
RISC OS

STYLE GUIDE

.........,

.........

II
!Cdo

"""" ~
ltlitntlltr -, !m
tTIA~tlrs

Acorn-
The choice of experience.

ii

©Copyright Acorn Computers Limited 1990
Designed and written by Acorn Computers Technical Publications Department

Neither the whole nor any part of the information contained in, or the product
described in, this Guide may be adapted or reproduced in any material form
except with the prior written approval of Acorn Computers Limited.

The product described in this Guide and products for use with it are subject
to continuous development and improvement. All information of a technical
nature and particulars of the product and its use (including the information
and particulars in this Guide) are given by Acorn Computers Limited in good
faith . However, Acorn Computers Limited cannot accept any liability for any
loss or damage arising from the use of any information or particulars in this
Guide.

If you have any comments on this Guide, please complete and return the form
at the back of the Guide to the address given there. Any other correspondence
should be addressed to:

Customer Services
Acorn Computers Limited
Fulbourn Road
Cherry Hinton
Cambridge CBl 4JN

Information can also be obtained from the Acorn Support Information
Database (SID). This is a direct dial viewdata system available to registered
SID users. Initially, access SID on (0223) 243642: this will . allow you to
inspect the system and use a response frame for registration.

ARCHIMEDES is a trademark of Acorn Computers Limited.
Macintosh is a trademark of Apple Computer, Inc.

Published January 1990 by Acorn Computers Limited

Issue A

"'
..........

.......... Contents

......_,

..-.,

'"""
")

About this Guide v

..........

........ Introduction 1

........., Terminology 3

General principles 7

Screen handling 13

Application directories 17

Sprites and icons 21

Menus and dialogue boxes 25

Handling input 33

Editors 37

Appendix - !Help 47

Contents iii

f'nntantc

"'""
r'\

"'""
/'""\

"'""
/"""\

"

About this Guide

About this Guide

Finding out more

Languages

This Guide tells you the standards of 'look and feel' to which you should write
a RISC OS application. It is split into several chapters:

• The first chapter introduces you to this Guide, explaining its scope, and
why a standard 'look and feel' is desirable.

• The next chapter defines terminology that is used in this Guide, and in
RISC OS in general. If you use this standard terminology in your
applications, and in their manuals, users will find them easier to use.

• The remaining chapters cover specific areas of RISC OS applications,
explaining how they must conform to the standard 'look and feel', and
how they should conform.

You will find a certain amount of relevant information in the Welcome Guide
and User Guide supplied as standard with all RISC OS computers.

The Programmer's Reference Manual gives full documentation of RISC OS, and
all the calls to the operating system that you may need to use in your code.
The chapter entitled The Window Manager is especially relevant, and tells
you how to implement many of the standards defined in this Guide.

If you wish to write your applications in C, you will find the manual supplied
with Acorn's ANSI C compiler useful. If you have Version 2 or earlier of the
compiler you are strongly recommended to upgrade it to the current version,
as this contains far more extensive support for writing RISC OS applications.

• The chapter entitled How to write desktop apfJlications in C is especially
relevant, as it details the RISC OS library.

• The chapter entitled How to use the template editor is also useful; you can
use the template editor to interactively design windows for the desktop.

About this Guide v

vi

Other specialist programming languages are available from Acorn suppliers
for your RISC OS computer; you will find their manuals useful if you are
using them.

If you wish to write BASIC programs on your RISC OS computer you will
find the BBC BASIC Guide useful.

If you wish to write your applications in assembler, you will find the manual
supplied with Acorn's ARM assembler useful.

About this Guide

') Introduction

Why have a standard?

') The scope of this Guide

One of the most important and powerful aspects of RISC OS is that
applications within the desktop world should present a consistent and
reliable interface to a user. Multiple applications can then work together in a
uniform and powerful environment, in a way that is easy enough to learn and
to use that a user will want to work with it instead of being forced to.

This is to the advantage of you, the software vendor, as well as the software
user. Studies show that the average Macintosh user buys and can use
considerably more packages than the average PC user. The most frequently
quoted reason for this is that it is easier to learn a new package if the
environment for a user is standardised.

This Guide is aimed at those specifying, planning, or implementing software
that is to work within the RISC OS desktop environment. It tells you how such
applications must look and feel to a user. A lot of the points it raises are ones
you will have to bear in mind quite early on when considering the writing, or
porting, of applications packages.

Much of what is said below is to do with consistency and standards. It tells
you what you must do to conform to the RISC OS standard, and what you
should do where possible.

The scope of this Guide is so large that in places it is necessarily imprecise.
We believe that it provides enough specific cases that its aims and spirit can
be clearly understood. The effect of this Guide should be to ensure you give a
minimum level of service to a user, and never to limit your innovative and
imaginative ideas.

The criteria described in this document are extremely demanding, and in
places require significant effort to implement. Some of the Applications Suite
itself does not strictly conform, in places. The standard to which we all aspire
will evolve continuously as RISC OS evolves and improves.

1

"' Terminology

Introduction

Mouse buttons

You must always bear in mind that the main users of RISC OS are users and
not programmers. If you use consistent terminology, and avoid jargon, it will
make RISC OS more friendly to them. Your application's prompts and
documentation should use the terminology outlined in this chapter, and used
in the rest of this Guide

Because RISC OS is not solely a desktop operating system (eg a user has
access to the command line interpreter, and non-windowing applications such
as BASIC) you will inevitably have to let some jargon slip through, but you
should always minimise this.

The mouse has three buttons:

Select Menu Adjust

Mouse operations

The buttons have these names because of the actions they perform:

• Select is used to make an initial selection

• Adjust is used to toggle elements in and out of this selection and to add
extra selections without cancelling the current ones

• Menu is used to call up a menu.

The mouse moves a pointer on the screen.

These are the terms you should use for mouse operations:

Press press a button down

Release

Click

Drag

Double-click

Choose

Type

Select

release a button

press and release

press and move the mouse, or press for more than 0.2s

press, release, press, release within ls without
moving the mouse

what you do to a menu option

what you do to keys on the keyboard

change an object's state by clicking on it.

It is a common fault to confuse press and click, and to talk about selecting menu
options.

Parts of a window

Other parts of the
desktop

The icons around a window have the following names:

Back icon Close icon Title bar Toggle size icon

Slider

Scroll bar

Scroll arrow

Adjust size icon

Use these names with initial capitals in running text.

You must use this terminology to refer to other parts of the desktop:

• A menu has options or menu items, some of which lead to submenus (no
hyphen) .

• A chosen menu option is shown highlighted (no need to say 'in inverse
video') .

• A box to which a user has to respond by clicking on an icon is a dialogue
box.

• The bar at the foot of the screen is the icon bar.

• A menu that appears when you press Menu over an icon on the bar is an
icon bar menu.

• Directories are shown in directory displays.

