
.....J
41t/

-< :J

.. a
z

0

-<
~

~

w

u z w
,_

~
 -

Cf:J
>

0

w

(])
~

u
w

E

Cf:J

0::::
=='

-
-

~

(/)
~

~

w

~

~

~ 0 0 ~
~

,

(

(

(

(

(

(
t

{

(

(

(

(

(

(

(

(

(

;;::::~:::::::::•:·:::::::·:~•:o:::::::::::::;:;:::.::::w.;-..yx;:::::::««.::::::::::::::::::: ::::::::::~=:'!=:·:-::::::: :::::::::::::::::::::::::::::::::: ::::::::::::::::::=:·:·:·:·:·:·: ·:·:·:·:-:::::.:-:::·:=: ·:·:·:·:·:·:·:·:·:·: ·:·:·»:·:·:=:.:·:.:-:-:--e.~:::::::::::J»:»:::;:::::;:::::;x..-.:

6-ii

Copyrisht C Acorn Computers Limited 1991

Published by Acorn Computers Technical Publications Department

Neither the whole nor any part of the information contained in, nor the product
described ln. this manual may be adapted or reproduced in any material fonn
except with the prior written approval of Acorn Computers Limited.

The product described in this manual and products for use with it are subject to
continuous development and improvement. All information of a technical nature
and particulars of the product and its use (includins the information and
particulars in this manual) are siven by Acorn Computers Limited in ROod faith.
However. Acorn Computers Limited cannot accept any liability for any loss or
damase arisinR from the use of any information or particulars in this manual.

This product Is not intended for use as a critical component in life support devices
or any system in which failure could be expected to result in personal injury.

If you have any comments on this manual. please complete the form at the badt of
the manual. and send it to the address given there.

Acorn supplies its products throush an international dealer network. These outlets
are trained in the use and support of Acorn products and are available to help
resolve any queries you may have.

Within this publication. the term 'BBC' is used as an abbreviation for 'British
Broadcast! ns Corporation'.

ACORN. ACORNSOFT. ACORN DESKTOP PUBLISHER. ARCHIMEDES. ARM.
ARlllUR. ECONET. MASTER. MASTER COMPACT, THE TUBE, VIEW and
VIEWSHEET are trademarks of Acorn Computers Limited.

ADOBE and POSTSCRIPT are trademarks of Adobe Systems Inc
AUTOCAD Is a trademark of AutoDesk Inc
AMICA Is a trademark of Commodore-Amlsa Inc
ATARI is a trademark of Atari Corporation
COMMOOORE is a trademark of Commodore Electronics Limited
DBASE is a trademark of Ashton Tate Ltd
EPSON is a trademark of Epson Corporation
ETHERNET is a trademark of Xerox Corporation
HPCL and LASERIET are trademarks of Hewlett-Packard Company
LASERWRITER is a trademark of Apple Computer Inc
LOTUS 12) is a trademark of The Lotus Corporation
M5-DOS Is a t rademark of Microsoft Corporation
MULTISVNC is a trademark of NEC Limited
SUN is a trademark of Sun Microsystems Inc
SUPERCALC is a trademark of Computer Associates
TE;X Is a trademark of the American Mathematical Society

:::=:::::~:::w.::::::::::::::::::~o:.:~:::::::::::::::::~::.:::;::::~:.::::::::::::::::~~:=:>.:~~.:-;:::::::::::::::~~·::::*«::::::::-.r.~:::::::~;::::::m::::;::.'Y.'~-::::::::}:-:.x::•:=:::::::::::~:::::::::::m:::::::::::::m.::::::

UNIX is a trademark of AT&T
VT is a trademark of Dlsital Equipment Corporation
I Sf WORD PLUS Is a tra~rk of CST Holdlnss Ltd

Published by Acorn Computers Limited
ISBN I 85250 I 16 7
Edition I
Part number 0470,296
Issue I. October 1991

6-lii

en

'
~

·

~ ~ 1 f. i ~~ :::·
 ~=~ :::·

:;:
· ~~ ~~~ I ~~~ I lm
 li I ~
 l ~~~ ~~~= ~ ~

(

(;

(

(J

(

(

{
)

(

(

(I

(

()

(

(,~

c
(\

::::::::::::::::::~ ::::::::::::5:=: :::::::::::::: ::::::::::::::::::::;:::::::::::?:-z.::::.:::::::::::::.m:::::::::.:~:::::::::::::~::::::::-~;::::::::%$::::::::::::::::::::::::::::::::::%::::::::::::::::;x:::::::~«::::~=::: ::=:::::::::::::::

Contents
;:::;:;:;:;:;:;::~-:::::;:;:;::~<x::::::::::::x.:::.:::::::~::::::::::::-::::::::::::~:::::::~~::~:::.'::::x~:::::::::J:"~:::~:x-.x:::;.;;~:;:;:::::;:;:;:;:;:;:;:-;:::::::::::::;:::::::::.:::::::::::::::.::::;:;:;:;:;.::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.::::

About this manual 1-ix

Pert 1 -Introduction 1·1
An introduction to RISC OS 1·3
ARM Hardware 1·7
An Introduction to SWis 1·21
• CommandsandtheCLI 1·31
Generating and handling errors 1·37
OS_Byte 1-45
OS_Word 1·55
Software vectors 1·59
Hardware vectors 1-103
Interrupts and handling them 1-109
Events 1·137
Buffers 1-153
Communications within RISC OS 1·167

Part 2-The kernel 1·189
Modules 1-191
Program Environment 1·277
Memory Management 1·329
Time and Date 1-391

Conversions 1-429
Extension ROMs 1-473
Character Output 2·1
VDU Drivers 2·39
Sprites 2·247
Character Input 2·337

TheCLI 2-429
The rest of the kernel 2·441

6-v

~:o::::::::.-;:o::.:;:~::.:::::.::$~:::-:::::.::<t::.;;:::::::·:~;;-;.:-:.:;.::.:::::::::::.:::::: ::::::::::::: =:=:=:·:·:=:·:=:=:::::::::::::;-;:::-.:;:;:--:::::::~:;;;:::::::::::.:::~ ::::::::::::::::::::::::::::::::::::x.:;.;:::::;-~.:«v:<<-:=:::::::;:::~~=:·::::::::::::::~

6-vi

Part 3-Filing systems 3·1
Introduction to fllina systems '3-'J
Fi I eSwitch 3·9
FileCore 3-187
ADFS 3·251
RamFS 3·297
DOSFS 3·305
Net.FS 3· 323
NetPrint 'J-'J67
PipeFS 3-385
ResourceFS 3-387
DeskFS 3·399
DeviceFS 3-401
Serial device 3-419
Parallel device 3-457
System devices 3-461
The Filer 3-465
FllerJ.c;tion 3-479
Free 1-487
Writing a filina system 4·1
Writing a FileCore module 4-<>3
Wrlti "II a device driver 4·71

Part 4 - The Window manager 4-81
The Window Manaaer 4·83
Pinboard 4·343
The Filter Manaaer 4·349
The TaskManager module 4·357
TaskWtndow 4·363
SheiiCLI 4-373
!Confiaure 4·377

:::::::~:::·: :;:;:;:;:;:;:;:::::::: :;:;:;:;:;:;:;:;:;~:;:;:;:;:;:;:;:;:;:;:;;;:;:;::~;:$;:;:;:;:;:;:;:;:;;::sm,:;:;:;:;:;::~:~;;::::::::~:::::~:x:::::::::v-w-.o:::::::::~·=~·:.::;:;:;.;:; :;:;:;.;:;:; :;:; :;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:::§::;:;:;::.'M:::·:·:

Part 5- System extensions 4-379
ColourTrans 4·381
The Font Manager 5-1
Draw module 5-111
Printer Drivers 5·141
MessageTrans 5-233
International module 5-253
The Territory Manager 5-277
The Sound system 5-335
WaveSynth ~
The Buffer Manager 5-407
Squash 5-423
ScreenBiank 5-429
Econet 6-1
The Broadcast Loader 6-67
BBC Econet 6-69
Houralass 6-73
NetStatus 6-83
Expansion Cards and Extension ROMS 6-85
Debuaaer 6-133
Floatina point emulator 6-151
ARM3 Support 6-173
The Shared C Library 6-183
BASIC and BASICTrans 6-277
Command saipts 6-285

Appendices and tabtes 8·293
Appendix A: ARM assembler 6-295
Appendix B: Warnlnason the use of ARM assembler 6-315
Appendix C: ARM procedure call standard 6-329
Appendix D: Code file formats 6-l47
Appendix E: File formats 6-387
Appendix F: System variables 6-425
Appendix G: The Acorn Terminal interface Protocol 6-43 I
Appendix H: Realstering names 6-473
TaJ.le A: VDU codes 6-481
Table B: Modes 6-483
Table C: File types 6-487
Table 0 : Character sets 6-491

6-vii

r
(

(

(

(

(

r

(

(

r

r

r
"

c

::::'=<«.:=:·:<·:;:::::.: :: ::::::.:::::::::::.:::·:·:~::::::::~~::t:~:-:·:·:·:·:;:.;::;:.~:::~:~-:·:::.:::::~::..~m;::::::::::::::::::::::::::::::::::::.:::;;;;;:~:;:::~:~;::::::::::m:.:;:::::::~;::=;:.:-::::~~::~:::::::::::::::;:::<::

6-viii

Indices lndlces·1
Index of • Commands lndlces·3
Index of OS_Bytes lndices-9
Index of OS_ Words lndices-13
Numeric Index ofSWls lndlces-15
Alphabetic Index of SWls lndices-27
Index by subJect lndlces-37

r
(

:;.;:;.;:;.;,;:;,;:;,;:;:;:;:;:;:;.;.;;x.&>m»>>:·:':·:·:·:'.«>:,,;::~:«<:::;:;:;:;:::;:::;:;.;: :·:·:·:·:·>>>:<:::;.;::·:· :•:<·:<·:·:·:-> :·:·:·:·:·: :;:;:;:;:::::;:;, ::::::::::>:~::;.;.;.:.:·:~«·»>>::;:::;.;.;.;.;.;.;.:·:·:·: :;.;.;:;:;:;:: :;:;:;:::mN:M:i:·::;;;:;:: (

66 Econet
:::::::::::::::::::~x::::::::~~;~::~::~::::~~~:;:;::::~~~::::::::::~:;::::::::::::::::::::::::z:~:::~:~::::::::::::::::.::::::::;:::::::::::X::~~~::::-.:"~:~:::::::::::::::::::::::::m~:::::WZ.::;::~:;:;:

Introduction
The Econet module provides the software needed to use Acorn's own Econet
networking system. The sort ware allows you to send and receive data ~r the
network.

It is used by RISC OS modules such as NetFS and NetPrlnt, which provide network
filing and printina factlltles respectively. It is also used by various other Acorn
products that use Econet. such as FileStores. Econet bridges, and so on.

Note that to use the Econet you must have an Econet 6pi~nslon module fitted to
your RISC OS computer. If you do not already have one. they are available from
your Acorn supplier.

6·1

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

r·
(

(

(

(

(

(

(

(

(

(

(

(

0v9fVf9W

:::::::::: :::~::(.::.:::::::::::::~:;;:;:-.;::-.:::::::;.:;::::::::::::::: :::::::::::::::::::: ::::::::::::::=:·:-: :::::::::::::::::x:::::;:w.::;::x:;::.-:::~::.::x:~::%§::::::::: ::::::::::::::::::::::: ::::::::::::::::::::·

Overview

6-2

Econet is Acorn's own networking system. and the Econet module provides the
necessary software to use it.

The main purpose of any networking system Is to transfer data from one machine
to another. Econet breaks up the data it sends into small parts which are sent using
a well defined protocol.

Econet does not use buffers In the same way as most other Input and output
facilities that RISC OS provides. Instead the data Is mCNed directly between the
Econet hardware and memory. This means that each time data is transmitted or
received. there has to be a block of memory available for the Econet software to
use immediately, either to read data from or place data in.

These blocks of memory are administered by the Econet software. which uses
control blocks to do so. Many of the SWis interact with these control blocks. so you
can set them up. read the status of an Econet transmission or reception. and
release the control blocks memory when you have finished using them.

In the same way as files under the filing system use file handles. these control
blocks also use handles. Just like file handles. your software must keep a record of
them while you need to use them.

The Econet also prCNides a range of immediate operations. which allow you to
exercise some control over the hardware of remote machines. assuming you get
their co-operation. Some of these will work across the entire range of Acorn
computers, whereas others are more hardware-dependent and so may only be
possible on RISC OS machines.

Ec:onBI
m.:::::~:::::::: ::::::::::::::::: ::::::::::::::::::::::::::::::::::::· .:.:.:.:.:.:.:.::::::·· .:.:.:::::::: ::::::::::::: :::::::::::::::::::::::::::::::::: ::::::::::: ::::::: ::::::::·::::::::::::::::::=::::::::::::m., .. :;:::::::::::::::;:;:::::::::::::::::<-::::::w.::::::::o::::m.--:: :::::::::::<::.:

Technical Details

Packets and frames
A single transmission of data on an Econet is called a pc~1t. Packets travel across
the network from the transmitting station to the receiving station. The most
common form of padet is called a 'four way handshake'. A 'four way handshake'
consists of fon frames. Each of these four frames starts with the following four
bytes:

• the station number of the destination station

• the network number of the destination station

• the station number of the source station

• the network number of the source station.

These four bytes are sent In this order to facilitate decoding by the software in the
receiving station.

The first frame is sent by the transmitting station. It contains the usual first four
bytes. the port byte (described later). and the nag byte (also described later). This
first frame is called the scocct. The receiving station then replies with the sccut
ac~110111Iagt, which consists of (ust the usual first four bytes. The third frame is the
datil frame: this frame has the usual first four bytes. followed by all the data to be
transferred. Lastly there is a /irtalac~-'Mgr frame which Is identical to the scout
acknowledge frame.

This exchange of frames can be seen with the NetMonitor and is displayed
something like this.

FE0012008099 1200FEOO FE00120048454C500D 1200FEOO

• the transmitting station Is &12 (18 in decimal)

• the receivint station is &FE (254 In decimal)

• both stations are on network zero

• the nag byte is &80

• the port byte Is &99

• the data that is transmitted is &48. &45, &4C. &50. &OD.

Receiving data and using RxCBs
Successful transmission of data requires co-operation from the receiving station. A
station shows that it is ready to receive by setting up a rum corttrol blol;i (or RxCB).
All RxCBs are kept by the Econet software and don't need to concern you. To create

6-3

R9C9/vlng data and using RxCBs
:·:=:•:·:-$::;:;.;:;.:-~-:::::~:::::::~;:;:::::::::::;:;:::::;:;:::::s:::$~;:;:;:;:::;:;:; :;:;::;;:;:;:;:; :;:;:;:;:;:;:::x::::::;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;m;;:;:;:;:;:;:::;:;:;:;:;:;:;.;:;;.;;;.;.;.;:;:;:;:;:;:;:;:;.;!:::.:-.:::::;;::& .. :::.">."'*~:::;:;:;::.;»:~~··::::

6·4

an RxCB all you need to do Is call a single SWI (Econet_CreateRecelve- SWI
&40000). telling the Econet software all the required lnfonnatlon. The Econet
software will return to you a handle which you then use to refer to this particular
RxCB In any further dealings with the Eoonet software.

The Information required by the Econet software Is:

• which station(s) to accept data from

• which port number(s) to accept data on

• where to put the data when it arrives.

It Is Important you note that when the data arrives from the transmittlna station it
Is not buffered at all-It is taken directly from the hardware and placed In memory
at the address you specify. This area of memory is referred to as a buffer (in this
case a I'ICR 6t4.r). A consequence of this is that memory used for receiving Econet
packets mall be available at all times whilst the relevant RxCB is open. You •••
1ot use memory in application space if your program is to run within the Desktop
environment.

The Econet software keeps a list of all the open RxCBs. When a packet comes In It
Is checked to see if it matches any of the currently open RxCBs:

• If It doesn't then the receiving software indicates this to the transmitting
software by not sending a scout acknowledge frame

• if It does then the receiving software sends out a scout acknowledge. and then
a:>pies the data frame into the oorresponding buffer

• If the data frame overruns the buffer then the receiving software does not send
the final acknowledge frame.

Statue of RxCB'a
All RxC& have a status value. These values are tabulated below.

7 Status_RxReady
8 Status_Receiving
9 Status_Received

The status of a particular RxCB can be read using the EconeLEllamlneRecelve call
(SWI &40001); this takes the receive handle of an RxCB and returns its status.

When an RxCB has been received into. its status will change from RxReady to
Received; usually. you wtll then call Eoonet_ReadReceive (SWI &40002). This
returns information about the reception; most importantly it tells you how much
data was received-which can be anything from zero to the size of the buffer. It also
returns the value of the Oag byte.

Ecorn11

:::~-:-:::.::::::::::::::::::~::::::::::::::::~:·:·:;:.;::::::::: .::::-.-:·:·.·.·.·. :;.:::.:=:·:{·~«:::::~::::::::::::~:-::;.:_.:::::::o:««:-:•::;:;::.;x:;.;:::::;tt:::::::::::::::::::::::::::::::::::::::-~:·::~ ::::::::::::::::::: ::::::::::::-::=::::::::::::x.:-:·:.:·:·:·:·:·:·:·::::::::::::::::::::::c-:

The port, station. and network are also returned; these are useful because you can
open an RxCB that allows reception on any port or from any station.

Abandoning RxCB'a
It is very important that when RxCBs are no longer required. either because they
have been received into. or because they have not been received into within a
certain time, that they are remCNed from the system. You do so by calling the SWI
Econet...AbandonReceive (SWI &40001). The major function of this call is to return
to the RMA the memory that the Econet software used to hold the RxCB: obviously
if RxC& are not abandoned. they wtll consume memory which will not
automatically be re<X>Yered by the system.

Receiving data using a single SWI
The usual sequence of operations required for software to receive data is as
follows: First call SWl EconeLCreateRecelve. then make numerous calls toSWI
EconeLExamineRecelve until either a reception occurs. a time out occurs. or the
user interferes (by presslna Esu,. for Instance). Then read the RxCB if it has been
received Into. Finally. abandon the RxCB.

To make this task easier the Econet software provides a single SWI
(Econet_WaitForReoeption-SWI &40004) which does the polling. the reading. and
the abandoning for you. To call SWI Econet_WaltForReception you must pass in:

• the receive handle

• the amount of time you are prepared to wait

• a nag which indicates whether you wish the call to return if the user presses
the Escape key.

Econet_ WaitForReoeptlon returns one of four status values:

8 Status_Recelvlng
9 Status_Recelved
10 Status_NoReply
II Status_Escape

The call will return as soon as a reception occurs; when this happens the status is
. Rlscliwll . lf the time limit expires then the status Is usually NoRtply. but if reception
had started just after the timeout. and so was then abandoned. the status will be
RlsciMng. This Is not a very likely case. lf the escapable Oag is set then pressing the
Escape key causes the call to return with the Esupc status.

6·5

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Transmit~ng dsta snd using TxCB'S
:~:-:-:-:-:-:-:-:;;;;.;;;.;.-.:::.:·:·:·:-:.:·:·:=:=: -:-:::·:·:·:=:=:=:-:-:>:·:W.·~-:-::xs:.:;sx:;:::::::::: :::::::::: ::::::::::=:-::::::::::::::::: =:=:=:=:=:=:=:-:::::::::::::::::::.:::::::·:·:·:·=·w..:>::::.:::=:.:::::::::;;:::::::::::::::::::::::::::::::;::.;x:.:::::::::-::x::~-:·:·:=:::::::~:

Transmitting data and using TxCB's

6-6

Transmission Is roughly similar to reception: a single SWI (Econet_StartTtansmlt­
SWI &40006) Is all that Is required to get things started. This call requires the
following Information:

• the destination station (and network)

• the port number to transmit on

• the nag byte to send

• the address and length of the data to send.

SWI Econet_StartTtansmlt returns a handle. These handles are distinct from the
handles used by the receive SWls.

There Is a limit of 8 Kbytes on the size of data you can send with this call.

St.tua of TxCB'a

To check the progress of your transmission you can call Eronet.)>oiiTtansmlt (SWI
&40007). This returns the status of the particular TxCB. which will be one of seven
possible values:

0 Status_Ttansmitted
I Status_Linefammed
2 Status_NetError
3 Status_NotListening
4 Status_NoCiod
5 Status_TxReady
6 Status_Ttansmitting

Sl4tu.s_ Trc>ts ~~tiii.C means that your transmission has completed OK and that the
data has been received by the destination machine. Sl4tus_TxRwlv means that your
transmission Is wa iting to start. either because the Econet Is busy receiving or
transmitting something else. or your transmission is queued (see later for more
details of this). SU.tu.s_Trus,.iUi"4 is obvious: so too isS14t.~s_NoCiock. which means
that the Econetls not being clocked. or more likely your station is not plugged Into
the Econet. Sl41ws_Li~~elc,.,..c means that the Econet software was unable to gain
access to the Econet: this may be because other stations were tran.smltting, but It
Is more likely that there is a fault in the Econet cabling somewhere.
S14tus_NotLisll>tiltf is returned when the destination station doesn't send beck a
scout acknowledge frame; this Is usually because the destination station doesn' t
have a suitable open receive block. S14tus_Nt1Error will be returned if some part of
the four way handshake is missing or damaged: the usual cause of this status Is the
sender sending more data than the receiver has buffer space for. so the receiver
doesn' t send back the final acknowledge frame.

Econet
::::::::::::::::;.;::::::=:~~-:=:::::::::.:<7.-:o:::-:·:·:;:::=:·:·:·:· :-:-:::::::::::::.:':-~:v:-::::~:::::::m:::::::::::::::~:::::m:;;::;:::::::::::::::::::::::::::;:;::::-:::::x::::::::::::::::~::;:::;;.-:::;:;:::::::x:::: :::::::::::::::: :::::;:;:;.;::::::::;:;;t::;:;.:::. :-::::::::%:

Retrying tranamlaalona

Status returns like NoiLiJII>Iiltf and NllEtror can also be caused by transient
problems with the Econet such as electrical noise. or by the receiving station using
its noppy disc. Because of this It Is usual to try more than once to send a packet if
these status returns occur. To make this easier for you the Econet software can
automatkally perform these extra attempts for you. These retries are controlled by
passing two further values In to the Econet_StartThlnsmft SWI:

• the number of times to try, referred to as the Count

• the amount of time to waft between tries, referm:l to as the Delay.

If the Count is either zero or one then only one attempt to transmit will take place.
If the Count is two or more then retries will occur, at the specified interval (given in
centi-sea>nds). To alve an eDmple as It would be written In BASIC V:

10 DIN Jut\ 20
20 Poct.\• 99: St a·tton\•'7: ,..t-oc·k\ •0
50 SYS •toonet_ lta rtrrana ll1t•, o , rort.\ f ltatlon\, .. tvort\ , auf\ , 20. 1.100 ro h '
60 END

When this partial program was RUN It would try to transmit Immediately. probably
before the program reached the END statement. If this transmission failed with
eitherSI4lus_Notl..isll>li"fOrS14tus_NIIEnor; then the Econetsoftwarewould wait for
one second (100 centi-sea>nds) and try again. If this also failed then the software
would wait a further second and try for a third time. The status of the final (in this
case third) transmission would be the status finally stored In the TxCB: this could
be read using SWI EconetJ>oiiThlnsmlt. To see this we could add some extra lines
to the example program.

30 TJC R.eady\•S
40 Tra.netl\1.tt1nCJ'• '
60 REPEAT
70 SYS .. tconet_toll Trana.-1t .. , Tx' ro Statu••
80 P~INT Statue•
90 UNTIL NOT (Cltatul\aTxbady') Oil (Statue• • t'ranel'IJ.ttinq\) ~

100 END

Now the program will show us the status of the TxCB. We would be very unlikely to
see the status value ~r be Sr.tus_Trus,.iUillf since it will only have this value for
about 90J1s durlna the two seconds It Is retrying for. But It Is most Important that
your software should be able to handle such a situation without error.

Abandoning TxCB'a

N. with receptions It Is most Important that memory used for transmitting Econet
packets 111ut be avail<lble at all t imes wh ilst the relevant TxCB is open. You 111 .. t
aot use memory In application space If your program is to run within the Desktop
environment. This Is because like receptions. transmissions move data directly

6-7

Transmitting data using a single SWI
-::-:::.:-::::;:;:::;:;:;:::::::::;:;:;:;.;;.:;~;-:'-::::;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::::;:;:;::::~ .. ~~:'-::~~::;:;:;:;:;.~:·;.;.;:;.;:;.;.;.;:·: ;:·:;:;:;:;~->:~:))X:::;:;:;:;:;:;:;:;:::::::::::::::::<-~:::~=:~'$;;:'-;:;: ;:;:;.;:;:;:·:·

from memory at the address you spedfy to the hardware. Also, as with receptions.
It Is Important to Inform the Econet software that you have finished with your
transmission and that memory required for the Internal TxCB may be returned to
the RMA. You do this by calling Econet....AbandonTransmit (SWI &40008) with the
appropriate TxHandle.

100 SYS •ac:onet_Abandont'ran•att•, fx \ 1'0 Ft na!St atue\
110 PAINT ·rne final atatu. ••• "';Ftnal St atua\

Transmitting data using a lingle SWI

To make this start, poll, and abandon sequence easier for you the Econet software
provides It all as a single call (Econet_DoTtansmlt -SWI &40009)). This call has the
same Inputs as SWI Econet_StartTtansmit. but Instead of returning a handle it
returns the final status. Using this call our program would look like this:

10 DIN Buf\ 20
20 Port\ • lt: Station\•7: .._twork\ • 0
40 SYS'"E.conet_OoTranafalt .. , 0, Pol't\ , Station\, N~vock\, l u t'\, 20 , 3, 100 to Status\
SO PalNf •!'he Unal atatua waa .. ;Status\

Converting a status to an error

6·8

As you can see this makes things a lot easier. As an aid to presenting these status
values to the user there are two SWI calls to convert status values to a textual form.
the most frequently used of which is the call Econet_ConvertStatusToError (SWI
&4000C). This call takes the status and returns an error with the appropriate error
number and an appropriate string describing the error. For Instance we could add
an extra line to our flnal pr<Jiram.

'0 SYS •econ•t_ConvertStatueToError"', Statue\

Copying the error to RAM

Our pr<Jiram will now RUN and always have an error. In this case the error 'Not
listening at line 50'. This error bloclt is actually In the ROM so it is not possible to
add to it. but it is possible to have the call to Econet_ConvertStatusToError copy
the error into RAM by specifying in the call where this memory Is, and how much
there Is:

'o DI M lrror\ lO
10 SYS "'lconet_Conv•rtstatuaroError ... Statue\ . lrcot''•)0

This new program will function in the same manner as the previous program except
that the error block will have been copied from the Econet part of the ROM into
RAM (at the address given in R I). The main reason for this Is to allow the Econet
software to customise the error for you.

Econel

·:·:·:·:;::: :::::::::::::::::::;:;::::::~~«.: .. ;:.;-::;:;:;.;.~::;.;.;:;:;.x.>MW:::::::::::•:·:·:w :.;::::-::::.:::~::r.:::::::::~::.:::::: :::::::::::::::=!~;;tt$:::::::::~:;::::::;.;;:~;;::::-=~::;:::::::;.~;;:::::·:·:·: :·:·:·:·:·:·: ::::::::::;:;.;:;.:.xv:·:·:·:=:·:«

Adding station and network number•
If the station and network numbers are added as Inputs to the call, the Econet
software will add them to the output string:

10 SYS -&cor.et_ConvertStatua1'otrror•, St atua\,lcror',)0, Statt on\, Network\

Now the error reported will be 'Station 7 not listening at line 50'. It is important to
stress that this is a general purpose conversion. It will convert Status_ Transmitted
just as well as Status_NotUstenlng, so usually you would test the returned status
from Econet_DoTransmit, and only convert status values other than
Status_Ttansmitted into errors:

30 fnnar~itted.\ •0
70 tr Statui\• Tr&nMittecS. fBI.li P~INT "'OK'" ; lNO

The same program fragment could be written In assembler (this example. like all
others In this chapter. uses the ARM assembler rather than the assembler included
with BBC BASIC V- there are subtle syntax differences):

t'x I'OV rO, tO
I'OV rl, t 9t
1'01 r2, f l
1'01 r3, t O
LOR r4 , au.tfer
1'01 rS , UO
1'01 •'· t3
1'01 r1, tlOO
5111 lconet. OOTr&.nlftl.Lt
IEQ rO . f St&tUI _tr&nlll.1tted
LORNJ: tl. Errorluffer
IIOVNJ: r2, UO
SN INE l.con•t_convertStatueto£r£'ot
I'OV pc, lr

Notice here in the assembler version how the return values from
Econet_DoTtansmlt fall naturally Into the Input values required for
Econet_ConvertStatusToError. This code fragment is not really satisfactory since
no code written as either a module or a transient command should ever call the
non·X form of SWis. If the routine Tx Is treated as a subroutine then it should look
tn01e like this:

6-9

r
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(
\

(

(

(

I'

(

(

(

(

(

(

(

(

ConviNtlng a sta~ t1 an /Nror

:::;:.;.;;:.;.;.;.:.:·:·:=:·: .;:;.;.;:;:;:~ .. ~;.;:;:;:;:;:;:;:;:::;:;:;:;;;:;:;:;:;.;::,.;:;.w,.:;:;;.xw.;;.;:;:;.;:;.x.;·:·:.-'4:-::::;:::;:;.;.;.}:..'-:;::;:;::::.;:;::::~::::::::;:;:~~:::::;;;:::::::::;:~:.;».<;;::::;:;.;.;:;.;:;:;.M.<:;;:;:;.;.;.;.;-;.;.;.;.;.;:;:;:;:;.:i:•:'.:::$::::::::::;::::

6-10

TM ST!1FO op !, Uri
MOll co. to
MOll rl. f99
HOY r2, 17
HOY rl, fO
ADR r4, Buffer
HOY rS, f20
MOll r6, f3
MOll r7, noo
Sill X£co11et _oorransrei t
avs 1'x£x1t

TEO rO, I Status _Tran•mJttod
ADR.N£ rl, £rror8uffer
MOliN£ r2 , 110
SWINE XEconet _ Conv• rt.St a tu• ToError

Tx!:xlt LDtero .-p!' {pe)

This routine returns with V dear if all went well; if V Is set. then on return RO will
contain the address of a standard error block.

Converting a atatua to a atrlng
The second error conversion callls EconeLConvertStatusToString (SWJ &40008).
whldt does exactly what Its name suggests. The Input requirements are very similar
to the string conversion SWJs supported by RISC OS. In this case you pass the
status value. a buffer address. and the length of the buffer. As with
EconeLConvertStatusToError you can also pass the station and network numbers.
which will be Included In the output string. To I llustrate this the assembler routine
shown above is changed to print the status on the screen:

T• ST!1FD
MOll
HOY
MOll
HOY
ADR

MOll
MOll
MOll
Sill

avs
TEO
BtO
ADA

MOll
MOll
SMI

MOIIVC
SWIVC

ADRVC
SIIIVC

Txtxlt LDMFD

op!, {lr)
rO, fO
rl, 199
r2, f7
rl, 10
r4, Buffer
rS, 120
r,, 13
r1, 1100
XEconet _OoTranJm1 t
Txbit
rO, fS t atu• _ T ranem1t t M
Txtx l t
rl. TextButter
r2, I SO
rS, rO
XOS_ConvertCard!nall
ro, rS
X£conet _ Conve rtSt a t uaToSt r 1 nq

rO. TextBu!fer
xos_wrtteO
ap!, (pc)

save the a t a tue value

Jteca ll 1ta tu1 1f no error

Ecom~r

:::=:;;.:~·:.:-:=:.:=~:::::::::::::::::::o:~:::::::::=:=:~;:;:::=:=:::~:::::::·:·:·:·:=::::: :·:·:·:·::::::::::::::::::::~;:(.:::~%::::::::::w:=:-'>~v.:::~:=:::.~:::'-:::::::~:::::~<«::;:::::::::.::.::::::::::::::::::ox:::::::~~::::~-:::::~:::

Flag bytes

Port bytes

The nag byte Is sent from the transmitting station to the receiving station and can
be treated as an extra seven bits of data. By convention. It Is used as a simple way
of distinguishing different types of pacltet sent to the same port, and it Is worth you
doing the same.

This is most useful in server type applications where it Is often the case that similar
data can be sent for different purposes. or some sorts of data are outside the
normal scope. lvl example Is a server that tallrs requests for teletext pages, but can
also return the time. A different value for the nac byte allows the server to
differentiate time requests from nonnal traffic. Another example is the printer
server protocol , whldl uses the flag byte to Indicate the padet that is the last in
the print job, without having to change the data part of the packet

The port byte is used In the !"eeelvfna station to distinguish traffic destined for
particular applications or services.

For Instance the printer server protocol uses port &01 for all its connect. data
transfer. and termination traffic. whereas the file server uses port &99 for all its
incoming commands. This use of separate ports for separate tasks is also exploited
further by the file server protocol In that t:Yery single request for service by the user
can use a different port for Its reply. This prevents traffic getting confused.

The Econet software provides some support for you to use ports by providing an
allocation service for port numbers. Port numbers should. If possible. be allocated
for all incoming data.

Software that requites the use of fled port numbers. like NetFS and NetPrint. can
daim these fixed ports bycalllngEconet_ClalmPort (SWJ &40015). This call takes a
port number as Its only arvument. When these daimed ports are no longer
required (when the module dies for Instance) It can be 'returned' by calling SWJ
Econet_ReleasePort (SWI &-«X> 12).

Other software that would like a port number allocated to It can call
Econetj.llocatePort (SWl &40013), whidl will return a port number. While this
port number Is allocated no other calls to Econetj.llocatePort will return that
number. until it is 'returned' by call ing Econ«_DeAilocatePort (SWI &40014) with
the port number as an Input. The NetFS software uses this method of allocation
and deallocation to get ports to use as reply ports in the file server protocol . The
Econet software keeps a table In whk h it tea>rds the state of each port number:
this can be either free. claimed or allocated.

6-11

Ponbytes

YX...§";>::%S:W~v::.::::;:;:;:;:;:;:;::::~::::::::;:::;:::;:::::::;~::;;::;:;:;:;:;::~~"o;:;;:;::::::::::::;::::::;:::::::::;:;:;:;:;:::;:~:;:;:;:;:;:;:;:;;xo:;:(.;;;::;:o::»;.~:.;:;:;:;:;:;:;:::;:;:;:;~~.:::*~:~::;:;:;:;:;<>.,~;:;:;:;:;:;:;:;

6-12

Freeing port.

Ports that have been claimed will not be allocated, and can only be freed by calling
SWI Eoonet_ReleasePon. callingSWI EconeLDeAilocatePon will return an error If
the pon Is claimed rather than allocated. Pons that have been allocated can not be
dalmed, and In fact an attempt to claim an allocated pon will return an error. You
should be careful with software that uses allocated ports to make sure that all
ports are deallocated when they are no lonaer required. especially alter an error.
The claiming and releasing ol ports should likewise be carefully checked.

An ex•mple of UM of the port • lloc.tor

A typical example or the use or the port allocator would be a multi-player
adventure game server. The server would claim one port lea pon &IF). This port
number would then be the only fixed pon number In the entire protocol. When a
player wished to join the game she should ask for a port to be allocated In her
machine and send this port. along with all the information required to enter the
game. to the game server on pon &IF. Uthe server can't be contacted or doesn't
reply within the required time the pon should be deallocated and an error
returned. When the server receives this packet It should check the user's entry data;
If this Is OK it should then allocate a pon for that user and return It, along with any
other Information required to start the game off. When the user wants to quit the
game the server should deallocate Its user's pon. then send the last reply to the
user. The user should deallocate the pon when the reply arrives or If the server
doesn' t reply soon enough.

To Illustrate this example the user entry routine is shown below; note that this
routine is coded for clarity rather than size or efficiency.

Entry STMFO ap!, { r0- r8, lr} : flO point a to the text etr1n9
SWI XECOnctt_AllocatePort
IV$!Kit

STRI
LDR
LDI\
ADR
rt::N
SWI
BVS
rt::N

LDI\
ADR
rt::N

rO, server_ReplyPort
rl, Se rver_Station
r2, Serv.r_lrfetwork
r3, 8uffer
r4, uautfer
X£eonet _createJteoet ve
DeA.lloeate£X1t
r l , r O

rl, I op, t O I
r4, Buffer
r5, to

rreaerve the flxHandle

Addre1a of t ext • t r ii'IQ to copy
Get buffer to copy tnto
InO.x tnto h: •utte r

LDRB rO, server_J.eplyPort
STU rO, (r 4. rS J ; Sehd the pon: t or the ••rve r

Copy Loop
ADD r5, cS, t1

Eoonot
:::::;:.;:;.;;.;;.:~:·:::::::::::::::::::~:::::::::::=:::::::~::::: ::::::: :::: ::::::::::w~:::::::::}!;>:·:-:-»*::::::::~:::~:~:::::=:--:~:=:~~:.;;.:.:;~:::::=:·:::::;;;$$$: ::::::::.:: :::::;:::::::::::::::::::::::~:..;.;.:;:;.::::::: ·:·:·:·:·:·:·:·:;:.:-:::·:·: .;::::::::.:: :::::.~:~::::::

CHP rS, t?luffer Have we tun O!Jt of buffer?
IHS lu f'ferov.rtlov
LDU
CKP
110'11.1

ro, I rl I. 11
r:O, I '" •
ro, fCR

r lclt \IP byte and rDOVe to next one
Ja thta a control ehaneter?
ret'fl1nate aa the server expeeta

lTD
IGr
ADD

ro, I c4, cS
Copy LOop
.r-S, rS, U

Loop back for the next byte
let entry condittona tor Tx

NOV tO, fO
MOY cl, t&ntryfort ; A con.tant
LDI. r2, s.rver_st atton
LOA rl, server_ttetwork
LOk "'• Serwec_l"xOelay
LOa rl, .. rver_hCount
IWI l&co net_DoTr&.Ma1t
lVI o.AUoc• tellll t
tt0 rO, fl t atua_Tra.ftta.ltted.
1&0 Wal tfortteply

Convertlco.Mtl rror
.a.oa r l, l\lffer ; Convert a t atua a.nd. exJt
rtt:N c2, f llu.ffer
IWl
I

•tcoMt _Convert ltat\laTo&rror
OMlloca t e&xlt

WaltforAeply

140'1
LDR
MOV
SWI
IVS
TEO
8Nl

rO, rl
rl, lerwr_bOelay
r2, tO ; Don't allow ESCapo
Xlconet_Wa lt forReceptlon
o.AllocateEXlt
rO, t Statua_"-celved
Conve rtEcoMt&rror

LOR r ·O, luffer : Get Mrv.r r.turn code
CMP rO, t O 1 Ha a there be4tn an error?
ADR r O, Buffer : Get addreaa of reply
IN£ DUlloca te&xlt ; Y•• • proce aa error
LDR.a rl, t ro , t 4 J : Loacl ae rver' • port
aru rl, lerwr_co,...ndPort

Exlt
StkVS rO, (ep, t O) : Poke error tnto return reqs
l.DHF'D apt, (.rO-rt ,pc) : b tum to caller

Bufte rOwrflov·lrror
&rrodhu•b•r a uf f eiOverflow
.. co ... nd t~ lonq to.t buffe r• ,

6-13

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

/

~

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Econ9t9V911ts

::;:::::::;:::;:;:::::::::::w;;.::::::::::::::::::::::::::::::::~·:::.::::::::::;:::;:;:::;:;:;:;:;:;:;:::::::;;:::;:--:;::;:;:::;:;:;:;:;:;:;:;:;:;:;:;.:;.:;.:::-.::..:::::::::::::::::::::::>::::: ::: ::::::::::::::::::: :;:::::::;:;:::::»::::::;::~.;:»~;:;:;:;:;:;:;:;::

Econet events

6-14

ALIGN

BufteiOvarflow
AD I\

DeAllocateE.xlt
MOV

rO, ButterOverflawError

rl, rO : Pr•••rv• the or1q1nal error
LDJ\8 rO, Serv.r_J\eplyPoct
S'Wl XEeonet_DeAlloeatePort
MOV
CKP

•
cO, cl
pc, fUOOOOOOO
txit

Points to notice in the eJCample are:

• the careful use of a single exit point

Iqnor• d••llocatlon errou
Set V
Exit throuqh common pot.nt

• the consistent return of errors (no matter what type)

• the opening of the receive block before doing the transmit

• the use of the X fonn of SWis.

It should be noted that the routine uses and manipulates global state as well as
tailing sped fie input and returning specific output.

To allow Eronet based programs to be kinder to other applications within the
machine. it Is possible for your program to be 'notified' when either a reception
occurs or a transmission completes. This means that other applications can be
using the time that your program would have spent polling, either Inside
Econet_DoTransmit or inside Econet_WaitForReception. This 'notification' is
carried by an event. There are separate events for reception and for completion of
transmission. These two events are:

14 Event_Econet_Rx
15 Event_Econet_Tx

On entry to the event vector:

• RO will contain the event number. either Event_Eronet_Rx or Event_Econet_Tx

• R I will contain the receive or transmit handle as appropriate

• R2 will contain the status of the completed operation.

The status for receive will always be Status_Ruivt41. but ror transmit it will indicate
how the transmission completed. These events can be enabled and disabled In the
normal way using OS_Byte calls.

Econ91

:::::::::.:::::::: =:=:=:=:=:=:~::::~:;~":...~~;:;:=~~::::::::: :::::::::::::::::: :::::::::::::::::::::::;::::::::::;~::::::::::::::~:~=::::::;~:::::::~h:::::::::::::~-:..::w:::::::::::::--:«.::::::::::;osx:;::::=:<::«-::::::::::::;~

Using events from the Wimp

If your pi'Oflram Is a client of the Wimp then all your event routine need do is set a
nag that your main pqram polls In Its main Wimp polling loop. when the event
happens.

!.vent ftQ cO, f&Vetlt_Ec~et_JUC
1'1()1& rO, ttvet~t 1conet Tx
MOYMI. pc, lr - : - It not, exit •• ta•t • • pose l ble

lna"'O • P !, (lr) : MU.It pr•••.rv• all r~tqt for otMra
ADa r14, For.;roundfh9
Ita pc, (rl4) : Sa t Ua9 with non-z.ero valuo
LOMFD ep!, (pc) ; lt.etvm , wltbout cl•11111nq vector

Setting up bllc:kground tub

Since the interfaces ~ul~ for reoeptlon and transmission can be called from
within event routines. you can set up badcround tasks that make full use of the
facilities offe~ by Eo:>net. Note that It Is Important to dleck that the handle
offered in the event beloncs to your program. since th~ may well be many
programs using this fadllty. The egmple given below Is of a simple background
server for send ina out the time. Not all of the code needed is shown. just the event
routine:

Start -Event
AD !I. -s•x

IIOYVC
I40V
s•xvc
IIOYVC
I40V
s•rvc

IIOIIVC --AD !I. -PlVC
snvc -

Event f l O
IN!
LD!I.
no
KOVN!
KOVN!

cO, f !ventV

rl, &ve nt
r2, t O
xos_cla&na

rO, f14

the v.ctor we want to qet on 1a tho

Where to qot when it happens
Jtequtred eo th.at w• can Nl•aM

: Enable event
1'1, t~vent_lconet_Rx

xos_ayt•
rO, f14 : lnabl• ov•nt
rl, t E:vent_! conet_Tx
XOS_ Iyte

rO, tco~~~nand.Port 1 rtret open the reception
rl , tO : Fro" any •tatlon
<2, t O 1 troa any net
rJ, Iutter
r4, t ·nutfer
X !co net _creat•~•oetv.
rO, bMandle
pc, lr

rO, fEve nt._Ecane t_b
Lookforh:
rO, bHand l e : Get our qlobal 1tate
rO, d : 11 tt tor u.11
rO, ttv~Mt_&conet_~.

pc. lr : If not., extt •• fast as possible

6-15

EconetevlJIIIS

:;:;:;:;:::;:;:;:;:;:;:;:;:;;~'<~~%::;:;:::;.:;.;.;-:-:-: .;.;:;:;.;:;:;:;:;:;:;:;:;:;:;:;.;::::-: :;:;:;:;:~:~~?:::::::::::: ;:;:;.;:;:;:;:;:;:;:;:;:;:;:;.;:::::.r.:::::~:::;:;:;:;.;W.~·:::.: : ·:-:.:·:·:·:·:·:·:=:-:::.:·:·:::o:®.~:::::::::::::::«:::;;;.;'*' ~::;::;:

not Jt4

6-16

Exit

S'l'MFO tp!, (rl- r7) : Only Jt-1 and Jt2 are free for UN
w::N cO, rl ; keoe1ve h.lncUe
S'Wt XEcon.t_Jtea.cUAoelve ; Jt4.1tl 1• the reply addreaa
IVS !xtt

tOY
tOY
tOY
Sill
BVS

ADD
tOY
SUI
tOY
SWI
IVS

tOY
tOY
tOY
LORI
tOY
MOV
tOY
tOY
Sill

IVS

SUI

STR
AOR
LOR
ITA
STR

tOY
tOY
110\1

ADR
tOY
Sill
suvc

LOHrD

"'' rl : Sav. tbe atation nu.,.c for later
rO, fModule_Cl ata
r3, f l -+ S : rvo worda and five bytea required
XOS_Module ; MeftiOr·y MU$f COC'I'JII from l'.MA
£x1t

rl, r2, U
rO, 13
rO, (rl
rO, t lt
XOS_Nord
E.xlt

rO, 10
rl, r4
r4, rl
rl, (r5
r2, r6
rS, 15

''· I ReplyCOunt

Get the address of the 5 byte1
Set OS Word r•••on code
Jlead , ; a five byte u ..
ltead fro• tblt real tiM clock

rtav byte
Network number
Get t M addreaa of the S byte1
The r epl y port the client aent
St a tion number
Nui!Der of by t o• to aonct

r1, l lleplyDelay
x&c:onet _sta rt Tnnt11J t
lxlt

r4, a. u

rO, (r4, f4
rl, T'xLlat
r2, (rl, tO
r2, I r4, tO
r4, I r l, t O

Note that tM exit reqiater t a A2

Save f'xHandle in record
Addreta ot the head. of the l11t
Head ot the Hat
Add tNt Hat to new record
Make th11 ree-orcl the 11at Mad

.r-0, tconn.aod.Port ; Mow re - ope n the reception
rl, 10 : rcoe any atatioo.
r2, t O : Fro. a ny net
rl, Buffer
r4, I ?Buftor
Xlc:onoet _createJWc.l ve
cO, llxH•ndle

1p!* t r3-r7, pc I : ~•turn olalnUnq vector

Lool<Fort•
fEO cO, f tvent_Econet_1'x
J«)VN& pc, 1 r
sr"ro 1p!, (rl, l r J : Get tvo extra reqtat•r•
ADA rJ. f'xLlat : The addroaa of the head of l11t
LOA rl4, (rl J : Th• U.rat r.co.rd tn the lilt

St• rtLookJnq

Eoonet
;:;:;::::-:.:·:·:·::;:;:;:;:;: ;:;:;:;:;:;::::~z::::;;;:;;;@;;;.; .. ,;::sc;;:::::::::::;.~~;:-:;:.;.;-;:;:;:;:;:;:;:~~:;;:;.;.;.;.;.;:...; ·:·:·:·:·:-~;:; ·:·:·:·:·:·:-;:.;~~;:;:;:;.;.;:~x;;:;.~ ... :.:·:·:.::;: ;:;:;:;:;::.·::;:;:;:;: ;:;:;:;:;.;:;.;~;;@:·:·

MextTX
NOV

LOll.
sta rt Look 1 nq

CMP

cl, r14
rl4, I c3

rl4, tO

Search the next Hat entry
Get Utoe ltnJt a.dd.reaa

Ia tbta the e nd of tba U • t?
MOYL& rO, f Eve.nt_Ec:coet_T'X : Reatore ent ry condltlona
LOtcL&fO ap t, (rl , pc) ; Jt.Atturn, conttnutnq to next ovnec
LOR rO, (1'14, f 4) ; Get thAI ha ndle for tbla record
\'EQ
an

cO, rl
llextTx

<2, (rl 4
r2, I rJ J
r2, r1 4

I a th1 a event one of ours?
llo, try neKt .:.cord ln ll•t

Get the C.fllttnder of the Uat
; lt.ellove thl a cec:ord fro• lht
; Tbe record acldr••• for later

XlcoMt _A.ba.ndanTran .. t t
rO, fNodule_rree

LOll.
sra
NOV

SIII
NOV
SIII
LDte'O

XC»_fllodul e : a.tum __,ry to JUIA, tqnore error
a p t , (rl, lr, pc: J : aeturn, cla tatnq v~or

This pfOiram also Illustrates some of the more advaooed features of Econet. In
particular; it shows the ability to specify re<Jeptlon oontrol blocks that can accept
messages from more than one machine. or on more than one port. Receive control
blocks l ike this are referred to as wiW. as in wiW urN ou~illf used in tile name look
up. Specifying either the stailon or network number (usually both) as zero means
'match any'. The same Is true of the port number. althouah this facility is much less
useful! This wild facility does not mean that more than one packet can be received.
but rather that more than one particular packet will be ac:oeptable. Once a packet
has been received. the RllCB has Status_.Received and Is no longer open.

It Is worth noting an Implementation detail here. Receive control blocks are kept by
the Econet software In a list. when an incoming scout has been received the list Is
scanned to find the first RxCB that matches it. To ensure that things go as one
would expect the Econet software that implements the SWI Econet_CreateReoelve
always adds wild RllCBs to the tail of the list. and nonnal RllCBs to the middle of
the list (between the nonnal and the wild ones). This ensures that when packets
arrive they wi II be checked for ellact matches before wild matches. and that if there
is more than one accepeable RllCB then the one used will be the one that was
opened first. ie first In first 5ef\led.

Broadcast tran,mlsslons
As a complement to this concept of wild reoeive control blocks there are broadcast
transmissions. A broadcast has both its destination station and network set to &f'F.
It can then be received by more than one machine. To achieve this it does not use
the normal four way handshake. it is in fact a single packet. On the Net Monitor it
II(OUid look something like this:

FFFF1200809F5052 494E54200100

6-17

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

'
(

(

(

(

(

(

(

(

(

(

(

lmm9dlat9 op~~ratlons

;:;:;:;:;:;:;:;:;.;.y_.:.;;;.:.;-;::;-::;:;:;:;:;:;:;:;:;:;:;:;.;:;.;.;:;;;.::::;.; :;:;:;:;:;:;:;:;:;:; :;.;:; :;.;.;:; :;.;:;.; .;.;.:.:~:.;:;:;:;:;:::;:;.;.;-;:.:::;;;;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:)-;~:.::::::;:;:;:;:;:;:;@:~:;:;:;::::«::::::::

The broadcast address at the beginning (&FF, &FF), the soorce station and network
(&12. &00). the control byte (&80), and the port (&9F') are the same as a normal
scout frame. but then the data follows. in this case eight bytes.

Although the Econet software within RISC OS can transmit and receive broadcast
messages of up to 1020 bytes (RISC OS 2.0) or 1024 bytes (later versions). other
machines on Econet can't cope with messages or more than eight bytes without
getting conrused: this confusion causes them to corrupt such broadcasts. These
other machines include things like F'ileStores and bridges, so beware! It Is possible
to transmit and/or receive zero to eight bytes without them being corrupted. but
only broadcasts of exactly eight bytes can be received by BBC or Master computers.
as well as being transported from network to network by bridges.

Transmitting a broadcast is exactly the same as transmitting a normal packet. all
you need to do is set the destination station and netwolt to &f'F' (aot -I).

Versions of RISC OS after 2.0 support a wider range of broadcasts, allow! IIi local
broadcasts (which are only seen on the local net) and long broadcasts (broadcasts
of more than eight bytes. which new bridges will recognise and com!<:tly
propagate). To use these. set the station number to &FF, and the network number
as follows:

Networit Ra aae Size

&FF Global Small (8 bytes maximum)
&FE Global long (102011024 bytes maximum)
&F'D Local Small (102011024 bytes maximum)
&FC rtsmlfll rtSuvft

Broadcasts don't return the status Statu.s_No1Lisuni114, since there Is no way for the
transmitting station to detennine whether or not its broadcast was received.
Broadcasts are basically designed for locating resources. ie to transmit your desire
to know about a particular class of thing. Anything recot~nlslng the broadcast will
reply. so you know what's what and where it is. NetFS uses broadcast to find file
servers by name. and Net Print uses broadcast to find printer servers. The above
example contains the ASCII text 'PRINT and is. not surprisingly, a request ror all
printer servers to respond.

Immediate operations

6-18

There is a second dass of network operations called immediate operations. These
operations don't require the explicit ro-operation of the destination machine;
Instead the ro-operation is provided by the Econet sortware in that machine.
Immediate operations are similar semantically to normal transmissions but.
because they have no need for a port number. have a type Instead of a nag; and

Eccmtll
·::::~:::::::~::::::::::::::::~:~:::::r-::::::::::::~::.~;.;:::::::::::~:~~=::::::~~:::::::~~:::~::::~<-:::::::::-o%:':::::::::::-:-.:::::::::::::.:;::-::::::::::::t~:::::::::r.:::::::::: :::::::::::::::::::::

most also require an extra Input value. They have a separate pair ofSWI calls to
cause them to happen: Econet_Startlmmedlate (SWI &40016) and
Econet_Dolmmedlate (SWI &40017).

The call Econet_Startlmmediate returns a transmit handle in exactly the same way
as Econet_StartTransmlt and that handle should be polled and abandoned in the
same way. The call Econet_Dolmmediate returns a status (ust as
Econet_DoTransmlt does.

There are nine types of Immediate operations:
I Econet_Peek Copy memory from the destination machine

2 Econet_Poke Copy memory to the destination machine
3 EconeUSR Cause JSRIBL on the destination machine
4 Econet_UserProoedureCall Eaecute User remote procedure call
5 Econet_OSProcedureCall
6 Econet_Halt

7 Econet_Contlnue
8 Econet_MachlnePeek

9 Econet_GetReatsters

Eaecute OS remote procedure call
Halt the destination machine
Continue the destination machine
Machine peek of the destination machine

Return l'efllsters from the destination
machine

The last one. Econet_CetRegisters. can only be transmitted by or received on
RISC OS based machines. whereas all the others can be transmitted or received by
BBC or Master series computers. The reason for this Is that Econet_GetRegisters is
specific to the ARM processor.

Econet_Peett and Poke
The poke operation Is very stmllat to a transmit, In that data is moved from the
transmitting station to the reoelvlng station. The difference is that the address at
which the data Is reoelved Is supplied by the transmitting station. Peek is the
inverse of poke: data Is moved from the reoeiving station into the transmitting
station.

Versions of RISC OS after 2.0 validate the address range to be transferred.

6-19

lmmfldlatll op~KtJIIons

=:t>~X:%::::~::.m:=~~.:x:.x.:;;.::::::::::::::::: =:·:=:=:::=:-:::: :::~::::::::::::::::::::::::::::::::::=:=:~::::::::::->;;:::;:::::::~:.::.-«-:::::::::::::::::::::::::::::::::::::;~W:=m;;::::::::::x.::::.::::::::

6-20

Econet_JSR, UaerProcedureCalland OSProcedureCall

ISR. UserProcedureCall. and OSProcedureCall are all very similar. They send a
small quantity or data, rererred to as the argument burrer or arguments, to the
destination machine: they then rorce it to exec\Jte a partiC\Jiar section or code.
When received a JSR actually does a BL to the address given in RJ, whereas
UserProcedureCall and OSProcedureCall cause events to oocur. These events are:

8 Event_Econet_UserRPC
16 EvenLEconeLOSProc

After reception the arguments are burrered so that they may be used by the code
that is called. either directly by a BL or indirectly via an event. The format o(the
Arguments buffer is as follows: word 0 is the length (in bytes) or the arguments.
then the arguments follow this first word and may be null (ie the length may be
zero).

Coadltlou oa eatly to eYellt code

The conditions on entry to the event code are:

RO = Event number (either EvenLEconet_UserRPC or Event_Econet_OSProc)
Rl =Address o(the argument buffer
R2 • RPC number (passed in Rl on the transmitting station)
Rl • Station that sent the RPC
R4 • Network that sent the RPC

Coadltloa• oa eaUJ to JSR code

The conditions on entry to code that Is BJ.:d to for a JSR are:

Rl "'Address o(the argument buffer
R2 ,. Address or the code being executed
Rl "' Station that sent the JSR
R4 • Network that sent the JSR

fonnat of tlle a~ meat baffer

The rormat or the argument buffer is exactly the same in all cases. 1r. in the case of
a JSR. the call address transmitted rrom the remote station Is -I (&f'FFF'F'Ff'F) then
the execution address will be the argument buffer itselr: this means that
relocatable ARM code can be sent as a ISR. Registers RO to R4 can be used as they
are preserved by the Econet software. and R I 3 can also be used as an FD stack.

The transmission or Econet_OSProcedureCall is not intended ror use by other than
system software. and is only doC\Jmented here for completeness. The transmission
or EconeUSR Is only provided as a compatibility reature to allow lnterworklng
with BBC and Master computers.

Econ111
mz.:::::::::::::::.;.;::;.;;::::::::: ::::::::::=:-:-:::: :::::::::::::::::.:::::.:.:.:::::::;::::::::::::::::::::::~=:=:=:=:=:=:~~o:~..:=:·:=:=:..~~::::x9X:::::::::::;:;:::::::::~:::::~::::::::.:.;.;:.:::::: ::::::::::::::: ::::::::=!::·:·:·:·:.:

Econet_ UaerProcechwe calla

The EconeLUserProcedureCall Is the best method for this style or
communications. It does however have some restrictions. The first of these Is the
most important -It Is executed In the destination machine as an event caused by
an interrupt. and so It has all the normal restrictions applied to interrupt code. This
means that code directly executed as a result or Event_Econet_UserRPC must be
fast and clean. and must not call any or the normal input or output SWI routines
nor call the fil ing system. either directly or indirectly. This is paramount ir the
integrity or the destination machine Is to be ensured. However. you can copy away
the arguments passed and signal to a rorqround task (by altering a Oag) that the
procedure call has arrived. lt is most Important that you copy the arguments away.
because the butTer that they are in is only valid for the duration or the event call.
This means that Rl will point to the arguments whilst you are processing the event.
but arterwards the argument buffer may be overwritten. If the requirements for the
processing or the call are small then it Is possible to do it all within the event. lin
example or this Is a modification o(the program presented earlier that returned the
time. This new pqram sends the time In response to a User RPC. rather than a
normal packet:

Event
Sta rt MOY

Event

ADR
MOV
SWI

1101/VC
STRVC

MOV
IWIVC

1101/VC
NOV
I WIVC

NOV

TEO
INE
TEO
MOVN&

LDR
rr.o
1101111&
1101111&

lriiFD

MOV
MOV
MOV
MOV

rO, tEvent V : Tbl vector ve want to qet on la the

rl, tvent
r2 , t O
xos_cl atra

ro, t14

: Wbe.re to qot when 1t h.appena

Required ao that we can role•••

: &.nabla .vent
ro, Ch1,.,.<1Fla9 : Sat it to a non-zero v•lue
rl, t Eve.nt_lconet_u .. rRPC
xo._ lyte
rO, 114 : lnable event
rl, t lvent_&conet_rx
XO._Iyte
pc, h

ro, t lvent_&conet_u .. rlt.PC

Lookrort'X
r2, t ,_PC • ·•ndfl• : I a lt for ua?
pc, lr - : If aot, exit aa hat • • po•atble

ro, (rl, t O) : Get elte of arqumenta
rO, U : Cbeck th• t 1t ta r t qht
rO, t tvent l ·conet UMrltiC ; "-•tore exit req1atera
pc, lr - :-It ftot , exit •• fast •• poJa1b l e

ap t, (r:S-rl) ; Only l l to a4 • re fr• for use
; Jt4 . ltl 1• the reply add.re11

r , , r1 ; save tb.e a t atlon auftlber for l•ter
rS, cl ; Preaerve a rqu•nts potnt.er
rO, t Module _Ch t•
r l . t t • s : TWO vord..t ahd. tlve l>ytes required

6·21

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

(

c
(

c
c
(

lmm8diate op~K~Jtions

;:;:;:;:;:;:;:;:;:;:;:;;;:::;::.;;;;~;;;:;:;.;:;:;:;:::::;:;:;::::::<:::;:;:;:;:;:;::::::::;:;: ;:;:;:::;:;t::~:: :;:;: ;:;:;:;:;:;:;:;.;:;:;:;:;:;: •·•• •. :.:.:.:;:;:;.;.; .;:;:;:;.;~~;!;!(.;!;.;:;:;~,o;.:;:.;:;:;:;:::;>»:·:·: .;;;:;:;:;:;.;.;:;!;:;.;::~:r:::;;:;:;:;~~~.«:::::-:

not R4

6-22

$111
avs

ADD
MOV
sna
MOV
$111
IVS

MOV
MOV

MOV
LDkl
MOV
MOV

MOV
MOV

SWI
IVS

SUI

sn
ADR
LDk
STJ\

STR
r.x1t

LDMF'O

XOS_Module

Exit

rl, r2, ta
rO, U
rO, (rl
cO, 114
XO:S_Mord
Exit

co, t o

Memory MUST to~N from RMA

Get the 11ddre•• of ttw S bytee
Sot OS_ word reaaon code
Road • • 11 f1 ve byte t l iM
kead from ttw rea l time clock

flaq byte
rl, r 4 ; Net work nud)or
r4. r1 ; Get the addreaa of t he 5 byt e •
rl . (r5, f4) ; The r~ly port the cUe nt 1ent
r2 . r' : St lltlon nutiOtr
rS, I S ; Nutrber of byte11 to aend
r6. t~plyCOu.nt
c1, t ttepl yDelay
X£conot _ St11rt Tu.naa.t t
Exit

r-4. r-2 • •• : Note that t bo e_xlt .req111t e r l a ll2

cO, (c4, t4 I : Sa~ h:Handlo ln n eord
rl, Txt.tst ; Addreaa of the head of the 11et
t2, (cl, tO I : Road of tho Hat
c2, I r 4, 10 I : Add the llet to new record
c4, 1 rl, 10 I : Mako th1a r•cord. the lilt bead

ep! , { rS• r7, pc } : ketucn chlnUnq vector

Loolt ForTK

NoxtTx

T£0 rO, tEve.nt_Econet_rx
MOVN£ pe. lr ; . fhit evont h11 only kO to k2
STMFD 1pl, { rl. lr) : Get tvo eKtra req1etera
o\01' rl, txLia:t : The addrett of the heed of Hat
LDk rl4, I r3) : tho Urat record in the liat
a StartLooking

MOV

LDk
rl, rl4
c14, (r3

Se arch the neJCt lilt entry
~t tho link addreaa

St artLoolcinq:
CMP r14, t o : Is thh the end of the U e t 1
HOVL& rO, l tvent_£c:onet _Tx : ~1tou entry condltlona
LOMI.!.FD ap!, t r3 , pc } : Return, cont1nu1nq to next owner

Econet
:::: :::::::::::::::-?.:::::::::;:::m--::::~:::::::::!:::::.x=:;:.:::.:·:·:;:::::.:::;:.:.~{;:.;;:.::;:.:.;.;;;:-;~::::::~;-=:~x::::::~;z:;::::~~:::::::~::::::::::::::::::::::~:m:::::::::::::::::::::w.:::::::::::::::: :::::::::: :;:::::::::::: :;:::::::::: :;:::::: :::::::::s::~:=:!:~

LD~

U Q ... ,
cO, (rU, f4 J 1 Get the h11ndle for thla record
rO, rl ; 11 thi1 •v-.nt on• of oun?
._th : •o, try next record in U et

cZ, (r1 4
rz. 1 r) I

1 O.t the r•-1nder of the lil t
Jt.eMov. tht• record. frolll Ust

XEconet _ Aba.ndon rran1111 t
ro, tModul• _rre.
r2, r1 4 : rt. ncord 11ddre u

LDl
ltl .. ,
MOV

MOV
IWI
~

XOI_Mod·ute 1 J.eturn •110ry to IUCA, 19nore error
•pt, (r1, lr, pc) : laturn , c:::la1e1nq vect.or

You wi II notice how much simpler thls Pf08ram Is when compared to the prOj!ram
shown earlier.

Econet_ OS Procedure «*Is

There are five defined OS procedure calls for which only two have implementations
under RISC OS. The live are:

0 Econet_OSChaniCtetf'romNotlfy
I Econet_OSinltlallseRemote
2 Econet_OSGetV'.ewParameters
3 Econet_OSCauseFataiError
4 Econet._OSCharacterFromRemote

OSCIIa .. cterf'ro.NodiJ

Econet_OSCharacterFromNoUfy causes the character received to be inserted in to
the keyboard buffer: the oode that does so looks like this:

buffer
InsottCharacte r

MOV

LDkl
140'1
IWI

rO, flU
c2, I rl, f4 I
r1, to
IOI_Iyte

1 IU a lready potnttnq at l rC)umont

1 Jnaert into buffer os_Byt•
Get character from buffer

: Iutter 11 keyboa rd

The NetFiler module provides • dltf~nt Implementation whilst the desktop Is
runniniJ.

osea .. eFatalEmM'

Econet_OSCauseFataiErTor does exactly what its name implies. ln fact it calls SWI
OS_GenerateError directly from the event routine: nonnally this would be illegal.
but since this Is what the RPC Is for. that Is what It does. lt should be observed that
this can have a disastrous effect on the Integrity of the machine and is not a
recommended action: It Is provided only for compatibility reasons.

6-23

lmmBdlste operalions

~z:;:;.-::;~~~~::::::::::::::::~::::-:~:;:•:.::::::::::::;:~x::-mx-~:>..~~:::::::::: ::::::::<:::::::::::::: :·:·:·::::::::=»:.:=-$:--:::=::::::::::::::::::::::::::::::: :::::: :: :::::::;:~::~:::::::::::::~:~:::::::::~:~::::::::::::

6·24

Eoonet_Helt end Continue

Halt and continue are only acted upon by BBC and Master series machines: there
Is no Implementation for receiving halt or continue on RISC OS machines or
RISC IX machines.

Eoonet_MechlnePeek
Machine peek is similar to peek. except that it is not possible to speclf'y the
address to be peeked. but rather four l7ttes are returned that identify the machine
that is being machine peeked. Machine peek is used by some of the system
software in RISC OS to quickly decide if a particular machine is present or not. The
four bytes returned by machine peek are as follows:

~e(•)

I and2
)

4

Val•e
Machine type number
Software version number
Software release number

Mac ... ae type umber.

Machine type numbers are as follows:

&oooo Reserved
&0001 Acorn BBC Micro Computer (OS I or OS 2)
&0002 Acorn Atom
&0003 Acorn System 3 or System 4
&0004 Acorn System 5
&0005 Acorn Master 128 (OS 3)
&0006 Acorn Electron (OS 0)
&0007 Acorn Archimedes (OS 6)
&0008 Reserved for Acorn
&0009 Acorn Communicator
&OOOA Acorn Master 128 Econet Tenninal
&0008 Acorn FileStore
&OOOC Acorn Master 128 Compact (OS 5)
&oooD Acorn Ecolinkcard for Personal Computers
&OOOE Acom UNIX workstation
&OOOF to &fFF9 Reserved
&fl"FA SCSI Interface
&fFFB SJ Research IBM PC Econet Interface
&ffFC Nascom 2
&fFFD Research Machines 480Z
&fFFE SJ Research File Server
&fFFF Z80 CP/M

Ecooot
:::.:=:::::: :=:=:~::.::::::::::::::::::::::-x:;.;:::::::::::::::::::w.:-.z.m.:::::::::::::::9:t::<-:=:·:=:~:w.:;;::;:;:;:;:;:::;:;:;::::w.~:::.::::::::~:;:::::::;::;;?,.":~~=:::::w.-.:;:::;~: =:~=:-:.;:::::~:·:=:=:=:·:·:· :::::;::::: ::.:·:::::::.::::·:····.

Software .el'llloa a•d "''- umber

The software version and release numbers are stored in two bytes. These two bytes
are encoded in packed BCD (Binary Coded Decimal) and represent a number
between 0 and 99. The easiest way to display paded BCD is to print It as if it was
hexadedmal data:

Jteponstat1onY•r•1on
MOV r-2, rO : Jtatton nunber ln a.O
MOY c), d : htvor-k nullllMr tn R.l
fii/JY ro, t &cone t_kac.bin•P-k
ADa r-4, '"'f•r
ttttN r-5, Uluffe c
*N r6, t O
fii/JY rl, t O
rwr xrco t_Doi-Ht e
fiOYYI po, lr
T&O cO, t t:tatue_Tral'l.tttM
llO fdntVec-elon
no rO, tttatua_N~Lllte.nlft9 : *Mot llltenlnc;• froa

Mlehlne pMk
MOYIO cO, tStatua_M~frelent ; abould return '"Wot present""
ADa. r-1, luffec
11011 c2, t ?lutfec
IWI Xlconet Convert ltatu..efo£.rror
11011 pc, lc -

Pcint Venion
LO~ d, (c2) : Butter add.reea on exit from Stf'I

NOV rO, rl, AlA t 24 ; Get top byte
ADil rl, luf fer
NOV r2, f tluffer
SWI XOI_Conv.rtHex2 ; Print BCD a a MJC
IWIVC XOI M.r:lteO : Dleplay output
RIVC XOI- Writel +"'... ; Divide nl•••• frora veraion numb4r
MOWC rO, - r:J, AS~ 11 6 : Get ver•ion nutlllber in place
AHDVC ro, r-0, t'rr : only the vet"eion number
ADRVC cl, &uftec
MOYVC rz. t ?luffer
IWIVC XOS_Conwrthw2 : Print 1(.:1) aa bea
IWIVC XOI_Wrlte O Diaphy output
tfOY pc, lr

Econet_ GetReglatera
EconeLGelReglsters Is similar to machine peek. In that a fixed amount of
information is returned from the destination machine: in this case it is 80 bytes (20
words). The registers are returned In the following order: RO to RI4. PC plus PSR,
RIJ_irq. Rl4_irq. RIJ_svc. and Rl4_svc. The FlO registers are not returned because
L_hey are used l7t the Econet software. and so would always be the same. and of no

6·25

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(
\

(

(

(

(

(

(

(

(

(

c

Pro19Ctlon against imm9diats opsrations

;::::::::::::-»~:::G-'!·::::::v:-:-:=::: :;:::::::::::;:;:::::::::: :::::::::::::::: ·:·:=:·:·:·:·:·:~·~.Y..:.:·:·:·:=::::;.;.;::::::::~~::::::::::::::::::::x::::::: :::::::::;.;::.;::·:·:·:·:·:·::::::;;:;,.x«<<=:·:.:::::::::::.;.::::::::::::::::::::: :::::::::::::::::: ::::::::.:;."¥...::.:::::::::::::·:·

Interest since they would reflect the state of the part of the Econet software that
transmits data. It Is worthwhile aligning the receive buffer for a machine peek so
that each of the 20 words Is on a word boundary: this makes loading them easier.

Protection against Immediate operations

6-26

Because these Immediate operations can be quite Intrusive it Is possible to
prevent their reception by manipulating an internal variable of the Econet
software. There Is one bit In this internal variable for each operation. and you can
set or clear each bit. There is also a default value for each bit which is held In
CMOS RAM. The SWJ that allows you to manipulate this Internal variable Is
Econet_SetProtectlon (SWJ &4000E). These bits are held In a single word; the bit
assignments are as follows:

Bit Immediate operation protected ., ,
0 Peek
I Poke
2 RemoteJSR
3 User procedure call
4 OS procedure call
5 Halt- must be zero on RISC OS computers
6 Continue- must be zero on RISC OS computers
7 Machine peek
8 Get registers
9- 30 Reserved- must be zero.
31 Write new value to the CMOS RAM

To protect against or disable the reception of a particular Immediate operation. the
appropriate bit should be set in the internal variable. The SWI
EconeLSetProtectlon call replaces the OldValue with the NewValue. The
NewValue Is calculated like this:

NewValue " (OldValue AND Rl) EOR RO.

Aherlng the protection held In CMOS RAM

When the Econet software is started up (as a result of Ctri-Brealt.. or 'RMRelnit)
then the value held In CMOS RAM will be used to initialise the internal variable.1b
alter the value held In CMOS RAM the entry value of RO to SWl
Econet_SetProtectlon should have bit 31 set. which causes the resultant value to
be written not only to the Internal variable. but also to the CMOS RAM. Note that
the use of Econet_ReadProtection (SWI &40000) Is deprecated: If you need to read
the current value you should use SWI Econet_SetProtectlon with RO=O. and
R I =&FFFFFFFF.

Ecofl8t
:-:.:::::::::::;::x:$;.::::::-:::---x:::::::::::::::::::<?m::::::::wo:;~:=::xx;:::::::::::::::::~:~~H.«>:=~~:=::::::::ss:o:" .. ;::::m-x::::~::::::::~:= ::::::::::::: :.:.:.:.:.:.::::::::::::::::=:·: ::::::::.:;:.:·: ·:·:·:=::::::

Reading your station and network numbers
To establish what your station number Is and whld'l network you are connected to
(If you have more than one). the Econet software provides a call to return these two
values: Econet_.ReadLocaiStatlonAndNet (SWI G4000A). If you don't have more
than one network then the network number(retumed In Rl) will be zero.

These values are the same as those reported by 'Help Station (in fact 'Help
Station calls SWJ Econet..ReadLocaiStationAndNet to aet the values).

Extracting station numbers from a string
To ensure that all Econet oriented software presents a consistent user interface
there Is a SWI call to read a station andfor network number from a supplied string.
This call. Econet_ReadStatlonNumber (SWJ &4000F).Is used by both NetFS and
NetPrlnt for all their command line processing. In the case of software that has a
concept of a current station (and network) number the return value of -I should
mean ·use the existing value·- this is how 'FS works. for example. Where there
Isn't a current value. as would be expected In a transient command such as 'Notify.
the return of -I for the station number should be treated as an error and the return
of -I as a network number should imply the useofz.ero as a network number. The
following is t he beginning (and some of the end) of a transient command:

C~ndStart

LDQ

no
1!0

SWI
w:NYS
CMP
lEO
CMP

IIOYEO

IICIV

Syntaxtrror

rO, I rl I
ro, to
Syntaxtrror

; Check the fJ.ret arqumRnt exiata
: leto Mane no a rql.nMnt•
: 1•1t with erro.r

X&conet R.eadStationNumber
pe, lr - 1 Nuat be a.ble to cope
r2, t -1 : No atation nultber Qlven
MOStationNu~rr.rror

rl. t-1 : No tlet nuftlber q1wn
rl, tO 1 ,..,,, UN 1ero

pc, lr

AD• rO, r.rrorCeta.q•Synt .ax
ou.s pc, lr, fVFlaq

l r-ro rGetRaqaSynt ax
I ltrrodfullber Syntax

•Syntax: •c~rt~~~~nd. <lta tioft n\llllber>"'
0

ALIGN

6-27

Conv!Nting station and networllto a string

;:;:;:;:;:;:~;.~:::::::::::::;:;::;f.$:;:;~-....~;:;:;;~;:::o;.;AA~O:.':':!:V:::~:;:::::::~::.':'~::;--:::;.:;.::;:::::::::::::::::::::::;.: :;:;:;:;:;:;:;:;::>;:;:;:;:;:;:::::::>:::>::::::::::::::::;:;:;:;:::;:;:;~:;:;:;:; :;:;:;:;:;:;:::::;::::::: ;:;:;:;:;:;:::: :;:;:;:;:;:;:;:::z:::;:;:;::w.-:::

NoStat1onNunt>er£rror
ADA cO, ErrorUnAbleToOefault
Olt~S pc, lr, fVFla9

£rrorUn•bleToO.fa\llt

ALIGN

ErrorNullbe r _ Unabl et'oDef au l t
.. Either a st ation nurtt>er or a tull ..
.. netvork addr•s• 1e requi re<l'"
0

Converting station and network to a string
There exist two inverse functions that convert a station and netwOI'k number pair
into a strins. see the section on conversions for exact details.

Conventions and values

6-28

The foilowins conventions apply to the various values that the Econet uses:

Station numbers
Station numbers are nonnaily in the ranse I to 254. The station number zero Is
used in SWl Econet_CreateReceive to indicate that reception may occur from any
station. The station number 255 is used in SWI Econel_SlartTransmil and in SWl
Econel_DoTransmillo indicate that a broad<:asl is to lake place; it is also used in
SWl Econet_CreateReceive to indi<:ale that reception may occur from any station.
and is to be preferred over the value zero for this purpose.

Network numbers
Network numbers are nonnally in the ranse I to 254. The value zero means the
local network; in a SWI Econet_CreateReceive it is taken to indicate that reception
may occur from any network. The network number 255 is used in SWI
EconeLStartTransmit and in SWI EconeLDoTransmit to indicate that a broadcast
is to take place. It is also used in SWl Econet_CreateReceive to indicate that
reception may occur from any station; the use of zero to indi<:ale wild reception is
deprecated.

Although RISC OS fully supports top-bit-set network numbers (ie 128 • 254).
certain Econet devices- such as bridses-will not propasate them. leading to
problems. You should beware of this.

Econet
:::::::.ow.::::::~;;::::::: .. :.:.:::::.: ••• :::: ::::::.:::::::::::: .·.·.·.·.·.·.::: •.. ::::::::: ::::::::::::::::::::::z.:;:;.m:: ::::::::::::::: ::::::::::~:::::::::::~<«-:=:=:=:=:::::.::.:;:;;.;.;::-: ::· ·>:-:·:·: :::::::::::::;.:::::::: :::::::::::~~

Port numbers
Port numbers are normally in the range I to 254. althoush the values &90 throush
&9F and &DO through &02 are reserved by Acorn for existing protocols. Port
number zero is reserved. !1. port number of either zero or 255 in a reception
indicates that the reception may occur resardless of the port number on the
incomins packet. The use of zero to indi<:ate wild reception is deprecated .

Flag bytes
Flag byte values are in the range 0 to 255 (&FF). but only the bottom seven bits are
sisnificant.

Transmission semantics
The transmission semantics are simple. When a transmission Is started the client's
control infonnation (passed in resisters) is stored in a record in a linked list within
Econet workspace. !l.t resular intervals the list is scanned. and those records that
should be actually transmitted at that moment are passed to the FlO software.
When that particular transmission attempt completes the status of the record is
changed accordinsly. This means that if two transmissions are started at the same
time. they will interleave their transmission retries.

When a transmission has completed but failed :

• if the count is non-2ero the delay is added to the predicted start time to sive
the next start time

• otherwise the status is set to S14tws_Nollislt>lilf9 (or Suoo_NctError).

This means that as far as possible the time out time will be the Delay multi plied by
the Count.

Localloopback
Versions of R!SC OS after 2.0 have added support for localloopback. Transmissions
directed at your own station number will be 'reoeived' if there is an acceptable
receive block open by directly copy ins the data. This applies to broadcast
transmissions and wild receptions as well as to <ails that explidtly address your

.. machine.

6·29

(

(

(

(

(

c
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c

S9Nic6 Calls

::::::::::::::~:.:::::::::.:::::::.:::::::::::::::::::::;m;:::::::::;~::::::::w~::::::r-:::::;r.::m::::o::.:::::::::::::::::::::::::::::::::::::::;::::m~:~..:::::::::::::::::::;:..'"*':::::::::::::::w.<$:::::: :::::::::::::::::::::::::::

Service Calls

6-30

Econet restarting

Service_ ReAllocate Ports
(Service Call &48)

On entry

Rl = &48 (reason code)

On exit

Use

Rl preserved to pass on (do not claim)

This call is made whenever Econet restarts. It is then up to the Econet software to
allocate ports. set up TxC& and RxC&, etc.

ECOMI

::::::::: ::::::::::::::::::::: :.::::::::::::::::::=:::::::::::::::::::: ::::::::::::::::::::::: :::::::::::::::: ::::::::::::::::: :::::::::::::::::9".:::::::::::-:::::::::::::<x::::::m::::::::::-:--:f..:::~:::-:::::::::::::::::;z.x::::w..::::::::::::::m;;.:::::::::;:::::~:~:::::::::::~<:>-:

Econet is about to leave

On entry

Rl =&56 (reason code)

On exit

Rl preserved to pass on (do not daim)

Use

Service_EconetDying
(Service Call &56)

This call is made whenever Econet Is about to leave. It Is then up to the Econet
software to release ports, delete RxC& and TxCBs etc.

6-31

S WICJJ /Is
;;.:{:;(::;;::;$;:;:;:;:;:;:;:;:;::-~;:.::;*~:.~;;;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;»~-:.::.::.~::::;:;:;:;:;:;:;.~:>-;:::;;:::.:::;:;;;o;;~;:;;;;:;:::;(;:;:::::::;:; :;:;:;:;:;:;~:;:;:;:;:;:;;::;;:;:;:;:;:::;:;:;:;:;:;:;:;~;::::::~;:::;:;:::;:;:;:;~:;::.::.::;:;:;:;:;:;:;:;:;:;:;:;

SWI Calls

6·32

Creates a Receive Control Block

Econet_ Create Receive
(SWI &40000)

On entry

RO = port number
Rl =station number
R2 "'netwo~ number
R3 " buffet address
R4 • buffer size in bytes

On exit

RO= handle
R2 = 0 if R2 on entry Is the local network number

Interrupt•
Interrupts are disabled
Fast Interrupts are enabled

Proceaaor mode
Processor is in SVC mode

R .. ntrancy

u ..

SWI is re-entrant

This call creates a Receive Control Block (RxCB) to control the reception of an
Econet padtet. It returns a handle to the RxCB.

The buffer must remain available all the time that the IUCB is open. as data
received over the Econet is read directly from hardware to the buffer. You must not
use memory in application space if your program is to run under the Desktop.
Instead, you should use memory from the RMA.

Eooner
:::::::::::::::::::::::::::::::~::.~-::::::::::::;.;.x;.:;::::::::::;.w..~::.~::;.;.;;:::::.;::::::::.:::::.:~~=~~~<.;:::::::::x:::::::~::::::x:o:::::=: ::::::.::::::~:::::::: ::::::::::::::::w::.::::::: ·:·:=: ::::::::::: ::::::::: ::::::::::::::::.:=:~=:=:·:·:.:.:

Related SWia

None

Related vectors

None

6-33

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

(

(

(
\

(

(
"

(

(

(

(

(

(

(

(

c/
()

Econet_ExamineR9CeiV9 (SW/ &40001)

::::::::::::::::::::::-h" .. -:Y.?.o;;.mY.«<o::::::::::::::::::::::$::::::::::: :::::: :;:;:~::...:::::::: ::: ::::::::::::::::::::::::::::::: ::::::::::::::::::;.x;:;::;::::::::::~!:=:~:;J:::::::.;:;;;::::::.;:::: :;::::::::::::::::::::t::::::: :;::::!:l:!:::<-:--:::::::::::;:

6-34

Reads the status of an RxCB

On entry
RO =handle

On exit
RO = status

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor Is In SVC mode

Re-entrancy
SWJ is re-entrant

Use

Econet_ExamineReceive
(SWI &40001)

This call reads t he status of an RxCB, which may be one of the following:

7 Status_RxReady
8 Status_Receiving
9 Status_Received

Related SWis
Econet_ Wai tforReception (SWI &40004)

Related vectors
None

Econet
:::::::::::::w.:::::::m:::::::::::::;:;w.::;:::::::::::-..;;:-.. .::::::::::::::: ::::::::::::::: ::::::::::::::::~::::::::-:::: ::::::::;:::::::::::::::::: ::::::::::::::::::~x:::::::~.;:::::::::x::::x::f.::::::::::::::::::::::::::::.::::::::::::::wn:::::::::::::::-».=:=:~::~:r.:::~:-<::::::

Econet_ReadReceive
(SWI &40002)

Returns information about a reception, tndudlng the size of data

On entry
RO =handle

On exit
RO =status
Rl = 0, or flag byte lfRO • 9 (Status_Rea!tved) on exit
R2 =port number
R3 = station number
R4 = network number
R5 = buffer address
R6 =buffer size tn bytes, o r amount of data received if RO = 9 on exit
(Status_Received)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor Is In SVC mode

Re-entrancy

Use

SWI is re-entrant

This call returns information about a reception: most Importantly, It tells you how
. much data was rea!lved, if any, and the address of the buffer in which it was placed.

The buffer address ts the same as that passed to Econet_CreateReceive
(SWI &40000). You can call this SWI before a reception has occurred.

The returned values In R3 and R4 (the networlt and station numbers) are those of
the transmitting station tf the status is Status_Rea!ived; otherwise they are the
same values that were passed in toSWI Econet_CreateReceive.

6-35

EooneLfJesdRec9ive (SWI &40002)
:::::::::-::::::::::~::::::::::r.:;~~:;:;:.:~::::x:~::::::::::::x.:;mx.::::::::::::::::::::w::x::::::::::::::::::::::::::::::::::::::.:m:':':::::::::v:::=:::::::::::::::::::::::::::.:::::.: .. .::«-~~::::::::::::;:::;:~-:=»~·:::::::.:«-:=:::::::

ReletedSWia
EconeLWaitForRea:ptlon (SWJ &40004)

Releted vector•
None

6-36

Eoonet
::::::::::::::::::::;.::::::::::::: :;.;:;.:::::: :::: ::::::::::::::::: ::=:·:=:.:::::.:·: :::;.;::::::: :=:::::.::s:::~::::::::~ .. :::;x«::=:::;;::<J:;:~:=:::~::::::::::;;:o:~:x:::::::::::: =:-:::::: :::::::: :::-xv:::::.;-:~·:·:.:

Abandons an RxCB

On entry
RO=handle

On exit
RO = status

Interrupts
Interrupts are disabled
Fast lntenupts are enabled

Processor mode
Processor is In SYC mode

Re-entrency

SWJ is re-entrant

Use

Econet_AbandonReceive
(SWI &40003)

'This call abandons an RxCB, returnlns lts memory to the RMA. 'The reception may
have completed (RO • 9 - Statu.s_Rea:lved- on exit), in which case the data is lost.

Related SWia
EconeLWaitForReo:ptlon (SWJ &40004)

Related vectors
.None

6-37

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

EoonBt_ WaitForRBCBpt/on (SWI &40004)
:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::::-:=:~:-::;:;:;:;:;:;l;!; :;:;:;:;:;.;!; :;:;:;:;:;:;:;:: :;:;::· .;:;:; :::::::;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;: ·!·!·!·!·!·!·!·!·!·!·!·!·! ;:;:;::::::: ;:;:::::::::::;;y,.s::;:;:;:::;.;:::::;:;:;.;:::::;.;.;;;.;.;;;:;.;.;.;:;::~:-:~!;.:;:'~O::;:;;:::::::::::;:;:;:::::::::~

6-38

Econet_ WaitForReception
(SWI &40004)

Polls an RxCB. reads its status. and abandons it

On entry

RO =handle
R I =delay in cent iseconds
R2 = 0 to ignore Escape; else Escape ends waiting

On exit

RO =status
Rl = 0. or Oag byte ir RO = 9 (Status_Received) on exit
R2 = port number
R3 = station number
R4 = network number
R5 = buffer address
R6 = buffer size in bytes. or amount or data received if RO = 9 on exit
(Status_Received)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call repeatedly polls an RxCB (that you have already set up with
Econet_CreateReceive) until a reception occurs. or a timeout occurs. or the user
interferes (say by pressing Escape). lt then reads the status of the RxCB berore
abandoning it.

The returned values in R3 and R4 (t he network and station numbers) are those or
the transmitting station ir the status is Status_Received; otherwise they are the
same values that were passed in to SWI Econet_CreateReceive.

EconBt
:::::::::::::w.::;:-@.::::::::::::::::~::::::::::~~::::::::~:::::;.;;::-;~::;:>::mz-::::::::::::::::::;z.:;:w.:::::::::::::::::::::m::::::::w:::::::::::::::::~:;:::=:::::::::w..::::::::::::::::--..::::.~::: :::::::::::::::=~::: ::=:-:: ::::: :::::::::::::::::::::::::::::::r.:

Note that this interface enables interrupts and so can not be called rrom within
either interrupt setvice code or event routines.

Related SWis

Econet_ExamineReceive (SWI &40001). Econet_ReadReceive (SWI &40002). and

Econet....AbandonReceive (SWJ &40003)

Related vectors

None

6-39

EcontLEoomerai9R«eive (SWI &40005)

:~~.::--~:;.x-»:v:-;.;::;;:~;:;:;;;;;::::::::.:;;:::::::::::::::::::::::::::=::.:.::.::::::::::::::::::::;:;:::;::;::;~_q,;;;:::::::~-::.:;::;.:·:->:~; .. ~~·:·:·:;;;;;;.;;:::::::::::::::::::::::: ::::::::::::::::::::::::::.: ::::~::::;.;.:::«::::::::;: .;::::::

6-40

Econet_EnumerateReceive
(SWI &40005)

On entry

RO = index (I to start with first receive block)

On exit

RO = handle (0 if no more receive blocks)

Interrupt.
Interrupt status Is undefined
Fast interrupts are enabled

Proc•aor mode
Processor is in SVC mode

R .. ntrancy

u ..

Not defined

This call returns the handles of open RxCBs. On entry RO is the number of the RxCB
being asked for (1 . 2. 3 ...). If the value of RO Is greater than the number of open
RxCil6. then the value returned as the handle wi ll be 0. which is an invalid handle.

RelatedSWia

EconeLCreateRecel~ (SWI &40000).
Econet....AbandonRecel~ (SWI &40003), and
Econet_WaltForReceptlon (SWI &40004)

Related vectors
None

Eoonel
·:·:·:-:::: :::=:·:·:·:·:·:~~:;:::.:·: =:·:·:·:;:.:=:-:: :::::::::::::::::::::::;:::;~:.:·:-:;:::;:;:~:::::::::::;::::::::m;;;;;;::m:w:--:::::::;o.x::::;:::~:~:.:::::::::::::::::.:>:·~;:o:.::::::: =:·:·:·:~;;:::: :::::::.:::::::·:·:·:·

Econet_ Start Transmit
(SWI &40006)

Creates a Ttansmit Control Block and starts a transmission

On entry
RO., nag byte
Rl .. port number
R2 = station number
Rl = network number
R4 = buffer address
R5 = buffer size In bytes (less than 8 k)
R6 • count
R7 • delay in Cl!fltiseconds

On exit
RO .. handle
R I corrupted
R2 = buffer address
Rl =station number
R4 = network number

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Proc•aor mode
Processor is in SVC mode

R .. ntrancy

Use

SWI Is re-entrant

This call creates a Ttansmit Control Block (TllCB) to control the transmission of an
Econet packet. It then stans the transmission.

(

(

(

(

(

(

(

(

(

(

(

(

(
The value returned in R4 (the network number) wi ll be the same as that passed In
in unless that number is equal to the local network number; in that case the (
network number will be returned as zero.

6·41

(

(

(

(

(
EconeLStsrtTransm/1 (SWI &40006)

:=:=:=:=: ::~:::::::=:~:::::::;:;;::-:;~-:::«.:-:::~~:::;:or.:::::::::::::=~m:::::::o;;::::::::::;;:::::::::::::::::::::::::::::::::::::~=:=:·:·:·:~«<·::::::::::::: :::::::::::;.:::::::::::~::::~::.;w.:::::::::::::::::::::;;:«

(
Related SWia

EconeLDo'nansmft (SWI &40009)

Related vectors

(None

r

(

(

(

(

(

(

(
6-42

(;

()

Econet
:::::::>:=:=: =:=:=:=:=:=:=~==;~~:::::::::::::::::::~;.:::::::::::.wh:;:~:;;:::::::::::~'»~«~=:::::::::;:;;::::~~::::::~:;:::::~::::::r.:w.<.:::~7.=::::;.-;o.;:x-o%:::::::::::::::=::::x:::=:=:=:.:::-.:!".(.:::::::::::::~

Reads the status of a TICB

On entry

RO =handle

Onexh

RO =status

Interrupts
Interrupts are di.sabled
Fast interrupts are enabled

Processor mode
Processor Is In S\'C mode

Re-entrancy

SWI is re-entrant

Use

Econet_PoiiTransmit
(SWI &40007)

This call reads the status of a TICB. which may be one of the following:

0 Status_'nansmitted
I Status....Line)ammed
2 Status_NetError
3 Status_NotListenl ng
4 Status_NoCiodt
5 Status_TxReady
6 Status_-n&nsmlttina

Related SWia
Econet_Do'nansmit (SWI &<10009)

Related vectors

None

6-43

EconeLAbandonTransmit (SWI &40008)
;:;:;~:;:;:;:;:;:;:;:;::::&.·::::::;:;:;:;:;:;:;:;:;:;:;:;::::~;.:t<*·$::::;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:-m,:r.;::::::::::::::::l;:%:-::::~:~:;::~:.;:;.;:;:;:;:;:;:;:;:;:;:;::~=:-':~::::::;:;:;:;:;:;:;:;:;:;:;:;.;:::::::;:;:;:;:;:;:::::;:;

6-44

Abandons a TxCB

On entry
RO =handle

On exit
RO =status

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

Econet_AbandonTransmit
(SWI &40008)

This call abandons a TxCB. returning its memory to the RMA.

Related SWis
Econet_DoTransmit (SWI &40009)

Related vectors

None

Ec:onet
;:;:;:;:;:;:;:;:;:;:;:;: ;:;:::::~;:::;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;;;:;::::::~":'::::::::::::::::::::~:::::~::;:;:;:;:;:;:::::;:;:;:;:;:;::::;.;:;:;:;~:;:;:;.:=-:;:;::::~::;:: :;:;:;:;:;:; :;:;:;:;:;::::;;:;::::::::::v':-:o:-:-::;.;.;.;:;:;: ;:;:;:; :;:::::: :;:::::."?::::::x.:-::;:;:;:;:;:·~

Econet_DoTransmit
(SWI &40009)

Creates a TxCB. polls it, reads its status, and abandons it

On entry

RO = Oag byte
Rl =port number
R2 = station number
R3 = network number
R4 = buffer address
R5 =buffer size In bytes (less than 8k)
R6 =count
R7 = delay In centisea>nds

On exit
RO =status
R I corrupted
R2 =buffer address
R3 =station number
R4 = network number

Interrupts
Interrupts are enabled
Fast Interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

(

(

(

(

(

(

(

(

c
(

(

(

This call creates a TxCB and repeatedly polls it until it finishes transmission, or it (~
exceeds the count of retries. It then reads the final status of the TxCB before
abandoning it.

(
6-45 c

(

(

(

(

c
(

(

(

(

(

(

(

(

(

(

(

(

Eoon91_DoTransmlr (SW/ &40009}

~::::::::::;.::;.;.;.x.:·:-:·:·x-:-:·:·:·:;;.;.;,'-:;;.;.;.;.;;;.;.;.;:;:;~:•:·~~::: ·:=: ·:·:::;:·:·:·:=::;:;.; ·:·:-::; ·:···:·:·:·:·:·:·:-:.;;~;::::::::::::::;:;:;:;::;::::.::::::::: :·:·:·:·:·:·:·:·:·:·:·:·:·:·:·: ::::;.;.;::~:=: :::::::::;:::;:;:::;:::::;:::x-««>.-«;;:;:;:;.;;;=»»:,:.~;.;:::::;:;::

6-46

The value returned In R4 (the network number) will beth(! same as that passed In
R1 unless that number Is equal to the local network number; In that case the
network number will be returned as zero.

Related SWia

Econet_StartTransmit (SWI &40006). Econet_PoiiTransmlt (SWl &40007).
and Econet_AbandonTransmit (SWl &40008)

Related vectora

None

Econ9r
::~:=:=:~=::::: ::=:=:::=: :::::::::::::::::::%::::::::z::::::::-~::::::::::~=~::::::::::::::x:::::::::::m::::::::~~.::::::::::::sw.:::::-:::::::-::::: ·:=:::=:::: ::::::::::::::::::::::::::::::::::: :::::::::::::: ::::::::::=:~::.;.::::::-

Econet_ReadlocaiStationAndNet
(SWI &4000A)

Returns a computer's station number and network number

On entry

No parameters passed In reatsters

On exit

RO = station number
Rl =network number

Interrupts

Interrupts are enabled
Fast Interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWlls not re-entrant

Use

This call retums a computer's station number and network number. The network
number will be zero If there are no Econet bridQes present on the network.

Related SWis

None

Related vectors

None

6-47

EooneL ConvertStaiUSToStrlng (SWI &40008)
;;.;::::;::;.":::::~::::;:;:;:;:;:;:;:;:;:;.;:;:::;:; .;:;:;:;:;:;::::«-::;;.:;»t~X-:·:·:·:·:o:;;.;.;.;.;;;;;;;.;:;:;:;:;:;.;:;.;::;::;.;:;:;:;:;:::;:;::::::;;:;:::;:;:;:;:;:;:;.:::.;.x;.;.;:::::~;:;:;:;:::::;:::;:;:;:;:;:;.;.;;:;;:;:~;:;:;:;.;.;.y,.;.,.:.;.~::;:;:;:;:;:;:;:;:;:;:;:;~:m:;:;;:;:;:::::;:;:~;::

6-48

Econet_ ConvertStatus ToString
(SWI &40008)

Converts a status to a string

On entry

RO =status
Rl =pointer to buffet
R2 = buffer size in bytes
Rl =station number
R4 .. networlt number

On exit

RO =buffer
Rl "updated buffer address
R2 z updated buffer size in bytes

Interrupt•

Interrupt status is unaltered
Fast interrupts are enabled

Proceaaor mode

Processor is in SVC mode

R ... ntrancy

u ..

SWI is re-entrant

This call converts a status to a strina held In the RISC OS ROM. This Is then copied
Into RAM, preceded by the station and neiWOrk numbers. alvin& a strlna such as:

Station 59.254 not listening

R.C.tedSWia

EconeLConvertStatusToError (SWI &4000C)

Related vector•

None

Ecxmet

:::-;!;!;!;!;.·!·! ;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::::;:;:;:;:;:;:;:~::::x;;:;:;:;:;.;.;:;::.-;x:;:x::-::;.;:;.;:;.;::::;:«o»»'X::::::;:;:;:::~;;.:.:·:·:·:«·:·:·::;::,;:;.;.;:;.:.:•:·::;:;:;:;:;:;;;:;:;:;;;:::;:;:;:;:;::=:;;:;:;:;:;::<>:::.-::;:;:;:;:;:::::::;.;.:-:!;.;!;.;.;.; .;.;:;:;:;:;:::::::::;:;:;.;.

Econet_ ConvertStatus To Error
(SWI &4000C)

Converts a status to a strlna. and then aenerates an error

On entry

RO =status
Rl =pointer to error buffer
R2 =error buffer size In bytes
R1 = station number
R4 = neiWOrk number

On exit

RO = pointer to error block
vnaa Is set

Interrupt•

Interrupt status Is unaltered
Fast interrupts are enabled

Proceasor mode

Processor is in SVC mode

Re-entrancy

Uae

SWI is ~ntrant

This call converts a status to a strina held in the RISC OS ROM. This is then copied
Into RAM. preceded by the station and neiWOrk numbers, givina a string such as:

Station 59.254 not listening

Finally this call returns an eiTOI' by settlna the V naa. with RO pointing to the error
block.

If you use a buffer address of zero. then the string is not copied into RAM. On edt.
RO will point to the ROM strinalnstead (which, of course. excludes the station and
qetwork numbers).

6-49

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(
Econet_ ConvertStatus ToError (SW/ &4000C)

;:;:;:;:;:;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;::~:>:::::::::::: :;:;: ;::::::::: ;:;-;::~:-::-~:::: ;:;:;:;:;:;:;:;:;:~:::.~:;:;: .:;:;:.:;:;:;:;::::::;;;:;:;:::::;:; :;:;:;:;.~:;:;.::;:;:;:;:::::::::::::: :;:;:;:;:;:;:;:;:;:;:;:::: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:;:;:;:;:;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;.:-::;:;:;:;:;:;

Related SWis

(EconeLConvertStatusToString (SWI &40008)

Related vectors

(None

(

(

(

(

(

(

(

(

(
6-50

(

(

Econet
;:;:;:;t;:;:;:;:;l ;;;.;.;:;:;:;t ;:;:;:;:;:;:;:: :;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:: :;:;:;:;:;:;:;:;:;:;:;::;;:;~:=:=:~~~.(.::7.!:::::::;:;:;:;: ;:;:;:;:;:;:;:;:;:;:: :;:;:;:;:;:;:;:;:;:;:;:: :;:;:;:;:: :;:;:;:;;::;:~-:: ;:::::::::::: :;:;:;:;:;:;:;:::::::::;: ::::.:::::.:::;:-;.·.·.

Econet_ReadProtection
(SWI &40000)

Reads the current protection word for immediate operations

On entry

No parameters passed in registers

On exit

RO =current protection value

Interrupts

Interrupt status Is undefined
Fast interrupts are enabled

Processor mode

Processor Is in SVC mode

Re-entrancy

Not defined

Use

This call reads the current protection word for immediate operations. Various bits
in the word. when set, disable corresponding immediate operations:

Bit
0
I
2
3
4
5
6
7
8
9· 31

Immediate operatloa

Peek
Poke
RemoteJSR
User procedure call
OS procedure call
Halt-must be rero on RISC OS computers
Continue- must be rero on RISC OS computers
Machine pei!lt
Get registers
Reserved - must be zero

Note- You should preferably use the call Econet_SetProtection (SWI &4000E) to
read the protection word instead of this call.

6-51

EC011&LR6sdProt6Ctlon (S WI &40000)

m~::::::::::::~::r.x:~::*·:·:=:=:·:=:·:=:·:=:<-:·:=:=:=:-:::.:-::.:~:.:::::::: :-:=:;:..:·:·:·:=: :.:.:.:.:.:.:.:.::.:.:.:.:.::=:~:-.::: :-:::-::::;;;::;;:;;;:::::::$;::::.::o:-:-x::(::::::;::·:=:=:.:4::·:·:::::-:.:.::::::~:::::::::::::::::::::::~·::~~;:::::::::~~:::::::::

Related SWia

EconeLSetProtection (SWJ &4000E)

Related vector•
None

6-52

Econ&t

:-:.x: :::::::::::::::: :::::::::::.::w_.:;~-:::;~:::~::::::::·:·:·:·:-:vm•:·:·:::::.:·:·:·:·:·x«::::::::;:;:;:;::::::::::::::~:;w~::.:::::::.::::x::::::::w.:~:::::::~~:;:::::~::::::::: ·:·:-::::: :·:·:·:·:·:·:·:·:·:·:·::::~=:-.:::::::::;;.::;:.;.;-:-:.;:;.;:;:;:::::::·

Econet_ Set Protection
(SWI &4000E)

Sets or reads the protealon word for Immediate operations

On entry

RO = EOR mask word
R I = AND mask word

On exit
RO = old value

Interrupt•

Interrupt status Is undefined
Fast interrupts are enabled

Proc:e .. or mode
Processor Is In SVC mode

Re-entranc:y
SWJ is not re-entrant

Use

This call sets the protection wOI'd for Immediate operations as follows:

New value • (old value AND Rl) EOR RO

Various bits In the word. when set. disable correspondins immediate operations:

Bit

0
I
2
3
4
5
6
7

hnMedJate openadoa
Peek
Poke
RemoteJSR
User procedure call
OS procedure call
Halt
Continue-must be zero on RlSC OS computers
Machi ne peek- must be zero on RISC OS computers

6-53

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

('

('

(

(

{

(

(

(

(

(

(

(

(

(

EconeL SetProtection (SWI &4000E)

~~:~~::·:~::::;~::::::~::::::::;..:«;::::::~~:::;-~:::w..:::::=:=::;::::::: =:=:=:=:=:-:::·:·:· :::::::::::::.: ·=·=·==:.:·:-:.;;.:-.:~:::=:·:::~:::-:::~:x:::::r.-:;::: =:=:=:=:=:=:=:=:=:=:=:-=:::::: ::::::::::~:=%:=~::::::::: :::::::::::~w:::::::::::::~::;.-::

6-54

8 Get registers
9 • 30 Reserved- must be zero
11 Write new value to the CMOS RAM

Normally this call sets or reads the current value of the word. A default value for
this word is held In CMOS RAM.

The most useful values of RO and R I are:

Actio a
Set current value
Read current value
Set default value

RO

new value (0 • &IF'F)
0
&80000000 + new value

Rl

0
&f'FFFFFFf'
0

You should use this call to read the value of the protection word. rather than
Econet_ReadProtection (SWI &40000)..

Related SWia

None

Related vectors

None

Econet
:;;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;::::::.::::::::::.:v::;.::;:;:;:;.:.:.:::.;>:,x::-:-·~~:V..::%:::::;;::;:;;*~::::;::::4::::;:::w:::::::::~:::::;:.~;r.:;:~.;:;::~~%§:: ;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:::::.:.::~-:::::::::::::;w.;:::

Econet_ReadStationNumber
(SWI &4000F)

Extracts a station and/or network number from a supplied string

On entry

R I = address of strlna to read

On exit

Rl =address oftermlnatlna s~orcontrol character
R2 =station number (-1 for not found)
R3 =network number H for not found)

Interrupt•

Interrupts are enabled
Fast interrupts a~ enabled

Procea.or mode

Processor Is in SVC mode

Re-entrancy

SWI Is re-entrant

Use

This call extracts a station and' or network number from a supplied string

Related SWia

None

Related vectors

None

6-55

Econ9t_PrintBanniK (SW/ &40010}

::::::;:;:;:;:;.;:;:;:;:;::~;.;!;:;:;:;:;.;!:!;:;:;:;:;:;:;.;:::;:::::~::::$:-«-::;'.::::::::::::::::::;:;:::::::;:;::::!:!:l;:::::;:::;:::::::::;:;::::::::::::::::~':o~::;:;:;:;::::>::;:;::::ID':9:::'.::r.::;:::::r.;;::~.::::;::::::;::::::::::;:;:;:;:;:;:;:;:; :;:;:;:;:;::::::::::::::::~~-::;;:;;::::::::

6·56

Econet_PrintBanner
(SWI &4001 0)

Prints the string 'Acorn Econet' followed by a newline

On entry
No parameters passed in registers

On exit

No values returned in registers

Interrupts
Interrupts are enabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call prints the string 'Acorn Econet' followed by a newline.lt calls OS_WriteO
and OS_NewLine and so can not be called from within either interrupt service code
or event routines.

If the Econet network data clock is not present then the text • no dock' is appended
to the banner.

Related SWis

None

Related vectors

None

Econ9/

::::::::::-m:~:~:::~:=: :::::::::::::::::::::::::: :-:·:-:.:·:·:·:·:·:·:·~·: :=:=:=:::::.:-:~:-:::::: ::::;.::::::::::::::::::::;:;.~w.;:::~=::::::::;;:::::=:::.::.:·:=:~:::::=:!:l:o'%:::::::::~=:om-;:::~~:::::::::::::::::::::.::x::::::::::::::::::::::::::::.:·:=:-:-:=: ==·=·== .·.·.·.·.·.=.:.:.:.:.:.:::::x

Econet_ReleasePort
(SWI &40012)

Releases a port number that was previously daimed

On entry
RO = port number

On exit

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call releases a port number that was previously claimed by calling
Econet_CiaimPort (SWI &40015).

You must not use this call for port numbers that have been previously claimed
using Econet_AIIocatePort (SWI &40013); instead. you must call
Econet_DeAIIocatePort (SWI &40014).

Related SWis
. Econet_CiaimPort (SWI &40015)

Related vectors
None

6·57

r:
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

(

(

(
\,

,.
~

(

(

Econat_AJiocataPort (SWI &40013)

;:;:;:;:::::::::::: :;:::: :;:;:;:;:: :;:;:;:;:::::::::!:::: :;:;:;:;:::::::;:;:;:;:;:;:::;:;:;:;:;:;:;:;:;:;::::~:;;;.:~x:.::;;::g{>;:;:;:;:: :;:; :;:::%~::;:;:;:;:;:: :;:;:;::::.:::::::::::::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;: .·.·.·.·.·.:.:.:;:;:;:::::;:; :;:;:;.;.;

6-58

Allocates a unique port number

On entry
No parameters passed in registers

On exit

RO = port number

Interrupts
Interrupts are disabled
Fast Interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWlls not re-entrant

Use

Econet:_ Allocate Port
(SWI &40013)

This call allocates a unique port number that has not already been claimed or
allocated.

When you have finished using the port number, you should call
Econet_DeAIIocatePort (SWI &40014) to make it available for use again.

Related SWia
Econet_DeAIIocatePort (SWI &40014)

Related vectors

None

Econat
;:;:;:;:;:;:;;;:;.:;::::;::::~:::::::~:;:::;:;:;:;:;:;:;:;:;:;:;:;.;-::;:;:;:;:;:;.;:;:;:;t;:;:;:;::.::::.::::;:; :;:;:;:;:;~:=:::=::~:::::::::::;::;:;:.;:;:;~:;:;:;:;:;:; :;:;:; :;:;:;:::::::::; :;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:::::::::::::;:; :;:;:;:;:; :;:;:;:;:;:;<::::::: :;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;

Econet_DeAIIocatePort
(SWI &40014)

Deallocates a port number that was previously allocated

On entry

RO = port number

On exit

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

Use

SWlls not re-entrant

This call deallocates a port number that '11185 previously allocated by calling
Econet....AilocatePort (SWI &40013).

You must not use this call for port numbers that have been previously claimed
using Eoonet_daimPort (SWI &40015); Instead, you must call Econet_ReleasePort
(SWI &40012).

Related SWis
Econet_AllocatePort (SWI &400 13)

Related vectors
None

6-59

ECD1191_CiaimPott (SWI &40015)

. ~:,::.;.;;;;;.;:;:;:;;::%:~».:~:;:;::;=:;:.:;;::-;:;::::,..;:~;::..:·:·:·:·:·:·:·::::::::::::;:;:;:~:;:;;,v~W='*:::~;~;:;-~.;;:-:::·:·:·:·;.;.:.~::.:;:-;;:;:;:;.:;:;:-;=:;:.-::?.,::w.m;~..;::._-;.;:;:;:;:-~

6-60

On entry

RO = port number

On exit

Interrupts

Interrupts are disabled
Fast Interrupts are enabled

Proceaaor mode
Processor Is In SVC mode

Re-entrancy
SWI is not re-entrant

u ..

Econet_ Claim Port
(SWI &40015)

This call claims a spedfic port number. If It has already been claimed or allocated,
an error Is generated.

When you have finished uslna the port number. you should call
EconeLReleasePort (SWI &<100121 to make It available for use again.

Related SWis

Econet_ReleasePort (SWI &40012)

Related vectors

None

Econet
;.;.;.;>;.:·:·:·:-::;.;:;:;:;:;.~.;.;.;.;;;.>:o:..-::;.;:-:::;-;:;:;:~.;.:~<·:·:·:;z.).~Z:-::;:;:;:;:;:;:;:;:;.);.N~~:·:·:·::;:;:;:;:;:;:;:;:;~~z:;~;Y..;:-;.;:;:;::;:;:;;§;.~;;;;;.;;;~r.:>;-:+:·:·:·:·:·:·:.;.~;;.;.:·:· .

Econet_ Start Immediate
(SWI &40016)

Creates a TxCB and starts an Immediate operation

On entry

RO = operation type
Rl =remote address or Procedure number
R2 = station number
RJ = network number
R4 = buffer address
R5 = buffer siz.e in bytes (less than 8ft)
R6 =count
R7 = delay In centiseconds

On exit

RO= handle
Rl corrupted
R2 = buffer address
RJ =station number
R4 = network number

Interrupts

Interrupts are disabled
Fast Interrupts are enabled

Proc:eaaor mode

Processor is in SYC mode

Re-entrancy

Use

SWI is re-entrant

This call creates a TxCB and starts an immediate operation. For full details see the
section entitled h.,.c..tic11 op~ralions on page 6-18.

The value returned in R4 (lhe network number) will be the same as thai passed in
in unless that number is equal to the local network number: in that case the
network number will be returned as tero.

6-61

r

(

(

(

(

(

(

(

(

(

(

c
(

(

(

c

(

(

(
Eoonllt_Stsrtlmm8dls18 (SWI &40016)

~X«-~~::~::::::::=:·:=:·%~:::.~::::::::::::~:::::::::::.:·X-:4:{':::: :::::::::: ::: :::::::::::::::::::::::::::~-::::::::::::::::::::::: ::::::::: ::::::::::::::m:~::~:::::::::~::::::.:::> .. :::-:·:-:«·:>:·:=:·:·:·:·:·:·:·»W;:::::::;~:·:·:«-:«·:·:·:·~~~:;:::::.:

RelatedSWia

(Econet_Dolmmediate (SWI &40017)

Related vector•

(None

(

(

I'

(

(

(

(

(
\.

(
6-62

(

(

EcoMI
;:;:;:;:;: :·:·:·:::::· .. :.:.:.:;:;:;:;::::: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::;::;m-)::;:;:;:;:;::®,;;:;:::::s:.~::::::;:;:;:;:::;:;:;:;:;:;:;:;:;:;:;:;::.":.::~~:::::::: ;:;:;:;:;::~::::::::: ::-:::. ;:;::::::::: :;:;:;:;:;;;; ;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;

Econet_Dolmmediate
(SWI &40017)

Creates a TxCB for an Immediate operation, polls it, reads its status. and abandons
it

On entry

RO = operation type
Rl =remote address Of procedure number
R2 = station number
R3 = network number
R4 = buffer address
RS = buffer size In bytes (less than Sk)
R6zcount
R7 ,. delay in centiseconds

On exit
RO =status
R I corrupted
R2 =buffer address
R3 =station number
R4 = network number

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Procesaor mode

Processor Is in SYC mode

Re-entrancy

Use

SWI is re-entrant

This call creates a TxCB for an Immediate operation. and repeatedly polls it until it
finishes transmission or It e~s the count or retries. It then reads the final
status or the TxCB before abandoning it. For full details see the section entitled
h•ouiilu opnatioou on page 6-18.

6-63

E00t1eL{>olmm6dla18 (SWI &-40017)

-~~;.:-::::::::::::::::::::;::;;::.~~~::::::::;:;:;:::::::::::::::::::::x»..~::-::;::;;:;:;.;:;.;.;.;:;.;.;>.:::.~.;,.::::::::::::::::::::::;:;:;.~.$X(i~X.;.;.;::.;:: ::;:.;:::::::::::::::::::::;:::::;:;;xs:;;;;;;.;.;::·:·:·:-::;:;:;:;:;:;:;::::::~

6-64

The value returned In R4 (the network number) will be the same as that passed In
Rl unless that number Is equal to the local network number: In that case the
network number will be returned as zero.

Related SWis
Econet_Startlmmedlate (SWI &40016)

Related vectors
None

Ec:o~H~l

;::.:•:·:·:·::;.;:;:; :;:;:;::~::;.;:;.;:;:;.;;;;~-:.::::~;:;:;:;:;;::;:;:;:;~~"V:«<<-:-~..::::;:;;;.;:;:;:;:;:;::::::::::::::~:.:·:~·:.:::;;;;;:;:;:-:::=x:-®:.~=~»»>::::-::::::;:;.;:;;;.:--~·: .;.;;;:;:;;;~::--:::::.:~:;:;.;:;.;.:-:..-.:-:•:<'~;-;

*Commands
The only • Command the Econet module responds to Is "Help Station. which
displays the current network and station numbers o(the machine. lt also displays
a 'No dock' mes~ if applicable. For more details ofthe "Help command. see
page 2-455.

6-65

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

~:-:·:·:·:-:::::::::::·:·:·M«...:-·:·:·:·:-:-:-:::.:-:-:-:-:-:-:w.;.:;:;:;:;:.:v..:·:·:-:-:-:::::::::·~».>:·:•:·:·:·:~:::::::::::-~·:-:·::;.::::::::::::--:::~!.;.:-;;:::::::::::~xvx·:~~-:·:·:.:·:·:->:-»»f-»:·»:·:·:·::::~

67 The Broadcast Loader
~:::::::::::::::::*:..:::z~.::'i::::::::::::::::::::::-;:=-s~::.=:=:=:=:=:=:=:=~~::-:&:::.:~~~)XI$ =~~~~;:;~:";;::.:::::~

Introduction and Overview
The Broadcast Loader is a module. loaded Into Archimedes RISC CS client
machines. that enables files to be effecti~ly broadcast to multiple clients,
effectively increasina Econet transport throuahput. It works In the followina way:

When a client requests a file from the file server. it first broadcasts a request onto
the network to ask if any otherdlents are loadlna the same flle . lf no other client is
loadlnalt, then It proceeds to load the flle itself from the flleserver as normal . lf
durina the loadina process other dients ask for the same flle, then they are
adnowledaed by the first dient, and they wait for the first dient to finish loadina
the file after which It then broadcasts the flle to all the waitlna dients.

Performance
The Broadcast Loader areatly R!duces the time taken to load the same file or
application to a number of users. To a first appiOltimation. the performance of a
system us ina the Broadcast Loader to load a lone flle to" Clients will be 2 x (time
to load sinale copy) as opposed to" x (time to load sinale copy).

Transport of long broadcasta
The use of broadcast messqes ustna the standard broadcast packet but with a
packet size of more than eiaht bytes has the dlsadvantaae that any BBC or Master
equipment or Bridae that is present on the network will effectively abort the
transmission by enablina their transmitters and causina a collision after the
reception of the elahth byte. The followina broadcast packet types are not
interfered with In such a manner:

NetN•mber
FF
FE
FD

su.doa

FF
FF
FF

P.ckatl)pe
8 Byte Global Broadcast
N Byte Global Broadcast
N Byte Local Broadcast

(

(

(

(

(

(

(

(

(

(

(

(

Local broadcasts (

The Broadcast Loader utilises theN Byte Local Broadcast packet type. This ensures
that broadcast loadlna is restricted to network zero and does not trans~rse
bridaes. (

6-67

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Introduction and Ov9rvi9w
:;:;:::::: :;:;:;:;:;:;:;.<:2;.:~:::::::::::::::.::;;.-::::;:;;;l;:;:;:;.;.;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::=!::::: ;:;:;:;:;:;:;:::::f~J;:::?",;:;:::_:;:;.;:;:::.::;:;:::::;:;:;:;:;:;:;:;:;:::;:;:;:; :;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;;:::=:;.~.;:;:;:;:;:;:;:;:;::::-.:=:=::.:: ;:;:;:;:;:;:;:;:;:;:;::

6-68

FlleSwltch call Interception
The Broadcast Loader works by Intercepting some FileSwitch calls to
NetF'SEntry_File and dealing with them as appropriate. This Is done using the SWI
OS_F'SControl (13) to return a pointer to the FileSwitch copy of the NetF'S filing
system control block. that has been modified to be non·relocatable. The Broadcast
Loader then modifies the data pointed to so that when FlleSwltch despatches calls
to NetF'SEntry_File they are in fact despatched to the Broadcast Loader first.

Flies supported
When FlleSwitch calls NetF'S to load a file (as a result of a call to OS_File) the
Broadcast Loader will attempt to load the file. Under RISC OS 2.00 the loading of
Sprite and Template files does •ot result In a call to OS_File(Load). so an extra
module BroadcastLoaderUtils has been provided to translate these to operations
so that they do call OS_File(Load). The broadcast loading of Sprite and Template
files improves application start up time.

All of the Acorn file servers. Level 2. Level 3. FileStore and Level 4 are compatible
with the software as well as the SJ Research MDF'S products. It can work with files
on any standard media type. including Winchester or floppy disc, SCSI. and ADF'S.

Maximum number of client computers supported
A Broadcast Loader server can have up to 252 client computers. However. in
practice. the number of client computers is determined by the type and
configuration of the file server. For example. Level 4 File Server can only support a
maximum of 128 users logged on at any time.

Retransmission and errors
Files are transmitted from broadcast server to clients in chunks of approximately
one thousand bytes with sequence numbers. If a client enters the transaction
during the file transfer. or misses a packet due to transmission errors or other
reasons. then 'chunk requests' for missing blocks are made and retransmissions
made to complete the transaction. A system of timeout s and error messages Is
provided to ensure no lock· up or erroneous condition can occur.

~:::;:::::::::::::;.:;.~-;:.:.:-:·:·:;::::::::::::::::;;.~-:·:·:·:=:=:=:=:·:~·:·:-::::::::::::;;~;.;::.;:::;:;.;:::::;:;:;-~-:::v:::~:::.;-::;.;«~:-::X.;~::.:=:-:::::.;.::::.

68 BBC Econet
m~::::::::=:=:=:=:=:=::::::-:&=->.::::;:::::::::::::::::=:=:~7~::::;:..:;:::;,"::;.~:::=::::::~';:s;r,~:;:::::::.z:=m.,~~~~~~==:;-;-;~x~-;.v.:~~=-;::::::::::::s

Introduction and Overview
The B8C Econet module proYides emulation of certain obsolete OSBYI'E and
OSWORD calls used by old 6502-based B8C computers. thus makin11 it easier for
you to port code that uses these calls.

This module Is provided solely to support old pr011rams. You should not use these
calls in any new proerams you write.

6-69

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

Technical details

-;;:::~-::~:::::::::.;::.'!-W:·:·::::;:::::::::::::::::::;.;:;.;:;:::;.;::·:~::.::.::.:.::.~~::::·x.::.:o»:;:·x·:·:·:-:::::::: ::::::::::::::::::::::::::::::;.:::::::: ::::::::::::::::::::::::::::::::::: :·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·::::::::::::::::=~::::::::::;.;;m::.:::;:::::::::~;:.::.-~:

Technical details

Summary of calls

6-70

The following calls are pr001ided. which emulate the corresponding obsolete
OSBYTE and OSWORD calls:

Call
OS_Byte50

OS_Byte51

OS_Byte52

OS_Word 16

OS_Word 17

OS_Word 19

os_word 20

Notes

All 8 sub-reason codes are emulated (Transmit. Peek. Poke.
JSR. User Procedure Call. Machine type, Halt and Continue)

Both sub-reason codes are emulated (OpenRx and ReadRx)

Only these function codes are supported:
0 read file server number
I write file server number
2 read printer server number
3 write printer server number
4 read protection mask
5 write protection mask
8 read local station number
12 read printer server name
13 set printer server name
15 read file server retry delay
16 set file server retry delay
17 translate net number

All 3 sub-reason codes are supported (Do File Server
Operation, Notify. and Cause Remote Error)

Correspondence between old and new calls

All the above calls use exactly the same parameters as the corresponding obsolete
OSBYTE and OSWORD calls. The table below shows the correspondence between
the register used on the 6502 to pass a parameter. and the register used on the
ARM to pass the same parameter:

6SO:Z recflter
A
X
y

ARM rqllter

RO (bits Q-7)
Rl (bits Q-7)
R2 (bits Q-7)

Bi ts &-31 of t he ARM registers are ignored.

BBC ECOflllt
::::~:=:=:=: =:=:=~==~:=::~:::::::::::;:;::>':':=:=:~=:=:-~:;;:::=:=~:=:=:::::::::=:=x<::::::::::~:w.:::-;:::::::~~;;~~~·:::::::::~:::::::::'*w.::::::::::::;:=:=!=:::::::.::::,::::: ::::::::::::::::::::::::::::::::::::~:z-::.::::::::::-w:;::::::::w::x:~:::::::=:=:::;:

Implementation

For more lnfonnatlon on any of the obsolete OS BYTE and OSWORD calls. see the
&oM I A.l.vt.tiUi. Uw Gwill1.

The BBC Eoonet module claims the ByteV and WordV vectors. If it recognises an
OS_Byte orOS_Word as one that It supports, it first checks the presence of the
module(s) that It needs to emulate the call . (These are Econet. NetfS and/or
Net?rint.) It then translates the OS_Byte or05_Word call to appropriate SWI
call(s) to these modules.

6-71

I I

(

(

(

(

(

(

(

(

(

(

(

(

(

(

$:.;::.:·:·:W<o:::~::::~:::~·:;:;o:«~:·:·:-:.:«@'o};{:;:;:;:;:;:;:;:;:;:;:§::::::::::;:;:;:;::;;:;:~~:::;::;;;::;;.;;~.:WAX::::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;~::::«:;:;:;~:;.ow,o::,:;::¥.«::::::::::::::::::::=!:::::-;::::::::~::::::::;::~

69 Hourglass
:::=::~ :=:::~:::::::: =:=:::=::x=x:=::::::::::::::::::::::::::::::~~:x::w.~:~~~~::;~::=~:=:::::::::::::::::~:::::::::::::::~:::.::::::::::::::~~:r:"«;:~~.::::~:w..x:~.:::~~:l!=

Introduction and Overview
The Hourglass module will dlanse the pointer shape to that o(an Hourglass. You
can optionally also display:

• a percentage figure

• two 'LED' i ndicators for status Information (one above the Hourglass, and one
below).

Note that cursor shapes 'J and 4 are used (and hen<e conupted) by the Hourglass.
You should not use these shapes In your programs.

Nonnally the Hourglass module Is used to display an hourglass on the screen
whenever there Is prolonged activity on the Econet. The cal ls to do so are made by
the NetStatus module. whldl d alms the EconetV vector. See the chapter entitled
S<ftw.rr ..:tON on pase 1·59 and the chapter entitled NICStaoo on pase 6-83 for
further details.

The rest of this chapter details the SWJs used to control the Hourglass.

6·73

SW/C811s

;:;~:-~:-:-:·:·:·:-::;:;:;::::::::::::::::::.::~.:.:·:.:.:o:·:·:·:=::::::::::::::::::::Ko.~.)o;.:-:·:-!•;-:•:·:·:;;:;:;:;:;::;:.::::;.o;:w.::.-":"'J!Io.~:-:::.:-:-;;;:::::::;:;:;::::::::::::::«-:.-..:-:-;:-:::-:::::::::: ;:;:;:::: :;:;:?,;~~ :.:·:·:·:·::;:;:;:;:;:;::::::::::::;s::;.;::.;.;.:.;;;:;:;::::

SWI Calls

6-74

1\lrns on the Hourglass

Hourglass_On
(SWI &406CO)

On entry

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor Is in SVC mode

R .. ntrancy

u ..

Not defined

This turns on the Hourglass. Although control return immediately there is a delay
of 1/3 of a second before the Hourglass becomes visible. Thus you can bracket an
operation by Hourglass_ On/Hourglass_ Off so that the Hourglass will only be
displayed If the operation takes longer than 111 of a second.

You can set a different delay using Hourglass_Start (SWI &406C3).

Hourglass_ On's are nestable. If the Hourglass Is already visible then a count is
Incremented and the Houralass will remain visible until an equivalent number of
Hourglass_ Oil's are done. The LEOs and percentage indicators remain unchanged.

Related SWia

Hourglass_Off (SWI &406CI). Hourglass_Start (SWI &406C3)

Hourglass
$',4::;.;.:.;.;.;;;:;:;:;:;:;:;.;.:««-:.W.<·:;;;;;;.;;;.;:;:;;;;:;;~:?~'(.,...~X·»X<<:·:~;;~;.;.;:;:;.;:;:;:;;::.x;;.;;l;..:@;.:'o:·::;:;:;:;:;:;=:;-;:::;:;:::J;::.;.:;:.:.»>:.-;;;;=5:~:-;.;-:-;«.:@X·~O:·:·:·:·::;:;:;:;:;:;::~h:.!•X<;;.;.;.).!o;;

Related vectors

None

6-75

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

I
\

(

(

(

(

(

(

(

(

Hourglass_ Off (SWI &406C1)

.:::::::::::::::: :;:;:;:;;;:;:;:::;::;:;:;:;:;:~;:;:?,'-:;;;;;>;-;:.;.;:::;:;:;:; :;:;:;.;:;:;:;.;:;:;:;:;;;.;:;;;:;;;;~~::;:;:;::~::;.;:;;;:;;;.; :;:;:;:; .;:;.;;;;;.;:::;:;:;:;:;:;:;:;:;:;.;;;:;;;.:-:·~·:~ .. :;;.;.;.;.;:;.;:;.;.;;;;;;;;:.;~:;; ;;;:;::::.:-::::::::::: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:·:···

6-76

1\Jms off the Hourglass

Hourglass_Off
(SWI &406C1)

On entry

On exit

Interrupts

Interrupt status Is undefined
Fast Interrupts are enabled

Processor mode
Processor Is In SVC mode

Re-entrancy

Use

Not defined

This call decreases the count of the number of times that the Hourglass has been
turned on. If this makes the count zero, it turns off the Hourglass.

When the Hourglass Is removed the pointer number and colours are restored to
those In use at the first Hourglass_ On.

VerslonsofRlSC OS after 2.0also tum the percentage dlsplayoffifleaving the level
that turned It on. ~n if the hourglass itself is not turned orr. See page 6-SO for an
example or this.

Related SWis

Hourglass_ On (SWI &406C0). Hourglass_Smash (SWI &406C2)

Related vectors

None

Hourglass
:=:=:·:·:::;:·:-:::::::::::::::::::::::::::: :::::::::::::: :::::::::::::=~::::::::::::::::;.;.;.;;~~;;:::::::=:~:-.e:.::.:::::=:=::~::~:::;:::::::::~~==~~~:=:=:-:::-:-:>::::::::::::::::::::::::::::~;:;:::::::::::m:::::::~::::::::::::::~

1\Jms off the Hourglass immediately

On entry

On exit

Interrupts

Interrupt status Is undefined
Fast Interrupts are enabled

Processor mode
Processor Is In S\IC mode

Re-entrancy

Not defined

Use

Hourglass_ Smash
(SWI &406C2)

This call turns off the Hourglass immediately, taking no notice of the count of
nested Hourglass_ On's. If you use this call you must be sure neither you, nor
anyone else. should be displaying an Hourglass.

When the Hourglass is removed the pointer number and colours are restored to
those In use at the first Hourglass_ On, except under RISC OS 2.0.

Related SWis

Hourglass_ Off (SWI &406CI)

Related vectors

None

6-77

Hourg/&s$_ Sl81t (SWI &406C3)

:::::::::::::.:-:=:·:·:·:·:-:.: ::::::::::::::::::::::::::::::: =:=:=:=:<:=~:~::w..:.:o.:::,.:-:::::::::::::::::::::::::::::::.:·:·:·:«o:.:•:.;~:;::: :::::::::: :::::::::::~:=:=:=:·:~:·:;;.;;;;;;;;:::;::m:::::::::::::::::-:::.::::~::::::::::::::..:JSG.::$:;:::· :·:=:-:.;-:.:-::;; ::::: ::::::::::::

6-78

1\Jms on the Hourglass after a given delay

On entry

Hourglass_ Start
(SWI &406C3)

RO =delay before start-up (in centi-semnds). or 0 to suppress the Hourslass

On exit

Interrupts
lntenupt status is undefined
Fast Interrupts are enabled

Processor mode
Processor Is In SVC mode

Re-entrancy

Use

Not defined

This call works in the same way as Hourslass_On, except you can specify your own
start-up delay.

If you specify a delay of z.ero and the Hours lass is currently off. then future
Hourslass_On and Hourslass_Start calls have no effect. The condition is
tennlnated by the match ina Hourslass_Off. Of by an Hourglass..Smash.

