally between those ofR4 and R5 .

The physical colours in R4 and R5 are of the form &BBGGRROO. That is, it
consists of four bytes, with the palette entry for the blue, green and red gun in
the upper bytes. Bright white, for instance, would be &FFFFFFOO, while half
intensity cyan is &77770000. The current graphics hardware only uses the
upper nibbles of these colours, but for upwards compatibility the lower
nibble should contain a copy of the upper nibble.

In non-256-colour modes, the palette is programmed so that there is a linear
progression from the colour given in R4 to that in RS

The YOU command: YOU 23,25,&80+<background logical colour>,
<foreground logical colour>,<start R>,<start G>,<start B>,<end R>,<end
G>,<end B> is an equivalent command to this SWI. As with all YOU font
commands, it has been kept for compatibility with earlier versions of the
operation system and must not be used.

Related SWis Font_SetFontColours (SWI &40092)

Related vectors None

The Font Manager: SWI Calls 1461

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1462

Font ReadThresholds
(SWI & 40094)

Read the list of threshold values for painting

Rl = pointer to result buffer

Rl =preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call reads the list of threshold values that the font manager uses when
painting characters. Fonts are defined using up to 16 anti-aliased levels. The
threshold table gives a mapping from these levels to the logical colours
actually used to paint the character.

The format of the data read is:

Offset

0
1
2
3
n

Value

Foreground colour offset
1st threshold value
2nd threshold value

&FF

The table is used in the following way . Suppose you want to use eight colours
for anti-aliased colours, one background colour and seven foreground colours.
Thus the foreground colour offset is 6 (there are 7 colours). The table would
be set up as follows:

ThP Fnnt u~n~npr· ~WI ~!:aile:

The Font Manager: SWI Calls

Offset

0
1
2
3
4
5
6
7
8

Value

6
2
4
6
8
10
12
14
&FF

When this has been set-up (using Font_SetThresholds), the mapping from the
16 colours to the eight available will look like this:

Input Output Threshold

0 0
1 0
2 1 2
3 1
4 2 4
5 2
6 3 6
7 3
8 4 8
9 4
10 5 10
11 5
12 6 12
13 6
14 7 14
15 7

Where the output colour is 0, the font background colour is used. Where it is
in the range 1 - 7, the colour f+o-1 is used, where 'f' is the font foreground
colour, and 'o' is the output colour.

You can view the thresholds as the points at which the output colour 'steps up'
to the next value.

1463

Related SWis

Related vectors

1464

Font_SctThrcsholds (SWI &40095), Font_SctPalcttc (SWI &40093),
Font_SetFontColours (SWI & 40092)

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Font SetThresholds
(SWI &40095)

Defines the list of threshold values for painting

RI =pointer to threshold data

R I = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call sets up · the threshold table for a given number of foreground
colours. The format of the input data, and its interpretation, is explained in
the previous section.

This command should rarely be needed, because the default set will work
well in most cases.

The YOU command YOU 23,2S,<bits per pixcl>,<threshold I >, ... ,<threshold
7> is an equivalent command to this SWI. As with all YOU font commands,
it has been kept for compatibility with earlier versions of the operation
system and must not be used.

Related SWis Font_ReadThresholds (SWI &40094), Font_SetPalc{tc (SWI &40093),
Font_SetFontColours (SWI & 40092)

Related vectors None

The Font Manager: SWI Calls 1465

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1466

Find where the caret is in a justified stri ng

R 1 = pointer to string
R2 = x offset in millipoints
R3 = y offset in millipoints
R4 = x justification offset
R5 = y justification offset

Font_FindCaretJ
(SWI & 40096)

Rl =pointer to character where the search terminated
R2 = x offset after printing string (up to termination)
R3 = y offset after printing string (up to termination)
R4 = no of printable characters in string (up to termination)
R5 = index into string giving point at which it terminated

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

The 'justification offsets', R4 and R5, are calculated by dividing the extra gap
to be filled by the justification of the number of spaces (ie character 32) in
the string. If R4 and R5 arc both zero, then this call is exactly the same as
Font_FindCarct.

Font_FindCaret (SWI &40080)

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Measure the size of a string

Rl =pointer to string

Font_StringBBox
(SWI &40097)

Rl =bounding box minimum x in millipoints (inclusive)
R2 =bounding box minimum yin millipoints (inclusive)
R3 = bounding box maximum x in millipoints (exclusive)
R4 =bounding box maximum yin millipoints (exclusive)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call measures the size of a string without actually printing it. The string
can consist of printable characters and all the usual control sequences. The
bounds are given relative to the start point of the string (they might be
negative due to backward move control sequences, etc).

Note that this command cannot be used to mea~ure the screen size of a string
because of rounding errors. The string must be scanned 'manually', by
stepping along in millipoints, and using Font_ConverttoOS and
Font_Charl3Box to measure the precise position of each character on the
screen. Usually this can be avoided, since text is formmatted in rows, which
are assumed to be high enough for it.

Related SWis Font_Readlnfo (SWl &40084), Font_CharBBox (SWI &4008E)

Related vectors None

The Font Manager: SWI Calls 1467

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1468

Font ReadColourTable
(SWI & 40098)

Read the anti-alias colour table

Rl =pointer to 16 byte area of memory

R 1 = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call returns the 16 entry colour table to the block pointed to by Rl on
entry. This contains the 16 colours used by the anti-aliasing software when
painting text- that is, the values that would be put into screen memory.

Font_SctPalctte (SWI &40093), Font_SetThresholds (SWl &40095),
Font_SctFontColours (SWI & 40092)

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Make a font bitmap file

Font_MakeBitmap
(SWI & 40099)

R 1 = font handle, or pointer to font name
R2 = x point size* 16
R3 = y point size* 16
R4 = x dots per inch
R5 = y dms per inch
R6 =flags

Interrupt status is undefined
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

This call allows a particular size of a font to be pre-stored in the font's
directory so that it can be cached more quickly. It is especially useful if
subpixel positioning is to be performed, since this takes a long time if done
directly from outlines.

The flags have the following meanings:

Bit Meaning when set

0 construct f9999x9999 (else b9999x9999)
I do horizontal subpixel positioning
2 do vertical subpixcl positioning
3 just delete old file , without replacing it
4 · 31 reserved (mu5t be 0)

Once a font file has been saved, its subpixcl scaling will override the setting
of FontMax4/5 currently in force (so, ror example, if the font file had
horizontal subpixel scaling, then when a font of that size is requested,
horizontal subpixel scaling will be used even ifFontMax4 is set to 0) .

The Font Manager: SWI Calls 1469

Related SWis

Related vectors

1470

Font_SetFontMax (SWI &4009B)

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Font UnCacheFile
(SWI &4009A)

Delete cached font information, or recache it

Rl =pointer to full filename offile to be removed
R2 = recache flag (0 or 1 -see below)

Interrupt status is undefined
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

If an application such as !FonrEd wishes to overwrite font files without
confusing the font manager, it should call this SWI to ensure that any cached
information about the file is deleted.

The filename pointed to by R 1 must be the full filename (ie in the format
used by the Filer), and must also correspond to the relevant name as it would
have been constructed from Font$Path and the font name. This means that each
of the elements of Font$Path must be proper full pathnames, including filing
system prefix and any required special fields (eg. net#fileserver:$.fonts.).

The SWI must be called twice: once to remove the old version of the data,
and once to load in the new version. This is especially important in the case of
lntMetrics files, since the font cache can get into an inconsistent state if the
new data is not read in immediately.

The 'recache' flag in R2 determines whether the new data is to be loaded in
or not, and might be used like this:

SYS "Font_UnCacheFile",,"<filename>",O
<replace old file with new one>
SYS "Font_UnCacheFile",,"<filename>",l

The Font Manager: SWI Calls 1471

Related SWis

Related vectors

1472

None

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Set the FontMax values

RO = new value of FontMax (bytes)

Font SetFontMax
(SWI &4009B)

Rl- R5 =new values ofFontMaxl .. FontMax5 (pixels* 72 * 16)
R6, R7 reserved (must be zero)

Interrupt status is undefined
Fast intem1pts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call can be used to set the values of FontMax and FontMax 1 ...
FontMax5. Changing the configured settings will also change these internal
settings, but Font_SctFontMax docs not affect the configured values, which
come into effect on ctrl-break or when the font manager is re-initialised.

This call also causes the font manager to search through the cache, checking to
see if anything would have been cached differently if the new settings had
been in force at the time. If so, the relevant data is discarded, and will he
reloaded using the new settings when next required.

Related SWis Font_ReadFontMax (SWI &4009C)

Related vectors None

The Font Manager: SWI Calls 1473

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1474

Read the FontMax values

RO = value of FontMax (bytes)

Font ReadFontMax
(SWI & 4009C)

Rl - RS =values ofFontMaxl..FontMaxS (pixels* 72 * 16)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call can be used to read the values of FontMax and FontMax 1 ...
FontMaxS. It reads the values that the font manager holds internally (which
may have been altered from the configured values by Font_SetFontMax).

Font_SetFontMax (SWl &40098)

None

The Font Manager: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

The Font Manager: SWI Calls

Font ReadFontPrefix
(SWI &4009D)

Find the directory prefix for a given font handle

RO = font handle
Rl =pointer to buffer
R2 = length of buffer

R 1 =pointer to terminating null
R2 = bytes remaining in buffer

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call finds the directory prefix relating to a given font handle, which
indicates where the font's lntMetrics file is, and copies it into the buffer
pointed to by R 1; for example:

adfs::4.$. !Fonts.Trinity.Medium.

One use for this prefix would be to find out which sizes of a font were
available pre-scaled in the font directory.

None

None

1475

... ·

*Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1476

*Configure FontMax
Set the maximum font cache size

*Configure FontMax <n>[K]

<n> number of 4k chunks

<n>K number of kilobytes

The difference between FontSize and FontMax is the amount of memory that
the font manager will attempt to use if it needs to. If other parts of the system
have already claimed all the spare memory, then FontSize is what it is forced
to work with.

If FontMax is bigger than FontSize, the font manager will attempt to expand
the cache if it cannot obtain enough cache memory by throwing away unused
blocks (ie. ones that belong to fonts which have had Font_FindFont called on
them more often than Font_LoseFont). Once the cache has expanded up to
FontMax, the font manager will throw away the oldest block found, even if it
is in use. This can result in the font manager heavily using the filing system,
since during a window redraw it is possible that all fonts will have to be
thrown away and recachcd in turn.

*Configure FontMax 256K

*Configure FontSize

Font_CacheAddress (SWI &40080), Font_SetFontMax (SWI &4009B),
Font_ReadFontMax (SWI & 4009C)

None

The Font Manager: *Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Configure FontMaxl
Sets the maximum height at which to use a non-exact font from an x90y45 file

*Configure FontMaxl <max height>

<max height> maximum font pixel height at which to use non-exact
font from an x90y45 file

If a font has both an x90y45 file and an Outlines file, the font manager is in
something of a quandary. It would rather use the outlines file in all cases,
since it always produces results at least as good as the scaled bitmaps, but
unfortunately it does take longer.

The solution is that the font manager will usc the x90y45 version of a font
either if the exact size required is contained in the file, or if the font size
required is less than or equal to the value specified in FontMax I.

Note that the f9999x9999 (or b9999x9999, as appropriate) will always be
preferred if the exact size is found, and it is also possible to scale from an
f9999x9999 file, by creating an x90y45 file which contains only the name of
the f9999x9999 file. In the latter case, the same rules apply concerning
FontMax 1, if there is also an Out! ines file.

The height is set in pixels rather than points because it is the pixel size that
affects cache usage. This corresponds to different point sizes on different
resolution output devices:

pixel height= height in points* pixels (or dots) per inch /72

*Configure FontMaxl 25

*Configure FontMax2

Font_SetFontMax (SWI &4009B), Font_ReadFontMax (SWI &4009C)

None

The Font Manager: *Commands 1477

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1478

*Configure FontMax2
Sets the maximum height at which to usc anti-aliaS<.-'CI outlines

*Configure FontMax2 <max height>

<max height> maximum font pixel height at which to use anti­
aliascd outlines

If the font size required is larger than <max height>, then the font manager
will never convert from outlines to anti-aliased (4-bit-pcr-pixcl) bitmaps, but
will use 1-bit-per-pixel bitmaps instead. These only use a quarter of the cache
space that anti-aliased bitmaps would, and arc quicker to convert from
outlines.

The font manager will usc an f9999x9999 or x90y45 version of the font if the
exact size is found or the font size is less than or equal to FontMax I .

The height is set in pixels rather than points because it is the pixel size that
affects cache usage. This corresponds to different point sizes on different
resolution output devices:

pixel height= height in points * pixels (or dots) per inch /72

*Configure FontMax2 20

*Configure FontMaxl

Font_SetFontMax (SWI &400913), Font_RcadFontMax (SWI &4009C)

None

The Font Manager: ·commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Configure FontMax3

Sets the maximum height at which to retain bitmaps in the cache

*Configure FontMax3 <max height>

<max height> maximum font pixel height at which to rettlin
bitmaps in the cache

If the font size required is larger than <max height>, the font manager will
not store the results of converting from outlines to bitmaps, but will instead
draw the data directly onto the destination, cachcing the outlines themselves
instead. Note that in this case the text is not drawn anti-aliased, since the
Draw module is used to draw the outlines directly.

The font manager sets up the appropriate GCOL and TINT settings when
drawing the outlines, but it resets them afterwards.

The height is set in pixels rather than points because it is the pixel size that
affects cache usage. This corresponds to different point sizes on different
resolution output devices:

pixel height = height in points* pixels (or dots) per inch /72

*Configure FontMax3 35

None

Font_SetFontMax (SWI &400913), Font_ReadFontMax (SWI &4009C)

None

The Font Manager: ·commands 1479

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

~480

*Configure FontMax4

Sets the maximum width at which to use horizontal subpixcl anti-aliasing

*Configure FontMax4 <max width>

<max width> maximum font pixel width at which to use horizontal
subpixel anti-aliasing

If the font width is less than or equal to <max width>, the font manager will
try to use the oudines file rather than x90y4S, and will construct 4 bitmaps for
each character, corresponding to 4 possible horizontal subpixel alignments on
the screen. When painting the text, it will use the bitmap which corresponds
most closely to the required alignment.

Note that if there is an f9999x9999 file of the appropriate size, this will take
precedence over the settings of FontMax4 and FontMax5. This bitmap may
however have been constructed with subpixel positioning already performed
(see Font_MakeBitmap).

The width is set in pixels rather than points because it is the pixel size that
affects cache usage. This corresponds to different point sizes on different
resolution output devices:

pixel width = width in points • pixels (or dots) per inch I 72

*Configure FontMax4 0

•Configure FontMaxS

Font_SetFontMax (SWI &4009B), Font_ReadFontMax (SWI &4009C)

None

The Font Manager: ·commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Configure FontMaxS

Sets the maximum height at which to use vertical subpixel anti-aliasing

*Configure FontMaxS <max height>

<max height> maximum font pixel height at which to use vertical
subpixel anti-aliasing

If the font height is less than or equal to <max height>, the font manager will
try to use the outlines file rather than x90y45, and will construct 4 bitmaps for
each character, corresponding to 4 possible vertical subpixel alignments on
the screen. When painting the text, it will use the bitmap which corresponds
most closely to the required alignment.

Note that if there is an f)999x9999 file of the appropriate size, this will take
precedence over the settings of FontMax4 and FontMaxS. This bitmap may
however have been constructed with subpixcl positioning already performed
(see Font_MakeBitmap).

The height is set in pixels rather than points because it is the pixel size that
affects cache usage. This corresponds to different point sizes on different
resolution output devices:

pixel height = height in points *pixels (or dots) per inch /72

*Configure FontMaxS 0

*Configure FontMax4

Font_SetFontMax (SWI &4009B), Font_ReadFontMax (SWI &4009C)

None

The Font Manager: •commands 1481

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1482

*Configure FontSize
Set the amount of space that is initially given to the font manager

*Configure FontSize <n>K

<n> number ofkilobytes to allocate

FontSize refers to the initial cache size, which is set when the font manager is
first initialised. The minimum cache size can also be changed from the Task
Manager, by dragging the font cache bar directly, although this is not
remembered when after a Control-reset.

*Configure FontSize 32K

*Configure FontMax

Font_CacheAddress (SWI &40080)

None

The Font Manager: *Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*FontCat
List the available fonts

*FontCat [<pathname>]

<path name> optional pathname

This command searches through the list of font directories and lists the fonts
that are available. If no pathname is specified, the system variable Font$Path
is used.

Font_FindFont uses the same variable when it searches for a font.

*FontCat adfs:$.Fonts.
Corpus.Medium
Portrhouse.Standard
Trinity.Medium

None

The last • .' is essential

Font_FindFont (SWJ &40081), Font_ListFonts (SWJ &40091)

None

The Font Manager: ·commands 1483

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1484

*Fontlist
Displays the fonts and free space in the font cache

*FontList

*FontList displays the fonts currently in the font cache. For each font, details
are given of its point size, its resolution, the number of times it is being used
by various applications, and the amount of memory it is using. The size of the
font cache and the amount of free space is also given.

• Font List
Name

l.Tr1nily.Medium
2.Corpus.Standard

Cache size: 24 Kbytes
Cree : 9 Kbytes

None

Font_ListFonts

None

Size

12 point
14 point

Dots/inch

90x45
90x45

Use

0
2

Memory

3 Kbytes
11 Kbytes

The Font Manager: ·commands

Application
Notes
BASIC example of
justified text

100 SYS "Font_F1ndFont",."'rr!nlt.y.Medium",310,310,0 , 0 TO HAN\

110 REM sets font ha"ldle
120 SYS "Font_SetPalette",,8,9,6,&FFFFFFOO,,OOOOOOOO
130 REM Set the palette to use colou=s 8-15 as w~lte ~o blac~
140 HOVE 800,500
150 REM Set the right hand side ot justification
160 SYS "Font_Paint" ,,"Thls Is a test",&ll , 0,500
170 SYS " Font_Loseront",HAN\

On line 160, Font_Paint is being told to use OS coordinates and justify,
starting at location 0,500. 800,500 has been declared as the right hand side of
justification by line 140.

The Font Manager: Application Notes 1485

1486 The Font Manager: Application Notes

Draw module

Introduction

Draw module: Introduction

The Draw module is an implementation of PostScript type drawing. A
collection of moves, lines, and curves in a user-defined coordinate system are
grouped together and can be manipulated as one object, called a path.

A path can be manipulated in memory or upon writing to the VDU. There is
full control over the following characteristics of it:

• rotation, scaling and translation of the path

• thickness of a line

• description of dots and dashes for a line

• joins between lines can be mitred, round or bevelled

• the leading or trailing end of a line, or dot (which are in fact just very
short dashes), can be butt, round, a projecting square or triangular (used
for arrows)

• filling of arbitrnry shapes

• what the fill considers to be interior

A path can be displayed in many different ways. For example, if you write a
path that draws a petal, and draw it several times rotating about a point, you
will have a flower. This uses only one of the characteristics that you can
control.

The Draw application was written using this module, and this is the kind of
application that it is suited to. It is advisable to read the section on Draw in
the User Guide to familiarise yourself with some of the properties of the
Draw module.

1487

Overview There are many specialised terms used within the Ornw module. Here arc the
most important ones. If you are familiar with PostScript, then many of these
should be the same.

• A path element is a sequence of words. The first word in the sequence has
a command number, called the element type, in the bottom byte. Following
this are parameters for that element type.

• A subpath is a sequence of path elements that defines a single connected
polygon or curve. The ends of the subpath may be connected, so it forms a
loop (in which case it is said to be closed) or may be loose ends (in which
case it is said to be open). A subpath can cross itself or other subpaths in
the same path.

Sec below for a more detailed explanation of when a subpath is open or
closed.

• A path is a sequence of subpaths and path clements.

• A Bezier curve is a type of smooth curve connecting two endpoints, with its
direction and curvature controlled by two controlt>nints.

• Flattening is the process of converting a Bczicr curve into a series of small
lines when outputting.

• Flamess is how closely the lines will approximate the original Bezier
curve.

• A transformation matrix is the standard mathematical tool for two­
dimensional transformations using a three by three array. It can rotate,
scale and translate (move).

• To stToke means to draw a thickened line centred on a path.

• A gap is effectively a transparent line segment in a subpath. If the
subpath is stroked, the piece around the gap will not be plotted. Gaps
are used by Draw to implement dashed lines.

• Line caps arc placed at the ends of an open subpath and at the ends of
dashes in a dashed line when they are stroked. They can be butt, round, a
projecting square or triangular.

• joins occur between adjacent lines, and between the start and end of a
closed subpath. They can be mitred, round or bevelled.

1488 Draw module: Overview

Scaling systems

OS units

Internal Draw units

User units

Transform units

Draw module: Overview

• To Fill means to draw everything inside a path.

• Interior pixels are ones that are filled. Exterior pixels are not filled.

• A winding number rule is the rule for deciding what is interior or exterior
to a path when filling. The interior parts are those that are filled.

• Bouru.lary pixels arc those that would be drawn if the line were stroked
with minimum thickness for the YOU.

• Thickening a path is converting it to the required thickness - that is
generating a path which, if filled, would produce the same results as
stroking the original path.

This is an area where you must t'..Jke great care when using the Draw module,
because four different systems t~re used in different places.

OS units are notionally I/! 80th of an inch, and arc the standard units used by
the YOU drivers for specifying output to the screen

This coordinate system is (not surprisingly) what the Draw module uses when
it strokes a path onto the screen.

Internally, Draw uses a coordinate system the units of which are 1/256th of an
OS unit. We shall call these internal Draw units.

In a 32 bit internal Draw number, the top 24 bits are the number of OS units,
and the bottom 8 bits arc the fraction of an OS unit.8 fixed point system.

The coordinates used in a path can be in any units that you wish to use. These
are translated by the transformation matrix into internal Draw units when
generating output.

Note that because it is a fixed point system, scaling problems can occur if the
range is too far from the internal Draw units. Because of this problem, you
are limited in the range of user units that you can use.

Transform units arc only used to specify some numbers in the transformation
matrix. They divide a word into two parts: the top two bytes are the integer
part, and the bottom two bytes are the fraction part.

1489

Transformation matrix

Winding rules

1490

This is a three by three matrix that can be used to rotate, scale or translate a
path in a single operation. It is laid out like this:

r a b 0 l
I c d o I
L c f t J

This matrix transforms a coordinate (x,y) into another coordinate (x',y') as
follows:

x' =ax+ cy + e
y' = bx + dy + f

The common transformations can all be easily done with this matrix.
Translation by a given displacement is done by c for the x axis and f for the
y axis. Scaling the x axis uses a, while the y axis uses d. Rotation can be
performed by setting a=cos(9), b=sin(9), c=-sin(9) and d=cos(e), where e is
the angle of rotation.

a, b, c and d arc given in transform units to allow accurate specification of the
fractional part. e and f are specified in internal Draw units, so that the integer
part can be large enough to adequately specify displacements on the screen.
(Were transform units to be used for these coefficients, then the maximum
displacement would only be 256 OS units, which is not very far on the screen.)

The winding rule determines what the Draw module considers to be interior,
and hence filled .

Even-odd roughly means that an area is filled if it is enclosed by an even
number of subpaths. The effect of this is that you will never have two adjacent
areas of the same state, ie filled or unfilled.

Non-zero winding fills areas on the basis of the direction in which the
subpaths which surround the area were constructed. If an equal number of
subpaths in each direction surround the area, it is not filled, otherwise it is.

The positive winding rule will fill an area if it is surrounded by more anti·
clockwise subpaths than clockwise. The negative winding rule works in reverse
to this.

Draw module: Overview

Stroking and filling

Printing

Floating point

Draw module: Overview

Even-odd and non-zero winding arc printer driver compatible, whereas the
other two are not. If you wish to use the path with a printer driver, then bear
this in mind.

Flattening means bisecting any Bezier curves recursively until each of the
resulting small lines lies within a specified distance of the curve. This
distance is called flatness. The longer this distance, the more obvious will be
the straight lines that approximate the curve.

All moving and drawing is relative to the VDU graphics origin (as set by
VDU 29,x;y;).

None of the Draw SWis will plot outside the boundaries of the VDU
graphics window (as set by VDU 24,l;b;r;t;).

All calls use the colour (both pixel pattern and operation) set up for the
VDU driver. Note that not all such colours arc compatible with printer
drivers.

If your program needs to generate printer output, then it is very important that
you read the chapter entitled Printer Drivers. The Draw SW!s that arc
affected by printing have comments in them about the limitations and effects.

SWI numbers and names have been allocated to support floating point Draw
operations. In fact for every SWI described in this chapter, there is an
equivalent one for floating point - just add FP to the end of each name.

The floating point numbers used in the specification are IEEE single precision
floating point numbers.

They may be supported in some future version of IUSC OS, but if you try to
use them in current versions you'll get an error back ..

1491

Technical Details

Data structures

Path

1492

Many common strucrures are used by Draw module SWls. Rather than
duplicate the descriptions of these in each SWI, they are given here. Some
SWis have small variations which are described with the SWI.

The path strucrure is a sequence of subpaths, each of which is a sequence of
elements. Each element is from one to seven words in length. The lower byte
of the first word is the element type. The remaining three bytes of it are free
for client use. On output to the input path the Draw module will leave these
bytes unchanged. However, on output to a standard output path the Draw
module will store zeroes in these three bytes.

The element type is a number from 0 to 8 that is followed by the parameters
for the element, each a word long. The path elements are as follows:

Element
Type

0

2

3

4

5

Parameters

n

ptr

xy

xy

Description

End of path. n is ignored when reading the
path, but isused to check space when reading
and writing a path.

Pointer to continuation of path. ptr is the
address of the first path clement of the
continuation.

Move to (x,y) starting new subpath. The new
subpath docs affect winding numbers and so
is filled normally. This is the normal way to
start a new subpath.

Move to (x,y) starting new subpath. The new
subpath does not affect winding numbers
when filling. This is mainly for internal use
and rarely used by applications.

Close current subpath with a gap.

Close current subpath with a line. It is better
to use one of these two to close a subpath
than 2 or 3, because this guarantees a closed
subpath.

Draw module: Technical Details

Open and closed
subpaths

Output path

6 xlylx2y2x3y3

7 xy

8 xy

Bczier curve to {x3,y3) with control points at
(x 1 ,y 1) and (x2,y2).

Gap to (x,y). Do not start a new subpath.
Mainly for internal use in dot-dash
sequences.

Line to (x,y).

You will notice that there are some order constraints on these element types:

• path clements 2 and 3 start new subpaths

• path elements 6, 7 and 8 may only appear while there is a current subpath

• path elements 4 and 5 may only appear while there is a current subpath,
and end it, leaving no current subpath

• path elements 2 and 3 can also be used to close the current subpath
{which is a part of starting a new subpath).

When you are stroking (using OS_DrawStroke), if a subpath ends with a 4 or
5 then it is closed, and the ends are joined - whereas a 2 or 3 leaves a
subpath open, and the loose ends are capped. These four path elements
explicitly leave a stroked ~ubparh either open or closed.

Some other operations implicitly close open suhpaths, and this will be stated
in their descriptions.

Just because the ends of a subpath have the same coordinates, that doesn't
mean the subpath is closed. There is no reason why the loose ends of an open
subpath cannot be coincident.

After a SWI has written to an output path, it is identical to an input path.
When it is first passed to the SWI as a parameter, the start of the block
pointed to should contain an clement type zero (end of path) followed by the
number c:i available bytes. This is so that the Draw module will not
accidentally overrun the buffer.

Draw module: Technical Details 1493

Fill style

Matrix

1494

The fill style is a word that is passed in a call to Draw_Fill, Draw_Stroke,
Draw_StrokePath or Draw_ProcessPath. It is a bitficld, and all of the calls
use at least the following common states. See the description of each call for
differences from this:

Bit(s)

0, 1

2

3

4

5

6- 31

Value Meaning

0 non-zero winding number rule.
1 negative winding number rule.
2 even-odd winding number rule.
3 positive winding number rule.
0 don't plot non-boundary exterior pixels.
1 plot non-boundary exterior pixels.
0 don't plot boundary exterior pixels.
1 plot boundary exterior pixels.
0 don't plot boundary interior pixels.
1 plot boundary interior pixels.
0 don't plot non-boundary interior pixels.

plot non-boundary interior pixels.
reserved- must be written as zero

The matrix is passed as pointer to a six word block, in the order a, b, c, d, e,
and f as described earlier. That is:

Offset Value Common use(s)

0 a x scale factor, or cos(e) to rotate

4 b sin(9) to rotate

8 c -sin(e) to rotate
12 d y scale factor, or cos(9) to rotate
16 e x translation
20 f y translation

If the pointer is zero, then the identity matrix is assumed - no transformation
takes place.

Remember that a-d are in Trnnsform units, while e and f are in internal
Draw units.

Draw module: Technical Details

Flatness

Line thickness

Flatness is the maximum distance that a line is allowed to be from a Bezier
curve when flattening it. It is expressed in user units. So a smaller flatness
will result in a more accurate rendering of the curve, but take more time and
space. For very small values of flatness, it is possible to cause the 'No room
in RMA' error.

A recommended range for flatness is between half and one pixel. Any less
than this and you're wasting time; any more than this and the curve becomes
noticeably jagged. A gocxl starting point is:

flatness = number of user units in x axis/ number of pixels in x axis

A value of zero will use the default flatness. This is set to a useful value that
balances speed and accuracy when stroking to the YOU using the default
scaling.

Note that if you are going to send a path to a high resolution printer, then you
may have to set a smaller flatness to avoid jagged curves.

The line thickness is in user coordinates.

• If the thickness is zero then the line is drawn with the minimum width that
can be used, given the limitations of the pixel size (so lines are a single
pixel wide).

• If the thickness is 2, then the line will be drawn with a thickness of I user
coordinate translated to pixels on either side of the theoretical line
position.

• If the line thickness is non-zero, then the cap and join parameter must also
be passed.

Draw module: Technical Details 1495

Cap and join

1496

The cap and join styles arc passed as pointer to a four word block. A pointer
of zero can be passed if cap and join arc ignored (as they are for zero
thickness lines). The block is structured as follows:

Word

0

4

8

12

Byte

0

2
3

0,1
2,3

0,1

2,3

all

Description

join style
0 = mitred joins
1 = round joins
2 = bevelled joins

leading cap style
0 =butt caps
1 = round caps
2 = projecting square caps
3 = triangular caps

trailing cap style {as leading cap style)
reserved- must be written as zero.

This value must be set if using mitred joins.
fractional part of mitre limit for mitre joins
integer part of mitre limit for mitre joins

setting for leading triangular cap width on each side.
{in 256ths of line widths, so &0100 is 1 linewidth)
setting for leading triangular cap length away from
the line, in the same measurements as above

This sets the trailing trian;:ular cap size, using the
same structure as the previous word.

The mitre limit is a little more complex than the others, so it is explained
here rather than above. At any given comer, the mitre length is the distance
from the point at which the inner edges of the stroke meet, to the point where
the outer edges of the stroke meet. This distance increases as the angle
between the lines decreases. lf the ratio of the mitre length to the line width
exceeds the mitre limit, stroke treats the comer with a bevel join instead of a
mitre join. Also see the notes on scaling, later in this section.

Note that words at offsets 4, 8, and 12 are only used if the appropriate style
is selected by the earlier parts. The structure can therefore be made shorter if
triangular caps and mitres arc not used.

Draw module: Technical Details

Dash pattern

Scaling

Draw SWis

The dash pattern is passed as a pointer to a block, the size of which is defined
at the start, as follows:

Word Description

0
4
8 to4N+4

distance into dash pattern to start in user coordinates
number of elements (N) in the dash pattern
elements in the dash pattern, each of which is a
distance in user coordinates.

Again the pointer can be zero, which implies that continuous lines arc drawn.

Each element specifies a distance to draw in the present state. The pattern
starts with the draw on, and alternates off and on for each successive element.
If it reaches the end of the pattern while drawing the line, then it will resmrt
at the beginning.

If N is odd, then the clements will alternate on or off with each pass through
the pattern. ie. the first clement will be on the first pass, off the second pass,
on the third pass, and so on.

The Draw module uses fixed point arithmetic for speed. The number
representations used arc cho~en to keep rounding errors small enough not to
be noticeable.

However, if you usc the tmnsformation matrix to scale a path up a great deal,
you will also scale up the rounding errors and make them visible.

To avoid such problems, we recommend that you don't use scale factors of
more than 8 when converting fromn User units to internal Draw units. (This
maximum recommended scale factor of 8 is &80000 in the Transform units
used in the transformation matrix.)

Though there arc a number of SWis, they all call Draw_ProcessPath. Because
this takes so many parameters, the other SWis are provided as an easy way
of using its functionality.

There are two that output to the YOU. Draw_Stroke emulates the PostScript
stroke function and will draw a path onto the VDU. Draw_Fill acts like the
fill function and fills the inside of a path. It is likely that most applications
will only use these two SWls.

Draw module: Technical Details 1497

Printer drivers

The others arc shortcuts for processing a path in one way or other.
Draw_StrokcPath acts exactly like Draw_Stroke, except it puts its output into
a path rather than onto the YOU. Filling its output path produces the same
results as stroking its input path. Draw_FiattenPath will handle only the
flattening of a path, wnong its output to a path. Likewise,
Draw_ TransformPath will only use the matrix on a path. All these processing
SWis are useful when a path will be sent to the YOU many times. If the
path is flattened or transformed before the stroking, then it will be done
faster.

If you are using a printer driver, you should note that it cannot deal with all
calls to the Draw module. For full details of this, see the chapter entitled
Printer Drivers. As a general rule, you should avoid the following fearures:

• AND, OR, etc operations on colours when writing to the screen.

• Choice of fill style: eg fill excluding/including boundary, fill exterior,
etc.

• Positive and negative winding number rules.

• Line cap enhancements, particularly differing leading and trailing caps
and triangular caps.

The printer driver will also intercept DrawY and modify how parts of the
Draw module work. Here is a list of the effects that are common to all the
SWis that output to the YOU normally:

• cannot deal with positive or negative winding numbers

• cannot fill:

non-boundary exterior pixels

2 exterior boundary pixels only

3 interior boundary pixels only

4 exterior boundary and interior non-boundary pixels

• an application should not rely on any difference between the following
fill states:

1 interior non-boundary pixels only

2 all interior pixels

3 all interior pixels and exterior boundary pixels

1498 Draw module: Technical Details

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Draw module: SWI Calls

Draw ProcessPath
(SWI &40700)

Main Draw SWI

RO = pointer to input path buffer (see below)
Rl =fill style
R2 =pointer to transformation matrix, or 0 for identity matrix
R3 = flatness, or 0 for default
R4 =line thickness, orO for default
R5 = pointer to line cap and join specification
R6 = pointer to dash patrem, or 0 for no dashes
R7 =pointer to output path buffer, or value (see below)

RO depends on entry val uc of R 7
ifR7 =0, 1 or2
ifR7 = 3
if R7 is a pointer

R 1 - R 7 preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

RO is corrupted
RO = size of output buffer
RO =pointer co new end of path indicator

All the other SWis in the Draw module are translated into calls to this SWI.
They are provided co ensure that suitable names exist for common operations
and to reduce the number of rc~istcrs to set up when calling.

The input path, matrix, flatness, line thickness, cap and join, and dash pattern
are as specified in the Technical Derails ..

1499

1500

The fill style is as in the Technical Details, with the following additions:

Bit(s)

6-26
27
28
29
30
31

Meaning

reserved- must be written as zero
set if open subpaths are to be closed
set if the path is robe flattened
set if the path is to be thickened
set if the path is to be re-flattened after thickening
set for floating point output (not implemented)

Normally, the output path will act as described in the Technical Details, but
with the following changes if the following values are pa$sed itt R7:

Value

0

Meaning

Output to the input parh buffer. Only valid if the
input path's length docs not change during the call.

Fill the path normally.

2 Fill the path, subpath by subpath. (Draw_Stroke
will often use this to economise on RMA usage).

3 Count how large an output buffer is required for the
given path and actions.

&80000000+pointer Output the path's bounding box, in tr.msformed
coordinates.

pointer

The buffer will contain the four words: lowx, lowy,
highx ~ highy.

Output to a specified ourp~t buffer.

The length of the buffer must be indicated by
putting a suitable path clement 0 at the start of the
buffer, and a pointer to the new path clement 0 is
returned in RO to allow you to append to the output
path.

Draw module: SWI Calls

Related SWis

Related vectors

Draw module: SWI Calls

You may do the following things with this call, in this order:

Open subpaths may be closed (if selected by bit 27 ofRI).

2 The path may be flattened (if selected by bit 28 of R I) . This uses RJ.

3 The path may be dashed (ifR6 ~ 0).

4 The path may be thickened (if selected by bit 29 of R I). This uses R4 and
R5.

5 The path may be re-flattencd (if selected by bit 30 ofRI). This uses R3.

6 The path may be transformed (ifR2 ~ 0).

7 Finally, the path is output in one of a number of ways, depending on R7.

Note that R3, R4 and R5 may be left unspecified if the options that use them
are not specified.

If you try to dashing, thickening or filling on an unflattencd Bezier curve, it
will produce an error, as this is not allowed.

If you are using the printer driver, then it will intercept this SWI and affect
its operation. In addition to the general comments in the Technical Details, it is
unable to handle R7 = 1 or 2.

None

DrawV

1501

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1502

Draw Fill
(SWI &40702)

Process a path and send to YOU, filling the interior portion

RO = pointer to input path
Rl = flll style, or 0 for default
R2 = pointer to transformation matrix, or 0 for identity matrix
R3 = flamess, or 0 for default

RO corrupted
Rl - R3 preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This command emulates the PostScript 'fill' operator. It performs the
following actions:

• closes open subpaths

• flattens the path

• transforms it to standard coordinates

• fills the resulting path and draws to the YOU.

The input path, matrix, and flamcss are as specified in the Technical Deetails.

The fill style is as specified with the following addition. A fill style of zero
is a special case. It specifies a useful default fill style, namely &30. This
means fill to halfway through boundary, non-zero rule.

If you are using the printer driver, then it will intercept this SWI and affect
its operation. See the general comments in the Technical Details section.

None

OrawY

Draw module: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Draw module: SWI Calls

Draw Stroke
(SWI &40704)

Process a path and send to VDU

RO = pointer to input path
Rl =fill style, or 0 for default
R2 = pointer to transfonnation matrix, or 0 for identity matrix
RJ = flamess, or 0 for default
R4 = line thickness, or 0 for default
RS = pointer to line cap and join specification
R6 = pointer to dash pattern, or 0 for no dashes

RO corrupted
R 1 - R6 preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This command emulates the PostScript 'stroke' operator. lt performs the
following actions:

• flattens the path

• applies a dash pattern to the path, if R6 -1:-0

• thickens the path, using the specified joins and caps

• re-flattens the path, to flatten JOund caps and joins, so that they can be
filled .

• transforms the path to standard coordinates

• fills the resulting path and draws to the VDU

The input path, matrix, flatnes.~. line thickness, c<1p and join, and dash pattern
are as specified in the Techniarl Details.

1503

Related SWis

Related vectors

1504

The fill style is as specified with the following additions. A fill style of zero
is a special case. If the line thickness in R4 is non-zero, then it means &30, as
in Draw_Fill. If R4 is zero, then &18 is the default, as the flattened and
thickened path will have no interior in this case.

If the top bit of the fill style is set, this makes the Draw module plot the
stroke all at once rather than one subpath at a time. This means the code will
never double plot a pixel, but uses up much more temporary work-space.

If the specified thickness is zero, the added restrictions arc that it cannot deal
with filling non-boundary exterior pixels and not filling boundary exterior
pixels at the same time, ie fill bits 3- 2 being 01.

If the specified thickness is non-zero, the added restrictions are that it cannot
deal with filling just the boundary pixels, ic fill bits 5 • 2 being 0 110.

If you are using the printer driver, then it will intcn;ept this SWI and affect
its operation. In addition to the general comments in the Technical Details
section, it has the following effects on fill style.

Most printer drivers will not pay any attention to bit 31 of the fill style - ic
plot subpath by subpath or all at once. Use Draw_ProccssPath to get around
this problem by processing it before stroking.

Draw_StrokePath (SWI &40706)

DrawV

Draw module: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Draw module: SWI Calls

Draw StrokePath
(SWI &40706)

Like Draw_Stroke, except writes its output to a path

RO = pointer to input path
Rl =pointer to output path, or 0 to calculate output buffer size
R2 = pointer to transfonnation matrix, or 0 for identity matrix
R3 =flatness, or 0 for default
R4 = line thickness, or 0 for default
RS = pointer to line cap and join specification
R6 =pointer to dash pattern, or 0 for no dashes

RO depends on entry value of R 1
ifRI = 0 RO =calculated output buffer size
ifRl =pointer RO =pointer to end of path marker in output path

R I - R6 preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The input and output paths, matrix, flatness, line thickness, cap and join, and
dash pattern are as specified in the Technical Derails.

This call acts exactly like a call to Draw_Stroke, except that it doesn't write
its output to the YOU, but to an output path.

Draw _Stroke (SWI & 40704)

DrawV

1505

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1506

Draw FlattenPath
(SWI &40708)

Converts an input path into a flattened output path

RO = pointer to input path
Rl =pointer to output path, or 0 to calculate output buffer size
R2 = flatness, or 0 for default

RO depends on entry value ofRl
ifRl = 0 RO = calculated output buffer size
ifRl = pointer RO = pointer to end of path marker in output path

R 1, R2 preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

The input and output paths, and flatness arc as specified in the Technical
Details.

This call acts like a subset of Draw_StrokePath . It will only flatten a path.
This would be useful if you wanted to stroke a path multiple times and didn't
want the speed penalty of flattening the path every time.

Draw_StrokePath (SWI &40706)

DrawV

Draw module: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Draw module: SWI Calls

Draw T ransformPath
(SWI &4070A)

Converts an input path into a transfonned output path

RO = pointer to input path
Rl =pointer to output path, or 0 to overwrite the input path
R2 = pointer to tran~fonnation matrix, or 0 for identity matrix
R3 =0

RO depends on entry value ofRl
ifRl = 0 RO is corrupted
ifRl =pointer RO = pointer to end of path marker in output path

R 1 - R3 preserved

Interrupts are enabled
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

The input and output paths, and matrix are as specified in the Technical Details.

This call acts like a subset of Draw_StrokePath. It will only transfonn a path.
This would be useful if you wanted to stroke a path multiple times and didn't
want the speed penalty of transforming the path every time. It is also useful
if you want to transfonn a path before dashing, thickening and so on, to avoid
having the rounding errors from the latter operations magnified by the
transformation.

Draw_StrokePath (SWI &40706)

DrawV

1507

Application
Notes
Example of simple
drawing

Transformation matrix

1508

The test program that is shown here was devised to represent millimeters
internally and scale them to be the correct size when drawn on a particular
monitor. Because monitors are different sizes, and even the same model can
be adjusted differently in terms of vertical and horizontal picture size, this
example would have to be adjusted to suit your particular setup.

This example also has a restriction on screen modes. It will only work on one
where the screen is 1280 OS units by 1024 OS units - which most of the
current modes are (but not, for example, 132 column modes) . This
corresponds to 327680 internal Draw units by 262144 internal Draw units.

The first thing to do is to fill the screen with a colour and measure the
horizontal and vertical size in millimeters. For this test, the display area
measured 210mm across by 160mm down.

Because of scaling limitations, we will work with a user scale of thousandths
of millimeters. Thus, there are 210000 user units across and 160000 user units
down.

The BASIC program described here is presented in a jumbled order so that
the features are described and written one at a time. Once it is alt typed in,
then it wilt seem a lot more obvious.

The next step is to work out the scaling factors for the transformation matrix.
Taking the horizontal size first, we start with 327680 internal Draw units =
210000 user units., giving 1.5604 internal Draw units per user unit. Yerticalty,
262144 internal Draw units = 160000 user units, giving 1.6384 internal Draw
units per user unit.

These figures must now be converted to the Transform units used for scaling
in the transformation matrix. The 32 bit Transform number is 216 times the
actual value, since its fractional part is 16 bits long. So horizontally we want
216 * 1.56041 which is 102261 (&18F75), and verticalty we want 216 • 1.6384 I

which is 107374 (&1A36E).

Draw module: Application Notes

Important

Creating the path

The transformation matrix is initialised as follows:

r &oootsF?s
I o
L o

0
&0001A36E
0

0 1
o I
1 J

This could be calculated automatically, using the following BASIC code,
which, whilst not the most efficient, is hopefully the clearest way of
representing it:

30 xsize • 210000 : ys i ze = 160000
40 xscale\ • (1280 • 256 I xsize) • &010000
50 yscale\ • (1024 • /56 I ysize) • &010000

After this, xscale% would be &00018F75 and yscale% would be
&0001A36E, the values to place in the matrix. The matrix would be
programmed as follows:

20 DIM transform\ 23
60 trans!orm\!0 • xscale\
70 trans!orm\!4 • 0
80 transform\!8 = 0
90 transform\!12 • yscale \
100 transform\!16 = 0
110 transform\!20 = 0

:REM element a in the ~at rix
:REM element b

:REM element c
:REM element d
:REM element c
:REM cl ement f

It is important to remember that, whilst this example is using thousandths of
millimeters as its internal coordinate system, they could be anything within
the valid limits. Draw is not affected by what they are. Using the technique
described above, ANY valid units can be used. We used 210000 by 160000
user units for our scale; it couid be 500000 by 350000 or 654363 by 314159 or
whatever. This program will work with all valid scales, simply by changing
the definitions of xsi ze and ysize.

In order to create the path, this simple program uses a procedure to put a
single word into the path and advance the pointer. In a large application, it
would be a good idea to write individual routines to generate each element
type, because this technique would become tedious in a large program.

This preamble defines what needs to be at the start of the program. Notice
that line 20 overwri tes the earlier definition.

10 pathlength\ • 256
20 DIM path\ pathlenqth\ - 1, transform\ 23
160 pathptr\ = 0 :R~M Initi alise the pointer

Draw module: Application Notes 1509

Simple stroke

Translation

1510

Later on in the program would be the procedure to add a word to the path

320 £NO
330 D£F PROCadd(value\)
340 IF pathptr,+4 > pat.hlenqth\ THEN ERROR 0, "Insufficient path buffer•
350 path\!pathptr\ • value\
360 pathptr\ +• 4
310 £NDPROC

The simple path shown here generates a rectangle with no bottom line. It is
90mm by 40mm and offset by 80mm in the x and y axes from the origin.

110 PROCadd(2)
180 PROCadd(8)
190 PROCadd (8)
200 PROCadd(8)
250 PR0Cadd(4)
260 PROCadd (0)

PROCadd(80000) : PROCadd(80000) : REM Move to start
PROCadd(80000) : PROCadd(120000) :REM Draw
PROCadd (170000) : PROCadd (120000)
PROCadd (170000) : PROCndd (80000)
REM Close the subpath. PROCadd(S) would close the rectanqle
PROCadd (pa t hlcnqth\-pathptr\-4) :REM End path

Once the path and the transformation matrix have been completed, all that
remains is to set the graphics origin and stroke the path onto the screen .

270 VDU 29,0;0;
280 SYS "Draw_Stroke", path%,0,transform% , 0,0,0 ,0

Another matrix operation that can be performed is translation, or moving.
Remember that the parameters in the matrix are in internal Draw coordinates,
not the millimeters used in this example as user coordinates. If you want to
translate in OS coordinates, then the translation must be multiplied by 256.

In this example, we are going to re-sttoke the path, translated 60 OS units in x
and - 100 OS units in y.

290 transform\ !16 • 60<<8
300 transform\ !20 • -100<<8
310 SYS •oraw_Stroke",path\, O,transCorm\, 0,0,0,0

You will now sec two versions of the path, the new one 100 OS units lower
and 60 OS units shifted to the right.

Similarly, the matrix may be modified to rotate the path. If you aren't sure
how to do this, then see any mathematical text on matrix arithmetic.

Draw module: Application Notes

Curves

Line thickness

In order to add a curve to the path, we will add a new subpath to the section
that creates the path. This curve draws an alpha shape. Note that clement type
2 implicitly closes the initial subpath:

210 PROCadd (2) : PROCadd (50000) : PROCadd (50000)
220 PROCadd (6) : PROCadd (80000) : PROCadd (80000)
230 PROCadd (85000) : ?ROC add (30::00)
240 PROCadd(50000) : PROCadd(6C:OO)

:RF:M xl,yl
:RE~ x2,y2
: Rf.11 x3,y3
: R"M x4,y4

Whilst the flatness can be left at its default value, this shows how the stroke
commands can be changed to set the flatness to a sensible value. 640 is used
because this program was nm in a 640 pixel mode.

280 SYS "Draw _Stroke", path\, 0 , trans form\, xsi ze/ MO, 0, 0, 0
310 SYS "Draw_Stroke",pat~ \, O , ::.~~r.sforr>\,xslze/ 640, 0 , 0 , 0

To make the lines shown thicker than the default, it is necessary to specify a
thickness and also the joins and caps block. Notice that line 20 has been
changed to allocate space for the joins and caps block. We will use round
caps and bevelled joints.

20 DIM path\ pathlength\-1, ::.ra~sforn\ 23, jolnsandc~ps\ 15
120 jolnsandcaps\!0 • '0101C7
130 joinsandcaps\!4 : 0
140 joinsandcaps\!8 : 0
150 joinsandcaps\!12 • 0

Now all that remains is to change the stroke commands to specify a thickness
and point to the block just specified. For this example we will make the first
stroke 5000 units (5mm) thick and the second one half that:

280 SYS "Draw_Stroke",pat~\,C , ~ransform\,xslze/6~0, 5000, jolnsandcaps\, O
310 SYS "Draw_Stro~c",pat~\, ::,~ransform\,xs lle/640 , 2500,jolnsandcaps\,O

Plainly, there arc many more features that could be added to this progrnm.
But you should have the idea now of how it fits together and be able to
experiment for yourself.

Draw module: Application Notes 1511

1512 Draw module: Application Notes

Printer Drivers

Introduction

Printer Drivers: Introduction

One of the major headaches on some operating systems is that all
applications must write drivers for all the required types of printers. This
duplicates a lot of work and makes each application correspondingly larger
and more complex.

The solution to this problem that RISC OS has adopted is to supply a virtual
printer interface, so that all printer devices can be used in the same way.
Thus, your application can write to the printer, without being aware of the
differences between, for example, a dot matrix or PostScript printer or an
XY plotter. ·

To simplify printer driving further, the printer can be driven with a subset of
the same calls that normally write to the screen. Calls to the YOU drivers
and to the SpriteExtend, Draw, ColourTrans and Font modules are trapped
by the printer driver. It interprets all these calls in the most appropriate way
for the selected printer. 'W'herc possible, the greater resolution of most
printers is used to its fullest adv<Jntage.