Editors An editor is an application that presents files of a particular format as
abstract objects which a user can load, edit, save, and print. Text editors, word
processors, spreadsheets and drawing programs are all examples of editors
(in this context). Their data files are referred to as documents.

Each document being edited must be displayed in a window. Such windows
are referred to as editor windows.

An editor must record, for each document currently being edited, whether a
user has made any adjustments yet to the document. This is done using a
modified flag.

Most editors are capable of editing several documents of the same type
concurrently; these are known as multi-docwnent editors. Others can edit only
one object at a time; these are known as single-document editors .

General principles

Ease of use

Consistency

Ease of use is what Wimp systems are about most of all. All of the various
elements described here are ultimately designed to make the computer easier
and more pleasant to use, over a wide range of user experience and practice.
An application should be:

• easy to learn

• easy to relearn

• easy to use productively.

These things can conflict with each other, and with other things (eg system cost,
program size, program development time, backwards compatibility). Design
is not easy, and not all users agree.

The multi-tasking Wimp emphasises that applications work together for a
user of the machine:

• they cooperate in sharing the machine

• they look harmonious

• their user interfaces are similar

• the whole is more important than a single application.

If you port an application into the desktop environment, check that it works
well with the existing applications and utilities. Strive to ensure that a
habitual user of the desktop environment and the Appplications Suite
programs will find your program easy to use, and natural to learn.

7

Quality

Using the Wimp

Different configurations

It is much better that you write a small program that does Something simple,
and does it well, than a sprawling mass that crashes occasionally. With a view
to this:

• do not bypass operating system interfaces or access hardware devices
directly

• do not peek and poke page zero locations {the hardware vectors etc), or
kernel workspace.

Such tricks may well not work on future machine and operating system
upgrades. Acorn will pursue a policy of continuous improvement and
expansion for its product lines; build your software to last.

You must use the RISC OS window system for functions it can perform, such
as window manipulation, menu construction, etc. You must use the mouse to set
screen positions.

Your application must work with any reasonable hardware configuration that
runs RISC OS. It must run from ADFS, NetFS or any other filing system.

You must not make any unnecessary assumptions about:

• filing systems

• peripherals

• precise processor speed

• precise ROM or module versions {at or beyond RISC OS 2.00)

• video refresh rate

• video/palette hardware

• peripheral controller hardware

• memory management hardware

• screen mode

• fonts available

• native language

• alphabet I character set.

I"""\ Use of memory

File handling

When your application cannot run on the current configuration, it must tell a
user why not in a comprehensible way, rather than crashing or misbehaving.
Your application must not reconfigure the machine or unplug modules so that
it can run.

In a multi-tasking environment, you must use memory as sparingly as possible.
If your application needs varying amounts of memory (for instance as
documents are loaded and unloaded) you must claim extra memory as you
need it, and free it when you have finished using it.

If your application runs out of memory then it must degrade gracefully, and
not crash . If there is not enough memory for it to start, then it must say so (and
leave the machine cleanly) rather than crashing the machine in an attempt to
start. Try to work out your application's total memory needs (including any
modules it needs to load) before you load anything, rather than loading a lot
of modules and then finding that your main application doesn't have enough
memory.

If your application allows a user to dynamically change how much memory it
has, it should do so by using the Task Manager display.

The model of files and filing systems presented within the RISC OS Desktop
is that files are always manipulated by their full pathname, including the
filing system name, disc title, etc. This gives each file in the system a unique
name. There is no concept of 'current directory', so you should not refer to, or
rely on, its being set. Every effort is made to ensure that users never have to
type a full pathname, but they do have to see and (more or less) understand
them.

RISC OS makes heavy use of file types. You must give all files you create a
file type and date-stamp, rather than using the older load/exec address form
(but you must be prepared to encounter these, and respond correctly).

Never build absolute drive numbers, file names or filing system names into
your program.

0

Supporting !Help

What help you should
provide

What you should assume

You must support the !Help application to help new users. The technical
details you need to do so are included in an appendix at the end of this
Guide.

The text should consist of simple complete English sentences, each starting on
a new line and ending with a full stop. The sentences should usually be
simple imperatives or information such as:

• Click SELECT to set the alarm .

• The pointer is at pixel (47, 215) within the sprite .

• You are in Select mode .

• Click ADJUST to change to path edit mode .

• This is the icon for Edit .

In general you need not mention menu entries, except when specific ones
interact with pointer operations. As a general rule present information of
interest to the beginner near the top, and expert tips or information lower
down.

You must use the terminology we've already defined. For mouse operations
you must use initial capitals (eg Click) . The mouse buttons must be in capitals
(eg SELECT), as must key names (eg ESC, RETURN, SHIFT, CONTROL, A,
B, Fl, COPY) . Miss out speedups and shortcuts - just provide enough to help
a beginner without drowning him in information.

Provide interactive help thoroughly - include the icon bar, and the work area
of all your windows. If no actions are possible in a window, just

This window shows ...

is better than nothing.

You should assume a user knows:

• what the MENU key is

• how to navigate menu trees and choose entries

• what the icon bar is

• how to move/size/toggle/close windows, and so on

r-- __ : :-• -

'-...

'-

Dragging

Time

Exiting your application

• what 'dragging an icon' means

• what 'filling in a field' (writable icon) means.

The Wimp's drag operations are specifically for drags that must occur
outside all windows. As well as using the cycling dashed box form, you can
define your own graphics to drag arbitrary objects between windows.

If you build drag operations within your window, check that redraw works
correctly when things move in the background (the Madness application is
useful for testing this).

If the drag works with the mouse button up then menu selection and scrolling
can happen during the drag, which is often useful.

If the drag works with the button down, then you can implement it so a user
can drag the object out of the window with the button still down. Alternatively
you can restrict the pointer to the visible work area, and automatically scroll
the window if the pointer gets close to the edge.

There are two clocks that keep track of real time in the system, the hardware
clock and a software centi-second timer. The two can diverge by a few seconds
a day, but are resynchronised at machine reset. For consistency, always use the
centi-second timer.

When your application exits, it must leave the machine in an undisturbed
state. It must not leave modules unplugged, fonts claimed, or files open. You
may leave additional modules in the machine if they are generally useful to
other packages.

r.:onor~l nri nl"'inlt:><: 11

r-. - 1 -...: :

Screen handling

Modes

Screen size

Your application must work in any screen mode that the window system can
use. Your application must read the current screen mode when it is loaded
(and any associated information such as resolution and aspect ratio) rather
than setting it. You must handle changes of screen mode on the fly . All this
may seem troublesome when you write your application, but it allows an end
user to use a wide price-range of monitors, and to choose between resolution
and cost. It also means you can easily move your application to new better
screens and modes when they become available.

