
l

QDBug
The definitive debugger

Produced by Vertical Twist
) · Program written by Christophe Thivend, ArcAngels Software

Marketed by Leading Edge

Introduction

) Getting started.
Activating QDBug
Exiting QDBug
QDBuginfo

Contents

Using the QDBug windows
Overview
Selecting a window
Altering windows
Clear screen.
Delete Window
Adding a window
Window Start Address
Window Start Address locker
Execute Window Start Address Locker
Printing windows

) Printer Options
Changing character height
Changing Window Type
Returning to the main control window
Full screen
Cancel full screen
Instant window selection

Different window types
The register window
Disassembly window
Memory dump window
Editing memory using a memory dump window
Different memory dump types (Intel and Motorola)
Current Status Window
Pipeline window

) QDBug Workspace
Workspace

1

1
1
1
1

2
2
3
3
3
3
3
3
4
4
4
4
4
4
5
5
5
5

6
6
7
7
7
8
8
8

9
9

QDBug *commands 10
*Break 10
Trapping named files when they arc executed 10
*Break Filename 10
*NoBreak 10
*QDbug 10)

File handling 12
Overview 12
Current Directory 12
Set Current Directory 12
Load File 12
Load Source 12
Save File 12
Stop Drive 13

Viewing BASIC source and Text files 14
Overview 14
Loading Source code 14
Slots 14
BASIC viewing windows 14
TEXT viewing windows 14)

Setup Options 15
Overview 15
Dump Options 15
Execution Options 16
Screen options 17
Changing the Printer Options 19
IRQ options 20
Terminal configuration 21
Saving the QDBug configuration 22
Load user configuration 22

Debugging tools 23
Functions for execution 23

Memory functions ~5)
Fill memory with same byte 25
Search memory 25
Next match 25
Previous match 25

Copy memory

Miscellaneous functions
OS Exit
Stop Drive

) Viewing the programs screen
View program screen from a start address
Setting up I down scrolling value
CLI • Command Line Interpreter
History
Key press emulation
Calculate expression
Change Register

Breakpoints

25

26
26
26
26
26
26
26
26
27
28
28

29
Overview 29
Breakpoint related keys 29
Installing a breakpoint 29
Installing a complex breakpoint, with [F6J 29
Installing I removing a simple breakpoint, with [CtriJ+[BJ 30
Run until breakpoint 30

1
Kill a breakpoint 30

J Errors 30
Kill all breakpoints 30
List all breakpoints 30
Saving and loading breakpoint lists 30

Labels
Overview
List Labels
SWI's and labels

Blocks
Overview
SWI calls for Block functions.
List Blocks
Save Blocks
Load Blocks

) Relocate Blocks
Delete Blocks
Note on blocks and labels

31
31
31
31

32
32
32
32
32
32
33
33
33

Macros 34
Overview 34
Macros control mode 34
Record 34
Save 34

Load 34)
ReMap 35
Play 35
Kill 35
Clear All 35
Set Macro Size 35

SWI handling 36
Overview 36
SWI control mode 36
History 36
List 36
Add 36
Remove 36
Clear 36

Appendix A - configuration file format 37)

Appendix B - SWI calls 39

Appendix C - List of expressions 44

Appendix D - Key controls 45
Function key controls 45
General controls 46
"Running control" functions 46

Appendix E - QDBug Quick Reference Card 47
Quick Reference Card manual copy 49

)

QDbug
Introduction.

QDBug has been written to help programmers find the bugs that almost invariably creep
) into code. The 'professional' and ARM code learner can benefit from using this program as

it allows you to single step though code looking for where things go wrong.
It has been written to remain almost invisible until needed, when with the press of the 'hot
keys' QDBug will come to life.

There are many features including: simple window based editing system, BASIC source code
can be viewed during execution, single step and skip instructions, REPEAT-UNTIL,WHILE
and DO loop execution, alter memory between processor instructions, multiple break points,
search fill and copy memory blocks with the added facility of remote terminal control. All
this and much more.

Getting started.
Loading QDBug
First load QDBug by double clicking on its icon from the disks filer window. A small box
will appear briefly to confi.tm that it is installed.

Activating QDBug
) You can now enter QDBug at any time simply by pressing [SHIFT]+[Ait]+[Alt]+[SHIFT] keys.

)

The main control and editing window should now appear.
There are also 2 other ways to enter QDBug, these methods are detailed later in the manual
under '*Break' and 'SWI calls'

Exiting QDBug
To leave the QDBug editing window, press the [Ctrl]+[R] keys. This is the 'Run' command.
There is also another way to exit QDBug this is detailed later under 'OS_Exit' .

QDBuginfo
Press [Ctrl]+[F6] to see extra information on your copy of QDBug.

QDBug Page 1

Using the QDBug windows

Overview
Above is a screen shot of the main QDBug control screen. As you can see it is made up of a
number of separate titled boxes. Each of these 'boxes' or windows can be either : moved,
have their size changed, be deleted, or their function changed. This allows you to customise
the screen to your own requirements. These changes can also be saved to a file for repeated
use.

Up to 8 windows can be displayed at once but overlapping ones are not supported. They are
also updated in real-time but this stops momentarily when a key is pressed.

Each of the windows are numbered and titled for easy recognition.
Window 1 always displays the register contents and cannot be deleted or altered.

)

)

Window 8 displays infmmation about the last thing that occurred. This leaves windows 2 to)
7 which are free for the user to set up as required.

QDBug Page 2

)

These windows can be of 3 types: Disassembly, Memory or Pipeline. These can also have a
"window sta11 address", which is the pointer to memory to disassemble or to dump from.

There is also be a "start address locker", which is an expression that is calculated each
single-step and the result can become the "window start address". Once your perfect
window setup has been achieved, you can save the configuration to disk to be used again.

Selecting a window
The [Tab] key changes the currently selected window. A black box will appear around its
title to confirm that it has been selected.
[Shift]+[Tab] changes the selected window in the opposite direction to [Tab].

Altering windows
To change the shape or position of any of the windows 2 to 7 press [Ctrl]+[F9]. The keys [M]
and [S] change the effect that the cursor keys have on the window selected.

Press 'Escape' to exit this window altering mode.

Clear screen.

QUICK KEY FIND: [Ctrl]+[F9]
KEYS : [S] - Stretch

[M]- Move

When windows are moved around, sometimes 'debris' is left on the screen. This can be
cleared by pressing [Shift]+[Fll]. This is also useful if you are using a terminal as the

) terminal screen will also be cleared.
QUICK KEY FIND: [Shift]+[Fllj

Delete Window
If you do not need a window then it can be deleted. Use [Shift]+[F9] on the selected window.
This can only be done on windows 2 to 7.

Adding a window
When an extra window is needed, it can be created by pressing [Ait] with a number between
2 and 7. This number represents the window number to be created.

QUICK KEY FIND: [Altj + [2] to [7]

Window Start Address
Once selected (with [Tab]) a window can be given a pointer in memory from where it should
start its memory dump or disassembly.

To change the Window Start Address press [Ctrl]+[F12]. You will then be prompted for an
) address, enter your choice then press [Return].

QUICK KEY FIND : [Ctrl]+[F 12]

QDBug Page 3

Window Start Address locker
Each window can have a start address that is calculated from an expression. An example
would be 'PC' or program counter. Press [Shift]+[Fl2] to enter this option. You will then be
prompted for an expression. Please refer to Appendix A for the list of available expressions.

QUICK KEY FIND: [Shift]+[Fl2]

Execute Window Start Address Locker)
Once a 'Start Address Locker' has been defined it can be 'Executed' so that the result can be
stored in the 'Window Start Address'. To do this press [F12]. This is useful if you have used
a window to look else where in memory and now need to return. Select the window you are
interested in first.

QUICK KEY FIND: [F12]

Printing windows
If you wish to print the contents of a selected window then press [Ctrl]+[Print]. As QDBug
uses its own internal printer driver, a RISC OS one does not have to be installed. You must
first set up the printer using the printer options.

QUICK KEY FIND: [Ctrl}+[Print]

Printer Options
Various printer options can be selected so that compatibility can be achieved with a number
of different printer types. To select 'Printer Options' , simply press [Shift]+[F3] then [P].
The 'New Line' option tells the computer which sequence of bytes to transmit for a carriage
return.)