Related SWla

Hourslass_On (SWI &406C0). Hourglass_ Off (SWJ &406Cl)

Related vectors

None

Hourglass
1c:::::»e«<-:: ::::::::::::::;.;:::::::%~»:·:·:·:·:·:·:·: ·=~·:.:=:=:=:·:·:-::::: ::::::::,.z::-:·:..:««v:-:-:>:-:<.:=::.§.~!-';>:-:v:.W~:;;;::;::~:·:·:-:;:«::::::::::.::::::::::::::.;::::.:~.ow;-:-:·:·:·:·::::::::::::::::x:::::::::~:·:·:·:.:.w..:·:;;;;;.~~

Hourglass _Percentage
(SWI &406C4)

Displays a percentage below the Hourslass

On entry
RO = percentase to display (if In ranae 0- 99). else turns off percentase

On exit

Interrupts
Interrupt s~tus 15 undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

Use

Not defined

This call controls the display of a percentase below the Hourglass. If RO Is In the
ranse G-99 the value Is displayed; If It Is outside this ranse. the percentase display
is turned off.

The default condition of an Hourslass Is not to display percentages.

Versions of RISC OS after 2.0 do not allow lower levels of calls to al ter the
hourglass percentase once a hlsher level call is using lt. FurthermOfe,
Hourglass_ Off automatically turns the percentase display off when Ieavins the

. level that turned It on, even If the hours lass itself is not turned off. For example:

6-79

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(
',

(

(

('

(

(

(

(

(

(

(

(

(J

Hourglass_PBrCIH!tttg9 (SWI &406C4)

~'v.-:..~:·:««-. .. :;;;;;;::::::::::::::;:~:::.::::::::::~:::::::::::::::::::::::::::::::::::::;;;;~::::::::: :·:·:=:.:·:·:·:·:-:-::::::::::: =:=:·:·:·: .;::::::::::::.:·:·:·:·:·:=:::::: ::::::::::::::::::::::::::::~:=:=:~:=:= :=:=:=:~=x:::::::::::::·:=:·:=:«:«::::::::::::::::::::::~

6-80

S'tS "H.OUCCJlAII_On"
SYS "liourqh11_0n"'
SYS •ttourqlaae_Percontage'" ,10
SIS "Hourqltti_Percent•qe"',20

SYS .. Hourqlaae_On'"
S'tS .. Hourql•••_Peroentaqe" ~ 30
SYS '"Hourqla11_0tt ..

SYS "Hourqla••- P•rc:entaqe"', 30
SYS "'Hourqhea_Oft"

SYS "'HOUE'q'laii_Ott:"

Related SWis

None

Related vectors

None

:REM e•t• to 10\
: J\tH seta to 20\

:REM DOESN'T tat to 30\

::k£M seta to 10\ ·

::REM turnt ott percent• oe•
:R£M turns off hourqlaat

Hourglass
::::~,.:;;;;;:::::::::::::::~~%-:·:=::.::::::: :.:.:.::::::::::.::~:::::::::-:m:::::::::::::::::::~::::=~~;;:;o;::~~:::::::::::::::~::.~:·:::·:~w:::::::::::::::::-::::::::::::w:::::::::::::::;z.:::::::::<:::::<::w::::m::::::m::::::::::mm?.:::::::

Hourglass_LEDs
(SWI &406C5)

Controls the display Indicators above and below the Hourglass

On entry

RO, Rl =values used to set LEOs' word

On exit

RO =old value of LEDs' wOld

Interrupts

Interrupt status Is undefined
Fast Interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrency

Not defined

Use

This call controls the two display Indicators abolle and below the Hourglass, which
can be used to display status Information, These are controlled by bits 0 and I
respectively of the LEOs' word, The Indicator Is on If the bit is set, and off if the bit
is clear. The new value of the word Is set as follows:

New value • (Old value AND Rl) XOR RO

The default condition Is all Indicators off.

Related SWis

None

Related vectors

None

6·81

Hourglass_Colours (SWI &406C6)

;.:~;;.;.;.;.;;::;::;;:;::::::::;; .. .;;. :·:·:-::::;:;:;:: :.:·:;:;::~::;:;:;:;:;.:~=:·:·:=:·:;:::::;:~::::~~~:=: :;:;:;:;:;:;:;:;:;:;::::~;:;;::::~::;:;:;:;:;:::;:;::~::~:::;;::;:~~~.;.;.;.:;:.; .;:;:;.;::·:·:·:·:':-:~;:;:;:;:::;::::::::::::~-::::::::::::.::::::::::::

6·82

Hourglass_ Colours
(SWI &406C6}

Sets the colours used to display the HourQiass

On entry

RO "' new colour to use as colour I (&OOBBGGRR. or -I for no chanQe)
Rl =new colour to use as colour 3 (&OOBBGGRR. or-1 for no chanQe)

On exit
RO =old colour belnQ used as colour I
Rl =old colour beinQ used as colour 3

Interrupts
Interrupt status is undefined
Fast Interrupts are enabled

Processor mode
Processor Is In SVC mode

Re-entrancy

u ..

Not defined

This call sets the colours used to display the hourQiass. Alternatively you can use
this call to read the current hOUlQiass colours by passlnQ parameters oC -I.

The default oolours are:

COlour 1 cyan
Colour 3 blue

This call is not available in RISC OS 2.0.

Related SWia
None

Related vectors
None

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

r·
(

(

(

(
\

(

(

(
\

(

(

(

(

(

(

(

;:;:;:;:;:;:;:;: : .·.·.·.·.· ..• :;:;: ••• t.:.:;:;:;:;::~: :;:;:;:;:;:;:;:;:;::::::::::::: :;:;:;:;:;:;:;:~m--:::::::;:;:;:;::;x.-::;;:;:;:;:;:;:;:;:;:::::::::::::;:;:::::m:::::::::*'.W.-:::::~:::::~::;x:.::::;:;::~:;:;:; :;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:: :;:::::::;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;

70 NetStatus
:::::::::::::::::=:=:=:::::::: :::::::::::::::::::::::::::::::::::~::::::::::::::>.:::x:.~~::>.-.-.:::::::~..):;::w.~~~::::~:'«::=:::::::~:::=:::::::::::=:~::::...::::~:::::::::::::f.:~.::::::;-;~::::;::::::::::--::-.:::~::::w

Introduction and Overview
The NetStatus module controls the display or an hou11lass on the screen whenever
there Is prolonQed activity on the Econet.

It daims EconetV. and examines the reason for each call that is made to the vector.
It in tum makes an appropriate call to the Hou11lass module. so that the
appearance of the Hourglass indicates the status or the net. The Hourglass has two
'LEOs'. one on top and one on the bottom:

• if only the top LED is on. then your station Is trying to receive

• if only the bottom LED Is on. then your station is trying to transmit

• If both LEOs are on. then your station is waiting for a broadcast reply.

It also displays percentage ligures (when It is able to do so meaningfully) which
show the percentage of a transfer that has completed.

6-83

T9Chnlca/ Details
;:;.;:;.; .;.;:;:;:;.~::;:;:;:~-:;:;::~.r.:.:x:::::::::::::::::::::;.;:;;;:;:;:::;:.; ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;:;:;:~:::::::::;:;:;.;.; .;:;.;.;:;:;:;:: :;:~;:;:;:·· :;:;:;:;:;:;:;:;:;:;:;:;:%::::::;:;:;:;;;:::;:;:;.;:;.»):>:~:;:;:: :;:;:;:;:;;;.;.;:;:;:;:.;::;:;:;:;:;:~;:::::::::;:;::::::::~:;:;:;:;.;.;

Technical Details

6-84

This table shows how NetStatus converts the reason codes for calls to EconetV
(listed in the chapter entitled 5iftwar1 wcrors) into the SWJ calls that it makes to the
Hourslass module:

Rea.oa code
NetFS_Start .. .
NetFS_.Part .. .
NetFS_Finlsh ...
NetFS_StartWait
Econet_StartTtansmission
Econet_StartReception
NetFS_FinlshWait
Econet_FinlshTtansmlsslon
Econet_FinlshReception

SWI alii
Hourslass_On
Hourslass_Percentase
Hourslass_Off
Hourslass_LEOs (both on)
Hourslass_LEOs (only top one on)
Hourglass_LEOs (only bottom one on)
Hourslass_LEOs (both off)
Hourslass_LEOs (both off)
Hourslass_LEOs (both off)

Versions of RISC OS after 2.0 also change the colour of the hourslass for Broadcast
Load and Save calls (as made by the Broadcast Loader). The colours used are:

Type of alii
Broadcast Load
Broadcast Save

Colo .roe
Green/blue
Red/blue

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
("

(

(

1\
...

(

(

(

(

(

(

(

(

(

(

.(

::::::::::: ::::::::::=: ::::.-;5:::::::::::::::~«-:-.:::::::::::: ::::::::::::::::::::::: :::::::::::::::::::::::::::::: ::::::::::::::::: ::::::::::::::::::: ::::::::::::::::::~:=~:::::::::::;:.w..r.::::::z:.$~::::::::x-:=: ::::::::::::::::-: =:=:=:~=:=:=: :=:=:::::::: :::::::::::::

71 Expansion Cards and Extension
ROMS

:::::~~~:=::ms::::::~~:::::::::::::::::::::::::::::::=::x:::::::::::::::::: ::::::::::::::::::::.:::::::::::::: :::::::w.~::::::::::::.::w.:~::::::~:::::~::~::::.:::::.:;~;::::~::::::::::::::::::::::::: ::::::::::::::::··.·.·.·.·.::::::: ::::::::::: :::::::::::::::::

Introduction
Expansion Cards provide you with a way to add hardware to your RISC 05
computer. They plu11 into slots provided In the computer. typically in the fonn of a
backplane (these are an optional extra on some models).

Extension ROMs are ROMs fitted in addition to the main ROM set. which prOYide
software modules which are automatically loaded by RJSCOS on power-on. Note
that RISC OS l ~ aat Mpport extea .. oa ROMa.

This chapter 11ives details of the software that RJSC OS prOYides to man• and
communicate with expansion cards and extension ROMs. It also 11ives details of
what software and data needs to be provided by your ~nsion cards and
extension ROMs for RISC 05 to communicate with them; In short. all you need to
know to write their software.

The two topics are covered tQ~~ether because both use substantially the same
layout of code and data. and the same SWis. For more information on extension
ROMs see the chapter entitled Extt"sioJI ROMs on p311e 1-4 73. For more details on
writinll modules. see the chapter entitled Mo4!dls on p311e 1-191.

One thin11 this chapter does not tell you is how to desl11n the hardware. This is
be<ause:

• the ran11e of hardware that can be added to a RJSC OS computer Is so lar11e
that we can't examine them all

• we don't have the space to describe every RJSC OS computer that Acorn makes

Instead. you should see the further sources of Information to which we refer you.

6-85

Overview
·:·:·::;::::.::::::r.::;:;:::;:;:;:::::::::::;.;:;:;:;:;::~:=::;:;:;:;.;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:'};::~:::::;:::;::::::::::;.;:;: •.·.<·.·:·: ;:;:;:::~;:;.:;.::::;:; :;:;:;:;:;:::::::::::;:;:~:::.;:;:;:;:;:;:;:;:;:::::::;:;:;:;:;:;:;:;:;:;:;:;:: :;:;:;:;:;:;:;:;:;.;.;:;:;:;:;:;:; :;:;::~::.::::::::=:·:·:

Overview

Software

RISC 05 computers can support internal slots for expansion cards. If you wish to
add more cards than can be fitted to the supplied slots. you must use one of the
slots to support an ea:pansion card that buffers the signals on the expansion card
bus before passi ng them on to external e.xpansion cards.

Some RJSC 05 computers can also support extension ROMs. The availability. size
and number of extension ROM sockets depends on which type or RISC 05
computer you are using. For example. the A5000 has a single socket for an 8 bit

wide ROM.

Expansion carda
Expansion cards can have some or all or the following software Included:

• an Expansion Card Identity. to give RJSC 05 lnfonnation about the card (see
page 6-89 and page 6-91)

• Interrupt Status Pointers. to tell RJSC 05 where to look to find out if the card is
generating interrupts (see page 6-96)

• a Chunk Directory, that defines what separate parts of the card's memory space
are used for (see paae 6-97)

• a Loader. to access paaed memory held outside the card's address space (see
page 6-99)

A wide range of different types or code and data is supported by the Chunk
Directories.

The use of the Loader and paged memory has been made as transparent to the end
user as possible.

Extenalon ROMa
Extension ROMs must indude the following software:

• an Extension ROM Header. to give RISC 051nformation about the ROM and to
differentiate it from an expansion card (see page 6-88)

• an Extended Expansion Card Identity, to give RJSC OS Information about the
ROM (see paae 6-91)

• null interrupt Status Pointers, because a ROM cannot generate interrupts (see
page 6-96)

Expansion Cards and ExiiH!sion ROMS
~;s:.:;:: ;:;:;:;:;:;:;:;:;:;:;~;:;.:·:·: .;.;:;.;.;.;.;.; .. ~'¢-:O»>»»:'~:?:::;;:;:;:;.;:;.;.::;:;:;:;:;:;:;:;w.;:.:: .. _,;:;:;:: :;:::::::;: ;:;:;:;:;:;: ;:;;;:;:;:;:;:;:~;~,.;.;.;:;.;.;.;;:«·::;:;:;::~:.:•:.:.:.:-::;:;. ;:;:;:;:;:;:: :;:;:;:;::"MW..:•:::·:·:·:·:<·

• a Chunk Directory, that defines what separate parts of the ROM's memory
space are used for (see page 6-97).

6-86 6-87

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

l
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

TBChnlcal Data/Is
;:;.;:;::;:;:;;;;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;.;.;.;:;.;.;.;.;.;:;:~;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;;::;.::::::::;:;:; :;:;::::::-::;:;:::;:;.::;;:::;:::;:;:;:; :;:;:;:; :;:;:;-;:::::;:.::;.;~;:;::-:::;:;;.;::-:~~;:;:;:;:;:;:;:~;:;:;:;:;:;.;.;.;.:·!·:;;.~.;:;.;.;:;.;:;:;:;.;:;.»>7;<-~SS.:

Technical Details
In general, RISC 05 recognises extension ROMs or ROM sets which are 8, 16 or 32
bits wide, provided the ROM adheres to the spedficatlon below. n bit wide
extension ROM sets are directly executable in place. saving on user RAM. 8 or 16
bit wide sets have to be copied Into RAM to execute.

An extension ROM set must end on a 64K boundary or at the start of another
extension ROM. This Is nonnally not a problem as it is unlikely you would want to
use a ROM smaller than a 27128 (16K). and the normal way of addressing this
would mean that the ROM would be visible in I byte out or each word.le within a
64K addressable area.

Extension ROM Headers

6-88

Extension ROMs must have a 16 byte Exw.sion ROM Hillier at the ud of the ROM
image, which indicates the presence of a valid extension ROM. The 'header' Is at
the end because RISC 05 scans the ROM area downwards from the top.

For a ROM Image of size 11 bytes. the format of the header at the end Is as follows:

Byte add !'HI Coateats
rt-16 I -word field containing 11
11-12 1-word checksum (bottom 32 bits of the sum of all words

from addresses 0 to rt-16 indusive)

11-8 2-word ld 'ExtnROMO' indicating a valid extension ROM.Ie:
11-8 &45 'E'
11-1 &78 ·x·
11-6 &74 't'
11-S &<lE 'n'
11·4 &52 'R'
n-3 &4F ·o·
n-2 &40 'M'
11-1 &30 '0'

Extension ROM width

Note that this header will not necessarily appear in the memory map In the last 16
bytes if the ROM set is 8 or 16 bits wlde.ln the 8-bit case, the header will appear In
one of the four byte positions of the last 16 words. and in the 16-bit case. In one of
the two half-word positions ofthe last 8 words. However. RISC 05 copes with this,
and uses the mapping of the ID field into memory toautomatlcallyderive the width
of the extension ROM.

Expansion C8frls and Extsnsion ROMS
;:;:;.;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:::::::::,::: :;:;:;:;:;:;:;:;::::~::;;;:;::~=~==~~:::::-~~;:;:~;:;:;:;:;~::,::;:;:;:;:;:;:;:::-~:;::;:::;:;::;:.~::;:;:::~.;:;;::;;;::~::=:::.:-::::;:;:;:::::::;:;:;:;:;:;:;:;:;:;:;:::::;:;:;:;::::«=:

Introduction to Expansion Card Identities

Expansion ct~rda

Each expansion ard must have an Eq.l11sio11 Carlllllmtity (or ECIII) so that RISC 05
can tell whether an expansion card Is fitted in a backplane slot. and If so, identify it.
The ECid may be:

• a simple ECid of only one byte- the low one of a word (see below)

• an extended ECid of elaht bytes, which may be followed by other information
(see page 6-91).

The ECid (whether extended or not) must appear at the bottom of the expansion
card space Immediately after a reset. Howevet It does not have to remain readable
at all times, and so It can be In a Plied address SJ»CCe so long as the expansion
card is set to the pate contalnlna the Ead on reset.

The ECid Is read by a synchronous read of address 0 d the expansion card space.
You may only assume It Is valid from Immediately after a reset unlit when the
expansion card driver Is Installed.

Extension ROMs

As well as the Extension ROM header at the end of the ROM image, Extension
ROMs must also have a header at the urt of the ROM image. This header is
identical in format to an Extended Expansion Card Identity, and is present for the
use of the Expansion Card Manaaer. which handles much of the extension ROM
processlna. See page 6-91 onwards. paying particular attention to the section
entitled Muutmy wbus for ..U11sio11 ROMs.

Simple Expansion Card Identity
Expansion cards can use a simple ECid, which Is one byte long. You should only
use one for the oyery simplest of expansion cards. or temporarily during
development.

• Most expansion cards should Instead Implement the extended ECid, which
eliminates the possibility of expansion card IDs clashing.

• Extension ROMs must use an extended ECld, rather than a simple ECid.

Restrtctlonalmpoaed by a Simple Ectd

If you do use a simple EOd. your eapanslon card 111 .. t be 8 bits wide. The only
operations that you may perfonn on Its ROM are Podule_RawRead (see

page 6-117) or Podule_RawWrite (see page6-118).

6-89

s~ Expansion C8rclldentitt

·=·==::::::::::;;:;~::~~:'Y .. :-:·:·:·:::::::::::::::::::::::::::::.:....:~~:;):::.;,:::·:·:=:::::::-:·:·:::::.:-:-»;.-~:x~::::::::::::::: :::::::::::::w~~~:;.;;:·:·:•~:•:::::::::::::::::::::::::::::::::=:::::-«-x~;;;=:·:·:·:.:-:·:-:·:·:=:::::::::::::::::--::::tS£

6-90

Format of a .ample ECid

A simple ECid shares many of the features of the low byte of an extended ECld, and
Is as follows:

7 6 5 .. 3 21 0

r- A 1 D(3) 1 10121 1 1>[1) 1 10(0) 1 FlO 1 o 1 IRQ 1

Bit(a)

A

10{3:0)

FlO

IRQ

V.J• e
0

natO
(0

0
I
0
I

Acora col(om.lce bit (A)

Mn1lq
Acorn conformant expansion card
non-confonnant expansion card
1D field
extended ECid used)

not requestina FlO
requestlna FlO
not requestinaiRO
requestina!RO

This bit must be z.ero for expansion cards that confonn to this Acorn specification.

10 field (10 13:011

If you are us ina a simple ECid. the four 10 bits may be used for expansion card
identification. They must be non•zero. as a value of zero shows that you are instead
uslna an extended ECid.

latempt atatu blta (IRQ ••d FIQ)

The Interrupt status bits are discussed below In the section entitled Ct1Vrlllill9
i"lmllp(s /rM ca:p~ IISio" urti on page 6-95.

Exp1111io1 cud p-• ce (bU I)

This must be zero. as shown abow:. For more lnfonnation, see the section entitled
Exp41"sio" U rll ull ut."sio" ROM pmlrta on page 6-94.

Expansion Clllrls and Extension ROMS
x..: -:·:·:·:·:·:-:•::::::~:-:-:·:·:-:·:«·:;:•:•:•:·:.:•:•:=:•:=:=:•%:=:::-~:::~~~ .. :-:-x~:;:.:-:.:·:·:·:=:::::::::::::~::;~.;«v»:..:::: ::::::::::::::::::;:;:::~x•:·:·:·::.:.;.:..x.:..t.::.Y:=:•:•:::·:..W.·x·:·:=:.:·:·:·:·:·:««'»:·:·:·:·:·:·:·

Extended Expansion Card Identity
/In expansion card's ECid is extended if the 10 field of its ECid low byte is zero. This
means that RJSC OS will read the next seven bytes of the ECid. The extended ECld
starts at the bottom of the expansion card space. and consists of the elaht bytes
defined below.

Expanalon card width
If an expansion card has an extended ECid. the first 16 bytes of i ts address space
are always assumed to be bytewide. These 16 bytes contain the 8 byte extended
ECid itself. and a further 8 bytes (typically the lnterTUpt status pointers- see
below). If the ECid Is Included in a ROM which is 16 or 32 bits wide. then only the
lowest byte in each half-word or word must be used for the first 16 (half) words.

If you use an extended ECld. you may specify the space after this as 8. 16 or 32 bits
wide. When you acx::ess this space

• if you are usi111 the 8 bit wide mode. you should use byte load and store
instructions

• if you are writlna using the 16 bit wide mode. you should use word store
instructions. put tina your half word In both the low and high half words of the
reaister you use

• if you are readlna usina the 16 bit wide mode. you should use word load
instructions. and ianore the upper half word returned

• i f you are uslna the 32 bit wide mode. you should use word load and store
instructions.

Synchronous cycles ate used by the operatina system to read and write any
locations within this space (to simplify the deslan of synchronous expansion
cards).

C.rre•t rat lfc:do••

You should note however that there are currently some restrktions on the widths
you can use. These are Imposed both by current hardware and software:

• the 110 data bus Is only 16 bits wide

• the current version of the RISC OS Expansion Card Manaaer only supports the
8 bit wide mode; future versions may support the wider modes.

6-91

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

r)
(:·

(

('

(

(

(

(

(

(

(

(

c
(

c
(

Ext81'1d8d Expansion Card ldiNitlty

::::::::::::::::::~:::::~:t::::::::::::::::::::::::::;.;;:::::~·:;:::.:·:::::·:·:**«'~::::::::::::::::: ::::::::::.::::;m.::::::::::: :::::::::::::: :::::m::::::::::~::::::::::::::::::~<:-"!-~:::::::;.::*~-=-=-:.:x.:·x·:·%:·:~;;::::;:::::::::::::::::-x;:::::::::::::~::::.:::::::::::::::;:~

6-92

Format of an extended ECid

The format or an extended ECld is as follows:

7 8 5 4

C[7] q6) C[5) q4)

M(15) ~14) M(13) M(12)

M(7] M(6) ~5) M(4)

P(15) P(14) P(13) P(12)

P(7] P[6) P(5) P(4)

R R R R

R R R R

A 0 0 0

Bill e) Vain

C(7:0)
M(l5:0)

P(l5:0)

R 0

W[I :O) 0
I
2
3

IS 0

CD 0
I

A 0
I

FlO 0
I

IRQ 0

3 2

C[3) C(2) q1]

M(11) M[10) M(9)

M(3) M(2) M(1)

P(11) P(10) P(9)

P(3) P(2) P(1)

R R R

W(1) W(O) IS

0 FlO 0

Mea alae
Country (see below)
Manufacturer (see below)

Product Type (see below)
mandatory at present
reserved ror future use

0

C(O)

M[8)

M(O)

P(8)

P(O)

R

co
lAO

&1C

&18

&14

&10

&OC

&08

&04

&00

8-bit code follows afier byte 15 or ld space
16-bit code follows after byte 15 or ld space
32-blt code follows after byte 15 or ld space
reserved
no Interrupt Status Pointers follow ECid
Interrupt Status Pointers follow ECld
no Chunk Directory follows
Chunk Directory follows Interrupt Status
pointers

Acorn conrormant expansion card
non-conrormant expansion card
not requesting FlO (or FlO relocated)
requesting FlO
not requesting IRQ (or IRQ relocated)
requesting IRQ

Expenslon cams and Ex119nsJon ROMS
::::::::::::::::::::::::::::::::::;:.:::::::::: :::::;;:::§:::m::-;:::::::::::::::::~::::::::~-y.::::::::::::::::ws-y;.;.;-;:::::::::::=:=::~::.:--:::::::::::::::;;:~:=::m::::~.x:::::::::::::=;::;.::m:::::::~:=::$'::m.~~:::::::w.-:

CoaatfJ code IC(7:0J)

Every expansion card should have a code for the country or origin. These match
those used by the International module. save that the UK has a country code or 0
for expansion cards. If you do not already lti"IOW the correct country code for your
country. you should consult Acorn.

ManfKt•rer code IMII':OII

Every expansion card should have a code for manufacturet U you have not already
been allocated one. you should consult Acorn.

ProdiiCt type code IPIJ ':011

Every expansion atrd type must have a unique number allocated to it. Consult
Acorn If you need to be allocated a new product type code.

Raefftd flelckiiQ

Reserved fields must be set to zero to cater for future expansion.

Wldtlt field IWl I :011

This field must currently be set to zero (expansion c:ard Is 8 bits wide). For more
Information. see the earlier section entitled Expeouion ca~ llfilllj on page 6-91.

Jatempt Stat .. Pol•tere preeeiiCe US}

See the sections entitled Glltmti"f inllrrwpls {rolf! cxp«ouion carlls on page 6-95. and
lnlmupt S tal"s PoiNIIFJ on paQe 6-96.

Clluk dlredofJ •-•c. lCD}

See the section entitled C'wlli llimiDry slt~~ehur on page 6-97.

Aco111 collfonnaac. bit IAI

This bit must be zero for expansion cards that oonfonn to this Acorn specification.

ID llefd lblte 6 - J of I-h,te}

tr you are using an extended ECid, these bits must be zero. as shown above. A
non-zero value shows that you are Instead using a simple ECld; for more
Information see page 6-90.

httempt etat .. bite URO .. d FlO)

The interrupt status bits are discussed below In the section entitled Ctnm.li"f
il!~mtqoCJ/rolfl ll(J'IIIUio" carlls on page 6-95.

6-93

Expansion csrd and ex18ns/on ROM ,_IX»
~...::::~;:;:;:~~::X:.o¢:~x:c::;~:~:~;:;:;:;:;:::;:;:;:::;:;.;:;;:;;::-:;:;.;::::::::;::: :;:::~:::::=$:::~:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::::.::::-~::::::;:~~:'t'~~:=~::::::;:;:;::~:=-:~-::::;:;::

Exp~~uloa card preMace (bit I of 1- byte)

This must be z.ero. as shown above. For more information, see the section entitled
E"fUSion ur~ au M#nsion ROM pm111uon paQe 6-94.

M•nd•tory v•lu .. for extension ROMs

Art extension ROM must include an extended ECid. This starts at the bottom or the
ROM image, and consists or eight bytes as defined above.

For an extension ROM, certain fields within the extended ECid must have
particular values:

• The product type code must be &a7 (ie the product type Is an extension ROM).

• The width field must always be 0 (8 bits wide). irrespective or the ROM's actual
width, which RISC OS automatically derives (see the section entitled EdtllsiH
ROM wli on paQe 6-88).

Because the width field does not vary, you do not need to chanse the image or
an extension ROM i£ you change the width of ROM in which It Is placed.

• Both the lntenupt Status Pointer field and the Chunk Directory field must be I ,
showing the ECid is followed by Interrupt Status Pointers. then by a Chunk
Directory.

• The Acorn conformant field must be 0, to show that the extension ROM is
Acom conrormant.

• The Interrupt status bits (AQ and IRO) must both be dear. to show that the
extension ROM is not requesting an Interrupt.

Expansion card and extension ROM presence

6-94

All expansion cards and extension ROMs mu.t llawe bit I l- In the low byte or an
ECld (whether simple or extended). so that RISC OS can tell I£ there are any or
them present.

Nonnally bit I o£ the 00 data bus is pulled high by a weak pullup. Therefore:

• Uno expansion card is present and RISC OS tries to read the ECld low byte, bit
I will beset.

• 1£ an expansion card is present, and the ECid is mapped into memory (which It
must be immediately after a reset). the bit will instead be d ear.

Expansion Cstds and Extoosion ROMS
:;:::::·:--::;:;:;:;:;:;:;: ;:;:;:;:;:;:;:§:.:}-;>;:;:;:;:;:;:;:~;;:~::;:;::??.QY/.(.~;;;:;::.:·:·:-~:~::~':~:;:;;:;x.::::::~:;:;:;;;:;:;:x..;:~::~::;:;:w:::.::::=%::::~<:::;:;;;;; .. ;:.~;;:;:;:;:;:;.;.;:;:;:;:;:;:::::::::::;:;:;:;::;::;:-;;:;;:;:;;;.;:;:;:;: ;:;:;.;::::>:····.

Generating Interrupts from expansion cards

Expansion cards must provide two status bits to show iC the card is requesting IRQ
or FlO.

wtth • simple ECid
1£ an expansion card only has a simple ECid, then the AO and IRQ status bits are
bits 2 and 0 respectively In the ECid. 1£ the card does not senerate one or both or
these interrupts then the relevant bit(s) must be driven low.

with •n extended ECid

1£ an expansion card has an extended ECid, you must set the IS bit or the ECid and
provide l11um.,t SYhd PcM&m (see below) 1£ either or the following applies:

• you are al$0 using Chunk Directories (see below)

• you want to relocate the Interrupt status bits from the low byte of the ECid.

1£ neither or the above apply, then you Cllh omit the lntenupt Status Pointers. The
interrupt status bits are loq~ted In the low byte or the ECid, and are treated in
exactly the same way as for a simple ECid (see above).

Finding out more
To find out more about aeneratlna interrupts from expansion cards under RISC OS,
you can:

• see the chapters entitled ARM HanfiO'Ir~on pase 1·7 and lnii'"'Pls allllllanlllirtg
tu111 on page 1· 109.

• consult the Aurn RISC Ma~IW farwii!J DIY M111wal. VLSI Technology Inc. (1990)
Prentice-Hall, Englewood Cliffs. NJ. USA: ISBN <H3·781618-9.

• consult the datasheets ror any components you use

• contact Customer Support and Services Cor further hardware-spedfic details.

6-95

r
l

(

(

(

(

(

(

(

(

(

(

(

(

(

()

(;

(J

()

r:
(

(

(

(

(

(

(

(

(

lntBmJpt Status PolniBrs
)1',;:::::::::::·:·:·: .;:;.:::: :·:::;:;:::;:::;::::::::::::::;::~::::::::::::::w::::::::::::::: ::::::::::::::::::::::::::::::::::::::.~:.v.::>~n:.~::::::;:::::~::::::::::::x::::::::::::::::::::::::::z-::.::w.=$:::;:::::::::~:::::::

Interrupt Status Pointers

6-96

Exp•nelon cards

An Interrupt Status Pointer has two 4 byte numbers. each consisting of a 3 byte
address field and a I byte position mask field . These numbers give the locations of
the FlO and IRQ status bits: ·

r------------------,&~
~0 Status Bit address (24 bits) &

34
IRQ Status Bit position mask &30

FlO Status Bit llddfess (24 bits) &
24

IRQ Status Bit position mask &20

The 24-bit address field must contain a signed 2's-complement number giving the
offset from &124()()()() (the base of the area of memory into which podules are
mapped). Hence the cycle speed to access the status register can be included In
the offset (encoded by bits 19and 20). Bits 14and 15 (that encode the slot number)
should be zero. If the status register is In module space then the offset should be
negative: eg &DCOOOO. which is -&240000.

The 8-bit position mask should only have a single bit set. corresponding to the
position of the Interrupt status bit at the location given by the address field .

Note that these eight bytes are always assumed to be bytewlde. Only the lowest
byte In each word should be used.

The addresses may be the same (lethe status bits are In the same byte). so long as
the position masks differ. An example of this is if you have had to provide an
Interrupt Status Pointer. but do not want to relocate the status bits from the low
byte of the ECld; the address fields will both point to the low byte of the ECid. the
IRQ mask will be I , and the FlO mask will be 4.

If tile and c1- aot paen~te FlO or IRQ

If the card does not generate one or both of these interrupts then you must set to
zero:

• the corresponding address field(s) of the Interrupt Status Pointer

• the corresponding position mask field(s) of the Interrupt Status Pointer

• the corresponding status bit(s) in the low byte of the ECJd.

Expansion Clllds and ExlllnSion ROMS
:.:.;:;:;:::::::m::::::::::::::~~:$:0::~::::.:.;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::;x:;::;:;:~;:::::::::::~~::;:;::~:::::::::::~::;:;:;*~~::;::~::;::~:~-::-::::;:;::::.::::::;:;:;: ;:;:;:;:;:;:;:;:;:;:::::::::::;:;:::::::::::::::::;:;::::::-: :;:::::::

Extension ROMs

Extension ROMs must have a Chunk Directory, hence they must also provide
Interrupt Status Pointers. However. e.Jrtenslon ROMs generate neither AO nor IRO;
consequently their Interrupt Status Pointers always consist of eight zero bytes.

Chunk directory structure
If the CD bit of an e.Jrtended ECid Is set. then:

• the IS bit of the ECid must also be set

• Interrupt Status Pointers must be defined

• a directory of CAMus follow the Interrupt Status Pointers.

The chunks o(data and/or code are stored In the expansion card's ROM. or in the
extension ROM.

The lengths and types of these Chunb and the manner In which they are loaded Is
variable. so after the eight bytes of Interrupt Status Pointers there follow a number
of entries In the Chunk Directory. The Chunk Directory entries are eight bytes long
and all follow the same fonnat. There may be any number of these entries. This list
of entries is terminated by a block o(four bytes of zeros.

You should note that, from the start of the Chunk Directory onwards. the width of
the expansion card space Is as set In the ECid width field . From here on the
definition Is in terms of bytes:

Start address: 4 by1M (32

I
Size in byte~: 3 bylat (24 bits)

1-· ____ _:_ _ _.:... __ _.:... __ --11 n+1
OperaUng System ldenthy byll

n

The start address Is an offset from the bese of the expansion card's address space.

6-97

Chunk dir9CIDty sttuelcn

:·:·:·::::::::::::::::::.::::::~;:;:;:;.;.;.::.:,,'«.:•:;;:;;;:;:;:*'::::;:;:~~::<:<::::;;m.-:w.;:;:::>-.>X:::;:;.:.;.X·»"h:·:;;:;:;:;:;:;:;:;:::::x:x::::-J::.::::::::;:;:;:;:;::~~;:;::~:««<.?:•::;:;:;;;.;z-x;.-:r.:-~:-:."':·~:::::::~·»:·:·:•:·:•:·:·:•:«M-:

6·98

Operating System Identity Byte
The Opera Una System Identity Byte ronns the first byte of the Chunk Directory
entry, and determines the type of data which appears In the Chunk to 11hkh the
Chunk Directory refers. lt Is defined as follows:

7 6 5 • 3 2 1 0

1 05{3) 1 OS(211 0Si1il6S(o} 1 o[3]To(2J 1 0(1) 1 D(a) 1
05[3) 0
05(3) I
05(2~) 0

2

reserved
mandatory at present

Acorn Operatina System 0: Anhur/RISC OS
D[3:0) 0 Loader

I Relocatable Module
2 BBCROM
3 Sprite
4 • 15 reserved

reserved
D[3:0) 0 • I 5 reserved
Acorn Operating System 2: UNIX
D[3:0) 0 Loader

I · 15 reser.oed
3 • 5 reser.oed

D[3:0) 0 • 15 reser.oed
6 manufacturer defined

7
D[3:0) 0 • 15 manufacturer specific
device data
D[3:0) 0

I
2
3

link
(for 0, the object pointed to
is another directory)
serial number
date of manufacture
modification status

4 place of manufacture
5 description
6 part number

(for I· 6, the data In the location pointed to
contains the ASCII string of the
information.)

7 • 14 reser.oed
15 emptychunk

Expansbn C8rds and Ex18nsion ROMS
::.:-:.~~=: ·:·:·::;.;::::::: ::::::x:::::::::::;.;:;.;.;.;.;.;.:-:·:·:·:·: -:·:·:·:·:·:·:-:::::::::::::w.-:;:::::·:~.:w.«:x:::;;~:::::::-w..:;;.::: .·:;.;:::::::::::::::;:;;: :::::::::~•:·:=:•:::::•:·:·:=:=:•:·:·::::::::;:;:;:;.;:::m:.:;:.;.;.;.;.;:;:;:;.;:x-;~4

Those Chunks with 05[2:0) • 7. are operatina system Independent and are always
treated as ASCII strinas terminated with a zero byte. They are not intended to be
read by P1011rams. but rather Inspected by users. It Is expected that eYen minimum
expansion cards will have an entry for 0{3~) · 5 (desaiptlon). and it Is this strina
which Is printed out by the oommand •J>odules.

Binding a ROM Image
For a ROM to be read by the Expansion Card Manaaer It must confonn to the
specification. even if only minimally. The simplest way to aenerate ROM images Is
to use a BASIC p1011ram to oombine the various parts t011ether and to compute the
header and Chunk Directory structure.

lvl example pr011ram used 'With an expansion card Is shown at the end of this
chapter. Its output Is a ftle suitable for prQIIrammlnglnto a PROM or an EPROM.

Expansion card Code Space
The above forms the basis of storing software and data In expansion cards.
However. there is an obvious drawback in that the expansion card space is only 4
Kbytes (at word boundaries). and so its usefulness Is limited as it stands. To allow
expansion cards to aocommodate more than this 4 Kbytes an extension of the
addressina capability is used. This extension is called the Code Space

The Code Space is an abstracted address space that Is~ in an expansion
card independent way via a software lnterfac:e.lt Is a larae linear address space that
Is randomly addressable to a byte boundary. This 'Will typkally be used for driver
code for the expansion card, and will be downloaded Into system memory by the
operating system before It Is used. The manner In which this memory is accessed Is
variable and so It Is accessed via a loader.

Writing a loader for an expansion card
The purpose of the loadef Is to present to the Expansion Card Manager a simple
Interface that allows the reading (and writina) of the Code Space on a panicular
expansion card. The usual case Is a ROM paged to appear In 2 Kbyte pages at the
bottom of the expansion card space, with the paae address stored in a latch. This
then permits the Expansion Card Manaaer to load software (Relocatable Modules)
or data from an expansion card without hav1na to know how that panicular
expansion card's hardware Is arranged.

The loader is a simple piece of relocatable code with four entry points and clearly
defined entry and exit conditions. The format of the loader is optimised for ease of
implementation and small code size rather than anything else.

6·99

r
(

(

r
r
(

(

(

(

(

(

(

(

(

(

(

l

c
(

(

(

(

(

(

(

(

(

(

(

(

c
(

Writing a loadiN lor an 9Xpanslon card

:-:::;;:;:;.;.;::~·:·:·:·:·::;:;:;.;:;:;.;:;.;:;:;:;:;:;:;:;:;:;:;.:;:.;:;:;:;:;:::;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:::;::.'W:::::::::::.:::::::::::::::::.; ·:·:·:=:·:=:·:·:· :::::::::::::::::: :=:·:=:=:-:-:-;-:-:::.:-::::::::: :::::::: ·:·: ::::::::.:::::::::::::::v: .. .:;.:.:·:·::w.«:::::::::.::::;:;:;:;:w::;:;

6·100

Regl1ter1

The register usage is the same for each of the four entry points.

RO
Rl
R2-Rl

R4·R9
RIO
Rll

Rl2
Rl3
Rl4
Rl5

IMpn~>utput Comment.
Write/Read data Treated as a byte
Address Must be Pfeserved

Hardware

sp

May be used
Must be Jl(eserved
May be used
Combined hardware address: must be
preserved
Private: must be preserved
Stack pointer (FD): must be preserved
Return address: use BICS pc, lr, IV_bit
PC

The eJ~ception to this is the CaiiLoader entry point where RO • R2 are the use(s
entry and eJ~it data.

Entry point•
All code must be relocatable and position independent. It can be assumed that the
code will be run in RAM in SVC mode.

Origin+ &00 Read a byte
Origin+ &04 Write a byte
Origin+ &08 Reset to Initial state
Origin+ &OC SWI Podule_CaiiLoader

lnltll ll18tlon

Error•

The first call made to the loader will be to Read address 0, the start of a Chunk
directory for the Code Space.

Errors are returned In the usual way: Vis set and RO points at a word-aligned word
oontainfng the error number, which is followed by an optional error string, which In
turn must be followed by a zero byte. ReadByte and WriteByte may be able to
return errors like 'Bad address' if the device is not as big as the address given, or
'Bad write' if using read after write checks on the WriteByte call. If the Call Loader
entry Is not supported then don't return an error. If Reset falls then return an error.

Expansion CsrrJs and Ext9nslon ROMS
::::::::::::::::;;::m:;r-:;~::::::~::::m;::~x:x--::::::::::::::::::::: ::::;::::: :::::::;:::::;:-... ~::::::::::~::~::.::.:::-::w::::::~::::::::m::::::::::::~::::::::::~::.::::::.::.$:::=:~=w..x:::=:=:=:!Y.:::::::::::: ::::::::::: :::::::::::::::::::: :::::::::::.:::::::

Since your device drivers may well be short of space, you can return an error with
RO=O. The Expansion Card Manager will then supply a default message. Note that
this is not encouraged, but Is offered as a sugaestlon of last resort. Errors are
returned to the caller by uslnt ORRS pc, lr. IV_blt rather than the usual BICS exit.

Example
Here is an example of a loader (this eJalmple,like all others In this chapte(uses
the ARM assembler rather than the assembler Included with BBC BASIC V -there
are subtle syntax differences):

00
00 00003000
00 00000001 , , ..

00 !AOOOOOI Ori9l.a
o• tAOOOOU
01 tAOOOOOI
OC UDU'20l

LIW>a &fT'rrt'DOO 1 Dat a
&JOOO
II I lit•

-~· ... lt .. rt• -· IJCS ,c, lr, tV ~it
10 UWAOU ae•et.
14 l OOIAOOA

LOa riO, •2 OoOOOOIIIIIIIIIIIIIIOOOOOOOOOOOO
A.IID rlO. rli, rlO I Cet ha.ri-.rel'1US free ~lned OM

l t l21MAOl ADD rlO, rlO,
IC tl>02000 l'tOY rJ, 10
20 l4C.UOOO ITU r2, I rlO 1
24 tlDtF201 l lCI pc, lz ~ IV "'it
21 t5tNOC4 aeadlyt• t.ca
2C t00U004 AIID

rl, •2 OOOOOOIIIIIIIIIIIIIIOOOOOOOOOOOO
rJ, r li, rl 1 C.t M.r4-.r•_.....,. fr0111 ~lMd one

l O E2U.AAOl ADO r10, rl, .,
l4 tlSIOilt CliP rl, flfiOO t W..t p._,.
ll 2UFOOU
)C U9U'201
40 !.2112102
44 llA02SC2
... l4CA2000

A.OlU trror, lr"rorA:rl
OU.UI pc, l.r, IV _It it
AOO d, rl, fl rilLs P•.-111•
NOY rJ, d, AIR tr .. .SU•
ana r2, I r iO I

4C UC12Br! IIC
SO £7040102 LOU
H tlDtr201 IICI
51 E21r0000 Write lyte AD.
5C tl9"£F201 OU.I
60 OOOOOSIO lrro r'A!M DCZI

64 OCt
f2 00 00 ALICII
94 OOOOOSU. trrorA.ft DCD
,. OCt

N: tiOO

r2, rl. Ulf tS.ll.r Pa,.lll•
rO, f rJ, r2, AIL f2) 1 11oM • •t.naaint
po, l.r, f V_ btt
trror, trrorMtl
po, lr, IV _bit
ll'rotiWibe r MotMdteUtl•
t .norltrlnt: Jiot • rit_..l•,O

lrroti\Mer .wv ... 'l'ooa19
lrcorltr1nt: Melr•••Tooa19, 0

The bit masks are used to Sleparate the fields of a oombined hardware address- see
the description ofPodule.)iardwareAddress (page 6-120) for details of these.

loading the loader
If the Expansion Card Manaeer Is ever asked to 'EnumerateChunk' a Chunk
containing a Loader. It will automatically load the Loader. Since RISC OS
enumerates all Chunks from all eJ~panslon cards at a hard reset this is achieved by
default.

6·101

CMOS RAM
::::::::::::::::::::::::x-~::.:v::::::~:::::::::;~::::;:;~:::::::.:.::::::;.~-:=:=:=::::;;::::::::::::::::::::::::~:::::.:·~V.~:=::::::~::;o;;::::::::~;;:::::::::::.:::::::::::::::::::::::;:;::;;::;;;;x::::::~=~::m>;;:.:=::::::»::::::::::~ .. :·:~:::·:·:·:·:··

CMOS RAM

ROM sections

6-102

If no Loader is loaded then Podule_EnumerateChunks will tenninateon the zero at
the end of the Chunk Directory in the expansion card space. If. however. when the
end of the expansion card space Chunk Directory Is reached a Loader has been
loaded. then a second Chunk Directory. stored In the Code Space. will appear as a
oontinuation or the orlainal Chunk Directory. This Is transparent to the user.

This second Chunk Directory Is in exactly the same format as the orlainal Chunk
Directory. Addresses In the Code Space Chunk Directory refer to addresses In the
Code Space. The Chunk Dlredorystarts at address 0 of the Code Space (rather than
address 16 as the one In expansion card Space does).

Each of the four possible Internal expansion card slots has four bytes of CMOS
RAM reserved for it. These bytes can be used to store status information,
oonfiauration, and so on.

You can find the base address of these four bytes by catlin&
Podule_HardwareAddress (J>ilie 6-120) or Podule_HardwareAddresses
(J>aie 6-124).

Most or the SWis provided by the Expansion Card Manaaer take a ROM section as
a parameter. This Identifies the expansion card or extension ROM upon which the
oommand acts. ROM sections used by RISC OS are:

ROM MCtloa Mea•l• IJ
-I System ROM

0 Expansion card 0
I Expansion card I
2 Expansion card 2
3 Expansion card 3

-2 Extension ROM I (not in RISC OS 2)
-3 Extension ROM 2 (not in RISC OS 2)
-4 Extension ROM 3 (etc) (not in RISC OS 2)

NoneoftheSWJs described in this chapter will act upon the system ROM.

ExpllfiiSion CW'ds and ExiiKision ROMS
::::-:. :::::::::::::::::::::::::::::::::::.c=:~w.l .. :·:·:·:·:·:-:·:·:;-_.:-::::.;.::.:: :::::::::::~:=~m::::::::::::::::::::~~:;:;:.:;:~~;:~;:~~~:>r.:::-.;;::::.::(o:::~.::::::::::::::w::~:::.:·:·:::~::::::::::::::::::::::::;w,::Y:::.:-:·:4:·:·:·:::.:::~

'Podules'
In the Arthur operatina system. expansion cards were known as P~uln. The word
'Podule' was used in all the names or SWis and • Commands.

These old names have been retained. so that software written to run under Arthur
will still run under RISC OS.

6-103

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c

SIHVk» Cslls
~~::;:~:·::x::¥-:·:::~:;:;:;:::;:;:;:;:;::::::~>.t<t:.x::;;;:;:~;;;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::~::-.. :::;:;::::-::;:;.;:;.;.;": ;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;.;:;:;:;:;:;:;:;:;:;.;:;:;:;.;:;:;.;:;:;::-:.:·:-:: ;:;:;:·:;:;:;:;:;:;.;.;:;.;;::;;;:;:;:;:;:;:;~~-::;:;:;:;:;:;:;:::::>:~

Service Calls

6-104

Pre-Reset

Service _Pre Reset
(Service Call &45)

On entry

Rl = &45 (reason code)

On exit

u ..

Rl preserved to pass on (do not daim)

This call is made (ust before a software generated reset takes place. when the user
releases Break. This gives a chance for el!pansion card software to reset Its devices.
as this type of reset does not actually cause a hardware reset signal to appear on
the expansion card bus. This call must not be claimed.

Expenslon CsrrJs and Extension ROMS
:::::::::::: :::::::::=:~=:::;:.:::'(.::::::::::::::::: :::::::::::::::::::::: :::::::::::::::::~:~:::::::::::::::=xo.>:::::::::::>.:.v.::::::::::~~=::::::m:::::::::~~~:=:::::::::«>.::w-.o::.:::;;:::::::::::~w:=::::::::: =:=:=:=:::::::::::::-=::::: ::::::::: :::=:=:=:=:=:=:::::::::::.:

Service_ADFSPodule
(Service Call & 1 0800)

Issued by ADFS to locate an ST506 expansion card.

On entry
....... tloe eenlce cllll:

Call OS_ServlceCall with:

Rl = &10800 (reason rode)
R2 = DefaultHOC (address ol controller)
Rl = loChip+lo/rqBStatus (address ol!RQ status rqlster)
R4 = WinnieBits (mask Into IRQ status register)
R5 = loChip+lo/rqBMaslt (address oliRO mask ree.Jster)
R6 = WinnleBits (mask Into IRQ mask register)

Will return with rees ad(usted to the values which should be used.

Rnpoadla1 to tle MrYice ad!:

Rl =&10800

On exit

Use

Rl = 0 (Service_Servlced,le claim the service)
R2 =address of hard disc controller
Rl =address of IRQ status rqlster
R4 =mask Into IRQ status register
R5 =address of IRQ mask register
R6 = mask Into IRQ mask rqlster

Issued by ADFS to enable ST506 hard disc eJtpansion cards to intercept ADFS to
use its hardware rather than the hardware built Into the machine.

6-105

SIHVicfi_ADFSPodule/DE (SIHVicfl Cs/1 & 10801)

:~:W"M.~::."X««-:;:~·:·:·:·::::;.:::.:.:."«*x·>:~x::::.::::::: :::::::.:-~ ::: ::::::::::::::-.::::.:=::.::::::::::::::::: :::::::::::::::::::::::::::::::: ::::::::::::::::::::: ::::::::::::::::::-:::~"f.;;::::::::::::::;;y;::x::.;.:.W;::::::::»:«-x::::::~::::::::::::::::::

6-106

Service_ADFSPoduleiDE
(Service Call & 10801)

Issued by ADFS to locate an IDE expansion card.

On entry

Rl • &10801 (reason axle)
R2 ·>current IDE controller
Rl·> Interrupt status of controller
R4 = AND with status. NE => IRQ
R5 ·>Interrupt mask
R6 • OR Into mask enables IRQ
R7 ·>data read routine (0 for default)
R8 ·>data write routine (0 for default)

On exit

u ..

R I a Service_Serviced
R2 ·> new IDE controller
Rl·> interrupt status of controller
R4 = AND with status. NE =>IRQ
R5 ·> Interrupt mask
R6 "' OR Into mask enables IRQ
R7 ·>data read routine (0 for default)
R8 ·>data write routine (0 for default)

Issued by ADfS to enable IDE hard disc expansion cards to Intercept ADFS to use
Its hardware rather than the hardware built Into the machine.

Expansion CSrds and Exlension ROMS
:;:;Y..:::=:=:=: :::::::::::::.%:>:>::::::::::::x:w..-;-.. -::::.:~::::::::::~~:;:::::::::::~~;:.x~~~ .. :::::;:;.;~;::::::::»:«·:::::::::::-z;:::.:::~::-: ::::::::::::::::::::~m-::r.:::::::::.:=:·:::-:=: ·:·:·:·:·:·:-:::.:-:::: :::::::::::::::::::::<<'<

Service_ADFSPoduleiDEDying
(Service Call & 1 0802)

IDE expansion card dylna

On entry

R I = &10802 (reason code)

On exit

All reaisters preserved

u ..
Issued by expansion card module to tell ADfS of imminent demise.

6-107

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

c
(

(

(

(

(

(

(

(

(

(

(

(

(

(

()

SW/cal/s
~::::;:;:;:;:; :;:::::;.;::,:; :;::::::::::::~:::::::<:>.::*:::::::::-;::;:;:::::::;:;:;::::::::-::.:::::':?:::::.~"«':::~:::::::;:;:;:;:;:;.;: ::::;:;:;::,:;::,:;:;:; :;:;:;:: :;:;:;:;: ;:;:;:;:;:;:;:;::::::::~~«<-~.:::::::::::::;:--~::::::::::::::::;:;:~;:;:;;.;:;::=:;;

SWI calls

6-108

Podule_ReadiD
(SWI &40280)

Reads an expansion card or extension ROM's identity byte

On entry

RJ =ROM section (see pase 6·102)

On exit

RO =expansion card identity byte (ECld)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call reads into RO a simple Expansion Card Identity, or the low byte of an
extended Eltpansion Card Identity. It also resets the loader.

Related SWis

Podule_ReadHeader (page 6-109)

Related vectors

None

Expansion Csrds and Extension ROMS
;:;:;.;:;:;:;:;:;:::::::;:;::;:.-:::;~::~~;.:'-:-::::::::::~;.;.;:;:;~ ;:;:;:;:;:;:;:;::·· •• :.:.:.:.:.:.:;:;:;:;:;:;:;:;:: :;:;:;::::-:::::;:;:;:;:;:: :;:;:;:;:;:;: ;::¥.«:;:;'*'*::::::::::::~::::::.:-.:;.:;::::~::::;:;::::::.::~:~:::--:::~:;;.;::t:;w,:;::::<-x.r.:::::"%::

Podule_ReadHeader
(SWI &40281)

Reads an expansion card or extension ROM's header

On entry

R2 = pointer to buffer of 8 or 16 bytes
R3 = ROM section (see page 6-1 02)

On exit

Interrupts

Interrupt status Is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call reads an el!tended Eltpanslon Card Identity Into the buffer pointed to by
R2. If the IS bit Is set (bit I of byte I) then the expansion card also has Interrupt
Status Pointers. and these are also read Into the buffer. This call also resets the
loader.

If you do not know whether the card has Interrupt Status Pointers. you should use
a 16 byte buffer. Elttension ROMs always have Interrupt Status Pointers (although
they're always zero). so you should always use a 16 byte buffer for them.

Related SWis

Podule_ReadiD (page6-108)

Related vectors

None

6-109

Poduhi_Enumerai9Chunk6 (SWI &40282)

,::::.:.:::~v:::.::.:.:::::::::·:·:=:::·»»:':·:·::::::::::x::--;::::;;;:;:;.;:;:;:;;;;:~«".<-::.:.:::::::;:;:;:;:;::::::::::::;:.::.~~~·::;;.:::::::::::::::::::::::'X::;.:;:.:.:.:.::::.::;.;.;::::::: :::::::::::::::::::;;=:::.::-:~:.::::::::;::;::::::;:;:;::::.;:;.;.;:;;;.;:lJ.X:~:=:-:·:·:·:;»:<-:::-:::~

6-110

Podule _EnumerateChunks
(SWI &40282)

Reads infonnation about a chunk from the Chunk Directory

On entry
RO =chunk number (zero to start)
RJ =ROM section (see pase 6·102)

On exit
RO = next chunk number (zero if final chunk enumerated)
R I "' size (in bytes) if RO., 0 on ell it
R2 • operating system identity byte if RO .. 0 on eldt
R4 • pointer to a copy of the module's name if the chunk Is a relocatable module.
else preserved

Interrupt•
Interrupt status is unaltered by the SWI. but may be altered by the loader
Fast Interrupts are enabled

Proceaaor mode
Processor Is In SVC mode

R .. ntrancy

u ..

SWI is not re-entrant

This call reads Information about a chunk from the Chunk Directory. It returns Its
size and operating system identity byte. If the chunk Is a module it also returns a
pointer to a oopy of its name; this is held in the Expansion Card Manage~s private
workspace and will not be valid after you have called the Manager again.

If the chunk is a Loader. then RISC OS also loads it.

To read infonnation on all chunks you should set RO to 0 and RJ to the oorrec.t
ROM section. You should then repeatedly call this SWI until RO is set to 0 on exit.

RISC OS 2 automatlcally does this on a reset for all expansion cards: If there Is a
Loader It will be transparently loaded, and any chunks In the code space will also
be enumerated. Later versions of RISC OS use Podule_EnumerateChunksWithlnfo.

Expansion C8rds and Extension ROMS
::»?.>::::-;;::::·:·: :::::::::::::::::::::::Y;::;.;:;:::::::;:;:;::~::;:;:;:::;:;::::~x.;.:.:.:::::::::::::.:·:~:-c:)~<-X:.::.~::;:;:;i}o::.,~;:;:;:;;-;~-::::::::::::::-~:;;:;:;.; .;.;:::;.;::·:·:-::::::;;;:~;::;.::;::::::::..:.:.::::: ·:·:.:· :·:· ::::;:;.;:::::;.~;.-:.;:;:;:;.;.;.~-:·:

Related SWia
Podule_ReadChunlt (paae 6-112). Podule_EnumerateChunksWithlnfo (paie 6-122)

Related vector•

None

6-111

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(,

I

(\
I

(

(

(

(

(

(

(

(

(

Podui8_ResdChunk (SW/ &40283)

~:-:.-.. :.:·:·:·:·:<·:·::;:; :;.;.;.;:;:;:;:;;;.:.:>~<=:~:«~~::;:;:::;:;:::::;:;:;.;.;.~-:;::.:.:-:·: .;.;.;.;.;.;:;.;.;: ;:;:;:;:;:;:: :;:;:;:;.;.;:;:;.;::·:·:·:·:·:·: .;:;::·:·:·:-:;::;.;-;;;.;.;:: .;.;:;.;:;:::;:;:;::: ;:;:;:;.;:;:;:;:;:;:;:;: ;:;:;:;:;::-;W,.:::;;.;.y,:;.;:;:;:;

6·112

Podule_ReadChunk
(SWI &40283)

Reads a chunk rrom an expansion card or extension ROM

On entry

RO "' chunk number
R2 ., pointer to buffer (assumed large enough)
Rl = ROM section (see page 6-102)

On exit

Interrupt&

Interrupt status is unaltered by the SWI, but may be altered by the loader
Fast interrupts are enabled

Proceeeor mode

Processor Is In SVC mode

Re-entrancy

Uae

SWIIs not re-entrant

This call reads the specified chunk from an expansion card. The burrer must be
large enough to contain the chunk; you can use Podule_EnumerateChunks (see
page 6-11 0) to find the size or the chunk.

Releted SWia

Podule_EnumerateChunks (page 6-110)

Related vectora

None

Expansion C8trls and Extension ROMS
~?..::: :=:::~:::::: ::::::::::::::::::::.~:::::-~-:=~x:::::;:;.;.:;;.:;:::v:v:::;::;::::::::::~:::x::::::::;:;M:::::::::~~~:::.~:~:::~:::::::::~:::::»m:;::;::::=:-::.:-::::: ::::::::::::::::::: :::::::::::::::::: :·:·:·:.:-:: :·:·:·:··

Podule _ReadBytes
(SWI &40284)

Reads bytes rrom within an expansion card's code space

On entry

RO =offset rrom start ol code space
Rl = number or bytes to read
R2 = pointer to buffer
Rl = expansion card slot number

On exit

Interrupt a

Interrupt status Is unaltered by the SWI .• but may be altered by the loader
Fast Interrupts are enabled

Processor mode

Processor is in S~ mode

Re-entrancy

SWIIs not re-entrant

Uae

This call reads bytes rrom within an expansion card's code space. It does so using
repeated calls to offset 0 (read a byte) or Its Loader. RISC OS must already have
loaded the Loader; note that the kernel does this automatically on a reset when it
enumerates all exp~nslon cards' dlUnks.

This command returns an enor for extension ROMs, because they have neither
code space nor a loader.

Related SWia

Podule_WriteBytes (ptge 6-114)

Related vectora

None

6-113

Podule_ Wrl19Byles (SWI &40285)
:·:·:·:·:=:·:.x:-x=::>~%:;;.-:.:x:::::::::::::::::::::~=~~.a:-.. ~:.x::::::::~::«>;;.:.:::::::.:.: :::§::.:::::::::::::.»"W'..:;:;:::.::::::::o.ox::::::::::::::::::::::.::::::::::::::x:-:;::x.:::::;:::::~«>::-;:::::

6-114

Podu le _Write Bytes
(SWI &40285)

Writes bytes to within an expansion card's code space

On entry

RO .. offset from stan of rode space
Rl =number of bytes to write
R2 c pointer to buffer
Rl • eJtpansion card slot number

On exit

lnterrup ..

Interrupt status is unaltered by the SWI. but may be altered by the loader
Fast Interrupts are enabled

Proceaaor mode

Processor is in SVC mode

Re-entrancy

Uae

SWIIs not re~ntrant

This call writes bytes to within an expansion card's code space. It does so uslna
repeated calls to offset 4 (write a byte) of Its Loader. RISC OS must already have
loaded the Loader: note that the kernel does this automatically on a reset when It
enumerates all eJtpanslon cards' chunks.

This command returns an error for extension ROMs. because they ha~ neither
rode space nor a loader.

Related SWia

Podule_ReadBytes (page 6-113)

Related vectora

None

Expansion CIJrris and Extsnsion ROMS

:·:·:·:-:=: :::::::::::::::::::!::m::::::::::::;:-:;:;;;.:;:::.:·:.:·:·:-:~:-:-:. :·:·:-:::::.:-:o:-:-:::::-:::-!'$:::::::::::~::::·:-x'.:·:·:·:;:;:::;;:;.;:;;;.;«.:::::::::::::::::::::::~;;::::::::.::x".:-:·;;: ::::::::::.:::::::::•:·:=:·:·:·:·:·: :;.::::::::::::::::: ::::::::::-:::::::::=x::::·:·:::.:-:•:·:·:

Calls an eJtpanslon card's Loader

Podule _Call loader
(SWI &40286)

On entry

RO - R2 = user data
Rl =expansion card slot number

Onexh

RO - R2 = user data

Interrupts

Interrupt status Is unaltered by the SWI. but may be altered by the loader
Fast interrupts are enabled

Proceaaor mode

Processor i s in SVC mode

Re-entrancy

Uae

Depends on loader

This call enters an eJtpanslon card's Loader at offset 12. Resisters RO • R2 can be
used to pass data.

The action the Loader takes will vary from card to card. and you should consult
your card's documentation for further details.

If you are developina your own card. you can use this SWI as an entry point to add
extra features to your Loader. You may use RO- R2 to pass any data you like. For
example, RO could be used as a reason code. and R I and R2 to pass data.

This command returns an error for extension ROMs, because they have neither
code space nor a loader.

Related SWis

None

6·115

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(
PocJule_ C811Loader (SWI &40286)

P:i.:~-:m-..m.:.-;~;:;::.;:;:::::;.;;:::<-X«->.41/..(.:-:::®.'.(.::::;:;:;:;:;:;:;:;:;:;:;:;:;:;::::~::~~~.;:;:;:;:;:;:;:;:;::::::::::::~%~:::::::<:~:~:::::::.%:'"-:?"#.'-:::::::::::::::::.;.~::::::::::::::::::::::;::~::~::~v,;;:;:;:~;:;:;.;::::~:::»:

Relsted vector•

(None

(

('

(~

(

(

(

(

(

(

(
6-116

(

c

Expenslon C/lfrJs and Ex191lsion ROMS
::::::::::::::;: ;:;:;:;:;:~;:~;:;:;:;:;:;:::::::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::~->::::::::;:~::::;:;:;:;:;:~::::~:::::::::~::;:;:;:;:;::-:xu::::::::::::;:;;::~::::::;:;:;:::::::;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:.;.·.··

Podule _Raw Read
(SWI &40287)

Reads bytes directly within an expansion card or extension ROM's address space

On entry

RO =offset from base of a podule's address space (O ... &FFF)
R I = number of bytes to read
R2 = pointer to buffer
Rl =ROM section (~pa~6-102)

On exit

Interrupts

Interrupt status Is unalt~
Fast Interrupts are enabled

Processor mode

Processor is In SVI: mode

Re-entrsncy

SWI is ~ntrant

Use

This call reads bytes directly within an expansion card or extension ROM's address
spac:e. lt is typically used to read rrom the registers orhardwre devices on an
expansion card. or to read suocesslve bytes from an extension ROM.

You should use Podule~Read~tes (pa~ 6-1 I 3) to read from within an expansion
card's code space.

Related SWis

Podule_RawWrite (page 6-1 18)

Related vector•

None

6-117

Podule_RawWrlt• (SWI &40288)

:;:;:::::::::::~::::::::;:;:;:;:;:;:;:~;.;:;:;:;:;.:;;:m:;:~::::;.;:::::::::::::::::::::::;:;.;:;.;:;:;:;:;:;:;:;:;.;:;:;:;.;:;:;:;:;:; :;:;.;!;!;.;!;!;! ;!;:;:;:;:; :;:;:;:;:;:;:;:;:;:;.w:::;::;:;:;:;:;:;:;:;:;;;:;:;:;.;:;:;:;:;:;:;:;:;:;:;:;:;;;::~·::-."®.::::::~~:;;;:;:;:;:::~.;~:

6-116

Podule _RawWrite
(SWI &40288)

Writes bytes directly within an expansion card's address space

On entry

RO "'offset from base of a podule's address space (O ... &f'FF)
Rl =numberofbytestowrite
R2 • pointer to buffer
R'J "expansion card slot number

On exit

lnterrupta
lntenupt status Is unaltered
Fast interrupts are enabled

Proceaaor mode
Processor is in SVC mode

Re-entrency

Uae

SWI Is re-entrant

This call writes bytes directly within an expansion card's address space. It Is
typically used to write to the registers of hardware devices on an expanslon card.

You should use Podule_WriteBytes (see page 6-114) to write within an expansion
card's axle space.

Obviously you cannot write to an extension ROM. You must not use this call to try
to write to the ROM area: if you do so, you risk reprogramming the memory and
video controllers.

Refated SWis
Podule_RawRead (page 6-117)

(

(

Expansion canJs and Extoosion ROMS
::-:=:=w~..,..;o;:::::·:·:=:=:=:=:=: ·:·:·:·:·:·:=: :·: ::::::::::::::::~:::::-::::::::::::::::;.;;;;:«'¢1;::;::~-:::::::::::::::w~:::=:~w.:.;:::.:-::::: -:=:=:·:·:;:::::: :=:=:=~:;x;:::::.:::::::::»$>;:::=:·: -:=:=:=:-::::::::::::::::::::::: ::::::::::::::=:·:·:=:· :=:·:=:::::::;::. (

Related vector•
None

(

(

(

(
\

(

(

(

(

(

(

(

6-119
(

(

(

'
(

'
(

\

f

(

(

(

(

(

(

\

(

(

(

c
(

(

Podula_HardwaraAddr9SS (SWI &40289)

::: ·:·:·:·:·:·:=:·:·:·:·:·:·:·:·:·:·:·:·:-::::::::: :: :::::::::::::::-..:::x::::::: :::::::::::::::::::::::::::::··:-.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:::::::::::::::::. ::::::::=:~:=::::::::::: :::: ::::::::::::::::::::::::::::::

6-1 20

Podule_HardwareAddress
(SWI &40289)

Returns an expansion card or extension ROM's base address. and the address of an
expansion card's CMOS RAM ··

On entry
R3 =ROM section (see page 6-102). or base address of expansion card/extension

ROM

On exit
R3 = combined hardware address

Interrupts
Interrupt status Is unaltered
F'ast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

Use

SWJ is re-entrant

This call returns an expansion card or extension ROM's combined hardware
address:

Btt.
0 ·II
12 ·25
26-31

Meaftlftl
base address of CMOS RAM- expansion cards only (4 bytes)
bits 12- 25 of base address of expansion card/extension ROM
reserved

You can use a mask to extract the relevant parts of the returned value. The CMOS
address in the low 12 bits is suitable for passing directly to OS_Byte 161 and 162.

In practice there is little point In finding the combined hardware address of an
extension ROM. The base address of the extension ROM is of little use. as the
width of the ROM can vary: and extension ROMs do not have CMOS RAM reserved
for them.

Expansbn CatrJs and Extansion ROMS
;:;:;:;:;:;:;:;:;:;:;.;::'-:=::::;:;::::::::::::-:::.:::::::::: ;:;:;:;:;:;:;:; :;:;::::=::;:;::::=::;:;:; :;:;:;:;:;:;:;::--:::::::::-.::~:=:~~:;.-:,::;~;:;:;:;:; :;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;: ··::;:;:;:::::::;:;:;::··: ••• :.:.:.:.:.:.:.:.:.:.:.:;:;::·· •• :.:.:.:;::::: ::::::: :;:;:;:::;:;:;:;: ;:;:;:;::

Related SWls

OS_Byte 161 (page 1-353). OS_Byte 162 (page 1·355).
Podule_HardwareAddresses (page 6-124)

Related vectors
None

6-121

Podule_Enum!NatsChunksWithlnfo (SWI &4028A)

;::::::~~~:::::.:::.:::::~::::::~:::::::::::::::::::::::::::::::: :::::::::::::: :::::::::::::::::::::::::::::::::::::: ::::::::::: ::::::: ::::::·::::::::::::::::::::::::::::::: :::::::::::::~:: :;;::::::::::z:~::::::::::;:::;:::;:;:;:~:~*~:::::::::::::::::::::;;~ .. ~=

6-122

Podule _EnumerateChunksWithlnfo
{SWI &4028A)

Reads lnrormation about a chunk from the Chunk Directory

On entry

RO,. chunk number (zero to start)
Rl: ROM section (see page 6·102)

On exit

RO • next chunk number (zero if final chunk enumerated)
Rl zsize(in bytes) ifRO ,.Oonexit
R2 = operating system identity byte ir RO" 0 on exit
R4 • pointer to a copy of the module's name ir the chunk Is a relocatable module.
else preserved
R5 • pointer to a copy or the module's help string If the chunk Is a relocatable
module. else preserved
R6 • address or module if the chunk is a directly executable relocatable module. or
0 If the chunk Is a non~lrectly-executable relocatable module. else preserved

Interrupts

Interrupt status Is unaltered by the SWI, but may be altered by the loader
Fast Interrupts are enabled

Processor mode

Processor is in SVC mode

R ... ntrency

Use

SWJ Is not re-entrant

This call reads inronnation about a chunk rrom the Chunk Directory. It returns Its
size and operating system identity byte. tr the chunk Is a module It also returns
pointers to copies or its name and its help string. and its address 1r it Is executable.
These are held in the Expansion Card Manager's private workspace and will not be
valid after you have called the Manager again.

If the chunk Is a Loader, then RISC OS also loads it.

Expansion C8lcls and Extension ROMS
·::.::<:"".w::.~:::::::::::::-~:::.:-::::~::::::.:·::: :w.w:::~::::::::::~x::::::::~::-~:::::::::::;:"~:::::::::.:~::::::::::::::::::z.:::;~.-.:::::::::::--:.»"':':..:·:·::::::: ::::::.:::::.: -:-:::.::: ::::::::::~:::::::::::::::::

To read Information on all chunks you should set RO to 0 and RJ to the correct
ROM section. You should then repeatedly call this SWJ until RO is set to 0 on exit.

RISC OS automatically does this on a reset ror all expansion cards: if there is a
Loader it will be transparently loaded, and any chunks in the code space will also
be enumerated. RISC OS 2 uses Podule_EnumerateChunks instead.

Related SWia

Podule_EnumerateChunks (page 6-110), Podule_ReadChunk (page 6-112)

Related vectors

None

6-123

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

CJ
('

(

(·

r

(

(

(-
l

(~

\

(

(

(

(

I

(;

(l

Podule_ HardwareAddrll6sll6 (SWI &40288)

-:f.::::»:-»~::.::::;.;.;.;::.;::::::::-»»):::::::::::::::::::--c;x:::~::.~::~:::::::::::::::::::::::::::::;.-:::::::.:::~;:.;::?»:<-~:::::::::::::::::~::-*:·x·=>::::~:::::::::::.:·:·:·:·:::.:·:·:·:·:=:::::::::.::::::::::::::::::::::~::-:::::::::::::::::;::::::::::x:::::::::::~:::::::::-:w..:>:

6-124

Podule _Hardware Addresses
(SWI &40288)

Returns an expansion card at extension ROM's base address. and the address or an
expansion card's CMOS RAM

On entry

R3 = ROM section (see J)a8e 6-102)

On exit

RO • base address of expansion card/extension ROM
Rl "'combined hardware address

Interrupt.•

Interrupt status is unaltered
Fast Interrupts are enabled

Procesaor mode

Processor Is In SVC mode

Re-entrancy

Uae

Swtls re-entrant

This call returns an expansion card or extension ROM's base address, and Its
combined hardware address:

Bit.
0· I I
12 ·25
26-31

M-••••
base address of CMOS RAM- expansion cards only (4 bytes)
bits 12- 25 of base address or expansion card/extension ROM
reser'led

You can use a mask to extract the relevant parts of the returned value. The CMOS
address In the low 12 bits is suitable for passing directly to OS_Byte 161 and 162.

In practice there Is little point in finding the combined hardware address of an
extension ROM. The base address of the extension ROM Is of little use. as the
width of the ROM can vary: and extension ROMs do not have CMOS RAM reserved
for them.

Expansion cards and Exl9nS/on ROMS

wx::::::::=:?-:=::5::-::::::::::::::::::::::-:;:~::::::::::::::: :::::::::::::::::;:;::::;:::::::::::x::::::::::~~v.:::::::::~:::::::::::::::::::::~:::::::~::::::m:::::~::::::::~,(.:::::::::::~~::::::w-.:::::::;:::::x:::::::::Y..:::::::::;:

Related SWla

OS_Byte 161 (J)alle 1-353), OS_Byte 162 (J)alle 1·355).
Podule_HardwareAddress (paae 6-I 20)

Related vector•

None

6-125

Podu/6 _RetumNumber (SW/ &4028C}

.;-;.;:~-:-:-:-:::::::::::::::::::ID):·:=:-:·:·:-::::::::::::::::::$:~·»"/.·»X::.::;;.;:::::::::::::::::xz.-::xw..::::x-:·:·:·:·:·:·:-:=:=:~-:::::::::::~~::.:.:-:-:=:=:::::::::::::::::::::~.;~~:·:·:=:-::::::::::::;;;;:;;;;::.;.-:.~::-:-:-:::::::::

6-126

Podule_ReturnNumber
(SWI &4028C)

Returns the number or expansion cards and extension ROMs

On entry

On exit

RO = number or expansion cards
Rl = number or extension ROMs

Interrupts

Interrupt status is unaltered
Fast Interrupts are enabled

Processor mode

Processor Is In SVC mode

R .. ntrancy

u ..
SWI is re-entrant

This call returns the number or expansion cards and extension ROMs. The number
or expansion cards returned Is anrently always 4. but you must be prepared to
handle any other value, Including 0.

This call is used by the •Po<fules command.

RelatedSWis

None

Related vectors

None

Expansion Cards and Extension ROMS
)~:·:·:·:;;;;~:::::::::--:.;::;;:zm;.~~-:~:.:·:·:·:-:·:·::;:;:;:;:;:;:;::;:;:;=:;;:::::~:-:-:;;:;::::::,.-;.;.::;;:::;;::.;.:(.:~}:®:·:·:=::;:;:;:;:;:5;:;:;;;:;;;;;::~:;.;:;:;:;:;:;:;:;:;:;:;:;,:::::-;.::-~«.:«<-::<;;:;:;:;;:;::::-;m-» .. ~~:-~:-:

*Commands
*Poduleload

Copies a flle into an expansion card's RAM

Syntax

*Poduletoad expans1on_ card_number filename [o ffset)

Parameters

Use

expans1on_card_number

filename
offset

the expansion card's number. as given by
·~ules

a valid pathname. specifying a file
orfset (in hexadecimal by default) into space
accessed by Loader

•Po<fuleLoad oopies the contents or a file into an installed expansion card's RAM.
starting at the specified offset.lfnooffset Is given. then a derault value ofO Is used.

Example

*Poduletoad 1 $.Hidi.Data 100

Related commands

"Podules, "PoduleSave

RelatedSWis

Podule_WrlteBytes (page6·114)

Related vectors

. None

6·127

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

r
(

(

c
(

(

(

(

(

(

(

(

(

(

(

c

"Podllk/6

;:;:;:;:;:;:;:;:;:;:;:;::::::::*":·:.::::::::·:·:·:·:::.:·:·:·:·:·»:::.:·: :;:;:;:;:;:;:;:::::::::;::::::::w.:::f.:::::::.;.~::~-::;.;;;:;;;:;.;:;;;.;:$y~;.:·:=:·:·:·:-:·:·:-:-:.:·:·:·:·::;:;:;:;:;.;:;:;:;: ;:;:;:;:;:;:;:;:;:;:::>~:::::.:~

6-128

*Podules

Displays a list of the Installed expansion cards and extension ROMs

Syntax

*Podules

Parameters
None

u ..
'Podules displays a list of the Installed expansion cards and extension ROMs.
using the description that each one holds internally. Some expansion cardsandfor
extension ROMs- such as one that is still being designed- will not have a
description: In this case. an identification number Is displayed.

This command still refers to expansion cards as podules, to maintain compatibility
with earlier operating systems. This command does not show extension ROMs
under RISC OS 2.

Example
*Podul.ea
Podule 0 : Midi and BBC I/0 podule
Podule 1 : Simple podule &8
Podule 2: No installed podule
Podul e 3 : No installed podule

Related commands
None

Related SWia
Podule_EnumerateChunks (page 6-110)

Related vectors

None

Expansion Canis and Ext/Jrlsion ROMS
?,:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:; ::::~:;:;:::::::.-«;:.:;»;;;;ili'x.::.::::: :;:;:;:;:;:;::::::::::..~::::::::::~~::::::::::«W&::=::::::::::::::::::;:::-:~w:--:::::::::~::::-:::.~:t:=: :;;;.;.;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.: ;:;:;::::;;:;:::::;:;:;::::::

*PoduleSave

Copies the contents of an expansion card's ROM Into a Rle

Syntax
•PoduleSave expansion_ card_number filename size [offset)

Parameters

Use

expansion_card_number

filename
size
offset

the expansion card's number. as given by
' Podules

a valid path name. specifying a file

In bytes

offset (In he2adedmal by default) Into space
accessed by Loader

'PoduleSave copies the given number o(bytes of an Installed expansion card's
ROM Into a lile.lf no offset Is given. then a defaul t value of 0 Is used.

Example
•PoduleSave 1 S.Midi . Oata 200 100

Related commands
'Podules, 'PoduleLoad

Related SWia
Podule_ReadBytes (page 6-113)

Related vectors

None

6-129

Example program

:·:·: ·:·:·:·::· ::::::::::::::::::::::::::~::::::::::~:~::>:::::::::::::::::m~~:::::::•:·:::::::.;;;»»>=~·:·:·:=:·:-::::::: ·:-:::::::::;:;:::=:·:=: ::::::::;;::::::: :=:=:=:·:~.;.~*::~ :::::::::::: ::::::::::::::::::::::::::::::::: ::::::::::::::;.:.~:-:::

Example program

6-130

This proeram is an example of how to combine the various parts of an expansion
card ROM. It also computes the header and Chunk Directory structure. The file it
outputs is suitable for programming into a PROM or EPROM:

10 ItEM > &.ar•.M1d.LAncU/O. M1d1Jo1ner
20 REM Author : 10-ISC OS
30 lttM Laat ed it 1 06- Jan-87
40 PRINT .. Jotner for expana1on card ROHJ"'"Vecaion 1.05."
SO PRINT"For Midi bond.": DIM Buffer' 300, Block' 20
10 INPUT' "lf'lt•r f'larM of output file : .. OUtMame$
15 H\=OPDIOUT (OUtMa-$)
10 IF H\ • 0 THEN PltiNT"Could not create '":OutNatM$;""• ... :END
tO ONE.U.OkONUIOOROFf:CLOSEIB\:RE.PORT:PRINT" a t line ";EJIL:DIO

100 Devlco, •O: L' •TIWt:UPEAT
120 Rax\ • ,IOO:J.tK M.ax\ 11 tM a1ze of the norNl area
130 Lov\s,lOO:J.DI Low\ 1• the 11z.e of the pMudo dJ.ceeto.ry
1 40 Ba M \ sO:REM The off••t for ftle addr••• c a lculation•
150 ltod•&4000:Q:M J.oM 11 the alM of IBC ltOM1
110 PROCByte (0) :PROCHalf (3) :PROCHalt (19) :PROCHalf (0) :PRDC9yte (0)
110 PRDCByte (0) :PROC38yt• (0) :PitOC9yte (0) :PROC)Byte(O)
190 IF PTRIR' <> 16 STOP
200 Bot\ •ffRf H\ ;,..!M lot \ 11 where the directory qrov1 troro:
210 Top:\=Max\ :ltEM Top\ 11 where normal ftl•• decend. from
230 INPUT"£nter tll•name of loader : .. Load•rS
240 IF Loader$ <> THEN K\=FNAddFtla(&10, Lo.t.d•rS t
2SO IF IC\ ELSE PIUMf""No rooJ1 for loader.*:

PTRt H•·•8ot ' : PROCayu (0) :CLOSEIR\ : END
210 INPUTLIN£• •tntec product descrtptton : •oatS
210 IF Oat$ <> "" THEN PltOCAcidStrl.n9 I &f~, Oa t$
300 PRIMT:UPEAT
310 INPUT'"Ent•r na,... of file to add : ·ru•s
320 IF File$ <> "" THEN T' •FNTYP" (File$) ELS& T\•0
330 IF T\=0 USE K\•fNAd<iFile (T\, File$)
340 IF K\ £.LSE PltlNf .. NO more room."
3~0 UNTIL (file$ • "") DR (K\•FALSE)
HO I F K\ USE PTAI H, .. oU:PI\OCByte(O) :Ct.OUI R, :EIID
llO IF 1.\ PJOC:Chon9e
ltO INPUTLIN£•t.nter Jerl•l nullbtr : •o.tS
400 IF Oat$ <> •• THEN PIIOCAcfdSt rlft9 I Ul, Oat$
410 I 'NPOTLilf£"lnter .ocU.Ucat1on et•tul : ·catS
420 I F Oat$ <> THEN PROCAddstrlnq(I F3, Cat'
UO INPUTLINI."Ent•r place of runufactuc• ; •oat$
440 IF Oat$ <> •• THIN PltOCAcidStrlnq(U4, Oat$)
450 INPUTLINE'"tnter part nurrt>er : .. Oatt
460 IF Dat$ <> •• THEN PltOCMdStrln9(&f6, Oat$
410 Date$z!'IM£$
490 Dato$~MID$ (DUe$, 5, 2) +"·"+MID$ (Date$, I,))+ " · "+IUD$ (Dato$,14, 2)
~00 PROCAdciStrl ft9(&f2, Date$)
530 k£11 PltOC ... ader-('FO , z • +W\•Rom\-Baae\ , 0 • :AU Link
~~0 PTRI Rt =Bot ' :PROCiyte (0)
570 CLOSEIR\ : END

Expansion Cards and Exl6fls/on ROMS
=-::~:.:::::::·:· :::::::: :::::::::::::::::::::=:-:-:::-~'i(-:;::::::::::~=:•:·:<:.-:.m:.::::::;::::::::.:::=::x:.:::::::::::;:•:·>~=·:·:·:·:=:·:·:.:::::::: ::::::::::::::::::::.;;:::=:=~~:;.;.:-:«~::.:::::-:=: .;::::::::::::::::::::::w..m::.::::w..:-~·=·:·:·:;

UO DEF PROCByte (0') :IPUTI H,, D': EMOP!tOC
610 OU PROCHalf (0,) :IPUTI H\ , D' : BPUtiH\ ,O, DIVZ56:1NDPIO-OC
UO DU PROC3Byte (D')
64 0 BPUTIH', O' : 8PUTt8', 0 \ DIVZ56: BPUTI B\ , O\ DIV,55)5: INDPIO-OC
"O DEl' PROC:Wo<d (0\)

670 IPUTfB\ , D' : BPU!'IH,, D\OIV256: BPU1'IR\, D' OIVn5l5
610 8PUTIR, ,D\ OIVU1172U: ENDPIIOC
100 OEF PROCAdd.1trln9(T\, 1$)
110 SS• SS+CHJ\$0
720 IF L ' THEN PJOCAddNoma1Str1n9 ILS! UOCAciiiPiuodoStrlft9
130 ENOP!tOC
750 DEF PROCAddNonuiStrln9
7,0 IF Top, -Bot\ < 10+Lf.M (U) THEN STOP
170 PltOC!Ieader(T\, Top\ • LIN(S$)•1ue, , LEN(S$))
liO Top\ =Top,-LIN(U) :PTIO-IM\ •Top,:FOR I\•1 TO LIM(SS)
790 BPUTI H, ,ASC(KIO$ (U, 1\,1)) :liEX1'I\:IMOPIIOC
110 DE.F PkOCAddPauedoltr1nt
120 Ir Ku\ +Low\ • lot' < t TIWI IT<lP
UO PIIOC!Ieader(H, Top\ • 1& .. \ , LEN(S$)
140 Pt'RIH\•Top\: rat I\• I TO LtM (S$)

150 BPUTf Ht ,ASC(KID$ (SI, 1\,1)) :N!XTI\
UO Top\ •Top\+LU (S$): lNDf~OC

eao DEF PROCHeac:ter(ryp.\, Addreea\ , S1~:e\

190 PTRI H\ •9ot \
900 PltOCByte (Type\
910 PltOC3Byte (Sl<e\)
920 PROCWord (Md,.u\
tJO loc\ cBot \ +l:l.liDPJtOC
950 DEF FNA<i<iFIIe (T\, NJ
"0 F\=OPEMill (Ml)
970 IF 1"\•0 THD PaiMT"'f'11e • .. ;II$; "' not found. • t•tALI&
910 5\=EXTIF\
990 IF L\ THEN •rMAdc:UiorMlFJle IJ.S& •FNAddl•ue401'1le

1010 O£F F'NAdd.Noru lF1le
IOZ O £\•Sh9- (Top,•lot\)
lOlO IF E\ >0 TREH PltiNT'"OWrai1e by '";E\;" bytel. ""':

PROCChan9•: •t'NAddP 1 uedoFlle
1040 PltOCHeader (T\, Top• - n-auo\, $\)

1050 !'op\"fop, - 5\:PTA. H\ •Top, :FOa I\•1 TO U
1060 BPUtiH,, BGETI F\ :i<UTI\ :Cl.OSE!n :-1'10-UE
1010 OEF FNAciiiP.-I'lle
1090 IF Mu\+Low\-aot\ < t TKDI •FALS:E
1100 PIIOC!Ieader(T\, Top, - 1& .. , , $\)

1110 PTI0-18\=Topt
ll20 FOR I\=1 TO 5\:BPIITI H\ ,BGETf F\ :NEXTI\
1130 Top\ =1'op\ +S\ :C'LOSlfF\ : •TitUE
115 0 DEF PROC:Chan9e
1160 PI\INT"Ch•nq1nQ up. Wa1t1nq "'; Top\ -Bot\ ;" byte•. •
11?0 PTRfB\=Bot\: PftOCiyte (0• ;J.EM Terral nate bot tOll directory

6-131

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

c

Exsmpl9 program
:;:;:::~:=:·:·:·:·: .;:;.;.;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:::::::::::::::;;;.~::~·::;:;:;~:;;;.;:;:;:::;:;:;:;:;:;::~~:;:::;:;:::::·:·:· :·:·:·:-:·:·:·:.:·:·:·:·:.:·:·:::-: :;:;:;:;:;.;:;.;:;:;.;:;:;.;:;:;:;:;:;:;:;:;::<~::;:;;::::::::;::·:·:-~:.:1~:;7;:.:::.::;.;:; :;:;:;:;:;:;:;:;:;:·:···· ., ..

6-132

lUO &ot\ • Max \ : fop\ • Max\+Low\: 8ase\• Hax\: L\• FALSE
1190 Jt£M In t~ pteudo area files 9rov upward trom Top\
1200 ENOPROC
1220 OEF FNfype (N$ I
1210 sautter\-.N S : X\• Bloek\ : Y\=X\/256:A\=S:X\ ! O•aurter\
1240 8\oQSilHFOO:IF (8\AH02SSI <> I THEN PlllNf "Not a Ule ":•O
12SO V\•(Biock\! lHO.NO<FFFFFF
12'0 IFV\ • l FFFFFA fH£N •Ul
1270 IF ((Block\ ! 2ANDHFFFI =UOOO) AND I (Bloclt\ ! &ANOlFFFFl•UOOO) t'H£N=U2
1280 I FY\ • 4FFFFFt TKlN' • .61)
1290 •0

~;;$::.:;;:;:;:;::::::;;.:;:-;-:.;-:.;.;-;.:-;:;:;.;.;.;-:-:·:•:•:•:·:«<'-:·~:·::; :;;;.;:;:;:;;;:;:;:;:.;:;:;:;:;:;::;::;:r.;:;.;-:-;.;.:v:.~::::::o;.;.:¢(0:<~:· ;.;.:.:·:·:.:: ;::·:·:1.-:·:=:·:·:·:-»::;:;:;:;.;.:-:~i«i'h..-t:·:W:·:-:-~ ;.;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;.:-»:t.::•:·:·:·:·:·

72 Debugger
'i;.'($.~~;:;:~;:;:;:;:;~:::~~;>,:~;:;:;~~:::~-=-::::::::::-«=:>~>,:~;:;:;;:-.;::::~;;;::;~;x::;:;:;;;:;:;:;::::::.::::::::::::;:~::~.:-;:::=:~:::::::::::::;::::=::;:;:;:;:;:;-;;:;.;~::~:::.<::~"::S

Introduction
The debugger Is a module that allows program to be stopped at set places called
breakpoints. Whenever the Instruction that a breakpoint is set on is reached, a
command line will be entered. From here, you can type debug commands and
resume the program when you want

Other commands may be called at any time to examine or chanae the values
contained at particular addresses In memory and to list the contents of the
reaisters. You C:an display memory as words or bytes.

There is also a facility to disassemble instructions. This means converting the
Instruction, stored as a word Into a string representation of Its meaning. This
allows you to examine the code anywhere in readable memory.

6·133

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c

TBChnlcal Details
~::::;:;:;:;:::.:-~:v-?.·:""·:=:.:·:=:·::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::::::::=:-":.'5~;:~~~::~:::.;:~.::::~:::.~::: :;:;:;:;:;:;:;:;:;~:: :;:;:;:;:;:;:;::::::~~:::::~::««·:««-:•:::::::::::.:;;:-::.:~:;:;:::::::::;:;:;:;:;:;::::::=::::: :;:;::::::::

Technical Details

6-134

The debU1111er provides one SWJ. DebUI!IIer_Disassemble (SWJ &40380). which will
disassemble one Instruction. There are also the followln11 • Commands:

Conunaad Dnc:rf ptloa

•BreakCir Rell'lOVe breakpoint
·ereakList List currently set breakpoints
•&ealcSet Set a breakpoint at a 111ven address
· continue Start exe<:utfon from a breakpoint saved state
•Debull Enter the debug11er
•1nltStore Fill memory with 11iven data
• Memory Display memory between two addresseslre11ister
• Memory A Display and alter memory
•Memory(Disassemble ARM instructions
•showRe11s Display re11isters cau11ht by traps

When an address Is required. it should be 11iven In hexade<:imal, without a
precedln11 &. That is, unlike most of the rest of the system. the debU1111er uses
hexadecimal as a default base rather than de<:imal.

·au it should be used to retum from thedebul!ser to the previous environment
after a breakpoint- see paf!e 1-316.

Note that the breakpoints discussed here are separate from those caused by
OS_BreakPt. See pa11e 1-298 for details of this SWI.

When a breakpoint Is set. the previous contents of the breakpoint address are
reploced with a branch Into the debu1111er code. This means that breakpoints may
only be set In RAM. If you try to set a breakpoint in ROM, the error 'Bad breakpoint
address' will be 111ven.

When a breakpoint Instruction is reached. the debU1111er Is entered. with the
prompt

Debug*

from which you can type any • Command. An automatic fe8lster dump is also

displayed.

From RISC OS 3 onwards this module supports ARM 3 Instructions. and warns of
certain unwise or Invalid code sequences. Some of the output when disassemblinll
has been chan11ed for 11reater clarity than that provided by RISC OS 2.

Debugger
:::::::::::::::: :::::::::::::::::::::::::: :::::::::::::::::::::~::::::::::::::::::::::::~~:::::::::~::::w:::::::::;:--:"';m:-.;:;;;::r.::::::::::::::::::::::::::~:=:=:::::::::::::::::~?.:::::::::~:::::~~...:;:::::::: :::::::::::: ::::::::: .;:::::::: ::::::::::::::::::::=-s.:

SWI Calls

Disassemble an Instruction

Debugger _Disassemble
(SWI &40380)

On entry

RO = Instruction to disassemble
Rl = address to assume the word came from

On exit

RO "' preserved
Rl • address of buffer contalnln11 null-tennlnated text
R2 • lensth of disassembled line

Interrupts

Interrupt status Is undefined
Fast Interrupts are enabled

Processor Mode

Processor Is In SVC mode

Re-entrancy

Use

Not defined

RO contains the 12-bit Instruction to disassemble. R1 contains the address to
assume the word came from. which is needed for Instructions such as B. BL,
LOR Rn, [PC-I. and so on. On exit. Rl points to a buffer which contains a zero
terminated strins. This strilli consists oC the Instruction mnemonic, and any
operands. In the format used by the • Memory! Instruction. The lenl!lh in R2
excludes the zero-byte.

Related SWls

None

6-135

D9bugger_ Disassemble ($WI &40380)

~~·:..:.;·:·:·:·:·:=:·:·:·:=;.:<~:=~::~:::::::::.:~-:=:=::.::::::::::::::::::::x.x-~:.;::·:=:=:=:·:=:::::::~::.;:::;;:o:>:;,-;:::*:=:-m::::)»:-w. .. .«-:·:-:;:·:·:·:·:·:·:·:·:=:=:=::::::::::::::::.:;~'!¢.:-:-:-:.:·:..:::

Related vector•
None

6-136

Debugger
$X·:«<S:<-:· :-:-::::::::: ·:·:-:::-:.:-:·:-X·:~..:-:.:-:::-:·:·:·:·:·:·:·:·:·:·:-:-:·:·:·:·:·»>:Wm~=:~-:::::::.:·:·:·:=:-::::v~..:-:.:-:·:·:·:-:::::::::::::~::::;;;:-~;.:-:·:-::::::::::::::::::;.:~·:·:·:·:;:·:·:·:·:-::::::::$$;:~:-:«o:w.·:-:;;:;:;::::::::-.

*Commands
*BreakCir

Removes a breakpoint

Syntax

*BreakClr (addr l reg]

Parameters

Use

addr
reg

hexadedmal address of breakpoint to clear
rqlster rontalnina address of bteakpoint to dear
Allowed register names are rO • rl5, sp (equivalent to
rl3).ir (rl4 without the psr bits) and pc (rl5 without the
psr bits). These are tal:.en from the current
El!ceptlonDumpArea.

•&eakCir removes the breakpoint at the specified address/register value. putting
the original contents back into that location. You can unset the last hit breakpoint
with the command •areakClr pc

If you give no parameter then you can remoYe all breakpoints- you will be
prompted:

Clear all breakpoints (Y/N]7

Example
*BreakClr 816C

Related commands
"BleakSet. "BreakList

RelatedSWis
None

Related vectors
I'Qone

6-137

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

•Br9akList
:;.;.;.;:;:;:;:;:;:;:;::::::;m~~...O.»e«·:.-;:.;:;;.;o;:~:o:;;;:.;;;.:·:·:·: .;:: :;:;:;:;:;:;:; :;::::::::.:=:>~:«-:.'/.•?.·:.:-::: ·:·:-:.;:;:;:;:;:;:;:;:;:: :;:;:;:;:;:;:;:;::;.»»:;;.:;:;;::;~.:-:·:·: .·.;.:-:-:-::::: :;.;.;.;:;: ;.;:;:;:;:::::;::;;:;:;:;;;;:>~~:

6·138

List all the breakpoints that are currently set

Syntu

*BreakList

Parameters

None

u ..

*Breaklist

·sreakList lists all the breakpoints that are currently set with ·sreakSet

Example

*Breakl.iat
Address Old Data
0000816C EF00141C

Related commands

· sreakSet

Related SWis

None

Related vectors

None

Dtlbugg91'
~o;::::;;:::;~.?,.W.::;::;:;:;:;:;~;;;:;;:~::;;;.;.:.;:-:o»»~)::;:;::::;:;:;:;::::.:::;:;:;:;:;:xm(.(.:;;;::::~,«.(.:::-::;.;.;:;;::;:::.:-~::;:;:;:;:;:%....W,::;;::;~~~::w.;»;:;>;:;:;.; .. ;;:»;:;:;:;:;:;:;::::::::~~m.~~

*BreakSet

Sets a breakpoint

Syntax

*BreakSet addrlreg

Parameters

addr
reg

Use

hexadecimal address of breakpoint to set

lei ISler containing address of breakpoint to set

Allowed l'eiister names are rO • rl5, sp (equivalent to
rl3). 1r (rl4 without the psr bits) and pc (rl5 without the
psr bits). These are tallen from the current
EltceptlonDumpArea.

•&eakSet sets a breakpoint at the specified address or reilster value. so that when
the code Is executed and the Instruction at that address Is readted. execution will
be halted.

When a breakpoint is set, the previous contents of the breakpoint address are
replaced with a branch Into the debuaer code. This means that you may only set
breakpoints in RAM. Ifyou try to set a breakpoint In ROM, the error 'Bad breakpoint
address' Is ienerated.

Example

•BreakSet 816C

Related commsnds

·areakdr. •areal<l.ist

Related SWis

None

Related vectors

None

6·139

·eontJnu•
·;:::=:=:=:=:=:·:·:·:::::::::~:::::::;;:--:;:;:;;;:::::::~~·::~.;:::.:::;:.:-: ·:=:::::::::::::::: :::::::::::::=:=:=~:::::::~;::;::;:::::::•:~;;m~.;:;.::::::::;;:::::::::::::::::::::::::::~w-:::~:·:·=·lil>:kle:;:.:::::.:=:-:::::::::::-:::::::::::~=:=:~=!

6·140

*Continue

Resumes execution after a breakpoint

Syntax

•continue

Parameter•

u ..

None

'Continue resumes execution after a breakpoint. usina the saved state.lf there is a
breakpoint at the continuation position, then this prompt Is alw:n:

Continue from breakpoint set at '0000816C
Execute out of line? [YIN)?

Reply Y If it is permissible to execute the Instruction at a different address (ie It
does not refer to the PC).

If the Instruction that was replaced by the breakpoint contains a PC·relative
reference [such as LOR RO, label. a Bor BL Instruction. or an ADR directiYe), you
should not execute it out of line. lnstead you should clear the breakpoint. and then
re-issue the 'Continue command. The instruction will then be executed in line.
avoid ina the 111tona address from beina referenced.

Related commanda
'BreakCir

Related SWia
None

Retated vectora
None

Dllbug(/Bf
:;:::::::::;::::::m;;:;~:'=+:·$:-::·»:-~::::::::::::::::.:-:::::::::::::::*::::::::::::;;.;;;;;.;.;:;.;:;~:::::;::;;;;::=:·:=:·:·:.:·:·:·:·:·:·:·:.:.::::;;:~·~:=:~;;;:;;~:::;:::.x.;:.:.:::««<:*':;::;:;:;;;;;;;:)<'Rm:::::::-:;:.:::v;.:-;.:.:·:·:~:;:.:·

Enters the debuaaer

Syna.x
•Debug

Parametera

None

Uae

*Debug

•Debug enters the debuaaer. A prompt of Debug• appears. Use Escape to return
to the caller. or 'Quit to exit to the caller's parent.

· au it is documented on page 1·116.

Related command•
•Quit

Related SWJa
None

Related vectora
None

6·141

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

I
\

(

(

(

(

c
(

(

c

•tn/15/Dre
··=·=·=··:=:::::::::::::>.•:::.::•:=:::.:::,.«"':::•:::.:::;:.:::;:;.:>::.:«-:;:::::::::::).:S.::x:-::::::::::::::~::::::::::::x.::.:.:.:.:.:·:·:=:=:: .·.·:::.·.·.·.·:····· ::::::::::::::::::::::o::::::wy//..::::;;:: :=:~::::.:-:-:;:·:·: :·.·::::::::::::::::::::::::::::::::::::~:::::::::::::::::::

6-142

*lnitStore

Fills user memory with a value

Syntax

*InitStore [value lreg)

Parameters

Use

v<Jlue

reg

word with which to fill user memory

register value with which to fill user memory

Allowed register names are rO - rl5. sp (equivalent to
riJ].Ir (rl4 without the psr bits) and pc (rl5 without the
psr bits]. These are taken from the current
ExceptionDumpArea.

•lnltStore fills user memory with the specified value or register value. or with the
value &E6000010 (which Is an illegal instruction) if no parameter is given. If you
give this command from within an application (eg BASIC) the machine will crash.

and will have to be reset.

RISC OS 2 used the value &E1000090 instead. This is no longer guaranteed to be
an Illegal instruction for all versions of the ARM processor.

Example

*InitStore &381E6677

Related commands

None

Related SW1a

None

Related vectora

None

Debugger
::::::: :::::::::::m:"'#n:;~-:=:=:::::::::::=::::: :::::::::::::::::::::::::::::::::::x::::::::::::::~~::;:::*~::l:l:~=~x:::::®:::::;~::::::;:w-;::::::;~::'-:::::::::~=:::g::::::::::::::::::::::::::::~w.:~:::::::=::::::::::::::::: ::::::::::::::::::::

*Memory

Displays the values In memoty

Syntax

*Memory [B) addrllregl
*Memory (B) addrllregl [+l-]addr21reg2
*Memory [B] addrl l regl +l-addr21reg2 +addr31reg3

Parameters

Use

B

addrl l regl

addr2 1reg2
addr31reg3

optionally display as bytes

heud«<mal address. ot register oontaining address for

start or display
hexad«~ mal offset. or register oontaining offset

heud«<mal offset. ot register oontaining offset

Allowed recister names are rO- rl5. sp (equivalent to
rll).lr (rl4 without the psr bits) and pc (rl5 without the
psr bits). These are taken from the current
ExceptionDumpArea.

• Memory displays the values In memoty,ln bytes If the optional B is given. or in

words otherwise.

If only one address Is given. 256 bytes are displayed starting from addrl.lftwo
addresses are given. addr2 specifies the end or the range to be displayed (as an
offset from addr I). If three addresses are given. addr2 specifies an offset for the
start from addrl , and addrl specifies the end of the range to be displayed (as an
offset from the combined address given by addrl and addr2].

Example

*Memory 1000 -200 +500

Related commands

•MemoryA, •Memory!

Related SW1s

None

Displav lltlliiD'Y fro,. &EOO to &1300

6-143

·Msmoty

:=:=:=:=:t5:t:~~~~:::.:.:.:=:-:::::::::::::·:-:::::=:=:·:=:::·X~m:-.:;::~:ow-n:;:;.::;?;~~.«:.:;:;:::;::::::::::::::::::::::::: ::::::::::::::~~1Xt:·::: -::· .·.·.·.·.·.·:=:=:=::::: :.::=:=:·:=:-:::~:o:::::-:::-::: :::::::::::::::::::,::::

Related vector•

None

6·144

~buggfK

:.:.:wc-;.:-:-::;:;:;:;:;:;:;:::;;:::-.-;5;):·:·:·:·=~·~:·:·:·:·:·:·:·:·;.:.:·::::;:;:;:;:;:;:;:;:;:;::<:·:~::;;~_,.:.;;;: ;:;:;:;:;:;:;:;:::w:;;::~·:·:·:«-;.:::;x:;:;:::;:::~:=::::;.;:;:;:;:;:::::;:;:;.;:;:;;::-;.:.;.:.:·:·:.: .;.;:;:;:;:;.;:;:;:;:;:: :;.;:;;;.;.;.;.:.;.::.:"·J.r:':::-:-:

*Memory A

Displays and alters memory

Syntax
•MemoryA [B] addr/regl [valuelreg2]

Parameter•

B

addrl l regl

value
reg2

optionally display as bytes

hexadecimal address. or register containing address for
start of display

value to write Into the specified location

register containing value to write Into the specified
location

(

(

(

(

(

(

(

Allowed register names are rO • rl5, sp (equivalent to (
rl3).1r (rl4without the psr bits) and pc (r l 5 without the
psr bi ts). These are taken from the current ·
Elu:eptionDumpArea.

~ (
'MemoryA displays and alters memory In bytes, If the optional B is gi~n. or In
words otherwise.

If you give no further parameters. Interactive mode is entered. At each line,
something similar to the following Is printed:

+ 00008000 : ~ ••
Enter new value

or. for byte mode:

00008F78 : ANDEO R8,RO,R8,ROR PC

+ 00008001 : & : 8F :
Enter new value :

The llrst character shows the direction In which Return steps('+' for forwards. ·-·
for backwards). Next Is the address of the word/byte being altered, then the
character(s] In that word/byte. then the a~rrent hexadecimal value of the
word/byte, and finally (for words only) the instruction at that address.

6·145

(

(

(

(

(

(

(

(

(

(

I"
(

r

!'

(

(

(
\

(

(

(

(

c

•MBmoryA
:::::::~::~::0:.«·:·:·:·:·:·:·:·:·:·:·:-:o$;;;:;.;.;:;:;:;:;:;:;.;:::;;;:;:;:;:::;:;:;:;:;::::::::::::::::.;:::::::::::;.: .•.·.·:·: ;.;::::::::::::.:-:::::: ::::::::::::;.;::::::::: :::: ::::::::::::: :-:.:-:.:·:·:·:·:·:::::::::;:;:;:;~.:-~NX·:·~:·:-:;..,;.::;:.;.;:;.;.;:;.:·:·:·:-:««·::;;;:;;;~~f«

6·146

You may type any of the following at the prompt:

Return

+
fttx lligits

to go to the 'next' location
to step backwards In memory
to step forwards in memory
to alter a location and proceed
to exit.

As an alternative to using this command interactively. you can give the new data
value on the line after the address.

Example

•MemoryA 87AO 12345678

Related commands

• Memory, • Memory I

RelatedSWis

None

Related vectors

None

06buggtK

:::::;..;w..x:::::.~::::x.:::.:::x;:;:;:-~::::::: :::::=:::::::: :::::::::-:::::::-::::::::::::::.::=:=:~::--:~::::=:=:=:~=:t:::::::::;:::;.S):::::::::w::::::w.-::::::::: ::::::::::::::::::::::::::::::::::::.~:::::::::::::s:::::::::~~:::::::'%~-::~.x:::~:::::::m?.

*Memory I

Disassembles memory Into ARM Instructions

Syntax

*Memory! addcl(cegl
*Memory! addrllregl (+l-)addr21reg2
*Memory! addrllregl +l-addr21reg2 +addr3 1reg3

Parameters

Use

B

addrll regl

addr2 i ceg2
addr3 1reg3

optionally display as bytes

hexadecimal address. or rqister containing address for
start or display

hexadecimal offset. or rqlster containing offset

hexadecimal offset. or rqister containing offset

Allowed rqlster names are rO • rl5. sp (equivalent to
rll),lr (rl4 without the psr bits) and pc (rl5 without the
psr bits). These are taken from the current
ExceptlonDumpArea.

•Memory! disassembles memory Into ARM Instructions.

If only one address Is given, 24 Instructions are disassembled starting from addrl .
If two addresses are given. addr2 specifies the end of the ran~ to be disassembled
(as an offset from addr I). I f three addresses are given, addr2 specifies an offset for
the start from addrl, and addr:J specifies the end of the ran~ to be disassembled
(as an offset from the combined address given by addrl and addr2).

These options are particularly useful for disassembling modules which contain
offsets, not addresses.

6·147

"Memcryl

~=·:·::;.;:;:; :;:;:;:;:;:;:;:;:;::,.~:;:;:;::.~-::.:::w..;::~««<'h~:;;;:;:;:;:;:;:;:;.;:;:;:; :;:;:;: :;:;:;:;:;:;:;:;:;:.::::::::::.r.::::: :;:;:;:;:;:;:;:;:;:::;:;:;:;:;:;:;:;:;.:.,.:,;'«:;.;:;.;;;:»»."':".$:!;:;:;:; :;:;:;:·:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;.;:~::::::::::;.;.;.;;;-:.;x;;;:;:;:::;

6-148

Example

•.:K~ul••
No . Poaitto.n Jloctapac. Na.•

22 01140614 01101614 Del>uqqor Fill~ u~rrss rf I:HbfAH'I'

·~1 1840614 +24
01840684 : •••• : 00000000 : AHDEO RO, RO, M
01140681 : \, • • : OOOOOOSC : AND£0 RO, RO, R12,ASR RO
0114068C (... : 00000121 : ANOEO RO, RO, AI, LSR 12
01140690 : ••• • 00000104 : ANDEO RO, RO, R4, LSL 12
01140694 : (•.• : 00000021 : ANDEO RO, RO, Rl, LSR tJ2
01140691 : > ••• : 00000031 : AND£0 RO, RO,IU 4,LSR RO
OU4069C : h ••• : 00000161 ! ANDEO RO,RO,RI ,IIOR 12
OU406AO : ... : 00040)10 : AN0£0 AO,It4, .0,LSL f 'J
011406A4 : 0.,. 1 OOOOOSFC : MUL£0 JIO,JU2, RS qfsll rf SWJ '-"""'is &5FC

·~1 1140614 +YC +20
Olt4DC80 : : 19204200
Olt4DC84 : .Atl : l4tcc000
0114DC81 : •• ;1 : UJBOOOO
0184DC8C : •••• 1 OAOOOOOS
0114DC90 : •• •I : e21F0004
0184DC94
0114DC91
0184DC9C

-· .. . ~

Related c:ommanda

!I0007SF
uaouoo
OOOOOIOF

"Memory, "MemoryA

Related SWla

None

Related vectors

None

STII>B JU3!, 1119 , Jil41
LOR Rl2, IRU). 10

I TEO Rll, t O
BEO •0184DCA8
ADR RO, '011 4DC9C
BL •Oli4FA11

Disasu .. 6W SWJ '-""'"

LDMIA ll)!, (Itt, PC)

AHD£0 RO,JIO , PC, UL t2

O.bugger
m:.:::::::;.;::::r.:::::::·:¥.M..:-·~:=:·:·:·:·:·:·:·:::;»:~x-:::::::.:::::::::::::.::::: :;::::::::::::::::::-:-::;::::: ::::~:::::::.;;::;.;.m$:=: ·:·:=:::;:::::: ::::::::::::::::::::::::::::::~::=:·:-:.:·:-»:=:=:·: =:·:·:=:::::::::::::::::=:=:<~:::::::::::::.:-:-:::«:: .. ~-.:

*Show Regs

Displays the register contents for the saved state

Syntax

•ShowRegs

Parameters

None

u ..
· showRegs di~plays the register contents for the saved state. which may be cauaht
on one of the five follow! na tlllps:

• unknown instruction

• address exception

• dataabort

• abort on instrudion fetch

• breakpoint.

It al.so prints the address In memort where the rqisters are stored. so you can alter
them (for example after a breakpoint) by uslna "Memory A on these locations.
before usina ·continue.

Eumple
*lllowR<tgo
tteql1ter duft!P (atored. a t 60110402C) 11:
110 • 002602CT lt1 • 0024UC1 U • 00000000 U • 00000000
M • 00000000 115 • S24t1ACB 116 • 42S31FFD Ill • 263SfiDE
U • 1271A4S6 U • <:2671037 RIO • A72Bl4DC llll • UU102r
lt12 • 00004000 IUl • 2SJIDIIFO ll14 • 24161000 ltlS • 76290100
Mode USA tla91 .. t : nacvU

Related commands

None

RelatedSWls

None

6-149

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

:~:

Cl
)

<p

!.~
.....

.
5

<.
n

~

0

II!
<§

::D

~

ID

~jj
i

z
ll~

0
<

"

l
.,

l
0 .. •

~m I jl ~~
 i ~~i l ml

::::

:-:.
 tl ~ I ~ ::::

:·:·

r:r:

:=:·:=:=:·:::::::::: ::::::::::::::w:;~»:=:·:·:·:·:·:•:·~:~x<=:::::::::::::::~:::::-;;-;:::::::::::::::::::::::::~:•?.tw~::.:::·: ·:=:·:::.:::::: :::::::::::::::: ::::::xc.:::::::~~:;:::::::::~::.::=:«~":::::.:.:::::·:·::-:·:.;~·:::::::.:::.x:::~

73 Floating point emulator
w..;:::::::~::-;x~;::::x~~~"<>;::::~~::::~::~:::::::::::::;::=::::::::::::::~fo:'!l~:r.*(i::~:~:::~ ... -:::~~::::::::~-::::::*~;;::::::::~x::::::.-x:::~:~

Introduction
The Acorn RISC machine has a general ooprocessor Interface. The first ooprocessor
available is one which performs floating point calculations to the IEEE standard.
To ensure that prosrams usln& floating point arithmetic remain compatible with all
Archimedes machines. a standard ARM floatlna point Instruction set has been
defined. This can be Implemented invisibly to the customer proaram by one of
several systems oft'erina various speed petfonna~ at various costs. The cunent
'bundled' floatin& point system is the software only floatlna point emulator
module. Floating point Instructions may be lnoorponted Into any assembler text,
provided they are called from user mode. These Instructions are fealinlsed by the
Assembler and oonverted Into the oorrect coprocessor Instructions. However. these
Instructions are not supported by the &.SIC Interpreter.

Because this module doesn't present any SWis or other usual interface to
proarams (apart from a SWI to return the version number). it is structured
differently from the others. First. there is a discussion of the prosrammer's model
of the IEEE 754 floatln& point system. This Is followed by the floatins point
Instruction set. Finally the SWJ Is detailed.

Generally. proarams do not need to know whether a co-processor is fitted; the only
effective difference Is In the speed of execution. Note that there may be slight
variations in accuracy between hardware and software- refer to the instructions
supplied with the co-processor for details of these variations.

6·151

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

c
(

(

(

(

(

c
(

(

(

(

(

(

(

(

ProgrammiK's moc/81

-:::.;.:::.:.:·:·:-:-::;.;.:.;.;;;.;.;;;;;;;;;;;;:~::w.:::::::::::::~m:~:::.;.;.;.;:;.;;;;;:;.;::;::::::::::::::::::::::::::::::::~::-:-:-:-:.:-:•;;;.:.:.:-:w:-:::.;;:~oRiv.«~:·:-:-:.-..vh:·:•:·: -:-:-:.:-:-::::::::::::::::::::;.;.;.;::~;;;;:.:;:=:=:.:,::::~~"':=!>~=:

Programmer's model
The ARM IEEE floating point system has eight 'high predsion' flo«ri"f poi"l rrgislm,
FO to F7. The format in which numbers are stored In these registers Is not specified.
F1oating point formats only become visible when a number is transferred to
memory. using one of the formats described below.

There Is also af!oali"g ,.oi"lslatws rrgisllr (FPSR) which. like the ARM's combined PC
and PSR holds all the necessary status and control information that an application
is Intended to be able to access. It holds /J.gs which indicate various error
conditions. such as overflow and division by tero. Each flag has a corresponding
trap 11116U 6it, which can be used to enable or disable a ' trap' associated with the
error condition. Bits in the FPSR allow a client to distinguish between different
Implementations of the floating point system.

There may also be a /lo«li"f poi"r umlrol rtgisltr (F'PCR); this is used to hold status
and control information that an application Is not Intended to access. For example.
there are privileged instructions to turn the floating point system on and off. to
permit erRdent context changes. Typically, hardware ba.sed systems have an FPCR,
whereas software based ones do not.

Available systems

6-152

F1oatlng point systems may be built from software only, hardware only. or some
combination of software and hardware. The following terminology will be used to
differentiate between the various ARM floating point systems already In use or
planned:

s,.tem ••me
OldFPE

FPPC

NewFPE

FPA

Syttem compo•uts
Versions of the floating point emulator up to (but not
including) 4.00
Floating Point Protocol Convertor (interface chip between
ARM and WE32206), WEl2206 (AT&T Math Acceleration Unit
chip), and support code

Versions of the floating point emulator from 4.00 onwards

ARM Floating Point Accelerator chip, and support code

Floating point IKTiulator
~;::x::: :::::::::::::::::::: :::::::::~==~:::~-~:.:v:?:-:·:-:::::~:-:.:::-::-:.:·:~·=<~:-:=:-:-:;:::::::::::::::::::::::::::::::=:~:x.-:~·:·:·:·:=:·:·:·:-:::::::.:-:::.:::.:·»X>~~=:~;:_,;~ .. ~

Precision

The results look the same to the PI'Oitammer. However, If clients are aware of
which system is In use. they may be able to extract better performance. For
example, compilers can be tuned to generate bunched FP Instructions for the FPE
and dispersed FP Instructions for the FPA. which will imprOYe overall performance.

All basic floating point Instructions operate as though the result were computed to
Infinite predsion and then rounded to the length. and In the way, specified by the
Instruction. The rounding is selectable from:

• Round to nearest

• Round to +Infinity (P)

• Round to -infinity (M)

• Round to zero (Z).

The default is 'round to nearest'; In the eYent ofa tie. this rounds to 'nearest even'.
If any of the others are required they must be gi110en In the Instruction.

The working precision o(the system Is 80 bits, comprising a 64 bit mantissa. a 15
bit exponent and a sign bit. Specific Instructions that work only with single
precision operands may provide higher performance In some implementations.
particularly the fully software based ones.

Aoatlng point number formats
U ke the ARM instructions, the floating point data processing operations refer to
registers rather than memory locations. Values may be stored into ARM memory In
one of live formats (only fou r of which arevisibleatanyone time, since Pand EP
are mutually excluslll'l!):

6-153

Flollling point numb6r b'maiS
;:;:;:;:;:;:;::<;<»;..~:-::;:;:;.;:;:;:;,;.;:;.;:;:;~:;:;:;:;:::~::::::::::;:;:;:;:; :;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;~;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;::~.::.::~~::-:::-:-:::;.~-;;;.;:;.;.;.;:;:;:;:·: .:::: :;:;:;:;:;::::.:;;:;:;:;:;:;:~::::;:;:;:;:;:;:;:;.;.; .;:;:;:;:;.;:;.;:;

6-154

IEEE Single Precl•lon (S)

31 30 2322 0

I Sign I Exponent I msb Fraction lab I
Figwrr 73.1 Sir1916 precisiort forrut

• If the exponent Is 0 and the fraction is 0. the number represented Is :tO.

• If t he exponent Is 0 and the fraction Is non-zero. the number represented is

±O.fr*lill")(r 126.

• If the exponent is in the range I to 254. the number represented is
±1/re(fillrt)(2---IH

• If the exponent is 255 and the fraction is 0. the number represented Is±-.

• If the exponent is 255 and the fraction is non-zero. a NaN (not-a-number) Is
represented. lfthe most signifkant bit of the fraction Is set. It is a non-trapping
NaN; otherwise it Is a trapping NaN.

IEEE Double Precl•lon (D)

31 30 2019 0

Arst 'WOrd I Sign I Exponent I msb Fraction lsb

Second 'WOrd I mab Fraction lsb

Figun 71.2 OOilbr. ,.,tis ion forrul

• If the exponent Is 0 and the fraction is 0. the number represented Is :tO.

• If the exponent is 0 and the fraction is non-zero. the number represented Is
:tOJrulillrt IC 2- 1022_

• If the exponent is in the range I to 2046. the number represented Is
±1./rulilln x 2---1021.

• If the exponent Is 2047 and the fraction is 0. the number represented is t ...
• If the exponent is 2047 and the fraction is non-zero. a NaN (not-a-number) is

represented . lf the most significant bit of the fraction is set,lt Is a non- trapping

NaN; otherwise it is a trapping NaN.

Floating point 81T1Uiator

:::::::::~::;:-.;:;.;:.:<-:·:·::: :::::::::::::::::::::::::x:::-::::::::::::: :;:;:;:;:;:;:;:::::::::::;.»cM:-:::::::.;:::?-***"-*"-~-*~=::,:·:=:.:x·:·:=:::.;.:-:-::::::::x.::::-.. ::::::::: ::::::::::::::-:::::::.-wz-::::;:;.::::::: ::::::::::::::::::::::. :::::::::::.::::::;::::::x::;om::·:·:

Double Extended Precl•lon (E)
31 30

Arstwonl Sign

Second word J msb

Thlrdwonl msb

1514

:r.erc» I Exponent

Fraction

Frac1ion

Fifw" 73.1 Doujf, IICl.r¥.1 ,-ecisiotl/onut

0

lsb

lsb

• If the exponent is 0, I is 0, and the fraction is 0. the number represented is :tO.

• If the exponent is 0. I is 0. and the fraction Is non-ttro, the number represented
is ±Ofraaiort x 2- 16ll2.

• If the exponent Is In the range 0 to 12766, I Is I. and the fraction is non-zero.
the number represented Is ±1/,.aiort x 2•-- 16lll.

• lfthe exponent is 12767.)150. and the fraction Is O.the number represented i s
t... .

• If the exponent Is 32767 and the fraction Is non-zero. a NaN (not-a-number) is

r
(

(

(

(

(

(

(

represented. If the most significant bit of the fraction is set. it is a non-trapping (
NaN; otherwise It Is a trapping NaN.

Other values are Illegal and shall not be used (ie the exponent is in the range I to
32766 and I is 0; or the exponent is 32767. I is I. and the fraction is 0).

The FPPC system stores the sign bit In bit 15 of the 1\rst word. ratherthan in bit 31.

Storing a floating point register In 'E' format Is guaranteed to maintain precision
when loaded bad by the same floating point system In this format. Note that in
the past the layout of E format has varied between floating point systems. so
software should not have been written to depend on It being readable by other
floating point systems. For example. no software should have been written which
saves E format data to disc. potentially loaded into another system. In partJcular. E
format in the FPPC system varies from all other systems in its positioning of the
sign bit. However. for the FPA and the new FPE. theE format is now defined to be a

· particular form of IEEE Double Extended Precision and will not vary in future.

6-155

(

(

(

(

(

c
c

(

(

(

(

r
\

(

r

(

(

(

(

(

(

(

c

Floating point numbiN lormats
::::;.:•::;.; :;:;:::::;:;:;:::::::::;:;:;:;:;:;:;:;.;::.:.:«-'Jo:«·:;;.;.;.;.;.;;;:;:;.;:;.:-:.;.;<·:.X:::::::::;: ;:;:;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:::::::::::: :;:;:;:;:;:;:;:;:;;;;;::::-::;.;.;.;.;.;;; :;:: :;:;:;.;.;:;.;.;.;.;.;:;;;:;:;:;:;:;:;:;:;:;:;::::::~::::::::::;:;:;:;:;:;:;:;:;:;:;:;t.;:~:;:;:;~

6-156

P•cked Declm• l (P)
31 0

First word Sign 83 •2 e1 eO d18 d17 d18

Second word d15 d14 d13 d12 d11 d10 d9 d8

Third word d7 d6 d5 d4 d3 d2 d1 dO

ttgJUI73.4 Pacit<il Uci.,.alfonul

The sign nibble contains both the significand's sign (top bit) and the exponent's
sign (next bit): the other two bits are zero.

d 18 is the most significant digit of the significand. and el of the eJ~ponent. The
significand has an assumed decimal point between dl8anddl7.and Is nonnallsed
so that for a nonnal number I Sdi8S 9. The guaranteed ranges ford and eare 17
and 3 digits respectively: dO, dl and e3 may always be zero In a particular system. A
single precision number has 9 digits of significand and a maximum exponent o f 53:
a double precision number has 17 digits in the slgniflcand and a maximum
exponent of 340.

The result Is undefined If any of the packed digits Is hexadecimal A- F. save for a
representation of± .. or a NaN (see below).

• If the exponent's sign is 0, the exponent is 0. and the signlficand Is 0, the
number represented Is ±0.
Zero will always be output as +0, but either +0 or-{) may be Input.

• If the exponent is in the range 0 to 9999 and the significand is In the range I to
9.999999999999999999. the number represented is ±II x 10:t1.

• If the exponent Is &FFFF (le all the bits in e3- eO are set) and the slgnlflcand Is
0, the number represented Is± ...

• If the exponent Is &FFFF and dO-d 17 are non-zero. a NaN (not-a-number) Is
represented. If the most significant bit of diS is set. it Is a non-trapping NaN:
otherwise It is a trapping NaN.

All other combinations are undefined.

Floating point ~~mutator
:::::;;:::::::::::::::::: ::::::::::::::::::::::::::::::::::::::.$:;:.:::: :::::::-::-:: :::::::::::::~::;::::::::::::~:::::~~:::,.~~::~o::::::::~~~:=:::::::::::::::::::::.z::::::::~:::::::::l$$:::::::::::::::.'}:::::;:: ::::::::::::::: :::::::::: ::::::::::::::::::::::~: ::n:

Exp•nded P•cked Declm• l (EP)
31

Arstword Sign .e

S.C:Ond word d23 d22

Third word d15 d14

Fourth word d7 de

85

d21

d13

d5

.. 83 e2

d20 d19 d18

d12 d11 d10

d4 d3 d2

t1f1UJ73.5 Eqe!UI ,.~ Mirulfonu.r

0

e1 eo

d17 d16

d9 d8

d1 dO

The sign nibble contains both the slgnlficand's sign (top bit) and the exponent's
sign (ne.xt bit): the other two bits are zero.

d23 is the most significant digit of the slgnlflcand. and e6 of the exponent. The
significand has an assumed d«fmal point be'-n d23 and d22. and is nonnalised
so that for a nonnal number Is d23 s 9. The guaranteed ranges ford and eare 21
and 4 digits respectively: dO. d I . d2. e4, e5 and e6 may always be zero in a particular
system. A single precision number has 9 digits of signlficand and a maximum
exponent of 53: a double precision number has 17 digits in the signlficand and a

maximum exponent of 340.

The result is undefined If any of the pac~d digits Is hexadecimal A- F. save for a
representation of± .. or a NaN (see below).

• If the exponent's sign Is 0, the e~~ponent Is 0, and the slgnificand is 0, the
number represented Is ±0.
Zero will always be output as +0, but either +0 or-{) may be input.

• If the exponent Is In the range 0 to 9999999 and the signilicand is In the range
I to 9.99999999999999999999999, the number represented is:bl x 10:t1.

• If the exponent Is &FFFFFFF (le all the bits In e6 ·eO are set) and the
signiflcand Is 0, the number represented is± ...

• If the exponent Is &FFFFFFF and dO- d22 are non-zero, a NaN (not-a-number)
is represented . !! the most significant bit of d231sset,lt Is a non-trapping NaN:

otherwise it Is a trapping NaN.

All other combinations are undefined.

This fonnat is not available In the old FPE or the FPPC. You should only use it if you
can guarantee that the floating point system you are using supports i t

6-157

Floa~ng point status rB(JiStiK

;::":=:~::=::::;:;:;:;:;:;:;:;:;:;:;:;:;:::::;:;:;;::;:;:;:;::i:.~;:;:;;::;:;:::::;;::;:;:;:;:;:;,.:.;:;:;:;: ;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:: :;:;:;:;:;; ;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::.;:.;:;:;:;:;: ;:: :;:;:::::::::!::=:::::::;:;:;:::;:;:::::::::

Floating point status register

6·158

There is a floating point status register (FPSR) which, like ARM's combined PC and
PSR. has all the necessary status for the floating point system. The FPSR contains
the IEEE fl~ but not the result flags- these are only available after floating point
compare operations.

The FPSR consists of a system ID byte. an exception trap enable byte. a system
control byte and a cumulative exception flags byte.

31 2423 1615 87 0

FPSR [System 10 I Trap Enable I System Control I Exception Flags I
Figwr1 73.6 Flo«ling poirtl stalKs r~gisllr 6'~11 w!«ff

System ID byte

The System ID byte allows a user or operating system to distinguish which floating
point system is in use. The top bit (bit 31 of the FPSR) is set fOf ••rdw•re (ie fast)
systems, and clear for eoftware (ie slow) systems. Note that the System 10 is
read-only

The following System IDs are currently defined:

Sytitem

OldFPE
FPPC
NewFPE
FPA

Sylltem ID

&00
&80
&01
&81

Exception Trap Enable Byte

Each bit of the exception trap enable byte corresponds to one type of floating point
exception. which are described in the section entitled Cw11udati111 Exuplio11 Flags B!/11
on page6·160.

23 22 21 20 19 18 17 16

~1 ~~ lml~l~l~l~l
Figurt7'3.7 Eruption trap 111abl1 Dyll

If a bit in the cumulative exception fli!is byte is set as a result of executing a
floating point instruction, and the COI'responding bit is also set in the exception
trap enable byte, then that exception trap will be taken.

Floating point fHTJulator

:::::::::::::::::::::;::.:::-~~~-:::::::::::.~::::::: ::::::::::::::::: :::::::::::::::::::: ::::::·::::::::::::::::::.:.:::--:.::::::::::::.~~/.-:::::: :=:::::::::::::::::::: ·.·.·.·.·.·.·.·.·.·.·.·.-.::::::: ::::::::::::::>::::::;:::::;x;.:::::::::::l: .;.;:::::: ::::::::::::::::::::: :::::::::::::::;;;om::::::

Currently. the reserved bits shall be written as zeros and will return 0 when read.

System Control Byte

These control bits determine which features ofthe floating point system are in use.

15 14 13 12 11 10 9 8

FPSR I Re..ved I AC I EP I so I NE I NO I
Fifwrt 73.8 Swslllll CDIItrol iyll

By placing these control bits in the FPSR, their state will be preserved across
context switches, allowing different processes to use different features if necessary.
h~~~~con~~~~edb~~sys~~~~~

ND No Oenonnalised numbers
NE NaN Exception
SO Select synchronous Operation of FPA
EP Use Expanded Packed decimal format
J\C Use Altemati~~e definition fore flag on oompare operations

The old FPE and the FWC system beha~~e as if all these bits are clear.

Currently, the reserved bits shall be written as zeros and will return 0 when read.
Note that all b its (including bits 8 • 12) are reserved on FPPC and early FPE

systems.

ND- No denormallaecl umbers bit

If this bit is set, then the software will foroe all denormaHsed numbers to zero to
prevent lengthy execution times when deaHng with denonnaiised numbers. (Also
known as abrupt underflow or flush to zero.) This mode is not IEEE oompatible but
may be required by some pi'Oflrams for performance reasons.

If this bit is clear, then denormaHsed numbers will be handled in the normal
IEEE-<:onformant way.

NE- NaN exc:epdoa bit

If this bit is set. then an attempt to store a signalling NaN that involves a change of
format will cause an exception (for full IEEE oompatibility).

If this bit is clear. then an attempt to store a signalling NaN that involves a change
of format will not cause an exception (for compatibility with programs designed to

work with the old FPE).

6-159

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

I'

(

(
\

{

{
\

(

(

(

(

(

(

(

Floa~ng point stBtus rsglstllr

:-:·:-:·:-:·:·:·:;::::: :;:::::::::::::::::: ·.·,·.·: :::::::::::::::::::::::::::5:::::::::::::::::::::::::::::;::::: ·:·:·::::::::::::::::::: ::::..:-:=::::;:::::.:::::::.::::::::::::::::::::::::::::::::;:««-::»:·:1.-:·x-:»t:::;:.:::::;::.-::::::::::::~:·:•:;::»~~:::::::;:.;.;.:.;:::~::::::: .;::::::.:.::

6-160

SO - Select ~cllroao .. oper.tlo11 of FPA

If this bit is set. then all noating point instructions will execute synchronously and
ARM will be made to busy-wait until the instruction has completed. This will allow
the precise address o f an Instruction causing an exception to be reported. but at
the expense of Increased execution lime.