At the very least, your application must not crash in inappropriate modes, but
must instead display an error message. Mode 0 is not usually useful, but it is
worth making it work if you possibly can. You should make Mode 23 .work for
users with big monochrome screens. Also, try a square pixel mode (eg mode
9), and check in modes 13, 15, 16, 18, 19 and 20.

Mode 16 is highly non-square - ie the aspect ratio is wrong. Do not try to
correct for this automatically; it is an inevitable consequence of trying to fit a
great deal of text onto a standard monitor. Some monitors can in any case be
adjusted to make the pixels square.

Likewise, you must not rely on the size of screen your application is using.
Work using OS graphic units; think of them as a constant unit of measurement,
rather than a fraction of the width of the screen. The standard assumption is
that there are 180 OS units to the inch, even though this may in fact vary
between physical screens. If your application is to be device-independent, it
must be the same size in OS units in any mode, rather than the same fraction
of the screen.

Colours and the palette

Responsiveness

• A

Just as with screen modes and sizes, you must not set or rely on the palette,
but instead must read and use the existing one. You must also cope with
palette changes on the fly. When you set colours, use one of these methods
rather than the older GCOL mechanism:

• Use the standard Wimp palette if you are just using colour to give a
contrast between different objects you are drawing.

• Use 'true' (RGB triplet) colours if you need to display a particular
colour. Then use the ColourTrans module to give the closest possible
approximation in the current palette, so you don't restrict yourself to the
limitations of today's hardware.

Use a dialogue box like the ones in the Applications Suite to set 'true'
colours:

Animated bright colour graphics can help make your application easier to
understand and to use. Even if your program doesn't use many colours, you
must check it works correctly in 256-colour modes. If you have used any EOR
(exclusive OR) operations for screen handling, check these with particular
care; an EOR can give different results in a 256-colour mode from those it
gives in 16-colour modes, because the palette is arranged differently.
Similarly, check two-colour modes carefully; these use ECF patterns
(stippling) for different shades of grey, and again using EOR may give
unexpected results.

RISC OS runs on extremely fast machines, and you can use this speed to
make your application easier to use and more productive. The system software
has been written very carefully so that all of this performance is delivered to
be used by applications, rather than being swallowed up within the operating
system. Fast, smooth scrolling and redraw are worth striving for as they make
it easier for a user to make effective and productive use of your application.

~,..roan h":lnrUi nn

1\ Redrawing speed

Taking over the screen

Some systems remember the bit-map behind a menu or dialogue box when
they pop it up; to remove the menu, they just redraw the bit-map. You can't do
this in a multi-tasking environment like RISC OS, because a window from a
separate task may be changing in the background. Instead you must
concentrate on making redraw fast.

One technique you can use for a window that is difficult to redraw quickly is
to store its image as a sprite - of course you can only do this if it won't change.
Another important technique for speeding up redraw is the use of source-level
clipping. During redraw and update, the Wimp will always inform your
application of the current clipping rectangle. Don't waste processor time
redrawing bits of your window if you don't need to. (For an example of how
to use this technique, see the Patience program.)

If you make extensive use of icons within dialogue boxes, this means that
RISC OS does most of their redrawing for you. You should only need to
process redraw events for dialogue boxes when they contain complex user
graphics.

Some program developers feel very strongly that a program should be able
to take over the entire screen, without any scroll bars etc. You can do this and
still benefit from the multi -tasking environment, so long as you treat this as a
specific mode of operation (chosen by a menu entry saying 'Fill screen', for
instance), and your application can also operate in a window. You can easily
implement this by opening a window the size of the screen on top of all
others. If you set its 'backdrop' bit, then this will also stop any windows from
going behind yours. Your application may even have special properties that
only operate when in this mode, such as animation implemented using direct
writing to the screen. If you need this mode of operation, however, it should
not alone lead you to abandon the multi-tasking world entirely.

~"~oon h <> nrl li nn 15

~l"roon h<>nrUinn

"' Application directories

Application resource
files

You must place your RISC OS applications in a directory whose name begins
with ! , such as ! Draw. When you refer to these applications, however, you
leave the ! off the name. The Filer modules provide various mechanisms to
help such applications, so you can treat your program and its resources as a
single unit, and its installation is straightforward.

You can hold any form of resource within an application directory. There are
several standard ones; a given application may not need all of them, but for
those it does use, it must use the filename(s) given below:

! Boot *Run by the Filer when it first displays the
application directory

! Sprites Passed to *IconSprites by the ! Boot file, or the
Filer

!Run

!Runimage

Templates

Sprites

Messages

ReadMe

!Help

Choices

*Run by the Filer when a user double-clicks on the
application directory

The application's executable code

The application's window template file

The application's private sprite file

The application's text messages

The application's release notes

The application's documentation

User choices/preferences

The only file you must provide is the ! Run file.

Most of these resources are discussed in more detail below. In each case we
assume that the application is called ! Appl.

Annlir::~tinn rlimr.tnriP.~ 17

The !Appi.!Boot file

The !Appi.!Sprites file

This is the name of a file which is *Run when the application directory is first
'seen' by the Filer. It is usually an Obey file, ie a list of commands to be
passed to the command line interpreter (see documentation of the *Obey
command in either the User Guide or the Programmer's Reference Manual for
details).

You might typically use a ! Boot file to set up the icons, file types and
corresponding system variables that RISC OS needs so it can show your
application in a directory display and run it when you double-click on its icon.

The Filer only runs ! Appl. ! Boot if the sprite called ! appl does not
already exist in the Wimp sprite pool (sprite names are lower case). This
prevents repeated delays from re-executing ! Boot files (or even re
examining application directories). However, it relies on the various
applications seen by the Filer having unique names - so, for example, if you
have more than one System directory, only the first one 'seen' will be used.

This is the name of a sprite file that provides sprites for the Filer to use to
represent your application's directory, in both large and small form. For an
application ! Appl these must be named ! appl and sm! appl respectively.
The ! appl sprite is also used when the application is installed on the icon
bar.

! Sprites can also provide sprites for data files that your application
controls, in both large and small form. These sprites must be named
file_ttt and small_ttt, with ttt being the hex identity of the file type.

See the chapter entitled Sprites and icons for rules about the appearance of
these sprites.

Note that all these sprites are merged into the Wimp's shared sprite pool
using *lconSprites. If your application uses any private sprites, you must
instead put them in the ! Appl. Sprites resource file, and your application
must load them into a private sprite area.

-" Standard icons provided

The !Appi.!Run file

If your application creates or uses one of the following standard file types,
you will not have to provide a file_ttt icon for it, as they are already
provided in the Wimp sprite ROM area:

Sprite Type

file bbc BBCROM
file feb t Obey
file fee Template
file fed t Palette
file ff6 Font
file ff7 BBCfont
file ff8 t Absolute
file ff9 t Sprite
file ffa t Module -
file ffb t BASIC
file - ffc Utility
file ffd t Data
file ffe t Command
file fff t Text
file dir t Non-application directory (folder)
file XXX t Un-typed (load/exec address) file

Sprites marked with a t also have small format versions in the Wimp sprite
area. Those which haven't can be scaled to half size if small icons are needed.
There are also two sprites named application and small_app, which are
used for applications which don't have a sprite called !appl.