Of course, not all calls have meaning to the printer driver - flashing colours
for example. These generate an error or are ignored as appropriate.

Printer drivers are written to support a gener;il class of printers, such as
PostScript printers. They each have a matching desktop application that
allows users to control their unique attributes. Thus, applications need not
know about printer specific operation, but this does not result in lack of fine
control of the printer.

1513

Overview

Rectangles

Measurement systems

OS units

Transform matrix

1514

A printer driver is implemented in RISC OS as a rclocatable module. It
supplies SW!s concerned with starting, stopping and controlling a print job.

A key feature of all printer drivers is the rectangle. In normal usc, it is a
page. It is however possible to have many rectangles appear on the same
physical sheet of paper. For example, an A3 sized plotter may be used to
draw two A4 rectangles on it side by side; or it could be used to generate a
pagination sheet for a DT P package, showing many rectangles on a sheet.

When reading this chapter, in most cases you can consider a rectangle and a
page to be effectively equivalent, but bear in mind the above use of rectangles.

Many of the printer driver SW!s deal with an internal measurement system,
using millipoints. This is 1/IOOOth of a point, or 1/72000th of an inch. This
system is an abstraction from the physical characteristics of the printer.
Printed text and graphics can be manipulated by its size, rather than in terms
of numbers of print pixels, which will vary from printer to printer.

OS units are the coordinate system normally used by the VDU drivers. In this
context, an OS unit is defined as l/180th of an inch, so each OS unit is 2/Sths
of a point, or 400 millipoints.

It is in this coordinate system that all plotting commands are interpreted.
When a rectangle is declared, it is given a size in OS units. This is treated
like a graphics window, with output outside it being clipped, and so on.

Like the Draw module, the printer driver uses a transform matrix to convert
OS units to the scale, rotation and translation required on paper. With a
matrix with no scaling transformation, a line of 180 OS units, or one inch, will
appear as an approximation of an inch long line on all printers. Naturally, it
depends on the resolution of the printer as to how close to this it gets. If the
matrix scaled x andy up by two, then the line would be two inches long.

Printer Drivers: Overview

Using the printer driver

SWI Interception

Printer Drivers: Overview

To send output to the printer, an application must engage in a dialogue with
the printer driver. This is similar in part to the dialogue used with the Wimp
when a window needs redrawing.

The application starts by opening a file to receive the printer driver's output.
The file can be the printer, or a file on any filing system. It passes this to the
printer driver to starr a print job.

For each page, the application goes through the following steps:

Pass the printer driver a description of each rectangle to use for the page.

2 Tell the printer driver to start drawing the page. It will return with an 10
for the first rectangle it needs.

3 Go through the printer ourput using calls to the YOU, Draw, Font, etc.

4 Ask the printer for the next rectangle and repeat stage 3

5 Repeat stages 3 and 4 as often as required. The printer driver will tell
you when it no longer requires any output.

The printer driver will ask either for all of, or for a section of a rectangle you
specified. It may ask for a given rectangle once, or many times. A dot matrix
driver, for instance, may get the output a strip at a time to conserve workspace,
whereas a PostScript driver can l'Cnd the lot out to the printer in one go.

The point is that you should have no preconceptions about how many times the
printer driver will ask for a rectangle, or the order in which it requests
rectangles.

When all the required pages have been printed, you issue a SWI to finish the
print job and then close the file.

See the example at the end of this chapter for a practical guide to this process.

The printer driver works by trapping all calls to the YOU drivers and to the
SpriteExtend, Draw, ColourTrans and Font modules. It will pass some on to
the destination module unchanged. Some will generate an error because they
cannot be interpreted by the printer driver. Some will be discarded. The ones
that arc of most interest arc t:~kcn by the printer driver and interpreted in the

1515

1516

most appropriate way for the printer. The sccrion entitled Technical Details in
this chapter describes how each module's calls arc intcrprered by the printer
driver.

Printer Drivers: Overview

Technical Details

Printer driver SWis

Printer information

Starting a print job

Though an application shouldn't need to look at all its information,
PDriver_lnfo (SWI &80140) will provide information about the nature of the
printer. This includes the:

• type of printer

• x andy resolution

• colour and shading capabilities

• name of the printer (applications usually need ro look at this)

• ability to handle filled shapes, thick lines, screen dumps and
transformations

PDriver_CheckFeatures (SWI &80142) allows an application to check the
printer features described above. This means that an application could change
the way it works depending on some general features of the printer.

Much as this system tries to avoid this sort of thing, it is inevitable in some
cases. For example, an application that uses lots of sprites on screen will have
to go about printing in a different way on an XY plotter. Many colour
limitations, however, are solved using halftoning.

PDriver_PageSize (SWI &80143) returns the size of paper and printable
area on it. This is used to calculate what size of rectangle to use on it.

To open a print job, you should first open "printer:" as a file. This device
independent name is used because the printer driver application has control
over the OS_Byte 5 serrings of printer destination (see the chapter entitled
Character output for details of OS_l3ytc 5).

You may open any other valid pathname as a file to use as a printer output.
The file created may subsequently be dumped to the the printer. This
technique could be used for background printing, for instance.

Printer Drivers: Technical Details 1517

Controlling a print job

1518

The file handle is passed to PDriver_Selcct)ob (SWI &80145). It suspends
the current print job, if there is one, and makes the handle you passed the
current one. It is the application's responsibility to do this at the right time,
because it has sole control over what gets printed at any time on the machine
it is running on. Needless to say, a network printer spooler can cope with print
commands coming from many machines.

A simple use of the printer driver is to call PDriver_ScreenDump
(SWI &8014F) which will dump the screen to the printer, if it can handle it.
See also the description of screen dumps in the chapter entitled Sprites.

PDrivcr_Currcntjob (SWI &80146) will tell you the file handle for the
currently active print job.

PDriver_Enumerate)ob (SWI &80150) allows you to scan through all the
print jobs that the printer driver currently knows about.

PDriver_End)ob (SWI &80148) will end a job and remove the file handle
from the printer driver's internal lists. It will issue all the closing commands
to the printer to flush any pages in progress. The file should be closed after
doing this, to formally finish the print job.

PDriver_Abortjob (SWI &80149) is a more forceful termination. It should
be called after any errors while printing. It guarantees that no more
commands will be sent to the printer after it.

PDriver_CancciJob (SWI &8014E) will cancel a job. It is normally followed
by the job being aborted. It is not intended to be used by the printing
application, but by another task that allows cancellations of print jobs. It
would use PDriver_Enumerate)obs to find out which jPbs exist and then cancel
what it wishes to. The application that owns the cancelled job would
subsequently find that it h3d !-, ·n cancel led and would then abort the job.

PDriver_Resct (SWI c ~14A) will abort all print jobs known to the printer
driver. Normally, you should never have to usc this command. It may be
useful during development of an application as an emeracncy recovery
measure.

Printer Drivers: Technical Details

Printing a page

Private SWis

Trapping of screen
SWis

There are two phases to pnntmg a page. First you must specify all the
rectangles to use on the page with PDriver_GivcRectangle (SWI &80140).
Each rectangle has a size, transformation matrix, position on the page and
rectangle lD specified by you.

Then you call PDriver_DrawPagc (SWI &8014C) to start the print phase. It
returns the first rectangle to output. This may be only a strip of the rectangle
you specified, if the printer driver cannot do it all at once. This call is
followed by repeated calls to PDriver_GetRectanglc (SWI &80140) until it
returns saying that there arc no more rectangles to print.

The printer driver is free to request rectangles in any order it pleases and as
many times as it pleases. For each rectangle request, you must redraw that
part of the rectangle.

See the example at the end of this chapter for a practical guide to the
sequence to use.

Some SWis are used in the interface between the printer driver desktop
application, the printer driver, and the font manager. They arc briefly
described in this chapter, but you must not use them. If nothing else, the
interface is not guaranteed because it is a private one. These are the private
SWis:

• PDriver_Setlnfo (SWI &80 141)

• PDriver_SetPageSize (SWI &80144)

• PDriver_FontSWI (SW1 &80146)

• PDriver_SetPrinter (SWI &80151)

When a printer driver is running, ir intercepts the following vectors:

• WrchV

• SpriteY

• DrawV

• Co lourY

• ByteY

Printer Drivers: Technical Details 1519

WrchV

OS_Byte 3

Commands passed on to
the VDU

1520

Many of the calls that pass through these vectors will be passed unchanged
through the printer driver. However some calls are trapped. In some cases
they are changed to something appropriate, and in others generate an error
because they cannot be implemented. In addition, the font manager SWis are
trapped through an internal mechanism.

Below, we pass section by section through the effects of the printer driver on
the calls that pass through these vectors.

Whenever a print job is active, the printer driver will intercept all characters
sent through Wrch Y. It will then queue them in the same way as the YOU
drivers do and process complete YOU sequences as they appear. Because the
printer driver will not pick up any data currently in the YDU queue, and may
send sequences of its own to the YDU drivers, a print job should not be
selected with an incomplete sequence in the YDU queue.

Also, because the printer driver may send sequences of its own to the YDU
drivers, the output stream specification set by OS_I3yte 3 should be in its
standard state- as though set by OS_Byte 3,0.

The printer driver will pass the following YDU sequences through to the
normal YDU drivers, either because they control the screen hardware or
because they affect global resources such as the character and ECF definitions:

YDU7
YDU 19,l,p,r,g,b
YDU20
YOU 23,0,n,m I
YDU23,l,nl
YDU 23,2-S,a,b,c,d,e,f,g,h
YDU 23,9-IO,n I
YDU 23,111
YDU 23, 12-IS,a,b,c,d,c,f,g,h
YDU 23,17,4,m I
YDU 23,17,6,x;y; I
YDU 23,32-25S,a,b,c,d,c.f.g,h

Produce bell sound
Change hardware palette
Set default hardware palette
Program pseudo-6845 registers
Change cursor appearance
Set ECF pattern
Set flash durations
Set default ECF patterns
Simple setting of ECF pattern
Set ECF type

Set ECF origin
Define character

Printer Drivers: Technical Details

Error commands

VDU printer

Screen mode

Reserved calls

The printer driver will interpret or fault all other VDU sequences. If the
printer driver currently wants a rectangle printed, these will result in it
producing appropriate output or errors - that is, if there has been a call to
PDriver_DrawPage or PDriver_GetRectangle and the last such call returned
RO :t:. 0. Otherwise, the printer driver will keep track of some state
information - for example, the current foreground and background colours -
but will not produce any printer output.

The printer driver will always behave as though it is in VDU 5 state. No text
coordinate system is defined, and no scrolling is possible. For these reasons,
the following VDU sequences are faulted:

VDU4
VDU 23,7 ,m,d,z.l
VDU 23,8,tl,t2,xl,yl,x2,y21

exit VDU 5 state
scroll display
clear text block

It is generally meaningless to try to send or echo characters directly to the
printer while printing. Furthermore, attempts to do so are likely to disrupt the
operation of printer drivers. For these reasons, the following VDU sequences
are faulted:

VDU 1,c
VDU2

send character to printer
start echoing characters to printer

It is not possible to change the "mode" of a printed page, so the following
VDU sequence is faulted:

VDU 22,m change display mode

A printer driver cannot be written to deal with undefined or reserved calls, so
the following VDU sequences are faulted:

VDU 23,18-24, .. .
VDU 23,28-31, .. .
VDU 25,216-231, .. .
VDU 25,240-255, .. .

reserved for Acorn expansion
reserved for use by applications
reserved for Acorn expansion
reserved for use by applications

Printer Drivers: Technical Details ~52~

Ignored

Colours

The following YOU sequences are ignored, either because they normally do
nothing (at least when stuck in YOU 5 mode and not echoing characters to the
printer) or because they have no sensible interpretation when output to
anything other than a screen.

YOUO
YOU3
YOUS
YOU 14
YOU 15
YOU 17,c
YOU 23,17,51
YOU27
YOU 28,l,b,r,t

do nothing
stop echoing characters to printer
enter YOU 5 srate
start "paged" display
end "paged" display
define text colour
exchange text foreground and background
do nothing
define text window

Colours are a rather complicated matter. It is strongly recommended that
applications should use ColourTrans_SctGCOL, ColourTrans_SclectTable
and ColourTrans_SetFontColours to set colours, as these will allow the
printer to produce as accurate an approximation as it can to the desired
colour, independently of the screen palette. The GCOL sequence
(YOU 18,k,c) should only be used if absolutely necessary, and you should be
aware of the fact that the printer driver has a simplified interpretation of the
parameters, as follows:

• The fact that the background colour is affected if c 128 and the
foreground colour if c < 128 is unchanged.

• Ifk MOD 8 :t:. 0, subsequent plots and sprite plots will not do anything.

• If k=O, subsequent plots will cause the colour c MOD 128 (possibly
modified by the current tint) to be looked up in the screen palette at the
time of plotting (rather than the time the YOU 18,k,c command was
issued). Plotting is done by overwriting with the closest approximation the
printer can produce to the ROB combination found. Subsequent sprite
plotting will be done without usc of the sprite's mask.

• If k=8, subsequent plots will be treated the same as k=O above, except
that sprite plots will be done using the sprite's mask, if any.

• If k > 8, an unspecified solid colour will be used.

1522 Printer Drivers: Technical Details

VDU18

OtherGCOLs

Foreground and
background colours

VDU 23,17

Other graphics state
operations

Cursor movement

VDU 24

The major problems with the usc of YOU l8,k,c to set colours arc:

• that it makes the printer driver output dependent on the current screen
mode and palette.

• that it artificially limit~ the printer driver to the number of colours
displayed on the screen, which can be very limiting in a two colour mode.

Other techniques that depend on GCOLs have the same problems and arc
similarly not recommended: for example Font_SctFontC'..olours, colour­
changing sequences in strings passed to Fonr_Paint, plotting sprites without a
translation table, and so on.

No operations other than ovcrwntmg arc permitted, mainly because they
cannot be implemented on many common printers - such as PostScript
printers.

Note that the printer driver maintains irs own foreground and background
colour information. The screen foreground and background colours are not
affected by YOU l8,k,c sequences encountered while a print job is active.

Similarly, YOU 23,17,2-J,tl sequences encountered while a print job is active
do not affect the screen tints, just the printer driver's own tints. YOU 23,17,0-
l,t I sequences would only affect the colours of the text tints, so the printer
driver ignores them.

The YOU 6 and VDU 21 <;equences have their normal effects of enabling
and disabling execution, but not parsing, of subsequent YOU sequences. As
usual, the printer driver keeps track of this independently of the YOU drivers.

The cursor movement YDU sequences (ie. YOU 8-11, YDU 13, YOU 30 and
YOU 3 l,x ,y) all update the current graphics position without updating the
previous graphics positions, precisely as they do in YDU 5 mode on the
screen.

YDU 24,1;b;r;t; will set the printer driver's graphics clipping box. The
rectangle specified should lie completely within the box that was reported on
return from the last c;~ll to POriver_DrawPage or PDrivcr_GctRectangle. If
this is not the case, it i~ nor defined what will happen, and different printer

Printer Drivers: Technical Details 1523

VDU 29

VDU26

VDU 23,6

VDU 23,16

VDU 23,17,7

1524

drivers may treat it in different ways. This is analogous to the situation with
the window manager. Arrcmpts to set a graphics clipping box outside the
rectangle currently being reclrt~wn may be ignored completely if they go
outside the screen, or may get obeyed with consequences that arc almost
certainly wrong.

VDU 29,x;y; sets the printer driver's graphics origan.

VDU 26 will reset the printer driver's graphics clipping box to its maximum
size. This is essentially the box reported on return from the last call to
PDriver_DrawPagc or PDrivcr_GetRecranglc, but may be slightly different
due to rounding problems wh~n converting from a box expressed in printer
pixels to one expressed in OS units. It also resets its versions of the graphics
origin, the current graphics position and all the previous graphics positions to
(0,0).

VDU 23,6 will fault because dot-dash lines arc not implemented in current
printer drivers. Use the dashed line facility of Draw_Strokc instead.

VDU 23, 16,x,y I changes the printer driver's version of the cursor control
flags, and thus how the cursor movement control sequences and BBC-scyle
character plotting affect the current graphics position. As usual, this is
completely independent of the corresponding flags in the VDU drivers.
However, printer drivers pay no attention to the setting of bit 6, which controls
whether movements beyond the edge of the graphics window cause carriage
return/line feeds and other cursor movements to he generated automatically.
They always behave as though it is set. Note that the Wimp normally sets this
bit, and that it is not sensible to have it clear at any time during a Wimp
redraw.

VDU 23,17,7 ,flags,x;y; I changes the printer driver's version of the size that
BBC-scyle characters arc to be plotted and the spacing that is required
between them. Setting the VDU 4 character size cannot possibly affect the
printer driver's output and so will be ignored completely. As noted below
under 'Plotting operations', a pixel is regarded as the size of a screen pixel
for the screen mode that was in effect when the print job was started.

Printer Drivers: Technical Details

Plotting operations

VDU 23,17,7

VDU plot operations

The printer driver regards a pixel as having size 2 OS units square (1/90 inch
square). The main effect of this is that all PLOT line, PLOT point and PLOT
outline calls will produce lines that are approximately 2 OS units wide.

Use Draw module calls if you wish to produce different lines.

However, when translating the character size and spacing information
provided by YOU 23,17,7 , ... (sec above) from pixels to OS units, the screen
pixel size for the screen mode that was in effect when the print job was
started is used. This is done in the expectation that the application is basing
its requested sizes on that screen mode.

The following YOU sequences perform straighrforward plotting operations;
printer drivers will prcxluce the corresponding printed output:

YDU 12
YDU 16
YDU 25,0-63,x;y;

YDU 25,64-7l,x;y;
YOU 25,80-87 ,x;y;
YOU 25,96-l03,x;y;
YDU 25,112-119,x;y;
YDU 25,144-151 ,x;y;
YDU 25,152-159,x;y;
YOU 25,160-167,x;y;
YDU 25,168-175,x;y;
YDU 25,176-183,x;y;
YDU 25,192-199,x;y;
YOU 25,200-207,x;y;
YDU 32-126
YDU 127
YDU 128-255

clear graphics window in VDU 5 state
clear graphics window
draw line; however, the lines are always
plotted solid, so only YDU 25,0-15,... and
YOU 25,32-47, ... will look the same as in
YOU output. Usc Draw_Stroke to generate
dashed lines that will come out well in
printed output.
draw point
fill triangle
fill axis-aligned rectangle
fill parallelogram
draw circle
fill circle
draw circular arc
fill circular segment
fill circular sector
draw ellipse
fill ellipse
print characters in nOC-srylc font
backspace & delete
print characters in nne-style font

Printer Drivers: Technical Details 1525

Rounding

Faulted

Sprite VDUs

SpriteV

Faulted

1526

One difference to note is that most printer drivers will either not do the
rounding to pixel centres normally done by the YOU drivers, or will round
to different pixel centres- probably rhe centres of their device pixels.

The following YOU sequences arc faulted because they cannot be split up
easily across rectangles, and also because they depend on the current picture
contents and so cannot be implemented, for example, on PostScript printers:

YOU 25,72-79,x;y;
YOU 25,88-95,x;y;
YOU 25,104-lll,x;y;
YOU 25,120-127,x;y;
YOU 25,128-143,x;y;
YOU 25,184-191,x;y;

horizontal line fill (flood fill primitive)
horizontal line fill (flood fill primitive)
horizontal line fill (flood fill primitive)
horizontal line fill (flood fill primitive)
flood fills
copy/move rectangle

YOU 25,184,x;y; and YOU 25,188,x;y; are exceptions to this; they are correctly
interpreted by printer drivers as being equivalent to YOU 25,0,x;y; and YOU
25,4,x;y; respectively.

The sprite plotting YOU sequences (YDU 23,27,m,n I and YOU 25,232-
239,x;y;) and the font manager YOU sequences (YOU 23,25,a,b,c,d,c,f,g,h,
YOU 23,26,a,b,c,d,c,f,g,h,text and YOU 25,208-215,x;y;tcxt) cannot be handled
by the printer drivers and generate errors. You should usc OS_SpriteOp and
the font manager SWis instead.

Printer drivers intercept OS_SpritcOp via the SpritcY vector. Most calls are
simply passed through to the operating system or the SpritcExtend module.
The ones that normally plot to the screen are generally intercepted and used
to generate printer ourput by the printer driver.

The following reason codes normally involve reading or wntmg the screen
contents and arc not straightforward sprite plotting operations. Because some
printer drivers redirect ourpu t to a sprite internally, it is unknown what the
'screen' is during these operations. They are therefore faulted.

2
3
14
16

screen save
screen load
get sprite from current point on screen
get sprite from specified point on screen

Printer Drivers: Technical Details

Passed on

Select error

Reason codes that are passed through to the operating system or the
SpriteExtend module are:

8 read sprite area control block
9 initialise sprite area
10 load sprite file
11 merge sprite file
12 save sprite file
13 return m1me of numbered sprite
15 create sprite
25 delete sprite
26 rename sprite
27 copy sprite
29 create mask
30 remove mask
31 insert row
32 delete row
33 flip about X axis
35 append sprite
36 set pointer shape
40 read sprite size
41 read pixel colour
42 write pixel colour
43 read pixel mask
44 write pixel mask
45 insert column
46 delete column
47 flip about Y axis
62 read save area size

The following reason code is passed through to the operating system when it
is called for a user sprite (ie with &100 or &200 added to it), as this call is
simply asking the operating system for the address of the sprite concerned. If
the system version is called (ic without anything added to it), it is asking for a
sprite to be selected for usc with the VDU sprite plotting sequences. As these
sequences are not handled by the printer driver, this version of the call
generates an error.

24 select sprite

Printer Drivers: Technical Details 1527

Sprite plotting

Scaled characters

GCOLs

1528

The following reason codes plot a sprite or tts mask, and arc convened into
appropriate printer ourpuc

28
34
48
49
50
52
53

plot sprite at current point on screen
plot sprite at specified point on screen
plot mask at current point on screen
plot mask at specified point on screen
plot mask at specified point on screen, scaled
plot sprite at specified point on screen, scaled
plot sprite at specified point on screen, grey scaled

The following reason code is mainly used by the YOU drivers to implement
sizes other than 8x8 and 8xl6 for YOU 5 characters. It is not handled by the
printer drivers, which deal with scaled YDU 5 text by another mechanism,
and causes an error if encountered during a pnnt job.

51 plot character, scaled

As usual for a printer driver, only some GCOL acttons are understood. If the
GCOL action is not divisible by 8, nothing is plotted. If it is divisible by 8,
the overwrite action is used. If it is divisible by 16, the sprite is plotted
without using its mask; otherwise the mask is used.

The colours used to plot sprite pixels arc determined as follows:

• If the call docs not allow a pixel tramlation table, or if no translation
table is supplied, the current screen palette is consulted ro find out what
RGB combination the sprite pixel's value corresponds to. The printer
driver then does its best to produce that RGB combination. Usc of this
option is nor recommended.

• If a translation table is supplied with the call, the printer driver assumes
that the table contains code values allocated by one of the following
SWis:

ColourTrans_SelectT(lble with R2 =-I
C' .. .olourT rans. RetumColourNumber
C'..olourTrans. RetumC'...olourNumbcrForMode with R I = -1
ColourT rans .. ReturnOppC'..olourN umber
ColourT rans_ReturnOppColourN umbcrForModc wi rh R 1 = - I

Printer Drivers: Technical Details

Scale

VDU output

Drawv

Colour

It can therefore look up precisely which RGJ3 combination is supposed to
correspond to each sprite pixel value. Because of the variety of ways in which
printer drivers can allocate these values, the translation table should always
have been set up in the current pnnt job and using these calls.

If a sprite is printed unsealed, its size on the printed output is the same as its
size would be if it were plotted to the screen 10 the screen mode that was in
effect at the time that the print job concerned was started. If it is printed
scaled, the scaling factors arc applied to this size. This is one of the few ways
in which the printed output docs depend on this screen mode. The main other
ones are in interpreting GCOL and Tint values, and in interpreting VDU 5
character sizes. It is done this way in the expectation that the application is
scaling the sprite for what it believes is the current screen mode.

Finally, the following two reason codes arc intercepted to keep track of
whether plotting output is currently supposed to go to a sprite or to the screen.
If it is supposed to go to a spri te, it really will go to that sprite.

60
61

switch output to sprite
switch output to mask

This allows applications to create sprites normally whtle pnntmg. When
output is supposed to go to the screen, it will be processed by the printer
driver. Note that printer drivers that redirect output to a sprite internally will
treat this case specially, reg-,mling output to that sprite as still being destined
for the screen.

Printer drivers intercept the DrawV vector and re-interpret those calls whose
purpose is to plot something on the screen, prcxlucing appropriate printer
output instead. There arc a number of restrictions on the calls that can be
dealt with, mainly due ro the limitations of PostScnpt. Most of the operations
that are disallowed arc not particularly useful, fortunately .

Note that the Draw module calls normally usc the graphics foreground colour
to plot with and the graphics origin. "The printer driver uses its ve rsions of
these values. In particular, this me11ns that the fill colour is subject to all the
restrictions noted elsewhere in this document.

Printer Drivers: Technical Details 1529

Floating point

Draw_Fill

Draw_ Stroke

The floating point Draw module calls are not intercepted at present. If and
when the Draw module is upgraded to deal with them, printer drivers will be
similarly upgraded.

Printer drivers can deal with most common calls to this SWl. The restrictions
are:

• They cannot deal with fill styles that invoke the positive or negative
winding number rules- ie those with bit 0 set.

• They cannot deal with a fill style which asks for non-boundary exterior
pixels to be plotted (ie bit 2 is set), except for the trivial case in which
all of bits 2 - 5 are set (ie all pixels in the plane are to be plotted).

• They cannot deal with the following values for bits 5 - 2:

0010- plot exterior boundary pixels only.
0100- plot interior boundary pixels only.
1010- plot exterior boundary and interior non-boundary pixels only.

• An application should not rely on there being any difference between
what is printed for the following three values of bits 5 - 2:

1000- plot interior non-boundary pixels only.
1100- plot all interior pixels.
1110 - plot all interior pixels and exterior boundary pixels.

A printer driver will generally try its best to distinguish these, but it may not
be possible.

Again, most common calls to this SWI can be dealt with. The restrictions on
the parameters depend on whether the specified thickness is zero or not.

If the specified thickness is zero, the restrictions are:

• Printer drivers cannot deal with a fill style with bits 3- 2 equal to 01 -
one that asks for pixels lying off the stroke to be plotted and those that
lie on the stroke not to be.

• Most printer drivers will not pay any attention to bit 31 of the fill style,
which distinguishes plotting the stroke subpath by subpath from plotting
it all at once.

1530 Printer Drivers: Technical Details

Draw_StrokePath,
Draw_FiattenPath,
Draw_ TransformPath

Draw _Process Path

If the specified thickness is non-zero, the restrictions are:

• All the restrictions mentioned under Draw _Fill above.

• They cannot deal with bits 5-2 being 0110 - a call asking for just the
boundary pixels of the resulting filled path to be plotted.

• Most printer drivers will not pay any attention to bit 31 of the fill style,
which distinguishes plotting the stroke subpath by subpath from plotting
it all at once.

None of these do any plotting; they are all dealt with in the normal way by
the Draw module.

This SWI is faulted if R7= I (fill path normally) or R7=2 (fill path subpath
by subpath) on entry. Use the appropriate one of Draw_Fill or Draw_Stroke
if you want to produce printed output. If the operation you're trying to do is
too complicated for them, it almost certainly cannot be handled by the
PostScript printer driver for example.

If you are using this call to calculate bounding boxes, using the
R7=&80000000 +address option, then the matrix, flatness, line thickness, etc.,
must exactly correspond with those in the intended call. Because of rounding
errors, flattening errors, etc., clipping may result if these parameters arc
different.

All other values of R7 correspond to calls that don't do any plotting and arc
dealt with in the normal way by the Draw module. If you're trying to do
something complicated and you've got enough workspace and RMA, a
possible useful trick is to use Draw_ProcessPath with R7 pointing to an output
buffer, followed by Draw_Fill on the result.

Printer Drivers: Technical Details 1531

ColourV

ColourT rans_ Select Table
with R2 = - 1

ColourT rans _
SetGCOL

ColourTrans_
ReturnColourNumber

1532

The printer driver intercepts calls to the ColourTrans module, via the
ColourV vector. Most of them are passed straight on to the ColourTrans
module. The exceptions are:

Each RGB combination in the source palette, or implied by it in the case of
256 colour modes, is converted into a colour number as though by
ColourTrans_RcturnColourNumber. The resulting values arc placed in the
table.

The printer driver's version of the foreground or background colour is set as
appropriate. The GCOL actions arc interpreted precisely as for the YOU
18,k,c call. However, rather thtln looking up a GCOL in the screen palette at
plot time, the exact RGB combination specified in this call is remembered
and used, as accurately as the printer will render it at plot time.

After this has been done, the call is effectively converted into
ColourTrans_RcturnGCOL tlnd passed down to the ColourTrans module in
order to set the information returned correctly. Note that this implies that
subsequently using the GCOL returned in a YOU 18,k,c sequence will not
produce the same effect on the colour as this call. It wilt merely produce the
best approximation the printer can manage to the best approximation the
current screen palette can manage to the specified RGB combination. It is
therefore probably a bad idea to use the values returned.

This call allows the application to mtlke full usc of a printer's colour
resolution without having to switch to another screen mode or mess around
with the screen's palette, and without worrying about the effects of a change in
the screen's palette. It is therefore the recommended way to set the
foreground and background colours.

This will return a code value, in the range 0 • 255, that identifies the specified
RGB combination as accurately as ·possible to the printer driver. How this
code value is determined may vary from printer driver to printer driver, and
indeed even from print job to print job for the same printer driver. An
application should therefore not make any assumptions about what these code
values mean. Most printer Jrivers implement this by pre-allocating some
range of code values to evenly spaced RGB combinations, then adopting the
following approach:

Printer Drivers: Technical Details

ColourTrans_
Retu rnColou rNu mberFor
Mode with R1 = -1

'Opposite' colours

ColourTrans_
SetOppGCOL

ColourTrans_ReturnOpp
ColourNumber

ColourTrans_ReturnOpp
ColourNumber
ForMode with R1 = -1

ColourTrans_
SetFontColours

• If the ROB combint~tion is already known about, rerum the corresponding
code value.

• If the ROB combination is not already known about and some code values
are still free, allocate one ci the unused code values to the new ROB
combination and rerum that code value.

• If the ROB combination is not already known about and all code values
have been allocated, return the code number whose ROB combination is
as close as possible to the desired ROB combination.

The pre-allocation of evenly spaced ROB combinations will ensure that even
the third case does not have really terrible results.

This is treated exactly the st~mc as ColourTrans_RenJrnColourNumbcr above.

The printer driver handles 'opposite' colours in a subtly different way to the
ColourTrans module. It returns the colour closest to the RGB value most
different to that given, whereas ColourTrans returns the colour furthest from
the given ROB. This difference will only be obvious if your printer cannot
print a very wide range of colours.

This behaves like ColourTrans_SetGCOL above, except that the ROB
combination it remembers is the furthest pos.~ible ROB combination from the
one actually specified in RO, and it ends by being converted into a call to
ColourTrans_RerumOppOCOL. Note that there is no guarantee that the
OCOL returned is anywhere near the ROB combination remembered.

This behaves exactly as though C'...olourTrans_RcturnColourNumber had been
called with RO containing the furthest possible ROB combination from the one
actually specified.

This behaves exactly as though ColourTrans_RenJrnColourNumberForMode
(sec above) had been called with Rl = - 1 and RO containing the furthest
possible RGB combination from the one actually specified.

The printer driver's version of the font colours is set, to as accurate a
representation of the desired RGB combinations as the printer can manage.

Printer Drivers: Technical Details 1533

Font manager SWis

Font_ Set FontColou rs

Font_ Paint

1534

Before this is done, the call is passed down to the ColourTrans module to
determine the information to be returned. Note that this implies that
subsequently using the values returned in a Font_SetFontColours call will not
produce the same effect on the font colours as this call. It will merely
produce the best approximations the printer can manage to the best
approximations the current screen palette can manage to the specified ROB
combinations. It is therefore a bad idea to usc the values returned.

This call therefore allows the application to make full use of a printer's
colour resolution without having to switch to another screen mode or mess
around with the screen's palette, and without worrying about the effects of a
change in the screen's palette. It is the recommended way to set the font
colours.

The printer driver interacts with the font manager via a service call and
PDriver_FonrSWI in such a way that when it is active, calls to the following
SWis are processed by the printer driver:

• Font_Paint

• Font_LoscFont

• Font_SerFontC'.-olours

• Font_SctPalette

This enables the printer driver to make Font_Paint produce printer output
rather than affecting the screen.

The use of Font_SetFontColours is not recommended, as it results in the
setting of colours that depend on the current screen palette. Instead, use
ColourTrans_SetFontColours to set font colours to absolute RGB values.
Similarly, the use of colour-changing control sequences in strings passed to
Font_Paint is not recommended.

How exactly this call operates varies quite markedly between printer drivers.
For instance, most dot matrix printer drivers will probably use the font
manager to write into the sprite they arc using to hold the current strip of
printed output, while the PostScript printer driver uses the PostScript
prologue to define a translation from font manager font names to printer fontS.

Printer Drivers: Technical Details

Miscellaneous SWis

OS_Byte 163

OS_Byte 218

OS_ReadVduVariables

Error handling

Escape handling

OS_Byte 163,242,0-64 arc intercepted to set the printer driver version of the
dot pattern repeat length instead of the YOU drivers' version.

OS_Byte 218 is intercepted to act on the printer driver's VDU queue instead
of the VDU drivers' version.

It should be noted that most of the informational calls associated with the
VDU drivers, and OS_ReadVduVariables in particular, will produce
undefined results when a printer driver is active. These results are likely to
differ between printer drivers. In particular, they will vary according ro
whether the printer driver plots to a sprite intern:JIIy and if so, how large the
sprite concerned is.

The only informational calls th:Jt the application may rely upon are:

OS_ Word 10 used to read character and ECF definitions.
OS_ Word 11 used to read palette definitions.
OS_ReadPalette used to read palette definitions.
OS_Byte 218 when used to read number of bytes in VDU queue.

There are a couple of somewhat unusual featmes about the printer drivers'
error handling that an application author should be aware of:

First, Escape condition generation and side effects are turned on within
various calls to the printer driver and restored to their original state
afterwards. If the application has Escape generation turned off, it is
guaranteed that any Escape generated within the print job will be
acknowledged and turned into an 'Escape' error. If the application has Escape
generation turned on, most Escapes generated within the print job will be
acknowledged and turned into 'Escape' errors, but there is a small period at
the end of the call during which an Escape will not be acknowledged. If the
application makes a subsequent call of one of the relevant types to the printer
driver, that subsequent call will catch the Escape. If no such subsequent call is
made, the application will need to trap the Escape itself.

Printer Drivers: Technical Details 1535

The SWls during which Escape generation is turned on are:

• PDriver_Selectjob for a new job

• PDriver_Endjob

• OS_WriteC

• All ColourTrans SWis - except ColourTrans_GCOLToColourNumbcr,
ColourT rans_ColourNumberToGCAL, and ColourT rans_lnvalidateCachc.

• Draw_Fill

• Draw _Stroke

• Font_SetFontColours

• Font_SetPalette

• Font_Paint

• OS_SpriteOp with reason codes:
PutSprite
Pu tSpri teUserCoords
PutSpriteScaled
PutSpritcGreyScaled
PlotMask
PlotMask UserCoords
PlotMaskSca led

All but the first two only apply at times when the printer driver is
intercepting plotting calls; that is, at times when all of the following
conditions hold:

• There is an active print job.

• Plotting output is directed either to the screen or to a sprite internal to the
printer driver.

• The Wimp is not reporting an error. This is as defined by the service call
with reason WimpReportError.

1536 Printer Drivers: Technical Details

Persistent errors Secondly, inside a number of calls, any error that occurs is converted into a
"persistent error". The net effect of this is that:

• The error number is left unchanged.

• The error message has the string " (print cancelled)" appended to it. If it
is so long that this would cause it to exceed 255 characters, it is truncated
to a suitable length ;md " . .. (print cancelled)" is appended to it.

• Any subsequent call to any of the routines concerned will immediately
return the same error.

The reason for this behaviour is to prevent errors the application is not
expecting from being ignored; for example, quite a lot of code assumes
incorrectly that OS_ WritcC cannot produce an error. This ensures that an
error during OS_ WritcC cannot reasonably get ignored forever.

The SWis during which persistent errors are created are:

• PDriver_Endjob

• PDriver_GiveRecrangle

• PDriver_DrawPagc

• PDriver_GetRecrangle

• OS_WriteC

• All ColourTrans SWis - except ColourTrans_GCOLToColourNumbcr,
ColourTrans_ColourNumhcrToGCAL, and ColourTrans_lnvalidateCache.

• Draw_Fill

• Draw _Stroke

• Draw_ProcessPath with R7 =1

• Font_SetFontColours

• Font_SetPalette

• Font_Paint

Printer Drivers: Technical Details 1537

PDrive r _ CanceiJob

PDriver _AbortJob

1538

• OS_SpriteOp with reason codes:
PutSprite
PutSpriteUscrCoords
PutSpriteScaled
PutSpritcGrcyScalcd
PlotMask
PlotMask UserCoords
PlotMaskScaled
ScrecnSave
Screen Load
GetSprite
GetSpriteUserCoords
PaintCharScaled
SelcctSprite in the system sprite area only
Reason codes unknown to the printer driver

All but the first four only apply at times that the printer driver is
intercepting plotting calls. Sec above for details of this.

PDriver_Canccl)ob puts a print job into a similar state, with the error
message being simply "Print cancelled". However, this error is only returned
by subsequent calls from the list above, not by PDrivcr_Cancel)ob itself.

Note that an application must respond to any error during a print job that
could have come from one of the above sources by calling PDriver_Abort)ob.
In particular, take care to respond to errors from PDriver_Endjob by calling
PDriver_Abort)ob, not PDriver_Endjob, otherwise an infinite succession of
errors will occur or an unfinished print job will be left around.

Printer Drivers: Technical Details

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Printer Drivers: SWI Calls

PDriver Info
(SWI &80140)

Get information on the printer driver

RO = general type of printer chosen and version number of driver (see below)
Rl = x resolution of printer driven in dots per inch
R2 = y resolution of printer driven in dots per inch
R3 = features word (see below)
R4 = pointer to string containing adjectival description of printers supported
RS = x halftone resolution in repeats/inch. Same as Rl if no halftoning
R6 = y halftone resolution in repeats/inch. Same as R2 if no halftoning
R 7 = printer driver specific number identifying the configured printer

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This SWI tells an application what the capabilities of the attached printer
are. This allows the application to change the way it outputs its data to suit the
printer.

Some of the values ren1rned can be changed by the configuration application
attached to the printer driver by PDriver_Setlnfo.

If this is called while a print job is selected, the values returned are those
that were in effect when that print job was started with POriver_Select)ob. If
it is called when no print job is active, the values returned are those that
would be used for a new print job.

1539

1540

The value returned in RO is split in half. The top 16 bits contains the
description of which printer driver type is running. The current values it can
have arc:

0 = PostScript
I = FX80 or similar
2 = HP Lascr]ct or compatible
3 = Integrex Colour)et

The bottom 16 bits of RO have the version number of the printer driver times
lOO.cg. Vcrsion3.21 wouldbe321 (&0141).

R3 returns a bitfield that describes the available features of the current
printer. Most applications shouldn't need to look at this word, unless they
wish to alter their output depending on the facilities available.

It is split into several fields:

Bits

0-7
8- 15
16-23
24-31

Subject

printer driver's colour capabilities
printer driver's plotting capabilities
reserved - must be set to zero
printer driver's optional features

In more detail, each individual bit has the following meaning:

Bit(s)

0

2

3- 7

Value Meaning

0 it can only print in monochrome.

I it can print in colour.

0 it supports the full colour range - ic it can manage
each of the eight primary colours. Ignored if bit 0 = 0.

1

0

it supports only a limited set of colours.

it supports a semi-continuous range of colours at the
software level. Also, if bit 0 = 0 and bit 2 = 0, then
an application can expect to plot in any level of grey.

it only supports a discrete set of colours at the
software level; it does not support mixing, dithering,
toning or any similar technique.

rcc;crvcd and set to zero

Printer Drivers: SWI Calls

Printer Drivers: SWI Calls

8

9

10

11 - 15

16- 2.3

24

25

26

27- 31

0

0

0

0

1

0

0

it can handle filled shapes.

it cannot handle filled shapes other than by
outlining them; an unsophisticated XY plotter would
have this bit set, for example.

it can handle thick lines.

it cannot handle thick lines other than by plotting a
thin line. An unsophisticated XY plotter would also
come into this category. The difference is that the
problem can be solved, at least partially, if the
plotter has a range of pens of differing thicknesses
available.

it handles overwriting of one colour by another on
the paper properly. This is generally true of any
printer that buffers its output, either in the printer or
the driver.

it docs not handle overwriting of one colour by
another properly, but only overwntmg of the
background colour by another. This is a standard
property of XY plotters.

reserved and set to zero.

reserved and set to zero.

it does not support screen dumps.

it does support screen dumps.

it docs not support transformations other than
scalings, translations, rotations by multiples of 90
degrees and combinations thereof. These are the
transformations supplied to PDriver_DrawPage.

it docs support arbitrary transformations supplied to
PDriver_DrawPage.

it docs not support the PDriver_lnsertlllustration call

it docs support the POriver_Insertlllustration call

reserved and set to zero.

1541

Related SWis

Related vectors

1542

The table below shows the effect of bits 0- 2 in more detail:

None

None

Bit 0 Bit 1

0 0
0 0

0
0

1 0
1 0

Bit 2 Colours available

0 Arbitrary greys

A limited set of greys (probably only black
and white)

0 Arbitrary greys
A limited set of greys (probably only black
and white)

0 Arbitrary colours
A limited set of colours, including all the
eight primary colours

0 Arbitrary colours within a limited range (for
example, it might be able to represent
arbitrary greys, red, pinks and so on, but no
blues or greens). This is not a very likely
option
A finite set of colours - as for instance an
XY plotter might have

Printer Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Printer Drivers: SWI Calls

PDriver Setlnfo
(SWI &80141)

Configure the printer driver

Rl = x resolution of printer driven in dots per inch
R2 = y resolution of printer driven in dots per inch
R3 = bit 0 only is used- all other bits are ignored
R5 = x halftone resolution in repeats/inch (same as R 1 if no halftoning)
R6 = y halftone resolution in repeats/inch (same as R2 if no halftoning)
R 7 = printer driver specific number identifying the configured printer

R 1 - R3 preserved
R5 - R 7 preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call is used by the printer driver configuration application on the
desktop to set the user requested settings.

It must never be called by any other application.

PDriver_Info (SWI &80140)

None

1543

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1544

PDriver CheckFeatures
(SWI &80142)

Check the features of a printer

RO = features word mask
Rl = features word value

RO, R I preserved

Interrupt status is undefined
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

If the features word that PDriver_Info would return in R3 satisfies ((features
word) AND RO) = (Rl AND RO), then the return is normal with all registers
preserved. Otherwise a suitable error is generated if appropriate. For
example, no error will be generated if the printer driver has the ability to
support arbitrary rotations and your features word value merely requests axis
prcservi ng ones.

PDriver_Info (SWI &80140)

None

Printer Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Printer Drivers: SWI Calls

PDriver_PageSize
(SWI &80143)

Find how large paper and print area is

Rl = x size of paper, including margins
R2 = y size of paper, including margins
R3 = left edge of printable area of paper
R4 = bottom edge of printable area of paper
RS = right edge of printable area of paper
R6 = top edge of printable area of paper

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

An application can use this call to find out how big the paper in use is and
how large the printable area on the paper is. This information can then be
used to decide how to place the data to be printed on the page.

These values can be changed by the configuration application associated with
the printer driver (using PDriver_SerPageSize). If PDriver_PageSize is called
while a print job is selected, the values returned are those that were in effect
when that print job was started (ie. when it was first selected using
PDriver_Selectjob). If PDriver_PageSize is called when no print job is active,
the values returned arc those that would be used for a new print job.

All units are in millipoints, and R3- R6 are relative to the bottom left comer
of the page.

PDriver_SetPageSize (SWI &80144)

None

1545

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1546

PDriver_SetPageSize
(SWI &80144)

Set how large paper and print area is

Rl = x size of paper, including margins
R2 = y size of paper, including margins
R3 = left edge of printable area of paper
R4 =bottom edge of printable area of paper
R5 = right edge of printable area of paper
R6 = top edge of printable area of paper

R 1 - R6 preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

The configuration application associated with a particular printer driver uses
this SWI to change the page size values associated with subsequent print jobs.

It must never be called by any other application.

All units are in millipoints, and R3 - R6 are relative to the bottom left comer
of the page.

POriver_PageSize (SWI &80143)

None

Printer Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Make a given print job the current one

PDriver_Select}ob
(SWI &80145)

RO =file handle for print job to be selected, or zero to cease having any print
job selected.

Rl =zero or points to a title string for the job

RO = file handle for print job that was previously active, or zero if no print
job was active.

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

A print job is identified by a file handle, which must be that of a file that is
open for output. The printer output for the job concerned is sent to this file.

Calling PDriver_Selcct]ob with RO=O will cause the current print job (if any)
to be suspended, and the printer driver will cease intercepting plotting calls.

Calling PDriver_SelectJob with RO containing a file handle will cause the
current print job (if any) to be suspended, and a print job with the given file
handle to be selected. If a print job with this file handle already exists, it is
resumed; otherwise a new print job is started. The printer driver will start to

intercept plotting calls if it is not already doing so.

Note that this call never ends a print job. To do so, use one of the SWis
PDriver_EndJob or PDriver_Abort)ob.

The title string pointed to by Rl is treated by different printer drivers in
different ways. It is terminated by any character outside the range ASCII 32 ·
126. It is only ever used if a new print job is being srarted, not when an old
one is being resumed. Typical uses are:

• A simple printer driver might ignore it.

Printer Drivers: SWI Calls 1547

Related SWis

Related vectors

1548

• The PostScript printer driver adds a line "%%Title: " followed by the
given title string to the PostScript header it generJtcs.

• Printer drivers whose output is destined for an expensive central printer
in a large organisation might usc it when generating a cover sheet for the
document.

An application is always entitled not to supply a title (by setting Rl=O), and
a printer driver is entitled to ignore any title supplied.

Printer drivers may also use the following OS variables when creating cover
sheets, etc:

PDriver$For
PDriver$Address

indicates who the output is intended to go to
indicates where to send the output.

These variables must not contain characters outside the range ASCII 32- 126.

If an error occurs during PDriver_Select]ob, rhe previous job will still be
selected afterwards, though it may have been de-selected and re-selected
during the call. No new job will exist. One may have been created during the
call, but the error will cause it to be destroyed again.

PDriver_Current]ob (SWI &80146), PDriver_End]ob (SWI &80148),
PDriver_Abortjob (SWI &80149), PDriver_Resct (SWI &8014A)

None

Printer Drivers: SWI Calls

PDriver_CurrentJob
(SWI &80146)

Get the file handle of the current job

On entry

On exit RO = file handle

Interrupts Interrupt status is undefined
Fast interrupts arc enabled

Processor Mode Processor is in SVC mode

Re-entrancy Not defined

Use RO returns the file handle for the current active print job, or zero if no print
job is active.

Related SWis PDriver_Select]ob (SWI &80145), PDriver_EndJob (SWI &80148),
PDriver_Abort]ob (SWI &80149), PDrivcr_Reset (SWI &8014A)

Related vectors None

Printer Drivers: SWI Calls 1549

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1550

Internal call

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

PDriver FontSWI
(SWI &80147)

This SWI is part of the internal interface between the font system and printer
drivers. Applications must not call it.

None

None

Printer Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Printer Drivers: SWI Calls

End a print job normally

RO =file handle for print job to be ended

RO = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

PDriver_EndJob
(SWI &80148)

This SWI should be used to end a print job normally. This may result in
further printer output - for example, the PostScript printer driver will
produce the standard trailer comments.

If the print job being ended is the currently active one, there will be no
current print job after this call, so plotting calls will no longer be intercepted.

If the print job being ended is not currently active, it will be ended without
altering which print job is currently active or whether plotting calls are being
intercepted.

PDriver_Select]ob (SWI &80145), PDriver_Currentjob (SWI &80146),
PDriver_Abortjob (SWI &80149), PDriver_Reset (SWI &8014A)

None

1551

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1552

PDriver_AbortJob
(SWI &80149)

End a print job without any further output

RO = file handle for print job to be aborted

RO = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This SWI should be used to end a print job abnormally. It should generally
be called after errors while printing. It will not try to produce any further
printer output. This is important if an error occurs while sending output to the
print job's output file.

If the print job being aborted is the currently active one, there will be no
current print job after this call, so plotting calls will no longer be intercepted.

If the print job being aborted is not currently active, it will be aborted
without altering which print job is currently active or whether plotting calls
are being intercepted.

PDriver_Select)ob (SWI &80145), PDriver_Current)ob (SWI &80146),
PDriver_Endjob (SWI &80148), POriver_Reset (SWI &8014A)

None

Printer Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Printer Drivers: SWI Calls

Abort all print jobs

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

PDriver Reset
(SWI &8014A)

This SWI aborts all print jobs known to the printer driver, leaving the printer
driver with no active or suspended print jobs and ensuring that plotting calls
are not being intercepted.

Normal applications shouldn't use this SWI, but it can be useful as an
emergency recovery measure when developing an application.

A call to this SWI is generated automatically if the machine is reset or the
printer driver module is killed or RMTidyed.

PDriver_Select]ob (SWI &80145), PDriver_Current]ob (SWI &80146},
PDriver_EndJob (SWI &80148}, PDriver_Abort (SWI &80149}

None

1553

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1554

PDri ver_Gi veRec tangle
(SWI &8014B)

Specify a rectangle to be printed

RO = rectangle identification word
Rl =pointer to 4 word block, containing rectangle to be plotted in OS units.
R2 = pointer to 4 word block, containing transformation table
R3 =pointer to 2 word block, containing the plot position.
R4 =background colour for this rectangle, in the form &13BGGRRXX.

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This SWI allows an application to specify a rectangle from its workspace to
be printed, how it is to be transformed and where it is to appear on the
printed page.

