
Acorn Assembler

Acornl

Acom Assembler

Acorn~

ii

Copyright© 1994 Acorn Computers Limited All rights reserved

Published by Acorn Computers Technical Publications Department

No part of this publication may be reproduced or transmitted. in any form or by
any means, electronic, mechanica l. photocopying, recording or otherwise. or
stored in any retrieval system of any nature. wilhout the written permission of the
copyright holder and the publisher. application for which shall be made to the
publisher

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. Al l information of a technical nature and particu lars of the product
and its use (includ ing the information and particulars in this manual) are given by
Acorn Computers Limited in good faith. However. Acorn Computers Limited
cannot accept any liability for any loss or damage arising from the use of any
information or particulars in this manual

If you have any comments on this manual. please complete the form at the back of
the manual and send it to the address given there.

Acorn supplies its products through an international distribution network Your
supplier is available to help resolve any queries you might have

ACORN, the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd .

All other trademarks are acknowledged .

Publ1shed by Acorn Computers Limited
ISBN I 85250 167 7
Part number 0484,233
Issue I, December 1994

Contents

Contents iii

Introduction 1
Assembler tools 2
This user guide 2

wwwaw;wwww;www

Conventions used in this manual 3

Part 1 - Using the assembler 5

ObjAsm 7
Starting ObjAsm 7
The SetUp dialogue box 9
The SetUp menu 10
ObjAsm output 18
ObjAsm icon bar menu 20
E:.xample ObjAsm session 21
ObjAsm command lines 22

Part 2 - Assembly language details 27

The ARM CPU 29
Introduction 29
Block diagram of core 31
26 bit architecture 32
32 bit architecture 36
Exceptions 40

iii

Contents

iv

ARM assembly language 47
General 47
Input lines 47
AREA$ 47
ORG and ABS 49
Symbols 49
Labels 50

Local labels 50

Comments 51
Constants 51
The END directive 51

CPU instruction set 53
The cond ition field 53
Instruction timings 54
The barrel shifter 55
Shift types '57
Coprocessor instructions 62
Branch Branch with Link (B. BLJ 63
Data processing 66
PSR transfer (MRS. MSR) 74
Multiply and Multiply-Accumulate (MUL. MLA) 78
Multiply Long and Multiply-Accumulate Long

(UMULL. SMULL. UMLAL, SMLAL) 8 1
Single data transfer (LOR, STRJ 83
Block data transfer (LDM. STM l 88
Single data swap (SWPJ 96
Software interrupt (SWI) 98
Coproces5or data operations (COP) 100
Coprocessor data transfers 1 LDC. STCJ I 02
Coprocessor register transfers (MCR. MRC) I 06
Undefined instructions 109
ln5lruction set summary I I 0
Further instructions 114
Extended range immediate constants 114
The ADR instruction 115
The ADRL mstruction I 15
Literals 116

Floating point instructions 117
Programmer's model 118
Ava ilable systems 118
Precision 119

Floating point number formats 11 9
Floating point status register 124

Floating Point Control Register 129
Assembler directives and syntax 13 1
The instruction set 132

Finding out more.. 138

Directives 139
Storage reservation and initialisation - DCB, DCW and DCD 139
Floating point store initialisation- DCFS and DCFD 140
Describing the layout of store-" and# 140

Organ isationa l directives - END, ORG, LTORG and KEEP 141
Links to other object fi les - IMPORT and EXPORT 142
Links to other source files- GET/INCLUDE 142
Diagnostic generation -ASSERT and ! 142
Dynamic l isti ng options- OPT 143

Titles - TTL and SUBT 143
Miscellaneous d irectives- ALIGN, NOFP. RUST and ENTRY 144

Symbolic capabilities 145
Setting constants 14 5

Local and globa l variables - GBL. LCL and SET 146
Variable substitution-S 14 7
Built-in variables 147

Expressions and operators 149
Unary operators 149
Binary operators 150

Conditional and repetitive assembly 153
Cond itiona l assembly 153
Repetit ive assembly 156

Contents

v

Contents

VI

Macros 157
Syntax 158
Local variables 159

MEXIT directive 160
Default values 160
Macro substitution method 160
Nesting macros 161
A division macro 162

Part 3- Developing software for RISC OS 165

Exception handling 167
RISC OS processor configuration and modes 167
The pre-veneers 16 7

Claiming the hardware vectors 168
Writing to the FlO vector 168

Writing relocatable modules in assembler 171
Assembler directives 172
Example 173

lnterworking assembler with C 175
Examples 175

Part 4 - Appendixes 179

Changes to the assembler 181

Error messages 183

Example assembler fragments 189
Using the conditional instructions 189
Pseudo-random binary sequence generator 190
Multiplication by a constant 191
Loading a word from an unknown alignment 192
Sign/zero extension of a half word 192

Return setting condition codes 192
Full mu ltiply 193

Warnings on the use of ARM assembler 195
Rc!>lnclions to the ARM instruction set 196
Instructions and code sequences to avoid 197
Static ARM problems 208

Support for AAsm source 211
The ·ABSolute option 211

Index 213

Contents

vii

viii

ll!:**!lllll*lnl*ll!:•-•3•10•-•e~•IO*IIt*lii:III*O*IIOI*!li*IO*IIII:*a:lll*ll:a_._.OI*IIE•KJII•Ill•-•1!:!!!:~~~-.._.. **WWii**llt"'

1 Introduction

A corn Assembler is a development environment for producing RISC OS desktop
.n applications and relocatable modules written in ARM assembly language It
consists of a number of programming tools which are RISC OS desktop
applications These tools interact in ways designed to help your productivity.
forming an extendable environment integrated by the RISC OS desktop Acorn
Assembler may be used with Acorn C/C++ (a part of this product) to provide an
environment for mixed C. C++ and assembler development.

This product includes tools to:

• edit program source and other text files

• search and examine text Iiies

• examine some binary fi les

• assemble small assembly language programs

• assemble and construct more complex programs under the control of
makefiles. these being set up from a simple desktop interface

• squeeze fin ished program images to occupy less disk space

• construct linkable libraries

• debug RISC OS desktop appl ications interactively

• design RISC OS desktop interfaces a,ld test their funct iona lity

• use the Toolbox to interact with those interfaces.

Most of the tools in this product are also of genera l use for constructing
applications in other programming languages, such as C and C++. These
non-language-specific tools arc descri bed in the accompanying Desktop Tools gu ide.

Installation

Installation of Acorn Assembler is described in the chapter Installing Acorn CIC++ on
page 7 of the accompanying Desktop Tools guide

1

Assembler tools

.,...,.......,""""'"""".._ •••• _... www * W&*--....... __..!liiU:Wnll!llllt1II--+!JI+IIJI+I£•-I!IIIII!!I~~t:IIII111131Dtlll•llli"'IDIIIIii-tiiiWiaW

Assembler tools

The assembler provided includes the following features

• full support of the ARM instruction set. for all versions up to and including the
i\RM7M core

• global and local label capabil ity

• powerful macro processing

• comprehensive expression handling

• conditional assembly

• repetitive assembly

• comprehensive symbol table printouts

• pseudo-opcodes to control printout

Objasm

This user guide

2

The Assembler ObjAsm creates object files which cannot be executed di rectly. but
must first be l inked using the Link tool. It is often most efficient to construct larger
programs from severa l portions. assembling each portion with ObjAsm before
linking them all together with Link. Object files linked with those produced by
ObjAsm may be produced from some programming language other than
assembler. for example C.

The Link tool is described in the chapter Link on page 137 of the accompanying
Desktop Tools guide

Th is document is a reference guide to ObjAsm. which is the only tool in this
product which is not used for programming in other languages. The others are
described in the accompanying Acorn CIC++ and Desktop Tools guides. It is assumed
that you are familiar with other relevant Archimedes documentation. such as the:

• Welcome Guide supplied with your computer

e RISC OS 3 User Guide

• RISC OS 3 Programmer's Referer1ce Manual.

Introduction

You mCly also find useful one or more of the following books

• ARM Assl'mbly Language Programming I PI Cockerell- Computer Concepts/MTC.
1987

• Ardumedes Assembly La11guage: A Dabiland Guide I M. Ginns- Manchester, UK
Dabs Press. 1988

• Tflt' ARM RISC Cflip- A Programmer's Guide I A van Somercn and C Atack
Woki ngha m. UK Addison-Wesley, 1993

Note on program examples

Both genera l and specific examples of syntax and screen output are given but
there arc occasions where the full syntax of an instruction and its accompClnying
screen appearance wou ld obscure the specific points being made It follows.
therefore. that not all the examples given in the text can be used d irectly since they
arc incomplete.

Conventions used in this manual

The Assembler has its own interpretations of the punctuation symbols and special
symbols which are available from the keyboard These are

s

I

0 /
'0

<

A

+

> ?

In order to distinguish between characters used in syntax and descriptive or
explanCltory characters. typewriter style typeface is used to indicate both text which
appears on the screen and text which can be typed on the keyboard . This is so that
the position of relevant spaces is clearly indicated

The following typographical conventions are used throughout this manual

Convention

filename

&lC
11 instruction))

ALIGN

Meaning

Text that you must replace with the name of a file. register.
variable or whatever is indicated.

Hexadecimal numbers are preceded wilh an ampersand.

Ita li c gui llemots 11)) enclose opt ional items in the syntax

For example. the Assembler ObjAsm accepts a three field
source line which may be expressed in the form

II instruction)) cdabel)) I(; comment))

Text that you type exactly as it appears in the manual For
example:

L321 ADD Ra,Ra,Ra,LSL #1 ;multiply by 3

3

4

• ------·••w••••••••••wwa:a~a:a::a••••••ww•••••M>8!••••••••

Part 1 - Using the assembler

5

6

2 ObjAsm •
0 bjAsm is the ARM assembler forming part of the Acorn C/C++ product. It

processes text files containing program source written in ARM assembly
language into linkable object fi les Object files can be linked by the Link tool with
each other or with libraries of object files to form executable image files or
relocatable modules. ObjAsm mullitasks under the RISC OS desktop, allowing
other tasks to proceed wh ile it operates.

The sources for large programs can be spl it into severa l files. each of which only
need be re-assembled to an object file when you have altered it.

An example use of ObjAsm wou ld be to construct a binary image file ! Runimage
in a RISC OS desktop application from the two source fi les s . interface and
s. portable. ObjAsm processes the source files to form o . interface and
o . portable. which the Link tool processes to form ! Run Image.

The controls of ObjAsm are similar to Lhose of other non-inleractive Desktop tools,
with the common features described in the chapter General features on page 103 of
Lhe accompanying Desktop Tools guide. You adjust options for the next assembly
operation on a SetUp dialogue box and menu which by default appear when you
click Select on the main icon or drag a source file to it Once you have set options
you click on a Run action icon and the assembly starts. Whi le the assembly is
running output windows display any text messages from the assembler and allow
you to stop the job if you wish.

There is no fi le type to double click on to start ObjAsm - it owns no file type unlike,
for example, Draw.

Starting ObjAsm
Like other non-interactive Desktop tools. ObjAsm can be used under the
management of Make. with its assembly options specified by the makefile passed to
Make. For such managed use. ObjAsm is started automatica lly by Make: you don't
have to load ObjAsm onto the icon bar.

7

Starting ObjAsm

8

To use ObjAsm directly. unmanaged by Make. first open a directory dtsplay on the
Acornc_ C++ . Tools directory. then double click Select on •ObjAsm. The ObjAsm
main icon appears on the icon bar

Clicking Select on this icon or dragging an assembly language source file from a
directory display to this icon brings up the ObjAsm SetUp dialogue box

lrl'li CtliAsm

Source I 1 I
Include I I

Options

l7 Throwback _j Oe bug

Cancel II Run I
Source will appear contain ing the name of the last filename entered there. or
empty if there isn't one.

Dragging a file on to the icon will bring up the dialogue box and automatically
insert the dragged filename as the Source file

Cl icking Menu on the SetUp dialogue box brings up the ObjAsm SetUp menu

a,jA&m ' •

Command lu·~e .,.
No APCS regiSters
Cstnngs
Upper case
CPU .,.
Dehne ,.

./ NoCacne
Ma~Cache

Suppress warn•ngs
Errors to ftle
LISting
No Terse
Width
Length ,.
Ooss reference r Work directory ,..
Others ,..

ObjAsm

&&2A&a&&axw&&ax&a&aa•••• •••••••• -·-
The SetUp dialogue box and menu specify the next assembly job to be done. You
start the next job by clicking Run on the dia logue box (or Command line menu
dia logue box) Clicking Cancel removes the SetUp d ialogue box and clears any
changes you have just made to the options settings back to the state before you
brought up the SetUp box. The options last until you adjust them again or
IQbjAsm is reloaded. You can also save them for future use with an option from the
main icon menu.

The SetUp dialogue box

When the SetUp dialogue box is d isplayed the Source writable icon contains the
name of the source file to be assembled. The sourcefile can be specified in two
ways

• If the SetUp box is obtained by clicking on the main ObjAsm icon. it comes up
with the sourcefi le from the previous setting. Th is helps you repeat a previous
assembly, as clicking on the Run action icon repeats the last job if there was
one.

• If the SetUp box appears as a result of dragging a source fi le containing
assembly language text to the main icon . the source fi le will be lhe same as
the dragged source file.

When the SetUp box appears the Source icon has input focus. and can be ed ited in
the normal RISC OS fash ion. If a further source fi le is selected in a directory display
and dragged to Source, ils name replaces the one already there.

Include

The Include SetUp dia logue box icon adds directories to the source file search
path so that arguments to GET/INCLUDE directives (see page 1421 do not need to
be fu ll y qualified. The search ru le used is similar to the ANSI C search rule- the
current place being the directory in which the current file was found.

The directories are searched in the order in which they are given in the Include
icon.