If this bit Is dear. then that dass of noaling point Instructions that can execute
asynchronously to ARM will do so. Exceptions that occur as a result of these
instructions may be raised some lime after the instruction has started. by which
time the ARM may have executed a number of instructions following the one that
has failed.ln such cases the address of the instruction that caused the exception
will be imprecise.

The state of this bltls Ignored by software-only Implementations, which always
operate synchronously.

EP - UN upuded p~~c:ked dedmal form.t

If this bit is set. then the expanded (four word) fonnat will be used for Packed
Decimal numbers. Use of this expanded fonnat allows conversion from extended
precision to packed decimal and back again to be carried out without loss of
accuracy.

If this bit Is clear. then the standard (three word) fonnat is used for Packed Decimal
numbers.

N:.. - Uee altenatlw deftaltloa for C flac oa compare operatto ..

If this bit is set. the ARM C nag. after a compare, is interpreted as 'Greater Than or
Equal ot Unordered'. This interpretation allows more of the IEEE predicates to be
tested by means of single ARM conditional instructions than is possible using the
original interpretation of the c nag (as shown below).

If this bills clear. the ARM C nag, after a compare, Is interpreted as 'Greater Than or
Equal'.

Cumulative Exception Fl-sas Byte

7 6 54 3 2 1 0

~1 ~~ lml~l~l~l~]
Figurt 73.9 Cu,.ulatiw llCUpt.ion flags byu

Whenever an exception condition arises. the appropriate cumulative exception nag
in bits 0 to 4 will be set to l . lf the relevant trap enable bit is set. then an exception
is also delivered to the user's program in a manner specific to the operating

Roaring point 8111ulator

::::::::: ::::;:::.::::::::: :::::::::: :·:·::::::::::::;~~MX~:::::=w~::::::::m~:=~~===:=:::::::::::::::::::::::::~::::::::::::w~:::::~:;:::::::~.:::~:.:::::::::::::::;;.~;;::::::::-::m(.:::'.:-:~x:.::.:::~;::;:x::~::

system. (Note that In the case of underflow, the state of the trap enable bit
detennines under which conditions the underflow nag will be set.) These nags can
only be deared by a WFS Instruction.

Currently, the reserved bits shall be written as uros and will return 0 when read.

IVO - la..JJd openadoa

The IVO nag is set when an operand Is Invalid for the operation to be performed.
Invalid operations are:

• Any operation on a trapping NaN (not-a-number)

• Magnitude subtraction of infinities, eg +-+-
• MulllplicalionofO by±-

• Division of 00 or -t ..

• x REM ywhere x =-ory =0
(REM is the 'remainder after floating point division' operator.)

• Square root of any number< 0 (but .J(-o) • -Q)

• Con~rsion to Integer or decimal when oo.oerflow, .. or a NaN operand make it
Impossible
If overflow makes a CO!IIIeiSion to Integer Impossible, then the largest positive
or negative Integer is produced (depending on the sign of the operand) and
IVO is signalled

• Comparison with e.xceptlons of Unordered operands

• ACS. ASN when argument's absolute value Is> I

• SIN, COS, TAN when argument Is±-

• LOG. LCN when argument is~ 0

• POW when first operand is< 0 and second operand Is not an integer, or first
operand is 0 and second operand Is~ 0

• RPW when first operand Is not an Integer and second operand is< 0, or first
operand is ~ 0 and second operand Is 0.

OVZ- dhflloa by aero

The DVZ nag is set If the divisor is uro and the dividend a finite. non-zero numbet
A correctly signed infinity Is returned If the trap Is disabled.

The nag is also set for LOC(O) and for LGN(O). Negati~ Infinity is returned if the
trap is disabled.

6-161

Floating point status reglstM

k*~;.w:.~:::::::::~::~::::::y.::;~:::::::::::::~::::::~:::::-.::~.:::::::::::::::::::::::::::~:~w:::::;:::::::::::~::;;:::::::::::::::::::~:m:::::::::::::::.x<::.x::~::::::::::::::::::::::: .. ~:::::::»X::::~:::::::::::::::.:~-w:::::::~-:~~-=;:;·:

6-162

Of'L - O¥erftow

The OFL f1aa Is set whenever the destination format's largest number Is exceeded
In maanftude by what the rounded result would have been were the exponent
ranse unbounded. As overflow is detected after rounding a result. whether
overnow occurs or not after some operations depends on the rounding mode.

If the trap is disabled either a correctly signed Infinity Is returned. or the format's
largest finite number. This depends on the rounding mode and noatlng point
system used.

UFL- .. clertlow

'!Wo correlated eYents contribute to underflow:

• TutU.m -the creation of a tiny non-zero result smaller in magnitude than the
format's smallest normalised number.

• Usl cf ·~"¥-a loss of accuracy due to denormalisation that • ., be areater
than would be caused by rounding alone.

The UFL flag is set in different ways depending on the value of the UFL trap enable
bit. If the trap is enabled. then the UFL nag is set when tininess is detected
regardless of loss of accuracy. If the trap is disabled. then the UFL nag is set when
both tininess and loss of accuracy are detected (in which case the INX flag is also
set); otherwise a correctly signed zero is returned.

As underflow is detected after rounding a result, whether underflow occurs or not
after some operations depends on the rounding mode.

INX - I•eaact

The INX flag is set i f the rounded result or an operation is not exact (different from
the value computable with Infinite precision). or overflow has occurred while the
OFL trap was disabled. or underflow has occurred while the UFL trap was disabled.
OFL or UFL traps take precedence over INX.

The INX flag Is also set when computing SIN or COS. with the exceptions ofSIN(O)
andCOS(I).

The old FPE and the FPPC system may differ in their handling of the INX flag.
Because of this inconsistency we recommend that you do not enable the INX trap.

Floating point emulstor

:=:·::::::::::·:::·: ·····:·:::::::~;;.;:.mr .. ;::::::::::::;~::;:.x.;:$:=::;:;:::::::x.x--:::::::-:::·:.::::::::::::::::::::~:::::::::::::~ .. ;:::::::::::::>.«4"..::::::::::::;:;:::m::~=:=:~:::::::;-x-::::::: :;:: :::·:::::::::::::::::::::::::::::::::::::m~:;:-~::;w,::::

Floating Point Control Register
The Floating Point Control rqister (FPCR) may only be present in some
implementations: It is there to control the hatdware in an implementation specific
manner. for example to disable the floating point system. The user mode of the
ARM Is not permitted to use this register (since the right is reserved to alter it
between implementations) and the WFC and RFC instructions will trap if tried in
user mode.

You are unlikely to need to~ the FPCR: this infonnation is principally given
for completeness.

The FPPC ayatem

The FPCR bit allocation in the FPPC system is as shown below:

31 8 7 8 5 • 3 2 1 0

F~ I - I PR lsBdlsenEj -I AS I EX IDA I
Bit

11·8
7
6
5
4
1
2
I
0

Fifwn 73.10 FPCR iilcil«clio11 i11 1M FPPC l!fiU,.

PR
SBd
SBn
SBm

i'S
EX
DA

Me•••••
Reserved - always read as zero
Last RMF Instruction produced a partial remainder
Use Supervisor Register Bank 'd'
Use Supervisor Register Bank ·n·
Use Supervisor Register Bank ·m·
Reserved- always read as zero
Last WEl2206 exception was asynchronous
Floating point exception has occurred
Disable

Reserved bits are Ignored durina write operations (but should be zero for future
compatibility.) The reserved bits will return zero when read.

6-163

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Floating Poinr Control R~~gistw

i:'-::.:.::::::»:-:.:·:·:::.:·:·:·:·:·:·:-::;.;::::::-:-:--..o-)):M:;XO»:«:.:·:·:·:·:·:::: ;.;:;:::: :;::::::::::::::::::::.:·:·:·:·:·;;;.y,:::.:·x·:·:·:·:·:·:·:·: .;:;::::::::::::::::: :::::::::::::::::::.;.;.:~~*'.Y:·:-:~: :::;.;.;:::::::::::::::::::::::;.;.;:::;:;::::::.:·:·:·;;~:

6·164

The FPA system

In the FPA. the FPCR will also be used to return status lnrormation required by the
support code when an lnstrudion is bounced. You should not alter the register
unless you really know what you·re doing. Note that the register will be read
sensitive: efta l'etldl•f tile l'efhter IIIIIJ cb•p Its ftlae, wttlt dlMttrou
co•eeq•e•ces.

The FPCR bit allocation in the FPA system is pro~t.lo1111lly as rollows:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 18

FPCRIRul - lte IMoleol - I OP 1-1 s1 I
15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0

(oonrd)IOPI os lseiAeiRe leNIPRI AM IOPI s2 I
Bit
31
30
29
28
27
26
25.24
23·20
19
18-16
15
14-12

II
10
9

RU

IE
MO
EO

OP
PR
Sl
OP
DS
SB
AB
RE

Figl.rt B. I I FPCR 6italloulio" i" IM FPA svsttlll

Mnnlnf
Rounded Up Bit
Reserved
Reserved
Inexact bit
Mantissa overflow
Exponent overflow
Reserved
AU operation code
AU precision
AU source register I
AU operation code
AU destination register
Synchronous bounce: decode (R 14) to gel opcode
Asynchronous bounce: opcode supplied In rest of word
Rounding Exception: Asynchronous bounce occurred during

rounding stage and destination register was written
8 EN Enable FPA (default Is off)
7 PR AU precision
6, 5 RM AU rounding mode
4 OP AU operation code
Hl S2 AU source register 2 (bit 3 set denotes a constant)

Note that the SB and AB bits are deared on a read or the FPCR. Only the EN bit Is
writable. All other bits shall be set to zero on a write.

FIOB/ing point 9f11ukttor
:::¥.-»::;:;:;:;:;:;:;~m:;::~:-::;c;.;::.:·:·:·:·:=:;;::~;~~;:;:;:;::o:.;x .. -:.:;::::::;.~.(.::;:;:;:;.:«:::;:;:;:;:;::::;;:::::::::;~;x-:-:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::::::~~;;:.; .;:;.;.;.;:;:;;;:::.!:;:;:;:;:;:::::::::::::::~;:;:~;:;::':':W::

The instruction set

Floating point coprocessor data transfer
op{condltlon}prec Fd,addr

op is LDF ror load. STf ror store

cond1 tlon Is one or the usual ARM cond itions

prec Is one ohhe usual floating point Jlfedslons

addr is (Rn]{, t offset} or {Rn, l offset](!J
({I J tr Pfesenl Indicates that write-bad Is to take place.]

Fd Is a flollllna point register symbol (defined via the FN directive).

Load (LOF) or store (Sll') the hlah predslon value from or to memory. us ina one of
the flve memory ronnats. On store. the value Is rounded ustna the 'round to
nearesf rounding method to the destination precision. or Is precise ir the
destination has surfldent predslon. Thus other rounding methods may be used by
havlna previously applied some suitable floating point data operation; this does
not compromise the requirement of'roundlng once only', since the store operation
Introduces no additional round ina error.

The offset is in words from the address given by the ARM base register. and Is In the
range -1020 to + 1020. 1n pre-lnde.led mode you must explldtly specify write-back
to add the offset to the base reaisler; but in post·lndexed mode the assembler
rorces write-bad ror you. as without write back posl·lndexlng is meaningless.

You should not use Rl 5 as the base register lrwrfte-back will take place.

Floating point literals

LDFS and LDFD can be alven literal values Instead cl a register relative address,
and the Assembler will automatically place the required value in the next available
literal pool. In the case of LDFS a single precision value Is placed. in the case of
LDFD a double precision value Is placed. Because the allowed orrset range within a
LDFS or LDFD instrudfon Is less than that ror a LOR Instruction (-1020 to +1020
Instead or -4095 to +4095). It may be necessary to code LTORC directives more
rrequently if floating point literals are being used than would otherwise be
necessary.

Syntax: LDFx Fn, - floating point number

6·165

Floating point coprrx;es$or multiple data transfer

::::::::::::::::::::::::::;.;.:::::·:~::.;::::;:::::::::::~:::x::::::::;x~:t::::::::*:z:."$::9-:::::~:®:::::::::::::::;::::.r.::;;:::::::::::::::::::::::::::::::=::::::::~-:::::::::::::::::::;x.~::*-:w.:~::-m ... -::::::::::::::::::::::;::::~::::::::::::::::x~:

Floating point coprocessor multiple data transfer

6·166

The LFM and SFM multiple data transfer instructions are supported by the
assemblers. but are not provided by the old FPE or the FPPC system. Executi na
these instructions on such systems will cause undefined Instruction traps, so you
should only use these instructions in software intended for machines you are
confident are usina the new FPE or the FPA system.

The LFM and SFM Instructions allow between I and 4 Ooatlna point reaisters to be
transferred from or to memory in a sinale operation: such a transfer otherwise
requires several LDF or STF operations. The multiple transfers are therefore useful
for efficient stacking on procedure entry/exit and context switch ina. These new
Instructions are the preferred way to preserve exactly reaister contents within a
proaram.

The values transferred to memory by SFM occupy three words for each rqlster. but
the data format used Is not defined. and may vary between Ooatina point systems.
The only leaal operation that can be performed on this data is to load I t bad Into
Ooatina point reaisters using the LFM instruction. The data stored In memory by an
SFM instruction should not be used or modified by any user process.

The reaisters transferred by a LFM or SFM instruction are specified by a base
Ooatlna point register and the number of rqisters to be transferred. This means
that a reaister set transferred has to have adjacent reaister numbers. unlike the
unconstrained set or ARM rqisters that can be loaded or saved usi ng LDM and
STM. Float ina point rqisters are transferred In ascend ina order. register numbers
wrapplna round from 7 to 0: eg transferring 3registers with F6 as the base register
results In registers F6. F7 then FO beinQ transferred.

The assembler supports two alternative forms of syntax, Intended for aeneral use
or Just stack manipulation:

op (cond1t1on} Fd,count,addr

op(condition}stacktype Fd,count,(Rn] (!}

op Is LFM for load. SFM for store.

con di t 1 on is one or the usual ARM ronditlons.

Fd Is the base Ooatina point realster, specified as a Ooalina point
reaister symbol (defined via the FN directive).

count Is an Integer from I to 4 specifyina the numberofrqlsters to be
transferred.

addr is (Rn) { , l offset) or (Rn, foffset) (I}
((! } if present indicates that write-bad is to take place) .

Roaring point emulator
;:;:::;:;:;:;:;:;:;:;:; ·:·:·:·:-;:;:;:;:;:;:;:;.:-:·:·:·:·:· :·:·:·:·:·:·:···:·:·:·:·:=:: ;:;:;:;:;:;:;~.;~::~::;:;:;:;:;:;:;:;:;:;:;:;.;.:-:«~::::f(;::;::::::::~·~::::;;:::::~::::«;:.;o;;::: :;:;:;:;:;:;:;:;:;:~:::;:::;:;;::;:;::~::..-,);:;::::::.;. ;:;.;.;.;.;:;.·!·'•'

stacktype Is FDorEA. standing for Full DescendinaorEmptyAscendinQ. the
meaninas as for LDM and STM.

The offset (only relevant for the flrst, aeneral, syntax above) is in words from the
address Qiven by the ARM base rqister, and Is in the ranae -1020 to+ I 020. In
pre-indexed mode you must explicitly specify write-back to add the offset to the
base reQister; but In post-Indexed mode the assembler foroes write· back for you, as
without write back po&t· lndexlna Is meaninaless.

You should not use Rl5 as the base realstet If write-back will take place.

Examples:

SFMNE F6, 4, (RO) ;if NE is true, transfer F6, F7,
;FO and Fl to the address
;contained in RO

LFMFD F4 ,2, (Rl3) I
LFM F4 ,2, (Rl3), 124

;load F4 and F5 from FD stack -
;equivalent to same instruction
;in general syntax

Aoatlng point coprocessor register transfer
FLT(condition}prec(round}
FLT(condition}prec(round}
FlX(condit1on}(round}
WFS(condition}
RFS(cond1tion}
WFC(cond1tion}
RFC (condition}

Fn,Rd
Fn, lva lue
Rd,Fn
Rd
Rd
Rd
Rd

(round}
Rd

Is the optional round ina mode: P. M or Z: see below.
Is an ARM reaister symbol .

Fn Is a lloatina point realster symbol.

The value may be of the followlna: o. I. 2. 3. 4. 5. 10. 0.5. Note that these values
must be written precisely as shown abcwe. for instance '0.5' Is correct but · .5' is not.

Fl..T lnteaer to Floatina Po4nt Fn :~ Rd
FIX Floatlna point to integer Rd := Fm
WFS Write Floatlna Point Status FPSR := Rd
RFS Read Floatina Point Status Rd := FPSR
WF'C Write Floatina Point Control FPC := R
RFC Read Floatina Point Control Rd :• FPC

Supervisor Only
Supervisor Only

6·167

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(
\

(

(

(

(

(

(

(

(

c

Floating point CCJPfOC9SSOf data operations
~::: .;.;::::-: .;.::::::::::: :::::::::::::::;.:·:=:=:::·:·:·:;:.:·:·:·:·:-:·:·:. :-:=::::::::::::::::::::::::::::::::~::.::-:::;:::.:·:=:·:·: ·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-:::.:::::::::::::: :::::::::::::::::::;;:::::::·:·:·:·:·:·:..:.: ·:·:·:·:·:-:::::::::::::::::::::.:::::::-:::::::::::-::j:::::::::::::::·:~~:::

The rounding modes are:

Mode Letter
Nearest (no letter required)
PI us Infinity?
Minus infinityM
Zero Z

Floating point coprocessor data operations
The formats of these Instructions are:

blnop{condition}prec{round}

blnop{condition}prec{round}

unop{condltlon}prec{round}

unop{condition}prec{round }

F'd, F'n , F'm

F'd, Fn, #value

F'd, F'm

F'd, #value

6-168

blnop is one of the binary operations listed below
unop is one of the unary operations listed below
F'd is the FPU destination register
Fn is the FPU source register (binops only)
Fm is the FPU source register
I value is a constant. as an alternative to Fm. It must be 0. I. 2. 3. 4, 5. 10 or

0.5. as above.

The binops are:

ADF
MUF
SUF
RSF
DVF
RDF
POW
RPW
RMF

FML
FDV
FRO
POL

Add
Multiply
Sub
Reverse Subtract
Divide
Reverse Divide
Power
Reverse Power
Remainder

Fast Multiply
Fast Divide
Fast Reverse Divide
Polar angle

Fd :='Fn+Fm
Fd := FnxFm
Fd :=Fn - Fm
Fd := Fm-Fn
Fd :=FniFm
Fd := Fm!Fn
Fd := Fn to the power or Fm
Fd := Fm to the power o r Fn
Fd := remal nder of Fn I Fm
(Fd := Fn -Integer value of (Fn/Fm) x Fm)
Fd ::Fn x Fm
Fd :=Fn/Fm
Fd :=Fm/Fn
Fd := polar angle of Fn. Fm

Floating point emulator
~:::.:::: ::::::::::.:::: ::::::::::::~;-:;~:=%::-:-:::=:·:·=~·:-:::::.;;;:~~:::-::~:=~:=::::*~<-=~~:::::::?~=:"!fl~~mm~;:::~~=:::::::::--c::::::::::::.~:=:::::::::::::::::::~:=:~=::-::::x~::-~®.

The unops are:

MVF Move
MNF Move Negated
ASS Absolutevalue
RND Round to intearal value
sar Square root
LOC Logarithm to base 10
LCN Logarithm to base e
EXP Exponent
SIN Sine
COS Cosine
TAN Tangent
ASN ArcSine
N::S Arc Cosine
ATN Arc Tangent
URD Unnormalised Round
NRM Nonnallse

Fd := Fm
Fd :•-fm
Fd := ASS (Fm)
Fd := integer value of Fm
Fd ,,. square root d Fm
Fd :=logFm
Fd :=lnFm
Fd ,,. e to the power of Fm
Fd := sine of Fm
Fd := cosine of Fm
Fd :• tangent of Fm
Fd :• arcsine of Fm
Fd := arocoslne of Fm
Fd := aretal18ent d Fm
Fd := integer value of Fm (may be abnormal)
Fd :• normalised form of Fm

Note that wherever Fm is mentioned. one of the floating point constants 0. I . 2. 3.
4. 5. 10. or 0.5 can be used Instead.

FML. FRO and FDV are only defined to work with single precision operands. These
'fast' Instructions are likely to be faster than the equivalent MUF. DVF and RDF
instructions. but this Is not necessarily so for any partlrular implementation.

Rounding Is done only at the last sla41e of a SIN. COS etc- the cakulations to
compute the value are done with 'round to nearest' using the full working
precision.

The URD and NRM operations are only supported by the FPA and the new FPE.

Floating point coprocessor status transfer
op{condltion}prec{round} Fm, Fn

op Is one or the following:

CMF
CNF
CMFE
CNFE

Compare floating
Compare neaated floating
Compare floating with exception
Compare negated floating with exception

compare Fn with Fm
compare Fn with -Fm
compare Fn with Fm
compare Fn with - Fm

6-169

Finding out more ...
:<~~.sm~~:;o;::::::;.;.;:;.::~:::::::::::::::>:>i::::::::-;::::::..~::::::::::::::~::::::::::::--x:<:--:-.:::::>::::::::::;::~:::::::::::::::o::::.::::r-::::::.::::::::;::::::~::;:;::::::;:;:::::::::;:;: :::::::::::::::::.s::::::::::;:;~::::-:~ .. "<.;«;.:::::::::::::~::::::::~x.w:

(condJ.t1on J an ARM condition.

prec a precision letter

(round} an optional roundins mode: P. M or Z

f'm A Ooatins point register symbol.

F'n A Ooatins point resister symbol.

Compares are prcwided with and without the exception that could arise if the
numbers are unordered (ie one or both of them is not·a-number). To comply with
IEEE 754, the CMF instruction should be used to test for equality (ie when a BEO
or BNE is used afterwards) or to test for unorderedness (in the V Oas). The CMFE
Instruction should be used for all other tests (BG't BGE. BLT. BLE afterwards).

When theN:. bit in the FPSR is clear. the ARM nass N. Z. C. V refer to the followins
after compares:

N
z
c
v

Less than
Equal
Greater than or equal
Unordered

ie Fn less than Fm (or-f'm)

ie Fn sreater than or equal to Fm (or -fm)

Note that when two numbers are not equal. Nand Care not necessarily opposites.
If the result Is unordered they will both be dear.

When theN:. bit in the FPSR is set. the ARM nass N. Z. C. V refer to the followins
after compares:

N
z
c
v

Less than
Equal
Greater than or equal or unordered
Unordered

In this case. Nand Care necessarily opposites.

Finding out more ...

6-170

Funher details of the noati ns point I nstructlons (such as the format of the bit fields
within the Instruction) can be found in the N.om RISC M"'illl/a,.iiiJ 0.11 M111wcl
VLSI Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ. USA:
ISBN Q-13-781618-9and in the Amnt Asll .. ~lfrRdasc2 manual.

Floating point em ulster
;:;:;:;:;:;:;:;:;w.::=:;.:;;:::;:;:;:;:;::~=:::::-:·::::;:;:;.;-;.::;.;:;.;:;:;:;:;.;.;~-::::x::::;:.::;;:::::::;:;:::::;:.;:;:;:;:$;:;:;:;:;:;.;.;:;:;:;.;.;.;!;-»:;;:;::~-:::.::;:;:;:;:;~.;:;;:::::::--:>x:.::;:;:;:;:;:;;:.-z.::::.::::::;:::::::::;:;:;;:.;. ;:;:;:;:;:;:;:::::::: :;:;:;:;:;:;:;:;:;:::,;;:::;;:;:;:;.;:;.;-;:;:.

SWI Calls
FPEmulator Version

(SWI &40480)

Returns the version number of the noatins point emulator

On entry

On exit
RO =BCD version number

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode
Processor is In SVC mode

Re-entrancy
Not defined

Use

This call returns the version number of the Ooatins point emulator as a binary
coded decimal (BCD) number in RO.

This SWI will coninue to be supponed by the hardware expansion.

Related SWis
None

Related vectors
None

6·171

(

(

(

(

(
'

(

(

(

(

(

(

(

(

(

(

(

I Ill

(

(

x~:;<:;:::>:.::>X':·:':' ;.;:;.;.;:;:::: :;:;.;:w,;...m~;.;.;:;:;.;.;.;.;o:v:.:::: ;:::::::::::::;:;:;:;:;:;:;.;.;.;.-;;.;:;:;:;:~;:;<;:<::<:;:;:;:f~:<::<:>:':':':':':':.; ,,,.;;.;>;:·:':·:·:~»~~ ;.;.;.;.;.;;:::: :;:;:;::<'>'N ::;:;:;:;:,.,.,,.,.,.;.:«o>l<·»:' (

74 ARM3 Support
~0:$;:;:~ ::;:;:;:;:;:;:: :::::::::~::::;x:~~::::~:::::;~~~:::::::;:;:;:;:;:;:;:;:;::~.:~:.=-JX!'~':>;::;:).~::~:;:;:;:;:::;;:::::::::::::;:;;:;;;:;~::s::::x:::::::::::::~:::*l:l*

Introduction and Overview
The ARM3 Support module provides commands to control the use of the ARM3
processor's cache. where one is fitted to a machine. The module will immediately
klllltself if you try to run It on a machine that only has an ARM2 processor fitted.

SUmmary of facilities

Notes

1Wo • Commands are provided: one to configure whether or not the cache Is
enabled at a power-on Of reset. and the other to Independently tum the cache on
or off.

There is also a SWI to turn the cache on or off. A further SWI forces the cache to be
Oushed. Finally. there is also a set oCSWis that control how various areas of
memOfY interact with the cache.

The default setup is such that all RJSC OS pqrams should run unchanged with
the ARMJ's cache enabled. Consequently. you are unlikely to need to use the SWis
(beyond. possibly. turning the cache on Of off).

A few poorly-written PI'Oir&ms may not work correctly with ARMJ processors.
because they make assumptions about procesSOf timing or dod rates.

This module is not available In RISC OS 2.0.

Finding out more
For more details of the ARMJ processor. see the lvmn RJSC Ma,iint{a~t~il!J 0.1&

. M•~wal. VLSI Technology Inc. (1990) Prentice-Hall. Englewood Cliffs. NJ. USA: ISBN
o-13-781618-9.

6-173

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

SWI C811s
;:::::::;:;:;:;:::;:;:;::.x·:.:·:·:: ;:;:;:;:;:;;:·:·:-»WM::.:.$:·X·:.:·:.:·:·:·:·:;;:::::::::::;.;:;:;:;::::::::::::.::;:;:;.;.;:;:;.;.;-:y:.;.:;;:;.;.;:.;.;:;: ;:;.;:-;:;.;:;:;.;. ;.;.;.;.;.;;;::·:·:·:-::;;; :;:;::~::::.:::w$;:.~~;:-;:-;.;.;:;.;.;.;~:;:;;:;:;:;:;

SWI Calls

6-174

1\Jrns the cache on or off

Cache_ Control
{SWI &280)

On entry
RO= XOR mask
Rl =AND mask

On exit
RO =old state (0 =t cache ins was disabled, I =t cacheins was enabled)

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entraney

Use

Not defined

This call turns the cache on or off. Bit 0 of the ARM:J's control resister 2 is altered
by being masked with R I and then exclusive ORd with RO: ie new value= ((old
value AND R I) XOR RO) . Bit I of the control resister Is also set. so the ARM l does
aot separately cache accesses to the same address for user and non-user modes.
(To do so would dejjrade cache performance. and potentially cause cache
Inconsistency). Other bits of the control register are set to zero.

Related SWis
None

Related vectors
None

ARM3 SUpport
;.;::~=:~:::::>::: ;:;:;:;:;:;:;:;:;::::::>:~::>~::::::::::-::-::;.:~::::::;:;:;:;::~<:::~:V.$:>:;~-:;:::::;;:::;:;:-;:-;:::::::;:;:;:;:;:::;;~;::::~::::o::a~.;:::-::;::::::::;:;: ;:;:;:;:;:;:;:;:::::r~::;;;:::;.;; :-:·:·:·:-:.:-;.:: ;:;:;.::::: ;:;:;:;:;:;:;:;:::::&~:::

Cache_ Cacheable
{SWI &281)

Controls which areas of memory may be cached

On entry
RO =XOR mask
RI • ANDmask

On exit
RO • old value (bit • set =t 2M8ytes starting at IIX2M8ytes are cacheable)

Interrupts
Interrupts are disabled
Fast Interrupts are enabled

Processor mode
Processor Is in SVC mode

Re-entrancy

Use

Not defined

This call controls which areas of memory may be cached (le are u~•6r,). The
ARMrs control resister :J Is altered by befns masked with Rl and then exclusive
ORd with RO: ie new value • ((old value AND Rl) XOR RO). If bit~ of the control
resister is set. the 2M Bytes starting at IIX2M8ytes are cacheable.

The default value stored Is &FC007CFF. so ROM and Jo&lcal non-screen RAM are
cacheable. but 110 space. physical memory. the RAM disc and Jo&ical screen
memory are not.

Related SWis
Cache_Updateable (page6·176). Cache_Disruptlve (pase6-177)

Related vectors

None

6-175

Cach6_ t..pdateab/6 (SWI &282}

::::::: ::::::::::::::::::::::::::;:::;:.:::::::::::·:·:·:·:·:·:·:-:::·:·:·:·:·:·:=:·:-:;:-:.:-::::: :::: :=~:::·: ::::::::::~<« :~~:«<:-,.;:o::::w-;~~::~::::::::::::::x.:-."-:~ .. >»»-:.·:::::.::::::: :::::::::::::::::::::::::::::=-::;;::::: :::::f..»S:::.:::.m::::;::·:····.

6-176

Cache_ Updateable
(SWI &282)

Controls which areas of memory will be automatically updated in the cache

On entry

RO =XORmask
Rl :AND mask

On exit

RO z old value (bit 11 set= 2MBytes startlfli at 11X2MBytes are cacheable)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

R&-entrancy

u ..

Not defined

This call controls which areas of memory will be automatically updated in the
cache when the processor writes to that area (ie are w,Mar.bll). The ARM3"s control
reglster4 is altered by being masked with Rl and then exclusiveORd with RO: ie
new value= ((old value AND R I) XOR RO). If bit 11 of the control register is set. the
2MBytes startina at 11X2MBytes are updateable.

The default value stored Is &00007f'FF. so Joaical non-screen RAM is updateable.
but ROMICAMIDAG. VO space. physical memory and logical screen memory are
not.

Related SWis

Cache_Cacheable (page 6-175). Cache_Disruptlve (paae 6-177)

Related vectors

None

ARM35upport

~=·:=: ·:-:::::.:::::::::::::::::::::::mw..:-»6:=:·:·:·:·:·:·:·:·: ·:·:·:·:·:·:·:·:·:·:·:-:::: ::::::::::::;:;::o~:-:::::.:•:·:;::::x-::::::::~:=:=::::::::-:;~:::.;.~::::::~:~<»x::--:.::::::::::::::::::::::::.:-:::·:=:-:=:=:·:-:::::::.~-.:::;:-:·:·:·;

Cache _Disruptive
(SWI &283)

Controls which areas of memory cause automatic Oushing of the cache on a write

On entry

RO =XOR mask
Rl =AND mask

On exit

RO =old value (bit 11 set= 2MBytes startifli at 1DC2MBytes are di.sruptive)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor i s in SVC mode

R&-entrancy

Use

Not defined

This call controls which areas of memory cause automatic Oushing of the cache
when the processor writes to that area (ie are 41isrwptM). The ARM rs control
r~ister5 is altered by beifli masked with Rl and then eiiCiusiveORd with RO: le
new value= ((old value AND RI)XOR RO). Ifbit 11 ofthecontrol register Is set. the
2MBytes startifli at 1DC2M9ytes are updateable.

The default value stored is &f'OOOOOOO. so the CAM map is disruptive, but
ROMIDAG. VO space. physical memory and logical memory are not. This causes

·· automatic Oushing whenever MEMC's page mapping is altered. which allows
programs written for the ARM2 (induding RISC OS Itself) to run unaltered, but at
the expense of unnecessary Oushifli on paae swaps.

Related SWls

Cache_Cacheable (paae 6-175). Cache_Updateable (paae6-176)

6-177

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(
Csche_DisrupliVs (SWI &283}

;:;:;:;:;:;:;:;:;:;:~~·:~~::;:;:;:;:;.~::Y.<o$~;:;:;:;:;:;:;:;:;:;:;~::::~:>:=~ .. .;.~::*'<*"..W::::;:;:;:;:;:;:;::;~:>$::::::::::;:;:;:;:;:;::~:: ;.;;::;:;:;:;:;:;:;:;:;::-:-;.~::::;:;:;t:;:·~:;;:::::::::::~ .. ;:::::•::.::~;:;:;.;.x:-:.:·:·:~;;;:;:;;;:;:;:;:;:;.;;;~:;:;~~«-»::;:;:;;;:;:;:;:;

Related vectors

(None

(

(

(

(

(

(

(

(

(

(
6-178

(

(

ARM3 Support
;:;:;:;::-~:;.:-;:.::;:; :;:;:;:;:;:;:;:;~~~:;;::;:;~:~;:;;::;~:::;:;.;.;:;:;::*=--<=·::::;:;:;.:v$$:!;!;~:X:X::;:;~:;:;:;:~;~:::::;:~::::::~::;:;:;::::::::~::::::~:~:::::;:;:;: ;:;:;:;::;;: ;:;:;:;:;:;:;:;:;:::::: :;:;:;:;:;:; :;:;:;:; :;:;:;:;::::::::::::::::::

Flushes the cache

On entry

On exfl

Interrupts

Interrupts are d~bled
Fast interrupts are enabled

Processor mode

Processor Is In SVC mode

Re-entrancy

Not defined

Use

Cache _Flush
(SWI &284)

This call flushes the cache by wrftlna to the ARM3's control reaister I.

Related SWis

None

Related vectors

None

6-179

· eommands
m;:;:;:;.:<-:-:~:.:·:·:.:·;.. .. :.; ::;.:::;~*:::::&::o:::-;::::-i:::::::::::::::x:~r-::::::~.~~:::.:·:·:·:·:·:·:::=:::-:.:.::.:.:.:·:·:·:;:.:·:·:=::::::::::::::::::::~:::::::::x:::::~::::t::;~.:;m;r.:::::::::::::::::::::-:--::.:~:-:~:-::·:=:~::::::::::::::~::0:9:::;;;::~:::•:<:>:«

*Commands

6-180

*Cache

1\Jms the cache on or off. or gives the cache's current state

Syntax

•cache (OniOff)

Parameter•

On or Off

Uae

•cache turns the cache on or off. With no parameter, it gives the cache's current
state.

Example

•cache Off

Related command•

·configure Cache

Related SWia

Cache_Control (page 6-174)

Related vectors

None

ARM3 Support

:::::::;:.:-:.:-:-:·:·:-:::::::. :::::::::::::::::.;;:::-:::::;:::::::·:·:-:·m·:·:·~:.:·:=:·:·:=:::::::::::::::::::::::::::::::.:::::;:~~~.:::::::~:::::::::::.:;:.;::.;::::::::::::::::::~;.~~:-:·:·:·:·:·:·:·:·:::: :::::::::::::::~:::::::~.:;:::::::;:~:-:-»»>:

*Configure Cache

Sets the configured cache state to be on or off

Syntax

•configure Cache On iOff

Parameter•

On or off

Uae

•c onfigure Cache sets the confi8ured cache state to be on or off.

Example

•Configure Cache On

Related commands

·eache

Related SWia

Cache_ Control (paee 6-174)

Related vectors

None

6-181

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

;:y_.:;:;:::::.::::::r.-::::::M<;-:.y,.:.:.;;~~:·:·:·:·:«<·:·:-x:.-~x:::;:; :;:;:;:;::::;.::;~:;:;::::;:.~~~=~:;:;:;:;:;:::::::~;:;:;::~:::::::::::::--:;:o:;;.;:::;:;.;:;:;:;:;:; :;:;:;:;:;::::::~~:::·:·:·:v .. ::::;:;.;:;:;:;:;:;:;::::.::::::=::::::-:~:~:-~...;«:::::.::::;:;:;

75 The Shared C Library
*'.x::x::::~:::::~::::~:;:::::;:;:::;:;i;:.,~~:;;;:::::~~::::::~~m-AAW::::::::::=:~=:=:=>--®"':~~~;:::::::::;.-=:=:=:=:=:=:=:=:=:=:=X$~~~=:•:::::::::::::::::::::::::=::::::::::::~::::::::m:::x:::Wm

Introduction
The shared C library Is a RISC 05 relocatable module (called SharedCLibrary)
which contains the whole of the ANSI C library. It Is used by many programs written
in C. Consequently, It saves both RAM space and disc space.

The shared C library Is used by the RISC 05 applications Edit. Paint. Draw and
Configure.

Generally you will use the shared C library by linking your programs with the library
stubs, however, you may also call it directly from assembly language by means of
SWis provided by the shared C library (you would normally only want to do this If
you are implementing your own library stubs for your own language run time
system (RTS)).

6·183

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

(

{

(

(

(

(

(
\

(

(

(

\,

c

OvBIVIBw
~:::::::::.:-:::::::::::::=:..:<:::::~:::::-:~·~::::~~:.x::.*:x:~::::::::::::::::::::::::::::::: :::::::::: ::::::::::::::::::::~~::~~~.c::>::::~::::::::::::::~m:;:::::::::::::::::::::::::::~::-.:?~:·:.:·:o:-:=:·:=::::;.~;:::=.%;;;:::::::;«;~:::::::~~:::»-x::::::::

Overview

How to use the C library kernel

6-184

C library atructure
The C library is organised into three layers:

• at the centre is the language-independent library kernel providing basic
support services;

• at the next level is a C~pedfic layer providing compiler support funct.ions;

• at the outermost level is the actual C library.

A full description of all the C library functions Is given in the section entitled C
li6n ry fo"•"io"s on page 6-221.

The library kernel
The library kemelis designed to allow run-time libraries for different languages to
co-reside harmoniously. so that Inter-language calling can be smooth. It provides
the following facilities:

• a generic. status-returning. procedural interface to SW!s

• a procedural interface to commonly used SWis. arithmetic functions and
miscellaneous functions

• support for manipulating the IRQ state from a relocatable module

• support for allocating and freeing memory in the RMA area

• support for stack-limit checking and stack extension

• trap handling, error handling. event handling and escape handling.

A full description of all the library kernel functions Is given In the section entitled

Libr• ry u rovl fu"ttio"s on page 6-208.

Interfacing a language run·tlme ayatem to the Acorn library kernel

Describes how to write your own language Run 1lme System which uses the shared
C library.

Th9 ShBr9d C Library

::::::: :::::~:::::::::::::::~:::.::::::::~:::::::: ::::::::::::::::::::::::::::: :::::::::::::=w::~:::::~~%::::~~~:::::::::::::::::::::~w::::%::::m~::::m~:=:=:~::::;::::;::::: ::::::::::::::::: :::::::::;m::::::~:::r~..::-m::::::::;

How the run-time atack Ia man~~ged end extended

M••-.emellt

The run-time stack consists or a doubly-linked list of stack chunks. Each stack
chunk Is allocated by the storage manager of the master language (in a C program
allocating and f~lng stack chunks Is accomplished using malloc (l and
free()).

SUlek exte••o•
1Wo rypes or staci e.rtenslon are provided:

• PascaVModut.2 style

• C~tyle

Calling other programs from C
Describes how to call other programs and built-In RlSC OS • commands from C.

Storage management
Describes how the storage manager manages a heap and how you may best make
use of the storage manager.

Handling host errors
Describes how to lind out what operating system error a call made via one of the
kernel functions caused.

6-185

T8dlnlcal d9tails

~~«<-:>»»:;:;:~.:~x--c:::::::;:;:~;:;:;:;:;:;:;:;:;:;::::-.~::::;:;:;:;~~::;::;:::::::::::::;:;:;:::~;::.:;:;:;:;:;:;:;:;:;:;:;:;:m::::;::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;:;::~·:-.~X:~;:;:;:;:;:;:;:;:;:;:;:;.;~:;::~~$$$;:;:::::;$;:;:;:;~-¢o;

Technical details
The shared C library module Implements a single SWI which Is called by code In
the l lbr.~ry stubs when your proar.~m linked with the stubs starts running. That SWI
call tells the stubs where the libr.~ry is in the machine. This allows the vector of
library entry points contained in the stubs to be patched up In order to point at the
relevant entry points in the libr.~ry module.

The stubs also contain your private copy of the library's static data. When code In
the library executes on your behalf. it does so using your stack and relocates Its
accesses to its static data by a value stored in your stack-chunk structure by the
stubs Initialisation code and addressed via the stack·limit register (this Is why you
must preserve the stack·limit register everywhere If you use the shared C library
and call your own assembly la!llluaae sub-routines). The compilefs register
allocation strategy ensures that the real dynamic cost of the relocation Is almost
always low: for example, by doing it once outside a loop that uses It many times.

Execution time costa

It costs only 4 cycles (0.~) per function call and a very small penalty on access to
the libr.~ry's static data by the library (the user proar.~m's access to the same data Is
unpenalised). ln general. the difference in performance between using the shared
C libr.~ry and linking a proar.~m stand·alone with ANSIUb Is less than 1 For the
Important Dhrystone-2.1 benchmark the performance difference cannot be
measured.

How to use the C library kernel

6·186

C library structure
The C library is organised into three separate layers. At the centre Is the
lalllluage-independent library kernel. This is implemented In assembly languaae
and pr011ides basic support services. described below, to languaae run·time
systems and. directly. to dient applications.

One level out from the libr.~ry kernel is a thin. C-speciftc layer. also implemented in
assembly languaae. This pr011ides compiler support functions such as structure
copy. interfaces to stack·limit checltina and stack extension. set jmp and
long jmp support, etc. Everything above this level is written In C.

Flnally, there is the C library proper. This Is implemented InC and. with the
exception of one module which interfaces to the library kernel and the C-speclfic
veneer, is highly portable.

Th9 Shar9d C Library

;:;:;:;:;:;:;:;:;:;:;:;~:;:::::;:;:::;:;:;-:.;:;.;:::::::: ·:-:::: ;:;:;:;:;:;:;:;:;:;:::::;.;~~;:;: ;:;:;:;:~w::::;:;;;~.x«::::o~:;:;~:;:;.;.;.:;.;,X;:;:;:;:;.::;:;::;;:;:;:;:;:::::::.~:-.::::;:;:;.;;:;:;:-::;.;.; :;.;:;.;.;;;.;.;.;:;:;:; :·:·:·:;:;:;:;:;:;:;~:::::::~;:;:;.;:;::

The library kernef
The library kernel provides the following fadlities:

• initialisation functions

• stack management functions:
unwinding the stack
lind ill& the current stack chunk
four kinds of stack extension-

small·frame and large-fr.~me extension.
number of actual arguments known (eg Pascal). or unknown (eg C) by
thecal lee.

• progr.~m environment functions:

lind ill& the identity ol the host system (RISC OS. Arthur. etc)
determlnint whether the floating point instruction set Is available
aettillll the command string with which the proar.~m was invoked
returning the identity of the last OS error
reading an environment variable
setting an environment variable
invokina a sub-application
claiming memory to be managed by a heap manaaer
lind ill& the name of a function contain ina a given address
finding the source languaae associated with code at a given address
determining if IROs are enabled ·
enabilngiROs
disablingiROs.

• general uti ilty functions:
generic SWiinterface routines
special SWllnterfaces for certain commonly used SWis.

• memory allocation functions:

allocating a block of memory In the RMA
extending a block of memory In the RMA
freeing a block of memol)' In the RMA.

• languaae support functions:
unsigned integer division
unsigned integer remainder
unsigned divide by 10 (much faster than general division)
signed integer division
signed integer remainder
signed divide by 10 (much faster than general division).

6-187

(

(

(

(

(

(

(

(

(

(

(

(
'·

(

(

(

c

(

(

(

(

/

{

(

I

(

(

(

(

(

(

How t) USIIII!II C library kllm6/

;;;.;::.:·: ·:·:·:·:·:·:·:·::;:;:;:;:;:;:;:;:;::.;:;;;:::::::~:·:· ··.·: ;.;:; .;.;.;:;:;.;.;:;:;:;:;:;::: ••• :;:;:;:;~.;t;.::;t;:::;;:;);t~;.:::::·:·:·:· ·.;.;.;:;.;.·:;.;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:::::::::~;;. =·=-=~-:-::;.;.;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::::;:;:;:;:;:;:;:;:;:;;~;~;::::

6·188

Interfacing a language run-lime ayatem to the Acorn tfbrary kernel

In order to use the kernel, a languase run·time system must provide an area named
R'TSKSSDATA. with attributes REAOONLY. The contents of this area must be a
_kernel_lanquaqedescr iption as follows:

ty~f •null (NotMandled, Ha ndled I _kernel_Randl..to<Hot

t ypedof st ruct (
int reqa (1,):

} _Jtornol_r.,ittenot:

ty~dof otruct I
t nt reqs (10) :

} _kornol_owntroqietou:

typeclet void (•Pit0C) h'old);
ty~of _ltornol_RendledOrNot

(• _kornel_crapproc) Unt coda, _ kornol_reqletouot • reqs):
ty~d•t _komol_HandledOrNot

(• _temel_eventproc) Unt code, _kernol_ roqtaterMt •reqs):

typedof et ruct (
int aizo;
tnt eodoatart, cOCS.end:
char •na•:
PJtOC t•InltProc) (void): /• that 11, ln1tPcoc r•tutnl a. PltOC */
PACX: Ftnali .. P roc:
_k•rn.el_trtppcoc 1'tapProc;
_kerne.l_tupproc UneauqhtTnpProc;
_kern•l_eve ntproc ~ve.ntProe:
ke rnel eventproc Unhandled.tventP roc;
void (•Fa•t!.ventProc) (kerne l eventntohter:• •) ;
int (•UnwindProc) C_ ker;el_unv'incU:tlOck *1nou t, char ••lanquaqe) :
char "' ("'Ma,.Proc) Unt pc):

} _kernel_l&nqruaq~etcrlpt ion;

Any of the procedure values may be zero. indicating that an appropriate default
action Is to be taken. Procedures whose addresses lie outside
lcodestart-codeend) also cause the default action to be taken.

coclatart, cocleead

These values describe the ranse of program counter (PC) values which may be
taken while executing code compiled from the language. The linker ensures that
this is describable with lust a single base and limit pair if ail oode is compiled into
areas with the same unique name and same attributes (conventionally.
l.ugwrgrSScode. CODE. REAOONLY. The values required are then accessible
through the symbols IA"gwr,.SScodeSSBase and IA"guaq.SSCodeSSLimit).

Thll Shat9d C LlbnJry
:::=:=:=:-<:-::=::: ::::::::::::::::: :=:=:=:=:=:=:=:~?$M:::::::;:::.:;:;::::::w:::::::::.:::::::=::::::::::::::::::::::::::::::~:::::::~:-:~®n.:::x::::::::~::::::;;~:::::::::::::.:=:::~;:t"~:«:::::.:::::.:.x

l•hProc:

The kernel contains the entrypoint for tmases containing it. Alter initialising itself.
the kernel calls (in a random order) the lnitProc for each languqe R1S present in
the image. They may petforrn any required (language-libfary·spedfic) initialisation:
their return value is a procedure to be called in order to run the main prot~ ram in
the Image. If there Is no main pf01ram in Its languace. an R1S should return 0. (An
lnitProc may not itself enter the main protJram. otherwise other language R1Ss
might not be initialised. In some cases, the returned procedure may be the main
pf01ram Itself. but m06tly It will be a piece of languaae R1S which sets up
arguments first.)

It is an error for alllnitProcs In a module to return 0. What this means depends on
the host operatlnc system: ifRISC OS, SWI OS_GenerateError is called (having first
taken care to rest~ all OS handlers). lf the default ettor handlers are in place. the
difference is mafllinal.

n • .u.Proc:

On return from the entry call, or on call of the kernel's Exit procedure. the
FinaliseProc of each language R1S Is called (again In a random order). The kernel
then removes its OS handlers and exits setting any return oode which has been
spe<:ified by call of _kernel_setreturncode.

TrapProc:, Uaca•t•tTrapProc:

On occurrence of a trap. or of a fatal error, all registers are saved in an area of store
belonging to the kernel. These are the registers at the time of the instruction
causing the trap, except that the PC is wound bad to address that instruction
rather than pointing a variable amount past lt.

The PC at the time of the trap toe ether with the call stack are used to find the
TrapHandler procedure of an appropriate language. lf one Is found, it is Invoked In
user mode. It may return a value (Handled or NotHandled), or may not return at
all . If It returns Handled, execution Is resumed using the dumped register set
(which should haYe been modified. otherwise resumption Is likely just to repeat
the trap). lf it returns NotHandled. then that handlef Is martr.ed as failed. and a
search for an appropriate handler continues from the current stack frame.

If the search for a trap handler fails, then the same procedure is gone through to
flnd a 'uncaught trap' handler.

lfthls too fails, i t Is an error. It Is also an error If a further trap occurs while handling
a trap. The procedure kernel exittraphandler Is provided for use in the
case the handler takes-care of resumption itself (eg via lonq jmp).

6·189

How tl US9 /119 C library k9/1191
::::::::::::::%:::-<.::::.::::~:.:;:::::::~::.:::::;.;::::: :::::::::::::::: ::::::::::::::::z.:::::~:::~.:>:::::::::::::::::::::::::::::::::~::::-~-:;;.:-::::::::::: ::::::::<::::::::: :;::::::::::::::::::::w.::;;.-:.-::::::::::::::;::;;w.:~-.:;$:::;::::;;:::~::: ::J::::::::::: :::~m::::::::.x:::::::

6-190

(A language handler is appropriate for a PC value if LanguageCodeBase S PC and
PC< LanguageCodeLimit. and it is not marked as failed . Marking as 'failed' is local
to a particular kernel trap handler invocation. The search for an appropriate
handler examines the current PC, then Rl4. then the link field of successive stack
frames. If the stack is found to be corrupt at any time, the search fails).

EveatPtoc, UnllaadJedEveatProc

The kernel always installs a handler for OS events and for Escape nag change. On
occurrence of one. all registers are saved and an appropriate EventProc. or railing
that an appropriate UnhandledEventProc is found and called. Escape
pseudo-events are processed exactly like 'll'aps. However. for ·real' events. the
search for a handler terminates as soon as a handler is found. rather than when a
willing handler is found (this is done to limit the time taken to respond to an
event). If no handler is willing to claim the event. it is handed to the event handler
which was in force when the program started. (The call happens in CallBack. and if
it is the result of an Escape. the Escape has already been acknowledged.)

In the case of escape events. all side efrects (such as termination of a keyboard
read) have already happened by the time a language escape handler is called.

FutEveatPtoc

The treatment of events by EventProc isn't too good if what the user level handler
wants to do is to buffer events (eg conceivably for the key upldown event). because
there may be many to one event handler calL The FastEventProc allows a call at the
time of the event. but this is constrained to obey the rules for writing interrupt
code (called in IRQ mode; must be quick; may not call SWis or enable interrupts;
must not check for stack overflow). The rules for which handler gets called in this
case are rather different from those or (uncaught) trap and (unhandled) event
handlers. partly because the user PC is not available. and partly because it is not
necessarily quick enough. So the FastEventProc of each language in the image is
called in tum (in some random order).

UawtadProc

UnwlndProc unwinds one stack frame (see description of kernel unwindproc
for details).lf no procedure is provided. the default unwind procedure assumes
that the ARM Procedure Call Standard has been used: languages should provide a
procedure if some internal calls do not follow the standard.

NamePtoc

NameProc returns a pointer to the string naming the procedure in whose body the
argument PC lies. if a name can be found: otherwise, 0.

The Shared C Ubrery

:;:;:;:;:;:;:;:;:;:;:;:;:::m.W.'%'K<<<?7.<.(.;.;:;.;::::::::;:;~::::-::; :;:;:;:;:;:;:;:;.;:;:;::;::::::::;:; :;:;!::;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:::tl=:>:::--::;:::::::x:::;:; :;:;: ;:;:;:;:;::::::::~::::.:-;:;.; :;:;:;.;:;: ;:;:; :;:;:;:;:;:;:;:;::~~::;.;:;.;:;.;

How the run-time 1tack Ia managed end extended

The run-time stack consists of a doubly-linked list of stack chunks. The initial stack
chunk is created when the run-time kernel is initialised. Currently. the size of the
initial chunk is 4Kb. Subsequent requests to extend the stack are rounded up to at
least this size. so the granularity of chunking of the stack is fairly coarse. Howevet
clients may not rely on this.

Each chunk implements a portion of a descending stack. Stack frames are singly
linked via their frame pointer fields within (and between) chunks. See the appendix
entitled Appc•~ix C: ARM proui.IAII ull st4111Mrll on page 6-329 for more detai Is.

In general. stack chunks are allocated by the storage manager of the master
language (the lanauage in which the root procedure- that containing the language
entry point- is written). Whatever procedures were last realstered with

kernel register allocs () will be used (each chunk 'remembers' the
identity oft he procedure to be called to free it). Thus. in a c program. stack chunks
are allocated and freed uslna malloc () and free().

In effect. the stack is allocated on the heap. which grows monotonically in
increasing address order.

The use of stack chunks allows multiple threading and supports languages which
have co-routine constructs (such as Modula-2). These constructs can be added to C
fairly easily (provided you can manufacture a stack chunk and modify the fp. sp
and sl fields of a jmp_buf, you can use setjmp and longjmp to do this).

Slack clluak format

A stack chunk is described by a kernel stack chunk data structure located
at its low-address end. It has the followini format:-

typedef struct stack chunk (
unsigned long sc=mark; /* -- Oxf60690ff */
struct stack_chunk *sc_next, *sc_prev;
unsigned long sc_size;
lnt (*sc_deallocate) ();

_kernel_stack_chunk;

. sc_mark is a magic number: sc_next and sc_prev are forward and backward
pointers respectively. in the doubly linked list of chunks; sc size is the size or
the chunk in bytes and indudes the size of the stack chunk data structure;
sc _deallocate is a pointer to the procedure to call to free this stack chunk­
orten free () from the C library. Note that the chunk lists are terminated by NULL
pointers- the lists are not drcular.

6-191

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

('

(.

(

f

(

(

(

(

(

(

c
(

How ., U$9 11!9 c //brill}' k9m91

,;.;;~:;:.:::-:·::;;;:;.;~:::;:;:;:;:;::::::::o::x$~:1-:1~:,«::·:~-:-:-: ·:.:::·:·:·::: .;::-:::.:-:-:·:·:·:·:;;:;.;-:;;;:,.;:;:::: :;:::::::::::::;.;:::::::::::::::::::::: :;:;:;:;:::::;:;:;:::::::: :;:;:;:::::m?.\.~~~::;:;:;:;.w;o,i,;;~;;~~~;;::;;;:;:;.;:;.;:;:;:;:;:::;:~>'..}X::::::::~-:::

6-192

The seven words above the stack chunk structure are reseived to Acorn. The
stack-limit register points 512 bytes above this (ie 560 bytes above the base of the
stack chunk) .

St~~ek elrtelleloa

Support for stack extension is provided in two forms:

• fp. arguments and sp get moved to the new chunk (PascaVModula-2-style)

• fp Is left pointing at arguments in the old chunk. and sp is moved to the new
chunk (C-style).

Each Conn has two variants depending on whether more than 4 arguments are
passed (Pascai/Modula-2-style) or on whether the required new frame Is bigger
than 256 bytes or not (C-style). See the appendi~ entitled Ap.,.,.l.ix C: ARM ,m~Ui.wn
cd stalll.arl. on page 6-329 for more details.

_kenel_etko.t_copprp

Pascai/Modula-2-style stack extension. with some arguments on the stack (le stack
overOow in a procedure with more than four arguments). On entry. i p must
contain the number of argument words on the stack.

_kenel_etko.t_copy()llrp

Pascai/Modula·2·style stack extension. without arguments on the stack (le stack
overOow In a procedure with four arguments or fewer).

_kenel_etkow_spUt_frame

C·style stack extension. where the procedure detecting the overOow needs more
than 256 bytes of stack frame. On entry. ip must contain the value of sp- the
required frame size (ie the desired new sp which would be below the current stack
limit).

_kenel_etko.t_epUt_Oframe

C·style stack extension. where the procedure detecting the overOow needs 256 or
fewer bytes of stack frame.

Stack chunks are deallocated on returning from procedures which caused stad
e~tenslon. but with one chunk of latency. That Is, one extra stack chunk is kept In
hand beyond the current one. to reduce the expense of repeated call and return
when the stad is near the end of a chunk: others are freed on return from the
proc:edure which caused the extension.

Th9 Shar9d C Library
::::::::;.;:;:::;;:*!-:·:.:X::;:;(;:; :;:;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;~:::::~:;:;:;:::::::::;;: :;:;:;::=»">~'W~:=:~~~"!(:::::w::::::m::::::::~:::::::~;;::::::::::::;.;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:~ ;:;:;:;:;:;:;:;:;:;: ;:;:;·· .:.:.:.:.:;:;:;:;:;

Calling other programs from C
The C library proc:edure system () provides the means whereby a program can
pass a command to the host system's command line Interpreter. The semantics of
this are undefined by the draft ANSI standard.

RISC OS distinguishes two kinds of commands, which we tenn 6uit·i" ~·•uullls
and ,,.,rulio,.s. These have different effects. The former always return to their
callers, and usually make no use of application woritspace: the latter return to the
pl'e'liously set-up 'e1lt handler'. and may use the currently-available application
workspace. Because o(these dltfe~. system (I exhibits three kinds of
behaviour. This Is explained below.

Applications In RISC OS ate to.ded atalhed address specified by the application
image. Normally, this Is the base of application woritspace. Ox8000. While
executlns. applications are free to use store between the base and end of
application worbpace. The end Is the value returned by SWl OS_GetEnv. They
tennlnate with a call ol SWl OSJ:xjt. which transfers control to the current exit
handler.

When a C program makes the call system ("command") several things are done:

• The calling pf08ram and Its data are copied to the top end of application
workspace and ali Its handlers are removed.

• The current end of application workspace Is set to (ust below the copied
pf08ram and an exit handler Is Installed In case "command" is another
application.

• " command" Is lnvolted using SWI OS_CLI.

When " command" returns. either directly (If It Is a built-In command) or via the
e~lt handler (If It Is an application). the caller Is copied back to its orit~inallocation,
Its handlers are re-Installed and It continues, oblivious of the Interruption .

The value returned by system (1 Indicates

• whether the command or application was successfully Invoked

• If the command Is an application which obeys certain conventions. whether or
not It ran successfully.

The value returned by s yatem (with a non-NULL command string) Is as follows:

< 0-couldn't lniiO!te the command or application (eg command not found):

>=0- invoked OK and set SysSRetumCode to the returned value.

6-193

Slt:Xage manaQ~H~~Bnt (mslloc, cslloc, tee}
~:~=~ .. »'X'v:-;.;:;.:.;:;:;:;;;:;:;:;.;:;.;.;;;::::-:-:-:: .. ;::;.;::::::::::::::~~::::::::::::: ::::::::::::::~~~:;:::::=~~::;:;.;:;:;:::::::;:::;:;:::;::::~=:~~:::;::::::::::::;;;:;;:::::::::::::::::: :::::::::::::::~ot:=:::-:::::::;;.;.;;:·:·:-:-:-~:t:-:

By convention. applications set the environmental variable SysSReturnCode toO to
Indicate success and to something non~ to indicate some degree of failure.
Applications written inC do this for you. using the value passed as an argument to
the exit() function or returned from the main() fun<:tion.

If it is necessary to replace the current application by another. use:

system("CHAIN:command~);

If the first characters of the string passed to system 0 are "CHAIN:" or
"chain :". the caller Is not copied to the top end of application workspace, no
exit handler Is Installed. and there can be no return (return from a buil t-in
command is caught by the C library and turned Into a SWJ OS_Exit).

Typically, CHAIN: Is used to give more memory to the called application when no
return from it is required. The C compiler lnvol:es the linker this way if a link step Is
required. On the other hand. the lv::om Make Utility (AMU) calls each command to
be executed. Such commands indude the C compiler (as both use the shared C
library. the additional use of memory is minimised). Of course. a called application
can call other applications using system() . Acallee can even CHAIN: to another
application and still. eventually, return to the caller. For example. AMU might
execute:

system("cc hello . c~);

to call the C complier. In turn. cc executes:

system(~CHAIN: l ink -o hello o .hello S.CLib.o . Stub s");

to transfer control to the linker. giving link all the memory cc had.

However. when Link terminates (calls exit ().returns from main () or aborts) It
returns toAMU, which contlnues (providing SysSReturnCode is good).

Storage management (malloc, canoe, free)

6-194

The aim of the storaae manager is to manage the heap In as 'efficient' a manner as
possible. However. 'effid ent' does not mean the same to all programs and since
most programs differ In their storage requi rements, certain compromi.ses have to
be made.

You should always try to keep the peak amount of heap used to a minimum so that,
for example. a C pros ram may Invoke another C program leaving it the maximum
amount of memory. This Implementation has been tuned to hold the overhead due
to fragmentation to less than ~. with a fast turnover o(small blocks.

The heap can be used in many d ifferent ways. For example it may be used to hold
data with a long life (persistent data structures) or as temporary work space; It may
be used to hold many small blocks of data or a few large ones or even a

The SharfKI C Library
X:;.;.;:;:;.; .;.;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;;:::~::;:;.;.;«(l:;; .;.;;;.;.:::::-: :;:;:;:;:;:;:;:;:;:;:;:;:;:~.,q;::;:w:;;:;:;.;:;.;::;::;: ;:;:;:;:;:;:;:;:;:; :;:;:;:;:;::;:.-:;»:;$::(®;;:;:;:;:;:;;;:;::;;;;.;:;::;:;.::::::<::::-::::x;;:;::to:-::::~:-:-x-:«·~;;:;.;9;

combination of all of these allocated in a disorderly manner. The storage manager
attempts to address all of these problems but like any storage manager, it cannot
succeed with all storaae allocatiorv'deallocation patterns. If your program is
unexpectedly runnina out of storaae. see the section entitled G~di~~n 011 KSillf

'"III«Y l{fianltbj on pate 1·332. This gfYeS you information on the storage
manage(s strat~ for manaslng the heap, and may help you to remedy the
problem.

Note the following:

• The word liMP refers to the section of memory cu~ntly under the control of
the storage manager.

• All block sizes are in bytes and are rounded up to a multiple of four bytes.

• All blocks returned to the user are word-ali8Jle(f.

• All blocks have an overhead of eight bytes (two words). One word is used to
hold the block's length and status. the other contains a guard constant which
Is used to detect heap corruptions. The guard word may not be present in
future releases of the ANSI C library.

Handling host errors
Calls to RISC OS can be made via one of the kernel functions. (such as

ke r ne l osfind(64, • ••• ~)). lfthe call causes an operating system error.
the functi~n will return the value - 2. To lind out what the error was. a call to
kernel last oserro r should be made. This will return a pointer to a

=kernel= oser;or block containing the error number and any associated error
string. If there has been no error since kernel last oserror was last called,
the function returns the NULL pointer:-Some functions Tn the C library call
kernel functions. so if an C library function (such as fop en (" ••• ", "r"))

falls. try calling_kernel_last_oserror to find out what the error was.

6-195

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c

(

(

(

(

f

(

r

(

(

(

(

(

(

(

(

(

SWTCslls

:::::::::::::::::w.'?.'(~:.:·:·:.:.:::.::::;..-;:;~-:::':::~ox:m--::.:::;::::::::::::(.:::::·=~=:=:=:=:=:=:·:=:=:·:=::::::::::::;o:;):·:·:·:· =·=·=·=·=·=·=·=·=-:·:·:-:~:=:=:=:=: ::::::::::::::::::::::::::::::::=:·:·:::;:::.:·:·:·:·=·=·= ·=·=·=·=·:=:·:·:=:·:=· ::·:::::::::: :=:=:=:=:::::::}Sm::t::~:::::::.:

SWI Calls

6-196

SharedCLibrary _LiblnitAPCS _A
(SWI &80680)

This SWI interfaces an application which uses the old 'I\ variant (SP=RI2) or the
Procedure Call Standard to the Shared C libraty. Its use is deprecated and it should
not be called in any pr<lirams. Use SharedCLibrary_l.iblnltAPCS_R Instead.

T1HJ Shtnd C Llbraty
::;.;.;.;«;:.-'//.Y:::::::::::-::;:;::.;.;:;:;:;:;:;:;:;:;;;;,_;~;.;:;:;;;:;.;.;.;.;-;.;;;.;-:!;{.;:;:;:;:;:;:;:; :;:;:;;;::::=:~~::::-:.:::::::::::::::::::;.:-.x:::::;:;:;:;:;:;:;:;:;:;:::::;:;:;:;::::-~~:::::::®.:~-:-:::>:.;:;:;:;:;:;:;.;:;:;:;:;:;:;:;::::::::::::::w.~::::;:;:;:;:;:-

SharedCLibrary _LiblnitAPCS _R
(SWI &80681)

Interfaces an application with the shared C libraty

On entry
RO .. pointer to list of stub descriptions each having the following (onnat:

+<>O: Iibratychunkld (I or2)
+<>4: en tty vector base
~: entty vector limit
+12: static data base
+ 16: static data limit

The list is tenninated by an entty with a library chunk ld of -I

Rl "pointer to worlspace start
R2 • pointer to worb;pace limit
R3 • base or area to be zero-initialised for modules (-I for applications)
R4 • pointer to start or static data for modules (0 for applications)
R5 =pointer to limit of static data (or modules (-1 (or applications)
R6= Bits0·15=0

Bits 16· 31 =RootstadtsizeinKilobytes

On exit
En tty vectors specified by the stubs descriptions are patched to c:ontain branches
to routines in the libraty.

I(R5 > R4 on entry the users statics are copied to the bottom of the workspace
specified in Rl and the Client static data offset (at byte offset +24 (rom the stack
base) Is initialised.

For each llbraty chunk the library statics are copied either Into the wori:space
specified In Rl lfR5 > R4 on entty or to the static data area spedfied in the chunks
stub description lfR5SR4.

The l.lbraty static data o(fset (at byte offset +20 l'rom the stack base) is initialised.

Space for the root stack chunk Is claimed (rom the workspace specified in R I.

RO =value of R2 on en tty
R I = stack base
R2 •limito(spaceclalmed rromwori:space passed in Rl. This value should be

used as the SP for the root stack chunk
R6 = libraty version number (currently= 5)

6-197

SharBdCLibfary_ LiblniiAPCS_ R (SWI &80681}

~::::: :;:;:;:;:;:;:;:;:;:::::::::::::>:;:.x::::::;;::.:"<·:;:.:::*«<®:~»::::;:;:;:;;;~::~::::: ::::::::::;:;:;:;:; :;:;:;:;:;:;:;:;:;~:;:;::;:.~:;:;:;:::::;:;:x:;;:..-.x~::::::::::;:;:;:;:;:;:;:;:;.;.;;:.;;:.;.;.;;;.;.;:::;.;:;:;.;:;:;:;:;:;:;::-~:;:;:;:;~:::::::w::;:;.;:;:;

6-198

lnterrupta
Interrupts are enabled
Fast Interrupts are enabled

Proceseor mode

Processor Is In SVC mode

R ... ntrancy

u ..

SW!Is re-entrant

This SWI allows you to interface an application with the shared C library without
using the shared C library stubs.

LlblnltAPCS_R is used by applications which use APCS_R (see l\ppfJI~ir. C: ARM
proc.dwrc ull st.llllar~ on page 6-329 for more details).

Two library chun~ are aurently defined.

Clan It ld I • ne Kenelmoclale

The Kernel module defines 48 entries. these are described in the section entitled
t..i6rcrv urllll {urtc.tiorts on page 6-208. You must reserve 48 words in your branch
vedor table. The words at offsets +04 and +08 of the Kernel stub description must
be initialised to the start and limit (end + I) of your vector table.

The Kernel module requires &31C bytes of static data space. You must reserve this
amount of storage. The words atoffsets+l2 and +16must be Initialised to the start
and limit (end + I) of this storaae.

aa .. lt ld 2 • Tile C Ubrary modale

If you wish to use the C library module you must indude the Kernel stub
description before the C library stub description in the list of stubs descriptions.

The C library module defines 183 entries, these are described In the section
entitled C li6rarv/w"'tioJIS on page 6-221 . You must reserve 183 words In your branch
vector table.

The words at offsets +04 and +08 of the Kernel stub description must be Initialised
to the start and limit (end+ I) of your vector table.

T/!6 SharBd C Library

:=:=:=:·:=:::::::::::·:· :·:=:::::::::.:-:::. :::::::::::::::~:::::::::::: :::::::: ::::::::::::::::::::::.:·:.:.:·::::::;:;~::~~:=:~~~~:=:=~=:=:~..:.::::.:::=:·:~.:::;;:;;:::;;::::::::::-:'s:::::~::;:~m-:·:·:·:·: :;.::::::: :::::::::::::: :·:·:·::::::=:->::;.;.;.:.:.:·:·:····

The C library module requires &848 bytes of static data space. You must reserve
this amount of storaae. The words at offsets +12 and+ 16 must be Initialised to the
start and limit (end+ I) of this storaae. This storaae must be contiguous with that
for the Kernel module.

CalU .. Ubrary h.cdou

Before calling any library functions you must call the kernel function _kerneUnit
(entry no. 0). For details on how to call these functions refer to their entries in the
section entitled lAnlrv ftmwA/wltaioJUon page 6-208.

SP. SL and FP must be set up befofe calli "II any library function. _kemel_init
initialises these for the root stack chunk passed to it.

If you wish to call C library funct.lons you must pass a suitable kernel language
description block to j.emel_lnll For details on the format of a kernel language
description block refer to the section entitled htt.rf/Ki"f alugw~ ru-lio .. svsr.,. ID

t.U lv.imt libr•rv bnNI on paee 6-184.

To call C library functions the fields of the ltemellanguage description block must
be as follows

size

codes tart.
codelimit

name

tnitProc

Final iseProc

The size of this stru<1ure In bytes (24- 52 depending on the
number of entries In this block)

These two words should be set to the start and limit of an area
which Is to be treated as C code with respect to trap and event
handling. Both thesevaluesmay beset toOinwhichcase no traps
or events will be passed to the trap or event handler described in
this languaae description block.

This must contain a pointer to the 0 terminated string ·c·.
Pointer to your Initialisation procedure. Your initialisation
procedure must call_clib_lnltlallse (entry no. 20). For details on
how to call_cllb_lnltlallse refer to its entry in the section entitled
C Urarr fw..aiD"s on page 6-22 I . It should then load RO with the
address at which execution is to continue at the end of
Initialisation.

Pointer to your flnallsation procedure. This may contain 0.

The remainder of the entries are optional and may omitted. You must set the size
field correctly if omitting entries. If all optional entries are omitted the size field
should be set to 24.

Related Swta

SharedCUbrary_LibtnltAPCS_A (SWI &80680)

6·199

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

(

(

(SharedCLibrll!y_Ub/niiAPCS_R (SWI &80681)

::::;;;:;:;:;:;;;;:;x:;;:;.:.::::::::::::;:;:;:::::::;:;:;.;::~»:-:~YH .. ;.::;.;:;.;.;:;:!-:·:·::;:;.;:;:;:::::::::::;::::::::;::~:;.;:;.;.:.:·:·:·:;:;.:;.~-::;:;:;:;:: :;:;:;.::;:::::::-;:;:;:;:;:;:;:;.;:;.;.;..;.~;:.;.;.;;,:;;.;;;.;.;:;:;:;:;.;:;:;:;:;:;: ;:;::::::::::::.$$x:;:;::~~

(
Related vectors

None

(

(

(

(

(

(

(

(

(

(
6-200

(

(

TI'HJ Sh8f9d C Llfnty

::::::::::::::::::r.:::::::::::::::::::::::::;;~;;-;:::=:::::::::::.:;~:::::::::::::::::::::>.w..:;::::~~;:;;::;::::::~:x;~:::~:~::::::.-:::::.;:::::::::::::::::::::::::::::::::::w.;::~~:.:::~:~7..::::~:=:~x:::;:.;::-:~~·:·:·~=:

SharedCLibrary _LiblnitModule
(SWI &80682)

Interfaces a module with the shared C library

On entry

RO • pointer to list of stub descriptions each havlna the followina format:
+00: library chunk ld (I or 2)
~:entry vector base
+08: entry vector limit
+ 12: static data base
+ 16: static data limit

The list is terminated by an entry with a library chunkld of -I

R I ,. pointer to works~ start
R2 "' pointer to worlt.s~ limit
R3 • base of area to be zero-Initialised for modules (-I for applications)
R4 = pointer to start of static data for modules (0 for applications)
R5 =pointer to limit of static data for modules (-1 for applfcatlons)
R6= Bits0-15=0

Bits 16 • 31 "'Root stad size In Kilobytes

On exit
Entry vectors specified by the stubs descriptions are patched to contain branches
to routines in the library.

If R5 > R4 on entry the users statics are copied to the bottom of the workspace
specified in Rl and the Client static data offset (at byte offset +24 from the stack
base) is initialised.

For each library chunk the library statics are copied either Into the worlts~
specified in Rl ffR5 > R<t on entry or to the static data area specified in the chunks
stub description if R5 ~ R4.

The Library static data offset (at byte offset +20 from the stad base) is initialised.

Space for the root stack chunk Is claimed from the SVC stack.

RO =value of R2 on entry
R I = stack base
R2 ,. limit of s~ daimed from works~ passed In R I
R6 = library version number (currently,. 5)

6-201

Shar6dCLibrary_UblnifModule (SWI &80682)

:-:·::;:; :;:;:;:;:;:::::::::::;:;.;:;:;:;:;:;.;.;.;.;.;::::·:.:-;-;.;-:;:-:·:·:·:-:.;:~.;.:;;: ;:;:;:;:;:;:;:;:;:;::::::::;~)$'...:-:.::;:;::~::;;-~o;-~:;:;:;:;:;:;:;:;:;::q.:~;:;::-., .. ;·::;o.:«~-::;:;:;:;:;:;:; :;:;:;.;.;:;:;.;:;:;:::::: :;:;:;:;:;:;:;.;.;:;«:;::::;>;~-:;:;:;:;:;~;:~

6·202

Note: You must save the words at offsets +20 and +24 from the returned stack
base. You must do this before exitina your module initialisation code. These
words contain the shared libraries static data offset and the dlent static data
offset (the offset you must use when accesslna your static data). These must be
restored in the static data offset locations at offsets -+00 and +C4 from the base
of the SVC stack when you are re-enterlnathe module in SVC mode (e.g. in a
SWI handler). When restorina the static data offsets you must save the
previous static data offsets around the module entry.

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Proceuor mode

Processor is in SVC mode

R ... ntrancy

u ..

SWJ is re-entrant

This SWJ allows you to interface a module with the shared C library without usina
the shared C library stub&.

SharedCLibrary_LiblnltModule is used by modules. which must use APCS~R. and
must be called in the module Initialisation code.

'I'No library chunks are currently defined.

Cll .. k lei I • 111e Kenel modllle

The Kernel module defines 48 entries, these are described in t.he section entitled
Limry hnwl /lcrtaiorts on page 6-208. You must reserve 48 words in your branch
vector table. The words at offsets +C4 and +OS or the Kernel stub description must
be initialised to the start and limit (end + I) of your vector table.

The Kernel module requires &31C bytes of static data space. You must reserve this
amount of storaae. The words at offsets+ 12 and+ 16 must be initialised to the start
and limit (end + I) of this storaae.

Cll .. k lei 2 • '1\e C Ubl1liJ -.odale

If you wish to use the C library module you must lndude the Kernel stub
description before the C library stub description In the list of stub& descriptions.

The Shared C Library

:·:-~:::::::::=:.:».">:v:::::.:·:·:=:=:-::::::::::::::::::::::::::::::::::::::~:=:•:~•:o:::*~::::;:::.:.:=x::::::::.):<:~:::::.:=:•:;~:.:::::·:~.::::;:.;~-:.:::.x:x:::~.;;::;::::::.:::::::::::~;;-;;.:::;:·:-:·:· :-:=:=:=:=:=:=:=:=:=:=:-::: =:=:=:=:-:-:::.:-:·:·:·:<}:.»:>:·:·:·:·

The C library module defines 183 entries. these are described in the section
entitled C liliraryfoc..a;orts on page 6-221. You must reserve 183 words in your branch
vector table.

Thewordsatolfsets+C4 and +OS or the Kernel stubdesalption must be initialised
to the start and limit (end + I) of your vector table.

The C library module requires &a48 bytes of static data space. You must reserve
this amount of storaae. The words at offsets +12 and+ 16 must be initialised to the
start and limit (end+ I) of this storage. This storaae must be contiauous with that
for the Kernel module.

c..lU .. Ubrary f .. d~Me

Before calling any llbn11y functions you must call the kernel function
_kemel_moduletnit (entry no. l8). For details on how to call these functions refer
to their entries in the section entitled Liirary hriWI/Icnaioru on page 6-208.

SP. SL and FP must be set up before callina any library function. _kernel_inlt
Initialises these for the root stack chunk passed to lt.

If you wish to call C library functions you must pass a suitable kernellanguaae
description block to _kemeUnlt. For details on the format of a kemellanauaae
description block refer to the section entitled lrtllrfacing ala~f91U9c f'lln·ti,., svsll,. 10
lite Awrn library Until on paae 6-184.

To call C library functions the fields or the kemellanauaae description block must
be as follows

size

codes tart.
code limit

name

lnilProc

Fi naliseProc

The size of this structure in bytes (24 ·52 depending on the
number of entries In this block)

These two words should be set to the start and limit of an area
which Is to be treated as C code with respect to trap and event
handllna. Both these values may be set toO In which case no traps
or events will be passed to the trap or event handler described in
this lanauaae desaiption block.

This must contain a pointer to the 0 terminated string ·c-.
Pointer to your initialisation procedure. Your Initialisation
procedure must call _clib_lnltlallse (entry no. 20). For details on
how to call _cllb_lnltialise refer to Its entry in the section entitled
C lihrary foc..a;ons on page 6-221. It should then load RO with the
address at which execution is to continue at the end of
initialisation.

Pointer to your finalisation procedure. This may contain 0.

6·203

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

f
\

r

(

(

(

(

(

(

(

c
(

c

Shar9dCL/br8fY_Lib/ni!Modvle (SWI &80682)

::::::::::::: ::::::::::::::::::::::::::·:·:·:::~:~-:«•»:::::;::»~:::::::::::::::::::::::::::::::::.~:x.:-:.:-:;:;:o::-;;;~:::.:.:::::::::: :::::::.::::: -:=:=:=: =:·:·:-::::::::;.:: :::::::::::::::::::::~::::::~::::::::~m:«~::::;.:;:.;.:~·~:t..:·:;:::;;;:M:·:::::

6-204

The remainder of the entries are optional and may omitted. You must set the siz.e
Reid correctly if omitting entries. If all optional entries are omitted the siz.e fleld
should be set to 24.

ReCatedSWis

None

Rel•ted vectors

None

The Shared C Library
::::::::~.m::::::::::::~::.:--:::::.:::::: ::::::::::::::::::::::::::::::::::::: :::::::::~:=:=:=:=:=~::::::::~:::=:~~:~:::~~~:::::::::::::w.--::::::::::::::.:.:::::::::::~::::::::::ow:~~=:=:=:::::::•:'-:;::~:::::=:=:=:·:·:=:=:·:= :::::: :::::::::-::x::

Example program
!'hla •••1'1'1>1• delftOnat ate• how to call tbe • bawd C Ubca cy.
It 11 v rttt.en for tM ObjA• • 111enbler eupplled vltb tho Softvare
Developer a Toolkit (SOT) and the Oeektcp Oevelopwnt E.nvtron,.nt (00£) ..

,g lUI

rl lUI
r2 10M

rl 10M

r4 10M

rS ..,. ,, lUI
op ..,.
lr 10M
pc ..,.
l_k•rn•l_1n1t I

l _c llb_lnltl a ll .. l
fopen
fprtntf
feloae

OS_Generat e trror
OS_Ext t

' u
1 4
IS

IOU 0 • 4

IOU 20 •

IOU tl •

IOU n •
IOU IS •

IOU Ub
IOU 611

Sllar.<ICLibrary_LtbinltAPCS_R lOU &IOU!

IIIP~T I IIMqeUR0$$8aMI

MU. prtntf, coo&. RtADONL!

EN fRY

ADR
ADRL

cO, 1 tuba
rl, workepa oe

Off1et1 tn kernel vector table

Off1et.1 ib c vector t .abl•

Linker deUned ayftbol qtvtnq
a tart of tmaqe.

r2, rl, t 32 • 1024 : 321(workspace. A real proqu.m

etubl

r), t - 1 : would u .. os_chanqe£nv1ronrrant

••• tO : to find the memory limit,

MOll r5, f · l

MOll ' '· f600010000
.. I Slla redCL1brary _LibinltllPCS_R
MOV r4, rO
AD1'. rO, ••me1_1n1t_bloek
MOll rl, t O
I kernel_vectorl • l_kernel_lftltl

DC1)

DC1)

DC1)

IXO
IXO

kernel_vectora
kerne l_ v.c:tora _end
keme l_a t .a tlc•
kemal_e t a tlcl_a nd

co.ottnuot at c_1n1t belov

6-205

Examp/11 program
;:;:::::::::::::::;:;:;:;::-~~@~4::-;;:;:;:;:;:;:::;:~;;::;:~;::-w:::::;:;:~::~::;~:::::::::::::.-:::~::::::::::::::;:-<.s:?.:r.::::::;:::::::}:;};-$;:~;:;.;:;:: :;:;:;:·:;:;:;:;:;:;:;:;:: ·:;:;:;::::(:x:;:;;:::;::w.;:;;:;:;:;;~:--:::::::;x::;

6-206

DCO
DCO
DCO
OCD
OCD

DCil

clib_vector•
clib_veetora_enc1
cl1b_at&t1c.a
clib_atatica_end

-1

kernel_1n1t _ block
OCD

OCD
OCD

I lrNQe$$JtO$S!laae l
ru bloek
rts=bloek_end

l't•_bloc:k

rta_b locll:_end

c_atr

c_1n1t

o_.rur\

outtlle
acce.,
f or•t

&cr_q>en

oco
oco

rta_bloclt_end - rta_bloek
0

oco
oco
oco
oco

DQ

ALI Gil

c_atr
c_ tntt
0

·c·. o

rt01 ro. ap
MOY rl, tO
MOl r2, tO
St'Mil& sp!, (lr}

MUat H ·c· for CLlb to tlna U a•
proper l y .

81. c l1b_vectora + l_clib_1n1t1al1MI
ADR. rO, c _run : Continue at c_ run be low
LOMIA apl, {pc}'"'

ADR
ADR

&L
CMP
ADilEQ

SIIIEQ

Ma./

ADR
BL
MOV
IL
CMP
ADRNE
SWI'NI.

Sill

ro. outfU•
rl, acceaa
clib _vector a + fopen
cO, tO
cO, Err_Op9n
os_Generate£rror
r4, .ro
rl, form.t.t
cllb_vectors + fprlntf
rO, r4
cllb_vectora + fclot•
rO, fO
rO, Err_CloM
os _ Go.nerat•trror
OS_blt

•Out File•,
.. v .. , 0

W.U 1 actually 11y
Uncau;ht trap: Error o~ninq

Uncauqht tnp: Crror vcitlnq ...

DQ

DQ

DQ
ALIGN

•sAJ~Ple atrlnQ printed fro• • •• uslnq tprlntf!•, 10, 0

DCil &1 000
oc:a ·Error openl nq OoatFUe•.
ALIGN

Thll Shar!ld C Library

;:;:;:;:;:;;::;:;:;:;:;:;:: . •... :.:;:;.,:.:.:;:;:;:;:;: ;:;:;:;:;:;:;::::::'::;:;:; :;:;:;:~;.::;:;:;.;.;.;.;~~~::~:x;~;:;:;:;:;:;::;;:;:;:;:;.;.C:.:-:·:·:::ox:::::::::;:;;»::::;:;:;:; :;:;«::;:;:;:;:;:;;;:m:;~.::::;:;:;::·:·:·:-:·:·:·:·:·:-::;.;.;:;.;;: :;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;::::.-:~

Err_cto•• IXD
oca
ALI GIN

kernel_vecton '
k•rnel_vector•_•nd

c:Ub_vectora \
cllb_v.ctora_end

k•rnel_•ta ttc.a '
lternel_at at1 ca _end

cl1b_a t a t1ca
cUb_ atatica_e nd

vorkapace

DID

11001
•error writlnq OUtFlle"',

41 • 4

1U • 4

U1o

&b41

Start of vortapae. a t e nd of app .

6-207

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(Library ksrnBIIunctlons
Th9 Sh819d C Llbnlty

;.;.:.-;:«<!-Oa~W .. ~«-::!;;;;;;;;.;;::::::::::::::::::';$~~:-:.:·:·:·:-:::::::::::::::::::::.~--=::=~::::x;:::::-:::;~;;:;.:.:::.":v:-:·:-::::-x.:·:·~x:««;;.;:::::::::::::::::::::::::::.:·:~:::::.:-: M"...»u::;.;.;.;:;:;:;:;:;:;:;:;:;:;:;:~::c~~..,.;;:~:-:·::::;.;::-:·:~:::--:=:::-::::::::::::::::::::::;:;:;~..::;e~~.:x~::o:-::::;:;:;:;:;:;::;;:::::::::::::::::::::::>Sm~~~,;-..;.;.;.;-.:.:;:

(Library kernel functions e1t1y 10. Na- 01 JNIIe
28 _ltemel_stltoYf_spllt page 6-213

The library kernel functions are IJrouped under the fol1011in1J headiniJS: 29 _ltemel_sdml.copyaras page 6-213

• initialisation functions 30 _kemel_stltoYf_copy()ariJS page 6-213

(31 _kemel_udiv page 6-219 • stack management functions
32 _ltemel_urem page 6-2 19

• pi'OQram environment functions n _kemel_udiv iO page 6-219

• general utility functions)4 _kemel_sdiv page 6-219

(35 _kemel_srem page 6-220 • memory allocation functions
36 _kemel_sdiviO page 6-220

• language support functions. J7 _kemel_fpavallable page 6-215

(

(

(

)8 _kernel_modulelnlt page 6-212
Index of library kemet function a by entry number 39 _kernel_irqs_on page 6-216

Na- 40 _kemel_irqs_otr page 6-216 e 1t1y 1o. 01 pace
41 _kemel_irqs_disabled page 6-216 0 _kernel_init page 6-211 42 _kemel_entermodule page 6-212 I _kernel_exit page 6-214 43 _kemel_esc:ape_seen page 6-215 2 _kernel_setreturncode page 6-214 44 _ltemel_currenLstad:...chunlt page6-213 3 _kemel_exittraphandler page6-215 45 _lternel_swi_c page 6-216 4 _kernel_unwind page6-214 46 _kernel_regl.ster_slotextend page 6-219 5 _lternel_procname page6-214 47 _kemel_raise_error page 6-215 6 _kernel_language page6-214

7 _kernel_command_string page 6-2 14 Index of library kernet functlona by function name 8 _kernel_hostos page 6-215
9 _kernel_swi page 6-216 Na- eltly 110. 01 p.,.e

(

(

(

(

(

10 _kemel_osbyte page6-216 _kemel_alloc 26 page 6-218
II _kernel_osrdch page 6-217 _kernel_comrnand_stri niJ 7 page 6-214
12 _kernel_oswrch page 6-217 _kernel_currenLstack._chunlt 44 page 6-21)
IJ _kernel_osbget page 6-217 _kernel_entermodule 42 page 6-212
14 _kernel_osbput page 6-217 _kemel_esc:ape_seen 4) page 6-215
15 _kernel_osgbpb page 6-217 _ltemel_exit I page 6-214
16 _kemel_osword page 6-217 _kemel_exlttraphandler) page 6-215
17 _kemel_osfind paiJe 6-217 _kernel_fpevailable 37 page6-215
18 _kernel_osfile page 6-218 _lternel_getenv 23 page6-215
19 _kernel_osargs page 6-218 _kernel_hostos 8 page6-215
20 _kernel_oscli page 6-218 _kernel_init 0 page6-211
21 _kernel_lasLoserror page 6-215 _kemel_irqs_disabled 41 page6-216
22 _kemel_system page 6-218 _ltemel_irqs_off 40 page6-216
21 _kemel_getenv page 6-215 _kemel_irqs_on 39 page6-216
24 _kernel_setenv page 6-215 _kernel_language 6 page 6-214
25 _kernel_register_allocs page 6-219 _kernel_last_oserror 21 page 6-215
26 _kernel_alloc page 6-218 _kernel_moduleinlt 'J8 page 6-212
27 _kernel_stl:ovf_spl iLOframe page6-213 _kemel_osafiJS 19 page 6-218

(
6-208 6-209

c

Libraty kernel Alnctlons

m~:.:::::::::::.;:;;:=:.--~~:=:·:·:=:·:·:-:·:=s:::: ::::::::::::::::::: ::::::::::::::::::::~=~~~::::%:::::=:·:-:::-:-:::::::::=:-:::: ::::::::::::::·· ::::::::::::~::::::::::::::: ==·=·==~:-:=:-::::;;:::: :::-:::.;-:.:-:-:«=:=:=:

6-210

N•me eatry ao. oap.,.
_kemel_osbtlet 13 page6-217
_kemel_osbput 14 page 6-217
_kemel_osbyte 10 page6-216
_kemel_osdi 20 page 6-218
_kemel_osfile 18 page 6-218
_kemel_osfind 17 page 6-217
_kemel_osabpb 15 pase 6-217
_kernel_osrdch II pase 6-217
_kernel._osword 16 page 6-217
_kernel_oswrch 12 page 6-217
_kemel_procname 5 page 6-214
_kemel_raise_error 47 page 6-215
_kernel_reaister_allocs 25 page6-219
_kernel_realster_slotextend 46 page6-219
_kernel_sdiv 34 page6-219
_kemel_sdiv 10 36 pase6-220
_kemel_setenv 24 pase 6-215
_kernel_setreturncode 2 pase 6-214
_kernel_srem 35 page 6-220
_kernel_stlcovLcopyOarss 30 page 6-213
_kemel_stlcoY£_copyarss 29 page 6-213
_kemel_stlcoYLsplit 28 page6-213
_kemel_stlcoYLspliLOframe 27 page 6-213
_kemel_swi 9 pase 6-216
_kernel_swi_c 45 pase 6-216
_kernel_system 22 page6-218
_kemel_udlv 31 pase 6-219
_kernel_udiv I 0 33 pase 6-219
_kemel_unwlnd 4 pase 6-214
_kemel_urem 32 pase6-219

The followins structure is common to all library kernel functions:

typedef struct {
int errnum; 1• error number */
char errmess[2 52];/* error message (zero terminated) •1
_kernel_oserror;

Th8 Shared C Llbtaty
:;~:~:.:-::;:;:;:;:;.;,-: :;.;:;.;::·:·:v:-:«·:.::::;.;;:;-........ x·:·:·:=:-::::: ::::::::::::::::-,.;.:;:;:;:;::~=~.:.:.:.»x:.:.:;:;:;:;:%(«::~:;:;;:;;:;.;:::::::;:;:::::::::::;:::;:;:;:;.~~;::;.;;;:;:;:;:;:;:!"'h:>::::::;;::;:;.::;.:-:·:;;.x.;--:.:-:·:-::;.;.;.;.c.o«;;.;.

Initialisation functions

Entry no. 0: _kerneUnh

OleltiJ

RO .. Pointer to kemellnlt block havins the followlns fonnat
+00: lmase base (e.a. the value of the linker symbollmaseSSROSSBase)
+04: pointer to start of lanauase description blocks
+08: pointer to end of lanauaae description blocks

Rl " base of root stack chunk (value returned In R I from LiblnitAPCS_A or
LiblnitAPCS_R)

R2 • top of root stad chunk (value returned in R2 from LiblnitAPCS_A or
LiblnitAPCS_R)

Rl = 0 for application
I for module

R4 .. end of workspace

On exit

Does not return. Control is reaained throush the procedure pointer returned In RO
by one of the lanauase Initialisation procedures (i.e. control is passed to the run
code of the lanauase).

This call does not obey the APCS. All reaisters are altered. The APCS_R SL. FP and
SP (RIO. Rll and Rl 3) are set up. LR does not contain a valid return address when
control is passed to the run entry.

This function must be called by any client which calls LlblnitAPCS...A or
LlblnitAPCS_R. Modules should call this entry In their run entry.

The words at offsets +04 and +08 from RO describe an area contain! "II at least one
lanauase description block. Any number or lanauase description blocks may be
present. The size field or each block must be the offset to the ne~Ctlanauase
description block.

The command line Is copied to an internal buffer at the topofthe root stack chunk.
To set a command line call SWI OS_WriteEnv. RJSC OS sets up a command line
before run nina your application or entertns your module.

Exit. Error. CaiiBad. Escape. Event. UpCall,llleaallnstruction. Prefetch Abort.
Data Abort and Address Exception handlers are set up.

Initial default alloc and free PfOCS for use durin11 stack eJttension are set up. These
should be replaced with your own alloc and free procs as soon as possible.

6·211

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Initialisation funclions

;=~·=·=·=· :-:=::::::::::: :::::::;.;::::.~:«-W..:.:;:;;.:.:;;~::::<:=~&:w~x-:-:=x·: x:::::::::::x::;:w.~~:r~::;;;:--: ;;:~{;;;:;.~r.-:.;::::.:·:·:·:·:·:·:·:·w~.;::;:.:=:·:·:·:·:·:·:·:-=·=·~= =:-:::::::-:::::.:-;,;.:.;::~«":::::::::::::

6-212

The kernels workspace pointelli are initialised to the values contained in Rl and
R4. Note that it is assumed the root stack chunk resides at the base of the
workspace area.

A small stack (I 59 words) for use during stad extension is claimed from the
workspace following R2 (I.e. 159 words are claimed from R2.upwards).

Note: _kernel_! nit does notched that there is sufficient space in the
workspace to claim this area. You must ensure there is sufficient space before
calling _kemel_lnit.

The availability of floating point is determined (by calling SWI FPE_ Ve11ilon).

If eJtecutlng under the desktop the initial wimpslot size is determined by reading
the Application Space handler.

The initialisation for each language is called. then the run code if any is called. If no
run code is present the error No main proqram is generated.

Entry no. 38: _kemel_modulelnlt

01 e1try

RO =pointer to kernel I nit block as described In _kernel_lnlt on page6-21 I
Rl =pointer to base of SVC stack (as returned by Swt LiblnitModule)

Ott exit

This call does not obey the APCS.
On exit SL points to R I on entry+ 560.
RO, Rl, R2 and Rl2 are indeterminate.

The kernelinit blod is copied for later use. The Image base is ignored.

The functions _kernei_RMA.alloc and _kemei_RMAfree are established as the
default alloc and free procs for use during stack eJttension.

You should call this function after calling Swt LiblnitModule.

Entry no. 42: _kernel_entermodule

011 utry

RO =pointer to kernel I nit block as described in _kernel_init on page6·2ll
R6 = requested root stack size
R8 = modules private word pointer

The Shared C Llbraty
m::::;:;:;:;:;:;:;:;:::~~::::m:".::::;:;:;.;:;:::.-.x;:;::;:;::<>X~~~:;:'~~::;:;:;:-;:;:;;;::::~::X::«:~;:;:;:;;;::~::;::;::::::::::;:;:;:;:;:~~::;:;;,;~~~::::::::;.;:;~:;.;~;:;:;:;:;:;:;:;:;:::::::;:;:;.:;;::::::::::'>'Z-%!>'$'$'$;:;:

Oa exit

Does not return.
Control is regained throuch the procedure pointer returned in RO by one ol the
language initialisation prooedures.

The private word must point to the module workspa<:e word which must contain
the application base. the shared library static offset. and the client static offset in
words 0. I and 2 (the application base is ignored for modules).

After claiming worbpa<:e from the application space and claiming a root stack from
this _kernel_entennodule calls _kemel_lnit.

Stack management functions

Entry no. 27: _kemel_etkovf_epllt_Ofr•m•

This function is described In the section entitled How LV "'"-ti*' swi isru.M.gci.aiiAI
lltlciiAial on page 6-185.

Entry no. 28: _kemet_etkovf_epllt

This function is described in the section entitled How IM ""'-ti*t1141~ is ru.Mgcl.aiiAI
lltlciiAialon page6-185.

Entry no. 29: _kemel_etkovf_copyerge

This function is described In the section entitled How IM "'""li*tl141~ is ,..,.gcl.aiiAI
lltlc"ll-' on page6-185.

Entry no. 30: _kemet_etkovf_copyOerge

This function is described In the section entitled How IM rw11-ti1U sUlci is IIIIM.gci.aiiAI

"'""II-' on page 6-185.

typedef struct stack chunk {
unsigned long ac_;ark; /* •• Oxf60690ff */
struct stack_chunk •sc_next, •sc_prev;
unsigned long sc_slzet
int (*sc_deallocate) ()

_kernel_stack_ chunkt

Entry no. 44: _kernet_eteck_chunk *_kemel_current_eteck_chunk(vold)

Returns a pointer to the current stack chunk.

6-213

Program Mvironment Iunden;

;::;::~%::;.;-:.:.;-:-: .;.;.;:;:;:;:;:;:;:;;:;;:~::~~~;:;;;:;;;.;;::;:;:;:; :;:;:;:;:;:;:;:;:;-:;::::;x~~:;:!Wh::::::::::;:;~:~:~=»»~~::;:;:;:~-::-::::;:;:;:;:;:;:;:;:;:;:;:;:;::::.:=:::.:·:~:,O:~.-:.;·:·:·:·:·:::-:·:·:=::::;:;:: :;:;:;:;::~

typedef str uct
int r4, r5, r6, r7, r8, r9;
int fp, sp, pc, sl;
int f4[3), f5[3), f 6 [3) , f7[3);

_kernel_u nwindblock;

Entry no. 4: lnt _kernel_unwlndLkernel_unwlndblock •anout,
char ••aanguage)

Unwinds the call stadt one level. Returns:
>0 lri t suo::eeds

0 If It fails because It has reached the stack end or
<0 If It fails for any other reason (e.g. stack oorrupt)

Input values for fp. sl and pc must be oorrect. r4·r9 and f4·f7 are updated if the
frame addressed by the Input value of fp contains saved values for the
oorresponding registers.

fp. sp. sl and pcarealways updated. the word pointed to by language is updated
to point to a string namlna the language conesponding to the returned value of pc.

Program environment functions

6-214

Entry no. 5: char •_kernel_procname(lnt pc)

Returns a string naming the procedure containing the address pc (or 0 If no name
for It can be found).

Entry no. 6: char •_kernel_language(lnt pc)

Returns a string naming the language in whose code the address pc lies (orO If It is
in no known language).

Entry no. 7: char •_kemel_commancl_strtng(vold)

Returns a pointer to a ropy or the oommand string used to run the prQiram.

Entry no. 2: void _kernel_setreturncode(unslgned code)

Sets the return code to be used by _kemel_exlt.

Entry no. 1: void _kemel_exlt(vold)

Calls OS_Exit with the return code specified by a previous call to
_kernel_setretumcode.

Th6 Sharfld C Lltltaty
;:.x.;'-:v: :::::::::::::::::::::::::!:::::;.;::::.:·:~-:-»:-:;.;.;:::::::: :::::::::::::::::=-::~:;:;:;.;;;:;;;::::~·:.:·:·:·::::::::::::::::r<-:::::::~~«-:~ .. ~:::-:·:-~;;.;;,.-.;x::;;:;::::::::::::::::::::::::::::.;:;.;«-.'@..~:•:«««<-»:;:~:-:·:·:·:·:·:·:·:·xvx·:·:·:·:..~.;.;.;.

Entry no. 47: void _kernel_raise_error(_kemel_oserror •)

Generates an external enor.

Entry no. 3: void _kernel_extttraphandtef(vold)

Resets the lnTrapHandler Oag which prevents recursive traps. Used in trap
handlers which do not return directly but oontinue execution.

Entry no. 8: lnt _kernel_hosto-<vold)

Returns 6 for RISC OS.
[Returns the result of call ina OS_Bvte with RO = 0 and Rl "' 1.)

Entry no. 37: lnt _kemel_fpavallable(vold)

Returns non-zero If Ooating point Is available.

Entry no. 21: _kernel_oserror •_kernel_lut_oserror(vold)

Returns a pointer to an enor blodtdescrlblng the last OS error since
_kemel_last_oserror was last called (or since the prot~ram started if there has been
no such call). If there has been no OS error it returns 0. Note that occurrence of a
further error may overwrite the oontents of the block. This can be used. for
example. to determine the error which caused fopen to fall . If _kernel_swi caused
the last OS error. the error already returned by that call gets returned by this too.

Entry no. 23: _kernel_oserror • _kern.t_getenv(const char •name, char
•buffer, unsigned size)

Reads the value o(a system variable. placing the value string In the buffer (of size
size).

Entry no. 24: _kernel_oserror •_kemet_Htenv(const char •narne,const
char •value)

Updates the value or a system variable to be strins valued. with the given value
(value = 0 deletes the variable)

Entry no. 43: lnt _kernel_escape_seen(vold)

Returns I if there has been an escape since the previous call of
_kemel_escape_seen (or since the Jlroiram start If there has been no previous
call). Escapes are never ignored with this mechanism. whereas they may be with
the language EventProc mechanism since there may be no stack to call the
EventProc on.

6·215

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

General utility functions

;:;:;.;:;:;:;:;:;:;:;:;.-;;::5::::m::»:¢-:>:·»»:"~::;;;.;o::::-::::;:;:::::;::•::::::::::;.~:~::::::;:;:: :;:;:;:;:;:;::·:·:~..M~::;; :·:·:· ;;;;:v-h:::::::;;.;:;:;:;;;:;::::·:·:·:·:·:·:·:·:•:·:·:·:·:·:·:•::;.;;;;;o;;:o:.:.;;;:~.x;;;.:.;::.;.:.;::::,.,..;.;.;.;.;.;**;::;;.;.;;~;;:;:;:;~~

Entry no. 39: void _kemel_lrqa_on(vold)

Enable interrupts. You should not disable interrupts unless absolutely necessary. If
you disable Interrupts you should re-enable them as soon as possible (preferably
within IOuS).

This function can only be used from code running In SVC mode.

Entry no. 40: void _kemel_lrqa_off(vold)

Disable IRQ interrupts. You should not disable Interrupts unless absolutely
necessary. If you disable Interrupts you should re-enable them as soon as possible
(preferably within IOuS).

This function can only be used from code running In SVC mode.

Entry no. 41 : lnt _kemel_lrqe_dleebled(vold)

Returns non-zero if IRQ Interrupts are d i.sabled.

General utility functions

6-216

typedef struct
int r(lO); ! • only rO - r9 matter for swi's • 1

I _kernel_swi_regs;

Entry no. 9: _kemel_oaenor • _kemel_awl(lnt no, _kernel_awf_rege *In,
_kernel_awl_rege *out)

Call the SWI sped lied by no. The X bit Is set by _kernel_swi unless bit11 is set. in
and out are pointers to blocks for RO • R9 on entry to and exit from the SWI.

Returns a pointer to an error block if an error occurred. otherwise 0.

Entry no. 45: _kernel_oaerror •_kernel_awf_c(lnt no, _kernel_awf_rega *In,
_kemel_awf_rege •out,lnt •carry)

Similar to _kernel_swi but returns the status of the carry nag on exit from the SWI
in the word pointed to by carry.

Entry no. 10: lnt _kemel_oebyte(lnt op,lnt x,lnt y)

Performs an OS_Byte operation. If there is no error. the result contains:
the return value of R I (x) In its bottom byte
the return value of R2 (y) In its second byte
I in the third byte If carry is set on return. otherwise 0
0 in its top byte

-,_ Shtwd C Libraty

x:::::::::::;;:=:=:~:::::::::~~®'~;::::::::::::::::w:::o~:=~-:=:=:=:~~=:::~::~w.~:=:::::::::::=:=:=:=:=:=:=:::~::::::::-:~:::::=:=:=:;:::::::=:=:=:=:=:=:=:=:=:=:=::::::::;;:::::::•:=m::::::

Entry no. 11 : lnt _kemel_oardch(vold)

Returns a character read from the currently selected OS Input stream.

E.ntry no. 12: lnt _lcemel_oawrch(lnt ch)

Writes a byte to all currently selected OS output streams. The return value lust
Indicates success or failure.

Entry no. 13: lnt _kernel_ oabget(unalgned handle);

Returns the next byte from the file Identified by handle. (-I =EOF)

Entry no. 14: lnt _kemel_oabput(lnt ch, unalgned handle)

Writes a byte to the file Identified by handle. The return value lust indicates
success or failure.

typedef st roct I
void • dataptrr /* memory address of data */
int nbytes, fileptrr
int buf len; /* these fie lds for Arthur gpbp extensions •1
char • ;lld_fld; 1• points to vildcarded filename to match •1

_kernel_osgbpb_block;

Entry no. 15: lnt _kemel_oegbpb(lnt op, unllgned handle,
_kemel_oagbpb_block *lnout);

Reads or writes a number of bytes from a fllinl! system. The return value lust
Indicates success or failure. Note that for some operations. the return value of CIs
significant. and for others It Isn't. In all cases, therefore. a return value of -I Is
possible. but for some operations It should be ignored.

Entry no. 16: lnt _lcemel_oaword(lnt op,lnt *data)

Performs an os_Word operation. The siz.e and format of the block pointed to by
data depends on the particular OS_ Word being used; It may be updated.

Entry no. 17: lnt _kernel_ oaflnd(lnt op, char •name)

Opens or closes a file. Open returns a file handle (0= open failed without error).
For dose the return value lust Indicates success or failure.

typodef atruct I
int load* exec; /* load, exec addreaaea */
int atart, end: / * a t art addreaa/lenqth, end addreaa/attributea • /

I _kernel_osfile_block:

6-217

Memoty allocation fundons

:::::::::::::::::::::::::::~::::::::::::.':~~:;$:;::::::::.:·:-:::::::::::: ::::::::::::::::::::::::::::::::::;;~.*:::::::::::::::::::::::::;.::::;:::::::::::::::::::::::;:;:::;:;:;~.x::;.:..~~o;:;:;::::::::::::::;;;:;:;::~~~:"«<*:::::::·:-:<4.-:.::::::t.-::x

Entry no. 18: lnt _kernel_osflle(lnt op, const cher •name,
_kernel_osflle_block *lnout)

Perfonns an OS_File operation, with values of R2 • R5 taken from the osfile blocl
The block is updated with the return values of these registers. and the result Is the
return value of RO (or an error Indication).

Entry no. 19: lnt _kemel_oserg-<lnt op, unsigned handle,lnt arg)

Perfonns an OS_Arss operation. The result Is the current filing system number (if
op" 0) otherwise the value returned In R2 by the OS_Args operation.

Entry no. 20: lnt _kernel_osdl(cher *a)

Calls os_cu with the specified string. If used to run another application the
ament application will be dosed down. If you wish to return to the current
application use _kerneLsystem. The return value just indicates whether there was
an error or not.

Entry no. 22: lnt_kernel_system(char •atrlng,lnt chain)

Calls OS_CLI with the specified string. If chain Is 0. the current application Is
copied to the top of memory first. then handlers are Installed so that if the
command string causes an application to be Invoked. control returns to
_kemel_system. which then copies the calling application bad into its proper
place. Hence the command Is executed as a sub-prO&ram. lf chain is I. all handlers
are removed before calling the CLI. and if It returns (the command is bulh·fn)
_kemel_system Exits. The return value just indicates whether there was an error or
not.

Memory allocation functions

6·218

Entry no. 26: unsigned _kernel_alloc(unslgned words, void "block)

Tries to allocate a blodt of size= words words. Falling that. it allocates the largest
possible block (may be size zero). lf words Is< 2048 it is rounded up to 2048.
Returns a pointer to the allocated block In the word pointed to by block. The
return value gives the size of the allocated block.

typedef void freeproc(void *);
typedef void • allocproc(unsigned)l

Th8 SharBd C Llbnlry

::::::::m-,.:;::::::;.:.:·:=:·:·:=:·:=:=:::~=:::::~:::::::::::;:;.;;;:;::;.-.oc:~«.;·:.:·:·::: ::::::::::::::: :::::::-:~:::-~:;:;:::;.~x<:::::::::::;x::.:::::::::::::::;:::~.::~:;::::::»Wx::::;:;:~::::::::::::::x.:f-»?.:::::: ·:·:-:-: :;::::::::::::::::·:·:·:=:·:·:·

Entry no. 25: void _kernel_reglster_alloc-<allocproc •malloc, freeproc .,,..,
Registers procedures to be used by the kernel when It requires to free or allocate
storage. Currently this Is only used to allocate and free stack chunks. Since
allocproc and freeproc are called during stad ell tension, they must not check for
stad overflow themselves or call any procedure which does stack chedr.ing and
must guarantee to require no more than 41 words of stack.

The kernel provides default alloc and free procedures. however you should replace
these with your own procedures since the default procedures are rather naive.

t ypedef int _kernel _ExtendProc(int t•n•!, void** /*p* /);

Entry no. 46: _kernef_ExtendProc •_kemel_reglater_slotextend
Lkemei_Extenc!Proc •proc)

When the initial heap (supplied to _kemeUnit) Is full. the kernel is normally
capable of extending It by extending the wimpslot. However. If the heap limit Is not
the same as the application limit. It is assumed that someone else has acquired
the space between. and the procedure registered here Is called to request n bytes
from it.

Its return value is ellpe<:ted to be :i!: n, or 0 to Indicate failure. If successful the word
pointed to by p should be set to point to the space allocated.

Language support functions

Entry no. 31: unsigned _kernel_udlv(unslgned divisor, unsigned dividend);

Divide and remainder function. returns the remainder In Rl.

Entry no. 32: unsigned _kernel_urem(unslgned dlvleor, unsigned
dividend);

Remainder function.

Entry no. 33: unsigned _kernel_udlv10(unslgned dividend);

Divide and remainder function. returns the remainder In Rl.

Entry no. 34: lnt _kernel_sdlv(lnt dlvlsor,lnt dividend);

Signed divide and remainder function. returns the remainder in Rl.

6·219

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Languagfl support functions
.:;:;:;:;:;:;:;:;:;::-.::::::»";:;;:.;-:v:·:·:=:·:·:·:·:·:·:·::;.;.;.;:;;;:;::~:'O::::~::::::;:;;;~:;:;.;::~·:·::;.;:;:;.~::::;:::;:;:;:;:::;:;:;:::;:;:;:;:;:;.;:;:;:;:;:;:::;.;.;.;.m;.-~;;;:;:;:;:;:;:;:;:;:;:;:;.~:~<$.,~:0::::::;:;:;:;.~:=:·:·:·: .. --:.X:

6-220

Entry no. 35: lnt _kemel_erem(lnt dlvtsor,lnt dividend);
Signed remainder function.

Entry no. 36: lnt _kemel_ldlv10(1nt dlvtdend);
Signed divide and remainder function . returns the remainder in R I .

1119 Shsr«< C Llbraty
~~:::::::w:::~=~:-«<-:::::::::::=>:=:-:«~~~:;::::::: ::::::::::::::::::::=:::=:=:::::::::-':«::~:::::::~::-::-~:=::::::::::::::::::::::::::;;:::::::::::::::'$::::~:::~=:::::;:::.:::::«

C library functions
The C library functions are crouped under the followlnc headings:

e (A llfWfU.,.t /IIJictillltS
PlOY ides functions for trap and event handllns. Initialisation and finallsatlon ,
and mathematical routines such as number conversion and multiplication.

• assnt
The assert module piOYides one function which Is useful during program
testing. . """ The ct ype module provides several functions useful for testing and mapping
characters.

• lmtll

The word variable _ermo at offset 800 In the llbnlry statics Is set whenever
certain error conditions arises.

• !Dull
This module handles national characteristics, such as the different orderings
month-day-year (USA) and day-month-year (UK) ~
This module contains the prototypes for 22 mathematical functions. All return
the type double.

• utj~~tp

This module provides two functions for bypassing the normal function call and
return discipline.

• sig•al
Signal provides two functions.

• suio
stdio piOYides many functJons for performing Input and output.

• slilih
s tdl ib provides several general purpose functions.

• slri•g
string plOY ides several functions useful for manipulating character arrays
and other objects treated as character arrays.

• tillll

time provides several functions for manipulating time.

6·221

(

(

C libraty Alncllons The Shared C Libraty
~;:w.Q:::::'$:>::::::-::::-:;:~(«.;«-t-:·:·:·:·:=:-::::::::::::::::;:~.:::::::::::::=~:-!·:-:::.:< :-:·:-::.:-:·:·:-:.::::::::::::::::::::::::::::::~.s:~r.;;::.:::;;:::::.:::::::;:::;:::::::>:·:·:·:;:.m;.:.~:·:·:·:·:·:.::-~vmW:·:::::::;:•:=~ :·:· :-:-_:.:-:-::::::::: ::::::::::::::-:-:-:@:.;.;.;.:·:·:·:·:·:·:.:·:·::;.:.;-:·:·:·:·:.;w&:·:;;:;;:·:<:•::m::~::;:~::::-n;::.:.:::::::::w:::::::.:~;.::::::::::::::::::::::::::-~::::;:::::.:·:·:·:«·:-:;:::-:::::::=.-::=::~:::::;sx~:-:~:·:·:·: -:·:·:·:·:·:=:::::

(

Index of C library function a by entry numb•
eatry ao. ··- 011 Pate

0 trapHandler paae 6-231
I uncaut~htTtapHandler pa11e 6-231
2 eventHandler pal!e6-232
) unhandledEventHandler paae6-232
4 liSstack_overflow paae6-2H
5 liSstad_overflow _ I paae6-2H
6 liSudivlde paae6-2H
7 liSuremalnder page6-213
8 liSdlvide page6-2H
9 liSdivtest paae6-2H

10 liS remainder page6-2H
II liSmultiply paae6-2H
12 _rdlchk paae6-234
I) _rd2chk page6-234
14 _rd4chk page 6-234
15 _wrlchk paae 6-234
16 _wr2chk paae 6-234
17 _wr4chk paae 6-234
18 _main paae 6-234
19 _exit page 6-235
20 _clib_initiallse pase 6-235
21 _back! race paae 6-235
22 _count paae6-236
23 _count! paae 6-236
24 _stfp paae 6-236
25 _ldfp paae 6-236
26 _printf paae 6-251
27 _fprintf paae 6-251
28 _sprintf paae 6-251
29 clock paae6-273
30 difftime paae6-273
31 mktime paae6-273
32 t ime paae6-274
33 asctime paae 6-274
34 dime paae 6-274
35 smtime page6-274
36 local time paae 6-274
37 strftime paae6-274
38 memcpy paae6-268
39 memmove paae6-268

HtiJ ao. -· oap.,.
40 strcpy paae 6-268
41 strncpy paae 6-268
42 strcat page 6-268
41 strncat pase 6-269
44 memcmp page 6-269
45 strcmp page 6-269
46 strncmp page6-269
47 memchr page 6-270
48 strchr page 6-270
49 strcspn pase 6-270
50 strpbrk pase 6-270
51 strrchr paae 6-271
52 strspn paae 6-271
53 strstr page 6-271
54 strtolt page 6-271
55 memset pase 6-272
56 strerror page6-272
57 strlen paae 6-272
58 at of page6-259
59 atoi pase 6-260
60 atol page 6-260
61 strtod pase 6-260
62 strtol page 6-260
6) strtoul paae 6-26 1
64 rand page 6-26 1
65 srand pase 6-262
66 calloc pa11e 6-262
67 free pase 6-262
68 malloc paae 6-262
69 realloc page 6-262
70 abort page 6-261
71 atexit pase 6-263
72 exit page 6-263
n getenv paae 6-261
74 system page 6-264
75 bsearch page 6-264
76 qsort page 6-264
77 abs pa8e 6-265
78 div page 6-265
79 labs page 6-265

(

(

(

(

(

(

(

(

(

(

(
6-222 6-223

(

(

(

(

(C library functions n.. Slund C Library
-;;::»:-»:.:~:.x·:·:·:·:·:·:·:·:·:·:·:·z·~:-~~=·:.:-:=:=:=:·:=:·:·:·:·:·~«-:::·:·:-:.:«-»>:*»:>:--..::·:·:·:;:;:·:·:·:·:·:·:·:=:·:=:=:=:~:=:=;;:.~-:.;.;:-:-:·:·:·:·:·:=:·:·:·:·:·:;:-»»" .. Y.;:w~;:;..:;.xv~;;;:;:;:;::::: »x:»:-..-<=::x::::::::::::::::::::::::~:::::-:~~:o!.:!'h:=:-:=:::::::::::::::;:;:~:=::r.:;:~~~::s(.X:::::x::::::~~=:::::;.~~m»:~».~:.:::;:.:,

(

(

(

(

(

entry no. ••me oap.,e ntry eo. eaflle 01 pap
80 ldiv page 6-265 122 feof page6-258
81 n:move page 6-246 121 fertot page6-258
82 rename page 6-246 124 perror page6-259
83 tmpfile page 6-246 125 _tgnore_slgnal_handler page 6-245
84 _old_tmpnam page 6-247 126 _error_slgnal_marker page 6-245
85 klose page 6-247 127 _default_slgnal_handler page6-245
86 mush page 6-247 128 signal page6-243
87 lopen page 6-248 129 raise page6-245
88 fn:open page 6-249 130 set(mp page 6-243
89 setbuf page6-249 131 long(mp page 6-243
90 setvbuf page6-249 132 acos page6-241
91 printf page 6-251 m asln page6-24 1
92 fprintf page6-249 134 a tan page6-241
93 sprintf page6-251 115 atan2 page6-241
94 scanf page 6-253 136 cos page6-241
95 fscanf page 6-252 137 sin page6-241
96 sscanf page6-253 138 tan page 6-24 1
97 vprintf page6-253 139 cosh page 6-241
98 vfprintf page6-253 140 sinh page6-241

(
99 vsprintf page 6-253 141 tanh page 6-241

100 _vprintf page 6-252 142 exp page 6-241
101 fgetc page 6-254 143 frexp page 6-242
102 fgets page 6-254 144 ldexp page 6-242
103 fputc page 6-254 145 log page 6-242
104 I puts page 6-254 146 fog10 page 6-242
105 _filbuf page 6-259 147 modf page 6-242
106 getc page 6-254 148 pow page 6-242

(
107 get char page 6-255 149 sqrt page 6-242
108 gets page 6-255 150 cell page 6-242
109 _ nsbuf page6-259 151 fabs page 6-242

(

110 pule page 6-255 152 floor page 6-242
Ill put char page 6-255 153 fmod page 6-242
112 puts page 6-255 154 set locale page 6-240
113 ungetc page6-256 155 lsalnum page 6-238
114 I read page6-256 156 lsalph page 6-238
115 fwrite page 6-256 157 lscntrl page 6-238

(

(

116 fgetpos page 6-257 158 lsdigit page 6-238
117 fseek page6-257 159 lsgraph page 6-238
118 fsetpos page 6-257 160 Is lower page 6-238
119 ftell page 6-258 161 is print page 6-238
120 rewind page 6-258 162 lspunct page 6-238
121 dearerr page 6-258 163 iss pace page 6-238

c 6-224 6-225

(

(

(

C libraly AJnclions The Sharlld C Litxwy
.:::::;:;:~;:~%:>:·:· ;.;-;:;.;:;:;:;:;.;:;:;.:;:~.~::::~::::;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::::::::::::::::-:=~~=;~;:~.;-.,,..:;::;;;:::;:::;::~~~::::..-...~x::.::.;.;;;;;.;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;;~~~:::::·:·:~·:·:=:·:.: ;:;:;:;.:.;m:;:;;;:;:<-:·:-::·:·:=:·:=::;.;::::::-:««-.v,;;:;:;:;:::::::;:::::::::w:::::>:·:·:·:·:·:.:·:.w«::=:·:·::::::::::::.:::::::::::::::::::::;w:.m:::::.:·:·:·»:-:-:::::.:::::::.::::::::x:::::::::::~:·:·: -:·:·:·:·:·:·:·: ::::::.:-:::::::::::·:·:·:v:;;;:.:"..:.:-:..:-:;;;;

(

••tiJ ao. ··- oapqe
164 is upper pase 6-239
165 isxdigit pase 6-239
166 tolower pase 6-2'39
167 toupper pase 6-239
168 _assert page 6-237
169 _memcpy page 6-236
170 _memset page 6-237
171 localeoonv page 6-240
112 mblen page6-266
113 mbtowc page 6-266
174 wctomb page 6-266
175 mbstowcs page 6-267
176 wcstombs page 6-267
177 strxfrm page 6-270
178 strcoll page 6-269
179 _dib_finalisemodule page 6-237
180 _ctib_ version page 6-237
181 finalise pase6-237
182 tmpnam pase 6-247

aama ••try ao. oapap
clearerr 121 page6-258
_dib_llnallsemodule 179 page6-2'37
_dib_lniUalise 20 page 6-235
_dib_verslon 180 pase 6-237
clock 29 page 6-273
cos 136 page 6-241
cosh 139 page 6-241
_count 22 page 6-2'36
_count! 23 page 6-2'36
ctlme '34 page 6-274
_defauiLsignal_handler 127 page 6-245
difftlme 30 page 6-27'3
div 78 page 6-265
_error_slgnal_rnarlter 126 page 6-245
evenlHandler 2 page 6-232
exlt 12 page 6-263
_exit 19 page 6-235
exp 142 page 6-241
labs 151 page 6-242

(

(

(

(

(

error condition EDOM page 6-239
error condition ERANCE page 6-2'39
error cond i tlon ESIGNUM page 6-2'39

I close 85 page 6-247
feof 122 page 6-258
ferror 12'3 pase 6-258

(
mush 86 page 6-247

Index of C library function a by function name

aame ealry •o. oap.,e
abort 70 pase 6-26'3
abs 11 page 6-265
acDS 1'32 pase 6-241
asctime n page 6-274
asin 133 pase 6-241
_assert 168 page6-237
a tan 134 pase 6-241
atan2 135 page 6-241
at exit 71 page 6-263
at of 58 pase 6-259
atol 59 page6-260
atol 60 pase6-260
_backtrace 21 page 6-2'35
bsearch 75 page 6-264
calloc 66 pase 6-262
ceil 150 pase 6-242

fgetc 101 page 6-254
lgelpos 116 page 6-257
I gets 102 page 6-254
_filbuf 105 page 6-259
finalise 181 pase 6-237
noor 152 page 6-242
_Osbuf 109 pase 6-259
(mod 153 page 6-242
I open 87 page 6-248
fprintf 92 page 6-249
_fprlntf 27 page 6-251
fputc 10'3 page 6-254
I puts 104 page 6-254
I read 114 page 6-256
free 67 page 6-262
I reopen 88 page 6-249
lrexp 14'3 page 6-242
lscanf 95 page 6-252
lseelr. 117 pase 6-257

(

(

(

(

(

6-226 6-227 c
(

(

(

(C Hbrary lvnclions
The Stund C Llbnwy

<-"»S>»Z·:«~=~~?h~-'..:.w.-»:;:-:·:·:~:::::::::::::::::::::::.:::~~~,.:.o.ow:.-.«-;.:.:;:,.:·:·:·:·:·:·:·:·»»=«~>>::::::::::::::::::::::::::::::.:·>:·:;.;:::.:.x;.:.:;;;:;;,;;9-:;;;:::.:;:..:-:-:-:-:«-»x-:·:·:·:·:·:·:·:=::::::::::::::::::::::;.::».~::::: x~::::::::::::::::::::::::::::::>~-:;~:;;.-:::::::-:·:·w~:::::::t:::=::::::::::::::::::::::::~::;;;;,;.x..;:..~=:::::~::::::-=:::::::::::r.:::.:::::::-'Y.::~'6»*·:.:::.;;:;:::::::;:x:?""n.~-:-:::::::::

(

(

f

(

aame eatry ao. oapqe a a me eatiJIIO. oa Pate
fsetpos 118 pa8e 6-257 modf 147 Jla8e 6-242
ftell 119 Jla8e 6-258 _old_tmpnam 84 p;~Be6-247
fwrite 115 page 6-256 perror 124 p;~Be6-259
BelC 106 paBe 6-254 pow 148 p88e6-242
Betchar 107 pafle 6-255 printf 91 pa8e6-251
Betenv 73 pafle 6-263 _printf 26 pa8e 6-251
8ets 108 pafle 6-255 putc 110 paBe6-255
Bmtime 35 page 6-274 putchar Ill p;~Be6-255
_ 18nore_si8nal_handler 125 paBe 6-245 puts 112 pafle 6-255
isalnum 155 pa8e 6-238 qsort 76 pa8e6-264
isalph 156 paBe 6-238 raise 129 pa8e6-245
iscntrl 157 Jla8e 6-238 rand 64 paBe6-261
isdi8it 158 Jla8e 6-238 _rd ldllt 12 Jla8e 6-234
ls8raph 159 paBe 6-238 _rd2dllt 13 page 6-234
Is lower 160 pa8e 6-238 _rd4dllt 14 p;~Be6-234
Is print 161 pa8e 6-238 realloc 69 p88e6-262
lspunct 162 paBe 6-238 remove 81 pa8e 6-246
Iss pace 163 paBe 6-238 rename 82 paBe6-246
Is upper 164 page 6-239 rewind 120 Jla8e 6-258

(
isxdiBil 165 page 6-239 scan(94 Jla8e 6-253
labs 79 page 6-265 setbuf 89 page6-249
localeconv 171 pa8e 6-240 setfmp 130 paBe 6-243
ldexp 144 pa8e 6-242 set locale 154 pa8e 6-240
_ldfp 25 paBe 6-236 setvbuf 90 page 6-249
ldlv 80 page 6-265 Sl8nal 128 page 6-243
local time 36 pafle 6-274 sin 117 page 6-241
log 145 pafle 6-242 sinh 140 page 6-241
loglO 146 pa8e 6-242 sprintf 93 pa8e 6-251
lon8fmp 131 page 6-243 _sprintf 28 pafle 6-251
_main 18 page 6-234 sqrt 149 page 6-242 (
malloc 68 page6-262 srand 65 page 6-262
mblen 172 paBe 6-266 sscanf 96 Jla8e 6-253
mbstowcs 175 paBe 6-267 _stfp 24 page 6-236
mbtowc 173 page6-266 strcat 42 page6-268
memchr 47 page6-270 strchr 48 page 6-270

(;
memcmp 44 page 6-269 strcmp 45 page 6-269
memcpy 38 page 6-268 strcoll 178 pa8e 6-269
_memcpy 169 page 6-236 strcpy 40 page 6-268
memmove 39 page 6-268 strcspn 4 page 6-270

(,
memset 55 page 6-272 strerror 56 page 6-272
_memset 170 page 6-237 strftime)7 pafle 6-274
mlttime 31 page 6-273 strlen 57 pa8e 6-272 (;

(
6·228 6-229

(\

c libraty AJnclkxls

:::::::-:.;.;:-:-::;:;:;:;:;:;:;:::::::::::;:;~::::::.;~-:,.;.;:;.$;.;:: .;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:;;x.v~~~~-:-:;o_.;.;.:.:::-::;:;,::;:;:;:;:;:;:;:;:;.;.;:::::::>:;;;~~;:;:::::::::::~;;;;.;::o:·:·:·:·:;;.;:;:;.;:;.;::::::.;:;:;:;: ;:;::: :;:;~:;;;~::;~:·:·:·:·:·:.~;:;::

••me eall)' ao. o•pap
strncat 43 p;iie 6-269
strncmp 46 p;iie 6-269
stmcpy 41 p;iie 6-268
strpbrk 50 p;iie 6-270
strrchr 51 p;iie 6-271
strspn 52 page 6-271
strstr 53 page 6-271
strtod 6 1 p;iie 6-260
strtok 54 page6-271
strtol 62 p;iie6-260
strtoul 63 p;iie 6-261
strrlrm 177 p;iie 6-270
system 74 p;iie 6-264
tan 138 p;iie 6-241
tanh 141 p;iie 6-241
time 32 page 6-274
tmpfile 83 page 6-246
tmpnam 182 p;iie 6-247
tolower 166 p;iie 6-239
toupper 167 p;iie 6-239
trapHandler 0 p;iie 6-231
uncauahtTrapHandler I p;iie 6-231
unaetc 113 p;iie 6-256
unhandledEventHandler 3 p;iie6-232
vfprintf 98 p;iie6-253
vprintf 97 page6-253
_vprintf 100 page 6-252
vsprintf 99 p;iie 6-253
wcstombs 176 p;iie 6-267
wctomb 174 p;iie6-266
_wrlchk 15 p;iie 6-234
_wr2chk 16 page 6-234
_wr4chk 17 p;iie 6-234
xSdivide 8 p;iie 6-233
xSdivtest 9 page 6-233
xSmultlply II page 6-233
xSremalnder 10 page 6-233
xSstacl.001erflow 4 p;iie 6-233
xSstacl.OOierflow_l 5 p;iie 6-233
xSudivide 6 p;iie 6-233
xSuremalnder 7 p;iie 6-233

6-230

The Shared C LibrllfY
:-:·:·:·:·: :;:;:;:;:;;:~-:::::~.«:::::.:•:·:·»:-::;:;:;:;:;:;.;:;::~::.::;:;:;:;:;:;:;:;:;~:;:;:;~:;.:-:·:=::::::::;:;:;:;:;:;:;;;:;.:-:·:·:-::;:;.;:;:;:::;-..-;;:x;.::;:;:;::•:«-:::-::m:-~-0~-::;:;:;:;;:«;~;:;:;:;:;~:;;m;:;:;;;:;.;:;.;.;.;.:·:·:·:·:·:·::;.:-:·:·:·:·:·:·::;:::~.«;~.x.« .. "-:

Language support functions

Entry no. 0: TrapHandler

Entry no. 1: UncaughtTrapHandler

0 1 Clllry.

RO = error code
R 1 = pointer to register dump

Oa e.xll:

Only exits if the trap was not handled

RO = 0 (indicatina that the trap was not handled).

These are the default 'ltapProc and UncauahtTrapProc handlers used by the C
library in its kemellllnauaae description (see the section entitled hti4Jf4Ui"f •
ll"fKa91 nm·liiU swstt,. ID IM hafrt libruy t""'lon page6-184).

You may use these entries In your own kemellllnauaae description if you wish to
have trap handling similar to that provided by the C library, or you may call these
entries directly from your own trap handler if you 'llish to perform some
pre-processing before passlna the trap on.

The error code on entry Is converted to a slanal number as follows:

SiJ•IIi ao. Error codee
2 (SICFPE) ~20 (Error_DivldeByZero).

&80000200 (Error....fPBase)- &800002ff (Error_FPLimlt - I)
3 (SICILL) &80000000 (Error_llleaallnstructlon).

&80000001 (Error_PrefetchAbort).
&80000005 (Error_BranchThrouahZero)

5 (SIGSECV) &80000002 (ErrorJ)ataAbort).
&80000003 (Error...MdressElrceptlon),
&80800ea0 (Error_ReadFail),
&80800eal (Error_WriteFail)

7 (SICSTAJ<) &80000021 (Error_StadOverflow)
10 (SICOSERROR) All other errors

It then determines whether a signal handler has been set up for the converted
signal handler. if no such handler has been set up (ie the signal handler Is set to
_SIC_DA..) it returns with RO = 0.