The word in RO is reported back to the application when it is requested to
plot all or part of this rectangle.

The value passed in R2 is the dimensionless transformation to be applied to
the specified rectangle before printing it. The entries arc given as fixed point
numbers with 16 binary places, so the transformation is:

x' = (x * R2!0 + y * R2!8)/216

y' = (x * R2!4 + y * R2!12)/2 16

The value passed in R3 is the position where the bottom left corner of the
rectangle is to be plotted on the printed page in millipoints.

Printer Drivers: SWI Calls

Related SWis

Related vectors

Printer Drivers: SWI Calls

An application should make one or more calls to PDriver_GiveRectangle
before a call to PDriver_DrawPage and the subsequent calls to
PDriver_GetRectangle. Multiple calls allow the application to print multiple
rectangles from its workspace to one printed page - for example, for "two
up" printing.

The printer driver may subsequently ask the application to plot the specified
rectangles or parts thereof in any order it chooses. An application should not
make any assumptions about this order or whether the rectangles it specifies
will be split. A common reason why a printer driver might split a rectangle is
that it prints the page in strips to avoid using excessively large page buffers.

Assuming that a non-zero number of copies is requested and that none of the
requested rectangles go outside the area available for printing, it is certain to
ask the application to plot everything requested at least once. It may ask for
some areas to be plotted more than once, even if only one copy is being
printed, and it may ask for areas marginally outside the requested rectangles
to be plotted. This can typically happen if the boundaries of the requested
rectangles are not on exact device pixel boundaries.

If PDriver_GiveRectangle is used to specify a set of rectangles that overlap
on the output page, the rectangles will be printed in the order of the
PDriver_GiveRectangle calls. For appropriate printers {ie. most printers, but
not XY plotters for example), this means that rectangles supplied via later
PDriver_GiveRectangle calls will overwrite rect:Jngles supplied via earlier
calls.

The rectangle specified should a few OS units larger than the 'real' rectangle,
especially if important things lie close to its edge. This is because rounding
errors are liable to appear when calculating bounding boxes, resulting in
clipping of the image. Such errors tend to be very noticeable, even when the
amounts involved are small.

However, you shouldn't make the rectangle a lot larger than the real
rectangle. This will result in slowing the process down and use of
unnecessarily large amounts of memory. Also, some subsequent users may
scale the image according to this rectangle size (say to use some PostScript as
an illustration in another document), resulting in it being too small.

PDriver_GetRectangle (SWI &80140)

None

1555

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

1556

PDriver_DrawPage
(SWI &8014C)

Called after all rectangles plotted to draw the page

RO =number of copies to print
Rl =pointer to 4 word block, to receive the rectangle to print
R2 =page sequence number within the document, or 0
R3 = zero or points to a page number string

RO = non-zero if rectangle required, zero if finished
R 1 = preserved
R2 = rectangle identification word if RO is non-zero
R3 = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This SWI should be called after all rectangles to be plotted on the current
page have been specified using PDriver_GiveRcctangle. It returns the first
rectangle that the printer driver wants plotted in the area. If nothing requires
plotting it will indicate the end of the list.

R2 on entry is zero or contains the page's sequence number within the
document being printed (ie. 1-n for ann-page document).

R3 on entry is zero or points to a string, terminated by a character in the
ASCII range 33 - 126, which gives the text page number: for example "23",
"viii", "A-1". Note that spaces are not allowed in this string.

If RO on exit is non-zero, the area pointed to by R 1 has been filled in with the
rectangle that needs to be plotted, and R2 contains the rectangle identification
word for the user-specified rectangle that this is a part of. If RO is zero, the
contents of R2 and the area pointed to by Rl arc undefined. The rectangle in
Rl is in user coordinates before transformation.

Printer Drivers: SWI Calls

The application should stop trying to plot the current page if RO=O, and
continue otherwise. If RO<>O, the fact that RO is the number of copies still to
be printed is only intended to be used for information purposes - for
example, putting a "Printing page m of n" message on the screen. Note that on
some printer drivers, you cannot rely on this number changing incrementally.
ie. it may suddenly go from 'n' to zero. As long as it is non-zero, RO's value
does not affect what the application should try to plot.

The information passed in R2 and R3 is not particularly important, though it
helps to make output produced by the PostScript printer driver conform
better to Adobe's structuring conventions. If non-zero values are supplied, they
should be correct. Note that R2 is NOT the sequence number of the page in
the print job, but in the document.

An example: if a document consists of 11 pages, numbered "" (the title page),
"i"-"iii" and "1"-"7", and the application is requested to print the entire
preface part, it should use R2 = 2, 3, 4 and R3 ~ "i", "ii'', "iii" for the three
pages.

When plotting starts in a rectangle supplied by a printer driver, the printer
driver behaves as though the VDU system is in the following state:

• VDU drivers enabled.

• VDU 5 state has been set up.

• all graphics cursor positions and the graphics origin have been set to (0,0)
in the user's rectangle coordinate system.

• a VDU 5 character size and spacing of 16 OS units by 32 OS units have
been set in the user's rectangle coordinate system.

• the graphics clipping region has been set to bound the actual area that is
to be plotted. But note that an application cannot read what this area is:
the printer drivers do not and cannot intercept OS_ReadVduVariables or
OS _ReadMode Variable.

• the area in which plotting will actually take place has been cleared to the
background colour supplied in the corresponding PDriver_GiveRectangle
call, as though the background had been cleared.

Printer Drivers: SWI Calls 1557

Related SWis

Related vectors

1558

• the cursor movement control bits (ie the ones that would be set by
VDU 23,16, ...) are set to &40- so that cursor movement is normal, except
that movements beyond the edge of the graphics window in VDU 5 mode
do not generate special actions.

• one OS unit on the paper has a nominal size of 1/180 inch, depending on
the transformation supplied with this rectangle.

This is designed to be as similar as possible to the srate set up by the window
manager when redrawing.

None

None

Printer Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWls

Related vectors

Printer Drivers: SWI Calls

PDriver_GetRectangle
(SWI &8014D)

Get the next print rectangle

Rl =pointer to 4 word block, to receive the print rectangle

RO =number of copies still requiring printing, or zero if no more plotting
R 1 = preserved
R2 =rectangle identification word ifRO is non-zero

Inte.rrupt status is undefined
Fast interrupts are enabled

Processor Is in SVC mode

Not defined

This SWI should be used after plotting a rectangle returned by a previous
call to PDriver_DrawPage or PDriver_GetRectangle, to get the next rectangle
the printer driver wants plotted. It returns precisely the same information as
PDriver_DrawPage.

If RO is non-zero, the area pointed to by R 1 has been filled in with the
rectangle that needs to be plotted, and R2 contains the rectangle identification
word for the user-specified rectangle that this is a part ci. If RO is zero, the
contents ofR2 and the area pointed to by Rl are undefined.

None

None

1559

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1560

PDriver_CancelJob
(SWI &8014E)

Stops the print job associated with a file handle from printing

RO = file handle for job to be cancelled

RO = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This SWI causes subsequent attempts to output to the print job associated
with the given file handle to do nothing other than generate the error "Print
cancelled". An application is expected to respond to this error by aborting
the print job. Generally, this call is used by applications other than the one
that started the job.

PDriver_Abort)ob (SWI &80149)

None

Printer Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Printer Drivers: SWI Calls

PDri ver_ScreenDump
(SWI &8014F)

Output a screen dump to the printer

RO = file handle of file to receive the dump

RO = preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

If this SWI is supported (ic. if bit 24 is set in the value POrivcr_Info returns
in RJ), this SWI causes the printer driver to output a screen dump to the file
handle supplied in RO. The file concerned should be open for output.

If the SWI is not supported, an error is returned.

None

None

1561

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1562

List existing print jobs

PDriver_EnumerateJobs
(SWI &80150)

RO = zero to get first, or previous handle to get next print job handle

RO = next print job handle, or zero if there arc no more in the list

Interrupt status is undefined
Fast interrupts arc enabled

Processor is in SYC mode

Not defined

This allows the print jobs that exist to be enumerated. The order in which they
appear is undefined.

None

None

Printer Drivers: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Printer Drivers: SWI Calls

Set printer driver specific options

Printer driver specific

Printer driver specific

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

PDriver SetPrinter
(SWI &80151)

This allows the setting of options specific to a particular printer driver. In
general, this SWI is used by the configuration application associated with the
printer driver module and no other application should ur.c it.

None

None

1563

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1564

PDriver_CancelJ ob WithError
(SWI &80152)

Cancels a print job- future attempts to output to it generate an error

RO = file handle for job to be cancelled
Rl = pointer to error block

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This SWI causes subsequent attempts to output to the print job associated
with the given file handle to do nothing other than generate the specified
error. An application is expected to respond to this error by aborting the
print job.

This SWI only exists in versions 2.00 and above of the printer driver module
(which is present in versions 1.00 and above of the printer driver application).

None

None

Printer Drivers: SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Printer Drivers: SWI Calls

PDriver Selectlllustration
(SWI &80153)

Makes the given print job the current one, and treats it as an illustration

RO = file handle for print job to be selected, or 0 to deselect all jobs
Rl =pointer to title string for job, or 0

RO = file handle for previously active print job, or 0 if none was active

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

This call does exactly the same thing as PDriver_Select]ob, except when it
used to start a new print job. In this case, the differences are:

• The print job started must contain exactly one page; if it doesn't, an error
will be generated.

• Depending on the printer driver involved, the output generated may
differ. {For instance, the PostScript printer driver will generate
Encapsulated PostScript output for a job started this way.)

The intention of this SWI is that it should be used instead of
PDriver_Select]ob when an application is printing a single page that is
potentially useful as an illustration in another document.

This SWI only exists in versions 2.00 and above of the printer driver module
{which is present in versions 1.00 and above of the printer driver application).

None

None

1565

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1566

PDriver Insertlllustration
(SWI &80154)

Inserts a file containing an illustration into the current job's output

RO = file handle for file containing illustration.
Rl = pointer to Draw module path to be used as a clipping path, or 0 if no

clipping is required.
R2 = x coordinate of where the bottom left corner of the illustration is to go.
R3 = y coordinate of where the bottom left corner of the illustration is to go.
R4 = x coordinate of where the bottom right corner of the illustration is to go.
R5 = y coordinate of where the bottom right comer of the illustration is to go.
R6 = x coordinate of where the top left corner of the illustration is to go.
R7 = y coordinate of where the rap left corner of the illustration is to go.

Interrupt status is undefined
Fast interrupts arc enabled

Processor is in SYC mode

Not defined

If this SWI is supported (bit 26 is set in the value SWI POriver_Info returns
in R3), it allows an external file containing an illustration, such as an
Encapsula ted PostScript file, to be inserted into the current job's output. The
format of such an illustration file depends on the printer driver concerned,
and many printer drivers won't support any sort of illustration file inclusion
at all.

All coordinates in ti...: clipping path and in R2- R7 arc in 256ths of an OS
unit, relative to the POrivcr_GiveRectangle rectangle currently being
processed.

This SWI only exists in versions 2.00 and above of the printer driver module
(which is present in versions 1.00 and above of the printer driver application).

None

None

Printer Drivers: SWI Calls

Application
Notes

This is an example BASIC procedure that does a standard "two up" printing
job:

DEFPROCprlntout(!irstpage\ , lastpage\ , titleS , f:ler.a-eSl
REM Get SWI numbers used in th!s procedure .
LOCAL select\ , abort\, pagesl1e\, glverect\ , drawpage\ , gctrecL\, end\
SYS • os SWINun-.ber!"ro::tSLrlnq",, " PDrl vor Select Job" TO srlect\
SYS "OS_SWINumberFromString",," PDriver_AbortJob" TO abort.\
SYS "OS SWINumberFromStrl!'lg","POrlver PageSize " TO pagcslzo\
SYS "OS SWINumberFromStrlng","PDriver_GlveRectangle" TO givorccL \
SYS "OS_SWI NumberFromString",," POr1ver_OrawPage" TO drawpago\
SYS "OS_SWINumberFromS~ring",," POrlver_GetRectangle" 70 getrect\
SYS "OS_SWINumberFrcmStrlr.g","PDrlver_EndJob" TO end\

REM Open destination file and set up a l oca l error handler that
REM will close it again on an error .
LOCAL H\, 0\
H\ • OPENOUT (tilenameS)
LOCAL ERROR
ON ERROR LOCAL: RESTORE ERROR : CLOSE! It\: PROCpasserror

REM Start up a print job associated with t his file, remembering tho
REM handle associated with the previous print job (if any), then
RF:M set up a local error handler for IL .
SYS select\,H\, titleS 70 C\
LOCAL ERROR
ON ERROR LOCAL:RESTORE ERROR:SYSaborL\, H\:SYSselect \, 0 \: PROCpasserro

RF.M Now we decide how two pages are to fit or a piece of paper.
LOCAL left\, bottom\ , rig~t\, top\
PROCqetdocumentsize(box\)
SYS pagesize\ TO ,,, left\ , bottom\ , right\ , top\
PROC!ittwopaqes(lef:\ ,bottom\ , rlqht\ , top\ , box\,matrix\, orlginl \, orlgin7\)

REM Start the double page loop
l,OC/11. page\, copiesleft \, P"CJe:.oprlnt\ , wh ite\
whiLe\ 'frFFrrOO

FOR page\•firstpage\ TO lastpag~\ STEP 2

REM Set up to print t·~o pages, or possibly just o!'le : ast ~ l mearound.

SYS giverect \, page\, box\, ma·~lx\, or1qinl\, wh!te\
IF page \ <lastpage\ THEN

SYS qiverect\ , paqe\<1, box\, matrix\ , o~~qin2\, white\
END IF

REM Start printing . As each printed paqe corresponds to two document pages,
RF.M we cannot easily assign any sensible page numbers to prlntrd pages .
REM So we simply pass zeroes t o PDrlvcr_orawPage.
SYS drawpaqe\, l ,box?\ , 0 , 0 TO coplcsleft\,, pagetopr!!'lt\
WH ILE copiesleft\<>0

PROCprintpage(pagetoprint\, box/ \)
SYS getrect\, , box \ TO copla .~!eft\, , paqe~op:.-irt\

Printer Drivers: Application Notes 1567

ENDWHILE

REM End of page loop
NEXT

REM All pages have now been printed. Terminate this print job.
SYS end\, H\

REM Go back to the first of our local error handlers.
RESTORE ERROR

REM And go back to whatever print job was active on entry to this procedure
REM (or to no print job in no print job was active).
SYS select\ ,0\

REM Go back to the ca ller ' s error handler.
RESTORE ERROR
REM Close the destination fllc.
CLOSEI H\
ENDPROC

DEFPROCpasserror
ERROR ERR,REPORTS+" (from line "+STRS (ERL)+ ")"
ENDPROC

This uses the following global areas of memory:

box\ 4 words
box2\ 4 words
matrix\ 4 words
originl\ 2 words
origin2\ 2 words

And the following external procedures:

DEFPROCgetdocumentsize(box\)

• fills the area pointed to by box~ with the size of a document page in OS
units.

DEFPROCfittwopaqes(l\, b\, r\, t\, box\, transform\, orgl\, orq2\)

• given left, bottom, right and top bounds of a piece of paper, and a
bounding box of a document page in OS units, sets up a transformation
and two origins in the areas pointed to by tr%, orgl% and org2% to
print two of those pages on a piece of paper.

1568 Printer Drivers: Application Notes

DEFPROCdrawpage(page\, box\)

• draw the parts of document page number 'page%' that lie with the box
held in the 4 word area pointed to by 'box%'.

If printing is likely to take a long time and the application does not want to

hold other applications up while it prints, it should regularly use a sequence
like the following during printing:

SYS select\, 0 \
SYS "Wlmp Poll",maak\,a raa \ TO r eason\

<process reason% as appropriate>

SYS select\, H\ TO 0 \

Printer Drivers: Application Notes 1569

1570 Printer Drivers: Application Notes

The Sound system

Introduction

Sound system: Introduction

The Sound system provides facilities to synthesise and playback high quality
digital samples of sound. Since any sound can be stored dicically, the system
can equally well generate music, speech and sound effects. Eight fully
independent channels are provided.

The sound samples are synthesised in real time by software. A range of
different Voice Generators generate a standard set of samples, to which
further ones can be added. The software also includes the facility to build
sequences of notes.

The special purpose hardware provided on ARM-based systems simply
reads samples at a programmable rate and converts them to an analogue
signal. Filters and mixing circuitry on the main board provide both a stereo
output (suitable for driving personal hi-fl stereo headphones directly, or
connecting to an external hi-fi amplifier) and a monophonic or stereophonic
output to the internal speaker(s).

1571

Overview

The DMA Handler

The Channel Handler

1572

There are four parts to the software for the Sound system: the DMA Handler,

the Channel Handler, the Schc.:dulcr, and Voice Generators. These arc briefly
summarised below, and described in depth in later sections.

The DMA Handler manages the DMA buffers used to store samples of
sound, and the associated hardware used.

The system uses two buffers of digital samples, stored as signed logarithms.
The data from one buffer is read and converted to an analogue signal, while
data is simultaneously written to the other buffer by a Voice Generator. The
two buffers arc then swapped between, so that each buffer is succesively
written to, then read.

The DMA Handler is activated every time a new buffer of sound samples is
required. It sends a Fill Request to the Channel Handler, asking that the
correct Voice Generators fill the buffer that has just bt.-cn read from.

The DMA Handler also provides interfaces to program hardware registers
used by the Sound system. The number of channels and the stereo position of
each one can be set, the built-in loudspeaker(s) can be enabled or disabled,
and the entire Sound system can also be enabled or disabled. The sample
length and sampling rate can also be set.

The services of the DMA Handler are mainly provided in firmware requiring
privileged supervisor status to program the system devices. It is tightly bound
to the Channel Handler, sharing static data space. Consequently, this module
must not be replaced or amendt.-d independently of the Channel Handler.

The Channel Handler provides interfaces to control the sound produced by
each channel, and maintains internal tables necessary for the rest of the
Sound system to produce these sounds.

The interfaces can be used to set the overall volume and tuning, to attach the
channels to different Voice Generators, and to start sounds with given pitch,
amplitude and duration.

Sound system: Overview

The Scheduler

Voice Generators

Sound system: Overview

The following internal tables arc built and maintained: a mapping of voice
names to internal voice numbers; a record for each channel of its volume,
voice, pitch and timbre; and linear and logarithmic lookup tables for Voice
Generators to scale their amplitude to the current overall volume setting.

Fill Requests issued by the DMA Handler are routed through the Channel
Handler to the correct Voice Generators. This allows any tables involved to
be updated.

The Channel Handler is tightly bound to the DMA Handler, sharing static
data space. Consequently, this module must not be replaced or amended
independently of the DMA Handler

The Scheduler is used to queue Sound system SWis. Its most common usc is
to play sequences of notes, and a simplified interface is provided for this
purpose.

A beat counter is used which is reset every time it reaches the end of a bar.
Both its tempo and the number of beats to the bar can be programmed.

You may replace this module, although it is unlikely to be necessary.

Voice Generators generate and output sound samples to the DMA buffer on
receiving a Fill Request from the Channel Handler. Typical algorithms that
might be used to synthesise a sound sample include calculation, lookup of
filtered wavetables, or frequency modulation. A Voice Generator will
normally allow multiple channels to be attached.

An interface exists for you to add custom Voice Generators, expanding rhe
range of available sounds. The demands made on processor bandwidth by
synthesis algorithms arc high, especially for complex sounds, so you must
write them with great care.

1573

Technical details

DMA Handler

Configuring the Sound
system

Terminology used

The DMA Handler manages the hardware used by the Sound system. Two (or
more) physical buffers in main memory are used. These are accessed using
four registers in the sound DMA Address Generotor (DAG) within the
Memory Controller chip:

• The DAG sowui pointer points to the byte of sound to be output

• The current end register points to the end of the DMA buffer

• The next start!erul register p:1ir point to the most recently filled buffer.

The sound pointer is incremcnred every time a byte is read by the video
controller for output. When it reaches the end of the current buffer the
memory controller switches buffers: the sound pointer and buffer end
registers are set to the values stored in the next start and next end registers
respectively. An interrupt is then issued by the 1/0 controller indicating the
buffers have switched, and the DMA handler is entered.

The DMA Handler calls the Channel Handler with a Fill request, asking that
the next buffer be filled. (Sec below for details of the Channel Handler.) If
this fill is completed, control returns to the DMA Handler and it makes the
next start and next end registers point to the buffer just filled. If the fill is
not completed then the next registers are not al tered, and so the same buffer
of sound will be repeated, causing an audible discontinuity.

The rest of this section outlines the factors that you must consider if you
choose to reconfigure the Sound system.

• The output period is the time between each output of a byte.

• The sample period is the time between each output for a given channel.

• The buffer period is the time to output an entire buffer.

There are corresponding rorcs for each of the above.

• The sample length is d1e number of bytes in the buffer per channel.

• The buffer length is the total number of bytes in the buffer.

1574 Sound system: Technical details

DMA Buffer period

Sample rate: maximum

Sample rate: default

Buffer length

A short buffer period is desirable to mtn1m1sc the size of the buffer and to
give high resolution to the length of notes; a long buffer period is desirable to
decrease the frequency and number of interrupts is"ued to the processor. A
period of approximately one centisecond is chosen as a default value,
although this can be changed, for example to replay lengthy blocks of
sampled speech from a disc.

A high sample rate will give the best sound quality. If too high a rate is
sought then DMA request conflicts will occur, especially when high
bandwidths are also required from the Video Controller by high resolution
screen modes. To avoid such contention the output period must not be less than

4J.LS. Outputting a byte to one of eight channels every 4J.LS results in a sample
period of 32J.LS, which gives a maximum sample rate of 31.25kHz.

The clock for the Sound system is derived from the system clock for the video
controller, which is then divided by a multiple of 24. Current ARM based
computers use a VIOC system clock of 24MHz; however, 20MHz and 28MHz
clocks arc also supported. The default output period is the shortest one that
can be derived from all three clocks, thus ensuring that speech and music can
be produced at the same pitch on any likely future hardware. This is 611s,
obtained as follows:

• 20M Hz clock divided by 120 (5 x 24)

• 24MHz clock divided by 144 (6 x 24)

• 28M Hz clock divided by 168 (7 x 24)

Outputting a byte to one of eight channels every 6J.LS results in a sample
period of 48J.LS, which gives a default sample rate of20.833kHz.

The DMA buffer length depends on the number of channels, the sample rate,
and the buffer period. It must also be a multiple of 4 words. Using the
defaults outlined above, the lengths shown in the middle two columns of the
folllowing table are the closest alternatives:

Sound system: Technical details 1575

DMA Buffer format

1576

Buffer lengths for one centisecond sample, at sample rare of 20.833 kHz:

::~:: ::::· Buffer length Output period ..
-~:: .·:·:···· ..

1 channel 208 bytes 224 bytes 48J.LS

2 channels 416 bytes 448 byres 24J.LS

4 channels 832 bytes 896 bytes I2J.LS

8 channels 1664 bytes 1792 bytes 6f,lS

Buffer period 0.9984cs 1.0752cs
1·
1

111;,

. ,,.)((::(:::;::::::,:::::::,

. :::::
Interrupt rate 100.16Hz 93 .01 Hz

Bytes per channel &DO &EO 1-;·: .:,,ill!;,::;:,:;:;:::··''''

The system default buffer period is chosen as 0.9984 centi-!«onds, thus the
sample length is 208 bytes, or 52 words (13 DMA quad-word cycles). The
buffer length is a multiple of this, depending on how many channels are used.

The sound DMA system systematically outputs byres at the programmed
sample rate; each (16-byte) load of DMA data from memory is synchronised
to the first stereo image position. Each byte must be stored as an eight bit
signed logarithm, ready for direct output to the VIDC chip:

Multiple channel operation is pos~ible with two, four or eight channels; in this
case the data bytes for each channel must be interleaved throughout the DMA
buffer at two, four or eight byte intervals. When output the channels arc
multiplexed into what is effectively one half, one quarter or one eighth of the
sample period, so the signal level per channel is scaled down by the same
amount. Thus the signal level per channel is scaled, depending on the number
of channels; but the overall ~ignal level remains the same for all multi­
channel modes.

Sound system: Technical details

Showing the interleaving schematically:

Single channel fonnat:

0 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

chan I chan I chan I chan I chan I chan 1 chan I chan I

+8 byte 8 byte 9 byte 10 byte II byte 12 byte 13 etc ...

chan 1 chan I chan I chan I chan I chan 1

Output rate = 20 kHz
Image registers 0 - 7 programmed identically

Two channel format:

0 byte 0 byte 0 byte I byte I byte 2 byte 2 byte 3 byte 3

chan 1 chan 2 chan 1 chan 2 chan l chan 2 chan 1 chan2

+8 byte 4 byte 4 byte 5 byte 5 byte 6 byte 6 etc ...

chan 1 chan 2 chan 1 chan 2 chan I chan 2

Output rate = 40 kHz
Image registers 0+2+4+8 and 1 + 3+5+ 7 programmed per channel

Four channel fonnat:

0 byte 0 byte 0 byte 0 byte 0 byte I byte 1 byte 1 byte 1

chan 1 chan 2 chan 3 chan 4 chan I chan 2 chan3 chan4

+8 byte 2 byte 2 byte 2 byte 2 byte 3 byte 3 etc ...

chan 1 chan 2 chan 3 chan 4 chan I chan 2

Output rate= 80kHz
Image registers 0+4, 1 +5, 2+6 and 3+7 pfogrammcd per channel

Sound system: Technical details ~ 577

Channel Handler

Channel Handler

1578

Ei~ht channel fonnat:

0 byte 0 byte 0 byte 0 byte 0 byte 0 byte 0 byte 0 byte 0

chan l chan 2 chanJ chan4 chan 5 chan 6 chan 7 chan8

+8 byte l byte l byte I byte l byte 1 byte 1 etc ...

chan 1 chan 2 chan) chan4 chan5 chan 6

Output rate = 160kHz
Image registers programmed individually.

The Channel Handler manages the interleaving for you by passing the correct
start address and increment to the Voice Generator attached to each channel.

The Channel Handler registers itself with the DMA Handler by passing irs
address using Sound_Configure. At this address there must be a standard
header:

Offset Value

0 pointer to fill code
4 pointer to overrun fixup code
8 pointer to line:u-ro-log table
12 pointer to log-scale table

The fill code handles fill requests from the DMA Handler. The Channel
Handler translates the fill request to a series of calls to the Voice
Generators, passing the required buffer offsets so that data from all channels
correctly interleaves. Any unused channels within the buffer are set to zero by
the Channel Handler so the' ·e silent.

The overrun fixup c:xle deals with channels that are not successfully filled
within a single buffer period and hence repeat the same DMA buffer. This
feature is no longer supported in RISC OS and the Channel Handler simply
returns. {In the Arthur OS the offending channel was marked as overrun, the
previous Channel Handler was aborted, and a new buffer fill initiated.)

The pointer to the linear-to-log table holds the address of the base of an
8 kbyte table which maps 32-bit signed inrcgcrs directly to 8-bit signed
volume-scaled logarithms in a suitable format for output to the VIOC chip.

Sound system: Technical details

Sound Channel Control
Block (SCCB)

The pointer to the log-scale table holds the address of a 256-bytc table which
scales the amplitude of VIDC-format 8-bit signed logarithms from their
maximum range down to a value scaled to the volume setting. Voice
Generators should use this table to adjust their overall volume.

The Channel Handler maintains a 256 byte Sound Channel Control Block
(SCCB) for each channel. An SCCB contains parameters and flags used by
Voice Generators, and an extension area for programmers to pass any
essential further data. Such an extension must be well documented, and used
with care, as it will lead to Voice Generators that arc no longer wholly
compatible with each other.

The 9 initial words hold values that are normally stored in RO- R8 inclusive.
They are saved to the SCCB using the instruction LDMIA R9, { RO -R8}

Offset

0
1
2
3
4
8
12
16
20
24
28
32
36-63
64-255

Value

gate bit+ channel amplitude (7-bit log)
index to voice table
instance no. for attached voice
control/status bit flags
phase ace pitch oscillator
phase ace timbre oscillator
no. of bufferfills left to do (counter)
(normally working R4)
(normally working R5)
(normally working R6)
(normally working R7)
(normally working R8)
reserved for use by Acorn (28 bytes)
available for users

The flag byte indicates the state of the voice attached to the channel, and may
be used for allocating voices in a polyphonic manner. Each time a Voice
Generator completes a buffer fill and returns to the Channel Handler it
returns an updated value for the Flags field in RO.

It is the responsibility of the Channel Handler to store the returned flag byte,
and to update the other fields of each SCCB as necess;uy.

Sound system: Technical details 1579

Voice Table

Scheduler

Header

Use

1580

Note - In the Arthur OS, the flag byte was also used to detect channels that
had overrun. If any were found then a call was made indirccrcd through the
fix up pointer (sec above).

The 0-lannel Handler uses a voice table recording the names of voices
installed in the 32 available voice slots. It is always accessed through the
SWI calls provided, and so its format is not defined.

The Scheduler registers itself with the DMA Handler by passing its address
using Sound_Configurc. At this address there must be a pointer to the code
for the Scheduler.

Although the Scheduler is principally designed for queuing sound commands
it can be used to issue other SWis. Thus it could be used to control, for
example, an external instrument interf<Jce (such as a Musical Instrument
Digital Interface (MIDI) expansion podule), or a screen-based music editor
with real-time score replay.

Extreme care must be used with the Scheduler, as it has limitations. R2- R7
are always cleared when the SWI is issued, and the error-returning form
('X' form) of the SWI is forced. Return parameters are discarded. If pointers
are to be passed in RO or Rl then the data they address must be preserved
until the SWI is called. If a SWI will not work within these limitations it
must not be called by the Scheduler.

The Scheduler implements the queue as a circular chain of records. A stack
listing the free slots is also kept. The number of free slots varies not only
according to how many events are queued, but also to how the events are
'clustered'.

The queue is always accessed through the SWI calls provided, and so its
precise format is not defined.

Sound system: Technical details

Event dispatcher

Voice Generators

Header

Every centisecond the beat counter is advanced according to the tempo value,
and any events that fall within the period are activated in strict queuing order.
Voice and parameter change events are processed and the SCCB for each
Voice Generator updated as necessary by the Channel Handler, before fill
requests are issued to the relevant Voice Generators.

A Voice Generator is added to the Sound system by issuing a Sound_lnsrall
call, which passes its address to the Channel Handler. At this address there
must be a standard header:

Offset Contents

0 B FillCode
4 B UpdateCode
8 B StartCode
12 B ReleaseCode
16 B Instantiate
20 B Deinstantiate
24 LDMFD R13!, {pel
28 Offset from start of header to voice name

The Fill, Update, GateOn and GatcOff entries provide services to fill the
DMA buffer at different stages of a note, as detailed below.

The Instantiate and Free entries provide facilities to attach or detach the
Voice Generator to or from a channel, as detailed below.

The Install entry was originally to be called when a Voice Generator was
initialised. Since Voice Generators are now implemented as Relocatable
Modules, which offer exactly this service in the form of the lnitialistion entry
point, this field is not supported and simply returns to the caller.

The voice name is used by the Channel Handler voice table. It should be both
concise and descriptive. The offset must be positive relative - that is, the voice
name must be after the header.

Sound system: Technical details 1581

Buffer filling: entry
conditions

Buffer filling: routine
conditions

1582

A fill request to a Voice Generator is made by the Channel Handler using
one of the four buffer fill entry points. The registers are allocated as follows:

Register

R6
R7
R8
R9
RlO
Rll
R12
R13
Rl4

Function

negative if configuration of Channel Handler changed
channel number
sample period in JlS
pointer to SCCB (Sound Channel Control Block)
pointer to end of DMA buffer
increment to use when writing to DMA buffer
pointer to (start of DMA buffer + intcrlcaf offset)
stack (Return address is on top of stack)
do not use

Further parameters are available in the SCCB for that channel, which is
addressed by R9. See the Channel Handler description for details. The usage
of the parameters depends on which of the four entry points Is called.

The ARM is in IRQ mode with interrupts enabled.

The routine must fill the buffer with 8 bit signed logarithms in the correct
format for direct output to the VJDC chip:

The ARM is in IRQ mode with intcmlpts enabled. They must remain
enabled to ensure that system devices do not have a lengthy wait to be
serviced. The code for a Voice Generator must therefore be re-entrant, and
Rl4 must not be used as a subroutine link register, since an interrupt will
corrupt it. Sufficient IRQ stack depth must be maintained for system IRQ
handling. You can enter SVC mode if you wish.

Sound system: Technical details

Buffer filling: exit
conditions

Entry points for buffer
filling

GateOn entry

Update entry

When a Voice Generator has completed a buffer fill it sets a flag byte in
RO, and returns to the Channel Handler using LDMFD Rl3 ! , {PC}. The flag
byte shows the status of each channel, and is used to prioritise fill requests to
the Voice Generators.

7 0

IQIKII IFIAiviFziFll

Bit

Q
K
I
F
A
v
F2,Fl

Meaning

Quiet (GateOff flag)
Kill pending (GateOn flag)
Initialise pending (Update flag)
Fill pending
Active (normal Fill in progress)
oVerrun flag (no longer supported)
2-bit Flush pending counter

There are four different entry points for buffer filling, which are used at the
different stages of a note. It is the responsibility of the Channel Handler to
determine which Voice Generator to call, which entry should be used, and to
update the SCCB as necessary when these calls ren1rn.

The GateOn entry is used whenever a sound command is issued that requires a
new envelope. Normally any previous synthesis is aborted and the algorithm
restarted.

On exit a the A bit (bit 3) tof the flag byte is set.

The Update entry is used whenever a sound command is issued that requires a
smooth change, without a new envelope (using extended amplitudes &180 to
&IFF in the •Sound command for example). Normally the previous
algorithm is continued, with only the amplitude, pitch and duration
parameters supplied by the SCCB updated.

Sound system: Technical details 1583

Fill entry

GateOff entry

Voice instantiation

Instantiate entry

1584

On exit the A bit (bit 3) of the flag byte is returned unless the voice is to stop
sounding; for example if the envelope has decayed to zero amplitude. In
these cases the F2 bit (bit I) is set, and the Channel Handler will
automatically flush out the next two DMA buffers, before becoming dormant.

The Fill entry is used when the current sound is to continue, and no new
command has been issued.

On exit it is normal to return the same flags as for the Update entry.

The GateOff entry is used to finish synthesising a sound. Simple voices may
stop immediately, which is liable to cause an audible 'click'; more refined
algorithms might gradually release the note over a number of buffer periods.
A GateOff entry may be immediately followed by a GateOn entry.

On exit the F2 bit (bit 1) is set if the voice is to stop sounding, or the A bit
(bit 3) is set if the voice is still being released.

Two entry points are provided to attach or detach a voice generator and a
sound channel. On entry the ARM is in Supervisor mode, and the registers are
allocated as follows:

Register

RO
R14

Function

physical Channel number - I (0 to 7)
usable

The return address is on top of the stack. All other registers must be
preserved by the routines, which must exit using LDMFD Rl3!, { pc l

RO is preserved if the call was successful, else it is altered.

The Instantiate entry is called to inform the Voice Generator of a request to
attach a channel to it. Each channel attached is likely to need some private
workspace. A Voice Generator should ideally be able to support eight
channels. The request can either be accepted (RO preserved on exit), or
rejected (RO altered on exit).

Sound system: Technical details

Free entry

The usual reason for rejection is that an algorithm is slow and is already
filling as many channels as it can within each buffer period: for example very
complex algorithms, or ones that read long samples off disc.

The Free entry is called to inform the Voice Generator of a request to detach
a channel from it. The call must release the channel and preserve all
registers.

Sound system: Technical details 1585

SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1586

Sound_Configure
(SWI &40140)

Configures the Sound system

RO =no. of channels, rounded up to 1 ,2,4 or 8
R l = sample size (in bytes per channel- default 208}
R2 = sample period (in llS per channel- default 48}
RJ =pointer to Channel Handler (normally 0 to preserve system Handler}
R4 =pointer to Scheduler (normally 0 to preserve system Scheduler)

RO- R4 = previous values

Interrupt status is undefined
Fast interrupts arc enabled

Processor is in SVC mode

Not defined

This software interrupt is used to configure the number of sound channels, the
sample period and the sample size. It can also be used by specialised
applications to replace the default Channel Handler and Scheduler.

All current settings may be read by using zero input parameters.

The actual values programmed arc subject to the limitations outlined earlier.

None

None

Sound system: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Sound system: SWI calls

Enables or disables the Sound system

RO = new state:
0 for no change (read state)
1 forOFF
2 for ON

RO = previous state
0 for OFF
1 for closedown imminent
2 for closedown in progress
3 for active ON

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

Sound Enable
(SWI &40141)

This software interrupt is used co enable or disable all Sound interrupts and
DMA activity. This guarantees to inhibit all Sound system bandwidth
consumption once a successful disable has been completed.

Sound_Speaker (SWI &40143), Sound_ Volume (SWI &40180)

None

1587

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1588

Sets the stereo position of a channel

RO =channel {C) to program
Rl = image position:

0 is centre
127 for max right
-127 for max left
-128 for no change (read state)

RO preserved

Sound Stereo
(SWI &40142)

R1 =previous image position, or -128 ifRO 8 on enrry

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

For N physical channels enabled, this call will program stereo registers C,
C+N, C+2N ... up to stereo register 8. For example, if two channels are
currently in use, and channel l is programmed, channels 3, 5 and 7 are also
programmed; if channel 3 is programmed, channels 5 and 7 arc also
programmed, but not channel 1.

This Software call only updates RAM copies of the stereo image registers
and the new positions, in fact, take effect on the next sound buffer interrupt.

IRQ code can call this SWl directly for scheduled image movement.

None

None

Sound system: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Sound system: SWI calls

Enables or disables the speaker(s)

RO =new state:
0 for no change (read state)
1 for OFF
2 for ON

RO = previous state
1 forOFF
2for0N

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

Sound_Speaker
(SWI &40143)

This software interrupt enables/disables the monophonic or stereophonic
mixed signal(s) to the internal loudspeaker amplifier(s). It has no effect on
the external stereo headphone/amplifier output.

This SWI disables the speaker(s) by muting the signal; you may still be able
to hear a very low level of sound.

Sound_Enable (SWI &40141}, Sound_ Volume (SWI &40180)

None

1589

::"·

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1590

Sets the overall volume of the Sound system

Sound Volume
(SWI &40180)

RO =sound volume (l - 127) (0 to inspect last setting)

RO = previous volume

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call sets the maximum overall volume of the Sound system. A change of
16 in the volume will halve or double the volume. The command scales the
internal lookup tables that Voice Generators use to set their volume; some
custom Voice Generators may ignore these tables and so will be unaffected.

A large amount of calculation is involved in this apparently trivial call. It
should be used sparingly to limit the overall volume; the volume of each
channel should then be set individually.

Sound_Enable (SWI &40141), Sound_Speaker (SWI &40143)

None

Sound system: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Sound system: SWI calls

Sound_SoundLog
(SWI &40181)

Converts a signed integer to a signed logarithm, scaling it by volume

RO = 32-bit signed integer

RO = 8-bit signed volume-scaled logarithm

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call maps a 32-bit signed integer to an 8 bit signed logarithm in VIOC
format. The result is scaled according to the current volume setting. Table
lookup is used for efficiency.

Sound_LogScale (SWI &40182)

None

1591

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1592

Sound_LogScale
(SWI &40182)

Scales a signed logarithm by the current volume setting

RO = 8-bit signed logarithm

RO = 8-bit signed volume-scaled logarithm

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This software interrupt maps an 8-bit signed logarithm in VIDC format to one
scaled according to the current volume setting. Table lookup is used for
efficiency.

Sound_SoundLog (SWI &40181)

None

Sound system: SWI calfs

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Sound system: SWI calls

Sound InstallVoice
(SWI &40183)

Adds a voice to the Sound system

RO =pointer to Voice Generator (0 for don't change)
Rl =voice slot specified (0 for install in next free slot, else 1 - 32)

RO = pointer to name of previous voice (or null terminated error string)
Rl =voice number allocated (0 for FAIL to install)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This software interrupt is used by Voice Modules or Libraries to add a Voice
Generator to the table of available voices. If an error occurs, this SWI does
not set V in the usual manner. Instead Rl is zero on exit, and RO points
directly to a null-terminated error string.

Alternatively, the table of installed voices may be read by setting RO to 0,
and Rl to the slot to examine. If the slot is unused RISC OS gives a null
pointer. (The Arthur OS gave a pointer to the string'*** No Voice'.)

Sound_RemoveVoice (SWI &40184)

None

1593

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1594

Sound Remove Voice
(SWI &40184)

Removes a voice from the Sound system

Rl =voice slot to remove (1 - 32)

RO =pointer to name of previous voice (or error message)
Rl is voice number de-allocated (0 for FAIL)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This software interrupt is used when Voice Modules or Libraries are to be
removed from the system. It notifies the Channel Handler that a RAM­
resident Voice Generator is being removed. If an error occurs, this SWI does
not set V in the usual manner. Instead Rl is zero on exit, and RO points
directly to a null-terminated error string.

This call must also be issued before the Relocatable Module Area is Tidied,
since the module contains absolute pointers to Voice Generators that are
likely to exist in the RMA.

Sound_InstallVoice (SWI &40183)

None

Sound system: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Sound system: SWI calls

Sound Attach Voice
(SWI &40185)

Attaches a voice to a channel

RO =channel number (I - 8)
Rl =voice slot to attach (0 to detach and mute channel)

RO preserved (or 0 if illegal channel number)
R 1 = previous voice number (or 0 if not previously attached)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call attaches a voice with a given slot number to a channel. The previous
voice is shut down and the new voice is reset.

Different algorithms have different internal state representations so it is not
possible to swap Voice Generators in mid-sound.

Sound_AttachNamedYoice (SWI &4018A)

None

1595

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1596

Sound ControlPacked
(SWI &40186)

Makes an immediate sound

RO is AAAACCCC Amp/Ch:mncl
Rl is DDDDPPPP Duration/Pitch

RO,R 1 preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call is identical to Sound_Control (SWI &40189), but the parameters
are packed 16-bit at a time into low RO, high RO, low Rl, high Rl respectively.
It is provided for 13BC compatibility and for the use of the Scheduler. The
Sound_ Control call should be u~d in preference where possible.

Sound_Control (SWI &40189)

None

Sound system: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Sound system: SWI calls

Sets the tuning for the Sound system

RO =new runing value (or 0 for no change)

RO = previous runing value

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

Sound_T uning
(SWI &40187)

This call sets the tuning for the Sound sysrem in units of 1/4096 of an octave.

The command *Tuning 0 may be used to restore the dcfuult tuning.

None

None

1597

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1598

Sound Pitch
(SWI &40188)

Converts a pitch to internal format (a phase accumulator value)

RO = 15-bit pitch value:
bits 14 - 12 are a 3-bit octave number
bits 11 · 0 are a 12-bit fmction of an octave (in units of I /4006 octave)

RO = 32-bit phase accumulator value, or preserved ifRO &8000 on entry

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This software interrupt maps a 15-bit pitch to an internal format pitch value
(suitable for the standard voice phase accumulator oscillator).

None

None

Sound system: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Sound system: SWI calls

Sound Control
(SWI &40189)

Makes an immediate sound

RO = channel number (1 - 8)
R1 =amplitude:

&FFFl- &FFFF and 0 for BBC emulation amplitude (0 to -15)
&0001 - &OOOF BBC envelope not emulated
&0100- &01 FF for full amplitude/gate control:

R2 =pitch

bit 7 is 0 for gate ON/OFF
1 for smooth update (gate not retriggered)

bits 6- 0 are 7-bit logarithm of amplitude

&0000 - &OOFF for BBC emulation pitch
&0 100 - & 7FFF for enhanced pitch control :

bits 14- 12 = 3-bit octave
bits 11 - 0 = 12-bi t fractional part of octave
(&4000 is nominally Middle C)

&8000 + n 'n' (in range 0- &7FFF) is phase accumulator increment
R3 =duration

&0001 - &OOFE for BBC emulation in 5 centisecond periods
&OOFF for BBC emulation 'infinite' time (converted to &FOOOOOOO)
> &OOFF for duration in 5 centisecond periods.

RO - R3 preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

This call allows real -time control of a specified Sound Channel. The
parameters are immediately updated and take effect on the next buffer fill.

1599

Related SWis

Related vectors

1600

Gate on and off correspond to the stare and end of a note and of its envelope
(if implemented). 'Smooth' update occurs when note parameters are changed
without restarting the note or its envelope - for example when the pitch is
changed to achieve a glissando effecr ..

If any of the parameters are invalid the call does not generate an error;
instead it returns without performing any operation.

Sound_ControiPacked (SWI &40186)

None

Sound system: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Sound system: SWI calls

Sound AttachN amedVoice
(SWI &4018A)

Attaches a named voice to a channel

RO = channel number (I · 8)
Rl =pointer to voice name (ASCII string, null terminated)

RO is preserved, or 0 for fail
R I is preserved

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call attaches a named voice to a channel. If no exact match for the name
is is found then an error is generated and the old voice (if any) remains
attached. If a match is found then the previous voice is shut down and the new
voice is reset.

Different algorithms have different internal state representations so it is not
possible to swap Voice Generators in mid-sound.

Sound_AttachVoice (SWI &40185)

None

1601

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1602

Sound ReadControlBlock
(SWI &4018B)

Reads a value from the Sound Channel Control I3lock

RO = channel number (I - 8)
Rl = offset to read from (0- 255)

RO preserved (or 0 if fail, invalid channel, or invalid read offset)
R 1 preserved
R2 = 32-bit word read (ifRO non-zero on exit)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call reads 32-bit data values from the Sound Channel Control Block
(SCCB) for the designated channel. This call can be used to read parameters
not catered for in the Sound_Control calls returned by Voice Generators,
using an area of the SCCI3 reserved for the programmer.

Sound_ WritcControll31ock (SWI &4018C)

None

Sound system: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Sound system: SWI calls

Sound WriteControlBlock
(SWI &4018C)

Writes a value to the Sound Channel Control Block

RO = channel number (I - 8)
Rl =offset to write to (0- 255)
R2 = 32-bit word to write

RO preserved (or 0 if fail, invalid channel, or invalidwrite offset)
R 1 preserved
R2 = previous 32-bit word (if RO non-zero on exit)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call writes 32-bit data values to the Sound Channel Control Block
(SCCB) for the designated channel. This call can be used to pass parameters
not catered for in the Sound_Control calls to Voice Generators, using an area
of the SCCB reserved for the programmer.

Sound_ReadControiBiock (SWI &4018B)

None

1603

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1604

Initialises the Scheduler's event queue

No parameters passed in registers

RO = 0, indicating success

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

Sound_Qlnit
(SWI &401CO)

This call flushes out all events currently scheduled and re-initialises the event
queue. The tempo is set to the default, the beat counter is reset and disabled,
and the bar length set to zero.

None

None

Sound system: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Sound system: SWI calls

Sound_QSchedule
(SWI &401Cl)

Schedules a sound SWI on the event queue

RO = schedule period
- 1 to synchronise with the previously scheduled event
-2 for immediate scheduling

R I = 0 to schedule a Sound_ControiPacked call, or SWI code to schedule (of
the form &xFOOOOOO + SWI no.)
R2 = SWI parameter to be passed in RO
R3 = SWI parameter to be passed in Rl

RO = 0 for successfully queued
RO < 0 for failure (queue full)

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

This call schedules a sound SWI call. If the beat counter is enabled the
schedule period is measured from the last start of a bar, otherwise it is
measured from the time the call is made.

A schedule time of - 1 forces the new event to be queued for activation
concurrently with the previously scheduled one.

The event is typically a Sound_ControlPacked type call, although any other
sound SWI may be scheduled. There are limitations: R2- R7 are always
cleared, and any return parameters are discarded. If pointers are to be
passed in RO or Rl then any associated clara must still remain when the SWI
is called (the workspace involved must not have been reused, the Window
Manager must not have paged it out, and so on).

Sound_QFree (SWI &401CJ)

None

1605

1606

Sound_Q Remove
(SWI &401C2)

This SWI call is for use by the Scheduler only. You must not use it in your
own code.

Sound system: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Sound system: SWI calls

Sound_QFree
(SWI &401C3)

Returns minimum number of free slots in the event queue

No parameters passed in registers

RO = no. of guaranteed slots free
RO < 0 indicates over worst case limit, but may still be free slots

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call returns the mtntmum number of slots guaranteed free. The
calculation assumes the worst case of data structure overheads that could
occur, so it is likely that more slots can in fact be used. If this guaranteed free
slot count is exceeded this call will return negative values, and the return
status of QSchedule must be carefully monitored to observe when overflow
occurs.

Sound_QSchedule (SWI &401Cl)

None

1607

1608

Sound_QSDispatch
(swr &401C4)

This SWl call is for use by the Scheduler only. You must not use it in your
own code.

Sound system: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

Sound system: SWI calls

Sets the tempo for the Scheduler

RO = new tempo (or 0 for no change)

RO =previous tempo value

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SYC mode

Not defined

Sound_QT empo
(SWI &401C5)

This command sets the tempo for the Scheduler. The default tempo is &1000,
which corresponds to one beat per centisecond; doubling the value doubles
the tempo (ie &2000 gives two beats per centisecond), while halving the value
halves the tempo (ie &800 gives half a beat per centisecond).

The parameter can be thought of as a hexadecimal fractional number, where
the three least significant digits are the fractional part.

Sound_QBcat (SWI &401C6)

None

1609

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1610

Sets or reads the beat counter or bar length

RO = 0 to return current beat number
RO = -1 to return current bar length

Sound_QBeat
(SWI &401C6)

RO < -1 to disable beat counter and set bar length 0
RO = +N to enable beat counter with bar length N (counts 0 to N-1)

RO =current beat number (RO = 0 on entry), otherwise the previous bar length.

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

The simplest use of this call is to read either the current value of the beat
counter or the current bar length.

When the beat counter is disabled both it and the bar length are reset to
zero. All scheduling occurs relative to the time the scheduling call is issued.

When the beat counter is enabled it is reset to zero. It then increments,
resetting every time it reaches the programmed bar length (N-1). Scheduling
using QSchedule then occurs relative to the last bar reset; however, scheduling
using *QSound is still relative to the time the command is issued.

Sound_QTcmpo (SWI &401C5)

None

Sound system: SWI calls

Sound system: SWI calls

Sound_Qinterface
(SWI &401C7)

This SWI call is for usc by the Scheduler only. You must not usc it in your
own code.