Options

The Throwback option switches editor throwback on (the defau lt! or off. When
enabled, if the DDEUti ls module and SrcEdit are loaded. any assembly errors
cause the editor to display an error browser. Double clicking Select on an error line
in this browser makes the editor display the source file containing the error. with
the offending line highlighted For more details. see the chapter SrcEdir on page 73
of the accompanying Deskrop Tools guide.

9

The SetUp menu

The Debug option switches on or off the production of debugging tables. When
enabled, extra information is included in the output object file which enables
source level debugging of the linked image (as long as Link's Debug option is also
enabled) by the DDT debugger. If this option is disabled. any image file finally
produced can on ly be debugged at machine level. Source level debugging allows
the current execution position to be indicated as a displayed line of your source.
whereas machine level debugging on ly shows the position on a disassembly of
memory.

The SetUp menu

10

The command line

The ObjAsm RISC OS desktop interface works by driving an ObjAsm tool
underneath with a command line constructed from your SetUp options The
Command line item at the top of the SetUp menu leads to a small dialogue box in
which the command line equivalent of the current SetUp options is displayed

C strings

Upper case
CPU
Define
No Cache
Max Cache
Suppress warnings
Errors to hie
Listing
No Terse
Width

Length

Cross reference
Work directory
Others

~CSI::MHardy.$.App.!Scrap.ScrapDir.xe9906b01JI

Run

The Run action icon in this dialogue box starts assembly in the same way as that in
the main SetUp box. Pressing Return in the writable icon in this box has the same
effect Before starting assembly from the command line box. you can edit the
command line textually. although this is not normally useful.

ObjAsm

LLLXLLT3Wt2¥WW5W*¥WWW*** - c ·-......

Controlling syntax

The nexl few entries in the SetUp menu all control the acceptable syntax for the
Assembler:

No APCS registers specifies whether the variant of the ARM Procedure Call
Standard used by RISC OS is in use. or the APCS is not in use at all . By default the
APCS is in use, and ObjAsm pre-declares extra register names and variables. and
also specifies some attributes of code areas:

• The following extra register names are pre-declared: al-a4, vl-v6. sl, fp,

and ip. (This is in addition to the default pre-declared register names RO-Rl5.
rO-r 15. sp. SP, lr, LR. pc and PC. 1

• The ObjAsm built-in variable {CONFIG} is set to 26. This does not generate
particu lar ARM-specific code. but allows the Linker to warn of any mismatch
between files being linked. and also allows programs to use the standard
built-in variable {CONFIG} to determine what code to produce

• Code areas are marked as using sl for the stack limit register. following the
APCS.

When this menu option is chosen (i.e. it has a tick beside it). the APCS is not in
use. and so the above points no longer hold.

You can specify other APCS variants using the -APCS option in the Others writable
field at the bottom of the menu: see Specifying other command line oplions on page I 8.
and Command line options not available from the desktop on page 23.

C strings. when enabled. al lows the assembler to accept C style string escapes
such as '\n'. C strings is not enabled by default. as it results in '\' characters in
string constants being interpreted in a different way compared to previous Acorn
assemblers .

Upper case. when chosen. makes ObjAsm recognise instruction mnemonics only
if they are entirely in upper case. By default. Upper case is not chosen. and
ObjAsm recognises mnemonics that are entirely in upper or lower case (but not a
mixture of both).

This option is provided mainly to support old code that might have used lower
case versions of instruction mnemonics as macro names: it allows the macros to
still be recognised as such.

11

The SetUp menu

CPU sets the target ARM core. Currently this can take the values ARM6, ARM7 and
ARM7M, and defaults to ARM6. Some processor specific instructions will produce
warn ings if assembled for the wrong ARM core

Command line ..

l'«l APCS registers
c strings

Upper case
CPU

Define "'
l'«lCache
MaxCache ...,

Suppress warnings
Errors to file ll>

Listing "'
l'«lTerse
Width ~>-

Length "'
Cross reference
Work directory ~P-

Others "'

Predefining a variable

12

The next entry- Define - allows you to set an initial value for an assembler global
variable:

C strings
Upper case

CPU ~~~~~~--.~

,ff'bCache

Max Cache

Suppress wamings

Errors to file ...
Listing '"'
l'bTerse

Width

Length

Cross reference
v' Work directory r-

Others

ObjAsm -----
You must give a valid variable name, followed by a SETL, SETA or SETS directive,
followed by a value. The value may be a simple constant or a constant expression
(in ObjAsm syntax) of appropriate type- logical. arithmetic or string for SETL,

SETA and SETS respectively- provided that its value can be computed at the start
of assembly The variable is set as if the directive occurs before the start of the
source: an implicit GBLL. GBLA or GBLS directive is also executed. In the case of
SETS. quotation marks are usually necessary around the value, since it is a string
expression.: these must be escaped by preceding each with a backslash ('\') .

Controlling cacheing

ObjAsm is a two pass assembler- it examines each source file twice. To avoid
reading each source file tw ice from disk the assembler can cache the source in
memory, reading it from disk for the first pass. then storing it in RAM for the
second. This makes very heavy use of memory, and so is unsuitable for sma ller
machines.

The next two menu options control this cacheing:

NoCache disables cacheing when chosen. which is the default When NoCache is
switched off. cacheing is enabled.

MaxCache allows you to specify the maximum amount o f RAM to be used for
cacheing source files. provided that NoCache is off. The maximum cache is
specified in megabytes; the default is 8MB

< C»iAsm:
Command line "' No APCS registers
C strings
Upper case
CPU ,...
Defme "' f.'NoCad1e , 1r cacne sile' J
'I'M%'· ,...

~ I
Suppress warnings
Errors to tile ...
Listing ,...
No Terse
Wtdth ...
Length ...
Cross reference

-1 Work directory "' Others "'

13

The SetUp menu

Handling warnings and errors

14

The next menu options control handling of warnings and errors.

Suppress warnings. when chosen, turns off the warn ing messages that ObjAsm
generales. IL is off by defau lt [i .e. warning messages are generated).

Errors to file allows you to specify a file to which error messages are output for
later inspection

ObiAsm I

Command Nne ,.
~ APCS registers
C strings
Upper case
CPU r·
Define t'

../~Cache

Max Cache t'

Suppress wam1ngs FMname I
1§1,04jfihl~ SCSI ~ardy $ Tmp ObtAsmErrs I
Listing ...
~Terse

Width ...
Lengltl ...
Cross reference

./' W0111 diredOI)' "'
Others ...

ObjAsm

Listings

The next options control whether or not a listing is produced, and its format:

The Listing option enables assembler source code to be sent to a file:

Command line ,.

No APCS registers

C strings
Uppercase
CPU ,.

Define ,.

./NoCache

MaxCache ,.

Suppress warnings

Errors to file

r» SCSI::MHardy.$.Tmp.~AsmLis~

No Terse

Width ,.
length ,.
Cross reference

/WOf't{ directory ,.
OChers I'

This option turns on the Assembler l isting. and during assembly the source code,
object code. memory addresses and reference line numbers wi ll be sent to the
named file. Listing is off by defau lt.

NoTerse modifies the listing that is output. which normally only includes the
conditionally assembled parts of your program. If you choose NoTerse.
conditionally non-assembled parts are listed as well. NoTerse is orr by defau lt

15

The SetUp menu

16

Width sets the width, in cha racters, or the listing that is output:

Command ~ne 11>

Ill:> APCS regiSters
Cstmgs
Upper case
CPU t-

Deltne
..; NoCache

Max Cache
Suppress warnings

Errors to lile
LJsttng
No Terse
Wtdth
Length
Cross rere renee

./ Work directory

1"-

...

1"-

"

Thts should be between I and 254 The default width is I '3 1: a width of 76 is
su itable for a Mode 12 RISC OS window.

Length sets the number of lines per page for printer oul put All he end of each
page ObjAsm inserts a form feed character. The default length is 60

C stnngs
Upper case
CPU ,.
Define ,.,

1-.1 lll:>Caclle
MaxCache .,..

Suppress warnmgs

Errors to !tie ""
LISbng t-

NoTerse
Width
I Length
Cross reference
Work directory .,.
Others ,.

.... ObjAsm

••

If you choose Cross reference, then after assembly ObjAsm outputs an
alphabetically sorted cross reference of all symbols encountered. Note that the
text output may be very large for a big program, and so th is option may not
funct ion on a machine with restricted memory. Cross reference is off by default.

Choosing your work directory

Work directory allows you to specify the work directory

. '"ObiAsm % . . X

Command line t'-

No APCS registers
c strings
Upper case
CPU I'

Define ,..
vNoCache

Max Cache ,..
Suppress warnings
Errors to file ...
Listing ,..
No Terse
Width ,..
Length ,..
Cross reference ~ ;;: Directory .. I

v~WijiiMMi ... "I I
Others ,..

The GET and LNK directives both resu lt in the assembler load ing source files
specified with the directive. The work directory is the place where these source files
are to be found. An example is a source file:

adfs::HardDisc4.$.Source.s.foo

containing the line:

GET s.macros

If the work directory is 1\ then the file loaded is:

adfs::HardDisc4.$. Source.s.~.s.macros

(i .e. adfs::HardDisc4.$.Source.s.macros)

The work directory must be given relative to the position of the source file
containing the GET or LNK, without a trailing dot.

The default work directory is A_

17

ObjAsm output

••••
1111 •••••• • •••

Specifying other command line options

ObjAsm output

18

The Others option on the SetUp menu leads to a writable icon in which you can
add an arbitrary extra section of text to the command line to be passed to ObjAsm:

C strings
Upper case
CPU
Define

No Cadle
Max Cache

Suppress warnings
Errors to file

Usting
No Terse
Width
Length

This faci I ity is usefu I if you wish to use any feature which is not supported by any of
the other entries on the SetUp dialogue box and menu. This may be because the
feature is used very li ttle. or because it may not be supported in the future

For a ful l description of command line options. see ObjAsm command lines on
page 22.

ObjAsm outputs text messages as it proceeds. These include source listings and
symbol cross references (as described in the previous sections) . By default any
such text is directed into a scrollable output window

ObjAsm

This window is read-only; you can scroll up and down to view progress, but you
cannot edit the text without first saving it. To indicate this. clicking Select on the
scrollable part of this window has no effect.

The contents of the window illustrated above are typical of those you see from a
successful assembly; the title line of the assembler with version number, followed
by no error messages.

Clicking Adjust on the close icon of the output window switches to the output
summary dialogue box. This presents a reminder of the tool running (ObjAsm). the
status of the task (Running, Paused, Completed or Aborted), the time when the
task was started, and the number of lines of output that have been generated (ie
those that are displayed by the output window)

Lines of output

Abort I Continue I

Clicking Adjust on the close icon of the summary box returns to the output
window.

Both the above ObjAsm output displays follow the standard pattern of those of al l
the non-interactive Desktop tools. The common features of the non-interactive
Desktop tools are covered in more deta il in the chapter General features on page I 03
of the accompanying Desktop Tools guide. Both ObjAsm output d isplays and the
menus brought up by clicking Menu on them offer the standard features, which
allow you to abort, pause or continue execution (if the execution hasn't
completed). to save output text to a file, or to repeat execution.

ObjAsm error messages appear in the output viewer. with copies in the editor error
browser when throwback is working. The appendix Error messages on page 183 of this
manual contains a list of common ObjAsm error messages together with brief
explanations.

Assembly listings and cross references appearing in the output window are often
very large for assembl ies of complex source fi les. The scrol ling of the output
window is useful to view them. To investigate them with the full facilities of the
source editor. you can save the output text straight into the editor by dragging the
output file icon to the SrcEdit main icon on the icon bar.

19

ObjAsm icon bar menu

ObjAsm icon bar menu

20

The ObjAsm main icon bar menu fol lows the standard pattern for non-interactive
Desktop tools

...
Save options
Opt10ns t-
Help

Ouit

Save options saves all the current ObjAsm options. including both those set from
the SetUp dialogue box and from the Options item on this menu. When ObjAsm is
restarted it is initialised with these options rather than the defaults.

The Options submenu allows you to set the following options:

• Display specifies the output display as either a text window (default) or as a
summary box

• If Auto run is enabled. dragging a source file to the ObjAsm main 1con
immediately starts an assembly with the current options rather than
displaying the SetUp box first. Auto run is off by defau lt.

• If Auto save is enabled output image files are saved to sui table places
automatica lly without producing a save dialogue box for you to drag the file
from. Auto save is off by default

Clicking on Help on the main ObjAsm menu displays a short text summary of the
various SetUp options. in a scrollable read-only window.

Purpose: RRM asse~ler outputting object files
Setup:

Icon RctioniNnning
--------------Source Ma~ of file to be as
<either typed or drag

r.:t=~ 1Ii;n~;;~~;,.l. ~~~~~s'"~"=:;::::::=::=ilp~;~t~h~~Jo ~~!} O~Jl ! .. ~ \"
1.£ ~ t--6

ObjAsm

Example ObjAsm session

The programming example Acornc_ C++. Examples. AsmHel lo is a
non-desktop free standing command line program written in assembly language It
outputs the text 'Hello World' .

The assembly language source is held in the s subdirectory. tn the file HelloW The
code demonstrates the ObjAsm directives needed for a free standing program.

To assemble Hell ow. first run !Objasm and ! Link by double clicking on them Drag
the HelloW source text file to the ObjAsm icon. The SetUp dialogue box of
ObjAsm appears. Check that the default SetUp options arc enabled:

!OJ XI ObiAsm

Source rnc_c++.Examples.AsmHello.s.HetloWI

Include I I
Options • -

~~): 17 Throwback _jOe bug ------ - -
cancel I J !'\in I

Click on Run to proceed. and save the object file produced in the o subdirectory
Drag the object file to the Link icon. and Run Link to produce an AIF executable
image file. the link having the HelloW object file as its only input file Save the
image file in AcornC_C++ .Examples .AsmHello. !Runimage The command
line program is now ready for use.