This is the name of a file which is *Run when the application directory is
double-clicked. It is usually an Obey file.

It should be emphasised that the presence of multiple applications with the
same name should be thought of as an unusual case, but should not cause
anything to crash. Also, you should complain 'cleanly' if you can no longer
find your resources after program startup.

ll.nnlil"~tinn rlirAf'tnriA<:: 19

The !Appi.Messages
file

The !Appi.Choices file

Shared resources

Large applications

This is the name of a file that is used to store all of an application's textual
messages. If you use such a file, it makes it easy for you to replace your
messages with ones in a different language should you come to sell your
application on the international market.

You should preferably read in every textual message when your application
starts. You must not read them one by one, as this forces a user of a floppy
disc-based system to have your application disc permanently in the drive. As
a minimum standard you must read in all error messages when the
application starts up, so that producing an error message does not cause a
Please insert disc title message to appear first.

This is the name of a file used to store user-settable options so they are
preserved from one invocation of the program to the next. If you save them
within the application directory, then a user does not have to worry about
separate files containing such data. You must always use a Choices file
rather than reading an environment string, so that users don't need to
understand how to set up a boot file in order to set their preferences.

Some resources are of general interest to more than one program. Typical
examples include fonts, and modules that provide general facilities. Such
resources should be placed in the System application (whose ! Boot sequence
sets a variable System$Path) or in a separate application such as Fonts.

You should note that the use of shared resources makes applications slightly
harder to install, so check carefully that error messages are helpful if the
shared resources cannot be located.

The rules above may break down for large applications. Some applications
occupy more than one floppy disc, with swapping required during operation.
It is difficult to give precise guidelines for such programs, because their
requirements vary so widely. The rules above, however, will be used for many
smaller programs and so will be reasonably familiar to users. Larger
programs should be designed and organised to fit within the same general
philosophy, so that users find them easy to install, understand and operate.

For an example of splitting a large application, see Acorn Desktop Publisher.

Sprites and icons

Introduction

(\ Defining sprites

RISC OS uses sprites to represent a variety of different objects:

• applications (including editors)

• files (including editors' documents)

• devices.

Most of these can be shown in two different sizes:

• Large sprites are used on the icon bar, and in directory displays that show
Large icons.

• Small sprites are used in directory displays that show SmaU icons or
FuU info.

This chapter outlines what rules these sprites must follow. For information on
how these sprites must be 'made known' to RISC OS, see the chapter entitled
Application directories. For information on using sprites as icons within
dialogue boxes, see the chapter entitled Menus and dialogue boxes.

Sprites are normally defined in mode 12 - but if you can use a mode with
less colours or resolution (such as mode 9) then do so. You must not define
them in 256-colour modes, as RISC OS currently has limitations in how it
translates colours from these modes to ones that support fewer colours. Check
the appearance of your sprites in two, four, sixteen and 256-colour screen
modes; the Wimp will do its best to translate from mode 12 colours to those
available.

21

Appearance of sprites

Size of sprites

Large sprites

Small sprites

1"11"1

Sprites you use to represent an application should not have a square or
rectangular border; they should instead have an irregular outline. This means
they must have a transparency mask. You may use any colours you like for
them.

Sprites you use to represent a file should be square, with a black (Wimp
colour 7) border. If the file is a document that 'belongs' to a particular editor,
then the editor's icon and the document's icon should be visually related to
each other.

Sprites you use to represent a device will often have an irregular outline. If
they do, then they must have a transparency mask. They should have a grey (5)
outline on a cream (12) background.

Sprites must conform to the following rules about size. If a sprite has an
irregular outline, then you should consider any size given below as that of a
bounding box containing the sprite's transparency mask, within which the
sprite itself is centred.

A large sprite must be 68 OS units high. You should preferably use a square
sprite (ie 68 OS units wide). For mode 12 this size convens to 34 pixels wide
by 17 pixels high. If you have to make your large sprite wider, you can make
it:

• up to 160 OS units wide if it will be used in directory displays -
although 100 OS units is a more practical limitation if you want the
corresponding small sprite to have the same proportions

• as wide as is necessary if it will only be used on the icon bar.

The border of a large file (or document) icon must be four OS units wide. In
mode 12, that makes venical borders two pixels wide and horizontal ones one
pixel high.

A small sprite must be half this size - that is, 34 OS units high. Again, it
should preferably be square (ie 34 OS units wide). For mode 12 this
corresponds to 17 pixels wide by 9 pixels high (rounding up halves). If you
have to, you can make a small sprite up to 50 OS units wide.

The border of a small file (or document) icon must be two OS units wide. In
mode 12, that makes all borders one pixel wide.

~nrit"c: !lnrl il"'nnc:

r"\ Positioning icons on
the icon bar

Use of sprite pools

You should define small versions of any sprites that are to be used in
directory displays. If you do not, then RISC OS will scale the corresponding
large sprite to half size. This may be adequate for your purposes.

When you place an icon on the icon bar, RISC OS uses the icon's width to
position it horizontally as it sees fit. If there are so many icons on the icon bar
that it fills up, RISC OS automatically scrolls the bar whenever a user moves
the mouse pointer close to either end of the bar.

However, it is your responsibil ity to position the icon vertically. There are two
main types of icon which you can put onto the icon bar: those consisting simply
of a sprite, and those consisting of a sprite with text written underneath. The
diagram below summarises how you must position icons vertically on the icon
bar:

+68--

0--

.------------- ----- ------- ---------,

Sprite
only

Sprite

Text

L----------- ------ ---------------'

+92
+84
(max)

+20
+16

-16

-24

y coordinates are given in terms of the icon bar work area origin; lower
coordinates are inclusive, and upper coordinates are exclusive.

As laid down earlier, all icon bar sprites must be 68 OS units high. You must
position ones with text underneath them 16 OS units below the icon bar's work
area origin, and ones without text level with it.

Do not use the system sprite pool in your application; build a user one, or use
the Wimp area if appropriate. The system sprite pool is present under
RISC OS for backwards compatibility with previous products, and to help the
construction of very simple programs.

23

~nritt:>c: !lnrl if"nnc:

Menus and dialogue boxes

Basic menu operation

Shading menu entries

Menu colours

Your application must provide a single menu tree which is displayed when a
user presses Menu. This is preferable to using a collection of short menus,
each of which requires a user to point at a specific place in the window before
pressing Menu. The former approach means that a user can quickly guess what
your program can do, and discover fairly rapidly what it can't do, without
having to search everywhere for hidden menus.