1611

* Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1612

Turns the Sound system on or off

*Audio ON I OFF

None

*Audio

T uming Audio Off silences the Sound system completely, stopping all Sound
interrupts and DMA activity. Turning Audio back on restores the Sound DMA
and interrupt system to the smre it was in immedi:nely prior to tum-off. All
Channel Handler and Scheduler activity is effectively frozen during the time
the Audio system is off, but software interrupts arc still permitted, even if no
sound results.

*Audio ON

*Speaker, *Volume

Sound_Enable (SWI &40141)

None

Sound system: • Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

Sound system: • Commands

*ChannelVoice
Attaches a voice to a channel

*ChannelVoice <channel> <voice slot> l <voice name>

<channel>
<voice slot>
<voice name>

from I to 8
from l to 16, as given by *Voices
name, as given by *Voices

This command attaches a voice to a channel. The voice slot is that given by the
*Voices command, and depends on the order in which voices were loaded. It
is preferable to use the voice names; note that these are case sensitive.
Alternatively, the channel can be muted by passing a voice slot of 0.

*ChannelVoice 1 StringLib-Pluck

*Stereo, *Voices

Sound_AttachVoice (SWI &40185),
Sound_AttachNamedVoice (SWI &4018A)

None

1613

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1614

*Configure SoundDefault
Sets the default volume and voice

*Configure SoundDefault <speaker> <volume> <voice>

<speaker>

<volume>

<voice>

0 or 1

from 0 to 7

from I to 16, as given by *Voices

This configure option sets the sound parameters kept in CMOS RAM for use
after power-on. They specify the built-in loudspeakcr(s) as on (one) or off
(zero), the relative defaul t volume preferred at start up, and the voice slot
one wishes to attach to channel 1 (the default system Bell channel).

*Configure SoundDefault 1 7 1

None

None

None

Sound system: • Commands

Syntax

Parameters

*QSound
Generates a sound after a given delay

*QSound <channel> <amplitude> <pitch> <durat i on> <beats>

• The channel (1 to 8) will only sound if at least that number of channels
have been selected, and the channel has a voice attached.

• The amplitude can be expressed in two ways: the values 0 (silent) and
&FFFF (almost silent) down to &FFFl (loud) provide a linear scale;
and the range &100 (silent) to &17F (loud) provides a logarithmic scale,
where a change of 16 will halve or double the amplitude.

• The pitch can also be expressed in two ways: for the range 0 to 255, each
unit represents a quarter of a semitone, with a value of 53 producing
middle C; for the range 256 (&100) to 32767 (&7FFF) the bottom 12 bits
give the fraction of an octave, and the top three bits the octave - middle C
has the value 16384
(&4000).

• The duration is given in twentieths of a second and must lie in the range 0
to 32767 (&8000). A value of 255 (&FF) is special: the sound will be
continuous, stopping only when the escape key is pressed.

• The beats occur at the rate set by *Tempo

Use This command is identical in effect to issuing a *Sound command after the
specified number of beats have occurred.

Example *QSound 1 &FFF2 &5800 10 so

Related commands *Sound, *Tempo

Related SWis Sound_QSchedule (SWI &401CI)

Related vectors None

Sound system:* Commands 1615

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1616

*Sound
Generates an immediate sound

*Sound <channel> <amplitude> <pitch> <duration>

• The channel (1 to 8) will only sound if at least that number of channels
have been selected, and the channel has a voice attached.

• The amplitude can be expressed in two ways: the values 0 (silent) and
&FFFF (almost silent) down to &FFFL (loud) provide a linear scale;
and the range &100 (silent) to &17F (loud) provides a logarithmic scale,
where a change of 16 will h<:llve or double the amplin1de.

• The pitch can also be expressed in two ways: for the range 0 to 255, each
unit represents a quarter of a semitone, with a value of 53 producing
middle C; for the range 256 (&100) to 32767 (&7FFF) the bottom 12 bits
give the fraction of an octave, and the top three bits the octave - middle C
has the value 16384
(&4000).

• The duration is given in twentieths of a second and must lie in the range 0
to 32767 (&8000). A value of 255 (&FF} is special: the sound will be
continuous, stopping only when the escape key is pressed.

This command generates an immediate sound.

*Sound 1 &FFF2 &5800 10

*QSound

Sound_ControlPacked (SWI &40186}, Sound_Control (SWl &40189}

None

Sound system: • Commands

Syntax

Parameters

Use

T ums the loudspeaker on or off

*Speaker ON I OFF

None

*Speaker

This command mutes the monophonic or stereophonic mixed signal(s) to the
internal loudspeaker amplifier(s). It does not effect the external stereo
headphone/amplifier output.

You may still be able to hear a very low level of sound, as this command
docs not totally disable the speaker(s).

Example *Speaker OFF

Related commands •Audio, •volume

Related SWis Sound_Speaker (SWI &40143)

Related vectors None

Sound system: • Commands 1617

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1618

Sets the stereo image position of a sound channel.

*Stereo <channel> <position>

from 1 to 8

*Stereo

<channel>
<position> from -127(fulllcft) to+ 127(full right), 0 for centre

This command sets the stereo image position of a sound channel.

*Stereo 1 100

*ChannelVoicc, *Voices

Sound_Stereo (SWI &40142)

None

Sound system: • Commands

Syntax

Parameters

Sets the tempo for the Scheduler

*Tempo <tempo>

<tempo> from 0 to &FPFF (default &1000)

*Tempo

Use This command sets the tempo for the Scheduler. The default tempo is &1000,
which corresponds to one beat per centisecond; doubling the value doubles
the tempo (so &2000 gives two beats per centisecond), while halving the value
halves the tempo (so &800 gives half a beat per centisecond).

Example *Tempo & 12 0 o

Related commands *QSound

Related SWis Sound_QTempo (SWI &401C5)

Related vectors None

Sound system: · Commands 1619

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1620

*Tuning
Alters the Sound system tuning

*Tuning <relative change>

<relative change> from -16383 to 16383 (0 re~ts the default tuning)

This command alters the tuning for the Sound system. A value of zero resets
the default tuning. Otherwise, the tuning is changed relative to its current
value in units of 1/4096 of an oct:lve.

*Tuning 64

None

Sound_ Tuning (SWI &40187)

None

Sound system:· Commands

*Voices
Lists the installed voice generators

~mu *~i~s

Parameters None

Use This command lists the voice generators that are installed, and the channel(s)
that each is attached to (if any). A voice can be attached to a channel even if
that channel is not currently in use.

Example *Voices

Related commands *ChannciVoice, •Stereo

Related SWis Sound_InsrallVoice (SWI &40183)

Related vectors None

Sound system: • Commands 1621

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1622

*Volume
Sets the maximum overall volume

*Volume <vol>

<vol> from I to 127

This command sets the maximum overall volume of the Sound system. A
change of 16 in the volume will halve or double the volume. The command
scales the internal lookup tables that Voice Generators use to set their
volume; some custom Voice Generators may ignore these tables and so will
be unaffected.

A large amount of calculation is involved in this apparently trivial command.
It should be used sparingly to limit the overall volume; the volume of each
channel should then be set individually.

*Volume 127

*Audio, *Configure Sound Default, *Speaker

Sound_ Volume (SWI &40180)

None

Sound system: • Commands

Application
notes

Buffer filling algorithms

The most likely change to the Sound system is to add Voice Generators, thus
providing an extra range of sounds. Each Voice Generator must conform to the
specifications given earlier in the section entitled Technical Details, and those
given below. The speed and efficiency of Voice Generator algorithms is
paramount, and requires careful attention to coding; some suggested code
fragments are given to help you.

Code will not run fast enough in ROM, so ROM templates or user code
templates must be copied into the Relocatable Module Area where they will
execute in fast sequential RAM. If the RMA is to be tidied, all installed
voices must be removed using the Sound_Remove call, then reinstalled using
the Sound_Install call.

Voice libraries are an efficient way of sharing common code and data areas;
these must be built as Relocatable Modules which install sets of voices,
preferably with some form of library name prefix.

The Channel Handler sets up three registers (R 12,1 I ,10) which give the start
address, increment and end address for correct filli:~g with interleaved sound
samples. The interleave increment has the value l, 2, 4 or 8, and is equal to
the number of channels. This code is an example of how these registers
should be used:

. loop

STRB Rs , [Rl2] ,Rll
CMPS R1 2, !UO
BLT loop

e .g. fc rm VI DC format 8 b i t s igned l og i n Rs
store, and bump ptr
check f or e nd
and loop un t il fil l complete

The DMA buffer is always a multiple of 4 words (16 bytes) long, and word
aligned. Loop overheads can therefore be cut down by using two byte store
operations. A further improvement is possible if Rll, the increment, is one;
this implies that values arc to be stored sequentially, so word stores may be
used.

Sound system: Application notes 1623

Example code
fragments

Oscillator coding

Schematically

1624

The fundamental operations performed by nearly all voice generators involve
Oscillators, Table lookup and Amplitude modulation. In addition, some
algorithms (plucked string and drum in particular} require random bit
generators. Simple in-line code fragments are briefly outlined for each of
these.

Note: in all cases the aim is to produce rhe most efficient, and wherever
possible highly sequential, ARM machine code; in most algorithms the aim
must be to get as many working variables into registers as possible, and then
adapt the synthesis algorithms wherever possible to usc the high-speed barrel
shifter to effect.

The accumulator-divider is the most useful type of oscillator for most voices.
A frequency increment is added to a phase accumulator register and the high­
order bits of the resulting phase provide the index to a wavetable.
Alternatively, the top byte can be directly used as a sawtooth waveform.

The frequency of the oscillator is linearly related to the frequency increment.
Vibrato effects can be obtained by modulating the frequency increment

Sixteen-bit registers provide good audible frequency resolution, and arc . used
in many digital hardware synthesizer products. The 32-bit register width of
the ARM is ideally split 16/16 bits for phase/increment.

frequency increment
16/
/

16/
~ phase accumulator

/

ADD
8

/

/ / 16

/ Sawtooth/
Index

Sound system: Application notes

Coding

Wavetable access
coding

Schematically

Coding

Register field assignment: Rp

31 16 15 0

Phase Accumulator Increment

ADD Rp,Rp,Rp,LSL !16 ; phase accumula t e

Changing parameters or the voice table being used is best done at or close to
zero-crossing points, to avoid noise generation. If wavetables are arranged
with zero-crossing aligned to the start and end of the table then it is simple to
add a branch to appropriate code.

ADDS Rp,Rp,Rp, LS r, 116 ph.•se accumul ate
BCS Update ; only take branch i f past zero crossing

Normally fixed-length (256-byte or a larger power of two) wavetablcs are
used by most voice generator modules. The high bits of the phase accumulator
are added to a wavetable base pointer to access the sample byte within the
table:

For a 256-byte table:

phase accumulator
8/
/

32
wavctable base pointer _L_

/

LDRB Rs, [Rt ,Rp, LSR 12 q

ADD
32

/
/ [Table]

(byte fetch)

where the most significant 8 bits of Rp cont;:~in the Phase index, Rt is the
Table base pointer, and Rs is the register used. to store the s;:~mple.

Sound system: Application notes 1625

Amplitude modulation
coding

Overall volume

Channel volume

1626

The amplitude of the resultant byte may be altered for three reasons: firstly
to scale for the overall volume setting, secondly ro scale for the channel's
volume setting, and lastly to provide enveloping.

If the overall volume setting changes, then your Update entry point will be
called. You can cope with the change in two ways. The first is to re-scale all
the values in the wavetable, using the SWI calls SoundLog or LogScale. This
has the advantage that buffer filling is faster as the values arc already
scaled, but has the disadvantage that the waverables might be stored to a
lower resolution resulting in increased noise levels.

The alternative is to re-scale the values between reading them from the
wavetable and outputting them, as in the example voice given later. The
reverse then applies: buffer filling is slower, but noise is reduced. This
method is preferred, so long as the algorithm is $till able to fill the buffer
within the required period.

The channel's volume setting should be used by all well-behaved Voice
Generators. The volume is passed to the Voice Generator by the Channel
Handler in the SCCB, as a signed 8 bit log<~rithm, but in a different format to
that used by the VIDC chip:

Amplitude Byte Data Format:

7 6 5 4 3 2 1 0

0 Logarithm

VIDC 8-bit sample format:

7 6 5 4 3 2 0

Lo~.-arithm I t-;:J
Sign hit

Sound system. Application notes

Coding

Envelope coding

Linear to logarithmic
conversion

The coding is easiest if the values are treated as fractional quantities, and is
then reduced to subtr'o:JCting logarithms and checking for underflow:

Ra contains amplitude in range 0 to 127
Rs contains sample data in range -127 to+ 127 [sign bit LSB]

do th is each time Voice Generator is e nter ed
RS B Ra,Ra,t l27 ; ma ke at t enuat ion factor

; do thi s ins i de loop, bc(ore each write t o buf fe r
SUBS Rs ,Rs ,Ra , LSL fl no te shi ft t o conve r t to VIDC format
MOVMI Rs,fO ; co r rect tor underflow

Note: The example voice shows how this can be combined with use of the
volume-scaled lookup table to scale for both the overall and channel volume
on each fill.

Envelopes (if used) must be coded within the Voice Generator. A lookup
table must be defined giving the envelope shape. This is then accessed in a
similar manner to a wavetable, using the timbre phase accumulator passed in
the SCCB. The sample byte is then scaled using this value, as shown above.

If you continue after a gate off, you must store your own copy of the volume,
as any value in the SCCB will be overwritten.

Algorithms which work with linear integer arithmetic may use the Channel
Handler linear-log table directly to fill buffers efficiently. The table is 8
kbyte in length, to allow the full dynamic range of the VIOC sound digital to
analogue converter to be utilised. The format is chosen to allow direct
indexing using barrel-shifted 32-bit integer values. The values in the table arc
scaled according to the current volume setting.

Sound system: Application notes 1627

Coding

Random bit generator
code

Coding

1628

t o access the lookup table point er during i nit i alisation:
MOV RO, fO
MOV RJ, JO
MOV R2, fO
MOV R3, 10 ; get Channel Handler base
MOV R4, fO
SWI "XSound_Conf i gure"
BVS error return
LOR RB, (R3,f8] ; lin-to-log pointer

in line buffer fil l ing code:
linear 32-bit value in RO

LDRB RO, [RB,RO,LSR 119] lin -> log
STRB RO, (Rl2),R11 output to DMA buffer

An efficient pseudo-random bit generator can be implemented using two
internal registers. This provides noise which is necessary for some sounds,
percussion in particular. One register is used as a multi-tap shift register,
loaded with a seed value; the second is loaded with an XOR bit mask
constant (&I D872B41). The sequence produced has a length of 4294967295.
The random carry bit setting by the simple code fragment outlined below
allows conditional execution on carry set (or cleared):

MOVS RS,RS,LSL fl ; se t random carry
EORCS RS,RS,R9
xxxCC do this ...
yyyCS ; ... or alternately t his

Sound svstem: Aoolication notes

Example program This program shows a complete Voice Generator. It builds a wavetable
containing a sine wave at maximum amplitude. Scaling is performed when the
table is read:

REM -> WaveVoice

DIM WaveTable\ 255
DIM Code\ 4095

SYS "Sound_Volume", 127 TO UsrrVolume
f'OR s \ •0 TO 255

SYS "Sound_SoundLog",& 7f'f'f'f'f'f'f''SIN(2•PI•s\/ 256) TO WaveTable \ ?s\
NEXT s \ : REM build samples at full volume
SYS "Sound Volume",UserVolume TO UserVolume
REM and restore volume to value en entry

f'OR C•O TO 2 STEP 2
P\•Code\
[OPT C

;••••·········-···········~~············
·• VOICE CO-ROUTINE CODE SEGMENT

On installation, polnl Ch~nnrl Handler voice
; pointers to this voice control block
; (return address always on top of stack)
• Voice8ase

8 f'lll
8 rill
8 Gat eOn
8 GateOff
8 Instance
LDMf'D Rl3!,(PC}
LDMf'D Rl3!, (PC}
EOUD Vo1ceName - Vo!ce8ase

.Vo1ceName EOUS •waveVolce "
EQUB 0

ALIGN

updat:e entry

I nstantiate
Free entry
Initialise

j**"llllllll ll lt.llllll.~llllll •• IIAt\111111""11111111111tt\llllo\11

. LogAmpPtr EOU D 0

.Wave8ase EOU D WaveTable \
;•••·····················~·············

entry

.Instance ;

STMf'D
any instance

Rl3! , [R0- R4 1
must use volume scaled log a~p table

; save registers
MOV
MOV
MOV
MOV
MOV
SWI
LDRVC
STRVC

RO,IO
Rl, 10

R2, 10

R3, fO
R4, 10

"XSound_Conftqure"
RO, [R3, n n
RO , LogAmpPtr

get address of vol~me scaled l og amp table
and store

Sound system: Example program 1629

1630

STRVS
LDMFD

RO, [Rl3 1
Rl3!, (RO-R4, PC I

; return error pointer
; restore registers and ret urn

·• VOICE BUFFER FILL ROUTINES

on entry:
rO-rB available
r9 is SoundChannelControlBlock pointer
rlO DMA buffer limit (+1)
rll DMA buffer interleave increment
rl2 DMA buffer base pointer
rl3 Sound system Stack with return address and flags

on top (must LDMFD R13! , (... ,pc)
NO rl4 - IRQs are enabl ed and rl 4 is not usable

.Gat cOn
LDR
STR
LOR
STR

.rill
LDMIA
AND

Rl is amp

RO, WaveBase
RO, [R9, 1161
RO,LogAmpPtr
RO, [R9, f201

R9, (Rl- RS}
Rl, Rl, 1&7 F

(0-127) R2
R3 is timbre phase ace R4
R5 is wavetable base R6

LDRB
MOV
RSB

.rillLoop
ADD
LDRB
SUBS
MOVM I
STRB
ADD
LDRB
SUBS
MOVMI
STRB
ADD
LDRB
SUBS
MOVMI
STRB
ADD
LDRB
SUBS
MOVMI
STRB
CMP
BLT

Rl, [R6,Rl,LSL fll
Rl, Rl, LSR fl
Rl,Rl , l127

R2,R2,R2,LSL 11 6
RO, [R5, R2, LSR 1241
RO,RO,Rl,LSL n
RO , IO
RO, (Rl2 I,Rl1
R2 , R2,R2,LSL 116
RO, [R5,R2,LSR 1241
RO , RO , Rl,LSL fl
RO,IO
RO, [Rl 21,Rll
R2 , R2,R2,LSL 116
RO, [RS , R2, LSR 124 }
RO,RO , Rl , LSL tl
RO, IO
RO , (Rl21, Rll
R2,R2,R2,LSL 116
RO, (RS, R2,LSR 1241
RO , RO , Rl, LSL 11
RO, fO
RO, [Rl2J , Rll
Rl2,Rl0
F'illLoop

is
is
is

wavetable base
set up in SCCB as work ing register
volume scaled log amp table
set up as working register 6

pick up working registers from SCCB
mask Rl so only channel amplitude rema ins
pitch phase ace
duration
amp table base
move sign bit -> VIDC format log
and lookup amp scaled to overall volume
move sign bit back again
make attenuation factor

advance waveform phase
get wave sample
scale amplitude for overall ' channel volumes
and correct underflow
generate output sample
repeated in l ine four times ...

end of repeats ..•
check for end of buffer f i l l
loop if no t

Sound system: Example program

check for end of note
SUBS R4,R4,11
STMIB R9, {R2- R5J
HOVPL
HOVHI
LOHfO

RO, f\ 00031000
RO, f\ 00000010
R13!, (PC!

decrement centisec cour.t
save registers to sees
voice active if still duration ieCt
else force flush
return to level 1

:················~···~·················
.GateOC!

HOV RO, 10
.r1ushLoop

STRB
STRB
STRB
STRB
CHP

RO, [Rl2l , Rll
RO, (Rl2 I, Rll
RO, [R12), R11
RO,[Rl2),Rll
R12,R10

BLT rlushLoop

fill buffer with zeroes

CAUSF. level 1 TO FLUSH one~ more
HOV
LDMFD

NF.XT C

RO, 1\00000001
Rl3!, (PC}

O!H OldVolce\{8)

set flag to !lush one more buffer
; return to level 1

SYS • sound_InstallVoice",VoiccBasa,O TO a\ ,Volce\
F'OR v\•1 TO 8

SYS "Sound_AttachVolcc",v\,0 TO z\,OldVolce\(v\)
VOIC£ v\,"WaveVoice"

NEXT

ON ERROR PROCRestoreSound £NO

VOICES 8
•voices
SOUND 1,,17f , 53,10 : REM activate channel 1!
PRINT''"any key to make a noise, <ESCAPE> to finish"

C\•1
REPEAT

K\•INKEY (1)
If K\>0 THEN

SOUND C\,, 17F,K\,100
C\ +•1 : If C\>8 TH~~ C\•1

ENOlf
UNTIL 0

OEF PROCRestoreSour.d
ON ERROR OfT
REPORT:PRINT ERL
SYS "Sound_RemoveVolce" , O, Vo1ce\
FOR v\•1 TO 8

SYS "Sound_AttachVolce", v\,OldVoice\(v\)
NEXT
VOICES 1

Sound system: Example program 1631

1632

•voices
PRINT''

ENDPROC

Sound system: Example program

WaveSynth

Introduction

WaveSynth: Introduction

WaveSynth is a module that provides:

• a voice generator which is used for the default system bell

• a SWI for its own internal use, that is used to load new wave tables.

For more information about the usc of sound in RISC OS, refer to the chapter
entitled The Sound system.

1633

SWI Calls

Use

1634

Load new wave tables

W aveSynth_Load
(SWI &40300)

This software interrupt is for internal use only. It is used by the WaveSynth
module to load new wave t<Jbles.

WaveSynth : SWI Calls

Expansion Cards

Introduction Expansion Cards provide you with a way to add hardware to your RISC OS
computer. They plug into slotS provided in the computer, typically in the form
of a backplane (these are an optional extra on some models).

This chapter gives derails of the software that RISC OS provides to manage
and communicate with expansion cards. It also gives details of what software
and data needs to be provided by your expansion cards for RISC OS to
communicate with them; in short, all you need to know to write the software
for an expansion card.

What this chapter does not tell you is how to design the hardware. This is
because:

• the range of hardware that can be added to a RISC OS computer is so
large that we can't examine them all

• we don't have the space to describe every RISC OS computer that Acorn
makes

Instead, you should sec the further sources of information to which we refer
you.

Expansion Cards: Introduction 1635

Overview

Software

1636

RISC OS computers can support internal slots for expansion cards. If you
wish to add more cards than c<.Jn be fitted to the supplied slots, you must use
one of the slots to support an expansion card rhat buffers the signals on the
expansion card bus before pa~sing them on to external expansion cards.

Expansion cards can have some or all of the following software included:

• an Expansion Card Identity, to give RISC OS inform<Jtion about the card

• Interrupt Status Pointers, ro tell RISC OS where to look tO find out if the
card is generating interrupts

• a Chunk Directory, that defines what separate parts of the card's memory
space are used for

• a Loader, to access paged memory held outside the card's address space

• a Chunk Directory to define what separate p<Jrts of the paged memory
are used for.

A wide range of different types of code and data is supported by the Chunk
Directories.

The use of the Loader and paged memory has been made as transparent to
the end user as possible.

Expansion Cards: OveNiew

Technical Details

Expansion Card Identity

Expansion card Identity
space

Each expansion card must have an Expansion Card Identity (or ECid) so that
RISC OS can tell whether an expansion card is fitted in a backplane slot, and
if so, identify it. The ECid may be:

• a simple ECld of only one byte (the low one of a word)

• an extended ECid of eight bytes, which may be followed by other
information.

The ECid (whether extended or not) must appear at the bottom of the
expansion card space immediately after a reset. However, it does not have to
remain readable at all times, and so it can be in a paged address space so
long as the expansion card is set to the page containing the ECid on reset.

The ECid is read by a synchronous read of address 0 of the expansion card
space. You may only assume it is valid from immediately after a reset until
when the expansion card driver is installed.

The first 16 bytes of the expansion card identity space are always assumed to
be bytewide. If the ECid is included in a ROM which is 16 or 32 bits wide,
then only the lowest byte in each half-word or word must be used for the first
16 (half) words.

If you use an extended EC!d, you may specify the space after this as 8, 16 or
32 bits wide. When you access this space

• if you arc using the 8 bit wide mode, you should use byte load and store
instructions

• if you are writing using the 16 bit wide mode, you should use word store
instructions, putting your half word in both the low and high half words of
the register you use

• if you are reading using the 16 bit wide mcx.le, you should use word load
instructions, and ignore the upper half word returned

• if you arc using the 32 bit wide mode, you should use word load and
store instructions.

Expansion Cards: Technical Details 1637

Simple Expansion Card
Identity

Acorn conformance bit

1638

Synchronous cycles are used by the operating system to read and write any
locations within this space (to simplify rhe design of synchronous expansion
cards).

You should note however that there are currently some restnct•ons on the
widths you can usc. These are imposed both by current hardware and software:

• the I/0 dam bus is only 16 bits wide

• the current version of the RISC OS Expansion Card Manager only
supports the 8 bit wide mode; future versions may support the wider
modes.

A simple ECld is one byte long. You should only usc one for the very
simplest of expansion cards, or temporarily during development. Most
expansion cards should implement the extended EC!d which eliminates the
possibility of expansion card IDs clashing. A simple ECid shares many of the
features of the low byte of an extended ECld, and is as follows:

7 6 5 4 3 2 0

A 10[3] ID[2l ID[I] IDIOl FIQ 0 IRQ

Bit(s) Value Meaning

A 0 Acorn conformant expansion card
non-conformant expansion card

10[3:01 notO ID field
(0 extended EC!d used)

FIQ 0 not requesting FIQ
1 requesting FIQ

IRQ 0 not requesting IRQ
1 requesting IRQ

The most significant bit in a simple EC!d must be zero for , xpansion c:1rds
that conform to this Acorn specification.

Expansion Cards . Technical Details

ID f1eld

Interrupt status bits

Expansion card presence

Extended Expansion
Card Identity

If you are using a simple ECid, the 4 10 bits may be used for expansion card
identification. They must be non-zero, as a value of zero shows that you arc
instead using an extended ECid.

The interrupt status bits (IRQ and FIQ) are discussed below in a separate
section.

All expansion cards must have bit 1 low in the low byte of the ECid, so that
RISC OS can tell if there are any expansion cards present.

Normally bit 1 of the I/0 data bus is pulled high by a weak pullup.
Therefore if no expansion card is present and RISC OS tries to read the
ECid low byte, bit 1 will be set. If a card is present, and the ECid is mapped
into memory (which it must be immediately after a reset), the bit will instead
be clear.

If the ID field of the ECid low byte is zero, then the ECid is extended. This
means that RISC OS will read the next seven bytes of the ECid. The
extended ECid starts at the bottom of the expansion card space, and consists
of eight bytes as defined below:

7 6 5 4

C[7) C[6] C[Sl C[4J

M[lS] M[14] M[1 3) M[l 2]

M[7) M[6] M[S] M[4l

P[15) P[1 4] P[IJ] P[12]

P[7] P[6] P[S) P[4]

R R R R

R R R R

A 0 0 0

3 2

C[J] C[2l

M[11l M[10]

M[J] M(2]

P[ll) P[lOl

P[J] P[2]

R R

W[l) W[O)

0 FIQ

C[IJ

M[9]

M[ll

P[9]

P[I)

R

IS

0

0

C[OJ

M[8]

M[O]

P[8)

P[O]

R

CD

IRQ

&IC

&18

&14

&10

&OC

&08

&04

&00

Expansion Cards: Technical Details 1639

Country code

Manufacturer code

Product type code

Reserved fields

1640

Bit(s)

C[7:0]

M[l5:0]

P[l5:0]

R

W[l:O]

IS

CD

A

FIQ

IRQ

Value

0
1

0
1
2
3

0
I

0
1

0
1

0
I

0

Meaning

Country (sec below)

Manufacturer (sec below)

Product Type (see below)

mandatory at present
reserved for future usc

8-bit code follows after byte 15 of ld space

16-bit code follows after byte 15 of Id space
32-bit code follows after byte 15 of Id space
reserved

no Interrupt Status Pointers follow EC!d
Interrupt Status Pointers follow EC!d

no Chunk Directory follows
Chunk Directory follows Interrupt Status ptrs

Acorn conform:mt expansion card
non-conform:mt exp:msion card

not requesting FIQ (or FIQ relocated)
requesting FIQ

not requesting IRQ (or IRQ relocated)
requesting IRQ

Every expansion card should have a code for the country of origin. These
match those used by the International module, save that the UK has a country
code of 0 for expansion cards. If you do not already know the correct country
code for your country, you should consult Acorn.

Every expansion card should have a code for manufacturer. If you have not
already been a llocated one, you should consult Acorn.

Every expansion card type must have a unique number allocated to it. Consult
Acorn if you need to be allocated a new product type code.

Reserved fields must be set to zero to cater for future expansion.

Expansion Cards: Technical Details

Width field

Generating Interrupts

with a simple ECid

with an extended ECid

Finding out more

For a discussion of the width field, see the earlier section on Expansion Card
Ident.ity space.

Expansion cards must provide two status bits to show if the card is requesting
IRQorFIQ.

If an expansion card only has a simple ECid, then the FIQ and IRQ status
bits are bits 2 and 0 respectively in the ECid. If the card docs not generate
one or both of these interrupts then the relevant bit{s) must be driven low.

If an expansion card has an extended ECid, you must set the IS bit of the
ECid and provide interrupt status pointers (sec below) if either of the
following applies:

• you arc also using Chunk Directories (see below)

• you want to relocate the inrerrupt status bits from the low byte of the
ECid.

If neither of the above apply, then you can omit the Interrupt Status Pointers.
The interrupt status bits arc located in the low byte of the ECid, and arc
treated in exactly the same way as for a simple ECid (see above).

To find out more about generating interrupts from expansion cards under
RISC OS, you can:

• sec the chapters entitled ARM Hardware and Interrupts and handling them

• consult the VL86COJO 32-f3it RISC MPU and Peripherals User's Manual,
published by Prentice Hall

• consult the datasheets for any components you use

• contact Customer Support and Services for further hardware-specific
details.

Expansion Cards: Technical Details 1641

Interrupt Status
Pointers

If the card does not
generate IRQ or FlO

An Interrupt Status Pointer has two 4 byte numbers, each consisting of a 3
byte address field and a I byte position mask field. These numbers give the
locations of the FlQ and IRQ status bits:

IRQ Status Bit address (24 bits)

IRQ Status Bit position mask

FIQ Status Bit address (24 bits)

FIQ Status Bit position mask

&40

&34

&30

&24

&20

The 24-bit address field must contain signed 2's-complemcnt number giving
the offset frorn &3240000 (the base of the area of memory into which
podules are mapped). Hence the cycle speed to access the status register can
be included in the offset (encoded by bits 19 and 20). Bits 14 and 15 (that
encode the slot number) should be zero. If the starus register is in module
space then the offset should be negative: eg &DCOOOO, which is - &240000.

The 8-bit position mask should only have a single bit set, corresponding to the
position of the interrupt status bit at the location given by the address field.

Note that these eight bytes are always assumed to be bytewide. Only the
lowest byte in each word should be used.

The addresses may be the same (ie the status bits are in the same byte), so
long as the position masks differ. An example of this is if you have had to
provide an Interrupt Status Pointer, but do not want to relocate the status bits
from the low byte of the ECld; the address fields will both point to the low
byte of the ECld, the IRQ mask will be 1, and the FIQ mask will be 4.

If the card docs not generate one or both of these interrupts then you must set
to zero:

• the corresponding address ficld(s) of the interrupt status pointer

• the corresponding position mask field(s) of the interrupt status pointer

• the corresponding status bit(s) in the low byte of rhe ECid.

1642 Expansion Cards: Technical Details

Chunk directory
structure

Operating System
Identity Byte

If the CD bit of the extended ECid is set, then:

• the IS bit of the EC!d must also be set

• Interrupt Status Pointers must be defined

• a directory of Chunks of data and/or code stored in the expansion card's
ROM follow the Interrupt Status Pointers.

The lengths and types of these Chunks and the manne~ in which they arc
loaded is variable, so after the eight bytes of lnternJpt Status Pointers there
follow a number of entries in the Chunk Directory. The Chunk Directory
entries are eight bytes long and all follow the same format. There may be
any number of these entries. This list of entries is terminated by a block of
four bytes of zeros.

You should note that, from the start of the Chunk Directory onwards, the
width of the expansion card space is as set in the ECid width field. From here
on the definition is in terms of bytes:

Start address: 4 bytes (32 bits)

Size in bytes: 3 bytes (24 bits)

Operating System identity byte

n+8

n+4

n+l

n

The start address is an offset from the base of the expansion card's identity
space.

The Operating System Identity Byte forms the first byte of the Chunk
Directory entry, and determines the type of data which appears in the Chunk
to which the Chunk Directory refers. It is defined as follows:

7 6 5 4 3 2 0

1 osr3J 1 osr21 1 osrn 1 osro1 1 D[3] D[2] D[l] D[O]

Expansion Cards: Technical Details 1643

1644

OS[3]
OS[J]

OS[2:0]

0

0

2

3-5

6

7

reserved

mandatory at present

Acorn Operating System 0: Arthur/RISC OS
0[3:0] 0 Loader

1 Rclocatable Module
2 BBCROM
3 Sprite
4 - 15 reserved

reserved
0[3:0] 0- 15 reserved

Acorn Operating System 2: Unix
0[3 :0] 0 Loader

1 - 15 reserved

reserved
0[3:0] 0- 15 reserved

manufacturer defined
Of3:0] 0- 15 manufacturer specific

device data
0[3:0] 0 link

(for 0, the object pointed
to is another directory)

l serial number
2 date of manufacture
3 ..modification status
4 place of manufacture
5 description
6 part number

(for 1 - 6, the data in the
pointed-to location contains
the ASCII string of the
information.)

7 - 14 reserved
15 cmpry chunk

Expansion Cards: Technical Details

Binding a ROM Image

Code Space

Writing a loader

Those Chunks with OS[O:Z] = 7, are operating system independent and arc
always treated as ASCII strings terminated with a zero byte. They are not
intended to be read by programs, but rather inspected by users. It is expected
that even minimum expansion cards will have an entry for 0[3:0]] = 5
(description), and it is this string which is printed out by the command
•Podules.

For the ROM to be read by the Expansion Card Manager it must conform to
the specification, even if only minimally. The simplest way to generate ROM
images is to use a BASIC program to combine the various parts togther and to
compute the header and Chunk Directory srructure. Such a program is shown
at the end of this chapter. Its output is a file suitable for programming into a
PROM or an EPROM.

The above forms the basis of storing software and data in expansion cards.
However, there is an obvious drawback in that the expansion card space is
only 4 kbytes (at word boundaries), and so irs usefulness is limited as it
stands. To allow expansion cards to accomodate more than this 4 kbytes an
extension of the addressing capability is used. This extension is called the
Code Space.

The Code Space is an abstracted address space that is accessed in an
expansion card independent way via a software interface. It is a large linear
address space that is randomly addressable to a byte boundary. This will
typically be used for driver code for the expansion card, and will be
downloaded into system memory by the operating system before it is used.
The manner in which this memory is accessed is -variable and so it is accessed
via a loader.

The purpose of the loader is to present to the Expansion Card Manager a
simple interface that allows the reading (and writing) of the Code Space on a
particular expansion card. The usual case is a ROM paged ro appear in 2
kbyte pages at the bottom of the expansion card space, with the page address
stored in a latch. This then permits the Expansion Card Manager to load
software (Relocatablc Mod11lcs) or data from an expansion card without
having to know how that partic11lar expansion card's brdware is arranged.

Expansion Cards: Technical Details 1645

Registers

Entry points

Initialisation

Errors

1646

The loader is a simple piece of relocatable code with four entry points and
clearly defined entry and exit conditions. The format of the loader is
optimised for ease of implementation and small code size rather than
anything else.

The register usage is the same for each of the four entry points.

RO
Rl
R2-R3
R4-R9
RIO
Rll

Rl2
Rl3
Rl4
R15

Input/Output

Write/Read data
Address

Hardware

sp

Comments

Treated as a byte
Must be preserved
May be used
Must be preserved
May be used
Combined hardware address,

must be preserved
Private, must be preserved
Stack pointer (FD), must be preserved
Return address; use BICS pc, lr, #V _bit
PC

The exception to this is the CallLoader entry point where RO - R2 are the
user's entry and exit data.

All code must be relocatable and position independent. It can be assumed
that the code will be run in RAM in SVC mode.

Origin+ &00
Origin+ &04
Origin+ &08
Origin+ &OC

Read a byte
Write a byte
Reset to initial state
SWI Podule_CallLoader

The first call made to the loader will be to Read address 0, the start of a
Chunk directory for the Code Space.

Errors are returned in the usual way; V is set and RO points at a word-aligned
word containing the error number, which is followed by an optional error
string, which in turn must be followed by a zero byte. ReadByte and
WriteByte may be able to return errors like 'Bad address' if the device is not

Expansion Cards: Technical Details

Example

as big as the address given, or 'Bad write' if using read after write checks on
the WriteByte call. If the CaiiLoader entry is not supported then don't rerum
an error. If Reset fails then return an error.

Since your device drivers may well be short d space, you can return an error
with RO=O. The Expansion Card Manager will then supply a default message.
Note that this is not encouraged, but is offered as a suggestion of last resort.
Errors are returned to the caller by using ORRS pc, lr, #V _bit rather than the
usual BICS exit.

Here is an example of a loader (this example, like all others in this chapter,
uses the ARM assembler rather than the assembler included with 13I3C
BASIC V- there are subtle syntax differences):

00
00 00003000 PageReg
00 00000008 PageSlze
00 EA000008 Origin
04 EA000019

LEADR &FFFFFDOO
&3000
11

8 ReadByte
B WrlteByte

08 EA000001 8 Reset
OC £3DEF201 SICS pc, 1 r, IV bit

Data

Bits

10 FFFFFFFF Page DCD -1 ; Variable
14 E59FA0£4 Reset LOR riO, •2_00000011111111111111000000000000

18 EOOBAOOA AND riO, rll, riO ; Get hardware address from com~lned or·
1C E28AM03 ADD riO, rlO, I PageReg
20 £3£02000 MOV r2, 1-1
24 ESOF201C STR r2, Page
28 £3A02000 MOV r2, 10
2C £4CA2000 STR8 r2, (riO

30 £3D£F201 arcs pc, lr, tV_bit
34 £59F40C4 Read8yte !.DR r4, •2_00000011111111111111000000000000

38 EOOB4004 AND r4, r11 , r4 Get hardware address from combined o~
JC E284AA03 ADD r10, r4, IPageReg
40 £351083£ CMP rl, HF800 Last page
44 228F0060 1\DRHS Error, ErrorATB
48 239EF201 ORRHSS pc, lr, tV bit
4C £2812802 ADD r2, rl, 11 :SHL: PageSlzl!
50 E1A025C2 MOV r2, r2, ASR I PageSize
54 £51F304C LOR r3, Page

58 £1320003 TEO r2, r3
SC 14CA2000 STRNEB r2, (r iO

60 150F2058 STRN£ r2, Page
64 £3Cl28FE: 8IC r2, r1, 1&7F :SHL: PaqeSize
68 £7040102 LORB rO, (r4, r2, ASL 12 I ; Word addressing
6C E:30EF201 llTCS pc, lr, IV _bit

10 £28FOOOO Wr1te8yte ADR Error, ErrorNW
74 £39£F201 ORRS pc, lr, I V bit

78 00000580 ErrorNW DCD ErrorNumber_NotWriteable
AB DCB ErrorString_NotWriteable

Expansion Cards: Technical Details 1647

Loading the loader

CMOS RAM

'Podules'

1648

A9 00 DC~ 0

AA 00 00 ALIGN
AC 00000584 ErrorATB :>CD £r ro~>;umber_Addr:essToo!ll q

BC OCR Erro r:Strlnq_AddressTooqlq
sr oo OCR 0

co END

The bit masks are used to separate the fields of a combined hardware
address - sec the description of Podule_HardwareAddress (SWI &40289)
for details of these.

If the Expansion Card Manager is ever asked to 'EnumeratcChunk' a Chunk
containing a Loader, it will automatically load the Loader. Since RISC OS
enumerates all Chunks from all expansion ouds at a hard reset this is
achieved by default.

If no Loader is loaded then Podule_EnumeratcChunk will terminate on the
zero at the end of the Chunk Directory in the expansion card space. If,
however, when the end of the expansion card space Chunk Directory is
reached a Loader has been loaded, then a second Chunk Directory, stored in
the Code Space, will appear as a continuation of the original Chunk
Directory. This is transparent to the user.

This second Chunk Directory is in exactly the same format as the ori'cinal
Chunk Directory. Addresses in the Code Space Chunk Directory refer to
addresses in the Code Space. The Chunk Directory starts at address 0 of the
Code Space (rather than add res!' 16 as the one in expansion card Space docs).

Each of the four possible internal expansion card slots has four bytes of
CMOS RAM reserved for it. These bytes can be used to store status
information, configuration, and so on.

You can find the base address of these four bytes by calling
Podule_HardwareAddress (SWI &40289).

In the Arthur operating system, expansion cards were known as Podules. The
word 'Podule' was used in all the names of SW!s and * Commands.

These old names have hcen retained, so that software written to run under
Arthur will still run under RISC OS.

Expansion Cards: Technical Details

SWI calls

Reads an expansion card's identity byte

On entry RJ = expansion c:-~rd slot number

On exit RO =expansion card identity byte (ECid)

Interrupts Interrupt status is unaltered
Fast interrupts are enabled

Processor mode Processor is in SYC mode

Re-entrancy SWI is re-entrant

Podule ReadiD
(SWI & 40280)

Use This call reads into RO a simple Expansion Card Identity, or the low byte of
an extended Expansion Card Identity.

Related SWis Podule_ReadHeadcr (SWI &40281)

Related vectors None

Expansion Cards: SWI calls 1649

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1650

Reads an expansion card's header

Podule ReadHeader
(SWI &40281)

R2 =pointer to buffer of 8 or 16 bytes
R3 = expansion card slot number

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SYC mode

SWI is re-entrant

This call reads an extended Expansion Card Identity into the buffer pointed
to by R2. If the IS bit is set (bit I of byte 1) then the expansion card also has
Interrupt Status Pointers, and these arc also read into the buffer.

If you do not know whether the card has Interrupt Status Pointers, you should
use a 16 byte buffer.

Podulc_ReadiD (SWI &40280)

None

Expansion Cards: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Podule EnumerateChunks
(SWI &40282)

Reads information about a chunk from the chunk directory

RO = chunk number (zero to start)
R3 = expansion card slot number

RO = next chunk number (zero if final chunk enumerated)

Rl =size (in bytes) ifRO ~0 on exit
R2 =operating system identity byte ifRO ~ 0 on exit
R4 = pointer to name if the chunk is a relocatable module, else preserved

Interrupt status is unaltered by the SWI, but may be altered by the loader
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

TI1is call reads information about a chunk from the chunk directory. It returns
its size and operating system identity byte. If the chunk is a module it also
returns a pointer to its name; this is held in the Expansion Card Manager's
private workspace and will not be valid after you have called the Manager
again ..

If the chunk is a Loader, then RISC OS also loads it.

To read information on all chunks you should set RO to 0 and R3 to the
expansion card's slot number. You should then repeatedly call this SWI until
RO is set to 0 on exit. RISC OS automatically docs this on a reset for all
cards; if there is a Loader it will be transparently loaded, and any chunks in
the code space will also be enumerated.

Related SWis Podule_ReadChunk (SWI &40283)

Related vectors None

Expansion Cards: SWI calls 1651

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1652

Podule ReadChunk
(SWI & 40283)

Reads a chunk from an expansion card

RO = chunk number
R2 =pointer to buffer (assumed large enough)
R3 =expansion card slot number

Interrupt status is unaltered by the SWI, but may be altered by the loader
Fast interrupts arc enabled

Processor is in SYC mode

SWI is not re-entrant

This call reads the specified chunk from an expansion card. The buffer must
be large enough to contain the chunk; you can use Podule_EnumerateChunks
(SWI & 40282) to find the size of the chunk.

Podule_EnumerateChunks (SWI &40282)

None

Expansion Cards: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Podule_ReadBytes
(SWI & 40284)

Reads bytes from within an expansion card's code space

RO = offset from start of code space
R 1 = number of bytes to read
R2 = pointer to buffer
R3 = expansion card slot number

Interrupt status is unaltered by the SWI, but may be altered by the loader
Fast interrupts are enabled

Processor is in SYC mode

SWI is not re-entrant

This call reads bytes from within an expansion card's code space. It does so
using repeated calls to offset 0 (read a byte) of its Loader.

RISC OS must already have loaded the Loader; note that this is done
automatically on a reset.

Related SWis Podule_ WriteBytes (SWI &40285)

Related vectors None

Expansion Cards: SWI calls 1653

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1654

Podule_WriteBytes
(SWI &40285)

Writes bytes to within an expansion card's code space

RO = offset from start of code space
Rl =number of bytes to write
RZ = pointer to buffer
R3 =expansion card slot number

Interrupt status is unaltered by the SWI, but may be altered by the loader
Fast interrupts arc enabled

Processor is in SVC mode

SWI is not re-entrant

This call writes bytes to within an expansion card's code space. It does so
using repeated calls to offset 4 (write a byte) of its Loader.

RISC OS must already have loaded the Loader; note that this is done
automatically on a reset.

Podule_ReadBytes (SWI & 40284)

None

Expansion Cards: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Calls an expansion card's Loader

RO • R2 =user data
R3 = expansion card slot number

RO • R2 =user data

Podule CallLoader
(SWI & 40286)

Interrupt status is unaltered by the SWI, but may be altered by the loader
Fast interrupts are enabled

Processor is in SYC mode

Depends on loader

This call enters an expansion card's Loader at offset 12. Registers RO · R2 can
be used to pass data.

The action the Loader takes will vary from card to card, and you should
consult your card's documentation for further details.

If you are developing your own card, you can usc this SWl as an entry point
to add extra features to your Loader. You may use RO • R2 to pass any data
you like. For example, RO could be used as a reason code, and Rl and R2 to
pass data.

Related SWis None

Related vectors None

Expansion Cards: SWI calls 1655

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1656

Podule RawRead
(SWI &40287)

Reads bytes directly within an expansion card's address space

RO = offset from base of a podulc's <~ddrcss space (0 ... & 3FFF)
R 1 = number of bytes to read
R2 = pointer to buffer
R3 = expansion card slot number

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call reads bytes directly within an expansion card's address space. It is
typically used to read from the registers of hardware devices on an expansion
card.

Podule_ReadBytes (SWI &40284) should be uf.Cd to read within the c;~rd's
code space.

Podule_RawWrite (SWI &40288)

None

Expansion Cards: SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Podule RawWrite
(SWI &40288)

Writes bytes directly within an expansion card's address space

RO =offset from base of a podule's address space (0 ... &JFFF)
Rl =number of bytes to write
R2 = pointer to buffer
RJ = expansion card slot number

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SYC mode

SWI is re-entrant

This call writes bytes directly within an expansion card's address space. It is
typically used to write to the registers of hardware devices on an expansion
card.

Podule_ WriteBytes (SWI &40285) should be used to write within the card's
code space.

Related SWis Podule_RawRead (SWI &40287)

Related vectors None

Expansion Cards: SWI calls 1657

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

1658

Podule HardwareAddress
(SWI &40289)

Returns an expansion card's base address, and the address of itS CMOS RAM

IU = expansion card slot number or expansion card base address

IU = combined hardware address

Interrupt status is unaltered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

This call returns an expansion card's combined hardware <1ddrcss:

Bits

0- 11
12- 25
26-31

Meaning

base address of CMOS RAM (4 bytes)
bits 12 - 25 of base address of expansion card
reserved

You can use a mask to extract the relevant parts of the returned value. The
CMOS address in the low 12 bits is suitable for p<1ssing directly to OS_Byte
161 and 162.

OS_Byte 161 and 162 (SWI &06)

None

Expansion Cards: SWI calls

*Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*PoduleLoad
Copies a file into the RAM area of an expansion card

*PoduleLoad <expansion card number> <filename> [<offset>)

<expansion card number> the expansion card's number, as given by
*Podules

<filename> a valid pathname, specifying a file
<offset> offset into space acccs.c;ed by Loader

*Poduleload copies the contents of a file into the RAM area of an installed
expansion card, starting at the specified offset. If no offset is given, then a
default value of 0 is used.

*PoduleLoad 1 $.Midi.Data 256

*Podules, *PoduleSave

Podule_ WriteBytes (SWI &40285)

None

Expansion Cards:· Commands 1659

Syntax

Parameters

Use

Example

Related commands

Related SWls

Related vectors

1660

*Podules
Tells you which expansion cards arc installed

*Podules

None

This command tells you which expansion cards are installed using the
description that each one holds internally. Some expansion cards, such as one
that is still being designed, will not have a dcl'cription; in this case, an
identification number is printed.

This command still refers to expansion cards as podules, to maintain
compatibility with the Arthur operating system.

*Podules
Podule 0: Midi and BBC I/O podule
Podule 1: Simple podule &8
Podule 2: No installed podule
Podule 3: No installed podule

None

Podulc_EnumeratcChunks (SWI &40282)

None

Expansion Cards: • Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*PoduleSave
Copies the contents of an expansion card's ROM into a file

*PoduleSave <expansion card number> <filename> <size>
[<offset>)

<expansion card number> the expansion card's number, as given by
*Podules

<filename> a valid pathname, specifying a file
<size> in bytes
<offset> offset into space accessed by Loader

*PoduleSave copies the given number of bytes of an installed expansion
card's ROM into a file. If no offset is given, then a default value of 0 is used.