To run the program under the desktop. double click on it A window appears with
the text 'Hello World':

Run SCSI: f.A-iardy.$AoomC C++.Examples AsmHello !Runl~
H•llo World
Press SPACE or click "ouse to continue

As the window instructs you to do. press the space bar or click on your mouse. The
window disappears.

21

ObjAsm command lines

ObjAsm command lines

22

ObjAsm. in common with the other non-interactive Desktop tools. can be driven
with a text command line without its RISC OS desktop interface appearing. This
enables ObjAsm to be driven by Make as speci fied in textual makefi les.

You can use ObjAsm outside the RISC OS desktop from its command line. in the
same way that it could be used in the previous Acorn Desktop Assembler product.
However. as all the useful ObjAsm features can be more conveniently used from
the RISC OS desktop there is little reason for you to do this The desktop removes
the need for you to understand the command line syntax.

The ObjAsm RISC OS desktop interface drives the ObjAsm tool underneath by
issuing a command line constructed from your SetUp options. The Command line
SetUp menu option allows you to view the command line constructed in this way.

The Make tool allows you to construct makefi les with assembly operations
specified using the ObjAsm desktop interface (by following the Tool options item
of Make). You can therefore construct makefiles without understanding the
command line syntax of ObjAsm.

The command to invoke ObjAsm takes either of the forms·

ObjAsm 110ptions" sourcefile objectfile
ObjAsm 110ptions)) -o objectfile sourcefile

The options are listed below. split into two sections: those for which there is a
direct equivalent in the SetUp dia logue box or menu, and those others for which
there is no equiva lent. Upper case is used to show the allowable abbreviations.
Note that to understand what many of these options do it may be necessary to
refer to some of the documentation above.

Command line options available from the desktop

The table below shows the various command line options that correspond to the
options available from the SetUp dialogue box and menu. together with a
reference to the desktop equivalent. which you should see for full details of the
option:

Command line option Desktop equivalent Page
-I dirr<, dir11 Include wrilable icon in dialogue box 9
-ThrowBack Throwback option icon in dialogue box 9
-G Debug option icon in dialogue box 10

(See -Apes be/owl No APCS registers in menu II

-Esc C strings in menu II

-UpperCase Upper case in menu II

ObjAsm
•·r•w••••ww••••••••.•••••w•••••••w• e•wwwwww •

Command line option Desktop equivalent Page

-CPU ARMcore CPU in menu 12
-PreDefine directive Define in menu 12
-NOCache NoCache in menu 13
-MaxCache n MaxCache in menu 13
-NOWarn Suppress warnings in menu 14
-ERRo rs error file Errors to file in menu 14
-LIST listingfile Listing in menu 15
- NOTerse NoTerse in menu 15
-Width n Width in menu 16

- Length n Length in menu 16
-Xref Cross reference in menu 17
-Desktop dirname Work directory in menu 17

Command line options not available from the desktop

The table below shows those command line options for which there is no direct
equivalent in the SetUp dia logue box or menu. Should you need to use any of
these more esoteric options from the desktop. you can add them to the SetUp
menu's Others option (see Specifying other comma11d li11e options on page 18)

Command line option

-Help

-VIA filename

-Littleend

- B i gend

Description

Oulpuls a summary of the command line options

Reads in extra command line arguments from the
given filename.

Assemble code suitable for a little-endian ARM,
by setting the built-in variable {ENDIAN} to
"little".

Assemble code suitable for a big-endian ARM, by
setting the bui lt- in variable {ENDIAN} to "big".

'

23

ObjAsm command lines

24

Command line option Description

-Apes option((!qualifier)! ((/qualifier ...)!

/REENTrant

/32bit

/26bit

/SWSTackcheck

/NOSWstackcheck

-Depend dependfile

Specifies whether the ARM Procedure Call
Standard is in use. and also specifies some
attributes of CODE AREAs. By default the register
names RO-RlS, rO-rlS. sp. SP. lr, LR, pc, and
PC are pre-declared. If the APCS is in use the
following register names are also pre-declared:
al-a4, vl-v6, sl, fp. and ip.

There are two APCS options NONE and 3. The
SetUp menu's No APCS registers option
(page II)- when chosen- declares the APCS in
use as NONE. The default behaviour is to use the
3/2 6bi t/ SWStackcheck APCS variant used by
RISC OS

The qualifiers- which should only be used with
option 3 - are as follows:

Sets the reentrant attribute for any code AREAs.
and predeclares sb (static base) in place of v6.

Is the defau lt setting and informs the Linker that
the code being generated is written for 32 bit
ARMs. The built-in variable {CONFIG} is also set
to 32.

Tells the Linker that the code is intended for 26 bit
ARMs. The bu i lt-in variable {CONFIG} is also set
to 26.

Note that these options do not of themselves
generate particular ARM-specific code. but allow
the Linker to warn of any mismatch between files
being linked, and also allow programs to use the
standard built-in variable {CONFIG} to
determine what code to produce

Marks CODE AREAs as using sl for the stack l imit
register. fol lowing the APCS (the default setting) .

Marks CODE AREAs as not using software
stack-limit checking, and predeclares an
add itiona l v-register. v6 if reentrant. v7 if not.

Saves source file dependency lists. which are
suitable for use with ·make' utilities.

Command line option

-ABSolute

-FRom filename

-TO filename

-Print

-Qu it

ObjAsm

Description

Accepts AAsm source code to provide some
backwards compatibi l ity in this release. See the
appendix Support for AAsm source on page 21 I .

Supported. for backward compatibility with
previous release.

Supported. for backward compatibi l ity with
previous release.

Supported, for backward compatibility with
previous release.

Recognised but ignored. for backward
compatibility with previous release.

25

26

n . a z wwwwwt~wawww ••

Part 2 - Assembly language details

27

28

3 The ARM CPU

T he ARM (Advanced Rise Machine) is a general purpose32 bit single chip
microprocessor. The architecture is based on Reduced Instruction Set

Computer (RISC) principles. and the instruction set and related decode
mechanism are great ly simplified compared with microprogrammed Complex
Instruction Set Computers This simplification results in a high instruction
throughput and a good real-time interrupt response from a sma ll and
cost-effective chip.

Introduction

Bus widths

The ARM2 and ARM3 have a 32 bit data bus and a 26 bit address bus On later
versions of the ARM. both the data bus and the address bus are a full 32 bits wide.

Instruction set

All instructi ons fit in to one 32 bit word. and they can al l be made conditional.

The ARM instruction set comprises ten bas ic classes of instruction:

• branches

• data operations between registers

• multiplies

• single register data transfers

• multiple register data transfers

• single register data swaps

• supervisor ca lls

• coprocessor data operations

• coprocessor/memory transfers

• coprocessor/register transfers .

Two of these make use of the on-chip arithmetic logic unit (ALU). barrel shifter and
multiplier to perform high-speed operations on the data in the 32 bit reg1sters
Three instruction classes control the transfer of data between main memory and
the register bank. one optimised for flexibility of addressing, another for rapid

29

Introduction

30

context sw itch ing. and the third for swapping data. Two instruction classes control
the flow and privilege level of execution. The remaining three classes are dedicated
to the control of external coprocessors, which allow the functionality of the
instruction set to be extended off-ch ip in an open and uniform way.

The ARM instruction set has proved to be a good target for compilers of many
different high-level languages Where required for critical code segments.
assembly code programming is also straightforward. unlike some RISC processors
which depend on sophisticated compiler technology to manage complicated
instruction interdependencies

The instruct ion set is detailed in the chapter CPU instruction set on page 53.

Pipelining

Pipelining is employed so that all parts of the processing and memory systems can
operate continuously.

The ARM uses a 3-stage instruction pipeline This allows it to execute one
instruction. and at the same time both to decode the following instruction, and to
fetch the one after that from memory.

Memory interface

The memory interface has been designed to allow the performance potential to be
realised without incurring high costs in the memory system Speed critical control
signa ls are pipelined to allow system control functions to be implemented in
standard low-power logic, and these control signals facilitate the exploitation of
the fast loca l access modes offered by industry standard dynamic random access
memori es (DRAMs)

Data types

The processor can access two types of data

• bytes (8 bi ts]

• words (32 bits)

where words must be al igned to four byte boundaries.

Instructions are fetched as words, and so must be aligned to fou r byte boundaries.
Data operations (eg ADD) are only performed on word quantit ies. Load and store
operations can transfer either bytes or words. and can put a full 26 or 32 bit
address (depending on the processor variant)- with bits 0 and I set as required
on to the address bus.

Block diagram of core

ABE
ALE

)>
r c
!D
c
(/)

L

A bus

Address
lncrementer

Register Bank
(32 bit Registers)

)>

!D
c
(/)

Multiplier

\'-__ 3_2_b_it--,A,-L_U _ _____,/

- I

-· 7

!D
c
(/)

!D
!D
c
(/)

srw R.rw

Instruction
Decoder

and
Control
Logic

Instruction Pipeline
and Read Data Register

D bus D bus

Figure 3.1 ARM Core block diagram

TheARMCPU

PH1

PH2

IRQ

FIQ

RESET

ABORT

~ OPC

~ TRANS

~ Mbus

~ MREQ

~ SEQ

~ CPI

CPA

CPB

31

26 bit architecture

26 bit architecture

32

This section describes the architecture of the ARM2 and ARM3 series. which only
supported a 26 bit address space However, as we shall see in the section 32 bit
architecture on page 36. much of this is also relevant to later series of ARM when
used so as to provide backward-compatibi lity with the earlier 26 bit processors

Processor modes

These older ARM series support four modes of operation:

• User mode: the normal program execution state

• Fast Interrupt mode (abbreviated to FlO mode): designed to support a data
transfer or channel process

• Interrupt mode (abbreviated to IRQ mode): used for general purpose interrupt
handling

• Supervisor mode (abbreviated to SVC mode): a protected mode for the
operating system. also entered after a data or instruction prefetch abort. or
when an undefined instruction is executed.

Mode changes may be made under software control or may be brought about by
external interrupts or exception processing. Most application programs will
execute in User mode. The other modes. known as privileged modes, will be
entered to service interrupts or exceptions or to access protected resources.

Registers

The ARM has a number of 32 bit regi sters. 16 of which are visible to the
programmer at any time. This subset depends on the processor mode:

• Normally the ARM operates in User mode, with registers ROtoR 15 visible.

• When in the other privileged modes (see the section Processor modes on page 32)
special private registers are switched in. If code running in these modes needs
to use any of the shared registers. it should save their contents in memory
using one of the block data transfer instructions avai lable for this purpose; see
Block data transfer (LDM, STM) on page 88.

The IRQ and SVC modes have two private registers mapped toR 13 and R 14
(R l 3_irq and R l4_irq, and R 13_svc and R l4_svc respectively).

The FlO mode has more private registers so that FlO code - which needs to
respond quickly- is less likely to need to use any of the shared registers, and so
will be spared the overhead of saving them to a stack. Its seven private registers are
mapped to R8-Rl4 (R8_fiq-Rl4_fiq)

The ARM CPU

... •••-=•ss•we&*"***"""

The register bank organisat ion is shown in t he figu re 26 &it register organisation be low

User mode I SVC mode
1

IRQ mode FIQ mode

AO

A1

A2
-

A3 - -
A4

R5
-

A6
-

A?

AS AS_fiq
- -

A9 R9_fiq

A10 A10_fiq

A 11 A11 _fiq

A12 A12_fiq

A13 j_A13_svc A13_irq A13_fiq
1- - --

A14 A14 SVC A14_irq A14_fiq

A 15 (PC/PSA)

Figure 3.2 26 &it register organisation

Al l registers are general pu rpose and may be used to hold data or address values.
except for R 15 and R 14

• R 15 contai ns the Program Counter (PC) and the Processor Status Register
(PSR). See the section Register R 15 below.

• R 14 is used as t he subroutine Link register. and receives a copy of the retu rn
PC and PSR when a Branch and Link instruction is executed. See the section
Register R 14 below.

R 13 is also often used fo r a special purpose

• R 13 is, by convention only, o ften used as a private stack pointer for a
processor mode.

The private copies o f R 13 and R 14 al low each mode to have a private stack pointer
and l ink register. SVC and IRQ mode programs are expected to save the User state
on t heir respective stacks and then use the User registers. remem bering to restore
t he User state befo re retu rni ng.

33

26 bit architecture

Register R15

34

R 15 contains 24 bits o f program counter 1 PC) and 8 bits of processor status register
(PSRI

The program counter (PC) is 24 bits wide and counts to &FFFFFF. However. two
low-order bits (both zeros) are appended to the PC value and a 26 bit va lue is put
on the address bus. thus quadrupling the tota l count to &3FFFFFC The memory
capacity of the ARM processor is 64 Mbytes. or 16 Mwords. The PC is always a
multiple of four because of the two appended zeros. and so it follows that
instructions must be aligned to fou r byte boundaries

Special bits in some instructions allow the PC and PSR to be treated together. or
separately. as required. The allocation of the bits within the register R 15 b shown
in the figure The Program Counter (PC) and Process Status Register (PSR) below.

31 30 29 28 27 26 25 2

Program counter (PC)

0

Processor mode
00 - User mode
01 ~FlO mode
10 ... IRQ mode
11 - Superv1sor mode

Program counter
(Word aligned)

FlO disable
0 oQ Enable
1 .. D1sable

IRQ disable
0 ~Enable
1 ~ D1sable

Overflow

Carry/Not borrow/
Rotate extend

Zero

Negative/
Signed less than

Figure 3 3 The Program Counter (PC) a1td Process Status Register (PSR)

TheARMCPU

The mnemonics for the four condition nags are derived as follows

N Negative nag

z Zero nag

c Carry nag

v Overnow nag

The condilion nags may be altered in any mode The I, ~~and Mode flags can only
be changed directly in privileged modes; they are also modified when exceptions
occur or SWI instructions are executed.