The Light On and Light Off options refer to the sequence of bytes that control superscript
or condensed text on your printer.
For each of these options you can enter up to four bytes.
Use the cursor keys to select your option and 'Escape' to exit.
If you have a RISC OS printer driver installed then select the [R] option.

Changing character height

QUICK KEY FIND: [Shift]+[F3} then [P}
KEYS : [R] -Rise OS printer driver, on/off

Sometimes it may be necessary to change the height of the characters in a window. First
select a window then press [FlO]. The height will toggle between normal and double height.

QUICK KEY FIND: [FJ O]

Changing Window Type
When you are setting up your own QDBug screen, you may wish to change the type of
window that you are using. There are three choices : Disassembly, Memory dump and)
Source. As you press [Shift]+[F10] the window type will cycle between the options.

QUICK KEY FIND: [Shift]+[FJO]

QDBug Page 4

Returning to the main control window
Press [Escape] at any point to return to the main control window of QDBug.

QUICK KEY FIND :[Escape]

Full screen

)
Press [Home] to make the currently selected window go to full screen size.

QUICK KEY FIND :[Home]

)

)

Cancel full screen
Press [Copy] to cancel the action of [Home].

QUICK KEY FIND: [Copy]

Instant window selection
To select a window directly press [Alt]+[l] to [Alt]+[7]. If a window is closed then it will be
re-opened.

QUICK KEY FIND: [Alt]+[l} to [7}

QDBug Page 5

Different window types
The register window
The register window displays the contents of all the 16 ARM registers as well as the
condition of the status registers. It also shows the processor mode and next instruction that
will be executed.

1 Reqishrs
R9 :88882888 88888888 88888888 R8:828814C8 t 88888888 88888888 88888888
R1:89998888 ERE83R53 E59FF118 R9:81FED4C8 t 89888888 89888899 98899988
R2:88988858 P 88999889 88888898 R18:88899889 ERE93A53 E59FF118 ER68B5B9
R3:88888959 P 88899899 99899888 R11:98888189 EF988986 E1R9F89E 61567564
R4 :888888BE 3~ . FFFF 83318888 8888 R12:98889FE5 a 588580 858DE128 DD28185A 64
R5:91FED4F8 ~8~ 88888888 88888888 R13:81C82888 78616548 8888115C 88881388
R6:81FED4F8 ~8~ 88888888 88888888 R14:2888B6D7 X 58 E59F9858 E59F2858 E59F38
R7:98888888 ERE83R53 E59FF118 R15:288886FF Y £2888884 E1598886 RR888885
~ZC~IF SUC PC:8888B6F4 STR R7,rR9,tl8l ;R7:81(>&1FED4C8:8

This is always referred to as window number 1 and cannot be moved, stretched or deleted.
You can however change the height to double or nom1al height with [F10] once it has been
selected with [Tab].

Status Flags : These are displayed on the bottom left as a series of letters, N ,Z,C, V ,l,F.
When they appear black that means that particular status bit is set.

)

Processor mode : This is also on the bottom left of the window. The possible modes are :)
User mode, Supervisor mode, IRQ mode and fast intenupt mode (FIQ). These are
represented with : USER, IRQ, FIQ and SVC

The value of the PC (or program counter) is displayed at the bottom of the window. The PC
holds the address of the next instruction to be executed. It is derived from Rl5, where
PC=(R15-8) BIC &FC000003. After the PC display a disassembly of the first instruction in
the pipeline is shown.

Extra information is provided after the disassembly, depending on the type of instruction
being executed.
For example, "R6<& 1 C" means that R6 will take the value & 1 C

"Rl4:&285<&2568:&8010" means that Rl4, which has at present,
the value &285, will take the value &8010 from the address &2568

QDBug Page 6

)

)

Disassembly window
This window displays a disassembly of memory from its 'Window Start Address' as
described earlier in this section. See also 'Window Start Address Locker'.

The small arrow shows the position of the instruction being executed, it sometimes changes
direction. When the processor is forced to jump to a new location the arrow will show the
direction of the jump.

Associated functions : 'Alter window', 'Start address', 'Set Address Locker', 'Execute'

Memory dump window
) This type of window displays a memory dump from its 'Window Start Address'. For more

information, see the section earlier on window start addresses.

)

5 Mel!lot'll
00898899 ERE83A53 E59FF118 s:~~ ~~~3
88988988 EA68B5B8 EA68856E Ou'@n~ @
88888818 EA686782 EA688574)g'@ t~·~
89888818 EA68 B5D2 E5DDB938 Ou' @8.J~3
98889829 E1BBB8A8 25DB889C .. r~ .Ju%
98888928 E139999A 84C98991 9~ .Jm
89998839 225EF894 EAE11FFF 3"''!i ~@

Editing memory using a memory dump window
If you press [F 11], a cursor will appear in the currently selected memory dump window.
You can now edit memory locations using the cursor keys to scan though memory.
[Tab] will change between hex and ascii, and [Escape] will exit.

QUICK KEY FIND: [Fll]

QDBug Page 7

Different memory dump types (lntel and Motorola)
Different types of memory dump can be selected, these are 'Motorola' and 'Intel' type
dumps. The ARM uses the lntel method of storing code in memory.

This function changes the memory dump in ALL windows, including the Register window.
Intel type memory dump is selected by [Ctrl]+[Fll], and Motorola mode is selected by
[Ctrl]+[Fl O].

Current Status Window

QUICK KEY FIND : Intel- [Ctrl] +[F 11]
Motorola- [Ctrl]+[F10]

This is the window at the bottom of the QDBug main screen however it cannot be altered in
any way. It shows you the current QDBug status. For example when you first enter QDBug
with the 'hot keys', the status is "User Interrupt".
Address exceptions and Data aborts are also reported here.

Pipeline window
This window type shows the instructions that are in the processor pipeline.

The small anow points to the actual instruction being executed. When it changes direction it
means that it is pointing in the direction that the processor is about to jump.

QDBug Page 8

)

)

)

QDBug Workspace
Workspace
QDbug needs workspace in the RMA for some of its functions. These include macros, labels,
blocks, breakpoint expressions, source code viewing and to speed up remote terminal
communications.

) You can allocate an amount of memory when first loading QDbug.

)

)

Use the command *QDBug -w xx to do this. Where xx is the size in Kb of required
workspace.

If QDbug is already loaded then press [Fl]. This accesses the CLI, now use the command
QDbug -w xx to change the workspace size. An example size would be 32K.

[F]- displays the amount ofworkspace reserved and the amount free.

QDBug Page 9

QDBug *commands
*Break
Break enters QDbug.
To leave, use Ctrl-R.

Trapping named files when they are executed

*Break Filename
*Break is used to enter QDbug if an absolute file, module or utility of a particular name is
being executed. After loading, QDBug is entered, and the PC is set to the first instmction of
the program.

This is very useful for debugging RiscOS application. This is because you can set up
breakpoints on Wimp_Poll or anything else inside an application.
TI1e syntax is "*Break FileName" where filename does not contain any path name and is not
inside quotes.

For example:
*Break !Runlmage
Will break the execution of any program, modules or utility called !Runlmage.
You can have only one name defined at any one time.

*NoBreak
NoBreak is used to cancel the action of *Break.

*QDbug
Used with the "-w" options, this allows you to set up the size of the workspace.
Warning, you can loose data, if you reduce the workspace by too much.
This can also be used from the 'CLI' inside QDBug.

For example:
*QDbug -w32
Will set the size of the workspace to 32Kbytes.

Used with the "-1", you can load a macro file .
For example :
*QDBug -1 FileName

*QDsave
This saves the labels and blocks to a file.
For example :
*QDsave FileName

QDBug Page 10

)

)

)

)

)

)

*QDJoad
This loads the blocks and labels from a file.
For example :
*QDload FileName

QDBug Page 11

File handling
Overview
Files can be loaded from disk into either normal memory or QDBug workspace memory.
Generally speaking BASIC programs should be loaded into workspace and ARM code, into
normal memory. The following functions are described below : Catalogue current directory,
Set current directory, Load file, Load source, Save file and Stop Drive.)

Current Directory
Pressing [Shift]+[Fl] from QDBug displays the contents of the currently selected directory.

QUICK KEY FIND: [Shift}+[Fl}

Set Current Directory
If you wish to change the currently selected directory then press [Ctrl]+[Fl]. You will then
be asked for your directory name.