*PoduleSave 1 $.Midi.Data 512 256

*Podules, *PoduleLoad

Podu le_Readl3ytes {SWI & 40284)

None

Expansion Cards: • Commands 1661

Example program

1662

This program is an example of how to combine the various parts of an
expansion card ROM. It also computes the header and Chunk Directory
structure. The file it outputs is suitable for programming into a PROM or
EPROM:

10 REM > &.arm.MidiAndi/O.Mid!Joiner
20 REM Author : RISC OS
30 REM Last edit : 06-Jan-87
40 PRI NT"Joiner for expansion card ROMs"'"Verslon 1 . 05 ."
50 I? RI NT"for Midi board.": ::>:)(Buffer% 300, Block\ ?0
70 INPUT'"Enter name of outpu: file : "OutNamcS
75 H\ ~OPENOUT(OutNameS)
80 If H\=0 THEN PRI NT"Could not create '";OutNameS;"' .": END
90 ONERRORONERRORO!'F':CLOSEIH\:RE:PORT: PRJNT" at line ";ERL: END

100 Device%=0:1\• TRUE:REPEAT
120 Max\=&800:REI(Max% is the size of the normal area
130 Low\ =&lOO:R EM Low\ is the size of the pseudo directory
140 Base\• O:REM The offset for file address calculations
150 Rom\=&4000:REM Rom\ is the size of BBC ROMs
170 PROCByte(O) :PROCHalf(3) :PROCHalf(19) :PROCBalf(O) : PROCByte(O)
180 PROCByte(O) :PROC3Byte (0) :PROCByte(O) :PROC3Byte(C)
190 IF' PTRIH\ <> 16 STOP
200 Bot\=PTRMH\:REM Bot\ is wr.ere the directory grows fro:n
210 Top\• Max\:REM Top\ is where normal files decend f~om

230 INPU1"'Enter filename of !oader : "LoaderS
240 I!' LoaderS <> "" THEN K\=FNAddFile(&80, LoaderS)
?.50 IF' K\ ELSE PRINT"No room for loader. ":

PTRtH\• Bot\:PROCByte(O) :CLOSE!H\:END
270 INPUTLINE'"Enter product description : "OatS
280 IF OatS<> ""THEN PROCAddS:~ing(&!'5, OatS I
300 PRINT:REPEAT
310 I NPUT"Enter name of (lle to add : "!'ile$
320 IF Fi le$<> ""THEN T\=FNType(FileS) ELSE T%=0
330 IF T\ • 0 ELSE K\=FNAdd!'llc(T%, FileS)
340 I!' K\ ELSE PRINT"No more room."
350 UNTIL (Fi l e$ • "") OR (K\=FALSE)
360 IF K\ ELSE PTRHI% • Bot%:PROCByte(O} :CLOSEJH%:END
370 IF L% PROCChange
390 l NPUTLINE.'•Enter serial numbP,r : "Da:S
400 IF OatS <> "" THEN PROCA String (H:, !)at$
410 INPUTLIX~"Enter modifica t on status : "OatS
420 IF Dat$ <> "" THEN PROCAddString (&F3, Cat$
430 INPUTLJNE"Enter p l ace of manufacture : "CatS
440 IF Oat$ <> "" ";P.F.N PROCAddString(&F4, DaL$)
450 INPUTLINE:"Enter pa~L number : "Oat$
460 I!' OatS <> "" 7P.EN PRO:::MdStrinq(&F6, CatS
480 DateS=TIMES
490 DateS=MIDS{Date$,5,2)•"-"+~IDS(DateS,8,3l+"-"+M lCS(CatcS ,l4, ?)

500 PROCAddSt~ing(&F2, DateS I
530 REM PROCHeader(&FO, 7.\+W\•Ro:::\-Base%, 0) :RFM J.1<'k
550 PTRIH\=Bot\:PROC3yte(0)
570 CLOSEIH\: END

Expansion Cards: Example program

590 DEF I?ROCByte(D\) : BPUTiii\,C\:ENDI?ROC
610 OEf PROCHalf(D\) : RPUTIII\ , D\:BPUT!H\,O\DIV256:P.NDPROC
630 DEf PROC3Byte(~\)
640 BPUTIH\, O\:BPUTfH\ , r.\DIV2~6 :3PU~ f H\, 0 \DIV65535 : ENr.PROC

660 DEF PROCWord (D\)
670 BPUTI H\, D\: BPUTIH\,O\DIV256 : B?UTI H\, D\ OIV65535
680 BPUTI H\, O\DTVJ6777216:ENDPROC
700 DEF PROCAddStrinq(T\ , SS)
710 S$•S$+CHR$0
720 IF L\ THEN PROCAddNorrnalStri ng F.l.SE PROCAddPsuedoString
730 ENDPROC
750 DEF PROCAddNormalStrlng
760 If Top\-Bot \ < lO+LEN(SS) TH£N STOP
770 I?ROCHeader(T\, Top\-LEN(SS)-Base\ , LF.N(S$))
780 Top\•Top\-LEN(S$) :PTRIH\ Top\: FOR I\•1 TO LEN(S$)
790 BPUT!ii\,ASC(MI DS(SS,l\,1)) :NEXTI\:ENDPROC
810 DEF PRDCAddPsuedoStrinQ
820 If Max\+Low\-Bot\ < 9 THEN STO?
830 PROCHeader(:\, :op\-Base\, LEN(SS)
840 PTRf H\ •Top\ : FCR ; \ •' TO ~E~(S$)
850 BPUT t H\,ASC(MIDS(SS, I \,1)) :NEXT:\
860 Top\ Top\+LEN(SS): ENDPROC
880 DEr PROCHeade.r(Typl'\, Address\, Slze\
890 PTRfH\•Bot \
900 PROCByte(Type\
910 PROC3Byte(Size\ l
920 PROCWord(Address\
930 Bot\•Bot \ +8 :ENDPROC
950 DEF FNAddFile(T\, N$
960 f\ • OPENIN(NS)
970 rr f \ •0 THEN PRTNT"rl l r '";XS;'" not found.": •f'll:.sl:
980 S\~EXTIF\

990 If L\ THEN •FXAdd~or~a!F!le ELSE ·F~AddPsueooF!le
1010 DEF FNAddNormalflll'
1020 E\ •S\ +9- (Top \ -Bot\)
1030 IF E\>0 THEN PRJNT "Ovl'rBI7e by "; E\;" bytes."':

PROCChange: • f'NIIdd? SllN1nF' i; e
1040 PROCHeader(T\ , Top\-S\-flasc\, S\)

1050 Top\ Top\-S\: PTRI H\ Top\ : fOR : \ • 1 TO S\
1060 BPUT IH\, BGETIF\: NF.XTI\ : CLOSE I F\: •TRUt.
1080 DEr fNAddPsueooF'le
1090 If Max\+Low\-Bot\ < 9 Tli~X Flll.St;
1100 PROCHoader (T%, Top' ·Base\, S\)
1110 PTRIII\ Top\
1120 !'OR I\ 1 TO S\:BPUTIIl\,BG2:tF'\:Nt:XTI \
'130 Top\ •Top\ +S\ : CLOSEI F\: •TRUL
1150 DEf PROCChange
1160 PRINT"Changlng ;.op. ~ Js~:r.q "; Top\-Bot\ ;" byt<'s."
1170 PTRIH\•Bot\:PROCTlytf'(O) :RF:M '!"ermlnatc bottom d ! r<'<' ~ory

1180 Bot\ Max\:Top\ •Max\ll ow\:Base\=Max\: L\ =FALS£
1190 REM In the pseudo •lr<'•1 f i lcs qrow •Jpward from Top\
1200 ENDPROC
1220 DEF FNType(NS l

Expansion Cards: Example program 1663

1664

1230 SButtcr\•NS:X\=Block\:Y\•X\/256:A\•5:X\!O•Bu!!cr\
1240 B\ •USR&FFDD:IF (B\AND255) <> 1 THEN PRINT"Not a tllc":•O
1250 V\•(Block\ !3)AND&fffffF
1260 IFV\•&FFFFFA THEN • &81
1210 IF((Biock\!2AND&FFFF)•&8000)ANO((Block\!6ANO&FFFF)•&8000)THr.N•&82
1280 IFV\•&FFFFF9 THEN • &83
1290 •0

Expansion Cards: Example program

International module

Introduction The International module allows the user to tailor the machine for use in
different countries by setting:

• the keyboard- the mapping of keys to character codes

• the alphabet - the mapping from character codes to characters

• the country - both of the above mappings.

This module, in conjunction with the RISC OS kernel, controls the selection of
these mappings, but it allows the actual mappings to be implemented in other
modules, via the service mechanism. Thus, you could write your own
international handlers.

Each country is represented by a name and number. The keyboard shares this
list, and is normally on the same setting. However, there are cases for the
country and the keyboard to be different. For example, the Greek keyboard
would not allow you to type * Commands, because only Greek characters
could be entered. In this case, the country could remain Greek, while the
keyboard setting is changed temporarily for* Comm:mds.

Each alphabet is also represented by a name and number. A country can only
have one alphabet associated with it, but an alphabet can be used by many
countries. For example, the Latinl alphabet contains a general enough set of
characters to be used by most Western European countries.

International module: Introduction 1665

Overview and
Technical Details
Names and numbers

Countries and keyboards

1666

Country numbers range from 0 to 99, and alphabet numbers are from 100 to
126. Here are lists of the currently available countries and alphabets.

Here is a list of the currently-defined country and keyboard codes (provided
by the international module), and the alphabets they use:

Code

0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Country and
Keyboard

Default

UK
Master
Compact
Italy
Spain
France
Germany
Portugal
Esperanto
Greece
Sweden
Finland
(not used)
Denmark
Norway
Iceland
Canada!
Canada2
Canada
Turkey
Arabic
Ireland
Hong Kong

Alphabet

Selects the configured country. If the
configured country is 'Default', the keyboard
ID byte is read from the keyboard

Latini
BFont
BFont
Latini
Latini
Latini
Latini
Latini
Latin3
Greek
Latini
Latini

Latini
Latini
Latini
Latini
Latini
Latin!
LatinJ
Special - ISO 8859/6
Latini
Not defined at time of going to press

International module: Overview and Technical Details

Alphabets

Alphabet

Keyboard

80
81
82
83

1501
1502
1503
1504

Latini
Latin2
Latin3
Latin4

Here is a list of the alph<Jbet codes currently defined, provided by the
international module:

Code Alphabet

100 BFont
101 Latini
102 Latin2
103 Latin3
104 Latin4
107 Greek

OS_Byte 71 (SWI &06) reads or sets the alph<~bet by number. • Alphabet
can also set the alphabet by name. •Aiph<~bcts lists all the available
alphabets on the system. Remember that you should normally only need to
change the country setting as this will also change the alphabet.

Usc OS_ServiceCall &43,1 (SWI &30) to convert between alphabet name
and number forms and OS_ScrviceCall &43,3 to convert from alphabet
number to name forms.

OS_ServiccCall &43,5 causes a module which recognises the alphabet
number to define the characters in an alphabet in the range specified, by
issuing VDU 23 commands itself. The call is issued by the OS when OS_Byte
71 is called to set the alphabet and also by OS_Byre 20 and 25.

OS_Byte 71 can also be used to read or set the keyboard number. •Keyboard
can set it as well. Remember that you should normally only need to change
the country setting as this will also change the keyboard.

When the keyboard setting is changed, by either of the above ways, an
OS_ServiceCall &43,6 will be generated automatically. This is a broadcast to

all keyboard handler modules that the keyboard selection has changed.

International module: Overview and Technical Details 1667

Country

Service calls

1668

Setting the country will set values for the alphabet and the keyboard. You
should not usually have to override these settings. The country number can be
read or set with OS_Byte 70. OS_Byte 240 can also read it. *Country can set
the country by name. *Countries will list all the available country names.
*Configure Country will set the default country by name and store it in
CMOS RAM.

Use OS_ServiceCall &43,0 to convert between country name and number
forms and OS_ServiccCall &43,2 to convert from country number to name
forms.

To get the defaul t alphabet for a country, OS_ServiceCall &43,4 can be
called. Remember that the default keyboard number is the same as the
country number.

RISC OS provides service calls for the use of any module that adds to the set
of international character sets and countries. These are described in the
chapter entitled Modules.

International module: Overview and Technical Details

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Read/write country number

RO = 70 (&46) (reason code)
R 1 = 127 to read or country number to write

RO is preserved
Rl =country number read or before being overwritten,

or 0 if invalid country number passed
R2 is corrupted

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 70
(SWI &06)

This call returns or sets the country number used by the international module.

OS_Byrc 240 (SWI &06)

ByteV

International module: SWI Calls 1669

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

1670

Read/write alphabet or keyboard

RO = 71 (&47) (reason code)
R1 = 0-126 for setting the alphabet number

OS_Byte 71
(SWI &06)

127 for reading the current alphabet number
128-254 for setting the keyboard number (Rl-128)
2.55 for reading the current keyboard number

RO is preserved
R1 =alphabet or keyboard number read or before being overwritten,

or 0 if invalid value passed
R2 is corrupted

Interrupt status is not altered
Fast intemJpts are enabled

Processor is in SVC mode

Not defined

This call returns or sets the alphabet or keyboard number used by the
international module. Their settings can be read without altering them, or you
can set a new value for either. This SWI will return a zero if the value passed
to set the new value is not one of the known alphabets or keyboards.

Note that the keyboard setting is offset by 128. eg. to set keyboard 3, you must
pass 131 in Rl.

OS_Byte 70 (SWI &06)

ByteV

International module: SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Read country number

RO = 240 (&FO) (reason code)
Rl=O
R2 = 255

RO is preserved
R 1 = country number
R2 = user flag (see OS_Byte 241)

Interrupt status is not altered
Fast interrupts are enabled

Processor is in SVC mode

Not defined

OS_Byte 240
(SWI &06)

This call returns the country number used by the international module.

OS_Byte 70 (SWI &06)

ByteV

International module: SWI Calls 1671

*Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1672

*Alphabet
Selects nn alphabet

*Alphabet [<country name> I <alphabet name>)

<country name>

<alphabet name>

Sec the *Countries command for a list of countries
availahlc

Sec the *Alphabets commnnd for a list of alphabets
avaibhle

*Alphabet sets the alphabetical set of characters according to the country
name or alphabet name.

The *Alphabet command with no parameter displays the currently selected
alphabet.

*Alphabet Latin3

*Alphabets

OS_Byte 71 (SWl &06)

None

International module: ·commands

Syntax

Use

Example

Related commands

Related SWis

Related vectors

*Alphabets
List all the alphabets installed

*Alphabets

*Alphabets lists all the alphabets current!) supported by your Acorn
computer. Use the * Alphaber command to change the alphabetical set of
characters.

*Alphabets
Alphabets:
BFont Latinl Latin2 Latin3 Latin4 Greek

*Alphabet

OS_Byte 71 (SWI &06)

None

International module: ·commands 1673

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1674

*Configure Country

Sets the default alphabet and keyboard

*Configure Country <country name>

<country name> Valid countries are currently Canada, Canadal,
Canada2, Compact, Default, Denmark, Esperanto,
Finland, France, Germany, Greece, Icel;md, I SOl,
lraly, Master, Norway, Portugal, Spain, Sweden, and
UK. A list of parameters can be obtained with the
*Countries command.

*Configure Country sets the appropriate default alphabet and keyboard
layout. For some countries you also need to lood a relocatable module to
define the keyboard layout. If the configured country is Default, then the
keyboard 10 byte (read from the keyboard) is used as the country number,
providing it is in the range 1 - 31. Current UK keyboards return keyboard
lD 1, which corresponds to country UK.

*Configure Country Italy

*Country, *Countries

OS_Bytes 70 and 240 (SWl &06)

None

International module: ·commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Country

Sets the appropriate alphabet and keyboard layout for a given country

*Country [<country name>]

<country name> Usc the *Countries command for a list of countries
available.

*Country sets both the appropriate alphabet and keyboard layout for a
particular country; for example, *Country UK selects the Latin I alphabet and
the UK keyboard layout. *Alphabet and *Keyboard can, however, be used to
set the alphabet and keyboard layout independently, leaving the setting for
country unchanged.

The *Country command without a parameter displays the currently selected
country.

*Country Italy

*Configure Country, *C,..ountrics, *Alphabet, *Alphabets, *Keyboard

OS_Bytes 70 and 240 (SWI &06)

None

International module: ·commands 1675

Syntax

Use

Example

Related commands

Related SWis

Related vectors

1676

*Countries
Lists the available countries

*Countries

*Countries lists the countries that arc available on the modules currently in
the system ..

*Countries
Countries:
Default UK Master Compact Italy
Germany Portugal Esperanto
Norway Iceland Canadal Canada2 Canada

Spain
Greece
I SOl

*Configure Country, *Country, *Alphabet,* Alphabets, *Keyboard

OS Bytes 70 and 240 (SWI &06)

None

France
Sweden

International module: ·commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

*Keyboard
Selects the keyboard driver for a given country

*Keyboard [<country name>)

<country name>thc name of an available country (sec *Countries)

Selects a keyboard driver for a particular country. *Keyboard without a
parameter displays the currently set keyboard.

*Keyboard Denmark

*Country

OS_Byte 71 (SWI &06)

None

International module: *Commands 1677

1678 International module: ·commands

Debugger

Introduction

Debugger: Introduction

The debugger is a module that allows program to be stopped at set places
called breakpoints. Whenever the instruction that a breakpoint is set on is
reached, a command line will be entered. From here, you can type debug
commands and resume the program when you want.

Other commands may be called at any time to examine or change the values
contained at particular addresses in memory and to list the contents of the
registers. You can display memory as words or bytes.

There is also a facility to disassemble instructions. This means converting the
instruction, stored as a word into a string representation of its meaning. This
allows you to examine the code anywhere in readable memory.

1679

Technical Details

1680

The debugger provides one SWI, Dtbu~ger_Di~a~scmblc (SW! &40380),
which will disassemble one instruction. There nrc also the following
*Commands·

Command

*13rcakCir
*Break List
*BreakSet
*Continue
*Debug
*lnitStorc
*Memory
*Memory A
*Memory!
*Show Regs

Description

Remove breakpoint
List currently set breakpoints
Set a breakpoint at a given address
Start execution from a breakpoint saved state
Enter the debugger
Fill memory with given data
Display memory between two nddresses/register
Display and alter memory
Disassemble ARM instructions
Display registers caught by traps

When an address is required, it should be given in hex, without a preceding
&. That is, unlike most of the rest of the system, the debugger uses hex as a
default base rather than decimal.

*Quit should be used to return from the debugger to the previous environment
after a breakpoint. This is described in the chapter entitled Program
Environment.

Note that the breakpoints discussed here are separate from those caused by
OS_BreakPt. See the chapter entitled Program Em•ironment for derails of this
SWI.

When a breakpoint is set, the previous contents of the breakpoint address are
replaced with a branch into the debugger code . . This means that breakpoints
may only be set in RAM. If you try to set a breakpoint in ROM, the error
Bad breakpoint address will be given.

When a breakpoint instruction is reached, the debugger is entered, with the
prompt Debug*, from which you can type ;my *Command. An automatic

register dump is also displayed.

Debugger: Technical Details

SWI Calls

On entry

On exit

Interrupts

Processor Mode

Re-entrancy

Use

Related SWis

Related vectors

Debugger: SWI Calls

De bugger_Disassemb le
(SWI &40380)

Disassemble an instruction

RO = instruction to disassemble
R 1 = address to assume the word came from

RO = preserved
Rl = address of buffer containing null-terminated text
R2 =length of disassembled line

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

RO contains the 32-bit instruction to disassemble. R I contains the address to
assume the word came from, which is needed for instructions such as B, BL,
LOR Rn, [PC ...), and so on. On exit, Rl points to a buffer which contains a
zero terminated string. This string consists of the instruction mnemonic, and
any operands, in the format used by the *Memoryl instruction. The length in
R2 includes the zero-byte.

None

None

1681

*Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1682

*BreakClr
Remove a breakpoint

*BreakClr [<addr> l <reg>)

<addr> address to clear breakpoint in hex

<reg> register value to clear breakpoint

Allowed register names arc rO- rl5, sp (equivalent to rl 3),
lr (rl 4 without the psr bits) and pc (rlS without the psr bits).
T hese arc taken from the current ExccprionDumpArea.

*BrcakCir removes the breakpoint at the specified address/register value,
putting the original contents back into that location. You can unset the last hit
breakpoint with the command *BreakClr pc

If no parameter is given then you can remove all breakpoints - you will be
prompted:

Clear a l l breakpoints [Y/<anything>J?

*BreakClr 7FF6B

*BreakSct, *BreakList

None

None

Debugger: ·commands

Syntax

Use

Example

Related commands

Related SWis

Related vectors

Debugger: ·commands

*BreakList
List all breakpoints

*BreakList

*BrcakList lists all the breakpoints that are currently set with *BrcakSet.

*BreakList
Address Old Data
00008704 EF00141C

*BccakSct

None

None

1683

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1684

*BreakSet
Set a breakpoint

*BreakSet <addr>l<reg>

<addr>

<reg>

address to set breakpoint in hex

register value to set breakpoint

Allowed register names are rO - r15, sp (equivalent to r13),
lr (rl4 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.

*BreakSet sets a bre<~kpoint at the address or register value given, so that
when the code is executed and the instruction <~t that address is reached,
execution will be halted.

When a breakpoint is set, the previous contents of the breakpoint address are
replaced with a branch into the debugger code. This means that breakpoints
may only be set in RAM . If you try to set a breakpoint in ROM, the error
Bad breakpoint address will be given.

*BreakSet 16650

*BreakCir, *BreakList

None

None

Debugger: ·commands

Syntax

Use

Related commands

Related SWis

Related vectors

Debugger: ·commands

*Continue
Resume execution after a breakpoint

*Continue

•Continue starts execution from the breakpoint saved state. If there is a
breakpoint at the continuation position, then this prompt is given:

Continue from breakpoint set at &00008704
Execute out of line? [Y/<anything>]?

Reply 'Y' if it is permissible to execute the instruction at a different address
(ie it does not refer to the PC). If the instruction that was replaced by the
breakpoint contains a PC-rclative reference (eg LDR RO, label or an ADR

directive), then you should reset the break point before continuing. This causes
the instruction to be executed in-line, otherwise the wrong address is
referenced.

None

None

None

1685

Syntax

Use

Related commands

Related SWis

Related vectors

1686

Enter the debugger

*Debug

This command enters the debugger. A Debug* prompt is given.

*Debug

Use Escape to rerum to the caller, or *Quit to exit to the caller's parent.

*Quit is documented in the chapter entitled Program Ent-ironment.

*Quit

None

None

Debugger: ·commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

Debugger: ·commands

*lnitStore

Fill user memory with a value

*InitStore [<value>l<reg>]

<value>

<reg>

word to fill user memory with

register value to fill memory with

Allowed register names are t0- rlS, sp (equivalent to rl3),
lr (rl4 without the psr bits) and pc (rlS without the psr bits).
These are taken from the current ExceptionDumpArea.

*lnitStore fills user memory with the specified data or the value &E1000090
(which is an illegal instruction) if no parameter is given. If you give this
command from within an application (eg BASIC), the machine will crash, and
will have tc. be reset.

*InitStore &381E6677

None

None

None

1687

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1688

*Memory

Display values in memory

•Memory (B) <addrl>l<regl> or
or •Memory (Bl <addrl>l<rcgl> [tl -)<addr2>1<reg?>

•Memory (B) <addrl> <reg!> •t -<addr,>t<reg2> •<addr3>t<reg3>

B

<addrl>l<regl>

<addr2> 1<reg2>
<addr3>1<reg3>

optionally display as bytes
address or register value for smrt of display

an address or register value

an address or register value

Allowed register names arc r{)- r15, sp {equivalent
co r13), lr {r14 without the psr bits) and pc {r!S
without the psr bits). These arc taken from the
current ExccptionDumpArca.

*Memory displays the v:tlues in the memory in words from the address given
either explicitly or contained in a register.

If only one address is given 256 bytes arc displayed.

If two addresses are given addr2 specifics the end of rhe range to be
displayed {as an offset from addrl).

If three addresses arc given, addr2 specifics an offset for the start from
addrl, and addr3 specifics the end of the range to be displayed {as an
offset from the combined address given by addrl and addr2).

If the optional B is given after the command but before the start address, the

display is byte-oriented, with 16 bytes per line. If it is omitted, the display is
word-oriented, with four words per line:

*Memory 1000-200 +500 Displaymcmoryfrom&800to &l300

*MemoryA, *Memory!

None

None

Debugger: ·commands

Syntax

Parameters

Use

Example

Related commands

Debugger: · commands

*Memory A

Display and alter memory

*MemoryA [B) <addr/regl> [<data>l<reg2>)

B

<addrl/regl>
<data>

<reg2>

optionally display as bytes

an address or register value
a value to write into the specified location

register containing value to write

*MemoryA displays and alters the memory in bytes, if the optional I3 is
given, or in words otherwise. It starts at the addrcs.~ given absolutely or within
a register. If no further parameters arc given, interactive mode is entered
where the following may be typed:

Return

+

<hex digits>

to go to 'next' location
to step backwards in memory
to step forwards in memory
to alter a location and pr0eced
to exit.

At each line, something similar to the following is printed:

+ 000087AO : ecce
Enter new value

xxxxxxxx : opcode

where the '+' is the direction in which Return steps (it is '-' for backwards).
Next is the address of the word/byte being altered, then the four characters in
that word, then the current hexadecimal value of the word, and finally the
instruction at that address.

In byte mode, it looks like this:

+ 000087Al : C : XX

Alternatively you can give the new data value on the line after the address.

*MemoryA 87AO 123456578

*Memory, *Memory!

1689

Related SWis

Related vectors

1690

None

None

Debugger: ·commands

Syntax

Parameters

Use

Example

Debuqger: *Commands

*Memory!
Disassemble memory

*Hemoryi <~ddrl>l<regl>

•Hemoryi <addrl>l<regl> (+1-l<addr2>1<req2>

•Hemoryl <addrl>l<regl> +l-<addr2>1<req2> •<addr3>1<reg3>

8

<addrl>l<regl>
<addr2>1<reg2>
<addr3>1<reg3>

optionally display as bytes
address or register value for start of display
an address or register value
an address or register value

or
or

Allowed register names arc r{) • rl5, sp (equivalent
to rl3), lr (r14 without the psr bi~s) and pc (rl5
without the psr bits). These are taken from the
current ExceptionDumpArea.

*Memory! disassembles memory from the address given either explicitly or
contained in a register.

If only one address is given 25 instructions are disassembled.

If two addresses are given addr2 specifics the end of the range to be
disassembled (as an offset from addrl).

If three addresses are given, addr2 specifies an offset for the start from
addrl, and addr3 specifics the end of the range to be disassembled (as an
offset from the combined address given by addrl and addr2).

These options are particularly useful for disn~sembling modules which
contain offsets, not addresses.

•modules

32 01828F34 01829004 ColourTrans

•momoryl 01828!34+28
01828F34 : 00000000
01828F38 ~... 000001C8
01828FJC 000001 80

AND EO
AN OE:Q
MU LEQ

RO,RO,RO
RO, RO, R8,ASR 13
RO, RO, Rl

01828F40 00000260 ANDEQ RO,RO,RO,ROR f4
01828F44 (... 000000?8 ANDEQ RO,RO,RB,LSR 132

Find address of module

Disassemble header

1691

01828F~8 4 ••• CCOOOC34
Ol828nc c::oo::::oo
Ol878FSC @ ••• CC04C740
01828F5~ _ c:::oo~'9a

01818F58 w •.• ccoo:cs7

llt::-:cmoryl 018/8f34 298·~0
018291CC ?~ E33!'fC03
01829100 .C-l! E:92C~300
01829104 .I h E1A0800B
01829108 ".:. a E3A09022
018791DC 4 ••• £F020034
018/91!:0 . c e E8BD4300
018291E4 .a.rc 638EE701
018291£8 ' A E!BC!'OOF:
018791EC .@ ~ E8B::>4000
018291FO .. X:J ::3580011
01829JF4 -~.:.· aoernc8
01829lf8 ••• El EAC30010
018291FC ,il. .. c EACOOC9l
01829200 I .. El EACCOOA6
018/9/04 w .. a EA000057
018/9/08 s .. e EA000035

Related commands *MemoryA, *Memory!

Related SWis None

Related vectors None

1692

A-.:~so

A-.:0"0
A"oro
"Jl.FO
A'I')FQ

TF.QP
STMD R
Y.CV

~cv

SWI

LDMTA
ORRVS

tJ:CVS

LDMTA
C'l?
ADOLT

: fl
: B
: B
: B

: B

RO , RO,R4,:.SR ;l0
RO,RO,i'lC

f ._, Offset of SWI handler is RO,R4,RC,ASR ,
RO, R8, R2 &0298
RO, RO, R 7, ASR 'lO

Oisas..~cmblc SWI handler
PC,H 3
Rl 3! , I RB , R 9 , R: 4}
RB,Rl l
R9,1&22
XOS Ca 1 :AVec~ or

R13!,{RB,R9, '<Hr
Rl4 , Rl4,f&lCOCCOO~

PC,R:"
Rl3!, {R:4}

R8, "11
PC,PC,RB ,t.s:. t:>
&01829240
&018/9448
&018/94AO
&018/9368
&0 ' B/9/F.4

•17

Debugger: · commands

Syntax

Use

Example

Related commands

Related SWis

Related vectors

Debugger: ·commands

*Show Regs
Display register contents

*ShowRegs

*ShowRegs displays the registers caught on one of the five following traps:

• unknown instruction

• address exception

• data abort

• abort on instruction fetch

• breakpoint .

It also prints the address in memory where the registers are stored, so you can
alter them (for example after a breakpoint) by using *MemoryA on these
locations, before using *Continue.

*ShowReqs
Register dump (stored at &01804D?C) Is:
RO • 0026D2Cf Rl = 002483Cl R2 • 00000000 R3
R4 • 00000000 R5 z 52491ACE R6 = 42538ff0 R7

o~cooooo

7635 9801::
R8 • B278A456 R9 • C267lD37 RIO = A72834DC Rll = 8763702f
R12 • 00004000 Rl3 • 2538CAf0 R14 z 24368000 RlS = 76290100
Mode USR flags set : nzcvlf

None

None

None

1693

1694 Debugger: *Commands

Floating point emulator

Introduction Certain Acorn RISC machines support a general co-processor interface. The
optional hardware floating point co-processor (contact your supplier for
availability) performs floating point calculations to IEEE standard 754.

RISC OS also contains a floating point software emulator module which
provides floating point support. The instructions it provides may be
incorporated into any assembler text, provided they are called from user
mode. However, these instructions arc not supported by the BASIC interpreter.

Because this module doesn't present any SWis or other usual interface to
programs (apart from a SWl to return the version number), it is structured
differently from the others. First, there is a discussion of the programmer's
model of the IEEE 754 floating point system. This is followed by the floating
point instruction set. Finally the SWI is derailed.

Note that the floating point co-processor only directly supports a sub-set of
the instruction repertoire, the remainder still being emulated in software,
which also range-reduces trigonometric function arguments before they are
executed by the hardware.

Generally, programs do not need to know whether a co-processor is fitted; the
only effective difference is in the speed of execution. Note that there may he
slight variations in accuracy between hardware and software - refer to the
instructions supplied with the co-processor for details of these variations.

Floating point emulator: Introduction 1695

Programmer's
model

Precision

The ARM IEEE floating point system has eight 'hil!h precision' floating point
registers, FO to F7. The format in which numbers arc stored in these registers
is not specified. Floating point formats only become visible when a number is
transferred to memory, using one of the precisions described below.

There is also a floating point status register. This is used to hold flags which
indicate various error conditions, such as overflow :md division by zero. Each
flag has a corresponding mask, which can be u~d to enable or disable a
'trap' associated with the error condition.

All basic floating point instructions operate as though the result were
computed to infinite precision and then rounded to the length and in the way
specified by the instruction. The rounding is selectable from:

• Round to nearest

• Round to +infinity (P)

• Round to - infinity (M)

• Round to zero (Z).

The default is 'round to ncarcH'. If any of the others is required they must be
given in the instruction.

The working precision of the system is 80 bits, comprising a 64 bit mantissa, a
15 bit exponent and a sign bit.

Like the ARM instructions, the floating point data processing operations refer
to registers rather than memory locations. Values may be stored into ARM
memory in one of four formats:

• The exponent uses excess n notation, where n is dependent on the format

• single and double precision have an implied I to the left of the binary
point, except when the exponent is zero - at this point underflow starts to
take over (see UFL)

~ 696 Floating point emulator: Programmer's model

IEEE Single Precision (S)

31 30 23 22 0

Sign I Exponent msb Fraction lsb

IEEE Double Precision (D)

31 30 20 19 0

First word Sign I Exponent I msb Fraction lsb

Second word msb Fraction Ish

Double Extended Precision (E)

31 30 1615 14 0

First word Sign I zeros I Exponent

Second word J I msb Fraction Ish

Third word msb Fraction Ish

J is one bit to the left of the binary point

Storing a floating point registe r in 'E' format is guaranteed to maintain
precision when loaded back into the floatinr: point system in this format.
However, note that the above layout will ¥ary on future floating point systems,
so software should not be written to depend on it.

Floating point emulator: Programmer's model 1697

Floating point status
register

1698

Packed Decimal (P)

31 ... 0

First word sign e3 e2 c1 eO dl8 dl7 dl6

Second word dl5 d14 d13 dl2 dll diO d9 d8

Third word d7 d6 dS d4 d3 d2 dl dO

Value is:

+/-d * 10" (+/-c)

dl8 or e3 is the most significant digit. Sign contains both the number's sign
(top bit) and the exponent's sign (next bit). The other two bits arc zero.

The value of 'd' is arranged with decimal point hctween d18 and d17 and is
normalised so that for a normal number I <=d 18<~9. The guaranteed ranges
for 'd' and 'e' arc 17 digits and 3 digits rc~pcctivcly: e3 and dO, d I may
always be zero.

A single precision number has a maximum exponent of 53 and 9 digits of
significance; a double precision number has a m:~ximum exponent of 340 and
17 digits of significance. The result when the packed values arc &A through
&F is undefined. Zero will always be stored as +:ero, but either +0 or --0
may be loaded.

There is a flo:>ring point status register (FPSR) which, like ARM's combined
PC and PSR, has all the necessary srntus for the floating point system. The
FPSR contains the IEEE flag~ but not the rc~ul t flags - these arc only
available after floating point comp:~rc operations.

Each IEEE flag denotes a possible error condition. There is a corresponding
'trap' or interrupt enable flag for each one. If the trap is enabled, then the
error condition will cause execution to stop with an error; otherwise a special
result (eg not-a-number or infiniry) is returned.

Floating point emulator: Programmer's model

IVOflag

REM flag

DVZ flag

OFL flag

The flags contained in the status register are as follows:

IVO- invalid operation

The IVO is set when an operand is invalid for the operation to be performed.
Invalid operations are:

• Any operation on something a NAN (not-a-number)

• Magnitude subtraction of infinities eg +infinity +-infinity

• Multiplication of 0 by an infinity

• Division of 0/0 or infinity/infinity

• x REM y where xis infinity or y is 0

• Square root of any number less than zero (but SQR(-0) is -0)

• Conversion to integer or decimal when overflow, infinity or operand not
being a number make it impossible.

• Comparison with exceptions of unordered operands.

• ACS, ASN when argument's absolute value is > 1

• SIN, COS, TAN when argument is infinite

• LOG, LGN when argument<= 0

REM is the 'remainder after floating point division' operator.

DVZ - division by zero

If the divisor is zero and the dividend a finite, non-zero number then this
exception occurs, or a correctly signed infinity is returned if the trap is
disabled.

OFL - overflow

The OFL is set whenever the destination form:1t's largest finite number is
exceeded by the result after rounding has taken place. As overflow is
detected after rounding a result, whether overflow occurs or not (after some
operations) depends on rounding mode.

Floating point emulator: Programmer's model 1699

UFL flag

INX flag

1700

The untrappcd result returned is the correctly si,::ned infinity, independent of
the rounding mode - overflow can be seen as a signal that an infinite result
has been generated from an operation on finite values.

UFL - underflow

The UFL is set whenever a result is so tiny that it is rounded to zero, but has a
non-zero value. As underflow is detected after rounding a result, whether
underflow occurs or not after some operations depends on rounding mode.

The untrapped result returned is zero, with the sign set to that of the non-zero
value.

INX - inexact

The INX is set if the rounded result of an operation is not exact (different
from the value computable with infinite precision) or overflow has occurred
while the OFL trap was disabled. If there is no tl"dp the result will be used
directly. OFL or UFL traps rake precedence over INX. INX will also be set
when computing SIN or COS or TAN of values lar,::er than 10"20 (ie values
for which the multiple of PI ranging gives a useless answer). Different
floating point implementations may vary in their use of the INX bit, so it is
not recommended to construct software depending on this feature.

For each flag, there are two bits of the instruction dedicated to it:

31.. 21 20 19 18 17 16 155 4 3 2 I 0

I INxl uFLI OFLI ovzl Ivol I INX I UFL I OFLI ovzl Ivg

Interrupt Masks Cumulative Flags

Whenever the appropriate condition arises, the cumulative fl ags in bits 0 to 4
are set. They can only become cleared by a WFS instruction. If the relevant
interrupt mask is set, then the same condition that sets the cumulative flags
also causes an exception type error (bit 31 set) to be deli vercd to the
program. The floating point system provides the exception routine with a word
indicating (in the same position as the cumulative flags) which floating point
exception occured.

Floating point emulator: Programmer's model

The instruction
set
Co-Processor data
transfer

op<cond>prec

op
addr
prec

Fd, addr

is LDF for load, STF for store
is fRnl<, #offset> or [Rn ,#offset)<!>

is the precision denoted by the letterS, D. E or P
(sec below)

The bit format of the instruction is:

31....28 27 ... 24

Cond 110P I
p

U/D
YX
Wb
L/S
Rn
Fd
offset

23 22 21 20 19 16 15 ... 12 11....8 7 0

U/DI y I Wb I L/S Rn X Fd I 0001 I offset I

is pre- or post-indexed addressing
is positive/negative offset
is the precision
is write-back (pre-indexed only)
is load or store
is the ARM base address register
is the FPU source/destination register
is the scaled offset

Load (LDF) or store (STF) the high precision value into one of the four
memory formats. On store, the value is rounded using the 'round to nearest'
rounding method to the destination precision, or is precise if the destination
has sufficient precision. Rits 22 and 15 are set from the precision letter, and
determine the precision, as follows:

Precision Letter y X

Single s 0 0
Double D 0 1
Extended E 1 0
Packed BCD p 1

The offset is in words from the ARM base register, and IS m the range -1020
to + 1020. It is added to the base register in pre-indexed mode if write-back is
specified, and always in post-indexed mode.

Floating point emulator: The instruction set 1701

Co-Processor data
operations

1702

The formats of these instructions arc:

binop<cond>prec<round>Fd, Fn, (Fm I #value)
unyop<cond>prec<round>Fd, (Fm I #value)

binop
unyop
Fd
Fn

is one of the binary operations listed below
is one of the unary operations.
is the FPU destination register
is the FPU source register (binops only)
is the FPU source register Fm

#value is the immediate operand, as an alternative to Fm

The binops are:

*ADF Add:
*MUF Multiply:
*SUF Sub:
*RSF Reverse Subtract:
*DVF Divide:
*RDF Reverse Divide:
POW Power:
RPW Reverse Power:
*RMF Remainder
*FML Fast Multiply:
*FDV Fast Divide:
*FRD Fast Reverse Divide:
POL Polar angle (ArcTan2):

The unops are:

MVF Move:
MNF Move Negated:
ABS Absolute value:
RND Round to integral value:
*SQT Square root:
LOG Logarithm to base 10:
LGN Logarithm to base c:
EXP Exponent:
*SIN Sine:
•cos Cosine:
TAN Tangent:

Fd := Fn + Fm
Fd := Fn * Fm
Fd := Fn- Fm
Fd := Fm-Fn
Fd := Fn/Fm
Fd:=Fm/Fn
Fd := Fn to the power of Fm
Fd := Fm to the power of Fn
Fd :=remainder of Fn I Fm
Fd := Fn * Fm
Fd := Fn /Fm
Fd := Fm /Fn
Fd := polar angle of (Fn, Fm)

Fd := Fm
Fd := -Fm
Fd := ABS (Fm)
Fd := integer value of Fm
Fd := square root of Fm
Fd := logten of Fm
Fd :=loge ofFm
Fd := e to the power of Fm
Fd :=sine ofFm
Fd := cosine of Fm
Fd := tangent of Fm

ope ode
00000
00010
00100
00110
01000
01010
01100
01110
10000
10010
10100
10110
11000

00001
00011
00101
00111
01001
01011
01101
01111
10001
10011
10101

Floating point emulator: The instruction set

Co-Processor register
transfer

ASN Arc Sine:
ACS Arc Cosine:
*ATN Arc Tangent:

Fd := arcsine of Fm
Fd := arccosine of Fm
Fd :=arctangent of Fm

* Supported by floating point co-processor (if fitted)

10111
11001
11011

Note that wherever Fm is mentioned, a floating point const'.mt could be used
instead.

FML, FRO and FDV produce a result only accurate ro single precision.

Final rounding is done only at the last stage of a SIN, COS etc - the
calculations to compute the value are done with 'round to nearest' using the
full working precision.

The binary format of the instruction is:

31.. .. 28 27 ... 24 23 ... 20 19 .. .16 15 ... 12 11 ... 8 7 4 3 0

I Cond I 1110 1 abed I e Fn i Fd 0001 fghO I i Fm I

abcdj is the opcode
ef is the precision
gh is the rounding mode

determines whether Fm is a register number or constant

FL T <cond>prec<round>
FIX <cond>prec<round>
WFS<cond>
RFS<cond>
WFC<cond>
RFC<cond>

Fn,Rd
Rd,Fm
Rd
Rd
Rd
Rd

0000
0001
0010
0011
0100
0101

<round> is the optional rounding mode: P, M or Z; see below

FLT
FIX
WFS

Integer to Floating Point
Floating point to integer
Write Floating Point Status

Fn := Rd
Rd := Fm
FPSR := Rd

Floating point emulator: The instruction set 1703

1704

Rd := FPSR RFS
WFC
RFC

Read Floating Point Status
Write Floating Point Control
Read Floating Point Control

FPC:= Rd Supervisor Only
Rd := FPC Supervisor Only

The binary format is:

31 28 27 .. 24 23 ... 21 20 19 16 I 5 ... 12 11 8 74

I 1110 1 abc I
..

I 0001 1 fgh1 Cond L/S e Fn Rd

abcL/S
ef

are the opemion code bits, as above (0110 .. undefined)
give the floating point precision, as above

gh
Fm,Fn
Rd

is the round a ng mode, as below
are FPU register numbers
is an ARM register number
determines whether Fm is a register number or constant

The rounding modes are

Mode Letter g h

Nearest 0 0
Plus infinity p 0 I
Minus infinity M 1 0
Zero z I

The values allowed for immediate operands in Fm arc:

Value Fm cndcoding

0.0 000
1.0 001
2.0 010
3.0 011
4.0 100
5.0 101
0.5 110
10.0 Ill

3 0

B

Floating point emulator: The instruction set

Co-Processor Status
Transfer

Constants cannot be specified in the Fm field for the FIX instruction since
there is no point FIXing a known value into an ARM integer register. The
MOV instruction should be used for this.

CMF<cond>prec<round>
CNF<cond>prec<round>
CMFE<cond>prec <round>
CNFE<cond>prec<round>

Fm,Fn
Fm,Fn
Fm,Fn
Fm,Fn

100
101
110
Ill

<round> is the optional rounding mode: P, M or Z (sec bdow).

CMF
CNF
CMFE
CNFE

Compare floating
Compare negated floating
Compare floating with exception
Compare negated floating with exception

The binary format is:

compare Fn with Fm
compare Fn with - Fm
compare Fn with Fm
compare Fn with -Fm

31....28 27 ... 24 23 ... 21 20 19 16 15 ... 12 11....8 7 4 3 0

Cond 1110 I abc I c Fn 1111 I 000 I I fgh 1 I i Fm I

abcL/S
ef
gh
Fm,Fn

arc the operation code bits, as abo"c (0110 .. undefined)
give the floating point precision, as above
is the rounding mode, as below
are FPU register numbers
determines whether Fm is a register ,number or constant

The rounding modes are:

Mode Letter g h

Nearest 0 0
Plus infinity p 0 1
Minus infinity M 0
Zero z

Floating point emulator: The instruction set 1705

1706

The values allowed for immediate operands in Fm arc:

Value Fm endcoding

0.0 000
1.0 001
2.0 010
3.0 011
4.0 100
5.0 101
0.5 110
10.0 Ill

Compares are provided with and without the exception that could arise if the
numbers are unordered (ie one or both of them is not-a-number). To comply
with IEEE 754, the CMF instmction should be used to test for equality (ic
when a BEQ or BNE is used afterwards) or to test for unorJeredness (in the
V flag). The CMFE instmction should be used for all other tests (BGE, BGE,
BL T, BLE afterwards).

The ARM flags N, Z, C, V refer to the following after compares:

• N Less than ie Fn less than Fm (or -Fm)

• Z Equal

• C Greater than or equal ie Fn greater than or equal to Fm

• V Unordered

Note that when two numbers are not equal, N and C are not necessarily
opposites. If the result is unordered they will both be clear.

Floating point emulator: The instruction set

SWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWis

Related vectors

FPEmulator Version
(SWI & 40480)

Returns the version number of the floating point emulator

No parameters passed in registers

RO = BCD version number

Interrupt status is undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This call returns the version number of the floating point emulator as a binary
coded decimal (BCD) number in RO.

This SWI will coninue to be supported by the hardware expansion.

None

None

Floating point emulator: SWI Calls 1707

1708 Floating point emulator: SWI Calls

ShellCLI

Introduction

SheiiCLI: Introduction

This module provides a single * Command that allows you to invoke a
command shell from a Wimp program.

It also has two SWls for its own internal use. You must not use them in your
own code.

1709

* Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1710

*ShellCLI
Invoke a command shell from a Wimp program

*ShellCLI

None

This command is started as a Wimp task. It prompts the user with *, and
passes the line typed to the command line interpreter, OS_CLI. This is
repeated until the user enters a blank line, whereupon control is returned to
the caller. The Task Man:~gcr uses this command to implement its *Command
(F12) menu item.

Notes: You must use Wimp_SrartTask to call *ShciiCLI, not OS_CLI. The
command uses the two SWis Shcii_Create and Shcll_Dcstroy; it is the only
user of these SWis. Note that you can only call Wimp_StartTask or
*Wimp Task from within an active task.

*WimpTask ShellCLI

None

Sheii_Create, Shcll_Dcstroy

None

SheiiCLI · • Commands

SWI Calls

SheiiCLI: SWI Calls

Shell Create
(SWI &405CO)

This SWI call is for use by the SheiiCLI module only. You must not usc it
in your own code.

1711

1712

Shell_Destroy
(SWI &405Cl

This SWI call is for usc by the SheiiCLI module only. You must not usc it
in your own code

SheiiCLI: SWI Calls

Command scripts

Introduction Command scripts arc files of commands that you would normally type in at
the Command Line prompt. There arc two common reasons for using such a
file:

• To set up the computer to the state you want, eirher when you switch on or
when you St'drt an applic:ltion.

• To save typing in a set of commands you find yourself frequently using.

In the first case the file of commands is commonly known as a boot file.

You may find using an Alias$... variable to be berrcr in some cases. The main
advantage of these variables is that they arc held in memory and so arc
quicker in execution; however, they arc only really suitable for short
commands. Even if you u!'e these variables you arc still likely to need to use a
command file to set them up initially.

There are two types of file available for wntmg command scripts: C'.A)mmand
fi les, and Obey files. The differences between these two file types are:

• An Obey file is read directly, whereas a ('.A)mmand file is treated as if it
were typed at the keyboard (and hence usually appears on the screen).

• An Obey file sets the system variable Obey$Dir to the directory it is in.

• An Obey file can be passed parameters

• An Obey file stops when an error is returned to the Obey module (or
when an error is generated and the exit handler is the Obey module - an
untrapped error, not in an application).

Command scripts: Introduction 1713

Overview and
Technical Details
Creating a command
script

Running the script

Obey$Dir

1714

A command script can be created using any text or word processor. Normally
you then have to use the command *SetType to set the type of the file to
Command or Obey.

You should save it in one of the following:

• the directory from which the command script will be run (typically your
root directory, or an application directory)

• the library (typically $.Library, but may be $.ArthurLib on a network; see
*Configure Lib in the chapter entitled FikSwitch).

Provided that you have set the file to have a filerype of Command or Obey it
can then be run in the same ways as any other file:

• Type its name at the* prompt.

• Type its name preceded by a * at any other prompt ('\Orne applications
may not support this).

• Double-click on its icon from the desktop.

The same restrictions apply as with any other file. If the file is not in either
your current directory or the library, it will not be found if you just give the
filename; you must give its full pathname. (This a~sumes you have not changed
the value of the system variable Run$Path.)

You can force any text file to be treated as an obey file by using the
command *Obey. This overrides the current file type, such as Text or
Command. Obviously, this will only have meaning if the text in the file is
valid to treat as an obey file.

Similarly, any file can be forced to be a command file by using *Exec. This is
described in the chapter entitled Character Input.

When an obey file is nm, by using any of the above techniques, the system
variable Obey$Dir is set to the parent directory part of the pathname used.
For example, if you were to type *Obey a. b. c, then a.b is the parent

directory of the path name.

Command scripts: Overview and Technical Details

Run$Path

Note that it is not set to the full parent name, only the part of the string
passed to the command as the pathname. So if you change the current
directory or filing system during the obey file, then it would not be valid any
more.

Ideally, you should invoke Obey files (and applications, which are started by
an Obey file named !Run) by using their full pathname, and preceding that
by either a forward slash I or the word Run , for example:

I adfs: :MikeWinnie.$.0dds'nSods.MyConfig

Run adfs::MikeWinnie.S.Odds'nSods.MyConfig

This ensures that Obey$Dir is set to the full parhname of the Obey file.

The variable Run$Path also influences how this parent name is decoded. If
you were to type:

*Set Run$Path adfs: :Winnie.Flagstaff.
*obeyfile parl par2

Then it would be interpreted as:

*Run adfs::Winnie.Flagstaff.obeyfile parl par2

If the filetype of obeyfile was &FEB, an obey file, then the command
would be interpreted as:

*Obey adfs::Winnie.Flagstaff.obeyfile parl par2

This can also apply to application directories, as follows:

*Set Alias$@RunType_FEB Obey %*0
*Set File$Type_FEB Obey
*Set Run$Path adfs: :Winnie.Flagstaff.
*appdir parl par2

In this case, RISC OS would look for the !Run file within the application
directory and run it. Note that in most cases, the first two lines above are
already defined in your system. If !Run is an obey file, then it would be
interpreted as:

*Obey adfs: :Winnie.Flagstaff.appdir. !Run parl par2

Command scripts: Overview and Technical Details 1715

Making a script run
automatically

1716

Note that Obey files can also be nested to refer to other files to Obey;
however, Command files cannot be nested. This is one of the reasons why it is
better to set up your file as an Obey file rather than a Command file

You can make scripts run automatically:

• From the network when you first log on.