Register R14

R 14 is used as the subroutine Link register, and receives a copy of the return PC
and PSR when a Branch and Link instructi on is executed (sec page 63) It may be
treated as a general purpose register at all other times. Similarly, r< 14_svc, R 14_i rq
and I~ lll_fiq are used to ho ld the return va lues of I< I 5 when interrupts and
exccplions ari se. or when Branch and Link instructions arc executed within
supervisor or interrupt routines.

Changing operating modes

In the Assembler. the suffix Padded to a CMN. CMP. TEO or TST instruction causes
the instruction to change the PSR directly. Such instructions can be used to change
the ARM 's mode. for example:

TEQP R15,#2
TEQP RlS , #O

changes to IRQ mode
cfwnges to user mode

The action is to Exclusive OR the first operand with a supplied tmmedtate field .
R 15 is the first operand. Whenever R 15 is presented to the processor as the first
operand, 24 bits are presented: the PSR bits are supplied as zero The TEO causes
the immediate field value to be written into the register, and the P causes the
PSI< bits (now altered by the immediate field value) to be wrilten back into R 15.
Since two of the PSR bits are the mode control bits, the processor assumes its new
mode.

As the mode control bits cannot be set in User mode. this techn i(Jue will not work
in User mode. There are, however. two ways to pass from User mode to other
modes

• by receiving an external interrupt

• by making use of the SWI instruction.

Note ~or more details of instructions executed immediately following a mode
change see the sections Forcing transfer of tflt' user bank on page 93 and Using R 15 as tfw
d1'Stination on page 71.

35

32 bit architecture

32 bit architecture

36

The ARM architecture changed significantly with the introduction of the ARM6
series. This secti on describes the differences in behaviour of more recent ARM
processors.

New features in ARM6

The most notable change made in the ARM6 series was to extend the program
counter to a full 32 bits As a result

• The PSR had to be separated from the PC into its own register. the CPSR
tCurrenl Program Status Register)

• The PSR can no longer be saved with the PC when changing processor modes:
instead. each privi leged mode now has an extra register - the SPSR (Saved
Program Status Register) - to ho ld the previous mode's PSR.

• Instructions have been added to use these new status registers.

A further change was the addition of extra privileged processor modes. allowed by
the PSR now having a full 32 bits to usc These modes are used to handle
Undefined instruction and Abort exceptions. Consequently:

• Undefined instructions. aborts. and superv1sor code no longer have to share
the same mode This has removed restrictions on Supervisor mode programs
which exic;ted on ea rlier ARMs.

Processor configuration

The ava ilabil ity of these features in the ARM6 series (and other later compa tible
chips) is set by one of severa l on-chip control registers. One of three processor
con{iguratiMIS can be selected:

• 26 bit program and data space This configuration forces ARM to operate
with a 26 bit address space. In this configuration only the four 26 bit modes
arc available (see Processor modes below). it is impossible to select a 32 bit
mode

This configurat ion is set at reset on al l current ARM6 and 7 series processors.

• 26 bit program space and 32 bit data space. This is the same ClS the 26 bit
program and data space configuration. except that address exceptions arc
disabled to allow data transfer operations to access the full 32 bit address
space

• 32 bit program and data space This configuration extends the address
space to 32 bits and introduces major changes to the programmer's model In
this configuration you can select any of the 26 bit and the 32 bit processor
modes (see Processor modes below)

TheARMCPU

Processor modes

When configured for a 32 bit program and data space. the ARM6 and ARM 7 series
support ten overlapping processor modes of operation:

• User mode the normal program execution state- or

User26 mode: a 26 bit version of the above

• FlO mode designed to support a data transfer or channel process - or

FI026 mode: a 26 bit version of the above

• IRQ mode used for general purpose interrupt handling- or

IR026 mode: a 26 bit version of the above

• SVC mode: a protected mode for the operating system- or

SVC26 mode: a 26 bit version of the above

• Abort mode (abbreviated to ABT model : entered after a data or instruction
prefetch abort

• Undefined mode (abbreviated to UND mode): entered when an undefined
instruction is executed.

The distinction between processor modes and configurations is important, and
will be rigidly adhered to in the rest of this manual.

The 26 bit processor modes

When in a 26 bit processor mode. the programmer's model reverts to that of earlier
26 bit ARM processors. The behaviour is the same as that of the ARM2aS macrocell
with the following alterations

• Address exceptions are only generated by ARM when it is configured for 26 bit
program and data space.

In other configurations the OS may still simu late the behaviour of address
exception, using external logic such as a memory management unit to
generate an abort if the 64Mbyte range is exceeded, and converting that abort
into an ·address exception trap· for the application

• The new instructions to transfer data between general registers and the
program status registers remain operative The new instructions can be used
by the operating system to return to a 32 bit mode after calling a binary
containing code written for a 26 bit ARM.

• When in a 32 bit program and data space configuration. all exceptions
(includ ing Undefined Instruction and Software Interrupt) return the processor
to a 32 bit mode. so the operating system must be modified to handle them.

• If the processor attempts to write to a location between &0 and & IF inclusive
(i.e. the exception vectors). hardware prevents the write operation and
generates a data abort. This allows the operating system to intercept all

37

32 bit architecture

38

changes to the exception vectors and redirect the vector to some veneer code.
The veneer code should place the processor in a 26 bit mode before ca lling the
26 bit exception handler.

In all other respects. when operating in a 26 bit mode the ARM behaves as like a
26 bit ARM (See the section 26 bil ard1ileclure on page 32 1 The relevant bits of the
CPSR appear to be incorporated back into R 15 to form the PC/PSR with the I and F
bits in bits 27 and 26. The instruction set behaves like that of the ARM2aS
macrocell . with the addition of theM RS and MSR instructions.

RISC OS processor configuration and modes

For details. see the section RISC OS processor configuralion and modes on page 167

Registers

The registers available in the J\RM6 and ARM7 series are:

I
UNO mode

User and SVC and IRQ and
User26 SVC26 IRQ26 ABT mode
mode mode mode

AO

A1

A2

A3

A4

AS

A6

A7

AS

R9

A10

A11

A12

A13

A14 T A13_svc J A13_irq A13_abt

A14_~R14_irq A14_abt l A13 und

A14 und

A15 (PC)

CPSR

LsPSR_svc SPSA_irq SPSA abt SPSA_und

Figure 3 4 32 bit register organisalion

FlO and
FIQ26
mode

AS fiq

A9_f•q

A10_f•q

A11_fiq

A12_fiq

A13 fiq

A14 fiq

SPSA_fiq

TheARMCPU

=

These are similar to t hose available in the ARM2 and ARM3 series registers. The
key di fferences are:

• the PC is a full 32 bits wide

• the PSR is held in its own register, t he CPSR (see the section The CPSR and
SPSR registers below)

• each privi leged mode has a private SPSR register in which to save the CPSR

• there are two new privileged modes. each o f which has private copies of R 13
and R 14.

The CPSR and SPSR registers

The allocation o f the bits within the CPSR (and the SPSR registers to which it is
saved) is shown in the figure T(te Current Process Status Register (CPSR) below.

31 30 29 28 27

Processor mode
00000 => User26 mode
00001 = FIQ26 mode
00010 => IRQ26 mode
00011 = SVC26 mode
10000 = User mode
10001 => FlO mode
10010 IRQ mode
10011 SVC mode
10111 ABT mode
11011 UNO mode

FlO disable
0 => Enable
1 = Disable

IRQ disable
0 = Enable
1 = Disable

Overflow

Carry/Not borrow/
Rotate extend

Zero

Negative/
Signed less than

Figure 3.5 Tfte Current Process Status Register (CPSR)

39

Exceptions

Exceptions

40

This last sect ion of the chapter is main ly of interest to operating systems
programmers- for example when constructing relocatable modu les . If you are
wri t ing appl icalions, you can skip forward Lo the chapter ARM assernbly /anguage on
page 47.

This section describes the general behaviour of the ARM, rather than its behaviour
under RISC OS For details specific to RISC OS you must also see the chapter
Exaptio11 fra11dli11g on page 167.

Introduction

Exceptions arise whenever there is a need for the normal flow of program
execution to be broken. so that (for instance) the processor can be diverted to
handle an interrupt from a peri pheral. The processor state just prior Lo handl ing
the exception must be preserved so Lhal the origina l program can be resumed
when the cxccplion routi ne has completed. Many exceptions may arise at the same
time

ARM handles exceptions by making usc of the banked registers to save state. The
old PC and PSR are copied. in a 26 bit configuration to the appropnate R 14. or in a
32 bit configuration to the appropriate R 14 and SPSR The PC and processor mode
bits are forced to a value which depends on the exception. Interrupt disable flags
are set where required to prevent otherwise unmanageable nestings of exceptions.
In the case of a re-entrant interrupt handler, R 14 should be saved onto a stack in
main memory before re-enabling the interrupt. When multiple except ions arise
simu ltaneously a fixed priority determines the order in wh ich they arc hand led.

FIQ (Fast interrupt request)

The FlO (f-ast Interrupt reQuest) exception is externally generated by taking the FlO
pin LOW This input can accept asynchronous transitions. and is delayed by one
clock cycle for synchronisation before it can affect the processor executron flow It
is designed to support a data transfer or channel process. and has sufficient private
registers to remove the need for register saving in such applications. so that the
overhead of context switching is minimised.

The FlO exceplion may be d isabled by selling the r flag in the PSR (but note that
th is is not possible from User mode) If the F flag is clear ARM checks for a LOW
level on the output of the FlO synchroniser at the end of each instruction

The ARM CPU

·······- ••••

When ARM is successfully FIOed it will

SaveR 15 in R 14_fiq, and (for 32 bit configuration ARMs) save the CPSR in
SPSR_fiq.

2 Force the mode bits to FlO mode and set the F and I bits in the PSR.

3 Force the PC to fetch the next instruction from address & I C.

To return normally from FlO use

SUBS PC,Rl4_fiq,#4

This will resume execution of the interrupted code sequence. and restore the
original mode and interrupt enable state.

IRQ (Interrupt request)

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level
on the IRQ pin . This input can accept asynchronous transitions, and is delayed by
one clock cycle for synchronisation before it can affect processor execution. It has
a lower priority than FlO, and is masked out when a FlO sequence is entered. Its
effect may be masked out at any time by setting the I bit in the PC (but note that
this is not possible from user mode). If the I flag is clear ARM checks for a LOW
level on the output of the IRQ synchroniser at the end of each instruction.

When ARM is successfully IROed it will:

I Save R 15 in R 14_irq, and (for 32 bit configuration ARMs) save the CPSR in
SPSR_irq.

2 Force the mode bits to IRQ mode and set the I bit in the PSR.

3 Force the PC to fetch the next instruction from address & 18.

To return normally from IRQ use:

SUBS PC,Rl4_ irq,#4

This will restore the original processor state and thereby re-enable IRQ.

Address exception trap

On a 32 bit configuration processor. address exceptions are never generated. and
you may therefore ignore this section for such processors.

On a 26 bit configuration processor, an address exception arises whenever a data
transfer is attempted with a calculated address above &3FFFFFF. The ARM address
bus is 26 bits wide. but an address calculation has a 32 bit result . If this result has
a logic· I ' in any of the top 6 bits it is assumed that the address overflow is an error,
and the address exception trap is taken.

41

Exceptions

Abort

42

Note that a branch cannot cause an address exception. and a block data transfer
instruction which starts in the legal area but increments into the illegal area will
not trap (it wraps round to address 0 instead) . The check is performed only on the
address of the first word to be transferred.

When an address exception is seen ARM will:

If the data transfer was a store, force it to load. (This protects the memory from
spurious writ ing.)

2 Complete the instruction, but prevent internal state changes where possible
The state changes are the same as if the instruction had aborted on the data
transfer.

3 Save Rl5 in Rl4_svc

4 Force the mode bits to SVC mode and set the I bit in the PSR.

5 Force the PC to fetch the next instruction from address & 14.

Normally an address exception is caused by erroneous code, and it is
inappropriate to resume execution. If a return is required from this trap, use
SUBS PC I Rl4_ svc 1 #4. This wil l return to the instruction after the one causing
the trap.

The Abort signal comes from an external Memory Management system. and
indicates that the current memory access cannot be completed. For instance, in a
virtua l memory system the data corresponding to the current address may have
been moved out of memory onto a d isc. and considerable processor activity may
be required to recover the data before the access can be performed successfully
ARM checks for an Abort at the end of the first phase of each bus cycle When
successfully Aborted ARM will respond in one of three ways.

Abort during instruction prefetch

If abort is signalled during an instruction prefetch (a PrefetcfJ abort). the prefetched
instruction is marked as invalid; when it comes to execution, it is reinterpreted as
below. (If the instruction is not executed. for example as a result of a branch being
taken while it is in the pipeline, the abort will have no effect)

Then ARM will:

Save R 15 in R 14_svc, or (for 32 bit configuration ARMs) saveR 15 in R I 4_abt
and save the CPSR in SPSR_abt.

2 Force the mode bits to SVC mode or (for 32 bit configuration ARMs) ABT mode
and set the I bit in the PSR.

3 Force the PC to fetch the next instruction from address &OC.

TheARMCPU

•••w**•••• • • w •••••
To continue after a Pre fetch abort use SUBS PC 1 R14 1 # 4 (where R14 is R14 svc
or R14_abt depending on the processor configuration) . The ARM will then
re-execute the aborting instruction, so you should ensure that you have removed
the cause of the original abort.

Abort during data access

If the abort command occurs during a data access (a Data Abort). the action
depends on the instruction type.

• Single data transfer instructions (LDR and STR) are aborted as though the
instruction had not executed.

• Block data transfer instructions (LDM and STM) complete, and if writeback is
set, the base is updated. If the instruction wou ld normally have overwritten the
base with data (ie LDM with the base in the transfer list). this overwriting is
prevented. All register overwriting is prevented after the Abort is indicated.
which means in particular that R 15 (which is always last to be transferred! is
preserved in an aborted LDM instruction.

Then ARM will

Save Rl5 in Rl4_svc. or (for 32 bit configuration ARMs) save Rl5 in Rl4_abt
and save the CPSR in SPSR_abl.