QUiCK KEY FIND: [Ctrl}+[Fl]

Load File
This allows you to load a file into main memory, you must enter the file name and load
address. If you just enter the file name then QDBug will look at the file type or load and
execute address if present.
For example, this means that when loading a backup of memory that has been saved with
QDBug, you type in the file name then press [Return] twice.

QUiCK KEY FIND : [F2]

Load Source
This allows you to load source programs into workspace memory. There are 32 slots for
non-BASIC files and 32 slots for BASIC programs. You will first be asked for a slot number,
then a file name. If there is a file already in the slot then it will be cleared and replaced with
the one just loaded.
These 32 slots are overlapping. This means that if the program is BASIC then it is
automatically loaded into the BASIC slots, and if text based then it is loaded into the text
slots.
See the chapter on 'Viewing BASIC source and Text files in QDBug" for more information
on this topic.

QUICK KEY FIND: [Shift]+[F2]

Save File
This allows you to save a section (or block) of main memory to a file. You will be asked for
Start address, end address or length, then the file name.

QDBug

QUICK KEY FIND: [F3}

Page 12

)

)

)

)

)

Stop Drive
Sometimes when you jump into QDBug the floppy drive light will remain on. This option
allows you to switch the drive off. Just press [Ctrl]+[F2].

QUICK KEY FIND : [Ctrl]+[F2]

QDBug Page 13

Viewing BASIC source and Text files in QDBug
Overview
When debugging, it is sometimes useful to be able to see the original source code. This can
be in the form of BASIC programs or Text files. Once loaded, one of the QDBug windows
can be configured to display your source.

Loading Source code
To load source code just press [Shift]+[F2]. You will then be prompted for a slot number
between 1 and 32, then the file name. Remember to select the correct directory that your
file is stored inside using the 'Set Directory' option ([Ctrl]+[FlJ).
As these files are stored inside the QDBug's RMA workspace area you may need to refer to
the section in the manual called 'QDBug workspace' if memory shortages occur.

QUICK KEY FIND: [Shift]+[F2]

Slots
There are 32 slots for Text files and 32 slots for BASIC programs which are overlapping.
This means that if the program is BASIC then it is automatically loaded into the BASIC
slots, and if text based then it is loaded into the text slots.

BASIC viewing windows
QDBug windows can be set to display any of the loaded BASIC programs but BASIC V 1.04
or 1.05 must be present to use this function. To display the program in a window, select a

)

window then press [Shift]+[FIO] until BASIC appears as the window title.)
If one of the 32 BASIC slots are free and there is a BASIC program in main application
memory (&8000 onwards) then it can be viewed as a BASIC program in a QDBug window.
The up I down cursor keys can now be used to view the file
NOTE: The SWI command 'QDbug_SetBlock' for extra relevant information.

TEXT viewing windows
After loading the text select a window then press [Shift]+[FlO] until 'Basic' appears as the

window title. Next press [Ctri]+[Shift]+[FJO], 'Basic' will now change to 'Source'.
The up I down cursor keys can now be used to view the Text file.

QDBug Page 14

)

Setup Options
Overview
QDBug can be made to behave differently from its default setup, things like screen mode,
execution options, dump control, IRQ handling, Terminal setup and options saving I loadi11g
can be accessed from this menu.
Press [Shift]+[F3] to show the 'Options' menu. As with other QDBug menus, you can now

J move the small arrow to your selection where you can then press a letter that will
correspond to a particular option, ie [D] for [D]ump.
[Escape] will return you to the main control screen.

QUICK KEY FIND: [Shift]+[F3]

Dump Options
Use the up I down cursor keys to chose the option you wish to change.

SW! Display type

SWI. The last

QUICK KEY FIND: [Shift]+{F3] then [DJ

- This option controls the way QDBug displays SWI calls on the
disassembly window. The options are :Hexadecimal, Internal table

and to call the RISC OS OS_SWINumberToString
option is generally the better one.

KEYS: [H]- Hex
[I] - Internal table
[C] - CaU RISC OS_SWINumberToString

) Stacks - If a register is set, then the disassembly of LDM will display'EA',
'ED', 'FA', 'FD'. Otherwise, 'IA', 'IB', 'DA', 'DB' will be used.

)

Number format

KEYS : [0] to [F] toggle on I off

- This controls the display of numbers. You can choose
decimal, hex or both fonnats.
KEYS : [H) - Hex

[D] -Decimal

Disassembly information- This controls the additional information that can be displayed

Memory Display Type

QDBug

in a disassembly window. You can switch it on or off with the [D]
key.
KEYS: [D] - Extra information toggle on /off

- This controls the type of memory dump in all the windows. It is
also equivalent to pressing [Ctrl]+[FJO] or [Ctrl]+[F II]. You can
choose Intel or Motorola type dumps.
KEYS : [I] - lntel

[M] - Motorola

Page 15

Branch lnfo Window - With this option, you can select a window to see the instructions
that could be executed by a B or BL instruction. Select a window
number for this function, and when a branch instruction occurs
that window will change from its original function and display the
possible branch code as a disassembly window.
The 'Standing' option means that the window will remain a
disassembly window after a branch instruction and its start address)

Tab Length

Execution Options

is set to the destination of the PC.
The 'Punctual' option means that the window will recover its old
status, type and address after the next key press.
KEYS : [0]- Branch Info Window, toggle on I off

[2] to [7] -window select
[S] - Standing mode
[P] - Punctual mode

- You can choose values between 1 to 9.
KEYS : [1] to [9]

Use the up I down cursor keys to chose the function you wish to change.

SW! Emulation

Running Control

Breakpoint control

Processor type
Ann3

QDBug

QUJCK KEY FIND: [Shift]+[F3] then [E)

- During single stepping, you can select whether QDBug single
steps though SWI calls or it sets the PC to &8 (in SVC) and calls
the SW I. These modes are known as 'Emulate' or 'Follow'.
KEYS : [E] - Emulate

[F]- Follow
- Running control enables is the following functions: Ctrl-W,
Ctrl-Q, Ctrl-R, Ctrl-T, Ctrl-S, Ctrl-F, Ctrl-L, Ctrl-X, F5 and
Shift-F5.
KEYS : [E] - Enable

- When you are. single-stepping code using Ctrl-W and there is a
breakpoint on an instruction, this option tells QDBug if you
want to stop, or carry on and execute the instruction.
KEYS : [S] - Stop single emulation

[M] -Meaningless breakpoint (ignore)

- This tells QDBug whether you wish to emulate an Arm2 or
processor.
KEYS : [2] - Mm 2

(3] - Arm 3

Page 16

)

)

Load File, PC control - When you load a file which contains an execution
address, QDbug can set the PC to this value if this option is
enabled.
KEYS : [P] -Set PC to execution address of file (on I off)

) Screen options
Use the up I down cursor keys to select the function you wish to change.

QUICK KEY FIND: [SHIFT)+[S] then [S)
Screen mode
The QDBug screen can operate in 9 different screen modes these are :
Mode 1 to 3 for normal monitors
Mode 4 to 9 for multisync or VGA monitors

The better the monitor you have then the higher resolution screen mode you should chose,
select the one that suites you best.
NOTE : Mode 6, this is an Atom wide mode and requires a VIDC enhancer to be fitted.

You can change the screen mode by first pressing [SHIFT]+[F3], which are the main options,
then the [S] key for Screen options. Now use the up and down cursor keys so that the arrow
is on the 'Mode' option. Now enter your choice by pressing the number keys. Press
'ESCAPE' when your choice is made.

) There are other more advanced controls you have over the QDBug screen which are
detailed next. All of the following options are available from Options, [SHIFT]+[F3], then
Screen, [S]. Next use the up and down cursor keys to chose your option. These are the
'Screen Options'. Press 'ESCAPE' to return to the main control environment.