The file must be called !ArmBoot. (This is to distinguish a boot file for a
machine running Arthur or RISC OS from an existing !Boot file already
on the network for the use of BBC model A, model R or Master series
computers.

• From a disc when you first switch the computer on.

The file must be called !Root.

• From an application directory when you first display the directory's icon
under the desktop.

The file must be called ! Boot. It is run if RISC OS does not already
know of a sprite having the same name as the directory, and is intended to
load sprites for applications when they first need to be displayed. For
further derails see the chapter entitled The Window Manager.

• From an application directory when the application is run.

The file must be called !Run. For further derails see the chapter entitled
The Window Manager.

In the first two cases you will need to use the *Opt command as well.

For an example of the latter two cases, you can look in any of the application
directories in the Applications Suite. If you arc using the desktop, you will
need to hold down the Shift key while you open the application directory,
otherwise the application will run.

Command scripts: Overview and Technical Details

Using parameters An Obey file can have parameters passed to it, which can then be used by the
command script. A Command file cannot have parameters passed to it. The
first parameter is referred to as %0, the second as %1, and so on. You can
refer to all the parameters after a particular one by putting a * after the %,
so%* 1 would refer to the all parameters from the second one onwards.

These parameters arc substituted before the line is passed to the Command
Line interpreter. Thus if an Obey file called Display contained:

Fileinfo %0
Type %0

then the command *Display MyFile would do this:

Fileinfo MyFile
Type MyFile

Sometimes you do not v.>ant parameter substitution. For example, suppose you
wish to include a *Set Alias$.. command in your file, such as:

Set Alias$Mode echo 1<22>1<%0> Desired command

The effect of this is to create a new command 'Mode'. If you include the *Set
Alias command in an Obey file, when you run the file the %0 will be
replaced by the first parameter passed to the file . To prevent the substitution
you need to change the% to%%:

Set Alias$Mode echo 1<22>1<%%0> Command needed in file

Now when the file is run, the '%%0' is changed to '%0'. No other substitution
occurs at this stage, and the desired command is issued. See the *Set
command in the chapter entitled Program Environment.

Command scripts: Overview and Technical Details 1717

*Commands

Syntax

Parameters

Use

Example

Related commands

Related SWis

Related vectors

1718

Executes a file of* commands

*Obey [<pathname> [<parameters>]]

<pathname>
<parameters>

a valid pathname, specifying a file

strings separated by spaces

*Obey

*Obey executes a file of * commands. Argument substitution is performed on
each line, using parameters passed in the command.

*Obey !commands myfilel 12

*Exec

None

None

Command scripts: *Commands

Application
Notes

These example files illustrate several of the important differences between
Command and Obey files:

*BASI C

AUTO
FOR I = 1 TO 10

PRINT "He l lo"
NEXT I
END

If this were a command file, it would enter the BASIC interpreter, and input
the file shown. The command script will end with the BASIC interpreter
waiting for another line of input. You can then press Esc to get a prompt, type
RUN to run the program, and then type QUIT to leave BASIC. This script
shows how a command file is passed to the input, and can change what is
accepting its input (in this case to the BASIC interpreter).

In contrast, if this were an Obey file it would be passed to the Command
Line interpreter, and an attempt would be made to run these commands:

*BASIC

*AUTO
*FOR I = 1 TO 10
• PRINT "Hello"
*NEXT I
*END

Only the first command is valid, and so as an Obey file all this does is to
leave you in the BASIC interpreter. Type QUIT to leave BASIC; you will
then get an error message saying File 'AUfO' not found, generated by the
second line in the file.

The next example illustrates how control characters are handled:

echo <7>
echo 1<7>

The control characters arc represented in GST rans format (see the chapter
entitled Conversions). These are not interpreted until the echo command is nm,
and are only interpreted then because echo expects GSTrans format.

Command scripts: Application Notes 1719

1720

The first line sends an ASCII 7 to the YOU drivers, sounding a beep; see the
chapter entitled VDU dritJerS for more information. In the second line, the I
preceding the < changes it from the start of a GSTrans sequence to just
representing the character<, so the overall effect is:

echo <7> Send ASCII 7 to YOU drivers- beeps

echo 1<7> Send <7> to the screen

The last examples are a Command file:

•Set AliasSmore \echo 1<14>1m \ type -tabexpand *O im \echo 1<15>

and an Obey file that has the same effect:

Set Al1as$more \echo 1<14>1m \ type -tabexpand \\'Oim \echo 1<15>

The only differences between the two examples are that the Command file
has a preceding • added, to ensure that the command is passed to the
Command Line interpreter; and that the Obey file has the %*0 changed to
o/o%*0 to delay the substitution of parameters.

The file creates a new command called 'more' - taking its name from the
Unix 'more' command- by setting the variable Alias$ more:

• The % characters that precede echo and type ensure that the actual
commands are used, rather than an aliased version of them.

• The sequence I m represents a carriage return in GSTrans format and is
used to separate the commands, just as Return would if you were typing
the commands.

• The two echo commands tum paged mode on, then off, by sending the
control characters ASCII 14 and 15 respectively to the YOU drivers (see
the chapter entitled VDU drivers for more information).

• The before each < prevents the control characters from being
interpreted until the aliascd command 'more' is run.

The command turns paged mode on, types a file to the screen expanding tabs
as it does so, and then turns paged mode off.

Command scriots: Aoolication Notes

Appendices and Tables

1721

1722

Appendix A ; ARM assembler

Introduction

Using the BASIC
assembler

Initialising external
variables

ARM assembler: Introduction

Assembly language is a pro~ramming language in which each statement
translates directly into a single machine code instruction or piece of data. An
assembler is a piece d software which converts these statements into their
machine code counrerparrs.

Writing in assembly language has its disadvantages. The code is more
verbose than the equivalent high-level language statements, more difficult to

understand and therefore harder to debug. High-level languages were
invented so that programs could be written to look more like English so we
could talk to computers in our language rather than directly in its own.

There are two reasons why, in certain circumstances, assembly language is
used in preference to high-level languages. The first reason is that the
machine code program produced by it executes more quickly than its high­
level counterparts, particuhuly those in languages such as BASIC which arc
interpreted. The second reason is that assembly language offers greater
flexibility. It allows certain operating system routines to be called or
replaced by new pieces of code, and it allows greater access to the hardware
devices and controllers.

The assembler is part of the I3I3C I3ASIC language. Square brackets '[' and ']'

are used to enclose all the assembly language instructions and directives and
hence to inform RASIC that the enclosed instructions arc intended for its
assembler. However, there arc several operations which must be performed
from I3ASIC itself to emurc th:Jt a subsequent assembly language routine is
assembled correctly.

The assembler allows the usc of BASIC variables as addresses or data in
instructions and a~scmblcr directives. For example variables can be set up in
BASIC giving the numbers of any SWl routines which will be called. For
example:

1723

Reserving memory space
for the machine code

Memory pointers

1724

OS Write! = &100

SWI OS Writei+ASC">"

The machine code generated by the assembler is stored in memory. However,
the assembler docs not automatically set memory aside for this purpose. You
must reserve sufficient memory by using the DIM statement. For example:

1000 DIM code% 100

The start address of the memory area reserved is assigned to the variable
code%. The address of the last memory location is code%+ 100. Hence, it
reserves a total of 101 bytes of memory.

You need to tell the assembler the start address of the area of memory you
have reserved. The simplest way to do this is to a-;sign P% to point to the start
of this area. For example:

DIM code% 100

P% = code%

P% is then used as the program counter. The assembler places the first
assembler instruction at the address P% and automatically increments the
value of P% by four so that it points to the next free location. When the
assembler has finished assembling the code, P% points to the byte following
the final location used. Therefore, the number of bytes of machine code
generated is given by:

P% - code%

This method assumes that you wish subsequently to execute the code at the
same location.

The position in memory at which you load a machine code program may be
significant. For example, it might refer directly to data embedded within
itself, or expect to find routines at fixed addres.c;es. Such a program only
works if it is loaded in the correct place in memory. However, it is often
inconvenient to assemble the program directly inro the place where it will

ARM assembler: Using the BASIC assembler

Implementing passes

eventually be executed. This memory may well be used for something else
whilst you are assembling the program. The solution to this problem is to use
a technique called 'offset assembly' where code is assembled as if it is to run
at a certain address but is actually placed at another.

To do this, set Oo/o to point to the place where the first machine code
instruction is to be placed and Po/o to point to the address where the code is to
be run.

To notify the assembler that this method of generating code is to be used, the
directive OPT, which is described in more detail below, must have bit 2 set.

It is usually easy, and always preferable, to write ARM code that is position
independent.

Normally, when the processor is executing a machine code program, it
executes one instruction and then moves on automatically to the one following
it in memory. You can, however, make the processor move to a different
location and start processing from there instead by using one of the 'branch'
instructions. For example:

.result was 0

BEQ result was 0

The fullstop in front of the name result_was_O identifies this string as the
name of a 'label'. This is a directive to the assembler which tells it to assign
the current value of the program counter (Po/o) to the variable whose name
follows the fullstop.

BEQ means 'branch if the result of the last calculation that updated the PSR
was zero'. The location to be branched to is given by the value previously
assigned to the label result_was_O.

The label can, however, occur after the branch instruction. This causes a slight
problem for the assembler since when it reaches the branch instruction, it
hasn't yet assigned a value to the variable, so it doesn't know which value to
replace it with.

ARM assembler: Using the BASIC assembler 1725

The OPT directive

1726

You can get around this problem by assembling rhc source code twice. This is
known as two-pass assembly. During the first pass the assembler assigns
values to all the label variables. In the second pass it is able to replace
references to these variables by their values.

It is only when the text contains no forward references of labels that just a
single pass is sufficient.

These two passes may be performed by a FOR ... NEXT loop as follows:

DIM code% 400
FOR pass% - 0 TO 3 STEP 3

P% = code%
[

OPT pass%

NEXT pass%

Note that the pointer(s), in this case just P%, must be set at the start of both
passes.

The OPT is an assembler directive whose bits have the following meaning:

Bit Meaning

0 Assembly listing enabled if set
1 Assembler errors enabled
2 Assembled code placed in memory at 0% imtead of P%
3 Check that assembled code docs exceed memory limit L%

Bit 0 controls whether a listing is produced. It is up to you whether or not you
wish to have one or not.

Bit 1 determines whether or not assembler errors arc to be flagged or
suppressed. For the first pass, bit 1 should be zero since otherwise any
forward-referenced labels will cause the error Unknown or missing
variable and hence stop the assembly. During the second pass, this bit

should be set to one, since by this stage all the labels defined are known, so
the only errors it catches arc 'real ones' - such as labels which have been used
but not defined.

ARM assembler: Using the BASIC assembler

Executing a machine
code program

Format of assembly
language statements

Bit 2 allows 'offset assembly', ie the program m:~y be assembled into one
area of memory, pointed to by 0%, whilst being set up to run at the address
pointed to by P%.

Bit 3 checks that the asc;cmbled code does not exceed the area of memory that
it has been reserved. Its normalu~gc is:

DIM code% 10000, L%-1

Once an assembly language routine has been successfully assembled, the
resulting machine code can be executed in a variety of ways:

CALL <address>
USR <address>

These may be used from inside BASIC to run the machine code at a given
address. Sec the BBC Basic Guide for more details on these statements.

The commands below will load and run the nrtmed file, using either its
filetype (such as &FF8 for absolute code) and their associated system
variables, or the load and execution addresses defined when it was saved.

*<name>
*RUN <name>
*/<name>

We strongly advise you to use file types in preference to load and execution
addresses.

The assembly language st:~temcnts and assembler directives should be
between the square brackets.

There are very few rules about the format of assembly langu:~ge statements,
those which exist arc given below:

• Each assembly language statement comprises an assembler mnemonic of
one or more letters followed by a varying number of operands.

• Instructions should be separated from each other by colons or newlines.

• Any text following a full stop'.' is treated :~sa lai-d nrtme.

ARM assembler: Executing a machine code program 1727

• Any text following a ~micolon ';',or bacbl:•~h '\', or 'REM' is rrcatcd as
a comment and so ignored (until the next end of line or':').

• Spaces between the mnemonic and the first operand, and between the
operands themselves are ignored.

The BASIC assembler contain~ the following directives:

EQUB int
EQUWint
EQUDint
EQUS str

ALIGN
ADR reg,addr

Define I byte of memory frnm LSB of int (DCB,--)
Define 2 bytes of memory frnm int (OCW)
Define 4 bytes of memory from int (DCD)
Define 0- 255 bytes as rcq11ircd by string expression
str (OCS)
Align P% (and 0%) to the next word boundary
Asscm~lc instruction to lnnd addr into reg

• The first four operations initialise the re~rvcd memory to the values
specified by the operand. In the case of EQUS the opcr:md field should
be a string expression. In all other cases it mny be a numeric expression.
OCB, DCW, OCD and DCS arc synonyms for the!'<: directives.

• The ALIGN directive ensures that the next P% (and 0%) that is used lies
on a word boundary. It is used after, for example, an EQUS to ensure
that the next instruction is word-aligned.

Note that although instructions arc word-aligned, labels arc not. So:

ALIGN
£QUB

. label SUBS
B

is different to:

ALIGN
F:QUB

. labrl
SUBS
B

0
rO, rO,
label

0

ro, tO,
label

1 1

11
B will ju~p to EOUB a~d :hr 3 undefined
WO!"dS, "10t [;,b<'l!

• ADR as..c;cmblcs a single imtruction, an ADD or SUB, with reg as rhe
destination register. It obtains addr in that register in a PC-rclativc (ie
position independent) manner.

1728 ARM assembler: Format of assembly language statements

Registers

ARM assembler: Registers

At any particular time there arc sixteen 32-bit registers available for use, RO
to RIS. However, RIS is special since it contains the program counter and the
processor status register.

RIS is split up with 24 bits used as the program counter (PC) to hold the
word address of the next instnJction. 8 bits arc u~d as the processor stanJs
register (PSR) to hold information about the current values of flags and the
current mode/register bank. These bits are arranged as follows:

The top six bits hold the following inform:nion:

Bit Flag

31 N
30 z
29 c
28 v
27 I
26 F

Meaning

Negative flag
Zero flag
Carry flag
Overflow flag
Interrupt request disable
Fast interrupt request disable

The bottom two bits can hold one of four different values:

M Meaning

0 User mode
1 Fast interrupt processing mode (FIQ mode)
2 Interrupt processing mode (IRQ mode)
3 Supervisor mode (SVC mode)

User mode is the normal program execution state. SVC mode is a special
mode which is entered when calls to the supervisor are made using software
interrupts (SWls) or when an exception occurs. From within SVC mode
certain operations can be performed which arc not permitted in user mode,
such as writing to hardware devices and peripherals. SVC mode has its own
private registers R\3 and R\4. So after changing to SVC mode, the registers
RO- Rl2 are the same, but new versions of RIJ and Rl4 arc available. The
values contained by these registers in user mode are not overwritten or
corrupted.

Similarly, IRQ and FJQ modes have their own private registers (RIJ- R\4
and R8- Rl4 respectively).

1729

Condition codes

1730

Although only 16 registers are available at any one time, the processor
actually contains a total of 27 registers.

For a more complete description of the registers, see the chapter entitled
ARM Hardware.

All the machine code instnJctions can be performed conditionally according
to the status of one or more of the following fbgs: N, Z, C, V. The sixteen
available condition codes are:

AL Always This is the default
cc Carry clear C clear
cs Carry set C set
EQ Equal Z set
GE Greater than or equal (N set and V set) or

(N clear and V clear)
GT Greater than ((N set and Y set) or

(N clear andY clear)) and Z clear
HI Higher (unsigned) C set and Z clear
LE Less than or equal (N set and V clear) or

(N clear and V set) or Z set
LS Lower or same (unsigned) C clear or Z set
LT Less than {N set andY clear) or

(N clear ;md V set)
Ml Negative N set
NE Not equal Z clear
NV Never
PL Positive N clear
vc Overflow clear V clear
vs Overflow set V set

Two of these may be given al term ti ve names as follows:

LO
HS

Lower unsigned
Higher I same unsigned

is equivalent to CC
is equivalent to CS

ARM assembler: Condition codes

The Instruction set The available instructions are introduced below in categories indicating the
type of action they perform and their syntax. The description of the syntax
obeys the following standards:

« ,. indica~es that the contents of the brackets are optional (unlike
all other chapters, where we have been using r l instead)

(x I y) indicates the either x or y but not both may be given

#exp indicates that an expression is to be used which evaluates to
an immediate constant. An error is given if the value cannot
be stored in the instruction.

Rn indicates that an expression evalu<~ting to a register number
(in the range 0- 15) should be used, or just a register name,
eg RO. PC may be used for Rl5.

shift indicates that one of the following shift options should be
used:

ASL

LSL
ASR
LSR
ROR
RRX

(Rn l#exp)

(Rn l#exp)
(Rn l#exp)
(Rn l#exp)
(Rn l#exp)

Arithmetic shift left by contents of
Rn or expression

Logical shift left
Arithmetic shift right
Logical shift right
Rotate right
Rotate right one bit with extend

In fact ASL and LSL are the same. The ARM docs not
provide true arithmetic shifts. LSL is the preferred form, as it
indicates this.

ARM assembler: The instruction set 1731

Arithmetic and logical
instructions

1732

Syntax:

opcodc«conduS" Rd, «Rn•, (#exp I Rm «,shift,.)

The instructions available arc given below:

Instruction

AOC
ADD
SBC
SUB
RSC
RSB
AND
BIC
ORR
EOR

MOV
MVN

Add with carry
Add without carry
Subtract with carry
Subtract without carry
Reverse subtract with carry
Reverse subtract without carry
Bitwise AND
Bitwise AND NOT
Bitwise OR
Bitwise EOR

Move
Move NOT

Calculation performed

Rd = Rn + Rm + C
Rd = Rn + Rm
Rd = Rn - Rm- (I - C)
Rd = Rn - Rm
Rd = Rm - Rn - (I - C)
Rd = Rm- Rn
Rd = Rn ANDRm
Rd = Rn AND NOT (Rm)
Rd = Rn OR Rm
Rd = Rn EOR Rm

Rd = Rm
Rd = NOTRm

Each of these instructions produces a result which it places in a destination
register (Rd). The instructions do not affect bytes in memory directly.

As was seen above, all of these instructions can be performed conditionally.
In addition, if the 'S' is prc.c;cnr, they can cause the condition codes to be set or
cleared. The condition codes N, Z, C and V are set by the arithmetic logic unit
(ALU) in the arithmetic operations. The logical (bitwise) operations set N
and Z from the ALU, C from the shifter (but only if it is used), and do not
affect V.

Examples:

ADDEO Rl, Rl , J7

SBCS R2, R3 , R4

AN D RJ, Rl , R2 , LSR 12

II the zero fla g is set t hrn add 7
to t he con~cnts of reg !stP(Rl .

Subtrac: with carry the contents of register R4
!ro~ t~e contents of re1ister R3 and place the resu:t
lr: :-eg!ster R2 . The flags wlll be opdatrd .

Pf'r fo rm a lo<J lr.al AND on :hi' cor.tent s o f register Rl
~nd the conte nt s of r cq! Slf' r R2 • C, a nd pl~ce the
rrs" \ t :n register R3 .

ARM assembler: The instruction set

Comparisons

Special actions arc taken if any of the source registers are RIS; the action is as
follows:

• IfRm=RIS al132 bits ofRIS are used in the operation ie the PC+ PSR.

• IfRn=RlS only the 24 bits of the PC are used in the operation.

If the destination register is IUS, then the action depends on whether the
optional 'S' has been used:

• If Sis not present only the 24 bits of the PC arc set.

• If S is present the whole result is written to R15, the flags are updated
from the result. (However the mode, I and F bits can only be changed
when in non-user modes.)

Syntax:

opcodc«cond» «S I p,. Rn, (#cxp I Rm «,shift,.)

There arc four comparison instmctions:

Instruction

CMN
CMP
TEQ
TST

Compare
Compare
Test equal
Test

Calculation performed

Rn + Rm
Rn-Rm
RnEORRm
RnANDRm

These arc similar to the arithmetic and logical instructions listed above except
that they do not rake a destination register since they do not return a result.
Also, they automatically set the condition flags (since they would perform no
useful purpose if they didn't). Hence, the 'S' of the arithmetic instructions is
implied. You can put an'S' after the instruction to make this clearer.

These routines have ;m additional function which is to set the whole of the
PSR to a given value. This is done by using a 'P' after the opt code, for
example TEQP.

Normally the flags are set depending on the value of the comparison. The I
and F bits and the mode and register bits are unaltered. The 'P' option allows
the corresponding eight bits of the result of the calculation performed by the
comparison to overwrite those in the PSR (or just the fl:1g bits in user mode).

ARM assembler: The instruction set 1733

Multiply instructions

1734

Example

TEQP ?C , J&800COOCC se~ N flag , clear all others. Also enable
IRQs, FIQs, select User mode if privileged

The above example (as well as setting the N flag and clearing the others)
will alter the IRQ, FIQ and mode bits of the PSR - but only if you are in a
privileged mode.

The 'P' option is also useful in user mode, for example to collect errors:

STMfD sp!, (rO, rl , r14 l

BL routine!
STRVS r o, [sp, JO]

MOV rl, pc
BL routi ne2
STRVS rO, (sp, 10)

TEQVCP rl , 10
LOMfD sp! , (rO, r l , pel

Syntax:

MUL«conduS,. Rd,Rm,Rs
MLA«cond""S" Rd,Rm,Rs,Rn

There are two multiply instructions:

Instruction

MUL
MLA

Multiply
Multiply-accumulate

save erro r block po inter in return rO
in stack frame if error
save psr flags in r l
ca lled e ven if error from routine l
to do some tidy up action etc .
if routine2 d i dn' t give error, r estore
error indication from rl

Calculation performed

Rd = Rm * Rs
Rd = Rm * Rs + Rn

The multiply instructions perform integer multiplication, giving the least
significant 32 bits of the product of two 32-bit operands.

The destination register must not be R15 or the same as Rm. Any other
register combinations can be used.

If the 'S' is given in the instruction, the N and Z flags are set on the result, and
the C and V flags are undefined.

ARM assembler: The instruction set

Branching instructions

Examples:

MUL Rl,R2,R3

MLAEQS Rl,R2, R3 ,R4

Syntax:

B«cond» expression
BL«cond» expression

There are essentially only two branch instructions but in ~ch case the brnnch
can take place as a result of any of the 16 condition codes:

Instruction

B«cond»
BL«cond»

Branch
Branch and link

The branch instruction causes the execution of the code to jump to the
instruction given at the address to be branched to. This address is held
relative to the current location.

Example:

SEQ labell branch if zero flag set

BM I mi nus b~anch if negative flag set

The branch and link instruction performs the additional action of copying the
address of the instruction following the branch, and the current flags, into
register Rl4. Rl4 is known as the 'link register'. This means that the routine
branched to can be rerurned from by transferring the contents of R 14 into the
program counter and can restore the flags from this register on return. Hence
instead of being a simple branch the instruction acts like a subroutine call.

Example:

BLEQ equal

.equal

MOVS Rl5,Rl4

address of this instruction
moved Lo Rl4 automaLicaJly

star~ of subroutine

end of subr ouline

ARM assembler: The instruction set 1735

Single register load/save
instructions

1736

Syntax:

opcode«cond»«Bu T" Rd, address

The single register load/save in-.rructions arc as follows:

Instruction

LOR Load register
STR Store register

These instructions allow a single register to load a value from memory or
save a value to memory at a given address.

The instruction has two possible forms:

• the address is specified hy registcr(s), whose names arc enclosed in
square brackets

• the address is specifi ed by an expression

Address given by registers

The simplest form of address is a register number, in which case the contents
of the register are used as the address to load from or save to. There arc two
other alternatives:

• pre-indexed addressing (with optional write back)

• post-indexed addressing (always with write back)

With pre-indexed addressing the contents of another register, or an
immediate value, is added to the contents of the first register. This sum is then
used as the address. lt is known as pre-indexed addrc.c;."ing because the
address being used is calcubtcd before the load/save takes place. The first
register (Rn below) can be optional'ly updated to contain the address which
was actually used by adding a'!' :-.ftcr the closing squ:-.rc hr.~ckct.

Address syntax

[Rnl
[Rn,#m]•!•

Address

Contents of Rn
Contents of Rn + m

[Rn,Rm)•!• Contents ofRn +contents ofRm

[Rn,Rm,shift #s] •!" C'.ontcnts of Rn + (contents of Rm shifted by s places)

ARM assembler: The instruction set

With post-indexed addressing the address being used is given solely by the
contents of the register Rn. The rest of the instruction determines what value is
written back into Rn. This write back is performed automatically; no '!' is
needed. Post-indexing gets its name from the fact that the address that is
written back toRn is calculated after the load/save takes place.

Address syntax

[Rn],#m
[Rn],Rm
[Rn],Rm,shift #s

Value written b-.tck

Contents ofRn + m
Contents of Rn +contents of Rm
Content~ of Rn + (contents of Rm shifted by s places)

Address given as an expression

If the address is given as a simple expression, the assembler will generate a
pre-indexed instruction using RJS (the PC) as the base register. If the address
is out of the range of the instruction (4095 bytes), an error is given.

Options

If the 'B' option is specified after the condition, only a single byte is
transferred, instead of a whole word. The top 3 byres of the destination
register are cleared by an LDRB instruction.

If the 'T' option is specified after the condition, then the mANs pin on the
ARM processor will be active during the tramfer, forcing an address
translation. This allows you to access User mode memory from a privileged
mode. This option is invalid for pre-indexed addressing.

Using the program counter

If you use the program counter (PC, or R 15) as one of the registers, a number
of special cases apply:

• the PSR is never modified, even when Rd or Rn is the PC

• the PSR flags arc not used when the PC is used as Rn, and (because of
pipelining) it will be advanced by eight bytes from the current instruction

• the PSR flags arc used when the PC is used as Rm, the offset register.

ARM assembler: The instruction set 1737

Multiple load/save
instructions

1738

Syntax:

opcode«cond»typc Rn«! "• {Riist}«A,.

These instructions allow the loading or saving of several registers:

Instruction

LDM Load multiple registers
STM Store multiple registers

The contents of register Rn give the base address from/to which the value(s)
are loaded or saved. This base address is effectively updated during the
transfer, but is only written back to if you follow it with a'!'.

Rlist provides a list of registers which are to be looded from or saved to. The
order the regasters are given, in the list, is irrelevant since the lowest
numbered register will be loaded first and the highest one last. For example,
a list comprising {R5,R3,R I ,R8} will be loaded from/saved to in the order R I,
R3, RS, RG, with Rl occupying the lowest addrcs.~ in memory. You can specify
consecutive registers as a range; so {RO-R3} and {RO,R 1 ,R2,R3} are equivalent.

The type is a two character mnemonic specifying either how Rn is updated, or
what sort of a stack results:

Mnemonic Meaning

DA Decrement Rn After each store/load
DB Decrement Rn Before each store/load
lA Increment Rn After each srore/load
IB Increment Rn Before each store/load

EA Empry Ascending stack is used
ED Empry Descending stack is used
FA Full Ascending stack is used
FD Full Descending stack is used

• an empty stack is one in which the srnck pointer points to the first free slot
in it

• a full stack is one in which the stack pointer points to the last data item
written to it

ARM assemhiP.r' ThP. in~tTitr:tinn ~~>t

• an ascending stack is one which grows from low memory addresses to high
ones

• a descending stack is one which grows from high memory addresses to
low ones

ln fact these are just different ways of looking at the situation - the way Rn is
updated governs what sort of sF-~ck results, and vice versa. So, for each type of
instruction in the first group there is an equivalent in the second:

LDMEA is the same as LDMDB
LDMED is the same as LDMlB
LDMFA is the same as LDMDA
LDMFD is the same as LDMIA

STMEA is the same as STMlA
STMED is the same as STMDA
STMFA is the same as STMli3
STMFD is the same as STMDB

All Acorn software uses an FD (full, descending) stack. If you are wntmg
code for SVC mode you should try to also u~e a full descending stack -
although you can usc any type you like.

A 'A' at the end of the register li5t has rwo possible meanings:

• For a load with R IS in the list, the'"' forces upd:-.te of the PSR.

• Otherwise the '"' forces the load/store to acces.~ the User mode registers.
The base is still taken from the current b:-.nk though, and if you try to
write back the base it will be put in the Ul'oer hank - probably not what
you would have intended.

Examples:

LDHIA R5, I RO, R}, R71

LDMDB R5, (RO-R7)

ARM assembler: The instruction set

wher~ R~ contains the value
&1484
This wil l load RO from &1484

Rl from &1488
R7 from &148C

wh~re R~ contains the value
&HA4
This wil l load RO from '1480

Rl from H47C
R7 from &1 478

1739

1740

If there were a '!' after R5, so that it were written back to, then this would
leave R5 containing &1490 and &1478 after the first and second examples
respectively.

The examples below show directly equivalent ways of implementing a full
descending stack. The first uses mnemonics describing how the stack pointer is
handled:

STMOR Stackpoirtcr! , iR:-~3} pus'> onto stack

LDMIA S~ackpoir.~er! , IR0- R3! pall fro- stack

and the second uses mnemonics describing how the srnck behaves:

STMFD Stackpoi nte< !, IRO,Rl,R2,R3) push o~to st.>clt

IDMFD Stackpoir.~cr! , tRO , Rl,R2 , R3) pull r,.-om stac<

Using the base register

• You can always load the base register without any side effects on the rest
of the LDM operation, because the ARM uses an internal copy of the
base, and so will not be aware that it has been loackd with a new value.

• You can store to the b;~sc register as well. If y0u arc not using write back
then no problem will occur. If you arc, then this is the mder in which the
ARM docs the STM:

1 write the lowest numbered register to memory

2 do the write back

3 write the other registers to memory in ascending order.

So, if the base register is the lowest-numbered one in the list, its original
value is stored:

STMIA R2!, I R2-R6) ; R/ sLorcd is value betorc wr: tc bacK

Otherwise its written back value is stored:

STM!I\ R2!, (RI R5l ; R2 stort'd ls val'JE' af:cr write b.lc~

ARM assembler: The instruction set

SWI instruction

Using the program counter

If you use the program counter (PC, or Rl5) in the list of registers:

• the PSR is saved with rhc PC; and (bec::~usc of pipclining) it will be
advanced by twelve byres from the current position

• the PSR is only loaded if you follow the register list with a '"'; and even
then, only the bits you can modify in the ARM's current mode arc loaded.

It is generally not sensible to usc the PC as the b:Jsc rcgi~ter. If you do:

• the PSR bits arc used as part of the address, which will give an address
exception unlc.~s all the flags arc clear and all intcm1pts arc enabled

• write back is switched off.

Syntax:

SWI «cond• «expression»

SWI«cond,. «"SWinamc"• (ROC BASIC)

The SWI mnenomic srnnds for SoftWare Interrupt. On encountering a SWI,
the ARM processor changes mto SVC mode and stores the address of the
next location in R 14_svc - ~ the User mode value of R 14 is not corrupted.
The ARM then goes to the SWJ routine handler via the hardware SWI vector
containing its address.

The first thing that this routine docs is to discover which SWI was requested.
It finds this out by using the location addressed by (R 14 .svc - 4) to read the
current SWI instruction. The opccxle for a SWI is 32 bits long; 4 bits identify
the opcode as being for a SWI, 4 bits hold all the cond1non codes and the
bottom 24 bits identify which SWI it is. Hence 224 different SWI routines can
be distinguished.

When it has found whiCh particular SWl it is, the routine executes rhc
appropriate code to de<~l wnh it and then returns by placing the contents of
R 14_svc back into the PC, which restores the mode the caller wns in.

This means that R 14_svc will be corrupted if you execute a SWI in SVC
mode- which can h;1ve disastrous consequences unless you take precautions.

ARM assembler: The instruction set 1741

1742

The most common way to call this instruction is by using the SWl name, and
letting the assembler translate this to a SWI number. The BBC BASIC
assembler can do this translation directly:

SWI NE "OS W~itcC"

Sec the chapter entitled Introduction to SWls for a full description of how
RISC OS handles SWJs, and the index of SWJs fo r a full list of rhe
operating system SWls.

ARM assembler: The instruction set

Appendix B , Linker

Introduction

Link's command line

Linker: Introduction

The ARM linker (Link) accepts as input one or more object files and object
libraries written in the following formats:

• ARM Object Object (AOF)

• ARM Library Format (ALF)

• Acorn Unix a.out format

• Acorn Unix ar format

Object libraries (ALF, ar format) must include a symbol t<Jble as generated
by ObjLib (for AOF/ALF) or ranlib (for a.out/ar).

In general, the mixing of AOF and a.out is not encouraged - it can be made to
work, but with restrictions.

Each object file and object library member consists of some number of areas.
Very often, an AOF object contains a code area, a data area and a debug area
(more are possible - sec the appendix entitled ARM Object Format). An a.out
object, on the other hand, always contains a text (code) area, a data area and a
BSS (blank common/zero initialised) area. Areas are the 'atoms' that Link
deals with - it places them in the output image and resolves symbolic
rderenccs between them.

Link's command line has the following format (optional items are enclosed
by brackets '[' and ']'; braces '{' and '}' enclose items which may be repeated
zero or more times):

link [<options> 1 <object-or-library-file> {<object-or-library-file>}

<object-or-library-file> is the name of an AOF or a.out format object or
library file.

1743

Options

1744

Under RISC OS, a filename ending in ".o" or ".0" is treated as the name of a
directory in which the file identified by the previous word is to be sought (ie
"clib.ansilib.o" refers to the file "clib.o.ansilib").

The difference between an object file and a libmry file is determined from
the file's header. Sometimes it is necessary to differentiate between object
files which are stored as libraries and true libraries. The /1 qualifier
appended to the filename indicates that it is to be treated as a library. If the
/1 qualifier is not specified an object type librnry is assumed; in this case all
object modules in the library will be included. This only occurs with 'old
style' libraries as generated by the Fortran compiler.

Object files arc processed before libr-c~rics. Libraries arc processed in the
order they appear on the command line or in a via file. Libraries which
depend on other libraries should be placed before the libraries they depend
on. Mutually dependant libraries arc not supported by the linker.

Filename arguments may be wildcarded according to the host system/shell's
wildcarding rules; filename arguments to flag options (-output, -via, -edit, -
overlay) may not be wildcarded.

<options> is any compatible set of the following, ca~e-inscnsitive flags:

-h[elp]

--o[utputl <output-file>

Print a screen of help text about the linker's
command line format and terminate without
doing anything, setting a good return code.

Put the output in <output-file>. If this option
is omitted, the name of the output file
defaults as follows:

if generating a.out f0rmat then:
if running under Unix usc "a.out"
otherwise "aout"

otherwise use the lower-case name of the
output format (cg the default name of AIF
output is "aif').

The following flags determine what kind of output file is generated. Except
where noted, they arc mutually exclusive. If none of the following is given, rhe
default is -aif under RISC OS and -aout under Unix.

Linker: Options

RISC OS oriented
options

Linker: Options

First, RISC OS oriented output formats:

-ai[f]

- r[elocatable]

- w[orkspace] <N>

-rm[f]

-m[odule]

-ao[f]

-bi[n]

-db[ug]

Generate an AIF image (the default under

RISC OS). If there are undefined symbols,
an error message is issued and no output is
written.

Generate a once off relocarable AIF image

by adding a relocation table and self­
relocation code to it. Such an image will run
where it is loaded. This option sets the
default output type to be AIF.

Reserve <N> bytes of workspace for an
image. If specified in conjunction with the -
rclocatable flag the linker produces a self­
moving image which will move itself to the
top of the application workspace at run time
reserving <N> bytes of workspace above tk
image. (see - base, below, for a description
of the allowed formats for N).

Generate an RMF image including a

relocation table and self relocation code to
enable the image to be relocated at run
time. This image may be relocated many
times (eg. with the *RMTidy command)

A synonym for -rmf.

Generate partially linked AOF output
suitable for inclusion in a subsequent link
step.

Generate a plain binary image with no file

headers and contiguous read-only and read­
write areas. This option is used with the -
base flag to gcncr:~te a plain memory image
at a fixed base address.

(Obsolescent). Generate output, in an

obsolete image format, fo.- use with the

1745

Unix oriented options

Multiple format oriented
options

1746

-ov[erlay] <overlay-file>

Arthur low-level debugger Dbug. Do not
confuse this option with -debug (described
below).

Generate a RISC OS overlaid image as
directed by commands in <overlay-file>.

Then, Unix-oriented output formats:

-aou[tl

-zfmagic]

-om[agic]

Generate a.out (ZMAGIC) format output

(the default under Unix). If there are
undefined symbols, an error message is
issued and no output is generated.

A synonym for -aout.

Generate partially linked <Lout (OMAGIC)
format suitable for inclusion in a subsequent
link step.

The following options each apply to several image formats:

-d[cbug]

-en I try] <entry-point>

-b[asc] <base address>

If the output form<Jt is -aout, then include
the symbol table in the output for usc by
dbx or adb. If the output format is -aif, then
include the symhol table in the output for
usc by the RISC OS debugger ASD
(extended version). Do not confuse this
option wi rh the obsolescent -dbug
(described above). With all other image
formats, -<lcbug is ignored.

Set the im<~ge's enrry point to be <entry­
point>. (Invalid with - bin and -rmf).

Set the base address for the link operation
to be <base-address>. (A sensible default is
assumed for ench im;~r;:e format.)

Linker: Options

Miscellaneous options

Linker pre-defined
symbols

The numeric constant values given as arguments to the -workspace, -base and
the -entry flags may be preceded by '&' or 'Ox' to denote a hexadecimal
value; and may be followed by 'k' (or 'K'), denoting kilo- (&400), or 'm' (or
'M'), denoting Mega- (&100000). For example, -base 80K, -base &SOk, -
base IM.

The following options control miscellaneous features of the linker:

- v[erbose)

-c[ase]

-v[ia] <via-file>

-c[dit] <edit-file>

Print diagnostic information tracing the
linker's progress.

Ignore letter case when matching symbols.

Take additional command lines from <via­

file>. Each line of the command file is
treated as a command line to link.
Wildcarding is allowed for file names
specified in the via file (in whatever form
supported by the host system/shell).
However, not all aspects of the host
command line interface arc available (cg
RISC OS variable mme substitution is not).

Perform link editing as instructed in <edit­
file>. Refer to the section entitled Link
Editing for further information .

Other options arc supported for backwards comp:nibiliry with the previous
linker. These options arc not documented and elicit warnings if used.

Link defines several useful symbolic names to which reference may be made.
The pre-defined symbols occur in Base, Limit pairs. A Base value gives the
address of the first byte in a region and the corre~ponding Limit value gives
the address of the first byte beyond the end of the region. All pre-defined
symbols begin ''Image$$" and the space of all such names is reserved to
Acorn. None of these symbols may be redefined. The pre-defined symbols
arc:

I mage$$RO$$Base
lmage$$RO$$Limit

Address and limit of the Rc<Hl-Only section
of the image.

Linker: Linker pre-defined symbols 1747

Link editing

1748

lmage$$RW$$Base Address and limit of rhe Read-Write section
lmage$$RW$$Limit of the image.

1 magc$$Zl$$Base AdJress and limit of the Zero-initialised data
lmage$$Zl$$Limit section of the image.

If a section is absent, the Base and Limit values are equal but unpredictable.

lmage$$RO$$Base includes any image header prependcd by the linker.

lmage$$RW$$Limit includes (at the end of the RW section) any zero­
initialised data created at run-time.

Usually, language translators mark code as read-only and data as read-write
so these three sections may be loosely thought of as code, data and zero­
initialised data (in Unix terminolngy, text, data and bss).

Link implements module composition via name m;ltching. In such a world,
name clashes can be a nuisance, even a disaster (consider two libraries, both
obtained in object form;Jt and both containing a routine called 'plot'). In
general, the constructors of libraries try to avoid 'name space pollution', but
sometimes cl<1shes arc unavoidable. When clashes occur, link editing comes to
the rescue.

Link editing has just 3 opcrJtions:

Composition of modules by matching named symbols.

2 Renaming of symbols (either on input or on output of a module).

3 Restriction of visibility (hiding) of symbols (either on input or on output
of modules).

These operations can be ~hown to be universal and to permit any compos•non
that can be specified, irrespective o{ naming clashes. Permitting renaming and
hiding on both input and output of modules is, strictly, unnecessary, but is
often convenient.

For example, old-sryle C programs arc often polluted with variable and
function names which don't need to be external. These arc a potential source
of name clashes. The Hide operation can remove the unnecessary external
symbols from a parti<~lly linked object.

Linker: Link editing

Appendix C ,. ARM Procedure Call Standard

Introduction

Intent

This appendix relates to the implementation of compiler code generators and
language run-time library kernels for the Acorn RISC Machine (ARM).

The reader should be famili;:~r with the ARM's inmuction set [ARM], floating
point instruction set [AFPl and assembler syntax fAASM] before attempting
to use this information to implement a code generntor. In order to write a run­
time kernel for a langu<Jge implementation, additional information specific to
the relevant ARM operating system will be needed (some information is
given in the sections describing the standard register bindings for this
procedure-call standard).

The main topics covered herein are the procedure c<Jtl and stack disciplines.
These disciplines arc followed by Acorn's C language implementation for the
ARM and, eventually, will be followed by the Fortran and Pascal compilers
too. Because C is the first-choice implementation language for RISC OS
applications and the implementation language of Acorn's Unix product
RISC iX, the utility of a new language implementation for the ARM will be
related to its compatibility with Acorn's implemenrntion of C.

At the end of this document are several examples of the usage of this
standard, together with suggcsti0ns for generating effective code for the ARM.

The ARM Procedure Call Standard is a. set of rules, designed:

• to facilitate calls between program fragements compiled from different
source langaugcs (cg to make subroutine libraries accessible to <Jll
compiled languages)

• to give compilers a chance to optimise procedure call, procedure entry
and procedure exit (following the reduced instruction set philosophy of
the ARM). These rules are used by the ARM's C compiler; implementors
of other langtJ<Jge translators arc strongly encouraged to usc them, too.

ARM Procedure Call Standard: Introduction 1749

Design Criteria

This standard defines the usc of registers, the passing of arguments at an
external procedure call, and the format of a data structure that can be used
by stack backtracing programs to reconstruct a sequence of outstanding calls.
It does so in rerms of abstract register names. The binding of some register
names to register numbers and the precise meaning of some aspects of the
standard arc somewhat dependent on the host operating system and are
described in separate sections.

Formally, this standard only defines what happens when an external procedure
caU occurs. Language implemcntors may choose to use other mechanisms for
internal calls and are not required to follow the register conventions
described in this document except at the instant of an external call or return.
However, other, system-specific invariants may have to be maintained if it is
required, for example, to deliver reliably an asynchronous interrupt (eg a
SIGINT) or give a stack backtrace upon an abort (cg when de-referencing an
invalid pointer). More is said on this subject in later sections

This procedure call standard was defined after a great
experimentation, measurement, and study of orhcr ;u chitccturcs. It is
to be the best compromise between the following imp0rt<1nt requirements:

• Procedure call must be extremely fast.

deal ci
believed

• The call sequence must be as compact as po.•;.<;ible. (In typical compiled
code, calls outnumber entries by a factor in the range 2-to-1 to 5-to-1.)

• Extensible stacks and multiple stacks must be accommodated. (The
standard permits a st'.Jck to be extended in a non-contiguous manner, in
stack chunks. The size of the stack docs not have to be fixed when it is
created, avoiding a fixed partition of the available data space between
stack and heap. The same mechanism supports multiple stacks for
multiple threads of control.)

• The standard should encourage the production of re-entrant programs,
with wrir-.Jble data separated from code.

• The standard must support variation of the procedure call sequence, other
than by conventional return from procedure (eg in support of C's longjmp,
Pascal's goto-out-of-block, Modula-2+'s exceptions, Unix's signals, etc.)
and tracing of the stack by deburu;:ers and run-time error handlers.
Enough is defined about the stack's structure to ensure that
implementations of these arc possible (within limits discussed later).

1750 ARM Procedure Call Standard: Design Criteria

The procedure call
standard
Register names

General registers

This section defines the standard.

The ARM has sixteen visible gcncrill registers :md 8 flonting-point registers.

Note: In interrupt modes some general register5 arc shadowed and not all
floating-point operations arc available, depending on how the floating-point
operations are implemented.

This standard is written in terms of the register names defined in this section.
The binding of certain register names (the call frame registers) to register
numbers is discussed separately. We do this so that:

• Diverse needs can be more easily accommodated as can conflicting
historical usage of register numbers, yet the underlying structure of the
procedure call standard - on which compilers depend critically -
remains fixed.

• Run-time support code written in assembly language can be made
portable between different register bindings, if it obeys the rules given in
the section entitled Defined bindings.

The register names and fixed bindings are given immediately below.

First, the four argument registers:

al RN
a2 RN
a3 RN
a4 RN

0
1
2
3

; argument !/integer result
; argument 2
; argument 3
; argument 4

Then the six 'variable' registers:

vl RN
v2 RN
v3 RN
v4 RN
vS RN
v6 RN

4
5
6
7
8
9

; register variable
; register variable
; register variable
; register variable
; register variable

; register variable

ARM Procedure Call Standard: The procedure call standard 1751

Notes

Floating point registers

1752

Then the call-frame registers, the bindings of which vary (see the section on
register bindings for details):

sl
fp
ip
sp RN 13

; stack limit I st:<lck chunk handle
; frame pointer
; tempor<~ry workspace, used in procedure entry
; lower end of current st:~ck frame

Note that in the obsolete APCS-A register bindings described below, sp is
bound to r12; in all other APCS bindings, sp is bound to r13.

Finally, lr and pc, which arc determined by the ARM's h:~rdware:

lr RN
pc RN

14
15

; link address on calls I temporary workspace
; program counter and processor status

Literal register names are given in lower case, eg vI, sp, lr. In the text that
follows, symbolic values denoting "some register" or "some offset" arc given
in upper case, eg R, R+N.

References to "the stack" denoted by sp assume a stack that grows from high
memory to low memory, with sp pointing at the top or front (ie lowest
addressed word) of the stack.

At the instant of an external procedure call there shall be nothing of value to
the ca11er stored below the current st:<lck pointer, between sp and the
(possibly implicit, possibly explicit) stack (chunk) limit. Whether there is a
single stack chunk or multiple chunks, an explicit stack limit (in sl) or an
implicit stack limit, is determined by the register bindings and conventions of
the target operating system.

Here and in the text that follows, for any register R, the phrase "in R" refers
to the contents of R; the phrase "at [R]" or "at fR, #N]" refers to the word
pointed at by R or R+N, in line with ARM as.c;cmbly hmguage notation.

The floating-point registers :~rc divided into two sets, analogous to the subsets
a 1 - a4 and v 1 - v6 of the general registers. Registers fO- f3 need not be
preserved by a called procedure; fO is used as the floating-point result
register. In certain restricted circumstances (noted below), fO- f3 may be
used to hold the first four floating-point arguments. Registers f4 - f7, the so
called 'variable' registers, must be preserved by calices.

ARM Procedure Call Standard: Register names

Data representation
and argument passing

Register usage and
argument passing

Control Arrival

I he tloatmg-point registers are:

({) FN
fl FN
f2 FN
D FN

f4 FN
fS FN
f6 FN
f7 FN

0
I
2
3

4
5
6
7

; floating point result (or I st FP argument)
; floating point scratch register (or 2nd FP arg)
; floating point scratch register (or Jrd FP arg)
; floating point scratch register (or 4th FP arg)

; flo:~ring point preserved register
; floating point preserved register
; floating point preserved register
; floating point preserved register

The ARM procedure call st::tndard is defined in terms of N (0) word-si:cd
arguments being passed from the caller to the callee, and a single word or
floating point result passed back by the callce. The standard docs not
describe the layout in store of records, arrays and so forth, used by ARM­
targeted compi lers for C, Pascal, Fortran-77, and so on. In other words, the
mapping from language-level objects to APCS words is defined by each
language's implcmcnr<~tion, not by APCS, and, indeed, there is no formal
reason why two implementations of, say, Pascal for the ARM should not usc
different mappings and, hence, not be cross-callable.

Obviously, it would be very unhelpful for a language implementor to stand
by this formal position and implementors arc strongly encouraged to adopt
not just the letter of APCS but also the obviou~ly n::ttural mappings of source
language objects inro argument words. Strong hinrs arc given about this in
later sections which discuss (some) language specifics.

We consider the passing of N (0) actual argument words to a procedure
which expects to receive either exactly N argument words or a variable
number V (I) of argument words (it is assumed that there is at least one
argument word which indicates in a langu:~ge-implementation-dependent
manner how many actual argument words there arc, for example by using a
format string argument, a count argument, or an argument-list terminator).

ARM Procedure Call Standard: Data representation 1753

Control return

At the instant when control nrrives at the target procedure, the following shall
be true (for any M, if a statement is made about argM, and M > N, the
statement can be ignored):

• arglisinal.
arg2 is in a2.
arg3 is in a3.
arg4 is in a4.
for all I 5, argi is at[sp, #4*0-5)1.

• fp contains 0 or poir.ts to a stack backtrace strucnJre (as described in the
next section).

• The values in sp, sl, fp arc all multiples of 4.

• lr contains the pc +psw value that should be restored into rlS on exit from
the procedure. This is known as the *return link value* for this procedure
call.

• pc contains the entry adtlress of the target procedure.

Now, let us call the lower limit to which sp may point *in this stack chunk*
"SP _L WM" (Stack-Pointer Low Water Mark). (Remember, it is unspecified
whether there is one stack chunk or many, and whether SP _LWM is implicit,
or explicitly derived from sl; these are binding-specific dert~ils.) Then:

• space between sp and SP _L WM shall be (or shall be on demand)
readable, writable memory which can be used by the called procedure as
temporary workspace and overwritten with any values before the
procedure returns.

• sp SP _LWM + 256.

Note: this condition guarantees that a stack extension procedure, if used, shall
have a reasonable amount - 256 bytes - of work space available to it,
probably sufficient to call 2 or 3 procedure invocations further.

At the instant when the return link value for a procedure call is placed in the
pc+psw, the following statements shall be true:

• fp, sp, sl, vl - v6, and f4- f7 shall contain the same values as they did at
the instant of the call.

• If the procedure returns a word-sized result, R, which is not a floating
point value, then R shall he in al.

1754 ARM Procedure Call Standard: Register usage

Notes

• If the procedure return' a floating point result, FPR, then FPR shall be in
fO.

The definition of control return means that this is a "callee saves" standard.