You can, however, make entries in the menu context-sensitive, so that they
depend either on the object beneath the pointer (eg in the Paint file window
or Filer directory displays), or on what object(s) are selected (eg in Edit, and
again Filer directory displays).

Just like windows, all menus, submenus and dialogue boxes must be movable.

You must shade any leaf items of the menu tree that are not available due to
the context, rather than omitting them. You must also shade any item that
leads directly to a dialogue box, but that is unavailable.

You must not shade an item that leads to a submenu, even if all items on the
submenu are unavailable. This is because if a menu item is shaded its
submenu is not displayed, thus preventing a user from quickly seeing all the
available options.

Standard colours you must use for a menu are:

• black (7) on a grey (2) background for the title

• black (7) on a white (0) background for unshaded menu items

• light grey (2) on a white (0) background for shaded menu items .

• • ----- __ _. -t:-•--··- L....-~ -

Menu size and position

Other points

Each item on a menu must be 44 OS units high. Try to keep the width of non
leaf menus as small as possible; this reduces the amount of mouse movement
needed to reach a leaf, and makes choices fast and easy for a user to make.

You must open a menu 64 OS units to the left of the pointer's position when
Menu was pressed. This further reduces the amount of mouse movement a
user needs to make.

• In C Release 3, RISC_OSLib uses a value of 48 OS units. If you are using
RISC_OSLib, it is acceptable for you to use this incorrect value; it will be
changed to 64 OS units in a future release.

The bottom of the menu title must normally align with the pointer:

I I

,.__640Sunits
I

ZooM
Grid

.J Toolbox

Sometimes the vertical positioning must be different from this, though:

• You must open Icon bar menus so that their base is 96 OS units from the
bottom of the screen. This stops the menu from obscuring the icon bar
sprites.

Other rules for menus are:

• The title says 'Appl' (the application name) rather than 'Appl Menu'.

• Items have their first initial letter capitalised (ie 'Set type', not
'Set Type') and are in lower case otherwise.

• Items are left-justified (except for keyboard equivalents - see the chapter
entitled Handling input).

• Items use the system font, rather than using the Font Manager.

" Making menu choices

Types of dialogue box

Ordinary dialogue boxes

Detached dialogue boxes

If a user presses Select or Menu on a menu entry, you must choose the current
menu item, perform any associated activity, and close the menu tree.

If a user presses Adjust on a menu entry, you must choose the current menu
item, perform any associated activity, and leave the menu tree displayed.

If a user presses a button on a non-leaf item, you should either do nothing, or
you should do some sensible default available on that item's submenu - for
example, clicking on a Save item commonly saves a document using the
path name that would be used in the Save dialogue box.

There are three basic types of dialogue box you can use:

An ordinary dialogue box appears as a submenu, and functions in the same
way - for example a Save dialogue box. It has at least one action icon (such
as 'OK' or 'No') but no Close icon. It is typically small, to make it easy to
browse through the various submenus an application offers.

Always try your hardest to implement any submenus as ordinary dialogue
boxes rather than detached ones.

A detached dialogue box also appears as a submenu, but suspends its parent
application until it is filled in - for example large dialogue boxes in Acorn
Desktop Publisher.

A detached dialogue box has at least one action icon (such as 'OK' or 'No') . It
may also have a Close icon, but this is usually replaced by a 'Cancel' icon. It
appears after a user clicks on its parent entry in the menu tree, which must
have an ellipsis ' ... ' after it to show that it leads to a detached dialogue
box- so Style ... would be a typical such entry.

Try to avoid detached dialogue boxes wherever possible. However, you will
have to use one if technical restrictions prevent you from doing what you need
to with an ordinary dialogue box- for example if you want the dialogue box:

• to have menus of its own

• to have panes of its own

• to act when icons are dragged onto it.

?7

Static dialogue boxes

Dialogue box colours

You may also prefer to detach a dialogue box if it would be so large as to
normally obscure its parent menu tree, and it cannot easily be split into
smaller sections. In this case, open it so that it is centred on a mode 12 screen.

A static dialogue box remains when the menu disappears, but still allows you
to use any application, including its own parent. There are two variations:

• A static pane dialogue box is attached to a particular window - for
example Draw's tools.

• A static non-pane dialogue box is not attached to a particular window
(although it might be associated with one)- for example Paint's tools.

Use static dialogue boxes to provide such things as tool boxes, and palettes.
Choose the most appropriate type of static dialogue box based on these
factors:

• A pane (such as Draw's tool box) often has a menu entry to toggle
whether it is displayed or not, which is preceded by a tick when you are
displaying the pane. The pane must disappear when a user closes the
window it is attached to.

• A non-pane must be implemented as a standard RISC OS window. It
must have a menu entry to initially display it. A non-pane dialogue box is
typically associated with something such as an application (for example
Paint's tool box), or a window (for example Paint's colours). You must
close a non-pane when the object it is associated with is no longer
displayed, or if a user clicks on the dialogue box's Close icon.

Standard colours you must use for a dialogue box are:

• black (7) on a grey (Z) background for the title, whether or not you have
the input focus (ie don't highlight the title)

• black (7) on a grey (1) or white (0) background for the body

• black (7) on a white (0) background with a black (7) border for writable
icon fields

• black (7) on a cream (12) background with a black (7) border for action
buttons.

""""

Dialogue boxes and
keyboard short cuts

Standard icons used in
dialogue boxes

Writable icons

Action icons

Dialogue boxes match the colouring of menus, to show that they are part of
the menu tree. If the dialogue box is large and has fill-in fields then use
colour 1 as the window background rather than 0. Large expanses of white
background can make fill-in fields harder to see.

A dialogue box must work in exactly the same way whether it was opened
from a menu or using a keyboard short-cut.

For full details on using keyboard short-cuts, see the chapter entitled
Handling input.

There are various standard forms of icon that occur within dialogue boxes,
which are outlined below.

Writable icons are used for various forms of textual fill-in field. You should
use either validation strings or your own filtering code to ensure that only
legal strings are entered.

You must handle the following keystrokes within a dialogue box with
writable icons:

i

.JReturn

Esc

move to the next writable icon within the dialogue
box, or to the first if currently at the last.

move to the previous writable icon within the
dialogue box, or to the last if currently at the first.

move to the next writable icon within the dialogue
box, or perform the default 'go' operation for this
dialogue box if currently within the last writable icon

cancel the operation and remove the dialogue box.

When you move to a new writable icon, place the caret at the end of any
existing text.

An action icon is a 'button' on which a user clicks in order to cause some event
to occur - typically that for which he has just entered parameters in the
dialogue box. An example is the OK button in a 'Save as' dialogue box.

a • _ __ _ __ .-1 _.~ - 1 - -·. _ I-. _ ~~ __ ')()

Option icons

Radio icons

An action icon must invert while the pointer is over it (like a menu item). Do
this by setting an appropriate button type - see the Programmer's Reference
Manual for details.