2 Force the mode bits to SVC mode or (for 32 bit configuration ARMs) ABT mode
and set the I bit in the PSR.

3 Force the PC to fetch the next instruction from address & I 0.

To continue after a data abort. remove the ca use of the abort. then reverse any
auto-indexing that the original instruction may have done. then return to the
original instruction with SUBS PC I R14 I # 8 (where R14 is R14_ svc or R14_abt
depending on the processor configuration)

Abort during an internal cycle

The ARM ignores aborts signalled during interna l cycles.

Using aborts to implement virtual memory systems

The abort mechanism allows a 'demand paged virtual memory system· to be
implemented when a su itable memory management unit (such as MEMC) is
avai lable. The processor is allowed to generate arbitrary addresses. and when the
data at an address is unava ilable the memory manager signals an abort. The
processor traps into system software which must work out the cause of the abort.
make the requested data available, and retry the aborted instruction. The
appl ication program needs no knowledge of the amount of memory available to it,
nor is its state in any way affected by the abort.

43

Exceptions

44

Software interrupt

The software interrupt instruction is used for getting into supervisor mode, usually
to request a particu lar supervisor function. ARM will:

Save Rl 5 in Rl4_svc. and (for 32 bit conriguration ARMs) save Lhc C I)S I~ in
SPSR _svc.

2 Force the mode bits to SVC mode and set the I bit in the PSR.

3 Force the PC to fetch the next instruction from address &8

To return from a SWI. use MOVS PC, R14_ svc This returns to the instruction
fol lowing the SWI

Undefined instruction trap

When ARM executes a coprocessor instruction or an undefined instruction. it
offers it to any coprocessors which may be present. If a coprocessor can perform
this instruction bul is busy at that moment. ARM will wait until the coprocessor is
ready. If no coprocessor can handle the instruction ARM will take the undefined
instruction trap.

When the undefined instruction trap is taken ARM will:

SaveR 15 in R 14_svc, or (for 32 bit configuration ARMs) saveR 15 m R 14_und
and save the CPSR in SPSR_und.

2 Force the mode bits to SVC mode or (for 32 bit configuration ARMs) UN D
mode and set the I bit in rhe PSR.

3 Force the PC to fetch the next instruction from address &4

The undefined instruction trap may be used for software emu lation of a
coprocessor in a system which does not have the coprocessor hardware. or for
general purpose instruct ion set extension by software emulation (the floating
point instruction set is implemented in software this way).

To return from this trap (after perform ing a suitable emulation of the required
function). useMOVS PC,R14 (whereR14 is R14_svc orR14_und dependingon
the processor configuration) . This will retu rn to the instruction fo llowing the
undefined instruction.

wunnwwaw

Reset

TheARMCPU

a -=-

ARM can be reset by pulling its RESET pin HIGH.Ifthis happens. ARM will stop the
currently executing instruction and start executing no-ops. When RESET goes LOW
again. it will

Save R 15 in R 14_svc, and (for 32 bit configuration ARMs) save the CPSR in
SPSR_svc

2 Force the mode bits to SVC mode and set the F and I bits in the PSR.

3 Force the PC to fetch the next instruction from address &0.

Vector summary

The first eight words of store normally contain branch instructions pointing to the
relevant routines. The FlO routine may reside at &00000 I C onwards, and thereby
avoid the need for (and execution time of) a branch instruction.

Address

&0000000

&0000004

&0000008

&OOOOOOC
&0000010

&00000 14

&00000 18

&OOOOOIC

Exception Priorities

Definition

Reset

Undefined instruction

Software interrupt

Abort (pre fetch)

Abort (data)

Address except ion

IRQ

FlO

\Vhen multiple exceptions arise at the same time. a fixed priority system
determines the order in which they will be handled

Reset (highest priority)

2 Address exception. Data abort

3 FlO

4 IRQ

5 Prefetch abort

6 Undefined Instruction, Software interrupt (lowest priority)

45

Exceptions

46

Note that not all exceptions can occur at once. Address exception and data abort
are mutually exclusive. since if an address is i llega l the ARM will ignore the ABORT
input Undefined instruction and software interrupt are also mutually exclusive
since they each correspond to particular (non-overlapping) decodings of the
current instruction.

If an address exception or data abort occurs at the same time as a FlO. and FIGs
are enabled (ie the F flag in the PSR is clear). ARM will enter the address exception
or data abort handler and then immediately proceed to the FlO vector. A normal
retu rn from FlO wil l ca use the address exception or data abort hand ler to resu me
execution. Pl acing address exception and data abort at a higher priority than FlO is
necessary to ensure that the transfer error does not escape detection. but the time
for this exception entry should be added to worst case FlO latency calcu lations.

Interrupt latencies

The worst case latency for FlO. assuming that it is enabled, consists of the longest
time the request can take to pass through the synchroniser. plus the time for the
longest instruction (typically load multiple registers) to complete, plus the time for
address exception or data abort entry, plus the time for FlO entry. At the end of this
time ARM will be executing the instruction at ICH.

The maximum IRQ latency ca lculation is simi lar, but must allow for the fact that
FlO has higher priority and could delay entry into the IRQ handling routine for an
arbitrary length of t ime.

The minimum latency for FlO or I RO consists o f the shortest t ime the request can
take through the synchroniser. plus the time for FlO or IRQ entry.

The above times can vary considerably between different versions of the ARM. and
obviously also depend on clock speeds. For more informa tion you shou ld see the
relevant datasheets.

4

General

Input lines

AREAs

ARM assembly language

A RM Assembly Language is the language which ObjAsm parses and compiles to
..t'l. produce object code in ARM Object Format. Information on ObjAsm
command line options are detailed in ObjAsrn command lines on page 22. This
chapter details ARM Assembly Language, but does not give examples of its use.

Instruction mnemonics and register names may be written in upper or lower case
(but not mixed case). Di rectives must be written in upper case.

The general form of assembler input lines is:

cdabeln <einstructionn ((; comment))

A space or tab should separate the label. where one is used, and the instruction. If
no label is used the line must begin with a space or tab Any combination of these
three items will produce a valid line; empty lines are also accepted by the
assembler and can be used to improve the clarity of source code

Assembler source lines are allowed to be up to 255 characters long. To make
source files easier to read. a long line of source can be split onto several lines by
placing a backslash character,'\'. at the end of a line The backslash must not be
followed by any other characters (including spaces or tabs}. The backslash +end of
line sequence is treated by ObjAsm as white space Note that the backslash +end
of line sequence should not be used within quoted strings

AReAs are the independent. named. indivisible chunks of code and data
manipulated by the Linker. The Linker places each AREA in a program image
according to the AREA placement rules (i.e not necessarily adjacent to the AREAs
with which it was assembled or compiled).

Conventionally, an assembly. or the output of a compilation. consists of two
AREAs. one for the code (usually marked read-only). and one for the data which
may be wntten to A reentrant object will generally have a third AREA marked

47

AREAs

48

------- w

BASED sb (see below). which will conta in relocatable address constants. This
allows the code area to be read-only, position-independent and reentrant. making
it easi ly ROM-able.

In ARM assembly language, each AREA begins with an AREA directive. If the AREA
directive is missing the assembler will generate an AREA with an unlikely name
(I $$$$$$$ 1) and produce a diagnostic message to this effect. This will limit the
number of spurious errors ca used by the missing directive, but wil l not lead to a
successfu l assembly.

The syntax of the AREA directive is:

AREA name«, attr))", attr1• . . .

You may choose any name for your AREAs, but certa in choices are conventiona l.
For example, I C$$code I is used for code AREAs produced by the C compi ler, or
for code AREAs otherwise associated with the C library.

Area attributes

AREA attributes are as follows

ABS

REL

PIC

CODE

DATA

READONLY

COMDEF

COMMON

NOINIT

REENTRANT

BASED Rn

Absolute rooted at a fixed address.

Relocatable: may be relocated by the Linker (the default] .

Pos ition Independent Code will execute where loaded without
mod ification.

Contains machine instructions.

Conta ins data, not instructions.

Th is area wil l not be written to.

Common area definition.

Common area.

Data AREA in it ia lised to zero: contains on ly space reservation
directives. with no initialised values.

The code AREA is reentrant.

Static base data AREA containing tables of address constants
locating static data items. Rn is a register, conventionally R9. Any
label defined within this AREA becomes a register-relative
expression which can be used with LDR and STR instructions. For
full details see the appendix ARM procedure call standard on
page 249 of the Desktop Tools guide.

ARM assembly language

........................ -=--~~--=---~==------~~~~::~~=:~====3

ORG and ABS

Symbols

ALIGN=expression
The ALIGN sub-directive forces the start of the area to be aligned
on a power-of-two byte-address boundary By default AREAs are
aligned on a 4-byte word boundary, but the expression can have
any value between 2 and I 2 inclusive.

ORG base-address

The ORG (origin) directive is used to sel the base address and the ABS (absolute)
attribute of the containing AREA, or of the following AREA if there is no containing
AREA. In some circumstances this will create objects which cannot be linked. In
general it only makes sense to use ORG in programs consisting of one AREA. which
need to map fixed hardware addresses such as trap vector locations. Otherwise
ORG should be avoided.

Numbers. logical values. string values and addresses may be represented by
symbols. Symbols representing numbers or addresses, logical values and strings
are declared using the GBL and LCL directives. and values are assigned
immediately by SETA, SETL and SETS directives respectively (see Local and global
variables - GBL, LCL and SET on page 146). Addresses are assigned by the
Assembler as assembly proceeds, some remaining in symbolic. relocatable form
until link time.

Symbols must start with a letter in either upper or lower case; the assembler is
case-sensitive and treats the two forms as distinct. Numeric characters and the
underscore character may be part of the symbol name. All characters are
significant.

Symbols shou ld not use the same name as instruction mnemonics or directives.
While the assembler can distinguish between the uses of the term through their
relative positions in the input line. a programmer may not always be able to do so.

Symbol length is limi ted by the 255 character line length limit.

If there is a need to use a wider range of characters in symbols. for instance when
working with other compilers, use enclosing bars to delimit the symbol name; for
example. I C$$code 1- The bars are not part of the symbol.

49

Labels

Labels

Local labels

Labels are a special form of symbol. distinguished by their position at the start of
lines. The address represented by a label is not explicitly stated but is calculated
during assembly.

The local label, a subclass of label. begins with a number in the range 0-99. Local
labels work in conjunction with the ROUT directive and are most useful for solving
the problem of macro-generated labels. Un li ke global labels. a local label may be
defined many times; the assembler uses the definition closest to the point of
reference. To begin a local label area use:

cdabel» ROUT

The label area will start with the next line of source, and will end with the next
ROUT directive or the end of the program

Local labels are defined as:

number« routinename,,

although routinename need not be used; if omitted, it is assumed to match the
label of the last ROUT directive. It is an error to give a routine name when no label
has been attached to the preceding ROUT directive.

References to local labels

50

A reference to a local label has the following syntax

%«X»«y»nuroutinename»

% introduces the reference and may be used anywhere where an ordinary label
reference is valid.

x tells the assembler where to search for the label; use B for backward or F for
forward. lf no direction is specified the assembler looks both forward and
backward. However searches will never go outside the local label area (i.e beyond
the nearest ROUT directives)

y provides the following options A to look at all macro levels. T to look only at this
macro level. or. if y is absent, to look at all macro from the current level to the top
level.

n is the number of the local label.

routinename is optional. but if present it will be checked against the enclosing
ROUT's label

Comments

Constants

ARM assembly language

The first semi-colon on a line marks the beginning of a comment. except where the
sem1 colon appears inside a string constant A comment alone is a valid line. All
comments are ignored by the assembler

Numbers

Numeric constants are accepted in three forms decimal(e.g. 123). hexadecimal
(e.g &7B). and n_xxx. where n is a base between 2 and 9, and xxx is a number in
that base.

Strings

Strings consist of opening and closing double quotes. enclosing characters and
spaces. If double quotes or dollar signs arc used within a string as litera l text
characters. they shou ld be represented by a pair of the appropriate character; e g.
$$for$.

Boolean

The Boolean constants 'true' and 'false' should be written as {TRUE} and
{FALSE}

The END directive

Every assembly language source must end with

END

on a line by itself.

51

••

52

5 CPU instruction set

T his chapter describes the CPU instructions available in ObjAsm It includes
instruction formats, assembler syntax. and a synopsis of each instruction.

The condition field

All ARM instructions are conditionally executed, which means that they will only
be executed if theN, Z, C and V flags in the PSR are in the correct state at the end
of the preceding instruction. The condition is encoded in a four bit condition field,
held in bits 28 - 31 of an instruction. By default ObjAsm encodes the 'always
execute· condition: other conditions can be requested by appending a
two-character cond ition mnemonic to ObjAsm's mnemonic for an instruction.

The figure below shows the condition codes. their mnemonics, and the
corresponding conditions under which the instruction is executed:

31 28 27

Cond J ...
--Condition field

0000 .,. EQ
0001 .,. NE
0010 "" cs
0011 "" cc
0100 .,. Ml
0101 = PL
0110 q vs
0111 "" vc
1000 = HI
1001 = LS
1010 GE
1011 = LT

z set (equal)
Z clear (not equal)
C set (unsigned higher or same)
C clear (unsigned lower)
N set (minus - i.e. negative)
N clear (plus- i.e. positive or zero)
V set (overflow)
V clear (no overflow)
C set and Z clear (unsigned higher)
C clear or Z set (unsigned lower or same)

0

N set and V set, or N clear and V clear (greater or equal)
N set and V clear, or N clear and V set (less than)

1100 GT
1101 LE
1110 AL

Z clear, and either N set and V set, or N clear and V clear (greater than)
Z set, or N set and V clear, or N clear and V set (less than or equal)
always execute (ignore flags)

1111 reserved

Figure 5. I The condition field

Note that ObjAsm implements HS (Higher or Same) and LO (LOwer than) as
synonymous with CS and CC respectively, giving it a total of 17 condition
mnemonics.