The requirement to pass a variable number of arguments to a procedure (as in
old-style C) precludes the passing of floating point arguments in floating
point registers (as the ARM's fixed point registers arc disjoint from its
floating point registers). However, if a callee is defined to accept a fixed
number K of arguments and its interface description declares it to accept
exactly K arguments of marching rypes, then it is permissible to pass the first
four floating point arguments in floating point registers fO · f3.

Note: Acorn's C compiler fo; the ARM docs not yet exploit this latitude.

The values of a2 · a4, ip, lr and fl • f3 are not defined at the instant of return.

The Z, N, C and V flags are set from the corresponding bits in the return link
value on procedure return. For procedures called using a RL instruction, these
flag values will be preserved ilCros.c; the call.

Note: the flag values from lr at the instant of entry must be instated; it is not
sufficient merely to preserve the flag values across the call. (Consider a
procedure ProcA which has been "tail-call optimised" and docs: CMPS a I,
#0; MOVL T a2, #255; MOVGE a2, #0; B ProcR. If ProcO merely preserves
the flags it sees on entry, rmher than restoring those from lr, the wrong flags
may be set when ProcR returns direct to ProcA's caller).

This standard does not define the values of fp, sp and sl at arbitrary moments
during a procedure's execution, but only at the instants of (external) call and
return. It should be noted that further standards and restrictions may apply
under particular opernting systems, to aid event handling or debugging. In
general, you arc strongly encournged to preserve fp, sp and sl, at all times.

The minimum amount of srnck defined to be available is not particularly
great, and as a general rule a language implementation should not expect
much more, unless the conventions of the target operating system indicate
otherwise. For example, code generated by the RISC OS C compiler is able,
if there is inadequate local workspace, to allocate more stack space from the
C heap before continuing. Any language unable to do this may have its

ARM Procedure Call Standard: Register usage 1755

1756

interaction with C impaired. That sl contains a stack chunk handle is important
in achieving this. (See the bter discussion of RISC OS register bindings for
further details).

The statements about .sp and SP _L WM are designed to opt1m1se the testing
of the one against the other. For example, in the RISC OS user-mode binding
of APCS, sl contains SL_L WM +512, allowing a procedure's entry sequence to
include something like:

CMP sp, sl
BLLT l xSstack_overflow

where x$stack_overflow is a part of the run-time system for the relevant
language. If this test fails, and x$srack_overflow is not called, then:

• there arc at least 512 bytes free on the stack.

This procedure should only call other procedures when sp has been dropped
by 256 bytes or less, guaranteeing that there is enough space for rhc called
procedure's entry sequence (and, if needed, the stack extender) to work in.

If 256 bytes arc not enough, the entry sequence has ro drop sp before
comparing with sl in order to force stack extension (see later sections on
implementation specifics for details of how the RISC OS C compiler handles
this problem).

ARM Procedure Call Standard: Register usage

Stack backtrace data
structure

At the instant of an external procedure call, the value in fp is zero or it points
to a data structure that gives information about the sequence of outstanding
procedure calls. This structure is in the format shown below:

fp points to here save mask pointer
return link value

return sp value
return fp value

[saved v6 value)
[saved v5 value)

[saved v4 value)
[saved v3 value)
[saved v2 value)
[saved v l value]

[saved a4 value]
[saved a3 value]
[saved a2 value)
[saved a 1 value]
[saved f7 value)
[st~ved f6 value]

[saved f5 value]
[saved f4 value]

[fp]

[fp, #--4]
[fp, #-8)

[fp, #-12)

3 words
3 words
3 words
3 words

This picture shows between four and twenty-six words of store, with those
words higher on the page being at higher addresses in memory. The vt~lues
shown in square brackets arc optional, and the presence of any does not imply
the presence of any other. The floating point values are in extended format
and occupy three words each.

At the instant of procedure call, all of the following statements about this
structure shall be true:

• The return fp value is either 0 or contains a pointer to another stack
backtrace data structure of the same form. Each of these corresponds to ;:m
active, outstanding procedure invocation. The statements listed here are
also true of this next stack backtrace data structure and, indeed, hold true
for each structure in the chain.

ARM Procedure Call Standard: Stack backtrace 1757

1758

• The save mask pointer vnlue, when bits 0, I, 26, 27, 28, 29, 30, 31 have been
cleared, points twelve bytes beyond a word known as the return data save
instruction.

• The return data save instruction is a word that corresponds to an ARM
instruction of the followin~ form:

STMDBsp! , ([alJ, (a? , (a3J, [a4J,
[vlJ , [v?, (v3J, : v4J, [v~ J, [v6J ,
!p, lp, 1 ~. pel

Note the square brackets in the above denote optional parts: thus, there
are 12 x 1024 possihle values for the return data save instruction,
correspondingto the f01lowing bit patterns:

1110 1001 0010 1101 ! 101 IOxx xxxx xxxx

t t t
APCS-R, APCS-U or

1 I 10 1001 0010 1100 1100 llxx xxxx xxxx APCS-A (obsolete)

The least-significant 10 bits represent argument and variable registers: if
bit N is set, then register N will be transferred.

The optional parts [alI. la2l. [a3], [a4], [vi}, [v2}, [vJI, lv4l, [v5] and [v6l in
this instruction correspond to those optional p:ms of the stack backtrace
data structure that arc present such that: for all M, if [vM] or [aM] is
present then so is [saved vM value] or [s:-tvcd aM value], and if [vMl or
[aM] is absent then so is [saved vM value] or [saved aM value]. This is as

if the stack backtrace dam structure were formed by the execution of this
instruction, following rhe loading of ip from sp (as is very probably rhe
case).

• The sequence of up to four instructions followin~ the return data save
instruction determines whether saved floating point registers are present
in the backtrace structure. The four optional instructions allowed in this
sequence arc:

STFE f7, fsp, #-12]! ; 11101101 01101101 0 1110001 00000011
STFE f6, (sp, #- 12]! ; 11101101 01101101 01100001 00000011

STFE f5, [sp, #-12]!; 11101101 01101101 01010001 00000011
STFE f4, lsp, #-121! ; 11101101 01101101 01000001 00000011

t

ARM Procedure Call Standard: Stack backtrace

Notes

Any or all of these instructions may be mtssmg, and any deviation from
this order or any other instruction terminates the sequence.

Note: an historical bug in the C compiler (now fixed) inserted a single
arithmetic instruction between the return clara save instruction and the first
STFE. Some Acorn software allows for this.

Note that the bit patterns given arc for APCS-R/APCS-U register
bindings. In the obsolete APCS-A bindings, the bit indicated by the
arrow is 0.

The optional instructions saving f4, fS, f6 and fl correspond to those
optional parts of the stack backtracc data strucnJTe that arc present such
that: for all M, if STFE fM is present then so is [saved fM value]; if
STFE fM is absent then so is [saved fM value].

At the instant when procedure A calls procedure B, the srack backtracc
data structure pointed at by fp contains exactly those clements [vl], [v2],
fv3], [v4], [v5l , [v61, [f41, [f5], [f6], ffll, fp, sp and pc which must be restored
into •he corresponding ARM registers in order to cause a correct exit
from procedure A, albeit with an incorrect result.

The following example suggests what the Cntf)' and exit sequences for a
procedure arc likely ro look like (though entry and exit arc not defined in
terms of these instruction sequences because that would be too restrictive; a
good compi ler can often do better than is suggested here):

entry MOV ip, sp

STMDB sp ! , !arqRcqs , ofiCrkReqs, fp, !p, I r, pel
SUB ~p , io, t4

exit LOMOB !p, (workRf'qs , fp, sp, pel A

Many apparent idiosyncmsies in the standard may be explained by efforts to
make the entry sequence work smoothly. This example above is neither
complete (no stack limit checking) nor mandatory (making arguments
contiguous for C, for in~tance , requires a slightly different entry sequence; ;md
storing argRegs on the stack may be unneccssaf)')

The "workRegs" registers mentioned above correspond to as many of vl to v6
that this procedure needs in order to work smoothly. At the instant when
procedure A calls any other, those worksp:~cc registers not mentioned in A's
return data save instruction will contain the values they contained at the instant

ARM Procedure Call Standard: Stack backtrace 1759

Defined bindings

APCS-R and APCS-U;
RISC OS and RISC iX

1760

A was entered. Additionally, the registers f4 - f7 not mentioned in the
floating point save sequence following the return data save imrruction will lso
contain the values they contilincd at the instant A was entered.

This standard docs not require anything of the vnlues found in the optional
parts [al], [a2l. [aJ). [a41 of a stack backrrace data ~tructurc. They are likely, if
present, to contain the saved arguments to this procedure call; but this is not
required and should not be relied upon.

Thi s section defines the bindin~:s of the procedure call st:-.ndard.

These bindings of the ARM procedure-call standard arc u~ by:

• RISC OS applications running in ARM user-mcxle

• compiled code for RISC OS modules and handlers running in ARM
SVC-mode

• RISC iX applications (which make no usc of sl) running in ARM user
mode

• RISC iX kernels running in ARM SVC mode.

The call-frame register bindin~:s are:

sl RN 10 ; srnck limit I stack chunk handle
unused by RISC iX applications

fp RN II ; frame pointer
tp RN 12 ; used as temporary worbpacc
sp RN 13 ; lower end of current stack frnmc

Although not formally required by this standard, it is con~idered good taste
for compiled code to preserve the value of sl everywhere.

The invariants sp > ip > fp have been preserved, in common with the obsolete
APCS-A (described below), nllowing symbolic :1S$Cmbly code (and compiler
codc-gcnerarors) written in terms of register names to be ported between
APC'S-R, APCS-U and APCS-A merely by rc-labellinl! the call-frame
registers provided:

• when call-frame rq;:istcrs <tppcar in LD~1. LOR, STM and STR
mstructions they nrc named symbolically, never by register numbers or
register ranges;

ARM Procedure Call Standard: Defined bindings

Constraints on sl in
APCS-R

Constraints on sl in
APCS-U

• no usc is made of the ordering of the 4 call-frame registers (cg in order
to load/save fp or ~;p from a full register save).

In SYC and IRQ modes (collectively called module mode) SL_L WM is

implicit in sp: it is the next megabyte boundary below sp. Even though the
SYC mode and IRQ mode stacks arc not extensible, sl still points 512 byres
above a skeleton stack-chunk descriptor (stored just above the megabyte
boundary). This is done for compatibility with usc by applications running in
ARM User mode and to facilitate module-mode stack-overflow detection. In
other words:

sl = SL_LWM + 512.

When used in User mode, the stack is segmented and is extended on demand.
(Acorn's language-independent run-time kernel allows language run-time
systems to implement stack extension in a manner which is compatible with
other Acorn languages). sl points 512 bytes above a full stack-chunk structure
and, again:

sl = SL_LWM + 512

Mode-dependent smck-overflow handling code in the language-independent
run-time kernel faults an overflow in module mcxle nnd extends the stack in
application mode. This allows library code, including the nm-time kernel, to

be shared between all applications and modules written in C.

ln both modes, the value of sl must be valid immediately before each
external call and each return from an external call.

Note: Dcallocation of a stack chunk may be performed be intercepting
returns from the procedure that caused it to be allocated. Tail-call
optimisation complicates the relationship, so, in general, sl is required to be
valid immediately before every return from external call.

In this binding of the APC.S the user-mode stack auto-extends on demand so
sl is unused and there i~ no stack-limit checking.

In kernel mode, sl is reserved to Acorn.

ARM Procedure Call Standard: Defined bindings 1761

The obsolete APCS-A
binding

Notes on APCS
bindings

Invariants and APCS-M

1762

This obsolete binding of the procedure-catt standard is used by Arthur
applications running in ARM user-mode. The applicable call-frame register
bindings are as follows:

sl RN
fp RN
ip RN
sp RN

13
10
11
12

; stack limit I stack chunk handle
; frame pointer
; used as temporary workspace
; lower end of current stack frame

Note: Use of rl2 as sp, rather than the architecturally more natural r13, is
historical and predates both Arthur and RISC OS.

In this binding of the APCS, the stack is segmenrcd and is extended on
demand. {Acorn's language-independent run-time kernel a11ows language nm­
time systems to implement stack extension in a manner which is compatible
with other Acorn languages).

The stack limit register, sl, points 512 bytes above a stack-chunk descriptor,
itself located at the low-address end of a stack chunk. In other words:

sl = SL_LWM + 512.

The value of sl must be valid immediately before eoch external call and each
return from an external call.

Although not formally required by this standard, it is considered good taste
for compiled code to preserve the value of sl everywhere.

In all future supported bindings of APCS sp shall be bound to riJ.

In a11 supported bindings of APCS the invariant sp > ip > fp shatt hold.

This means that the only other possible binding of APCS is APCS-M:

sl RN 12 ; stack limit I stack chunk h:mdle
fp RN 10 ; frame pointer
ip RN 11 ; used as temporary worksp:1ce
sp RN 13 ; lower end of current stack frame

ARM Procedure Call Standard: Notes on APCS bindings

Further restrictions in
SVC and IRQ modes

There are some con~equences of the ARM's architecture which, while not
formally acknowledged by the ARM Procedure Call Standard, need to be
understood by implementors of code intended to run in the ARM's SVC and
IRQ modes.

An IRQ corrupts r14_irq, so IRQ mode code must run with IRQs off until
rl4_irq has been saved. Acorn's preferred solution to this problem is to enter
and exit IRQ handlers written in high-level languages via hand-crafted
"wrappers" which on entry save rl4_irq, change mode to SVC, and enable
IRQs and on exit restore the saved rl4_irq (which restores IRQ mode and the
IRQ-enable state). Thus the handlers themselves run in SVC mode, avoiding
this problem in compiled code.

Both SWis and aborts corrupt r14_svc. This means that care has to be taken
when calling SW!s or causing aborts in SVC mode.

In high-level languages, SW!s are usually called out of line so it suffices to
save and restore r14 in the calling veneer around the SWI. If a compiler can
generate in-line SWis, then it should, of course, also save and restore rl4 in­
line, around the SWI, in case the code has to run in SVC mode.

An abort in SVC mooe may be symptomatic of a fatal error or it may be
caused by page faulting in SVC mode. (Acorn expects SVC-mode code to be
"correct", so these arc the only options.) Page faulting can occur because an
instruction needs to be fetched from a missing page (causing a prefetch abort)
or because of an attempted data access to a missing page. The latter may
occur even if the SVC-mooc cooe is not itself paged (consider an unpaged
kernel accessing a paged user-space).

A data abort is completely recoverable provided r14 contains nothing of
value at the instant of the abort. This can be ensure-d by:

• saving R 14 on entry to every procedure and restoring it on exit

• not using R 14 as a temporary register in any procedure

• avoiding page faults (stack faults) in procedure entry sequences.

A prefctch abort is harder to recover from and an aborting BL instruction
cannot be recovered. So:

• special action has to be taken to protect page faulting procedure calls.

ARM Procedure Call Standard: Notes on APCS bindings 1763

Example procedure
calls InC

1764

For Acorn C, rl4 is saved in rhe 2nd or 3rd inmuction of an entry sequence.
Aligning all procedures at addresses which arc 0 or 4 modulo 16 ensures that
the critical part of the entry sequence cannot pcfetch -abort. A compiler can do
this by padding all code sections to a multiple of 16 bytes in length and
being careful about the alignment of procedures within cooc sections.

Data-aborts early in procedure entry sequences Cfln be avoided by using a
software stack-limit check like that used in APCS-R.

Finally, the recommended way to protect BL instructions from prcfctch-abort
corruption is to precede each BL by a MOV ip, pc instruction. If the BL faults,
the prefetch abort handler can safely overwrite rl4 with ip before resuming
execution at the target of the BL. If the prcfetch :Jbort is not caused by a BL
then this action is harmless, as rl4 has been corrupted anyway (and, by
design, contained nothing of value at any instant a prcfetch abort could occur).

Here is some sample assembly code as it might be produced by the C
compiler:

; gggg is a function of 7 arqs t~at needs one req!s:er v~r!aDie (vll

gggg MOV ip, sp
STMDB sp!, {a 1, a7, vl, fp , ip, I r, pel
SUB fp, ip, J 4 points a: s~1v('ci p::
CMPS sp, sl
BLLT lxSs:ack -overflow ! har.d!er p~OCNiU re

MOV vl, 0 00 usc a r<>gist<>r var\~ole

BL ffff

MOV vl ; rely on lts va l ue aft<>~ ~fffll

Within the body of the procedure, arguments arc used from registers, if
possible; otherwise they must be addressed relative to fp. In the two
argument case shown above, argl is at [fp,#-24] and arg2 is at [fp,#- 20]. 13ut
as discussed below, arguments are sometimes stacked with positive offsets
relative to fp.

Local variables are never addressed offset from fp; they always have posn•ve
offsets relative to sp. In code that changes sp this means that the offsets used
may vary from place to place in the code. The rea~n for this is that it permits
the procedure x$stack_overflow to recover by setting sp (find sl) to some new

ARM Procedure Call Standard: Example procedure calls in C

stack segment. As part of this mechanism, x$stack_overflow may alter memory
offset from fp by negative amounts, eg [fp, #-64) and downwards, provided

that it adjusts sp to provide workspace for the called routine.

If the function is going to usc more than 256 bytes of stack it must go:

SUB ip, sp, H<~y st~ck size>
CMPS ip, sl
BLLT lxSstac'<_ovcr~Jm; 1

instead of the two-instruction test shown above.

If a function expects no more than 4 arguments it can push all args onto the
stack at the same time as saving its old fp and its return address (sec the
example above), ;md arguments are then saved contiguously in memory with
argl having the lowest address. A function that expects more than 4 arguments
has code at its head as follows:

MOV ip, sp
STMFD sp!, (al, a2 , a3, a4} put arg1-4 below stacked args
STMFO sp!, (vl , v2 , fp , ip, lr, pc} ; vl-v6 saved as necessary
SUB fp, :p, J20 poin~ at newly crca~ed ca:J-frrim<'
CMPS sp, s:
BLLT 1 xSs:. ack ovc~ flow

LDMDB ~p . 1 vl, v/, fp , sp , pc 1 ~ ; res[orc reg! ster va rs & rc: urn

The entry sequence arranges that arguments (however many there arc) lie in
consecutive words of memory and that on return sp is always the lowest
address on the stack that still contains useful data.

The time taken for a call, enter and return, with no arguments and no registers
saved, is about 22 S-cycles.

Although not required by this standard, the values in fp, sp and sl are
maintained while executing code produced by the C compiler. This makes it
much easier to debug compiled code.

Multi-word results other than double prec1s1on reals in C programs are
represented as an implicit first argument to the call, which points to where the
caller would like the result placed. It is the first, rather than the last, so that
it works with a C function that is not given enough arguments.

ARM Procedure Call Standard: Example procedure calls inC 1765

Procedure calls In other
Acorn languages

Assembler

Fortran

Pascal

Lisp, BCPL and BASIC

General

Various lessons

1766

The procedure call standard is reasonably easy ;md natural for assembler
programmers to use. The following rules should be followed:

Call-frame registers should always be referred to by explicitly by symbolic
name, never by register number or implicitly as part of a register range.

The offsets of the call-frame registers within a regi~rer dump should not be
wired into code. Always usc a symbolic offset so th:lt you can easily change
the register bindings.

The Acorn RISC OS Forrran-77 compiler viobtes the APCS in a number of
ways that preclude inter-working with C, except via :J~c;cmbler veneers.

The Acorn RISC OS ISO- Pascal compiler violates the APCS in a number of
ways that preclude inter-working with C, except vio a~scmblcr veneers.

These languages have their own special requirements which make it
inappropriate to use a procedure call of the form described here. Naturally,
all arc capable of making external calls of the given form, through a small
amount of assembler "glue" code.

Note that there is no requirement specified by the standard concerning the
production of re-entrant code, as this would place an intolerable strain on the
conventional programming practices used in C and Fortran. The behaviour of a
procedure in the face of multiple overlapping invocations is part of the
specification of that procedure.

This document is not intended as a general guide to the wntmg of code
generators, however it seems worthwhile to highlight various optimisations that
appear particularly relevant to the ARM and to this ~t:lndard.

The use of a callee-saving st:lndard, instead of a caller-saving one, reduces the
size of large code images by about ten percent (with compilers that do little
or no interprocedural optimisation).

ARM Procedure Call Standard: Procedure calls in other languages

In order to make effective usc of the APCS, compilers must compile code a
procedure at a time. Line at a time compilation is insufficient.

The preservation of condition codes over a procedure call is often useful
because any short sequence of instructions (including calls) that forms the
body of a short IF statement can be executed without a branch instruction. For
example:

if (a < Ol b = too();

can compile into:

CMP a, JO

BLLT foo
MOVLT l:>, al

In the case of a "k,,f'' or "fast" procedure, ic, one that calls no other
procedures, much of th\! standard entry sequence can be omitted. In very
small procedures, such ;~s arc frequently used in data abstraction modules,
the cost of the procedure ca n be very small indeed. For instance, consider:

typedef struct ~ ... : int a; •.• J foo;

int get_a(foo• t) '~etur:"l (f->a);J

The procedure geta can compile to just:

LOR al, lal, faOffset J
MOVS pc, lr

This is also useful in procedures with a conditional as the top level statement,
where one or other arm of the conditional is ''fast" (ie calls no procedures). In
this case there is no need to form a stack frame there. For example, using this,
the C program:

int sum (int il
I

if (i <= 1)

return(i);

else
return (i • ~ ~I · -1)) ;

ARM Procedure Call Standard: Various lessons 1767

1768

could be compiled into:

s um try fast case CMP a l , fl

MOVSLE pc , lr and i f appropriat e, ha~dlP quickly!

; e lse, for m a stac < frame a nd handle che rest as nor~al code .
MOV ip, sp
STMDB sp!, {v: , fp, ip, lr, pc)
CMP sp, sl
BLLT overflo•
MOV
SUB
BL

vl, al
al , a l ,
su:n

ADD al, al, '
LDMOB fp, { vl , r, sp, pc) A

reqlster to hold i
set up a ~qc~ent for call
do t~e call
perform t~~ addition
a nd retur:1

This is only worthwh il If the test can be compiled using only ip, and any
spare of a I • a4, as scrat. .. h registers. This technique can significantly speed up
certain speed-critical routines, such as read and write character. At the present
time, this optimisation is performed by the 13CPL compiler but not by the C
compiler.

Finally, it is often worth applying the "tail call" optimisation, especially to
procedures which need to save no registers. For example, the code fragment:

extern vo id •ma iloc (s12 e_t n)

{

return pr imi~!vc _alloc(NOTGCABLEBIT , B~:~S70WORDS(~ll ;

is compiled hy the C comr•il <.: r into:

malloc ADD
MOV
MOV
B

a l , a l , •
a2 , al, • 2
al , 110 1!14
pr1m1t1 Joe

lS
lS
15
2N • 4S

This avoids saving and restoring the call-frame registers and minimises the
cost of interface "sugar , '•" procedures. This saves 5 instructions and, on a 4/8
MHz ARM, reduces the ··· of the malloc sugar from 24S to 7S.

ARM Procedure Call Standard: Various lessons

References If you need to find out more about ARM assembler and the ARM chip set,
then refer to the following sources:

• ARM assembler is thoroughly covered in the manual supplied with the
ARM Assembler, available from your Acorn supplier

• The ARM chip set is described in much greater detail in the VL86CO/O
32-13it RISC MPU and Peripheral User's Manual, published by Prentice
Hall.

In addition, a number of other publishers have produced books covering these
topics- such is the interest in the ARM chip set.

ARM Procedure Call Standard: References 1769

1770 ARM Procedure Call Standard: References

Appendix D ,. ARM Object Format

Introduction

Assumed tennlnology

Byte

Half word

Word

String

This document defines a file format called ARM Object Format, which is
used by language processors for ARM-based systems. The AOF linker
accepts input files in this format and generates output in the same format or
in RISC OS Application Image Format. In the rest of this document, the term
"object file" is used to denote a file in ARM Object Format and the term
"linker" is used to denote the AOF linker.

Throughout: this document the terms "byte", ''half word", "word", and "string"
are used to mean the following:

8 bits, considered unsigned unless otherwise stated, usually used to store flag
bits or characters.

16 bits, or 2 bytes, usually unsigned. The least significant byte has the lowest
address (DEC/Intcl "byte sex", sometimes calkd "little endian"). The
address of a half word (i.e. of its least significant byte) must be divisible
by 2.

32 bits, or 4 bytes, usually used to store a non-negative value. The least
significant byte has rhe lowest address (DEC/Inrcl "byte sex", sometimes
called "little endian"). The address of a word (i.e. of its least significant
byte) must be divisible by 4.

A sequence of byres terminated by a NUL (OxOO) byte. The NUL is parr of
the string bur is not counred in the string's length. Strings may be aligned on
any byte boundary.

ARM Object Format: Introduction 1771

Undefined Fields

Overall structure of an
AOF file

Chunk file format

1772

For emphasis: a word consists of 32 bits, 4-byte aligned; within a word, the
least significant byte has the lowest address. This is DEC/In tel, or "little
endian", byte sex, not mt--.1/Mororola byte sex.

Fields not explicitly defined by this document ;~re implicitly reserved to
Acorn. It is required that all such fields be zerocd. Acorn may ascribe
meaning to such fields at any time, but will usu:-.lly do so in a manner which
gives no new meaning to zeroes.

An object file contains a number of sep<lr:lte bur related pieces of dat<L In
order to simplify access to these darn, and to provide for a degree of
extensibility, the object file format is itself layered on another format called
"Chunk File Format", which provides a simple and efficient means of
accessing and updating distinct chunks of data within a single file . The object
file format defines five chunks: "header", "areas", "identification", "symbol
table", and "string table".

The minimum size of a piece of data in roth formats is four bytes or one
word. Each word is stored in a file in "litlc-endian" format; that is the le:~st
significant byte of the word is stored first.

A chunk is accessed via a header at the srnrt of the file. The header contains
the number, size, location and identity of each chunk in the file. The size of the
header may vary between different chunk files but is fixed for each file. Not
all entries in a header need be used, thus limited expansion of the number of
chunks is permitted without a wholesale copy. A chunk file can be copiL-d
without knowkxlge of the contents of the indi\·idual chunks.

ARM Object Format: Undefined Fields

Graphically, the layout of a chunk file is as follows:

ChunkFileld

maxChunks

numChunks 3 words

entry 1 4 words per entry

cntry2

entry "maxChunks" End of header (3 + 4*MaxChunks) words

Start of data chunks

chunk 1

chunk "numChunks'

ChunkFilcld marks the file as a chunk file. Its value is C3COC6C5 hex. The
"maxChunks" field defines the number of the entries in the header, fixed
when the file is created. The "numChunks'' field defines how m<my chunks arc
currently used in the file, which can vary from 0 to "maxChunks". The value of
"numChunks" is redundant as it c<~n be found by scanning the entries.

Each entry in the header comprises four words in the following order:

chunkld

Offset

size

ARM Object Format: Chunk file format

a two word field identifying what data the chunk contains file

<1 one word field defining rhe byte offset within the file of
the chunk (which must be divisible by four); an entry of zero
indicates th<Jt the corresponding chunk is unused

a one word field defining the exact byte size of the chunk
(which need nor be a multiple offour).

1773

Object file format

1774

The "chunkld" field provides a conventional way of identifying what type of
data a chunk contains. It is split into two parts. The first four characters (in the
first word) contain a univers:JIIy unique name allocated by a central authority
(Acorn). The remaining four characters (in the second word) can be used to
identify component chunks within this universal domain. In each part, the first
character of the name is stored first in the file, and so on.

For AOF files, the first part of each chunk's n:~me is "OBJ_"; the second
components are defined in the next section.

Each piece of an object file is stored in a separnte, identifiable, chunk. AOF
defines five chunks as follows:

Chunk

Header
Areas
Identification
Symbol Table
String Table

Chunk Name

013J_HEAD
013J_AREA
013J_IDFN
013J_SYMT
013J_STRT

Only the "header" and "areas" chunks must be present, but a typical object
file will contain all five of the above chunks.

A feature of chunk file format is that chunks may appear in any order in the
file. However, language processors which must also generate other object
formats- such as Unix's a.out format- should use this flexibility cautiously.

A language translator or other system utility may add additional chunks to an
object file, for example a language-specific symbol table or language­
specific debugging data, so it is conventional to allow space in the chunk
header for additional chunks; ~pace for eight chunks is conventional when the
AOF file is produced a language processor which generates all five chunks
described here.

The "header chunk" should not be confused with the chunk file's header.

ARM Object Format: Object file format

Format of the AOF
header chunk

Object file type

Version 10

Number of areas

The AOF header is logically in two parts, though theFe appear contiguously in
the header chunk. The first part is ci fixed size and describes the contents and
nature of the object file. The second part is variable in length (specified in
the fixed part) and is a sequence of "area" declarations defining the code and
data areas within the OBJ_AREA chunk.

The AOF header chunk has the following format:

Object file type

Version Id

Number of areas

Number of Symbols

Entry Address Area

Entry Address Offset

1st Area Header

2nd Area Header

nth Area Header

6 words in the fixed part

5 words per area header

{6 + S•Number of Areas) words in the

AOF header

C5E20080 (hex) marks an object file as being in rclocatable object format

This word encodes the version of AOF to which the object file complies AOF
l .xx is denoted by ISO decimal; AOF 2.xx by 200 decimal.

The code and data of the object file is presented as a number of separate
"areas", in the OBJ_AREA chunk, each with a nnme and some attributes {see
below). Each area is declared in the (variable-length) part of the header
which immediately follows the fixed part. The value of the "Number of
Areas" field defines the number of areas in the file and consequently the
number of area declarations which follow the fixed part of the header.

ARM Object Format: Object file format 1775

Number of symbols

Entry address area/ entry
address offset

Format of area headers

Area name

AL

AT (Area attributes)

1776

If the object file contains a symbol table chunk "OI3J_SYMT", then this field
defines the number of symbols in the symbol table.

One of the areas in an object file may be design:~ted as contatmng the start
address for any program which is linked to include this file . If so, the entry
address is specified as an <area-index, offset> pair, where "area-index" is in
the range l to "Number of Areas", specifying the n'th area declared in the
area declarations part of the header. The entry address is defined to be the
base address of this area plus "offset".

A value of 0 for "area -index" signifies that no program entry address is
defined by this AOF file.

The area headers follow the fixed part of the AOF header. Each area header
has the following form:

Area name (offset into string table)

zeroes I AT I AL

Area size

Number of relocations

Unused - must be zero 5 words in total

Each name in an object file is encoded as an offset into the string table, which
stored in the OBJ_STRT chunk. This allows the variable-length characteristics
of names to be factored out from primary data formats. Each area within an
object file must be given a name which is unique amongst all the areas in that
object file.

This byte must be set to 2; all other values are reserved to Acorn.

Each area has a set of attributes encoded in the AT byte. The least-significant
bit of AT is numbered 0.

ARM Object Format: Object file format

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

The linker orders areas in a generated image first by attributes, then by the
(case-significant) lexicographic order of area names, then by position of the
containing object module in the link-list. The position in the link-list of an
object module loaded from a library is not predictable.

When ordered by attributes, Read-Only areas precede Read-Write areas
which precede Debug areas; within Read-Only and Read-Write Areas, C.ode
precedes Data which precedes Zero-Initialised data. Zero-Initialised d:1ta
may not have the Read-Only attribute.

This bit must be set to 0.

If this bit is set, the area contains code, otherwise it conrains data .

Bit 2 specifies that the area is a common block definition.

Bit 3 defines the area to be a (reference to a) common block and precludes
the area having initialising data (see Bit 4, below). In effect, the setting of Bit
3 implies the setting of Bit 4.

Common areas with the same name are overlaid on each other by the linker.
The "Size" field of a common definition defines the size of a common block .
All other references to this common block must specify a size which is
smaller or equal to the definition size. In a link step there may be at most one
area of the given name with bit 2 set. If none of these have bit 2 set, the actual
size of the common area will be size of the largest common block reference
(see also linker-defined symbols section).

This bit specifies that the area has no initialising data in this object file and
that the area contents arc missing from the OB]_AREA chunk. This bit is
typically used to denote large uninitialised data areas. When an uninitialised
area is included in an image, the linker either includes a read-write area of
binary zeroes of appropriate size or maps a read-write area of appropriate
size that will be zeroed at image start-up time. This attribute is incompatible
with the read-only attribute (see ''Bit 5", below).

Note: Whether or not a z,cro-initialised area is re-z,croed if the image is re­
entered is a property of the linker and the relevant image format. The
definition of AOF neither requires nor precludes re-zeroing.

ARM Object Format: Object file format 1777

Bit 5

Bit 6

Bit 7

Area size

Number of relocations

Format of the areas
chunk

1778

This bit specifies that the area is read-only. The linker groups read-only areas
together so that they may be write protected at run-time, hardware permitting.
Code areas and debugging tables should have this bit set. The setting of this
bit is incompatible with the setting of bit 4.

This bit must be set to 0.

This bit specifics that the area contains symbolic debugging tables. The linker
groups these areas together so they can be accessed as a single continguous
chunk at run-time. It is usual for debugging tables to be read- only and,
therefore, to have bit 5 set too. If bit 7 is set, bit I is ignored.

This field specifies the size of the area in bytes, which must be a multiple d
4. Unless the "Not Initialised" bit (bit 4) is set in the area attributes, there
must be this number of bytes for this area in the OBJ_AREA chunk.

This specifies the number of relocation records which apply to this area.

The areas chunk (OBJ_AREA) contains the acnml areas (code, data, zero­
initialised data, debugging data, etc.) plus any associated relocation
information. Its chunkid is "OBJ_AREA". Both an area's contents and its
relocation data must be word-aligned. Graphically, an area's layout is:

Area I

Area I relocation

Area n

Area n relocation

An area is simply a sequence of byte values, the order following that ci the
addressing rules of the ARM, that is the least significant byte of a word is
first. An area is followed by its associated relocation table (if any). An area
is either completely initialised by the values from the file or not initialised at
all (i.e. it is initialised to zero in any loaded program image, as specified by
bit 4 of the area attributes).

ARM Object Format: Object file format

Relocation directives If no relocation is specified, the value of a bytc/halfword/word in the
preceding area is exactly the value that will appear in the final ima~e.

Bytes and halfwords may only be relocated by constant values of suitably
small size. They may not be relocated by an area's base address.

A field may be subject to more than one relocation.

There arc 2 types of relocation directive, termed here type- I and type-2. Type-
2 relocation directives occur· only in AOF versions 150 and later.

Relocation can take two basic forms: "Additive" and "PCRelative".

Additive relocation specifics the modification of a bytc/halfword/word,
typically containing a data value (i.e. constant or address).

PCRelativc relocation always specifics the modification of a branch (or
branch with link) instruction and involves the generation of a program- counter­
relative, signed, 24-bit word-displacement.

Additive relocation directives and type-2 PC-rclativc relocation directives
have two variants: "Internal" and "Symbol''.

Aditive internal relocation involves adding the allocated base address of an
area to the field to be relocated. With T ype-1 internal relocation directives,
the value by which a location is relocated is always the base of the area with
which the relocation directive is associated (the SID field is ignored). In a
type-2 relocation directive, the SID field specifics the index of the area
relative to which relocation is to be performed. These relocation directives arc
analogous to the TEXT-, OAT A- and BSS-rclative relocation directives found
in the a.out object format.

Symbol relocation involves addin~ the value of the symbol quoted.

A type-1 PCRelative relocation directive always references a symbol. The
relocation offset added ro any pre-existing in the instruction is the offset of
the target symbol from the PC current at the instruction making the
PCRelative reference. The linker takes into account the fact that the PC is
eight bytes beyond rhar in~tnJction .

In a type-2 PC-relative relocation directive (only in AOF vsn 150 and later)
the offset bits of the instruction are initialised to the offset from the base of
the area of {the PC value current at the instruction making the reference} -
thus the language rran51ator, not the linker, compensates for the difference

ARM Object Format: Object file format 1779

Format of Type 1
relocation directives

Offset

SID

FT (Field Type)

R (relocation type)

A (Additive type)

1780

between the address of the instruction and the PC value current at it. This
variant is introduced in direct support of compilers that must also generate
Unix's a.out format.

For a type·2 PC-rclative symbol-type relocation directive, the offset added
into the instruction making the PC-relative reference is the offset of the target
symbol from the base of the area containing the instruction. For a type-2, PC.
relative, internal relocation directive, the offset added into the instruction is
the offset of the base of the area identifcd by the SID field from the base of
the area containing the instnJCtion.

The linker itself may generate type-2, PC.rcbtive, internal relocation
directives during the process of partially linking a set of object modules.

Diagrammatically:

SID

Offset is the byte offset in the preceding area of the field to be relocated.

If a symbol is involved in the relocation, this 16-bit field specifies the index
within the symbol table (sec below) of the symbol in question.

This 2-bit field (bits 16 • 17) specifics the size of the field to be relocated:

00 byte
01 halfword
10 word
11 illegal oolu.e

This field (bit 18) has the following interpretation:
0 Additive relocation
1 PC-Relative relocation

In a type·l relocation directive, this 1-bit field (bit 19) is only interpreted if
bit 18 is a zero.

ARM Object Format: Object file format

Bits 20- 31

Format of Type 2
relocation directives

Format of the symbol
table chunk

Name

A=O specifies "Internal" relocation, meaning that the base address of the area
(with which this relocation directive is associated) is added into the field to
be relocated. A= 1 specifics "Symbol" relocation, meaning that the value of
the given symbol is added to the field being relocated.

Bits 20-31 are reserved to Acorn and should be written as zeroes.

These are available from AOF 1.50 onwards.

I Off~·
10001 AI R I IT 24-bit SID

The interpretation of Offset, Ff and SID is exactly the same as for type-1
relocation directives except that SID is increased from 16 to 24 bits and has a
different meaning- described below- if A=O) .

The second word of a type-2 relocation directive contains 1 in its most
significant bit; bits 28 . .30 must be written as 0, as shown.

The different interpretation of the R bit in typc-2 directives has already been
described in the section entitled Relocation.

If A=O ('internal' relocation type) then SID is the index of the area, in the
OBJ_AREA chunk, relative to which the value at Offset in the current area is
to be relocated. Areas are indexed from 0.

The "Number of Symbols" field in the header defines how many entries there
are in the symbol table. Each symbol table entry has the following format:

Name

I AT

Value

Area name 4 words per entry

This value is an index into the string table (in chunk OfiJ. STRT) and thus
locates the character string representing the symbol.

ARM Object Format: Object file format 1781

AT

Bits 1 and 0

Bit 2

Bit 3

Bit 4

This is a 7 bit field specifying the attributes of a symbol ns follows:

(10 means bit I set, bit 0 unset) .

01 The symbol is defined in this object file and hns scope limited to this
object file (when resolving symbol references, the linker will only match
this symbol to references from other areas within the same object file).

10 The symbol is a reference to a symbol defined in another area or another
object file. If no defining instance of the symbol is found then the linker
attempts to match the name of the symbol to the names of common blocks.
If a match is found it is as if there were d\!fined an identically-named
symbol of global scope, having as value the ba~ address of the common
area.

11 The symbol is defined in this object file and has global scope (i.e. when
attempting to resolve unresolved references, the linker will match this
symbol to references from other object files).

00 Reserved to Acorn.

This attribute is only mcanin~o>ful if the symbol i~ a defining occurrence (bit 0
set). It specifies that the symbol has an absolute value, for example, a
constant. Otherwise its value is relative to the base address of the area
defined by the" Area Name" field of the symbol table entry.

This bit is only meaningful if bit 0 is umct (that is, the symbol is an external
reference). Bit 3 denotes that the reference is case-insenSitive. When
attempting to resolve such an external reference, the linker will ignore
character case when performing the match.

This bit is only fY)· • 1i ngL I if the symbol is ;m extern::~! reference (bits
1,0 = I 0). It denote~ 1at the reference is "weak", that is that it is acceptable
for the reference to remain umatisfied and for any fields relocated via it to
remain unrclocated.

Note: A weak reference still causes a lih:-try module satisfyi ng that
reference to be auto-loaded.

1782 ARM Object Format: Object file format

Bit 5

Bit 6

Value

Area name

The string table chunk
(OBJ_STRT)

This bit is only meaningful if the symbol is a defining, external occurrence
(i.e. if bits 1,0 = 11). It denotes that the definition is "strong" and, in turn, this
is only meaningful if there is a non-strong, external definition of the same
symbol in another object file. In this scenario, all references to the symbol
from outside of the file containing the strong definition are resolved to the
strong definition. Within the file containing the strong definition, references to
the symbol resolve to the non-strong definition.

This attribute allows a kind of link-time indirection to be enforced. Usually,
strong definitions will be absolute and will be used to implement an
operating system's entry vector which must have the "forever binary"' property.

This bit is only meaningful if bits 1,0 = 10. Bit 6 denotes that the symbol is a
"common symbol" ·- in effect, a reference to a common area with the symbol's
name. The length of the common area is given by the symbol's value field
(see below). The linker treats common symbols much as it treats areas having
the "common reference" bit set - all symbols wilh the same name arc
assigned the same base address and the length allocated is the maximum of
all specified lengths.

If the name of a common symbol matches the nr~me of a common area then
these arc 'merged' and symbol identifies the base of the area.

All common symbols for which there is no matching common r~rca (reference
or definition) arc collected into r~n anonymous linker pseudo-area.

This field is only meaningful if the symbol is a defining occurrence (i.e. bit 0
of AT set) or a common symbol (i.e. bit 6 of AT set). If the symbol is
absolute (bit 2 of AT set), this field contains the value of the symbol.
Otherwise, it is interpreted as an offset from the base address of the area
defined by" Area Name", which must be an area defined in this object file.

This field is only meaningful if the symbol is nor absolute (i.e. if bit 2 of AT
is unset) and the symbol is a defining occurrence (i.e. bit 0 of AT is set) . In
this case it gives the index into the string table of the character string name of
the (logical) area rcl:!tivc to which the symbol is defined.

The string table chunk contains all the print names referred to within the
"areas" and "symbol table" chunks. The separation is made to factor out the
variable length characteristic of print names. A print name is stored in the

ARM Object Format: Object file format 1783

The identification chunk
(OBJ_IDFN)

Linker defined symbols

Linker pre-defined
symbols

1784

string table as a sequence of 1508859 non-control characters terminated by a
NUL (0) byte and is identified by an offset from the table's beginning. The
first 4 bytes of the string table contain its len~:th (including the length word -
so no valid offset into the table is less than 4 and no rnble has length less
than 4). The length stored at the start of the string table itself is identically
the length stored in the OBJ_STRT chunk header.

This chunk should contain a character string (excluding non-whitespace codes
in the ranges [0 .. 31] and 128+[0 .. 31]), terminated by a NUL (O) byte, g1vmg
information about the name and version of the ltmguage translator which
generated the object file.

Though not part d the definition d AOF, the definitions of symbols which the
AOF linker defines during the generation of an imftgc file arc collected here.
These may be referenced from AOF object files, but must not be redefined.

The pre-defined symbols occur in Base, Limit pairs. A Base value gives the
address of the first byte in a rc~:ion and the corrc~ponding Limit value gives
the address of the first byte beyond the end of the region. All pre-defined
symbols begin "Image$$" and the space of <Ill such names is reserved to
Acorn.

None of these symbols may be redefined. The pre-defined symbols arc:

lmagc$$RO$$Base
lmage$$RO$$Limit

Image$$RW$$Base
I mage$$RW$$Limit

Image$$ZI$$Base
lmage$$ZI$$Limit

Address and limit of the Read-Only section
of the image.

Address and limit of the Read-Write section
of the image.

Address and ·limit of the Zero-initialised data
section of the image (created from areas having
bit 4 of their area attributes set and from
"common symbols" which match no area name). I

If a section is absent, the Base and Limit values arc equal but unpredictable.

ARM Object Format: Linker defined symbols

Common area symbols

Obsolescent and
obsolete features

Object fi le type

AL (Area alignment)

AT (Area attributes)

lmage$$RO$$Base includes any image header prependcd by the linker.

lmage$$RW$$Limit includes (at the end of the RW section) any zero­
initialised data created at nm-time.

The Image$$xx$${nasc,Limit} values are intended to be used by language nm­
time systems. Other values which are needed by a debugger or by part of the
pre-run- time code associated with a particular image format are deposited
into the relevant image header by the Linker.

For each common area, the linker defines a global symbol having the same
name as the area, except where this would clash with the name of an existing
global symbol definition (thus a symbol reference may match a common
area).

The following sub-sections describe features that were part of revison l.xx of
AOF and/or that were supported by the 59x releases of the AOF linker,
which are no longer supported. In each case, a brief rationale for the change
is given.

AOF used to define three image types as well as a relocatable object fi le
type. Image types 2 and 3 were never used under Arthur/RISC OS and arc
now obsolete. Image type I is used only by the obsolescent Dbug (new
releases of a debugger having Dbug's functionality will use Application
Image Format).

AOF Image type I
AOF Image type 2
AOF Image type 3

CSE2D081 hex
CSE2D083 hex
C5E20087 hex

(obsolescent)
(obsolete)
(obsolete)

AOF used to allow the alignment of an area to be any specified power of 2
between 2 and 16. By convention, relocatable object code areas always used
minimal alignment (AL =2) and only the obsolete image formats, types 2 and
3, specified values other than 2. From now on, all values other than 2 arc
reserved to Acorn.

Two attributes have been withdrawn: the Absolute attribute (bit 0 of AT) and
the Position Independent attribute (hit 6 of AT).

ARM Object Format: Obsolete features 1785

Fragmented areas

1786

The Absolute attribute was not supported by the RISC OS linker and
therefore had no utility. The next linker rclc~~ will, in any case, allow the
effect of the absolute attribute to be simulated.

The Position Independent bit used to specify that a code area was position
independent, meaning that its base address could change at run·time without
any change being required to its contents. Such an area could only contain
internal, PCrelative relocations and must make all external references
through registers. Thus only code and "pure dar-e~" (containing no address
values) could be position-independent.

Few language processors generated the PI bit which was only slif'lflcant to
the generation of the obsolete image typeS 2 and 3 (in which it affected
AREA placement). Accordingly, its definition ha~ been withdrawn.

The concept of fragmented areas was introduced in relea~ 0.04 of AOF,
tentatively In support of Fortran compilers. To the best of our knowledge,
fragmented areas were never used. (Two warnings against use were given with
the original definition on the grounds c:i: structural incompatibility with
Unix's a.out format; and likely inefficient handling by the linker. And use
was hedged around with curious restrictions). Accordingly, the deflntion c:i
fragmented areas is withdrawn.

ARM Object Format: Obsolete features

Appendix E ., File formats

Introduction The file formats described in this appendix arc those gcncrntcd by RISC OS
itself and ~rious applicC~tions. Each is shown as a ~hart giving the size and
description of each element. The elements are sequential and the sizes are in
bytes.

This appendix contains information about the following file formats:

• Sprite files

• Template files

• Draw files

• Font fi les, including lntMetrics and font fi les

• Music files

File formats: Introduction 1787

Sprite files

1788

A sprite file is saved in the same format as a ~prite area is in memory, except
that the first word of the sprite is nor saved.

For a full description about sprite format~. rt•ft•r to the section Technical
Details in the chapter entitled St,rites.

File formats: Sprite files

Template files

File formats: Template files

The following section describes the Wimp template file format:

Header:

Index entries:

Tenninator:

Data:

Offset Size

0 4
4 4
8 4
12 4
16

n+O 4
n+4 4
n+8 4
n+12 12
n+24

(next) 4

Meaning

filcoffsetoffonrdarn (-1 ==>none)
0
0
0

file offset of darn for this entry
size of data for this entry
entry type (1 - window)
identifier (terminated by ASCII 13

0

d+O 88 window definition (as in
Wimp_ Create Window)

d+88 ni"'32 icon definitions
(next) indirectcd icon dam

Any pointers to indirecrcd icon data arc the file offsets. Any references
to anti-aliascd fonts usc internal handles.

Font data:

f+O
f+4
f+8
f+48

4
4
40

x-point-size • 16
y-point-sizc • 16
font name (tcrmin:ncd by <cr>

The first font entry is that referred to by internal handle I, the second
font entry is that referred to by internal handle 2, etc.

1789

Draw files

Coordinates

Colours

1790

The Draw file format provides an object-oriented description of a graphic
image. It represents an object in its ediwble form, unlike a page-description
language such as PostScript which simply describes an image.

Programmers wishing to define their own object types should usc the same
approach as for the allocation of SWJ numbers.

All coordinates within a Draw file are signed 32-bit integers that give
absolute positions on a large image plane. The units are 1/(180*256) inches,
or 1/640 of a printer's roint. When plotting on a standard RISC OS screen,
an assumption is made thm one OS-unit on the screen is 1/180 of an inch. This
gives an image reaching over half a mile in each direction from the origin. The
actual image size (eg. the page format) is not defined by the file, though the
maximum extent of the objects defined is quite c;t $)' ro calcul:ne. Positive-x is

to the right, Positive-y is up. The printed pnge conventionally has rhe origin at
its bottom left hand comer. When rendering the image on a raster device, the
origin is at the bottom left hand corner of a device pixel.

Colours arc specified in Draw files as absolute RGB values in a 32-bit word.
The format is:

Byte Description

0 reserved. Must be zero
1 unsigned red value
2 unsigned green value
3 unsigned blue value

For colour values, 0 means none of that colour ;md 255 means fully saturated
in that colour.

You must always write byte 0 (the reserved one) as a zero, bur don't assume
that it always will be 0 when reading.

The bytes in a word of an Draw file are in lirrle-endian order, eg the least
significant byte appears first in the file.

The special value &FFFFFFFF is used in the filling of arens ar.d outlines to
mean "transparent".

File formats: Draw files

File headers

Object header

File formats: Draw files

The file consists of a header, followed by a sequence of objects.

The file header is of the following form.

Size Description

4 "Draw"
4 Major format version stamp- currently 201 (decimal)
4 Minor format version stamp - currently 0
12 Identity of-the program that produced this file.

Typically 8 ASCII chars, padded with spaces.
16 Bounding box: low x, low y, high x, high y

When rendering a Draw file, check the major version number. If this is
greater than the latest version you recognise then refuse to render the file (cg.
generate an error message for the user), as an incompatible change in the
format has occurred.

The entire file is rendered by rendering the objects one by one, as they
appear in the file.

The bounding box indicates the intended image size for this drawing.

A Draw file containing a file header but no objects is legal; however, the
bounding box is undefined. In particular the 'xO' value may be greater than
the 'x 1' value (and similarly for they values).