As well as the keystrokes outlined above, you may wish to provide keyboard
equivalents for any action icons. This is especially useful if the dialogue box
itself can be popped up by a keystroke, so that the entire dialogue box can be
driven from the keyboard.

If you wish to do so, you should arrange your action icons in a row
(preferably horizontal}. Assign F2 to the leftmost (or top) action icon, FJ to
the next one, and so on until you reach FlO. Note that:

• Fl must always provide help if it does anything.

• Fll is reserved for future use by Acorn.

• F12 must always remain a route to the CLI.

See the chapter entitled Handling input for further details.

An option icon is a 'switch', and can either be on or off. You must use the
standard option icons available in the Wimp's sprite pool for such icons:

[ili] D
opt on opt off

Any associated text must be to the right of an option icon. Pressing either
Select or Adjust over an option icon must toggle its state.

A radio icon is one of a group of 'buttons' only one of which may be selected
at once. You must use the standard radio icons available in the Wimp's sprite
pool for such icons:

·$> ·0
radioon radiooff

l.t,... • ,..J: t.-.- I,....-.,

~
Arrow icons and sliders

Any associated text must be to the right of a radio icon. Pressing either Select
or Adjust over a radio icon must select it, and deselect any other radio icon in
the group that was previously selected.

An arrow icon is used to increase or decrease a numeric value (such as when
setting a Zoom value in Draw or Paint). It is sometimes used in conjunction
with a slider (such as when setting a Palette entry). You must use the standard
arrow icons available in the Wimp's sprite pool for such icons:

up down left right

Pressing Select must adjust the value or move the slider one way; pressing
Adjust must do the opposite. So if pressing Select on a left icon moves a
slider to the left, pressing Adjust would instead move the slider to the right.

··--·-- __J:-.1-.- L... , ,.,

~ Handling input

Gaining the caret

Unknown keystrokes

Abbreviations

You may gain the caret if:

• a user clicks inside your window

• a user calls up a menu or dialogue box.

In the latter case, you must give the caret back to the previous owner when you
close the menu or dialogue box. Normally RISC OS automatically does this
for you.

When you gain the caret, you must not automatically re-open your window on
top of all others. The reverse also applies; if you pop a window to the front
of the window stack, do not automatically gain the caret.

If you receive a keystroke that you do not understand or use, do not claim it -
pass it on to other applications using Wimp_ProcessKey. This allows other
windows to provide hot key operations that work anywhere; it also allows the
Wimp to do function key expansion in the last resort.

Keyboard speedups for menu operations are useful to expert users. You must
place reminders of their existence right-justified in the relevant menu entry.
The following are examples of the abbreviations that you should use:

AX
F3
1lF3
.1\f}

A1lF3

control character
function key
shifted function key
control function key
control shifted function key

The character code for '.1\' is &SE and the code for '1l' is &8B, assuming you're
using the system font- which you must do for menus and dialogue boxes.

Selections

Selecting text

Operations with
selections

Typical menu entries would look like this:

Copy "C

Many applications support the concept of a selection of data within a
document - that is, a portion of data on which a user can perform operations.
If you support selections then you must use:

• Select to select an object or (by dragging) an object range

• Adjust to extend or reduce the selection, either by pointing or by dragging.

If a user is selecting text in your application, then you must follow these rules::

• Clicking Select sets the caret.

• Dragging Select selects a range of text.

• Clicking or dragging Adjust adjusts the extent of the selection.

You should also use these conventions, which will make your application more
powerful and consistent:

• The caret should be separate from the selection.

• A double-click when setting/dragging a selection should select words.

• A triple-click when setting/dragging a selection should select lines or
paragraphs, as appropriate.

• If a user holds down Ctrl while setting a selection, you should not move
the caret.

You should always aim to make copying, moving or deleting a selection a
single operation, rather than the separate cut/paste required on other systems.

---. Keyboard shortcuts

Porting applications

Preferred shortcuts

Using a mouse and pointer to choose items from a menu is not always the
quickest way to use an application. Many users, particularly experienced ones,
like to have keyboard shortcuts to particular operations. To save confusion,
common commands should have consistent shortcuts across different
applications. These are listed below.

In general, you should try to use function keys for shortcuts, and provide a
keystrip to use with them.

If you are porting an existing application from another operating system (or
are writing an emulation of one) we recognise that there will be a strong case
for not changing the keystrokes it uses, so that existing users of the package do
not need to learn new keystrokes. In such cases we leave it to your discretion
whether you use the shortcuts below, or the ones your application originally
used.

This list shows the keyboard shortcuts you should try to use. The left column
gives the standard abbreviation for the shortcut - use this in your menus where
applicable - and the right column a description of what it does. Obviously
you do not have to implement all of these, but where a function corresponds
to one you do provide, you should use this shortcut rather than any other:

Abbreviation

Fl

F2

11F2
/\f2

F3
Fll

F12

Print

Delete

Copy

Esc

H::mrllinn inout

Action

Help

Load named document

Insert named document

Close window

Save document
Reserved for use by Acorn - do not use this key at aU
Give access to *Commands using CLI - do not use
this key at aU

Print document
Delete left if there is a caret (as backspace), or
delete selection if there is not a caret (as AX)

Delete right if there is a caret, or copy selection to
cursor if there is not a caret (as AC)

Cancel operation

35

International support

~

i
n~

11i

Move by a character

Move by a line

Move by a word

Move by a page (like clicking on the scroll bar
background)

Move window by a line (like clicking on the scroll
bar arrow icons)

Move to start/end of line

Move to start/end of document

Delete line

Clear selection

Copy selection to cursor

Delete selection

Move selection to cursor

RISC OS already has some facilities for international use (eg multiple
alphabets/keyboards) . It will be extended in the future to allow translation
of ROM messages, to provide such extra facilities as international lexical
sorting. Even without these facilities RISC OS computers are sold in many non
English-speaking countries. Every step you make towards helping a user
understand programs in their native language helps your sales in the
international market. Accordingly:

• Use system facilities for datestamps etc.

• Use pictorial icons rather than text/picture combinations.

• Use Alt as a shifting key rather than as a function key. Different forms of
international keyboards have standardised the use of Alt for entering
accented characters.

• Do not forbid the use of top-bit-set characters in your program - again
this will interfere with a user who wants to use accented characters.

• Don't assume that Latini is the current character set.

I 1---11=-- : __ __ ...

·-

--- Editors

Introduction

Multi-document editors

"""' Matching standard
dialogue boxes

An editor presents files of a particular format as abstract objects which a
user can load, edit, save and print. You must always remember that an editor
is a special type of application, and as such, it must comply with all the rules
laid down in other chapters within this Guide. Any editor you write should
also be consistent with the editors (Draw, Edit and Paint) provided in the
applications suite.