Otherwise it calls the C library function raise with the derived signal number. If
the raise function returns (fe the signal handler returns) a postmortem stack
badtrace is generated.

6·231

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

(

(

(

(

c
(

(

Language support functions

;:;::::;::.::.:.x.;.-««««•:·:.:·: ·:·:·:·:·:·:·:·:-::::::: ::::::::: ::::;.;::·:·:-:::=:;:::.x:x::-::;~;:~·:·:·:®:v;.;.;.:.;.:.:•:·:.:. ;.;.;.·.;.;:·:::::;.;:::;.;:;:;.;:::::;.;: :::::::::::::::::::::::::::::::·:·»»~~::;:x««i'.o::::::::::::::::;::·:·:·:::-.v.::.;:;:;:;.;:;.;.;:;.;.;.:-:!:-:~::

6-232

Entry no. 2: EventHendler

Entry no. 3: UnhendledEventHandler

Oa eatry:

RO =event code
Rl =pointer to register dump

01 eldt:

RO = I If the event was handled. else 0

These are the default EventProc and UnhandledEventProc handlers used by the C
library In Its kernel language description (see the section entitled lnlltfadng a
/artg&Uigl not-lillll Slfltllll tO tfw AJ4rn fibr&I'IJ Urnll On page 6-184).

You may use these entries in your own kernel language description if you wish to
have event handling similar to that provided by the C library or you may call these
entries directly from your own event handler ir you wish to perform some
pre-processing before passing the event on.

The event code on entry is either a RISC OS event number as described in the
chapter entitled Ew"IS on page 1-137. or -I to Indicate an escape event.

All events codes e~cept -I are currently ignored. The handler simply retums with
RO = 0 if RO • -I on entry.

EventHandler then determines whether a SIC INT signal handler has been set up. If
no handler is set up (lethe signal handler is set to _SIG_OFL) EventHandler
returns with RO " 0.

The C library function raise is then called with the signal number SIGINT. Note:
raise Is always called by UnhandledEventHandler even If the signal handler is set
to _SIG_DFL.

If the signal handler returns the event handler returns with RO = I .

Certain sections of the C library are non-reentrant. When these sections are
entered they set the variable _interrupts_ off at offset 9641n the library statics is set
to I.

EventHandler and UnhandledEventHandler check this variable and. if it is set they
set the variable _saved_interrupt at offset 968 In the library statics to SIGINT and
returns immediately with RO = I and without calling ra i se.

Tll9 Sh8ffld C Library
:=:~~:;:::::::::::;:;:;:;:;:;:::;:: :;:;:;:;:;:::::::::::::;:;:;:;:;;;:;:;~::::~~::::~;:;:;::.;·:·:>:'~::;:;:;: .:,:,:.·:····· .. ;:;:;:::::::::::::;: ;:;:;:::::::::::::::::::::;:;:;:;:;:~:::::>.W::::::;~::;.~;;:;:;m$::~::;:;:;:;;:;:::::'««-:"O:::::::;~.(.:~~~o$:-W,:;::::4tl:

When the non-reentrant sections of code finish they reset the variable
interrupts off and check the variable _saved_lnterrupts. If _saved_interrupts Is
non-z;ero It Is reset to z;ero and the signal number stored In _saved_interrupts
(before It was reset to 0) Is raised.

Entry no. 4: x$atedt_ov.tlow

This entry branches directly to _l:emel_stkovf..spliLOframe which is described in
the section entitled How!U nut-liiiU siMi is .ulllflll arwl cc.r.r*J on page6-185.

Entry no. 5: x$atedt_ov.tlow_1

This entry branches directly to _kernel_stkovf_spllt which Is described in the
section entitled Howl" "'"·liiiU sta'i is,..,..,., arwl IICUMd on page 6-185.

Entry no. e: x$udlvlde

This entry branches directly to _kernel_udlv described on page 6-219.

Entry no. 7: x$urernelnder

This entry branches directly to _kernel_urem described on page 6-219.

Entry no. 8: x$dlvlde

This entry branches directly to _kernel_sdlv described on page6-219.

Entry no. 9: x$dlvteat

This function Is used by the C compiler to test for division by zero when the result
of the division Is discarded.

If RO Is non-zero the function simply retums. Otherwise It generates a Divide by
zero error.

Entry no. 10: x$rernelnder

This entry branches directly to _llernel_srem described on page 6-220.

Entry no. 11: x$muldply

O• e11try:

RO = multiplicand
Rl "' multiplier

6-233

Language support fvnelions

:;::::-:::.::.;:::::::::::.::::;.;.::::::::m:::.::::::::;;;:~.:-:::.;.:;;;::;.;.;::::::: ::::::::::::: :::::::::;:::::::w~::::::w=:::::;:;:::::~~:=:~:::::::::::-:::::::::::-~·~:::::::::::::::::::;;.;::·:·>:·:.:.:.;.:;;.;;;.;:;;;.:-:::.:::=:·:·:·:.:::.:;x.e.x::::::.:;ox-:;:;:::::~<

6-234

Oaexft:

RO=RO • Rl
Rl . R2 scrambled.

Entry no. 12: _rd1chk

Entry no. 13: _rd2chk

Entry no. 14: _rd4chk

The functions rdlchk, rd2chk and rd4chk check that the value of RO
passed to the~ is a valid iiddress in the application space (&8000 S RO <
&1000000). _rd2chk and _rd4dtk also check that the value is properly aligned for a
hal£ -word I word access respectively.

If the value of RO Is a valid address the function just returns, otherwise It generates
an Illegal read error.

These calls are used by the C compiler when compiling with memory checking
enabled.

Entry no.15:_wr1chk

Entry no. 16: _wr2chk

Entry no.17:_wr4chk

The functions wrlchk, wr 2chk and wr4chkcheck that the value of RO
passed to the~ Is a valid iiddress in the application space (&8000 s RO <
&1000000). _rd2chk and _rd4chk also check that the value is properly aligned for a
half-word I word access respectively.

If the value of RO is a valid address the function just retums. otherwise It generates
an Illegal write error.

These calls are used by the C compiler when compiling with memory checking
enabled.

Entry no. 18: _main

Oa eatry:

RO =pointer to copy of command line (the command line pointed to by RO on
retum from OS_CetEnv should be copied to another buffer before calling
_main).

Rl =address of routine at which execution will continue when _main has finished.

Th6 Shared C Libnlty

:::;:m::::~:::::::;x;-;;wR;;.::: .. ;:;:::::·:·~:·:-:::·:·:·:·:.:·:·:·:. :=:·:···:·:·:·:· :::::::::::::::::::::::::::~::::::::::::;:-:-:::::::: :::::::::: :::::::::::::::~::::::::::~:::::::::.;.:-:·:·:·:·:·:.:· :·:·:·:=:-:-:-:-:::::::::::::=:·:=:::::.::::::::.:=:=:-:-:.:·:-:=»:·:·:·:·

The following entry and exit conditions apply for this routine:

Oa eatry.

RO =count of araument words.
R I =pointer to block containing RO + I words. each word I in the block

points to a zero terminated string which Is the l'th word in the
command line passed to _main. The last word in the block
contalnsO.

Oa exit:

RO =exit condition (0 • success, else failure)

For C programs this argument will generally point at main.

Oa exit:

Does not return. Con trolls repined through the R I araument on entry.

This function parses the command line pointed to by RO and then calls the
function pointed to by Rl. ·

For C programs this function Is called by the C library as a precursor to callina
main to provide the C entry I exit requirements.

Entry no. 19: void _exlt(vold)

This function is identical In behaviour to the C library function exit described on
page 6-263.

Entry no. 20: void _cllb_lnltlellse(vold)

Performs various Initialisation required before other C library functions can be
called. You should call this function in your Initialisation procedure.

Entry no. 21 : void _becltlrece(lnt why,lnt •llddfeM, _kemel_unwfndblock
•uwb)

Displays a stadt badttrace and exits with the exit code I .

The _kernel_unwindblock structure is described with the _kernel_unwind function
on page 6-214. The argument why is an error code. If why is Error_ReadFail
(&80800ea0) or Error_ WrlteFail (&M800ea I) the address given by the address
argument is displayed at the top of the backtrac:e. otherwise the message
postmortem requested is displayed.

6·235

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c

LtJn(JU8{}41 support functions

~;:;.;!: :;:;:;:;:;:;:;:;:~:.:·~»"~::,::;;$:>::~%§::::::::::::::::::::::::~:::::::::.:«;:::;:.:·:·:·:·:;;.»;::::.:.::::::.;:;:; :;:;:;:;:;::::::::::;:;:;:;:;:;:; :;:;::~~~ :;.:-:'l:·:·:·:.::;:;: ;:;:;:;:;:;:;:: :;:;:;:;:;::::::-::-n::::::::~)~:::;:~

6-236

Entry no. 22: _count

Entry no. 23: _count1

These entries are used by the C compiler when aenerating pnfilt code.

Both _count and _count I Increment the word pointed to by R 14 (after stripping the
status bits). this will generally be the word immediately following a BL instruction
to the relevant routine. _count then returns to the word Immediately following the
Incremented word. _count I returns to the word arter that (the second word Is used
by the C compiler to record the position in a source file that this count-point refers
to).

BL coun t
DCD

BL
DCD
DCD

0

countl
0
fllepos

This word incremented each time _count Is called
Control returns here

This word incremented each time _count I Is called
Offset i nto source file
Control returns here

Entry no. 24: void _stfp(double d, void *x)

This function converts the double fP no. d to packed decimal and stores It at
address x . Note that the doubled is passed In RO. R I (RO containing the first word
when a double Is stored In memory, R I containing the second word). the argument
x Is passed in R2. Three words should be reserved at x for the packed decimal
number.

Entry no. 25: double _ldfp(vold *x)

This function converts the packed decimal number stored at x to a double fP no.
and returns this In FO.

Entry no. 169: void _memcpy(lnt *dest.lnt •source, lnt n)

This function performs a similar function to memcopy except that dest and
source must be word aligned and the byte count n must be a multiple of 4.

It Is used by the C compiler when copying structures.

The Shwed C Llbrltty

~::::::;::::::::::::::::~-=w~~.i¢;~~::.:::::::~:::m:~>>::::::::::::::::~~::::~:>.~~-=::::::::::::::::::~~~..:::~::~::::.:::~~~::::::::::::~w.-:::::::::::::::::::::::.::::::§§:.:::z-m:.:

assert

Entry no. 170: void _memaet(lnt *deat.lnt w,lnt n)

This function performs a similar function to memset eJCept that dest must be
word aligned, the byte value to be set must be copied Into each d the four bytes of
w (I .e. to Initialise memory to &ol you must use &ol OIOIOl In w) and the byte
count n must be a multiple of 4.

It Is used by the C compiler when Initialising structures.

Entry no. 179: _cllb_ftnlllsemodule

This entry must be called In the flnalisatlon code or a module which uses the
shared C library. Before atlllnc lt you must set up the static data relocation
pointers on the base of the SVC stack and Initialise the SL register to point to the
base or the SVC stad: + 512. The old static data reloc:~~tlon pointers on the base of
the SVC stad must be saved around this call.

Entry no. 180: char • _ cHb _ v..lon(vold)

This function returns a str ing giving version Information on the Shared C Library.

Entry no. 181: Finalise

This function calls all the registered atexit functions and then performs some
Internal flnalisatlon of the a floc and lo subsystems.

This entry Is called automatically by the C library on flnallsation, you should not
call it In your code.

The assert module provides one function which is useful during program testing.

Entry no. 168: void _ uaert(char •reason, char "ffle, lnt line)

Displays the messase;

••• assertion failed: 'reason', fi l e 'fil e', line 'line'

and raises SIGABRT.

This function Is aenerally used within a macro which calls _assert if a specified
condition Is false.

6-237

ctype
~::::::::;:;:;:;:;~;:<:;x~::~=:~=:.:·~~::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::~<:-:~:;.;-:;;:;~:;::,:;:;:;:;:;:;:;:;:;:;:;::--::~5!:::::;:;:;:;:;:;:;::~'*.«'-.~»>.~:::s-.:~:~;:;:;:~;:;:;:;:;;:.~:;:;:;:;:;::~*9'.:::::;:;:;:;::;:

ctype

6·238

The ctype module provides several £unctions use£ul £or testing and mapping
characters. In all cases the argument is an int, the value or which is representable
as an unsigned char or equal to the value - 1.1£ the argument has any other value.
the behaviour is undefined.

Entry no. 155: lnt laalnum(lnt c)

Returns true i£ cIs alphabetic or numeric

Entry no. 156: lnt INiph(lnt c)

Returns true i£ cis alphabetic

Entry no. 157: tnt t.cntrl(lnt c)

Returns true i£ cIs a control character (In the ASCII locale)

Entry no. 158: lnt ladlglt(lnt c)

Returns true i£ cIs a decimal digit

Entry no. 159: lnt lagraph(lnt c)

Returns true i£ cis any printable character other than space

Entry no. 160: lnt lslower(lnt c)

Returns true 1£ cIs a lower-case letter

Entry no. 161: lnt t.prlnt(lnt c)

Returns true 1£ cIs a printable character (In the ASCII locale this means Ox20
(space) --+ Ox7E (tllde) inclusive).

Entry no. 162: lnt t.punct(lnt c)

Returns true 1£ cis a printable character other than a space or alphanumeric
character

Entry no. 163: lnt laapece(lnt c)

Returns true i£ cis a white space character viz: space. newline. return. llne£eed, tab
or vertical tab

1M Shared C Library
~:::-:::::::: ::::::::::::::::::~:;::::;.;;:<:--,.«:.:;::::: :::::::::xx:.~:;:::::::::::::::::~::::=~:=x::~:.:::::.::::::::x::::::::::::::::~=:::::::::::::::::::--:m;:.;::~:::::::::~~=·:;;::.:· =-~:-::::;.::::: ::.:::::::::.:=:=:=:=:::r~:-

ermo

Entry no. 164: lnt laupper(lnt c)

Returns true i£ cIs an upper-case letter

Entry no. 165: lnt t.xdlgU(Int c)
Returns true i£ c I sa hexadecimal digit, ie in 0 ... 9. a .. .f. or A ... F

Entry no. 166: lnt tolower(lnt c)

Forces c to lower case 1£ It Is an upper-ase letter. otherwise returns the original
value

Entry no. 167: lnt toupper(lnt c)

Forces c to upper case 1£ It is a lower-ase letter, otherwise returns the original
value

The word variable _ermo at offset 800 In the library statics is set whenever one of
the error conditions listed below arises.

EDOM Lermo=1)
1£ a domain error occurs (an Input argument Is outside the domain OYer which the
mathematical function Is defined) the Integer expression errno acquires the
value of the macro EDOMand HUGE VAL Is returned. EDOM may be used by
non-mathematical £unctions. -

ERANGE L errno:2)
A range error occurs i£ the result or a function cannot be represented as a double
value. If the result overflows (the magnitude or the result Is so large that it cannot
be represented in an obfect or the specified type). the function returns the value ol
the macro HUGE_ VAL. with the same sign as the rom:ct value or the function; the
integer expression er rno acquires the value or the maao ERANGE. I£ the result
underflows (the magnltudeo£the result is so small that It cannot be represented In
an object or the specified type). the £unction returns zero; the integer expression
errno acquires the value ohhe macro ERANGE. ERANGE may be used by
non·mathematic:al £unctions.

ESIGNUM L errno:3)

(

(

(

(

(

(

(

(

(

(

(

(

(
1£ an unrecogni.sed signal Is caught by the de£ault signal hand let err no is set to
ESIGNUM. (

6·239
(

(

(

(\

(

(

(

(

(

(

(

(

(

c
c

locale

.:: ::::::.::::::::::x:::;r-:·:·:·:·:·:-:·:·:·:·:·:·:·:·::;.;;;.;:::;::;..~-::r..;;%::~:=: ·:=:·:=:=:=:-:::;:::::::::::t%:;;.;.;.:::::·:·:·:·:·: ·:·:·:·:·:·:·:·:-::::::: :::::: :::::::::::::::::::;;;;::::;.;;:::·:·:=:::·:w.o:o:::t:·:-:::::·: ::::::::::::::::=:·:·:=:::;:::.::::::::::;.;.:::::::::::;;::

locale

6-240

This module handles national characteristics. such as the different orderlnas
month-day-year (USA) and day•month-year (UK).

Entry no. 154: char •eetlocale(lnt category, const char •!ocale)

Selects the appropriate part of the proaram's locale as specified by the cateqory
and locale arauments. The set locale function may be used to chanae or
query the pr<Jiram's entire current locale or portions thereof. Locale Information Is
divided Into the followlna types:

Type Valae OeKrtptloll

LC COLLATE (1) strina collation
LC_CTYPE (2) character type
LC_MONETARY (4) monetary formattina
LC_NUMERIC (8) numeric strina formattlna
LC TIME (16) time fonnattlna
LC ALL (31) entire locale

The locale strinll specifies which locale set of lnfonnatlon Is to be used. F'or
example.

setlocale(LC_MONETARY,"uk")

would insert monetary Information into the lconv structure. To query the OJrrent
locale inlormation. set the locale strina to null and read the strina returned.

Entry no. 171: struct k:onv •localeconv(vold)

Sets the components of an ob(ect with type struct lconv with values appropriate
for the fonnattina of numeric quanti ties (monetary and otherwise) accord Ina to the
rules of the OJrrent locale. The members of the structure with type char • are
strln115. any of which (except decimal _point) can point to"". to indicate that
the value is not available In the OJrrent locale or Is of zero lenath. The members
with type char are non·neaative numbers. any of which can be CHAR_MAX to
Indicate that the value Is not available In the OJrrent locale. The members lnduded
are described abcwe.

localeconv returns a pointer to the filled In object. The structure pointed to by
the return value will not be modified by the pros ram. but may be overwritten by a
subsequent call to the localeconv function. In addition. calls to the
set locale function with cateaories LC_ ALL. LC_MONETARY. or LC _NUMERIC
may overwrite the contents of the structure.

Th8 Shar8d C Llbraly
:'$;:::::::::::::::::::::::::::~:::::::::::::~~::r-:·:=*~·:~::;::w~&::::::::::::::::::::::m::%:::::::::::~:;?.::::::::;:;:.-x:::=::~~-::::m:;:~:: :-:-:.:.::;; ::::::::::::::::::::::::: :::::::::%".;::m

math
This module contains the prototypes for 22 mathematical functions. All return the
type double.

Entry no. 132: double aCM(double .1)

Retums arc cosine oh. A domain error occurs for arauments not In the ranae -I to
I

Entry no. 133: double aaln(double .1)

Returns arc sine of Jt. A domain error occurs for arauments not in the ranae -I to I

Entry no. 134: double atan(double .1)

Returns arc tanaent of •

Entry no. 135: double atan2(double x, double 1)

Returns arc tanaent of fht.

Entry no. 136: double col(double I)

Returns cosine of • (measured In radians)

Entry no. 137: double sln(double .1)

Returns sine of • (measured In radians)

Entry no. 138: double tan(double .1)

Returns tanaent of • (measured In radians)

Entry no. 139: double cosh(double .1)

Returns hyperbolic cosine of 1

Entry no. 140: double sinh(double .1)

Retums hyperbolic sine of 1

Entry no. 141: double tanh(double .1)

Returns hyperbolic tanaent of 1

Entry no. 142: double exp(double I)

Retums exponential function o(x

6·241

math

·::::::::::::::::::;:;:;:v:::::::::~~«':·:=:::::::::::.$:::::=-::::::::::::.: ::::::::::::::::;m:::=:·:~~:;:;::::.;;:: :-;;;.:::: ::::::::::: :::::::·:::::::-:::::::::::::::::::;;;:::~::::.::::x~~:::::~m:;.":}:.'X-:-::::::::::::::::$m::-x::::::::::::.:·:=:·:=:>.· ·

6·242

Entry no. 143: double frexp(double x, lnt •exp)

Returns thevaluex. such that xis a double with maanltude In the Interval 0.5 to 1.0
or zero. and value equals x times 2 raised to the power 'eAJl

Entry no. 144: double ldexp(double x, lnt exp)
Returns x limes 2 raised to the power of exp

Entry no. 145: double log(double x)

Returns naturallosarlthm of x

Entry no. 146: doublelog10(double x)

Returns loi to the base 10 or X

Entry no. 147: double modf(double x, double •iptr)
Returns signed fractional part of x. Stores Integer pan of x in object pointed to by
iptr.

Entry no. 148: double pow(double x, double)')
Returns x raised to the power of 1J

Entry no. 149: double sqrt(double x)

Returns positive square root of x

Entry no. 150: double cell(double x)

Returns smallest Integer not less than x (ie rounding up)

Entry no. 151: double fabl(double x)

Returns absolute value of x

Entry no. 152: double floor(double x)

Returns largest integer not greater than x (ie rounding down)

Entry no. 153: double fmod(double x, double)')

Returns noating-polnt remainder of 'IIIIJ

The Shared C Library
:-:·:·:.:·:·:-:::: ;:;:::::::::;:;: ;:;:;:;: ;:;::::-~!1-:t:.:-:•:.:·:·:= :·:-::;.;;:.;:;:;:;:;:;:;:;:;:;::~:;::;;;:;:;.;;;.:.-hm:;::~~::~:~·::.X::::;:;:;:;:;::::=:-=:::~~:;:;.;:;:;::««.;.; ·:-:·:·:·:·:·:·:: ;:;.; :;:;:;.;-;:;.;.;;::;.;:;:;:;:;.~:.:·:·:·.

setjmp

signal

This module provides two functions for bypassing t.he normal function call and
return discipline (useful for dealing with unusual conditions encountered In a
low-level function or a prosram).

Entry no. 130: lnt Mtjmp(Jmp_buf en~
The calling environment Is saved in env. for later use by the longjmp function . If
the return is from a direct Invocation, the set jmp function returns the value zero.
lfthe return is from a call to the long jmp function, the set jmp function returns a
non-zero value.

Entry no. 131: void longfmp(Jmp_buf env, lnt vM)
The environment savoed In env by the most recent call to set jmp Is restored. !(
there has been no such call. or If the function contalnlna the call to set jmp has
tenninated execution (q with a return statement) In the Interim. the behaviour Is
undefined. All accessible objects havevaluesas at the time longjmp was ca lled,
except that the values of objects of automatic storage duration that do not have
volatile type and that have been changed between the set jmpand longjmpcalls
are indetenninate.

As It bypasses the usual function call and return mechanism. the long jmp
function executes conectly In contexts of interrupts. signals and any of their
associated functions. HOiveVer, if the longjmp function Is Invoked from a nested
signal handler (that Is. from a function invoked as a result of a signal raised during
the handling of another signal), the behaviour Is undefined.

After long jmp Is completed, program execution continues as if the corresponding
call to set jmp had just returned the value specified by val. The long jmp
function cannot cause set jmp to return the value 0: if val is 0. set jmp returns
the value I.

Signa 1 provides two functions .

t ypedef void Handler(int);

Entry no. 128: Handler •algnal(lnt, Handler");

The following signal handlers are defined:

6·243

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(
\

(

(

(

(

(

signal

·»:·:·:·:·:•:.;:;:;:;;:-.;:~~.«-::::;:;.;:;.;:;:;~.;.;:;.;;;.;:;:;.;.;.;.;:; :;:;:;:;:;:;:;:;:;:;:;:;:;~:;:;:;:;:;.;.;::.'y,®:;.~:;:;:;:;:;;x~::::-:..-.. ~.:.~~::;. ;.~;:: :;::·:·:·:·:•:-»»»Yh;~::::~;:;:;:;.;.;o;««;;:;:;:;.:·:-:·:::.:-:·:.~:~;;;;;:;;;:;:::;.;:;:;:;:;

6-244

Type

SIG DFL
SIG IGN
SIG_ERR

value
(Handler•)-1
(Handler•) -2
(Handler•) -3

The following signals are defined:

Slpal Willie

SIGABRT 1
SIGFPE 2
SIGILL 3
SIGINT 4
SIGSEGV 5
SIGTERM 6
SIGSTAK 7
SIGUSRl 8
SIGUSR2 9
SIGOSERROR 10

deKrtptloa
default routine
ignore signal routine
dummy routine to nag error retum from signal

cleKrtptlol
abort (ie call to abort())
arithmetic exception
illegal instruction
attention request from user
bad memory access
termination request
stack overflow
user definable
user definable
operating system error

The 'slgnat function chooses one of three ways in which receipt of the signal
number sig is to be subsequently handled. lfthe value of f u nc Is SIG_DFL.
default handling for that signal will ocrur. If the value of f unc is SIG IGN. the
signal will be Ignored. Otherwise tunc points to a function to be called when that
signal ocrurs.

When a signal occurs. If tunc points to a function. flrst the equivalent of
signal(s ig, S I G DFL) is executed. (If the value of sig is SIGILL. whether
the reset to S IG DFL ocrurs is implementation-defined (under RISC OS the reset
does occur)). Ne'it. the equivalent of (• tunc) (s ig); Is executed. The function
may terminate by calling the abort. exit or long jmp functlon.lf func executes
a return statement and the value of s ig was S IGFPE or any other
implementation-defined value corresponding to a computational exception. the
behaviour Is undeflned. Otherwise. the program will resume execution at the point
it was interrupted.

If the signal ocrurs other than as a result of calling the abort or raise function.
the behaviour is undefined If the signal handler calls any function in the standard
library other than the signal function itself or refers to any object with static
storage duration other than by assigning a value to a volatile static variable of type
sig atomic t . IV. program start-up. the equivalent of s i gnal (sig,
SIG-IGNl may be exeruted for some signals selected In an
implementation-defined manner (under RISC OS this does not occur): the
equivalent of s i gnal (sig, SIG_ DFL) is executed for all other signals defined
by the implementation.

1116 Shar9d C Library
:"mx:o:~::-:=t::~:::::::::::::::::::::::~~~~::::;;;:~.~~~:::::::::::::~::::::-:>:=:~:=:>::-:=:•:~~=:-.:::::::::=::::-::::::::::::::-::-:::::::;,<w%::~:~=::x::~~:::::::::::::::::::::::::.:::::::::.:=:::::~=::x::

stdlo

If the request can be honoured. the signal function returns the value of funcfor
most recent call to signal ror the speclfled signal sig. Otherwise. a value of
SIG_ ERR Is returned and the Integer expression err no Is set to indicate the error.

Entry no. 129: tnt raiM(Int alg)

Sends the signal sig to the eROJting procram. Returns zero if successful. non-zero
if unsuccessful .

Entry no. 125: volcl _ lgnore_algnal_handler(lnt alg)

This function Is for c:ompatlbillty with older versions of the shared C library stubs
and should not be called In your code.

Entry no. 126: void _ error_algnat_martcer(lnt alg)

This function Is ror c:ompatibility with older versions of the shared C library stubs
and should not be called in your code.

Entry no. 127: volcl _ default_algnal_handler(lnt atg)

This function Is for compatibility with older YefSions of the shared C library stubs
and should not be called in your code.

stdio provides many functions for performing Input and output. For a discussion
on Streams and Files refer to sections 4.9.2 and 4.9.) In the ANSI standard.

The following two types are used by the stdlo module:

typedef int fpos_t;

fpos t Is an obfect capable of recording all information needed to specify
uniquely every position within a file.

typedef struct FILE{
uns igned char •_ptr;
int _lent;
int _ocnt;
int _ flag;
int 1nternal(6);

}FILE;

I * pointer to IO buffer *I
I* character count for input *I
I* character count for output */
/* flags, see below */

6-245

srdio

~x=:;::x:::::::::::::::~::~(.~:-::m::;;::::::·:=::::::::*':~::::::::~~**~:::::::::::::::::::x:: ::::::::::::::::: :::::::::;m;;:::::::::::::::::.:::.;::.:::::.:::.:::::::::::::::::::::::::::::::::~::::::.;.;:~=:.::::::~;::::::::

6·246

The followlna naas are defined in the naas field above:

f1IIC Bit -k Dacrlpdoa
_IOEOF '040 end~f·file reached

IOERR '080 error occurred on stream
=IOFBF HOO fully buffered 10

IOLBF '200 line buffered 10
= IONBF &400 unbuffered 10

FILE is an object capable of re<ording all information needed to control a
stream, such as its file position indicator. a pointer to its associated buffer, an
error Indicator that records whether a read/write error has occurred and an
end..of· ftle indicator that records whether the e~f-file has been reached.

Entry no. 81: lnt remove(const char • fi,.,.IM)

Causes the file whose name is the strina pointed to by f 11 ename to be removed.
Subsequent attempts to open the file will fail. unless it Is created anew. lf the file Is
open. the behaviour of the remove function is implementation-deli ned (under
RISC OS the operation fails).

Returns: zero if the operation succeeds, non-zero if it fails.

Entry no. 82: lnt rename(con at char • old, con at char • new)

Causes the file whose name is the strina pointed to by old to be henceforth known
by the name given by the strina pointed to by new. The flle named old Is
effectively removed. If a file named by the string pointed to by new exists prior to
the call of the rename function, the behaviour is implementation-defined (under
RJSC OS, the operation falls).

Returns: zero if the operation succeeds. non·zero If It falls, In which case If the file
existed previously it Is still known by its original name.

Entry no. 83: FILE •tmpflle(vold)

Creates a temporary binary flle that will be automatically removed when lt is closed

or at proaram termi nation. The file is opened for update.

Returns; a pointer to the stream of the file that it created. lfthe flle cannot be
created. a null pointer is returned.

The SharBd C Ubraly

:::=:.:.:-:=: :::::::::::::§;;:::::·:·::::: =:=:=:·:=:::::::::::::::::::::.:::=:-:·:·:·: ::::::::;m:::::::::::::~::::::::::::::::::::::::::::M~>*::::::::::~::::::~:::::~::::::::::::::::::: :::::::::::::::;::;.~:=:::::::·:·:-::::::::::::::::::::::::::m:--:-:·:=:=

Entry no. 182: c:tt1r "tmpnarn(ch•r • •)

Generates a strina that Is not the same as the name of an exlstina file. The tmpnam
function generates a different string each time It Is called, up to THP MAX times.lf
it is called more than TMP _MAX times, the behaviour is implementation-defined
(under RJSC OS the ala<>rithm for the name aeneratlon works just as well after
tmpnam has been called more than THP MAX times as before; a name dash is

impossible in any single half year period).

Returns: If the argument is a null pointer, the tmpnam function leaves its result In
an internal static object and returns a pointer to that object. Subsequent calls to
the tmpnam function may modify the same object. If the al'iument is not a null
pointer. it is assumed to point to an a nay of at least L _ tmpnam characters; the
tmpnam function writes Its result In that anay and returns the argument as its

value.

Entry no. 84: chllr • _old_tmpnam(c:ttar •a)
This function is Included for backwards compatibility for binaries linked with older
library stubs. You should not call thls function in your cxxle, call tmpnam (Entry no.

182) Instead.

Entry no. 85: lnt fclose(FILE • 1tream)

Causes the stream pointed to by stream to be nushed and the associated file to
be closed. Any unwritten buffered data for the stream are delivered to the host
environment to be written to the file; any unread buffered data are discarded. The
stream Is disassociated from the file. lf the associated buffer was automatically

allocated. it is deallocated.

Returns: zero If the stream was successfully closed, or EOF if any errors were
detected or i f the stream was already dosed.

Entry no. 86: lnt ftluah(FILE • .,...m)
If the stream points to an output or update stream In whkh the most recent
operation was output. the f flush function causes any unwritten data for that
stream to be delivered to the host environment to be written to the file. If the
stream points to an Input or update stream. the f flush function undoes the
effect of any precedi ng ungetc operation on the stream.

Returns: EOF if a write error occurs.

6·247

(

(

(

(

(

(

(

(

(

(

c
(

(

(

c
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

std/o
::::::::::::::::::::::::::::~::>.«;x.:.:<<».~.¢<«~:::::::::$::::::;::::::::::::::::::::::~;:.;.;!:;;;;;;;:;:-::;:v:-:;:::.:·:· :-:=:-:-:-::::: ::::::::::::::::::::~=~-:.:::::::::::::::::::::::::::::x::.;;:-:·:~:,.;.;.;.;.;::::;x-:-:.:·:·:;::::;~:~:=:~;;,x..'*w;~~::::::::::::;.-:;:«::::::

6-248

Entry no. 87: FILE •fopen(const char • fllen•me, const.char • mode)

Opens the file whose name is the string pointed to by filename, and associates
a stream with it. The argument mode points to a string beginning with one of the
following sequences:

r
w
a
rb
wb
ab
r+
w+
a+
r +bor rb+
w+b orwb+
a+borab+

open text file for reading
create text file for writing, or truncate to zero length
append: open text file or create for writing at eof
open binary file for reading
create binary file for writing, or t runcate to zero length
append: open binary file or create for writing at eof
open text file for update (reading and writing)
create text file for update. or truncate to zero length
append: open text file or create for update. writ lng at eof
open binary file for update (reading and writing)
create binary file for update. or truncate to zero length
append: open binary file or create for update. writing at
eof

• Opening a file with read mode (r as the first character in the mode argument)
fails if the file does not exist or cannot be read.

• Opening a file with append mode (a as the first character In the mode
argument) causes all subsequent writes to be forced to the current end of file.
regardless of intervening calls to the fseek function .

• In some Implementations. opening a binary file with append mode (bas the
second or third character in the mode argument) may Initially position the file
position indicator beyond the last data written, because of null padding (but
not under RISC OS).

• When a file Is opened with update mode (+as the second or third character In
the modfl argument). both input and output may be performed on the
associated stream. However. output may not be directly followed by Input
without an Intervening call to the f flush function or to a file positioning
function (fseek, fsetpos. or rewind). nor may input be directly followed
by output without an intervening call to the fflush function or to a file
positioning function. unless the input operation encounters end-of· file.

• Opening a file with update mode may open or create a binary stream In some
Implementations (but not under RISC OS). When opened. a stream Is fully
buffered If and only if it does not refer to an interactive device. The error and
end-of-file indicators for the stream are deared.

Retums: a pointer to the object controlling the stream. If the open operation falli.
fopen retums a null pointer.

Thfl Shllffld C Litlnlty
;::::~~;:;:;::::-:;:.:::::."::!::?-::::::;:;:;:;:;:;:; :;:;:;:;::::=:~::::::! :;:;::::::.;:;:~;::::~m.:;:;:;:;:;~:;~;:;:;:;:;:;~~:::::xor.::::;:~~:~~;:::~;;::::::::::w».:::::::::;:;:::::::;:;:;.;:;:;:;:;:;:;:;:;,;:;:;:;:;:;:;:;:::::;: ;:;:;:;:;:;:;: ;:;:;~::

Entry no. 88: FILE *freopen(conet char • flifmetM, conet char • mode,
FILE * •t,...m)

Opens the file whose name Is the string pointed to by filename and associates
the stream pointed toby atreamwlth it. The mode argument Is used just as in the
fopen function. The freopen function first attempts to dose any file that is
associated with the spedfled stream. Failure to dose the file successfully is
ignored. The errof and end-of•flle Indicators for the stream are deared.

Returns: a null pointer If the operation falls. Otherwise. f reopen returns the value
of the stream.

Entry no. 89: void seebuf(FILE • •,_m, c:her • ben)

Except that It returns no value. the aetbuf function l.sequlvalent to the setvbuf
function invoked '~With thevaluesJOF8ffor •odfland BUFSIZ for size. or if buf
is a null pointer. '~With the value JONBf for •ode.

Returns: no value.

Entry no. 90: lnt eetvbuf(FILE • •trnm. char • buf, lnt mode, slze_t •lze)
This may be used after the stream pointed to by stream has been associated with
an open file but before It Is read or written. The argument mode determines how
stream will be buffered. as follows:

• _IOFBF causes lnpuVoutput to be fully buffeted.

• _IOLBF causes output to be line buffered (the buffer will be flushed when a
newline character Is written. when the buffer Is full. or when interactive input Is
requested).

• _IONBF causes lnpuVoutput to be completely unbuffered.

If bu f Is not the null pointer, the array It points to may be used instead of an
automatically allocated buffer (the buffer must have a lifetime at least as great as
the open stream, so the stream should be closed before a buffer that has
automatic storaee duration Is deallocated upon bloclt exit). The argument size
specifies the size of the anay. The contents of the array at any time are
indeterminate.

Returns: zero on suocess. or non~ero If an Invalid value Is given for mode or size.
or If the request cannot be honoured.

Entry no. 92: lnt fprlntf(FILE • • tre•m, const char • fonn• t, ...)
writes output to the stream pointed to by stream. under control of the string
pointed to by format that specifies how subsequent arguments are converted for
output. lf there are Insufficient arguments for the format the behaviour is

6·249

stdio

~:::::::::::::::::::::::~:;:$:::::::=~: .. 'V»V/.<$*:::::::::::::: ::::::::::::;:::::::::::::;::::-:::::;:::::::::::.:·:·:·:·:·:=:=:=:·:~«~:.::.:::::::::::~~=:;::;::.;::::~·:=:.::::;.. .. ::::;.;;:::::;;.:.;:;:.:::::.;;::::-::<::::::::::::::::;::::::::::::::m.::::::-w~~=·=·:=:=:·:;:::::::;:-:·:·:;:

6-250

undefined. If the format Is exhausted while arauments remain. the excess
arauments are evaluated but otherwise ianored. The fpr int f function returns
when the end of the format strina is reached. The format must be a multibyte
character sequence. beginnina and endina In Its Initial shift state. The format Is
composed ol zero or more directives: ordinary multi byte characters (not 'l). which
are copied unchanaed to the output stream: and conversion specifiers. each of
which results in fetch Ina zero or more subsequent arauments. Each conversion
spedfication Is introduced by the character 'l. For a complete description of the
available conversion specifiers refer to section 4.9.6.1 in the ANSI standard. The
minimum value for the maximum number of characters that can be produced by
any sinale conversion Is at least 509.

A brief and incomplete description of oonversion specifications is:

lflags) (field width) J.prec1s1on)specifiec-char

flags is most commonly-. indicatlna left justification of the output
item within the field . lf omitted. the item will be r iaht justiHed.

fi eld width Is the minimum width of field to use. If the formatted item is
lonaer. a biaaer field will be used: otherwise. the item will be riaht
(left) justified .in the field.

precision Is the minimum number of dialts to print for a d. I, o, u, x or X
oonversion. the number of dialts to appear after the dedmal d iai t
for e . E and f conversions. the maximum number cl sianificant
dialts for 8 and G conversions. or the maximum number cl
characters to be written from strinas in an s conversion.

Either of both of field width and precisi on may be • . .indicatina that the
value is an araument topr intf.

The specifier chars are:

d , 1
o, u, x,

f
e, E
g, G

c
s
p

'

X
lnt printed as sianed decimal
unslaned int value printed as unsianed octal. decimal or
hexadecimal
double value printed in the style 1-)ddd.ddd
double value printed In the style 1-Jd.ddd_e dd
double printed in fore format. whichever Is more
appropriate
lnt value printed as unslaned char
char • value printed as a strlna of characters
voi d • araument printed as a hexadedmal address
write a I iteral 'l

Returns: the number of characters transmitted. or a neaative value if an output
error occurred.

Th6 SharBd C Library
;.;.:-:·:·: .;:;.;:::::::::::::::::: :::::::::;.;:::::%-~:::·:·:·:·:·;;:¢'..:9:· :·:·:.:-:::::::: :::::::::::::::~::~;:::::--:$;-.;::;.;:;:;:;:;:;::;;:;:::::::::::::::::x::::::::::::~:::::m:;~:::::.:::«:«««.::.:::::::::::.:--.. :-:::::::::::-::x-::~;:x;;:;.;~ .. -vxv::;.;.;:;;;:;:;.;;;

Entry no. 11: lnt prlntf(const char • form•t, •••)

Equivalent to fprintf with thearaument stdout interposed before the
arauments toprintf.

Returns: the number of characters transmitted. or a nqat.ive value if an output
error occurred.

Entry no.l3: lnt aprlntf(char • a, con at char • torm•t, ...)
Equivalent to fprint f, except that the araument s spedfies an array into which
the aenerated output Is to be written. rather than to a stream. !\ null character is
written at the end of the characters written: It Is not counted as part of the returned
sum.

Returns: the number of characters written to the am1y, not countina the
terminatlna null character.

Entry no. 26: lnt _pnntf(conat char *format, ...)

This function is identical in function to printf except that It does not handle
Ooatina point arauments.

It is used for space optimisation by the C complier when usina the non shared
library and when a literal format strina does not oontaln any Ooatina point
conversions.

It is induded in the shared library for compatibility with the non shared library.

Entry no. 27: lnt _fprlntf(FILE •atr•m, conat char *format, ...)

This function is Identical in function to fprlntf except that It does not handle
Ooatina point arauments.

It Is used for space optimisation by the C complier when uslna the non shared
library and when a literal format strlna does not contain any Ooatina point
conversions.

It Is induded in the shared library for compatibility with the non shared library.

Entry no. 28: lnt _ apnntf(char •a, co nat char *format, ...)

This function is identical In function to sprintf except that it does not handle
Ooatina point arauments.

It is used for space optimisation by the C compiler when usina the non shared
Ubrary and when a literal format strina does not contain any Ooating point
conversions.

6-251

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

r
(

(

(

(

(

(

f

(
\

(

(

(

(

(

(

Sldio

:·:·:·:·:-:·»:·:-:&.;:::~H.<«.«·:·:.:·:·: ·:·:·:· ;:;:;:····· .:.:;:::::::::; :;:;:::;:;::•::;:;.;.;:-,.;»':.:·:·:·:·: ·:·:·:·:·:·:-::;.; :;:::::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::>;:;:::::::x_.;:;.:;.;:;:;:;.;::~*»»»X-:-:•:::.:;:;;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:;:;:x::;;:;::::--:=::::::;:;:;::

6-252

It is included In the shared library for compatibility with the non shared library.

Entry no. 100: lnt _vfprlntf(FILE *stream, co nat char *format, va_llst arg)
This function Is Identical in function to vfprlntf except that It does not handle
Ooatlllfl point arguments.

It is used for space optimisation by the C complier when using the non shared
library and when a literal format strillfl does not contain any Ooatillfl point
conversions.

It is included In the shared library for compatibility with the non shared library.

Entry no. 95: lnt fscanf(FILE • •tresm, const char • formst, .. .)

Reads Input from the stream pointed to by stream. under control of the string
pointed to by format that spedfies the admissible Input sequences and how they
are to be converted for assignment. using subsequent arguments as pointers to the
objects to receive the converted input. If there are Insufficient arguments for the
fonnat. the behaviour is undefined. If the format is exhausted while arguments
remain. the excess arguments are evaluated but otherwise Ignored. The format is
composed of zero or more directives. one or more white-space characters. an
ordinary character (not 'll.), or a conversion specification. Each conversion
spedfication Is Introduced by the character 'll.. For a description ol the available
conversion specifiers refer to section 4.9.6.2 in the ANSI standard. or to any of t he
references listed In the chapter entitled l"lr~~Uiio" on page I of the Acorn
Desktop C Manual. A brief list is given above. under the entry for fpr in tf .

If end-of·file is encountered during input, conversion Is termlnated. lf end..of-file
occurs before any characters matching the current directive have been read (other
t han leading white space. where permitted). execution of the current directive
terminates with an input failure; otherwise. unless execution of the current
directive is terminated with a matching failure, execution of the following directive
(if any) is terminated with an input failure.

If conversions tennlnate on a conflicting input character. the offending input
character Is left unread in the input stream. Trai ling white space (lnduding newline
characters) Is left unread unless matched by a directive. The success olliteral
matches and suppressed assignments is not directly determinable other than via
the 'll.n directive.

Returns: the value of the macro EOF if an input failure occurs before any
conversion. Otherwise. the fscanf function returns the number of Input items
assigned. which can be fewer than provided for, or even zero. in the event of an
early conflict between an input character and the format.

The Shared C Libnuy

~::::::::m::::.::::::::..'<"n.::::---::::::::-:::.:::.:-:::::::::::::::::::::::.:«~:•::::~:::d-m:.:-::::::: =:·:·:·:·:=:-:::::;.::::::: :::::::::::::::::::::x:=:=:=~~:~~~:::::::::::.::~:-x:::::::::::::::::::::.:::::::::::~::::::~·=·:-:::-:=:=:=:=:=:=:=::::::::::x::::::::

Entry no. 94: lnt sct~nf(const cher • fomt•t, ...)
Equivalent to fs canf with the al'lument atdin Interposed before the arguments
to scanf.

Returns: the value of the maao EOF If an Input failure oa:urs before any
conversion. Othelwlse, the scanf function returns the number of input items
assigned, which can be fewer t han provided for, or even l'Jero, in the event of an
early matching failure.

Entry no. !HI: lnt aSC~~nf(const char • • , conat char • fonnat, .•.)
Equivalent to fscanf except that the arguments spedfiesa string from which the
Input Is to be obtained. rather than from a stream. Reaching the end oft he string is
equivalent to encountering end-of-file for the f s canf function .

Returns: the value of the macro EOF if an Input failure occurs before any
conversion. Othelwise, the scanf function returns the number of input items
assigned, which can be fewer than provided for. or even l'Jero, In the event of an
early matching failure.

Entry no. 97: lnt vprlntf(con.t cher • form•t, va_Hst •rrll
Equivalent to print f. with the variable argument list replaced by arg. which has
been Initialised by the va start macro (and possibly subsequent va arg calls).
The vpr int f function~ not invoke the va_end function. -

Returns: the number of characters transmitted, or a negative value if an output
error occurred.

Entry no. 98: lnt vfprtntf(FILE • •t~wm, const char • tonn•t, va_llst • rrll
Equivalent to fprintf. with the variable argument list replaced by arg. which
has been initialised by the va start macro (and possibly subsequent va arg
calls). The vfprintf function does not In~ the va_end function. -

Returns: the number of characters transmitted. or a nqatlve value if an output
error occurred.

Entry no. 99: lnt vaprlntf(char •., const char • fomNtt, va_llst •IJIJ
Equivalent to spr intf. with the variable al'lument list replaced by arg. which
has been Initialised by the va start macro (and possibly subsequent va arg
calls). The vsprintf function does notlnvol:e the va_end function. -

Returns: the number of characters written In the array, not counting the
terminating null character.

6-253

stdlo
;:; :;;;:;:;:;:;:;:;:::;::·X::::·:.;:;:;:;:;:;:;.;:;.:·:~;.;.;;:.:::~:;:;.;:;::.: .. -.x« .. ;:..;:.:;;.;:;:;:;:;:;:;:;:;:;:;:;:;.;~:;:;;:.:;:;;.:v:;:.xo:::;:;.:--:v::..-::-.. ;:;:;x:::;:;::.;.;.;.;;.;.;;:.x::.:-:·~::;:;:;:::;::..: "{-e-X::·::;:;:;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:::x-».-.s::;:;;::::~.;:.:;::;.

6-254

Entry no. 101: lnt fgetc(FILE • •tream)

Obtains the next character (If present) as an unsigned char converted to an Int.
from the input stream pointed to by str eam. and advances the associated file
position indicator (if defined).

Returns: the next character from the input stream pointed to by stream. If the
stream is at end-of-flle.the end-<>f-flle indicator is set and fgetc returns EOF.If a
read error occurs. the error indicator is set and fgetc returns EOF.

Entry no. 102: cflar •tgetl(cflar • • , lnt n, FILE • •n•m)
Reads at most one less than the number of characters specified by n from the
stream pointed to by stream into the array pointed to by s . No additional
characters are read after a newline character (which is retained) or a.fter end-<>f-flle.
A null character Is written Immediately after the last character read Into the array.

Returns: s if successful. If end-<>f-flle is encountered and no characters have been
read Into the array. the conte.nts of the array remain unchanged and a null pointer
is returned. If a read error occurs during the operation. the array contents are
indeterminate and a null pointer is returned.

Entry no. 103: lnt fputc(lnt c, FILE • •tre•m)

Writes the character specified by c (converted to an unsianed char) to the output
stream pointed to by stream. at the position indicated by the associated flle
position indicator (if defined). and advances the Indicator appropriately. If the file
cannot support positioning requests, or if the stream was opened with append
mode. the character is appended to the output stream.

Returns: the character written. If a write error occurs. the error Indicator Is set and
fputc returns EOF.

Entry no. 104: lnt fpuc.(conat char • •· FILE • • trNm)
Writes the string pointed to by s to the stream pointed to by stream. The
terminating null character is not written.

Returns: EOF if a write error occurs; otherwise It returns a non-negative value.

Entry no. 106: lnt getc(FILE • •n•m)
Equivalent to fgetc except that it may be (and Is under RJSC 05) implemented as
a maao. s t ream may be evaluated more than once. so the argument should never
be an expression with side effects.

Th6 Shared C Libra!)'

;:;:;:;:;.;.;.;;::;:;:;:; :;:;:;:;:;:;:;:;:;::::: ;:;:;:;:;:;::-;:; :;:;:;:;:;:;:;:;:;:;.;:;:~;:;:;.):•:<~x«:::-»:=:«·:.;.;:;.;~:;::::;m.s::::;:;j$$;::::~:·*:;:;:;l).»x;;:;.;,;.;:;:;:; :;:;:;:;-;:;::--:=:::::::;.-::;:;:::::::;:;:;:;:~:.>~=-=-.... :.;::-:-;.::;.;.;.;;:.:.,:.;.;-;.;.:-: :;:;:;:;:;:·

Returns: the next character from the Input stream pointed to by stream. If the
stream Is at end-of-flle, the end-of-flle Indicator is set and get c returns EOF. If a
read error occurs, the error Indicator Is set and getc returns EOF.

Entry no. 107: lnt getcflar(vold)

Equivalent to getc with the argument s tdin.

Returns: the next character from the Input stream pointed to by stdln.lf the
stream Is at end-of-flle, the end-<>£-file Indicator is set and get char returns EOF.
If a read error occurs. the error Indicator Is set and get char returns EOF.

Ently no. 108: cflar •getl(char • •)

Reads characters from the Input stream pointed to by s td!n into the array
pointed to by s. until end-of·flle Is encountered 01 a newline character is read. Any
newline character Is discarded. and a null character is written immediately after the
last character read Into the array.

Returns: s if successful. If end-d-Ille Is encountered and no characters have been
read into the array. the contents of the array remain unchanged and a null pointer
is returned. If a read error occurs during the operation. the array contents are
indeterminate and a null pointer Is returned.

Entry no. 110: lnt putc(lnt c, FILE • •trnm)

Equivalent to fput c except thalli may be (and is under RISC OS) implemented as
a macro. stream may be evaluated more than once, so the argument should never
be an expression with side effects.

Returns: the character written. If a write error occurs. the error indicator is set and
putc returns EOF.

Entry no. 111: lnt pulcflar(lnt c)

Equivalent to putc with the second argument stdout.

Returns: the character written. If a write error occurs. the error indicator is set and
put c returns EOF.

Ently no. 112: lnt putl(conat cflar • .,

Writes the string pointed to by s to the stream pointed to by stdout. and
appends a newline character to the output. The terminating null character is not
written.

Returns: EOF if a write error occurs; otherwise It returns a non-negative value.

6-255

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

r
(

(

(

(

(

(

(

(

(

(

(

stdio

:;:;:;.;:;.;.;.;.:·:=:·:~-:-:.:.::: :·:·:·:·:·:·:·:·:·:·:·:·:-:·:·:·:;:;:;:~;:;:;:;:;:;:;;;.;:;.;:;:;:;:;:;:;:;:;.;:;.;.;:;.;.;.;;;.;.;;;;:;: .. -.:.::.:::;;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::::::::;:;:;:;: ;:;:;:;:;:;:;:;:;~~:~J'.(:~;:;;;.;-:«W.:};.;.;.;:; :;::::::

6·256

Entry no. 113: lnt ungetc(lnt c, FILE • •tresm)

Pushes the character specified by c (converted to an unslaned char) back onto the
Input stream pointed to by stream. The character will be returned by the next
read on that stream. An intervenina call to the ff lush function or to a file
positionlna function (fseek. fsetpos. rewind) discards any pushed-back
characters. The extemal storaae correspondinato the stream Is unchanaed. One
character push back Is auaranteed. lf the unge t function Is called too many times
on the same stream without an intervenina read or file posltlonlna operation on
that stream. the operation may fatl . lfthe value of cequals that of the macroEOF,
the operation falls and the input stream is unchanaed.

A successful call to the ungetc function clears the end-of-file Indicator. The value
orthe file position Indicator after reading or discard Ina all pushed·back characters
will be the same as It was before the characters were pushed back. For a text
stream. the value of the file position Indicator after a successful call to the ungetc
function is unspecified until all pushed-back characters are read or discarded. For
a binary stream. the file position indicator is decremented by each successful call
to the ungetc function: If its value was zero before a call. It is indeterminate after
the call.

Retums· the character pushed back after conversion. or EOF If the operation fails.

Entry no. 114: alze_t fread(vold • ptr, alze_t •lze, alze_t nmemb, FILE •
• rre• m)

Reads into the array pointed to by pte. up to nmemb members whose size is
specified by s1ze. from the stream pointed to by stream. The file position
indicator (If defined) Is advanced by the number of characters successfully read. If
an error occurs. the resulting value of the file position Indicator Is Indeterminate. If
a partial member Is read.lts value is i ndeterminate. The ferror or feof function
shall be used to dlstlnaulsh between a read error and end-of·flle.

Returns: the number of members successfully read. which may be less than nmemb
if a read error or end-of-file is encountered. If s1 ze or nmemb is zero. f read
returns zero and the contents of the array and the state of the stream remain
unchanaed.

Entry no. 115: alze_t fwrlte(conat void • ptr, alze_t •lze, alze_t nmemb, ALE
• •tre•m)

Writes. from the array pointed to by ptr up to nmemb members whose size is
specified by s1ze. to the stream pointed to by stream. The file position indicator
(if defined) Is advanced by the number of characters successfully written. If an error
occurs. t he resulting value of the file position indicator Is Indeterminate.

The Shar9d C L/braJy
:o:-:::::::::=:o:*m::;;::::::::::::::::::::::~.::::::::::::::::;:::~~:x:::::;::~::-.:-;::::::::;:::::::::::::~~<.:::-m:;;:::::=x:::::::::::::x;;:::::::::::::::::::::::~~::::::::::::::::~:::::::::::::::::::::::}::.:::::::::::::::~::-::::::::~

Returns: the number of members successfully written. which will be less than
nmemb only if a write error Is encountered.

Entry no. 116: lnt fgetpoe(FILE • •ITNm, fpoa_t • pt»)

Stores the current value of the file position Indicator ror the stream pointed to by
stream In the obJect pointed to by pos. The value stored contains unspecified
information usable by the fsetpos function for reposltlonlna the stream to its
position at the time of the call to the fgetpos function.

Returns: tero. If successful. Othen!ise non-zero Is returned and the Integer
expression e r rno Is set to an implementation-defined non-tero value (under
RISC OS fgetpos cannot fail).

Entry no. 117: lnt faeek(FILE • •t1Wm,long lnt o«••t, lnt whenc~

Sets the flle position indicator for the stream pointed to by stream. For a binary
stream. the new position Is at the slaned number of characters specified by
off set away from the point specified by whence. The specified point is the
bealnnlna of the file for SEEK SET, the current position In the file for SEEK CUR.
or end..of-flle for SEEK END. A binary stream need not meaningfully support
fseek calls with a wh;nce value of SEEK _END. thouah the Acorn
Implementation does. For a text stream. offset Is either zero or a value returned
by an earlier call to the ftell function on the same stream: whence is then
SEEK SET. The Acom Implementation also allows a text stream to be positioned
In exactly the same manner as a binary stream. but this ls not portable. The f seek
function clears the end-of·flle indicator and undoes any effects of the ungetc
function on the same stream. After an f seek call, the next operation on an update
stream may be either Input or output.

Returns: non-tero only for a request that cannot be satisfied.

Entry no. 118: lnt fMtpoa(RLE • •ITNm, conat fpoa_t • poa)

Sets the file position Indicator for the stream pointed to by stream accord ina to
the value of the object pointed to by pos. which Is a value returned by an earlier
call to the fgetpos function on the same stream. The fsetpos function dears
the end-of-file indicator and undoes any effects of the ungetc function on the
same stream. After an fsetpos call , the next operation on an update stream may
be either Input or output.

Returns: tero. If successful. Othetwise non-zero Is returned and the integer
expression err no is set to an implementation-defined non-zero value (under
RISC OS the value Is that of EOOM In math. h).

6·257

stdio

~%~~:::.:::-~:::::::::::::~-::::~-:;;:::::::~:::::::m:~::::::::=:=>x=.::.:::.:::::::: ::x;.:::::::::::::::::::.r.::::::::::::::mm:.: .. ~:;-:::::::::::::::::::-:::;:~::~%::::;.;::.:·:«-:::::::

6·258

Entry no. 119: long lnt fteti(FILE * •trNm)

Obtains the current value of the Hie position indicator for the stream pointed to by
stream. For a binary stream, the value Is the number of characters from the
besinnins of the Hie. For a text stream. the Hie position Indicator contains
unspecified information. usable by the fseek function for retumtns the file
position indicator to its position at the time of the ftell call: the difference
between two such return values is not necessarily a meanlnsful measure of the
number of characters written or read. However. for the Acorn implementation. the
value returned is merely the byte offset Into the file, whether the stream is text or
binary.

Returns: if successful. the current value ofthe file position indicator. On failure. the
ftell function returns -IL and sets the integer expression errno to an
Implementation-defined non-zero value (under RISC OS ftell cannot fall).

Entry no. 120: void rewind(ALE * •trNm)
Sets the Hie position indicator for the stream pointed to by stream to the
beglnntns of the Hle. lt is equivalent to (void) fseek (stream, OL,
SEEK_SET) except that the error indicator for the stream Is also cleared.

Returns: no value.

Entry no. 121: void clearerr(FILE * •tream)
Clears the end-of·Hie and error indicators for the stream pointed to by stream.
These indicators are cleared only when the file is opened or by an explicit call to
the clearerr function or to the rewind function.

Returns: no value.

Entry no. 122: lnt feof(FILE * •tream)
Tests the end-of·Hle indicator for the stream pointed to by stream.

Returns: non-zero if the end-of·Hie indicator is set for stream.

Entry no. 123: lnt ferror(FILE * •tre•m)

Tests the error indicator for the stream pointed to by stream.

Returns: non-zero i f the error indicator is set for stream.

The Shared C Library

;:;:;:;:;::<:=:<:>:>x:::;:;:;~:~x:::.::~-:::·:·::;.;:;;:·:·:·~::;:;:;:;:;:;:;:;:;:;:;.;.;.;:X-»;.~;;;;;:;:;:::x:::~::;:;:~;.::;:;::::~-:~::::::;.;.;:;.;.;::;:::;:.:;;-;;(,.::;;:::.;:::; :; :;:;:;:;.;.;: ;:;:;::::::::::'::::: :;:;:;:-;:;:;:;:;: ·:;:;:;:;:;:;::;~;::·:·:·:·:·:·:······=·

stdllb

Entry no. 124: void perror(con1t char* •)
Maps the error number In the lnteser expression errno to an error messase. It
writes a sequence of characters to the standard error stream thus: first (if s is not a
null pointer and the character pointed to by s Is not the null character). the strins
pointed to by s followed by a colon and a space: then an appropriate error
messase strins rot lowed by a newline character. The contents of the error messase
strings are the same as those returned by the strerror function with arsument
err no, which are Implementation-defined.

Returns: no value.

Entry no. 105: lnt _fUbuf(RLE *•tream)
This function is used by the C library to implement the 'set~ macro. The definition
of the 'set~ macro Is as follows:

f detlne c;etc Cp) \
c--CCpl->_ icntl >- 0 1 •ccpl->_ptrl++ '_fllbufCpll

where p Is a pointer to a ALE structure.

filbuf Hils the buffer associated wtth p from a Hie stream and returns the first
character of the buffer lncrementins the buffer pointer and decrementi ns the Input
character count.

Entry no. 109: lnt _ flaiM.If(lnt ch, FILE *stream)
This function is used by the C library to Implement the putc macro. The definition
or the putc macro Is as follows:

f detlne putc Cch, pl \
C--((pl->_ ocnt) >• 0 1 C*CCpl - >__ptrl++- (chi) : _ fhbuf(ch,p))

where pis a pointer to a ALE structure.

f 1 sbu f flushes the buffer associated wtth p to a Hie stream and writes the
character ch to the Hie stream. The buffer pointer and output character count are
reset.

stdlib provides several senera l purpose functions

Entry no. 58: double atol(conat char * np"'
Converts the initial pan of the strins pointed to by nptr to double •
representation.

6-259

(

(

(

(

(

(

(
\

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

stdlib
~.>:·:::::::·:·:·:·:::::::.:·:·:·:·:·:•:•::::;:;:;:;::~:-»»:·»:::;:(J:!Z::::::::::;:;:;:;:;:;:;:;:;:;:;:;:;::::.:.::x.-..:.:.:-:.::;::: ::::~~:::: .·.·.·.·.·.·.·.·.·.·.:.:;:;:; ••.•• ;::·:·:·:·:·:·:·:·:·:·:·:·:·:·: .;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;::~:~~::;:;:;::::>hX~::;:;:;:;::::;::m-;:::;:

6-260

Returns: the converted value.

Entry no. 59: lnt atol(conat char • nptl)

Converts the Initial part of the string pointed to by nptr to lnt representation.

Returns: the converted value.

Entry no. 60: long lnt atol(conat char • nptl)

Converts the initial part of the string pointed to by npt r to long l nt
representation .

Returns: t he converted value.

Entry no. 61 : double atrtod(co nat char • nptr, dlar .. endptt)

Converts the Initial part ofthe string pointed to by nptr to double representation.
First It decomposes the input string into three parts: an Initial. possibly empty.
sequence of white-space characters (as specified by the is space function), a
subject sequence resembling a floating point constant. and a final string of one or
more unrecognised characters. including the terminating null character of the
Input string. It then attempts to convert the subject sequence to a floating point
number, and returns the result. A pointer to the final string is stored in the object
pointed to by endptr. provided that endptr is not a null pointer.

Returns: the converted value if any. If no conversion could be performed. zero Is
returned. If the correct value is outside the range of representable values. plus or
minus HUGE VAL is returned (according to the sign of the value), and the value of
the macro ERANGE is stored in e rrno. If the correct value would cause underflow.
zero Is returned and the value of the macro ERANGE Is stored In er rno.

Entry no. 62: long lnt atrtol(conat char • nptr, char ••endptr, lnt b••.,
Converts the Initial part of the string pointed to by nptr to long lnt
representation. First it decomposes the input string Into three parts: an Initial.
possibly empty, sequence of white-space characters (as specified by the is space
function). a subject sequence resembling an integer represented In some radix
determined by the value of base, and a final string of one or more unrecognised
characters. including the tennlnating null character of the Input string.

It then attempts to convert the subject sequence to an lnteget and returns the
result. If the value of base is 0, the expected form of the subject sequence Is that of
an Integer constant (described precisely in the ANSI standard. section 3.1.3.2).
optionally preceded by a+ or -sign. but not including an integer suffix. If the value
of base is between 2 and 36. the expected fonn of the subject sequence Is a
sequence of letters and digits representing an integer with the radix specified by

Th11 Shai'IJd C Library

:l:::<:::;:;:;;;:;:;:;:;l;:;:;:;:::: :;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:;:;:;:;:;:;:w.-::::::;:;:;:;:;:;::::.:~~:::::::::~:::::®:::::;;;:*~~-:::::::~~:::::.-x~::::;::::::::;::::.-=::::: :;:;:;::::: ::::::::::::::::::::::::::;:;;::;:~:::::::{«.:::-:::::.

base, optionally preoeded by a plus or minus sign, but not Including an Integer
suffix. The letters from a (or A) through z (or Z) are as<:ribed the values 10 to 35:
only letters whose ascribed values are less than that of the base are permitted. If
the value of base Is 16, the characters Ox or OX may optionally precede the
sequence of letters and digits following the sign If present. A pointer to the final
string is stored In the object pointed to by endptr, piQYided that endptr is not a
null pointer.

Returns: the conovetted value If any. If no conversion could be perfonned. zero is
returned. If the cor~ value Is outside the range ol representable values.
LONG_MAX or LONG_MIN Is returned (according to the sign of the value), and the
value olthe maao ERANGE Is st~ In errno.

Entry no. 63: unsigned long lnt atrtoul(const char • nptr, char .. endptr,
lnt Na-t

Converts the initial pert of the string pointed to bv nptr to unsigned long int
representation. First It decomposes the Input string i nto three parts: an Initial.
possibly empty. sequence of white space characters (as detennined by the
isspa.ce function). a subject sequence resembling an unsigned integer
represented In some radix detennlned by the value of base, and a final string of
one or more unrecotnlsed characters. Including the tenninating null character of
the input string.

It then attempts to convert t he subject sequence to an unsigned integer. and
returns the result. If the value of base Is zero. the expected fonn of the subject
sequence Is that of an Integer oonstant (described precisely in the ANSI Draft,
section 3. 1.3.2). optionally preceded by a+ or- sign, but not including an integer
suffix. lf the value ol base Is between 2 and 36. the expected form of the subject
sequence Is a sequence of l etters and digits representing an Integer with the rad ix
specified by base. optional ly preceded by a +or- sign. but not Including an
Integer suffix. The letters from a (or A) through 1 (or Z) stand for the values 10 to 35:
only letters whose ascribed values are less than that of the base are permitted. If
the value of base Is 16, the characters Ox or OX may optionally precede the
sequence of letters and digits following the sign. If present. A pointer to the final
string is stored In the object pointed to by endptr, piQYided that endptr is not a
null pointer.

Returns: the converted value If any. If no conversion could be perfonned. zero is
returned. If t he cor~ value Is outside the range a representable values.
ULONG_MAX is returned, and thevalueofthe • maaoERANGE is stored in err no.

Entry no. 64: lnt rand(void)

Computes a sequence of pseudo-random Integers In the range 0 to RAND MAX.
whereRANO_MAX • Ox7fffffff. -

6-261

Sldlib

;;;::;:;:.::::x:::---:::::::::::::;:;;::;:;;::::::::::::::::;:;:;:::::::::::::::::~";.~~:;::;:;::::::::~~#.:f-:>:•::::::;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;~~~=:.::::;::;::::::::::::~::x;::::::;;x;(.;:;:::: :;:;.;.;:;:;:;:;:;:;:·:····

6-262

Returns: a pseudo-random integer.

Entry no. IS: void • rand(unalgned lnt HH)

Uses Its argument as a seed for a new sequence of pseudo-random numbers to be
returned by subsequent calls to rand. If srand Is then called with the same seed
value, the sequence of pseudo-random numbers will be repeated. lf rand is called
before any calls to srand have been made. the same sequence is generated as
when srand Is first called with a seed value of I.

Entry no. 66: void "calloc(alze_t nmemb, alze_t alz-l

Allocates space for an array of nmemb objects, each of whose size is size. The
space is I nltlalised to all bits zero.

Returns: either a null pointer or a pointer to the allocated space.

Entry no. 67: void free(vold • pll)

Causes the space pointed to by ptr to be deallocated (made available for furt.her
allocation). If ptr is a null pointer. no action occurs. Otherwise. ifptrdoes not
match a pointer earlier returned by calloc, malloc or realloc or if the space
has been deallocated by a call to free or r ealloc, t he behaviour is undefined.

Entry no. 68: void •malloc(alze_t a/ze)

Allocates space for an obfect whose size is specified by s1 ze and whose value is
indetenni nate.

Returns: either a null pointer or a pointer to the allocated space.

Entry no. 69: void •re•lloc(vold • ptr, alze_t alz-l

Changes the size of the object pointed to by ptr to the slz.e specified by s1 ze. The
contents of the object Is unchanged up to the lesser of the new and old sizes. If the
new slz.e Is larger, the value of the newly allocated ponion of the object is
indetenninate. lf ptr is a null pointer. the realloc funct ion behaves like a call to
malloc for the specified size. Othenrise,lf ptr does not match a pointer earlier
returned by calloc. malloc or realloc, or i f the space has been deallocated by
a call to free or realloc, the behaviour Is undefined. If the space cannot be
allocated. the object pointed to by ptr is unchanaed. If size Is zero and ptr is not
a null pointer. the obJect it points to is freed .

Returns: either a null pointer or a pointer to the possibly moved allocated space.

ThB Shared C Library
;.;.:.-... ;; ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::;.:<:~%:~:;:;:;:;:;;:;-~y,::.;:;.;.;.;.;-:·:·:·:·:·:::::::w.:::r.;:;:;:;:::::::::::;:;:;:;:::::::: :;:;:;:;:;:;:;:x;:::;:;:;:;:;:;~~<:$:i~:~::.::.::~:::::~·%:-::::. ;:;:;.;:;:;:;:;:;:;:;.;.;.;.;:::::::: :;:;:;~:;:;:;:;:;:;:;.;.;.;::.X.::•:-:t:·:·:=.

Entry no •. 70: void 1bort(vold)
causes abnonnal program tenninatlon to occur, unless the signal S I GABRT Is
being caught and the signal handler does not retum. Whether open output streams
are nusM!d or open streams are dosed or tempo~ary flies removed is
Implementation-defined (under RISC OS all these occur). An
Implementation-defined form of the status 'unsuccessful termination' (I under
RJSC OS) is returned to the host environment by means of a call to
raise (SIGABRT) .

Entry no. 71 : lnt 1texh(vold (" fun~vold))
Registers the function pointed to by func. to be called without its arguments at
nonnal program tennlnation. It Is possible to reaister at least 32 functions.

Returns: zero if the registration sucoeeds, non.oz.ero If It fails.

Entry no. 72: void exlt(lnt amtua)

causes nonnal program tenninatlon to occur. if more than one call to the exit
function is executed by a program (for example. by a functlon registered with
atexlt). the behaviour is undefined. First. all functions registered by theatexlt
function are called. in the reverse OJder of their registration. Next. all open output
streams are nusM!d, all open streams are closed. and all files created by the
tmpf lle function are removed. Finally, control is returned to the host
environment. If the value of status is zero or EXIT SUCCESS. an
Implementation-defined form of the status 'su<:cessfui tennination' (0 under
RISC OS) Is returned. lf the value of stat us Is EXIT FAILURE. an
implementation-defined form of the status 'unsu~ful termination' (I under
RISC OS) Is returned . Otherwise the status returned Is Implementation-defined
(the value of status Is returned under RJSC OS).

Entry no. 73: ch1r •getenv(con•t c:hlr • nam.)

Searches the environment list, provided by the host environment. for a string that
matches the string pointed to by naae. The set of environment names and the
method for altering the environment list are Implementation-defined.

Returns: a pointer to a string associated with the matched list membet The array
pointed to is not modified by the program, but may be overwritten by a subsequent
call to the qetenv function . lf the specified name cannot be found, a null pointer
Is returned.

6-263

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

stdlib

::::*".«#»X««<·:«·:·:-:·:·:·:·:·:·:·:·:·:::: ::::;. ::::::;.;:;.;:;:::::::;:;:;:;:;:;::::::::::::::::::::::·:·:=:·:·::::;.;.;.:-:-:·:·:·:·:·:·:·:·:=:-:::::.:·:·:·:=:·:·:-::::: :::::::::::::::::::::::::;.y;.,...:;.;;;;:;:;.;.;;;;;.:-:·~>X:.:-~:.:-:-:-:-:·: .;.;.;.:.:-:~.;;;:~:::::::::::::':.:·:·:·:·:·:

6-264

Entry no. 74: tnt ayatem(conat char • atrlnfl)

Passes the st rlna pointed to by string to the host environment to be eJrecuted by
a command processor In an implementation-defined manner. A null pointer may
be used for string. to Inquire whether a command processor exists. Under
RISC OS. care must be taken. when executin11 a command. that the command does
not overwrite the callin11 pf08ram. To control this. the strini chain : or call:
may immediately precede the actual command. The effect o(call: is the same as
If call: were not present. When a command Is called. the caller is first moved to
a safe place In application worlcs~. When the callee termi nates. the caller is
restored. This requires enou11h memory to hold caller and callee simultaneously.
When a command Is chained. the caller may be overwritten. If the caller Is not
overwritten. the caller exits when the caller terminates. Thus a transfer of control is
effected and memory requirements are minimised.

Returns: li the ar11ument is a null pointer. the system function returns non-zero
only If a command processor Is available. If the at~~ument Is not a null pointer. It
returns an Implementation-defined value (under RISC OS 0 Is returned for success
and -2 fof failure to invoke the command: any other value Is the return code from
the executed command).

Entry no. 75: void *baearch(const void *key, conat void * b•• •· alze_t
nmemb, alz.e_t alze, lnt (* compat) (const void •, const void*))

Searches an array of nmemb obJects. the initial member of which is poi nted to by
base. for a member that matches the obJect pointed to by key. The size of each
member of the array is sped lied by size. The contents of the array must be in
ascendin11 sorted o rder accordin11 to a comparison function pointed to by compar.
which Is called with two ar11uments that point to the key obJect and to an array
member. In that order. The function returns an lnte11er less than. equal to. or
11reater than zero If the key obJect Is considered. respectively. to be less than. to
match. or to be areater than the array member.

Returns: a pointer to a matchin11 member of the array. or a null pointer if no match
is found . If two members compare as equal. which member is matched is
unspecified.

Entry no. 76: void qaort(vold • "-•• · slze_t nmemb, alz.e_t a/ze,
tnt (• compat)(conat void •, co nat void *))

Sorts an array of nmemb obJects. the initial member of which Is pointed to by
base. The site of each object Is specified by s 1 ze. The contents of the array are
sorted in ascendin11 order accordin11 to a comparison function pointed to by
compar. which Is called with two ar11uments that point to the obJects bein11
compared. The function returns an in te11er less than. equal to. or 11reater than zero

T/19 Shaf8d C Llbraty

~::;::.;:.z.;:;:;:;:;:;:::;:;:;::::~~:-::-mr.-::r.::;.;.;:;.;:;:;:::::;:;:;:;~:.:;;::::::~-::::::w.:::;:;:::~:~-:.w..::;::::::::;:=::::::::;:;:;:;:;:;:;:;:})~::::::;:;:;:~r.~ .. -:;::~::::::::;:;:;:::::::::m:'r.::::;:;:;:;::.:·*~~~

If the first argument Is considered to be respectively less than. equal to, or 11reater
than the second.lf two members compare as equal. their order in the sorted array
Is unspecified.

Entry no. n : tnt aba(lnt n
Computes the absolute value ol an lntecer j . lf the result cannot be represented.
the behaviour Is undefined.

Returns: the absolute value.

Entry no. 78: dtv_t dhl(tnt numer, tnt denom)

Computes the quotient and remainder ofthe division of the numerator numer by
the denominator denom. lf the division Is Inexact. the resultin11 quotient is the
lnte11er o(lesser mqnitude that Is the nearest to the algebraic quotient. If the
result cannot be represented, t he behaviour Is undefined: otherwise. quot •
denom + rem equals nume~

Returns: a structure of type di v t. comprising both the quotient and the
remainder. The structure contains the followin11 members: int quot: int rem.
You may not rely on their order.

Entry no. 79: long lnt laba(long tnt II
Computes the absolute value ol an long lnteaer j . H the result cannot be
represented, the behaviour is undefined.

Returns: the absolute value.

Entry no. 80: ldtv_t ldtv(long lnt numer, long tnt denom)
Computes the quotient and remainder of the division of the numerator numer by
the denominator denom. l f the division Is Inexact. the sian of the resultin11
quotient is that ol the algebraic quotient and the maanltude of the resultin11
quotient Is the 1araest integer less than the maanltude ol the algebraic quotient. If
the result cannot be represented. the behaviour Is undefined: otherwise. quot •
denom + rem equals numer.

Returns: a structure of type ldi v t. comprt.slng both the quoti ent and the
remainder. The structure contains the followin11 members: l onq int quot;
lonq int rem. You may not rely on their order.

M•ltlbyte cllal'llder fn dlo11•

The behaviour of the multi byte character functions Is affected by the LC _ CTYPE
category of the current locale. For a state-dependent encodin11. each function Is
placed Into its initial state by a call for which Its character pointer ar11ument. s. is a

6-265

stdlib

:::::.-:;::::::-.::-::::::::::::::~~~::::::::::::::::::::: :::::: ::::::::::::::::::::=~=-~=::-:::;:::::::::::::::::::::·:·~v~.::.;-:-;;;;:::-:!$:::-.x:::;:::~::::::=:-:=v.;::::::::::::;x~:~:::::::::::.::.::::::: ::::::::::::::::::~::::::::::~*:::::;.;.·: ········

6·266

null pointer. Subsequent calls with s as other than a null pointer cause the Internal
state of the function to be altered as necessary. A call with s as a null pointer
causes these functions to return a non-zero value If encodina have state
dependency, and a zero otherwise. After the LC CTYP£ cateiiOIY is chanaed. the
shift state of these functions is indeterminate. -

Entry no. 172: lnt mblen(const char • ., slze_t n)

If sis not a null pointer. the mblen function determines the number of bytes
comprisina the multi byte character pointed to by s. Except that the shift state of
thembtowc function Is not affected. it Is equivalent tombtowc ((wchar t •) 0,
s, n) . -

Returns: If sis a null pointer. the mblen function returns a non-zeroorz.ero value.
if multi byte character encodinas. respectively do or do not have state-dependent
encodinas. If s is not a null pointer. the mblen function either returns a 0 (If s
points to a null character). or returns the number of bytes that comprise the
multibyte character (If the next nor fewer bytes form a valid multi byte character).
o r returns -I (If they do not form a valid multi byte character).

Entry no. 173: lnt mbtowc(wchar_t • pwc, conat char •., slze_t n)

If sis not a null pointer. thembtowc function determines the number of bytes that
comprise the multi byte character pointed to by s . It then determines the axle for
value of type wchar t that corresponds to that multi byte character. (The value of
the code correspondlna to the null character Is zero). If the multi byte character Is
valid and pwc Is not a null pointer. the mbtowc function stores the code In the
obfect pointed to by pwc. At most n bytes of the array pointed to by swill be
examined.

Returns: If s Is a null pointer, the mbtowc function returns a non-zero or zero
value. if multi byte character encodinas. respectively do or do not have
state-dependent encodinas. If s is not a null pointer, the mbtowc function either
returns a 0 (if s points to a null character). or returns the number of bytes that
comprise the converted multi byte character (if the next n of fewer bytes form a
valid multibyte character). or returns - I (if they do not form a valid multlbyte
character).

Entry no. 174: lnt wctomb(char • a, wchllr_t wchat)
Determines the number of bytes need to represent the multibyte character
correspond ina to the axle whose value Is we hac (lncludina any chanae In shift
state). It stores the multibyte character representation in the array object pointed
to by s (if sis not a null pointer). At most HB CUR MAX characters are stored. If
the value of wchar is zero, the we tomb function is left in the initial shift state).

The ShsrfKI C Libraty
::::::::::: .;:::::::::::::::::::::::::::x:::::::-;-zs::::::::::-:·:·:-:'*:;;.;: :·:·:·:-:·:-:=:·:= :::.··:-:::::::::::::;:::::::::::::w:-®"-:::::.::::: :=:·:-:::···:-.:.:.:.:.:::::. :::::::::::::::::::x:l(-:::::::::.:::.:&\(.::% ::::::: :::::::::::::::::::~:::;;.:::-:'<-~:·:·:-::m::x::::::::;.

string

Returns: If s is a null pointer. the we tomb function returns a non-zero or zero
value. if multi byte character encodinas. respectively do or do not have
state-dependent enoodlngs.lf sis not a null pointer. the we tomb function returns
a -I If the value of we hac does not correspond to a valid multi byte character. or
returns the number of bytes that comprise the multlbyte character corresponding
to the value of we hac.

M•ltlbyte etrta1 f1actlou

The behaviour of the multi byte stnna functions Is affected by the LC CTYPE
cateaory of the current locale. -

Entry no. 175: slze_t mbstowca(wchar_t • pwc., const char • a, alze_t n)

Converts a sequenoe of multi byte characters that bqins In the initial shift state
from the array pointed to by s Into a sequence of oorrespondina codes and stores
not more than n axles Into the array pointed to by pwcs. No multibyte character
that follow a null character (which is converted Into a axle with value zero) will be
examined or converted. Each multi byte character Is converted as if by a call to the
mbtowc function. If an Invalid multi byte character Is found. mbs t:owcs returns
(she t) -1. Otherwise, the mbstowcs function returns the number of array
elements modified. not l ncludina a tenninatinalll:ro code, if any.

Entry no. 176: alze_t wcatombs(char •., const wchar_t • pwcs, alze_t n)

Converts a sequence of codes that correspond to multi byte characters from the
array pointed toby pwcs lntoasequenceofmultlbytecharacters that begins In the
Initial shift state and stores these multi byte characters Into the array pointed to by
s. stopplna if a multlbyte character would exceed the limit of n total bytes or If a
null character is stored. Each code Is oonverted as If by a call to the we tomb
function. except that the shift state of the we tomb function is not affected. If a
code is encountered which does not correspond to any valid multi byte charactet
the wcstombs function returns (size_ t) -1. Otherwise. the wcstombs function
returns the number of bytes modified. not Including a termlnatina null character. If
any.

string provides several functions useful formanlpulatlna character arrays and
other objects treated as character arrays. Various methods are used for
detenninlna the lenaths of the arrays, but in all cases a char • or void •
argument points to the Initial (lowest addresses) character of the array. If an array
is written beyond the end of an object. the behaviour Is undefined.

6·267

(

(

(

(

(

(

(

(

(

(

(

(

(

c
c
(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

string
:;.;:;:r,-x-o¢';;.:.:·:·: ·:·:·:-::;;;:;:;.;;::::-:::::::;.:;;.::::;:;:;:;:m:;:::;r.~;:;:;;;::;::~::::::;;;:;;;.:~·X~·X«<·>:<·>:·:-:-:;:.;;:~:-::;:;:;:; :;:;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.: ;:;:;:;::?~"'Z:::::::::;.;;;:;:;:;.;:;.;.;.:·:·:·:·:·:·:-:;;;;.;. ;.;.;:;:;.;. ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::

6·268

Entry no. 38: void •memcpy(vold • •1, const void • •2,'slze_t n)

Copies n characters rrom the object pointed to by s2 into the object pointed to by
s1. 1r copyinll takes place between objects that overlap. the behaviour is
undefined.

Returns: thevalueorsl.

Entry no. 39: void •memmove(vold • •1, const void • •2, slze_t n)

Copies n characters rrom the object pointed to by s21nto the object pointed to by
s 1. Copyinll takes place as irthe n characters from the ob(ect pointed to by s2 are
first copied Into a temporary array of n characters that does not overlap the ob(ects
pointed to by s 1 and s2. and then the n characters rrom the temporary array are
copied into the object pointed to by s 1.

Returns: the value or s1.

Entry no. 40: cher •strcpy(chllr • •1, const char • •2)

Copies the strinll pointed to by s 2 (including the terminatinll null character) into
the array pointed to by s l . U copying takes place between objects that overlap. the
behaviour is undefined.

Returns: the value of s1 .

Entry no. 41: char •stmcpy(cher • a1, const cher • d , slze_t n)

Copies not more than n characters (characters that roliow a null character are not
copied) rrom the array pointed to by s2 into the array pointed to by s l . lf copyinll
takes place between objects that overlap. the behaviour is undeHned. 1r
terminating nul has not been copied in chars. no term nul is placed in s2.

Returns: the value or sl.

Entry no. 42: cher •strcet(chllr • •1, const char • •2)

Appends a copy or the strinll pointed to by s2 (indudinQ the terminatinQ null
character) to the end of the string pointed to by s 1. The Initial character of s 2
overwrites the null character at the end or s1 .

Returns: the value or sl.

Th8 Shal'8d c Library

:-:-~::;:;:;.;:;.;:;:;:::;;:!$!-:::::::':·:·X~:-::;::.;.:=:t:.::;:~;:::;:;:;:;:;:;:;~;.;:;;:~~;;::::::::::~::;;:::sW.-::;:~;:;:;:;:;:;:;:;:;:;:;:::::::;:;:;:;::;.;:)W;:;:::::::;:;:;:;:~:::::~::;;:::::::::.:.s:::;;:;:;:;::::~·::::;::.:::::!i:»~;;.;:•

Entry no. 43: cher •strnc:et(chllr • •1, oonet cher • d, slze_t n)

Appends not more than n characters (a null charllcter and characters that rollow it
are not appended) from the anay pointed to by s2 to the end of the strinll pointed
to by s1 . The Initial character of s2overwtltes the null character at the end of s1 .
A termlnatlnQ null character is always appended to the result.

Returns: the value of s1.

The sfQn of a non-zero value returned by the comparison runctions is determined
by the SiQn or the differe~ between the values oft he first pair or characters (both
Interpreted as unsiQned char) that differ In the objects beinll compared.

Entry no. 44: lnt memcmp(oonst void • d, oonat void • a2, slze_t n)

Compares the first n characters of the obJect pointed to by s 1 to the first n
characters or the object pointed to by s2.

Returns: an I ntqer Qreater than. equal to. or less than zero. dependi nil on whether
the object pointed to by s 1 is greater than, equal to. Of less than the object
pointed to by s2.

Entry no. 45: lnt strcmp(oonst char • •1, const cher • a2)

Compares the strinll pointed to by s 1 to the strinll pointed to by s2.

Returns: an lntqer Qreater than. equal to. or less than zero. dependinll on whether
the strinll pointed to by s11sQreater than. equal to. or less than the strinll pointed
toby s2.

Entry no. 48: lnt stmcmp(oonstchllr • •1, oonst chllr • •2, slze_t n)
Compares not more than n characters (characters that follow a null character are
not compared) rrom the anay pointed to by s 1 to the array pointed to by s2.

Returns: an lntqer Qreater than. equal to. Of less than zero. dependinQ on whether
the strinQ pointed to by sllsgreater than. equal to, or less than thestrinll pointed
toby s2.

Entry no. 178: lnt strcoll(const char • •1, const char • •2)

Compares the strtnQ pointed to by s 1 to the strlnQ pointed to by s 2. both
interpreted as appropriate to the LC _ COLLATE cateaory of the current locale.

Returns: an intqer Qreater than. equal to. Of less than zero. dependinQ on whether
the strlnQ pointed to by s 1 is Qreater than. equal to. or less than the string pointed
to by s 2 when both are Interpreted as appropriate to the current locale.

6·269

string

~:.»:·:·:·· ·:=:·:=:=:·:=::::::::::::::::::::::::::::::::::x:;:;:::::::::::;;:;.:;::-::~::;;;:::::::::;:::::~~;;;:.;;;;:::.:.:::::::(:::::::::::::::(:::::::::::::.::::::::::::::: ::::::::'X:::::::::::::::::::::~:::::::::::::::::=:~·: .. %~:-:;. .. -:.:-:-:~:.:.-::::.:::::::::::::::::

6-270

Entry no. 1n: •lze_t •trxfrm(char • •1, con•t char • •2, •lze_t n)

Transfonn.s the strtna pointed to by s2 and places the ~ullin& string into the
array pointed to by s1 . The transfonnation funct.lon Is such that ifthe strcmp
function Is applied to two transfonned strinas. It returns a value areater than.
equal to or less than tJero. oorrespondil'lll to the result of the s t rcoll function
applied to the same twooriainal strings. No more than n characters are placed into
the resultlna array pointed to by s 1. indudina the tennlnatina null charactet If n is
zero, s 1 Is pennitted to be a null pointer. If copvina takes place between objects
that overlap, the behaviour is undefined.

Returns: The lenath of the transfonned strinals returned (not including the
tennlnatlng null character). If the value returned Is nor more, the contents of the
array pointed to by s 1 are indetenninate.

Entry no. 47: vokl •memchr(con•t void • a, lnt c, • lze_t n)

Locates the Rrst occurrence of c (converted to an unsl11ned char) in the Initial n
characters (each Interpreted as unsigned char) of the object pointed to by s .

Returns: a pointer to the located character. Of a null pointer if the character does
not occur In the object.

Entry no. 48: char •• trchr(con•t char • •· lnt c)

Locates the first occurrence of c (converted to a char) In the string pointed to by s
(including the tennlnatinll null character). The BSD UNIX name for this function is
index() .

Returns: a pointer to the located character. Of a null pointer If the character does
not occur In the strlna.

Entry no. 49: •lze_t •trc•pn(con•t char • •1, cons I char • • 2)

Computes the ie1111th of the initial segment of the strlna pointed to by s1 which
oonsists entirely of characters not from the strina pointed to by s2. The
tenninatlng null character Is not considered part of s2.

Returns: the lenath of the sqment.

Entry no. SO: char ••trpbrk(con•t char • • 1, const char • • 2)

Locates the Rrst occurrence in the strina pointed to by s1 of any character from the
strins pointed to by s 2.

Returns: returns a pointer to the character. or a null pointer If no character ronn s2
occurs In s1 .

The SharBd C Librlll)'

:.:.:·:·:·:-:::::::::::::::.::::=::::::::::::::::::::««-:=:':·:·:·:·:·:««v:·::::::;;;;;:;:;.;;.m.::::::::"$w.«:::::::;.;:::::::::::::::::::::::::x-:::::::::::::.~:::::::;;t%-:i->::~::::;:;.;::::.:::::::::'=*:.:::::::::~?.::::::.: ·:=:·:·:: :::::::::::.:::::.:::::::::::::;::::::::::;:;.;.

Entry no. 51 : char •strrchr(con.t char • a, lnt c)

Locates the last occurrence of c (oonverted to a char) In the strtna pointed to by s.
The termlnatina null character Is considered partofthestring. The BSD UNIX name
for this function Is rindex () .

Returns: returns a pointer to the character. or a null pointer if c does not occur in
the strina.

Entry no. 52: s lze_t strapn(con•t char • •1, con•t char • •2)

Computes the lenath of the Initial sqment of the strln11 pointed to by s 1 which
consists entirely of characters from the strina pointed to by s2.

Returns: the len11th of the sqpnent.

Entry no. 53: char ' •tr•tr(con•t char • •1, const char • •2)

Locates the first occurrence in the strina pointed to by s l or the sequence of
characters (exdudina the tennlnatlna null character) In the string pointed to by s2.

Returns: a pointer to the located strin&. or a null pointer If the string is not found.

Entry no. 54: char ••trtok(char • •1, con•t char • • 2)

A sequence of calls to the strtok function breaks the strin11 pointed to by s 1 into
a sequence of tokens. each of which is delimited by a character from the string
pointed to by s2. The first call in the sequence has s l as its first argument. and Is
followed by calls with a null pointer as their first araument. The separator string
pointed to by s2 may be different from call to call. The first call in the sequence
searches for the first character that Is not contained In the current separator strlna
s2. 1f no such character is found. then there are no tokens In sl and the s trtok
function returns a null pointer. If such a character Is found, It is the start of the first
token. The strtok function then searches from there for a character that is
contained in the current separator strina. If no such character is found. the current
token extends to the end of the strina pointed to by s 1. and subsequent searches
for a token will fail . lf such a character Is found, It is overwritten by a null character,
which tenninates the current token. The strtok function sa-.es a pointer to the
following character. from which the next search for a token will start. Each
subsequent call. with a null pointer as the value for the first argument, starts
search ina from the saved pointer and behaves as described above.

Returns: pointer to the first character of a token. or a null pointer if there is no
token.

6-271

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c

(

(

(

(

r

(

(

(

(

(

(

(

(

('

(:

(

tlm9

,:::::::-n .. x.:*':·:· :·::: :::::::::::::::::::::::: ::::::::::::~:::::::::::::::::::;~.;~:;;:;:;:.~x::::::::::::::::::::::::::::::~~::::::::::.:::::::::::.:::::::::::::::::::::::::««<«YY~~·:::::::::;:::::;:::;:.:·:·:-:::::::::: :::::::::::::::.:=:::::::::::::::::::::::: :::::

time

6-272

Entry no. 55: void •mem•et(vold • s,lnt c, •lze_t n)

Copies the value or c (converted to an unsigned char) Into each or the first n
characters or the object pointed to by s.

Returns: the value or s.

Entry no. 56: ct..r ••trerrof1lnt .,um)

Maps the error number in errnum to an error message string.

Returns: a pointer to the string. the contents of which are implementation-defined.
Under RISC OS and Arthur the strings for the given errnums are as follows:

• 0 No error (errno = 0)

• EDOM EDOM- function argument out or range

• ERANGE ERANGE- function result not representable

• £SIGNUM £SIGNUM- ille.gal signal number to signal() or
raise()

• others Error code (ermo) has no associated message.

The array pointed to may not be modified by the program. but may be overwritten
by a subsequent call to the strerror function.

Entry no. 57: •lze_t • trlen(con• t char • •)

Computes the length or the string pointed to by s .

Returns: the number or characters that precede the terminating null character.

time provides several functions for manipulating time. Many functions deal with a
calendar time that represents the current date (according to the Gregorian
calendar) and time. Some functions deal with local time, which is the calendar
time expressed for some specific time zone. and with Daylight Saving llme. which
Is a temporary change In the algorithm for determining local time.

st ruct tm holds the components or a calendar time called the broken-down
time. The value or tm_ isdst is positive if Daylight Saving 1\me is in effect. z.ero If
Daylight Saving 'Tlme is not in errect. and negative If the information is not
available (as Is the case under RISC OS).

The ShNIId C Llbra!y
:::=:-::::::::::: :·:·:·:·:·:·:·: :::::::::::::: :::::::::::::: :::::::.~::-::.::::$:::;?.:::::::.~::v.:::::::;::::::::~:::~.::::::::::~:::~::=::x::~:::::::::::.:::::::::::~:::~:=:::::~:::::::~::::$::~:::~~::x=?'.«-:::::::::~~w&.:::::::::::~:.

struct tm {
int tm_sec;

} :

int tm_min
int tm_hour
i nt tm_mday
int t m_mon
1nt tm_year
int tm_wday
int t m_yday
in t tm_isdst

I* seconds after the minute, 0 to 60
(0- 60 a llows for the occasiona l leap
second) *I

I* minutes after the hour, 0 to 59 •I
I* hours since midnight, 0 to 23 */
I~ day of the month, 0 to 31 *I
I* months since January, 0 to 11 */

I* years since 1900 *I
I* days since Sunday, 0 to 6 */

I* days since January 1, 0 to 365 *I
I* Daylight Saving Time flag *I

Entry no. 29: clock_t clock(vold)

Determines the prooessor time used .

Returns: the implementation's best approximation to the processor time used by
the program sin~ pr~Jtram invocation. The time In SKOhds is the value returned,
dividedbythevalueofthemacroCLOCKS PER SEC. Thevalue (clock t)-1
is returned If the processor time used Is nOi available. In the desktop. cl;ck ()
returns all processor time. not just that of the Jlrol.ram.

Entry no. 30: double dlfftlme(dme_t timet, tlme_t timeD)
Computes the difference between two calendar times: t1me 1 - t1me0. Returns:
the difference expressed in seconds as a double.

Entry no. 31 : tlme_t mktlme(•truct tm • tlmeptl)

Converts the brolr.en-dO'IITI time, expressed as local time, In the structure pointed
to by t imept r Into a calendar time value with the same encoding as that of the
values returned by the time function. The orlalnal values of the tm wday and
t m_yday components of the structure are lanored. and the original values of the
other components are not restricted to the ranges Indicated above. On successful
completion. the values of the tm_wday and tm_ydaystructurecomponents are
set appropriately, and the other components are set to represent the specified
calendar time. but with their values fon::.ed to the ranges Indicated above: the final
value o(tm_mday Is not set until tm_mon and tm_year are determined.

Returns: the specified calendar time encoded as a value or type t i me_ t . If the
calendar time cannot be represented. the function returns the value (time_ t) - 1.

6-273

tim9
;:;: ;:;:;:;:;:;:;:;:;:;:;::;~$"..;:~.;:.::.~~~::~:::::::.-::~~;:.$,.":,Jo.::;;:;:;:;~:::;:;:;:;:;:;:;:;:;:;;;;x;-:~=:'X!'9.:::::;;;::·:~~;:~::;.;:;.;.;.;;;:;.;:;.;:::::::;:;:;:::::::;:;:;:;:;:;:;:::::::::::::;w.;;:;:;.;.;.x::;;;;:;::~

6-274

Entry no. 32: dme_t dme(tlme_t • timer)

Determines the rurrent calendar time. The encoding or the value is unspecified.

Returns: the implementation's best approximation to the current calendar time.
The value (time tl-1 is returned irthecalendar time is not available. lr t.U.er
Is not a null poin~t the return value Is also assigned to the object it points to.

Entry no. 33: char •eactlme(conat atruct tm • tlmeptl)

Converts the broken-down time in the structure pointed to by t.imeptr Into a
string in the style Sun Sep 16 01:03:52 197 3 \n \0.

Returns: a pointer to the string containing the date and lime.

Entry no. 34: char •ctJme(conat dme_t • timet)
Converts the calendar lime pointed to by timer to local time in the f'orm or a
strina. It is equivalent toasct1me(localtime(timer)) .

Returns: the pointer returned by the asct ime runction with that brolcen·down
time as argument.

Entry no. 35: atruct tm •gmtlme(conat tlme_t • timer)

Conve.rts the calendar time pointed to by timer Into a brolcen-down lime.
expressed as Greenwich Mean llme (GMT).

Returns: a pointer to that object or a null pointer If GMT is not available (It is not
available under RISC OS).

Entry no. 36: atruct tm •localtlme(conat tlme_t • timer)

Converts the calendar time pointed to by timer into a brolcen-down time,
expressed a local lime.

Returns: a pointer to that object.

Entry no. 37: alze_t etrftlme(char • ., alze_t m•x.U., conat cher • form•t,
conat atruct tm • tlmeptl)

Places characters Into the array pointed to by s as controlled by the string pointed
to by format. The rormat string consists or z.ero or more directives and ordinary
characters. A directive consists or a\ character rollowed by a character that
determines the directive's behaviour. All ordinary characters (including the
terminating null character) are copied unchanged into the array. No more than
max size characters are placed into the array. Each directive is replaced by

ThB Shar/KJ C Library
:=:·:·:·:·: .. ;:;.:::·: =:·:·:·:·:·:·:-::::::~: =:=:=:=:=:-:.:~·~:;:::::::::;m~;;::::: .;:::::: :::::::::::::::::::::;;:::::::::::.:~::w..::.::::~:~~~::~~:::-~~::::::~~:::::.:·:-:·:·:·:·:.:=:·:·:·:·:·:-:: :::::::;;;.-.».x·:·:·:·:·:·:·:·:·:·:·:::::

appropriate characters as described In the rollowlng list. The appropriate
characters are determined by the LC TIME category or the current locale and by
the values contained In the structure-pointed to by t 1meptr.

Directive

"" \A

\b
\8
\c
\d
\H

\1
\ j
\m
\M

\ p

\S

'u
\w

\W

\x

'X
\y
\Y
\Z

"

ltepl-.d"'
the locale's abbreviated weekday name
the locale's rull weekday name
the locale's abbreviated month name
the locale's rull month name
the locale's appropriate date and time representation
thedayorthe month as adedmal number (01-31)
the hour (24-hour dock) as a decimal number (<J0-23)
the hour (12-hour dock) as a decimal number (0 1-12)
thedayortheyearas a decimal number (001-'366)
the month as a decimal number (01-12)
the minute as a decimal number (1»-61)
the locale's equivalent or either AM or PM designation

associated with a 12-hour dock
the second as a decimal number (1»-61)
the week number or the year (Sunday as the first day of

week I) as a decimal number (Q0-51)
the weekday as a decimal number (O(Sunday) -6)
the week number or the year (Monday as the first day of

week I) as a decimal number (Q0-51)
the locale's appropriate date representation
the locale's appropriate time representation
the year without century as a decimal number (00-99)
the year with century as a decimal number
the time zone name or abbreviation, or by no character

If no time ZlOile is determinable

••
1r a directive is not one or the above, the beNMour Is undefined.

Returns: tr the total number or resultin& characters Including the terminating null
character is not more than maxsize,the strftime runction returns the number

. or characters placed into the array pointed to by s not includina the terminating
null character. Otherwise. z.ero is returned and the contents of the array are
indeterminate.

6-275

(

(

(

(

(

(

(

(

(

c
(

(

(

(

c
c

\
\

::::

~

en

I
~

..
en

]~ II~ ,.il !!!:
 11~ t I II I ::;: j~ jjjj

;::' II II

:-:-:-:-::;:;:;:;:;:;::::::::::::;:;:-.;:;:.x.:::.::.;.:.:·:-:;;:;.;.~-?X:.:::::::o::m::;.;:;:;.;.; .;.;:;:;:;:;:;:;:;-:::::::~~:·:·:·:·::;:;:;::::::.:::::::::::~'>Yh::::;:;;:.)l'~;::::::::;:·:·:~.:.x::;x.;;.;:::.."X:::.:·:·:·:·:-:'-:·:.:.:.:·::::::::::: :;:;:;:;:;:;:;.;~~:;.;.;,v_.x

76 BASIC and BASICTrans
:::: :::::::::::w.::~.::.."oJ;:::::x:::;:!;"~">~::-.x~~~~:::::::::::::::::::::":::-::x~~~<:::::::::.::x~:~::$~~~$$$W:~::::::::::::::::::::::::::::~:=:~»~~

Introduction and Overview
Facilities were added to BASIC (and to BASIC64) In RISC OS 3 so that its messaaes
can be translated £or use In another territory. The BASIC interpreter issues calls to
the BASICTrans module. which is responsible £or proYidlng messases appropriate
to a partirular territory. By replacing one BASICTrans module with another. you can
change the language used by BASIC £or its messa,es.

Both BASIC and BASIC64 Issue the same calls to the same BASICTrans module.
thus code and messages are shared between the two modules.

U you write a BASICTtans module. you can allocate memory ror the translation
rrom the RMA:

• Memory inside the SWI call is invulnerable to the task swapping problem
round when BASIC Itself attempts to use RMA memory. 'Thsk manage(
swapping between two BASIC programs does not OCOJr when in SWl mode.

Using BBC BASIC

(

(

(

(

(

(

(

(

(

For the sake or completeness. this chapter d001ments the "BASIC and • BASIC64 (
commands used to enter SBC BASIC. For full details or using B8C BASIC. see the
BBC BASIC Rrfm..u Ma"WII, available rrom your Acorn supplier.

(

(

(

(
6·277

(

(

(

(

(

(

r
'

(
I

(

r
~

(

(

(

(

(

(

SW/Cal/s

·,w.;:.~::x.:·:·:.:·:·::::::::::::::~:.:~::::::::::.;:;.;.;.):..:·X•x·:-:::•:::~:;:;:;:;:::..~-Q~::::;::.;::.;: ;.;:::::::::::;.;:::::;.;:::;.;:::::::::::::::;.;:::::::::::::::::::::: :;:::::::::::w~:·::x-f-:·:·:·::;.~::::;.;:;.;.;.;::.:·:·:-:-:.:::.;:::: :;:::: :;::::::::~:::::::::::'=*':::

SWI Calls

6-278

BASICTrans_HELP
{SWI &42C80)

Interpret. translate ir required. and print HELP messases

On entry

RO • pointer to lexically analysed HELP text (terminated by &<lD)
Rl c polnterto prosram's name (BASIC or BASIC64)
R2 c pointer to the lexical analyser's tables

On exit

Use

RO • R2 corrupted

This call is made by BASIC to request that a BASICTrans module print a help
messase. BASIC lexically analyses the HELP text, convertll\8 keywords to tokens.
before makins this call. The currently loaded BASICI'tans module then prints
appropriate help text.

On entry R I points to the pros ram's name. and so is non .zero; tr it Is still non-zero
o n exit BASIC will print its own (short. Enslish) Help text. Consequently, a
BASICI'tans module will normally set R I to zero on exit- but the Ensllsh version or
BASICTrans sometimes preserves R I so that its own help Is followed by the default
help.

In order to share the entirety or the HELP text between BASIC and BASIC64. this
call is implemented ror Enslish. and both BASIC and BASIC64 are assembled
without their own HELP text. About 15Kbytes are shared like this.

BASIC and BAS/CTrans
::::m~:::::::::~;::-.:::::::::;;:w.;:::::::::::::::::~~-=>.::.:·:·:·:·:=:.::::::::::::::::::::x~:=:::::::::::::::::~:::::::::~:~:=:::::::~::::::::::::::::::::::.::::<:'*~:::::~:::::~:::::::::::::::::::.:::::: ::::::::::::::::::· .:.:.:.:.:.::: .•. ::::::::::::

Copy translated error strfns to buffer

BASICTrans_Error
(SWI &42C81)

On entry

RO =unique error number (0 • 112)
Rl =pointer to buffer In which to plaoe the error

On exh

Use

RO • RJ corrupted

This call is made by BASIC to request that a BASIC'Il'ans module provide an error
messase. The currently loaded BASICTtans module places a null tenninated error
strins ror the siven error number In the buffer pointed to by R I. The error strins is
null terminated. BASIC then prints the error messase. and performs other actions
necessary to smoothly lntqrate the error messase with BASIC's normal provisions
ror error hand !Ins.

An error is 8enerated If the BASICTrans module Is not present (ie the SWI is not
round). or tr BASICTrans does not perform the translation. BASIC then prints a
default (Ensllsh) messase explalnlns this.

In order to share the entirety of the error strfns text between BASIC and BASIC64,
this call is Implemented for Ensllsh, and both BASIC and BASIC64 are assembled
without their error messases. About 6Kbytes are shared like this. Correct error
numbers are vital to the function Ins or the Interpreter. and so- rather than beins
shared- these are held In BASIC or BASIC64.

6-279

8ASICTrans_M86Sag9 (SWI &42C82)

m:::~:::::::;:;:;:;.;.;-;-;!;.;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:~:;.::::.--w:;~:::;~::.~~x:::::;:;:;:;:;:;;;.;:;:;:;;;:::::-x..~.:::::;~;;:::::::::::::::::;~-:;.;:;:;:;:;::w.-:::::~*'-:::::;.;:;:;:;:;:;:;:;:~;:;:;.;:;:;.x;.::.::::::~:;:;:;:;: ;:;:;:;:;:;:;:;:;:;::::::~::::::::::;:::::·

6-280

BASICTrans_Message
(SWI &42C82)

Translate and print miscellaneous message

On entry

RO =unique message number (0- 25)
Rl - R3 = message dependent values

On exit

Use

RO. Rl corrupted

This call is made by BASIC to request that the BASICThlns module print a
'miscellaneous' message. Further parameters are passed that depend on the
message you require to be printed.

An error is generated if the BASICThlns module is not present (ie the SWl is not
found). or if BASICThans does not perfonn the translation. BASIC then prints the
full (Eflilish) version of the message that it holds Internally.

The En11lish BASIC'll'ans module behaves as if this call does not exist. so that the
default messages get printed. There are not many 'miscellaneous' messages, so no
11reat savin11ls to be had in pr011idin11 RISC OS 3 with a shared Implementation.

The classic problem of the error handler's' at line· can now be handled as follows:

TRACE OFF
IF QUIT""tii.U£ THEN

EIUIOP. EXT, EU , RUORf$
£LS£
usrou: 1 I MI MEK- 4 1 .. ,

SYS"a.\SICt •una_IIOa U9•", 21, EI<I., II.EPORT$ TO : 1\
I f II\ AND I) <>0 THI.N

UPOIIT: I\•UOO:I F U I.<>O TIIDI PRJJIT• at llne "UL &I.SI PUU
EliDI F

1\•! (KI MEM- 4)
ENDIP

END

This allows the BASICThlns_Message code to print the strirli and optional' at line
'ERL lnfonnatlon In any order it likes.

BASIC and BASIC Trans

:::.:::::::::::::::::::::::::::::::::~::r-:::::•:::~..:.»w;:·:•:·::;:;;;:::::;;;;;:;:;:::::::::;~x;,x-:-:: :::::::::::::::::::---:;:::~:::::;c~,...;~:-:::~:;:x:.;.:~;;~:::x~::;:;:;::::::::::::::::::.:·:· :::·:·:·:·:-:::::: :::::::::<:::::::~:::::::::::::-'X·x·x::O:·:::--.-;

• Commands

Starts the ARM BBC BASIC interpreter

*BASIC
*BASIC64

Syntax

*BASIC I options]

Parameters

Use

options see below

•BASIC starts the ARM BBC BASIC V interpreter.

•BASIC64 starts the ARM BBC BASIC VI Interpreter- provided its module has
already been loaded. or is in the library or some other directory on the run path.

for full details of BBC BASIC. see the BBC BASIC Rl{tmtu Manu.l. available from
your Acom supplier.

The options control how the interpreter will behave when it starts. and when any
pr011ram that it executes tenn inates. lf no option is 11iven. BASIC simply starts with

a message of the fonn:

ARM BBC BASIC V version 1.05 (C) Acorn 1989

Starting with 643324 bytes free

The number of bytes free in the abolle message will depend on the amount of free
RAM on your computer. The first line is also used for the default REPORT messa11e.
before any erro rs occur.

One of three options may follow the •BASIC command to cause a p!Of!ram to be
. loaded. and. optionally, executed automatically. Altematlvely, you can use a
pr08ram that is already loaded into memory by passing Its address to the
interpreter. Each of these possi bilities is described In tum below.

In all cases where a prOiram is spedfied. this may be a tokenised BASIC prQIIram.
as created by a SAVE command. or a textual prOiram. which will be tokenised (and
po6Sibly renumbered) automatically.

6-281

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

•BASte •aASIC$4

·;x;.:~:::::;.;.;.;:: :;:;:;.;:;:;:;:;:;:;::.:::::::::;:::: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;~::~~:·:=:·:· ;.;.;.;..:-:-:·:·:·:· ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::;:;::::::::::.;:;,:::;:;:;:~:;~;:~:·:·:::.:·:~:·:-:·:·::::: .;:;.;:;.;:;:;:;:;::::.--:=::!=-: :;:;:;:;:: :;:;:;:;:;:;:;:·

6·282

*BASIC -help

This command causes BASIC to print some help Information describin11 the
options documented here. Then BASIC starts as usual.

*BASIC (-chai n) f1 l ename

If you 11ive a f 1lena.me after the •BASIC command. optionally preceded by the
keyword -chain. then the named file is loaded and exeaJted. When the prOflram
stops. BASIC enters Immediate mode. as usual.

*BASIC -qui t f1lename

This behaves In a similar way to the previous option. However. when the pr0f1ram
terminates. BASIC quits automatically. returninll to the environment from which
the interpreter was orlfllnally called. It also performs a CRUNCH '1111 on the
prQBram (for further details see the description of the CRUNCH command in the
BBC BASIC Rl(mi'IU MuWII). This is the default action used by BASIC pr011rams
that are executed as • commands. In addition. the function QUIT returns TRUE If
BASIC is called In this fashion.

*BASIC -load f1lename

This option causes the file to be loaded automatically. but not exeaJted. BASIC
remains in immediate mode. from where the proflram can be edited or executed as
required .

*BASIC @star t ,end

This acts In a similar way to the -load form of the command. However. the
pr011ram that Is ·loaded. automatically is not in a file. but already In memory.
Followi"ll the @ are two addresses. These 11ive, In hexadedmal, the address of the
start of the In-core prOflram, and the address of the byte after the last one. The
pr011ram Is copied to PACE and tokenised If necessary. This form of the command
is used by 1\wln when returnin11 to BASIC.

Note that the In-core address description is fixed format. It should be in the form:

@xxxxxxxx,xxxxxxxx

where x means a hexadedmal diflit. Leadin11 zeros must be supplied. The
command line terminator character must come immediately after the last diBit. No
spaces are allowed.

*BASIC -chain @start,end

This behaves like the previous option. but the pr0f1ram is executed as well . When
the pr0f1ram terminates. BASIC enters immediate mode.

BASIC and BAS/CTrans
~::::;;:::: ::::;:::;::;x.::.::::::::::: ::::::::::::::=:::::::::::::::::::::::::~::~~:::::::-:-.~~::::-.:::::;:;:;:::::::::::::::::::::::::::::::::::;=:::;.::;::::::::::::~~:::::~-:~m::.:::::~"*;z::::: ::::::::::: :::::::::::: ::::::::::::;:;:::::::::::::::;:;;:;:::;;::

*BASIC -quit @start,end

This option behaves as the previous one. but when the BASIC pr0f1ram terminates,
BASIC automatically quits. The function ourr will return TRUE durin11 the
execution of the proeram.

Example•

*BASI C
*BAS IC -quit shellProq
*BASIC @000ADFOC,OOOAE345
*BAS IC -chain fred

Related command•

None

Related SWI•

None

Related vector•

None

6·283

c»

llj
~

N

~

~

~~
td

)>

. I (/
) ~

, !1

;:~
 I I ~~~ II ,,.j i r l~1~ II i

(

(

(

(

(

(

(

(

(

\

(

(

(

(

(

(

::::::::::~:::::::::::::~«-::::::::.:::::::~~A:;:::::.;;;.;;;.;<:.:::::::::::::::::::::::::::::::::::::::~::::::::::::::::~:::::;~::.::::~w:::;:~=:.:::::::::::: :::::::::::::=:=~::::::t::::::::::::::::~o;:;:::?SI$(.;;::::m::m:.::x~~:;:;::::

77 Command scripts
~~:::::~~:=::~:~~::~~=x~~:::::::~::::~:~::::::::X*Y~=::.::x:::::::::::::::::::x:=:=:::::::::..wt~~~:"$$~..;::::::::::::::::.-=:::::=:::!:.o:::::::::~-::::i:'?~

Introduction
Command scripts a~ flies of commands that you would normally type in at the
Command U ne prompt. The~ a~ t'NO common ~asons for using such a file:

• To set up the computer to the state you want, either when you switch on or
when you start an application.

• To save typing in a set of commands you find yourself frequently using.

In the first case the file of commands Is commonly known as a boot file.

You may find using an Alias$... variable to be better In some cases. The main
advantage of these variables is that they are held in memory and so are quicker in
execution: hC1Never. they are only really suitable for short commands. Even If you
use these variables you are still likely to need to use a command file to set them up
initially.

There are two types of file available for writing command scripts: Command flies.
and Obey files. The difTe~~ betwoeen these t'NO file types a~:

• An Obey file is read di rectly, whereas a Command file Is ~ted as if It we~
typed at the keyboard (and hence usually appears on the screen).

• An Obey file sets the system variable Obey$Dir to the directory It is ln.

• An Obey file can be passed parameters

• An Obey file stops when an error is returned to the Obey module (or when an
error Is generated and the exit handler Is the Obey module-an untrapped
error. not in an application).

6-285

0Vetvi8w and Technics/ Dstails

:-:-::::::: ::::::::::::::::::::::::::::::=:=!~:>::~:::::-:::.:·:·:·:·:·:-:·:·: .;:::::::::::::::::::: :::::::::::::::::xos.-ic:::::;;;:::::::::::::::::::::::::::::::::::::::.x::::::::::::::~::::::::·~·:·:>~~·:.$:.=:·: :::::::::::;.::::: .;:::::::: ::::::::::::::.:::«::::::::~=~::::~.::.:.:::

Overview and Technical Details

Creating a command script
A command script can be created using any text or word processor. Normally you
then have to use the command "SetType to set the type of the file to Command or
Obey.

You should save it in one of the following:

• the directory from which the command script will be run (typically your root
directory. or an application directory)

• the library (typically $.Library. but may be S.ArthurLib on a network; see
·configure Lib in the chapter entitled Fii4Swi"*l -

Running the script

6-286

Provided that you have set the file to have a filetype of Command or Obey It can
then be run in the same ways as any other file:

• l'jpe its name at the • prompt.

• l'jpe its name preceded by a • at any other prompt (some applications may not
support this).

• Double·didt on Its icon from the desktop.

The same restrictions apply as with any other file. If the file is not in either your
current directory or the library. it will not be found if you Just give the filename: you
must give its full pathname. rrhls assumes yoU have not changed the value of the
system variable RunSPath.)

You can force any text file to be treated as an obey file by usifli the command
"Obey. This overrides the current file type. such as Text or Command. Obviously.
this will only have meaning if the text in the file is valid to treat as an obey file.

Similarly. any file can be forced to be a command file by using "Exec. This is
described in the chapter entitled Cu111atr l"pwt.

Obey$Dir

When an obey file is run. by using any of the above techniques. the system variable
ObeySDir is set to the parent directory part of the palhname used. For example. if
you were to type *Obey a .b. c. then a. b is the parent directOI)' of the path name.

Note that it is not set to the full parent name. only the part of the string passed to
the command as the path name. So if you change the current d irectory or filing
system during the obey file. then it would not be valid any more.

Command saiplS

:::. :·:·:·:·:·:·:·:-:::::::::: ::::::;.::::::~::::-:-::.-.:;::;;:;::::::::;;:::;;,:.~;:::::::::~;x.;.:.:.:·:·:·:=::::::::::::::::::::::::x:...sm::;::::::::~w:: :-:=:::::::::::::::::::::::':!:::: :::::::>"...v.;:::;:.w~-:=:·:;::: =:-:=:·:·:·:::~5:::::::::::::::::-.:::::-::=:::-:=x-:-»>:::::w.·:;:;

Ideally. you should invoke Obey files (and applications. which are started by an
Obey file named !Run) by uslfli their full pathname. and preceding that by either a
forward slash I or the word Run • for example:

I adfs: :MikeWinnie. $.Odds' nSods .MyConfiq

Run adfs::MikeW1nnie.$.0dds'nSods . MyConfiq

This ensures that ObeySDir is set to the full pathname of the Obey file.

Run$ Path
The variable RunSPath also innuences how this parent name Is decoded. If you
were to type:

• set RunSPath adfs ::Winnie.Flaqstaff.
•obeyfile parl par2

Then it would be interpreted as:

• Run adfs : :Winnie.Flaqstaff.obeyfile parl par2

If the filetype of obeyf ile was &FEB. a n obey file, then the command would be
interpreted as:

•Obey adfs::Winn ie.Flaqstaff.obeyfile parl par2

This can also apply to application directories, as follows:

• Set AliasS@RunType_ FEB Obey *0
*Set FileSType_FEB Obey
• set RunSPath adfs::Winnie.Flaqstaff.
•appdir parl par2

In this case. RISC OS would loot for the !Run file within the application directory
and run it. Note that in most cases. the first two lines above are already defined in
your system. If !Run is an obey file, then it would be interpreted as:

•Obey adfs : :Wi nnie.Fl aqs t aff .appd!r. !Run parl par2

Note that Obey files can also be nested to refer to other files to Obey: however.
Command files cannot be nested . This is one of the reasons why it is better to set
up your file as an Obey file rather than a Command file

6-287

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

('

(

(

(

(

(

(

(

c

Making 8 Safpt run BUIDmBtical/y

:;.;:;.;:;.;.;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:::~>$)»x«~·=·=·=·=· ;.;.;: :·:·:·:·:=:=:~:X:-:~~;:;:;.;.;.; ~::;:;:;:;:::::-~::;:;:;:; :;:;:;:;:::::::: :;:;:;:;.;:;:;:;:;:;:;:~~:·:·:·:·:·: .·.;.;.;:;.;.;.;:;:;:;:;:;:;:;:;: ;:;:;:;.;:::::::::::;;..;;:;:;:;~:;:;:;::

Making a script run automatically

You can make scripts run automatically:

• From the network when you first IOQ on.

The file must be called !Arm Boot. (This Is to dlstfnsuish a boot file for a
machine runnin11 Arthur or RJSC OS from an eltlstins !Boot file already on the
network for the use of B8C model A. model B or Master series computers.

• From a disc when you Hrst switch the computer on.

The file must be called !Boot.

• From an application directory when you first display the directory's Icon under
the desktop.

The file must be called !Boot. It is run if RISC OS does not already know of a
sprite havin11 the same name as the directory, and Is intended to load sprites
for applications when they Hrst need to be displayed. For further details~
the chapter entitled Tu Witt~ Mc•agn.

• From an application directory when the application Is run.

The file must be called !Run. For further details see the chapter entitled T~•
Wirtl.ow Mcttagll'.

In the first two cases you will need to use the •opt command as well.

For an example of the latter two cases, you can look In any of the application
directories In the Applications Suite. If you are uslns the desktop. you will need to
hold down the Shift key while you open the application directory. otherwise the
application will run .

Using parameters

6-288

1\n Obey file can have parameters passed to It, which can then be used by the
command script. A. Command file cannot have parameters passed to it. The first
parameter is referred to as 'W.O. the second as,-.,, and so on. You can refer to all the
parameters alter a particular one by puttins a • after the,-., so,-. •J would refer to
the all parameters from the second one onwards.

These parameters are substituted before the line Is passed to the Command Une
Interpreter. Thus If an Obey file called Display contained:

Filelnfo \0
Type \0

then the command •Display My File would do this:

F lleinfo MyFile
Type MyFlle

Command safpts

;:;~:;:;;:·:·:·:>:·:-:~X:~:o:--w.:~:::~~~~::;:;:;:;:::;:;::~:::::::::::::::;~~.;~~~:=~::::::::::x:x:::~~.:C~:~:'(.::(.%::X::::;:::::::::::;::~:::--:::.:::;:z.:;;:;:::;;.:;;~:;:::::::r.::::::;:

Sometimes you do not want parameter substitution. For example. suppose you
wish to lndude a •Set Alias$... command in your flle, such as:

Set Alias$Mode echo 1<22>1<\0> [)ni,. COIIUUd

The effect of this is to aeate a new command 'Mode'. lf you lndude the •Set Alias
command in an Obey file. when you run the Hie the 'WoO will be replaced by the first
parameter passed to the file. To ~t the substitution you need tochanse the,-.
to,-.,-.:

Set Alias$Mode echo 1<22>1<\\0> eo ~ Jt.Ui in fill

Now when the file Is run. the "r.'W' Is chansed to ''WoO'. No other substitution occurs
at this stase. and the desired command is issued. See the •Set command in the
chapter entitled Pnrfra,. EAMI11111111t.

6-289

·ecmmands

::::: :::::;.;:::::::::::::::::~;~;;.;:::::::;:.:: :::: .;::::::::::::::::::::::::::::.~::::::::::::::::::;::::.:·:·:·:·:·:;;;;. :·:=:.::::::::::::~::::;::;.;:;; ::::::::::::::::::::;:;.;-::::::;:;:;.:-:.;;:•:;;,::;:;.;;;.;;;.:-:;:.;;:::-:~:-:~~:::-xv::.~-:::::::::::~·=·:~:-;.:

*Commands

6·290

*Obey

Executes a file of • commands

Syntu
*Obey [(-v) (-c) [filename [parametecs)JJ

Parametera

Uae

-v
-c
filename

parameters

echo each line befote execution
cache filename. and e.>~ecute It from memory
a valid pathname, spedfyin& a file

strinas separated by spaces

•obey e.>~ecutes a file of • commands. Araument substitution is perfonned on each
line, usina parameters passed in the command.

With the -v option. each line is d isplayed bef()(e execution. With the -c option,
the file is cached and executed from memory. These options are not available in
RISC052.0.

Example

*Obey !commands myfilel 12

Related commanda

•e:xec

Related SWia

None

Related vectors

None

Command safpiS

:~;.;.;.;: ;:;:;:;:;:;:;:%!:::::::::;:;.;.;.;~w.::.;,:. ;.;:;.;.;.;.;:;:;:;:;.;:;.;:;:;:;:;:;:;:;:;:;:;:;:;~~-;:;:;.::;.;:;:;.;~:~~:::::::~:o;.:v:.c;:;.:;;:;:;:~;::-:.:·:.:·:-:·:::=::::;:;:;:;o;:;:;~~x-:-:-:-;.;.:-:: ;:;:;:;:;:;:;.;:-;-x.:::;:::s-::.:..'-:::..:V:-»»;.o,;X«::-:;:9

Application Notes
These example files illustrate sevefal of the important differences between
Command and Obey flies:

•aASIC
AUT'O
FOit I • 1 TO 10

PRINr "Hello"
NEXT I
£110

If this were a command flle. It would enter the BASIC Interpreter. and input the file
shown. The command saipt will end with the BASIC Interpreter waiting for another
line of input. You can then press Esc to get a prompt, type RUN to run the proeram.
and then type QUIT to leave BASIC. This saipt shows how a command file is
passed to the Input, and can change what Is aoceptinalts Input (in this case to the
BASIC interpreter).

In contrast, if this were an Obey file it would be passed to the Command Line
Interpreter. and an attempt would be made to run these commands:

•8AS1C
•AUTO

•tOk I • 1 ro 1 0
• PIUMT --aeUo•
•NEXt I
•&NO

Only the first command Is valid, and so as an Obey file all this does Is to leave you
In the BASIC interpreter. Type QUIT to leave BASIC: you will then act an error
messaae sayina File 'AUTO' not found. generated by the second line in the file.

The next ellample Illustrates how control characters are handled:

eeho <7,.
• cbo 1 <'7>

The control characters are represented in CS'n'ans format (see the chapter entitled
CD~~~~miom). These are not Interpreted until the echo command is run. and are only
Interpreted then because echo expects CSThlns format .

. The first line sends an ASCII 7 to the VDU drivers. sound Ina a beep: see the chapter
entitled VDU lrivm for more Information. In the second line. the I preceding the<
changes It from the start of a GSTrans sequence to lust representing the character
<.so the overall effect Is:

echo <7>

tteho 1 <7>

S.u ASCD 7 10 VDU lriwn - M,s

s..u <7> 10 "'""'"
The last examples are a Command file:

6·291

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

!'
(

(

(

(

(

(

(

(

(

(

c
(

Application Noi9S
~:;:.~?..:;:;:~;:~:::;:;: ;:;.;:;:: :;:;:: :;:;:;:;: ;:;;.o;;::::::::::::::::::::~::.:-:-:: ;:;:;:;:;.;-::;:;:;:; :;:;:;.;:;:;:;.;.;:;:;::·:·:·:·:·:·:·:·:·:·:=:· ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;~:;: ;:;:;:;:;:;;:.;~:=:;:;:::: :;:; :;:;:: ;:;:;:;:::::::::;:;:;:;:;:;:;:;::::

6-292

•s.t AliasSmore \4cho 1<14> 1m \type ... t abexpand \ 111 0 1m \8eho 1<15>

and an Obey file that has the same effect:

Set Ali as$more \ echo 1<14>1m \ t ype - t abtx-pa.nd *Oi m \echo l<l S>

The only differences between the two examples are that the Command file has a
preceding • added. to ensure that the command is passed to the Command Line
Interpreter: and that the Obey file has the %•0 changed to %%•0 to delay the
substitution of parameters.

The file creates a new command called 'more' - taking its name from the UNIX
·more' command- by setting the variable Alias$more:

• The\ characters that precede e cho and t ype ensure that the actual
commands are used. rather than an aliased version of them.

• The sequence 1m represents a carriage return in GSTrans format and is used to
separate the commands. Just as Return would If you were typing the
commands.

• The two echo commands turn paged mode on. then off. by sending the control
characters ASCII 14 and 15 respectively to the VDU drivers (see the chapter
entitled VDU llrivtrs for more information).

• The 1 before each< prevents the control characters from being interpreted
until the aliased command 'more' is run.

The command turns paged mode on. types a file to the screen expanding tabs as it
does so. and then turns paged mode off.

'

)>

-o

-o

CD

::
l a
.

0 CD

C
J)

Sl>

::
l a
.

~

- CD

C
J)

II

(

(

y_.:. :·:·:·::::::;.;.;::::: ::::::: ::::::::::::::·:~=:·:::.:-:•:·:·: :v:..$:.:.:. ;.;::·:·:·:·:-:: ::::::::::::::::::::::;;;.;.;.;.;.;.:-:·wA:::·:::::•:#:::~:::::~:m::-.r-:::::::::~.::®.::::~~·~:~:::::::::o~:·:·:·:·:::;;;:;:::·:~:::;.;:;::::.:::.::::::::::;:::::;:~:::~:•.
(

78 Appendix A: ARM assembler
,:::::::::::::::::::::::::;:x::.:x-~~~~::::=:~:::::::::::::::::::::::::z:::.:~~;.;x::~~:>..-:w:::::'?:.:::::::::::::::xx~

(

(
Introduction

Assembly languase Is a proeramming languaseln which each statement translates (
directly into a single machine code instruction or piece of data. An assembler Is a
piece of software which oonverts these statements Into their machine code
counterparts.

Writing in assembly lanauase has Its disadvantases. The code ts more verbose
than the equivalent hlah-levellanauaae statements. more difficult to understand
and therefore harder to debua. Hiah-leo;ellanauaaes were invented so that
proerams could be written to look more like Enallsh so we could talk to computers
in our language rather than directly in its own.

There are two reasons why. in certain circumstances. assembly languaae is used in
preference to ~illh·levellanauaaes. The flrst reason Is that the machine code
proeram produced by it executes more quidly than its hillh·level counterparts.
particularly those In languases such as BASIC whkh are interpreted. The second
reason is that assembly lanauaae offers greater flexibility. It allows certain
operating system routines to be called or replaced by new pieces of code. and It
allows greater access to the hardware devices and controllers.

Available assemblers

The BASIC assembler

The BBC BASIC inter~ter. supplied as a standard part of RISC OS. i nd udes an
ARM assembler. This supports the full instruction set of the ARM 2 processol'. At
present it neither supports extra Instructions that were flrst implemented by the
ARM 3 processor. nor does It support coprocessor instructions.

·· It le the BASIC •-mbler tll.t te clacrtbed below, serving as an introduction to
ARM assembler.

The Acorn Desktop Assembler

The lv::om Desktop Assembler is a separate product that provides much more
powerful facilities than the BASIC assembler. With It you can deo;elop assembler
proerams under the desktop, in an environment common to all Acorn desktop
languages. It contains two different assemblers:

6-295

(

(

(

(

c
(

(

c
(

(

(

\

(

(

(

(

(

(

(

(

(

(

(

(

Available ass~~mblers

::.:·:·:· :·:·: ::::::::::::::::::::::::;:::::::.:·:·:·;.:.x«:..->:::~-:.!1-:::::::::::::::::::::::::~?.i.::::·:·:=:·:·:•:·:·:·:•:•:::::•:•:·: ::::::::::::::::::::·:·:·:·:=:·:=:-::::::::::::::: =:•:=:•:·:·:·:·:-:.;-mw.o:.»x;:; :·:·:=:·:=:·:·:·:·:.:·:-xv:-:>:•:·:·:·:.:«-:t:=:·:·:·:·:·:-:·:-'.-:

6-296

• Msm Is an assembler that produces binary Image files which can be executed
Immediately.

• Obf.A.m Is an assembler that creates object files that cannot be executed
directly, but must first be linked to other object files. Object files linked with
those produced by ObfAsm may be produced from some programmifli
language other than assembler, for example C.

These assemblers are not described in this appendix. but use a broadly similar
syntax the BA!51C assembler described below. For full details, see the h4rM
1\sscr~~bl, Rclusc 2 manual. which is supplied with Acorn Desktop Assembler. or Is
separately available.