Mode

B ufferisation

)

QDBug

- This sets the screen mode that QDBug will operate in, as
described above.
KEYS : [1] to [9)

- QDBug can save the memory where its screen memory will
corrupt. Therefore when you quit QDBug the original memory
can be restored. Because you need space in the RMA, Bufferised
can only be set if space has been allocated to QDBug. See the
*command *QDBug for details on RMA allocation.
KEYS : [A] - Activate, on/off

[B) - Bufferised, on/off (this is set by the computer)

Page 17

Screen Type

Program Screen

Debug Screen offset

User Screen offset

ColourO

Colour 1

QDBug

- If you are using shadow memory and the shadow option is 'on'
then QDBug will use the main screen bank to display its screen.
KEYS : [S] - Shadow, on/off

- If the program being debugged uses legal RISC OS calls to write
to the VIDC chip then select the RiscOS option. If it writes
directly, then select the User option. All of the following options
then also have to be set up : Debug screen offset, User screen
offset, Colour 0, Colour 1 and Data.
KEYS : [R] - RiscOS

[U]- User

- This is only used if 'Program Screen', User mode is selected, and
is used to tell QDBug where it can store its screen memory.
If Value< 0 then Value =!(-Value)
0>=Value<=512Kb: physical address
If Value <&2000000: address in logical RiscOS screen memory.
If Value >=&2000000: physical address
KEYS : [E) - Enter value

- This is only used if 'Program Screen', User mode is selected, and
is used to tell QDBug where the screen memory of the program
being debugged will be. The value limits are as detailed above in
'Debug Screen offset'
KEYS : [E] - Enter value

-This is only used if 'Program Screen', User mode is selected, and
is used to select colour 0 in the program screen. Tf you enter a
negative value, then this means read colour at address 'value'.
KEYS : [E] - Enter value, range 0 to &FFF

- This is only used if 'Program Screen', User mode is selected, and
is used to select colour 1 in the program screen. If you enter a
negative value, then this means read colour at address 'value'.
KEYS : [E] - Enter value, range 0 to &FFF

Page 18

)

)

Data - This is only used if 'Program Screen', User mode is selected. The
correct VIDC parameters will then have to be entered.
KEYS : [E] - Enter value, use , _, for RiscOS settings.
NOTE : See warning below 'VIDC clock'

) V/DC clock - This is only used if 'Program Screen', User mode is selected. It
allows you to use a user definable screen frequency.
KEYS : [1]- 24 MHz

[2]- 25.175 MHz
[3]- 36 MHz

WARNING : Please consult VIDC data sheets before changing the 'Data' and 'VIDC clock'
settings as some combinations may damage certain types of monitors. Inappropriate settings
may also cause the computer to crash.

Changing the Printer Options
If a printout is required of a selected window then some of the following setup's may need
adjustment. Press [Ctrl]+[Print] to print a selected window from the main screen.
Use the up I down cursor keys to select the function you wish to change.

QUICK KEY FIND: [Shift]+{F3] then [P]

) New line data - Here you must set the sequence of bytes for a 'New line' on
the printer.

Light ON data

Light Off data

Driver

)

QDBug

KEYS : [E] - Enter

- This is the sequence of bytes that tell the printer, Light ON.
You can enter from one to four bytes.
KEYS : [E] - Enter

- This is the sequence of bytes that tell the printer, Light OFF.
You can enter from one to four bytes here.
KEYS: [E]- Enter

- The printer driver can be the QDBug Internal Parallel Driver or
a RiscOS driver depending on if one is already loaded, and the
state of the IRQ. Rise OS printer drivers need the IRQ to be
enabled.
KEYS : [R] - Rise OS printer driver, on I off.

Page 19

IRQ options
This option allows you to change the way IRQ's are handled. Use the up I down cursor keys
to select the function you wish to alter.

QUICK KEY FIND: [Shift]+[F3] then [I]

Next Interrupt Handler - The next time QDbug is exited (after a Ctrl-R), the IRQ can be
given to RiscOS (in this case QDbug has just use vectors and
events). Alternatively the IRQ can be handled by the Debugger
allowing it to look directly at keyboard, parallel port and serial
p011.
This is very useful if you want to trace an IRQ or if the program
uses its own IRQ driver.
KEYS : [R] - Rise OS will handle IRQ's

[D] -The debugger will handle IRQ's

Current Interrupt Handler- This informs the user who currently owns the IRQ. Either
'Rise OS' or 'Debugger' will be highlighted.

RiscOS - When in QDBug, if your program uses RiscOS calls to read
the keyboard (because for example, you are debugging an IRQ) set
the 'Running' option ON, because the state of the keyboard will be
held in RiscOS workspace.
KEYS : [R] - Running, toggle on I off

Reset Keyboard on exit - When you leave QDbug (ie by [Ctrl]+[R]) it is advisable that the
keyboard is cleared. However some programs including RISC OS
itself can't cope with keyboard resets. Use this option with care.

QDBug Page 20

)

)

)

Terminal configuration
QDBug allows the use of a remote terminal. Using the serial port, the terminal can be made
to display the QDBug screen leaving the computers screen to show the program being
debugged. There is currently support for only one type and that is a VT52 terminal with an
80*25 character screen.
NOTE: The terminals keyboard is null, QDBug is still controlled from the Archimedes.

) Use the up I down cursor keys to select the function you wish to change.

Type

Baud rate

Format

Parity

Bottom border

)

QDBug

QUICK KEY FIND: [Shift]+[F3] then [T}

- VT52 only (V0.31).

- Can be any Rise OS baud rate.
KEYS : [E) - Edit
- There can be 7 or 8 bits data (bit 7 is never used by QDbug).
1 or 2 stop bits, with Parity on or off.
KEYS : [7] - 7 bits data

[8] - 8 bits data
[1] - 1 stop bit
[2] - 2 stop bits
[P] - Parity on I off

- Odd and even parity supported with the option for 1 on TX
ignored on RX, or 0 on TX ignored on RX.
KEYS : [0] - Odd parity

[E] - Even parity
[1]- 1 on TX ignored on RX
[0] - 0 on TX ignored on RX

- When using a terminal you can switch off the bottom borders so
that larger windows can be displayed.

Page 21

Saving the QDBug configuration
With this option you can save all of your settings to disk. Information on window positions,
breakpoints and all other important variables are stored in this configuration file. Once
selected you will be prompted for a filename, type one in and presses [Return]. If you call
the file 'QDbug_Cfg', QDBug will try and load it automatically from the currently selected
directory when it is first loaded, and use it instead of the default settings.

QUICK KEY FIND: [Shift]+[F3] then [A]

When the configuration is saved to disk, it is stored in the form of a text file and this can
easily be edited using !Edit. This allows you to create your own selections of windows easily.
See Appendix A for the configuration fi le format.

Load user configuration
This option allows you to load a previously saved configuration file from disk. If the file is
called 'QDbug_Cfg' and it is in the same directory, it will be loaded automatically and
replace the default settings. Breakpoints, macros, window information and all other user
setups are stored in the config. file. This means that you can start where you left off when
debugging over several sessions.

QUICK KEY FIND: [Shift}+[F3] then [L}

QDBug Page 22

)

)

)

)

)

)

Debugging tools

Functions for execution
The following functions will only work if the 'Running control' is enabled, this is set in the
'Options', 'Execute' menu.

Single stepping
Press [Ctrl]+[W] to single step. The first instruction in the pipeline is executed and the old
state of the processor is saved in the 'History'.

QUICK KEY FIND : [Ctrl]+[W]

Running the program
Press [Ctrl]+[R] to leave QDBug and to run the program being debugged. If QDBug was
entered from the desktop then this would return you back to the desktop.

QUICK KEY FIND: [Ctrl]+[R]

Set breakpoint and run
This function sets up a breakpoint at PC+4 and runs the program. This is useful if you want
to run a BL or SWI. This function will not work in ROM.

QUICK KEY FIND: [Ctrl]+[Q]

Single step, type 2
This is accessed by pressing [Ctrl]+[T].
This is equivalent to [Ctrl]+[Q] if there is a BL as the first instruction in the pipeline.
Otherwise it is like [Ctrl]+[W].

QUICK KEY FIND : [Ctrl]+[T]

Skip instruction
This function is accessed by pressing [Ctrl]+[S]. It is equivalent to the single step function,
but the condition code of the first instruction in the pipeline is set to 'Never' (NV).

Force instruction
This function is selected by pressing [Ctrl]+[F]. It is equivalent to a single step but its
condition code is set to 'Always' (AL).

QUICK KEY FIND : [Ctrl]+[F]

QDBug Page 23

Link Rl4
This function is accessed by pressing [Ctrl)+[L] .
If the first instruction in the pipeline is not a BL, then R14 is saved inside QDBug and R14 is
then set to a new memory location inside QDBug. The program is then 'Run'. When the
processor uses Rl4 to return to the caller, QDBug in entered. The status window will display
'Link executed'.
If the first instruction in the pipeline is a BL, then R14 is set to a memory location inside)
QDBug and the BL is called. QDBug is then entered when the processor returns using R14.
This is very useful for when you want to run an entire subroutine that you know is not very
interesting. Warning, there will be problems if Rl4 has been has been saved in the stack.