Wherever possible, you must write an editor so that it can edit multiple
documents concurrently. This removes the need for multiple copies of the
program to be loaded. Edit, Draw and Paint are all multi-document editors.

Many of the dialogue boxes that you will need to use for your editor should
match standard ones already used by other editors (such as Draw, Edit and
Paint) that are shown as illustrations in this chapter.

The best way to ensure they match is to define them using templates. If you
do so, you can use FormEd to:

• copy templates that closely match your needs from Draw, Edit, Paint and
other established RISC OS editors

• edit the templates to make any necessary changes, such as changing the
title of the editor

• save the modified templates to your editor's template file.

l=rli tnr~ 37

Editor windows

Title

Colours

The user Interface

Like any other RISC OS application, an editor must run in a window.

The title of an editor window must be the full pathname of the current
document, centred in the title bar. If the document has not yet been saved or
loaded, then its title is instead <untitled>.

• If the document has been modified, you must append a space followed
by a * to the title.

• If there are multiple views of the same document, you must lastly append
a space followed by a number n to the above title, where n is the number
of existing views of the document.

You can set the window's minimum size field so that the title length does not
restrict the window's minimum size.

Standard colours you must use for the editor window are:

• black (7) on a grey (2) background for the title when it is not highlighted
(ie you do not have the input focus)

• black (7) on a cream (12) background for the title when it is highlighted
(ie you do have the input focus)

• dark grey (3) for the outer colour of the scroll bar

• light grey (1) for the inner colour of the scroll bar.

The user interface that RISC OS provides to load and save documents is
rather different from that of other operating systems, because directory
displays are always available. This means that there is no need for a separate
'mini-Filer' which presents access to the filing system in a cut-down way.
Although this may feel unusual at first to experienced users of other systems,
it soon becomes natural and helps the feeling that applications are working
together within the machine, rather than as separate entities.

Starting an editor ...

r"" .. . by double-clicking on
the editor's icon

'.

. .. by double-clicking on a
document's icon

... by dragging a
document's icon

You must start your editor if a user:

• double-clicks on the editor's icon within a directory display using either
Select or Adjust

• double-clicks on a document icon within a directory display using either
Select or Adjust, where the document 'belongs' to the editor, and the
editor has not already been started

• drags a document to the printer icon using either Select or Adjust, where
the document 'belongs' to the editor, and the editor has not already been
started.

In the first case you must always load a new copy of your editor. You must
also put an icon containing your editor's ! appl sprite onto the icon bar. This
applies even if you have already loaded one copy of your editor.

You would typically do this by running your editor's ! Appl. ! Run file.

In the second case, if your editor isn't already running you must start up a new
copy of it and put its icon on the icon bar. You must then open the document
that was double-clicked, as described below.

You would typically do this by using the run-type of the document file, which
in turn will invoke the application by name with the pathname of the
document file as its single argument.

If your editor is already started, then a double-click on a document that
'belongs' to it doesn't start a new copy of the editor - it just loads the
document, as described below .

In the last case, if your editor isn't already running you must start up a new
copy of it and put its icon on the icon bar. You must then print the document
that was dragged, as described below.

You would typically do this by using the print-type of the document file,
which in turn will invoke the application by name with the pathname of the
document file as its single argument, followed by a -print option flag.

If your editor is already started, then dragging a document that 'belongs' to it
to a printer driver doesn't start a new copy of the editor - it just prints the
document, as described below.

~rlitf\ rc:

Creating a new
document

Opening the window

Single-document editors

Loading a document ...

. . . by double-clicking on a
document's icon

You must create a new document and open a window on it if a user:

• clicks on the editor icon on theicon bar using Select.

If your editor needs arguments to create a new document, you may also use a
dialogue box during the course of this process. If a style sheet is required (eg
for a DTP program) then you may instead use a static dialogue box, and drag
the style sheet from a directory display.

The first window your editor opens must be horizontally and vertically
centred in a mode 12 screen. It must be no larger than 700 OS units wide by
500 high, so it does not occupy the entire screen. This emphasises that the
application does not replace the existing desktop world, but is merely added
to it. Open subsequent windows 48 OS units lower than the previous one, but
if this would overlap the icon bar then return to the original starting position.
The initial size and position of windows should be user-configurable, by
editing a template file.

In a single-document editor, if a user clicks on the editor icon on the icon bar
you must create a new, blank document only if a document is not already
loaded. If a document is already loaded, you must instead move the document
window to the front of the window stack, in case it has been obscured by other
windows.

You must load a document and open a window on it if a user:

• double-clicks on a document icon within a directory display using either
Select or Adjust

• drags a document icon from a directory display to your editor's icon on
the icon bar using either Select or Adjust

• drags a document icon from a Save dialogue box to your editor's icon on
the icon bar using either Select or Adjust .

In the first case you may have to start your editor (see above) .

... by dragging a
document's icon

Inserting one document
into another

Saving a document

In the latter two cases, the editor must already have been started for its icon
to be on the icon bar. This way of loading a document allows a user to specify
exactly which editor to use. For example, you can drag a file of type PoScript
onto the Edit icon to edit a PostScript program.

In all cases, the size and position of the window you open must be as laid
down above.

You must try to insert a document into the one you are editing if a user:

• drags a document icon from a directory display to an open editor window
using either Select or Adjust

• drags a document icon from a Save dialogue box to an open editor
window using either Select or Adjust.

If the document is not of a type that your editor can import, it must ignore the
operation and not generate an error.

You must provide a dialogue box as follows for a user to save a document:

The dialogue box consists of a sprite icon, a writable icon, and an action icon.
This is the standard equivalent of the 'mini-Finder' in other systems. If there is
no pathname (ie the document is a new one that has not yet been saved), then
invent a simple leaf name, eg TextFile in Edit, so that dragging the icon to
a directory display will not cause an error.

Once the dialogue box is displayed, a user must be able to:

press Return or click on OK to save in the already named file

(clicking on the menu entry that leads to this dialogue box should have
the same effect)

2 edit the pathname as desired using the keyboard

111

3 drag the icon into a directory display, to save in that directory with the
given leaf name

4 press Escape to cancel the operation.

A user will typically use (1) to save an extstmg document that has already
been saved, (2) to give the leaf name of a file when it is first saved, and (3) to
specify the directory when it is first saved. There is, of course, nothing to stop
a user specifying the directory by typing the complete pathname of a file,
instead of dragging it to a directory display.

When (1) happens, you must check that the proposed name does at least
contain one '.' character. This prevents a common error in beginners, who just
see the proposed leaf name, and attempt to select OK immediately. If there is
not a '.' character, you must generate an error window like this:

The writable icon you use for (2) must be able to accommodate pathnames up
to 255 characters long, and have a validation string of 'a- ', so that spaces
cannot be included in the pathname. Your application must not crash if a user
gives a longer pathname.