ApptKJclix A: ARM assembler
;.n;:::::::::::x:o:::::::~~:~)"..V-*»S:::::;:::::::::::::::::::.~:;:-;::.:~::::::::::::::::::::~~::::::::~~=:.:-:-:·:·:·:·:·: ·:·:·:·:=:=:=:-:::: ::::::::::::::;;. ::::::::::;; :::::::::.~:::~o::;.;.:::•:w..v.:r.::(.:::.:·::>:::::-::::~.y-...-.«::·:•:~:~·:·%c

The BASIC assembler

Using the BASIC assembler
The assembler Is part oC the BBC BASIC language. Squa~ brackets 1' and 'T a~
used to endose all the assembly lanauage instructions and directives and hence to
Inform BASIC that the enclosed Instructions are Intended for its assembler.
However, there are several operations which must be performed from BASIC Itself
to ensure that a subsequent assembly language routine Is assembled correctly.

Initialising external variables
The assembler allows the use oC BASIC variables as addresses or data in
Instructions and assembler dlrecti'YeS. For example variables can be set up In
BASIC giving the numbers oC any SWJ routines which will be called:

OS_Writel • HOO

SWI OS_Writel+ASC">"

Reserving memory space for the mechlne code
The machine code generated by the assembler i.s stored In memory. However. the
assembler does not automatically set memory aside for this purpose. You must
reserve suffident memory to hold your assembled machine code by using the DIM
statement. For example:

1000 DIM code\ 100

The start address oC the memory area reserved Is asslaned to the variable code'l..
The address of the last memory location Is code'l+IOO. Hence. this example
reserves a total oC 101 bytes oC memoty. In futu~ examples, the size oC memory
reserved is shown as ,..winll_,a.. to emphasise that you must substitute a value
appropriate to the size of your code.

6-297

Using 119 BASIC assflfl!bkK

:::::::::::::::::::::::::::: :::::::::::::.:::.~::::::::::::::::::;::::;;:::::::::::::::·:=:·:~=:·:·:=:=:=:·:.:·:·:=:=:-::::::::::::::w.~:::::::::::::::::::::::::~~:m::::;~::.::::~:::.;:u;:;:::::::::::::: :::::::::::::::::::::: ::::::::::::::::::::::=~~::::: ·:·:::=:·:·:=:::::::

6·298

Memory pointers
You need to tell the assembler the start address or the area or memory you have
reserved. The simplest way to do this is to asslan P'r. to point to the start or this
area. For oample:

DIM code' requirBd_ size

P' - code'

P'r. is then used as the pr011ram counter. The assembler places the first assembler
instruction at the address P'r. and automatically Increments the value or P'r. by four
so that it points to the next free location. When the assembler has finished
assemblina the code, P'r. points to the byte rollowinathe final location used.
Therefore. the number or bytes or machine code generated is given by:

P' - code'

This method assumes that you wish subsequently to execute the code at the same
location.

The position In memory at which you load a machine code proaram may be
sianificant. For example, It mi&ht refer directly to data embedded within itself. or
expect to find routines at fixed addresses. Such a prOj!ram only works if It Is loaded
in the correct place In memory. However, it is often inconvenient to assemble the
proaram directly Into the place where it will eventually be executed. Thi.s memory
may well be used ror somethina else whilst you are assembling the proaram. The
solution to this problem is to use a technique called 'offset assembly' where code
is assembled as if it Is to run at a certain address but is actually placed at anothet

To do this. set 0% to point to the place where the first machine code instruction is
to be placed and P'r. to point to the address where the code is to be run.

To notify the assembler that this method or generatina code is to be used, the
directive OPT. which Is described in more detail below, must have bit 2 set.

It is usually easy, and always preferable. to write ARM code that is position
Independent.

Appgndix A: ARM assgmb/91'

·:·::::::::~::;::::::::.:>-x:::~~ .. ;o .. : :·:·:·:·:·:·:·:«.·:·:=: =:=:·:·:=:·:·:·:·:=::::::::::.::::::::::::::::;.;::-:.:·:-:-:«::~;;;::::.:=:·:·:.x.:.:=::;;:.;.:::=: =:·:=:=:=:·::::::::::::::::::::::::.:;:«:*-:·:>:·:·:·: ·:·:·:·:·:·:·:·:·: =:=:·:=::.5:::::.:::::::::~·»>:-:·:·:·:·:·::::;.;:;.;:

Implementing passes
Normally. when the processor is executina a machine code proaram. it executes
one instruction and then moves on automatically to the one followinalt in
memory. You can, however. make the processor move to a different location and
start processing from there Instead by usina one or the 'branch' instructions. For
example:

.result_was_O

BEO result_was_O

The fullstop in front or the name resuiLwas_O identifies this strina as the name of
a 'label' . This is a directive to the assembler which tells It to assign the current
value or the proaram oounter (P'r.) to the variable who6e name follows the fullstop.

SEQ means 'branch U the result or the last calculation that updated the PSR was
z.ero'. The location to be branched to Is given by the value previously assianed to
the label result_was_O.

The label can. however. occur after the branch instruction. This causes a slight
problem for the assembler since when it reaches the branch Instruction. it hasn't
yet assigned a value to the variable. so it doesn't know which value to replace it
with.

You can get around this problem by assemblina the source code twice. This Is
known as two-pass assembly. During the first pass the assembler assians values to
all the label variables. In the second pass It Is able to replace references to these
variables by their values.

It is only when the text contains no forward references of labels that just a single
pass is suffident.

These two passes may be performed by a FOIL.NEXT loop as follows:

DIM code' required size
FOR pass' - 0 TO 3- STEP 3

P' - code'
[

OPT pass'

NEXT pass%

fwrllur asu101jiw 111114~' st.111011"1S •"~ am11t&r ~ir~ttim

Note that the pointer(s).ln this case just P'J.. must be set at the start of both
passes.

6·299

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c

Saving machln9 cod9 ID f//9
;:;~~;,;;.;.;:;.;: ;;;:;.;:;;;::::<~;:;:;:;:;:;:;:;:;:;:;:;.;~:::::;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;~:;~:;:::w::~~»:-:-:.:·:·:·:·:·:-::::: :;:;:;:::;:;:;:;:;.; :; :;;;:;:;.;~;.~:~·:·::;.;:;.;.;.:-,.'W;!;!;:;:;:;~

The OPT directive

The OPT Is an assembler directive whose bits have the following meaning:

Bit Me.lll111
0 Assembly listing enabled if set
I Assembler errors enabled
2 Assembled code placed in memory at 0% instead of P%
3 Check that assembled code does not exceed memory limit L 'r.

Bit Ocontrols whether a listing is produced. It is up to you whether or not you wish
to have one or not.

Bit I determines whether or not assembler errors are to be nagged or suppressed.
For the first pass. bit I should be zero since otherwise any forward-referenced
labels will cause the error 'Unknown or missing variable' and hence stop the
assembly During the second pass. this bit should be set to one. since by this stage
all the labels defined are known. so the only errors it catches are 'real ones'- such
as labels which have been used but not defined.

Bit 2 allows 'offset assembly'. lethe program may be assembled into one area of
memory. pointed to by 0%, whilst being set up to run at the address pointed to by

P%.

Bit l checks that the assembled code does not exceed the area of memory that has
been reserved (le none of it is held in an address greater than the value held In L'r.) .
When reserving space, L'r. might be set as follows:

DIM code\ required_size
L' • code\ + required_si ze

Saving machine code to file

6·300

Once an assembly language routine has been successfully assembled. you can
then save it to flle. To do so. you can use the ·save command. In our above
examples. code\ points to the start of the code: after assembly, P' points to the
byte after the code. So we could use this BASIC command:

OSCLI "Save " +outf!le$+" "+STR$-(code\)+" " +STRS-(P'l

after the above example to save the code in the file named by outfile$.

Appflndlx A: ARM BSS9mbl9f

z:: ::::::::::::: ::::::::::::::::::.:;:--~":$.;:;::::::::: ::::::::::::::::::::::.e-.;::::::~:=:=:=:=:~:::::m::::::::::w~~=-~%)';:::::::::::.wxw.:::::: :::::::: :::::w:::::::::::"««=:=:-w.<.r.:=:~'R-:::::::~=::::::-:t:'-:1:::*::::::::::::::::::::::~

Executing a machine code program

From memory
From memory. the resulting machine code can be executed in a variety of ways:

CALL address
USR address

These may be used from Inside BASIC to run the machine code at a given address.
See the BBC BASIC CwiU for more details on these statements.

From file
The commands below wlllload and run the named file, using either its filetype
(such as &fF8 for absolute code) and the associated Alias$8Loadl'ype_XXX and
AliasSeRun'J\tpe.)CXX system variables. or the load and execution addresses
defined when It was saved.

*name
*RUN name
*/name

We strongly advise you to use flle types In preference to load and execution
addresses.

Format of assembly language statements
The assembly language statements and assembler directives should be between
the square brackets.

There are very few rules about the fonnat of assembly language statements: those
which exist are given below:

• Each assembly language statement oomprises an assembler mnemonic of one
or more letters followed by a varying number of operands.

• Instructions should be separated from each other by rolons or newlines.

• Any text following a full stop·: Is treated as a label name.

• Any text following a semicolon ';'.or backs lash \ ',or 'REM' is treated as a
comment and so Ignored (until the next end of line or ':').

• Spaces between the mnemonic and the first operand, and between the
operands themselves are Ignored.

6·301

Rsgisters
::~:::::::;:.~~;::;.;.;.:.;:;.;.;.::.::::;:;:~;:;:;:'$;.~:: ;:: :;.;. ;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;; ;:;:;:;:;:;:;:;.;•:::.X«':·:.::::;:!: .;:;.;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;::.: .. ~;;.::;.;.;.;.;.;;;:;.~:-:::::::::::::;:;:;:;:;:.;:;:;:;:;:;:;:::::~:x.z:;;;;~:;.;.:.~.;:;.:.:«::.;:;

Registers

6-302

The BASIC assembler contains the following directives:

EOUB int Deline I byte of memory from LSBof int (DCB, =)
EOUW int Deline 2 bytes of memory from 1nt (DCW)

EQUD int Deline 4 bytes of memory from int (DCD)
EQUS str Deline 0- 255 bytes as required by string expression

str(DCS)

ALIGN Align P'l. (and 0%) to the next word (4 byte) boundary
ADR r eg, addr Assemble instruction to load addr into reg

• The first four operations initialise the reserved memory to the values specified
by the operand. In the case of EOUS the operand field must be a string
expression. In all other cases it must be a numeric expression. DCB (and=).
DCW. DCD and DCS are synonyms for these directives.

• The ALIGN directive ensures that the next P'l. (and 0%) that is used lies on a
word boundary. It is used after. for example, an EOUS to ensure that the next
instruction is word·aligned.

• ADR assembles a single Instruction- typically but not necessarily an ADD or
SUB- with reg as the destination register. It obtains addr in that register. It
does so in a PC-relative (ie position independent) manner where possible.

N. any particular time there are siJrteen 32-bit registers available for use. RO to Rl5.
However. R 15 is sped a I since it contains the program counter and the processor
status register.

Rl5 is split up with 24 bits used as the program counter (PC) to hold the word
address of the next instruction. 8 bits are used as the processor status register
(PSR) to hold information about the current values of flags and the current
mode/register bank. These bits are arranged as follows:

The top six bits hold the following information:

Bit n._ M-lll•t
31 N Negative flag
30 z Zero flag
29 c Carry flag
28 v Overflow flag
27 I Interrupt request disable
26 F Fast lntenupt request disable

Appendix A: ARM asumbl¥
:>:•:::=::::::::::::::::::::::~:.:-::.:-:-::.x-:::::::::::::-:~:;:.:·:;:.:·:·:·:·:·:·:·:·:·:·:·:=:-:: ::::::.:::: ::::::::::::::::::~~:::::;:~.::=~:=:=~~:!%::::.::;.;: :::::::::::::::~::::w:.so..:;l:tf:i:·:·:·:·:·:~-:-:-:;:;: :::~:=:::::::::::•:<:<S:·:·:-::::::;.;-::: .;.;;;;;<;;::·:·:·:·:·

The bottom two bits can hold one or four different values:

M MeaaJ ..
0 Usermode
I Fast inte.rrupt processing mode (AO mode)
2 lntenupt prcnsstna mode (IRQ mode)
3 Supervisor mode (SVC mode)

User mode is the normal program execution state. SVC mode is a special mode
which is entered when calls to the supervisor are made using software interrupts
(SWis) or when an exception OCIC!Jrs. From within SVC mode certain operations can
be performed which are not permitted in user mode. such as writing to hardware
devices and peripherals. SVC mode has its own private registers Rl3and Rl4. So
after changing to SVC mode. the registers RO- R 12 are the same. but new versions
of R 13 and R 14 are -liable. The values contained by these registers in user mode
are not overwritten or corrupted.

Similarly, IRQ and FlO modes have their own private registers (RIJ- R 14 and
R8 - R 14 respectively).

Although only 16 registers are available at any one time, the processor actually
contains a total or 27 reaisters.

For a more complete desatption of the registers, see the chapter entitled ARM
Hanl....,on page 1-7.

Condition codes
Ali the machine code instructions can be performed conditionally according to the
status of one or more of the following flags: N. z. C. V. The sixteen available
condition codes are:

AL Always
cc Canydear
cs Canyset
EO Equal
GE Greater than or equal

GT Greater than

HI Higher (unsigned)
LE Less than or equal

lS Lower or same (unsigned)
LT Less than

T'is is '" U/awll
Cdear
Cset
Zset
(N set and V set) or
(N clear and V clear)
((N set and V set) or
(N clear and V clear)) and Z clear
C set and Z clear
(N set and V dear) or
(N clear and V set) or Z set
C dear or Z set
(N set and V clear) or
(N clear and V set)

6-303

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

r
(

(

(

{
\

f

(

(

/
f
\

(

(

(

(

c
c

The Ins true/ion set
:;:::;:;:;:;.; .;::~·:•:·:•:•:..:·:':•.f.:·:;;:;:;.;:::;.;:;.;:;:;:;.;.;::.;;s;.x;~;: ;:;:;:;:;:;:;:;:;:;::::~.:::::::;:;:;:;:;:;:;:;w;:~::::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;::::.;;;;:-;;;;:.~:;:::;:;:;:;:;:;:;:;:;:;:;:;.;:;~;:;:;;.;::.;.;;:.;;:v: .;.;.;:;:;:;:;.;;:·:·»>:::<. .. <->::;:;:;:;:;:;:;.;:;:;:;:;~

Ml Negative Nset
NE Not equal Z clear
NV Never
PL Positive N clear
vc Overflow clear V clear
vs Overflow set Vset

Two of these may be given alternative names as follows:

LO Lower unsigned l.s equivalent to CC
HS Higher I same unsigned is equivalent to CS

You should not use the NV (never) condition code- see page 6-320.

The Instruction set

6-304

The available instructions are introduced below In categories Indicating the type of
action they perform and their syntax. The description or the syntax obeys the
follow! ng standards:

c.

(xly)

lexp

Rn

shift

indicates that the contents of the brackets are optional
(unlike all other chapters, where we have been using I I
Instead)

indicates that either x or y but not both may be given

Indicates that a BASIC expression Is to be used which
evaluates to an immediate constant. An error Is given If the
value cannot be stored in the instruction.

Indicates that an expression evaluating to a register number
(In the range 0 • 15) should be used, or just a register name,
eg RO. PC may be used for Rl5.

Indicates that one of the following shift options should be
used:

ASL (Rnltexp) Arithmetic shirt left by contents of
Rn or expression

LSL (Rnltexp) Logical shift left

ASR (Rnltexp) Arithmetic shift right

LSR (Rnltexp) Logical shift right

ROR (Rnltexp) Rotate right

RRX Rotate right one bit with extend

In fact ASL and LSL are the same (be<:ause the ARM does not
handle overflow for signed arithmetic shifts). and synonyms.
I.SL is the preferred form, as it indicates the functionality.

ApptJndix A: ARM assembler
::::: :;:;:;:;:;:::::::::::::::: :;:;:;:;:;:;.;:;:: :;:;;:::::::::::::::::::::::~:;;::;:::;:;:;:;:;:;:;~X;:;:;:;:;:;:;:;:;:;::~::~::X:~.(.;:;:;:~;~;:o;::;:;:;:s::;;::::::::;:;::~:::::~::;~;:;:;:;:;~~:;;m~;;;:::::::,;:::;:;::.:::::;.;:;:;:;:::::;:; :;:;:;:;:;:;:;:;:;

Moves

Sptu:

opcodecconduS• Rd. (texpiRm)c,shlfb

There are two move Instructions. 'Op2' means '(texpiRm)c.shift•':

111.tnctle~~~ c.lalatloa pelformecl
MOV Move Rd = Op2
MOVN Move NOT Rd = NCYT Op2

Each of these Instructions produces a result which It places in a destination
register (Rd). The Instructions do not affect bytes In melliOIY directly.

Allain. all or these Instructions Clln be petformed conditionally. In addition, if the
'S' is JXeSent. they 01n cause the condition axles to be set or cleared. These
instructions set N andZ from the ALU, C from the shifter (but only If it is used). and
do not affect V.

Examplee:

MOll RO, flO : Load J.O with tlw value 10.

Spedal actions are taken If the source relllster Is Rl5: the action is as follows:

• lfRm=RI 5 all n bits of Rl5 are used In the operation lethe PC+ PSR.

If the destination register Is R 15. then the action depends on whether the optional
'S' has been used:

• If S Is not present only the 24 bits of the PC are set.

• lfS Is present the whole result Is written to Rl5, the flags are updated from the
result. (However the mode, I and F bits can only be changed when in non-user
modes.)

Arithmetic •nd logical Instructions

Sptu:

opcodecconduS• Rd. Rn, (kxpiRm)c,shlft•

The instructions available are afven below: again, 'Op2' means '(teJ(piRm)c,shift• ':

la~tnctle~~~ Ca1C111atloa pelformecl
AOC Add with 01rry Rd = Rn + Op2 + C
ADD Add without carry Rd = Rn + Op2
SBC Subtract with cany Rd = Rn - Op2- (I -C)

6-305

Thtl instruction set
w~:o::;;:;m:·:~·:~:•:=:-.:::<»~o:.~:-«:~x:~:-»:-»:-:-:·:·:=:=:=:=:=:::::::::::::::~~;~:::;:;;;~-::r.:>:o.o;:;:;,o;:;:;:;:;::::~:::;:;:.:-:-;-:-:=:-:::::::::::::: :::::::::::~;):-;.;.:-~:--xw..:-.-«-:::::::=:=:=:·:=~::.:::.~;:-.:

6-306

SUB
RSC
RSB
AND
BIC
ORR
EOR

Subtract without carry
Reverse subtract with carry
Reverse subtract without carry

Bitwise AND
Bitwise AND NOT
Bitwise OR
Bitwise EOR

Rd • Rn-Op2
Rd •Op2 -Rn- (I-C)
Rd•Op2-Rn

Rd • Rn AND Op2
Rd • Rn AND NOT (Op2)
Rd = RnOROp2
Rd z Rn EOR Op2

Each or these Instructions Pfoduces a result which it places In a destination
reeister (Rd). The instructions do not affect bytes in memory directly.

As was seen above. all of these instructions can be performed conditionally. In
addition. If the ·s· is present. they can cause the condition codes to be set or
deared. The condition codes N. Z. C and V are set by the arithmetic loQic unit
(ALU) in the arithmetic operations. The IOQical (bitwise) operations set Nand Z
from the ALU. C from the shifter (but only If it is used). and do not affect V.

Exam pi-

ADDEO IU. a1, t 7 If tho tero tlt9 t a aet thet1 add 7
to tbe c:ontenta of reqiater ~1.

sacs A2 . JU, 1t4 : S\lbtracc with carey tbe content• ot fe9l.Cer R4 from
the contentt ot roqlster JU a nc:t phce the reault tn

: nqiater Jl2. The fla9a will be updated.

AHD Ill, Rl. R2. LSrt t 2 : Pertom a loqical AND on the content• of r.qi a t er lU
a nd the content• of reqltt·•t R2 I 4 , a nd phce the
~•ult tn r.-qiatec ll.l.

Special actions are taken If any of the source registers are R 15: the action Is as
follows:

• lfRm .. RI5 all32 bits ofRI5 are used In the operation lethe PC+ PSR.

• If Rn•RI5only the 24 bits of the PC are used in the operation.

If the destination reaister Is Rl5, then the action depends on whether the optional
·s· has been used:

• lfS is not present only the 24 bits of the PC are set .

• US Is present the whole result is written to Rl5. the llaQS are updated from the
result. (However the mode, I and F bits can only be chanQed when In non-user
modes.)

Apptlndix A: ARM 8SS6mbkK
w;;:·:· :·:·:·:·:-:::::::::::::::::::·:~~o;;;;;:;:.;:;~}».~:.:<.:::x::'-:::::=:=:~O:·.:.:«'xv~:•:::.:-w.:;::::::..x.::-:vw.-::::;:::::::x::.:-:::::::::::::~:::::~::.; ·:·:=:·:·:·:·:-:::::::::::::.:-:·: ·:·:-:·:·:·:·>:·:·:·:·:·:-::::::::.

Comparison•

S,.W:

opcodecconduSIP» Rn. (kxp(Rm)c,shifb

There are four comparison Instructions: aaaln. 'Op2' means '(Nexp(Rm)c.shilt • ' :

lutnct1011

CMN
CMP
TEO
TST

Compare negated
Compare
Test equal
Test

c:.lc•latloa perfonned
Rn+Op2
Rn-Op2
RnEOROp2
RnANDOp2

These are simi lar to the arithmetic and loaical instructions listed above except that
they do not take a destination reaister since they do not return a result. Also. they
automatically set the condition llaQS (since they would perform no useful purpose
if they didn't). Hence. the'S' of the arithmetic instructions Is implied. You can put
an ·s· after the instruction to make this dearer.

These roulines haYe an additional fundlon which is to set the whole of the PSR to
a aiven value. This is done by usina a 'P' after the opcode. for example TEOP.

Normally the flaQS are set depending on the value of the comparison. The 1 and F
bits and the mode and reaister bits are unaltered. The 'P' option allows the
correspond ina eight bits of the result of the calculation perfonned by the
comparison to overwrite those In the PSR (or just the flag bits in user mode).

Example

TEOP PC, fiiOOOOOOO : let II tlaq, clear a ll othera. Alto enab l e
: IRO., tiQa, Mlect Uter mode lf prtv11e9ed

The abcwe example (as well as settine theN flac and clearing the others) will alter
the IRO. flO and mode bits or the PSR- but only if you are In a privileQed mode.

The 'P' option is also useful in user mode. for example to collect errors:

ST'MFO ~~. (cO, rl, rl4) ...
t L routtnel
STRVS <0, f op, t OJ : error block ptr ln return cO

: ln a t act h·•• 1 f error
t«N rl, po 1 aav. .,._r Uaqa in rl
&L rout1n.e2 1 c.t.lled ev.n U e rror from coutlnel
STRVS .o. lop. tO) : to do eom. Udy up action etc .
rr.ovcr r1, t o 1 it rout 1M2 dt<ln' t 91ve • rror,
LOMFO ap!, (rO, rl, pc) ; renore error tndtc•tton trol'l rl

6-307

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c

The/nstrtJCIIon set

::::::::::::::::::::::::::::::=:·:=:«=~:::::::::.;.;.;:::;.;.:~~===~=~~X*<':".;v~wn:;:;r<-:=:•::::;;:;.n~~~::;:;::::::::::::·>:·:·:·:-:.:-;.:-:·:t:::::::;:::::::.;:::;.::;.:::::.:·:·:·:::::.:·:·:~:-: .. "«;:;:::::::::::::::-:~J;::;.'*;:;:;:;:;;;::-:-m.Y..:-:

Multiply Instructions

S)'atu:

MULcconduS• Rd.Rm,Rs
MLAcconduS• Rd.Rm.Rs.Rn

There are two multiply Instructions:

e .. tn ctfoa Cak•l•tloa performed
MUL Multiply Rd = Rm x Rs
MLA Multiply-accumulate Rd = Rm x Rs + Rn

The multiply Instructions perform integer multiplication. giving the least
significant 32 bits of the product of two 32-bit operands.

The destination registe.r must not be R 15 or the same as Rm. Any other register
combinations can be used.

If the ·s· Is given In the Instruction. the Nand Z nags are set on the result. and the
C and V nags are undefined.

IExamplee:

MUL IU,R2 , 1tl

MLAEOS IU, lt2 , R3, lt4

Branching Instructions

Syntax:

Second• expression
BLccond• e~pression

There are essentially only two branch instructions but in each case the branch can
take place as a result of any of the 15 usable condition codes:

l11atnctfoa
B
BL

Branch
Branch and link

The branch instruction causes the e~ecution of the code to lump to the instruction
giOJen at the address to be branched to. This address Is held relaliOJe to the current
location.

Example:

1 £0 l abell : bc• nc.h if zero thq ••t
BMI l&.lnua : b r anch t t n9<)at tvo thq ••t

Appllndfx A: ARII8SS11mblllr
;:;;;:;:;:;:;~:;:; :;:;:;:;:;:;::::::~=:~:x::;:;:;:;:;:;:;:;:;:;~~-::;:;:;~;:::,..-.::~;:~:::::::;:;:;:;:::xw::::;:;:;:;;.;:,.-w::::::::w::-.:~:;:~m:-.:::~~::;:~..::::::::~.::::::::-:~<'-:::::::::::~:::::;::=::::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;;x::::::

The branch and link instruction perfonns the additional action of copyins the
address of the Instruction following the branch, and the current nags. into register
Rl4. Rl4 is known as the 'link reglstet'. This means that the routine branched to
can be returned from by transferring the contents of Rl41nto the prosram counter
and can restore the nags from this register on return. Hence Instead of being a
simple branch the Instruction acts like a subroutine c:all.

Eumple:

BL£0 ~ol
• • •• • •• • • : add~•• of thU iftl ttuct:latll
•• • •• o •• , ; .CWed tO Rl4 &UtOIUti«:-l lly

.equa l • . ••• ••• • : a tart of • •rout1ne

t«JVS Jtl S.J.14 1 end ohubtouttne

Single register load/save Instructions

S)'atu:

opcodeccondulbc-r. Rd. address

The single register load/save Instructions are as follows:

lu tnctfoa
LOR
STR

Load register
Store register

These Instructions allow a single register to load a value from memory or save a
value to memory at a &I "~en address.

The instruction has two possible forms:

• the address Is sped fled by reglstet(s). whose names are endosed in square
brackets

• the address Is sped fled by an e~presslon

AddreN If-• br rec~-tera
The simplest fonn of address Is a register number; In which case the contents of the
register are used as the address to load from or sa01e to. There are two other
alternatives:

• pre-Indexed address Ins (with optional write back)

• post-Indexed addressing (always with write badt)

6·308 6·309

Thelnstruclion set
m:.::<:::-:·:·:-":·:·:·:·:;:::::::::::::::::~"'f.:;::::;;:::·:-:-:;:-:-:::::::: :::::::::::::::::::::::::::::::::::::::=:·:·:::•;;;.-'...:.:·::::::::::: .;:::::::::::::::::::: ::::::::::::::::::::::~~:~;:~:::::;. :·:·:·:=:-:::::::::::::.:::::::::::::::::::::::: :=:=:=:=:=:=::::::-=:~::~~:=:=:>::::::·

6-310

With pre-indexed addressing the contents of another register. or an immediate
value. are added to the contents of the first register. This sum is then used as the
address. It is known as pre-indexed addressing because the address being used is
calculated before the load/save takes place. The first register (Rn below) can be
optionally updated to contain the address which was actually used by adding a ·r
after the dosing square bracket.

Addreu -rntax Addreu
[Rn] Contents of Rn
[Rn.#m]c!• Contents of Rn + m
[Rn.c-•Rm]c !• Contents of Rn ±contents of Rm
[Rn,c-•Rm,shift ls)c!• Contents of Rn ±(contents ofRm shifted by s places)

With post-Indexed addressing the address being used is given solely by the
contents of the register Rn. The rest of the instruction determines what value is
written back into Rn. This write back is performed automatically: no '!' is needed.
Post-indexing gets Its name from the fact that the address that is written back to
Rn is calculated after the load/save takes place.

Addreu .yntax Valae wrlttea Hc:k
[Rn).#m Contents of Rn + m
[Rn).•-•Rm Contents of Rn ±contents of Rm
[Rn).•-•Rm.shift I s Contents of Rn ±(contents or Rm shifted by s places)

Addreu cne• exp~•
If the address is given as a simple expression. the assembler will generate a
pre-indexed instruction usins R 15 (the PC) as the base register. If the address Is
out of the range of the Instruction (4095 bytes). an error is given.

Optlou

If the 'B' option is specified after the condition. only a single byte is transferred.
Instead of a whole word. The top 3 bytes of the destination register are deared by
an LDRB instruction.

If the T option Is sped fled after the condition. then the TRANs pin on the ARM
processor will be active during the transfet f04'dng an address translation. This
allows you to access User mode memory from a privileged mode. This option is
Invalid for pre-indexed addressing.

Utila1 tlte pfOC'IIll' conter

If you use the program counter (PC. or Rl5) as one of the registers. a number of
special cases apply:

• the PSR is never modified. even when Rd or Rn is the PC

App«~dix A: ARM IISS9mbler
:::::::::::'»(.;;:-:: ::::::::::::::::::::::::::: =:·:=:=:·:·:·:$:.;;::;.:::.:::.:: :·:-:·:. ::::::::::::::::::;;::~:~::::::::::::::::::w:::::;;o:;::::~:;:.:=:-:::;:::::::::::=:~:;:::;;~o:;:·:-:.-:::.: :::::::::::-& h:x;;.:~·:=:·:·:·:·:=:·:·:·:·»:·:=:«>:=:·:·:·

• the PSR nags are not used when the PC is used as Rn. and (because of
pipelining) It will be advanced by eight bytes from the current instruction

• the PSR flags are used when the PC is used as Rm. the offset register.

Multiple loadl .. velnstructlons

SyataJc

opcodeccondHype Rnc!•. (RIIst)cA•

These instructions allow the loading or saving of several registers :

lutnctloa
LDM
STM

Load multiple registers
Store multiple registers

The contents of register Rn aive the base address fromllo which the value(s) are
loaded or saved. This base address is effectively updated during the transfer. but is
only written back to if you follow it with a 'I'.

Rllst provides a list of realsters which are to be loaded or saved . The order the
registers are given. in the list. is irrelevant since the lowest numbered register is
loaded/saved first, and the highest numbered one last. For example. a list
comprising (R5.R1.RI.R8} is loaded/saved in the order Rl. Rl. R5. R8. with Rl
OCCUJ7llins the lowest address in memocy. You can specify consecutive registers as
a range: so (IID-Rl) and (RO.RI.R2.R3) are equivalent.

The type is a two-character mnemonic specifying either how Rn is updated. 04' what
sort of a stack results:

Mnemoalc
DA
DB
lA
IB

EA
ED
FA
FD

M•al•l
Decrement Rn After each storetload
Decrement Rn Before each storelload
Increment Rn After each st04'elload
Increment Rn Before each storenoad

Empey Ascending stack is used
Empty Desoending stadt Is used
Full Ascending stack is used
Full Descending stack is used

• an empty stack Is one In which the stad pointer points to the first free slot in it

• a full stack Is one In which the stack pointer points to the last data item written
to it

• an ascending stack Is one which grows from low memory addresses to high
ones

6·311

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

I
•

(

(

(

(

(

(

(

(

(

Th9 lnstrvcllon s9t

::;.;::::::::::::::::::::::;;:;:;:;.;:;.;:;:::~~::.:;;;-;:;::::::;:;:;:;:;:::::::;~:;;:::0%%~.::::-::~~:;:;:;:::;:::;:;:;l;:;:;.;.:-:.::-x-:.:::::::::.;. :~=:·:·:·:-:-:.:-::;.;: ::::::::::::;.;:;:;:;:: •... ·.·.·.·.·:·:·:·: ::::::::::::::::::~•::x:.::;:;:;:;~~«·::::.::::;;;:;:;:~:·»»>:

6-312

• a descending stack is one which grows from high memory addresses to low
ones

In fact these are fust different ways of looking at the situation- the way Rn Is
updated governs what sort of stack results. and vice versa. So. for each type of
Instruction in the first group there Is an equivalent In the second:

LDMEA Is the same as LDMDB
LDMED is the same as LDMIB
LDMFA is the same as LDMDA
LDMFD is the same as LDMIA

STMEA is the same as STMIA
STMED is the same as STMDA
STMFA is the same as STMIB
STMFD is the same as STMDB

All Acorn software uses an FD (full. descending) stack. If you are writing code for
SVC mode you should try to use a full descending stack as well- although you can
use any type you like.

A 'A' at the end of the register list has two possible meanings:

• For a load with R 15 in the list. the ·N forces update of the PSR.

• Otherwise the w forces the load/store to access the User mode registers. The
base Is still taken from the current bank though. and if you try to write back the
base It will be put In the User bank- probably not what you would have
intended.

Example.:

LOMIA RS. IRO,IU,R21

LO~a U, (RO-R2)

; where P..S eontalna the va lue

u•••
This wlll lo.d RO !tOM &1414

1tl troftl &1411
R2 frOID ' 141C

where ItS contain• the value
&1414
Thi1 vill lo&d ItO from 1141'1

AI fro11 &H1C
lt.2 fro" 6 1 4 10

lfthere were a T after R5. so that It were written back to. then this would leave R5
containing &1490 and &1478 after the first and second examples respectively.

The examples below show directly equivalent ways of implementing a full
descending stack. The first uses mnemonics describing how the stack pointer is
handled:

-'<pp9fldiX A: ARM 8SS9I7Ibl9r

:~::~;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::::;::::::::~::~:;:;:::::::::::::~=:::;$:;;:;:::::;::::::':!:::::::::::::::::::-::~:;:;:::~~::;::~~-:::::::~~=~::;:;:;:;::-~<?>;;:;:;;:::::::~~::::::::: :;:;.::::: ::::::::::::::::;:::::;::::::::::::~=x.:::

STMOB Stackpolnte rl, (AO· U I 1 pu•h onto •tack.

LCMIA Stoakpolnterl, (AO· UI : pull t roll atack

and the second uses mnemonics descrlblna how the stack behaves:

Sl'MFO St ackpoint•rt, tao. at, 1t2, 1tl} : puah onto e taek

t.OMro ltackpolnter l, (ItO, 1tl, Jt2, Ill) : pull frot1 e t ac:k

u••• tile b.M Nil._
• You can always load the base realster without any side effects on the rest of

the LDM operation. because the ARM uses an Internal copy of the base. and so
will not be aware that It has been loaded with a new value.

•

HoweYer. you should see ~ix 8: W~t•i¥ o• "' ~mol ARM asU~~t616on
page6-115 for notes on uslna writebad when dol!liso.

You can stOle the base reaister as well . If you are not using write back then no
problem will occur. If you are. then this Is the Older in which the ARM does the
STM:

I write the lowest numbered realster to memory

2 do the write back

J write the other realsters to memory In ascending order.

So. ifthe base register Is the lowest-numbered one in the list. its original value
is stored:

STMIA IU I, (k2• Jl6) : IU atoN<t 11 v a l\le before write b•ek

Otherwise Its written bad value Is stored:
STMIA 1121, (IU· IUI l A2 1to~d 11 value after vrlte back

u•"• the propa• coaater

If you use the proaram counter (PC. or Rl5) In the list of registers:

• the PSR Is saved with the PC: and (because of pipelining) it will be advanced by
twelve bytes from the current position

• the PSR is only loaded If you follow the register list with a ·A· : and even then.
only the bits you can modify In the ARM's current mode are loaded.

It is generally not sensible to use the PC as the base register. If you do:

• the PSR bits are used as part of the address. which will aive an address
exception unless all the flags are clear and all interrupts are enabled.

6·313

The instfiiCiion set

:·:·:·:-:·:;::-;r..:;;;:-:>::::::::;.;::::::::::::::::::::::::::::::=:=:·:=:=:=:=:·:=:=:~:(.;;;:::~:;::::::::;;:::::::::::~·=·: :~:;~;;·:.;.;;.:;::;;: .;:::::::::::::::::::::::::::: :::::::::::::::::::::::::::m::::::::;.;;:::·:·:·:·:;:.:-:«::;:::::::::::::::::::::::::::>::::::::::~:=:=:-»:--:::--;:::::::::::<:=·=····

6·314

SWllnstructlon

S,atu:

SWJcooncb expression

SWJcooncb "SWJname· (BBC BASIC assembler)

The SWJ mnemonic stands for SoftWare Interrupt. On encountering a SWI. the
ARM processor changes intoSVC mode and stores the address ofthe next location
In Rl4_svc-sothe UsermodevalueofRI4 is not corrupted. The ARM then goes to
theSWI routine handler via the hardware SWI vector containing its address.

The first thing that this routine does is to discover which SWI was requested. It
finds this out by using the location addressed by (RI4_svc- 4) to read the current
SWI instruction. The opcode for a SWI is 32 bits long: 4 bits identify the opcode as
being for a SWI. 4 bits hold all the condition codes and the bottom 24 bits identify
which SWiit Is. Hence 224 different SWI routines can be distinguished.

When it has found which particular SWI it is. the routine executes the appropriate
c:ode to deal with It and then returns by placing the contents of Rl4_svc back into
the PC. which restores the mode the caller was in.

Thi.s means that R 14_svc will be corrupted if you execute a SWI in SVC mode­
which can have disastrous consequences unless you take precautions.

The most common way to call this instruction Is by using the SWJ name. and
letting the assembler translate this to a SWI number. The BBC BASIC assembler
can do this translation directly:

StUN£ .. OS_tlrlteC'"

See the chapter entitled Art intriHfuclion loSWis on page 1·21 for a full description of
how RJSC OS handles SWls, and the index of SWis for a full list of the operating
system SWis.

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

r

(

(

(

c
(

c

:·:·:·:·:·:·:·:-:::.:=:=::::: ::::::::::::::::::::::=:-::::::::::: =:=:=:=:~:=:=:::;x·:;:.:·:·:•:=:-·~:t:=:=:=:::-:·~;::::::.:::.::::::::: ::::::::::::::::::::::::~:::::::::::::::::w:=~:=:wa::::m.::::: :-:-:::::-:: ::::::::::::::::: =:=:=:=:=:=:.::: :::::::::::::...:tt:t:.~

79

Introduction

Appendix 8: Warnings on the use
of ARM assembler

The ARM processor family uses Reduced Instruction Set (RISC) techniques to
maximise performance; as such, the Instruction set allows some Instructions and
code sequences to be constructed that will give rise to unexpected (and potentially
erroneous) results. These cases must be avoided by all machine code writers and
11enerators If correct program operation across the whole ran(le of ARM processors
Is to be obtained.

In order to be upwards oompatible with future versions of the ARM processor
family ~tner use any of the undefined Instruction formats:

• those shown In the hllnt RlSC MMii111 feody O.r. Mu ... l as 'Undefined' which
the processor traps;

• those which are not shown In the manual and which don't trap (for example. a
Multiply instruction where bit5 or 6 of the Instruction Is set).

In addition the 'NV' (~er executed) Instruction dass should not be used (It Is
reoommended that the instruction 'MOV RO.RO' be used as a (leneral ptJtpo&e

NOP).

This chapter lists the Instructions and code sequences to be avolded.lt Is ltroaP,
recommended that you take the time to familiarise yourself with these cases
because some will only fall under particular draJmstances which may not arise
durin8 testing.

For more details on the ARM chip see the Aulr" RISC M~e~111 fa,.ilv Data M101wcl
VLSI Technology Inc. (1990) Prentice-Hall . Ef'tilewood Cliffs, Nl. USA: ISBN
G-13-781618-9.

6-315

Rll6 tricfions t> 1116 ARM lnslluction set

·::::::::::::=::::::::::;.;.;;:·:·:·:-:;r.r..;.:::.:·:·::::::;:;:;:;:::::;;;:;:::;:;~:::;:~::::::::;.;:;:;:;~:;.::;-:;;~.;:;.;.;:::::: :::::::::::: :::::::::::::::::::::::::w:;v.-:::-:·:·:;;.;.;;:-:-:·:·x-::::;:;::::::::.;.;:;.;:;:;;;~:;:;:;;;::~:::;x~x=:::.;:::.::::::: ::::::::::::::::::~

Restrictions to the ARM Instruction Ht
There are three main reasons for restricting the use of certain parts of the
instruction set:

• O..pro .. lutnctloae
Such Instructions can cause a program to fail unexpectedly, for example:

LDM RlS, Rlist

uses PC+PSR as the base and so can cause an unexpected address exception.

• UeeleM laetnctlou
It Is better to reserve the instruction space occupied by existing 'useless'
inst ructions for instruction expansion In future processors. For example:

MUL RlS,Rrn,Rs
only serves to scramble the PSR.

This category also lndudes ineffective Instructions. such as a PC relative
1.DCISTC with writeback; the PC cannot be written back in these Instructions,
so the writeback bit Is Ineffective (and an attempt to use it should be llaiged
as an error).

Note: LDCISTC are Instructions to load/store a coprocessor register
from/to memory; since they are not supported by the BASIC assembler.
they were not described in ApPf"~ix A: ARM asst lllhltr.

• lutnctloas wltil udalrable -~ec:U
It Is hard to guarantee the side-effects o(instructions across different
ptoc:essors. If. for example. the following Is used:

LOR Rd, (RlS,texpresslon] 1

the PC writeback will produce different results on d ifferent types of processor.

Instructions and code sequences to avoid

6·316

The instructions and code sequences are split Into a number ol categories. Each
category starts with an indication of which of the two main ARM variants (ARM2,
ARM3) It applies to, and Is followed by a recommendation or warning. The text
then goes on to explain the conditions in more detail and to supply examples
where appropriate.

Unless a program Is being targeted epedflc .. IJ for a single version of the ARM
processor family, all of these rerommendatlons should be adhered to.

AfJP(Ifldix 8 : Wamings on the use of ARM ass9mbl9r
:·:·: .;.;.;.;.;:;:;:;:;:;:;:;:;:;~~:1-!0~:.:·:·:'-:-$:.~:·:·:·:.:·::: .;:;:;:;:;:;:;.;.;.;:;:;:;.;:;.;;;:.;.;:;::~·:·: ·:·:·:·:-::;:;:;:;:;:; :;:;:;:;:;:;:;:;:$~(.;.;.:.;;:.;..,;:;:;:;.;:;:;:;:;:;:;:;:;:;:;,;:;:;:;;;:;::~··«-->:.-:·:=: :;.;.;.::.:•::;: ;:;:;:;:;;$:•::;:;.:Y".r.·:·:·:·:·:.;.;.;:;;;;;;:~}5:

TSTP/TEQP/CMPP/CMNP: Changing mode

!lppliuhiliht: ARM2

When the proce;sor's mode Is <flanged by altering the mode bits In the PSR
using a data processing operation. care must be taken not to access a banked
register (R8-RI4) in the following lnstruction./V:.cesses to the unbanked
registers (RO·R7. R15) are safe.

The following lnstruct.ions are affected. but note that mode changes can only be
made when the processor is in a non-user mode:

TSTP Rn,Op2
TEOP Rn, Op2
MPP Rn, Op2
CMNP Rn, Op2

These are the only operations that <flange all the bits In the PSR (including the
mode bits) w ithout affecting the PC (thereby forcing a pipel ine refill during which
time the register bank select foeic settles).

The following examples assume the processor starts In Supervisor mode:

a) TEOP PC, t O
MOV RO,RO
ADD RO,Rl , R13_usr

b) TEOP PC, t O
ADD RO,Rl,R2

c) TEOP PC, t O
ADD RO,Rl , R13_usr

Safe: NOP added between mode change and
access to a banked register (RI3_usr)

We: No aa:ess made to a banked register

F.O.: Data aot read from Register R 13_usr!

The safest default Is always to add a NOP (e.g. MOV RO.RO) after a mode changing
Instruction; this will guarantee oorrect operation regardless ol the code sequence
following II.

LDMISTM: Forcing tr•n•f• of the u•• blink (P•rt 1)

1\ppliubifitv: ARM2. ARM3

Do not use write back when forcing user bank transfer In LDMISTM.

For STM instructions the S bit is redundant as the PSR is always stored with the PC
whenever Rl5is In the transfer list. In user mode ptograms theS bit is ignored. but
in other modes It has a second Interpretation: S= I is used to force transfers to take
values from the user fe11ister bank Instead of from the current register bank. This Is
~seful for saving the user state on process switches.

6·317

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

I

\

(

(

(

c
(

(

(

lnsln!cflons and cod9 6fKIIJ9nces ro ao;oid
;;o;;.";;::-;::::;:;;o))»):;:.;.:·:-:-x·»x:.""<::::::::;:;:;:;::::::<:::;:;:;~:::::;:;:;::~~~:::::::::::::::::;:;:;~~;. .. ~;:;:;:::::;:;.;::.;:;:;:;:;:;:;:;.;.;:;:;:::;:;:;:::;:;:;:;:;:;:;:;:;::.:;.;.:-;;;.;.;;;:::·: ·····:···:·::::::::::::::=:::;:::::::~::::;:;:;:;:;:;~~::::::;:~::::::::;:;:;::::r<

6-318

Similarly. In LDM Instructions the S bit is redundant ifR 15.1s not In the transfer list.
In user mode pr()irams. the S bit is ignored. but in non·usermode pr<Jirams where
Rl51s not In the transfer list. S=l is used to force loaded values togo to the user
re~Jisters instead of the current register bank.

In both cases where the processor is in a non-user mode and transfer to or from the
user bank is forced by setting the S bit. write back of the ba'se will also be to the
user bank though the base will be fetched from the current bank. Therefore don't
use write back when forcing user bank transfer in LDMISTM.

The following examples assume the processor to be in a non-user mode and
Rl.tst not to Include Rl5:

STMxx Rn! , Rllst

LDHxx Rn! , Rlist

STMxx Rn, Rllst~

STMxx Rn!,Rl.tst~

LOMxx Rn! ,Rl.tst~

s.fe: Storing non-user rqisters with write
back to the non-user base rqlster

s.fe: Loading non-user registers with write
back to the non·user base rqlster

s.fe: Storing user rqlsters. but no base
write-back

FaD-= Base fetched from non-user rqlster.
but written back Into user rqlster

Falla: Base fetched from non-user register.
but written back into user register

LDM: Forcing transfer of the user bank (Part 2)

~plic.tVifitv: ARM2. ARM1
When loading user bank registers with an LDM In a non-user mode. care must
be taken not to access a banked register (R8-RI4) In the following Instruction.
Accesses to the unbanked registers (RO·R7.RI5) are safe.

Because the retjlster bank switches from user mode to non-user mode during the
first cycle of the instruction following an LDM Rn, Rlist". an attempttoaccess a
banked register In that cycle may cause the wrong register to be accessed.

The following examples assume the processor to be in a non-user mode and
Rl.tst not to include Rl5:

LDM Rn RllstA
ADD RO,Rl , R2 s.fe: Access to unbanked registers after

LDM"

API»ffdiX 8: W.tmlnps on 1119 US II of ARM 86S9171bler

;:;:::~;:.::;~::~::::..v..::::;:::::::::;;:;:.'%:::::~~=:::·:·:·:=::: ::::::::::::::::~:;:;:;:::;:;::::~;::;;:::::::::::::m:::::~~:=:~::::;:;:::::::::::::;;:~~::;:::::~::::::::::~:::::;:;.;:;~:w::;:;;w::;:;::::;x:::::~;m::::::? .. ~

LOM Rn,Rl.t.stA
MOV RO,RO
ADD RO,Rl , R13_svc

We: NOP Inserted before banked register
used following an LDM"

LOM Rn, RllstA
ADD RO,Rl,R13_svc F .. : Accessing a banked register

Immediately after an LDM" returns the
wronadata

ADR R1 4_avc, aaveblock
LDMIA Rl 4 ave, (RO - Rl4 usr}A
LOR Rl 4=avc, (Rl 4_svc,tl5*4)
HOVS PC, R14_avc (RI4_svc)

ADR Rl4_avc, s aveblock
LDMIA Rl4 ave, (RO - Rl4 usr}A
MOV RO,RO -
LOR Rl4_avc, [Rl4 avc, t l5*4)
MOVS PC, Rl4_avc

F.n.: Banked base rqister
used immediately
after the LDM''

We: NOP Inserted before
banked register
(RI4_svc) used

Note: The ARM2 and ARM'J processors •••.0, give the expected result. but cannot
be guaranteed to do so under all drcumstances. therefore this code sequence
should be avoided in future.

SWI/Undeflned Instruction trap Interaction

~pliubilil~: ARM2
Care must be taken when writing an undefined Instruction handler to allow for
an unexpected call from a SWIInstructlon. The erroneous SWI call should be
intercepted and redirected to the software Interrupt handler.

The Implementation of the CDP Instruction on ARM2 causes a Software Interrupt
(SWI) to take the Undefined Instruction trap If the SWI was the next instruction
after the COP. For example:

SIN FO
SWI ' 11 Fill .. : ARM2 will take the undefined instruction

trap Instead of software Interrupt trap.

Al l Undefined Instruction handler code should check the failed instruction to see If
It is a SWI. and If so pass It over to the software Interrupt handler.

Note, COP Is a Coprocessor Data Operation Instruction: since it is not
supported by the BASIC assembler, it was not described In Appc.Yix.
A: ARM asulll6Wr.

6-319

Instructions and wdB uquetiC86 10 IWOid

· ·.·:;:;.;:;:;:;:;:;:;::::::;.~;..-.:~::c:::::;:;::::':=::::;:;:;:;:;:;:::~~::::::;.;:;:;.;:;:;:;:;:;:;:::::::;;;:;:;:;:;:;:;:;:;:;:::::::::::;:;:; :;:;:;:;:;:;~:~:::::::~~:::-::.:::::;::::::::::::::;:;.;~:::x .. -.;::;.$;!;:;:;.;.-;:««:::;:;;~

6-320

Undefined lnatructlon/Prefetch abort trap Interaction

Appliuhilitr: ARM2. ARM:J
Care must be taken when writllli the Prefetch abort trap handler to allow for an
unexpected call due to an undefined instruction.

When an undefined Instruction is fetched from the last word of a paae, where the
next page is ab5ent from memory. the undefined instruction will cause the
undefined instruction trap to be taken, and the following (aborted) instructions
will cause a prefetch abort trap. One might expect the undefined instruction trap to
be taken first. then the return to the succeeding code will cause the abort tra.p. ln
fact the prefetch abort has a higher priority than the undefined instruction trap. so
the prefetch abort handler is entered before the undefined instruction trap,
Indicating a fault at the address of the undefined Instruction (whkh Is In a page
which is actually present). A normal retum from the prefetch abort handler (after
loading the ab5ent page) will cause the undefined instruction to execute and take
the trap correctly. H0111ever the indicated page Is already present. so the prefetch
abort handler may simply return control. causing an infinite loop to be entered.

Therefore. the prefetch abort handler should check whether the indicated fault Is in
a page which is actually present. and if so it should suspect the above condition
and pass control to the undefined instruction handler. This will restore the
expected sequential nature of the execution sequence. A normal retum from the
undefined instruction handler will cause the next instruction to be fetched (which
will abort). the prefetch abort handler will be re-entered (with an address pointing
to theab5ent page). and eJiecution can proceed normally.

Single Instructions to avoid

Appliubilit•t ARM2, ARM:J
The following single instructions and code sequences should be avoided in
writing any ARM code.

Art lutnlcdoa ~at •-~e 'NV colldldoa &a,

Avoid using the NV (ellecute never) condition code:

opcodeNV •••

i.e. any operation where 1 cond I= NV

By avoiding the use of the 'NV' condition code. 228 instructions become free for
future expansion.

Note: It is reoommended that the instruction MOV RO, RObe used as a general
purpose NOP.

AppBndix B: W~ on 1M use of ARM assembl«

::::~:: ·:·:<:·:-::::;:;: ;:;:;:;:; :;:;:; :;:::::;:;;;.~;;;:;.;.;.:·:·:·: .;.;:·:;.;:;:;:;:;:;::::-.m::::::::;.;.:·:~-::;~~::::::~o;;;::::::::::::;;:::;:.:~-x.:::-:·:·:~::::::.»;.:::~-:-:·:·: ·:·:·:·:·:· ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;::;:;.;.;.;.~.:.o.::::;::.;:

Data p roceMia1

Avoid using R 15 in the Rs po6itlon of a data processlna instruction:

MOV JMVN(cond}(S} Rd,Rm,shiftname Rl5

CMP ICMNJTEOITST(cond}(P} Rn,Rm,shiftname Rl5

ANDIEORISUB • • • IBIC(cond}(S} Rd,Rn,shiftname RlS

Shifting a register by an amount dependent upon the code position should be
avoided.

M1lt!ply a lld mwhlp!J-ecc.mwlate

Do not spedfy Rl5 as the destination register as only the PSR will be affected by
the result oC the operation:

MUL(cond}(S} R15,Rm,Rs
MLA(cond}(S} Rl5,Rm,Rs,Rn

Do not use the same register In the Rd and Rm po6ltlons, as the result of the
operation will be Incorrect:

MUL(cond}(S} Rd,Rd,Rs
MLA(cond}(S} Rd,Rd,Rs

Sl1p daUI t.r .. .ter

Do not use a PC relative load or store with base writebackas the effects may vary In
future processors:

LDRJSTR(cond}(B}(T} Rd, [Rl5,fexpress1on)!
LDRISTR(cond} (B} (T} Rd, [RlS, (-}RJn(,shift}]!

LDRJSTR(cond}(B}(T} Rd, [RlS],fexpression
LDRISTR(cond}IBJIT} Rd, [RlS], 1-IRml,shift}

Note: It is safe to use pre-indexed PC relative IOIIds and stores wttltollt base
writebaclr..

Avoid using Rl5 as the register offset (Rm) In sin&le data transfers as the value
. used will be PC+PSR which can lead to address eJiceptions:

LORI STR lcond} IBJ IT I Rd, (Rn, 1-}RlS I, shift}] I! I
LDRiSTRicond} IB} IT} Rd, (Rn), 1-}RlSI,shlft}

A byte load or store operation on RI5 must not be specified, as Rl5 contains the
PC. and should always be treated as a l2 bit quantity:

LDR)STRicond}BIT} R15,Address

6·321

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

r
(

(

(

(

(

(

(

(

(

(

(

(

(

(

c

Ins ructions and cod11 s~~qiHincf/6 to avoid

::;:;:;;::::::::;:;:;:;:;:;:;:;:;.;::~-:•::;:;:;:;:;:;:;:;::,:~.:·:·:t::·:'>:::::::~::::::~::::::::::::;:: :;::::::~N$%::f4?.:;:;:;:;:;:;:;:;:~;;:::;~-:.:::;:;:;:: :;:;:;.:::~:;:;:;:;;::;:::;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;::::;~:::;:;5:;::-.;:;::;:;:;:;;;:;:;:;~~:;:;::::~::;:::::::;:;

6·322

A post-Indexed LDRISTR where Rm=Rn must not be used· (this Instruction Is very
difficult for the abort handler to unwind when late aborts are configured- which
do not prevent base writeback):

LDRISTR(cond} (B) (T} Rd, [Rn), (-}Rn(,shlft}

Do not use the same register in the Rd and Rm positions of an LOR which specifies
(or Implies) base write back: such an instruction is ambiguous. as it is not dear
whether the end value in the register should be the loaded data or the updated
base:

LDR(cond}(B}(T} Rn, [Rn,lexpression)!
LDR(cond} (B}(T} Rn, [Rn, (-}Rm(,shlft})!

LDR(cond}(B}{T} Rn, [Rn) ,lexpression
LDR(cond}(B}{T} Rn, [Rn) , (- }Rm(,shlft }

Block dllta tnlalfer

Do not spedfy base writeback when fordng user mode block data transfer as the
wri teback may target the wrong register:

STM(cond}<FDIED .•• lOB> Rn!,Rlist~
LDM(cond}<FDIED .. . IDB> Rn!,Rl1st~

where Rl1st does not include Rl5.

Note: The Instruction:

LDM(cond}<FDIED ... IDB> Rn!,<Rllst,R15>~

does not fo rce user mode data transfer. and can be used safely.

Do not perform a PC relative block data transfer. as the PC+PSR Is used to form the
base address which can lead to address exceptions:

LDMISTM(cond}<FD IEO ••• IDB> R151! },Rl1st (A)

Slalledata ... p

Do not perform a PC relative swap as its behaviour may change tn the future:

SWP(cond}(B} Rd,Rm, [Rl5)

hold specifying R 15 as the source or desti nation register:

SWP(cond}(B} RlS,Rm,[Rn)
SWP(cond}(BJ Rd,RlS, [Rn)
Note: SWP is a Single Data Swap instruction. typically used to implement
semaphores. and introduced in the ARM l; since it Is not supported by the
BASIC assembler. i t was not described In Appcrtlix A: ARM asu~~tbltr.

ApptlfldiX 8: Warnings on lh9 USII of ARM BSSIImb/91'

::::::::::::::;:;:; :;:;:;:;:;: ;:;:::::::::::::;: ;:;:;:;:;:;:;:;::>;::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:;:::we:::;~~:,:;:;:;~~.::~::~..::~::::::~::::;:;::::~(:%::;:.;:~-::::;:;:;:;:;:;:;:;:;:;:;:: :;:::::::-:=:~:::.-::::::;:;:;:;:;*:;:;:;:;:;:;:~

Coproc-r ciMa tnla...,.

When perform Ina a PC relative coprocessor data transfer. writeback to R 15 is
prevented so the W bit should not be set:

LDCISTC(cond}(L} CPf ,CRd, (R15)!

LDCISTC(cond}(L} CPf ,CRd, (RlS,fexpression)!

LDClSTC(cond}(L} CPf ,CRd, (R15)fexpress1on!

Uadeftaedla~a

ARM2 has two undefined Instructions. and ARM 3 has only one (the other ARM2
undefined instruction has been defined as the Sinale data swap operation).

Undefined Instructions should not be ~ In pto~rams. as they may be defined as
a new operation In future ARM variants.

Rectste r acceM llltar •• I a-lae laOCie c .. ap

Care must be taken not to k'C'eSSa banked register (RS-RI -4) in the cycle fottowina
an in-line mode change. Thus the following code sequen<:es should be avoided:

I TSTPITEQP!CHPPICMNP(cond} Rn,qp2

2 any Instruction that uses R8-RI41n Its first cycle.

Rectater accna .tter •• LDM tltat foreee aaer mode data tra111fer

The banked registers (R8-R 14) should not be accessed in the cycle immediately
after an LDM that forces user mode data transfer. Thus the following code
sequence should be avoided:

I LDM(cond}<FDIED • •• tDB> Rn,Rl1st~
where Rl!st does aot Include Rl5

2 any Instruction that uses R8-R 14 In Its first cyde.

Other points to note
This section highlights some obscure cases or ARM operation which should be
borne in mind when writina rode.

Uae ol RIS

Applic.tbi~l!f. ARM2. ARM3

Warnl ng: When the PC ts used as a destt nation. operand. base or shirt registet
different ~ults will be obtained depending on the instruction and the exact
usageofRI5.

6·323

/nsructions Blld cxx» &BqtHincf/6 to avoid

;:;:;:;::::::::::::~:-:·:=:--::.-:::;~:;:;:;:;;;:;:;:;:;:;:;:;:;::•:::=:::::~~~~::.:::;:;;:;:;:;:;:;:;:;:;;;.;.;:;:;:;:;:;:;:;:;:;:;:;::-::::~:=:·:·:~Xi-w.<·:·:::;;;;;:(.X::~::;:;:;:;.;:;:;.::;w,~:;:;:;:;:;:;:;:;:;:;:;~:;;:;:;:;

6-324

Full details of the value derived [rom or written Into R 15+PSR [or eadl instruction
dass is given in the htK" RISC M•"w fa,.ihJ Oct& Ma",..l Care must be taken when
using Rl5 because small changes in the lnstrudlon can yield significant.ly different
results. For eJtample. consider data operations of the type:-

opcode(condJ {SJ Rd,Rn,Rm
or opcode (condl (SJ Rd, Rn, Rm, sh1ftname Rs

• When Rl5 is used In the Rm position, it will give thevalueo£the PC tQiether
with the PSR flags.

• When Rl5 is used In the Rn or Rs positions. it will give the value oft he PC
without the PSR flags (PSR bits replaced by teros).

MOV RO,tO
ORR Rl,RO,RlS
ORR R2,Rl 5,RO

: RI :=PC+PSR
: R2:=PC

(bits) I :26.1:0 refled PSR flags)
(bits) I :26,1:0 set to :tero)

Note: The relevant Instruction description in the ARM hor" RISC Ma"i"' j&,.iiiJ
0.1& Ma1U411 should be consulted for full details of the behaviour of Rl5.

STM: lad•lloa of tile b.e Ia tile ~er la.t

AppliubiliLIJ: ARM2. ARMl

Warn ina: In the case of a STM with writeback that includes the base reaister In
the reaister list. the value of the base register stored depends upon its position
in the register list.

During an STM. the first reaister is written out at thestartofthe second cydeofthe
instruction. When wrlteback is specified. the base Is written back at the end of the
second cycle. An STM which includes storin& the base. with the base as the first
register to be stored, will therefore store the unchanged value. whereas with the
base second or later in the transfer order, it will store the modified value.

For eJtample:

MOV RS, U 1000
STHIA RSI,{R5-R6)

HOV RS, t HOOO
STMIA RS!,{R4-R5}

MUlJMLA: Reclfler ratrlcdol8

Appliubi/iiJ: ARM2, ARM)

Given MUL Rd, Rm, Rs

:Stores value of R5=&1000

: Stores value o£ R5=& 1008

or HLA Rd,Rm,Rs,Rn

Then Rd & Rm must be different realsters
Rd must not be Rl5

Appendix 8: WatnlnQB on the use of ARM assembler

:·:.~;.;:; ···:·:-::::::::::::::::::§::::::::::::;:»~~~:·:·:·:·:·:·:·:·:·:·:-:·:· :·:·:=:·:·:-:: ::::::::::::::::~~...x;;:~::::;:;:;:;:;:;:;®::::.;~:;:<-:·::;.;:;.;::-:::::::::::::~::::::::;:~::.~X·:·:·:-::;.;::·:·:·:-:::::::;;:;_:;:;:;:;.::;.; :;:;::·:·:·:.:®:·:·:·:·:·:·:;,

Due to the way the Booth's algorithm has been Implemented. certain
combinations o[operand resisters should be avoided. (The assembler will issue a
warning i£ these restrictions are overlooked.)

The destination reaister (Rd) should not be t.he same as the Rm operand register.
as Rd is used to hold Intermediate values and Rm Is used repeatedly during the
multiply. A MUL will alve a zero result i£ Rm=Rd, and a MLA will give a meaningless
result.

The destination realster (Rd) should also not be Rl5. Rl51s protected from
modification by these Instructions. so the instruction will have no effect. except
that it will put meaningless values in the PSR nags if the S bit is set.

All other register combinations will aive correct results. and Rd. Rn and Rs may use
the same register when required.

LDMISTM: Addre. Exceptloa•

Appliuf1itil¥: ARM2. ARM)

Warning: Illegal addresses formed during a LDM or STM operation will not
cause an address exception.

Only the address of the first transfer of a LDM or STM Is checked [or an address
exception: i£ subsequent addresses over-now or under-now into illegal address
space they will be truncated to 26 bits but will not cause an address exception trap.

The lollowing eJtamples assume the processor is In a non-user mode and MEMC is
being accessed:

MOV RO,f,04000000 :RO=~
STHIA RO, {Rl-R2) ; Address exception reported

HOV RO,t,04000000
SUB RO,RO, f4
STHIA RO, {Rl-R2)

(base address Illegal)

; RO=&O)Fff'f'fC
: No address eJtceptlon reported

(base address leeal)
; code will overwrite data at address &00000000

Note: The eJtact behaviour of the system depends upon the memory manager to
which the processor is attached: in some cases. the wraparound may be detected
and the Instruction aborted.

LDCISTC: Addre. Exceptloa•

Applu(,ii!lf. ARM2. ARM')

Warning: Illegal addresses formed durin& a LOC or STC operation will not
cause an address eJtception (affects LDFISW).

6-325

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(
\

(

(

(

(

(

(

Instructions and coda s9quancas to avoid

::::::::::::::;:;:;:;:;:;:;:::;;:::;:::::::~::.x.:w .. x:::::::::::::x.:::~:::.:::::(: :::::::::::::::::::::::::: :::::::::::::::::::::::::::: :::::::::::::::::::::::::::: :·:·:::::::::: ::::::::::::::::::::::::~::::;x:;m:::::::::::::::::::~-:;~:::::::::xo::::::::;:;:;::::;o;:;sx:;:::;;:::::::;:;::

6-326

The coprocessor data transfer operations act like STM and' LDM with the processor
generating the addresses and the coprocessor supplying/reading the data. As with
LDMISTM. only the address of the first transfer of a LDC or STC is checked for an
address exception; if subsequent addresses over-now or under-now into illegal
address space they will be truncated to 26 bits but will not cause an address
exception trap.

Note that the noating point I.DF/SlF instructions are forms of LDC and STC.

The following examples assume the processor is in a non-user mode and MEMC is
being accessed:

MOV RO,f&04000000
STC CP l ,CRO, [RO)

MOV RO,t&04000000
SUB RO,RO,t4
STFO FO, IRO)

; RO=&<l4000000
; Address exception reported

(base address illegal)

; R0=&03FFFFFC
; No address exception reported

(base address legal)
; code will overwrite data at address &00000000

Note: The exact behaviour of the system depends upon the memory manager to
which the processor is attached: in some cases, the wraparound may be detected
and the instruction aborted.

LDC: Data transfers to a coproceuot fetcl more data than expected

Appliaability: ARM 3

Data to be transferred to a coprocessor with the LDC instruction should never
be placed in the last word of an addressable chunk of memory. nor in the word
of memory immediately preceding a read-sensitive memory location.

Due to the pipelining introduced into the ARM3 coprocessor interface. an LDC
operation wi II cause one extra word of data to be fetched from the internal cache or
external memory by ARM3 and then discarded; if the extra data is fetched from an
area of external memory marked as cacheable. a whole line of data will be fetched
and placed in the cache.

A particular case in point Is that an LDC whose data ends at the last word of a
memory page will load and then discard the flrst word (and hence the first cache
line) of the next page. A minor effect of this is that it may occasionally cause an
unnecessary page swap in a virtual memory system. The major effect of it is that
(whether in a virtual memory system or not), the data for an LDC should never be
placed in the last word of an addressable chunk of memory: the LDC will attempt
to read the immediately following non-existent location and thus produce a
memory fault.

Appandlx 8: Wlll'lllngs on lh6 USB of ARM aSS6fllbl8r
:::::::::::::::::::::::::~=::::::::::::::::; :::::: :::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::~w..:::::::::::::.-:::..~>;:;:::{:::::::::::::::::::::::::::::::::::: ::::::::=:::::::: ::::~w.-:.::::;:;m-:::;::;::::::::::::;x::w.-::::.x::::::::::::~:::::::~:::=:~m:

The following example assumes the processor is In a non-user mode. FPU
hardware is attached and MEMC Is being accessed;

MOV IU3,f,03000000 :RI3=Addressofll0space
STFO FO, [Rl3, t-8) l :Store F.P. register Oat top of physical memory

: (two words of data transferred)
LOFO Fl, [Rl3 I , t 8 ; Load F.P. register I from top of physical

memory. but three words of data are
transferred, and the third access will read
from 110 space which may be read sensitive

Static ARM problems
The static ARM is a variant of the ARM processor designed for low power
consumption. that is built using static CMOS technology. (The difference between
it and the standard ARM is similar to that between SRAM and DRAM.)

The static ARM exhibits different behaviour to ARM2 and ARM3 when executing a
PC relative LDR with base write-back. This dass of instruction has very limited
application. so the discrepancy should not be a problem. but If you wish to use any
of the following Instructions in your code you are advised to contact Acorn
Computers.

LOR Rd, [PC,texpression)!
LOR Rd, (PC],texpression
LOR Rd,(PC,(-)Rm(,shift))!
LOR Rd, (PC],{-)Rm(,shift)

Note: A PC relative LDR wltlo•t write-back works exactly as expected.

Provided that this Instruction dass Is unused. it Is likely that write-back to the PC
on LDR and STR will be disabled completely In the future. The fewer incidental
ways there are to modify the PC the better.

Unexpected Static ARM2 behaviour when executing a PC relative LOR with
wrlteback

The Instructions affected are:·

• LOR Rd, (PC, texpression)l

• LOR Rd, (PC),texpression

Cate 1: LOR Rd,(PC,Iexpre.lon)l

Expected result: Rd +- (PC+S-texpresslon)
PC+- PC+S-texpression

... so execution continues from PC+8+expression

6-327

(

(

Sialic ARM probl&ms (
;:;:::;:;-;:.;::~X:::::?;?.:~::;.;:;:;:;:;:;:~:::::::::::::::.:c:;:::~:::::::::::~:~:;;;;::::::::::.;::;;;:.:.-;;:;;:.;:;:;:;:::::::;;;;;;;:;:;.;:;::;;:;::::::::::::;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:::::::;:;:;:;::::::::::::::;~::::::::;:;)'.W.4$:::::~:w.:o;;:;.::;:;.;.:::w.-::::::;:::;:;:::;::::

Actual ARM2 result: Rd t- Rd (no chal\ie}
PC t- PC+8+expression+4 (

... soexecutlon continues from PC+I2+expresslon

c- :t: LOR ld,(PCJ,IexpreNioa

Expected result: Rd t- (PC+8) (
PC t- PC+8+expression

... so execution continues from PC+8+expresslon

Actual ARM2 result: Rd t- Rd {no chal\ie)
PC t- PC+8+expression+4

(
.. . soexeculion continues from PC+I2+expresslon

(

(

(

(

(

(

(

(

6·328 (

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

:::·:·:·:·:.:l'h~:>:·:·::::::::;:;::::::::::::::::::.;::;;::+:;:t::>::~~~:::::;;;;::.:~Rh:;;.:;:;;:;.;.;w.;~:::~h::~ili::;:::~;:;~::~W. .. .:?.=:;;_;m.;::;-.;;;:;:;~:::::~~:;:;-::~:-: ·.·.·.·.·.-::;:;: ;:;:;:;:;:;:;:;:;:;:;;;:: :;:::;.;!:"..:««:·