QUICK KEY FIND : [Ctrl]+[L]

Back in history
This function load the contents of the 'History' back into the registers (RO to R15). The last
entry in the 'History' is then removed. This is useful for back tracking in code.

QUICK KEY FIND: [Ctrl]+[X]

Execute exceptions
If the status window is showing "Undefined Instruction", "Prefetch Abort", "Data Abort",
"Address Exception" or if the first instruction in the pipeline is an SWI, then use this
function. The SVC is entered and the PC is set to the correct vector (&4 to &14).
This is very convenient if you want to single step your own error routines.

QUTCK KEY FIND: {Ctrl]+{E],)

)

QDBug Page 24

Memory functions
QDBug allows various functions to be carried out on bulk memory. You can search, fill and
copy using simple commands.

Fill memory with same byte

)
This 'Fill' function is accessed by pressing [Ctrl]+[F3].
It is entered in the format, 'Statt address', 'End address' (or+ length) then 'with byte'

QUICK KEY FIND: [Ctrl]+[F3]

Search memory
With this function you can search memory for a byte, word, string or string in a
disassembly.

KEYS: [B] - Byte
[W] - Word
[S] -String
[I] - Instruction.

QUICK KEY FIND: [F4}

You cannot search for a string in source loaded into QDBug.

Next match
) When a match is found from doing a search use the 'Next Match' to continue. This is done

by pressing [Shift]+[F7].
QUICK KEY FIND: [Shift]+[F7]

Previous match
After using 'Next match' you may need to see the previous match. Do this by pressing
[Ctrl]+[F7].

QUICK KEY FIND: [Ctrl]+[F7]

Copy memory
This allows you to copy a block of memory from one location to another. It is an intelligent
copy so memory can be moved up or down by any amount. It is also done in bytes so that
locations do not have to be word aligned. Press [Ctrl]+[F4] to use the 'Copy' function.

QUICK KEY FIND : [Ctrl]+[F4]

QDBug Page 25

Miscellaneous functions
There are a number of extra functions that QDBug offers to help in software debugging.

OS Exit
This causes QDBug to issue an OS_Exit command to the OS. This means that if a program
causes, for instance, a data abort error that you need to dear, you can do so.

QUICK KEY FIND: [Shift]+[F4]

Stop Drive
Sometimes when you jump into QDBug the floppy drive light will remain on. This option
allows you to switch the drive off. Just press (Ctrl]+[F2].

QUICK KEY FIND : [Ctrl]+[F2]

Viewing the programs screen
This allows you to view the screen of the program you are debugging. Use [Alt] and cursor
keys to change the base address of the screen. All of the debugging controls are still working
in this mode but the QDBug screen is not displayed.

QUICK KEY FIND : [V]

View program screen from a start address

)

To view the program screen from a start address press [Ait]+[V), you will then be prompted
for the screen base address. Use [Ait] with the cursor keys to change the base address.)

QUICK KEY FIND : [Alt]+[V]

Setting up I down scrolling value
This sets the value in terms of bytes, that [Alt] up or down adds or subtracts when being
used.

QUICK KEY FIND: [Shift]+[Alt]+[up]

CLI - Command Line Interpreter
The command line interpreter allows you to type in *commands from QDBug. Everything
typed in here is passed onto OS_Cli.
To access this press [Fl), the screen should then go blank apart from a '*' in the top right.
You can now type in your *command. Press 'Escape' to exit this mode.

QUICK KEY FIND: [Fl]

History
Each time a [Ctrl]+ W, Q, R is performed, the state of the processor is saved. Press [F5) to see
the 'History' of the processor. Use the up I down cursor keys to see more of the data.

QUICK KEY FIND: [F5]

QDBug Page 26

)

)

Key press emulation
This option allows you to emulate a key press. To access this feature press [F5].
Once you have pressed [F5] you will asked to select the type of key emulation needed. You
have two choices, 'Until' and 'While'.

KEYS: [U]- Until
[W] - While

QUICK KEY FIND : [F5]

NOTE : Other key presses such as [V] are still accessible during an emulation.

Until
The 'Until' choice is selected by pressing [U].
This means your key press will follow the following sequence.
Repeat
execute command

Until <expression>

While
This 'While' choice is selected by pressing [W].
This means your key press will follow the following sequence.
While <expression>
execute command

) EndWhile

)

Syntax
The <expression> can be any expression from Appendix C.
An example would be :
[Until I @=100
[Command I [Ctrl]+[WJ
This would cause QDBug to single step for &lOO times because@ is an execution counter
incremented each time an emulation command is executed.

Stop emulation
To stop the emulation press [Shift]+[Alt]+[Alt]+[Shift]

QDBug Page 27

Calculate expression
To manually calculate an expression, press [F7]. Check Appendix C for the list of valid
expressions that you can use.

QUICK KEY FIND : [F7]

Change Register
This option allows you to change the contents of a register. Press [F8] to do this.
Use Appendix C for the list of valid expressions that you can use.
The register can also be PC, PSR, R13_svc, or R8_fiq e tc.

QUICK KEY FIND : [FB]

QDBug Page 28

)

J

)

)

)

Breakpoints
Overview
The most important feature of any debugger is the ability to add breakpoints. These allow
you to put invisible markers on an instruction or memory location and when the processor
reaches them QDBug is entered.
It works because QDBug replaces the selected instruction with a 'B qdbug_routine' and when
QDBug is entered the breakpoint is replaced by the original instruction. All this is invisible
to the program and up to 30 breakpoints can be installed.
No breakpoints can be added to addresses over &2000000 and there can be none in ROM.
There can also only be one per memory location.

Breakpoint related keys
Install a breakpoint - [F6]
Add I remove breakpoint- [Ctrl]+[B]
Kill breakpoint - [Shift]+[F6]
Kill all breakpoints - [Shift)+[F8]
List all breakpoints - [Ctrl]+[F8]
Add breakpoint and run - [Ctrl]+[Q]
Run until - [Shift]+[F5]

Installing a breakpoint
There are three possible ways to install a breakpoint into memory. These are with [F6],
[Ctrl]+[B] and a QDBug SWI call.

Installing a complex breakpoint, with [F6]
Install a breakpoint by pressing [F6]. You will then be prompted for some breakpoint
variables.
Syntax : <address> [, <counter> [, <base> [, <expression>]]]

The first variable is the 'counter'. Breakpoints stop the program if their 'counter' becomes
zero.

The second is the 'base'. If the 'base' is >zero when the breakpoint stops the program, the
breakpoint is not removed and the counter is reloaded with the 'base' value.

The 'expression' is re-calculated each time the PC executes the breakpoint, if the result is
not-zero (ie not false) the 'counter' is decrement by 1, otherwise it is not decremented. If
there is no expression, the 'counter' is always decremented (this works like a "-1"
expression). See Appendix C for the list of available expressions.

Default parameters are "1 ,0,-1 ".This means that the breakpoints stops the program the first
time it is executed and is also removed.

QDBug Page 29

Errors: "Too many breakpoints" -You have more than 30 breakpoints
"Bad address" -Your address is over &2000000
"Writing breakpoint error" - There is no physical memory mapped here
"Already installed" - There is already a breakpoint here

Installing I removing a simple breakpoint, with [Ctri)+[B])
When using this option to install a breakpoint, you must have a disassembly window
selected. The instruction at the top of the window will have the breakpoint attached. If you
press [Ctrl]+[B) again it is removed. This function effectively toggles a breakpoint on and off.
The breakpoint will have the default parameters, "1, 0, -1 ".

Run until breakpoint
As a short cut you can 'Run' a program until a particular memory location is reached. Press
[Shift)+[F5], next enter the address you are interested in. QDBug will re-enter when this
occurs. Again it has the default settings of "1, 0, -1 ".

QUICK KEY FIND: [Shift]+[F5]

Kill a breakpoint
Press [Shift]+[F6) to kill a breakpoint, you will then be asked for the breakpoint address.

Errors : "Invalid address" -There is no breakpoint at this address
"Deleting breakpoints error, bad address" - The MEMC has been re-mapped

and the breakpoint cannot be found or deleted
QUICK KEY FIND: [Shift]+[F6]

Kill all breakpoints
To kill all breakpoints press [Ctrl]+[F6].
This is an intelligent removal so if a breakpoint has been overwritten, the instruction will be
left un-altered.