Each object, with the exception of the font table object, consists of an object
header, followed by a variable amount of data depending on the object type.
The object header is of the following form:

Size Description

4 Object type field
4 Object size: number of bytes in the object.

Always a multiple of 4
16 Object bounding box: low x, low y, high x, high y

The bounding box describes the maximum extent of the rendition of the
object: the object cannot affect the appearance of the display outside this
rectangle. The upper coordinates are an outer bound, in that the device pixel

1791

Font table object

Text object

1792

at (x-low, y-low) may be affected by the object, but the one tit (x-high, y-high)
may not be. The rendition procedure may use clipping on these rectangles to
abandon obviously invisible objects.

Objects with no direct effect on the rendition of the file have no bounding
box: these will be identified explicitly in the ohject descriptions that follow.
If an unidentified object type field is encountered when rendering a file,
ignore the object and continue.

The rest of the data for an object depends on the object type.

Object type number 0

This is followed by a sequence of font number definitions

Size Description

Font number (non-zero)
n n character textual font name, null terminated
0 · 3 The list is terminated by up to 3 zero characters, to pad to

w0rd boundary

This object type is somewhat special in that only one insmnce of it ever
appears in a Draw file. It has no direct effect on the appearance of the image,
but maps font numbers (used in text objects) to textual names of fonts. It must
precede all Text objects. A Font Table object h;~s no bounding box in its
object header. Comparison of font names is case-inscn~itive.

Object type number 1

Size

4
4
4
4
4
8
n
0-3

Description

Text colour
Text background colour hint
Text style
X unsigned nominal size of the font (in 1/640 point)
Y unsigned nominal size of the font (in 1/640 point)
X,Y coordinates of the start of the text base line
n characters in the string, null terminated
Up to 3 zero characters, to pad to word boundary

File formats : Draw files

Path object

File formats: Draw files

The character string consists of printing ANSI chaTflcters with codes within 32-
126 or 128- 255. This need not be checked during rendering, but other codes
may produce undefined or system-dependent results.

The style word consists of the following:

bits 0- 7 one byte font number
bits 8 - 31 reserved (must be zero)

Italic, bold etc. variants arc assumed to be distinct fonts.

The font number is related to the textual name of a font by a preceding Font
Table object within the fi le (sec above). The exception to this is font number
0, which is a system font that is sure to be present. When rendering a dTflw
file, if a font is not recognised, the system font should be used instead. The
system font is monospaced, with the gap between letters equal to the x
nominal size of the font.

The background colour hint can be used by font rendition code when
performing anti-aliasing. It is referred to as a hint because it has no effect 0"

the rendition of the object on a "perfect" printer, nevertheless for screen
rendition it can improve the appearance of text on coloured backgrounds. The
font rendition code can assume that the text appears on a background that
matches the background colour hint.

Object type number 2

Size Description

4 Fill colour (-1 means do not fi ll)
4 Outline colour (-1 means no outline)
4 Outline width (unsigned)
4 Path style description

Optional dash pattern definition
Sequence of path components

An outline width of 0 means draw the thinnest pos.<;ible outline that the device
can represent. A path component consists of:

4 1-word tag identifier
n Sequence of 2-word (x,y) coordinate pairs

1793

1794

Each tag identifier word consists of:

Bit(s)

0-7
8-31

Description

Tag identifier byte
Reserved, must be zero

Possible tag identifier byte values are:

0 end of path: no arguments
2 move to absolute position: followed by x,y p::tir
5 close current sub-path
8 draw to absolute position: followed by x,y pair
6 l3czier curve through two control points, to absolute position followed

by three x,y pairs

The tag values match the arguments required by the Draw module. This block
of memory can be passed directly to the Draw module for rendition, see the
relevant documentation for precise rules concerning the appearance of p:nhs.
See also manuals on PostScript [Reference: PostScript Language Reference
Manual, Addison-Wesley]).

The possible set of legal path components in a path object is described as
follows. A path consists of a sequence of (at least one) subpaths, followed by
an "end of path" path component. A subpath consists of a "move to" path
component, followed by a sequence of (at least one) "draw to" and "Bezier to"
path components, followed (optionally) by a "close sub-path" path component.

The path style description word is as follows:

Bit(s)

0- 1

2-3

4-5
6

Description

join style:
0 = mitred joins
I = round joins
2 = bevelled joins
end cap style:
0 = butt caps
1 = round caps
2 = projecting square caps
3 = trian~-,rular caps
start cap style (1-.~tme possible v:tlues)
winding rule:
0 =non-zero

File formats: Draw fi!es

Sprite object

Group object

File formats: Draw files

7

8- 15
16-23

24-31

1 =even-odd
dash pattern:
0 = dash pattern missing
I = dash pattern present
reserved and must be zero
triangle cap width:
a value within 0- 255,
measured in sixteenths of the line width.
triangle cap length:
a value within 0- 255,
measured in sixteenths of the line width.

The mitre cut-off value is the PostScript default (eg. 10). If the dash
pattern is present then it is in the following format:

Size Description

4 Offset distance into the dash pattern to start
4 Number of elements in the dash pattern

For each element of the dash pattern,
4 Length of the dash pattern element

The dash pattern is reused cyclically along the length of the
path, with the first clement being filled, the next a gap, and
soon.

Object type number 5

This is followed by a sprite block. See the chapter entitled Sprites for details.

This contains a pixclmap image. The image is scaled to entirely fill the
bounding box.

If the sprite has a palette then this gives absolute values for the various
possible pixels. If the sprite has no palette then wlours arc defined loc::tlly.
Within RISC OS the av::til::tblc "Wimp colours" arc used - sec the chapters
entitled Sprites and The Window Manager for further details.

Object type number 6

Size Description

12 Group object name, padded with sp:-~ces

1795

Tagged object

Text area object

1796

This is follow<..-d by a sequence of other objects.

The objects contained within the group will have rectangles contained entirely
within the rectangle of the group. Nested grouped objects are allowed.

The object name has no effect on the rendition of the object. It should consist
entirely of printing characters. It may have meaning to specific editors or
programs. It should be preserved when coppng objects. If no name is
intended, twelve space characters should be used.

Object type number 7

Size Description

4 Tag identifier

This is followed by an object and optional word-aligned data

To render a Tagged object, simply render the enclosed object. The identifier
and additional data have no effect on the renditinn of the object. This allows
specific programs to attach meaning to certain objects, while keeping the
image renderable.

Programmers wishing to define their own object rags should usc the same
approach as for the allocation of SWI numbers.

Object type number 9

Size Description

Object type number: 9

1 or more text column objects (object type I 0, no d(lta- see below):

4
4
4
4
4

Zero, to mark the end of the text columns
Reserved, which must be zero
Re.served, which must be zero

Initial text foreground colour
Initial text background colour hint

The body of the text column: ASCII characters, terminated by a null
character.

0-3 Null characters to align to a word bnundary

File formats: Draw files

A text area contains a number of text columns. The text area has a body of
text associated with it, which is partitioned between the columns. If there is
just one text column object then its bounding box must be exactly coincident
with that of the text area.

The body of the text is paginated in the columns. Effects such as font settings
and colour changes are controlled by escape sequences within the body of the
text. All escape sequences start with a backsla~h character (\); the escape
code is case sensitive, though any arguments is has are not.

Arguments of variable length are terminated by a 'f or <newline>.
Arguments of fixed length are terminated by an optional '/'.

Values with range limits mean that if a value falls outside the range, then the
value is truncated to this limit.

Escape
Sequence

Description

• \! <version><newline or/>
Must appear at the start of the text, and only there.
<version> must be 1.

• \A<code><optional/>
Set alignment. <code> is one of L (left = default),
R (right), C (centre), [)(double). A change in
alignment forces a line break.

• \B<R><spaces><G><spaces><newline or/>
Set text background colour hint to the given RGB
intensity (or the best available approximation). Each
value is limited to 0- 255.

• \C<R><spaces><G><spaces><newline or/>
Set text foreground colour to the given RGB intensity
(or the best available approximation). Each value is
limited to 0- 255.

• \D<numbcr><newline or/>
Indicates that the text area is to contain <number>
columns. Must appear before any printing text.

File formats: Draw files 1797

• \F<digit*><name><spaces><sire>[<spaces><widrh>]<newline or/>
Defines a font reference number. <name> is the
name of the font, and <size> its height. <width> may
be omitted, in which case the font width and height
are the same. Font reference numbers may be
reassigned. <digit*> is one or two digits. <sire> and
<width> are in points.

• \<digit*><optional />
Selects a font, using the font reference number

• \L<Ieading><newline or/>
Define the leading in points from the end of the
(output) line in which the \L appears. ie the vertical
separation between the bases of characters on
separate lines. Default, 10 points.

• \M<Ieftmargin><spaces><rightmargin><newline or/>

•

Defines margins that will be left on either size of
the text, from the start of the output line in which the
sequence appears. The mar~ins arc given in points,
and arc limited to values > 0. If the sum of the
margins is greater than the width of the column, the
effects arc undefined. 13orh v:~lues default to 1 point.

\ P<leading><newline or/>
Define the paragraph leading in
vertical separation between the
paragraph and the beginning ci a
Default, 10 points.

points, ie the
end c:J one

new paragraph.

• \ U<position><spaces><thickness><newline or/>
Switch on underlining, at <position> units relative to
the character base, and of <thickness> units, where a
unit is 1/256 of the current font size. <position> is
limited to - 128 ... +127, and <thickness> to 0 255. To
tum the underlining off, either give a thickness of 0,
or usc the command '\U.'

• \ Y[-)<digit><optional />
Vertical move by the specified number of points.

1798 File formats: Draw files

File formats: Draw files

• \- Soft hyphen: if a line cannot be split at a space, a
hyphen may be inserted at this point instead;
otherwise, it has no printing effect.

• \<newline> Force line break.

• \\ appears as \ on the screen

• \ ;<text><newline> Comment: ignored.

Other escape sequences arc flagged as errors during verification.

Lines within a paragraph are split either at a space, or at a soft hyphen, or (if
a single word is longer than a line) at any character.

A few other characters have a special interpretation:

• Control characters are ignored, except for rab, which is replaced by a
space.

• New lines (that are not part of an escape sequence) are interpreted as
follows:

• occurring before any printing text. A paragraph leading is inserted
for each newline.

• in the body of the text. A single newline is replaced by a space,
except when it is already followed or preceded by a space or tab. A
sequence of n ncwlines inserts a space of (n-1) times the paragraph
leading, except that paragraph leading at the top of a new text
column is ignored.

Lines which protrude beyond the limits of the box vertically, eg. because the
leading is too small, are not displayed; however, any font changes, colour
changes, etc. in the text are applied. Characters should not protrude
horizontally beyond the limits of the text column, eg. due to italic overhang
for this font being greater than the margin setting.

Restrictions

If a chunk of text contains more than 16 colour change sequences, only the last
16 will be rendered correctly. This is a consequence of the siz.e of the colour
cache used within the font manager. A chunk in this case means a block of text
up to anything that forces a line break, eg. the end of a paragraph or a change
on the alignment.

1799

Text column object

1800

Object type number 10

No further data, ie just an object header.

A text column object may only occur within a text area object. Its usc is
describe-d in the section on text area objects.

File formats: Draw files

Font files

lntMetrlcs

x90y45 font flies

File formats: Font files

Fonts are described in:

• IntMetrics

• x90y45 files (old style 4-bpp bitmaps)

• New font file formats

Size

40
4
4
1
3
256

2n
2n
2n
2n
2n
2n

Description

Name of font, padded with Return characters
I6
16
n = number of defined characters
reserved -currently 0
character mapping (ie. indices into following arrays). For
example, if the 40th byte in this block is 4, then the fourth
entry in each of the following arrays refers to that character.
A zero entry means that character is not defined in this font.
xO I
yO I bounding box of character (in 1/1000ths em)
x1 I coordinates arc relative to the 'origin point'
y1 I
x-offsct after printing this character
y-offsct after printing this character

The bounding boxes and offsets arc given as 16-bit signed numbers, with the
low byte fi rst.

Each font file starts with a series d 4-word index entries, corresponding to the
sizes defined:

Size

I
1
1
I
4
4
4

Description

point size (not multiplied by 16)
bits per pixel (4)
pixels per inch (x-direction)
pixels per inch (y-dircction)
reserved - currently 0
offset of font data in file
size of font data

1801

Font data

Character data

New font file formats

1802

The list is terminated by:

0

Font data is limited to 64K per block . Each block starts word-aligned relative
to the start of the file:

Size Description

4 x-size in 1/16ths point* x pixels per inch
4 y-size in 1/16thspoint * y pixels per inch
4 pixels per inch in the x-dircction
4 pixels per inch in the y-dircction
1 xO I maximum bounding box for any character

yO I bottom-left is inclusive
x 1 I top-right is exclusive

1 y 1 I all coordinates arc in pixels
512 2-byte offsets from table start of ch<~rnctcr data. A zero value

means the character is not defined. These arc low/high byte
pairs (ie litrlc-endian}

Size Description

xO I bounding box
yO I
xl- xO =X
yl-yO=Y 1

X*Y/2 4-bits per pixel (hpp}, consecutive rows bottom to top.
Not aligned until the end.

0. 3.5 Alignment

The new font file formats includes definitions for the following types of font
files:

• f9999x9999 (new style 4-bpp anti-aliased fonts}

• b9999x9999 (1-bpp bitmaps}

• outlines (outline font format, for all sites}

'9999' = pixel size (ie point size * 16 * dpi / 72} zero-suppressed decimal
number.

File formats: Font files

File header

File formats : Font files

If the length of an outlines file is less than 256 byres, then contents are the
name of another font whose glyphs are to be used instead (with this fonrs
metrics).

If the length of a x90y45 file is less than 256 bytes then contents arc the name
of the f9999x9999 file to usc as master bit maps.

The file header is of the following form :

Size

4
1

2

2
2
2
2
4
4

4
4

Description

"FONT" -identification word
Bits per pixel:

0 =outlines
I= I bpp
4 = 4 bpp

Version number of file format
4: no "don't draw skeleton lines unless smaller than
this" byte present
5: byte at [table+5 12] =max pixel size for skeleton
lines (0 =>always do it)
6: byte at [chunk+indexsizc] =dependency mask (see
below)

if bpp = 0: design size of font
if bpp > 0: flags:

bit 0 set- horizontal subpixcl placement
bit 1 set- vertical subpixcl placement

xO - font bounding box (16-bit signed)
yO- units are pixels or design units
x 1 - xO : xO,yO inclusive, x 1,y I exclusive
y1-y0
file offset of0 ... 3 I chunk (word-aligned)
file offset of 32.. .63 chunk

file offset of224 ... 255 chunk
file offset of end (ic. size of file)
if offsct(n+ I)=offsct(n), then chunk n is null.

1803

1804

Table start:

2 n = size of table/scaffold data

Bitmaps: (n= 10 normally- other values arc reserved)

2 x-size (!/16th point)
2 x-rcs (dpi)
2 y-size (!/16th point)
2 y-res (dpi)

Outlines:

510 offsets of scaffold dara from table start
0 => no scaffold data for char
Skeleton threshold pixel size

Table end:

Scaffold data:

I

(if file format verst on >= 5)
When rastering the outlines, skeleton lines will only be
drawn if either the x-or y- pixel size is less than this value
(except if valuc=O, which means 'always draw skeleton
lines') .

. . . sets of scaffold data (sec below)

description of contents of file:
, 0, "Outlines", 0

"999x999 point at 999x999 dpi", 0

... word-aligned chunks follow

char code of'basc' scaffold entry (0 ==>none)
bit n set ==> x-scaffold linen defined in base char
bit n set ==> y-scaffold linen defined in base char
bit n set==> x-scaffold linen defined locally
bit n set==> y-scaffold linen defined locally

... local scaffold lines follow

File formats: Font files

Scaffold lines:

2 bits 0- 11 = coordinate (signed)

Chunk data:

bits 12- 14 =scaffold link index (0 => none)
bit 15 set=> 'linear' scaffold link
width (254 ==> L-tangent, 255 ==> R-tangent)

4 • 32 offset within chunk to character
0 =>character is not defined

• 4 for vertical placement
• 4 for horizontal placemenr

Character index is more tightly bound than vertical
placement which is more tightly bound than
horizontal placement.
Dependency byte (if outline file, version >= 6).

Bit n set=> chunk n must be loaded in order to
rasterise this chunk. This is required for
composite characters which include characters from
other chunks (sec below) .

Note: All character definitions must follow the index in the
order in which they arc specified in the index. This is to
allow the font editor to easily determine the size of each
character .

. . . word-aligned character data follows

Char data:

flags:
bit 0 set = > coords are 12-bi t, else 8-bi t
bit 1 set=> data is 1-bpp, else 4-bpp
bit 2 set=> initial pixel is black, else white
bit 3 set=> data is outline, else bitmap
bits 4- 7 = 'f' value for char (0 ==> not encoded)

2/3 xO, yO sign-extended 8· or 12- bit coordinates
2/3 xs, ys width, height (bbox = xO,yO,xO+xs,yO+ys)
n data: (depends on type of file)

1-bpp uncrunched: rows from bottom to top
4-bpp uncnmchcd: rows from bottom to top

File formats: Font files 1805

Outline char format

1806

1-bpp crunched: list of (p~cked) run-lengths
outlines: list of move/line/curve segments
word-aligned at the end of the character data

Here the 'pixel bounding box' is actually the bounding box of the outline in
terms of the design size of the font (in the file he~der). The data following
the bounding box consists of a series of move/line/curve segments followed
by a terminator and an optional extra set of line segments followed by
another terminator. When constructing the bitmap from the outlines, the font
manager will fill the first set of line scgmenrs to half-way through the
boundary using an even-odd fill, and will thin-stroke the second set of line
segments (if present). See the chapter entitled Draw module for further
details.

Each line segment consists of:

bits 0 - I = segment type:
0 - terminator (sec below)
l - move to x,y
2 - line to x,y
3- curve to x l ,y l,x2,y2,x3,y3

bits 2- 4 = x-scaffold link
bits 5 - 7 = y-scaffold link

... coordinates (design units) follow

Terminator:

bit 2 set
bit J set

stroke paths follow (same format, but p;nhs arc not closed)
composite cha~ctcr inclusions follow:

Composite character inclusion!':

1 character code of character ro include (0 => finished)
2/3 x,y offset of this inclusion (design units)

The coordinates arc either 8- or 12-bit sign-extended , depending on bit 0 of
the character flags (sec above), including the composite character inclusions.

The scaffold links associated with each line segment rehre to the last point
specified in the definition of that move/line/curve, and the control points of a
bczier curve have the same links as their nearest endpoint.

File formats : Font files

1-bpp uncompacted
format

File formats: Font files

Note that if a character includes another, the appropriate bit in the parent
character's chunk dependency flags must be set. This byte tells the Font
Manager which extra chunk(s) must be loaded in order to rasterise the parent
character's chunk.

1 bit per pixel, bit set => paint in foreground colour, in rows from bottom­
left to top-right, not aligned until word-aligned at the end of the character.

The whole character is initially treated as a stream of bits, as for the
uncompacted form. The bit stream is then scanned row by row, with
consecutive duplicate rows being replaced by a 'repeat count', and alternate
runs of black and white pixels are noted. The repeat counts and run countsare
then themselves encoded in a set of 4-bit entries.

Bit 2 of the character flags determine whether the initial pixel is black or
white (black = foreground), and bits 4 - 7 are the value of 'f' (see below). The
character is then represented as a series of packed numbers, which represent
the length of the next nm of pixels. These runs can span more than one row,
and after each run the pixel colour is changed over. Special values are used
to denote row repeats.

<packed number> ==
0 followed by n- 1 zeroes, followed by n+ 1 nibbles

= resulting number + (13-f)* 16 + f+ 1 - 16
i = 1-f
i = f+ 1-13

14
15

i
(i-f-1)* 16 + next nibble + f + 1
followed by n=<packed number> = repeat count of n
repeat count of 1 (ie. 1 extra copy of this row)

The optimal value of f lies between 1 and 12, and must be computed
individually for each character, by scanning the data and calculating thelength
of the output for each possible value. The value yielding the shortest result is
then used, unless that is larger than the bitmap itself, in which case the
bitmap is used.

Repeat counts operate on the current row, as understood by the unpacking
algorithm, ie. at the end of the row the repeat count is used to duplicate the
row as many times as necessary. This effectively means that the repeat count
applies to the row containing the first pixel of the next nm to start up.

1807

1808

Note that rows cons1stmg of entirely white or entirely black pixels cannot
always be represented by using repeat counts, since the run may span more
than one row, so a long run count is used instead.

File formats: Font files

Music files

Music data

Stave data

Instrument data

File formats: Music files

Size

8
1

Description

"Maestro'' followed by Return (&OD)
2 (type 2 music file)

This is followed zero or more of the following blocks in any order. It is
terminated by the end of the file. Note that types 7 to 9 are not implemented
in Maestro, but are described for any extensions or other music programs that
may be written.

Size

1
4
4*8

??

'LLl ... L8

Description

1 indicates Music data follows
n = number of 'Gates'.
length of queue of notes and rests in each channel LJ .. . L8
(in bytes), where the data for each note or rest occupies
2 bytes. There arc 8 channels, each of which uses a word for
the length.

For G= 1 to number of Gates (input above)
data for each gate (size depends on type of data)
for C = 1 to 8 (each channel)

for Q = 1 to length of note queue in channel C (as above)
data for note or rest in channel Cat point Q in queue

See the full description of gates and the note or rest stmctures at the end of
this type list.

Size Description

2 indicates Stave data follows
(0 · 3) number of music staves
(0- I) number of percussion staves

Instrument names arc not recorded; only channel numbers.

Size Description

3 indicates lnstmmcnt data follows

This is followed by 8 blocks of 2 bytes each:

1 channel number. Always consecutive I - 8
1 voice number; 0 = no voice attached

1809

Volume data

Stereo position data

Tempo data

Title string

Instrument names

MIDI channels

1810

Size

1*8

Size

1*8

Size

Description

4 indicates Volume data follows
Volume on each channel= 0- 7 = ppp- fff. One byte for
each channel.

Description

5 indicates Stereo data follows
Stereo position of channel n = 0- 7 =Full Left ... Full Right.
One byte for each channel.

Description

6 indicates Tempo data follows
0 • 14, which corresponds to one of:
40, 50, 60, 65, 70, 80, 90,100, 115, 1.30, 145,160, 175,190,210
beats per minute

To convert to values to program into SWI Sound_ Tempo, use the formula:

Sound_ Tempo value = Beats per minute * 128 * 4096 I 6000

Size

n

Size

l:n I ... n8

Size

1*8

Description

7 indicates title string follows
Null terminated string c:i n characters total length

Description

8 indicates Instrument names follow
8 null terminated strings for each voice number used in
ascending order in command 3 above.

Description

9 indicates MIDI channel numbers follow
MIDI channel number from 1 • 16 0n this stave fo r each
channel. 0 indicates not transmitted over MIDI.

File formats: Music files

Gates

Note or rest

Attribute

File formats: Music files

A Gate is a point in the music where something is interpreted. eg. a note, time­
signature, key-signature, bar-line or clef can each occupy a gate. The gate data
is one byte for a note or rest; 2 bytes for an attribute (time-signature, key­
signature, bar-line or cleO.

Blt(s)

0-7

Byte

0
1

Time-signature

Description

Gate mask, bit n set to gate 1 note or rest from queue n.

Description

0
Could be any of the following forms:

Blt(s) Description

0
1 • 4 Number of beats per bar- 1. In the range 0 • 15
5 • 7 Beat type (0 =breve, to 7 = hemidemiscmiquaver)

Key-signature

Bit(s) Description

0 • 1 01 binary
2 0=#, 1=b
3-5 Oto7

Clef

Blt(s)

0-2
3-4
5-6

Description

001 binary
0 = treble, 1 = alto, 2 = tenor, 3 = bass
Stave- I. In the range 0 • J

1811

1812

Slur

Bit(s) Description

0- 3 0001 binary
4 1 =on, O=off
5 Unused
6- 7 Stave-I. In the range 0- 3

Octave shift

Bit(s) Description

0- 4 00001 binary
5 O=up, 1 =down
6 • 7 Stave-I. ln the range 0-3

Bar

Bit(s) Description

0- 5 000001 binary

Reserved for future expansion

Bit(s)

0-6

Description

0000001 binary

File formats : Music files

Notes and rests

Notes

Rests

File formats: Music files

Notes and rests are each stored in a 2 byte block that has some common
elements.

Bit(s)

0
1
2
3- 7
8- 10

11 • 12
13. 15

Bits

0. 10
11 • 12
13. 15

Description

Stem orientation. 0 for up and 1 for down
Set to 1 to join beams (barbs) to next note
Set to 1 to tic with next note
Stave line position 1 - 31 (16 is the centre line)
Accidental
0 =natural
I =sharp
2 = flat
3 = double-sharp
4 = double-flat
5 = natural sharp
6 = natural flat
7 =unused
Number of dots, from 0 · 3
Type. Breve=O to Hemiscmidcmiqunvcr=7

Description

Unused. Set to 0
Number of dots, from 0 • 3
Type. 13rcvc=O to Hcmisemidcmiqu:JVer=7

If a rest coincides with a note, its position is determined by the following note
on the same channel.

1813

1814 File formats : Music files

Table A., VDU codes

List of VDU codes A list of the YOU codes is given in the table below. Some VDU codes
require extra bytes to be sent as parameters; for example, VDU 22 (select
screen mode) needs one extra byte to specify the mode. The number of extra
bytes needed is also given in the table:

VDU Ctrl Extra Meaning
code plus bytes

0 2or@ 0 Do nothing
1 A 1 Send next character to printer only
2 B 0 Enable printer
3 c 0 Disable printer
4 D 0 Write text at text cursor
5 E 0 Write text at graphics cursor
6 F 0 Enable VDU driver
7 G 0 Generate bell sound
8 H 0 Move cursor back one character
9 I 0 Move cursor on one space
10 J 0 Move cursor down one line
11 K 0 Move cursor up one line
12 L 0 Clear text window
13 M 0 Move cursor to start of current line
14 N 0 Turn on page mode
15 0 0 Turn off page mode
16 p 0 Clear graphics window
17 Q 1 Define text colour
18 R 2 Define graphics colour
19 s 5 Define logical colour
20 T 0 Restore default logical colours
21 u 0 Disable VDU drivers
22 v 1 Select screen mode
23 w 9 Multi-purpose command

VDU codes: List of. .. 1815

VDU Ctrl Extra Meaning
code plus bytes

24 X 8 Define graphics window
25 y 5 PLOT
26 z 0 Restore default windows
27 [0 Do nothing
28 \ 4 Define text window
29] 4 Define gr::~phics ori$!in
30 6 or 1\ 0 Home text cursor
31 -or 2 Move text cursor

1816 VDU codes : List of. ..

Table B, Modes

List of modes Mode Text Graphics resolution Colours Memory Monitor
col x row horiz x vert used types

0 SOx32 640 X 256 2 20K
1 40x32 320 X 256 4 20K
2 20 X 32 160x 256 16 40K
3 SO X 25 Text only 4 40K
4 40x32 320 X 256 2 20K
5 20 X 32 160 X 256 4 20K
6 40x 25 Text only 2 20K
7 40x 25 Teletext 16 SOK
s SOx32 640 X 256 4 40K
9 40x32 320 X 256 16 40K
10 20x32 160 X 256 256 SOK
11 SOx 25 640 X 256 4 40K
12 S0x32 640 X 256 16 SOK
13 40x32 320 X 256 256 SOK
14 SOx 25 640 X 256 16 SOK
15 SOx32 640 X 256 256 160K
16 lJ2 X 32 1056 X 256 16 132K
17 132 X 25 1056 X 256 16 132K
IS SOx64 640 X 512 2 40K Multi
19 SOx 64 640 X 512 4 SOK Multi
20 SOx 64 640 X 512 16 160K Multi
21 SOx 64 640 X 512 256 320K Multi
23 144 X 56 1152 X S96 2 126K HRM
24 132 X 32 1056 X 256 256 264K
25 SOx 50 640 X 4S0 2 37.5K VGA
26 SOx 50 640 X 4S0 4 75K VGA
27 SOx 50 640 X 4S0 16 150K VGA
2S SOx 50 640 X 4S0 256 300K VGA

Modes: List of ... 1817

Recommended modes
for the desktop

1818

Notes:

Where a monitor type is shown, the mode only generates a useable
picture if the computer is connected ro a monitor of that type. The types
are:

•Multi: multiple scm-rare

• HRM: high-resolution mono (if supported by your computer)

•VGA: includes some VGA monitors with suitable sync connections.
Modes suitable for this type can also be used with multiple
scan-rate monitors.

If a monitor type is not shown, the mode will work with a standard
monitor.

2 Mode 22 is not defined.

3 In 256 colour mcx.lcs, there are some restncnons on the control of the
colours. Only 64 base colours may be selected; 4 levels of tinting tum the
base colours into 256 shades. Also, the selection from the colour palctr-..
of 4096 shades is only possible in groups of 16.

4 Mode 3 is a 'gap' mode, where the colour of the gaps is not necessarily
the same as the text background.

Of the modes available, the following arc the most suitable for a given
combination of monitor and number of colours required.

Monitor type Number of colours r--1ode
Standard 16 12

256 15

Multiscan 16 20
256 21

VGA 16 27
256 28

132-column display 16 16
(Standard/Multiscan) 256 24

Modes: Recommended modes for the desktop

Table C ,. File types

List of file types

Acorn file types

File types: List of ...

File types are three-digit hexadecimal numbers. They are divided into three
ranges:

EOO- FFF
800- OFF

000- 7FF

reserved for usc by Acorn
may be allocated to software houses (AOO to AFF are used
for Acornsoft files, 800 to 80C for nne uniform files)
free for users

For each type, there may be a default action on loading and running the file.
These actions may change, depending on whether the desktop is in use, and
which applications have been seen. The system variables
Alias$@LoadType_XXX and Alias$@RunType_XXX give the actions (XXX
= file type).

Some types have a textual equivalent set at startup, which may be used in
most commands (but not in the above system variables) instead of the
hexadecimal code. These arc indicated in the table below by a dagger T
For example, file type &FFF is set at startup to have the textual equivalent
Text. Other textual equivalents may be set as an application starts - for
example, Acorn Desktop Publisher sets up fi le type &AF9 to be DtpDoc, and
file type &AFA to be DtpStyle. These textual equivalents arc set using the
system variables Filc$Typc_XXX, where XXX is the file type.

The following types arc currently used or reserved by Acorn. Most file types
used by other sofrwarc houses arc not shown. This list may be extended from
time to time:

Type Description

FFF
FFE
FFD
FFC

Plain ASCII text
Command (Exec) file
Data
Position independent code

Textual equivalent

Text ... ,
Command ...

I

Data ...
'

Urility t

1819

FFB Tokenised BASIC progmm BASIC t
FFA Rclocatable module Module t
FF9 Sprite or saved screen Sprite t

FF8 Absolute application lo;-~ded at &8000 Ab~lute ...
I

FF7 BBC font file (sequence of YOU ops) BBC font ...
' FF6 Fancy font (4 bpp birm;-~p only) Font t

FFS PostScript PoScript t
FF4 Dot Matrix d:m file OM Data
FFJ Laser jet data file Lascr]et
FF2 Configuration (CMOS RAM) Con fig
FFl Raw unprocessed clara (cg terminal strems) R:1wDara
FFO Tagged Image File Format TIFF
FEF Diary data Diary
FEE NotePad data NotePad
FED Palette data Palette t
FEC Template file Template t
FEB Obey Obey t
FEA Desktop Desktop
FE9 View Word View Word
FE8 YiewPS YiewPS
FE7 View Sheet YiewSht
FEO Desktop accessory Accessry
FDD Master utilities MasrerUtl
FOE BBC Econet utilities EconetUtl
F09 BBC Winchester utilities WiniUtil

Database file types DI34 SuperCalc Ill file SupcrCalc
DBJ DBasc III file DBasclll
DB2 DBasc II DB:~scll
DB! DBase index file DB:~~Indcx
DBO Lotus 123 file Lotus123

BBC ROM file type BBC BBC ROM file (ROMFS) BBCROM t

Acornsoft file types AFF Draw file Drt~wFilc
AFE Mouse event record Mouse
AFD GCAL source file Gcal
AFC GCODE intermediate file GcaiOut
AFA DTP style file DrpSryle

1820 File types: List of. ..

AF9 DTP documents DrpDoc
AF8 First Word Plus file lstWord+
AF7 Help file Helplnfo
AF6 ASim trace file SimTrace
AFS Mail setup Post Data
AF4 Mail 'Filed' PosrFile
AFJ Mail Postbox PostRox
AF2 MaillnTray Post Tray
AFl Maestro file Music
AFO Arc Writer file ARCWriter
ADB Outline font New Font

BBC Uniform file types soc Stationery pad Stationary Pad
SOB Videotex file VideoTex
SOA Database form file DataBaseForm
S09 Database file DataBase
sos UniForm PostScript file Uniform PostScript
S07 Graphs and charrs file GraphsAndCharrs
S06 Graphics file Graphics
sos Drawing file Drawing
804 Picture file Picture
SOJ Spreadsheet file Spreadsheet
S02 UniForm Text only file Uniform Text
SOl Wordprocessor file W ordprocessor
soo Generdl 1313C UniForm file Uniform

File types: List of. .. 1821

1822 File types: List of ...

TableD~ Character sets

Introduction A list of the eight alphabet sets available on your Acorn computer arc
included in this table. Most are based on the International Standards
Organisation ISO 8859 document.

The description of the *Country command in the chapter describing the
International module, explained the relationship between country, alphabet and
keyboard. There are some useful keyboard shortcuts which you can use to
switch between alphabets while you are working. You can use these wherever
you can use the keyboard: for example, in the Command Line. in Edit, or when
entering a filename to save a file. The first two keystroke combinations allow
you to switch easily between alphabets.

Alt Ctrl Fl

AltCtrl F2

Selects the keyboard layout appropriate to the
country UK.

Selects the keyboard layout appropriate to the
country for which the computer is configured (if
available).

Alt <ASCII code typed on numeric keypad>

Enters the character corresponding to the decimal
ASCII number typed.

The following sequence also switches the keyboard layout:

Press and hold Alt and Ctrl together; press F12.

2 Release Ctrl.

3 Still holding Alt, type on the numeric keypad the international telephone
dialling code for the country you want (eg 044 for Germany, 039 for Italy,
033 for France).

4 Release Alt.

Character sets: Introduction 1823

Latin1 alphabet (ISO
8859/1)

1824

This is the default alphabet used by Acorn computers.

b. 0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 0 1 1 1 1

16. 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
b. 0 1 1 0 1 0 1 1 1 1 1

b. .b.
00 01 0 2 03 04 05 06 07 08 09 10 11 12 1 3 14 1 5

0 0 0 0 00 • '::>. :.:> SP 0 @ p p ·• .. :. N8SP
. A f) a 0

0 0 0 1 01
!········

}. ! 1 A Q a q ['>····· I + A N a n
0 0 1 0 02 " 2 8 R b r

:::,
.... ·::· ¢

2 A 0 a 0

0 0 1 1 03 # 3 c s c s :: £ ' A
,
0 a 6

04 . $ 4 D T d t . II
,

'ti. 6 a 6 0 1 0 0

0 1 0 1 0 5 . % 5 E u e u ::
~ J.l. n 6 5 0

0 1 1 0 06 & 6 F v f v ' ,. ~ 0 il! 0 '
0 1 1 1 07 j:.::· ' 7 G w 9 w § . ~)(c;
1 0 0 0 08

, ... ·. (8 H X ·h X ··:.
. •... ..

E 0 e ¢

1 0 0 1 09 ' i) 9 I y i y © 1 E u e u
1 0 1 0 10 I'\ •:··· * : J z j

. .:':'
··:: ! 2

~ u e u z E
1 0 1 1 11 ·'· .· ... + ; K [k { :·:::

. ,: « » E 0 e 0

12 ... -::· < L \ l 1 1 0 0 , I
••••••

:· % i u 1 (j

1 1 0 1 13 - = M] m } •.•.• >.
I · \ S H Y 'lz I y 1 y

1 0 14 > N - - ') 1': .·. ® ';4 i p p 1 1 . n 1

15 : I ? 0 0
•••••••

- (., I n 1 y 1 1 1 1 -

Character sets: Latin1 alphabet (ISO 8859/1)

Latln2 alphabet (ISO
8859/2)

b. b.

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

b. b.

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

b.O
b. 0
b. 0
b. 0

00

00
01 .
02
03

04

OS

06
07

08

09

10

11
12

13

14
1S

Character sets: Latin2 alphabet (ISO 8859/2)

0 0
0 0
0 ,
1

01 02

SP

!
II

$

I.

&
I

(

)

*
+

,
-
.
I

9_ , , 1
1 0 0 1
1 0 1 0

03 04 OS 06

0 @ p

1 A Q a

2 8 R b

3 c s c

4 D T d

5 E u e

6 F v f

7 G w 9

8 H X h

9 I y i

: J z j

; K [k

< L \ l

= M] m

> N ~ n

? 0 - 0

0 1 1 1 1 1 1 1 1
1 0 0 0 0 1 , , 1
1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1

07 08 09 1 0 11 1 2 1 3 1 4 1 5

p NBSP • R e f d
q ~ q A N a ri
r

-..;

A N a n (

t t 6 s A a 0

t ri
,

A
,. a 6 0

u c c t.: 6 l 6
v s s c 0 c 0
w § ..,

~ X y
X

.. '(~ c r .
y s s E u e u
z s $ ~ u ~ u
{ i f E u e Li
I t. i. E u e u
} SHY ..

I y 1 y
- z z ~

T t I 1

z o (3 a . z

1825

Latln3 alphabet (ISO
8859/3)

1826

0
0

0
b. 1

00 01
b.

0 0 0 0 00 ·.··

0 0 0 1 01
0 0 1 0 02

0 0 1 1 03

0 1 0 0 04 I
0 1 0 1 0 5 ·:

0 1 1 0 06 •.

0 1 1 1 07 1::>> ~-< .
k .·

1 0 0 o Of 1: 1. : :.
1 0 0 1 09 Lit L:
1 0 1 0 10

.. ;.

•••••••••
.. .;.

1 Q 1 1 11 .::{ \:
1 1 0 Q 12 . :

1 1 0 1 13 '

1 1 1 Q 14

1 1 1 1 15 ~

1
1 1 0

1

0 2 0 3 04

SP 0 iil

! 1 A .. 2 B

II 3 c
$ 4 0

X 5 E

& 6 F
I 7 G

(8 H

) 9 I

* : J

+ ; K

, < L

- = M

. > N

I ? 0

1 1 1 1 1 1 1
1 1 1 Q Q Q 1 1 1 1
0 1 ' 1 1 0 1 1

1 1 1 1 1

0 5 06 07 0 8 09 1 0 11 1 2 1 3 14 1 5
p p """

. A C« a ~
Q 1i h ' N a n a q A
R b r v 2 A 6 a ' 0
s c s £ 3~ 6 ~ 6
T d t ll

,
'A 0 a 6

u e u ~ p. c 6 c 9
v f v R n e 0 e 0
w 9 w § . ~)(9
X h X

..
E s e 9

y i y :::· i 1 E u e u
z j z ·\ ·:· s $ E (J e (J

[k { ~:; . G 9 E 0 e G
\ l I J j i u i (j

] m } SHY 'h
F

I 0 1 u
~ n - ~ ~ I s 1 s
- 0 ::: i i I (3 1

Character sets : Latin3 alphabet (ISO 8859/3)

Latin4 alphabet (ISO
8859/4)

h b. lb. b.

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 , 0

1 1 1 1

b.O 0
I> 0 0
b. 0 0
b. 0 1

00 01

00 .

01 . :::

02
03

04 .· .. ·.

05 I· .

06
07

08 1<.-::)•·

09

10

11

12 ·

13

14
15

Character sets: Latin4 alphabet (ISO 8859/4)

0
0
1

02

SP

!
II

II

$

7.

&

'
(

)

*
+

,
-
.
I

0 kJ
JL 1 1 1

1 0 0 1
1 0 , 0

03 04 05 06

0 @ p

1 A Q a

2 8 R b

3 c s c

4 D T d

5 E u e

6 F v f

7 G w 9

8 H X h

9 I y ;

: J z j

; K [k

< l \ L

= M J m

> N - n

? 0 - 0

0 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 1 0 0 1 1

1 0 1 c , 0 1 0 1

07 08 09 1 0 11 1 2 1 3 14 1 5

p NBSP
0 A i) a d

q 1···.: A q ' A ~ a r;l

r A 6 a 6 K .
s ~ r, A K,: a ~
t .· tl

,
A 0 a 6

u i i a 6 § 5
v 1,. ~ It 0 CE 0

§ ~

l w)(1
X 1: . .. c (/) c ¢ t ·· .
y . : s s E v e l,J

z E e ~ u ~ (J

{ G g E 0 e 0
1

·:· 1: "f t E u e u
} SHY n I 0 1 0
- z z I 0 A

0 1
- i n ; I')

1827

Greek alphabet (ISO
8859/7)

1828

b.

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0

00

00 ;·>j
01 [::::=:.:

0 2 1::::::::

03 1::::::::;,·
r=•:':-:=

0 4 [/:;
0 5 k::;:::

1:-::::.:::·

06 i/\
07 !i::'
08 [(f:>
09 ['-=:'\
10 I>,
11 •(

12 : ;.:;·

13 1;?:.
14 1 :

15 1:.·.·:::·

0
1

1 1 0
1 1

01 02 03 04

'(''. SP 0 @

LC ! 1 A

r.:::< " 2 B
~ ·: ,.:<. # 3 c ··:::::::

!:,:.:, $ 4 D
.. :.: .. I. 5 E .. _,.

) .) & 6 F

1:: I 7 G

1::· : i:·>· (8 H

p ..) 9 I

k>.· * : J

L\ + ; K
t :< , < L .

....... - = M
i ·.: > N .
i-·· I ? 0

1 1 1 1 1 1 1 1
1 1 l 0 1 1 1 1

1 1 0 1 1 1 l
1 1 1 0 1 1 0 1

05 06 07 08 09 1 0 11 1 2 1 3 1 4 1 5
p 1:··=···· : :· 0 I

I1 ' p NBSP l: u 7r

Q a q ~:,:;::
i•::

! ± A p a p
R b r t::. .· ! ":" ' 2 B ~ {3 5

s c s f: :' 1:-: £ 3 r E 'Y a
T d t p,. : ~ I Ll T 0 r
u e u ~ -···>: . : .:~t ~ .'. E T € v
v f v L .;' I 'A z <I> ~ 1> I

w 9 w : .. ·:. :·• § H X Yl X
X h X

..
. ::: .. 'E 8 '¥ e lj;

y i y · I>:" © 'H I P. L w
z j z ::. ~ 'I K I K L
[k { . : .. \ « » A t /.. u
\ l I . ·· '0 M I p. I

· .. · a 0

J } S~Y ,/z N ' . m ·;;,. ·• € v u
~ - ..•. ·.·

~ 'T ';:;' .
~

I n - TJ w
0 'P. 0 I

~ - ; : . - L 0

Character sets: Greek alphabet (ISO 8859/7)

Bfont characters This character set is used in the BBC Master microcomputer. It is retained for
the sake of compatibility, but should not be used for new applications.

< - . ~ . ~ .. - /
... ~ ,,.. •• 'i't' 2 (l; z

I : ; -· ; ~ h ~~ ;; t 0 ""·· 2 ~ ! 0 c " * ,. ~ 6
"

- . " - ~ ~ 8~ H H
~J . ~ - <;:

';: ~ f~: ~ § if ~

~ /. ~· ~ ; ;2
' ' ;:;

[
t ~ ~ .. { I ~ 1

.., - "l;:
r~ H ~! tH ~ . ,;~ ;- ..

~~ : ~ !.
... .;.

' ~ L • ~~ .-
3 3

~ ~ ~ r: E = •
g r: aq:

E ~ . ~ j ~ . ' ,;; •
l: E ~ ~ D 1:1 c IJ ~ ~ ~
~ Cl:l l!:: E ~ ~ ~ ~ ~ ~ >':

lii E [i E B [;2: ~ ~ III ~ ~
E E ~ [iii ~ ~ l: E ti ii c;

~ ~ ~ t= E c ~ ~ E ~ l'!
[i] Ej !!] ~ • 1: [! P'J l& ~ s

F1 1: ~ ~ Cl Ei 9 ~ ri:l E! 8
(l t3 [3 r.u l.'il i) 13 i3 EJ EJ 0

E El [1-L If. c = r: ~ !3 f:l .•
:J t: ~ c [CL(8 E Ui! E g LZ
El ~ w M (!! £:] u:z ri1 ~ ~ ~
[i 8 :9 B: [3j s: Eli l:l CZi 8 iS - IC :I II :1 II :I n :I II: i -1: r. ~ :! •• 1: •• 1: - r. •• - •• ;:;

a ~ E II: {:! C! Er EI = ~ ~ f:'= ~ rv ~ • [; ~ [;;: {;~~ ~ e
~ E' r-: .[1[~ ~ ~ ~ c rn: 8

~ = ~ , te: rr; ~ [:! ~ ~ ~ ~
~ [i ~

.... E1 ~ El [3 t= lt: .,
L•.•. :,;

[.) !Ji ~ t=l ~ FJ Cl E 9 !'i! ~

~ r;) ~ ~ ~ ~ CJ El ~ El ~

~ ~ ~ liD rn ·;I '··

Character sets: Bfont characters 1829

Teletext characters

Teletext alphanumeric I" ' 10 20 JO 40 so 60 70 80 90 100 110 120 v

~o·hir.g [X,wn No<hmg ~1ove a ~ I [i [i t! ~ [i I ,'
c.\.l:'\Or

toOO

!\!ext to Up n.,...ble Mo~ I E Ei ~ t! = m 5: tt I rnme: \'()lJ (.UnQr

':3rt Cle"r Scle<< I ~ ~ I II [i ~ D ~ E ! prm~~r scret:'l 0\0<!C"

Su>p Stan of Reprogram D ; ~ i II E§ ; ~ ~ r ' p:;rncr I me charattcr~

4
~mhang Paged ~01lung i I! rs m; ! ii IJ [i m Ill mode

~mh•ng Scroll ~'><hang rn I ti ~ II l! I I! E r) mode

l:n.1hlc :-;othar.g ~othang il I ~ § [! ~ ~ n IJ = 6 \'J)l'

7
1\ccp ~oth1r.g ~othu'~ i I ii t! [i m E II t! Jbck $p.lCe

and delete

Jl,,_k Kc>thl~i; :\othmh

~ I I [! [I I l:: (] I No<hrng ,,

•I
h:rw;uJ t'o<lung ="mhan;; II () II [E t! l1 ~ m t! t\lpha ro-i

1830 Character sets· Teletext alphanumeric

~ \30 140 150 \ 60 170 180 \90 200 210 220 230 240 250

A:pha Normal • C•raphic I E1 ~ I [;: [i I D ri E 0 ~reen height evan

A.pha Doul>!e Graph•<: II ; ~ I I] (§ = ~ ~ "
1 yellow he1ght whttc

A1p!u l':oth.ng (onceal i I rs ~ I ii G li G Ill 2 blue d11play

3
Alpha Noth•ng (nti.guota rn II I ~ [I (! rn I! E ~ magenta gr;.~phte\ •

4
Alpha Noth.ng S.parated il I [§ [§ [! I = n lJ ; cyan gr•ph1<:s

Alpha • Graph•< l'othmg

~ I ii [! li ~ E D t! [5 wh11e red

Hash Graph1c lllack •

I I I [! ll I [;: D I 6 green background

Steady • Graph1< l':ew I D I [§ t! I ~ m I 7 yellow background

Noth•n' GraphK llold a ! I [i [i ! ! ; I 8 blue grO::lpht<;.~

~othtnr GraphK R~lc-ase • I E li ~ ti a ~ I t! 9 magenta graphiCs

• every I ant> 'H.trU wtth chc'K' oprtnnt

Character sets : Teletext alphanumeric
1831

Teletext graphics

"' 0 10 20 30 40 50 60 70 80 90 100 110 120

0
Nothn1g Oown l"othing Move

~ ~ ~ [j [i ! ~ ~ ~ cursor
toOO

!'\ext to Up DISable Move

~ ~ ~ ~ ti = ~ ~ ~ 1 printer VDU cursor •

Start Clear Select I IJ Ll L:J ll li ~ ~ ~ ~ 2 pnntcr scre-en mode

Swp Start of Reprogram il ~ [] Q IJ ~ = ~ ~ ~ 3 princcr hne characters

4
:-.loth'"R Paged Nothtng li c Li ~ ! u II lj ~ u mode

) t'ot.lting Scroll
mode

:-.lothing lil ~ [j r=: ll ! ~ ij ~ [j
Enable

6 VDL
Nothmg l"othmg

~ t::J ~ § [! I i (] ~ LJ
_ llccp
I

:-;othmg l'otlung t:l ~ ~ t! [i l1 ~ iJ ~ !lack space
and delete

Back :-;othmg :\othmg

~ ~ ~ I! ll I ~ ~ ~ Nothmg
8

Forward Nothmg :-.lothmg

~ ~ ~ lS [! I ~ ~ ~ A lpha r<-d
9

1832 Character sets: Teletext graphics

['\,. 130 140 ISO 160 170 !80 190 200 210 ZlO 230 240 250

Alpha Normal ' Graphic I IJ Ll L:J [I li I ~ ~ ~ I) green l><1gln cyan

AI ;>I> a Double Grnph1c il ~ [] Q 11 (§ = ~ ~ ~ I ~'c~tow hc1ght whltC

A:pl,. :-.:orhmg C'An.cal i c Li tE; ! ii G lj ~ Lj l blue d .. pl.•y

A!pla :-.:<>lhmg Conuguous i ~ [j ~ [I [! In ij ~ [j 3 magrnt.t graph1o •

Alpha 1'\och,ns ScP"rnted

~ t::J ~ § [! I ~ IJ ~ LJ 4 cyan graph1~s

S Alpha • Graph1o Nothmg

~ ~ ~ [! [i ~ ~ iJ ~ ["'hHc red

Flash Gr-.phK. Black •

~ ~ ~ [! [I I ~ Cj ~ 6 green bad&round

7
Steady • Gr•r'"" S'ew

~ ~ ~ [§ [! I ~ ~ ~ vel low ha""~cround

1'\oclung Graph1c llo ld

~ ~ ~ [i [i ! ~ ~ ~ .~ blue gnph1u

9
Nothm~ Graph1c Rdt-;ue "

~ ~ ~ ~ t! = ~ ~ ~ mar:cn1,a .:raphiCs

Character sets: Teletext graphics 1833

1834 Character sets: Teletext graphics