When you save the document, you must:

• make sure the document's datestamp is unchanged if the document was
unmodified; otherwise you must update it

• check any return codes and errors from saving the document, and take any
appropriate action, such as displaying an error in a window

• mark the document as unmodified, unless the save was to a scrap file

Crli+nr~

,_

!"'\ Saving a selection

Other uses of the icon in
a Save dialogue box

• update your stored name for the document and the window title (if
necessary)

• remove the Save dialogue box and the rest of the menu, unless Adjust was
used to do the save, in which case they must remain on the screen.

Save should be interpreted as being like 'save and resume' from some other
systems, ie after the operation a user is still editing the same document.

You should also provide a similar dialogue box so that a user can save a
selection from a document. If you do so, the default leaf name offered must
be Selection. Its menu entry may be grouped either with other selection
operations, or with the 'Save file' operation. If there are several possible
selection save formats, putting it on Save may be more appropriate. Balancing
submenus may also be an issue. Edit and Paint, for instance, group Save
selection with other selection operations; Draw (which has several different
forms of Save selection, and many other operations on the Selection submenu)
groups it with Save file .

The icon in a Save box should be treated in the same way as an icon in a
directory display. So as well as dragging the icon to a directory display to
save the document (or part of it), a user can also drag the icon from the save
box:

• to the same editor's icon, which creates a new (cloned) copy of the
document- see the section on Loading a document

• to a different editor's icon, which loads a copy of the document into that
other editor- see the section on Loading a document

• to another document, which inserts your document into the other
document- see the section on Inserting one document into another

• to a printer driver, which then prints your document - see the section on
Printing a document .

~rlit"rc

Printing a document

Closing document
windows

Closing document
windows using Adjust

You must print a document if a user:

• drags a document icon from a directory display to a printer driver using
either Select or Adjust

• drags a document icon from a Save dialogue box to a printer driver using
either Select or Adjust.

See the chapter entitled Printer Drivers in the RISC OS Programmer's Reference
Manual for full details of how the printer drivers work.

If a user clicks with Select on the Close icon of a document window, you must:

• close the document immediately if it is unmodified

• pop up a dialogue box similar to one of the following if the document
has been modified:

You should use the one on the left if the document has previously been
saved, or the one on the right if the document is new and has never been
saved.

If the user then clicks on Yes you must pop up a Save dialogue box (see
above); if the document is successfully saved then close its window. If the
answer is No, or any cancel-menu (eg Escape) occurs, then you must not
close the window.

If a user clicks with Adjust on the Close icon of a document window, you
simply have to:

• close the document window if the document is unmodified and the Shift
key is not depressed

• open the document's home directory display, if it has one.

Quitting editors

Matching documents to
editors

Providing Information
about your editor

You must supply a Quit option at the bottom of an editor's icon bar menu. If a
user chooses it when there is unsaved data, then you must display a dialogue
box like this:

where n is the number of modified files that have not been saved. (Files
should say file if n= 1.)

You must also use this dialogue box if the user has used another method (such
as the Task Manager) to quit the editor, and there is unsaved data .

Editors use RISC OS file types to distinguish which files belong to them.
Your editor's ! Boot file must define any of the following that are relevant:

• Alias$@RunType_ttt, Alias$@PrintType and File$Type_ttt
variables

• ! appl and sm! appl sprites

• file_ttt and small_ttt sprites.

For further details, see the chapter entitled Application direcwries .

The 'About this program' dialogue box provides useful information about
your editor. For example:

l=rlitn rc 4!'1

AC

Providing Information
about documents

Data transfer between
editors

You must provide it at the top of your editor's icon bar menu, but it doesn't
have to match the one above- we encourage creativity here.

The 'About this file' dialogue box provides useful information about a
document being edited. For example:

You must provide it at the top of a document window's menu, or within a
'Mise' submenu if there are other miscellaneous menu entries to collect.
Again, it doesn't have to match the one above.

One of the aims of RISC OS is to encourage the free circulation of data
between a number of cooperating applications. The following points are all
relevant to this:

• You must thoroughly document any data formats that your editor uses,
and make such documentation available to third parties.

• Your editor must be able to read in data formats that are in common use
and are relevant to its specific application area.

• Your editor must implement both the RAM Transfer and the Scrap
Transfer protocols for data transfer between applications. For full
details of these protocols, see the RISC OS Programmer's Reference
Manual.

• Your editor must be able to export the same formats of data that it can
include or import, even if that format is normally processed by another
editor (such as plain Text, a Sprite or a Draw file) .

• If you use Draw files you must render them accurately, as Draw itself
does. Draw files should be used as the standard form for structured
graphic data interchange.

Appendix- !Help

Technical details -
introduction

~ Messages

These technical details are included here because they were unintentionally
omitted from the Programmer's Reference Manual. We consider !Help to be
important, and want to make sure that you have the information you need to
support it.

For an application to use interactive help, two Wimp messages are employed.
One is used by Help to request the help text, and the other is used by the
application to return the text message.

To request help, the Help application sends a message of the following form:

block + 16
+20
+24
+28
+32
+36

&502 - indicates request for help
mouse x co-ordinate
mouse y co-ordinate
mouse button state
window handle
icon handle

(-1 if not over a window)
(-1 if not over an icon)

Locations 20 onwards are the results of using Wimp_GetPointerlnfo.

The Wimp system will pass this message automatically to the task in charge
of the appropriate window/icon combination. If the application receiving the
message wishes to produce some interactive help, it should respond with the
following message:

block + 16 &503
+20 help message, terminated by 0

AnnAnrli)(- IHAin 47

The help text

The Help application

AQ

The help text may contain any printable character codes (including top-bit-set
ones). If the sequence I M is encountered, this will be treated as a line break
and subsequent text will be printed on the next line in the window. If !Help
needs to split a line because it is too long, it does so at a word boundary
(space character).

The help text is terminated by a null character.

The help application issues message type &502 every 1/lOth of a second to
allow applications such as Edit and Draw to change the help text according to
the current edit mode. To avoid flicker, the display is only updated when the
returned help string changes.

With certain applications, such as the Filer, no interactive help is supplied
and the Help application supplies some default messages in instances like
this.

Reader's Comment Form
RISC OS Style Guide

We would greatly appreciate your comments about this Guide, which will be taken into account for the
next issue:

Did you find the information you wanted?

Do you like the way the information is presented?

,...-.., General comments:

If there is not enough room for your comments, please continue overleaf

How would you classify your experience with computers?

D D D D
Used computers before Experienced user Programmer Experienced Programmer

Cut out (or photocopy) and post to:

Dept RC, Technical Publications
Acorn Computers Limited
645 Newmarket Road
Cambridge CBS 8PB.

Your name and address:

This information will only be used to get in touch with you in case we wish to
explore your comments further.