QUICK KEY FIND: [Ctrl]+[F6]

List all breakpoints
To list all the currently defined breakpoints press [Ctrl]+[F8).

QUICK KEY FIND : [Ctrl]+[F8]

Saving and loading breakpoint lists
You can save breakpoint lists for another debugging session by first listing the breakpoints,
by pressing [Ctrl]+[F8), then pressing either [F2) or [F3) .

)

KEYS : [F2] - 'Load' previous state
[F3)- 'Save' breakpoint and SWI list)

QUICK KEY FIND : [Ctrl]+[F8] then [F2] or [F3]

QDBug Page 30

)

)

LABELS
Overview
With the use of QDBug SWI calls in your source code, labels can be used as used in the
disassembly of the program. This helps in making the disassembly more readable.
Labels can be register dependant, or absolute. This means that the user can create frames
and access them using variables, for example [Rl2,#Name%].

List Labels
Press [L] to display the labels, this does nothing if there are none loaded.
Once in this mode the following extra functions are available :
Display lists alphabetically - [A]
Display lists in numeric order - [N]

Notes:
Redundant labels are not shown in the alphabetic lists. The alphabetic list shows you how a
label is interpreted in an expression.
The numeric list shows you how a value is interpreted in a disassembly dump.
If there are labels only in the numeric order list then all labels are redundant.
By default the alphabetic list is selected.

Relocating absolute labels
Press [F8] once in the [L] mode. You will then be asked for the values of the old range and
then the value of the start of the new range.

SWI's and labels
Useful SW/ calls
''QDbug_RecordLabeJs"
"QDbug_NoMoreLabels"
"QDbug_NextLabels"

Please refer to Appendix B for more information on the SW/ calls that are used when
dealing with labels.

QDBug Page 31

Blocks
Overview
QDbug can find the instruction to be executed in a BASIC program, so you can single-step
directly inside it. For this to happen, you have to tell QDbug which blocks you are
interested in.
For example:

DIM Code% 1024

Po/o=Codeo/o
[.. .]

The blocks to record here would be 'Code%'.

Each time an instruction is compiled in the blocks you have defined, QDbug will store the
location of instruction, basic slot number, pointer from start of the program, and length of
the instruction. This will only work on word-aligned instructions.
For each block defined, QDbug allocates a block of memory of the~ length in its
workspace. This is the reason why you must define only important blocks.

Blocks can be saved from QDbug's workspace to disk, so you can load it for later use.
For example:
This is very useful if you create a module from a BASIC program. First set up both blocks
and labels using the appropriate SW! calls. Next load the blocks,labels andBASIC
program into QDBug. You will now be able to single-step the program.

SWI calls for Block functions.
"QDbug_SetBlock"
"QDbug_ NewBlock"
See appendix B for full information on these SWI calls.

List Blocks
Press [F9] to list the currently installed blocks. Once in this mode, the following functions
then become available.

QUICK KEY FIND: [F9]
Save Blocks
Press [F3] to save blocks and labels for later use.

QUICK KEY FIND: [F9] then [F3]

Load Blocks
Press (F2] to load blocks and labels into QDBug's workspace.

QUICK KEY FIND: [F9] then [F2]

QDBug Page 32

)

)

)

Relocate Blocks
Press [F8] to relocate a block. This allows you to change the address of a block.
For example :
You have compiled a module using BASIC, then saved the block and the labels. You have
now loaded your module into the RMA, and wish to debug it. You can load the BASIC
source in slot #1, then the blocks and labels. However, you need to set the block to the base

) address of the module (use F 1, *Modules to find this out). Relocating a block will also
relocate absolute labels whose value is in the range of the block.

)

When you press [F8], you will be asked for the number of the block and the new address.

QUICK KEY FIND: [F9] then [F8]

Delete Blocks
Press [Fll] to delete a block, you will then be asked for a block number.

QUICK KEY FIND: [F9] then [Fll]

Note on blocks and labels
To use the ability to record blocks and labels you need BASIC 1.04 or 1.05 in RAM.
Use *RMFaster BASIC to load it into RAM. Alternatively load BASIC from disk.

QDBug Page 33

Macros
Overview
A macro is a sequence of keys recorded using QDbug. This means that you can create a
sequence of key presses and allocate them to a single macro key. Once recorded, macros can
be accessed quickly by pressing [Ctrl]+[Alt]+[<macro key>]. They can also be saved and
loaded to disk for repeated use.
This is useful if you have a lot of repeated sequences used during debugging.)
Macros can also be played by pressing Ctl-Copy.
When you are playing macros using Ctl-Copy for example, what you type in is also
executed.

Macros control mode
Press [M] to enter the macros control mode. You will then be offered the following extra
functions.

QUICK KEY FIND : [M}

[R}- Record
This allows you to record a macro.
You are asked to press the [Ctrl]+[Alt]+[<macro key>] which will be your macro
trigger key.
[<macro key] can be any of the 104 keys in the keyboard except [Break],
because [Ctrl]+[Break] will reset the machine.
Next, every key or command you type is recorded into the macro.
To stop recording, press [Shift]+[Alt]+[Alt]+[Shift]. Now press [M] again to tidy)

[S]- Save

[L}- Load

the workspace.
The macro is now available by pressing [Ctri]+[Alt]+[<macro key>].
QDbug then tells you the length of the macro, and the number of bytes lost if
the size reserved for the macro was too small.

This allows you to save some or all of the macros.
You are asked for [S] or [A], which stands for 'Some' or 'All', make your
selection, then type in the filename.
If you select [S) , you will be asked to press the macro trigger key for the one to
be saved. Use [ESC) to end.

This allows you to load macros from the specified file.

QDBug Page 34

)

)

)

)

[M] -ReMap

[P]- Play

[K]- Kill

This allows you to change the [<macro key>] of a macro.
You are asked for the current trigger key press, then the new
[Ctrl]+[Alt]+[<macro key>].
This is very useful if you have a macro in key [P], for example, and you know
that in the file you are about to load also contains a macro in [P].
You can move your macro from [P] to another key before loading the file.

This is very useful if you want to see what happens when the macro is playing.
You are asked for the macro to play.
Each time you press [Ctrl]+[Copy], another byte or command is read from the
macro.
Everything else you type is executed.
To stop playing, you can use [Ctrl]+[BackSpace].

You are asked for the macro to kill.
The macro is then cleared from the workspace.

[C]- Clear All
After a confiimation, all the macros m the workspace are cleared.

Set Macro Size
Press [Alt]+(M] to set the amount of workspace (in bytes) that should be allocated to macros.
By default, when you record a macro, all the free memory in the workspace is reserved.
You can set the amount of memory to reserve for the macro with this function.
If you press '0' here the default option is chosen.

QUICK KEY FIND : [Alt]+[M]

QDBug Page 35

SWI handling
Overview
QDbug holds a list of the latest SWI's executed by the operating system.
There is also another lis t which contains only SWI's called from RAM. This is more useful
because it contains only calls made by user programs.
You can also interrupt the execution of up to 16 SWI's. This is useful, for example, to
single-step your own SWI's, or to 'Run' a program until its access a RAM resident module
via an SWI.

SWI control mode
Press [S] to enter the SWI control mode. You will then be offered the following extra
functions:

QUICK KEY FIND: [S]

[H) -History

[L]- List

[A] -Add

This shows you the latest SWI's used by the system.
It is a list which records SWI's called from RAM only, this is because it is often
more interesting for debugging purposes.

This shows you the SWI numbers that will be intercepted by QDbug.
Each SWI is numbered.
There can be up to 16 SWis installed.

Add a SWI to the list, ie you want to intercept another SWI.
When a SWI is called and it is in the list, QDBug is entering and the text "SWI
intercepted" is displayed in the Status window.
If all the 16 slots are full, this option is not shown. You must remove one first.

[R]- Remove

[C) - Clear

This allows you to remove a SWI from the list, when you do this the SWI will
not be intercepted again.
You are asked for the number of the SWI slot (1-16) not the SWI number.

This allows you to clear all of the installed SWI's. You are fi rst asked for
confirmation, then they are cleared.
No more SWis will be intercepted.

QDBug Page 36

)

)

Appendix A - configuration file format

The following text describes the QDBug configuration file fonnat.

#d SW! is followed by "H" (hex), "I" (Internal table) or "C" (call RiscOS).