53

Instruction timings

For example, suppose you had a CMP (compare) instruction followed by an
instruction with the EO condition (so it is executed on ly if the Z flag is set).

• If the CMP instruction's two operands were equal it would set the Z flag. and
so your conditional instruct ion would be executed

• If the CMP instruction's two operands were different. it would clear the Z flag,
and so your conditional instruction would not be executed

Conditional instruction sequence

Branches which are taken cause breaks in the pipeline For this reason they often
wa~te time. and can sometimes be replaced by a suitable conditional instruction
sequence.

As an example, the coding of IF A=4 THEN B - A ELSE C:=D+E might be
conventional ly achieved using five ARM instructions:

LABEL
LAB2

CMP
BNE
MOV
B
ADD

RS, #4
LABEL

;test "A=4"
;if not equal goto LABEL

R6,R5 ;do "B : =A"
LAB2 ;jump around the ELSE clause
RO,Rl,R2;do "C : =D+E"

;finish

whereas. using the condition testing instructions. the same effect may be achieved
using three instruct ions:

CMP
MOVEQ
ADDNE

5, #4 ;test "A=4"
R6,RS ;if so do "B:=A"
RO,Rl,R2;else do "C : =D+E".

If the condition tested is true. the instruction is performed If it is false. the
instruction is skipped and the PC is advanced to the next memory word, which
takes little processor time. The first of the examples above takes about twice as
long as the second.

Arter the instruction is obeyed. the arithmetic logic unil (ALU) will output
appropriate signa ls on the flag l ines. On certain instructions, the flags set the
condition code bits in the PSR: for other instructions. the flags in the PSR are only
altered if the programmer permits them to be updated.

Instruction timings

54

Instruction timings can vary between versions of the ARM processor. and so we do
not detai l them here. For code that is timing dependent. we advise that you
consult the datasheets for all ARM versions on which your code may run.

CPU instruction set

The barrel shifter

The arithmetic logic unit has a 32-bit barrel sh ifter capable of various shift and
rotate operations Data involved in the data processing group of instructions
(detailed in the section Data processing on page 66) may pass through the barrel
shifter. either as a direct consequence of the programmer's actions. or as a result of
the internal computations of ObjAsm. The barrel shifter also affects the index for
the single data transfer instructions (detailed in the section Single data transfer (LDR,
STR) on page 83).

The barrel shifter has a carry in, which takes its input from the C flag of the PSR;
and a carry out, which may be latched back into the C bit of the PSR for logical data
operations (see The S bit on page 69)

The shift mechanism can produce the following types of operand

Unshifted register

Syntax
For example:

register
RO

Register shifted by a constant amount

A register shifted by a constant amount, in the range 0-31, 1-31 or 1-32 (depending
on shift type).

Syntax:
For example:

register, shift-type #amount
RO,LSR #1

Value resulting from rotating register and carry bit one bit right

A value which is the result of rotating a register and the carry bit one bit right.
Because the carry is included in the shift. 33 bits (rather than 32 bits) are affected.
The shift type is known as rotate right extended.

Syntax:
For example:

register,RRX
RO,RRX

Register shifted by n bits

A register shifted by n bits, where n is the least significant byte of a register. This
form is not valid as an index in a single register transfer

Syntax
For example

register,shift-type register
Rl,LSL R2

55

The barrel shifter

56

8-bit constant rotated right by 2n bits

A constant constructed by rotating an 8-bit constant right by 211 bits. where 11 is a
4-bit constant. The shift type is always rotate right This form is not valid as an
mdex m a single register transfer.

Syntax
For example:

#expression
#&3FC

Note that the rotation is invisible to the programmer. who should merely supply an
immediate value for the data processing instruction to use

ObjAsm will evaluate the expression and reject any number which cannot be
expressed as a rotation by an even amount of a number in the range 0-255. If
possible. ObjAsm always constructs it as an unrolalcd value. even if there are
o ther possibilities.

r:xamplcs of valid immediate constants are:

#1
#&FF
#&3FC
#&80000000
#&FC000003

This is &FF rotated right by 30

This is 2 rotated right by 2
This is &FF rotated right by 6.

Examples of invalid constants are.

#&101
#&1FE

cannot be obtained by rotating an 8-b1t va lue
an 8-bit value rotated by an odd amount- but not an 8-b1t value
rotated by an even amount

8-bit constant rotated right by 2n bits and specified explicitly

A constant constructed as in the point above. but specified explicitly. Th is form is
not valid as an index in a single register transfer.

Syntax:
l'or example:

#constant, rotate amount
#4,2

The shift amount shou ld be an even number in the range 0-30. This can be
important for setting the carry flag on an operation which would otherwise not
update it.

ror example:

MOVS RO,
MOVS RO,

#4, 2 produces the same result as
#1

but because the first instruction does a rotate right of two bits the carry flag is
cleared . whereas it is not altered by the second instruction

Shift types

CPU instruction set

Various instructions use the barrel shifter to shift register operands. The effects of
such shifts are detailed in this section, rather than being repeated for each
instruction.

Mnemonics

There are six assembler mnemonics for sh ift types. used to control the barrel
shifter. These are

LSL Logica l Shift Left

ASL Arithmetic Shift Left

LSR Logica l Shift Right

ASR Arithmetic Sh ift Right

ROR Rotate Right

RRX Rotate Right with Extend

The mnemonic ASL (arithmetic shift left) may be freely interchanged with LSL
(logical shift left).

Specification of the shift amount

The shift amount may either be specified in the instruction, or in a register
specified by the instruction.

Instruction specified shift amount

When the sh ift amount is specified in the instruction. it is contained in a 5 bit field
which may take any value from 0 to 31 .

Register specified shift amount

Only the least sign ificant byte of the contents of Rs is used to determine the shift
amount.

If this byte is zero. the unchanged contents of Rm will be used as the second
operand. and the o ld va lue of the PSR C flag will be passed on as the shifter carry
output

If the byte has a value between I and 31. the shifted resu lt will exactly match that
of an instruction specified shift with the same va lue and shift operation.

If the va lue in the byte is 32 or more, the result will be a logical extension of the
shifting process. This is detailed for each mnemonic described below.

57

Shift types

58

Logical shift left, or arithmetic shift left

Rm, LSL #nor

Rm , ASL #n
Rm ,LSL Rs or

Rm , ASL Rs

Shift contents of Rm left by tl bits. where 11 is 0 to '31 .

Shift contents of Rm left by the least significant byte of Rs.

A logical shift left (LSL) takes the contents of Rm and moves each bit by the
specified amount to a more significant position The least significant bits of the
result are filled with zeroes. The high bits of Rm which do not map into the result
are discarded- except that the least significant discarded bit becomes the barrel
shifter's carry out.

1·or example, the effect of LSL #5 is

3 1 28 27 26 Contents of Am 0

I II
~ Carry out

I

:!:

lo o o o ol
31 Value of operand 2 5 4 0

Figure 5 2 A logical or arilf1metic sf1i{t fe{l by 5

Special cases

e LSL #0 or ASL #0 and LSL Rs or ASL Rs where Rs is 0

The barrel shifter's result is the unchanged contents of Rm . and its carry out is
the old value of the PSR C nag

• LSL Rs or ASL Rs where Rs is 32:

The resu lt is zero. and the carry out is bit 0 of Rm

• LSL l~s or ASL Rs where Rs is greater than 32:

Bol h the result and the ca rry out are zero.

CPU instruction set

Logical shift right

Rm , LSR #n

Rm,LSR Rs

Shift contents of Rm right by 11 bits. where 11 is I to 32

Shift contents of Rm right by the least significant byte of Rs

A logical shift right (LSR) is similar to a logical shift left but the contents of Rm are
moved to less significant positions in the result LSR #5 has this effect :

31 Contents of Rm 5 4 3 0

I I~
Carry out.,.

lo o o o ol
31 27 26 Value of operand 2 0

Figure 5.3 A logical sfri{t right by 5

Logical shift right zero is redundant as it is the same as logical shitt left zero The
form of the shift fie ld which might be expected to correspond to LSR #0 is therefore
used to encode LSR #32. ObjAsm assembles LSR #0 (and ASR #0 and ROR #0) as
LSL #0. and allows you to specify LSR #32 .

Special cases

• LSR #0

Th1s is assembled as LSL #0 (see page 58). which has the same effect as
LSR #0.

• LSR Rs where Rs is 0:

The barrel shifter's result is the unchanged contents of Rm. and its carry out is
the old value of the PSR C flag

• LSR #32. or LSR Rs where Rs is 32:

The result is zero. and the carry out is bit 3 1 of Rm. (LSR #32 is encoded in the
format you wou ld expect to correspond to LSR #0.)

• LSR Rs where Rs is greater t han 32:

Both the result and the carry out are zero.

59

Shift types

:weawwwwww•wwc:wwcuwauwwww• .. www:w••eww

60

Arithmetic shift right

Rm,ASR #n

Rm,ASR Rs

Shift contents of Rm right by n bits. where n is I to 32.

Shift contents of Rm right by the least s ignificant byte of Rs.

An arithmetic shift right (ASR) is similar to a logical shift right, except that the high
bits are filled with bit 31 of Rm instead o f zeroes. This preserves the s ign in 2's
complement notation. For example, ASR #5:

31 30

II

.lr .••
I I I~
31 27 26 25

Contents of Rm

.: ..
Value of operand 2

Figure 5.4 An arithmetic shift right by 5

5 4 3

II
0

Carry out ...

0

Arithmetic shift right zero is redundant as it is the same as logical shift left zero.
The form of the sh ift field which might be expected to correspond to ASR #0 is
therefore used to encode ASR #32. ObjAsm assembles ASR #0 (and LSR #0 and
ROR #0) as LSL #0, and allows you to specify ASR #32.

Special cases

• ASR #0:

This is assembled as LSL #0 (see page 58). which has t he same effect as
ASR #0.

• ASR Rs where Rs is 0:

The barrel sh ifter's resu lt is lhe unchanged contents of Rm. and its carry out is
the old value of the PSR C flag.

• ASR #32. or ASR Rs where Rs is 32 o r mo re

Each bit of the result is equal to bit 31 of Rm: the result is therefore a ll ones or
all zeroes. The carry out is also bit 31 o f Rm. (ASR #32 is encoded in the format
you would expect to correspond to ASR #0.)

CPU instruction set

Rotate right

Rm,ROR #n

Rm,ROR Rs

Rotate contents of Rm right by n bits, where n is I to 3 I .
Rotate contents of Rm right by the least significant byte of Rs

Rotate right (RORJ operations reuse the bits which 'overshoot' in a logical sh1ft
right operation by reintroducing them at the high end of the result. in place of the
zeroes used to fi l l the high end in logica l right operations. For example, ROR #5

31 Contents of Rm 5 4 3 0

II
, Carry out.,.
y

31 30 27 26 Value of operand 2 0

Figure 5. '5 A rotate right by 5

Rotate right zero is redundant as it is the same as logica l sh ift left zero. The form of
the shift fie ld which might be expected to correspond to ROR #0 is therefore used
to encode rotate right extended (see the next section). ObjAsm assembles ROR #0
(and LSR #0 and ASR #0) as LSL #0

Special cases

e ROR #0:

This is assembled as LSL #0 (see page 58). which has the same effect as
ROR #0.

• ROR Rs where Rs is 0:
The barrel shifter's result is the unchanged contents of Rm. and its carry out is
the old value of the PSR C nag

• ROR Rs where Rs is 32:
The resu lt is equa l to Rm. and the ca rry out is bit '3 1 of Rm.

• ROR Rs where Rs is greater than 32:
The result and carry out are the same as for ROR ((Rs- I l MOD 32 + I):
therefore repeatedly subtract 32 from Rs until its value is in the range I to 32 .
and then see above.

61

Coprocessor instructions

Rotate right with extend

Rm,RRX Rotate contents of Rm and the carry flag right by I bit only.

The form of the shift field which might be expected to give ROR #0 is used to
encode a special function of the barrel shifter, rotate right extended (RRX) This is
a rotate right by one bit position of the 33 bit quantity formed by appending the
PSR C flag to the most significant end of the contents of Rm:

Carry
in

31

31 30

Contents of Rm

Value of operand 2

Figure 5.6 A rotate rigfrt witfr extend

1 0

0

Carry
out .,.

Coprocessor instructions

62

The ARM can work with up to 16 external coprocessors, which (if present) will
execute the instructions listed below. If the requested coprocessor is absent. these
instructions will be regarded as undefined The undefined instruction trap can then
take appropriate action (for example emulating the requested instruction in
software or telling the user that the program won'l run in a machine without the
coprocessor.)

The floating point coprocessor uses coprocessor numbers I and 2. If it's absent.
the floating point emulator traps the resulting undefined instructions and
emulates them. The coprocessor 15 instructions are used by ARM as instructions
to control its own operation (such as cache control, and 26/32 bit configuration)

ObjAsm provides support for coprocessors at two levels. Firstly, it provides a set of
generic coprocessor instructions. detailed below. Secondly, it recognises a
standard set of floating point instructions and translates them into the appropriate
coprocessor instructions; see the chapter Floating point instructions on page 117 for
details.

All the generic coprocessor operations include a coprocessor number symbol and
one or more coprocessor register symbols. These should be defined using the CP
and CN directives respectively. (See the chapter Directives on page 139.)

All coprocessor instructions are conditional. Whether they are executed depends
on the ARM's condition flags, not on any coprocessor status register.

CPU instruction set
ww ·······---

Branch, Branch with Link (B, BL)

Instructions for branching to an instruction other than the next one

Instruction format

31 28 27 25 24 23

Cond

Assembler syntax

Offset

Link bit
0 Branch
1 = Branch with link

Condition field
(see page 53)

B«L11 «cond11 expression

where:

0

«L11 requests the Branch with Link form of the instruction (see The link
bit below) If absent, R 14 wil l not be affected by the instruction.