80 Appendix C: ARM procedure call
standard

~~~-:=»-:.":::::::::::::::::::::::::::::::::::::::=~,. • ••:0.~. ec ;.:;;.:$.: z.:.~..::%:::=:::::::::::::-$».-:::x:::., ........ ~ 

This appendix relates to the Implementation of complier code-senerators and 
lanauaae run-time library kernels for the Advanced RISC Machine (ARM) but Is also 
a useful reference when lnterworltlna assembly lanauaae with hiah levellaO(IUa(le 
code. 

The reader should be familiar with the ARM's lnstiUdion set. lloatine-PO!nt 
lnstrudion set and assembler syntax bef~ attemptlna to use this infonnation to 
Implement a ~nerator. In order to write a run-time t.ernel for a lanauase 
Implementation. addltlonallnfonnatlon specific to the relevant ARM operatlna 
system will be needed (some Information is alven In the sections describlna the 
standard realster bindlnas for this procedure-call standard). 

The main topics covered In this appendix are the procedure call and stack 
disdplines. These disciplines are observed by Acorn's C lanauaae Implementation 
for the ARM and, eventually, will be observed by other hlah levellanaua(le 
compliers too. Seal use CIs the first-choice Implementation lan(IUa(le lor RJSC OS 
applications and the implementation lan(luase ol Acorn's UNIX product RISC IX, 
the utility of a new lanauaae Implementation for the ARM will be related to Its 
compatibility with Acorn's Implementation of C. 

At the end of this appendix are seYeral examples of the US841e of this standard. 
toaether with suasestions for seneratlna effective code for the ARM. 

The purpose of APCS 

The ARM Procedure Call Standard Is a set of rules, desicned: 

• to facilitate calls between p!'O(Iram fraaments complied from different source 
lanauaaes lea to make subroutine libraries aa:esslble to all compiled 
lanauaaes) 

• to aive compilers a chance to optimise procedure call. procedure entry and 
procedure exit (followlnc the reduced Instruction set philosophy of the ARM). 
This standard defines the use of realsters, the passina of arauments at an 
external procedure call. and the format of a data structure that can be used by 
stack baclttradna proerarns to reconstruct a sequence of outstanding calls. It 
does so in tennsof •ktr.a rrfisCcT MJUS. The bind ina of some rqister names to 

6-329 



l. 

086ign criteria 
;::;.~:;:~·:=:=:·:=:=:::::=:=:=:=:=:=)?.::-::::;::::•:::;:-::~;;:~~~:-»:-::::: :::::·:::·:::::::::::::: :::::::::::x~~:;:;-;::~:.mx.~:o::~:::::::::::·:~=:::::::::.wx-~~:-~::::::::::::::~.:;:::::::::::::::::·.M)$';::::::::::::~ 

Design criteria 

6·330 

register numbers and the precise meaning of some aspects of the standard are 
somewhat dependent on the host operatln11 system and are described in 
separate sections. 

Fonnally, this standard only defines what happens when an external procedure call 
occurs. Lan11uaae lmplementors may choose to use other mechani.sms for Internal 
calls and are not requi red to follow the re11lster conventions described In this 
appendix except at the Instant of an external call or return. However. other 
system-specific invariants may have to be maintained If it Is required. for example. 
to deliver rel iably an asynchronous interrupt (ell a SIGINT) or give a stack 
backtrace upon an abort (e8 when dereferenclng an Invalid pointer). More Is said 
on this subject in later sections. 

This procedure call standard was defined after a 11reat deal of experimentation, 
measurement. and study of other architectures. It Is believed to be the best 
compromise between the following important requirements: 

• Procedure call must be extremely fast. 

• The call sequence must be as compact as possible. (In typical compiled code. 
calls outnumber entries by a factor in the ranae 2:1 to 5: 1.) 

• Extensible stacl:s and multiple stacl:s must be accommodated. (The standard 
pennits a stack to be extended in a non-<e>nt111uous manner. in stack chunl:s. 
The size of the stack does not have to be fixed when it is created. avoidin11 a 
fixed partition of the available data space between stack and heap. The same 
mechanism supports multiple stacks for multiple threads of control.) 

• The standard should encouraae the production of re-entrant programs. with 
writable data separated from code. 

• The standard must support variation of the procedure call sequence. other 
than by conventional return from procedure (ell in support of C's longjmp, 
Pascal's goto-out-of-block, Modula-2+'s exceptions. UNIX's si11nals. etc) 
and tradn11 of the stack by debuBaers and run-time error handlers. Enoush Is 
defined about the stack's structure to ensure that implementations of these 
are possible (within l imits discussed later). 

App1111dlx C: ARM procBdur& cslt sland81d 

m:_::::;: ·:·:=:·:=:·:-:::: ::::::;.:::::~:::::::::::.:·:;:·:·:·:·:·:·:·:· :·:·:·:·:·:·:.~:::-:=:=:·:=: :::::::::::::::.~::::;:;;;.:::«·:-:·:;-;;:::~::::;::;:;~.:;:::.;:::::::::: .;:;.;::.;::.:=::%:·:=:·:·:·:;:->:..:·::::;.;.;.x;.::::: ::::::::.::.:::>:~~=:~:;.;::·x·:..~·:·:·:·:·:·:·:·:;;.:::. 

The Procedure Call Standard 
This section defines the standard. 

Register n•m•• 
The ARM has 16 visible 11eneral re11lsters and 8 floatlna·polnt re11isters. In interrupt 
modes some aeneral resisters are shadowed and not alllloatin11·polnt operations 
are available. dependinll on how the noatin11·polnt operations are implemented. 

This standard is written In terms of the resister names defined in this section. TI1e 
blndin11 of certain register names (the c.U frame rect.ter.) to register numbers is 
discussed separately. We do this so that 

• Diverse needs can be more easily accommodated. as can connictinll historical 
usaae of resister numbers. yet the underiylna structure of the procedure call 
standard- on which compilers depend critically - remains fixed. 

• Run·time support code written in assembly lan11uaae can be made portable 
between different resister bindin11s. If It obeys the rules siven in the section 
entitled Ol(irtl~ ~~ings of tiN prouw1 u U st...Ur~ on paae 6· 338. 

The register names and fixed bindinas are 11iven Immediately below. 

Ge•eral Rqllllere 

First. the four araument resisters: 

al RN 0 1 argument 1/integer result 
a2 RN 1 1 argument 2 
a3 RN 2 1 argument 3 
a4 RN 3 1 argument 4 

Then the six 'variable' re11lsters: 

v1 RN 4 1 register variable 
v2 RN 5 1 register variable 
v3 RN 6 1 register variable 
v4 RN 7 1 register variable 
v5 RN 8 1 register variable 
v6 RN 9 1 register variable 

Then the call· frame re11lsters. the bindin11s of which vary (see the section entitled 
Dfll""" 6in~illfS of liN ,rouiu" ull sr.nunl on paae 6-338 for details): 

sl 
fp 
ip 

sp RN 13 

stack limit I stack chunk handle 
frame pointer 
temporary workspace, used in 
procedure entry 
lower end of current stack frame 

6·331 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 
( 

( 

( 



( 

( 

( 

( 

I 

( 

( 

( 

( 

r 

( 

( 

( 

( 

c 
c 

Th9 PrDC~JdurB Call Standard 

~.t:-:·::x.-..:.-&:.:~.-;::;;:;:::::::::::::::::::::::::::::~:::::::;;:::::~<:=:~m-'.«:::;;:::::::.:·:;:;:.:~:;:<:":«:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~:::::::::::~;:::.:·:·:«-»:::::;:::::;;;:::::::::::::::~::;::w:~:=:::.:~: ::::::::~: 

~~2 

Finally, lr and pc, which are detennined by the ARM's ha'rdware: 

lr RN 14 
pc RN 15 

; link address on calls/temporary workspace 
; program counter and processor status 

In the obsolete APCS·A register bindings described below. sp Is bound tor 12; in 
all other APCS bindings. sp Is bound to rl3. 

Note. 

Literal register names are given in lowercase. es v l. sp, lr. ln the text that 
follows, symbolic values denoting 'some registe( or 'some offset' are given in 
upper case. es R. R +N. 

References to 'the stack' denoted by s p assume a stack that grows from high 
memory to low memory. with sp pointing at the top or front (le lowest addressed 
word) of the stack. 

At the Instant of an wemal procedure call there must be nothing of value to the 
caller stored below the current stack poi nter. between sp and the (possibly 
implicit. possibly explicit) stack (chunk) limit. Whether there Is a slnsle stack chunk 
or multiple chunks. an explicit stack limit (in sl) or an Implicit stack limit. is 
determined by the register bindings and conventions of the target operating 
system. 

Here and In the text that follows. for any register R. the phrase 'In R' refers to the 
contentsofR: t he phrase ·at (R)' or 'at (R , t N)' refers to the word pointed at by 
R orR +N. In line with ARM assembly language notation. 

Ro.th11· polat Retllteno 

The noatlng•polnt registers are divided Into two sets. analogous to the subsets 
a l - a4 and vl - v6 of the general registers. Registers f0 - f3 need not be 
preserved by a called procedure: f 0 is used as the noatlng·polnt result register. In 
certain restricted circumstances (noted below), fO- f3 may be used to hold the 
first four Ooatlng·polnt arguments. Registers f 4-f7. the so called 'variable' 
registers, must be preserved by callees. 

The Ooating·polnt registers are: 

to FN 0 ; floating point result Cor 1st FP argument) 
fl FN 1 ; floating point scratch regiater (or 2nd FP arg ) 
f2 FN 2 ; floating point scratch regiater (or 3rd FP arg) 
f3 FN 3 ; floating point scratch register (or 4th FP arg) 

" FN 4 ; floating point preserved regist er 
fS FN 5 ; floating point preserved register 
t6 FN 6 : floating po i nt preserved register 
f? FN ? : floating point preserved register 

APPfllldbt C: ARM proc«<uf9 call slandard 
::::::::::::::::= :·:·:·:·:-:::=:·:· :::::::::::::.~~::::::::::::::;:~;;;;::::~w..m:::.:::::::::::::::~~:~=:=:::::::::::::::::::::-:::-~:::::>:=:~~::::::.:@'h:=:=:;:·:-:::::::::::::::.::::::::::::::::::::::::::::::::::~:::::::: 

Data representation and argument pa .. lng 

The APCS Is deHned In tenns of N (~ 0) word-sized arauments being passed from 
the caller to the cal lee. and a single word or Ooatlng-potnt result passed back by 
thecallee. The standard does not describe the layout In store of records. arrays and 
so forth, used by ARM-targeted compilers for C. Pascal. Fottran-77. and soon. In 
other words. the mapping from language-level obfects to APCS words is defined by 
each language's Implementation. not by APCS. and, Indeed, there is no formal 
reason why two Implementations of. say, Pascal for the ARM should not use 
different mappinas and. hence. not be CIOS$-<:allable. 

Obviously, It would be very unhelpful for a language Implementor to stand by this 
fonnal position and lmplementors a~ strongly encou.-.d to adopt not just the 
letter of APCS but also the obviously natural mappings of source language objects 
Into argument words. Strong hints are given about this In later sections which 
discuss (some) language speclfi<:s. 

Register u .. ge and argument p .. slng to external procedures 

Coat.rol Ant..J 

We consider the passing of N ~ 0) actual argument words to a procedure which 
expects to receive either exactly N argument words or a variable number V ~ I) of 
argument words (It Is assumed that there Is at least one argument word which 
Indicates In a langu341e-implementation.Oependent manner how many actual 
argument words there are: for example, by using a format strtns argument. a count 
argument. or an argument· list tennlnator) . 

At the Instant when control arrives at the target procedu~. the following shall be 
true (for any M. If a statement Is made about argM, and M > N. the statement can 
be Ignored): 

argl is in al 
arg2 is in a2 
arg3 1s in a3 
arg4 1s in a4 
for all I >• 5, argl is at (sp, 14* (1-5)) 

fp contains 0 or points to a stack bacbrace structure (as described In the next 
section). 

The values In sp. s 1, fp are all multiples of four. 

lr contains the pc+psw value that should be restored Into rlS on exit from the 
procedure. This Is known as the rrtwr" li"~ Wlllll for this procedure call. 

pc contains the entry address of the target procedu~. 

6·333 



Ttt.l"roaadurfl Call Sl8ndBtd 

:x;:::•cr·~««:t">%«-:•r.m;;x;:;. .. :::.:=$:·:·:=:·:~;;;::::::::::::::::~:::::;:::::::.. .. "»»'..:»>:::::::::::;::::::::::::::::::::::=t::::::::::::::::::::~~::::::::::::.:·:=::::::::::::::Y;:::::::::::::::::w;x;::;.~~:::-:·:·:;:-:-::::::: :::::::::::-~::::::::::::: 

6-334 

Now. let us call the lower limit to which sp may point Ia thl• Mac:k chak SP _ LWM 
(Stack-Pointer Low Water Mark). Remember. it is unspecified whether there Is one 
stad chunk or many. and whether SP _LWM Is implidt, or ~kltly deriYed from 
sl: these are bindina-spedficdetails. Then: 

Space between sp and SP LWM shall be (or shall be on demand) readable, 
writable memory which can be used by the called procedure as temporary 
workspace and overwritten with any values before the procedure returns. 

sp >• SP_LWM t 256. 

This condition guarantees that a stack extension procedure. if used. will have a 
reasonable amount- 256 bytes- of work space available to it. probably sufficient 
to call two or three procedure Invocations further. 

Coatrol Retun 

AJ. the Instant when the return link value for a procedure call is placed in the 
pc+psw. the followina statements shall be true: 

fp. sp. sl. vl-v6. and f4-t7 shall contain the same values a.s they did at the 
instant of the call . If the procedure returns a word-sized result. R. which is not a 
floating-point value. then R shall be In al.lfthe procedure returns a floating-point 
result. FPR. then FPR shall be infO. 

Nota 

The definition of control return means that this is a 'callee saves' standard. 

The requirement to pass a variable number of arguments to a procedure (as in 
old-style C) precludes the passing of floating-point arguments In floatina·point 
registers (as the ARM's fixed point registers are disJoint from Its floating-point 
registers). However, if a callee is defined to aa:ept a fixed number K of arguments 
and Its Interface description dedares It to accept exactly K arguments ol matching 
types, then it is pennlsslble to pass the first lour floating-point arguments in 
floating-point registers tO- t 3. However, Arom's C compiler for the ARM does not 
yet exploit this latitude. 

The values of a2-a4. ip. lr and fl-f 3 are not defined at the Instant of return. 

The Z, N. C and V flags are set from the corresponding bits in the return link value 
on procedure return. For procedures called using a BL Instruction. these flag 
values will be preserved across the call. 

The flaa values from l r at the Instant of entry must be restored: It is not sufficient 
merely to preserve the flag values across the call. (Consider a procedure P roc A 
which has been 'tall-call optimised' and does: CMPS al, tO; MOVLT a2, 

Appflndlx C: ARM pi0Cfldur9 cal slandatrl 

;;::;:;.;.;.;.;.»:·:=::;.;:;:;:;:;:;:;:;:;:;:;::'*-.~·:-:>:·:· ;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::~;.;.:;;::::::.::>§;&,:;:;:;:;::;, .. m::::::;.;;x.:.;;-:;;:;:~::.::::;:;:;:;:::::::::::::::~:::~.:·:«'<'*~:;~:::;.;:;:;:;::::-::;::::::·:·:-::;:;:;:;.::;.~;«;:.;.:,;.;.·: 

t255; MOVGE a2, tO; B ProcB. IfProcBmerelypreservestheflagsltsees 
on entry. rather than restoring those from lr. the wrona flaas may be set when 
ProcB returns direct to ProcA's caller). 

This standard does not define the values of fp, sp and sl at arbitrary moments 
during a procedure's execution, but only at the Instants of (external) call and 
return. Further standards and restrictions may apply under particular operating 
systems. to aid event handling or de bugging. In general, you are strongly 
encouraged to preserve fp, sp and sl. at all times. 

The minimum amount of stack defined to be available Is not particularly large, and 
as a general rule a language implementation should not expect much more. unless 
the conventions of the target operatlna system indicate otherwise. For example, 
code generated by the Arthur/RJSC 05 C complier Is able, If there is inadequate 
local workspace. to allocate more stack space from the Cheap before continuing. 
Any language unable to do this may~ Its Interaction with C impaired. That sl 
contains a stadt chunk handle Is Important in achievlna this. (See the sectio n 
entitled !:¥""' ~i¥11/ U. ~" ~ sluMN on pege 6-338 for further details). 

The statements about sp and SP LWH are designed to optimise the testing of the 
one against the other. For example. In the RJSC 05 user-mode binding of APeS. s 1 
contains SL_LWM+512, allowing a procedure's entry sequence to include 
something like: 

CMP sp, sl 
BLLT l xSstack_overtlowl 

where xSs tack_overflow Is a part of the run-time system for the relevant 
language. if this test fails. and xSstack over flow Is not called, there are at 
least 512 bytes free on the stack. -

This procedure should only call other procedures when ap has been dropped by 
256 bytes or less. auaranteeina that there is enough space for the called 
procedure's entry 5equence (and, If needed. the stadt extender) to work in. 

If 256 bytes are not enough, the entry sequence has to drop sp before oomparing it 
with s lin order to Ioree stack extension (see later sections on Implementation 
specifics for details ol how the RISC 05 C complier handles this problem). 

The aiack backtrace c18ta atructure 
AJ. the i nstant of an external procedure call. the value In f p is zero or It points to a 
data structure that gives information about the sequence of outstanding procedure 
calls. This structure Is in the format shown below: 

6·335 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



c) 
(> 

( 

( 

( 

( 

f 

( 

( 

( 

( 

( 

( 

( 

( 

c 

The Prrx:edur• c.tr Srlllldard 

::::::::;:::::o::}S~¥:«.:::mY.-»M:;::)::::::.:::::::;::~:=:::::::::::::::::::::::::::::::::::;:::::::::::.:::;:.:~·:·:·:·»>ili:;:::::::::::::::::::::::::: :::::::::::::::::::::::::::::.::::.;::::-.;%::::;;;;:««<-:::.:;:::;:;:;:;r .. .<o:·::::::::: ==-:=:·:=~(-:qm)~:::::;:;:;::·:·:·:·:· 

6-336 

fp points to here: 

Optional 
va lues 

save mask pointer 

return l ink value 

return sp value 

fp value 

saved v6 value 

saved vS va l ue 

saved v4 value 

saved v3 value 

saved v2 value 

saved vl value 

saved a4 value 

saved a3 va lue 

saved a2 value 

saved al value 

saved f7 value 

saved f6 value 

saved fS value 

saved f4 value 

lfp) 
l fp, 1-4 ) 

lfp, 1-8 ) 

I fp, f-12 I 

three words 

three words 

three words 

three words 

This picture shows between four and 26 words of store. wtth those words higher on 
the page being at higher addresses in memory. The presence of any of the optional 
values does not imply the presence of any other. The Ooatine-point values are In 
extended fonnat and occupy three words each. 

At the instant of procedure call. all of the following statements about this structure 
shall be true: 

• The tet•n fp nlae Is either 0 or contains a pol nter to another stack baclr.trace 
data structure of the same form. Each of these corresponds to an active. 
outstanding procedure Invocation. The statements listed here are also true of 
this next stack backl.race data structure and, Indeed, hold true for each 
structure In the chain. 

• The Mft m.•k polftter value. when bits 0. I. 26. 27. 28, 29. 30, 31 have been 
deared. points twelve bytes beyond a word known as the retun data Nft 

lnstnctloa. 

Appendix C: ARM procedun Cllll SIIJndattf 

;:;:;:;:;:;:::;:;:;:;:::::;:;:;:;:;:;:;:;:;:::::::;~::::::::~:;;::::::::::::::::::::::;:.::::::::::::;:;:;:;.;:;:;:;:::::;:;:::::::;::;;:::::~~~:=:~~:;::::::::::::::z.::::;:;:::::::::%::::;~:;:;.;:;:;:;:;:;:;::::-:::::::::~:::::::::::::::;:;:;:~:;:t:;~ 

• The return data save Instruction Is a word that corresponds to an ARM 
I nstructlon of the following rotm: 

STMDB sp ! , llal), la2), la3), la4), 
[vl), (v2), [v3), lv4), lv5), lv6), 
fp, ip, lr, pc} 

Note the square braclr.ets In the aboYedenoteoptlonal parts: thus. there are 12 
x 1024 possible values for the return data save Instruction. corresponding to 
the following bit patterns: 

1110 1001 0010 1101 1101 10xx lUUUt XIUUI APCS-R, APCS-U 

or ! J 

1110 1001 0010 1100 1100 11XX IUUUl XJUUt APCS-A (ob•olete) 

The least significant I 0 bits represent araument and variable registers: if bit N 
Is set. then register N will be transferred . 

The optional parts al, a2. a3. a4. vl. v2. v3, v4 , vS and v6 In this 
Instruction correspond to those optional parts of the stack badtrace data 
structure that are present such that: for all M.lf vM or aM is present then so Is 
saved vM value or saved aM value. and If vM or aM is absent then so Is 
saved vM value or saved aM value. This Is as lfthe stack baclr.trace data 
structure were formed by the execution of this Instruction. following the 
loading of ip from sp (as Is very probably the case) . 

• The sequence of up to four Instructions following the return data save 
Instruction detennlnes ~ther saved floatine-point registers are present In 
the bacl:trace structure. The four optional instructions allowed In this 
sequence are: 

STFE f7, (lOP, t -12) I 1 1110 1101 0110 1101 0111 0001 0000 0011 
STFE !6, (ap, t - 12) I 1 1110 1101 0110 1101 0110 0001 0000 0011 
STFE !5, (ap, t - 12) I 1 1110 1101 0110 1101 0101 0001 0000 0011 
STFE !4, (ap, t - 12) I 1 1110 1101 0110 1101 0100 0001 0000 0011 

I 

Any or all of these Instructions may be missing. end any deviation from this 
order or any other Instruction tennlnates the sequence. 

(A historical bug In the C complier (now fbted) Inserted a single arithmetic 
Instruction between the return data save instruction and the first S'JFE. Some 
Acorn software allows for this.) 

The bit patterns given are for APCS-RIAPCS·U register bindings. In the 
obsolete APCS·A bindings, the bit indicated by t Is 0. 

The optional instructions saving f4, fS. f6 and f7 correspond to those 
o ptional parts of the stack backl.race data structure that are present such that: 
for all M. if STFE fH Is present then so is saved fH value; if STFE fH Is 
absent then so is saved fH value. 

6-337 



091/ned bindings allh6 procedure csN standard 

;.;::::.:=~:::::.:=:~::-.:.::::::::::::::::::::~;;~:::;::;:;;~;;:=::::::;;;:(.;:::::-;:::-.;:::~:::::::::::~·:::::::::::::::::~ss$;;:::;;;:~::::::::::::~~~:::x:::::::::: :::::::::::::::::::::::;:;:;:::::::::::z;y.w-,:~:;:::::::::::::::::::::::::::::>:: :::::::::::~ 

• At the Instant when procedure A calls procedure B. the stack backtrace data 
structure pointed at by fp contains exactly those elements v1. v2. v3, v4. v5, 
v6. f 4. f5. f6. f1 , fp. sp and pc which must be restored into the 
correspondln11 ARM re&isters in order to cause a correct exit rrom procedure A. 
albeit with an Incorrect result. 

Notes 

The follow In& example su~ts what the entry and exit sequences for a procedure 
are likely to look like (thou11h entry and exit are not defined in terms or these 
instruction sequences because that would be too restrictive: a &ood compiler can 
often do better than Is suggested here): 

entry MOV ip, sp 
STMDB spl, {arqReqs, workReqs, fp, ip, lr, pc) 
SUB fp, ip, 14 

exit LDMDB fp, {workReqs, fp, sp, pc) A 

Many apparent Idiosyncrasies in the standard may be explained by efforts to make 
the entry sequence work smoothly. The example above is neither complete (no 
stack limit chedln&) nor mandatory (makin11 ar&uments conti&uous for C. for 
Instance, requires a slightly different entry sequence: and storing arqReqs on the 
stack. may be unne<:essary). 

The workReqs re&isters mentioned above correspond to as manyorv1 to v6 as 
this procedure needs In order to work smoothly. At the Instant when procedure A 
calls any other. those workspace registers not mentioned In l\s return data save 
instruction will contain the values they contained at the Instant A was entered. 
Additionally. the registers f4-f7 not mentioned In the floating-point save 
sequence rollowin& the return data save instruction will also contain the values 
they contained at the Instant A was entered. 

This standard does not require anythin& of the values found In the optional parts 
a1. a2. a3. a4 of a staclt backtrace data structure. They are likely, i£ present, to 
contain the saved ar&uments to this procedure call: but this is not required and 
should not be relied upon. 

Defined bindings of the procedure call standard 

6·338 

APCS-R and APCS-U: The RISC OS and RISC IX PCSs 
These blndln&s of the APCS are used by: 

• RISC OS applications runnln11 in ARM user-mode 

• compiled code for RISC OS modules and handlers runnin& in ARM SVC·mode 

• RJSC IX applications (which make no use or sl) running In ARM user mode 

Appendix C: ARM proc8durl1 can standard 
::::::::::::::::.:::::.:::::::;:;;:;;:::::::;:;:;::::.:·:~:. ::::::::::::;.»:.;;::::::;«;::::::x.:««o>X..:=::: :::::::::::::::::;:;::~:;:::-:::::.::::::::::::::::::::::;;;:;0$$:;*::::::::::::.:·:=:~:-:·x·:·::.:;::.:::::::::;}Y.:::::::::::::::::::::x::;:.~.:-:<'·:>::: .;:;.;:;;;:;::::::::::::.:: 

• RISC IX kernels runnin11 in ARM SVC mode. 

The call-frame re&lster bind inKS are: 

sl RN 10 ; stack limit I stack chunk handle 
unused by RISC !X applications 

fp RN 11 ; frame pointer 
ip RN 12 ; used as temporary workspace 
sp RN 13 ; lower end of current stack frame 

Although not fonnally required by this standard. It Is considered 8QOd taste for 
compiled code to preserve the value or s 1 everywhere. 

The Invariants sp > ip > fp have been preserved, in common with the obsolete 
APCS.A (described below). allowln& symbolic assembly code (and compiler 
code-&enerators) written In terms or re&lster names to be ported between APCS·R. 
APCS·U and APCS-A merely by relabellin11 the call-frame registers provided: 

• When call-frame re&isters appear In LDM. LOR. STM and STR instructions they 
are named symbolically, never by re&lster numbers or ~e~~ister ranges. 

• No use Is made or the orderin11 or the four call·frame re&isters (ell in order to 
load/save fp or sp from a full register save). 

APeS-a: Coaltralm Olla1 (For RJSC OS applications and modules) 

In SVC and IRQ modes (collectively called module mode) SL LWM is implidt in sp: 
it Is the next me&abyte boundary below sp. Even thou&h the SVC·mode and 
IRQ-mode stadts are not extensible, s1 still points 512 bytes above a skeleton 
stack-dlunk descriptor (stored just above the me& a byte boundary). This is done for 
compatibility with use by applications runnln&ln ARM user-mode and to facilitate 
module-mode stack-overflow detection. In other words: 

sl • SL_LWM + 512 . 

When used In user-mode. the stack. Is segmented and is extended on demand. 
Acorn's lan&uage-independent run-time kernel allowslan&uage run-time systems 
to implement stack extension In a manner which Is compatible with other Acorn 
lan11uages. s 1 points 512 bytes above a full stad-chunk structure and. a&ain: 

sl • SL_LWM + 512. 

Mode-dependent stack-overflow handlinQ code In the language-independent 
run-time kernel faults an overflow In module mode and extends the stack in 
application mode. This allows library code.lnduding the run·time kernel. to be 
shared between all applications and modules written In C. 

In both modes. the value or s 1 must be valid Immediately before each external call 
and wch retiTII from aa exteTIIal cell. 

6-339 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

D8fln9d bindings of lhfl proc&dur11 ca" standard 
:::~:;:::::::;:;:::::::::::::::: :;:::::::::;.;-:::-"::;:;:;:;:: :;:;:;:;::::::::~::::::~:::::=~-::w..x:::;::::::::::;;:;;;::;:::;:-::::::::::::;: ;:;:;:;:;:;:;:;:;:;:;:::::::;:;:;:;:; :;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:~h?.::'.:.;;:;;;:::::::::::::::::;:.;.:)!:;::;::;:::::::::w.:?.r.x 

6-340 

Deallocation of a stack chunk may be performed by intercepting returns from the 
procedure that caused it to be allocated. Tail-<:all optimisation complicates the 
relationship, so, in general. s 1 is required to be valid Immediately before every 
return from external call. 

APCS.U: Coaltralats on d (For RISC IX applications and RJSC iX kernels) 

In this binding of the APCS the user-mode stack auto-extends on demand so s 1 is 
unused and there is no stack-limit checking. 

In kernel mode. sl is reserved by Acorn. 

APC5-A: The obsolete Arthur application PCS 

This obsolete binding of the procedure-call standard is used by Arthur applications 
running in ARM user-mode. The applicable call-frame register bindings are as 
follows: 

sl 
fp 
lp 
sp 

RN 
RN 
RN 
RN 

13 
10 
11 
12 

stack limit/stack chunk handle 
frame pointer 
used as temporary workspace 
lower end of current stack frame 

(Use of r12 as sp. rather than the architecturally more natural rl3, is historical 
and predates both Arthur and RISC OS.) 

In this binding of the APCS. the stack is segmented and Is extended on demand. 
Acorn's language-independent run-time kernel allows language run-time systems 
to implement stack extension in a manner which is compatible with other Acorn 
languages. 

The stack limit register. sl. points 512 bytes above a stad-<:hunkdescriptor. itself 
located at the low-address end of a stack chunk. In other words: 

sl • SL_LWM + 512. 

The value of s 1 must be valid Immediately before each external call and each 
return from an external call. 

Although not formally required by this standard, it is considered good taste for 
compiled code to preserve the value of s 1 everywhere. 

Notes on APCS bindings 

lnvart .. tt •nd APCS-M 

In all future supported bindings of APCS sp shall be bound to r l3. ln ail 
supported bindings of APCS the invariant sp > ip > fp shall hold. This means 
that the only other possible binding or APCS Is APCS·M: 

App~~ndlx C: ARM proclldur11 ~standard 
:::::::::::::~::=::::::::::::::: ::::::::::w.-.:~:=:::::::;:.r.::::::::: ::::::::::: :::::::::::::::::::::::::::::::-::::-g.:::::::::::::::::::::::::::::::::::::::::=:::=:::::::=:=~:::::::::::::::::::::::::::::::: :::::::::::::::::::::.:::~:.:::::::::::::::::w.~:::::=x~=:=:=:=:=:l::::::::::::::::::::::: 

stack limit/stack chunk handle 
frame pointer 

sl 
fp 
ip 
sp 

RN 
RN 
RN 
RN 

12 
10 
11 
13 

used as temporary workspace 
lower end of current stack frame 

This binding of APCS is unlikely to be used (by h:om). 

Further Re«rtctloaela SVC Mode ••d IRQ Mode 

There are some consequences of the ARM's architecture which, while not formally 
acknowledged by the ARM Procedure Call Standard, need to be understood by 
implementors of code intended to run In the ARM's SVC and IRQ modes. 

An IRQ corrupts rl4 irq, solRO.modecode must run with IROs off until 
r 14 lrq has been saved. h:om's preferred solution to this problem Is to enter 
and exit IRQ handlers written In high-level languages via hand-<:rafted 'wrappers' 
which on entry save r14_irq, change mode toSVC, and enable IROsand on exit 
return tot he saved r14 irq (which also restones IRQ mode and the IRQ.enable 
state). Thus the handlerS themselves run In S</C mode, avoiding this problem in 
compiled code. 

Both SW!s and aborts corrupt r 14 svc. This means that care has to be taken 
when calling SWis or causing abort~ in SVC mode. 

In high-level languages, SW!s are usually called out ofline so it suffices to save and 
restorer 14 in the calling veneer around the SWI. If a compiler can generate In-line 
SWJs. then it should, of course. also generate code to save and restore rl4 In-line. 
around the SWI. unless it is known that the code will not be executed in SVC mode. 

An abort in SVC mode may be symptomatic of a fatal error or it may be caused by 
page faulting in SVC mode. kom expects SVC·mode code to be correct. so these 
are the only options. Page faulting can oa:ur because an Instruction needs to be 
fetched from a missing page (causing a prefetch abort) or because of an attempted 
data access to a missing page (causing a data abort). The latter may occur even if 
the SVC-mode code is not itself paged (consider an unpaged kernel accessing a 
paged user-space). 

A data abort is completely recoverable provided r 14 contains nothing of value at 
the instant of the abort. This can be ensured by: 

• saving R 14 on entry to every procedure and restoring it on exit 

• not using Rl4 as a temporary register In any procedure 

• avoiding page faults (stack faults) in procedure entry sequences. 

A prefetch abort is harder to recover from and an aborting BL instruction cannot be 
recovered, so special action has to be taken to protect page faulting procedure 
calls . 

6-341 



Examplfl6 from N:Dm lllngu• lmp/flmBiltations 

x-::.::.:-:·:-:::;;,;::::::::::::::::::-"!'(:~:;.):::.:·:::;:::;:::::::::::::::::::::::::&~:~·:·:·:·:·:·:=:-:=::::::;.;.;.;::~·:-:-:·x<::::::::::::;:::::::~~~::.w .. ;;;.>;;-:.:-:-:-::-:-:=:-:-:.:::·:·:«'«'-»:=:-:::::::::::::::;:::::::::~=~~~;:.:~::=::::::::x=5:=: 

For Acorn C, R 14 is saved In the second or third instruction of an entry sequence. 
Aligning all procedures at addresses which are 0 or 4 modulo 16 ensures that the 
critical part of the entry sequence cannot prefetch-abort. A compiler can do this by 
padding all <Xlde sections to a multiple of 16 bytes In length and being careful 
about the alignment of procedures within code sections. 

Data-aborts early in procedure entry sequences can be avoided by using a software 
stack-limit checlt like that used in APCS-R. 

Finally. the recommended way to protect BL instructions from prefetch-abort 
corruption Is to precede each BL byaMOV ip, pc instruction. If the BL faults, the 
prefetch abort handler can safely overwrite rl4 with ip before resuming execution 
at the target of the BL. If the pre fetch abort Is not caused by a BL then this action 
is harmless. as R 14 has been corrupted anyway (and. by design, contained nothing 
of value at any instant a prefetch abort could occur). 

Examples from Acorn language Implementations 

Eumple procedure calls InC 

6-342 

Here is some sample assembly code as It might be produced by the C compiler: 

; '1999 ie a function of 2 ar9s that needs one re9hter variable {Vll 
999'1 HOV ip, ep 

STMFD sp!, lal. a2, vl, fp, ip, lr, pel 
SUB fp, ip, f4 ; pointe at uvad PC 
Oil'S 
BLLT 

110V 

ap, a1 
lx$atack_overflov I 

vl, .. · 

BL !!rt 

110V .• ., Vl 

handler procedure 

use & re91eter variable 

; rely on 1U value after ffff 0 

Within the body of the procedure. arguments are used from registers. If possible; 
otherwise they must be addressed relative to fp. In the two argument case shown 
above. argl is at [ fp, t -24) and arg21sat [fp, t-20] . But as discussed 
below, arguments are sometimes staclted with positive offsets relative to fp. 

Local variables are never addressed offset from fp; they always have positive 
offsets relative to sp. ln code that changes sp this means that the offsets used may 
vary from place to place In the code. The reason for this Is that it permits the 
procedure x$stack_overflow to recover by setting sp (and sl) to some new 
stack segment. As part ofthis mechanism, x$stack_overf low may alter 
memory offset from fp by negative amounts, eg I fp, 1-64] and downwards, 
provided that It adjusts sp to provide workspace for the called routine. 

AppBildix C: ARM proc«<urfl cal standard 
1..W.·:·:·:•:::::;:::.:·:·:-::;.;:;:::::;.:~::::;:;::::::-<:=:-w;;::~:-:·:·:·:·:·:-».-.:-:-:·:·:::::::::::::::::::~h:·:·:·:·:·:·:·:·:=:;:::::::::::::::::::::~:·:·:·:=:·:=::::::::~::::::x:::.~:«.Qt.;:·:·: -:·:·:·:·:·: ::=:·:=:=:·:-x-:>:.x·:·:·:·:·:·:·:-:·:·:=:::::=: 

If the function is going to use more than 256 bytes of stack It must do: 

SUB !p, sp, t<my stack size> 
CMPS ip, sl 
BLLT lx$stack_overflow_ll 

instead of the two-Instruction test shown above. 

If a function expects no more than four arguments It can push all of them onto the 
stadat the same time as savlns its old fp and Its return address (see the example 
above): arsuments are then saved contiguously in memory with argl havlns the 
lowest address. A function that expects more than four arsuments has code at its 
head as follows: 

HOV ip, ep 
STMFD ep!, {d, a2, a3, a t) : put ar91-4 belov a tacked ar9• 
STHF'D ap!, {vl, v2, fp, ip, lr, pel ; vl-v' aaved •• neceaury 
SUB fp, ip, f20 : point at nevly creoted call- fume 
CMPS ap, el 
BLLT 1 ><$atack_overflov l 

1.DHSA fp. (vl, v2, fp, ap, pel• : restore re9i•ter vars ' return 

The store o( the argument registers shown here Is not mandated by APCS and can 
often be omitted. It is useful in support of debuggers and run-time trace-back code 
and required if the address of an argument Is taken. 

The entry sequence arranges that arguments (howeve.r many there are) lie In 
consecutive words o( memory and that on return sp is always the lowest address 
on the stack that still contains useful data. 

The time taken for a call, enter and return, with no arguments and no registers 
saved, is about 22 5-<ydes. 

Although not required by this standard. the values in fp, sp and s 1 are 
maintained while executing code produced by the C compiler. This makes it much 
easier to debug compiled code. 

Multi-word results other than double predslon reals InC programs are 
represented as an lmplldt flrst argument to the call , which points to where the 

. caller would like the result placed. lt is the flrst, rather than the last. so that It worlts 
with a C function that Is not aiven enough arguments .. 

6-343 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 
( 

( 

( 

( 



( 

( 

( 

( 

( 

( 

( 

( 

I" 

( 

( 

( 

( 

c 
c 

Exsmp/96 from Aoom IBngusge/mplemenrsrJons 

:-:·:=:::::.:::.::::::::::::::::::::::::::::::::;;:::::.:::::::.:::::'})):·Y.·:=::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=:::::::::<!::::::::: :::::::::::::::::::::::.::::-:::::::::::::::::::::::::::·:=:=::::::::::::::::::::::::::=-;::::::::::::::::::.::xx::::::::-m::::::::::::: 

6-344 

Procedure calla In other language Implementations 

ANembler 

The procedure call standard is reasonably easy and natural for assembler 
proarammers to use. The followina rules should be followed: 

• Call· frame reaisters should always be referred to explidtly by symbolic name, 
never by reaister number or implicitly as part of a register ranae. 

• The offsets of the call-frame reaisters within a register dump should not be 
wired into code. Always use a symbolic offset so that you can easily chanae the 
realster bindings. 

Fortr.a 

The Acom/TopExpress ArthuriRISC OS Fortran·71 compiler violates the APCS in a 
number of ways that preclude inter-working with C. except via assembler veneers. 
This may be chanae<f in future releases of the Fortran· 77 product. 

h .cal 

The Acornlll.. ArthuriRISC OS JSO..Pascal compi ler violates the APCS In a number 
of ways that preclude inter-workina with C. except via assembler veneers. This may 
be changed in future releases of the 150-Pascal product. 

Utp, BCPL and BASIC 

These lanauaaes have their own special requirements which make It Inappropriate 
to use a procedure call of the fonn described here. Naturally, all are capable of 
maklna external calls of the alven fonn. through a small amount ofassembler 'alue' 
code. 

Ceaer.J 

Note that there is no requirement specified by the standard concern Ina the 
production of re-entrant code. as this would place an intolerable strain on the 
conventional proarammina practices used inC and Fortran. The behaviour of a 
procedure In the face of multiple overlappina invocations Is part of the 
specification of that procedure. 

Verloua Ieason• 

This appendix Is not intended as a aeneral guide to the writlna of code-aenerators, 
but It Is worth hiahliahtina various optimisations that appear particularly relevant 
to the ARM and to this standard. 

App«<dlx C: ARM procedure caH stllndatd 
;:;:;:;:;:;:;:;: ::;:;:;:;:;::;:;:;: ;:;:;:;:;:;:;:;:~;:;:~~:;;;;:::::::::;:::;:;:~;::::;::;;;:;:::::;:;:;::::::.~:::::::::~::::~:::::::::::::::::>».:::~::::::;:::::m:~:-:::~:::::~.:o::::::::::::;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:: :;:; 

The use of a call~avi na standard, Instead of a caller-savina one. reduces the size 
of larae code lmaaes by about IO'W. (with compliers that do little or no 
lnterprocedural optimisation). 

In order to make effective use of the APCS, compilers must compile code a 
procedure at a tlme. l..lne-at·a•tlme compilation Is Insufficient. 

The preservation ol oondltlon codes OYer a procedure call is often useful because 
any short sequence ollnstructlons (lndudina calls) that fonns the body ol a short 
IF statement can be executed without a branch Instruction. For example: 

if (a< 01 b- foo()l 

can compile Into: 

CMP 
BLLT 
MOVLT 

a, 10 
foo 
b, al 

In the case of a lelll or flllt procedure- one that calls no other procedures -much 
of the standard ent ry sequence can be omitted. In very small procedures. such as 
are frequently us«! In data abstraction modules. the cost of the procedure can be 
very small Indeed. For Instance, consider: 

typedef atruct ( ••• ; int a; ••• } foo; 
int qet_a(foo• f) (return(f->a);} 

The procedure qet_a can tom pile to (ust: 

LOR al, (al, faOffset ] 
MOVS pc, lr 

This is also useful In procedures with a conditional as the top level statement, 
where one or other ann of the conditional Is fast (le calls no procedures). In this 
case there is no need to fonn a stack frame there. For example. using this. the C 
proaram: 

int sum(int 1) 

{ 

if (1 <- 11 
return(!); 

else 
return(! + aum(i-1)); 

could be complied Into: 

6-345 



Exampl/16 from Awm /anguag. Implements lions 

::::::::::::::::::: :::::::::::::::::::::::::::::::::::;:;;::::::::::~.;:;:;.::::::::::: :::::::::wz.:::::::::::::::·:=:·%:·:=::::: ::::::::::::::: ::::: ::::::::::::::::::::::::::wn.;:=:=:=:=:=:«=:::::::=~::%::::::::::;.;;::::::;.::::::::::::::::::::: :·::::::::::::::::::~:::: ::::::::::::~~~~::::: 

6-346 

S\llll CHP 
MOVSL! 

1 eln, 
MOV 

S'I'MOB 
CHP 
BLLT 
MOV 

sua 
BL 
ADD 
LDM!A 

al, fl 1 try !ast cue 
pc, lr : and 1f •ppropriate , handle quickly! 
fom a stack frame and handle the reet •• no nul code. 
ip, ap 
ap l , (vl, !p, ip, lr, pel 
ap, 8l 
overflov 
vl. al 
al, al. fl 
8\llll 

al, al. vl 
Cp, (vl, !p, ap. pet• 

reqiater to hold 1 
.. t up arqwoent Cor call 
do the call 
perCora the addition 
and return 

This is only worthwhile if the test can be compiled using only ip, and any spare of 
al-a4. as scratch registers. This technique can slsntftcantly speed up certain 
speed-<:Titical routines. such as read and write character. At the present time. this 
optimisation Is not performed by the C complier. 

Finally, it is often worth applying the tail call optimisation. especially to 
procedures which need to save no registers. For example. the code fragment: 

ext.e rn void •aalloc;(aize_t. n) 
I 

return pr1111t1ve_alloc(IIOTCCABL£81T, BYTIISTOIIOIUlS(nlll 

is compiled by the C compiler into: 

malloc ADD 
MOV 
MOV 
B 

al, al, 13 
a2, al, LSR t2 
al, 11073741824 
primitive alloc 

l S 
lS 
lS 
1N+2S - 45 

This avoids saving and restorins the call-frame registers and minimises the cost of 
interface 'sugaring' procedures. This saves five instructions and, on a 418MHz. ARM. 
reduces the cost of the mailoc sugar from 245 to 75. 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



~ 

( 

( 

( 

( 

r 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

:=: ::::::::::=:-:-::.:~:=:=:=:~-:-:: ::::::::::::::::::::::::::::: :::::::mx::~=~x:::~«~:;:~..:::::::::.~~:::::~:::::::::::~::::.::.:::: ::::::::::: ::::::::::::::::::::::::: ::::::::::::: ::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::<::::::: ::::::::::::<:::::::::::::::~ 

81 Appendix D: Code file formats 
::::::::::::: :::::::::::: =:=:=:=:=:=:=:=:=:=:·.· :::::::::::::::w:::::::~~;::::::::;;:::::::::::::::::::::::::::=:'~::::::::::::x::::::::::::::::::::::::::=:::::::::::.x::'$:~~:=!:::::::::::~:::::::::-.::::::::.::~=:=x:::::::::::.::::::f.X:::»~::x::AA::.~:::=:~:::::::::W:: 

Terminology 

This appendix deflnes three file formats used by DOE tools to store processed code 
and the format of debugging data used by DDT: 

• AOF- !vm ObJect Format 

• ALF- Acorn Library Format 

e AIF- RISC OS Application Image Format 

• ASD - ARM Symbolic Debugging Format. 

ODE language processors such as CC and ObfAsm generate processed code output 
as AOF files. An ALF file Is a collection of N:JF flies constructed from a set of AOF 
files by the LibFile tool. The link tool accepts a set of AOF and ALF files as input, 
and by default produces an executable program file as output in AIF. 

Throughout this appendix the terms hyr., ftal{ ~~«( wor~. and string are used to mean 
the following: 

Byr.: 8 bits. considered unsigned unless otherwise stated. usually used to store flag 
bits or characters. 

Hal/ wor~: 16 bits. or 2 bytes. usually unsigned. The least significant byte has the 
lowest address (DEC/Intel 6yr. Ull, sometimes called lilllr '"~"'").The add ress of a 
half word (ie of its least significant byte) must be d ivisible by 2. 

Wrw~: n bits, or 4 bytes. usually used to store a non-negative val ue. The least 
significant byte has the lowest address (DEC/In tel byte sex. sometimes called little 
endlan). The address ofa word (ie of its least significant byte) must be divisible by 
4. 

String: A sequence of bytes terminated by a NUL (OXOO) byte. The NUL Is part of the 
stri ng but is not counted in the string's length. Strings may be aligned on any byte 
boundary. 

For emphasis: a word consists of 12 bits, 4-byte aligned: within a word. the least 
significant byte has the lowest address. This is DEC/Intel. or little endian. byte sex. 
aot IBM/Moto rola byte sex. 

6-347 



UndBfiniKI Fields 

:::::::::::::::::::::::::::::::::::::::::::~~=;~:::.:::i:::::::.:::::::.;:~:=::::(.::::::::::::::::::::::::::mx::::::;~:&::=~::::::;.;:;;;::·:-:::=::.::::;:::::::::;:;:;:::;::·:.:«-:·:·:·:·::: .;:: =:-::::::::::::::::::::::::::::::::::::::::::::::::::~s:::::·:·:-:.:-:-:::-:•::.::.~:-: 

Undefined Fields 

Fields not explicitly defined by this appendix are implidtly reserved to /lrom. It is 
required that all such fields be zeroed. /lrom may ascribe meaning to such fields at 
any time. but will usually do so in a manner which gives no new meaning to zeroes. 

Overall structure of AOF and ALF flies 

Aro ob jector library file contains a number of separate but related pieces of data. In 
order to simplify access to these data. and to provide for a degree of extensibility. 
the object and library file formats are themselves layered on another format called 
Chak me Formal which provides a simple and efficient means of accessing and 
updating distinct chunks of data within a single file. The object file format defines 
live chunks: 

• header 

• areas 
• identification 

• symbol table 

• string table. 

The library file format defines four chunks: 

• di rectory 

• time-stamp 

• version 

• data. 

There may be many data chunks in a library. 

The minimumsiz.eof a piece of data in both formats is four bytes or one word. Each 
word is stored in a file in little-end ian format; that is the least signilicant byte of 
the word is stored first. 

Chunk file format 

6·348 

A chunk is accessed via a header at the start of the file. The header contains the 
number, slze.locatlon and identity of each chunk In the file. The size of the header 
may vary between different chunk Hies but is fixed for each file. Not all entries in a 
header need be used, thus limited expansion of the number of chunks Is permitted 
without a wholesale copy. A chunk file can be copied wi thout knowledge of the 
contents of the individual chunks. 

Appendix D: Code I~ formats 
;;;:;:; .;.;:;.;.;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;.;;;.;.;::.s):~:~-"-·:.:.:-:: :·:-::::::::::::::::::::t_:;:;:;:;:;:;~~:;:; .;.;;;:; :;:;.;.;:.;::;:;:::;:;:;::-.::::z~::;:;:;:~::~:::.:}W::;:;.:;:;;:~:.:>::::;.;::::.;;;.:.;.;.;:.;.:.;·: ·:·:·:-:-::;:;.:;;.;:;:M:·:·:·:· 

Graphically, the layout o( a chunk file Is as follows: 

Ct.riF!Ield 

maxC ....... 

nlmCN.Inkl 

e ntry1 

•ntry2 

•ntry •muC~~u~U• 

chuM 1 

chri "!urrCh ..... 

3woldt 

4 words per entry 

End ol he-* (3 + 4'MuCil,...) words 
Sla1 ol dille dl .... 

ChunkFileld marks the file as a chunk file. ltsvalue Is C3CBC6C5 hex. The 
maxChunks field defines the number of the entries in the header. fixed when the 
file is created. The numChunka field defines how many chunks are currently used 
in the file. which can vary from 0 tomaxChunks. The value ofnumChunks is 
redundant as it can be found by scanning the entries. 

Each entry in the header comprises foun .. ords In the following order: 

chunkld 

Offset 

size 

a two word field identifyina wtlat data the chunk file contains 

a one word field delining the byte offset within the file of the 
chunk (which must be divisible by four); an entry of zero indicates 
that the corresponding chunk Is unused 

a one word field defining the exact byte size of the chunk (which 
need not be a multiple of four). 

The chunk l d field provides a conventional way of Identifying what type of data a 
Chunk contains. It is spl it into two parts. The first four characters (in the first word) 
contai n a universally unique name allocated by a central authority (Acorn). The 

6·349 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

( 

( 

( 

I 

( 

( 

( 

( 

( 

( 

( 

c 
( 

Chunk 1116 format 

~:::;.;:;.;:;~::::::-:v:.::-.;m::;:.x:~:.c«;m.;:~~:::::::::::::::;:~~::.:;:::::::::::::::::::::::.;:;:;.;::-"!<.-..;::x::;:;:w..:::::::::::::;;*:-:*.s.;;.:::::;:.:·X:-::·:.::~~:::::.;·:::·:::;:.:.:.::::::::::::::::::;::::::::::::::::w~:.»x:~::::::::::::::::::::::: 

6-350 

remalninll four characters (in the second word) can be used to Identify component 
chunks within this universal domain.ln each part. the first character of the name is 
stored Hrst In the file. and so on. 

For AOF files. the first part of each chunk's name is OBJ : the second components 
are defined later. For AL.Ffiles. the first part is LIB_. -

Appendix D: Coda fi/6 formats 
;:;:;:;.;:::::::;~:;: :=:~=:::.:=::;:;.;:;:; :;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:::~=::.::.::y.::::::::::::~::;::~:.:!::::::-.w;.:;:;:;:;:;:;:;:::-.::~::.::::.::.::::;::;:@::::::.:::::::::::~~::::::;:~::~:::=:::.::.;.~:;:;:;:;:;:;:;:;:;:;:;:;.': 

AOF 
ARM obJect format flies are output by la"lluaae processors such as CC and 
ObJAsm. 

Object file format 
Each piece of an obJect flle Is stored In a separate, Identifiable. chunk. AOF defines 
five chunks as follows: 

Chak 

Header 
Areas 
Identification 
Symbol Table 
Strinll Table 

a .. k,.._ 
OBI_HEAD 
OBI ....AREA 
OBIJDFN 
OBI_SYMT 
081_5TRT 

Only the header and areas chunks must be present. but a typical obJect file will 
contain all five of the aboYe chunks. 

A feature of chunk flle format Is that chunks may appear in any order In the file. 
However. lan11uaae processors which must also aenerate other object formats­
such as UNIX's a.out format- should use this flexibility cautiously. 

A la"I!Ualle translator or other system utility may add additional chunks to an 
obJect file. for example a lanllU81!e-spedflc symbol table or lan11uaae-spedfic 
debUI!Ilinll data. so It Is conventional to allow space In the chunk header for 
additional chunks: space for el11ht chunks Is conventional when the AOF file is 
produced by a lanllU81le processor which eenerates all flve chunks described here. 

The header chunk should not be confused with the chunk file's header. 

Format of the AOF head• dlunk 
The AOF header Is qlcally In two parts. thou11h these appear conti11uously In the 
header chunk. The first part Is of Hxed size and describes the contents and nature 
of the obJect file. The seoond part is variable In le"l!th (specified in the fixed part) 
and is a sequence of ar ea declarations deHni"ll the code and data areas within 
the OBI..}.REA chunk. 

6-351 



Object fiHI format 

:::::::::::::::::::::::::::::=:>:=:~-:.~;a.:::::::.:~: ·:·:·:=:=:=:=:=:=:=:=:=:=:=:=: :::::::::::::::=::::::x:::.:-.x::::::::;:::~::::::::::::~~::::;::::::::;:~~.;w:.:.:·~:::::.:::::::::::: :::::::::::::::::::::::=:=:::.::=:~=:::::::::::::::::::~::.m:::.:=: 

6-352 

The NJF header chunk has the following fonnat: 

ObjKI fhlype 

V.ralon ld 

Nl.mbero4.,.. 

Number of Symbola 

Emry Addr"' wea 

Entry AddtHS OIIMC 

111 AIM HNder 

2ndA-HMd« 

nil Area Header 

Object file type 

a wordt In 1he fixed part 

5 wordt I*-head« 

(6 + 5'Nu-of AttM) wotdt in 
the N:)f header 

C5E20080 (hex) malts an object file as being In relocatable object fonnat 

VeraloniD 

This word encodes the version of AOF to which the object file complies: AOF I .xx is 
denoted by 150 decimal: AOF 2.xx by 200 decimal. 

Number of areas 

The code and data of the object file is presented as a number of separate areas, in 
the OBI_AREA chunk. each w ith a name and some attributes (see below). Each 
area Is declared In the (variable-length) part of the header which immediately 
follows t he fixed part. The value of the Number of Areas field defines the 
number of areas In the file and consequently the number of area declarations 
which follow t he fixed part of the header. 

Number of symbols 

If the obfect file contains a symbol table chunk OBLSYM! then this field defines 
the number of symbols In the symbol table. 

Appendix D: Cods fiHI lonna IS 

::::;.;.;::·:·: .;:::::::::::::::::;:;:;;;:;:;:;:;:;:;:;:;;:•:·:~~:=:=:=:·:·:.:·:·:>x·:·:-::;:;; ::::::::::;:;:;:;:;:;~::~=~-::::::::x"*::::::.:~:;.:;:;:;:;:;~.;.:;:;:;:;:;:;:::::::::::::::::::::;;;:;:;:;;;;*~-:;:;;:;::•:=:·:·:·:·:-::.:- ;:;.;:::;.;:;::: ::;:;:::;.;:;:;:;:;.:·:-:·W. 

Entry addre .. aru/ entry llddre .. offeet 

Oneoftheareas in an object flle may be designated as containing the start address 
for any program which Is linked to indude this flle. lf so. the entry address is 
specified as an <area-index, offset> pair.~ area-index is in the 
range I to Number of Areas, specifying the nth area declared in the area 
declarations part o( the header. The entry address Is defined to be the base address 
of this area plus offset. 

A value ofO for area-index signifies that no program entry address is defined by 
this AOF file. 

Format of area headers 

The area headers follow the fixed part o( the NJF header. Each area header has the 
following fonn: 

Area name (oft set into string variable) 

zeros I AT I AL 

Area size 

Number of relocations ! 

Unused - must be zero 5 WOI'ds in toeal 

Area name 

AL 

Each name in an object file Is encoded as an offset Into the string table. which 
stored In the OBLSTRT chunk. This allows the variable-length characteristics of 
names to be factored out from primary data formats. Each area within an object file 
must be given a name which Is unique amongst all the areas in that object file. 

This byte must be set to 2: all other values are reserved to Acorn. 

AT (Area attributes) 

Each area has a set of attributes encoded in the AT byte. The least-significant bit of 
AT is numbered 0. 

Link orders areas in a generated Image first by attributes. then by the 
(case-significant) lexkoiraphic order o( area names, then by position of the 
contai ning object module In the link-list. The position in the link-list o( an object 
module loaded from a library Is not predictable. 

6-353 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 
( 

( 

( 

( 

( 



(' 

( 

( 

( 

/ 

( 

( 
' 

( 

( 

( 

( 

( 

( 

ObjBCI fl/11 brmat 
RC~-:·:·::;:::::::::::::::::;.::x::::-:;m:::-~~:::;;;:;;;x::~.;:.;:::;~:v:;»»:::::::::-::xm::;-;..~:::::::::.:·:=:=:·:=:·:;:.;.:-:·:·:::-:.::: -:-::::::::::::::::::::::::::::::::::::·:::::::::::::::::::::::;.;.:$~;;:::::=:·:·:;:v .. :=:·: ·=···:·:·:·:;:.:-:::::::::::::-:=:=:=:·:=:=:·: 

BltO 

Bit 1 

Blt2 

Blt3 

Blt4 

6-354 

When ordered by attributes. Read-Only areas precede Read-Write areas which 
precede Debut areas: within Read-Only and Read· Write Areas. Code precedes Data 
which preoedes Zero-Initialised data. Zero-Initialised data may not have the 
Read-Only attribute. 

This bit must be set to 0. 

If this bit is set. the area contains code. otherwise It contains data. 

Bit 2 spe<:lfies that the area is a common block definition. 

Bill defines the area to be a (reference to a) common block and predudes the area 
havint iniUalislnt data (see Bit 4. bela-.w). In effect. the settint of Bill implies the 
set tint of Bit 4. 

Common areas with the same name are overlaid on each other by Link. The Size 
field of a common definition defines the size of a common block. All other 
references to this common block must specify a size which Is smaller or equal to 
the definition size. In a link step there may be at m06t one area of the tiven name 
with bit 2 set. If none or these have bit 2 set. the actual size of the common area will 
be sire of the lar,est common block reference (see also the section entitled Linttr 
lltfina ~~~~~~~on pase 6-'361). 

This bit specifies that the area has no initialislnt data In this object file and that 
the area contents are mlsslnt from the OBLAREA chunk. This bit is typically used 
to denote larse uninitialised data areas. When an uninitialised area is included In 
an imase. Link either indudes a read·wrlte area of binary zeroes of appropriate slz.e 
or maps a read-write area of appropriate size that will be zeroed at Image start-up 
time. This attribute Is Incompatible with the read-only attribute (see the section on 
Bit 5, below). 

Note: Whether or not a zero-initialised area is re..zeroed If the I mate Is re-entered 
is a property of Link and the relevant image format. The definition of AOf neither 
requires nor precludes re-reroint. 

Appt1ndix D: Cod• filii fonnats 
=~m:::::::::::;:.-z::::::::::::::::::::::::~::::::::::::::::::m:::::::::::.::::::::::::~x::~~::-::::::::::::::::;;:::::::::::::::::~::::::::::::::»-:::::::::::~x::~:=:=:=:=::::::x:::.:::::::::::::::::::::: :::::::::::::::::::::-:::::::::::::::::::::::::::::-:* 

BitS 

Bite 

Blt 7 

This bit spe<:lfies that the area Is read~ly. l.l nktroups read~lyareas totetherso 
that they may be write protected at run-time, hardware pennitting. Code areas and 
debu881nt tables should have this bit set. The setting of this bit is incompatible 
with the settlnt of bit 4. 

This bit must be set to 0. 

This bit specifies that the area contains symbolic debutilnt tables. Link sroups 
these areas tosethet so they can be accessed as a single contisuous chunk at 
run·time. lt Is usual for deb1J8glnt tables to be read~ly and. therefore. to have bit 
5 set too. If bit 7 Is set, bit I is ignored. 

Area size 

This field spe<:ifles the size of the area In bytes. which must be a multi ple of 4. 
Unless the Not Initialised bit (bit 4) Is set In the area attributes. there must 
be this number of bytes for this area In the OSI..}.REA chunk. 

Number of relocatlona 

This specifies the number of relocation records which apply to this area. 

Format of the areas chunk 

The areas chunk (OBLAAEA) contains the actual areas (code. data, zero- Initialised 
data. debu881nt data, etc.) plus any associated relocation lnfonnation. lts chunltld 
is OBLAREA. Both an area's contents and Its relocation data must be 
word·alltned. Graphically. an area's layout Is: 

Area1 

Area 1 reloealion 

Arean 

Area n relocation 

An area Is simply a sequence of byte values. the order following that of the 
addressing rules of the ARM, that is the least sltnlflcant byte of a word is first. An 
area Is followed by Its associated relocation table (If any). /VI area is either 

6·355 



Obj9ct me brmat 
,:;.;::'o:~;:.;.;:;:;.;:;.;:;:;:;:;:;::::~W.««<«·:;;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::;;;:~~·:::::;;.;.;.;.;:;:;:;:::::::::;:;:;:;:;:;::;;::;;:;.;.;.;;»:-;.:-:.:·:·:·:-::;:;:;:;:;:;:;:;:;::.won:::.~.;.;.; ·:·:·:·:·:-»'..:'v:.~=::::::::::::::~::::~>:«·:-o;~::: 

6·356 

completely Initialised by the values from the file or not initialised at all (ie it Is 
initialised to :r.ero In any load«! program imaae. as specified by bit 4 or the area 
attributes). 

Reloclltlon directives 

If no relocation is spedfied. the value or a byte/half word/word in the preceding 
area is exactly the value that will appear in the final ima&e. 

Bytes and half words may only be relocated by constant values of suitably small 
size. They may not be relocated by an area's base address. 

A field may be subject to more than one relocation. 

There are 2 types of relocation directive. termed here type· I and type-2. 'JYpe-2 
relocation directives coeur only in AOFverslons 1.50 and later. 

Relocation can take two basic forms: A;lliiM and PCRt!.ativc. 

Additive relocation specifies the modification of a byte/half word/word. typically 
containing a data value (ie constant or address). 

PCRelative relocation always specifies the modification of a branch (or branch with 
link) Instruction and involves the generation or a program- counter-relative, 
signed, 24·bit word-displacement. 

Additive relocation directives and type-2 PC·relative relocation directives have two 
variants: I nternal and Symbol. 

Additive Internal relocation Involves adding the allocated base address or an area 
to the field to be relocated. With 'JYpe·t internal relocation directives. the value by 
which a location Is relocated is always the base of the area with which the 
relocation directive Is associated (the Symbol IDentification field (SID) is Ignored). 
In a type·2 relocation directive. the SID field specifies the Index ol the area relative 
to which relocation is to be performed. These relocation directives are anaJoious 
to the TEXT·. DATA· and BSS-relative relocation directives found In the a.out object 
format. 

Symbol relocation involves adding the value of the symbol quoted. 

A type- I PCRelative relocation directive always references a symbol. The relocation 
offset added to any pre-existing in the Instruction is the offset of the ta111et symbol 
from the PC current at the Instruction making the PCRelative reference. Link takes 
into account the fact that the PC is eight bytes beyond that Instruction. 

In a type-2 PC·relative relocation directive (only in N)F version 1.50 and later) the 
offset bits or the instruction are initialised to the offset from the base or the area or 
the PC value current at the Instruction making the reference- thus the language 

Appendix D: Codeli/9 formats 

:=:.:·:·:·:·:·:·:~::::::=:-·:·::::;.;.r.:-:.:-:--..-..«ow.::;.:::;;:::::::::::;:;~~..:::::;;.:·:*»:-:-::::=:-.;;m:;;.;:;.:::::=:.:«~:-:.:-:-:·:·:=::::;:;:;:;:;.;.x;r.~;;:~;.;:;.;:;:;:;:;:;::::~ .. ::-:®:>:·: ·:·:·:-::;:;:;:;:;:;:;.;-:-~·:·:·.·:·:·:·:·:·:·::;;;:, 

translator. not Link. compensates for the difference between the address or the 
instruction and the PC value current at lt. This variant is Introduced in direct 
support or compilers that must also aenerate UNIX's a. out format. 

For a type-2 PC·relative symbol·type relocation directive. the offset added Into the 
instruction making the PC·relative reference Is the offset or the target symbol from 
the ba.se of the area containing the Instruction. For a type-2. PC·relatlve. Internal 
relocation directive. the offset added into the instruction Is the offset of the base of 
the area identified by the SID field from the base or the area containing the 
instruction. 

Link itself may aenerate type-2, PC·relative,lntemal relocation directives during 
the process of partially linking a set or object modules. 

Format of Type 1 relocation dlrec:dvea 

Diagrammatically: 

I ~I R I FT I S ID I 
Offlet 

Offset is the byte offset in the preceding area olthe field to be relocated. 

SID 

If a symbol is involved In the relocation. this 16-bit field specifies the index within 
the symbol table (see below) of the symbol in question. 

FT (F1eld 1')-pe) 

This 2·bit field (bits 16- 17) specifies the sll.e or the field to be relocated: 

00 byte 
01 halfword 
10 word 
II illqll111lw 

R (reloc.tloa tn~el 

This field (bit 18) has the following interpretation: 

0 Additive relocation 
PC·Relative relocation 

6·357 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 



( " 

( 

( 
\ 

/ 

/ 

I 

I 

( 

( 

( 

( 

( 

( 

( 

( 

ObjBCt file lormst 
;..;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.;.;.;:::~:.:-:::;;;);!;;;:;.;.;:;.;.;.;.;.;.;.:-:'".<«·:-:.:·:·:;;;:.;-;-:;;.;:;:;:;.;:;.;:; • ., ••• ;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;> ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;.;;;:;:;:;:;:;:;:;:;:;:;.:~;:;.;;:~-:;;:;:;.;:;:;.;:;:;:;:;:;.;!;.;.; 

6-358 

A (Additive type) 

In a type· I relocation directive, this l·bit field (bit 19) is only Interpreted If bit 18 is 
a tero. 

A=O specilies Internal relocation. meaning that the base address of the area (with 
which this relocation directive is associated) is added Into the field to be relocated. 
Azl specifies Symbol relocation, meaning that the value of the given symbol Is 
added to the field being relocated . 

Blt820-J I 

Bits 20-l I are reserved by Acorn and should be written as zeroes . 

Format of Type 2 relocation directives 

These are available from AOF 1.50 onwards. 

Offset J - . . 

10001 A I R I FT I 24-bit SID I 
The Interpretation of Offset. FT and SID is exactly the same as for type· I relocation 
directives except that SID Is Increased from 16 to 24 bits and has a different 
meaning- described below- if A=O). 

The second word of a type-2 relocation directive contains I In Its ma;t slaniflcant 
bit: bits 28 • )0 must be written as 0, as shown. 

The different Interpretation of the R bit in type-2 directives has already been 
described In the section entitled R•locatio" ~irectiws on page 6-356. 

If /\=0 (Internal relocation type) then SID Is the Index of the area. In the OBL..AREA 
chunk, relative to which the value at Offset in the current area Is to be relocated. 
Areas are Indexed from 0. 

Format of the aymbol table chunk 

The Number of Symbols field in the header defines how many entries there are 
In the symbol table. Each symbol table entry has the following format: 

Name 

I AT 

Value 

Area name 

AppendiX D: Code file formats 
:::::::::::::-;::::::::: ::::::::: ::::::::::::~:;m-<~v.:*:::::::;::~::.x-:-:-:::~:::::::::::::::::::~::::::::::::::::::::~~~:::::::::::::::::.-m-.4::::::::::::x:::::::::::::::::::::::~m;x:::::::-::::::::::::::::::-:.~w.<~:-.x:::::-'5:<-:::::::::::::::...~:=:::~:: 

N•me 

This value Is an Index Into the strlna table (In chunk OBLSTRTl and thus locates 
the character strlna representlna the symbol . 

AT 

This Is a 7 bit field spedfylna the attributes of a symbol as follows: 

Blt8 1 .. do 

( 10 means bit I set. bit 0 unset). 

OJ 

10 

II 

00 

Bit 2 

The symbol Is defined In this object file and has scope limited to this 
obfect file (when resolvtna symbol refefenoes, Link will only match this 
symbol to referenc:es from other areas within the same object file). 

The symbol Is a reference to a symbol defined In another area or another 
object file. If no deflnlna Instance of the symbol is found then Link 
attempts to match the name of the symbol to the names of common 
blocks. If • match Is found It Is as if there were defined an 
identically-named symbol of alobal scope, having as value the base 
address of the common area. 

The symbol is defined In this object file and has alobal scope (ie when 
attemptlna to resolve unresolved references. Link will match this symbol 
to references from other object files). 

Reserved by Acorn. 

This attribute Is only meaningful If the symbol is a deflnlna occurrence (bit 0 set). 
It specifies that the symbol has an absolute value, for eumple. a consta nt. 
Otherwise Its value Is relatl~ to the base address of the a rea defined by the Area 
Name field of the symbol table entry. 

BltJ 

This bit is only meaningful If bit 0 Is unset (that Is, the symbol is an external 
reference). BH 3 denotes that the reference Is case-insensitive. When attempting to 
resolve such an external reference. Link wlll lanore character case when performing 
the match. 

Btt4 

This bit is only meaningful lithe symbol is an external reference (bits 1.0 = IO). It 
denotes that the reference Is ._k. that Is that it is acceptable for the reference to 
remain unsatisfied and for any fields relocated via it to remain unrelocated . 

6-359 



~~ fikllomiBI 

·~»»»:-x::.::::.:::~::x:~::::::~~:::::::»X«o:t:t::::::::::::x:::::.::::::::::::::::::::~»::-:-::.:-:·:·: ::::::::::::: ::::::::::::::e.::~:;:·:·~>X<-:.:-:.:.:-:: ::::::::::: :::::::::::::::::;::::;::;::::::::::::o:~:=:::::::.:-:-:::::.: 

6·360 

Note: A weak rererence still causes a library module satisl"ying that rererence to be 
auto-loaded. 

IUU 

This bit Is only meaningrul irthe symbol is a defining. external occurrence (ie if bits 
1.0" II). It denotes that the definition is •troa1 and. in turn, this is only 
meaningrul ir there Is a non-strong. external definition of the same symbol in 
another obJect file. In this scenario. all references to the symbol from outside or 
the file containing the strong definition are resolved to the strong definition. 
Within the filecontainingthe strong definition. references to the symbol resolve to 
the non-strong definition. 

This attribute allows a kind or link-time indirection to be enrorced. Usually. strong 
definitions will be absolute and will be used to implement an operating system's 
entry vector which must have the fore.er bl .. IJ property. 

1Ut6 

This bit is only meaningful if bits 1.0 = 10. Bit 6 denotes that the symbol is a 
common symbol- in effect. a rererence to a common area with the symbol's name. 
The length of the common area Is given by the symbol's value field (see below). 
Link treats common symbols much as it treats areas having the common rererence 
bit set- all symbols with the same name are assigned the same base address and 
the length allocated is the maximum or all specified lengths. 

1r the name of a common symbof matdles the name of a common area then these 
are merge and symbol identifies the base of the area. 

All common symbols ror which there is no matching common area (reference or 
definition) are collected into an anonymous linker pseudo-area. 

Val•e 

This field is only meanlngrul if the symbol Is a defining ocrurrencr (le bit 0 of AT 
set) or a common symbol (le bit 6 or 1\Tset). lr the symbol is absolute (bit 2 of AT 
set). this field contains the value of the symbol. Otherwise. it is Interpreted as an 
offset rrom the base address orthe area defined by Area Name. which must be an 
area defined in this object file. 

Ar-••• 
This field Is only meaningful tr the symbol Is not absolute (ie ir bit 2 ci AT is unset) 
and the symbol is a defining ocrurrence (le bitO or' AT is set). ln this case it gives 
the Index Into the string table ofthe character string name orthe (logical) area 
relative to which the symbol is defined. 

Appendix D: Code fikl bmats 
X*«':·:·:·:-::;:;:;:;.;:;:;:;:;:;:;.;::;:.:-:«.:·:·:·:·:·:·:·:;;.:·r.~;:;:;:;:;:;:;:;:;:;:;:;:;:;~:;::.;.;@..:_.;;;;~-:;:;:::;;:::~-$:'·:-:·~:::~:0::::::;:::w::;::;;.;~;:;:;:;:;:;:;:::;:;:;:;:;:;.~::::~:·:·:·:.:·:·:-:·:·:·X'-::::::::..->::;:;:;::.e<:.:.:·:·:·:·:·:·:·:·:-:·:;;.;<i\);.;.;. 

String table chunk (OBJ_STRT) 

The string table dlunkcontains all the print names referred to within the areas and 
symbol table chunks. The separation Is made to factor out the variable length 
characteristic of print names. A print name Is stored In the string table as a 
sequence or 1508859 non-control characters tenninated by a NUL (0) byte and is 
identified by an offset hom the table's beginning. The first 4 bytes or the string 
table contain its length (including the length word- so no valid ofrset into the 
table is less than 4 and no table has length less than 4). The length stored at the 
start or the strin& table itself is identically the length stored In the OBLSTRT dlunk 
header. 

Identification chunk (OBJ_IDFN) 

This chunk should contain a printable character string (characters in the range 
(32 • 1261). tennlnated by a NUL (0) byte, giving inronnation about the name and 
version of the language translator whldl generated the obtect file. 

Unker defined symbols 
Though not part or the definition or /\OF. the definitions or symbols which the KJF 
linker defines durin& the generation of an Image file are collected here. These may 
be rderenced rrom AOF object files. but must not be redefined. 

Linker pre-defined symbols 

The pre-defined symbols occur In Base/Umit pairs. A Base value gives the address 
of the first byte In a region and the COITesponding Limit value &ives the address or 
the first byte beyond the end of the region. All pre-defined symbols beain 
ImageS$ and the space of all such names Is reserved by Acorn. 

None of these symbols may be redefined. The pre~efined symbols are: 

ImageS$RO$SBaae 
Image$$RO$SL1mit 

Image$$RW$$9ase 
. Image$$RW$$Limit 

lmage$$ZI$SBase 
ImageSSZISSLimit 

Address and limit ci the Read-only section 
oflhe i~. 

Address and limit ci the Read-Write section 
of the Image . 

Address and limit ci the Zero-Initialised data 
sedion of the image (created rrom areas havins 
bit 4 of their area attributes set and from 
common symbols which match no area name). 

If a section is absent. the Base and Llmlt values are equal but unpredictable. 

6-361 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

r 
\ 

{ 
\ 

r 
\ 

r 

( 

( 

( 

r 

( 

( 

( 

( 

c 
( 

Obsolesc.nt and obso/9111 fMturliS 

:::::::::::::::::::::::::::::.:««.:::.:-xc.-;:::;;:::~::«.x;;.:.-:=~===~::::;::: :::~::~~=::: :::::::::::::::::::::::::::::::::::x~:=%:::::::::::::::::::::::::::::::::::::::::~~:v.•:::::::::::::.:=:·:·:-:::·:-:-:-:-:;:-:-:;:~~:::::::::::::::::~::::::::*:: 

Image$$RO$$Base 

ImageSSRW$$Li mit 

includes any Image header prepended by Link. 

includes (at the end ofthe RW section) any 
zero-Initialised data created at run· time. 

The ImageSSxx$$ { Base, Limit} values are intended to be used by language 
run· tlme systems. Other values which are needed by a debugger or by pan of the 
pre·run·tlme code associated with a par1iOJiar image fonnat are deposited into the 
relevant image header by U nk. 

Common area aymbols 

FOf each common area. Link defines a global symbol having the same name as the 
area. except where this would clash w ith the name of an existing global symbol 
definition (thus a symbol reference may match a common area). 

Obsolescent and obsolete features 

6·362 

The following subsections describe features that were part of revision l.xx of AOF 
and/or that were supported by the 59x releases of the AOF linker. which are no 
longer supported. In each case. a brief rationale for the change is given. 

ObJect file type 
AOF used to define three image types as well as a reiocatable object file type. 
Image types 2 and 3 were never used under ArthuriRISC OS and are now obsolete. 
Image type I is used only by the obsolete Dbug (DIJf has Db1J8's functionality and 
uses Application Image Format). 

AOF Image type I C5E2D081 hex 
AOF Image type 2 C5E2D083 hex 
AOF Image type 3 C5E2D087 hex 

AL (Ar .. alignment) 

(obsolescent) 
(obsolete) 
(obsolete) 

AOF used to allcr.v the alignment of an area to be any specified power of 2 between 
2 and 16. By convention. relocatable obJect code areas always used minimal 
alignment (AL=2) and only the obsolete image formats. types 2 and 3, specified 
values other than 2. From now on. all values other than 2 are reserved by Acorn. 

AT (Area attributes) 

'TWo attributes have been withdrawn: the Absolute attribute (bit 0 of Ja') and the 
Pooition Independent attribute (bit 6 of AT). 

Appflnclix D: Cod11 fi/9/omrals 

:=~==~::: :;::::=:~:;:;:;:;:;:: :;:;:;:;:;: ;:;:;:;:;:;:;:;:;~=:;:::;:;:::;:;~~~:;::.::::::~);;:;:;:;~~:~::::;:;::;;::.:::::;:;~~::::::::f~::-:::~::~~;;::;:;::::..~~::;:::;:::::::;:;:;:;:;: ··::;:··:-.:.:.:.:;:;:;:;:;:;:;:;:;:;:;~:;:; :;:;:::::: 

The Absolute attribute was not supported by the RISC OS linker and therefore had 
no utility. Link in any case allows the eifect of the Absolute attribute to be 
simulated. 

The Pooition Independent bit used to specify that a code area was position 
independent. meaning that its base address could change at run·tlme without any 
change being required to its contents. Such an area could only contain internal. 
PC·relative relocations and must make all external referenoes through registers. 
Thus only code and pure data (contalninc no address values) could be 
position-independent. 

Few language~ generated the PI bit which was only significant to the 
generation of the obsolete !mace types 2 and 1 (In which it affected AA£A 
placement). Aa:otdlncly. Its definition has been withdrawn. 

Fragmented areas 

The concept of frat~f!~ented areas 'tillS introduced in release0.04 of AOF. tentatively 
in support of Fortran compilers. 'lb the best of our knawledae. fragmented areas 
were never used. flWo wamlncs against use were civen with the original definition 
on the grounds of: structural inoompatibllity with UNIX's a . out format; and likely 
ineffident handling by Link. And use was hedged around with curious restrictions). 
Acoordingly. the definition of fragmented areas is withdrawn. 

6-363 



ALF 
;;o_.;;:;:;:;:~::::>:;:~::.":>::t-:-:·:·:v:·:-»~:::;:'*~=::::::::.x~~:-:~::.:-:::::::::::::::::::::::::::~-;;~:~m~:·:·:.$.~;x;.~:;::;:-:r.:::~:::..-:::::~:::.:.:·:·:::;:.:-:·:·: .;:::::: ::::::::::=:=:~~;;;.:.:·:·:·:·::::::::::: 

ALF 
ALF Is the format of linkable libraries (such as the C RJSC OS library RISC_OSLib). 

Library file format types 
There are two library file formats described here. termed I!IW-s~il and oW-11!flt. Link 
can read both formats, thouah no tool will actually aenerate an old~tyle library. 

Currently. only the 1\corn/Topexpress Fortran· 71 compiler aenerates old-style 
libraries (which it does instead of aeneratlna AOF object flies) . Link handles these 
libraries specially. includlna every member In the output lmaae unless explicitly 
instructed otherwise. 

Old-style libraries are obsolescent and should no lonaer be aenerated. 

Library file chunks 

LIB_DIRY 

6-364 

Each piece of a library file Is stored in a separate. identifiable, chunk. named as 
follows: 

C .. ak ChakName 

Directory LIB_DIR'i 
'nme-stamp LIB_TIME 
Version LIB VSRN -new-style libraries only 
Data LIB DATA 

Symbol table OFL_SYMT - object code libraries only 
'nme-stamp OFL_TIME -object code II braries only 

There may be many LIB _DATA chunks in a library, one for each library member. 

The UB_DIRY chunk contains a directory of all modules In the library each of which 
is stored In a LIB_DATA chunk. The directory size Is fixed when the library Is 
created. The directory consists of a sequence of variable lenath entries, each an 
intearal number of wOfds lona. The number of directory entries is determined by 
the size of the LIB_DIRY chunk. 

Ap(:»ndix D: Codslil9 tonnsrs 

;:;;;.;:;::::•:·:::::::;:::.:-:::::::;:::::-:;;::;.:i:·:·:.:·:O::;o:.m:;::y,.v;:;;;::.;««(i:·:·:;:;:;;::::~:-:::::::::::::::~:::-::-r.:.;.;.;.;:;.;.;{:::::;;::::::::::::::x::;::::;::;~;.-:;:;:;:;:;m;.:.;;;..:·: .. ;;.;;;.x.;;x.w.:;~;.;.;;:.:·:·:·:::::·:·:·:-:~-:::·:·:·:·. 

This is shown pictorially In the followina dlaaram: 

lntegrli 
number 
ofW«dl 

Chunk Index 

EraryLength 

r·· - j 
I p~~ rJ 

In old~ li>r•y. 
maybe an odd 
number of byt" 

Chunklndex 
The Chunldndexls a 0 orialn Index within the chunk file header of the 
correspond ina UBJ)ATA chunk. The UBJ)ATA dlunk entry aives the offset and 
size of the library module In the library file. A Chunldndex of 0 means the directory 
entry is not In use. 

Entry length 

The number of bytes in this UBJ)IRY entry. always a multiple of 4. 

Data length 

Data 

The number of bytes used In the Data section of this LIB_DIRY entry. This need not 
be a multiple of 4. thouah it always Is In new-style libraries. 

The data section consists of a 0 terminated strina followed by any other 
information relevant to the library module. Strinas should contain only 15()..8859 
non-oontrol characters (le codes (G-31(. 127 and 128+(G-llj are excluded). The 

.. strina ls the name used by the library manaaement tools to identify this library 
module. Typically this is the name of the file from which the library member was 
created. 

In new-style libraries, an 8-byte. word·allaned time-stamp follows the member 
name. The format of this lime-stamp Is described in the section entitled LIB_'nME 
on paae 6-l66. 1ts value Is (an encoded version of) the time-stamp (ie the last 
modified lime) of the file from which the library member v.~s created. 

6-365 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 
( 

LIB_ TIME 
;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::::::::;:::::;:;:;:;:;:;:;:;:::::::::::;:;.;:;:;:;~!;l;:};;:;;:::::;:;:;:~;:;:::;:::::::::: :;:;:;:;:;:;:;:;:;:;:;:;:;:;;.;.· . ....... . . . . ,.,·,·.·.·· .:.:.:.:.:.:.:.:.:.:.:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:~:;:.;:;:;:;:;:;:;:;:;:::w.-x: :;:;:;:::::§::;:; 

LIB_TIME 

LIB_VSRN 

LIB_DATA 

6-366 

Applications which create libraries or library members should ensure that the 
LIB_DIRY entries they create contain valid time-stamps. Applications which read 
LIB_DIRY entries should not rely on any data beyond the end of the name-string 
being present unless the difference between the DataLength field and the 
name-string length allows for it. Even then, the contents of a time-stamp should be 
treated cautiously and not assumed to be sensible. 

Applications which write LIB_DIRY or OFL_SYMT entries should ensure that 
padding is done with NUL (0) bytes: applications which read LIB_DIRY or 
OFL_SYMT entries should make no assumptions about the values of padding bytes 
beyond the first. string-terminating NUL byte. 

The LIB_ TIME chunk contains a 64 bit time-stamp recording when the library was 
last modified. in the following fonnat: 

Hlgh-a:tdress byte Low.address byte 

1

1 

-- i 
1

1 
L 2 by!• microsecond count, usualy 0 

8 bytes of c.nti-MCO<Ids since 
1/ 111900 00:00 GMT 

In new-style libraries. this chunk contains a 4·byte version number. The current 
version number is I. Old-style libraries do not contain this chunk. 

A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY 
chunk. No interpretation is placed on the contents of a member by the library 
management tools. A member could itself be a file i n chunk file fonnat or even 
another library. 

Appendix D: Cod9 fi/9 formats 
::~:~:;:;~::q~-:;;:;:;:;:;:;:;.:;::;:;:;:;:;l;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;-::;-;:=::::;:;:;:;:; :;:;:;:;:;:;:;:;:;::=:;.;:;:;:;:::w::::::w::::::::::::::.::::;:::;:;::::::::::::::::=:::::::=::.:::::~::::: :;:;:;:;:;: ;:;:;:;:;:;:; :;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;~ 

Object code libraries 
Ail object code library Is a library file whose members are files in NJF. All libraries 
you are likely to use with the DDE are object code libraries. 

Additional infonnatlon is stored in two mra chunks, Ofl._SYMTand OFL_TIME. 

OFL_SYMT contains an entry for each external symbol defined by members of the 
library. together with the index of the chunk containing the member defining that 
symbol. 

The OFL_SYMT chunk has exactly the same fonnat as the UB_DIRY chunk except 
that the Data section of each entry contains only a string. the name of an external 
symbol (and between I and 4 bytes of NUL padding). OFL_SYMT entries do not 
contain time-stamps. 

The OFL_TIME chunk records when theOFL_SYMTchunk was last modified and 
has the same fonnat as the LIB_ TIME chunk (see above). 

6·367 



It IF 
::::::::::::::::::~~:~:=:=:~:·:~~=~;::;.;::::::: :=:=: :::::::::::::::::::::;:::::::::::~=:~=~%:::::::::::@..$:'«>:;~:=:=~:;::-:;::.;:;:;::x-:=::.::::::::::::::::;:;:::;:;:;:;:;:~:.:::::::•:=:=:=:~-::r~:~::::::::::::::::::::~:;:-:;:::;:::::~:::::* 

AIF 
AIF is the fonnat of exea~table program files produced by linking M)F flies .. 
wmple AIF files are IRunlffiaie files of appllcallons coded inC or assemblet 

Properties of AIF 

6-368 

• All AIF imaae Is loaded Into memory at Its load address and entered at Its first 
word (compatible with old-style Arthur/Brazil ADFS images). 

• All AIF image may be compressed and can be self-decompressing (to support 
faster loading from Ooppy discs. and better use of Ooppy-disc space). 

• If created with sui table linker options. an AIF image may relocate itself at load 
time. Self-relocation is supported in two. distinct senses:-

• One-time Position-Independence: A relocatable imaae can be loaded at 
any address (not lust its load address) and will execute there (compatible 
with version 0.03 of AI F). 

• Specified Working Space Relocation: A suitably created relocatable Image 
will copy Itself from where It Is loaded to the high address end of 
applications memory. leaving space above the copied image as noted In 
the AIF header (see below). 

In addition. simi lar relocation code and similar l inker options support 
many-time position independence of RISC OS Relocatable Modules. 

• AIF images support being debugged by the Desktop Debugging Tool (001'). for 
C. assembler and other languages. Version 0.04 of AIF (and later) supports 
debugging at the symbolic assembler level (hitherto done by Dbug). Low-level 
and source-level debugging support are orthogonal (capabilities of debuagers 
notwithstandi!li. both, either, or neither klnd of debugging support may be 
present In an AIF Image). 

Debugging tables have the property that all references from them to code and 
data (if any) are In the form of relocatable addresses. Alter load ina an lmaae at 
Its load address these values are effectively absolute. All references between 
debugger table entries are in the form of offsets from the beginnina of the 
debugging data area. Thus. following relocation of a whole lmaae. the 
debugging data area itself is position Independent and can be copied by the 
debugger. 

ltppendix 0: Cods fiiB fotmats 

:::::::~:;;::r.:::::::·:·:·:·:.:.:-::.::;.;::::::::.;~*::::::::::::::::::;:::::=~:::::.-;::::·: ::::::::::=:=:~=:;:::=~::m:=~:=:~:=:=:~x:::;;;:;:;:~;:;:;:::~:::o.~:.: ·:=:·:·:=::::::::::::::::::::~::::~:;:::;:.:•:.:·:««-:•:<'~; 

layout of an AIF Image 
The layout of an AIF iJna~~e Is as follows: 

......,., 
Co~l"'9 

0.oompNMion dU This dlda Ill poeltlon-lndepen<Mnt 

~oade TN1 ODde '-potllon-lnd~n<Mnt 

The header Is small. fixed In stu:. and described below. In a compressed All' lmaae. 
the header is NOT compressed. 

Once an image has been decompressed-or If It Is uncompressed in the first place 
-It has the following layout: 

.....,., 
Re»only-

Read-write -• 

Debugging dlda (Ojlllonal) 

Sek.._., ODde MUll be poeillo,...lndopendent 

Relocen lilt Lill Ill wordt 10 relocale, • nnlnalltd by ·1 

Debugging data are absent unless the iiTICI8e has been linked appropriately and. In 
the case of source-level debugalng. unless the constituent components of the 

· Image have been compiled appropriately. 

( 

( 

( 

( 

( 

c 
( 

( 

( 

( 

( 

( 

The relocation list Is a list of byte offsets from the bealnnlng of the AJF header. or ( 
words to be relocated , followed by a word contalnlna -I. The relocation of 
non-word values is not supported. 

( 
6-369 

( 

( 



( 

( 

( 

( 

( 

(' 

( 

( 
' 

( 

( 

( 

( 

( 

( 

c 

AIF hHder layout 

:::·::::::::::~::;o;-~~«:~:'~:::::::::::::::::::::·:·:=:=:=:·:·:·:·:·::::::::;.;.;::::::::::·:·:·:=:=:=:·:-:::«-x-:.:-:·:·:·=·:=: ·:=:·:-:-:·:·:·:·:·:·:-:::=:-:.;·:·:~:-: .. ;;.:::·:·:·: ·•••• ::: :=:=:·:·:=:::::::::::=:::-:;..:>~::::::::::::::::w::.:-:::::::::::::::-:~·:=x:»:=::::: 

Nter the execution of the self-relocation code- or if the lmaae Is not 
self·relocatina- the ima8e has the followina layout: 

HNodtr 

Read-only•ea 

RMd-wTtle ... a 

Oebugglnq dala (Cil(loNII) 

At this stage a debuaaer is expected to copy the debuaalll8 data (If present) 
somewhere safe. otherwise they will be OYerwritten by the zero-Initialised data 
and/or the heaplstadt data of the program. A debuager can seite control at the 
appropriate moment by copylna. then modifyin8. the third word of the AIF header 
(see below). 

AIF header layout 

BL Oeoompressedeode 

BL S.WAelocCode 

8l ZerolnltCode 

BllmageEn1r)'Point 

SWIOS_Exn 

lm~~ge ReadOnly lia 

lm-ae AeadWrltelia 

Image o.bug •lze 

Image rero-lnlt sire 

Image debug type 

lm-aebiM 

Work tpiiOe 

Four r-rvecl words (0) 

Z.ro·lnl code (t6 words) 

6-370 

I 

BLNV 0 I the image Ia not oompreSMd 

BLNV 0 I the ~ Ia notee4f·relocellng 

BLN.VO I the Image has none 

BL to make header addt .. Nble via At4 

Justin case silly enough to ,.tum 
Includes header tlze and lflY padding 
Exact size • a mullple ol 4 bytH 

Exact size • a mullple ol 4 bytes 

Exact sire • a mul!Pe ol 4 byt" 

Exact aiD • a mul!Pe ol 4 bytH 

0,1.2 or 3 (-below) 

AddrMI of the AIF heade< • Nl by ..... 
a Mlf·movlng ...,..,._Image 
Min wO<k tp110e • In bytes · 10 be r-rvecl by 

.... ad« • 32 words long 

~ 0: Code fi/6 formats 
::...;:.;-::;:;:;:;:;:;~:;:;:;;:;::;~::~~::.::;:;:::::::::x::::~-x.::;:;:;:;:;:;:;:;::::::::::::::::;~;:;:;:;:;:;:;:;:;:;:;::::~:;:;:;:~:;:;;;:~~:::::~x:~::;:;:::::::z.;::::;::::::::;:;:; :;:;:;:;:;:;:;:: :;::::=:::::: ;:;:;::~$;:;:;:;:;:;:;:; :;:;:;:;:;::::;:;:;:;:: 

BL is used everywhere to make the header addressable via Rl4 (but beware the 
PSR bits) In a position-Independent manner and to ensure that the header will be 
position-independent. 

It Is required that an Image be re-enterable at Its first Instruction. Therefore. after 
decompression, the decompression code must ~t the first word of the header to 
BLNVO. Similarly, followlnaself·relocatlon, the second word of the header must be 
reset to BLNV 0. This causes no additional problems with the read-only nature of 
the code seament- both decompression and relocation code must write to It 
anyway. So. on systems with memory protection. both the decompression code 
and the self-relocation code must be bracketed by system calls to chanae the 
aa:ess status of the read-only sedlon (first to writable, then back. to read-only). 

The image debua type has the followtna meanlna: 

0: No debualna data are present. 

I : Low-level debualna data are p~t. 

2: Source level (ASD) debuglna data are present. 

1: I and 2 are present together. 

All other values are rese~ by N:om. 

Zero-Initialisation code 
The Zero-initialisation code Is as follows: 

BIC IP, LR, t&FC000003 : clear atatua bits -> header • 'C 

ADO IP, IP, .. ; -> liii&<Je lludOnly size 
LDHil'. IP, IRO,Ill,R2, 1131 : varioua aizea 
CHPS R3, tO 
HOVLES PC, LR 1 nothinq to do 
SUB IP, IP, 1&14 : i010qe bue 
ADD IP, IP, 110 1 + RO aize 
ADD IP, IP, Rl ; + Rll aize - base o! 0-init uea 
MOV RO, tO 
MOV Rl, to 
MOV R2, t O 
MOV R4, t o 

Zero Loop 
STMil'. IPI, IRO, Rl,R2,R4l 
SUBS ltl, lt3, t U 
BGT ZeroLoop 
MOVS PC, LR : 16 vorct.a in total. 

6·371 



Sstf rlllocalion 

;:;:;:;::;;:;;;:;:;::~:-:::>:t:-::;.:-:.:·:·:·:·:·:·:=::::;:;:;:;:;:;:;:;:;:;:;::::~·:·:·:•:·:.;:.;;:~:.;.:;(-?;:¢:;:@9'$.•::;:;.;.;:;.;:;:;:;:;:;:;:;:;:;::::::::>-x:-::s-;~;;;;:;~:;v::.:-:t::;.; :;:;:;:;:;:; :;:;:;:;:;:;.;:;~.:;;:;;;;;.~:-::::;:;.;:;:::;.::;:;:; 

Relationahlp becween h•der alz .. and linker pre-defined aymbola 

Self relocation 

6·372 

AIFHeader . ImaqeBase 

AIFHeader. Imaqe.Base + 
AIFHeader.ROSize 

AIFHeader .ImaqeBase + 
AIFHeader.ROSize + 

AIFHeader.RWSize 

AIFHeader.ImaqeBase + 
AIFHeader.ROSize + 

AIFHeader.RWSize + 
AIFHeader . ZerolnitSize 

• ImaqeSSROSSBase 

• ImaqeSSRWSSBase 

• Imaqe$$ZIS$Base 

- ImaqeSSRWSSLimi t 

Two kinds of self-relocation are supported by AIF and one by AMF: for 
completeness. all three are desaibed here. 

One-time position independence is supported by relocatable AIF tmaaes. 
Many-time position independence is required for AMF Relocatable Modules. And 
only AIF imaaes can self•move to a location which leaves a requested amount of 
workspace. 

Why are there three different kinds ol self·relocatlon? 

• The rules for oonstru<:tina RJSC OS applications do not forbid acquired 
position-dependence. Once an application has beaun to run. it is not. in 
aeneral. possible to move It, as it Isn't possible to find all the data locations 
wh ich are belna used as position-dependent pointers. So. AIF lmaaes can be 
relocated only once. Afterwards. the relocation table is over-written by the 
appl ication's z.ero-inltialised data, heap, or stack. 

• In contrast. the rules for ronstru<:tina a RISC OS Relocatable Modules (RM) 
require that it be prepared to shut Itself down. be moved in memo1y. and start 
Itself up aaain. Shut-down and start·up are notified to aRM by special service 
calls to it. Clearly, aRM must be relocatable many times so Its relocation table 
Is not overwritten after first use. 

• Relocatable Modules are loaded under the control or a Relocatable Module 
Area (RMA) manaaerwhlch decides where to load a module Initially and where 
to move each module to whenever the RMA Is reoraanised. ln contrast. an 
application is loaded at its load address and is then on its own until it exits or 
faults. An application can only be moved by Itself (and then only once, before 
It begins execution proper) . 

.Appendix D: Code file fonnars 

:-:-:·:«=*:::::::::::::~;:;.;:;.:::·:·:·:·:•:;:::•:•:::::::::::::::::: ::::::::::~~::=:::::::.;:;.;.;;~:=:~<:.;::m:;::::}~-»:~~:=:·:..~-=-~:::::~::::::::::::~.:;.~»S»-:::::•:•:·~=:=~r-:•:=:-:.:>:-:·:·:·:·:::.:·:·:.:.:·:~·=·=·· 

Self-retocatlon code for relocatable modul• 
In this case there Is noAIF header. the oodemust be executable many times. and It 
must be symbolk:lllly addressable flom the Relocatable Module header. The oode 
below must be the last area of the RMF tmaae. followlna the relocation list. Note 
that it is best thouaht ol as an additional area. 

When the foil owl Ill code Is executed, the module lmaae has already been loaded 
aVmoved to its taraet address. It only remains to relocate location-dependent 
addresses. The llstololfsets to be relocated. terminated by (-I), immediately 
follows End. Note that the address values here lea 1 RelocCode I ) will appear 
In the list or places to be relocated. allowlna the codete be re-executed. 

I MPORT lhllqeURO$$hoel 
EXPORT I_ RelOCCocle I 

_ llelOCCode l 
LOR Ill, . 

SUB 
SUB.$ 

MOVE OS 
LOR 
ADO 
AOR 

MlocLoop 
LOR 
CHNS 
IIOVL&S 
LOA U, 
AllO 
STR 

IP, 
ttl, 
PC, 
IP, 
!P, 
R2, 

RO, 

M, 
PC, 
(I P, a OJ 
u. 
It), 

a e looCode 
PC, fl2 
IP, Ill 
Lit 
l1M9 ...... 
I P, JU 

lnd 

( 10.2 ), •• 

fl 
LIO. 

u. Ill 
(It, ao1 

1 "•loctoop 
lleloC:C<>Oe OCO l_ll<lloOCcxloo I 

: where the 1fiiA9• 1a Un-ed .e ... 
: referanoed fron. t he ltK header 

: valve of _ltelOOCode (before reloca tion) 
1 v aha• ot l'elooC.ode nov 
1 ~locettoD otfMt 
1 ~•locate by 0 ao nothinq to do 
1 l •qe t>a•• prior to relocation ... 
1 •• • where the 1•q• rea lly u 

;ot lilt ten~inatoc? 
r•• -> return 

1 word to relocat-e 
rel ocate 1t 

1 e tor• lt back 
1 and do the next one 

Im•9"Bue DCO II,..91t$$ROUBue1 
&nd : t be Uat of loefltlon• to reloe~~t• 

; atarta bare (each 11 an oftaet trofll the 
: baa• of tM .oc:tule ) a.nd Ia t.em~.lnated 

: by -1. 

Note that thi.s oode. and the associated list of locations to relocate. is added 
automatically to a relocatable module tmaae by Link (as a consequence or uslna 
Link with the SetUp option Module enabled). 

Setf-move and aelf·relocatlon code for AIF 
This code Is added to the end ol an AIF imaae by Link. Immediately before the list 
or relocations (terminated by -I). Note that the code Is entered via a BL from the 
second word or the AIF header so. on entry, R 14 points to Alfl-leader + 8. 

6·373 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



(~ 

( 

( 

( 
\ 

/ 
~ 

( 

( 

( 

( 

( 

( 

\ 

( 

( 

( 

SBII rBiocalion 
Y.-::::::::: ::::::::::::::::::::::::::::::::::;:::;;.;:;.:-:;:;»'>:.-,;~::::-;:::::::::::::::::;:>.~::::::::::::::::::::~«-»%~:·~ :::::=:·:·:.: .. _.:.:::: :·:=:=:=: =:=:=:·:=:=··:=:=:=:=:=:·:=:·:·:·:·:=:=:-:::::::.~ :::::::::::::::::::::::::::::::::::::::::::::::::w.::::::;.:::~~:::::::::m .. -J::: 

6-374 

~eloOCcxle ROUT 
IIC IP, L~, t&FCOOOOOl ; clear flaq bit•: - > Alr header • &01 
sua IP, IP, .. : -> hoedor addr••• 
MOY M, U FBOOOOOO ; BLNV I O 
Sf~ M, (IP, 1 41 ; won't be ealle<t a9a1n on lmaqe re.-.entry 

; doe I the code need to be ftiiOVe<l? 
LD~ ~·. (IP, H 2C) ; rain free space requirement 
CHPS M. 1 0 ; 0 ~> no move. juJt relocate 
1&0 "-locateOnly 

:calcu l at e the a rro\lnt to flOVe by ..• 

LD~ RO, ( IP , 1•20) 
ADD u. Rt. ~0 

Sil l GetE.nv 
AD~ u. Bnd 

0 1 LOA ~o. (R2 ) . 1 4 
CIOIS ~o. II 
IN& U OI 
sua u. ~~. u 
SUBS ~o. u. ~2 

au l'el oea t.Onl y 
IIC ~o. ~o. 115 
"DO IU, R2, M 
"D~ u . UO I 

tm~.GJ• r.ero-tnlt J 1t• 
Spice to leave • ftlin !r .. + t:ero lnlt 
MemLlmit -> Jtl 
-> EMf 
lo•<l ce l ocatlon offtet.~ l ncre•nt R2 
tenalnator? 
No. t:o loop aqal n 
Mellll.tatt - tr .. space 
I MUnt to -.ave by 
not enouqh tpac. to JK)Va .•• 
a aJltipl• of 1 ' ... 
£rui + eht ft 
interm.<itate li111J t tor copy- u-p 

: copy ave.rythin9 \IP meft!IOry , ln descending addr••• o rct.r , branch l i'Q 
t o t he cop i ed copy loop as aoon as tt has been copied. 

0 2 LDHDB Jt2! , I R4-R7 I 
STI'IOB R)! • I R4 -~7J 

CHP R2, u ; copied the copy loop? 
aor \80 2 ; not yet 
AOD M, PC, RO 
MOY PC, R4 ; jU"I' to copied copy code 

03 LDHDB R21, (R4 • R7J 
STMDB R31, IR4-R7) 

CMP R2, IP : copied ev.ryth.lnq? 
8Gf \803 : not yet 
ADD IP, IP, RO : load a<ldrets of code 
ADO LR, LR, RO : relocated return addt'ltll 

Reloc• t.Only 
LD~ ~1. (IP, U 21) : he•d•r + '21 • code baa• aet by Llnk 
suas ~1. IP, JU : r•loca tion offt•t 
MOVEQ PC, u ; relocate by 0 ao nothin9 t o do 
STR IP, [IP, 1•21) ; new 11Mq• base • IICt\lal lo•d llcldra•• 
AD~ IU , End ; •tart of reloc li•t 

Appsndix D: Code f/18 lonnats 

:;%$~;:;:;:;:;:;:;:;:::;:;::::.~~::::;;::::?$::::::;:::: :;:;:;:::::::::~::::::;:;:;:;:;:;:;:;~$'Q;;:;:;::~:::::::::::::~:;~~;:;:;:::::::::::::m::::::;:;:;:;:::::::::~:;:;:;:;:;:;::::=::::::::::~«-:=::::::;:;~q:;:v,.::::x::::::-;::;:;::::::::=::::::::;:;:::: 

RalocLoop 
LD~ RO, R2). 
CHNS AD, fl 
MOYEOS PC, u 
LOR u. [IP, 
ADO ~3. U , 
sn u. [IP, 
B ~loet.oop 

!.nd 
relocate 

14 

RO) 
Rl 

~0) 

oUeet of vord. to relocate 
t e nJ.na tor? 
yee •> r.turn 

1 vord. to reloca t e 
.relocate 1t 
e tore it baclt 
a nd do the next one 

: the Uat of off•eta of location• to 

1 at a .rta here; t a caln.ated. by - 1. 

6-375 



ASD 
::x: :=:=:=:=:~:::::::::=:-~~-:.::::::::::::~::::~ ... :.s:::.::x::::~x::::::::::::::-::::.::.x:::::::~:::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::m:::::::::::~=:~~=:~=:~·x~~=::x.::::~~~~·~:}~:::.:=:~~"*~:::::::~~::::::::::: 

ASD 
Acknowledsement: This desisn is based on work orislnally done for Acorn 
Computers by Topexpress Ltd. 

This section describes the fonnat of symbolic debu1111i ns data sene rated by ARM 
compilers and assemblers runnins under RISC OS and used by the desktop 
debuaaer DDT. 

For each separate compilation unit (called a wctiol!) the compiler produces 
debu~~t~lns data an a special AREA of the object code (see the section entitled AOF 
on p;~~~e6-J51 for an explanation of AREAs and their attributes). Debussfna data 
are position independent. containins only relative references to other debu~~t~ins 
data within the same section and relocatable references to other 
compiler-senerated AREAs. 

Debut~~~ ins data AREAs are combined by the linker into a sinsle contisuous section 
of a pr011ram imase (see the section entitled AIF on pase 6-'368 for a description of 
Application lmase fonnat). Because the debussins section Is 
position-independent. the debusser can move It to a safe location before the 
imase starts executing. U the imase is not executed under debusser control the 
debussfns data Is simply overwritten. 

The fonnat of debussinll data allows for a variable amount of detail . This 
potentially allows the user to trade off amons memory used. disc space used, 
execution time, and debussins detail. 

Assembly-lansuase level debussfns is also supported. though In this case the 
debusstns tables are senerated by the linker. not by lansuage processors. These 
low-level debussins tables appear in an extra section Item. as If senerated by an 
Independent compilation. Low-level and hlsh-level debussfns are orth01100al 
facilities, thoush DDT allows the user to move smoothly between levels If both sets 
of debussins data are present in an fmase. 

Order of Debugging Data 

6-376 

A de bus data AREA consists of a series of i~Rs. The arransement of th~ Items 
mimics the structure or the hish-levef lansuase Pr<lir<lm Itself. 

for each debus AREA. the first item is a section item. llivinsslobal Information 
about the compilation. incfudilli a code identifyins the lansuase and naas 
indicatfnll the amount of detail included in the debu~~t~ins tables. 

Each data. function. procedure. etc .. definition in the source prQ8ram has a 
correspond ins debug data item and these items appear in an order correspond ins 
to the order or definitions in the source. This means that any nested structure In 

Appendix D: Cods fils formats 

;:·.;:;:;.;:;:;:; :·:;:;:·:;:;:~::::®."«<o::.::;:;:;:;:;:;:;~;:~;x:;.~:;::::~;;;;o;;:;:;:;.x-::;:~:;:;:t::~;:OA.V..X:::::.;:;:;::::::•~::::.:~::-::::;:;:;:;.;,.-=:;;:;:;:;:;::;:~:;:;~:;$;:;: ;:;:;:;:;:;:;.; :;:·.:·:·:·:·:-::;:;. ;:;:;:;:;:;:;:;:;:;:;:;:;:;~:::::::;:;:;:;. 

the source Pr<liram Is preserved In the debussllli data and the debusser can use 
this structure to make deductions about the scope of various source-level objects. 
Of course. for procedure definitions. two debusltems are needed: a procedue 
item to mark the definition Itself and an ••dproc Item to mark the end of the 
procedure's body and the end of any nested definitions. If procedure definitions 
are nested then the procedure- endproc brackets are also nested. Variable and 
type definitions made at the outennost level. of course. appear outside of all 
procedure/endproc Items. 

Information about the relationship between the executable code and source files is 
collected tosether and appears as a IWIIfo Item. which is always the final item in 
a debuflsinll AREA. Because or the c lansuase's linclude facility, the executable 
code produced from an outer-level source file may be separated into disjoint 
pieces Interspersed wtth that produced from the included files. Therefore. source 
files are consideted to be collections or 'ffa8ments', each correspondins to a 
contisuous area of executable axle and the filelnfo item Is a list with an entry for 
each file, each In tum contain ina a list wtth an entry foreadl frasment. The fileinfo 
field in the section Item addresses the fileinfo Item Itself. In each procedure Item 
there is a 'file entry' field which refers to the file-list entry for the source file 
contafnfns the procedure's start; there Is a separate one in the endproc item 
because It may possibly not be In the same source file. 

Representation of Data Types 
Several of the debusstns data Items (ell procedure and variable) have a type word 
field to identify their data type. This field contains, In the most significant J bytes. 
a code to identify a base type and, In the least sisnificant byte. a pointer count: 0 to 
denote the type Itself: I to denote a pointer to the type: 2 to denote a pointer to a 
pointer to ... : etc. 

for simple types the code Is a positive fnteser as follows: 

void 0 (ali codes are decimal) 

slsned integers 
sinsle byte 10 
half-word II 
word 12 

unsisned fntesers 
sinsle byte 20 
half-word 21 
word 22 

6-377 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

c 
( 

( 

( 

f 

( 

( 

( 

( 

( 

( 

( 

( 

( 

Repr9SMIBtion of Source Filii Positions 
;:;.;.;.;:;.;.; .;:;:;:;:;:;:;:::::~:::::;-"*;::;:;.;;;::::::::;:~:·:=:--.«~·:·:::.:~·}:~~~~~::.x::~::;:;:; :;:;:;:;:;:;:;:;::::::::::<::~!=?.=::::::::::::::: :;:;::::::: ;:;:;:;:;:;:;:;::;::;;:;:,:;;:;.;.;.;:: .;.;.;.;.;:;:;:;:;:;:;:;:;:;:;::::<~w.:::::::;:;:;:;::::m:::;:;:;:;:;:;:;\(( 

Ooatlng point 
Ooat 30 
double 3f 
long double 32 

complex 
single complex 41 
double complex 42 

functions 
function 100 

For compound types (anays, structures. etc.) there is a special kind of debug data 
Item (• rTIIJ • .tn1d , etc.) to give details or the type such as array bounds and field 
types. The type code for such types is negative being the negation or the (byte) 
offset or the special item from the start or the debugging AREA. 

If a type has been given a name In a source program. i t will give rise to a type 
debugging data Item which contains the name and a type word as defined above. lf 
necessary. there will also be a debugging data item such as an anay or struct to 
define the type itself. In that case. the type word will refer to this item. 

Enumerated types inC and scalars in Pascal are treated simply as lnte(!er 
sub-ranges of an appropriate size. the name information is not available In the this 
version or the debugging format. Set types in Pascal are not treated In detail: the 
only Information recorder for them is the total size occupied by the ob(ect In bytes. 

Fortran character types are supported by a special kind or debugging data Item the 
format or which is yet to be defined. 

Representation of Source Ale Positions 
Several of the debugging data Items have a.ourcepoe field to identify a position In 
the source file. This field contains a line number and character position within the 
II ne packed Into a single word. The most significant I 0 bits encode the character 
offset (0-based) from the start of the line and the least- significant 22 bits give the 
line number. 

Debugging Data hems In Detail 

6-378 

The first word of each debugging data item contains the byte length of the Item 
(encoded In the most significant 16 bits) and a code identifying the kind or Item (in 
the least significant 16 bits). The following codes are defined:-

.Apptmdlx D: Coda fi/8 tonnats 
:--::m:::::::~;:.-m::::::::::~:;;~&i:·:·:=:: :::::::::::::::::w..:=~-::::::::::::~~:=:::::::::::::~::~::::~::~~::::~:wm*:::::::::::::::::::.-;::x~:::::::x:::::::~:::::w:::::::::-~~:::::::::m<.:;:::~~::::;:::::::::::::::::,::..:;:::.:=:=: 

I section 
2 procedure 
3 endproc 
4 variable 
5 type 
6 struct 
7 array 
8 subnln(!e 
9 set 
10 fllelnfo 

The meaning or the second and subsequent words or each item is defined below. 

Where Items lndude • string field, the string Is packed Into successive bytes 
beginning with a lell&lh byte. and padded at the end to a word boundary (the 
padding value is Immaterial, but NUL or·· Is preferred). The length or a string is in 
the range (0- 255( bytes. 

Where an item contains a field giving an offset in the debugging data area (usually 
to address another Item). this means a byte offset from the start or the debU88ing 
data for the whole section (In other words. from the start or the section item). 

Section 
A section Item Is the first Item d each section of the debU881ng data. 

l anguage:8 
debuglines:l 
debugvars: I 
spare:l4 
debugverslon:8 
codeaddr 
dataaddr 
codeslze 
dataslze 
flleinfo 

one byte code identifying the source language 
I ~tables contain line numbers 
I ~tables contain data about local variables 

one byte version number of the debugging data 
pointer to start or executable code in this section 
pointer to start of static data for this section 
byte size of executable code in this section 
byte size of the static data In this section 
offset In the debu881nt data dthe file Information for 
this section (or 0 If no fllelnfo is present) 

debug sire total byte length or debualng data for this section 
name or nsyms string or lntqer 

The name field contains the program name for Pascal and Fortran programs. For C 
programs It contains a name derived by the complier from the main file name 
(notionally a module name). Its syntax Is similar to that for a variable name in the 
source language. For a low-level debugging section (languace = 0) the field is 
treated as a 4 byte lntqer giving the number or symbols following. 

6-379 



D9bugglng Data nems In Detail 
,:;:;:;:;:;.;:;.;:;:;.;.;.,.::;;:~;:;~:;:;:;:;:;:::::~~:::;::~;:::...~:x:::~-::::;:;:;:;:;:z;:=;:::;;;:;;;:;::":=:::>:::!=-:::::::::::::::::::.:::::::::;:;:;:;:;:::::;:;;:.:;:;:::;:::~;:;::,:;;;;:;.;:: ·,·.·.::;;.;:;:; :;:;:;:;:;.;.;.;.;:;:;.;.;.;:;:;:; :;::<>.:.:;:;~:;:;:;:;:;:;:;:;:;:;:;::~~~ 

6-360 

The following language byte codes are defined:· 

0 
I 
2 
l 
other 

Low-level debuiiing data (notionally, assembler) 
c 
Pascal 
Fortran77 
reserved to Acorn. 

The fllelnfo field is 0 If no source file information is present. 

The debugverslon field was defined to be I : the new debugversion for the extended 
debuiilni data format (encornpassini low-level debugging data) is 2. For low-level 
debuiilni data. other fields have the following values,. 

laniuage 
codeaddr 
dataaddr 
codesize 
datasiz.e 
filelnfo 
nsyms 
debuisize 

0 
lmageSSRO$SBase 
lmageSSRWSSBase 
lmageSSROSSLimit • lmageSSROSSBase 
lmageSSRWSSLimlt -lmageSSRWSSBase 
0 
number of symbols within the following debugilni data 
total size of the low-level debuigini data Including the 
size of the section item 

The sedlon Item is immediately followed by nsyms symbols. each having the 
followini format:· 

stridx:24 
llaiS:8 
value 

byte offset in string table of symbol name 
(see below) 
the value of the symbol 

The flags field has the followini values:· 

011 the symbol is a locaVilobal symbol 
+ (there may be many local symbols with the same name) 
0121416 symbol names an absolute/code/datafzero-lnlt value 

Note that the linker reduces all symbol values to absolute values. The flags field 
records the history. or oriiin. of the symbol in the imaie. 

The strini table is in standard NJF format. It consists of a length word followed by 
the strinis themselves, each tenninated by a NUL (0). The length word includes the 
length of the lenith word. so no offset into the string table Is less than 4. The end 
of the string table is padded to the next word boundary. 

App9ndix D: Coda fi/8 formalS 

$:-":;$};-~:::;;.; :::::::::::::::::::::::::::::;:;:;:§:~::;:;:;:;:;:;::.;?;~::;:;:::;::::::.;:;.;:;:;.;-:.:-::::;;;:;:;:~.;:;~::::::::::::::::::::·:·:::~~;;;:;:~::::::x.:-x:::: :::::::::::::: :;:;:;:;;:.~~;;;:;:;:;: ;::::::::.:·:·:·:-:: ::::;.; :;:::::::::::::f.;;_:;:;:;:;:;.; 

Procedure 
A procedure Item appears once for each procedure or function definition in the 
source program. My definitions with the procedure have their related debugging 
data items between the procedure Item and the matchlni endproc item. The 
format of procedure Items Is as follows:· 

type 
args 
sourcepos 

startaddr 
bodyaddr 

endproc 
fileentry 
name 

the return type If this is a function. else 0 
the number o( arguments 
a word encodln& the souroe position of the start of the 
procedure 
pointer to the first Instruction of the procedure 
pointer to the first instruction oft he procedure body (see 
below) 
offset of the related endproc Item 
offset of the file list entry for the source file 
strina 

The bodyaddr fle.Jd points to the first Instruction after the procedure entry 
sequence, that Is the first address at which a high-level breakpoint could sensibly 
be set. The startaddr field points to the bqinnlni of the entry sequence. that is the 
address at which control actually arrives when the procedure is called. 

A label in a souroe program Is represented by a special procedure item with no 
matching endproc (the endproc field Is 0 to denote this). Pascal and Fortran 
numerical labels are converted by the compiler Into strings prefixed by 'Sn'. 

For Fortran77. multiple entry points to the same procedure each give rise to a 
separate procedure Item but they all have the same endproc offset referring to a 

single endproc item. 

Endproc 
This Item marts the end of the debuiging data items belonging to a particular 
procedure. It also contains Information relatina to the procedure's return. Its 

format is as follows:· 

souroepos 

endaddr 

filentry 
nretums 
retaddrs ... 

a word encodin& the position in the source fi le of the end 
of the procedure 
a pointer to the code byte AFTER the compiled code for 
the procedure 
offset of t he llle list entry for the procedure's end 
number of procedure return points (may be 0) 
pointers to the procedure-return code 

6-361 

( ' 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 



( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

0900gglng Data IIIHTIS In 09tall 
;:;:;:;.;::~®»".i-:•:•:·:-:-;:;.;:;.;.;.~;;:;;.;;;.;;;:;.;;;:::::;::;.;.(:;:::;:::;:;:;:;:;:::;:;:;:::;:::;:;::::;:-:9~:;;;:;;:;:;.;::·:·:·:·:-;;:.:·:·:·:·:. ;.;::·:·:·:·:· :·:·:·:.:.:-:-x-:.:-:-:-:: :·:=:=:·:·:::-:v:-:.:·:·:·:-::;:;:;:;:;:;:;:;:;:;:;:;:;~:::;.' .. :·::::;.;.;.;.;;;::::::::::::<;:::::::.;:;:;:;.;.:?kl: 

6-382 

If the procedure body is an infinite loop, there will be no return point so nreturns 
wi II be 0. Otherwise the retaddrs should each point to a suitable location at which 
a breakpoint may be set 'at the exit of the procedure' . When execution reaches this 
point, the current stack frame should still be In this procedure. 

Verleble 

Type 

This Item contains debugging data relating to a source pr<Ji!ram variable o r a 
formal argument to a procedure (the first variable items In a procedure always 
describe Its arguments). Its format is as follows:-

type a type word 
sourcepos a word encoding the source position of the variable 
dass a word encoding the variable's storage class 
location see explanation below 
name string 

The following codes define the storage dasses of variables:­

2 
3 
4 
5 
6 
7 

extemal variables (or Fortran common) 
static variables private to one section 
automatic variables 
register variables 
Pascal var arguments 
Fortran arguments 
Fortran character arguments 

The meaning or the location field or a variable item depends on the storage class: 
It contains an absolute address for static and external variables (relocated by the 
linker): a stack offset (ie an offset from the frame- pointer) for automatic and 
var-type arguments: an offset into the argument list for Fortran arguments: and a 
register number for register variables (the 8 floating point registers are numbered 
16- 23). 

No account Is taken of variables which ought to be addressed by +ve offsets from 
the stack-pointer rather than -ve offsets from the frame-pointer. 

The sourcepos field Is used by the debugger to distinguish between different 
definitions having the same name (etl identically named variables In dls(olnt 
source-level naming scopes such as nested block in C). 

This Item is used to describe a named type in the source language (ega typedef In 
C). The format is as follows:-

type 
name 

a type word (described earlier) 
string 

Appilndlx D: Codil fils formats 
·:;:;:;:;:;:;:;:;::-:-::;~ ;:;:;:;:;:;:;:;:;:;:·: ···:·:·:·:·:·:;:;:;::::::;~~-::::;:;~:~;:;:;::~~:::::~-::~:~=~~:::::~:;:;::~~::;:;:;:;~:*~:::::::::::;:;::::.::w.-:::>::::::;:;:::;:r-:;;:;:;:;:;:;::;:Q::;:;:;:;:;:~:::::~~:osx-.:::~~ 

Struct 

Arrey 

This Item Is used to describe a structured data type (eta struct in C or a record In 
Pascal). lts format Is as follows:-

fields 
sire 
field table ... 

the number of fields In the structure 
total byte sire of the structure 
a table of fields entries In the following fonnat:-

byte offset of this field within the structure offset 
type 
name 

a type word (Interpretation as described earlier) 
string 

Union types are desaibed by struct Items In whkh all fields have 0 offsets. 

C bit fields are not treated In full detail: a bit field is simply represented by an 
lntecer starting on the appropriate word boundary (so that the word contains the 
whole field). 

This item is used to describe a one-dimensional array. Multi-dimensional anays 
are described as arrays of arrays. Which dimension comes first is dependent on the 
source langu~e (different for C and Fortran). The format is as follows:-

size total byte sire of each element 
arraynags (see below) 
basetype a type word 
lowerbound constant value or stack offset of variable 
upperbound constant value or stack offset of variable 

If the size field Is zero, debugger operations affecting the whole array. rather than 
individual elements or it. are forbidden. 

The followlllf! bit numbers In the anayflags field are defined:· 

0 ~rboundisundeflned 
I lower bound is a constant 
2 upper bound is undefined 
3 upper bound Is a constant 

If a bound is defined and not constant then It is an integer variable on the stack 
and the boundvalue field oontalns the stack offset of the variable (from the 
frame-pointer). 

6-383 



09bug(Jing Oars Items in O&tail 

~::::·:·:=:.:·: .;:::::::::::::::::::::::::::::::::::::x:::::::::::::::::::::::~:·::::-~:::::::~::::::::::::::::::::~::o:>~:::::::::::::::::::::~::::::::::::.::w..:·:·:.:::.::.;.::..;:::::::::::::::::::::::~~:::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::: :::::::~ 

6-384 

Sub range 

Set 

This Item Is used to describe subrange typed in Pascal. lt also serves to describe 
enumerated types In C and scalars in Pascal (in which case the base type is 
understood to be an unsigned Integer or appropriate slz.e). lts rormat is as rollows:-

sire hair-word: I . 2, or 4 to Indicate byte siz.e of object 
typecode half-word: simple type code 
lwb lower bound or subrange 
upb upper bound or subrange 

This item Is used to describe a Pascal set type. Currently, the description Is only 
partial. The rormat Is:-

siz.e byte sire or the ob(ect 

Fllelnfo 

This Item appears once per section arter all other debugging data items. The hair of 
the header word which would usually give the Item length is not required and 
should be set to 0. 

Each source file Is described by a sequence or ·rragments'. each of which describes 
a contiguous rqion of the file within which the addresses or compiled oode 
Increase monatonically with source-file position. The order in which rragments 
appear in the sequence is not necessarily related to the source file positions to 
which they rerer. 

Note that ror compilations that make no use or the llnclude racllity. the list of 
fragments will have only one entry and all line-number lnrormation will be 
contiguous. 

The item is a list or entries each with the rollowing rormat:-

length length of this entry In bytes (0 marks the final entry) 
date date and time when the file was last modified 
filename string (or null ir the name ls not known) 
n number of rraaments rollowlng 
rragments... n fragments with the rollowinll structure ... 

fragmentsize 
flrstline 
last line 
codeaddr 
codeslze 
linelnro ... 

length or this entry in bytes 
linenumber 
linenumber 
pointer to the start or the rragment's executable oode 
byte size or the oode In the fragment 
a variable number or line number data 

Appflndlx 0: Cod& fil& fotmats 

:::::::::::·=· :-:::.:::::: .:.::···:::::::w..:::::::::~:.:-;::::::;.;:::::::::::;;x;*'~::;o;:;X:~:.:;.::::::::: :·:·:::::::::::--.«-::::::::::-x.:::::::::«:::::::::::::::::::::::::::~::.:::.:.:·::::::::::::::::::.::::-:>:::::::::::::::«::::=:=: :::: ::::::::::::::::::::=:~:·~ 

There Is one lineinfo hair-word ror each statement of the source file rragment which 
gives rise to executable code. Exactly what constitutes an executable statement 
may be defined by the language implementation; the definition may ror instance 
Include some declarations. The hair-word can be rqarded as 2 bytes: the first 
contains the number of bytes of code generated rrom the statement and cannot be 
z.ero: the second contains the number of source lines oa:upled by the statement (le 
the difference between the line number of the start of the statement and the line 
number or the nen statement). This may be z.ero If there are multiple statements 
on the same source line. 

Ir the whole hair-word is z.ero, this indicates that one or the quantities is too large 
to fit Into a byte and that the rollowlng2 hair-words contain (in order) the number 
or lines rollowed by the number or bytes or oode generated rrom the statement. 

6-385 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



en
 

I t::
l 

w
 

~ 
C

D
 

~-
en

 

li? iii"
 

::; 
~
 ~ 

j 
s·

 
t::

l 

11.
1 

4>
 

iii"
 "" 

:·:·
 !~ .il ~=~= =~=~ ~:~: I ~ r II~ I "' { I 1 ~ 



( 

( 

.;.;.;::-:::;.;:x:x:::::::~::::;.:~·:·X-»Y..x-.x-.-.::::::~:.;::::: :::::::::::::::::::~:::::.:·:·:·:·:·:.:·:·:·:·X·:::.;:::::::::::::::~: .... "m:·:·:«YX:-c:x.::::::::::::::::::::::::::::::z~~;.:.:.xt.-:·:·:·:;;.x~v.:;:::::::::.::::~~::s:.:-;.:-:-x·:.::;.:::;;.;;:;w._w, 
( 

82 Appendix E: File formats 
~~£X-t-t.x::::::i-x=:~:.::::'J.y;.p;;:~%:::::::::::::::::~:..-=x$A • ;z!I'A:~'>.."<:!:.~~'$'$ 

( 

( 
Introduction 

The file fonnats described in this appendix are those aenerated by RISC 05 Itself ( 
and various applications. Each is shown as a chart aivina the size and desaiptlon 
of each element . The elements are sequential and the sizes are in bytes. 

This appendix contains infonnatlon about the followlna file fonnats: 

• Sprite files ( 

• Template files 

• Draw files 

• Font files. lndudinalntMetrics and font files 

• Musicfiles 
( 

( 

( 

( 

( 

( 

( 
6-387 

( 

c 



( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

Sprite fllll6 

~:::::=:=:=:·:·:=:·:=:=: ::::::::::::::::::::::::::::::::::::::~:=~·:.@'H;~~~::::~:: :.:::·:·:<=·:=:·:·:·:~:.:.;;.;;:.;.-.«·:·:=:: :=:·:·:=:·:·:=:-::::::::::::::: ==~=:=:: :=:=:=:::: :=:=:=:=:=:=::::: :::::::: :::::::::::::::x:::.:::::::::w;;:.:::::::=:=:=:~ 

Sprite files 

6-388 

A sprite file Is saved in the same format as a sprite area is In memory. except that 
the first word of the sprite area is not saved. 

For a full description of sprite area formats. refer to the section entitled For~~tct of c 
Sl'riU crtc on page 2·258. 

App9ndlx E: FHe formats 
::::::o::::::~-:=:=:=:=:=::::::::::;::::.:-r.::::::=: ::::::::::: :=:=:=:=::::::;;::::::: =:=:=:=:-=s:t: =:=:=:=:=:=:-::~::::::::::::::::::~=:=:=:=-:.:::::6::~@::X:t:.:::::::::::::::x.-:.::::::::m::::::::::::*-'<-:>.::%::=:>:::::::::::::::::::::mK-:::=:~~:=:=:::~=W.<<¥..:::-)'! 

Template files 

Header 

Index entries 

Terminator 

Data 

The following section describes the Wimp template file format: 

The file starts with a header: 

Slr.e 
4 

4 

4 

4 

Deecrfptloll 
flleoffsetoffont data (-I irnone) 

reser'Yed (must be zero) 
reserYed (must be zero) 

reserYed (must be zero) 

The header is follawoed by a series of Index entries to data later in the file: 

Size Deecrtptloa 
4 file offset of data ror this entry 

4 stu of data for this entry 

4 entry type (I • wlnd0111) 

12 identifier (terminated by ASCD 13) 

The Index entries are terminated by a null word: 

Ske 

4 
Deecrfptloa 
0 

Each set of entries rererred to earlier In the Index contains the following: 

Size Deecrfptloa 
88 

"ixn 
? 

window definition (as In Wimp_CreateWindow- see 
page4-159) 

Icon definitions 

lndlrected icon data 

Any pointers to lnd lrected Icon data are the file offsets. Any rererences to 
anti-aliased fonts use Internal handles. 

6-389 



Font data 

:~:::::: :::: :::::: ::::::::::::::::::>~:.':'.:::::::.:·:~::.::::::::}:-:::.mx:::~:::::::::::::::;..;:::;;::::;:;:;:;:::;::::::::::::::::::::-o:>:::.:m~::.:::::::::::::::::::::m;:::::::::::::::::.:::::.;::::.::::::::::::: ::::::::::;;::::::::::::::::::::::::::: :::::::::::::::{%:;::::::::m:;:;.;::.:-: -:=:=: 

Font data 

6-390 

The file ends with an optional set of font data (the presence of which Is Indicated 
by the first word of the header): 

She De.crtptloa 
4 

4 

40 

x·point·size x 16 
y-polnt·size x 16 
font name (terminated by ASCII 13) 

The first font entry Is that referred to by internal handle I. the second font entry Is 
that referred to by internal handle 2, etc. 

App6ndix E: Fikl klrmaiS 
;:;:;.;.;:;.;:;:;.;:;:::::: :;:;:;:;:::?.:::::::;:;:;:;::::«m'~:.:.:·:·:·:·::::;:;.;:::::::::::;:;:;:;:;:;:;:;::~~-,;:;:.-:;;~v;;:;:.:::~'i.::::~;:;:;:::::%::;:;:~;::::-:::;;:;:;:;:;:;;s:;;:;:;:;::;;:;:;:;.;:;;;.;;;ow:.:·:·:·:=:·: :;:;:;:;:;:; :;:;:;:;:;~;:;;;;;.;.;.;:;.;.;.;. 

Draw files 

Coordinates 

Colours 

The Draw file format provides an object-oriented desafptlon of a graphic Image. It 
represents an obJect In Its editable fonn. unlike a page-description language such 
as PostScript which simply describes an image. 

Programmers wishing to define their own obJect types should contact Acorn; see 
Apl"~iix H: Rqislnillf UMIS on page 6-4 73. 

All coordinates within a Draw file are signed 12·blt Integers that give absolute 
positions on a large Image plane. The units are II( 180 x 256) inches. or 11640 of a 
printer's point. When plotting on a standard RlSC OS screen. an assumption Is 
made that one QS.unlt on the screen is 11180 of an Inch. This gives an Image 
reaching over half a mile In each direction from the origin. The actual image size 
(eg the page format ) Is not defined by the file, though the maximum extent of the 
objects defined is quite easy to calculate. Posltlve-x Is to the right, Positive-y Is up. 
The printed page conventionally has the origin at Its bottom left hand corner. 
When rendering the image on a raster device, the origin Is at the bottom left hand 
corner of a device pixel. 

Colours are sped fled In Draw files as absolute RCB values In a 12-bit word. The 
format Is: 

B)te 
0 
I 
2 
3 

Deecrtptloa 
reserved (must be z.ero) 
unsigned red value 
unsigned green value 
unsigned blue value 

For cofour values. 0 means none of that colour and 255 means fully saturated In 
that colour. 

You must always write byte 0 (the reserved one) as 0, but don't assume that it 
always will be 0 when reading. 

The bytes in a word of an Draw file are in little-endlan order. eg the least significant 
byte appears first In the file. 

The special value &F'FF'FFFFF is used in the filling of areas and outlines to mean 
'lransparent'. 

6-391 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 
( 

c 
( 



r 
( 

( 
\ 

( 

( 

r 

( 

( 

( 

( 

( 

( 

( 

( 

( 

F/19 h9Bd91'S 

*<·x=:·:~::::::;:::::::::::::<.: .... m»;;.x::::::::::::::::::.$:::::::::::~::::-.~:::<::::::::::::::::~:~:::::::::::;::;:~xx::.-::::::::.::::::::::::::::::::.:::::::::: :::::::::.::::::::::::: :::::::::::::::::::: ::::::::::::::::=~:=:·~::::::::::::::::::::::: ::::::::::::::::~:::::::::::m:::: 

File headers 

6-392 

The file consists of a header, followed by a sequence of objects. 

The file header Is of the following form. 

Size Dac:rlpd011 
4 'Draw' 

4 major format version stamp- currently 201 (decimal) 

4 

12 

4 

4 

4 
4 

minor format version stamp- currently 0 

identity of the program that produced this file- typically 
8 ASCII characters, padded with spaces 

x-low l bounding box 
y-low bottom-left (x·low, y-low) Is Inclusive 

x·high top-right (x-high. y·high) is exclusive 

y·high 

When rendering a Draw file, check the maJor version number. If this Is greater than 
the latest version you recognise then refuse to render the file (eg generate an error 
message for the user). as an incompatible change in the format has occurred. 

The entire file Is rendered by rendering the objects one by one. as they appear In 
the file. 

The bounding box indicates the intended image size for this drawing. 

A Draw file containing a file header but no objects is legal: however. the bounding 
box is undefined. In particular the 'x·low' value may be greater than the 'x·hlgh' 
value (and similarly for they values). 

App9ndix E: F/19 formalS 
::::::: ::::::::::::::::: ::::::::::::::: ::::::::::::::::::::::=:=:=:>::::::::::::: :::::::::::::::::::::::::;~::-:.:.::::::::::::m):::.~~~=:::~:::::::~::;::::::~::::::;::::::::~:::~:-~:::~;m:-.:::::::::::<-.-w;:;:::;::~::::;.-:;:;::~o:-::::~~::::::::::w;: 

Objects 
Each object consists of an obfect header, foll()l'led by a variable amount of data 
depending on the object type. 

ObJect header 

The obfect header Is of the following form: 

Ske o..atpdoa 

4 obfect type field 
4 obfect size: number of bytes In the obfect-always a multiple 

of4 

4 

4 

4 

4 

x-low l obfect bound Inc box 
y-low bottom-left (x·low. y·low) Is Inclusive 

z-high top-right (x·high. y·high) is exdusive 

y·hlgh 

The bounding box describes the maximum extent of the rendition ofthe object: the 
object cannot affect the appearance of the display outside this rectangle. The 
upper coordinates are an outer bound, in that the device pixel at (x-low. y-low) may 
be affected by the obfect, but the one at (x-hlgh, y-high) may not be. The rendition 
procedure may use clipping on these rectangles to abandon obviously Invisible 
objects. 

Objects with no direct effect on the rendition of the file have no bounding box 
(hence the header Is only two words long). Such obJects will be identified explicitly 
in the object descriptions that follow. If an unidentified object type field is 
encountered when rendering a file, Ignore the obfect and continue. 

The rest of the data for an object depends on the obJect type. 

Font table object 

Oblect type allllbet 0 

A font table obJect has no bounding box In its obfect header, which is followed by 
a sequence of font number definitions: 

Stu 

II 

0·3 

Deecrlptloa 
font number (non-zero) 

11 character textual font name. null terminated 

up to 1 zero dlaracters. to pad to a word boundary 

6-393 



Obj6c1S 

;;;.;.;:;:;:;:;.;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;<::~.-;-:-:·:.";:w;.Yh:>:~:::-:.;.;;;;;.;:$;:;:;:$;:;:;:;:;:;;:;:;::::;.-.:-:;;;;::o:;;:;;;;;;;:;:;:;:;:;:;:;:;:;:;:; :;:;:;:;:;:;:;::::~:::-:MX.:;::~;:x;;::::::::::::::;::;;:::::;:;.;:;:~;:§;:;:;:;:;:;:;:;:::;~:::;<»-:;:::;;:;:: :;:;:;:;:;.;:: 

6-394 

This object type is somewhat special in that only one Instance of It ever appears in 
a Draw file. It has no direct effect on the appearance or the imase. but maps ront 
numbers (used in text objects) to textual names or fonts. It must precede all text 
objects. Comparison of font names Is case-Insensitive. 

Text object 

Obfect type .. 111ber I 

SUe ~rlpUoa 

4 

4 

4 

text colour 

text bacltiround colour hint 
text style 

4 x unsigned nominal size of the font (in 11640 point) 
4 y unsigned nominal size or the font (In 11640 point) 
8 x. y coordinates or the stan oft he text base line 

11 " characters in the string. null terminated 
0- 3 up to 3 zero characters, to pad to a word boundary 

The character string consists or printing ANSI characters with codes within 32- 126 
or 128-255. This need not be checked during rendering, but other codes may 
produce undefined or system-dependent results. 

The text style word consists of the following: 

Blt(s) DacrlpU011 
0- 7 one byte font number 
8 • 31 reserved (must be zero) 

Italic, bold variants etc are assumed to be distinct ronts. 

The font number is related to the textual name or a ront by a preceding ront table 
object within the file (see abcwe). The exception to this is font number 0. which Is a 
system font that Is sure to be present. When rendering a Draw file. if a font Is not 
recognised, the system font should be used instead. The system ront is 
monospaced, with the gap between letters equal to the x nominal size or the font. 

The backiround colour hint can be used by ront rendition code when performing 
anti•aliasing. lt Is rererred to as a hint because It has no errect on the rendition or 
the object on a 'perfect' printer: nevenheless ror screen rendition it can Improve 
the appearance or text on coloured backgrounds. The ront rendition code can 
assume that the text appears on a bacltiround that matches the bac:tground colour 
hint. 

Appflndix E: File fi:Kmars 
:::::::::::~::::::::::.:-:-:~-:-:.::;::;;::.:·:·:=:.: .. '«-»'.«;:;:.;.;. :·:·:·:·:·:·:·:-:::: :::::::::::::::::::::::::::::::::::~~:;.;:;.;;:=:;;:::::::::::::::.:::::::::::::-:::::::~~::::~::::::~•>:<·x<.o:·: ·:·:· :-:-::::::;.;:;.;::::: ::::::::;:;:;;§:.;:;:;;;.;::.:·:·:·»:·~:·:·:·:· 

Path object 

Obfect type .. aber :Z 

Sb.e 
4 

4 

4 

4 

? 

? 

Deecttptlft 
fill oolour (-I = do not fill) 

outline colour (-I= no outline) 
outline width (unsigned) 
path style description 

optional dash pattern definition 
seq~nce or path components 

An outline width oro means draw the thinnest possible outline that the device can 
represent. A path component consists or: 

Size 

4 

II X8 

Dacrlptloa 
1-word a., iU~ttfi~r: 

bits 0 - 7 • tag Identifier byte: 
0 = end of path: no arguments 
2 =move to absolute position: rollowed by 

onex. ypal r 
5 =dose current sub-path: no arguments 
8 =draw to absolute position: followed by 

one x. y pai r 
6= Beziercurve through two control points. 

to absolute position: followed by 
three x, y pairs 

bits 8 • 31 rese!Ved (must be zero) 
sequence or 112-word (X. y) coordinate pairs (where II Is zero. 
one or three, as detennlned by the value of the ~a, ~~~~~~cr) 

The tag values match the arguments required by the Draw module. This block of 
memory can be passed directly to the Draw module for rendition: see the chapter 
entitled DrcwiiiOIIwlt on page S-Ill for precise rules concerning the appearance of 
paths. See also manuals on PostScript. (Rererence: Pos&ripe Lc119...,. IU/twtu 
MartWII. Adobe Systems Incorporated (1990) 2nd ed. Addison-Wesley. Reading, 

·· Mass, USA). 

The possible set or lqal path components In a path object is described as rollows. 
A path consists or a sequence or (at least one) subpaths. followed by an 'end or 
path' path component. A subpath consists or a 'move to' path component. 
followed by a sequence or (at least one) 'draw to' and 'Bezier to' path components. 
rotlowed (optional ly) by a 'close sub-path' path component. 

The path style description word is as follows: 

6-395 

( 

( 

( 

( 

( 

( 

( 

c 
( 

( 

( 

( 

( 

( 

( 

( 



r 
( 

( 

( 

( 

( 
\ 

!' 
\ 

( 

f 
\ 

( 
\ 

( 

( 

( 

Obj9CIS 

.:::;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;.;:;.;.;.:-:·:Yh:-:.»:;:.;~;.;.;.;.:·»:•:W..:.:-:·:·:•:::.:·:·:·:·:·::;.;·:•:·:·!«-¥.Q..::::~:·:·: ·:···:·:···:·:-:::·:·:·:·:·:·:·: :;:;.;.:- ;.;,:. :·:·:·:.:·:·i-X«·»:~;;.;:; .;;;:;:;:;:;:;:;:;:;:;:;::> ;:;:;:;:.;;;:;:;:;:;:;:;:;:;:;.;.:~~:;~ 

6-396 

Blt(s) 

0-1 

2-l 

4-5 

6 

7 

8 - 15 
16-23 

24-31 

Deec:rtptfoa 

join style: 
0 = mitred joins 
I= round joins 
2 = be~~elled joins 

end cap style: 
0 =butt caps 
I = round caps 
2 = project1n11 square caps 
3 = trianQular caps 

start cap style (same possible values as end cap style) 

wlndlnll rule: 
0= non-zero 
I =even-odd 

dash pattern: 
0 = dash pattern mlsslnll 
I = dash pattern present 

reserved (must be z.ero) 

trlan11le cap width: 
a value within 0- 255. measured in sixteenths of the 
line width 

trlan11le cap len11th: 
a value within 0- 255, measured in sixteenths or the 
line width 

The mitre cut-orr value Is the PostScript default (ell IO). If the dash pattern Is 
present then It Is In the followfnll format: 

Size Deec:rtptfoa 

4 offset distance into the dash pattern to start 
4 number o( elements In the dash pattern 

followed by, for each element or the· dash pettern: 

Size Deec:rtptfoa 

4 len11th or the dash pattern element 

The dash pattern Is reused cyclically along the len11th or the path. with the first 
element beinQ filled , the next a 11ap. and so on. 

AppendiX E: Fihl b-maiS 
~:.::=:=:=:=:=:=:=:·:·:·:-:::~:::::::::=::»-..x««-:::'(.:::::::.: ·:·:·:;:;:::;:.;.:::::::::::::=:=: :::::::::::5::%:::;:;:::::::~:::~~:~:.:::::.wX":::=:::::::::::::::::::::::=-;:;:;::::mx;:;x:x;::.~::-::::::::::::.-::::::::::::::::::::::::::::::::::!=::::::::~: 

Sprfte object 

Obfed type aaaber' 

This Is followed by a sprite. See the section entitled Fonut t1{ • sprju on page 2-258 
for detai Is. 

This contains a plxelmap frn,..e. The Image Is scaled to entirely fill the boundin11 
box. 

If the sprite has a palette then this llives absolute values for the various possible 
pixels. If the sprite has no palette then colours are defined locally. Within RISC OS 
the available 'Wimp colours' are used- for further details see the chapter entitled 
Sprirn on P311e 2-247 and the chapter entitled Tit Wi,._, ~nag,. on paee 4·81. 

Group object 

Obfect type aaaber 6 

Size 

12 
Deecttptloa 
11roup object name, padded with spaces 

This is followed by a sequence of other objects. 

The objects contained within the 11roup will have tectan11les contained entirely 
within the rectal'll!le or the group. Nested 11rouped objects are al lowed. 

The object name has no effect on the rendition or the obfect. lt should consist 
entirely of printing characters. It may have meanln11 tospedflceditors or pr011rams. 
It should be preserYed when copyin11 objects. If no name Is Intended, twelve space 
characters should be used. 

Tagged obJect 

Obfect type aam.ber 7 

Size Deeafpdoa 

4 tal! Identifier 

This Is followed by an obfect and optional word-ali11ned data. 

To render a TaQQed object, simply ~nder the endosed object. The identifier and 
additional data have no eft'ect on the rendition of the obJect. This allows specific 
pr011rams to attach meanlne to certain obJects, while keepin11 the image 
renderable. 

PI'OIIrammers wlshinll to define their own object ta115 should contact Acorn; see 
1\pPfn~ix H: Rtgilllrillf ,..,.11 on P311e 6-473. 

6-397 



ObjeciS 
:::::::::::::-::x:::::.::::.:-...... ~:.:;;.;:..~:;;;;•:•'!<·':;:::~~::~:~:::.~::::::::::::::::::::::::.~;x;x:-::::::::: :::::::::::::::::::::: ::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::~::::::::::::::: :::::::::::::::::::: ::: :::::: :::::::::::::::::::::w ::::::::::::::w:::::::o.<::::: 

6-398 

Text aree object 

Object type .. mber 9 

She De.cripUoa 

4 

4 
4 
4 

4 

0-3 

I or more text column objects (object type 10. no data- see 
below) 

zero. to mark the end of the text columns 

reserved (must be zero) 

reserved (must be zero) 

Initial text foreground colour 

initial text background colour hint 

the body of the text column (ASCII characters. terminated by 
a null character) 

up to 3 zero characters. to pad to a word boundary 

A text area contains a number of text columns. The text area has a body of text 
associated with it. which is partitioned between the columns.!( there Is just one 
text column obfect then its bounding box must be exactly coincident with that of 
the text area. 

The body of the text is paginated in the columns. Effects such as font settings and 
colour changes are controlled by escape sequences within the body of the text. All 
escape sequences start with a backslash character(\); the escape code is case 
sensitive. though any arguments it has are not. 

Arguments of variable length are terminated by a '/ or <newline>. Arguments of 
fixed length are terminated by an optional '/. 

Values with range limits mean that if a value falls outside the range, then the value 
is truncated to this limit. 

EKape eequeace De.criptioa 

• \! <Version><newline 01' /> 

• \A<code><optionall> 

Must appear at the start of the text. and only there. 
<Version> must be I. 

Set alignment. <code> is one of L (left =default). 
R (right). C (centre), D (double). A change in 
alignment forces a line break. 

• \B<R><spaces><G><spaces><B><newline or I> 
Set text background colour hint to the given RGB 
intensity (or the best available approximation). Each 
value is limited to 0- 255. 

Appendix E: Fi/8 formats 

:::::::::::::::::::·:<:·:<:·:·:-: .;.;::::::.:=:-: :;::::::::::::::::::::::::::::::::":::::::::: :::::;:::::;:::::::::::."»':=:·X::.;:: :::::::::::::::::::: ::::::::::~::: :::::::::;::;::::::::::::::::;;::-~<«-::::::::::: :·:::::::::::::::: ::::.:::::::::::::::::•x<·:<·>:;: ::::.:::.:-::::::::::::::::::::::;:;:r.::: 

• \C<R><spaces><G><spaces><B><newline 01' I> 
Set text foreground colour to the given RGB intensity 
(or the best available approximation). Each value Is 
limited to 0- 255. 

• \D<number><newline or I> 
Indicates that the text area is to contain <number> 
columns. Must appear before any printing text. 

• \F<digit• ><name><spaces><size>[ <spaces><Width>)<newli ne or I> 

• \<digit.><optional /> 

Defines a font reference number. <name> Is the 
name of the font. and <size> its height. <width> may 
be omitted. In which case the font width and height 
are the same. Font reference numbers may be 
reassigned. <digit• >is one or two digits. <size> and 
<width> are In points. 

Selects a font, using the font reference number 

• \L<Ieading><newllne or/> 
Define the leading in points from the end of the 
(output) line in which the \L appears- ie the vertical 
separation between the bases of characters on 
separate lines. Default, 10 points. 

• \M<Ieftmargin><spaces><rightmargin><newline or/> 
Defines margins that will be left on either size of the 
text, from the start of the output line In which the 
sequence appears. The margins are given in points. 
and are limited to values> 0. If the sum of the 
margins is greater than the width of the column, the 
effects are undefined. Both values default to I point. 

• \P<Ieading><newllne 01 /> 
Define the paragraph leading in points. lethe vertical 
separation between the end of one paragraph and 
the beginning of a new paragraph. Default. 10 points. 

• \U<position><spaces><thickness><newline or/> 

• W[-)<digit><optional /> 

Switch on underlining. at <position> units relative to 
the character base. and of <thickness> units. where a 
unit Is tn56 of the current font size. <position> is 
limited to -128 ... +127. and <thickness> to0 ... 255. 
To turn the underlining off, either give a thickness of 
0. or use the command \U.' 

Vertical move by the specified number of points. 

6-399 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 



( 

( 

( 

( 

( 

( 

( 

c 
( 
\ 

( 

( 

( 

( 

( 

( 

( 

Obj8CIS 

:::::::::::::::::::::::::.~:::::::::::::::::::::::=:=:=: ::::::=:-:.:-::::::::: :::::::::::::::::::::::::::::::::::::::::::::: :::::::::::: :::::::::::::::::::::: ::::::::::::::::::::::::::: :::::: ::::::::::::::::::::::::::::::::::::::: ::: ::::::::::::::::::::::::~::::::::~=:~:::::~:x~::.::s:r.:::::::::::::~ 

6-400 

. \-
• \<newline> . \\ 
• \;<text><newline> 

Soft hyphen: If a line cannot be split at a space. a 
hyphen may be Inserted at this point instead; 
otherwise. It has no printing effect. 

Force line break. 

appears as\ on the screen 

Comment: ignored. 

Other escape sequences are nagged as errors during verification. 

Lines within a paragraph are split either at a space. or at a soft hyphen. or (if a 
single word is longer than a line) at any character. 

A few other characters have a spedal interpretation: 

• Control characters are ignored. except for tab. which is replaced by a space. 

• Newlines (that are not part of an escape sequence) are interpreted as follows: 

Occurfns before aay prlatlns text: a paragraph leading is Inserted for each 
newline. 

Ia tile body of the text: a single newline Is replaced by a space, except when it 
is already followed or preceded by a space or tab. A sequence of n newlines 
inserts a space of (n-1) times the paragraph leading. except that paragraph 
leading at the top of a new text column is ignored. 

Lines which protrude beyond the limits of the box vertically. eg because the 
leading is too small. are not displayed: however. any font changes. colour changes. 
etc. in the text are applied. Characters should not protrude horizontally beyond the 
limits of the text column. eg due to italic overhang for this font being greater than 
the margin setting. 

RHtrfctlone 

If a chunk of text contains more than 16 colour change sequences. only the last 16 
will be rendered correctly. This is a consequence of the size of the colour cache 
used within the font manager. A chunk in this case means a block of text up to 
anything that forces a line break. eg the end of a paragraph or a change on the 
alignment. 

Text column object 

Obfect type a amber tO 

No further data, le just an object header. 

A text column object may only occur within a text area object. Its use is described 
in the section on text area objects. 

,4ppendi1t E: Fi/6 formalS 
;:;:;::::~=:::::!:;::'.:-:'«::::::::::::: ;:;:;:;l;!;:;:;:;;::::::::::: :;:;::·:::·:·· .:.:.:.:;:;: ;:;:;:;:;:;:;::::':::::::;::XX(.x::::r.:::::::::::::::::::::::::::~::::~::::;:;:;:;:;-.:::::::::::::: ;:;:;:;:;:;:;:;:;:;:;:: :;:;:;:;:;:;::::::: ;:;:;:;:;:;:;::-=%:: ;:;:;:;:;:;:;;;.;:;:;:;:;:-:·:····. 

Options object 

ObJect t,pe 118m.ber I I 

The object header for an options object has space allocated for a bounding box. 
but since one would be meaningless, the space is unused. You must treat the 
4 words normally used for the bounding box as reserved, and set them to zero. 

Size 

4 

4 

8 
4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

O.Crfptloll 
(paper size+ I) x &100 (ie &500for A4) 

paper limits options: 
bit 0 set ~ paper limits shown 
bits I • 3 reserved (must be zero) 
bit 4 set~ landscape orientation (else portrait) 
bits 5 • 7 reserved (must be zero) 
bit 8 set~ pcinter limits are default 
bits 9 - 3 I resetVed (must be zero) 

grid spacing (noatlng point) 

grid division 
grid type (zero~ rectangular. non-zero~ isometric) 

grid auto-adjustment (zero~ off. non..zero ~on) 
grid shown (zero~ no. non-zero~ yes) 

grid locking (zero~ off. non-zero ~ on) 

grid units (zero~ Inches. non-zero~ centimetres) 

zoom multiplier (I -8) 

zoom divider (I • 8) 
:r.oom lodting (zero~ none. non-zero= locked to powers of 
two) 
toolbox presence (zero= no. non ..zero~ yes) 

Initial entry mode: one of 
bit 0 set = line 
bit I set= dosed line 
bit 2 set ~ curve 
bit 3 set ~ dosed curve 
bit 4 set ~ rectangle 
bit 5 set~ ellipse 
bit 6 set = text line 
bit 7 set = select 

undo buffer size. In bytes 

6-401 



Obj6c1S 

~:-:::::::::::::::::::::::=: ::::::::::::~:~=:::~::o~w~::::::::::::::::;::·:=:.::x*:=::::::x.mx::::::::::::~::~:::::::~=-<~=-<-:=~:=:::::::=:::.:;:~::::;::::~:::::::::::;:::::.::::::::::::::::::::·:::·: •.•• :::::::::::~:::::::;~::::::;;.;;:::::..:-: 

6-402 

When Draw reads a draw file, only the first options object is taken Into account­
any others are discarded. When It saves a diaaram to file, the options in forc:e for 
that diaaram are saved with it. 

The Draw application supplied with RJSC OS 2.0 does not use this object type. 

Tr•naformed text object 

Obfect type umber ll 

Size 

24 

4 

4 

4 

4 
4 

4 

8 

" 
0-3 

Dflcrtptloa 
transformation matrix 

font flaas: 
bit 0 set~ text should be kemed 
bit I set ~ text written from riaht to left 
bits 2- 31 reserved (must be zero) 

text colour 

text background colour hint 

text style 

x unsianed nominal siz.e of the font (in 1/640 point) 

y unsigned nominal siz.e of the font (In 1/640 point) 

X, y coordinates of the start or the text base line 

"characters in the string. null terminated 

up to Jz.ero characters. to pad to a word boundary 

The transformation matrix is as described In Font_Paint (see paae 5·24). In the 
same format used elsewhere in the Draw module. 

The remaining fields are exactly as specified for Text objects (see P8Qe 6-394). 

Tr•naformed sprite obtect 

Obfect type •••ber I J 

$be O..CrtptlOI. 

24 Transformation matrix 

This is followed by a sprite. See the section entitled Fomd r4 a spriU on page 2·258 
for detai Is. 

This contains a pixelmap imaae. The imaae Is transformed from its own 
coordinates (ie the bottom-left at (0. 0) and the top-riaht at (w x x_ela. h x y_ela). 
where (w. h) are the width and heiaht or the sprite In pixels. and (x_eig, y_eig) are 
the eiaen factors for the mode in which it was defined) by the transformation held 
in the matrix. 

Appendix E: Fil6 kNmiiiS 

:·:·:·:·:-~ :::::::::::::::::::~::;::r .. .¢~:;;:;:;;;:;;;.;.:.;·:·:-:·:·:·:·:·:•: :;:::::::::::::::: :;::::::':~~:::~M:::::::;:~;.;:;:;:;:::::;:~::::;;;:;:;:;:x;;::~:X:::~;::::::::;::Y0;.:.;.;.·.·: ····:·:-::;.;.;:::::::::::::;:;,;:5:·::;.;.;:;:;.;.;.;.;.;. 

If the sprite has a palette then this alves absolute values for the various possible 
pixels. If the sprite has no palette then colours are defined locally. Within RISC OS 
the available 'Wimp colours' are used - for further details see the chapter entitled 
Spri!IS on page 2-247 and the chapter entitled l1w \1/i...!ow M.tiSif'Ton paae 4-83. 

6-403 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



-
f 

r 
( 

( 

( 

( 

( 

( 

( 

t 

11 

Font fH9s 

.:::::;.;::=:·:·:·:·:·:·:·:.:·:·::w.::.~:·:·:·:;:.~::::::::::~:«<:·:::v::::::~w.o::::'f.':::::::::::::::::.:«-:.,:.:;o..-.«.s,;x:·:·::::::::::;.:::.:·:·:· ·.·.·= =·=·=·=·=·=·=·=·=·=·=·~=·=·=·=·~:-::: =:=:=:·:=:·:=:·:=:=:·:·:·:·:-:-::-:·:·:=:·:·:=::::::;. :-:«~·:=::::;;;::::::::::::::.w..e~.-;:·:::·::::: 

Font files 
In all the ronnats described below. 2·byte quantities are little-endlan: that Is. the 
least slsnlficant byte comes first. rollowed by the most·slsnlficant. The values are 
unslsned unless otherwise stated. 

Fonts are described in: 

• lntMetrtcs and lntMet11 files 

• x90y45 fi les (old style 4·bpp bitmaps) 

• New ront Hie formats. 

lntMetrlcs / lntMetn flies 

6-404 

Header 

Sbe 
40 

4 

4 

1r ~s bit 5 Is set: 

2 

Dac:rlptloa 
name of ront. padded with Return characters 

16 

16 
11lo: low byte of number or defined characters 

wrsio11 11u~tthwr or file rormat: 

flags : 

0 fl4gs and 11~i must be zero 
I aot ••pported 
2 fl4gs supported: Mkart can be > 255 

bit 0 set=> there Is no bbox data (use Outlines) 
bit I set=> there Is no x-oiTset data 
bit 2 set=> there is no y-oiTset data 
bit 3 set => there is no more data after the metrics 
bit 4 reserved (must be zero) 
bit 5 set=> character map size precedes map 
bit 6 set=> kern characters are 16-blt. else 8-blt 
bit 7 reserved (must be zero) 

,.,; = hish byte or number or defined characters 
II = 11ki X 256 + otfo 

"' = character map size 
0 => no map 

Appendix E: Fi/9 formalS 
:::::···.·.·.·.·.·.·.·.=.::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::~::::::::::::::::::~;:yc.wm:::::~::;:;:;:::::w-m::=:~:~~:=:=:~:::::::::;;.~:::::~:=: :::::::::: :::::::::::::::::::::::::::::: :·: :::::::::::: ::::::::::::::::;::·:=:::=: :;::.:<-:::* 

Character mapping 

Size .. Dellcrlptloa 

character mapplna (le Indices Into rollowins tables) 

For example.lrthe 40th byte in this mappins has the 
value 4. then the rourth entry In each or the followins 
•nays refers to character 40. A zero entry means that 
character Is not defined in this ront. 

If fMft bit 51s dear. 256 characters are mapped (le 
~~t s256). 

If there Is no map (see above). the character code is used to index into the tables. 

Note that since the mapplna table Is S-blt. there cannot be one ir 11 > 256. 

Table of bounding boxes 

If fl4gs bit 0 Is dear. 

Dacttptloa Sb.e 

211 

211 

211 

211 

JO l bound Ins box for each character ( 16-bit sisned) 
yO bottom-left (lO. yO) is inclusive 

x1 top-rlght(xl . yl) is exdusive 

y1 coordinates are In IIIOOOth em 

Coordinates are relative to the ·orlsln point'. 

Tables of character widths 

If flags bit I Is clear: 

Sb.e 

211 

If fl4gs bit 2 is dear: 

Sb.e 

211 

DeKrfptloa 

x-offset after printlns each character. in 111000th em 
( 16-bit stsnec:t) 

Dellcrlptloa 
y-offset after printlns each character, In 1/IOOOth em 
(16-blt signed) 

6-405 

~ 



I 

~ 

lniMelrics 1 /ntMetn fiN 
;:;.·:·:····· ;:;:;:::::.::::~~~::~~::::;:;::~~=~:::::::::;~;:;:;:;:;:;:;:;::::::::;;;:::;;:;:;:~::;:;:~.:;.:;~:::~:;:;:;:::::::.::::::::;:;:;:;:;:;:::;:;:::;:~;:;::::::;;:;:;:; :;:;:;:;:;:;:;:;:;.;.;::::::::::::::=::::::=::::::.::::::::::::::::::::;:;:::;:;:;:;:;::~::::~::;:;:;~~~.7,:;:;:; 

6·406 

To calculate the offset to here, let: 

rtio = byte at offset 48 in file 
N*i =byte at offset 51 in file 
flafS • byte at offset 49in file 
II o: 11-'i lC 256 + 11lo 

Then: 
offset .. 52 
If (jl.gs bit 5 clear) then offset+= 256 
else offset+= 2 + byte(52) + 256 x byte(53) 
if (jl.gs bit 0 clear) then offset += 811 
If (jl.gs bit I clear) then offset += 2N 
If (jl.gs bit 2 clear) then offset += 211 

OffMts to exira data areas 

If flafS bit 3 is set: 

Sb.e Dacrtptloa 
2 offset to 'miscellaneous' data area 

2 offset to kem pair data area 

2 offset to reserved data area fl 

2 offset to reserved data area #2 

The entries must be consecutive In the file. so the end of one area coinddes with 
the beginning of the next. The areas are not necessarily word-aligned, and the 
space at the end of each area is reserved (ie there must not be any 'dead' space at 
the end of an area). 

Appendix E: Filfl formalS 

:::=:..::"'::.::::::::: :·::::::-¥..:::-.;;.:::::::::::: :=:=:·:;:·:· :·:·:!:·:·:·:<:·:·:·:·: :::::::::::::-:::<-:::--::::::.:::;.:r.:;:::::::::::.:::::::~-=~:::~;;;;::::::x::::::::::lO!<'$:::::::::--m~:::~~«:;.:::::::::::~:~~::.:::::=::~:o:~:;x::.::::: ::::.:-::: ::::::::::::-:::.:;:;;:.::::. 

Mlacellaneou• data ar• 

Sb.e 

2 
2 
2 
2 
2 

2 

2 

2 

2 
2 

2 
4 

Kern pair data 

Deecrtpdoa 
.xO l maximum bounding box for font (16-bit signed) 
yO bottom·left (ltO. yO) is inclusive 

xl top-rlaht (xl. yl) is exclusive 

yl all coordinates are in 1/IOOOths em 

default x~set per chat (if flals bit lis set). in 1/IOOOth em 
(16-bit staned) 
default y~set per char (if/la,s bit 2 is set). in 1/IOOOth em 
(16-bit staned) 
Italic h-oflset per em (-IOOOxTAN (italic angle)) 
(16-bitsianed) 
underline position. In 11256th em (signed) 

underline thickness. In 11256th em (unsigned) 

CapHelaht In 1/IOOOth em (16-bit signed) 

XHeiaht In 1/IOOOth em ( 16-bit signed) 
Descender In IIIOOOth em (16-blt signed) 

Ascender In 1/IOOOth em (16-bit signed) 

reserved (must be zero) 

If P.vs bit 6 Is dear, character codes are 8-bit; If P.,s bit 61s set, character codes are 

16-bit (lo. hi). 

Size 

I or 2 
I or2 

2 

2 

I or2 

Oeecrlpdoa 
left·hand character code 

right·hand c:haracter code 

x·lt.em amount (If flavs bit lis clear) 
In 1/IOOOths em (16-bit slanedl 

y· lt.em amount (If flafS bit 2 Is clear) 
In 1/IOOOths em (16-bit slaned) 

0 = end of list for this letter 

I or 2 0 = end of kem pair data 

Reserved data ar• 11 and 12 

These must be null. 

}~~· repeat 

6-407 

( 

( 

\ 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 
( 
--~ 



( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

{ 

) 

x90y45 font f/186 

:::::;.;:::::::~:.w,.:;;;:=:·:·::::::;:;.;:::::,:-~,;:~:;l:«(.c;.;;:::::::::~x:::>:>.. .. ~-::.:;:::::::::::::::::::~::::::::::::::::::~~*-;:::<.::mr.;::.:::.::::::~::;m:;:;;:.:;:::::::::::::::::::::::~:·:=:::.:::.:.:·:.:.m:::::::::::::.:::::::.:::::::.»x::::::::::::::*:::::::::::::::;: 

x90y45 font flies 

6-406 

If the len11th or a x90y45 file is less than 256 bytes. then the contents are the name 
or the 19999x9999 file to use as master bit maps. 

Index entrlea 
Each font file starts with a series of 4-word (ie 16 byte) index entries. 
corresponding to the si;r.es defined: 

Sl.z.e 

I 

I 

4 

4 

4 

0HcriptJ011 
point site. •ot multiplied by 16 

bits per pixel (4) 

pixels per Inch In the x-<iirection.. 

pixels per inch in the y-<iirection 
reserved (must be zero) 

offset of pixel data in file 

size of pixel data 

The list Is terminated by: 

I 0 
' 

Pixel datAl 

Pixel data Is limited to 64KBytes per block. Each block starts word-all11ned relative 
to the start or the file: 

Size 
4 

4 
4 

4 

512 

Dacriptlo• 
x·size. in 1116ths point x x pixels per Inch 

y·size. in 1116ths point x y pixels per inch 

pixels per Inch in the x-<iirection 

pixels per Inch in the y-<iirection 

xO l maximum boundinll box for font 
yO bottom-lefi (xO. yO) Is Inclusive 

xl top-right(xl , yl) is exdusfve 

y I all coordinates are in pixels 

2·byte offsets from table start or character data. 
A zero value means the character is not defined. 

Appendix E: F/19 foi'111111S 

:::::::::::: ::::::=!=:: ::::::::::::::::::::::::::::::::::· .:::::::::::::::: ::::::::~~~m::::::::::::::::}:~;m:::::::=:w~:::::~:::::.:::::::::::::::::~:::::::::::>;:m:;:~:~:::::::~::::::~;;::::::::x:::::::::::::::::: :::::::::::::::::::::::::: :::;::::::: 

Character data 
St.r.e o..atpdota 

xO l boundfn& box ror character 
yO bottom-left (xO, yO) is inclusive 

xl - xO • X top-ri11ht (xl. y I) is exclusive 

yl -yO • Y all coordinates are in pixels 

XxY/2 <l·blts per pixel (bpp), consecutive rows bottom to top: not 

all11ned until the end 

0·1.5 allanment 

New font file formats 
The new font file formats lncfudes definitions for the followin11 types of font files: 

• f9999719999 (new style <l-bpp antl-aflased fonts) 

• b9999x9999 (l ·bpp bitmaps) 

• Outlines (outline font fonnat. for all sizes) 

'9999' =pixel siZJe (le point siZJe x 16 x dpl/72) zero-suppressed decimal number. 

If the length of an outlines file is less than 256 bytes. then the contents are the 
name of another font whose glyphs are to be used instead (with this font's 
metrics). 

6-409 



IWw bnr file twmaiS 

:;;.~:-:>-:•:•:•::-~~:;.;;:;:.:.:=:-::-:;;;::~-:~-.:«o:•rAm.<::::-..;.;«.~<-:-(«.:;:.:...~:t:·:;:•:::::::::::::::::::--::x~u.::::::::::::::::::::::::::::::::::xc%'.« .. :o:·:·:·:·:·:.;·:·:~:-:·:·:=::::::::,::.:·:--~:.:.:-.o:~:-:·:·:=: 

6·410 

File header 

The file header is of the following foon: 

She Deec:rfptl011 
4 

2 

2 
2 
2 
2 

'FONT- identification word 

bpp (bits per pixel): 
O=outlines 
I= I bpp 
4 =4bpp 

Vfi'Sioll ""*Wr of file fonnat (changes are cumulative): 
4 no 'don't draw skeleton lines unless smaller 

than this' byte present 
5 byte at (table+512) =maximum pixel size for 

skeleton lines (see below) 
6 byte at [chunk+ indexsize) =dependency 

mask (see below) 
1 nag word precedes Index in chunk (offsets 

are relative to index, not chunk) 
8 file oflset anay is In a different place 

If 6p, • 0: design sl:z.e or font 

If &, > 0: nags: 

xO 
)<) 

xl-xO 

yl-yO 

bit 0 set= horizontal subplxel placement 
bit I set= vertical subplxel placement 
bits 2·5 reserved (must be Z~Cro) 
bit 6 set= nag word precedes Index in chunk (must 

be set ir ..mio11 '"'*6or:ii: 7, else dear). 
bit 1 reserved (must be zero) 

Outline files derive the value of bit 6 from 
wrsio11 IUIIKWr. 

l 
maximum bounding box for font ( 16-bit signed) 

bottom-left (xO. )<))Is Inclusive 

top-right (xl, yl) is exclusive 

all coordinates are in pixels or design units 

If~~~~ IUIIKNr < 8, the number of chunks "'~is = 8, and these bytes end the 
header: 

Size 

4 
4 
20 
4 

Deec:rtptloa 
file offset of 0 ... 31 chunk (word-aligned) 

file offset of 32 ... 63 chunk (word-aligned) 

file offsets of further chunks. in order (word-aligned) 

file offset of224 ... 255 chunk (word-aligned) 

AppendiX E: File formalS 

:•:-:•:-:•:.;.;.:;-,.;.;.;.;:;:;:;:;:;:;:;:;:;.:-:·:·:.:•:«-:·:·:·:·:=: .;:;:;.-~;." .. :-:·:·:·::::;::::;:;:;.;.;:;--?.(..Q..~;:;:;:;::::~~):.:«o»W:=:~:::::-~~-;:;.;-;.:.;~:-:·:·:·:·:·:·:=:-::;.:-:=»-.;.m:.; ·:·:· ;;;:;:;:;: 

4 file offset of end (le sfze of file) 

If offset(ll+ I )=offset( II), then chunk 11 Is null. 

If version number Ci: 8, these bytes end the header: 

Sb.e Deec:rtptloa 
4 file offset of area containing file offsets of chunks 

4 "'"'"is = number ol defined chunks 

4 ou =number of scaffold Index entries (Including 
entry( OJ• size) 

4 uaffoU /ftgs: 
bit 0 set~ 1111 scaffold base chars are 16-blt 
bit I set= these outlines should not be antl·aliased 

lea System.F'IXed) 
bits 2 • 31 reserved (must be zero) 

4 x 5 all reserved (must be zero) 

Table start 

Sb.e 

2 

Table data 

Bltma.,. 

Deec:rtpdoa 
11 = size of table{scaffold data 

If 6p, > 0, the file defines a bitmap, and only the following 8 bytes of table data are 
used. For such a file, 11• IO - other values are reserved . 

Sb.e 

2 
2 
2 

2 

Deec:rtptloa 
x-slze (Ill 6th point) 

x-resolution (dpi) 

y-size (Ill 6th point) 

y·resolution (dpl) 

6·411 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( t 

() 

( 

( 

( 

( 

( 

r 

( 

( 

( 

( 

( 

( 

N9W lont file fomlsiS 

~=-:=:·:;:::;:::::::=::::::::~~x·:·:-::-::::::::::::::::::::::::::::::;;~.«>;..:-:::=:=:·:::::;::::::::::...:;:.::::::::.::::::=:=:::::•:::-.. -:::::.:~:-;.;.w.:;:;:;:;-... :.:o=-:,:.:·:·:·:·:·:·:·:·:-:·:·:<-e;-m.z::.:::::::>:::::::::::::::::~~...-:.-:«o: 

6-412 

01tlh1" 

If bpp = 0. the file defines outlines. and the following table data Is used. 

Size 
•s X 2-2 

? 

Scaffolddllta 

Size 

I 

Salffold Ull" 

Size 

2 

DeKrtpdOII 

offsets to scaffold data (I 6-bit): 

If suffoU flags bit 0 is clear: 
bits 0 • 14 =offset of scaffold data from table start 
bit 15 set => base character code is 2 bytes, else I 

byte 

If suffoU flags bit 0 is set: 
bits 0 • 15 =offset of scaffold data from table start 

base character code is always 2 bytes 
0 => no scaffold data for char 

skeleton threshold pixel site (if llfT!io• 1tw11thr 2: 5) 

When rastering the outlines. skeleton lines will only 
be drawn if either the x· or they· pixel size is less 
than this value (except if value ,. 0, which means 
'always draw skeleton lines') . 

... sets of scaffold data follow. each set of which can Include 
many scaffold lines (see descriptions below) 

DeKrtptloa 

character code of 'base' scaffold entry (0 => none) 

bit • set=> x-scaffold line " Is defined In base character 

bit n set=> y-scaffold line 11 is defined In base character 

bit • set => x-scaffold line 11 is defined locally 

bit " set => y-scaffold line 11 is defined locally 

... local scaffold lines follow (see description below) 

DeKrtptlon 
bits 0 • II =coordinate In 1/IOOOths em (signed) 
bits 12 • 14 =scaffold link Index (0 =>none) 
bit 15 set=> 'linear' scaffold line 

width (254 => IAangent. 255 => R·tangent) 

l.pp(ln6x E: Fils brmsts 
»x·;;»x::=:·:·:;::::::::::::::::::::::::::::;;:~::;w.--:-x·:·:·:·W.·~=::5:::::::::::~::::::~ ... ::-;::::::::::::::::~~~;;;:~:>:::::::::%!::~w.«·~ 

Table end 

Size 

? 

lhmio• •wlltbcr 2: 8: 

Stte 
4 
4 

4 X ( IIG4w •if-3) 
4 

4 

Chunk data 

If vmio" lllllltM 2: 7: 

Stte 
4 

DeKrtptloa 
description of <Xll'ltents of file: 

Fo"t ,....,, 0. 'Outlines·. 0, 
'999x999 point at 999x999 dpl'. 0 

... word-aligned chunk data follows (see description below) 

DeKrtptloa 
file offset of chunk 0 (word-aligned) 

file offset of chunk I (word·aligned) 

ftle offset of further chunks In order (word-aligned) 

file offset of chunk (&iwftks- I) (word-aligned) 
file offset of end (ie site of file) 

DeKrtptloa 

Oagword: 
bit 0 set=> horizontal subplxel placement 
bit I set~ Yertlcal subplxel placement 
bits 2 • 6 res~ (must be zero) 
bit 7 set=> dependency byte(s) present (see below) 
bits 8 • 30 reserved (must be tero) 
bit 31reserved (must be one) 

6-413 



N11W lont 1116 lonnats 

~x-:-»::x::::::~::~::::::::::::::::~~'»~::::::::::::~::=:~:.:::::::::::::::: :=: :=:=:=:=: ::::::::::::::::::::::::::::::::::::::=: :::: :::::::::::::::::::::: :::::::::::::-; :=:=: :::::::::::::::::::::::::::::::::::x:mx:::::::::::w:::::::::::::.x 

6-414 

For all versions: 

Slr.e 
!Kiwotb x 12 

? 

DeKrlptl011 
offset within chunk to character 

0 = character is not defined 

Size Is x 4 if vertical placement Is used. and x 4 If horizontal 
placement is used. Character index is more tlahtly bound 
than vertical placement. which is more tlahtly bound than 
horitontal placement. 

dependency byte (if outline file. and version~ 6) 
One bit required for each chunk In file. 
Bit 11 set= chunk 11 must be loaded in order to 
rasterise this chunk. This is required fof composite 
characters which include characters from other 
chunks (see below). 

... character data follows. word-aligned at end of chunk (see 
description below) 

Note: All character definitions must follow the index in the order In which they are 
sped lied in the index. This is to allow the font editor to easily determine the site of 
each character. 

Chahlcter data 

SUe De.crlpdoa 
'~radu/lllgs: 

bit 0 set= coordinates are 12-blt. else 8-blt 
bit I set = data is l ·bpp. else 4-bpp 
bit 2 set= initial pixel is black. else white 
bit 1 set= data Is outline. else bitmap 

If ,~.,"'ur /Ligs bit 1 is clear: 
bits 4 • 7 = 'f value for char (0 = not encoded) 

If '~craellr /lllgs bit 3 Is set: 
bit 4 set = composite character 
bit 5 set= with an accent as well 
bit 6 set= character codes within this character are 

l~bit. else 8-bit 
bit 7 reserved (must be zero) 

if '~raa.r /lllgs bits 1 and 4 are set: 

Slr.e DeKnptloa 
I or 2 character code of base character 

Appendix E: File formats 

:::;:.:;:;;~:·: .;:;:;:;:;:;:;:;: ;:;:;:;!>w."$,!;:;:;:;:;:;;:::::::~:;:;;,;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;.~:::m:;;:;:~.;~:;:;.;m::;:;:;:;:::;:;;~;:::::::;:;:;::«.;.:.:;:(.;i; :;:;:;:;:;:;:;:··.·.·.·.·.·.·.·.:.:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;::::.::-:::•::::;;;:;:;: 

If,~.,.,,,. /lllgs bit 5 Is set: 

Ske O..Crlpdoa 
I or 2 character code of aca:nt 

2 or 1 x. y olfset of accent character 

if '~arawr /lllgs bits 1 or 4 are dear: 

Slr.e Deecttpdoa 
I or 1.5 xO l boundina box for character (8- or 12-bit sianed) 
I or I 5 yO bottom-left (xO. yO) is Inclusive 

I or 1.5 xl-xO top-rlaht(xl. yl) isexdusive 

I or 1.5 yl -yO all coordinates are in pixels or desian units 

? data: (depends on type of file) 

l ·bpp uncrunched: rows from bottom to top 
4-bpp uncrunched: rows from bottom to top 
l ·bpp crunched: list of (paclu!d) run·lenaths 
outlines: list of ITIOIIelline/curve segments 

Word-alianed at the end of the character data. 

Outline character format 

Here the 'pixel boundlna box' Is actually the boundlna box of the outline in terms 
of the deslan site of the font (In the file header). The data follow ina the bounding 
box consists of a series of~lnelcurve segments followed by a terminator and 
an optional extra set of line seaments followed by another terminator. When 
constructing the bitmap from the outlines. the font manaaer will fill the first set of 
line seaments to half·way throuah the boundary usina an even-odd fill. and will 
thin-stroke the second set of line seaments (If present). For further details see the 
chapter entitled Drnr .. o~~w.on paae 5·111. 

6·415 

( 

' 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



.,-

\ 

( 

C' 

) -

..., 

~ 

NBW font f/18 formats 

::::=:·:::::·:::;:::«·:;m:::::::•::$$;.;::::::::::::;;;.-::::::::::-:::::::::=:-:~;:::--::::::::::::.:::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.::::::::::::: ::::::::::::::::::::::-:!:«::'-:·:=:=:·:·:=:·:-~:-x:~:.:::;:::::::;:-~~:::::::::::::::::::.:·W...&~.~:;:::::.: 

6-416 

Ellc • Uae Mlllle•t coaalste of: 

Size 
I 

? 

Terml. .. tor: 

Sb.e 

I 

DeacrtptiOII 

bits 0- I = segment type: 
0 terminator (see description below) 
I movetox. y 
2 line tox. y 
3 curve tox l, yl. x2. y2, x3. y3 

bits 2 - 4 = x-scaffold link 
bits 5-7= y-scaffold link 

coordinates in design units 

DeacrtptiOII 

bit 2 set~ stroke paths follow (same format. but paths are 
not closed) 

bit 3 set~ composite character lnduslons follow: 

Composite cbr11Cter l•cl•llou : 
I character code of character to include (0 ~ finished) 
2n x. y offset of this inclusion (design units) 

The coordinates are either 8- or 12-bit sign~xtended. depend ing on bit 0 of the 
c~arcc~n flags (see above). including the composite character Inclusions. 

The scaffold links associated with each line segment relate to the last point 
s pecified In the definition of that move!line,lcurve. and the control points of a 
Bezler curve have the same links as their nearest endpoint. 

Note that if a character includes a nother. the appropriate bit In the parent 
character's chunk dependency nags must be set. This byte tells the Font Manager 
which extra chunk(s) must be loaded in order to rasterlse the parent character's 
chunk. 

1·bpp uncompacted format 

I bit per pixel. bit set~ paint In foreground colour, In rows from bottom-left to 
top-rlllht. not aligned until word-aligned at the end of the character. 

Appendix E: Fit• fonnBIS 
:::::-'7..::~:::::::;:~:::::::::::%~~::::::::::::::~:::::::::::::~~~~~:=:~=:~~:;-:::~:m-;~:::::::::~=t.:~~:::::::::::::~~r..:::::::-::m:::::::::::::w.:::::: :::::::::::::: :::::::~:::::::::::::: ::::::::;:: ::::::::::~:::::::: 

1-bpp compacted format 

The whole character Is Initially treated as a stream of bits. as for the uncompacted 
form . The bit stream Is then scanned row by row: consecutive duplicate rows are 
replaced by a 'repeat counr. and alternate runs of black and white pixels are noted . 
The repeat counts and run oounts are then themselves encoded In a set of 4-bit 
entries. 

Bit 2 ofthecui'IKI6flalsdetermlneswhether the initial pixel is black or white (black 
= foreground). and bits 4 - 7 are the value of 1 (see below). The character is then 
represented as a series of packed numbers. which represent the length of the next 
run of pixels. These runs can span more than one row. and after each run the pixel 
colour is changed over. Spedal values are used to denote row repeats. 

F1Je 

" nibbles. value 0 

I nibble. value 1. .. / 

I nibble. value f+ I. .. ll 

I nibble. value 14 
I nibble. value 15 

where: 

.._ .... 
run lencth"' 
-'._ot+I_Ni61es +(I 'H) x 16+ f+l- 16 

run lencth • ~-•i6611 
run lencth • 
-'._lli661t + (rjis_..a61M-I) x 16 + f+ I 

row repeat count = lla(J•" iM-•w* Nr 
row repeat count • I 

• tkis_11i6611 Is the actual value (1. .. /. or /+I. .. ll) ofthe nibble 

• ""''- "i6611 Is the actual value (0 ... 15) ofthe nibble following tkis_r~i661t 

• lllli_II+I_Ni66t.s Is the actual value (0 .. . 24(n+l )- I) of the next II+ I nibbles 
after the "zero nibbles 

• IIIXI.JIIcilli_llw*Nr Is the value of the packed number following the nibble 
of value 14. 

The optimal value of/lies between I and 12. and must be computed Individually 
for each character, by scanning the data and calculating the length of the output for 
each possible value. Thevalueyteldlng the shortest result is then used. unless that 
Is larger than the bitmap Itself. In which case the bitmap is used. 

Repeat counts operate on the current raw. as understood by the unpacking 
algorithm, le at the end of the row the repeat count is used to duplicate the row as 
many times as necessary. This effectively means that the repeat count applies to 
the row con tal nlng the first piltel of the next run to start up. 

Note that rows consisting of entirely white or entirely black pixels cannot a lways be 
represented by uslnll repeat counts. since the run may span more tha n o ne row. so 
a long run count Is used Instead . 

6-417 



Encoding fi/86 
:=:;.;:;:;:;:;:;::::~~-=::.'::;:;~! ;:;:;:;:;:;:;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:~ ;:;:;:;:;:;:;:;:;:;:;:;;;.;.:;o;;::*:::::::;:::::;:;::::::::;.:..-.;.~~::::::::::;::;;.";;:;:;~:~::;:;:;:;::::::::::::::~:-:;:.;.;::-::::;:::;::-:::.:-:=::::;:;:;:;.;:;:;:;;::;:;:: :;:;:;:;:;:;:;:;:;:;:::.: :;:;:::::~:::-..§::::: 

Encoding flies 

6-416 

An encoding file is a text Hie which contains a set of identifiers which indicate 
which characters appear in which positions in a font. Each identifier Is preceded by 
a 'f, and the characters are numbered from 0. increasing by I with each identifier 
found. 

Comments are introduced by '%'. and continue until the next control character. 

The following special comment lines are understood by the font manager: 

''RISCOS_BasedOn base_encoding 
''RISCOS_Alphabet alphabet 

where NSI_,ncoliirtg and alpubd denote positive decimal integers. 

Both lines are optional. and they indicate respectively the number of the base 
encoding and the alphabet number of this encoding. 

If the %%RISCOS_Based0n line Is not present, then the Font Manager assumes 
that the target encoding describes the actual positions of the glyphs in an existing 
file, the data for which is in: 

font_direc t ory.Int Metricsalphabet 
font_directory.Outlinesalphabet 

where alpubcl is null if the %%RISCOS_Aiphabet line is omitted. 

(In fact the ieafnarnes are shortened to lit in 10 characters, by removing characters 
from just before the alpubd suffix). 

In this case the lntMetrics and Outlines files are used directly, since there is a 
one-to-one correspondence between the positions of the characters in the 
datafiles and the positions required in the font. 

If the %%RISCOS_Based0n line Is present. then the Font Manager accesses the 
following datafiles: 

font directory.lntMetricsbase encoding 
ton( directory.Outlinesbase_ ;needing 

and assumes that the positions of the glyphs in the dataHies are as given by the 
contents of the base encoding Hie. 

The base encoding is called '/Base"'· and lives in the Encodings d irectory under 
Font$Path. along with all the other encodings. Because it Is preceded by a 'f, the 
Font Manager does not return it in the list o f encodings returned by 
Font_Listfonts. 

App6ndix E: File formalS 

:::::::::::>: ::::::::::::::::m::::::;:;:oc.:::.':::-:::::;;;:;:v:~<o::;;::;:::::::::;::::·:~::-:-: ·:·:=:=:=:=: ::::::::::::::~r..::::::~:::::::::o:::::::~:;.:::-.:;;;:::=:::::::::::: ::::::::::::: ::::::::::::::::::::::::::::::.~:::::::::::.. .. :;:-:.::.:.:~:-:-:=:·: .;:::::::: :::::::::::~:.;::: ::::::: 

Note that only one encoding Hie with a given name can apply to all the fonts known 
to the system. Because of this, a given encoding can only be either a direct 
encoding, where the alphabet number is used to reference the datafiles. or an 
indirect encoding, where the base encoding number specifies the datafile names. 

Here is the start of a sample base encoding ('/BaseO'): 

\ /BaaeO encodl nq 

\UISCOS _AI ph• bet 0 

/.notdef /.Not O.f / . MotDef / .MotOef 
Juno /one / t vo /thr- /four /five /11x /1even /e i qht 

Here is the start of a sample encoding Hie ('Latin 1'): 

' Lat 1 n l eneodilHJ 

\\IUSCOS_BatltdOn 0 
\\RISCOS_Alph•bet 101 

/. notdef /.notdef / . notct•f /.notdef / .notdef /.notdef /.notdof / . notdef 
/. not def /.tlot ctef / . notdef /.notdef / . notdef /.notd.ef / . notdef / . notcktf 
/ .notdof /.flotdef /.notdef /.not def /.notdef /.notdef /.not def /.not def 
/ . notdef /.notdef /.notdef / . not.def /.notdef /.notd•f /.not def / . notdof 
/apace /exc lare /quotedbl /nurtlberaiqn 
/ doll ar /percent /a~reand /quoteai nqle 

(Note that the sample /BaseO Hie is not the same as the released one). 

These illustrate several points: 

• The%% lines must appear before the first identifier. 

• Character 0 in any encoding must be called '.notdef, and represent a null 
character. 

• Other null characters in the base encoding must be called '.NotDef. to 
distinguish them from character 0. 

• Non-base encoding Hies wanting to refer to the null character should use 
·.notdef in all cases. 

• The other character names should follow the Adobe PostScript names 
wherever possible. (See PostScript l..artgu.tgl Rlfmnu MaNual. Adobe Systems 
Incorporated ( 1990) 2nd ed. Addison-Wesley. Reading, Mass. USA) This is to 
enable the encoding to refer to Adobe character names when included as part 
or a print job by the PostScript printer driver. 

• The number of characters described by the base encoding can be anything 
from 0 to 768, and should refer to distinct characters (apart from the 
'.NotDefs). Other encodings, however. must contain exactly 256 characters. 
which need not be distinct. 

6-419 

( 

r 
( 

( 

( 

( 

( 

( 

( 

( 

( 

( ,, 
( 



Mus/cta86 

~--=--·:·:·:·:·:~:=:·:-::;:;:::::::::::::::r.x::::::::;;;:;:;:;:;:;:;.;.;.; .;;;;;:;.;.; :;:;:;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:::;.:;;::;::::::::.:·:·:·:=:·:·»:-.-.:«':·:·::;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;y,.;t):t:;:;;.;;;:; ·:·:·:·:·:;::::::; :;:;:;:;:;:;.;:;:;:;:::::::: :;:;:;:;:;:; 

Music files 

6-420 

Header 

Sbe DacrtpdOII 
8 'Maestro' followed by linefeed (&OA) 

2 (type 2 music file) 

This Is followed zero or more of the following blocks In any order. It Is terminated 
by the end of the file. Note that types 7 to 9 are not implemented in Maestro. but 
are described for any extensions or other music programs that may be written. 

Music data 

Sbe 

5 

5x8 

II 

f..t 1. .. 48 

Stave data 

Sbe 
I 

DacrtpdOII 

I indicates Musk data follows 
11 ~ number of bytes In the 'Gates· array (stored as a BASIC 
lnteger -le &40 followed by four bytes of data. most 
significant lirst). 
4l .. . 48 " number of bytes In queue of notes and rests for each 
of the 8 channels I ... 8 (stored as BASIC integers - ie &40 
followed by four bytes of data. most significant first). 
gate data (see Gaits on page 6-422) 

F.,,~ IID8(il/or~•'''.UIIIIIIillll.tnt} 

Nm' 

data for all notes or rests In channel' (see Nolts a fill 
rnts on page 6-424) 

l>eecrfpd011 

2 Indicates Stave data follows 
number of music staves - I (0 • 3) 

number of percussion staves (0 • I) 

App«rdix E: FHelonnats 
:=:~-::;:.x;.;<¢1'.-w.;:;~ .. ;;;::::::::::::: .;:::::::::::::::::::::::::::::::::: :~:=:::~~==:=:=:=~::::::::::::::::::::::-::::::::::::::::::::::~:::;~::::::::;;;:.:;::::::::::::::::::::::::::::::::::::::::::::::::::::::-r..m:;:;:::;:l$0..0::·:·:-~-::::::::: :::::::::: ·.·.·.=.:.::::::::: 

Which channels are used by which staves depends on the number of music staves 
and the number of percussion staves as follows: 

M .. lc: '-rc•lllloll ..._._ s.-t Stlnoe2 $taft, Stllft4 

I 0 1·8 
I I 1. 7 

2 0 1·4 5·8 
2 I 1. 4 5 · 7 
3 0 I 2·5 

I 
6·8 

3 I I 2·5 6. 7 

4 0 1.2 3, 4 5,6 7. 8 
4 I 1.2 3. 4 5. 6 7 

Instrument data 

Instrument names are not recorded; only channel numbers. 

Size 
I 

Deecrtpdoa 
3 indicates Instrument data follows 

This Is followed by 8 blocks of 2 bytes each: 

Size De.crtptloa 
I channel number (always consecutive I • 8) 
I \~Diu 111todwr. 0 = no~ attached 

Volume data 

Size Deecrtpdoa 
4 Indicates Volume data follows 

Perca-'oa 

8 

8 

8 

8 

tx8 volume on each channel (0 • 7 = ppp • ffl); one byte for each 
channel 

Stereo position data 
Size 

lx8 

Deecrtptloa 

5 indicates Stereo data follows 
stereo position of channel (0 • 6 • full left · full right); one 
byte for each channel 

6·421 



Gaw 
~:.:·:·:·>:·:·:=::::::::::::::::::z!l'?..:·:«·:·:·:::::-:::::::::::::::::::;;~,~~.:.::::-:·:=:·:=:·:·:::::::::::::::~::~;;:~;:~~;:);;w.:~:·:·:< -:-::::::;::.::::::::;;;.;;;;x;::::-;:;:::::::-~;:=:::::::::::~~~~x:e>:::::::;:::~ 

Gates 

6-422 

Tempo data 
Sbe Deec:dpti011 

6 indicates Tempo data follows 

0 • 14. which corresponds to one of: 40. 50, 60, 65. 70, 80, 90, 
100, 115,130, 145,160, 175.190.and 210beatsper mlnute 

To convert to values to pi'O(Iram Into SWI Sound_arempo, use the formula: 

Sound_arempo value= beats per minute x 128 x 4096/6000 

Title string 
Slz.e 

II 

Instrument names 
Slz.e 

I 
Inl. .. n8 

MIDI channels 
Sbe 

I X 8 

Description 

7 Indicates title string follows 

null terminated string of" characters total length 

DescrtpU011 

8 indicates Instrument names follow 

8 null terminated strings for each IIOiu ftKIKM used In 
ascending order in command 1 aboote. 

Deec:rtptfoa 

9 indicates MIDI channel numbers follow 

MIDI channel number on this stave (0 ~not transmitted over 
MIDI. else I · 16): one byte for each channel 

A Gate is a point in the music where something is interpreted: ega note. 
time-signature. key-signature. bar-line or clef can each occupy a gate. The gate data 
is one byte for a note or rest. or 2 bytes for an attribute such as a time-signature, 
key-signature. bar-line. clef. etc. 

Note or rest 

A note or rest is represented by a single non-zero byte. 

Blt(l ) DescrtptiOII 

0 • 7 Gate mask: bit "set~ gate I note or rest [rom queue 11. 

App9ndix E: FU. formats 
;.:.:·:·:·: :::;.;::::::::::=:~:·:.:-:.WM:>:::;:::::;:~~=-~:·:·:««<.:~.::::v:ow:::::::::::.:=:=:=:~.$;:.:.:;s:.:;.;.:·:·:-:;:-:-:::::::::::::::::::.:::::;:~:.:·:·:·:·:·:=::::::::::::::;:::»».v..x·: ·:·:·:·:·:·:;:::;:::::::::;:.~ ..... :.:·:;:.:·:·:·:=:::::.::~" 

Attribute 

An attribute is represented by a null byte (so that it can be d istinguished from a 
note or rest). followed by a byte desaibina the attribute. 

Byte O..Crtptloa 

0 0 
one of the followina forms: 

n---, .. t.,e 

Blt(a) Deec:rtptloa 

0 I 
I- 4 number of beats per bar-1 (0 • 15) 
5-7 beat type (0 = br~. to 7 = hemidemlsemiquaver) 

Ke)'11caatare 

Bit( a) 

0 · 1 
2 
1·5 
6 · 7 

Oef 

Bit( a) 

0-2 
1-4 
5 
6 · 7 

gu 

Bit( a) 

0-1 
4 
5 
6-7 

Octa\lle • •• ft 

Bit( a) 

0 - 4 
5 
6·1 

Descrtptfoa 

10 binary (ie bit I set) 
type of accidental (0 • sharp. I • flat) 
number of acddentals In key signature (0 • 7) 
reserved (must be zero) 

Deec:rtptloa 

100 binary (le bit 2 set) 
0 • treble. I = alto, 2 ,. tenor. 1 "' bass 
reserved (must be zero) 
stave- I (0 • 3) 

Descriptio a 

1000 binary (ie bit 1 set) 
I •on. 0 =off 
reserved (must be zero) 
stave- I (0·1) 

Descrtptloa 

10000 binary (ie bit 4 set) 
0 "' up. I = down 
stave- I (0 • 1) 

6-423 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



r 
\,. 

r 
.... 

,-

~ 

r 

r~ 

r 

r 

r-

" 

,.-
... 

-
' 

~ 

...... 

....._ 

Not86 and r861S 

·:::::::: =:=:·:=::::::::::::::::::::::::::x::::::::::::::::;:=:::::::::::;;;:::::::::::::~::::::::.:-:::::: :::::::::::::::::::::::::::;:::::::::::::::::~:-:-:-;;:.;.:::::::::::::: .·.·.·:·:·:·:·:·:·:·:·:·:·:·:·:=:::::::::::: :::::::::::: :::::::::::::~ .. ~-:::::-::::::: :;:;:;:;:;:;:;:;:;.;~::;:;: ;:;:;:;:;:: 

Bar 

Bit(•) Dacrtpttoa 
o- 5 100000 binary (ie bit 5 set) 
6- 7 reserved (must be zero) 

Re.erved for fvt1re expaulon 

Bit(•) Dacrtptlon 
0-6 
0-7 

1000000 binary (ie bit 6 set) 
I 0000000 binary (ie bit 7 set) 

Notes and rests 

Notes 

Rests 

6-424 

Notes and rests are each stored in a 2 byte block that has some common elements. 

Bit(•) Descrfptlo11 
0 stem orientation (0 =up. I =down) 

I~ join beams (barbs) to next note 
2 I ~ tie with next note 

3- 7 stave line position (0- 31. 16 =centre line) 

8-10 

II- 12 
13- 15 

Btt. 
0- 10 

II- 12 
13- 15 

accidental: 
0 = no accidental 
I =natural 
2 =sharp 
3 =Oat 
4 =double-sharp 
5 =double-Oat 
6 = natural sharp 
7 = natural Oat 

number of dots (0 - 3) 
type (0 = breve. to 7 = hemidemisemiquaver) 

Dacrtpttoa 
reserved (set to zero) 
number of dots (0- 3) 

type (0 = breve. to 7 = hemidemisemiquaver) 

If a rest coincides with a note. its position is determined by the following note on 
the same channel. 



:·~:4w»:·:"-:·:-:::::::::::::::::::::.:·:.»:«r:·:.:·:·:·Y.;x-:-:?~~.~..:-:·:·:·:-:·:#....,~r.:;;.:·:·:·:·:·:·:·:·:·:·:~;;:.x.:v:-::.:-:.:-:::·:·:·;.:.;..-.:.»'M:'$;;:;o;:::;:.:=:·:·:·:·:{·:::::::.:·:«-06:.:.:·:·:·:.:·:·:·:·:·:::. ::::: ·:=:·:~;.:.:·:««~·=· :·::::::::: 

83 Appendix F: System variables 
'M$C.X•$:::::::::::::::::::::::=:=:~~~=;.::-;-;'»~=x~··.-.~'$:':%: '!«~'$-'hf.;'f~~r.,";:<~.::::-.:-.:::'$::-;~.:x::.;:::::::::::::jj.'JW~=:=:=:~:;. 

This details standard variables used in RISC OS. and aives Important auidellnes on 
the names you should use fOf any system variables you create for your applications 
to use. 

Application variables 
The followina section aives standard names used for variables that are bound to a 
particular application. An application should not need to set all these variables, 
but where one of the variables below matches your needs, you should use It and 
follow the aiven auidellnes. Where you need a system variable and can't find a 
relevant one below. you should use your own. namlna it JV(IS ... 
In the descriptions below you should replace 1\w with your application's name. 
You must first reaister this name with Acorn. to avoid any possibility ol your 
system variables dash ina with those used by other p!Oirammers' applications: see 
Appcniix H: Rtgistmllflli....S on page 6-473. 

App$Dir 
An Ap(ISOir variable alves the full path name of the directory that holds the 
application App. This is typically set in the application's !Run file by the line: 

Set AppSDir <ObeySDir> 

App$Path 
An AppSPath variable aives the full pathname of the directory that holds the 
application App. An AppSPath variable differs from an AppSOir variable In two 
important respects: 

• The path name includes a trail in& ·: 

• The variable may hold a set of path names, separated by commas. 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 
It's common to use an AppSDir variable rather than an AppSPath variable, but there ( 
may be times when you need the latter. 

( 
6-425 

( 

( 



r 

r-

r 

r 

r 

/ 

/ 

.,... 

.,..-

r 
...... 

Application varltJbles 

:.::::::::j;::.:::::;:x~x·:·:·:;:-:«'0' .. :·:::::.;.;.;.;:;.;.;:;::::~:::;:;:;:::::;:;::*-:,.;*'";:;:::::·:=:::::::.:::::::::::.::::::::::::::::::::::::::::x::::::::::::;::.:::.:;:.~:;:;:::;::~~::::..v.:;:::::::::<:m:::::;:;:;:;:;:::::x.:.:::::-:*-x-:'::(.;:;:;::.»X:::;:::::::::::::::::::.;:;:;:;:;.;:: 

6·426 

An Ap,SPath variable might. for example. be set In the appilcation's !Run file by the 
line: 

Set App$Path <ObeySDir>.,\.App. 

If the application held further resources in the subdirectory App o( the library. 

AppSOpdona 

An Ap¢)0ptions variable holds the start-up options of the application App: 

• An option that can be either on or off should consist of a single character. 
followed by the character '+' or ·-· (eg M+ or S-). 

• Other options should consist of a single character. followed by a number (eg 
P4 orF54). 

• Options should be separated by spaces: so a complete string might be 
F54 M+ P4 S-. 

This variable Is typically used to save the state of an application to a desktop boot 
file. upon receipt of a desktop save message. A typical line output to the boot file 
might be: 

Set App$0ptions F54 M+ P4 S-

You should only save those options that differ from the default. and hence not 
output a line at all if the application is in its default state. You should however be 
prepared to read options that set the default values. in case users explicitly add 
such options. 

AppSPrlntFIIe 

An .V,SPrlntFIIe variable holds the name of the file or system device to which the 
application App prints.'l\'pically this will be printer:. and would be set in your 
application's !Run file as follows: 

Set AppSPrintFile printer : 

AppSReaourcea 

An An$ Resources variable gives the full path name of the directory that holds the 
application 1\pp's resources. This might be set in the application's !Run file by the 
line: 

Set AppSResources <ObeySDir>.Resources 

Appendix F: System varlables 
:-:=:::::::::::::~;$::(.:::::::~::::::::~::::::::: :::::::::::::::::: :::::::::::::::::::::::::::::-:-:::::..-.::~~t'h:;::~:(.::::::::::::::::~~::m::::::w=:::::w:::::::::::::=~:x:::::::::::::::::::::::::::;;::.:::::::: ::::::::::::::: =:=:::::::::::::::.:::: ::::::::::.:;::::: 

AppSRunnlng 

An AppSRunnlng variable shows that the application IV' Is running. It should have 
the value 'Yes If the application Is run nine. This might be used in the application's 
!Run file as follows: 

If " App$Runninq" <> "" then Error App is already runnlnq 
Set App$Runninq Yes 

When the application stops running. you should use •unset to delete the variable. 

Changing and adding commands 

Allas$CommMJd 

Using file types 

An Allas$Co .. .ullifvariable Is used to define a newoommand named C-IUd. For 
example: 

Set AllasSMode echo 1<22>1<\0> 

By using the name of an existing command, you can change how it works. 

Flle$Type _XXX 
A FileSType...XXX variable holds the textual name for a file having the hexadecimal 
file type XXX. It Is typically set In the !Boot file of an application that provides and 
edits that file type. For example: 

set File$Type_ xxx TypeNsme 

The reason the !Boot file Is used rather than the !Run file Is so that the file type can 
be converted to text from the moment Its 'parenr application is first seen. rather 
than only from when It Is run. 

AllasS@loadType_XXX, Allas$@Prtntry.,._xxx and 
Allas$@RunType _XXX 

These variables set the command used to respectively load, print and run a file of 
hexadedmal type XXX. They are typically set In the !Boot file of an application that 
provides and edits that flle type. For example: 

Set AliasS@PrlntType_XXX /<ObeySDir> -Print 
Set AllasS@RunType_ XXX /<ObeySDir> 

Note that the above lines botJa Mft • tnillac •pece (invisible in print!) . 

6-427 



Setting /lUI oommand lin9 prompt 
~:=.-:::::::~::-::::;:::::::::::::::::~~:;~:::;:::::~~:::::::: :::::::::::::: :::::::::~*~~~-:v:;:::=::::::::::::::::::::::::::::;..-;:::;::;:::::::;l%'~::::::.:·:·:·:=:::::::.:::::::::::::::::::::::::::x::;:::::::::::::::::::::x~·~::::.-:::~: 

The reason the !Boot flle Is used rather than the !Run file is so that files of the 
given type can be loaded, printed a nd run from the moment their 'parent' 
application is first seen. rather than only from when it is run. 

For more information see the section entitled l.ol4-lil!ll a lUI rwn·lil!ll I¥111M ..na61.s 
on paae 'J-14. 

Setting the command line prompt 

CU$Prompt 
TheCLISPrompt variable sets the command line Interpreter prompt. By default this 
is· · ·. One common way to cha nge this is so that the system time is displayed as a 
prompt. For example: 

SetMacro CLISPrompt <SysSTime> • 

This is set as a macro so that the system time Is evaluated each time the prompt is 
displayed. 

Configuring RISC OS commands 

Copy$0ptlons, Count$0ptlons and Wlpe$0ptlona 
These variables set the behaviour of the •copy. •count and •wipe rommands. For 
a lull description, see page 3-147, paae 3·150and page 3-185 respectively. 

System path variables 

6-428 

File$ Path and Run$Path 
These variables oontrolwhere Iiles are seal'dled lor during, respectively, read 
operations or execute operations. They are both path variables. which means 
that- in common with other path variables- they consist of a comma separated 
list of full path names, each of which has a tralllna ·:. 

If you wish to add a pathname to one of these variables, you must ensure that you 
append it once. and once only. For example. to add the 'bin' subdirectory o( an 
application to RunSPath, you could use the following lines in the a pplication's 
!Boot file: 

If "<APpSPath>" • •• then Set Run$Path <RunSPath>,<Obey$Dir>.b1n. 
Set App$Path <Obey$D1r> . 

For more information see the section entitled Fil6Par.i aiUI Rw..SPal~ on paae l-16. 

App91ldix F: S}'sl9m varlllbles 

:·:·: .;:;.;:;.;.;:;:-;:;:;:;::~::.:«v.v..::::::::;:;:;.;~;.;:;.;.;-;;;.;:; :::::::::::::::::;:;;.:.~:;:;:;:::-»;::.;:::::;::::: ·:·:·:.:. ::::::::::::::::::::::::::: :;:;:;:;:;:;:;:~:;::~·:.:~:;::;.;.:•:v:·:·:·:·:·:·:-::::::::;.;:::::::::~;.;.:«-:·:o:«« 

Obey flies 

Obey$Dir 

Time and date 

The ObeySOir variable is set to the directory from which an Obey file is being run, 
and may be used by rommands within that Obey file. For examples. see various 
other sections of this chapter. For more detailed Information, see the section 
entitled O¥Dir on paae 6-286. 

SysSTime, Sys$Date and SysSYNr 
These variables are rode variables that are evaluated at the time of their use lo 
give. respectiv!!iy. the current system time, date and year. 

For an example of the use ofSysSnme. see the section entitled CLJSPro111pl on 
paae6-428. 

Sys$Dateformat 

Return codes 

The SysSOateFonnat vari<lble sets the format in which the date is presented by the 
SWJ OS_ConvertStandardOateAndlime (see paae 1-424). For details of the iormat 
used by this variable. see the section entitled Fanul/iiU naMes on page 1·393. 

Sys$ReturnCode, Sys$RCUmlt 
The SysSRetumCode variable oontalns t he last return value given by the SWI 
OS _Exit, and the SysSRCLimlt variable sets the maximum return value that will not 
generate an error. For more details. see page 1·293. 

!System and !Scrap 

Syatem$Dir and Syatem$Path 
These variables aive the full path name of the System application. They have the 
same value. save that System$Path has a trailing'.', whereas SystemSDir does not. 
You must not change their values. 

(There are two versions of this pathname for reasons of backward rompatibllity.) 

6·429 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

Thtl dt~sktop 
>**~·:·:·:·:·:·:·:·:·:·:-:-:·:·:·:·:·:·:·:-::;.;:;.;-:-::;.;.;.;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;~::::~.::.::~;;.;.; .;.;.;:; :;.;:;.;.;.;.;:;.;:;:;:;:;:;:;.;:;:;:;:: :;:;:;:;:;:;:;:;:;.:;:;:;:;:;::::t;:;t;:;:;:;:;:;:;;;.;;;.;.;.;:;.;.;.;:;:;.;:;:: .;:;:;.;;;-:.;:;: ;:;:;::::::::::;:;:;:;:;:;:·:···· . 

Wlmp$Scrap 

The Wimp$Scrap variable 11ives the full path name of the Wimp scrap file used by 
the file transfer protocol. You must not use this variable for any other purpose. nor 
chan11e Its value. 

Wlmp$ScrapDir 
The WlmpSScrapDir variable 11ives the full pathname of a scrap di rectory within the 
Scrap application. which you may use to store temporary Iiles. You must not use 
this variable for any other purpose. nor chan11e its value. 

The desktop 

Wlmp$State 

6-430 

The Wimp$State variable shows the current state of the Wimp. If the desktop is 
runninl!. it has the value 'desktop'; otherwise it has the value 'commands'. 



( 

( 

M:·:;;.;;~:•:~:·:·:·:·:·::::;.:~:;;,:::::.:·:·:·:·:·:·:w:-»::.~:::::::::::::.:~~:«·:>:~·:·;.~/. .. ~»..)»»::x::;::::~x·:.:·:~:-:·:~-x~~-:::-:=:·:·::::: ( 

84 Appendix G: The Acorn Terminal 
Interface Protocol ( 

~A-::::::::::::::::::::::;.;::::::::::::;:;:::::~::::::=::::::::::5:---»:;::::::::::::::~;;~:.:~=:::::::::::::;::::.~1:*;;:>::::::::::::::::::::::~~=;~.:.:-:•:=:·:-::::::::::::::~..:::=:~::;:-:x::::::::::::::::::m:-«:::::::::::: :::::::::x::x:::::::::::::::::::::::::::.-::~ 

( 

Introduction ( 
This appendix describes version 1.00 of the Nln Tmoti.ullrtUr{IU PI'OIDCDI (or 
AP/rrt 1lP) used to communicate between a tenninal emulator and a protocol 
module. By us ins this protocol you can intesrate your own terminal emulators and ( 
protocol modules with those provided l:ty the TCPIIP Protocol Suite. 

Althoueh this chapter only talks about the Acorn 1lP in the context of terminal 
emulators and protocol modules. there's no reason why you shouldn't use it for ( 
other applications that involve input and output. 

Protocol modules 

A proiOUIIIKOiiuU converts one of the many different protocols computers use for ( 
input and output to the Acorn 1lP. For example In the case of the VT220 application • 
and the protocol modules supplied as part of the TCPIIP Protocol Suite. we have: 

(Internet) 

Ftp 110 

(Internet) 

• Data pass ins between a tenninal emulator and a protocol module uses the 
Acorn 1lP. and passes over a logiullirtt These are erey in the drawine above. 

6-431 

( 

( 

( 

( 

( 

( 

( 



( 

( " 

\ 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 

Writing a protocol module 

~;.::;;x;:::.:->:;;.::: .;::::::::·:·:·:·:-:::--.. :v::Y.-»o-:.V..;.:v .. ;;: ·:·:·:-;.:: :-:=::::::;:.:.·· · ···········::: • ••• • •••• ·:·:·:·:·:·:·:·:·: ·:·:·: -;.:::.;-:::::::~::::::::::: ::::;::~::~;;;;:~~:::·:·:·: <·>>:·:·:-::;.:-:::::::.:::::::::::::w.=:~A~~O:::·:·:·:.:-: 

• Data passing between a protocol module and a remote machine or process 
uses whatever protocol the module is designed to support, and passes over a 
co~touuiofl. These are black in the drawint~ above. 

Using the Acorn nP 
If you decide to write other protocol modules and/or terminal emulators. you 
should use the Acorn TIP. Since this provides a standard interface between 
protocol modules and terminal emulators. users will be able to use your modules 
and emulators with the TCP/IP ones. and with ones that other programmers write 
too. If your software's compatible. we think it's more likely users will buy lt. 

Writing a protocol module 

6·432 

If you're writing a protocol module. you must first familiarise yourself with how a 
RISC OS relocatable module works. You'll find full details ot this in the chapter 
entitled Moolults on page 1-191 . Your protocol module must conform to the 
standards laid out in that chapter. 

Service calls 

SWis 

You must support the service calls detailed in this chapter. 

You must also support various SWis from the set detailed in this chapter. These 
must be at the defined offsets from your module's SWI base number, which Is 
allocated by Acorn. To support many of these SWis you will need to send suitable 
commands over the physical connection to the remote host. 

• You must support: 

Ofbet S WI II• tne 

0 Protocoi_Openl..ogicaiLink 
I Protocoi_Ciosel..oglcaiLink 
2 Protocoi_CetProtocoiMenu 
3 Protocoi_OpenConnection 
4 Protocoi_CioseConnection 
7 Protocoi_MenultemSelected 
8 Protocoi_UnknownEvent 
9 Protocoi_CetLinkState 
10 Protocoi_Break 

Appflndlx G: Thfl Acorn TtHminal kllflrlace Protocol 
$::::;:;::::::::::::::>::;~::::::.::~:.:'<-:·:·:·:·:·»:·:·:·:=::;;;:;:;:;;:.x:.::~:::::::w::::::::::~~:~~::;:~~;;::::~~=:-::.>.:; :;:;:;:;:;:;:;:;.;::::::::::*~=::t:::::::::-:'·:~::;:;:;:: .;:;:;:;:;:;:;:;: ,:;:;:;:;:;:;:::::::::;:;:;;:;:::::~ 

• If your protocol module supports the sending of data over a connection to a 
remote machine (or process) you must also support: 

• 

Off.t SWI N•-
5 Protocol_lnnsmltData 

If you have chosen to support file transfer SWls you must furthennore support: 

Off.et SWI Na-
Il Protocoi_SendFIIe 
12 Protocoi_SendFileData 
13 Protocoi.,.Abort'lansfer 

If your protocol module supports the receipt of data over a connection from a 
remote machine (or process) you must also support: 

Off.et SWI N•-
6 ProtocoiJ>ataRequest 

If you have chosen to support file transfer SWis you must furthermore support: 

Off.t SWI N•-
13 Protocoi_.Abort'l'ransfer 
14 Protocoi_GetFilelnfo 
15 Protocoi_GetFileData 
17 Protocoi_GetFile 

• You may also choose to support: 

Off.et SWI Na-
18 Protocoi_DirOp 

Data structures 

Your protocol module must keep two different types of data structure constantly 
updated, as terminal emulators may directly access these any time they need to. 
These are: 

• II sif18le ,rotDuul i"oroulil" ~which contains the following information: 

Off.et hfor-.dota 
0 pol nter to protocol name string 
4 pointer to protocol version string 
8 pointer to protocol copyright string 
12 maximum number of connections allowed by module 
16 current number of open connections 

The three strings are all null-terminated, and have a maximum length of 30 
characters. For more details see Prvlocol_Optlll...ogUIUI!k (O{fstt 0) on 
page6-442. 

6-433 



Writing a IMminal smulator 

-:·:·:-:::::::~=:=:~»:=:~:-::::::::~..::~;;:~:=::::::::::::;::::-:--::::::>?.l';:,_.:::::::::::::::::::::::::::m;-.. "Xt*:.;-::;.;:::::::::::::::::::~:.:=:·:·:·:·::::::::;:;;;~;:.:·:·:·:.:.;.:.:.:~:-:-:=:=:·:=:=:::::-:-:-x 

• A poll Vt!Ori. ror each loslcallink that shows the status or that link by the state or 
various bit OlliS: 

IUt MMIIla1 ••ea Mt 

0 data Is pending 
I file Is pending 
2 paused operation is to continue 

For more details see Prot«oo_OprJ!Co~...:lioll (Ofut 3) on page 6-446. 

Multiple llnka and connection• 

All protocol modules ••• (lr physically possible) suppon multiple IOQical links. 
and multiple connections. 

Writing a terminal emulator 

6-434 

Jr you' re writ in& a tenninal emulator there are various runctions that It's likely you'll 
want it to suppon. This section tells you which SW!s you' ll need to use for many 
such runctions. and outlines how to use them. The later section that details each 
SWI will give you the detailed lnronnation you need. 

Finding available and compatible protocol• 
To find what protocols are available and compatible with the needs of your 
emulator. you must repeatedly Issue Service_FindProtocols until it Is not claimed. 
Then you must issue Service_FindProtocolsEnd. 

Chooalng a protocol and opening a link 

For your user to choose a protocol. you'll probably want to give them a menu of the 
ones you round to be available. Once they've made the choice, you can then issue 
Servlce_ProtoooiNameToNumber to find the base SWI number or their chosen 
protocol module. You can then use this to call the SWI Protocoi_OpenLOQicalLink 
(offset 0 rrom the base number you fust found). 

You can also use the fad lilies outlined In the section entitled P1W«D1 IIWftln ~~ ~~ 
Wi,., on page 6-436 to pi'O'Itde menus so that your user can set up the way the 
protocol and connection will work. 

Opening a connection 
To open a connection, call Protocoi_OpenConnection (offset 3). Sometimes the 
protocol module won't immediately be able to open the connection; you'll need to 
use Protocoi_CetLinkState (offset 9) to find out whether the connection eventually 
makes or fails. 

Appsndlx G: The AGom Tflnninallni8118Cfl Prolocol 
;.:.:.;.-..: .. ~5».~...m.:.:.~:;:;.:--:«=:«<~.;:;>~x«:.:.:.::::;.;::;:=v.-$:·:·:·:·:·:::::;:;:;:;:;:~:;)i$t."$;r-~-:-:·:=:·::::;:;:;:§::;:?_;¥,-~.);;;,;.;.;:;:;:;:;:;:;:;:;:;.z:.;.-... -.:.:-:·:·:·::::;:;:;:;:;.;:;.;.J«io:>:·:·:·::;.;.;.;:~~ 

Cloalng a connection and a Unk 
To dose a connection, call Ptotoc:ol_doseConnectlon (offset 4). To dose a qical 
link. call Protocoi_CioseLOQicaiUnk (offset I): thl.s also closes any associated 
connections. 

Examining the poll word 
When you open a connection, you set the address or a poll word. The protocol 
module sets bits In this word when It needs attention. It's vital that your emulator 
regularly examines this word so that the protocol module gets adequate service. 
We suggest you do so each time you get a null event from Wlmp_Poll . 

Sending data 
To send data, call Protoooi_TransmitData (offset 5). 

ReceMng data 
When the protocol module receives data over a connection. It will notily your 
emulator by setting a bit In the poll word. 1b get the data rorwarded to your 
emulator, call ProtocoU>ataRequest (offset 6). 

Sending tllea 
To send a file. call Protocol_SendFile (offset II) to give details or the file to the 
protocol module. When the protocol module shows it Is ready for you to send the 
file (by using the poll word). send the file In oneormoredata packets by repeatedly 
calling Protocoi_SendFileData (offset 12). Finally. call Protocoi_SendFileData 
(offset 12) a last time to mark the end or the file transfer. 

You can use this call to send multiple files. , 
Wherever possible you should make sure that the data packets are small enough 
that they can be quickly sent. so your emulator doesn't hoe the computer ror long 
periods. 

Receiving fllea 
· When the protocol module receives a file over a connection, it will notily your 

emulator by setting a bit in the poll word. 1b get the file rorwarded to your 
emulator, call Protocoi_CetFilelnfo (offset 14) to get details or the file. When the 
protocol module shows it is ready to forward the file (ilia in by using the poll word), 
call Protocoi_CetFileData (offset 15) until you've received all the data packets 
1J18klng up the file. 

6-435 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

( 

( 

( 

{ 

( 

( 

( 

( 

( 

( 

c 

DocumMiatlon of S8fVic9 Calls and SW/s 

:::::::::::::·:·:·:·:·:·: <·:·:·:=: =:=:·:=:·:·:::=:·:-:::::::::::::::::::::::::::::::>:::¥.~:::::;;;;;;::,m*:;:;::::::•:::;:;::;;:::::::::::::•:::::·:-:·»":~::.m::::;.;::::::::::::::•:::.:·:~·:o:·:-:.:.:-.-.:-:«•:•:~::::::::::::::::::::::::::::::~::e:::::;;:::::~:=:~<:<::x:o: 

Explicitly getting • ftle 

To explicitly 11et a file. call Protocoi_GetFile (offset 17). You'll actually receive it just 
as we outlined aboYe. 

Aborting file oper•tlon• 
To abort any tile operation. call Ptotocoi_AbortTransfer (offset 13). 

Directory opet'•tlona 
There are no SWis specified in the Acorn TIP to send. receive or Qet entire 
directories in one call. Instead we provide a sinf11e SWI call- Protocoi_DirOp 
(offset 18)- with which you can create a directory. move Into a directory. and move 
one level up a directory tree. You can combine this SWI with the ones outlined 
above to move around a remote tile system. creat1n11 directories. and sendin11 and 
11ettin11tiles at will (subject, of course. to your havin11 access ri11hts). 

Protocol modulea •nd the Wimp 

The Acorn TIP provides several calls which help interaction between the Wimp and 
protocol menus. These are necessary because the 'pick and mile' nature of protocol 
modules and terminal emulators means you' ll have to combine menus from each: 
and because protocol modules are not fore11round tasks. and so don't receive 
notice of menu selections and Wimp events. 

To 11et a protocol's menu tree. call Protocoi_CetProtocoiMenu (offset 2): you can 
then combine It with your emulator's menu tree. If a user clicks on the protocol 
module's part of the menu tree. call Protocoi_MenultemSelected (offset 7) to pass 
this on. To pass on a Wimp event to a protocol module. call 
Protocoi_UnknownEvent (offset 8): you should do this for every event your 
emulator can't deal with. as the protocol module may be able to. 

Gener•tlng a bre•k 

Finally, you can ~enerate a Break over the connection by calling Protocoi_Break 
(offset 10).. 

Documentation of Servtce Calls and SWis 

6-436 

The rest or this chapter details In turn each Service Call and SWI used to 
communicate between a protocol module and a terminal emulator. It looks at each 
in three st311es: 

I What your terminal emulator should do before callln11 the Service Call or SWI. 

2 What a protocol module should do when it receives the Service Call or SWI. 

Appendix G: nr. Aoom Tennlnallnlerlace Protocol 
::::::::::::::;;:;~~"*:::::::::::-";..'"VY..;::::::.::x:::::::.;:;.;«.W.«::::::::::;:::::::;:~~:>=-:--::::::~~~=:=:=:::::::::~~.::::~:::::::::(0';1~~.:::::::~~;::::::::::mx:::=:·:-=·:·$%=:=:=:=:::::=:=:=:=:=: ::::::::::::: =:=:=:~ 

3 What your tennlnal emulator should do when the call returns to it. 

We've followed the same viewpoint throu11hout as we have above: we assume that 
you're writ1n11 a terminal emulator to worlt with someone else's protocol module. 
So we talk about JCMif terml nal emulator, but tile protocol module. If. in fact, you're 
wrltln11 a protocol module. you should find It easy enou11h to make the shift or 
viewpoint you'll need to. 

6-437 



SBtVIce_FIIIdProbcols (S«victt CAl &<41580) 

>"!-~it.«-J ... :·:·:·:::::::::::::::~:-:·~:·:·:-::::::::::::::::::::::::::::-~:o::::;.;.x.:.:::.::-:::.;:::::::;:;;;;;;;:;;;.;;.:~~»x::;::::::;.;:;:;.;:;.;·:·:«~~::.:~:~:::::::::::::::::::::::::::::::=::-;.~.,o;:~;.:-:-::::;.;:::::::::;:;;:;;:;::•:~·:·:•:.»:·»:.:·: 

6-438 

Finds all available compatible protocols 

Service_FindProtocols 
(Service Call &41580) 

On entry 

Rl = &41580 (reason code) 
R2 =lowest TIP version supported x 100 
R3 =last TIP version known x 100 
R4 = emulator nags 

(first public version was 1.00) 
(current version is 1.00) 

On exit 

Use 

Rl = 0 to daim. else registers preserved to pass on 
R2 =pointer to protocol name string (null terminated) 
R3 = base SWI number of protocol module 
R4 = pointer to protocol information block 
R5 = protocol Oags 

Use this service call in your tennlaal em1illtor to find all available compatible 
protocol modules. (For full details of OS_ServireCall see page 1·243.) You should: 

I Repeatedly issue this service call until It is not daimed- without polling the 
Wimp In the meantime. 

2 Issue Service_FindProtocolsEnd (see page 6-440). 

The emulator nags have the following meanings: 

Btt. Val•e Meeal .. 
0 0 emulator doesn' t support file transfer calls 

I emulator supports file transfer calls 

1·2 00 direction of link Immaterial 
01 one-way link wanted - protocol to emulator 
10 one-way link wanted - emulator to protocol 
II two-way link needed 

3 0 bits 1·2 are minimum requirement 
bits 1-2 are exact requirement 

All other bits are reserved and must be zero. 

Appendix G: Thll Acxm TMIIIillal tllsrlllCII Prolocol 

x-;;:·:~....-..:::::·:·:·:·:·:-:-»:::.:•:·:;;.;:::~:~::.->::::::.;;:::;::~:.;.:-:~x::·:'";.~;;;w;.:.:-:.:::·:•:~o;.:;m.:!:::.'*::....:.;:::;;;;;:;;;;:~-:.-:=~:=:>:::-.:-:;:-:«·~:•:·:««o:.:·: ·:·:·:·:·: ·:·:·:.:-:-:<-:-:«-:.:· :·:·:-:·:·: 

The pl'Otoclol modale cheds to see if: 

• it uses a version of the Arotn nP in the ranae supported by the terminal 
emulator 

• it supports links in the direction required by the terminal emulator. 

If one of the above isn't true. the protocol module must not claim the call- that is. 
it must return with registers preserved. 

If both the above are true it must dalm the call- that Is. It must return with the 
values shown above In the section entitled 011ecit. It must then set an Internal nag 
so it doesn't claim this call again until It receives a Servlce_FindProtocolsEnd. 

The protocol information block It returns contains the following information: 

Offeet 

0 
4 
8 
12 
16 

l.tor..doa 
pointer to protocol name string 
pol nter to protocol version string 
pointer to protocol copyright string 
maximum number of connections allowed by module 
curRnt number o! open connections 

The three strings are all null-terminated, and hao;oe a maximum length of 30 
characters. The protocol module must always keep this block updated so terminal 
emulators can directly aocess it. 

The protocol Oags it returns have the following meanings: 

BIU VaiH Meeala1 
0 0 can open new link 

2 

I can't open new link. or not useful (see 
below) 

0 
I 

0 
I 

protocol doesn't support file transfer SWis 
protocol supports file transfer SWis 

protocol doesn' t support Protocoi_DirOp 
protocol supports Protocoi_DirOp 

If the protocol is mainly Cor file transfer (such as Ftp) and the terminal emulator 
doesn' t support file transfer calls (bit 0 of RJ was dear on entry) the protocol 
module should set bit 0 to show it's 'not useful'. 

All other bits are reserved and must be zero. 

Related Service Calls 

Service_FindProtocolsEnd (Service Call &41581). 
Service_ProtocoiNameToNumber (Service Call &41582) 

6-439 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

SIKVfce_FindProiDColsEnd (SBfVIce Can &41581) 

Wk:.:-:·:·:·.·.··.·.·.··.·.·.·. ·:·::;:;:;:;:;:;:;:;:;:;:;::,.;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.:·:·:··,·:·;.:·.··· .;.;.;:;:;:;:;:;:;:; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;;;::*~=·:t:.;.;:;.;:;.;.;.;.;.;.:~::: :;:;:;:;:::::;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:; 

6-440 

Service FindProtocolsEnd 
(Service Call &41581) 

Indicates that protocol modules must again respond to Service_FindProtocols 

On entry 

Rl = &41581 (reason code) 

On exit 

Use 

R I = 0 to daim. else preserved to pass on 

Use this service call in your term.l11al em1t.tor to Indicate the end or your search 
for available protocols. 

Protocol mod• In must chan8e their internal Oag so they respond a8ain to 
Service_FindProtocols calls- from whatever tenninal emulator the callsori8inate. 
They m•t aot claim this call . 

Related Service Calls 

Service_Fi ndProtocols (Service Call &41580). 
Service_ProtocoiNameToNumber (Service Call &41582) 

App/Jndlx G: 11NI kom Tenn/11111 tll8rl/JC8 Protocol 
;::,.;: ;:;:;:;.;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::::tt:;:::::::::::::::~~'««4::::::::;:;::~::;~~-::x:::~;::;;~:~;:;:;:;:;:;.:~;~;:~::,~:;;;::-;.::~;:;~~~~;:~:;:~::.~YM:::::::::·:::-:.:::::.::::~;:;;m;;::;:;:;::;:::-<W. 

Service _ProtocoiName ToN umber 
(Service Call &41582) 

Requests the conversion of a protocol name to a base SW1 number 

On entry 

Rl =&41581 
R2 = pointer to protocol name (null -terminated) 

On exit 

Use 

R I = 0 to claim. else registers preserved to pass on 
R2 ,. base SWI number for protocol 

Use this service call In your tennlaal emlt.tor to request the conversion of a 
protocol name to a base SWI number. 

If a protocol modale recognises the protocol name It must daim the call and 
return the base SW1 number of the protocol. Otherwise it must pass the call on. 

Related Service Calla 

Service_FindProtocols (Service Call &41580). 
Service_FindProtocolsEnd (Service Call &4151) 

6-441 



ProiOOOI_ OpenLoglca/Linll (Oftn t OJ 
~::.::-:--..::X<Y~:=:o:v~:::::;:;:::::;:;:;::::::-~~~~:::;.;:::;:;.;:;:;:;:;:;;;:::;;:;::;;;:;:::;:~;:~ru~:::::::::'.%<~:;:;:;;;:x~x::.::.::=::::::::::::::::::::-:~::::::::::::::::m.~::.;::;;.m:;::;:::r.o:w.~ 

6-442 

Protocol_ OpenLogicallink 
(Offset 0) 

Opens a toalcalllnk to a protocol module 

On entry 

RO = terminal emulato(s link handle 
Rl =pointer to terminal identifier strina (null terminated) 

On exit 

Use 

RO =protocol module's link handle 
R I =protocol module's Wlmp_Poll mask 
R2"' pointer to protocolin£ormation block 
Rl =protocol in£ormatlon Oass 

Use this call in your lel"'lllaal emalator to open a loaicallink to a protocol module. 
The handle you pa.ss on entry will be returned to you by future SWI calls you make 
to the protocol module-we susgest you use a pointer to your data structures that 
are specific to this link. 

You may use the terminal identifier strina for such thinas as settlnathe ' type' of 
your terminal emulator on the remote machIne. 

The protocol module returns its own handle £or the link- aaain this is typically a 
pointer to its own data that Is specific to the link. The Wlmp_Poll mask It returns 
spedf\es those Wimp events that it doesn't need. 

The protocol information block contains the rotlowinaln[ormation: 

Ofhet 
0 

• 
8 
12 
16 

l llfol'lll• do• 
pointer to protocol name stri na 
pointer to protocol version strina 
pointer to protocol copyriaht strlna 
maximum number of connections allowed by module 
current number of open connections 

The three strinas are all null-terminated, and have a maximum lenath of 30 
characters. The protocol module must always keep this block updated so terminal 
emulators can directly access it. 

App8ndlx G: TM kom TerminBJ /nl9rlaco Protocol 
::;:;:;~:~;;.;;:::·:·:·:·:· :::::::::::::::::::::·:·!=:~:;:;;«-oo-~·X«·:·x·:,.:.:::::::::::::::::::~~::;:~;::~-»:-"..6-X:::::m.:::;:;:::;~;:;:;;;~;:;:;.;.;;;.; .... :«*-::::;:;:;;;@;;;:;:;;;::::::::.;.; .;:;.;:;:;.;:;:;.;.;::;:::.:·:·:·:·:·:~«-m-:~;;; 

The protocol information Oass have the followina meanlnas: 

Bit M-lll .. n ea.t 
0 proCocol needs more lnfonnatlon to open a connection 
I protocol supports file transfer SWis 
2 protocol supports Protocoi_DirOp 

All other bits are reserved and must be zero. 

When this call returns to your lel"'lllael e111allll« you should examine bit 0 of the 
protocol information naas. If it is clear then you should Immediately call 
Protocoi_OpenConnectlon: If ills set you will have to wait until the user sh0111s 
they are ready to supply the Information the protocol module needs (by, for 
i nstanoe. movina the pointer a.'er the arrow that shows an 'open connection' menu 
item to have a submenu). 

Al so, you should AND the protocol module's Wlmp_Poll mask with your terminal 
emulato(s own one. Use the leSUitant mask whenever you call Wimp_Poll. 

Related SWis 

Protocol_CioseLoalcaiLinlt (offset I), Protocoi_OpenConnectlon (offset 3), 
Protocoi_CioseConnection (offset 4), Protocoi_CetLinkState (offset 9) 

6-443 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 
( 

( 

( 

( 

( 



( 

( 

( 
' 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

Prot:KXJL Clot;6Loglca/Link (Offset 1) 

;:;:;:;:;:;:;:;:;:;.;~:;;;.;;;.:~:~/.~::;~:;:;:;:;;;:;:;:;~;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::;:;:;::::::;:;.;:;:;:;.:«V'i~::::::::;:;:;:;::::~·::;::-~;:.;"h%Y..:'::::;;::;:;:;:;.;:::;.;:;.;:;:;:;:;:;.;.; :;.;:;.;.;.:-:.;.:.o;;-;::;:;:~:·:·:-X::~~:;:;:;:;:;:;:;:;:;:;:;::.w. 

6-444 

Protocol_ Closelogicallink 
(Offset 1) 

Closes a IQi!lcalllnk to a protocol module 

On entry 

RO = protocol module's link handle 

On exit 

u .. 

RO preserved 

Use this call in your term I RaJ emabotor to close a IQi!ical link to a protocol module. 

The protocol mochle dOISes any connections that are associated with the IQi!lcal 
link. 

Related SWla 

Protocol_Openl..oii~aiLink (offset 0), Protocoi_OpenConnectlon (offset 3). 
Protocoi_CioseConnection (offset 4), Protocoi_GetLinkState (offset 9) 

App9ndlx G: TIHI Acml Terminallnl9rlllC9 Protocol 

:::::::::::::=:::=:=:=:=:::::::.~~«'..«=:=:=:=:=:=:=:::=::::::::;.;:::::=: =:=:=:=:=:=:=:::::::;:::::::::::::::::::xxm~:=$:=:::::~::::::~~~::~~;::::::.::::-:;XX:::::::::::::.:::::::::::=:::=:=:=:=: ::::::::::::::::::::: :::::::::::::::: :·:=:=:=::::::::::::::::::::::: :::::::: 

Gets a protocol's menu tree 

Protocol_ GetProtocoiMenu 
(Offset 2) 

On entry 

RO = protoool module's link handle 

On exit 

Use 

RO =terminal emulator's link handle 
Rl =pointer to protoooland llnkspedflcWimpmenu blod 

(as used by Wlmp_CreateMenu) 

Use this call lnyourtemda•e•al.torto11eta protoc:ol'smenutree. You must use 
this call each time you want to open the protocol's menu. as it may change 
dependin11 on the state of the loclcalllnk. For eJ~ample Items may bemme 
unavailable and so be 11~ out, or the user may chanse the contents of a 
writable entry. 

The protocol mod ... returns a pointer to a menu blod that is the same as that 
used by Wlmp_CreateMenu. (See pase 4-222 for details of this call.) This menu 
blod must accurately reflect the current state of the IQi!lcalllnk between the 
terminal emulator and the protocol module. 

Related SWla 

Protocoi_MenultemSelected (offset 7), ProtocoLUnknownEvent (offset 8) 

6-445 



Pro«N;;t_ ~ (Ofttufl3) 

:;;.;;;::•:•:•:•:::::~·:=:-:::·:·:~=::;:;:;~;:;;~;;:;;:.w,.-:;;;;:::~::::~.;::::r~~=-:o':'.:::~::~~ .. ~·::::::::::;:;:;:;::::~..:;::~::~.;-::;:;;;:;~:;:;:;:-;:;:;::::::::~:o»:~·=·=~.:-:·:·:·:·:·::;:;:;:::::;:;:;;::~:j.> .. ;.;.;:;.;:;.;:::?,: 

6·446 

Protocol_ OpenConnection 
(Offset 3) 

Opens a connection from a protocol module 

On entry 

RO =protocol module's link handle 
Rl =pointer to poll word for this connection 
RJ =pointer to protocol specific strina (null-terminated). or 0 
R4 = x coordinate of top-left corner of dlaloaue box 
R5 = y COOidlnate of top-left comer of dialoaue box 

On exit 

u .. 

RO =terminal emulato(s link handle 
R I = pointer to connection name (null-tennlnated) 
R2 = pointer to protocol specific information, or 0 
RJ = protocol status flaas 

Use this call in yourtcrmla.J emulator to open a connection from a protocol 
module. 111. the same time you pass the protocol module the address of a poll word 
in your workspace. which your tenninal emulator must reaularly check to review 
the state of the loaicallinlr. to the protocol module. We suuest you do so each 
time you aet a null event from Wlmp_lloll . 

When a bit Is set in the poll word, somethlna needs allentlon. The table below 
shows the meanina of each bit. and the laltW SWI call you have to make to handle 
the situation. See the relevant paces for details of what to do, and of any further 
calls you may need to make. 

Bit 

0 
I 
2 

Meaalatwlaeaeet 

data is pendlna 
file is pend ina 
paused operation is to cootlnue 

c.D aeeded 

Protocoi_DataRequest 
Protocoi_Getf11elnfo 
Protocoi_GetAieData or 
Protocoi_SendFileData or 
Protocoi_DirOp 

The poll word must be In RMA space. so the protocol module can update It 
whether or not your terminal emulator Is the forearound task. 

Appendix G: T1N1 Acorn TfH17!in81 lnlllrlac• Protocol 
x««~:::::::::::::::~::::·:·:·::;.:;:::::::::::;:;:::::::;::::::::::::~::;:.:::::.:;»X>:;:.:::::•?R."'«~=:=:::::::::::::::::.;.:.-.. -:.~-=-=·:·:-:::::::::::::.:%~:=::::~x:.:::::::::::::::::~ .. ~:-:·:~:<>:.:::>:~:>~:.;.;.~:•:·:·:·:·. 

The values you need to pass In RJ. R4 and R5 depend on drcumstances: 

• If the protocol module needs no further lnfonnation to open the connection 
these values are i&nored. 

• If the user has shown they are ready to supply the infonnation the protocol 
module needs (typically by movlna the pointer over the arrow that shows an 
'open connection' menu Item to have a submenu). you must set RJ to zero. 
and R4 and R5 to the COOidlnates where you want the protocol module to open 
a d iaque box. You can aet these coordinates by maklna your tenninal 
emulator's menu issue Messaae_MenuWarnina when the submenu Is to be 
activated (see Wimp_CreateMenu on paae 4·222 and Wimp_SendMessaae on 
paae 4·261). 

• If the user has already supplied you with the Information that the protocol 
module needs (say In a saipt) you should pass that In Rl. The values of R4 and 
R5 are lanored. 

The protocol moclwle opens the connection after first (If necessary) usina a 
dialoaue box to aet any Information It needs. 

The documentation of a protocol module 111ut state the format of information it 
expects to find in RJ (if It needs any). Wherever possible, this format should 
consist of the same fields that the protocol module provides in its dialoaue box. in 
the same order. and comma-separated. 

The protocol module returns a connection name suitable for the terminal emulator 
to use as a window title (If the connection Is open or pending). The protocol 
specific lnfonnation It returns may be used for error messaaes. The protocol status 
flags it returns have the followina meanlnas: 

Btt. V.Jae Meaalat 

0-1 00 no connection opened 
01 connection pendlna 
10 connection open 
II connection failed 

2 o no data pendina 
I data pendlna 

. All other bits are reserved and must be zero. The protocol module should select 
'connection failed' in preference to 'no connection opened'. 

When this call returns to your te1111i11.J emalaor you must examine the state of 
these flaas: 

• If the a>nnection failed (bits 0 and I are set) and no data is pending (bit 2 is 
clear) you must allempt to dose the connection by calling 
Protocoi_CioseConnection. 

6-447 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

( 

( 

( 

~ 

( 

( 

( 

c 
c 
c 

ProiOCOI_ Op&nConnliCtlon (Offs&t 3) 

:.:o:o:-:::·:=:·:-::. .. :-x-:-:-:.;:;.;~~::.;:;;;:;:;:;.;.;;;:;:;;;:;::;;:;.;:;.;:;:;:::;::::::::~~::;;::::::;:::~-:=:'::::::::::::::::: ::::::::::-:=! :;::::::::::::::::::::::::::::::::::::::::::::::::::::: ;:;:;:;:;:;:;:;:;:~o?N~;::~..z:::::::::::~::::::~:-::;:;::::~«:::;:;:;:;:;:; 

6-448 

• If the connection Is pending you must wait until bit 0 of the ioglcalllnk's poll 
word Is set. Then you should call Protocoi_GetLinkState to flnd If the 
connection was opened, or if it failed. 

• Bit 2 ('data pending') has exactly the same meaning as bit 0 of a logical link's 
poll word, and is provided to reduce the amount of polling that needs to be 
done. lf it is set you should initiate the data transfer bY calling 
Protocoi_DataRequest. 

Related SWla 

Protocoi_Openl..oiicaiLink (offset 0). Protocoi_Ciosel..oiicaiLink (offset I). 
Protocoi_CioseConnectlon (offset 4), Protocoi..)JetLinkState (offset 9) 

~ndbt G: The Acom Termlnallnl9rliJCfJ Protocol 
::t::::::: :::::::::-::::::::::: ::::::::::::: :::::::::.:::z.::::-z.:::~::::r.m~~:=:::::~=:::«=:>.::::::=:~~:;..~~:::~::~~~:=mx::~w:::::::::::::::::::::::::::::::::::::::-:::::x::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

Protocol_ CloseConnection 
(Offset 4) 

Closes a link's connection from a protocol module 

On entry 

RO = protocol module's link handle 

On exit 

u .. 

RO = pointer to protocol specific Information. or 0 

Use this call in your temd .. l em~r to dose a link's connection from a protocol 
module. 

The protocol modale closes the connection associated with the given link. 

Related SWls 

Protocoi_Openl..oilcaiLink (offset 0), Protoooi_Ciosel..oilcaiLink (offset I), 
Protocoi_OpenConnectlon (offset 3), Protocoi_GetLinkState (offset 9) 

6-449 



ProrJCOL TransmiiDaUJ (Offset 5) 

. ::: :·:·:<:-:-:-:::;::~::::::.::.::::x::-;;.:;:::::::::.:::::::::::~::::;:;:::::%%:::.:~~:.~::~:.~::.;«:::;:: :::::::::::::::::::::: :·:·:·:·:·:·:·:::::::: :;:::::::::::;.~~=:=::~:::;;.:;w,;:-:·: .;::·:·:·:·:'¢o:W:·:·~ :-::::;.;«;,.-:;.;.:-:-:::::::·:=:=:-:::.;::::::-:::¥~:::::::;:::::::: 

6-450 

Protocol_ TransmitData 
(Offset 5) 

Transmits data over a connection via a protocol module 

On entry 
RO "' protocol module's link handle 
Rl =pointer to receive buffer 
R2 • len11th of receive buffer (in bytes) 
R3 = pointer to t ransmit buffer 
R4 "'len11th of transmit buffer (In bytes) 
R5 "'emulator transmit nass 

On exit 

Use 

RO,. terminal emulato(s link handle 
R2 = bytes or data placed in receive buffer 
R3 " protocol status nass 
R4 • pointer to protocol specific lnfonnation 

Use this call in your termlaal emulator to transmit data over a connection via a 
protocol module. You'll also receive any pendin11 data that the protocol module 
has been hold I n11 for you. 

The emulator transmit nass have the following meanin11s: 

Bit Value MeaRiftl 
l 0 transmitted data is in bytes 

transmitted data is in words 

All other bits are reserved and must be zero. If the transmitted data is in words. 
each word contains one character. 

The protocol modale transmits the data over the connection. Also. If It has any 
pendin11 data for the terminal emulator it forwards as much as it Is able to place In 
the emulator's receive buffer. 

The protocol specific infonnation it returns may be used for error messages. 

Appendix G: The Acorn Terminal lnt9rlace Protocol 

;.;:;.;.;:;.;:: :;:;:;::::-:::~.:-:. ::;.;:;:;:;:;:;:;:;:;:;:;:;;;:;.;;;.; ·:·:·:·:·:·:=:·:·}:·x·:-::;:;:;:;:::;:::;:;:;~::.:·:·:·::;:;:;.;:;:;.;:;.>$"~;:;:;:;:~:::::;::«-W;~;:;:;::v:<~«::::: ::::;:;:;:;:;:;:: :;::-::: :;:;:;:;:;.;;:::::.:.:-:· ;.;;:·:·:·:·:·:·:·:·: ·:·:·:·:-::;:;:;:;::•::;.; . 

The protocol status na11s It retu rns have the followinll meanln11s: 

Bit. Valae Meulat 
0·1 00 no connection opened 

01 connection pendinll 
10 connection open 
II connection failed 

2 0 no data pendin11 
I more data pendinll 

3 0 data Is In bytes 
I data Is in words 

All other bits are reserved and must be zero. 

When this call returns to your tet.iul ••lliaot you must ched R2 to see if you 
have received any data. and process It If necessary. You must also examine the 
protocol status flaas In Rl: 

• If the connection Called (bits 0 and I are set) and no data is pendinll (bit 2 is 
clear) you must attempt to dose the connection by callin11 
Protoc:oi_CioseConnectlon. · 

• If the connection Is pendin11 you have made an error In your pr011rammin11 by 
trying to use the connection before It has been properly opened. 

• Bit 2 ('more data pendinll') has exactly the same meanin11 as bit 0 or a l011ical 
link's poll word, and Is provided to reduce the amount of pollin11 that needs to 
be done. If it Is set you should Initiate the data transfer by callin11 
Protocoi_DataRequest. 

• If the data you've received Is In words. each word contains one character. 

Related SWis , 
Protocoi_SendFile (offset II). Protocoi_SendFileData (offset 12) 

6-451 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 
( 

ProltXOI_DataR8qU9&t (Ofts« 6) 

~-:·:·:·:·:·:;;;:;;«.);.;.;~:.:-;.:-:·:·: ·:·:·:-::;.;.;;;.x;:·:-«~::::;:;M:::::.:«~:.-,;.:;;.:.:::;:.;.;.;.:-:-:-:-:-:-:~:-:::::::::::.;::::::.:::::.:::>:::·:;:·:·:·:·:·:·xv.· :-:·:·:·:·:·:<<·:-::::::: ::::::::::-;•:.»:·:·:·:·:·:· :-:·: ·.·.·.·.·:·:=:·.·.=··· 

6-452 

ProtocoLDataRequest 
(Offset 6) 

Requests that a protocol module forwards any pending data 

On entry 

RO = protocol module's link handle 
Rl =pointer to receive buffer 
R2 =length of receive buffer (in bytes) 

On exit 

Use 

RO"' terminal emulator's link handle 
R I preserved 
R2 = bytes of data placed In receive buffer 
R3 = protocol status flags 
R4 = pointer to protocol specific information 

Use this call in your terrnlnlll emulator to request that a protocol module forwards 
any pending data. You should do so in either of these cases: 

• If bit 0 ('data pending') of the link's poll word Is set 

• If the 'data pending' bit (commonly bit 2) of the protocol status flags 
(commonly in R3) is set on return from a Protocol. .. SWI call . 

The protocol module forwards as much of the pending data as it is able to place in 
the emulator's receive buffer. 

The protocol specific information it returns may be used for error messages. The 
protocol status flags it returns have the following meanings: 

Blta Vll11e Meanl"-
o-t 00 no connection opened 

2 

3 

0 I connection pending 
10 connection open 
II connection failed 

0 
I 
0 
I 

no data pending 
more data pending 

data Is In bytes 
data Is In words 

All other bits are reserved and must be zero. 

Apf»nddx G: The Aoom TMminBI tiiBrlace Profocol 

>X:::::;;.;::=:=:-:::::::::::: :::::::::::::::::O-~:::::-:=:·:·:=:·:·:-:::::::::::::::::::::::::::~~=~:--:::::~:~::;;::::::::::::::::::~=:=:=:=:=:~;~::~:®-::::::::::::~::::::::::::~::::::::::::::~~x::-. .:-:.::& • ...:;::::::.wSt:::::::<*=:~ 

When this call returns to yourten~talll e11111lltoc- you must examine the state of 
these flags: 

• If the connection railed (bits 0 and I are set) and no data is pending (bit 2 Is 
clear) you must attempt to dose the connection by calling 
Protocoi_CIO&eConnection. 

• If the connection is pending you have made an error In your programming by 
trying to use the connection before it has been properly opened. 

• Bit 2 ('data pending') has exact.ly the same meaning as bit 0 of a logical link's 
poll word, and Is provided to reduce the amount of polling that needs to be 
done. If it is set you should continue the data transfer by calling 
Protocoi_DataRequest. 

• If the data Is In words. each WQI'd contains one character. 

Related Swts 

Ptotocoi_GetFilelnfo (offset 14). Protocoi_CetFileData (offset 15). 
Protocoi_Getfile (offset 17) 

6-453 



PfOIOCOI_MIKIU/IemSBIBcted (Oftslll 7) 

.:~~=·:·:-:·:·:·:·::;:;:;:;:;:;:;:;:;::.;~ .. 1>~-:.:·:·:·:·:·::;:;:;:;:;:;:;:;:;:;;;:;;:;;:::::::.~:;.;.;;:««-:-.:->::»¥.«'.'<«<'·::::;:;:;:;:;:;:;:;~:;:;:;:;:;:;:;:;::~..:::;.;:;:;:;:;:::»:_:;:;:;::~==~~:-:-:-:v;.;:;:;:;:;:;:;::.::::::;.;.:-~·=·»:·:·:-: 

6-454 

Protocol_ Menu ltemSelected 
(Offset 7) 

Requests that a protocol module servioes a menu selection 

On entry 

RO = protocol module's link handle 
Rl =pointer to menu selection block 
R2 = x coordinate of mouse 
R3 = y coordinate of mouse 
R4 =emulator menu naas 

On exit 

u .. 

RO- R4 preserved 

Use this call in your termi•.J e lftalator to request that a protocol module services 
a selection made within its own menu. You should call this if you: 

• aet notice ol a mouse dick within the protocol's menu. via a Menu_Selection 
reason code from Wlmp_Poll 

• aet notice ol the pointer movina over a ri&ht arrow to activate one of the 
protocol's submenus. via a MenuWamina messaae 

(See the descriptions of Wimp_Poll on paae 4·183 and Wimp_SendMessaae on 
paae 4· 261 for more details.) 

The menu selection bloc.k contains: 

Rl item In protocol menu that was selected (start ina with I) 
Rl+ I item In first protocol submenu that was selected 
Rl+2 item in second protocol submenu that was selected 

terminated by 0 byte 

AppMtdlx G: Thtl Aoom Terminsllnltlrl.ce Prolocol 
m::.:~:=:=:=:=:=~=:~:·:·:~:9;;:-.:;:.::.:·:·:.:·~:·:·:.:·:::;::::::::mm:::.:·:=:·:=:=:=::;.w.;:.:.:.:.:·:·:·:.:-:·:·:·:-:=:·:·:·:·:·xv:«>:·: .. ..».%"0:;:;:::.:-:=:-:·:=:=:·:·~:·:·:·:·:·>: -:·:·:·:·:·:=:-:::::::·:·:·:·»>=-=·:'·:·:·:·: .;:::::: 

Note: There are several Important diflerenoes between this menu selection block 
and that retumed by Wlmp...Poll with a Menu_Selection reason code: 

WIMp Me .. Miectloa block Protocol - • • eelectloa block 
Menu Items start from 0 Menu Items start from I 
Each number is a word Each number is a byte 
List Is terminated by -I Ust is terminated by 0 
R I aives item in main menu Rl aives item at root of protocol 
menu 

The emulator menu flaas show why YQU have made this call: 

Bit 

0 
V.Jae 

0 
Mea•l• l 
called because ol a mouse dick 

I called because ol a MenuWamina message 

All other bits are reserved and must be z.ero. 

The protocol lnOdllle services the menu selection. either dolna what the user 
clicked over. or displaylna the necessary submenu. 

Related SWia 

Protocoi_CetProtocoiMenu (offset 2). Protocol_ Unknown Event (offset 8) 

6-455 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

( 

( 

( 

( 

( 

( 

( 

\ 

( 

( 

\_ 

( 

( 

Prorx:ot_ UnlcnownEVIKII (Otis Ill B) 

·:;:::;:;:;:;:;:;.;:;:;:;:;:;:;:;:;;;::-:.:·:·:·:·:·:·:·:·:;;.;.;.;.;;;:;:;:;:;:;:;:;:;:;::;;:y~~::;.:<:·:·:·:-:·:·:·:·:-:·:·:.Y.I..C<;;;;:;:;:;:;:;:;:;;;:;:;:;.;~::;:;:;:;::;~;.::::::;:;:;~:;:;;;:;::~:.;;:v.:~;;;.;.; ·:·:·:·:-:-:·:·:·:·:·:·: .·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:;:;:;;;:::x~:: ... ~$::;::::~ 

6-456 

Protocol_ U nknownEvent 
· (Offset 8) 

Passes on Wimp events to a protocol module 

On entry 

RO = pointer to Wimp event block (as returned by Wlmp_Poll) 

On exit 

Use 

RO preserved 

Use this call in your termlaal em•l•tor to pass on Wimp events you can"t deal with 
to the protocol module you·re using. You should also pass on idle events If the 
protocol module"s Wlmp_Poll mask (see Protocoi_OpenLogicaiLink) doesn·t mask 
them out-even if your terminal emulator uses them. 

The protocol module processes the Wimp event If It Is one in which it is 
interested-

ReCatedSWis 

Protocoi_GetProtocoiMenu (offset 2), Protocoi_MenultemSelected (offset 7) 

Appendix G : 1M Acorn Tt~rmlnallnlllrlacll Protocol 
;;;::::o~.::w.::::::::::::::::::~~'*:;:;.;;:~:®X::::;:;:;:::: :::m:::::::::.:::~::::::~::::~~::~::::~:t:::::::::::::::::::::::::::::::::::::::::::::::::::::::~:::::::::;~~.;.:;::: .;::::::;;.;:;:.; :;:::::::::::::x::::::::::::;::;;:::%::~::::c< 

Gets the state of a logkalllnlt 

Protocol_ GetlinkState 
(Offset 9) 

On entry 

RO " protocol module's link handle 

On exit 

Use 

RO"' terminal emulator's link handle 
R I =pointer to connection name (null-terminated) 
R2 .. pointer to protocol specific Information. or 0 
R3 = protocol status flaas 

Use this call in your termlaal em•lator to get the state of a logical link. 

One time you should do so Is If an attempt you'Ye made to open a connection has 
resulted in a pending connection. You should then walt for bit 0 ofthe logical link's 
poll word ('data pending' ) to be set before malting this call to find if the connection 
was opened. or if it failed. 

The protocol mochde returns a connection name suitable for the terminal 
emulator to use as a window title (if the connection Is open or pending). The 
protocol specific Information It returns may be used for error messages. The 
protocol status flags It returns have the following meanings: 

Blta 
0-1 

2 

Val•e 

00 
0 1 
10 
II 
0 
I 

Meaai•J 

no connection opened 
connection pend ina 
connection open 
connection failed 

no data pend Ina 
data pendlna 

All other bits are reserved and must be zero. 

When this call returns to your tennl11al em•lator you must examine the state of 
these flags: 

• If the connection failed (bits 0 and I are set) and no data Is pending (bit 2 is 
clear) you must attempt to dose the connection by calling 
Protocoi_CloseConnectlon. 

6-457 



Prorx:ol_ GetLini!State (Ottset 9) 

x;;;::;«.;:;.;.;.:•::;;...;;;;;:::::;;.;«o:Yx;~;:~;:;::::::::::--.v..:~;~::::::;:;:;:;:;~y:.y~~~ ... ,.;;.;:;::::::::::~::::::::::;:;:::;:;:;:;:;:;:;:::::::::::;.;::~::.»::::;:;.;:::::::::::::::;:;:;:;:;:;::::::::::::~:;.;.;.;.:««.:.:·:::.;-;:;.;:;: ;:;:::::::::::::::~; 

6-458 

• 1£ the connection Is pend ins you must wait until bit 0 or the losical link's poll 
word is set. Then you should call either Protocoi_DataRequest or 
Protocoi_GetLinlrState to lind if the connection was opened. or 1£ it railed. 

• Bit 2 ('data pendins') has exactly the same meaning as bit 0 or a losicallink's 
poll word. and is provided to reduce the amount or polllns that needs to be 
done. tr it is set you should initiate the data transfer by call ins 
Protocoi_DataRequest. 

Related SWJs 

Protocol_OpenLoslcaiUnk (offset 0). Protocoi_CioseLosicaiLink (offset I). 
Protocoi_OpenConnection (offset 3). Protocoi_CioseConnection (of£set4) 

( 

( 

Appendix G: The Acoo! Termins/lnlerlace Protoccl 
:.v;:.:·:·:·: ·:·:·:·:·:=:::::::: :::::::::::::·:·;..~:>(,:·:·:·:·: ·:·:·:·:·:·:=:=:=:-:=: :::::::;.;;:::::•:o;.:-:-:-:-:-:-::::::::::::::::::m:own:;.-;::::::::::~:•:•:•:o~~::::::::::~®:::::;:.w.;:::<:~9;;:::::;:;:•:•:·::::«·:·:·:·:·: ·:·=-=· :·:<<«>»:.»:.;.:.:·:· ( 

Forces a protocol module to aenerate a Break 

Protocol_ Break 
(Offset 10) 

( 

( 
On entry 

RO =protocol module·s link handle ( 
On exit 

u .. 

RO =terminal emulator's link handle 
RJ " protocol status llass ( 

Use this call in yourtefllllul ••IIIMor to force a protocol module to aenerate a ( 
Break. 

The protocol mochle senerates a Break. The precise Interpretation of this varies 
from module to module. 

The documentation of a protocol module mutstate how it interprets this call . 

The protocol status flass It returns have the followins meanings: 

Blu V.Jae M-atac 
0-1 00 noconnectionopened 

01 connection pendlns 
10 connection open 
II connection failed 

2 o no data pend ins 
I data pendi 118 

All other bits are reserved and must be zero. 

( 

( 

( 

When this call returns to your termla.J emallllor you must examine the state or ( 
. these nass: . 

• 1£ the connection £ailed (bits 0 and I are set) and no data is pend ins (bit 2 is 
clear) you must attempt to dose the connection by callins ( 
Protocoi_CioseConnection. 

• tr the connection is pend ins you have made an error in your pr0£rammlng by 
tryins to use the connection before it has been properly opened. 

6-459 

( 

( 

( 



( 

( 

( 

( 

( 
\ 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

Protocol_ Break (Offset 10) 
:;:;:;:;:;:;:;:;:;:::::: :;:;:;:;:;:;:;:::::;:;::>:::::: ;:;:;:;:;:::::;:;:;~::~:~::::::::~:::::f.:;:~::~::::::;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;::::=;:;:;: ;:;:;:;:;:;:;:;:;:;:;:::: :;:;:;:;:;:::::::;:;:;:;:;:::::::;::::::.;-:-:-::;:;:;::~ ;:;:;.;:;:;:;:;:;:;:;:;::~:::-::: :;:;:;:7.'..:-::::::: 

6-460 

e Bit 2 ('data pending') has exactly the same meaning as bit 0 or a logical link's 
poll word. and is provided to reduce the amount of polling that needs to be 
done.lf it is set you should Initiate the data transfer by calling 
Protocoi_DataRequest. 

Related SWia 
None 

Apptlndix G: The Acorn Terminal lhl9rface Protocol 
:::::::::::::::::::=: ::::::::::::::::::: ::::::::::::::.::::::.:::::::=:=:=:=:~:=:=: ::::::::::::::: :::::::::::::::::::::::=x:::::~::::::::::::::::::t::::::::::::: :::::::::::::::: :::::x::::::::::m:::::::::::--:<::::m:::::::::::::::::::::::::::;.;:::::.:::::::::::~:=1::::::::::::n:;:::::::::~;:;;.: 

Protocol_ Send File 
(Offset 11) 

Initiates sending a file over a protocol module's connection 

On entry 
RO = protocol module's link handle 
Rl = RISC OS file type 
R2 = pointer to file name (null tennlnated) 
R1 =estimated slzeorfile (In bytes) 
R4 =emulator send fla8s 

On exit 

Use 

RO = tenninal emulator's link handle 
Rl =protocol status flags 

Use this call in your termlaal em.tator to Initiate sending a file over a protocol 
module's connection. 

The emulator send flags have the following meanings: 

Bit 

0 
I 

Meaaf111 wllea Mt 
transfer cannot be safely paused (ie Is a RAM transfer) 
transfer Is part or a multiple file transfer 

All other bits are reserved and must be tero. 

The protocol module must ready itself to accept the file over the tennlnal 
emulator's logical link. and to send it over the connection that is associated with 
the link. When it is ready It must show this by setting bit 2 of the link's poll word. 

If bit I of the emulator send flags Is set (a multiple file transfer) and the protocol 
module uses dialogue box(es) to show the state of the transfer. it must use the 
same box(es) for each file in turn. rather than using a new one for each file. 

The protocol status flags it returns have the following meanings: 

Blt.a Value Meaalac 
o-1 00 no connection opened 

01 connection pending 
10 connection open 
II connection failed 

6-461 



ProtxJOI_ S«<dFU. (Oftiet 11) 

:::::::::::;;;:;r-::::::::x~<~m:.x:~::::::::::~::;:::::::~~,;;::.::::s:::::::;;::::::::::::x;::::::::::;::::::::~:::: .... ~-=~..::x;:::::::.:::r.-::x~:::::::;.;::::::::::::::;:;::::::::::::::::::::x:::::::::::::::::::::w:::::::::::;.~:::::::::::::::::::::: 

6·462 

All other bits are reserved and must be zero. 

When this call returns to your termla.t emallltor you must examine the state of 
these flags: 

• If the connection failed (bits 0 and I are set) and no data is pending (bit 2 of 
the link's poll word Is dear) you must attempt to dose the connection by 
calling Protocoi_CioseConnection. 

• If the connection Is pending you have made an error in your programming by 
t ryl ng to use the connection before it has been properly opened. "' 

When you start a file transfer with this call the linitis in a paused state. You should 
walt for bit 2 of the link's poll word to be set before you try to resume the transfer 
by calling Protocoi_SendFileData (see the nut page). 

R ... tecl SWis 

Protocoi_TtansmltData (offset 5). Protocoi_SendFileData (offset 12). 
Protocolj.bortTtansfer (offset 13). Protocoi_DirOp (offset 18) 

Appendix G: The Aoom Tennlnallnl8rlace Protoccl 

;:::;:;:;:;$Y..:'.:;::::::;:;:;:;:;:;:::::;:;:; :;:;:;:::::::::;:;:;:;:;:;:;;-~~·»:V.X.::;:;:;.;.;.;:; .;:;:;:;:;:;:;:;:;:;:;:;.;::;:::~;:;:;:;:;:;:;.;.:-:-::;:;:; :;::::::::::: :;:;:;:;:::;:;:;~~~~::;:;:;:;:;:;;;.-~:;:;:;.;.;.;.;:;.;:;.;.:-:.::;.;.;.;.;.;.;.;:;.;.;:;.:,:~»:·:~ 

Protocol_ SendFileData 
(Offset 12) 

Sends the data in a flle OYet a protocol module's connection 

On entry 
RO = protocol module's link handle 
Rl =pointer to transmit buffer 
R2 = len&th of transmit buffer (in bytes) 
R3 =emulator send dal41 f1a8s 

On exit 

Use 

RO"' terminal emulator's link handle 
R I = protocol status flail$ 

Use this call in yourtenala.a emllllltor to send the data in a file over a protocol 

( 

( 

( 

( 

( 

( 

( 

( 

module's connection. You can (If necessary) split the Hie into separate data packets ( 
and repeatedly use this call to transmit each padet. 

The emulator send data flags have the foiiOIII"i meanin&s: 

Bit 
0 

Muala1 •••• eet 
last data pac~t of a file (ie EOF) 
no data Is lnduded-end of file transfer 

All other bits are reserved and must be zero. 

' You must not set both these bits at once. so a flle transfer must end with two calls 
of this SWI: the first with bit 0 set (EOF). the second with bit I set (end of file 
transfer) . 

The protocol modale sends the file over the connection that is associated with the 
link. If it has to pause the transfer It must show when It Is ready to resume by 

· settin& bit 2 of the link's poll word. 

6·463 

( 

( 

( 

( 

c 
( 

c 



t 

( 

( 

( 

( 

' 

( 

\ 

\ 

( 

( 
\ 

( 

( 

( 

( 

( 

( 

ProtJool_ SoodFileData (OffsBt t 2) 

•:;:::::;::::~?..:·:·:·:·;·:-:·:·:·:·:·:· ;:;:;:;:;;;;;.;.;;;::¢'..>;;;.;:s:.;;yo,a.:;:;~;:;:;::::~::: :;:;:;:::;:;:;:;:;:;:;:;:;:;:;;;:;;;.;.;:;.;:;.;.;.;.;;;:;::::-:-:«·:·:·::;:;.;.;.:;:.w.;:;.:;.::~~;;;:;:;:;;;:;:;:;;;:;;;;;:; ;;;;:;:;:;;::;;;;:=::;:;:;:;:;.;:;~:·:·M~:.;:;;;.~=-*:;;.;.:.OJ.:t:.-x.:;;.:;;:: 

6-464 

The protocol status flags It returns have the following meanings: 

Btt. 
0..1 

2-3 

Val•e 
()() 

01 
10 
II 
00 
01 
10 
II 

Mea11l ... 
no connection opened 
connection pending 
connection open 
connection failed 

transfer not started 
transfer paused 
transfer completed 
transfer failed or aborted 

All other bits are reserved and must be zero. 

When this call returns to your tennJaal elll•l•tor you must examine the state of 
these nags: 

• If the connection failed (bits 0 and I are set) and the transfer is not paused 
(bits 2-J do not have the value 01) you must attempt to close the connection 
by calling Protocoi_CioseConnectfon. 

• If the connection Is pending you have made an error in your programming by 
trying to use the connection before it has been properly opened. 

• II the transfer is paused (bits 2-J have the value 01) you must walt lor bit 2 of 
the link's poll word to be set before making this call again to continue the 
transfer. 

Related SWis 

Protocoi_TtansmltData (offset 5). Protocoi_SendF'fle (offset II). 
Protocoi_AbortTtansler (offset 13). Protocoi_DfrOp (offset 18) 

;.;:;. 

APIJ(Ifrdix G: n.. Aoom T•rmlnal tltsrlaca ProfOCo/ 
:;:;:;.;:;:;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:y~;:':«.;;;:;;;:(~::::::::: :;:;:;:;:;::::: ;:;:;:;:;:;::~~~~~~.w.:::;:;:;:;:;:;:;:;:;:;:::::::::::::::::~-:;;:;;~:~::::;:;;'*::;-.:::-::-:-.:·:·:·:;:.~::;: ;:;:::;:;:;:;:;:;:;: ;:;.:.::;;;:;:;:;~:~ 

Aborts a file transfer 

Protocol_ AbortTransfer 
(Offset 13) 

On entry 

RO • protocol module's link handle 

On exit 

RO preserved 

Use 

Use this call in your te,....lel e•lllator to abort a file transfer. 

The protocollllOCI•Ie aborts the transfer and makes su~ that the connection 
associated with the llnlt Is ready for other use. 

Related SWis 

Protocoi_SendFlle (offset II). Ptotocoi_SendF'ileData (offset 12). 
Protocoi_CetF'ilelnfo (otrset 14). Ptotocoi_CetFileOata (offset 15). 
Protocoi_GetF'ile (offset 17) 

6-465 



P~_GeiF/19/nfo (otfsfll14) 

~::=:>~:::;::::::::::=:w:o:-.;;;;;;:::::>:=:=::::~.;:::x;:::::::::~:;.;:MW~:;;;:--:~n;::::~:;:~:.:.:::::::::::::::::::::::s«<«<·:;:.x.::}::::x::.-::::::::::::::::::::::::::::~::=:=:;;::~wt;:;:>:.):::::: ::::::~:=::r.::~~«< 

6·466 

Protocol_ Get File Info 
(Offset 14} 

Requests that a protocol module initiates forwarding a pending file 

On entry 

RO" protocol module's link handle 

On exit 

Use 

RO • terminal emulato(s link handle 
Rl • RISC OS file type 
R2 • pointer to file name (null tenninated) 
R3 • 0. Of estimated size of file If available (In bytes) 

Use this call in your tennlaal emlllllloc to request that a protocol module initiates 
forwarding a pending file. You should do so: 

• If bit I ('file pending') ofthe link's poll word is set. 

This will usually be as a result of your callina Protocoi_Getflle to request that 
the file be sent. 

The protocol modale returns details or the file to the terminal emulator. 

When this call returns to your termlaal emalatoryou must use these details to get 
ready to receive the file. before calling Protocoi_GetFileData to actually get the 
data. 

Related SWia 

Protocoi_DataRequest (offset 6). Protocol.ftbort'l'ransfer (olfset 13), 
Protocoi_GetFileData (offset 15). Protocoi_Getflle (offset 17). 
Protocoi_DirOp (offset 18) 

Appendix G: The Acoin TIHm/1181 tllerliiiCII ProiOCOI 
:•:·:·:«~-::::::::::::::;;::::;.:::::=:-:::-::::m.:•::::.:-:•:ow.«:x.;;:.:::::::·:• :·:·:·:.:-:-:.:-»:::::::::.:·:·:·: :::::::::::::::::x~..:::~:::.:=~.%:·:·:·::;.::::::::::::::-:=x::::::=::~-:::::·:·:·:•:•:=:•~x::::::-:=:-:-;.;:·:=:·: ·····:·:=:v»:.:·:·:·:·:·:·:·:.:·:·:·· 

Protocol_ GetFileData 
(Offset 15} 

Requests that a protocol module forwards the data In a file 

On entry 

RO =protocol module's link handle 
R I = pointer to A:Ceive buffer 
R2 =length or receive buffer (in bytes) 

On exit 

u •• 

RO =terminal emulatO(s link handle 
R I preserved 
R2 =bytes or data placed in receive buffer 
R3 = protocol status flags 

Use this call in your tennlaal emalatorto request that a protocol module forwards 
the data in a file. 

The protocol modale must forward the file data to the terminal emulator. It can (if 
necessary) split the file Into separate data packets. pauslna the transfer after each 
packet. If so. It must show when It Is ready to forward the next packet by setting bit 
2 of the link's poll word. 

The protocol status flags It returns have the following meanings: 

Btt. • 

0.1 

2-3 

Valae 

00 
01 
10 
II 
00 
01 
10 
II 

Mealll•a 
no connection opened 
connection pendina 
connection open 
connection failed 

transfer not started 
transfer paused 
transfer completed 
transfer failed or abotted 

All other bits are reserved and must be tero. 

6·467 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

( 

( 

( 

( 

( 

( 

( 

( 
\ 

( 

( 

( 

( 

c 
c 

Protx::oL G9tFil90ata (Offs9t 15} 
%?.'<'~~..::::::::::::::: :·:·:·:·: ;:;:;:;:;:;:;:;:;:;:;:;: ;:;:;::::::::~::::~-:~::::::;:;:::::: :;.;:;:;:;:;:: :;:;:;:;:;:;:;:;:;:::::::::::::~::::::::::=:::::::: ;:;:;:;:;:;:;:;:;:;:;:;:;::::.:::::::~::::::;:;:;:;:;:::;:::: :;:;:;::::::: ;:;:;l;:;:;:;:::::;:::;::l:.:!:·:.::: :;:;:::::::::::::::::· 

6-468 

When this call returns to your terminal em•lator you must examine the state of 
these flags: 

• If the connection failed (bits 0 and I are set) and the transfer is not paused 
(bits 2-3 do not have the value 01) you must attempt to dose the connection 
by calling Protocol_CloseConnection. 

• If the connection is pending you have made an error in your programming by 
trying to use the connection before it has been properly opened. 

• If the transfer is paused (bits 2-3 have the value 01) you must wait for bit 2 of 
the link's poll word to be set before making this call again to continue the 
transfer. 

Related Swts 

Protocoi_DataRequest (offset 6). Protocol_AbortTransfer (offset 13). 
Protocol_Getfilelnfo (offset 14). Protocoi_Getfile (offset 17). 
Protocoi_DirOp (offset 18) 

Apptmdix G: TtNJ Acom T9rmlnallnl6rlacs Protocol 
7).::::::::::::::::::~~:::::::::::::::::::::::::: ::::::::::::::::::<:::=.<Y..:;:::::~:::-.:.r-7n.:~:=:=:~~:::::::.~~::~::w:::::~::::::::=:::::::::::::::::::::::::::::::::::::::::::::::::::w..:::::~:~::.~:::~)%::: ::::::::: :::::::::::::::: ::::::::::::::::::: :::::::;;-.;:::::::::-$: 

This call is reserved for future expansion. 

Protocol_ Menu Help 
(Offset 16) 

On entry 

RO = protocol module's link handle 
R I =pointer to menu selection array. relative to protocol~pecific menu tree 

On exit 

Use 

RO. R I preserved 

Use this call in your terminal emlllatorto request that a protocol module sends its 
interactive help messaf!e for the menu entry. 11le menu selection array you send 
must be terminated by a null. 

The protocol modale must send the appropriate help message. 

Related Swts 
Protocoi_GetProtocolMenu (offset 2). Protocol_MenultemSelected (offset 7) 

6·469 



ProiDCO!_ GetFi/6 (Offset 17) 
~.::..:-::::: :;.;:;:;:;:;:;:;:;:;:;:;::::::::::::=:::-:--:-::;:;:; :;:;:;:;:;:;:;:;:;:;:;:;~:~:::::~;.;:;:;:;:;.;:;:;:;:;:;:;:;:; :·:·:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:;:::;:;::{:.::::::::::;:;:;:;:;:;:;:;:;:;~~~::;:;:;:;.::::::::::::::;:::m.~;::::;: ;:;:;:;:;:; 

6-470 

Protocol_ GetFile 
(Offset 17) 

Requests that a protocol module gets a file over a connection 

On entry 
RO = protocol module's link handle 
Rl =pointer to file name (null terminated) 

On exit 

u .. 

RO. R I preserved 

Use thls call In your termlalll em111ator to request that a protocol module gets a 
file over a connection. 

The protocollnOClule gets the necessary Information to respond to a 
Protocoi_GetFilelnfo call. and the first packet of the file to respond to a 
Protocoi_GetFileData call. before showing that it ready by setting bit I ('file 
pending' ) of the link's poll word. 

Related SWis 

Protocoi_DataRequest (offset6). Protocoi_AbortTtansfer (offset 13). 
Protocoi_GetFllelnfo (offset l4). Protocoi_GetFileData (offset 15). 
ProtocoLDirOp (offset 18) 

Appendix G: 1M Acorn Terminallnl9rlace Protocol 

:::::::::::::::~:-::-:: :::::::::::z-:::::::::::::::::::·:~;;~~·:·:·:<·:-»x::=:·:-:::::;~:::::::::::::::~·=·:.:;;-:;:::: :=:=:=:~.:•:>:::::::::::::::::::::::::::::::::::::::::::::::::::::~:::.:::::.::~::.-:::::w:;:~::·: ·:·:·:-:: :::::::::::::::::::::::: :::::::--:::::·:·:·:·:.:-:-:::-:~:· 

Protocol_ Di rOp 
(Offset 18) 

Performs various directory operations over a connection 

On entry 
RO • protocol module's link handle 
R I .. reason code 
R2 .. pointer to directory name- reason codes I & 2 only (null terminated) 

On exit 

Use 

RO • terminal emulator's link handle 
R I. R2 preserved 
Rl"' protocol status flags 

Use this call in your terml•• ea~al8tDr to perform various directory operations 
over a connection. The type of operation Is set by a reason code in R I : 

Reuoucode 

0 
I 
2 
3 

1YPe ol opemloa 
null -see below 
create directory 
move Into directory 
move up one le\'elln directory tree 

The protocol module performs the spedfled operation. The protocol status Oags It 
returns ha,a~e the following meanings: 

Bit. Vlllue 

0-1 ()() 

2-3 

01 
10 
II 
()() 

01 
10 
II 

M•alal 
no connection opened 
connectlon pending 
connection open 
connection failed 

inval id context 
operation In pr<Jiress- paused 
operation completed 
operation failed or aborted 

All other bits are reserved and must be z.ero. 

6-471 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

{ 
\ 

( 

( 

( 

( 

( 

( 

( 

( 
\ 

( 

( 

( 

( 

c 

Protxoi_DirOp (Offsei1B) 

;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::w.~~~:;;::;::::::::::::::::;:;:::-:;;~{(.(.::::;:::;:;:;:;l ;:;:;:::;:;:;:;:;:;:;:;:;:;:;:;.;:;:;:;: .·.··=·~·.·:·:;.;~:~::·:·:·:· :;:;:;:;:;:;:;: ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::~:::::::~::::;;~-:>::::;:;:;:;:;:;:;:;:;:::-;:;::::::;;.: 

6-472 

When this call returns to your terml11al emulator you must examine the state of 
these flags: 

• If the connection failed (bits 0 and I are set) and there Is no operation in 
pl'ogress (bits 2·3 do not have the value Ol)you must attempt to close the 
connection by calling Protocoi_CioseConnection. 

• If the connection is pending you have made an error in.your programming by 
trying to use the connection before it has been properly opened. 

• If the operation is still in progress (bits 2·3 have the valueOI )you must wait for 
bit 2 of the link's poll word to be set. You can then make this call again with a 
null reason code to read the nags for the completed operation. 

Related SWis 

Protocoi_SendFile (offset I I). Protocoi_SendFileData (offset 12). 
Protocoi_AbortTransfer (offset 13). Protocoi_GetFilelnfo (offset 14), 
Protocoi_CetFileData (offset 15), Protocoi_CetFile (offset 17) 



»:·:·:~:-:·:·:-:::::~..:-:-:-:-:-:::~:::::::::::::~:..-.:~::::::::::>~u .. :;;.:-:.;~~~,..;.:;..;:.;.;.;.x;;.;.:;;.~•:;:.x-»»:-:·:;~_.:;;.;.;.;.;.;.:.~:::·:·:·:·:·:·:-::::;.:.;.:.;.;.;.;.;.;.;.:-:-::::::::=-: 

85 Appendix H: Registering names 
~;::;;;;;:;:;:;::;.;;;,~;;:;:::-.:-;.~~:>.:•)!fi'.II'X~$'$$:'«:'$~~· ~ SSS •• bi~:~:::x:::-.;·-;:;:~;;;;;::-::::;.; 

Introduction 
Various names and numbers that appear in RlSC OS must be rqistered with Acorn 
to ensure that they don't dash with those used by other programmers. This 
appendix tells you what those names and numbers are. and how to resister them 
with Acorn. 

Generally. you can propose the name(s) that you 'IIOUid lllr.e to use. and will be 
allocated them If they are previously unused. However. numbers are normally 
allocated consecutively. so you are unlikely to have any choice as to which ones 
you are allocated. 

Acorn k.eeps a slnale central set of header files that record all such names and 
numbers. Your request will be chedecl88alnstthe relevant file. Finally. your 
allocation will be recorded In the file. and you will be Informed of it. 

Things requiring registration 

Flletypes 

If you need to use 11 new filetype, you must rqlster It with Acorn . 

You should sive a proposed textual equivalent for the flletype (as used by the 'Full 
info' Filet displays), and a more complete description of the flletype's functionality 
and/or co9formance to any standards. Acorn will then inform you whether your 
name Is unique. and- if it is unique-which flletype number you have been 
allocated. 

For a list o( currently defined flletypes, see Taill C: Fiktwl'fs on p88e 6-487. 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

Auodeted 01prftee ( 

· Reslsterlng filetypes Is necessary to prevent any clashes In the Wimp's sprite pool 
between different 'file_.XXX' and 'smaii.)(XX' sprites (where XXX is a hexadedmal 
ftletype) used by the Filer to display the ftletype. Once you have registered a ( 
ftletype, you may consider such sprites as also resistered. 

( 
6-473 

( 

( 



I 
' 
( 

( 
' 

( 

( 

( 

I 
I 

( 

( 

( 

( 

( 

( 

( 

( 

Things fllqVIrlng rsglstflltlon 
:~:::-.i:*«':;;.:.;.;i~;.;.;:;.;:;. :·:·:·:·:~·:~·:·:o::x;;:;:;:;:;:;:;:;:;:;:;:;:;:;:;~:::::::;:;:;:;:;:;~:,::;.::;=:::;.y~.;:;::;;:::;:;:;:;:;:;:;:;:;:;~:;.;.;. !•!·!·~·:·:·: .;:; .;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::;:~;:;:;:;~::«.:w::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;:;:;;;:;~:;::;:;:;:; 

6-474 

A..ocletecl .,.tem verillblee 

Realsteri na liletypes is also necessary to prevent any dashes between 
FileSType_)(XX, Alias$CILoadType_)(XX, AliasS<itPrintType_)(XX and 
AllasSCIRun'l'fpe_XXX system variables (where XXX is a hexadecimal filetype). 
Once you have reaistered a filetype. you may consider such variables as also 
real stered. . 

SWI chunk numbers and names 
If you need to supply your own SWis. you must ask Acorn for an allocation of a SWI 
chunk. number. the use ol the SWls within which you can then determine yourself. 

You should give a proposed name for the SWIChunk.. /\rom w ill then inform you 
whether your name is unique. and- if it is unique- which SWI chunk number you 

have been allocated. 

SWis are named as c • uni Naou_FunctionNaru (so in Wimpjnitlallse. Wimp Is the 
chunk name. and Init ialise is the function name). The chunk. name is normally the 
name of the application or module providina the SWI. which will Itself need 

registration- see below. 

For more Information on SWI numbers and names. see the chapter entitled An 
intro4wttio• 10 SWis on paae 1· 21. 

Wimp message numbera 
If you need to use a new Wimp messaae. you must ask Acorn for an allocation of a 
ranae of Wimp message numbers. the use of which you can then determine 

yoursel f. 

For more Information on Wimp messages. see Wi,..p_StniMnwgc (SWI &400E7) on 
paae 4-261. 

Error numbers 
If you need to generate your own errors. you must ask Acorn for an allocation ol a 
ranae of error numbers. the use of which you can then determine yourself. 

For more Information on error numbers. see the section entitled Error"""''-" on 
page 1-'JS. 

App«~dlx H: Rsglst9rlng names 
;:;:;:; :;:·:;:;:::::::;:;:;.:;.::;:;:;:;:;:::::::::;:;:;:;.;.;:;:;:;:; :;:;:;:;::;:~:;::;:;:;:::::::::::.::~;:::.::::;:;~:~;:;:;:;:;~~;:;::::w::;;:::;m~~;;;:;:;;::;>,;:v::;;::;:::;:;:;:;:;:;:;:;:;:;::::::~-::;::::::;:;:;:;:;.--,.::.;:;:;;x::;:;::::;::::::::.:::::::::::.::.-;::;:;:;~ 

Filing system numbers and names 
If you create your own flllna system. you must register It with Acorn. 

You should alve a pi'Op(l6ed name fo r the flllna system, and a more complete 
description of Its functionality and/or conformance to any standards. Acorn will 
then inform you whether your name Is unique. and- if it is unique- which filina 

system number you have been allocated. 

For a list of currently defined flllna system numbers. see the section entitled Fifi11g 
S¥SI.I"' ill/or,.a!Wrt WOf'i on Jlllie 4·2. 

Expansion cards: manufllctUNf codes and product type codes 
If you create an ellpanslon card. you must ask. lv:om for an allocation of a 
manufacturer code and a product type code. 

You should give a brief description of Its functionality and/or conformance to any 
standards. Acofn will then Inform you which codes you have been allocated. 

For more Information on these codes. see the section entitled Eltlllt!Ui Ezp.ruio11 
C.ri luoti!¥ on page 6-91. 

CMOS RAM bytea 
There are 4 bytes of CMOS RAM reserved for each ellpansion card slot. which your 
expansion cards may freely use; see the section entitled Nort-wlatilt ou,.ory (CMOS 
RAM) on paae t -'J46. For all other purposes you should remember state In some 
other manner (for example usinll an AppSOpUons system variable in a desktop 
boot file. or using a Choices file within your appllcatlon).lt is only in very 
exceptional circumstances that Acom may allocate CMOS RAM bytes to ot her 

parties. 

Country and alphabet numbera and names 
If you need to use a new country or alphabet. you must realster it with Acorn. 

You should give a propoRd name for the country or alphabet. and (for alphabets) 
a more complete description of Its functionality and/or conformance to any 
standards. Acofn will then Inform you whether your name Is unique. and - if it is 
unique- which country or alphabet number you have been allocated. 

For a list of currently defined country and alphabet numbers, see the section 

entitled Na"'n aoll """'6tn on Jlllie 5-254. 

6-475 



Things requiring Tf19lslratlon 

:-:=::::::::::::::::::::::::::::::::::::::::::~.~.,.w:::o:;:::::::::;::::::::::::;;~-::=-:::::::::~o;;.;~::~~::.~:::<.:-::sx~::::::::~~;.::x:::::::.:::::::::::::::::::::::::.::~~~~:::::::~~=;:.;...;_"<*:::::: :::::::::::: :::::::::::::::::::::::::}:~:::::::::::::::;;:;:~ 

6-476 

Dr•wflle object typ .. end tegged object typ .. 

If you need to use a new object type or taseed object type in a Draw file. you must 
register it with Amm. 

For an object type you should give full details or its file format. For a tagged object 
type you should give a brief description of the purpose of the tag. Acorn will then 
inform you which type numbers you have been allocated. 

For a list of currently defined object IDs and tagged object IDs. see the section 
entitled Dr•wfiln on page 6-391. 

Modulenemes 

If you create a new module, you must register It with Acorn. since only one module 
of a given name can be loaded at once. 

You should give a proposed name for the module and a brief description of Its 
functionality. Acorn will then inform you whether your name is unique. and hence 
If you may use it. 

AMoc:lated .,.WID wariabla 

Registering module names is also necessary to prevent any dashes between 
system variables used by modules. such as MI¥MIISOptions. Once you have 
registered the module name ·~..,.. you may consider all variables beslnnl ng with 
·~liS' as also registered. 

To ensure there are no clashes with 'Apr'!>' or 'Rnoouu$' system variables. Acorn will 
also check that your module name does not match any otlaer programmers' 
registered application or shared resource names. However. you may register 
identical module, application and /or shared resource names.; it Is then your 
responsibility to prevent any dashes between your -• system variables. 

Appllcetlon nemes 

If you create a new application, you must register it with Acorn. 

You should give a proposed name for the application and a brief description of Its 
functionality. Acorn will then Inform you whether your name is unique, and hence 
if you may use it. 

AMoc:lated sprltee 

Registering application names is necessary to prevent any dashes in the Wimp's 
sprite pool between different application's '!•PI'' and 'sm!•PI'' sprites. used by the 
Flier to display the application directory's Icon. Once you have registered an 
application name, you may consider such sprites as also registered. 

Appllndix H: Rf19isl9rifi(J na1119S 

)$;,:. ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:~;:;.;.;.;:;.;~$:·:=:·::;.:.:;;:;;;:;.;.;:;.;:;.;:;=!:::.::::::--::~::;:;.;:;:;:;~(~::::::~»~::; :;.;-::::-:.:·::;:;:;:; :;:;:;:;:;:;:~x:::::?;:;>,.«:;:::;:: .. ~:·:·::.:-: .;:;.;:;.;:;:;:;.;.;. ;:;:;:;:;"'::::.:·:·:·:·:·:·:·::;.;.:::::~ 

ANodated .,.. .. variablee 

Registering application names is also necessary to prevent any clashes between 
system variables used by applications. such as A,p6Dir or AppSOptions. Once you 
have registered the application name 'AW. you may consider all variables 
beginning with ·,.,:; as also registered. 

To ensure there are no clashes with 'Moollti.S' or 'RnowiUS' system variables. Acorn 
will also check that your application name does not match anyotlaer programmers' 
registered module or shared resource names. However. you may register identical 
module. application and /or shared resource names: it Is then your responsibility 
to prevent any clashes between your owa system variables. 

Shered resources 

If you create a new shared resource directory, you must register it with Acorn. 

You should give a proposed name for the shared resource and a brief description or 
Its functionality. Acorn will then lnfonn you whether your name Is unique. and 
hence if you may use it. 

ANodated sprtlee 

Registering shared resource names Is necessary to prevent any clashes in the 
Wimp's sprite pool be~n different shared resource's ' lrcsOILru' and 'sm!riSOUICI' 
sprites (used by the Filer to display the shared resource directory's icon). Once you 
have registered an shared resource name, you may consider such sprites as also 
registered. 

ANodated .,.. .. ftlltabl• 

Registering shared resource names is also necessary to prevent any clashes 
between SJstem variables used by shared resources. such as RIISOIUUSDir. Once you 
have registered the shared resource name 'Rtsowu'. you may consider all variables 
beginning with 1UsoouuS' as also registered. 

To ensure there are no dashes with 'M~w!S or ·,.,:; system variables. Acorn will 
also check that your shared resource name does not match any otller 
programmers' registered module or application names. However. you may register 

· identical module. application and /or shared resource names: it is then your 
responsibility to prevent any clashes between your -• system variables. 

6-4n 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



c 
r 
\ 

( 
\ 

.r 
\ 

( 

( 

( 
\ 

( 

( 

( 

( 

( 

c 
( 

( 

( 

Things rsquiring r9gistration 

~::.:::::=:-:::::::::::::::::::::::::-::::z-:::::::::::::::::::::::::::::::~:::::::::::::::::::: ::::::: :::::::· ·.·.·.·:·:·:·:·:·:=:·: :::::::::::::::::::::: :::::::-:::.:::.:.:: ::::::::::::::::::::::::::::::::::::x::<-.::::::::::=: ::::::.:::=:::=:=:·:::=:=:=:·:·:~:-::.::::: ::::::::::::: ::::::::::::::::::::::.:····. 

6-478 

*Commands 

If you create a new • Command. you must register it with Acorn. 

You should give a proposed name for the command. and a brief description of Its 
functionality. Acorn will then lnfonn you whether your name is unique. and hence 
if you may use it. 

Sprite names 

If you add a sprite to the Wimp sprite pool -for example using 'lconSprltes- you 
must register It with Acorn. 

You should give a proposed name for the sprite. Acorn will then infonn you 
whether your name is unique. and hence if you may use it. 

Provided you have registered a filetype, application or shared resource, you need 
not register the associated sprites that the Filer uses to display them. See 
page 6-473, page 6-476 and page 6-417 respectively. 

You should not register the names of sprites that are held in your applications' 
own sprite areas. Desktop applications must not use the system sprite pool . 

Font names 

If you create a new ~ont. you must register it with Acorn. 

You should give a proposed name for the font. Acorn will then infonn you whether 
your name is unique. and hence If you may use it. 

Device numbers 

If you need to add a new device. you must ask Acorn for an allocation of a major 
and a minor device number. 

You should give a brief description of the device's functionality. Acorn will then 
infonn you which device numbers you have ~n allocated. 

Print« drlv« numbers 

If you create a new printer driver module. you must ask Acorn for an allocation of a 
printer driver number. 

You should give a brief description of the printer drive(s functionality. Acorn will 
then inform you which printer driver number you have ~n allocated. 

App8t'ldlx H: R9gls liNing natn9S 
:::::::::::::::-'}:=~~:::::::::::~::::::::::::;::::: :::::::::::::::::::: ::::::::::::::::::::::::::::::::: ::·::::::::::::::-~=-:::::~=::::::::::::::: :::::::::::::::::::::::::::::::::::::::x::::::~:~::wn.::::::~~o¥M:::::::::::::::::::w.~:W.4:'.:::::::::'.(.:::::::: :::::: ::::::::::: 

To go elsewhere (Xref them) 

Shared resources 

Fonts 

The recommended approach is to create an application directory whose !Boot file 
sets up an environment variable which other applications which know about it use 
to acx:ess the shared resources (within the shared resource directory). 

!System is an example of such a shared resource. which provides shared resources 
for the RISC OS welcome disc applications. Note that other applications may rely 
on using !System resources. b•t further resources mMt 110t be put into !System. 
These should instead 80 into their own shared resource directories. with names 
obtained by applying to Acorn. 

This approach ensures that users can view shared resources as fixed objects that 
must be present for other applications to work. and not have to worry about what 
Is Inside them. 

Where upgrades of a particular shared resource are concerned. the old copy should 
be archived and deleted from view, to avoid the possibility of accidental access to 
the old infonnation. Note that if this does occur. the resulting error messages 
should make it dear to the user what he should do next. 

All Acorn font names should confonn to: 

fontname. [weight. [style]) 

The weight element can only be omitted if there Is no style element either, eg for a 
Symbol font. 

Font names for all fonts mapping onto LaserWriter fonts (le having the same 
metrks and general appearance) have been preallocated. to allow Acorn to 
produce a version of !PrinterPS that already knows the conect font name 
mappings. 

These names are: 

Churchiii.Medium.ltalic 
Clare.Medium 
Clare.Medium.Obllque 
Clare.Demi 
Clare.Demi .Obi ique 
Corpus. Medium 
Corpus.Medium.Oblique 
Corpus. Bold 

ZapfChancery-Mediumltalic 
AvantGarde-Book 
AvantGarde-BookOblique 
AvantGarde-Demi 
AvantGarde-DemiObl ique 
Courier 
Courier-oblique 
Courier-Bold 

6-479 



PrintfK driviHS 

:;:;:;:;:;:;:;;m.";io';;>;;:;m::;_'*;~:;:;:;:::;:;:;:;:;:::;:;:::;:;:;:;:::;:;:;::::::;.-wx:::::::;:~:;:;:;~~::::::;:;:;:;:;:·:·:· :·:·:·:;:·:;:;:;:;:;~:=:::::;~;:;:;:;:;:;:;:;:;:;:;:;:;:;.-:«w.-:•::::;:;:::::::;:;:;:;::::::::::::::m:::;:;:::-:.-: 

Printer drivers 

6·480 

Corpus.Bold.Obllque 
Homerton.Medium 
Homerton.Medium.Oblique 
Homerton.Bold 
Homerton.Bold.Oblique 
NewHall. Medium 
NewHaii.Medium.ltalic 
NewHaii.Bold 
NewHaii.Bold.ltalic 
Pembroke. Medium 
Pembroke. Medium .Italic 
Pembroke.Bold 
Pembroke.Bold.ltalic 
Roblnson.Liaht 
Roblnson.Liaht.Jtallc 
Robinson.Demi 
Robinson.Demi .Italic 
Selwyn 
Sidney 
Trinity.Medium 
Trinity.Medium.ltalic 
Ttinity.Bold 
Ttinity.Bold.ltalic 

Courier·BoldOblique 
Helvetica 
Helvetica..Obllque 
Helvetica-Bold 
Helvetica-BoldOblique 
NewCenturySchlbk·Roman 
NewCenturyS(hlbk·ltalic 
NewCenturyS(hlbk· Bold 
NewCenturyS(hlblt-Boldltallc 
Palatino-Roman 
Palatino-Jtallc 
Palatino-Bold 
Palatlno-Boldltallc 
Bookman-Liaht 
Bookman-Liahtltallc 
Booltman-Deml 
Bookman-Demlltalic 
ZapiDilliJbalS 
Symbol 
limes· Roman 
limes-Italic 
ltmes·Bold 
ltmes-Boldltallc 

We have a prQiram called !FontConv that can ro~wert AFM (Adobe Fonnat Metrics) 
files into lntMetrlcs files, to ensure that the correct metrics are used. 

Each 'PDriver' module used by the !PrinterXX applications has a unique 'printer 
number' asslaned to it. to allow prQirams that know about particular printer types 
to take spedal action undet some circumstances. 

This only applies to people writina their own printer driver modules 

N::om can make the current printer driver source code available to you if required . 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 



c 
( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 

:::;:~~::::::*~~~.:::::::::::.-:-::::::::;: ;:;:::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::: :;:;::::.-:;-.. -w~::::::::;.~.:::::::::::::::.-.:::;:;:;::;::;::::::: ;:;:;:;:;:;:;:: :;:;:;:;:;:;:;:;:;:: :;:;:;::;.;:;:;:;::::r...x::::::~::;w:o.,?.;.::;:;:;::::::::::::::<:::::~::::::::.<:::'@.~::::::~: 

86 Table A: VDU codes 
::: ::::::::::::::: , •... ·.·.·=·=·=·=·=-===· ·:·:·:·:=:::::::::. :::::::::::::::::::>:::::.-:::'.:::::::::::::.-::::::;::::i:=:=::::::::::::::::::::x:::::::::::::::::::~:::::.:::>.>~=::::::::::::::::x:w~::~=-m:::::::::::>~::::::::::::::::::::::::::::: ::::::::::::::::::::::::~::::::::::::::::::::::::::::::::::: 

List of VDU codes 
A list of the VDU codes Is given In the table below. Some VDU codes require extra 
bytes to be sent as parameters: for example, VDU 22 (select screen mode) needs. 
one extra byte to specify the mode. The number of extra bytes needed is also given 
in the table: 

VDU a.t Extnl Meallla1 
code pl .. b,-
0 @ 0 Does nothing 
I A I Sendss next character to printer only 
2 B 0 Enables printer 
3 c 0 Disables printer 
4 D 0 Writes text at text cursor 
5 E 0 Writes text at graphics cursor 
6 F 0 Enables VDU driver 
7 G 0 Generates bell sound 
8 H 0 Moves cursor back one character 
9 I 0 Moves cursor on one space 
10 I 0 Moves cursor down one line 
II K 0 Moves cursor up one line 
12 L 0 Clears text window 
13 M 0 Moves cursor to start of current line 
14 N 0 1\Jms on page mode 
15 0 0 1\Jrns off page mode 
16 p 0 Clears graphics window 
17 a I Defines text colour 
18 R 2 Defines graphics colour 
19 s 5 Defines I<Jilcal colour 
20 T 0 Restores default IQiical colours 
21 u 0 Disables VDU drivers 
22 v I Selects screen mode 
23 w 9 Multi-purpose command 
24 X 8 Defines graphics window 
25 y 5 PLOT command 
26 z 0 Restores default windows 
27 I 0 Does nothing 
28 \ 4 Defines text window 

6-481 