)
#d_Stacks is followed by the registers (0 ... 9,A .. . F).
#d_Format is followed by "D" (decimal), "H" (hex) or "B" (both).
#d_Dlnfo is followed by "Y" (yes) or "N" (no).
#d_ MType is followed by "M" (Motorola) or "I" (Intel).
#d_Blnfo is followed by "Y" (yes) or "N" (no), "2" to "7", "P" (punctual) or "S" (standing).
#d _Tab is followed by "1" to "9".
#e_SWJ is followed by "E" (emulate) or "F" (follow)
#e Run is followed by "Y" (yes) or "N" (no).
#e_EStop is followed by "M" (meaningless) or "S" (stop).
#e ARM is followed by "2" (Arm2) or "3" (Arm3).
#e Load is followed by "N" (do nothing) or "P" (set PC).
#s Mode is followed by the mode number(" 1" to "9").
#s_Buffer is followed by "Y" (yes) or "N" (no).
#s_Shadow is followed by "Y" (yes) or "N" (no).
#s_SType is followed by "R" (RiscOS) or "U" (user).
#s_DebOff is followed by the value of Debug Screen Offset in hex.
#s_UsrOff is followed by the value of User Screen Offset in hex.
#s _ ColorO is followed by the value of ColourO in hex.
#s Color 1 is followed by the value of Colour I in hex.
#s Data is followed by "#" and the list of the registers.
#s Clock is followed by "1" (24Mhz), "2" (25.175Mhz) or "3" (36Mhz).
#p _ NewLin is followed by the bytes.
#p _j..ighON is followed by the bytes.
#p _ LigO F F is followed by the bytes.
#i_Handle is followed by "R" (RiscOS) or "D" (debugger).
#k_RiscOS is followed by "Y" (yes) or "N" (no).
#k_Reset is followed by "Y" (yes) or "N" (no).
#t _Type is followed by "V" (VT52).
#t_Baud is followed by the hex value used by RiscOS.
#t_Format is followed by the hex value used by the RiscOS in two digits.
#t_Border is followed by "B" (bottom line) or"-" (no bottom line).
#t_On is followed by "Y" (yes) or "N" (no).

Windows coordinates are saved for each of the modes.

) #w _Mode sets the mode of the following windows.
Mode 0 is the terminal.

#w _ XYWH is followed by the number of the window and by ":"(if open) or'"" (if closed)

QDBug Page 37

and by the four digit decimal value of X , Y, Width and Height.
#w Font is followed by the font height (1 or 2) to use for each window.

#w _Type is the type of each windows.
1 is disassembly
2 is memory dump
3 is source
4 is pipeline
5 is BASIC

#w Addr is followed by the start address of each window (2 to 7).
#w Lock is followed by the number of the window and":" and the lock string.

QDBug Page 38

)

)

)

Appendix B - SWI calls

The following text describes the SWI calls that QDBug supports. A higher level of debugging
can be achieved when using these calls.

) The SW! Chunk prefix is 'QDbug_' and the base number is &44B80.

)

QDbug_SetBreakPoint (&44B80)
On entry:

RO=address of the instruction

Set a default breakpoint at the memory location given.

QDbug_KiiiBreakPoint (&44B81)
On entry:

RO=address of the breakpoint

This removes the breakpoint.

QDbug_StartRecording (&44B82)
On entry:

RO=key code of the macro (0-&67, see page 122 ofthe RiscOS Programmer's
Reference Manual)

This is the same as if the user had chosen option [R]ecord from the [M]acros command.

QDbug_StopRccording (&44B83)
On exit:

RO=bytes in the macro
Rl=bytes lost

This is the same as if the user had pressed [M] inside QDbug after stopping the macro.

QDbug_PlayMacro (&44B84)
On entry:

) RO=key code of the macro
The next time QDbug is entered the macro will be played.

QDBug Page 39

QDbug Break (&44B85)
QDbug sets a breakpoint on the next instruction, so the program is halted.
(This SWI is used by the command *Break)

QDbug_ DcbugScreen (&44B86)
On entry:

RO=screen address or -1 to read
On exit:

RO=current screen address
This is used to set the "Debug Screen" value (as in the options, see chapter options).

QDbug_ User Screen (&44B87)
On entty:

RO=screen address or -1 to read
On exit:

RO=current screen address
This is used to set the "User Screen" value (as in the options, see chapter options).

QDbug_ Colour0(&44B88)
On entry:

RO=colour (0-&FFF) or -1 to read
On exit:

RO=current colour 0
This is used to set the "ColourO" value (as in the options, see chapter options).

QDbug_ Colourl (&44B89)
On entry:

RO=colour (0-&FFF) or -I to read
On exit:

RO=current colour 1
This is used to se t the "Colourl" value (as in the options, see chapter options).

QDBug Page 40

)
/

)

)

)

QDbug_ VIDCCiock (&44B90)
On entry:

RO=new VIDC Clock value or -1
On exit:

RO=current VIDC Clock value
This is used to set the "VIDC Clock" value (as in the options, see chapter options).
Value is:

#Ofor 24Mhz
1 for25.175Mhz
#2 for 36Mhz

QDbug_ScreenData (&44B91)
On exit:

RO=screen data pointer
This is a pointer on a 14 word lists for 14 of the VIDC registers.
These registers are used to set the new mode when the "User" screen is selected.
You can read or write into these registers.
But the following order must be used:
word 0- &80xxxxxx (1-JCR)
word 1- &84xxxxxx (HSWR)
word 2- &88xxxxxx (HBSR)
word 3 - &8Cxxxxxx (HDSR)

) word 4- &90xxxxxx (HDER)

)

word 5 - &94xxxxxx (HBER)
word 6- &9Cxxxxxx (HIR)
word 7- &AOxxxxxx (VCR)
word 8- &A4xxxxxx (VSWR)
word 9 - &A8xxxxxx (VBSR)
word 10- &ACxxxxxx (VDSR)
word 11 - &BOxxxxxx (VDER)
word 12- &B4xxxxxx (VBER)
word 13 - &EOxxxxxx (CR)

When a RiscOS screen is selected, these values are read from the address (R0+14*4).
You too can read this list to find out the RiscOS screen data values.

QDBug Page 41

QDbug_Set81ock (&44892)
On entry:

RQ::;address of the block
Rl=size of the block (in bytes)

This clears all blocks in workspace and looks for BASIC programs present (so use it after
loading libraries).)
A block of memory of the same size is created in QDbug's workspace and every instruction
assembled inside the block defined by RO and Rl will be stored inside the workspace
(format: 5 bits for basic slot number, 7 bits for instruction length, 20 bits for offset of the
instruction in the source: inside 1 MegaByte).

QDbug_New81ock (&44893)
On entry:

RO=address of the block
R 1 =size of the block (in bytes)

This creates another block of the same size in QDbug's workspace, and instructions
assembled inside the block defined by RO and Rl will be stored inside.
You can have as many blocks as memory permits.

QDbug_ RecordLabels (&44894)
On entry:

RO=maximum number of labels
Rl=size of the names

This clears the labels present in QDbug, and create a block in workspace ready to receive
RO labels and another block of Rl bytes ready to receive the names of the labels.
A label is recorded when basic sets a variable preceded by "." to P%.

QDbug_NoMoreLabels (&44895)
On exit:

RO=O or enor pointer if V set
Rl=number of labels found
R2=total size of the names (in bytes)

)

This stops the recording of labels and creates two lists of labels, one sorted numerically and
the other sorted alphabetically.)
This SWI uses the SWI "OS_HeapSort" to sort the labels.
If several labels have the same na\TIC, they are all removed from the alphabetic list.

QDBug Page 42

)

)

QDbug_NextLabels (&44B96)
On entry:

RO=frame pointer
R1=0 to store P%, non-zero to store 0%

Use this SWI to tell QDbug if the next labels are absolute (RO= 15) or register-relative (RO=O
to 14, usually 12 for R12), and which value is to be stored (P% or 0%?).
You have to call this SWI after a QDbug_RecordLabels because this SWI doesn't change
these options, so they are undefined.

QDBug Page 43

Appendix C -List of expressions
This appendix contains the list of the expressions that QDBug will understand.

Operators :
+ - I *
AND OR ORR EOR XOR BIC
<< >> >>>
= < > <= >= <>
! ?