«cond11 is a two-character condition mnemonic: see the section Tfte
condition field on page 53.

expression is a program-relative expression describing the branch
destination. from which ObjAsm ca lculates the offset

Synopsis

These instructions branch to an instruction other than the next one. by altering the
value of the program counter (R 15). The Branch with Link form of the instruction
also stores a return address in the l ink register (RI4). so that program flow can
branch to a subroutine, and then return to the instruction immediately following
the Branch with Link instruction: for more details see Tf1e link bit below.

All branches take a signed 2's complement 24 bit word offset This is shifted left
two bits. and added to the program counter, with any overflow being ignored,
giving an offset of ±32Mbytes. The branch can therefore reach any word aligned
address with in a 26 bit address space. since the calculation 'wraps round' between
the top and bottom of memory

When using this instruction with ObjAsm you should provide a label. from which
ObjAsm will calculate the 24 bit offset

63

Branch, Branch with Link (B, BL)

64

The encoded offset must take account of the effects of pipelining and prefetching
within the CPU, which causes the PC to be two words ahead of the current
instruction. ObjAsm automatically handles this for you . For example, the
calculated jump offset in the following piece of code is 000000, even though the
jump is to a label two PC locations ahead.

Code generated

EAOOOOOO
xxxxxxxx
xxxxxxxx

Label
Ll

L2

Mnemonic

BEQ

XXX

XXX

Destination

L2

The instruction is only executed if the condition specified in the cond ition field is
true (see the section Tfie condition field on page 53).

The link bit

Branch with Link works in the same way as Branch. but it also writes the old PC and
PSR into the I ink register (R 14) of the current bank. The PC va I ue written is first
adjusted to allow for the prefetch. and conta ins the address of the instruction
following the branch and link instruction.

This form of the instruction is often used for branching to subroutines. At the end
of the subroutine the program flow can return to the instruction immediately
following the Branch with Link instruction by writing the link register (RI4) value
back into the program counter (R 15). To do so. the subroutine should end with :

MOV PC,Rl4

if the link register has not been saved on a stack, or

LDMxx Rn, {PC}

if the link register has been saved on a stack addressed by Rn. (xx is the stack type:
see the section Block data transfer (LDM. STM) on page 88)

These methods of returning do not restore the origina l PSR. If the PSR does need
to be restored then

MOV PC,Rl4
LDMxx Rn, {PC}

can be replaced by
by

MOVS PC,Rl4
LDMxx Rn, {PC}"

or

However. care should be taken when using these methods in modes other than
user mode. as they will also restore the mode and the interrupt bits. In particu lar.
restoring the interrupt bits may interfere unintentionally with the interrupt system.

CPU instruction set

········----------~~~-------- I;;;

32 bit operation

Calculating the offset

In 32 bit operation. the offset is sign extended to 32 bits before it is added to the
program counter.

Branches beyond ±32Mbytes must use an offset or an absolute destination wh ich
has previously been loaded into a register. In this case you shou ld manual ly save
the PC in R 14 if you require a Branch with Link type operation .

The link bit

Branch with Link does not save the CPSR with the PC. If you need to preserve the
CPSR over a subroutine. it is your respons ibility to explicit ly save and restore it.
either on entry to and ex it from (respectively) the subrout ine. or in the ca lling part
of the program.

Examples
here BAL here

B there

CNP Rl,#O
BEQ fred

BL sub +

ADDS Rl,#l

BLCC sub

ROH

Assembles to EAFFFFFE
(note effect of PC offset)

ALways condition used as default

Compare register 1 with zero
Branch to fred if regi s ter l was zero,
otherwise continue to next instruction

unconditionally call subroutine at
computed address

Add 1 to register 1, setting PSR flags on
the result
Call subroutine i f the C flag is clear,
"hich "ill be the case unless Rl contained
FFFFFFFFH
Other,.ise continue to next instruction

65

Data processing

......... ···· •waaaw::aawz:a c:a:.••o•-•u•-•.--ll!!lll~~~~~~-•t:I-Bit:IR-1JII ______ _

Data processing

Instructions for performing arithmetic or logica l operation on one or two operands

Instruction format
31 28 27 26 25 24 21 20 19

66

16 15 12 11 0

Destination register

1st operand register

Set condition codes
0 do not alter condition codes
1 set condition codes

Operation code
0000 = AND Rd := Rn AND Op2
0001 = EOR Rd := Rn EOR Op2
0010 => SUB Rd := Rn -Op2
0011 ..,. RSB Rd := Op2 - Rn
0100 = ADD Rd := Rn + Op2
0101 = ADC Rd := Rn + Op2 + C flag
0110 "-'> SBC Rd := Rn - Op2 - NOT(C flag)
0111 = RSC Rd := Op2 - Rn NOT(Cflag)
1000 = TST set condition codes on Rn AND Op2
1001 = TEO set condition codes on Rn EOR Op2
1010 CMP set condition codes on Rn - Op2
1011 = CMN set condition codes on Rn + Op2
1100 => ORR Rd := Rn OR Op2
1101 => MOV Rd := Op2
1110 = BIC Rd := Rn AND NOT Op2
t111 -> MVN Rd := NOT0p2

Immediate Operand
0 Operand2 is a register

11 4 3 0

Shift Rm

i
Shift applied to Rm 2nd operand register

Operand2 is an immediate value

11 8 7 0

I Rotate I lmm

Shift applied to lmm Unsigned 8 bit

Condition field
(see page 53)

immediate value

CPU instruction set

Assembler syntax

The data processing instructions use three d ifferent types of syntax. dependi ng on
whether the opcode being used takes one or two operands. and whether or not it
writes the result into a destination rcgisler:

MOV and MVN - single operand

ope ode« cond 11 "s" Rd 1 op2

CMN, CMP, TEO and TST - no result written

opcodecccond" ccP11 Rn 1 op2

ADC, ADD, AND, BIC, OR, ORR, RSB, RSC, SBC, SUB -two operands

opcode«cond11«S11 Rd 1 Rn 1 op2

Parameters

opcode

cccond11

«S11

cc P11

Rd. Rn & Rm

op2

is a mnemonic for the data processing operat ion to be performed:
see Opcodes below

is a two-character condition mnemonic: see the section Tfte
condition field on page 5 '3 .

means to set the PSR's condi tion codes from the operation
ObjAsm forces thi s for CMN, CMP. TEO and TST, provided the P
flag is not specified See Opcodes below fo r a summary of the flags
affected by each opcode, and Tfte S bil on page 69 for more deta iL

means to take the result o f a CMN, CMP. TEO or TST operation.
and move it to the bits o f R 15 that hold the PSR- even though the
instruction has no destination register. Bits corresponding to the
PC are masked out, as are (in User mode) the I. F. and mode bits.

are express ions eva luating to a valid ARM register number.

may be any of the operands that the barrel shi fter ca n produce.

The syntax is Rmcc 1 shift" or #expression

If #expression is used. ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit fie ld. If th is is
imposs ible. it wil l give an error.

shift is shiftname Rs or shiftname #expression , or
RRX (rotate right one bit with extend). shiftnames are: ASL,
LSL, LSR. ASR. and ROR (ASL is a synonym for LSL. and the two
assemble to the same code.) See Sftift types on page 57.

67

Data processing

Opcodes

The opcodes supported are:

Assembler Meaning Operation Flags
Mnemonic affected

ADC Add with Carry Rd =Rn + op2 + C flag N Z,C.V

ADD Add Rd R11 + op2 N.Z.C.V

Al'\0 And Rtl Rtt AND op2 N.Z.C

AIC Bit Clear Rd=Rn AND IN0Tjop2)1 N.Z C

CMN Compare Negated Ru + op'2 N.7. C.V

CMP Compare Ru -op'2 N.ZC,V

EOR Exclusive Or l~d = l~n L:OI~ op'2 N,Z,C

MOV Move l~d:=op'2 N.Z,C

MVN Move Not Rd: NOT op2 N.Z,C

ORR Logica l Or Rd:=Rn 01~ op2 N,Z,C

I~SB Reverse Subtract Rd:=op'2- Rn N.Z.C.V

I~SC Reverse Subtract Rd· op2 Rn NOTIC flag) N.Z.C.V
with Carry

SBC Subtract with Carry Rd =l~n -op'2 NOT(C tlcJg) N.Z.C.V

SUB Subtract Rd -Rn- <lf/'2 N.Z C.V

TEO Test Equivalence Rn EOI~ op2 N.Z.C

TST TeST and mask Ru AND op2 N.Z,C

Synopsis

68

These instructions produce a result by performmg a spec.tfied arithmct tc or logical
operation on one or two operands

The operation is performed between a source register Rtr c-tnd e:m operand op2-
except for MOV and MVN. where only the operand is needed land for which the
assembler sets R11 to RO \. The source register can be any one of the 16 registers
The operand can be any operand that the barrel sh itter CcJn produce i c. a shifted
register l~m. or a rotated 8 bit immediate value lmm. according to the value of the 1

bit in the instruction. (See Tlie barrrl sfti{lc>ron page '3'5 and Slti/II~JPI'S on page '57.)
Note lhal any shifting is done before the operati on is perlormed

The logica l operations (AND, BIC. EOR. MOV, MVN, OR I~. TEO, TST) pertorm the
logtcal action on al l corresponding bits of thE' opE>rnnd or opC'rcJnds to produce the
result. The arithmetic operations IADC, ADD. CMP. CMN, 1~513, l~SC. SI3C', SUB)

treat each operand as a 32 bit integer (either unsigned or 2's complement signed
the two arc equivalent) Some add the bit held tn the ALU's carry flag into the
operation .

CPU instruction set

The resu lt of the operation is placed in the destination register Rd - except for
CMN. CMP. TEO and TST. which are used only to perform tests and to set the
condition codes on the resu lt (and for which the assembler sets Rd to ROL The
destination register may be any one of the 16 registers.

The cond ition codes in the PSR may be preserved or updated as a result of this
instruction, according to the value of the S bit; see Tlie S bit below.

The instruction is on ly executed if the cond it ion is true. The various conditions are
defined in the sect ion Tlie co11difion field on page 53.

The S bit

The instruction con tains a one bit field called the S bit, standing for ·set condition
codes·. The result of the operation in the ALU affects its N and Z flags, and may
also affect its C and V flags However. the ALU doesn't copy its tlags to the relevant
parts of the PSR unless the S bit is set. ObjAsm always sets the S bit for the four
instructions CMN. CMP. TEO and TST. since they would be meaningless un less
their results were copied to the PSR. In the case of the remaining 12 instructions.
you may req uest that the S bit be set by appending the letterS to the instruction
mnemonic.

The way the PSR flags are altered d iffers for logica l and arithmetic operations:

Logical operations (AND, SIC, EOR, MOV, MVN, ORR, TEO, TST)

• The V fl ag in the PSR wi ll be unaffected.

• The C flag wi ll be set to the last bil sh i fted out by the barrel shifter. or is
unchanged if no shifting took place

• The Z flag will be set if and on ly if the result is all zeroes.

• TheN flag wi ll be set to the logica l value of bit '3 1 of the resu lt.

Arithmetic operations (ADC, ADD, CMP, CMN, RSB, RSC, SBC, SUB)

• The V flag in the PSR wi II be set if signed overflow occurs (i .e. if you regard the
operands as signed 32 bit integers. the signed result does not fit in a 32 bit
integer); this may be ignored if the operands were considered unsigned. but
warns of a possible error if the operands were 2's complement signed (the
destination register is set to the bottom 32 bits of the correct unsigned resu lt) .

• The C flag wi ll be set to the carry out of bit 31 of the ALU. which for addition
indicates that 32 bit overfl ow occurred. and for subtraction indicates that 32
bit underflow did not occur.

• The Z flag will be set if and only if the result was zero.

• TheN flag will be set to the value of bit 31 of the resu lt. indicating a negative
result if the operands are considered to be 2's complement signed

69

Data processing

The P flag

Shifts

70

The P flag invokes a special form of the CMN CMP. TEO and TST operations. used
to update the PSR The operation is carried out. and then the PSR is overwritten by
the corresponding bits in t he ALU result so b1t 31 of the result goes to theN flag,
bit 30 to the Z flag, bit 29 to the C flag, and bit 28 to the V flag In user mode the
other flags (I. F. MI. MOl are protected from direct change. but in non-uc:;er modes
these will also be affected. accepting copies of b1ts 27. 26. I and 0 of the resu lt
respectively.

Th is is typically used to change modes. For example

TEQP RlS, #0 ; Change to user mode.

Note the treatment of R 15 as the first operand. described in Using R 15 as an operand
on page 71 .

This fo rm is encoded by setting the S bit. and setting the destination register to
R 15.

When the second operand is specified to be a shifted register. the operation of the
ba rrel sh ifte r is controlled by the Shift field in the instruction This field indicates
the type of shift to be performed t logical left or right. ari thmetic right or rotate
right) The amount by which the register should be shi fted may be contained in an
Immediate field in the instruction. or in the bottom byte of another register

11 7 6 5 4

9 Sh;fttype
00 ""'
01
10 =
11 ""'

logical left
logical right
arithmetic right
rotate right

Shift amount
5 bit unsigned integer

11 8 7 6 5 4

Figure 5.7 Shifts

Shifts are detailed in the section Shift types on page 57.

Shift type
00 "'
01 -..

10 -
11

logocalleft
logocal right
anthmetic right
rotate right

Shift register
Shift amount specified in
bottom byte of Rs

Note that the zero in bit 7 of an instruction with a register controlled shift is
compu lsory; a one in this bit will ca use the instruction to be a multiply o r an
u ndeti ned instruction.