~~~ 
,... !"

,','
~

~
 I c:
 I

~ ~ :.:·
 1 I !J ~~ I ~ I I ~~i ., :;:: ~ I ;:::

(

(

(

(

(

(

f
\

(

(

(

(

(

(

(

(

Y.>%:·:·m;~:'~~:::::::::::::::::::::::::::::::::::::=:=:~~ .. :~:::~::::::;:;:·:~:::::::::::=:=:=:~:::x~:=::::::::::::::-::::::::::::::~:::::::::::::::::::::::::::::::::::::w-:::::wr-::::::f,~:::::::::::::::.::::::::::::::::::::::.:::::::::::::::::~~

87 Table B: Modes
~l%:.::::::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::::::::::~~:::~~::::::::;:;:;:;:;:;:;:;:;:;:;:;:;:::::~;:;.;.:;::::::: ~ :;:;:;:::::::;:~-::~.¢.>;:~~~~~:::::::~::~:;:~

The modes available In RISC 05 depend on the conflaul'l!d monitor type (see
'Confiaure Monitor'l'fpe on paae 2-232) and the model of computer. Below Is a
table of all modes provided by RISC 05. which shows:

• the mode number

• the text resolution In columns x rows
• the araphics resolution In pbtels. which oorresponds to the darity of the

mode's display

• the resolution In 05 units. which corresponds to the area of workspace shown
by the mode

• the number of IOilcal colours available

• the memory used per screen to the nearest O.IKbyte

• the vertical refresh rate to the nearest Hz (invalid for monitor type 5). which
Indicates the dearee of ntckerina that you may perceive

• the bandwidth used to display the screen to the nearest O.IMbytelsecond.
which corresponds to the load the mode places on the computer

• the monitor types that support that mode:
Type M011ltor

50Ht TV standard colour or monochrome monitor
Multiscan monitor
HI-resolution 64Hz monochrome monitor

0
I
2
3
4
5

VGA-type monitor
Super-VCA·type monitor
LCD (liquid aystal display)

(not available In RISC 05 2)
(not available in RISC 05 2)

• the notes on the followina paae that are relevant to the mode.

6-483

(

(

Table 8: Modll6

:::::::;::::::::::::::: ::::::::::::::::::::::::::::m:::.::::=:=~~::::-r.:::;x;::~:::::::~~~::=::::::::.:::::::~::.:::: :=:=:~=:=::::::»~::::::::::::::::::::::::::::~:;:;:;:;:::;:;.;.:=:;;::::~:::::::::~r-:::::::~::::::: ~::::: :=:-:::::::::::::::::::::::::::::::::::·:~-:-:-:.:-:·:-:v~::;:;:;:;::;;:~~:::::;:~.o:~:=:·:=: :·:=:·:·:=:=:·::::~::::::~~:<::::::::·:·:=:·:·:·:·:«:::;:;::::'»'Xl::;;;;-M:::·:=:·:·:·:=:·: :·:·:·:-:.: ::::::::::::::::::::;:::,.;.;:~m:;.:::·:·:·:-:.::~::::::::::::· (

Mode Text Pixel OS ualt. l.ollcal Meln Reft·all Blind· Monitor Nota Nota on dleplaf 1noda
raolution re.oluUoa re.oluUon colons used rille wl.dlll types I These modes are not a vailable in RISC OS 2.00. nor (except for mode 31) are

0 80x32 640x256 1280x 1024 2 20K 50Ht IMis 0,1,3,4,5 IZ they available in RISC OS 2.01.
I 40x32 320x256 1280x 1024 4 20K 50Ht IMis 0,1,3,4,5 1Z
2 20x32 160x256 1280x 1024 16 40K 50Ht 2.Mis 0.1.3.4.5 IZ 2 These modes are not available on early models of RISC OS computers (le the

3 80x25 ~llonly ~xtonly 2 40K 50Ht 2.Mis 0.1,3,4,5 IZ~ Archimedes 300 and 400 series. and the A3000). because they are unable to
4 40x32 320x256 1280x 1024 2 20K 501-11 IMis 0,1.3.4.5 IZ clock VlDC at the necessary rate.

(

(
5 20x32 160x256 1280x 1024 4 20K 50Ht IMis 0,1.3.4,5 IZ

J These modes are handled differently with a VGAorSuper·VGA·type monitor. If
6 40x25 Tell only ~xtonly 2 20K 50Hz IMis 0,1,3,4,5 IZ~
7 40x25 Teletext ~letell 16 80K 50Hz 4Mis 0.1.3.4.5 IZ~ you are .. t .. s•clla MOnitor:

8 80x32 640x2S6 1280x 1024 4 40K 50Hz 2Mis 0.1.3.4.5 ~ • RISC OS 2.00 does not implement these modes .
9 40x32 320x256 1280x 1024 16 40K 50Hz 2Mis 0,1,3,4,5 ~

The picture is displayed on a screen havtna 352 raster lines. Where a mode 10 20x32 160x256 1280x 1024 256 80K 50Ht 4Mis 0,1.3.4,5 ~ •
II 80x25 640x250 1280x 1000 4 39.1K 50Ht 2Mis 0.1.3.4.5 IZ~ has fewer than 352 vertical p ixels. It Is centred on the screen with blank

(

12 80x'32 640 x256 1280x 1024 16 80K 50Hz. 4Mis 0,1,3.4.5 IZ rasters a t the top a nd bottom. Because of their a ppearance these modes
13 40x32 320x256 1280x 1024 256 80K 50Hz. 4Mis O.I.M.5 ~ are known as lrtr.m 1111¥tS.
14 80x25 640x250 1280x 1000 16 78.2K 50Hz. 3.9Mis 0,1,3,4,5 IZ~

IS 80x32 640x2S6 1280x 1024 256 160K 50Ht 8Mis 0,1,3,4,5 1Z • The refresh rate is 70Hz.

(

16 132 x'32 1056X256 21121< 1024 16 132K 50Ht 6.6Mis 0.1 I> • The bandwidths shown In the table for these modes are lower than these
17 1'32 x25 1056x250 211 21< 1000 16 129K 50Ht 6.5Mis 0.1 I>IZ monitor types consume, because no allowance has been made for the
18 80x64 640x512 1280x 1024 2 40K 50Ht 2Mis I

blank rasteiS. 19 80x64 640x512 1280x 1024 4 80K 50Ht 4Mis I

(
20 80x64 640x512 1280x 1024 16 1601(50Ht 8Mis I • Early models of RISC OS computers (le the Archimedes 300 and 400
21 80x64 640x512 1280x 1024 256 320K 50Hz 16Mis I series. and the A3000) scan these modes some 4.7'4 slow. }.eain this is
n 144 X 56 1152xS96 2104 X 1792 2 1261(64Hz 8.1Mis 2 because they are unable to clock VIOC at the necessary rate. Most VGA and
24 132x32 J056x256 2112 X 1024 256 264K 50~1z ll.2Mis 0.1 I> Super·VGA·type monitors can still successfully lod onto this sianal. but
25 80x60 640x480 1280x960 2 37.5K 60Hz 2.3Mis 1,3,4 ,5
26 80x60 640x480 1280x960 4 75K 60Hz 4.5Mis 1,3,4.5 some may not. Furthennore. these models d o not provide a Sv"' Pot.ritv

27 80x60 640x480 1280x960 16 150K 60Ht 9Mis 1,3,4,5 slanal. This makes the effect ofl.tlnM: IWoUS (see above) more severe.

28 80x60 640x480 1280x960 256 lOOK 60Ht 18Mis 1,3,4,5 • Early models of RJSC OS computers (lethe Archimedes 300 and 400 series,
29 100x75 800x600 1600x 1200 2 53.6K 56Hz. HM/s 1.4 <D~ and the A3000) a lso scan these modes some 4 .7t. slow with m ultiscan
30 100x75 800x600 1600x 1200 4 117.2K 56Ht 6.6Mis 1.4 <D~

monitors. ,t.aaln this is because they are unable to clod VIOC a l the necessary 31 100x75 800x600 1600x 1200 16 23UK 56Ht 13.2Mis 1.4 <D~

(

(

'33 96 x l6 768 x288 1536x 1152 2 27K 50Ht 1.4Mis 0,1 <D rate. ,

34 96xl6 768 x288 15'36x 1152 4 54K 50Ht 2.7Mis 0,1 <D

' These modes do not display araphlcs. for compatibility with BBC/Master series
35 96x'36 768 x288 1536x 1152 16 108K 50Hz 5.4M/s 0,1 <D computers.
'36 96xl6 768 x288 15'36x 1152 256 2161(50Hz 10.8Mis 0,1 <D
37 112x44 896 xl52 1792x 1408 2 'J8.5K 60Ht 2.3Mis I <D 6 In these modes drdes. arcs. sectors and seaments do not lookclrOJiar. This Is
'J8 112x44 896 xl52 1792x 1408 4 77K 60Hz 4.6Mis I <D because the aspect ratio of the pixels Is not In a I :2. I: I or 2: I ratio.
'39 112 X44 S96x352 1792x 1408 16 154K 60Hz 9.2Mis I <D

· 1 This is a,., 1111111•. where the colour of the aaps is not necessarily the same a.s 40 112 x44 S96x152 1792xl408 256 l08K 60H1 18.5Mis I <D
41 80x44 640x352 12801< 1408 2 27.5K 60Ht 1.7Mis 1,'3,4.5 <D~ the tell bacJ<around.

(

(

42 80x44 640x352 1280x 1408 4 SSK 60Hz l.lMis 1,1,4.5 <De»® • These modes are not a multiple of eisht pixels hi&h. By default. in these modes
43 80x44 640x352 1280x 1408 16 II OK 60Hz. 6.6Mis 1.3.4.5 <De»® the bottom of the screen corresponds to the bottom line of ECF patterns. but
44 80x25 640x200 1280x800 2 IS.7K 60Hz 0.9Mis 1,3,4,5 <Da>

the top line will not correspond to the top line of ECF patterns. 45 80x25 640 X 200 1280x800 4 31JK 60Hz. 1.9Mis 1.3.4.5 <DIZ

(
46 80x25 640x200 1280x800 16 62.5K 60Hz. 3.8Mis 1.'3.4.5 <DIZ Modes 22 and 32 have not been defined.

(
6·484 6-485

(

c

(

(

(

(

(

(
'·

(

(

(

(

(

(

(

c

~:.-;:.:·:.:·:· ;.;:;;;.:::~:::..-;:..: :;:;:;:;:;:;:;:~;:;::.-:;:::;:.;:;:;;:;:y:::;.;:; :;:;:;:;:;:;:;:;:;::~-:«<o:·~X·x-:>:·:·:·:·:·:·: ·:·:':·::::;:;:: :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;~"!'-:~~.;;;:;.;;;:;;;:;.;;;.:-:-:-:-X·:;;::;~:{:;:;:;:;.;:;;:::o:~:::;:;:::r-7~:;;:;;:;::~

6-486

If an attempt Is made to select a mode which Is not appro'prlate to the current
monitor type (or OS version). a suitable mode for that monitor Is used. For
example. an attempt to select mode 23 on a type 0 monitor will result in mode 0
being used.

In 256 colour modes. there are some restrictions on the control of the colours. Only
64 base colours may be selected: 4 levels of tinting tum the' base colours into 256
shades. Also. the selection from the colour palette of 4096 shades Is only possible
in groups of 16.

::::~::;:;:;:;::o::::::::;.;:::::;:;:;:;:;:;:::::::::;:;:;:;:;;:*'::::;::~:~::~:;;;:;:;:;.;.;;;.:·:·:-:·:·:·::;.;:;.::::::.::::::;:;::·:·:~.;.:·:·:·:·:.:;;: ;:;:;.;.;:;:;: ;:;:;:::::;:;:;:;:;:;:;:;:;:;::.;:...WN)~:•:·::;;;.;.;::<:·:•K~:::::;:.~;;;.;:;.;:; ·:·:·:;;:;;;:;.:::::•:::;;.;.:•:·:·:,

88 Table C: File types
~;:::::::::::::::::::::::::~:;:::::::~;:~:::::;-.. ;:;-.w;:;::::::::::::::::::::::::::~::::;;:;.:;$~~:;:::;:;;:.c,:~::::::::::::::::x:x::-~~-r.~~:~~~::-.::::::;::::::::::::::::::::;:;;x;;~

Ust of file types
File types are three-digit hexadecimal numbers. They are divided into three ranges:

reserved for use by Acorn EOO· FFF
800· OFF may be allocated to software houses (AOO to N'F are used

for Acornsoft files. 800 to 80C for BBC uniform files)
000·7FF free for users

For each type. there may be a delault action on loadlna and running the file. These
actions may change. dependina on whether the desktop is In use. and which
applications have been seen. The system variables Alias5el..oad1Ype....XXX and
AliasS@RunType_XXX give the actions (XXX =file type).

Some types have a textual equivalent Set at start-up, which may be used In most
commands (but not in the above system variables) Instead of the hexadecimal
code. These are indicated in the table below by a double dagger •t·. or by a single
dagger •t• if not available in RlSC C6 2. For example, file type&-FFFisset at start-up
to have the textual equivalent Tat. Other textual equivalents may be set as an
application starts- for example. lv:::orn Desktop Publisher sets up file type &AF9 to
be Olp()Q;, and file type &AFA to be Dlp5~¥w. These textual equivalents are set using
the system variables FlleSJype..)OOC. where XXX is the hexadecimal file type.

The following types are currently used or reserved by Acorn. Most file types used by
other software houses are not shown. This list may be extended from time to time:

Acorn file typea
l)pe Dacrtpdoa

FFF
FFE

. FFD
FFC
FFB
FFA
FF9
FF8
m
FF6

Plain ASCII text
Command (Exec) file
Data
Position independent code
Tokenised BASIC program
Relocatable module
Sprite or saved screen
Absolute appliQtion loaded at &8000
BBC font file (sequence of VOU operation.s)
Fancy font (4 bpp bitmap only)

TatMieqllhWe• t

Text
Command
Data
Utility
BASIC
Module
Sprite
Absolute
B8Cfont
Font

* t
t

* * * * * * *
6-487

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(
List oll//9 lyf'66

;.;:::::::::;.;.;.;:;:;:;:;:;:;:;::-x-:.:·:.:.:¥..»>~:.;.;.;.;.;:;;;:;.;;;.}~::-:::«-:::«.::;:;:;:;:; :;:;:;:;: ;:;:;:;:;:;:;:;::-=:;;:~:::::."}-m-.. ;::;::;;:::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:r.o!:::::;:;:;:;:;:;:;.:<!-:·:-:.::.:.:~:::::::::;;::.:::::;::.$::;:;:;:;:::;:;:;:;:;:;:;:;:;:;:;~;~;;»*;:;::;:;:;

(
FF5 PostScript • PoSaipt

* FF4 Dot Matrht data file Printout t
FF'.I LaserJet data file Laserlet
FF2 Configuration (CMOS RAM) Conflg t
FFI Raw unprocessed data (eg tenninal streams) RawData
FFO Tagged Image File Fonnat TIFF
FEF Diary data Diary

(
FEE NotePad data NotePad
FED Palette data Palette

* FEC Template file Template

* FEB Obey Obey

*
(

FEA Desktop I Desktop t
FE9 View Word ViewWord
FE8 ViewPS ViewPS
FE7 ViewSheet ViewSht (
FE6 UNIX executable UNIX Ex
FE5 EPROM Image EPROM
FE4 DOS file DOS t
FEl Atarlfile Alan (
FE2 Commodore Amlga file Amiga
FEI Make data Make
FEO Desktop accessory Ac.cessry
FDF TCP/IP suite: VT220 script VTScrlpt (
FOE TCP/IP suite: VT220 setup VTSetup
FDD Master utilities MasterUtl
FDC TCP/IP suite: unresolvable UNIX soft link SoftLink
FOB Text using CR and LF for line ends TextCRLF
FDA PC Emulator: DOS batch file MSDOSbat

(
FD9 PC Emulator: DOS executable file MSDOSexe
FD8 PC Emulator: DOS command file MSDOScom
FD7 Obey file In a task window TaskObey t
FD6 Exec flle in a task window TaskExec t

(
FD5 DOSPict Pict
FD4 International MIDI Assoc. M!Dlfiles standard MIDI
FDl Acorn DOE: debuggable image Deblmage
FD2 SrcFiler: diff file SrcDiff

(
FDI BASIC stored as text BAS!CTxt
FOO PC Emulator: configuration PCEmConf
FCF Font cache FontCache t
FCE FlleCore floppy disc Image Fi leCoreF1oppyDisc

(
FCD FileCore hard disc image Fi leCoreliardDisc
FCC Device object within DeviceFS Device t
FCA Single compressed file Squash (

6-488

(

(

Tab/9 C: R/9 typ95

::::::::=::::::::: :;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:;w,:;:;~:;:;::::::.}:,;:;:::;:;:::::::::.;:~: :;:;:;:;:;:;:;:;:;~:;:;~;:;:;:;:;:;:;:;:;:;:;:::w:::::~:;:;>,;x;:;:;:;:;:;:;::;..oyn:=:;;:;:;:;:;:;:;:;:~:;m:;?,>::::::;:;~~::;.;:;:;:;:::::::::::::::::::::::: ;:;:;:;:;:;:; :-:·

FC9
FC8
FOE
F09

Sun raster Hie
DOS MultiFS disc Image
BBC Econet utilities
BBC Winchester utilities

Industry standard file typH

Type Deecrlptloa

DFE Comma separated variables
DEA Data exchange fonnat (AutoCAD etc)
084 SuperCak Ill file
083 DBase Ill Hie
082 DBasell
OBI DBase Index Hie
DBO Lotus 121 Hie
CE5 TeX file
CAF IGES file
CAE Hewlett-Packard graphics languace
C8S !PEG (Joint Photographk Experts Group) file

BBC ROM file type

lJpe Dac:rlptloa

BBC BBC ROM flle (ROMFS)

Acomsoft file types

lJpe Dac:rlptloa

AFF Drawflle
AFE Mouse ev1!nt record
AFD GCAL source flle
AFC GCODE lntennedlate flle
AFB PhonePad flle
MA DTP style Hie
M9 DTP documents
M8 First Word Plus Hie
AF1 Helpflle
M6 ASim trace Hie
AF5 Query form
M4 EMail cabinet
AFl Disc Image
N'2 NovaHie
Ml Maest ro file

SunRastr
DOS Disc
EconetUtl
WiniUlil

Textaal equiYaleat

C:SV
DXF
SuperCalc
DBase! II
DBasell
DBaselndex
Lotusl23
TeX
ICIS
HPGLPiot
!PEG

Text•al equ1Yale11t

BBCROM *
Text•al eq•IYaleat

Draw File
Mouse
Gcal
GcaiOut
PhonePad
DtpStyle
DtpDoc
lstWord+
Helplnfo
SlmTrace
Query
EMail
Duplicate
Nova
Music

t

6-489

(

(

L/SI of file lyp6S (
;:;:;:;:;::::·:·:=: :;:;:;:;:;::::.:::::;:;:;:;:::::::::::::;:;:;::::::::::{:::::::::; :;:;:;:::;:;:;.::~~.z-::;;.;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;::::~"X~:;.~:::::;:;:;:;:; :;:;:;:;:;:;::;:..::::::;:;:;:;:;.:::~~:.:::.:::::::.:::::-;;::::::--::~::::;:::::::;:;:;:;:;:;::;;:;:; :;:;:;:;:;:;:;:;::=:;::;:;;;::

~ ArcWrlter file ARCWriter
AE9 Alarm file Alarms t (
ADB Outline font New font

BBC Uniform file types

Type Oacrtptlol Texthl eqllwllettt
(

80C Stationery pad StationaryPad
808 Videotex file VideoTex
80A Database form file DataBaseForm (
809 Database file DataBase
808 UniForm PostScript file UniformPostScript
807 Graphs and charts file GraphsAndCharts
806 Graphics file Graphics
805 Drawina file Drawina

(
804 Picture file Picture
803 Spreadsheet file Spreadsheet
802 UniForm Text only file UnifonnText
801 Word processor file Word processor

(
800 General BBC UniForm file Uni form

(

(

(

(

(

(

6-490 (

(

(

(

(

(

(

(

(

/"
\

(

(
\

(

(

(

(

(

c

:::.:::=:;:<«:::::::::::::::::r.:~n.=::::::::::::~.·::::::: :::::::::::: ::::::::::::::::::::::::::-:::r.;;:::::x::::::~:~~:::::::>::x;:-?.=?.~:::::::::::m::::ox;.~:::::-wz.:::::::;$:"«::::~:::::::::::::::::::::::::::: :::::::::::::::::::: :::::::~:=::::::: ::::::::::::::::::::::::=:-:=:::

89 Table D: Character sets
::;:~x:::: :::::::::::::::::::: ::::::::=:::::w:::::::::::::::::::::::w/.<':?«.W'**'M".::::::::~::::~:::::=::::::x::::::::::::=::::::::::::::::::::::::::::::::::::x::::.-:::y;:::.::::: ::::::::::::::::::::::x:::::::::::::::::::::::::::::::::

Introduction
A list of the eight alphabet sets available on your Acorn computer are induded in
this table. Most are based on the International Standards Organisation ISO 8859
document.

The description of the •country command on page 5-274 explained the
relationship between COI(IIIry. • l,ft•hft and by6olati. There are some useful keyboard
shortcuts which you can use to switch between alphabets while you are working.
You can use these wherever you can use the keyboard: for example. in the
Command Line. In Edit. or when entering a filename to save a file. The first two
keystroke combinations allow you to switch easily between alphabets.

Alt Ctrl Fl Selects the keyboard layout appropriate to the country
UK.

AltCtrl F2 Selects the keyboard layout appropriate to the country
for which the computer is configured (If available).

Alt <ASCn code typed on numeric keypad>
Enters the character corresponding to the dedmal ASCII
number typed .

The following sequence also switches the keyboard layout:

I Press and hold Alt and Ctrl together; press Fl2.

2 ReleaseCtrl.

3 Still holding Alt. type on the numeric keypad the international telephone
dialling code for the country you want (eg 049 for Germany. 039 for Italy. o:n for
France).

• Release Alt.

6-491

Lalin 1 alphBb#lt (ISO 885911)

;:;:;~:;:::::::.:;::::::;:~;:;:;:;:;:;:;::::::::~~::;:~:;:;:~:::::::::::::::::::~:::::::~~~M>::::::::::::: .;:;.;.;:;:;::::::::::::::::::::::: ::::::::::::~:::::::::::~:;::;.;;.~;;:>.,;x«;:;P,:;;::~~:·::;:;:;: ;:;:::;:;~::.:::::::::~;:;:;:;:;;;.;~;:;.»:

Latln1 alphabet (ISO 8859/1)

6-492

This is the derault alphabet used by Acorn computers.

3 # 3 c s c
4 $ 4 0 T d

5 % 5 E

6

7

8

9

A
8

c
0

E

F

3 I A

E

Tab/6 D: CharaCIIN HIS

:::::::::::::::o::::;;,;m::::v:-:::-:::::::-::;.»;;;;::;:::;::::::·:;;;:~.:.::::::::::::::::::~·::~:::::::::::::::::::::::::~~%rt~::: :·:·:·::::: ::::::::::::::::::::::::::::: :::::::::-:c::~:::::~m:·:t:=:·:·:·:·:<::~:;.:.-;:::::....;;:::::::::::::::::::::::-:::::::.:·:.W .. :·:t:::::$:t:~

Latln2 alphabet (ISO 885912)

3

4

5
6
7

8

9

A

B

c
0

E

F

3 I C I S 1c

? 10 1 l o Z l

A
, I A

i
:-fJ

-m

6-493

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(
•

(

.. ,
\

(

~

~

.. (

"
(

•

•(

.,.
(

I(

(

(
t

(
,.

c

II

La dn3 alphabet (ISO 885913)

::t:X>:·Y'~~:~:=:::~:::::::::-::::::::::x:::=:.~:::::::::::::::::::::::::::::(.~:::::::::::~::::;::;;:.;.;:.~~·:=»M"'~~:::::::;;:-:::.;:::::::=:::::.:::w..o::x::::>m::m::::::::::::::::::::::::::::::::·

Latln3 alphabet (ISO 885913)

6-494

3

4

5
6

7

8

9

A

8
c
D

E

F

T/1/H 0 : Chlncter sel5
$~;:;:;:~:·:·:=~:::::~:--k~ili::::::: :;:;:;.;.;:;:;:;: ;:;:;:;:::::s:;:;:;:::::::::::::::~~::::~~::>,:~~~:::::~:Xt.::~;:;:::;:;:;:;:;:;:;:~;:;:;:;:;:;:;:;:;:::;~:w.-:::::::::;:;:;:;:;:::::::::;:;:;:;:;:;:;:;:§;:;:;:;:~:::::;:;:::;:;:;;;;;~:::;:;:;:;;:.~::::::::;:;::

Latln4 alphabet (ISO 8859/4)

3

4

5
6

7

8

9

A

8
c
D

E
F

6-495

Gr99/c alphabet (ISO 885917)

~::;:;:;:;:;:;:;:;:;:; :;:;::~::;:;:;:;l;!;::::~=:::.~::~:~;:.~;:;:."::w,.r.;;:;::;:;~::~:-::-;;:;:;:;:;:;:;:;:;:: :;:;:;:;:;.;:;:;:;:;:;.;:;:;: ;:;:;:::::;::::::::~:::::~:::=::::.~::;:;::::::::~-:;:;:::::::::~::;;;.;:.:::::: :;:;:;:;:;:;:;:;:;:;:;:;: ;!;!;!;!;~~;:;:.;.:::-::;:;: ;:;:;:;:;:;:;:;:;: ;:;:;:;:;:;:·

Greek alphabet (ISO 8859n)

6·496

3

4

5
6

7

8

9

A
8

c
D

E

F

3IC IS ic
41D I T i d

5IE IU1e

3 1 r
-
!l

ill z
H

- .• E e
•H I

ty' -..
0

(

(
0

o I Nothing

:::::::::~;:;::::::::::::::::::
(

1
Bfont

2 (
3

4
S.par ...

C:UI'IOIS

/t
5 Joi1 C:UI'IO .. (
6 EMbleVOU

7~
8 Bid<

(
'

91 FOIWard
(

AI
Down

1· NOChing Up

(

(

E I Paged mode
(

F I Scroll mode curs« (

(

c
6-497 c

(

r·
0 1 2 4 6 8 9 A B c D E F

(ol Nothing I Nothing Ol Nothing I Nothing

(
TfllfltiiXt characters 1 printer Nothing

'-
~~:~:-:*:::-.:=:::::.:;::::~«.;.:-~X:«::: .~w;:..~.,>;;;.:::::::;;. ::::::::::::::.. .. .