Numbers:
[n] =address of the window n, where n is from 2 to 7
['x ,x,x .. .] transforms the "x" in bytes of PSR type:

x= N, Z, C, V, I , F, USR, USER, SVC, IR Q, FIRQ, FIQ

Any number is HEX by default

The prefix \ means a decimal number and % binary number

@is the number of iterations made by function [FS] (Emulation)

RO to Rl5 represent the registers

PC, PSR are derived from R15 in the following way: PC= R15 BIC &FCQ00003
: PSR = R15 AND &FC000003

The suffixes _ user,_ usr, _irq, Jirq, Jiq and _svc can be used to access particular
registers.

One to jour characters between "" are converted into ascii.

More than 4 characters between"" are sent to the SW/ OS_SW!NumberFromString and the
value returned is used.

QDBug Page 44

)

)

)

I

Appendix D - Key controls
This appendix contains the list of QDBug control keys and their respective functions.

Function key controls
KEYS FUNCTION
Fl - CLI

)
Shift F l - Current Directory
Ctrl Fl - Set Current Directory
F2 - Load File
Shift F2 - Load Source
Ctrl F2 - Stop Drive
F3 -Save File
Shift F3 - 'OPTIONS' menu
Ctrl F3 - Fill
F4 -Search
Shift F4 - OS_Exit
Ctrl F4 -Copy
F5 -Emulation
Shift F5 -Run Until
Ctrl F5 - History
F6 - Set a Breakpoint
Shift F6 - Kill a Breakpoint
Ctrl F6 - Info
F7 - Calculate Expression

) Shift F7 -Next Match
Ctrl F7 - Previous Match
F8 - Change Register
Shift F8 - Kill all Breakpoints
Ctrl F8 - Breakpoint List
F9 -Blocks
Shift F9 - Delete Window
Ctrl F9 -Move I Stretch windows
FtO -Swap character height
Shift FlO - Change Window Type
Ctrl FlO - Motorola Memory dump
Ctrl Shift FIO - Change Window, Text I BASIC
Fll - Edit
Shift Fl l - Clear screen
Ctrl Fl l - Intel Memory Dump
FI2 -Execute

)
Shift F12 - Set Window Statt Address Locker
Ctrl Fl2 - Set Start Address

QDBug Page 45

General controls
KEYS FUNCTION
Shift Shift Alt - Enter QDBug
Ctrl Print - Print Window
Tab
Shift Tab
L
s

-Select Next Window
-Select Previous Window
- 'LABEL' mode
- 'SWI' mode

F -Free
V - View program screen
M - 'MACRO' mode
Alt V -View program screen from address
Alt M - Set Macro Size
Shift Alt up -Set Value for up I down Scrolling
Alt 1 to AI.t 7 - Select specific window
Cursor keys - Move within selected windows
Home - Open Cunent Window to full Screen
Escape - Return to main control screen
Copy - Cancels the effect of 'Home'
Ctrl B - Set Default Breakpoint

"Running control" functions
KEYS FUNCTION
Ctrl W -Single Step
Ctrl R -Run
Ctrl Q - Set Breakpoint and Run
Ctrl T - Single Step, Type 2
Ctrl S - Skip Instruction
Ctrl F - Force Instruction
Ctrl L -Link Rl4
CtrlX
Ctrl E

- Back in History
- Execute Exceptions

QDBug

)

)

(
)

Page 46

()

)

)

Appendix E - QDBug Quick Reference Card
Pull out this card and use it for easy access to QDBug's features.

General controls
KEYS FUNCTION
[Shift]+[Shift]+[Alt] - Enter QDBug
[Ctrl]+[Print] - Print Window
[Tab] - Select Next Window
[Shift]+[Tab] -Select Previous Window
[L] - 'LABEL' mode
[S] - 'SWI' mode
[F] - Free
[V] - View program screen
[M] - 'MACRO' mode
[Alt]+[V] - View program screen from address
[Alt]+[M] -Set Macro Size
[Shift]+[Alt]+[up] - Set Value for up I down Scrolling
[Alt]+[l] to [Alt]+[7]- Select specific window
Cursor keys - Move within selected windows
[Home] -Open Current Window to fu1l Screen
[Escape] - Return to main control screen
[Copy] - Cancels the effect of 'Home'
[Ctrl]+[B] - Set Default Breakpoint

"Running control" functions
KEYS FUNCTION
Ctrl W - Single Step
CtrlR -Run
CtriQ - Set Breakpoint and Run
Ctrl T - Single Step, Type 2
CtrlS - Skip Instruction
CtrlF - Force Instruction
CtrlL - LinkR14
CtrlX - Back in History
Ctrl E - Execute Exceptions

QDBug Page 47

QDBug Quick Reference Card- side 2
Expressions

Operators:
+ • I *
AND OR ORR EOR XOR BIC
<< >> >>>
= < > <= >= <>
! ?

Numbers:
[n] = address of the window n, where n is from 2 to 7
['x.x.x ...] transforms the "x" in bytes of PSR type:

x= N, Z, C, V, 1, F, USR, USER, SVC, IRQ, FIRQ, F!Q

Any number is HEX by default

The prefix \ means a decimal number and % binary number

@is the number of iterations made by function [FS] (Emulation)

RO to RJS represent the registers

PC, PSR are derived from RJS in the following way: PC= RJS BIC &FC000003
: PSR = Rl5 AND &FC000003

The suffixes _user, _usr, _irq, Jirq, Jiq and _svc can be used to access particular
registers.

One to four characters between ""are converted into ascii.

More than 4 characters between"" are sent to the SW! OS_SW!NumberFromString and the
value returned is used.

)

)

()

QDBug Page 48

Appendix E - QDBug Quick Reference manual copy
This is a copy of the pull out Quick Reference Guide for your convenience.

General controls
KEYS FUNCTION

) [Shift]+[Shift]+[Alt] - Enter QDBug
[Ctrl]+[Print] - Print Window
[Tab] - Select Next Window
[Shift]+[Tab] - Select Previous Window
[L] - 'LABEL' mode
[S] - 'SWI' mode
[F] - Free
[V] - View program screen
[M] - 'MACRO' mode
[Alt]+[V] - View program screen from address
[Alt]+[M] - Set Macro Size
[Shift]+[Alt]+[up] - Set Value for up I down Scrolling
[Alt]+[l] to [Alt]+[7]- Select specific window
Cursor keys - Move within selected windows

) [Home] -Open Cunent Window to full Screen
[Escape] - Retum to main control screen
[Copy] -Cancels the effect of 'Home'
[Ctrl]+[B] - Set Default Breakpoint

"Running control" functions
KEYS FUNCTION
Ctrl W - Single Step
CtrlR -Run
CtrlQ -Set Breakpoint and Run
Ctrl T - Single Step, Type 2
CtrlS - Skip Instruction
CtrlF -Force Instruction
Ctrl L -Link R14

) Ctrl X - Back in History
CtrlE -Execute Exceptions

QDBug Page 49

QDBug Quick Reference Card (manual copy) - side 2

Operators:
+ -· I *
AND OR ORR EOR XOR BIC
<< >> >>>
= < > <= >= <>
! ?

Numbers:

Expressions

[n] =address of the window n, where n is from 2 to 7
['x,x,x ...] transforms the "x" in bytes of PSR type:

x= N, Z, C, V , /, F, USR, USER, SVC, IRQ, FIRQ, FIQ

Any number is HEX by default

The prefu: \ means a decimal number and % binary number

@is the numberofiterations made by function [F5] (Emulation)

RO to R/5 represent the registers

PC, PSR are derived from R/5 in the following way: PC = R15 BIC &FC000003
: PSR = R/5 AND &FC000003

The suffixes _ user,_ usr, _irq, Jirq, Jiq and _svc can be used to access particular
registers.

One to four characters between ""are converted into ascii.

More than 4 characters between"" are sent to the SW/ OS_SWJNumberFromString and the
11a/ue returned is used.

QDBug Page 50

)

)

)

I

	QDbug 001
	QDbug 002
	QDbug 003
	QDbug 004
	QDbug 005
	QDbug 006
	QDbug 007
	QDbug 008
	QDbug 009
	QDbug 010
	QDbug 011
	QDbug 012
	QDbug 013
	QDbug 014
	QDbug 015
	QDbug 016
	QDbug 017
	QDbug 018
	QDbug 019
	QDbug 020
	QDbug 021
	QDbug 022
	QDbug 023
	QDbug 024
	QDbug 025
	QDbug 026
	QDbug 027
	QDbug 028