Teletext ,.h ~.
Start

Nothing 1111~1 -D ~Olr~~ 2 printer

(
T-1-•-_. ..1.1-L_.,I[.l,tl_...l- 1 3

(4 1 Nothing I 4 Al~ha Graphic
bue blue

5 Nothing
Disable 5

Alpha Graphic

(VDU magenta magenta

6
Enable Select 6

Alpha Graphic
VDU mode cyan cyan

7 1 Bell 7
Alpha Graphic
white • white

(8 8 Flash
Conceal

Back Nothing display

(9 Forward Nothing 91 Steady •

"
A Down Nothing lni•~:~n~ AI Nothing

(
sl Up I Nothing· B Nothing

(c Clear c Normal
Screen Nothing height •

D
Start of D

Double

(line Nothina height

El
Paged MOVe curson E Nothing mOde to (0,0)

\.
Fl

Scroll Move F Nothing
Release

mode cursor graphics •

(
• &V8fY line starts wilh these options

6-498 c 6-499

(

8 9 A B 0 E F
(

0 1 2 3 4 5 6 7

0 I Nothing I Nothing ~-,._I.I..:JI ~- 0 Nothing Nothing (
1 I I Nothing 1-1-1: ILf!.lf:_l_ 1

Alpha Graphic
nrintAr red red

(
Start I Nothing ~~~~~ , I -·--- • , ~----·- .. _ -- - _ _ ,&. _ _ ~- --- -

2 1 printer 2
'L.i-.o2-.."L~~.cL..Ia=.A.~-

Nolhing~ 3 y&r!Ow y'illOW (

4 Al~ha Graphic
(4 1 Nothing I Nothing ~ bue blue

5 1 Nothing I 0~~e 1:11 u:iiiiLII I I Alpha 5 magenta •••-l::fv••~- (
61

Enable I Select tlrl11ii~nt-r-l 61 Alpha Graphic
VDU mode cyan cyan

7 1 I 19t'IVlfiUIII 7
Alpha Gr<!P.hic (

Bell characters white • wtiite

8 1 Back Nothing 8 Flash ~~:~~-Lr!J (

9 I Forward I Nothing IR..JI,...JII , •. IIJ. liJI I ad • Conti~uous
91 Ste y I grap ics • -Jf .--...J-..~ 11r- 1 (

1 :"1111.-=angr~;nan ~ ~ _._ "~-'•~ •~ 11

AI Down I Nothing A Nothing

Bl Up I B Nothing (

Clear I c Normal
(Cl screen height •

Start of I 0
Double

Ol line height •--···--··-- ..:<~:-..-..n_a_ Ill • (
Paged . J....I-IA ~ w;- n:•- ~~~.- a:·- a

El
ve cursor= E Nothing mOde to (0,0)

Fl
Scroll Move F Nothing

Release (
mode cursor graphics •

• every line srarts wilh these options

(
6-500 6-501

(

(

I ;:: ~=
 Iii:

~

A
J 0 CJ
 ~ $
:

$
:

tT
l
~

C
J)

;;:o

:;

j
A

J
-

a.
.

C
/)

tT

l
n

n
~

0
([

)
tT

l
C

J)

C
/)

A

J
tT

l z n tl1

$
:

~

)>

z
§

c)>

14•

r

(

(

r
(

(

r
(

' '

,(
\

·,

y

I

:::.:.:·:->:«~·:·:·:·:;::::::::::-:::::::::.:.»>!o:·:·:·:::::::::::::::::w.v~«;:-»»X~:::::::::x:mm-~~..::z::-;:;x::::-~~.:w....-.««:·>>>:;.;.;::::::::::;:;~;,. .. :·:·:-:::>:o!...,..M~:::.::::::::::::::-:::::~::~~::::

lndices-ii

Copyright C Acorn Computers Limited 1991

Published by Acorn Computers Technical Publications Department

Neither the whole nor any part of the information contained In, nor the product
described ln. this manual may be adapted or reproduced in any material form
except with the prior written approval of Acorn Computers Limited.

The product described in this manual and products for use with it are sublect to
continuous development and Improvement. All information of a technical nature
and particulars of the product and its use (Including the information and
particulars In this manual) are given by Acorn Computers Limited in good faith.
However. Acorn Computers Limited cannot accept any liability for any loss or
damage arising from the use of any informatfor(or particulars In this manual.

This product Is not intended for use as a critical component In life support devices
or any system In which failure could be expected to result in personal inJury.

If you have any comments on this manual, please complete the form at the back of
the manual. and send it to the address given there.

Acorn supplies its products through an International dealer network. These outlets
are trained In the use and support of Acorn products and are available to help
resolve any queries you may have.

Within this publlcat!on. the term 'BBC' is used as an abbfevfation for 'British
Broadcasting Corporation'.

ACORN. 1\CORNSOFT. ACORN DESKTOP PUBLISHER. ARCHIMEDES. ARM,
ARTHUR. ECONET. MAS1£R. MAS1ER COMPACT. THE TUBE. VIEW and
VIEWSHEET are trademarks of Acorn Computers Limited.

ADOBE and POSTSCRIJYJ' are trademarks of Adobe Systems Inc
AUTOCAD Is a trademark of AutoDesk Inc
AM IGA is a trademark of Commodore-Amiga Inc
ATARI is a trademark of Atar1 Corporation
COMMODORE Is a trademark of Commodore Electronics Limited
DBASE is a trademark of Ashton Thte Ltd
EPSON Is a trademark of Epson Corporation
ETHERNET Is a trademark of Xerox Corporation
HPGL and I..ASERJET are trademarks of Hewlett-Packard Company
LASERWRITER is a trademark of Apple Computer Inc
LonJS 123 is a trademark of The Lotus Corporation
MS-DOS is a trademark of Microsoft Corporation
MULTISYNC is a trademark of NEC Limited
SUN is a trademark of Sun Microsystems Inc
SUPERCALC is a trademark of Computer Associates
TEXis a trademark or the American Mathematical Society

::.:::w~::=:·:.Mmt.:::::~:=:~-:.:=:~~-=~:::::;$:=-:=::?.~:::x:::::::::::::::~~..s::::-.. :-:·:·:·:::::::::::::::::::::.::::::-::-.. ~

UNIX is a trademark of AT&T
VT is a trademark or Digital Equipment Corporation
ISTWORO PLUS Is a trademarkofGST Holdin85 Ltd

Published by Acorn Computers Umited
ISBN I 85250 110 8
Edition I
Part number 0470.299
Issue I. October 1991

Indices-iii

I I

(

(

(

(

(

(

(

(

(

(

(

(

xm:::::::::::::::::.w::w..:::-.vw.::::::.;.;.;::·:·:·:.:~:::;~x:;::::::::::~:::::::::::~~~~):::::.::::::::::::::::::x:::::.::::::::::-~:;%:~{.~:·::: ::;:::.:::::: :::::::::::=5!::::::::::::: ::::::::::::::::m:::;

Contents
=*~::::::::::::::=:=:::::::;:=::x:::::::«::>:~===~:::~::::~~::m::::::::::::x:x::::m-~'*~:;:..::::::::~:§::.::~«o:~w::::::::::::.~~;;.;:::::::~w~:~~~~::%

Aboutthis manual l · lx

P1rt 1 - Introduction 1·1
An introduction to RISC OS 1·3
ARM Hardware 1·7
AnintroductiontoSWis 1· 21
• Commands and the CU 1·31

Generating and handline errors 1·37
OS_Byte 1-45
OS_Word 1·55
Software vectors I ·59
Hardware vectors 1-103
Interrupts and handling them 1·109
Events 1·137
Buffers 1-153
Communications within RISC OS 1-167

Pert 2 - The kernel 1·188
Modules 1·191
Program Environment 1·271

Memory Manaeement 1·329
Time and Date 1·391
Conversions 1-429
Extension ROMs 1-473

Character Output 2· I
VDU Drivers 2·39
Sprites 2·247
Character Input 2·337
The CLI 2-429
The rest of the lce rnel 2·441

lndices-v

:~..:·!-:·:·:·:·:-::::::;:;:;:;:;;::::;:::~:::;»~::~:::::::;.~~:::;;:-';.::i-~;.:.:·:·:~:~;::::;;~:1:-~~~',>X-:-::;;;.;:;.;::::::::::::::::~~:;:.;.;.;.; ·:·:-:::::::::::::::::::::::::::::=~~:;;o:o:;:::•:·:~::-:=:-::::::::;:;:;:;:::;:;:;.;.;.;:;.;v:·:·:·:·:·:::

Indices-vi

Part 3- Filing systems 3·1
Introduction to filing systems 3·3
FlleSwftc:h 3-9
FlleCore 3-187
ADFS 3·251
RamFS 3-297
DOSFS H05
NetFS H2J
NetPrtnt 3-367
PipeFS H85

ResourceFS 3·387
DeskFS 3-399
DevlceFS HOI
Serial device 3-419

Parallel device 3-457
System devices 3-461
The Filer 3-465
Fller~ion 3-479
Free 3-487
Writing a filing system 4·1
WrltlngaFileCoremodule 4-63
Writlngadevicedriver 4·71

Part 4 -The Window manager 4-81
The Window Manager HIJ
Pinboard 4·343
The Alter Manager 4·349
The Tasi:.Manager module 4·357
TasltWindow 4·363
SheliCLI 4·373
!Configure 4·377

;;.::;;.;.:·:·: ·:·:·:·:-::;:;: ;:;:;:;:;:;;:;:«.«;:.:·:·:·: ·:·:·:·:-::;:;:;:;.;::::=: :;:;:;:;;:·:·~~;;·:·:·:·::::::;:;:;:;:;:~:·:·:·:·>~:::::~:::;:.;:~%~:-;;;.;::~::::::».,....w,:;.;:;:;.::~:·:·:·:«-:-:·:·:·:::::-:·:·:·::;:;.;:;:;.;~»=·: .;.;.;:;:;:;:;:;:

Part 5 - Syatem extenalons 4-37i
Colour'l'lans 4·381
The Font Manager 5·1
Draw module 5·111
Printer Drivers 5-141
MessageTrans 5·233
International module 5-253
The Territory Manager 5·277
The Sound system 5-335
WaveSynth 5-405

The Buffer Manager 5-407
Squash 5-423

ScreenBianl:. 5--429
Econet 6-1
The Broadcast Loader 6-67
BBC Econet 6-69
Hourglass 6·73
NetStatus 6-8'3
Expansion Cards and Extension ROMS 6-85
Debugger 6-133
Floatl ng point emulator 6-151
ARM3 Support 6-173
The Shared C Ubrary 6-183
BASIC and BASICTrans 6-277
Command scripts 6·285

Appendlc .. and tablea 8-293
Appendix A: ARM assembler 6-295
Appendix B: Wamlngs on the use of ARM assembler 6-315
Appendix C: ARM procedure call standard 6-329
Appendix D: Code file rormats 6-347
Appendix E: File formats 6-387
Appendix F: System variables 6-425
Appendix G: The Acom Terminal Interface Protocol 6-43 1
Appendix H: Registering names 6-473
Table A: VOU codes 6-481
Table B: Modes 6-483
Table C: File types 6-487
Table D: Character sets 6-491

Indices-vii

c-
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

(
\

(

(

(

(

(

c

·:::w .. :•:;:::::::::::::::::::::::•:·:::;m.::-:-:::::-:·:-:-:-: ::::::::: ::::::::::::::~~w~~.;::::: •:=:=:=: •::.:::::::::::::::::::~::~:::·:•:·:·:=:-:•:=:•:=:::::::.:..._ .. :«<:::::::::::::::xw-..::~;;:::::::::;;::::::

Indices-viii

Indices lndlces-1
Index of • Commands lndires·3
Index of OS_Bytes lndices-9
Index of OS_ Words lndices-13
NumericlndexofSWJs lndires-15
Alphabetic Index ofSWis lndires-27
Index by sublect Indices-37

::J

a
.

0 CD

C
J)

(

(

»:·:·:·:·:·:·:·:;;.;;;.;::::::::=:«v»:-:-:·:·:·:·:·:·::;.;:;:;.;:;:;:;:;:;:;.:.;.;.;.;::::~:·:·:·:·X.;::;..;.;.:,.,.;.;.;.;.;.;.:.:·:·:·X·:·:·:·:·:.;,.,«;:.;::~"-~:O~:·:::*>:·:·:·:;;.;.;.;;;:;~;.;::::::.;:;.;.;.;.;:;-:-;;.;.;.;;;;;:;:;:;.;-»»»:,.,.;.;.;.;.~M~<-: (

Index of * Commands
$*-'$::.;-;:::::::~::::::o;.~::::::::::::::::::::::::~:-:;,::w'$·;~::«:::::::::::::::;::"&~"$:;..::-.::-;::::::::..::t:=~~=~>.."i:~»».=->~~::::::::::-;:~:.;:~

(

Comma1d P-.e
(

·~v:cess 920
·ADFS 1059
• Alphabet 1672 (
•AJphabets 1671
•Append 921
•Audio 1612
· Back 1024 (
•Backup 1025
•BreakCir 1682
•BreaWst 1683
· BreakSet 1684
•Build 922

c
•aye 1026. 1092
·eat 923
•CDir 924
•channeiVoice 1613

(
· checkmap 1027
· c lose 925
·compact 1028
•configure 808

(
ADFSbuffers 1064
ADFSDi rCache 1061
Baud 200
Boot 926

(
Caps 541
Country 1674
Data 201
Delay 542

(
Dir 1029
Drive 1062
DumpFonnat 927
FileSystem 928 c
Floppies 1063
Font Max 1476
Font Maxi 1477 (

lndlces-3
(

(

(
lnd9K of ·Commands Index of • Commtlflds

\
::;.»>:>~..:;sm--:::-:-:~:~x-x-:::-:;:.:::::~~'-:-x~-:-:-:.:-:-:::::::::::::::=!::;:;:;;;.;.:.»'~w.<~x--:::<--:·:·:·::;.;:::::::::::::::.:=::x::t<~:-:..:-:-:·:·:·:=:::::::::::::::::::~x;::.:..:;:;~:;x ~:-::.:.:.;.;.;;:-'}.~;:; .. ,.:::-).;;.;;:;:¢~~-:::®:::~~-=~===:::::~:t~t-::::::::;:;:;:;::~».-:~=~::;:;:;::;:;:;:;::::::~;;;:::::::::.::::~~~'?.

(
FontMax2 1478 •Delete 937
FontMax3 1479 •J)eskfS 1118, 1288
FontMax4 1480 ·Desktop 1289
FontMax5 1481 "Desktop_ADF'Sfiler 1290

\

FontSize 1482 "Desktop_FIIer 1290
FS 1093 •Desktop_NetFiler 1290
Hard Discs 1064 "Desktop_Palette 1290
Ignore 202 "Desktop_RAMFSFiler 1290
Language 825 • Desktop_'lllskManager 1290

r
\

Lib 1094 "Dir 938
Loud 361 "Dismount 1032
Mode 362

'
"Drive 1033

Monl tor'!Ype 363 •Dump 939
MouseStep 364 •&ho 609
NoBoot 929 "EnumDir 940
NoCaps 543 "Error 42
NoDir 1030 •Eval 610
NoSe roll 365 ·Ex 941

\ Print 203 "Exec 546.942
PS 1114 •filelnfo 943
Quiet 366 "Filer_aoseDir 1291

(
RamFsSize 811 "Filer_OpenDir 1292
Repeat 544 "FontCat 1483
RMASize 812 "FontUst 1484
ScreenS Ire 367 "Fonnat 1066
Scroll 368 •Free 1034,1095
ShCaps 545 •FS 1096

\. SoundDefault 1614 •fX 49
SpriteSize 445 Sualso I..UXG{OS_~

(
Step 1065 ·eo 761
Sync 369 ·cos 620
SystemSiz.e 813 "Help 826
TV 370 "lam 1097

(
WlmpFiags 1287 •1conSprites 1m
WimpMode 1286 "If 611

·continue 1685 "Ignore 204
·copy 930 "Info 294
·count 934 •fnitStore 1687

(· countries 1676 "Key 547
·country 1675 "Keyboard 1677
•create 936 ·Lcat 945
"Debug 1686 "LEx 946

("Defect 1031 ·ub 947

lndices-4 lndices-5

(

c

(

(
Index of ·Commands Index of ·Commands
-::::::;:;:;:;::-:>::::f.:~ .. :·:·:·:·:·:::.;:;:;.:-:·:·»;;::X«:~:::=::;:;:;:;:;::~::~ ... ;:~~*~H;:.:.:::~::;:;:;:;:;:;:;:;:;:;:::::;:;;:::~~~m>»~o:-..;..~X·:·:·:·:·:·::;.;:;:;:;:;:;::;:;..i$Xi».>::::;:.;.;.:;.:'::;.;.;:;.;.;.;;o,;;.< »:.<:::•:·:•::;:;:;:;:;::::::;;;;:~»:{:;;;:;:;:;:;:;:;:;:;:::;::;o',««-;:;.;.;.;.;.;.;.;.;:;:;:;:;:;:;:;:;;:.:a;::»:•:>X•:·:·:·::;:;:;:;:;:;:;:;;;~;;.~m:;~::~:"O::::::;:;:;:;:;::r.~R.I..:•:-:-;;:~:-:~::;:;:;:;:;:::::;.;:;;~~·:·:·:·:•»X:"& (

' List 948
'l..lstFS 1098
•J..oad 949

•screen Load 172.448
'ScreenSave 373, 449
' SDelete 450

(
'l..oion 1099 'SDisc 1103
'Map 1035
'Memory 1688
'MemoryA 1689

•set 764
'SetEval 766
' Set Macro 767

(
'Memory! 1691 'SetPS 1116
'Modules 717
'Mount 1036.1100
'NameDisc 1037
'Net 1101

'SetType 957
' SFiipX 451
'SPiipY 452
' SGet 453

(
'NoDir 1038 'Shadow 374
'Nol..ib 1039
'NoURD 1040
' Obey 1718
'Opt I 950

'SheiiCI..I 1710
'Show 768
' ShowRegs 1693
'Shut 958

(

'Opt4 951
' Pass 1102
• Podulel..oad 1659

' ShutDown 959
'Sinfo 454 .
•SJ..ist 455

(
' Podules 1660 ' SLoad 456
• Podu leSave 1661
'Pointer 371, 1294
'Print 952

'SMerae 457
'SNew 458
•sound 1616

(
'PS 1115
'OSound 1615
'Ouit 762
'Ram 1073
'Remove 953

· speaker 1617
'Spool 205. 960
' SpooiOn 206,961
'SRename 459
' SSave 460

(
'Rename 954
'RMCiear 718
'RMEnsure 719

•stamp . 962
'Status 814
'Stereo 1618

(
'RMFaster 720
'RMKill 721
'RMI..oad 722
'RMRelnit 723
'RMRun 724

'Tempo 1619
·nme 33.577
''Title 1041

· '1\Jnina 1620
''IV)75

(
'RM'Tidy 725
'ROMModules 726
'Run 763,955
· save 956
· schoose 446
·scopy 447

'Type 963
' Unplua 727
•unset 769
·.up 964
'URD 1042
•verify 1043

(

(
lndices·6 lndices-7

(

(

::.
[

:;:
 II

~ a t ~

~~
3

~
.. ~

~:~ :::

'

.. i ~ i "' I: i ~ ~~~ * ~:
 l1:
 I [j~j. I

(

(

;:;:::;;;:::~:;:;:;::$~~:·:;:·:·:·:;:·:·:«·:·:-:-:-:-::;.;:;: ;:;:;:;:;:;:;:;:;:;:;.;::"«·»~:.:·:·:·:·:·:·:·:·:· ;:;.;:;:;:;:;:;:;.;:;:;:; ;::·:·:•i-:4~:::to:.:.:·:·:·:·::; :;:;:;:;:;:;:;:::;; ;:;:;.:-x;.::;::;m~:=:·:.:..':>:·:·:·:·:·:·: .;:;.;:;:;.;::·:·:=:-:~~;;;.:-:0:::.:-::.:-: (

Index of OS _Bytes
~;x.::::x:::s.::::s.::::::::::::::::::-x:::~y;:::::::::::::::::::::::::::::.:~=:::.:~~~'i:.~~':=:=::.:=:i:.:::::;.:;.:.z~X:=:=:=:=-;:::;;.:::::x~:c-:.::::

(

Index of OS_Bytes
(

OS_Byte OeecripdOil Pqe

0 (&00) Display Oi version lnfonnatlon 816
I (&01) Write user flag 817

(
2 (&02) Spedfy input stream 482
3 (&03) Spedfy output streams 167
4 (&04) Cursor key status 484
5 (&05) Write printer driver type 169

(
6 (&06) Write printer Ignore character 171
7 (&07) Write RS423 re<:elve rate 486
8 (&08) Write RS423 transmit rate 172
9 (&09) Write duration of first colour 296

(
10 (&OA) Write duration oC second colour 297
II (&OB) Write keyboard auto-repeat delay 488
12 (&OC) Write keyboard auto-repeal rate 489
13 (&00) Disable event 116

(
14 (&OE) Enable event 117
15 (&OF) Flush buffer 128
18 (&12) Reset Cu nctlon keys 490
19 (&13) Wait for vertical sync (vsync 298

(
20 (&14) Reset font definitions 299
21 (&15) Flush selected buffer 129
25 (&19) Reset groupo(font definitions 300
106 (&6A) Select pointer I activate mouse 301

(
I 12 (&70) Write VDU driver screen bank 302
113 (&71) Write display hardware screen bank 303
114 (&72) Write shadow/non-shadow state 304
117 (&75) Read VDU status 305 (

. 118 (&76) Reflect keyboard status in LEOs 491
120 (&78) Write keys pressed inConnation 492
121 (&79) Keyboard scan 493
122 (&7A) Keyboard scan from 16 decimal 494 (
124 (&7C) Clear escape condition 495
l25 (&70) Set escape condition 496
126 (&7£) Acknowledge escape condition 497
127 (&7F) Check Cor end of file 843 (

lndices-9

(

(

(

(

(
Index of OS_Byres

·:;:;:::;:::::r~~:®«>X*.X-:-;.:>::o:;:.X!:~&.I.O:::·:W'X"'h~:::::::::::::::;;:;;::::§:::::;;--:::;:::::::::::•:•:•:·:·:·:·:::.;;;.;.;.;.;.;.;.;.;;;.;;;.;:: ;:;:;:;:;.;.;:::::::~;;!-M::;:;.;;;:.-_,.;::.:·:·:·:·:-::;.;.;:;:::::::::::: ::::::;.;.~:-:::.:·:~:· :;:;:;::::::::::::

Index of OS_BytiiOS
:::::::•:~~ .. :;:;x{*;:::;::::::;.;.;:;:;:;:;::YX.~":".;;;;~::.:~$:.;:;.;~:-:<;:;::$::~;:::;:;:-~::::::::::.:::::::::::::::::::::::::::);:;;::::-$~;;::;;::~::;:;:;:;;;:;:;:;:;::::::~"">~:.:.:-:::.;-::;.;:;:;:::::::;:;:::::::::::::;:;;x~;::~

(
128 (&80) Get buffer/mouse status 130
129 (&81) Scan a for a particular key 498
134 (&86) Read text cursor position 306

219 (&DB) Readfwrite Tab key code 516

220 (&OC) Read/write escape character 518
221 (&DO) Read/write inte~Uon of input values &<:0 - &CF

135 (&87) Read character at text cursor and screen mode 107 222 (&DE) Read/write lnte~tlon of Input values &00 - &OF
138 (&8A) Insert character code into buffer Ill 221 (&OF) Readlwrite interpretation of Input values &EO- &EF

('
\

119 (&88) Write til ina system options 844
141 (&8F) Issue module service call 645

224 (&EO) Read/write lnterp~etatlon of Input values &FO- &FF
225 (&EI) Read/write function key interpretation

144 (&90) Set vertical screen shift and Interlace 108 226 (&E2) Read/write Shift function key interpretation
145 (&91) Get character from buffer 112 227 (&Ell Readlwrite Ctrt function key interpretation
152 (&98) Examine buffer status Ill 228 (&E4) Readfwrite Ctrt Shift function key Interpretation 519-521
151 (&99) Insert character into buffer 114 229 (&E5) Readlwtfte Escape key status 522
156 (&9C) Read/write asynchronous comp1Unlcatlons state 174 210 (&E.6) Readlwri te escape effects 524
160 (&N>) Read VOU variable value 109 216 (&EC) Read/write character destination status 180

(161 (&AI) Read battery backed RAM 787
162 (&A2) Write battery backed RAM 788

217 (&EO) Readlwrite cursor key status 526
218 (&EE) Read/write numeric keypad Interpretation 528

161 (&Al) Read/write aeneral graphics Information 111 240 (&FO) Read country nag 1671
165 (&A5) Read output cursor position 111 241 (&Fl) Readfwrite user nac 818
176 (&BO) 50Ht counter 554 242 (&F2) Read RS423 baud rates 181
177 (&BI) Read input source 501 241 (&Fl) Read timer switch state 555
178 (&B2) Read/write keyboard semaphore 502 245 (&F5) Read printer driver type 181
181 (&B5) Read/write RS421 input interpretation status 501 246 (&F6) Read/write printer Ignore character 184

(182 (&86) Read/write Nolgnore state 176
191 (&BF) Read/write RS423 busy nag 177

247 (&F1) Readfwrite Break key actions 529
250 (&FA) Read VDU driver saeen bank number 321

192 (&<.'0) Read RS421 controll7tte 178 251 (&ffi) Read display screen bank number 124
191 (&CI) Read/write nash counter 114 251 (&FD) Read last break type 511
194 (&C2) Read duration of second colour 115 254 (&FE) Set effect of Shift Ctrt on numeric keypad 512
195 (&Cl) Read duration of first colour 116 255 (&FF) Readlwrite boot option 845
196 (&C4) Read/write keyboard auto-repeat delay 505
197 (&C5) Read/write keyboard auto-repeat rate 506
198 (&C6) Read/write "Exec file handle 507
199 (&C7) Read/write "Spool file handle 179
200 (&C8) Read/write Break and Escape effect 509
201 (&C9) Read/write keyboard disable nag 510

c 202 (&CA) Read/write keyboard status byte 511
201 (&CB) Read/write RS421 input buffer minimum space 513
204 (&CC) Read/write RS421 ignore nag 514
2il (&Dl) Read/write bell channel 117

c
212 (&04) Read/write bell sound volume 318
211 (&05) Read/write bell frequency 119
214 (&06) Read/write bell duration 120
216 (&08) Read/write length of function key string 515

(
2i7 (&09) Read/write paged mode line count 121
218 (&OA) Read/write bytes In VDU queue 122

lndices-10 lndices-11

(

(

(

(

(~:~::::::: ::::.:=:=:·:=::::::::::: ::::::::::.:-w.::::::::::.:·»'S&~x::::.:::::::~-.;w,-{.~:~::-..::o.:::=:::~:=:=:=:~=~::::;:::;:;;.:;:.:=::::::::::::::::::::::::::::$';:;::::=:'Z:;::.::~.::::;:::·:·:.:!:-:::: ::~

(
Index of OS Words

:::~:=~::::;:;:::::::~:::::::::::.~:::::::;:;:;:;::i';;x:::~~::::;::~:::::::::::$:::.::;::=:=:::~::::;;:::::;;-~:::::(('::::::::::::::::;:;:;:;:;:;:;:;:;:;:--n;:_~::~~=::::::::::-.::::::.--:::::::::::::::~~::::~~

(
Index of OS_Words

OS_ Word 0.Crfptl011 Pa,e

(0 (&00) Read line from Input stream to memory 534

I (&{)I) Read system dock 556

2 (&{)2) Write system dock 557

3 (&{)3) Read Interval timer 558

4 (&04) Write Interval timer 559 (
9 (&{)9) Read pixeiiOQical colour 325
10 (&{)A) Read a character definition 326

II (&{)B) Read the palette 328
12 (&OC) Write the palette 329

13 (&{)D) Read current and last graphics cursors 330 (
14 (&{)E) Read CMOS dock 560-565

15 (&Of) Write CMOS dock 566-569
21 (&15) Define pointer and mouse parameters 331-339

22 (&16) Write screen base address 340
(

f

(

(

(

(
lndices-13

(

c

(

(

(
:.-.. :-w..:':;:.:..:·:·:·:·:-:::.::::::::::::::::::-~~:.:·:·:·:=:-::.:::::::=:=:=»>*nm:--:>.~.:~:d~~o:s:~:-:-:-:;::::::::::::::::::::::::::;:;:~;:«::.;.::~«=:::=~:·:·:·:·:·:=::::::::::.::::::::.~

(Numeric index of SWis
r.:=:~f-/.~;;x:::::::::::::::::::::::~~=:=w.=~=-~::~~:::::::::::::::::::::x~:m*:!-~~=?"L-W'~).::-~

(
OSSWls

SWIN•me SWI N•mber P.,e

Kernel SWis
(

OS_WriteC 0 28, 161
OS_WrlteS I 164
OS_WrlteO 2 165
OS_NewLine 1 166
OS_ReadC • 481
OS_CLI 5 619
OS_Byte 6 sa IIY•uf OS_f¥15
os_Word 7 satiYIJI.II(OS_wom

(
OS_File 8 846-854
OS_,&.rgs 9 858-865
OS_BGet A 8t:n
OS_BPut B 870

(
OS_CBPB c 871-877
OS _Find 0 879-881
OS_Readl.lne E 515
OS_Control F 741
OS_CetEnv to 742
OS_Exlt It 741
OS_SetEnv 12 744 {
OS_IntOn 11 106
OS_IntOff 14 107
OS_CaiiBack 15 745
OS_EnterOS 16 108
OS_BreakPt 17 746 (
OS_BreakCtrl 18 747
OS_UnusedSWI 19 748
OS_UpdateMEMC lA 789
OS_SetCaiiBact IB 749 (
OS_Mouse IC 142
OS_Heap 10 790·798
OS_Module IE 646-660
OS_Ciaim IF 58 (

(
lndices-15

(

(

(

Numllric ind9x of SWJs Numllric index of SWJs
,~o:::::;:;:.;s:.:-:·:=::::::::::::;::::~ .. ~:::~x:~:;::~::::*~=:=:~:::::::::::::::::;:::;:;:;:;;;:~·=·:·:·:·:·:·:.:·:::.:::.:-:=:=xvx::;:.~~;;;;::;:::::::~.:::::·:·.:-"h:-:::::::::::::::::::::::::w.::::::::~:::.:·:·:-:-:-::x:::::: :·:·:-;;.:(.:•:.:: ;:;:;:;:;:::::~::::o;:;::.ws~;.;:;.:-: .;.;:;:;.;:;.;.;:;.;:;:;:;:;;:;~;.;~.;:::;:;:;:;:;:;:;:;:;:;:;:;.;.;-:-:.:·:·:·:·:-::;:;:;:;:;:;:;:::;:;;;:::::;:~:;:;;:;.;:;:;:;:;:;:;:;:::::f.!:;:;:;:;.;.;(.."-:-:·:-:·:·:·:;;;;:::;:::?,".;:;.;.;:;.;·:-:-:.:.:;;.;.;.;.;.;;;.;o;;;;;;;:;.; (

05_Release 20 59
05_ReadUnsif1ned 21 585
05_GenerateEvent 22 118

OS_CiaimDeviceVector 48 94
OS_Release.DeviceVector 4C 95
OS _Del inkApplication •40 802

(
05_ReadVarVal 23 750 OS_RellnkApplicatlon 4E 803
05_SetVarVal 24 752
05_GSinit 25 587
05_GSRead 26 588

OS_HeapSort 4F 819
OS_ExitAndDie 50 758
OS_ReadMemMaplnfo 51 804

(
05_GSTtans 27 589 OS_ReadMemMapEntries 52 805
OS_Binar(ToDedmal 28 590
OS_FSControl 29 88).897
OS_Chanf1eDynamicArea 2A 797

OS_SetMemMapEntries 53 806
OS_AddCallBad 54 759
OS_ReadDefaultHandler 55 762

(
OS_GenerateError 28 41 OS_SetECFOriflin 56 357
OS_ReadEscapeState 2C 537
OS_EvaluateExpression 20 591
OS_SpriteOp 2E 393-446

05_Serial0p 57 190-8.
539-541 OS_ReadSyslnfo 58 158
05_Confirm 59 822

(
OS_ReadPalette 2F 343 OS_Chanf1ed8ox 5A 359
OS_ServiceCall 30 6$ OS_CRC 5B 821
OS_ReadVduVar1ables 11 145
OS_ReadPoint 32 349

OS_ReadDynamicArea 5C 807
OS_PrintChar 50 188 (

os_upeau 33 137-146 OS_ConvertStandardDateAndllme co 575
OS_CaiiAVector 34 60 OS_ConvertDateAndnme Cl 576
OS_ReadModeVariable 35 150
OS_RemoveCursors 36 353

OS_ConvertHex1 DO 601
OS_ConvertHex2 01 601 (

05_RestoreCursors 37 354 OS_ConvertHex4 02 601
OS_SWINumbeffoString l8 592 OS_ConvertHex6 OJ 601
05_SWINumberFromStrinf1 19 593
OS_ ValidateAddress JA 799
OS_CallAfter 38 571

OS_ConvertHex8 04 601
os_ConvertCardinal1 05 601
OS_ConvertCardinal2 06 601

(
05_Ca11Every 3C 572 OS_ConvertCardinal3 07 601
05_Remove1lckerEvent 30 573
OS_InstallKeyHandler 3E 538
05_Che<:kModeValid JF 155

OS_Convett.Cardinal4 08 601
OS_Convertlnteaer1 09 601
05_Convertlnteaer2 OA 601

(
05_ChanQeEnvironment 40 755 OS_ConvertlntegerJ DB 601
OS_CiaimScreenMemory 41 800 OS_Convert1ntqer4 DC 601
05_ReadMonotonicllme 42 574 OS_Convert8inary1 DO 601
OS_SubstituteArgs 43 595 · OS_Convert8inary2 DE 601
OS_PrettyPrint 44 185 OS_ Convert Binary) OF 601
os_Plot 45 356
OS_WriteN 46 189
05_AddToVector 47 61

OS_ConvertBinary4 EO 601
OS_ConvertSpacedCardinal1 E1 601
OS_ConvertSpacedCardinal2 E2 601

(
05_WriteEnv 48 757 OS_ConvertSpacedCardlnaiJ E3 601
OS_ReadAtgs 49 597
OS_ReadRAMFsLimits 4A 801

Os_ConvertSpacedCardlnal4 E4 601
OS_ConvertSpacedlnteger1 E5 601 (

lndices-16 lndices-17

(

(

(

(

(

(

(

(

(

(

\

(

(

(

(

Num9ric lndsx of SW/s

:;:.~:::::;;;.;. ;.;.;.;:;:;:;:;:;:;:;:;::,;.:«;:;;;;.;;:.::;.;:;~:;;;:;;;;;.;:;;;~:~::::::;:;:;:;:;:;;;:;:;.;:;:: :;:;:;:;:;:;:;:;:;~:-~;:;:;:;;:;.~.~ .. ;.;.;;;.;.;.;:;:;:;:;:;:;.;:-..;;;.;.:;:;:;:;:;:;:;:;:;:~:;:;;;~;~·!·!·:·:·:·:·::;:;:;:;:;:;:;~;;;.;~~~~::::~:::::;;;:;:;.;:;:;:;:;:;:; :;:~;

OS_ConvertSpacedlnteger2
OS_ConvertSpacedlnteger3
OS_ConvertSpacedlnteger4
OS_ConvertFixedNetStation
OS_ConvertNetStatlon
OS_ConvertFixedFileSize
OS_ConvertFileSize
OS_Writel

IIC SWia

IIC_Control

System Extension SWls

lndices-18

EconetSWia

E.conet_CreateRecelve
E.conet_ExamineRecelve
Econet_ReadReceive
Econet_AbandonReceivoe
Econet_ WaitForReception
Econet_EnumerateReceive
Econet_StartTransmil
EconeCPolrrtansmit
Econet_AbandonTransmit
Econet_DoTransmit
Econet_ReadLocaiStationAndNet
E.conecConvertStatusToString
EconecConvertStatusToError
Econet_ReadProtectlon
Econet_SelProtection
Econet_ReadStatlonNumber
Econet_PrintBanner
EconecReleasePort
EconeCAIIocatePort
Econet_DeAllocatePort
Econet_Cia imPort
Econet_Startlmmediate
E.conet_Dolmmediate

E6 601
E7 601
E8 601
E9 605
EA 606
E8 607
EC 608
100- 1FF 199

240 824

40000 1'363
40001 1364
40002 1'365
40003 1366
40004 1361
40005 1368
40006 1'369
40007 1370
40008 1371
40009 1372
4000A 1373
40008 1374
4000C 1375
40000 1376
4000E 1377
4000F 1379
40010 1380
40012 1381
40013 1382
40014 1383
40015 1384
40016 1385
40017 1386

Num8ric indsx of SW/s
:-:=:=:=:=:=:~=:::~:::::x~::::~<:::.:=:::=:::=:=:=~:=:~r< .. <:.:*~~:::::::::::::~=:~::::::::::::;:~~;~..«:;;::»::::::::::::::::::::::~-:.:;:;:;.-:,;.~::::::::::::::~z:~.;;;:;:::::::.:~

NetFSSWia

NetFS_ReadFSNumber 40040 1079
NetFS_SetFSNumber 40041 1080
NetFS_ReadFSName 40042 1081
NetFS_SetFSName 40043 1082
NetFS_ReadCurrentContext 40044 1083
NetFS_SetCurrentContext 40045 1083
NetFS_ReadFS1lmeouts 40046 1085
NetFS_SetFS'llmeouts 40047 1086
NetFS_DoFSOp 40048 1087
NetFS_EnumerateFSList 40049 1088
NetFS_EnumerateFSCac:he 4004A 1089
NetFS_ConvoertDate 40048 1090
NetFS_DoFSOpToGivenFS 4004C 109 1

Font SWia

Font_CacheAddr 40080 !437
FonLFindFont 40081 1438
Font_LoseFont 40082 1439
Font_ReadDefn 40083 1440
FoncReadlnfo 40084 1441
FonCStringWidth 40085 1442
Font_Paint 40086 1444
Font_ Caret 40087 1447
FonCConverttoOS 40088 1448
FonCConverttopoints 40089 1449
FonCSetFont 4008A 1450
Font_CurrentFont 40088 1451
Font_FutureFont 4008C 1452
FonCFindCaret 40080 1453
FoncChar8Box 4008E 1454
Font_ReadScalefactor 4008F 1455
Font_SetScaleFactor 40090 1456
Font_ListFonts 40091 1457
Font_SetFontColours 40092 1458
FonCSetPalette 40093 1460
Fo ncReadThresholds 40094 1462
Font_SetThresholds 40095 1465
Font_Fi ndCaretJ 40096 1466
Font_StringB8ox 40097 1467
Font_ReadColour'l'able 40098 1468
FoncMake81tmap 40099 1469

lndices-19

(

(
NumBric Index of SWis NumBric inct.x of SWis

,o:;:;:~&:-:-::.:·:«·~-~~-•X«-:··:-:=~·==:-:::::::::::::::::::~·:•:o:::-o:-x.»:;:;:.:::;:.::::::-::::::::::xw.WJ«.;::·:.:·:•:·:·:·:=:::::::::::::::::.>~.?.w.-=-~:::.~:.:«>:::;.::::::::::-:::::::m.::w;;.:.: y~:;:.;.:-:·:·:·:·:·:·:·:·>»»:::;;;:::;;;;.;;.,.-:;:;o;.::.-..,v.o:«-:..':·:·:-:·:·:·:·:·:=::::::::::s:wf.:·:·:·:::;>:=z.-:.::.%.~;y,.....:««.::.:::.:;::::::::::::::::~:%:'"~~=·:·=-=·=·:·:·:·:=::::::::~:;:.:-:·:· :·:·:·:-:::::::::::::::w .. :.:-x-:-:·:-:·:·:·»-==-~x-. (

font_UnCacheFile 4009A 1471
font_Setfont.Max 4009B 1473
font_ReadFontMax 4009C 1474
Font_ReadFontPrefix 40090 1475

Wimp_ReadPalette 400E5 1251
Wimp_SetColour 400E6 1252
Wimp_SendMessage 400E7 1253
Wimp_CreateSubMenu 400E8 1270

(

WimpSWia

Wimp_lnitialise 400CO 1173
Wlmp_CreateWindow 400C1 1174
Wlmp_Createlcon 400C2 1180
Wlmp_DeleteWindow 400C3 1188
Wlmp_Deletelcon 400C4 1189
Wimp_ Open Window 400C5 1190
Wimp_CioseWindow 400C6 1191
Wlmp_Poll 400C7 1192
Wlmp_RedrawWindow 400C8 1204

Wimp_SpriteOp 400E9 1271
Wimp_BaseOfSprites 400EA 1272
Wimp_BiockCopy 400EB 1271
Wimp_SiotSize 400EC 1275
Wimp_ReadPixTtans 400EO 1277
Wimp_CiaimFreeMemory 400EE 1279
Wimp_CommandWindOIII 400Ef 1280
Wimp_TextColour 400FO 1282
Wimp_ TtansferBlock 400FI 1281
Wimp_ReadSyslnfo 400f2 1284
Wimp_SetfontColours 400FJ 1285

(

(

(
Wimp_UpdateWindow 400C9 1206
Wlmp_CetRectangle 400CA 1208
Wimp_CetWindowState 400CB 1209
Wimp_CetWindowlnfo 400CC 1210

Sound SWia

Sound_ Configure 40140 1586
Sound_Enable 40141 1587

(
Wlmp_SetlconState 400CO 1211 Sound_Stereo 40142 1588
Wimp_CetlconState 400CE 1213
Wimp_CetPolnterlnfo 400CF 1214
Wlmp..Dr<iiBox 40000 1216
Wlmp_ForceRedraw 40001 1221

Sound_Speaker 40143 1589
Sound_ Volume 40180 1590
Sound_SoundLog 40181 1591
Sound_LogScale 40182 1592

(
Wlmp_SetCaretPosition 40002 1223
Wlmp_CetCaretPosition 40003 1225
Wlmp_CreateMenu 40004 1226

Sound_lnstaiiVolcr 40183 1591
Sound_RemCNeVolcr 40184 1694
Sound_AttachVoice 40185 1595

(
Wlmp_DecodeMenu 40005 1231 Sound_ Control Packed 40186 1596
Wlmp_Whichlcon 40006 1232
Wimp_SetExtent 40007 1233
Wlmp_SetPolnterShape 40008 1234

Sound_Tu9ing 40187 1597
Sound_Pitch 40188 1598
Sound_ Control 40189 1599 (

Wlmp_OpenTemplate 40009 1236 Sound_AttachNamedVoice 4018A 1601
Wimp_CioseTemp1ate 4000A 1237 Sound_ReadControiBiock 4018B 1602
Wimp_LoadTemplate 400DB 1238
Wimp_ProcessKey 400DC 1240

Sound_ WriteControiBiock 4018C 1603
Sound_Oinit 401CO 1604

(
Wimp_CioseDown 40000 1241 Sound_OSchedule 401CI 1605
Wlmp_StartTask 4000E 1242 Sound_ORemCNe 401C2 1606
Wlmp_ReportError 400DF 1243
Wimp_CetWindowOutline 400EO 1245
Wimp_Poliidle 400EI 1246
Wimp_Piotlcon 400E2 1247
Wimp_SetMode 400E3 1249
Wimp_SetPalette 400E4 1250

Sound_OFree 401C3 1607
Sound_OSOispatch 401C4 1608
Sound_OTempo 401C5 1609
Sound_OBcat 401C6 1610
Sound_Oinlerface 401C7 1611

(

(
lndices-20 lndices-21

(

(

(

(

(
Num8rlc lnd9X of SW/s Num911c index of S Wls
~-:=:-:::::::::::::::::::::···:·c .. ·:~t::w~~~:-:o:;:::.;;::x::::::x:~»-««·=·=·=·=·:=:=:·:·:·:·:·:;::y;x;:;;;:::;;::::::::::::=::::-~!·:..:.:·:·:·::::::::::::::::::::::.:::.:-»~~:<: :=x=~:-.«;::::::::::::::::::::::::::m~m-:::=:.:::::::::::::;z.~:-:::::~=::;;::::: ~ ~::«-::::=::::~ *::::::::::::::::::::::;:~:: ... ~~:t=:=:=:::::::

NetPrlnt SWis FlleCore SWis
Nel.Prfnt_ReadPSNumber 40200 1108
NetPrlnt_SetPSNumber 40201 1109
NetPrlnt_ReadPSName 40202 1110

FileCore_DI~ 40540 1015
FileCore_Create 40541 1018
FileCoreJ)rives 40542 1020

(NetPrl nt_SetPSName 40203 1111
NetPrlnt_ReadPS11meouts <10204 1112
NetPrlnt_SetPS11meouts 40205 1113

FileCore_FreeSpace 40543 1021
FileCore_FioppyStructure 40544 1022
FileCore_DescribeDisc 40545 1023

(ADFSSWis
ADFS_DiscOp 40240 1053

Shell SWis
Shell_ Create 405CO 1711

ADFS_HDC . 40241 1054
ADFS_Drives 40242 1055

Sheii_Destroy 405CI 1712

(ADFS_F'reeSpace 40243 1056
ADF'S_Retrles 40244 1057
ADFS_DescribeDisc 40245 1058

Hourglass SWis
Hour11lass_On 406CO 1390
Hour81ass_otr 406CI 1391

PoduleSWis

Podule_Read1D 40280 1649
Podule_ReadHeader 40281 1650
Podu1e_EnumerateChunks 40282 1651

Hour81ass_Smash 406C2 1392
Hour11lass_Start 406C3 1393
Hour81ass_percentat~e 406C4 1394
Hour81ass.J-EDs 406C5 1395

Podule_ReadChunk. 40283 1652 Draw SWis

r

Podule_ReadBytes 40284 1653
Podule_ WrfteBytes 40285 1654
Podule_CaiiLoader 40286 1655
Podule_RawRead 40287 1656
Podule_RawWri te 40288 1657
Podule_HardwareAddress 40289 1658

Draw ..Process Path 40700 1499
Draw_l)rocessPathFP 40701
Draw_Fill 40702 1502
Draw_FiiiFP 40703
Draw_Stroke 40704 1503
Draw_StrokeFP 40705

' WaveSynth SWis Draw_StrokePath 40706 1505
Draw_StrokePathFP 40707

WaveSynth_Load 40300 1634 Draw _Fta ttenPath 40708 1506
Draw _FiattenPathFP 40709

(
Debugger SWis

DebU88er_Disa.ssemble 40380 1681

Draw_T!ansformPath 4070A 1507
Draw _T!a nsformPathFP 40708

FPEmulstor SWis Colour Trans SWis

(FPEmulator_ Version 40480 1707 ColourT!ans_Select'llllble 40740 1406
ColourT!ans_SelectOCOlTable 40741 1407
ColourT!ans_ReturnOCOL 40742 1408
ColourTrans_SetGCOL 40743 1409

(ColourTtans_ReturnColourNumber 40744 1410

(
lndices-23 lndices-22

(

Num9ric inckix of SWls

~:::::o:o;.~.;.;.;.;:~;.::;:;:;:;;;:::::;:x~~~;:;:;e::;,::;::;:-?%:,®)~));:;::,;:;:;:;:;:;:;:;:;:::::~~:;:;:;:;:;::o:.;;::~~:;;;:: .;.;:::;:;: ;:;:;:;:;:; :;:;:;:;:::;:;.:•::::-:.:•: .. "1>:·:·:-;:;:;:;:;:;:;:;::::~:;;:;:;~~ :.:::::::;:;:;::

Colour'l'tans_ReturnCCOLForMode
Colour'l'tans_ReturnColourNumberForMode
Colour'l'tans_RetumOppOCOL
Colour'l'tans_SetOppCCOL
ColourTtans_RetumOppColourNumber
Colour'l'tans_ReturnOppCCOLForMode
Colour'l'tans_RetumOppColourNumberForMode
Colour'l'tans_GCOLToColourNumber
Colour'l'tans_ColourNumber'foGCOL
Colour'l'tans_ReturnFontColours
Colour'l'tans_SetFontColours
Colour'ftans_lnvalidateCache

RamFSSWia

RamFS_DistOp
RamFS_NOP
RamFSJ)rlves
RamFS_FreeSpace
RamFS_NOP
RamFSJ)escribeDisc

Application SWis

PDrlver SWia

lndlces-24

PDriver_lnfo
PDriver_Setlnfo
PDriver_ChedFeatures
PDriver_PageSize
PDriver_SetPaQeSize
PDriver_SelectJob
PDriver_Currentlob
PDrlver_FontSWI
PDriver_EndJob
PDriver_N,ortJob
PDriver _Reset
PDriver _CiveRectanale
PDriver_DrawPaQe
PDriver_CetRectanale
PDriver_CanceiJob
PDriver_SaeenDump
PDriver_EnumerateJobs

40745 141 I
40746 1412
40747 141'3
40748 1414
40749 1415
4074A 1416
40748 1417
4074C 1418
40740 1419
4074E 1420
4074F 1422
40750 142'3

40780 1069
40781
40782 1070
4078'3 1071
40784
40785 1072

80140 15'39
80141 154'3
80142 1544
80143 1545
80144 1546
80145 1547
80146 1548
80147 1550
80148 1551
80149 1552
8014A 1553
80148 1554
8014C 1556
80140 1559
8014E 1560
8014F 1561
80150 1562

(

(

Num9ric iniHx of SW/s
»x:::::::::.~~::y .. :::.-:::.:·:·:·:·:·:·:·:·:=::::::::::::::::::::::m:~~ .. ~Y..v:.:-:.:::::::::::::::::::::-:::::::;:;x.:.:-c«:::.:::.:~:::::::::::::::::::::::::::::.:·:~;;::;.;:;.:-:-:::::::::::::::::::::~·:~-:.:·:. :·:·:-:·:·:=:·:=:·:= :·:·:=:;;.,:;;-;.;.:-:·:·:·:· :·:·:·:=::::; (

PDriver_SetPrinter 80151 156'3
PDriverCanceiJobWithError 80152 1564
PDriver_Selectlllustratlon 8015'3 1565

(
PDriver_lnsertlllustration 80154 1566

(

(

(

(

(

(

(

(

(

(

lndlces-25
(

(

5"

~i.
~

a.

::~

~

o·

::::

~

lD

;:::

(/
)

::::

i

,\
,

.:·:

0
)

i ""
 a i (/
) ~

? ~ ~~~ r ~~ :;;;

§ r I ~1!~ ~ I ~ ~l l i ::::

}X~:::~:;::::::::::::::::::::;:;;.;:x.-..:·:·:·:-m:$::;;;:;:;:~~·J:::::.;.;.x;:vw.::::.;;;;:;x;::~:=:=:·:·:·:·:-:·:·:·:·:v~=:-«<-:=~·»:-;.;:;.;;;.;;;.;.;o;;;:::::::::::;;;.:;:;."¥..:::-x:;t;.;.;;;.;<:.:«4:>:~~~~::::;:.;:;.:·:·:·;-»~;.;.;-;.:·:::::::

Alphabetic index of SWis
~~~~~'i:-"':«~»S:;.;tt."<$;»»>; ~:::mx·w.,···~-.W':< ~~::::::::: 

Index of SWis 
SWI Name 

ADFSSWI• 

ADFS_DesaibeDisc 
ADFS_Disc:Op 
ADFS_Drives 
ADFS_F'reeSpace 
ADFS_HDC 
ADFS_Retries 

Colour fran. SWis 

Colour'l'rans_ColourNumber'roCCOL 
Colour'l'rans_GCOLToColourNumber 
ColourTrans_lnvalidateCac:he 
Colour'rrans_ReturnColourNumber 
ColourTrans_RetumColourNumberi'orMode 
Colour'rrans_ReturnFontColours 
ColourTrans_ReturnGCOL 
Colour'rrans_ReturnGCOLForMode 
ColourTrans_ReturnOppColourNumber 
Colour'Trans_ReturnOppColourNumberforMode 
Colour'l'rans_ReturnOppCCOL 
ColourTrans_ReturnOppCCOLForMode 
ColourTrans_SelectGCOLTable 
ColourTrans_Select'lable 
ColourTtans_SetFontColours 
ColourTtan.s_SetGCOL 
ColourTrans_SetOppGCOL 

Debugger SWis 

Debugger_Disassemble 

SWI N1111ber , ... 
40245 1058 
40240 1051 
40242 1055 
40241 1056 
40241 1054 
40244 1057 

40740 1419 
4074C 1418 
40750 1421 
40744 1410 
40746 1412 
4074E 1420 
40742 1408 
40745 1411 
40749 1415 
40748 1417 
40747 1408 
4074A 1416 
40741 1407 
40740 1406 
4074F 1422 
40741 1409 
40748 1414 

40380 1681 

lndices-27 

( 

( 

( 

( 

\ 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

( Alphsbstlc lndax of SW/s 
Alphabetic ind8x of SW/s 

;;:.;:::::::::.--:::::=:o:-;;;-:.;-;,;.;.;:;:;.;.;:;:;:;:;::~/..;(:X<.;:·:·:·:·:·:=:·:·::::;;:..:-~-.;-:.~-:::*»:.;:;.:;;:;:;:;:;::::::::--:::-.a-.;:;;.;:-:.:·:;;:;.;.:.::.::v:-:-»»;..:-:·:·:;;:;:;:;:;:;:;:;:;:;:;:;.;('tt·:·:·:·:·:·:·::;:;:;:;:;:;:~"=. ... ~ .. ;.;.:-:·:·:·:·: ~~»::::=:w.;:.w.;x.::::~.;;;~::::::;:;::::::.::~""":.:-:-:-::;:;:;:;:;::::::~~====::::::::u:::~;::::::::;:~~ .. ~-"':::-:·:;;::::::::::=%:::'$~ 

r OrawSWla 

Draw_F'ill 40702 1502 
Draw_fliiFP 40703 
Draw.J'lattenPath 40708 1506 
Draw_FiattenPathFP 40709 
Draw_ProcessPath 4o700 1499 
Draw_ProcessJ>athFP 40701 
Draw_Stroke 40704 1503 

FlleCore SWla 

FileCore_Create 40541 1018 
FileCore_DescribeDisc 40545 1023 
FileCore_DiscOp 40540 1015 
FileCore_Drives 40542 1020 
FileCore_Fiopw.>tructure 40544 1022 
FileCore_freeSpaoe 40543 1021 

( Draw_StrokeFP 40705 
Draw_StrokeJ>ath 40706 1505 
Draw_StrokePathFP 40707 

Font SWla 

Font_CacfleAddr 40060 1437 
Draw_TransformPath . 4070A 1507 
Draw_TransformPathFP 40706 

Font_ Caret 40087 1447 
Font_CharBBox 4008E 1454 
Font_ConverttoOS 40088 1448 

EconetSWia Font_Converttopoints 40089 1449 

( 

r 

( 

( 

Econet..AbandonReceive 40003 1366 
Econet_AbandonTransmlt 40008 1371 
Econet_AIIocatePort 40013 I '382 
Econet_CiaimJ>ort 40015 I '384 
Econet_ConverlStatusToError 4000C 1375 
Econet_ConvertStatusToSLrinf! 40006 1374 
Econet_CreateRecefve 40000 1363 
Econet_DeAllocatePort 40014 1'383 
Econet_Dolmmedlate 40017 I '386 
Econet.J)oTransmit 40009 1372 
Econet_EnumerateReceive 40005 1368 
Econet_E.xamineRecelve 40001 1364 
Econet_PoiiTransmlt 40007 1370 
EconetYri ntBanner 40010 I '380 
Econet_ReadLocaiStationAndNet 4000A 1373 
Econet_ReadProtection 40000 1376 
Econet_ReadRecelve 40002 1365 
Econet_ReadStationNumber 4000F 1379 
Econet~ReleasePort 40012 I '381 
Econet_SetProtectlon 4000E 1377 
Econet_Startlmmediate 40016 1385 
Econet_Startlransmit 40006 1369 
Econet_ WaitForReceptlon 40004 1367 

Font_CurrentFont 40088 1451 
Font_Findcaret 40080 1453 
Font_Fi ndCaretJ 40096 1466 
Font_FindFont 40081 1438 
Font_FutureFont 4008C 1452 
Font_ListFonts 40091 1457 
Font_LoseFont 40082 1419 
Font_MakeBitmap 40099 1469 
Font_Paint 40086 1444 
Font_ReadColour'l'able 40098 1468 
Font_ReadDefn 40083 1440 
FonU~eadFontMax 4009C 1474 
Font_ReadFontPrefix 40090 1475 
Font_Readlnfo 40084 1441 
Font_ReadScaleFartor 4008F 1455 
Font_ReadThresholds 40094 1462 
Font_SetFont 4008A 1450 
Font_SetFontColours 40092 1458 
Font_SetFont Max 40098 1473 
Font_SetPalette 40093 1460 
Font_SetScaleFactor 40090 1456 
Font_SetThresholds 40095 1465 
Font_Strinf!BBox 40097 1467 
Font_Strinf!Width 40085 1442 
Font_UnCacheFlle 4009A 1471 

( 
FPEmulator SWia 

FPEmulator_ Version 40480 1707 

( 
lndices-29 lndices-28 

( 



( 

AlphaNtic ind6x of SWis Alphaberic index of SW/s 
.::::~:.-•. :«{·~·:«·::.:;;:;:;:::;:;:;::::~-::::~:::::~;:;:::~/ .. fO::::::::~:-:·:·:::..-.:;::::;:~; :;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;.::;~~~~==-~::::.:;:;:;:::::::::;:;:;:;;;.:::.:·:~·:-:..-..;-:;:.;-:.;:;:;:;.;:;:;.;.;:;.;:::::;:;:;:;:;:::::;:;:;;;:~;;;:;:;.~:~::::;::::::::::$;:;:;::.:-: ::.:-::::;:;: ;:;:;:;:;:::: :;:;:;~::;;.;:%: .. ..:·:·:·::;.;-:-;-;.;.:-::;.;:;.;.;.;:;:;:;:;:;:;:;::::~~~:·:·:·:·:-:·: .;.;:: :;:;:;:;:;:;::::::.-::::;;:-~::~::::::·:·:·:-:-:·:~:-::::::; :;:;:;:;:;:;:;:;:;.j:;:;:;:;:;;;~W.·:·:·:·:-:·:·:·:·:·:-:-:-:-:: ;:;.;:;.;::·:·:·:·:-:-:->>»:-:-:-:-::·:··· ( 

Hourgla .. SWia OS_BPut B 870 

Hourstass_LEDs 406C5 1395 
OS_BreakCtrl 18 747 

Hourslass_Off 406CI 1391 
OS_BreakPt 17 746 

( 
Hourslass_On 406CO 1390 OS_Byte 6 Sal~ ofOS_Bytcs 
Hourslass_Percentage 406C4 1394 OS_CallAfter 38 571 
Hourslass_Smash 406C2 1392 OS_CaiiAVector 34 60 
Hourslass_Start 406C3 1393 OS_CaiiBack 15 745 

( 
OS_CaiiEvery 3C 572 

IIC SW1a OS_ChangedBox 5A J59 

DC_ Control 240 824 
OS_ChangeDynamlcArea 21\ 797 
OS_ChangeEnvlronment 40 755 

( 
NetFSSWia 

OS_CheckModeValid 3F 355 
OS_Ciaim IF 58 

NetFS_ConvertDate 40048 1090 OS_CiaimDevlceVector 48 94 
NetFS_DoFSOp 40048 1087 OS_CiaimScreenMemory 41 800 

( 
NetFS_DoFSOpToGivenFS 4004C 1091 os_cu 5 619 
NetFS_EnumerateFSCache 4004A 1089 OS_Confinn 59 822 
NetFS_EnumerateFSList 40049 1088 OS_Control F 741 
NetFS_ReadCurrentContext 40044 1083 OS_Convert8inary1 DO 601 

( 
NetFS_ReadFSName 40042 1081 OS_Convert8inary2 DE 601 
NetFS_ReadFSNumber 40040 1079 OS_Convert8inary3 DF 601 
NetFS_ReadFS1lmeouts 40046 1085 OS_Convert8inary4 EO 601 
NetFS_SetCurrentContext 40045 1084 OS_ConvertCardinal1 D5 601 

( 
NetFS_SetFSName 40043 1082 OS_ConvertCardlnal2 06 601 
NetFS_SetFSNumber 40041 1080 OS_ConvertCardi na13 07 6011 
NetFS_SetFS11meouts 40047 1086 OS_ConvertCardlnal4 08 601 

OS_ConvertDateAndl1me Cl 601 
( 

NetPrlnt SWia OS_ConvertFileSize EC 601 

NetPrinLReadPSName 40202 1110 
OS_Convc;rt.FixedfileSize E8 601 

NetPrinLReadPSNumber 40200 1108 
OS_ConvertF'ixedNetStation E9 601 

NetPrinL.ReadPSnmeouts 40204 1112 
OS_ConvertHexl DO 601 

NetPrinLSetPSName 40203 1111 
OS_ConvertHex2 01 601 

NetPrlnLSetPSNumber 40201 1109 
OS_ConvertHex4 02 601 

NetPrlnLSetPS11meouts 40205 1113 
OS_ConvertHex6 03 601 
OS_ConvertHex8 04 601 

( 

( 
KerneiSWia 

OS_Convertlntegerl 09 601 
OS_Convertlnteger2 DA 601 

OSJ,ddCallBad 54 759 OS_Convertlnteger3 DB 601 
OS_J,ddl'oVector 47 61 OS_Convertlnteger4 DC 601 ( 
OS....Args 9 858-866 OS_ConvertNetStatlon EA 601 
OS_BCet A 869 OS_ConvertSpacedCardinall El 601 
OS_BinaryToDedmal 28 590 OS_ConvertSpacedCardinal2 E2 601 

OS_ConvertSpacedCardinall El 601 ( 
lndices-30 lndices-31 

( 



r 
( 

( 
Alp/labelic lnd6X of SW/s Alphab6lic In~ of SW/s 

·.v-...:;.:;.:-:-:<:;»:«-:-:-:-:-:«-:.;-:;x::~:>:w..> .. :.:{#:-»»:::;:;:::::::::::::::::::~~:-:·:·:·:·:·:·:=:::.:·:·:·:=:·:·:;.:.:~:«.;..-.:::·:·:v:·:·:·:-:-:-x-: .. "::.:::::::::::~Xo:«-: ·:.:-:-:·:·:;:::::::::::::::.:-:::-::~.:·:·:-:-:·:·:< :=:--=~~~~:::=:::=:¥.-:"~>>::;.;;;:;:;:;:;:;:;:;:::§:Y~:::;.;::;:;;~~;::::::::::::::~~:.;:.:-::;.;:;:;:;:;:::::::~::~;-;§;:;:; 

OS_ConvertSpacedCardinal4 E4 601 OS_ReadPalette 2F 343 
OS_ConvertSpacedlntegerl E5 601 OS_ReadPoint n 349 
OS_ConvertSpacedlnteger2 E6 601 OS_ReadRAMfsUmlts 4A 801 

( 

OS_ConvertSpacedlnteger3 E7 601 OS_ReadSyslnfo 58 358 
OS_ConvertSpacedlnteger4 E8 601 OS_ReadUnsigned 21 585 
OS_ConvertStandardDateAnd11me co 575 OS_ReadVarVal 23 750 
OS_CRC 58 823 OS_ReadVduVariables 31 345 
OS_DelinkApplicatlon 40 802 OS_Release 20 59 
OS_EnterOS 16 108 OS_ReleaseDevtceVector 4C 95 

( 
\ 

OS_,EvaluateExpression 20 591 OS_RellnkAppllcatlon 4E 803 
OS_Exit II 743 OS_Remove<:ursors 36 353 
OS_ExitAndDie . 50 758 OS _ReiTIOI!e 11cterEvent 30 573 
OS_File 8 846-856 OS_RestoreCursors 37 354 

( OS _Find D 879-882 OS_SerlaiOp 57 190-200 
OS_FSControl 29 883·897 OS_ServlceCall 30 ~ 
OS_CBPB c 871-877 OS_SetCaiiBact IB 749 
OS_CenerateError 28 41 OS_SetECFOrigln 56 357 

( OS_CenerateEvent 22 118 OS_SetEnv 12 744 
OS_CetEnv 10 742 OS_SetMemMapEntrtes 53 806 
OS_GSinit 25 587 OS_SetVatVal 24 752 
OS_GSRead 26 588 OS_SpriteOp 2E 393-446 
OS_GSTrans 27 589 OS_SubstituteArgs 43 595 

\ 
OS_Heap ID 790-796 OS_SWINumberf'romStrlng 39 593 
OS_HeapSort 4F 819 OS_SWINumber1'oStrlng 38 592 
OSjnstaiiKeyHandler 3E 538 OS_UnusedSWJ 19 748 
OSJntOff · 14 107 OS_UpCall 33 137-143 
OS_IntOn 13 106 OS_UpdateMEMC lA 789 
OS_Module IE 646-660 OS_ ValidateAddress 3A 799 
OS_Mouse IC 342 OS_ Word 7 S.J"U..o(OS_Worils 

( 
OS_NewLine 3 166 OS_WrlteO 2 165 
OS_Piot 45 356 OS_WrlteC 0 28, 161 
OS_PrettyPrlnt 44 185 OS_WrlteEnv 48 757 
OS..PrintChar 50 188 OS_Wrltel 100 • IFFI99 

( 
OS_ReadArgs 49 597 OS_WriteN 46 189 
OS_ReadC 4 481 OS_WrlteS I 164 
OS_ReadDefaultlfandler 55 760 
OS_ReadDynamfcArea 5C 807 PDrlver SWia 

( 

( 

OS_ReadEscapeState 2C 537 
PDrlver_AbortJob 80149 1552 OS_Readline E 535 
PDriver_CanceiJob 8014E 1560 OS_ReadMemMapEntries 52 805 
PDriverCancelfobWithEtror 80152 1564 OS_ReadMemMaplnfo 51 804 
PDriver_CheckFeatures 80142 1544 OS_ReadModeVarlable 35 350 
PDriver_CurrentJob 80146 1549 OS_ReadMonotonlc11me 42 574 
PDriver_OrawPage 8014C 1556 

lndices-32 lndices-33 

( 

( 



( 

( 

AlphabHc index of SW/s Alphab9/Jc lndtu of SW/s 
:.~=:~~:-$>-~:>:..~:t:::>:::::.:::::;:::::::.*':::::;-:;:::.:=:-.:·:~;.;.:..:::·:·:·:=:=:.::::::::::::::::::::::x::~>:-.~:::x::::::::-:=:::::::::::::::::::::::~=~:.~:.:::-:·:·:.:·:«;~:'-:·:·:·:.:.:·:<:;m:::::::::::::::::::.-w~»:>:·: ~~;:::--::;:::;;;: :·:-::;.;:;:.::::::::x-;;;~~:;;;:;~;;::;:;:;;:;-..;.:;«.x::;;;;.;««<:·::;:;:;;;:;:;::~:'«-W4:':':.;~;:;::.: ;;:;.;.;.;.;:;:;:;:;:;:;:;:;.;:;:::;:;:;:;::::::.;::.:·:·:·:::::::r.;;;s.~;~;;;;::~.:«-.W.-:•:·:·:·:·:;:~:::: ( 

PDriver_Endlob 80148 1551 
PDriver_Enumeratelobs 80150 1562 
PDriver_FontSWJ 80147 1550 
PDriver _ CetRectang1 e 80140 1559 
PDrlver_GiveRectangle 80148 1554 
PDrlverJnfo 80140 1539 
POrlver_lnsertlllustratlon 80154 1566 
PDriver_pageSize 80143 1545 
PDrlver_Reset 8014A 1553 
PDriver_ScreenDump 8014F 1561 
PDriver_Selectlllustration 80153 1565 
POriver _Selectlob 80145 1547 
POriver _Sell nfo 80141 1543 
POriver_SetPageSize 80144 1546 
POriver_SetPrinter 80151 1563 

Sound SWis 
Sound_Attach~medVoice 4018A 1601 
Sound _Attach Voice 40185 1595 
Sound_ Configure 40140 1586 
Sound_ Control 40189 1599 
Sound_ControiPaclted 40186 1596 
Sound_Enable 40141 1587 
Sound_lnstaiiVolce 40183 1593 
Sound_LogScale 40182 1592 
Sound _pitch 40188 1598 
Sound_OBeat 401C6 1610 
Sound_OFree 401C3 1607 
Sound_Oinit 401CO 1604 
Sound_Ointerface 401C7 1611 
Sound_ORemOYe 401C2 1606 

( 

( 

( 

( 
PoduleSWis 

Podule_Callloader 40286 1655 
Podule_EnumerateChunks 40282 1651 

Sound_OSchedule --- 401C~I _ 1605 
Sound_OSDi.spatch 401C4 1608 
Sound_arempo 401C5 1609 
Sound_ReadControlBioclt 40188 1602 

( 
Podule_HardwareAddress 40289 1658 Sound_RemOYeVolce 40184 1594 
Podu1e_RawRead 40287 1656 
Podule__RawWrite 40288 1657 
Podule__Read8ytes 40284 1653 

Sound_Soundl..og 40181 1591 
Sound_Spealter 40143 1589 
Sound_Stereo 40142 1588 

( 
Podule__ReadChunlt 40283 1652 
Podule__ReadHeader 40281 1650 
Podule_ReadlD 40280 1649 
Podule_Write8ytes 40285 1654 

Sound_ TUning 40187 1597 
Sound_ Volume 40180 1590 
Sound_ WriteControiBioclt 4018C 1603 ( 

RamFSSWis 
RamFS_DescribeDisc 40785 1072 
Ramf'S_Dis<Op 40780 1069 
Ramf'S_Orives 40782 1070 
Ramf'S_FreeSpace 40783 1071 
Ramf'S_NOP 40781 
Ramf'S_NOP 40784 

WaveSynth SWis 
WaveSynth__Load 40300 1634 

Wlmp SWis 
Wimp_BaseOISprites 400EA 1272 
Wimp_8lockCopy 400E8 1273 

. Wimp_CiaimFreeMemory 400EE 1279 
Wimp_CioseDown 40000 1241 

( 

c 
Shea SWis 

Shell_ Create 405CO 1711 

Wimp_ Close Template 4000A 1237 
Wimp_CioseWindow 400C6 1191 
Wimp_CommandWindow 400EF 1280 ( 

Sheii_Destroy 405C1 1712 Wimp_Createlcon 400C2 1180 
Wimp_CreateMenu 40004 1226 
Wimp_CreateSubMenu 400E8 1270 
Wimp_CreateWindow 400CI 1174 ( 

lndices-34 lndices-35 

( 

( 



( 

( 

( 
Alphabelfc Index of SW/s 

~">:·:·:;;.;.:-x;;.:~~:·:·X·:-.~>:•»:·:,-...::;:;:;:::::;:;.:,;;r.;.~-~:·:·:·:·:·:·:·::;:;.;:;:;:;.;.;.;;-~HN:O:·:·:.:·:·:·:·:;;.;.;.;:.:«;;~.««* .. :«-:-:.X;X*$:>:«::::::;-.;~ 

r Wimp_DecodeMenu 40005 1231 
Wlmp_Deletelcon 400C4 1189 
Wimp_DeleteWindow 400C3 1188 
Wimp.J>rat~Box 40000 1216 

r 
Wlmp_ForceRedraw 40001 1221 
Wlmp_GetCaretPosltlon 40003 1225 
Wlmp_GetlconState 400CE 1213 
Wlmp_GetPointerlnfo 400CF 1214 

( 
Wimp_GetRectant~le 400CA 1206 
Wimp_GetWindowlnfo 400CC 1210 
Wimp_GetWindowOutline 400EO 1245 
Wlmp_GetWindowState . 400CB 1209 
Wimp _Initialise 400CO 1173 

( Wlmp_LoadTemplate 40008 1238 
Wimp_OpenTemplate 40009 1236 
Wimp_OpenWindow 400C5 1190 
Wlmp_l>lotlcon 400E2 1248 

( Wlmp_Poll 400C7 1192 
Wlmp_Pollldle 400EI 1246 
Wlmp_ProcessKey 400DC 1240 
Wlmp_ReadPalette 400E5 1251 
Wlmp_ReadPiKTrans 400EO 1277 

\ Wimp_ReadSyslnfo 400F2 1284 
Wlmp_RedrawWindow 400C8 1204 
Wlmp_ReportError 4000F 1243 
Wlmp_SendMe553j!e 400E7 1253 
Wlmp_SetCaretPosition 40002 1223 
Wlmp_SetColour 400E6 1252 
Wimp_SetExtent 40007 1233 
Wlmp_SetFontColours 400FJ 1285 
Wlmp_SetlconState 400CO 1211 
Wlmp_SetMode 400E3 1249 
Wlmp_SetPalette 400E4 1250 

( 
Wlmp_SetPointerShape 40008 1234 
Wlmp_SiotSize 400EC 1275 
Wlmp_SpriteOp 400E9 1271 
Wlmp_StartTask 4000E 1242 

( 
Wlmp_TextColour 400FO 1282 
Wlmp_TransferBiock 400FI 1283 
Wlmp_UpdateWindow 400C9 1206 
Wimp_ Whichlcon 40006 1232 

( 
lndices-3S c 

c 



;:;:;:;:;:;:;:;.;::::::Y..r.::::::::;;;:;.:-:·:·~ ;:;:;:;:;:;:;:;:;:;.;.;:;:;:;:; :;:;:;:;:;:;::-::::~:-::;:;:;:;:; :;:;:;:;:;:;:;:;:;:: :;:;:;:::w:::::::..::.::~;:; :;:;:::. :;:;:;:;:;:::::.:.::::::.::::::::::::::::.:.:::-::::-:-::;:;:;:;:;::::::::>::::~:;:.::;:;:;::.;m:;;:;;:;:;.;.::::::::;:;:·: .·.·.··:·:;:;:;:: 

Index by subject 
»t"'x::::~'!':::::::::::::::::::;::::::: :::::::::::::::::::::::::::: :::::~::::r~.«:::::::::: :::::··::::. :::::::::x::::::::w..x:::::::AA:::::::::::::::::::::::::::::-x::::::::::::::~:x:z::::::::::::::::::::::::::::::::::::::::::::::w.-::::.:=::::::x:::::::::::::::: :·:·:·::::::::: 

Symbols 
• Commands 1-4. 1·31 to 1·'36 

seealsolndexof • Commands 1-4 
•configure commands· see Index of 

·commands 
•wimpslot 1·337 

A 
a.out format 6-351 
ABS 6·169 
access 

listing 3-138 
maintaining 3·147 
setting 3-133 

access see files (attributes) 3·12 
Acorn Library Format sa ALf' 
Acorn Terminal Interface Protocol see TIP 6-431 
ACS 6·169 
ADF 6·168 
ADFS 1· 251 to 3· 295 

describe disc 3-274 
directory cache 1·287 
perform disc operation 3·267 
read drive information 3·270 
read free space 3· 271 
set address of hard disc controller 3·268 
set number ofretries 3-272 

AIF 6-347, 6·'368 
header layout 6-HO 
image debugging' 6-368 
layout of an image 6-369 

layout ofuncompressed image 6-369 
relocation 6-368 
self relocation 6-372 
zero-i nitialisatlon code 6-371 

ALF 6-347. 6·364 
Chunkindex 6-'365 
Datalength 6· '365 
EntryLength 6-'365 
LIB_OIRY 6-364 
library file chunks 6-364 
library file format types 6-364 
object code libraries 6· '367 
overall structure 6-348 

Alias$@Load1'ype.)(XX 3-14 to 3-15. 3-165, 
6-487 

AllasS@RunType_)(XX 3-14 to 3-15.6-487 
aliases 1·3 17. 2·432 
alphabets 5·255 

listin8 5·271 
selectin8 5-269. 5·272 

AOF 6-347 
area attributes 6-353 
area name 6-353 
area size 6-355 
entry address areal entry address 

offset 6· 35 3 
format ofthe areas chunk 6-355 
format of the symbol table chunk 6-358 
format of type I relocation directives 6·357 
format of type 2 relocation directives 6· 358 
header chunkformat 6-351 
Identification chunk (OBUDFN) 6·'361 
internal relocation directives 6-356 
number of areas 6-352 
number of relocations 6· 355 
obsolete features 6-362 
overall structure 6-348 

lndices-37 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 
( 



( 

( 

( 

( 

( 

( 

·~._ 

( 

\ 

( 

~ 

( 

\ 

( 

( 

..... 

Index by subject 

;.:«~>'.«<~-~·~:-:·:·:·:·:·:=:-::::::::::::»X>:.:·X·:·:·:·:·:·:·:::::.;:;:;::::::w..m-~:-:·:·:·:·:·::::::::::::::::;,;::.;-:.:-:-»»:-:-:-:·:·:·:::::::::::::::::::::;.;.;.x.:-»:.:·:-:-:·:~::::::::::::::~.««%:;.;.:.:~:::::::::::::::::::::::::-:::.x-:"AlJ>'..OV .. :·:·: 

relocation directives 6·356 
string table chunk (OBI_STRT) 6-361 
symbol table 6-352 

AOF and ALF flies 
chunk names 6-350 
structure 6-348 

APCS 6· 329 to 6-346 
argument passing 6·333 to 6-334 
bindings 6-338 to6-342 
control arrival 6-333 to6-334 
control return 6-334 
design criteria 6-330 
examples 6·342 to 6-346 
purpo5e 6-329 to 6-330 
stack badtt~ 6-335 to 6-'J38 

application 
access of workspace I· 339 
memory areas I· 338 

applic<~tion image fonnat s• AIF 
applications 

del inking from vectors 1-373 
exiting 1-310, 1·316 
rellnking to vectors 1-375 
starting 1·287. 3-78 to 3-79 

arithmetic functions 6-184 
ARM 1·7 
Arm Object Format s• AOF 
ARM Procedure Call Standard 6-190 
ARM Procedure Call Standard su APCS 
!ArmBoot 3-170 
arrays 

lifetime 1-340 
ASD 6-376 

AREAs 
items 6-376 

data items 
Array 6-383 
Endproc 6-381 
Fileinfo 6-384 
order of 6-376 
Procedure 6-381 
Section 6-379 
Set 6-384 

jndlces-38 

source file posiiion 6-378 
Struct 6-383 
Subrange 6-384 
Type 6-382 
Variable 6-382 

data types 6-377 
sourcepos field 6-378 

ASN 6-169 
assembler 

arithmetic and logical 
Instructions 6·305 to??. 
6-305 to 6-307 

branching instructions 6-308 
condition codes 6-303 
format of language 

statements 6-301 to6-302 
implementing passes 6-299 
memory pointers 6-298 
multiple load/save Instructions 6-311 to?? 
multiply instructions 6-308 
OPTdirective 6-300 
registers available 6-302 to?? 
reserving memory for machine code 6-297 
single register load/save 

instructions 6-309 to6-311 
SWI instructions 6-314 
using BASIC variables 6-297 

atexit() I· 340 
ATN 6-169 
attributes- see access 
auto-repeat- see keyboard (auto-repeat) 2-423 

8 
base/limit pairs 6-361 
BASIC 

routine to search for lost memory 
blocks 1-334 

BASIC assembler 
see assembler 6-297 

baud rate- see serial port (baud rate) 3-454 
beat counter- see sound (tempo) 

Index by subj(ld 

~:=:-:-:-:::=:=:-::::::::::::::::::::~::.:.-:.m.~-=·=·=·=·:::.:=:=:=:=:=:=:~:-w .. ::-.. :-'X:=:>:=>:.:::::~~~~~x;:.~~.::~..:·:«~ 

beep· see sound (bell) 5-384 
binary operatlon.s 6-168 
bins (linked lists) 1·336 
!Boot 3-141. 3-145, 'J-170 
boot file- see files (boot) 
bounding box 4·1 0 I 
Break key 2-340,2-347, 2·386. 2·409, 3· 141, 

3-145 
breakpoints 

generating 1·298 
handler 1·283 
listing 6-138 
removing 6-137 
resuming execution after 6-140 
setting 6-I'J9 

buffering of inpuVoutput 6-249 
buffers H53to 1-165. ?? to 1-165, 2·338 
byte 

c 
c 

definition 6-347 
sex 6-347 

storage manager 1·335 
C library kernel 6-184 to??, 6-186 to 6-192 

Interfacing to 6-188 to 6-190 
C storage manager I· 335 
CallBack 1·311. 1·314 
Ca.ps Lodt key 2-424, 2-426 
chaining memory blods 1-336 
character sets 6-492 to?? 
characters 

default definitions 2·141, 2·143 
defining 5·5 
delete 2·127 
input 2·337 to 2-428 
paint scaled 2-305 
read character at cursor position 2-157 
read definition 2·183 
tedefini ng 2-116 
size/spacinll 2·111 

testing and mapping 6-221.6-238 
check words 

usinll RMA 1-333 
chunk file 

chunkld 6-349 
format 6· 348 
header entries 6-349 
layout 6-349 
library file fonnat 6-348 
object flle format 6-348 
offset 6-349 

CLI 2-4 35 to 2-4 'J9 
Invoking shell from Wimp 4-376 

CLISPI'ompt 1·320 
clodt • see tl me I· 'J91 
CMF 6-169 
CMFE 6-169 
CMOS RAM 1·331 

allocation I· 346 to ?? 
reading 1-353 
writing 1·355 

CNF 6-169 
CNFE 6-169 
codeend 6-188 
codestart 6-188 
cofour systems 

colour number 4-385 
CCOL 4-38',; 

colours 2-43 to 2-44. 2-49 
border 2-43 
changing 5-48 to 5-49 
converting formats 4·387 
default 2-83 
flndlng 4·382. 4·386. 4·410 
flashing 2•99. 2·100. 2-136, 2·138. 

2-165 to 2-168 
graphics 2·77 
Inverse video 2-109 
logical 2-43, 5-3 
matchlnll 4-410 
physical 2-43 
reading 4-396. 4-'J99 to4-402. 

4-405 to 4-407 

lndices-39 



Index by subjflct 

::.~:wm.~:x:.::::::::::m;.:;:~::::::.:=~:~::~<·x:::::::::::::::::::::~».::::::::::::::=:-:::::.:::.:·:·:·:;:::::::::::::::::.::::::::::::::::::::::::~::~;:::::;.:::.:::=:·:=::: :::·:::::::::::::::::::::::;::>h::~*::::;::::;w::-;::;;::::::::::::::x:::.;::: 

see also ECF. palette 2-49 
selecting 5-10 
setting 4·183. 4·387, 4· 397. 4-403 
setting ranges 4-412 
text 2·76 
tints 2·44. 2·51, 2·107 
trans latina 4-408 to 4·409 

command line 
read address of 1·291 

Command Line mode 
accessina 2-4 39 

command scripts 
creatlna 6-286 
runnlna 6-286, 6-288 
uslna parameters 6-288 

command strina 
setting 1·309 

common area symbols 6-362 
conditional execution 1-471 
configuration 

readina values 1·390 
connection 

see also TIP (connection) 6-4 32 
conversions 1-429 to?? 

araument decodlna 1-453 to 1-456 
Econet file server time and date 3-343 
Econet numbers tostrinas 1-461. 1-463 
expression evaluation 1-445, 1-470 
CS string operations 1-430 to 1·432, 1-438, 

1-440, 1-442 
numbers to file size strinas 1-465, 1-467 
numbers to strings 1-430. 1-444, 

1-457 to 1-460 
parameter substitution 1-434, 1·451 
strlnas to numbers 1-430. 1-436 
SWI names to numbers 1-449 
SWI numbers to names 1-447 

CopySOptions 3-147. 3·150 
cos 6-169 
CRC 2·451 
CSD 3-120. 3·166. 3· 183. 3·362. 1·365 
ctype.h 6-238 to6·239 
Currently Selected Directory· see CSD 

lndices-40 

cursor keys 2·161 . 2-405 
cu rsors 2·54 

0 

appearance 2-91 . 2-92 
home 2· 125 
linkina 2-64 
movement 2-67 to 2·70. 2· 105, 2·126 
read position 2·155, 2·164, 2·189 
remove 2· 220 
restore 2· 222 
splittina 2-63 

date· see time 1·391 
DDT 

debug data items ur ASD data items 
debu&aina AJ F imaaes 6-368 

debuaaer 
·commands 6-134 
dlsassemblina instructions 6-135 
enterin& 6-141 

debuaglng 
format or symbolic data 6-376 

DeskFS 3· 399 to 3-400 
Desktop 

closlna a directory display 3-474 
Initialise ROM-resident utilities 4·331 
open ina a directory display 3·475 
selectlna 3· 170 

device d rivers see system devices 3-17 
dialoaue boxes 4·107 
directory 3· 11 

attributes 1-101 
boot action H 70 
cataloaue 3-82 
copylna 3-103. 3-147 to 3-149 
creatina 3-35. 3-139 
deletlna 3-105, 3-153.3-185 
examining 3·83, 3-86 
listina 3-109. 3·156. 3·157 
namlna 1· 10 to 3·12 
number of entries 3-294 

Index by subj!JCI 
.;:::: ::::::::::::;::::::..;.:::;.::;;::~:~@;;:;;;::::::.;.::.:~::::::::::::~::::::::::~«Y>..x·~~=·=·=·:·:·:·:·:·:·:-:::-:::::::::::::::::=-:::::::::::~~.;::::·:·P"n:·:·:·:·::::;;: :::::::::::::::::.~o:-:.:·:·:-:«-;:::;;.;o;.:m:-:.:·:·:·:· :=:=:·:·:·:~::>:·:=:.-:-:-: 

read ina 3-62. 1-64 to 3-67 
renamina 3· 102. 3· 173 
root 3-11 
selectina 3·11. 3-76. 3- 117. 3- 136. 3-154, 

3- 183, 3-362. 3-365 
slze-ef- 3·150 
title 3-249 

disc 
checkina ~250 
copying 3·235 
defects 3-241 
dismountina 3-100 
formats 1·189. 3-294. 3-312 
formattina 1· 294 
free space 3·218. 3-245. 3·246. 3·357 
map 3·237. 3-246 
namina 3·248 
verifying 1· 250 

disc drive 
how many 3·289 
parking heads 3-178, 3·236, 3·243 
selectina 3·288 
step rate 3-292 

display· see monitor. screen 2·237 
Draw module 

data structures 5-116 to 5-120 
floatina point s upport 5·115 
printerdrlvers 5·121 
prinlina 5·115 
scallna 5·120 
seal ina systems 5· 113 
stroking and filll na 5-115 
SWI calls 5· 123 to 5·135 
terminoloay 5· 112 to 5·113 
transformation matrix 5·114 
winding rules 5, 114 

drive· see d isc drive 
DVF 6-168 

E 
ECF 2-44. 2·52 to 2·54, 2-93 

default 2·101 
examples 2·243 to 2·245 
native/BBC 2·108 
orialn 2-110. 2·226 
simple 2·1 03 

Eoonel __ _ 

abandonina RxCBs 6-37 
abandonlna TxCBs 6-44. 6-45. 6-63 
allocating port numbers 6-58 
broadcast transmissions 6-17 to 6-18 
claiming port numbers 6-«l 
creatina RxCBs 6-32 
creating TxCBs 6-41,6-45.6-61 to 6-64 
deallocating port numbers 6-59 
error handlina 6-8 to6-IO. 6-49 
events 6-14 to6-17 
naa bytes 6-11 
Immediate operations 6-18 to 6-26 
P,aCkets and frames 6-3 
poll ina for RxCBs 6-38 
poll ina for TxCBs 6-45. 6-63 
port bytes 6-11 to 6-14 
printina 'Acorn Econet' banner 6-56 
protection aaalnst Immediate 

operations 6-26 
readina current protection word 6-51 
reading station and networt. 

numbers 6-27 to 6·29, 
6-47 to 6-50. 6-55 

read ina status or RxCBs 6-34 
readingstatusofTxCBs 6-43. 6-45. 6-63 
receiving data 6-3to 6-5 
receiving data Information 6-35 
releasing port numbers 6-57 
return handles of open RxCBs 6-40 
settlna current protection word 6-53 
transmittina data 6-6 to 6-8 
transmittina TxCBs 6-41 
uslna events from the Wimp 6-15 

EOOM 6-239 
emulator flaas see TIP (data structures) 6-418 
entry vector 6·360 
ERANCE 6-239 

lndices-41 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 



( 

( 

( 

! 

( 

( 

( 

r 

(' 

( 

( 

( 

( 

( 

( 

"" 

Index by subject 

v-.....w.:-:«-7n:;.:;.:.:-:-:.y;~ .. x-:.:-:::::::::::::::~=:=wn.·:·:·:·:-:::::~:::::::x-~-:-:-:-:·:·:·:·:::;:::::::::::::::.:=:=w:..-...:o:->:·:·:·:=:::.:·:·:·:·:·:·:;:<«~·=·=·:-:::.:=:-:=~:«·:.:·:-:-:.;-:=:.;;:.w~»~-:=:·:·=< 

errno.h 6-239 
error 

domain 6-239 
operating system 6-187 
range 6·239 

e rror handler 1· 283 
error handling 6-195 
errors 

error blocks 1-38 
error numbers 1-38 to 1·39 
generating and handling 1·37 to 1-43. 3·38 

escape character 2-396 
escape conditions 

acknowledging 2·374 
clearIng 2· 372 
detecting 2-419 
effects 2-403 
setting 2·373 

escape handler 1-284 
Escape key 2-340. 2· 386. 2-40 I 
escape mechanism 2-348 
ESIGNUM 6-239 
event handling 6-190 
EventProc 6-190 
events 1·1Hto 1·150. 2·342 

handler 1·284 
eJtiting applications 1-293 
EXP 6-169 
expansion cards 

calling a loader 6· 115 
chunl:.d irectorystructu re 6-97 
CMOS RAM 6-102 
code space 6-99 
copying ROM 6-129 
EC!d 6-89 
eJtample program 6-1 JO 
identity 6-89 to 6-93 
identity space 6-91 
interrupts 6-95 to 6-96 
loaders 6·99 to 6-102 
podules 6-103 
RAM area 6-127 
reading a card's header 6-109 

lndices-42 

reading a card's identity 6-108 
reading a chunk 6-112 
read ing bytes from code space 6-113 
reading bytes within address space 6-117 
reading chunk Information 6-110 
returning a card's base address 6·120. 

6-124.6-126 
ROM Images 6-99 
writing bytes to code space 6-114 
writing bytes within address space 6-118 

expressions ·see conversions (expression 
evai4Jation) l-445 

F 
FastEventProc 6-190 
FDV 6- 168 
FlLE 6-245 
file 

creation 6-246 
deletion 6-246 
opening 6-248 to 6-249 
position Indicators 6-257 to 6-258 
renaming 6-246 

file buffers 
allocation I· 338 

file formats 
AIF 6-368 to 6-375 
AI.F 6-364 to6-367 
AOF 6-351 to6-363 
Draw 6-391 to6-400 
font 6-404to 6-417 
layering 6·348 
music 6-420 to 6-424 
template 6-389 

file servers 
free s pace 3· 357 
listing 3-360 
logging off 3-100 
selecting 3-355, 3·358 

FileSPath 3·16 to 3·17. 3·165 
FileSType_)(X.X 3·176. 6-487 

Index by subject 
~;;=:;;;;.;;;:;:;:;:;:;:;:;:5$:~:.:-:•:·:!$;:;:;:;:;:;:;.;:;.:.~;.;.;.;:;:;:;:;:;:;:;:;:~~=-:;::;:;:;:;:;:;::~~:::~:5;~:;:::;:;:;~:;:~:.:-::::::;:;:;:;:;:::;::::;~~;:::~::::::;:;:;;; 

FileCore 3-4 to??. 3·187 to 3·234 
create floppy structure image 3·219 
create instantiation ?? to 3·234. 4-63 to ??. 

4· 71 to?? 
create new Ins tantiation 3· 215 
describe disc 3·221 
perform disc operation 3-210 
read drive information 3·217 
read free space 3-218 

filename generation 6-247 
files 

adding data 1·1 J5 
attributes 3·12 to 3-13. 3·27 to 3-28, 

1-30 to 3·32. ??to 3-40,3-67,3-101 
boot 2-454. 3·25. 3·141. 3· 145. 1·158. 3·170 
boot action 3·170 
catalogue 3-30 to 3-32. n to 3-40 
dosing 3-68 to 3-70.3-99. 3·100, 3-140. 

3· 177. 1·178. 3·236. 3-243,3-354 
copying 3· 103. 3·147 to 3·149 
counting 3-105 
creating 3·34. 3-152. 3-179 
dating 3·181 
deleting 3·13. 3·105. 3· 153, 3-173, 3· 185 
dis playing 3·163. 3-164, 3·171. 3-181 
dumping J-155 
end-of·file 3-49 
ensuring 3·55 
entering data 1·137 
examining 3-86 
execing 2·341. 2-384. 6-290 
extent 3-46. 1-4 7 
handle 3·53 to 3·54 
hexadecimal dump 3· 155 
Information 3-157 
length 3-64, 3-67 
library· see library 
listing 3·109 
loading 3·13 to 3-15.3-27 to 3·28, 

3-36 to 'H7. 3-165 
moving 3·148. 3·173 
naming J.l 0 to 3-12 
object 3·10 

opening 3-68, 3-71 to 'J-72 
overwriting 3-104 
readilltl 3-56, 3-59 to 3-62 
renaming 1-102,3-104, 3· 173 
reserving space 3·152 
running 1·315. 1-471, 3· 13 to 3-15, 

3-80 to 3-81. 3·158 
saving 3-27 to 3-28. 3-29 
saving RAM H 75 
sequential pointer 3-44. 3·45 
setting message level 3· 169 
size allocated 3-47. 3-50 
size of 3-150 
spooling H. 2· 10to2· 11, 2·25. 3· 179. 

3· 180 
time stamp 3-14 
type H'Jto 3-15, 3-80. 3-95. 3-108. 

~7to6-490 

types 5-5 
writing 3·58. 3·59 to 3-61 

filing systems 
adding 3-4.3-9. H\9, 3·111. 4-1 to 4·55 
adding a secondary module 1·94 
addil18 FileCore instantiation 3·215. 

n to 3-234. 4-63 to??, 4-7 1 to?? 
bootilltl from 3-92 
chedilltl for presen<:e 3-90 
Internal file handle 3-98 
name 3-110 
number 1-110 
options 3-87 
readif18lnformatlon 3-62, 3-63 
re-entrancy 3·18 
removl ng 3-91. 3-112 
selectilltl 3-1. 3-12. 3-144. 3-285. 3·304. 

H63. 3-397. 3-400 
selection 3-91 
shutting d()'f(ll 3-100 
temporary 3-44, HIS, 3·96. 3-97 

F'lnaliseProc 6-189 
AX 6-167 
nex 1·335 

advantages 1·335 

lndlces-43 



lndflx by svbjfK:t 

·:::::::r.:;:;:'V»~·:·:·:·:.;·:=:·:·:=:=:=:=:=: =:=:::::::-"m:::~.~t>;t:;:·:·: ·=·=·:=:·:=:=:=:=:=:=:=:=:=:=:=:=:=:=::::::::sw:::~~:;:;.o;:::::::.-:::::::::=:~~-~mx::::::::;%::::: :::::::::::::::::::::::::x:::=:=::~.;.~ .. :-:-:·:-::::::: =:=:=:=:=:~::~::::::::::: 

description 1·338 
limitations 1-338 
shiftin& heaps 1-138 

float.h 6-240 
floating point 

instruction set 6-165,6-187 
literals 6-165 

floating point module 
version number 6-171 

floating-point 
registers 6-332 

FLT 6-167 
FML 6-168 
font cache 

deletin& or recachelng 
information 5-64 to 5-65 

read amount used 5-14 
read size 5-14 
set maximum size 5-89 
set site 5-9 

Font manager 
defining text cursor 5·31 
measurement system 5-2 
measurement systems 5-5 to 5-6 

fonts 
cacheing 5·3 
calculate strin& width 5·22 to 5-23 
changing 5-48 to 5-49 
defining 5-50 to 5·51 
defining size 5·5 
discoverina font characteristics s-38 
d isplaying 5-11, 5-24 to 5-30, 5-79 to ?? 
files 5-6 to 5-7 
finding caret in string 5·39 
finding carets in a string 5-57 
finishing 5-18 
l isting 5-45, 5-52 to 5-55 
makina a bitmap file 5.()2 to 5-63 
measuring 5-4, 5-33 to 5-34, S-43 to 5-44, 

5-59 
read bounding box 5-21 
read details 5-19 
read FontMax values 5.()8 

lndices-44 

read handle 5·1 5 
reading anti-alias colour table 5.()1 
reading bound in& box 5-41 
readin& directory prefix 5-69 
reading font handle and colours 5-36 
referendna by name 5-2, 5-7 to 5-9 
select! ng 5-35 
set FontMax values 5.()6 
set height and width 5-91 to ??. 5·91 to?? 
set space for font rnanaaer 5- 101 

format of area headers 6-353 
fpos_t 6-245 
fraarnentation 1-337 

of malloc heap 1-338 
F'RD 6-168 
ftp 6-439 
function 

call. bypa.ssin& 6-221 to ??. 6-243 
function keys 2-366, 2-392, 2-427 

G 
GCOLS 

setting up a list 4-394 
graphics 

changed box 2-228 
cursor 2-42 
dot-dash line style 2·94 
origin 2·58, 2- 124 
read pixel colour 2-181. 2·215 
windows 2-75, 2-117, 2· 121 

guard constant. in memory blocks 1· 335 

H 
half word 

defini tion 6-347 
handlers 1-277, 1·282 to 1· 288 

break point 1-283, 1·299 
CallBack 1-285, 1-297, 1-301 
default 1·313 

Index by svb/8Cf 
~:.:· :·:·:·:·:=:= :::::::::::::::::::::::>-~~~:.: ·:·:·:·:=:-:-:·:=:·:· :::::::::::::::=:-~ .. :{:;.;. ::::::::.:::::w:m~:=: .... ~:::::;::::::::x-x::::::::::~~:=:·:·:·:-:<-»>·:-=:;~:·=·~-=·=·=·: =:·:·:·:·:·:·: ·:·:=:-:·:·:.:..:«·:.»»:·:·:· 

error 1-283 
escape 1-284 
event 1·284 
exit 1-284 
Installing 1-307 
readlwri te addresses I· 289 
setting up 1-295 
unused SWI 1· 285, 1·300 
UpCall 1-285 

heap 
coalesdn& 1· 336 

heap allocation 6-194 
heaps 

daiming blocks 1·360 
describin& 1·359 
enlarging system heap 1-389 
extendina 1-365 
extending blocks I· 364 
freeing blocks I· 362 
heap manager I· 330, I· 340 
initialising 1· 358 
internal format 1·341 
reading size of blocks I· 366 

Hourglass 

LQ 

controlling display indicators 6-81 
controlling the display 6-83 
displaying a percentage 6-79 
turnin& it off 6-76 to 6-77 
turning it on 6-74, 6-78 

functions ?? to 6-259 
Icon data 4-102 
Icon flags 4·101 to 4· 102 
Icon sprites 4- 104 
Icons 

Ad just Size 4-97 
Back 4-95 
Close 4·95 
creating 4· 166to4-176 

deletin& 4-179 
plotting 4-251 
readin& state 4· 208 
selectina 4-228 
setting state 4-206 
Toggle Size 4-96 

IIC 2-453 
lnitProc 6-189 
Input 6-254. 6-255, 6-256 

functions 6-252 to 6-253 
interlace- see monitor (i nterlace) 2-240 
International module 5-253 to 5-275 

alphabet 5-255 
country 5-256 
country names and numbers 5-254 
keyboard 5-255 
read count ry number 5-268 
read/write alphabet or keyboard 5- 266 
read/write country number 5-265 
selecting an alphabet 5·269 

interrupts 1-109to 1- 135 
devicevectors l·IIOto 1-121 
disabling 1· 124 to 1-131 
FlO devices 1-121 to 1-124 
hardware addresses 1· 132 to 1-135 

IOC 1-7, H5to 1·16 
registers 1-133 

IROstate 
manipulating 6-184, 6-187 

K 
kbd: 3-461 
kernel 1·3 
KeyS ... 2-427 
keyboard 2·338 to 2-341. 2-342 to 2-349 

auto-repeat delay 2·363, 2-381 
auto-repeat rate 2·364. 2·382, 2-425 
buffer codes 2-398 
handlers 2-421 
internal key numbers 2·349 to 2-355 
LEOs 2-367 

lndices-45 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

c 
( 

( 

( 

( 

( 



( 

( 

( 

( 

( 
\ 

( 

( 

r 

f' 
\ 

r 

( 

( 

( 

( 

( 

( 

lnd6x by subj«;t 
;:;:;:;:::~&«W.<·:•:•:•:t.W/.:::;:;:;:;:;:;:;:;:;:;~~::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;;t;.:·:t: ·:·:·:·:·:·:·:·::;:;:;:;:::::::::;:;:;:;:::;::;::;:·:«'~.;.;.;;::.::::~;:.;:;:;:;.;:::::::::;:;.;.; .. ~.,.(.:-;;;:;@;:;:;:;::W.~"* 

L 

numeric keypad 2-407, 2·413 
read characters 2·357 
reading a line 2-417 
scanning 2·169. 2· 17 I. 2· 376 
selecting 5·212. 5-274. 5-275 
status 2· 390 

language 
selecting 2-454 

language libraries 
rec~ring memory 1-332 

language processors- output fonnat 6·347 
LDF 6-165 
LDFD 6-165 
LDFS 6-165 
leafname 3·10 
LFM 6-166 
LCN 6-169 
LIB_ 

name of ALF files 6-350 
LIB_DATA 6·366 
LIB_DIRY 6-364 
LIB_VSRN 6-366 
library 

catalogue 3-84 
current 3-163 
examining 3·85 
listing 3-162 
selecting 3-77. 3-161, 1·162. 3-365 

lifetimes 
static variables and arrays I· 340 

linker pre-defined symbols 6-361 
little end ian 6-347 
locale.h 6-240 
LOG 6-169 
logical colour· see colours (Ioeical) 2-4 3 
logical links see TIP (logical links) 6-4 31 

lndices-46 

M 
machine code 

running 1·315 
malloc 1·335 

deallocation of blocks I· 337 
use when designing programs 1·333 

malice heap 1·335 
math.h 6-241 to 6-242 
mathematical functions 6-221 to ??. 

6-241 to 6-242. 6-265 
MEMC 1·7. 1· 16to 1-20. I-HI 

updating control register 1·356 
memory 

alignment 1·335 
allocation InC 1·334 
allocation of block sizes 1·315 
allocation of file buffers 1-118 
a llocation with flex and malice 1·335 
avoiding pennanent loss 1·133 
avoiding references to deallocated 

blocks 1·333 
avoiding wastage 1·334 
BASIC routine to search for lost 

blocks 1-334 
coalescing blocks 1-316 
disassembling 6-147 
displaying and altering 6-145 
displaying values in 6-143 
effident use I· 332 
fragmentation 1-337 
initialising 6-142 
malice allocation 1·335 
protection 1-344 
reading memory limit 1·291 
reading number of pages 1·376 
reading pa(le size 1-376 
screen 1-145 
splitting blocks 1·136 

memory allocation 1-189 
controlling 1-344, 1-167 
example 1·343 
reading I· 381 

Index by subjiiCt 
~~~:::::::;:::::::::::::::=::::::::::::::::::::.;~:=:::::::::::::::::::::~::::::;;o..~;;:.::>.~~~'X:'"-:::::;;::::$::::-~::::::::::::::::::::::::::::::::::::::::::::x:;:~ 

memory allocation functions 6·262
memory management 1·329 to??, 1·332,

??to 1-390,6-187
memory map 1·16to??. 1-19. ??to 1-19

altering 1·344, 1·345, 1·367
changemapplng 1·379
Initialisation 1·343
logical address space 1·342
read mapping 1·377, 1·379. 1-383
validating addresses 1·369

Menu_Selection 6-454
menus

pop-up 4-105 to 4-106
MenuSelection 6-455
MenuWaming 6-454
Message_MenuWarning 6-447
MNF 6-169
module instantiations

creating 1-234
preferring I· 236
renaming 1·235

modules 1·1. 1·191 to 1·276
checking for presence 1·263
command table 1·207 to 1·210
compacting memory 1·228
creating 1·230, 1·231
deletini 1·203. 1·224, 1·229. 1·267
disabling 1·275
enumerating 1·239. 1·241
expansion cards 1·237
extending memory 1·233
faster running 1·264
freeing memory 1·227
header format 1-198
help string 1·206
Initialising 1·201, 1·268 to 1·272
instantiations 1-192
international 5·253 to 5-275
listing 1-260. 1· 273
loading 1-221. 1·268. 1·211
OS_Module summary 1-197
reading command parameters 2-433
readinglnfonnation 1·232. 1·238

reinitialising 1·223. 1·269
tese!VIng memory 1·226
returning errors 1-198
runnlni 1·200. 1·220, 1· 222. 1·271
SWI chunk base 1·210
SWI decoding code 1·214
SWI decoding table 1·213
SWI handler 1·210 to 1·213
title string 1-206
workspace pointer 1-198
wrltlngthem 1·193

modules see TIP (protocol modules) and
relocatable modules 6-432

monitor
alignment 2·158, 2·240. 2·242
Interlace 2-45. 2-91. 2·158. 2·240. 2·242
selecting 2·232

mouse 2-44, 2·55
buttons n to 4-90
Ioggins movement 4·146
read bounding box 2·191
read position 2-207
read unbuffered position 2·199
set multipliers 2·195
set position 2·197
setting up 2·234

MUF' 6-168
multlbyte character

functions 6-265 to6-267
multi byte string functions 6-267
MVF' 6-169

N
NameProc 6-190
NetFS 3-323to 3-366

commands J.J80to??, 3-380to3·383
convert file server time and date 3·343
do file sef'ler operation 3·317. 1·345
enumerate all file sef'lers 3·341
enumerate file servers logged on to 3· 339
file server names 3· 325

lndices-47

lrnt.x by subject

:::::::::::::::::::::::::::::::::::::::-~·~:•:=:=:~;:«·:=::~::::::::::::::::x:::::::::::::::-:,~ .. ~~.;.:.."-1:-:;:~·':·:·:·:·:·:-:::.:-:=:-:: :::::::::::::::::::::=5::::.::::::::::::;:::;~:=:=:=:·:·:·:-«=:·:=:·:·:=: ·:·:·:-:.:·:·:=x=:·:·:= :::::::::::::::=::::-:.::-s::~::;;:·:·:·:·:·:=: ::::::::::::

IQ8ging off 3·178. H54
IQ8ging on 3-359, 3-361
read file server name 3-331
read file server number 3-329
read timeouts 3-335
select file server by name 3-332
select file server by number 3· 330
set timeouts 3-336
timeouts 3·325

NetPrint 3-367 to 3·383
read printer server name 3·372
read printer server number 3·370
read timeouts 3-374
select printer server 3-368, 3-380 to??,

3·380 to 3-383
select printer server by name 3-373
select printer server by number 3-371
settimeouts 3·375
timeouts 3·369

new-style libraries uc ALF
null: 3-461 to 3-462

0
Obey files- see command scripts 6-288
ObeySDir 6-286to6-287
OBL

name of AOF files 6-350
OBI_ AREA

areas chunk 6-355
OBUDFN 6-361
OBLSTRT 6-361
obJect file

format 6-351
chunk names 6-351

type 6-352
OFL_SYMT 6-366. 6-367
OFL_TIME 6-367
old-style libraries s. ALF
operating system interface 6-264
OS units 5-2. 5-5
OS_Byte I...C5 to 1·53

lndices-48

OS_ServkeCall 6-438
OS_ Word 1·55 to 1·57
output 6-254, 6-255, 6-256

function.s 6-249to6-251, 6-253

p
page mode 2·57. 2-175

disabling 2· 74
enabling 2-73

palette 2-4 3. 2-52
changing 4-413
reading 2·185, 2·209
setting 2·79to 2-82. 2·187. 4·337

path names
definition 3-10

paths 3·16toH7
see also FlleSPath. RunSPath 3-16

permission ·see access
physical colour· see colours (physical) 2-43
plotting 2-58. 2-118 to 2·120. 2·225
pointer 2-44, 2·55

changing the shape of 4·114 to 4·118
displaying or hiding 4·335
read position 2·203
select 2·145
set position 2·201
set shape 2·191. 2·291
unlink 2·145

POL 6·168
poll words see TIP (poll words) 6-434
POW 6-168
power on 3·141 , 3-145
printer 2·58

3-463
ignore character 2-9. 2·22. 2·29, 2·38
port used 2·20. 2·27, 2·37
printing characters 2·33

printer drivers 5-121
checking features of printer 5-188
configurtna 5·186

Index by subject

:;:::.:-:::::::::::.:::::::=~~h-:=:=:=:o:~:::.m:=:·:·:· :-:·:·:·:;:::: ::::::::::::.:.:::::::::::::::::~:;~$::::::::::::;;:::;:::~:;~:=:· :·:·:·:;:: :=:=:=:=:=:=:-:::::::::::::~====-===~:·:·»!·~.:.;.::: =:·:·:·:-:::::::::::::::: :::::::;:~;=««·:·:·:·:.-..:«««<.;.

controlling print jobs 5·151. 5·193to 5-195.
5·197 to 5·200. 5·208. 5-210,
5·212 to5·216, ??to5-218,
?? to 5·220.?? to 5-221. ?? to 5·222.
?? to 5-223. ?? to 5-227. ?? to 5-228

error handling 5·171to5-174
font manager SWis 5-170
measurement systems 5-142
options 5-211
printer information 5·150. 5·181to 5·185
printing pages 5· 151. 5-189to 5·192,

5·201 to 5·207
private SWis 5-152
screen dumps 5·209
screen SWls 5-152 to 5-170. ?? to 5-170
starting printjobs 5·150to5-151

printer stream 2·3. 2-6to 2-9
diagram 2-8
disabling 2-62
enabling 2-61

processor modes 1-10. 6·303
prQ8ram design

for efficient use of memory I· 332
prQ8ram termination functions 6-263
prQ8rams. calling from C 6-193to6-194
protocol Oags see TIP (data structures) 6-439
protocol information block see TIP (data

structures) 6-433
protocol modules see TIP (protocol

modules) 6-431
Protocoi_AbortTansfer 6-433
Protocol_AbortTtansfer 6-433, 6-436. 6-465
Protocol_Brealt 6-432. 6-459to 6-460
Protocoi_CioseConnection 6-432. 6...C35. 6-447,

6-449, 6-451, 6-453,6-457. 6...C59. 6-462.
6-464. 6-468. 6-4 72

Protocoi_CioseLoglcaiLink 6-432. 6·435. 6-444
Protocoi_DataRequest 6·433. 6-435,6-446,

6-448. 6-451. 6-452to 6-453.6-458,
6-460

Protocoi_DirOp 6-413.6-06.6-446.
6-471 to 6-472

Protocoi_GetFIIe 6-433. 6-436. 6-466, 6-470

Protocol_ CetFI leData 6-4 33. 6-4 35. 6-446, 6-4 66.
6-46 7 to 6-468

Protocoi_CetFIIelnfo 6-433. 6-435. 6-446. 6-466
Protocoi_CetUnkState 6-432. 6-434. 6-448,

6-457to 6-458
Protocoi_CetProtocoiMenu 6-432. 6-436. 6-445
Protocoi_MenuHelp 6-469
Protocoi_MenultemSelected 6-432. 6-436.

6-454 to 6-455
Protocoi_OpenConnectlon 6-432. b-4 34. 6-443.

6-446 to 6-448
Protocoi_OpenLoglcaiLink 6-432. 6-4 34.

6-442 to 6-443. 6-456
Protocoi_SendFIIe 6-43'J. 6-435. 6-461to6-462
Protocoi_SendFileData 6-433. 6-435.6-446.

6-462, 6-463 to 6-464
Protocoi_TtansmitData 6-433. b-435.

6-450 to 6-451
ProtQCOI_UnknownEvent 6·432. 6-436, 6-456
protocols

Acorn Terminal Interface see TIP 6·431

R
RA.M 1-7

saving to file 3-175
RA.MFS 3-297 to 3· 304

desatbe disc 3-302
perform disc operation 3·299
read drive infonnatlon 3·300
read free space 3-30 I
reading size 1·372
settlngsize 1·303

random number generating
functions 6-261 to 6-262

rawkbd: 3-461
rawvdu: 3-461
RDF 6-168
redirection 2-431. 3-461to 3-463
register names 6-331 to 6-332
registers 1-1 I

displaying contents 6-149

lndices-49

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

c
(

(

(

[

(

(

(

(

(

(

(

(

(

!C
l

Index by subjiiCI

&.-:~::::.~1-:-:·:·:-»»>"N~:-::;.;:;~;:;.;-~x;:.:-:-:-::;:;.;:;:;:;.;:-/.«0:>:.X·:·:·:·:::~;:;:;:;:;:;:y~;.:;:;;.;;;.;-:-:~:-:-:::-:..~~-:-:·:·:·:·:·:=::;:;:~ .. :.:·:·:·:·::;.;:;:;:;;;;;;x:~~

R 13 (stad pointer) 1· 11
Rl4 (subroutine link) 1·12
Rl5 (proeram counter) H2

relocatable modules 6-432
memory usage 1·139

relocation
Additive and PCRelative 6-356

Reset switch 2·340, 2·147. 2·386. 2-411
RFC 6-167
RFS 6-167
RISC OS Application Image Format sa AIF
RISCOS

command types 6-193
RMA 1·191. 1·339

clearing blocks 1·340
deallocation I·'B3
describing 1·225
using for storage though SWI calls 1·333

RMF 6-168
RND 6-169
ROM 1·7
RPW 6-168
RSF 6-168
RunSPath 1·16to3·17, 1·174,6-287
RunSType 3-174

s
screen

bank switching 2·147, 2·149, 2·179, 2·180
ched mode valid 2·223
clear block of text 2-97
clearing 2· 71
loading from file 2·266
memory 1·145
mode 2-40. 2-85. ?? to 2·88.?? to 6-486
read mode 2·157
read size 2· 227
reserving memory 2·237
saving to file 2·265
set base address 2·205
shadow memory 2·49. 2·88. 2·151. 2· 241

Indices-50

writing characters 2·13. 2· 17. 2·35
writing strings 1-469, 2-15. 2·16, 2-30. 2-34

scroll bar
Horizontal 4·97
Vertical 4·96

scrolling 2·41. 2·95. 2·235. 2·238
search

for allocated memory blocks I·'H3
functions 6-263. 6-264

serial port 2·10 to??, 2·341. 2·349 to??.
3-419 to??, 3·420 to 3-423,
3-4<\0 to 3-451, ?? to 3-453

as input stream 2· 359, 2· 379
baud rate 3·454
control byte 3·427. 3·433
data format 3-426, 3-445. 3-456
ignore Input 3-436
input buffer minimum space 3·420. 3-434
input interpretation 3·430
read byte 3-449
readlwtite status 3-442
receive baud rate 3-424
RTS sta te 3-426
send break 3·447
transmit baud rate 1·426. 1·450. 3-452
transmit byte 3-448

service calls 1·194. 1·199. 1·204. 1·243to ??
claim F10 1-127
claim F10 in background H 28
Econet dying 5·409. 6·31
Econet restarted 6-30
errors 1·249
Filer dying 3-469. 4·145
International 5·257 to 5·264
keyboard handler 2·356
look up file type 1·257
memory moved I· 351
memory moving 1·350, 4·116
mode change 2·128
mode extension 2·1 31
mode translation 2· 113
NetFS 3-327
new application starting 1·256

Index by SubjiiCI
~-:::~-:-::;:;:;:;:;:;:;~:;.'AISIWIS(.;:;.;.;:;:;:;:;:;~:~·:<o:·::;:;:;:::::::§~;:;::::::::::::::~:.-:;;.;::::::::::::::rc.~:.::::z:.:::::::::::::~;t-,.v;.%;::;i-%:::::::.::.;~

pre-mode change 2·129
pre-reset 6-104
redeclare fillna systems 3-20
release FlO 1·126
reset 4·117
sound 5·349
summary 1·243
unknown OS_Bytes 1·250
unknown OS_ Words 1·251

Servlce_FlndProtocols 6-434, 6-438to6-439
Servlce_FlndProtocolsEnd 6-434, 6-440
Service_ProtocoiNameToNumber 6-414. 6-441
setJmp.h 6-243
setvbuf 1·338
SFM 6-166
signal handling ?? to 6-245
slgnal.h 6-243 to 6-245
SIN 6-169
sort functions 6-264
sorting 2-446 to 2-448
sound

accumulator-divider 5·396
adding a voice 5·360
amplitude modulation 5·397
attaching a named voice
attaching a voice 5·362
beep 5-384
bell 2·54. 2-66. 2·169to 2· 174
buffer fillina 5·147. 5·395
Channel Handler 5·336 to 5·337.

5-342 to5-144, 5-395
channel volume 5-398
channels 5·393
configuringthesound

system 5-338 to 5·142
configuring the system 5·350
disabling speakers 5·355
dlsabli ng the system 5· 352
DMAAddress Generator 5·338
DMA Handler 5·336, 5-338
enabling speakers 5-355
enabl ing the system 5·352
envelopes 5· 399

rree slots In the event queue 5· 375
generatlnaafter a delay 5·385
lnltlallslna the Schedule(s event

queue 5-371
Integer to loearithm conversion 5·358
linear to loearithmic conversion 5·199
loearithm scalina 5-359
makina an Immediate sound 5-363
osdllatorcodlna 5-396 to 5·397
overall volume 5-357. 5·397
pitch c:onverslon 5-365
playina notes 5-387
random bit gene~ator 5-399
readina from the Sound Channel Control

Block 5·369
removi na a voice 5· 361
sample procram 5-401 to 5-403
Scheduler 5· 337, 5·344
scheduling a sound SWI on the event

queue 5·372
setting the bar len(llh 5-378
setting the beat counter 5-378
settin(l the tempo 5·371
setting the tuning 5· 364
sound pointer 5-338
stereo position 5-353, 5· 390
tempo 5-391
tumlna onlotl' 5·381
vi bra to effects 5· 396
Voice Generator 5-337, 5·345to 5·346
voice Instantiation 5-348
voice libraries 5-395
voices 5·382. 5-384
volume 5·384. 5-394
wavetables 5-397
writlna to the Sound Channel Control

Block 5-370
s pecial fields 1· 12
sprites 2·247 to 2·335

appendlna 2·289
area format 2·258
copylna 2-279, 2-322
creating 2·274

Indices-51

lncklx by subjiK;t

;~~-:-:-:.:->·=· ···=· ::::::::~~..:-:::;;;:::::::::::::::::=:=:•:-"§:~~-~·=·=· :-:·:·:·:=:=:=:= :::::::::::::::=:~;=~~=·:·=·:·:·:·:·:·=·=·=·:::=:=:=:=:=:=:=:=:=~:;:-~~x:t..-;::»::.::.:;::::::::::::::::::::~n.::.:-:;:.:-:::::::-::~:~

creatins a mask 2·282
deletins 2·277. 2·125
deletins columns 2·300
deletins rows 2·285
format 2·258
settins from the screen 2-2n. 2·275, 2-328
initialisins 2·268
insertins columns 2·299
insertins rows 2·284
loadins 2·269. 2-m
memory allocation 2·328
merslns 2·270
mersin& into system sprite area 2·332,

<4 ·333
OS_SpriteOp summary 2·262
pixel translation 2-252
plot actions 2·252
plottins 2-280. 2·287
plot tins srey scaled 2-308
plottins mask 2-302. 2-303
plottin& mask scaled 2·304
plottins scaled 2·306
pointers 2·251
read name 2-272
read save area size 2-319
read sprite area info 2·267
readins info 2·294
readin& mask pixels 2-297
readin& pixels 2·295
reflectins about x axis 2· 286. 2·126
reflectinsaboutyaxis 2·301, 2·127
removins a mask 2·283
removins wastase 2·309
renamins 2·278. 2-334
reservins memory 2·320
save areas 2·253
savins 2·271. 2-335
scale factors 2-251
selectins 2·276. 2·321
setting translation table 4·392
sprite areas 2·248
switch ins output to mask 2· 317
switching output to sprite 2·315

Indices-52

writing mask pixels 2·298
writing pixels 2·296

SOT 6-169
stack

allocation 1·338
extension 1·335

stack extension 6-192
stad, run-time 6-185 to ??. 6-191 to6·192
stack· limit checkins 6-184
static variables

lifetime I· 340
stdio.h 6-245 to6-259
stdlib.h 6-259 to 6-267
STF 6-165
storase manasement 6- 194
storage manaser

description 1·336
stream

closins 6-247
flushing 6-247

string
definition 6-347

stri ns ru nct ions
appending 6-268
comparison 6-269
conversion 6·259 to 6-26 I
copyl ns 6-268
error message mappiniJ 6-272
length 6-270. 6·271. 6-272
locatins 6-270 to6-271
time 6-274 to 6-275
tokenlsins 6-271
transformation 6-270

strins.h 6-267 to 6-272
SUF 6-168
SVC mode 1·340
SWI 6·184 ton

XOS_Heap 1·334
XOS_Module 1·334

SWis 1-4. 1·21 to 1·30
SysSRetumCode 3-105
SysSnme 1·320
system devices 3-17, 3·<461 to 3-463

Index by suq9Cf
:::-:-:;;;;:;:;;;:;::~:.w.<.::;.;.:«<>:;;;;;;~::~:;:;::~:::x·:·=«««<·x=:;.\.->:-::.w.>:::.-:::;::::;:;.;:;:;.:~~:;;.;-: .;::::::::: :::::::~.;:;.~:~;:;:.;;;,;:::::::::;,·::::::~:=:-:.::-.~-:::; :·:·:·:-::.:::::::-::-x·:::·:·:~:-;.;;:;.»"..:·:·:·:

system extension modules 1·3
system heap · see heaps 1-389
system variables 1·277. 1·280

T

deleting 1·323
listing 1·322
macros I· 320
reading 1·302
setting 1·304. 1·317

Tab key 2·394
TAN 6-169
tasks

starting from within another task <4·341
tempo· see sound (tempo)
terminal emulators see nP (terminal

emulators) 6-434
Terminal Interface Protocol see nP 6--431
text window 2·123
time 1-391 ton

5·byte to string 1-424. 1·426. 5-302
BCDtostring 1-412
format strings I· 393
interval time r 1·395. 1-404. 1·406
monotonic timer 1·392. 1·423
real · time clock 1·392, 1·408. 1-410. 1·<414,

1·428
set date 1-<1 17
system dock 1·392. 1-401. 1-403
timer chain 1·395. 1-419. 1·420. 1-<122

time.h 6-272 to 6-275
np 6-431 to 6-472

aborting file operations 6-436. 6-465
choosing protocol modules 6-<134
dosing connections 6-435. 6-<149
dosing logical links 6-4 35. 6-444
connection 6-432
data structures 6-433. 6·438 to 6-<139.

6-442 to 6-<143
directory operations 6-436.6-471 to6--472
file transferSWis 6-433

finding base SWJ numbers 6-441
findins protocol modules 6-434.

6--4 38 to 6-<140
seneratlns a Break 6-436. 6-459 to 6-460
setting a file 6-<136, 6-467 to 6-468. 6-470
getting menu trees 6-436
settlns state or qicalllnks 6-457 to 6-<158
lot~icallinks 6-<131
menus 6-<136. 6-<4<45. 6-<154 to6-455
multiple links and connections 6-<134
opening connections 6-434. 6-446 to 6-448
opening logical links 6-434. 6-442 to 6-443
poll words 6-4 34. 6-4 35. 6-446
protocol modules 6-<131 to 6-4 34
recelvfns a file 6-<135
receivlns data 6-<135, 6-452 to 6-453
sending a file 6-435
sending data 6-<135. 6-<150 to 6-451.

6-461 to 6-<464
servioe calls 6-432
Swt support 6-432 to 6-433
terminal emulators 6·4 34 to 6-4 36

Title bar 4-96
transient utilities 1·279
TrapProc 6-189

u
unary operations 6-169
UncaughtTrapProc 6-189
UnhandledEventProc 6-190
UnwindProc 6-190
UpCalls 1-167 to 1· 188

handler 1·285
URD 3-121.3-168. 3-18<4, 3-247, 3·362. 3·365
USR mode 1·340

v
variable

environmental 6-187

Indices-53

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

r
_

(

(

Index by subject

;:;.;:;.;.;;;.;««««:<.¢.:-:":·:·:·:·:·::;:;:;:;::::;:;:,:.;.o;;.o,.:.:·:·:·::;.;.;:;:;:;:;::~~;;.;.:·:·:.:·::;:;:;:;:;;;.;:;:;:;:;;;.~-::::.%:·:·:·:·:·:·:·:::-:-;.;.;;-,;-..-..x;:-:-~:.:;:.;·:·:·:·:-:·:-»' .. :;;;:;:.: .. .;:;:::;:;~m::.;.;.;.;.;.-... ~

VOU 2-11 to 2·12. 2-19 to 2·245
code table 6-481 to6-482
disabling 2-84
enabling 2-65
output streams 2·18. 2·26
read status 2·153. 2·162
read variables 2·160. 2-211. 2·217
read/write queue status 2-177

vdu· 3-461
vouxv 2-47
v~tors 1·5

hardware I·IOHo??
software 1·59 to 1-100

version ID 6· 352
vers ion identifier 2· 378. 2-442
VIDC 1·7. t-13to 1·15, 2-40
voices- see sound (voices)
volume· see sound (volume)
Vsync 2-46. 2-58. 2· 139

w
WaveSynth 5-405
WFC 6-167
WFS 6-167
wildcards 3·10
WIMP

accessing sprites 4-265
alteringdisplaymode 4-253
closing down tasks 4-147. 4-241
colour handling 4·116 to 4-118
copying work area 4-268 to 4·269
creating submenus 4-264
DataOpen Message 4·319
drag boxes 4-212to4-216
dragging boxes 4-118 to 4·119
error reporting 4-149. 4·245 to 4-246
Escape key 4-113to 4-114
Filer messages 4·292
function and 'hot' keys 4-112 to4-113
initialising 4- 157
key presses 4-112. 4-239

Indices-54

keyboard input and 'text
handling 4-111 to4-114

memory data transfers 4·310 to 4-312
memory management 4·1 24 to4·125,

4-274. 4-280
menu d~oding 4·227
menus 4·222 to 4-226
message passig system ?? to 4·310
message-passing system 4-305 to??
messages 4-296to4-298
mode Independence 4·115
NetFIIer ,messages 4·295
opening command windows 4-276 to 4-277
plotting sprites 4-272 to 4-273
polling 4-86 to 4-87. 4·249 to 4-2')()
reading base of sprite area 4-267
reading caret position 4·221
reading palette 4-257
reading pointer info 4-210
reading system information 4-281
relocatable module tasks 4·131 to4-132
see also Icons. windows 4-157
service calls ?? to 3-469. 4-135 to 4-145
setting anti-aliased font colours 4-281
setting caret position 4· 219
setting colour 4-259
setting palette 4-255
setting slot size 4-270 to4-271
setting text colour 4-278
starting 'child' tasks 4-24 3
starting filer module tasks 1-466, 4-142
starting module tasks 4·118
SWI calls 4-155 to 4-284
system ront handling 4· 118
system messages 4-289 to 4·291
template files 4-126 to 4·127
templates 4-234 to 4·238
zeroing flier task handles l-468. 4-144
zeroing task handle 4- 140

Wimp events 6-436. 6-45<>
WlMPreasoncodes 4-181to 4-195

close window request 4·187
gain caret 4·193

/nd6x by subject
x;:.;;:-:~~-=:-~=~-:.»:~:.:·:·:;:::::::::::::::=:~:;:::::::::::::::~:::::=~Z$:•)m:::::::::::-::.::::~:-:=:::::::::::::::::::~.::o:.:o:-:;:::;:::::::::::::=::::::::::=:::::-:-~-:-»-o.:.:

key pressed 4·190
lose caret 4·191
menu selection 4-191
mousedlck 4-188
null 4·186
open window request 4·187
pointer entering window 4·188
pointer leavlna window 4·188
redraw window request 4-186
scroll request 4-192
user drag box 4· 189
user message 4·194
user message acknowledge 4·195
user message recorded 4-195

wimp slot
contents 1-117

Wlmp_CreateMenu 6-445. 6-447
Wlmp_Poll 6-435. 6-442. 6-443. 6-446.6-454,

6-45<>
Wimp_SendMessage 6-447. 6-454
windows

dosing 4·182
creating ?? to 1-480.?? to 1-481.

?? to 1-484.4-159 to 4- 165
deleting 4-177
forcing a redraw 4·217
Input focus 4·111 to4-112
layout 4-90 to 4-95
opening 4·180. 4-276
outline coordinates 4-247
panes 4-110
reading state 4-202
redrawing 4-97 to 4-98. 4·196. 4-200
setting extent 4·230
system areas 4-95 to 4-97
tool 4-110
updating 4-99. 4-198. 4-200

Indices-55

I
~

:-»;;::.:~:-:.:::::::::::::~:.:-:-:·:~:=:=:=:::::=:=~-=~:-:·:·:=:=::::::::::~;;.;.:;::::::::::::::::~ .. :·:;:::::=:::::::::::~::::::::::::::::~=:=:=::::::) .n:x:~;:::::::::::::::::::::.:=:=~

Reader's Comment Form
RISC OS 3 Prufnr•..,cK's Rl{fmtU Mut~~l

We would sreatly appreciate your comments about this Manual. which will be taken into ac:oount for the
next issue:

Did ,01 f111d the htfonn.tloll JOG waated?

Do ,oa like the WIIJ the lllformatloa .. prweated?

r-~~.b,- 1

~--nd-..-b,..._,.... _ _
How would you classify your experience with computers?

D D 0 0
U.ed compatere before Experieacecl Ueet Procram-r Experieaced Procralllmer

Cut DICI (or~) alfll poll~

Dept RC, Technical Publications
Acorn Computers Limited
645 Newmarket Road
Cambridse CB5 8PB
Ens land

Yoar ••- alld lldd,_

noo-, to..-to go~in _.., ,.., .. _,,.... ,...
commen•bt.w

1 I I i!