CPU instruction set
••I'JI--WBMB:liiiMG&I:IEI*IIl-Klii¥1'!1WirlW-UIIII:liiii:&B:liii&CIA~MIIICIIMCB:-&D:WI!:::a:!EliWrl:ataiBllllaw1f:WMZII&Irl&•:e!::e!:WJI:a.--C..WilliM_!!RI ___ _

Immediate operand rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a
shift operation on the 8 bit immediate va lue. The immediate va lue is zero
extended to 32 bits, and then subject to a rotate right by twice the value in the
rotate field. This enables many common constants to be generated. for example all
powers of 2. Another example is that the 8 bit constant may be al igned with the
PSR flags (bits 0. I. and 26 to 31). All the flags can thereby be initialised in one
TEQP instruction.

Immediate operand rotates are detailed in the section Tne barrel sf1ifter on page 55.

Using R15 as the destination or operand

Note that the CPU takes certain actions whenever the destination or any operand
is R 15. These are as follows:

Using Rl5 as the destination

If R 15 is the destination register, and the S bit is not set, the PC is overwritten. but
not the PSR.

If the S bit is set, then the PC is overwritten. and also all bits of the PSR that are
unprotected in the cu rrent mode: thus in User mode theN. Z. C and V flags are
over.vritten. whereas in other modes the entire PSR is overwritten.

Using R 15 as an operand

R 15 wil l always contain the va lue of the PC. wh ich will be the address of the
instruction. plus 8 or 12 bytes due to instruction prefetching If the shift amount is
specified in the instruction, the PC will be 8 bytes ahead. If a register is used to
specify the shift amount, the PC wi ll be 8 bytes ahead when used as Rs. and 12
bytes ahead when used as Rn or Rm.

R 15 may or may not contain the va lues of the PSR flags as they were at the
completion of the previous instruction. depending on which operand position it
occupies:

• If R 15 is the first operand in a two operand instruction. it is presented to the
arithmetic logic unit (ALU) with the PSR bits set to zero.

• If the second or only operand is R I 5 (possibly shifted), it is presented to the
barrel sh ifter or ALU with the PSR bits unchanged

• If R 15 is the shift register, it is presented to the barrel shifter with the PSR bits
set to zero.

71

Data processing

72

32 bit operation

TEOP, TSTP, CMPP and CMNP

These opcodes should not be used in 32 b1t modes You should instead use the
new PSR transfer functions. When used in a privileged mode. TF.OP moves the
SPSR for the current mode to the CPSR.

Using R I 5 as the shift register

You must not use R 15 as the shift register

Using R I 5 as the destination

If R 15 is the destination register. and the S bit is not set. the PC is overwritten. but
not the CPSR. Th is is what you wou ld expect as an extension or the 26 bit
behaviour.

If Lhe destination register is R 15 and the S bit is set. then as well as writing the
result to the PC. the SPSR for the current mode is moved to the CPSR This is again
what you would expect as an extension of the 26 bit behaviour

Examples

Simple use of a one operand instruction:
MVN R2,R3 ; R2 is set to the bitwise inverse of the

; contents of R3.

Simple uses of instructions that does not write a result:
CMP RO, Rl Compare the contents of RO with Rl

CMP

TEOS

R0,#&80

R4,#3

Compare the contents of RO with &80

Test R4 for equality with 3
(The s is in fact redundant as the assembler
inserts it automatically)

Simple use of a two operand instruction:
ADD R0 , Rl , R2 ; RO=Rl+R2

Conditional execution of an instruction:
ADDEO R2 , R4 , R5 ; If the z flag is set make R2 : =R4+R5

use of the s bit to alter the PSR:
ADDS RO,Rl , #l ; RO=Rl+l, and set N,Z,C,V

Usc of a register specified shift :
SUB R4,R5,R7,LSR R2 Logical right shift R7 by the number in

Use of an immediate shift:
MOV RO,Rl,LSL#2

the bottom byte of R2, subtract the result
from R5, and put the answer into R4

The contents of Rl are shifted left by
2 bits and transferred •.o RO.

,.
CPU instruction set

"' .. " -
Using ADC to implement multi-word additions. For exampl e a 64 bit ADD:

ADDS R4,R2,RO Add least significant 32 bits updating carry
ADC R5,R3,Rl Add most significant 32 bits and carry

from previous

Using SBC to implement multi-word subtractions. For example:
SUBS R4,R2,RO Do least significant word of subtraction
SBC R5,R3,Rl Do most significant word, taking account

of the borrow. This does the 64 bit
subtraction (R5,R4)=(R3,R2) -(Rl ,R0)

Changing to user mode and returning from a subroutine:
; Assume non-user mode here
TEQP Rl5,#0 Change to user mode and clear N,Z,C,V,I,F

HOV
HOV

RO,RO
PC,Rl4

NB Rl5 is here in the Rn position,
so it comes without the PSR flags
No-op to avoid mode change hazard
Return from subroutine
(Rl4 is a banked register)

Returning from a subroutine and restoring the PSR :
HOVS PC,R14 return from subroutine and restore the PSR

73

PSR transfer (MRS, MSR)

74

£U

PSR transfer (MRS, MSR)

Instructio ns fo r accessing the CPSR and SPSR registers

These instructions are not available on ARM2 and ARM3 series processors

Instruction format

MRS (transfer PSR contents to a register)

31 28 27 23 22 21 16 15 12 11 0

000000000000

Destination register

Source PSR
0 = CPSR
1 = SPSR_current mode

Condition field
(see page 53)

MSR (transfer register contents to PSR)

31 28 27 23 22 21 12 11 4 3 0

Cond I 0 0 0 1 0 lpdl1 0 1 0 0 1 1 1 1 1 I 0 0 0 0 0 0 0 0 I Rs

Assembler syntax

MRSucond» Rd,psr
MSRucond» psr,Rm

Source register

Destination PSR
0 = CPSR
1 = SPSR_current mode

Condition field
(see page 53)

MSRucond" psrf,Rm
MSRucond" psrf,#expressi on

CPU instruction set

=· ••

MSR (transfer register contents or immediate value to PSR flag bits only)

31 28 27 26252423 22 21 12 11 0

where:

«COnd»

Rd&Rm

psr

0 0 0 1 1 1 1

Destination PSR
0 CPSR
1 SPSR_current mode

Immediate Operand
0 Source operand is a register

11 4 3 0

lo o o o o o o ol Rm

i
Source register

= Source operand is an immediate value
11 8 7 0

I Rotate I lmm

f •
Shift applied to lmm Unsigned 8 bit

Condition field
(see page 53)

immediate value

is a two·character condition mnemonic; see the section The
condition field on page 53.

are expressions evaluating to a valid ARM register number other
than Rl5.

is CPSR, CPSR_ all, SPSR or SPSR_ all.

(CPSR and CPSR_all are synonyms. as are SPSR and
SPSR_all .)

psrf is CPSR_flg or SPSR_flg. The most significant four bits of Rm
or #expression are written to the N. Z. C and V flags
respectively.

#expression is an expression symbolising a 32 bit value.

If #expression is used, ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field. If this is
impossible, it will give an error.

75

PSR transfer (MRS, MSR)

76

Synopsis

These instructions allow access to the CPSR and SPSR registers

• The MRS instruction moves the contents of the CPSR or SPSR_current modt•
register to a general register

• The MSR instruction moves the contents of a general register to the CPSR or
SPSR_currenl mode register

Alternatively. the MSR instruction can write to the condition code flags of the CPSR
or SPSR. _current mode register without affecting its control bits

• In this case the source may be either the contents of a genewl register or an
immediate value. and only its top four bits are used.

The instructions are encoded using the CMN. CMP. TFO r~nd TST instructions
wilhoutthc S flag set.

The instruction is only executed if the condition is true. Tht' various conditions are
defined in the section Trte condition field on page 53

These instructions are not avai lable on ARM2 and ARM3 seri<>s processors

On ARM6 series processors and later. they are available mall modes and
configurations However. we recommend that you avoid us1ng these instructions,
as you will lose backwards compatibility with older ARMs. Indeed. in the 26 bit
modes used by RISC OS (except when handling FIOsl you can access the PSR just
as you always have- for example. '.vith TEOP.

Operand restrictions

In user mode. the control bits of the CPSR are protected from change, so only the
condition code flags of the CPSR can be changed In other (privileged l modes the
ent1re CPS!~ can be changed

R 15 must not be specified as the source or destination register

You must not attempt to access the SPSI~ in user mode. as no such register exists

Reserved bits

Not all bits of the PSR are defined (e.g. only N. Z. C. V, I. F and Ml4 01 are defined
for the ARM 6 and 7 series). The remaining ones (bits 27-8 and 5 in the AI~M 6 and
7 series! are reserved for use in future versions of the ARM The ensure future
compatibility, the following rules should be observed

• You must preserve the reserved bits when changing the value in a PSR

• When you are checking the PSR status, you must not rely on specific values
from the reserved bits. since they may read as one or Lero 111 future processors

CPU instruction set

You should therefore use a read-modify-write strategy when altering the control
bits of any PSR register. This involves transferring the appropriate PSR register to a
general register using the MRS instruction. changing on ly the relevant bits, and
then transferring the modified value back Lo the PSR register using the MSR
instruction.

For example, to perform a mode change

MRS

BIC
ORR
MSR

RO,CPSR
RO,R),#OxlF
RO,RO,#new_mode

CPSR,RO

Take a copy of the PSR
Clear the mode bits
Set bits for new mode

Write back the modified CPSR,
changing mode

When you wish simply to change the condition flags in a PSR. you can write an
immediate value directly to the flag bits without disturbing the control bits. For
example, the fol lowing instruction sets theN, Z, C and V flags

MSR CPSR_ flg,#OxFOOOOOOO Set all the flags rega~dless
; of t heir previous state
; (does not affect any control bits)

You must not attempt to write an X bit immediate value into the whole PSR. since
such an operation cannot preserve the reserved bits.

Examples

In user mode the instructions behave as follows

MSR CPSR_all,Rm CPSR(31:28] <- Rm(31 : 28]
MSR CPSR_flg,Rm CPSR(31:28] <- Rm(31 : 28]

MSR CPSR_ flg,#OxAOOOOOOO CPSR(31 : 28] <- OxA
(i.e . set N,C; clear Z,V)

MRS Rd,CPSR Rd(31:0] <- CPSR(31:0)

In privileged modes the instructions behave as follows :

MSR CPSR_all,Rm CPSR(31:0) <- Rm(31:0]
MSR CPSR _ flg, Rm CPSR(31 : 28] <- Rm[31:28]

MSR CPSR_flg,#Ox50000000 CPSR(31:28] <- Ox5
(i.e. set Z,V; clear N,C)

MRS Rd,SPSR Rd[31:0] <- SPSR(31:0]

MSR SPSR_all,Rm SPSR_<mode>[31:0] <- Rm(31:0]
MSR SPSR _ flg, Rm SPSR_<mode>[31:28) <- Rm[31:28]

MSR SPSR_flg,#Oxcooooooo SPSR_<mode>[31:28] <- Oxc
(i.e . set N,Z; clear C,V)

HRS Rd,SPSR Rd[31:0) <- SPSR_<mode>[31:0]

77

Multiply and Multiply-Accumulate (MUL, MLA)

78

Multiply and Multiply-Accumulate (MUL, MLA)

Instructions for performing integer multiplication. giving a 32 bit result

Instruction format

31 28 27 22 2120 19

Assembler syntax

16 15 12 11 8 7

Operand registers

Destination register

Set condition codes

4 3

0 "" do not alter condition codes
1 = set condition codes

Accumulate bit
0 = multiply
1 multiply and accumulate

Condition field
(see page 53)

0

MULttCOnd" ttS" Rd, Rm , Rs
MLAttCOnd" ttS" Rd , Rm,Rs , Rn

ttCOnd"

uS"

is a two-character condition mnemonic: see the section Tf1e
co11dition field on page 53.

means to set the PSR's condition codes from the operation.

Rd. Rm. Rs & Rn are expressions evaluating to a valid AI~M register number.

(Rd must not be R 15 and must not be the same as Rm.)

Synopsis

The multiply and mult iply-accumulate instructions use a 2 bit Booth's algorithm to
perform integer mu ltiplication. They give t he least sign ificant 32 bits of the product
of two 32 bil operands, and may be used to synthesize higher precision
mu ltiplications

The multiply form of the instruction gives Rd RmxRs Rn is ignored. and should be
sello zero for compatibility with possible future upgrades to the instruction set.

CPU instruction set

The multiply-accumulate form gives Rd:=RmxRS+Rn. which can save an explicit
ADD instruction in some circumstances.

••

The resu lts of a signed multiply and of an unsigned multiply of 32 bit operands
differ on ly in the upper 32 bits; lhe low 32 bits are identi cal. As these instructions
only produce those low 32 bits. they can be used with operands which may be
considered as either signed (2's complement) or unsigned integers.

The instruction is only executed if the condition is true. The various conditions are
dcfi ned in the section The condition field on page 53.

PSR flags

Setting the PSR flags is optiona l. and is controlled by the S bit in the instruction.
TheN and Z flags are set correctly on the result (N is equal to bit 31 of the result. Z
is set if and only if the result is zero). the V flag is unaffected by the instruction, and
the C flag is set to a meaningless value.

Operand restrictions

Because of the way the Booth's algorithm has been implemented. you should
avoid certain combinations of operand registers (ObjAsm will issue a warning if
you overlook these restrictions. l

The destination register Rd must not be the same as the Rm operand register. as Rd
is used to hold intermediate values. and Rm is used repeatedly during the multiply.

The destination register Rd must also not be R 15.

All other register combinations will give correct results, and Rd. Rn and Rs may use
the same register when required

32 bit operation

R 15 must not be used as any of Rd. Rm. Rn or Rs.

Examples
MUL Rl, R2, R3

MLAEQS Rl,R2,R3,R4

Rl:=R2*R3

conditionally Rl:=R2*R3+R4,
setting condition codes

79

Multiply and Multiply-Accumulate (MUL, MLA)

80

The multiply instruction may be used to synthesize higher precision
multiplications. for instance to multiply two 32 bit integers and generate a 64 bit
result·

mul64
MOV a1,A,LSR #16 a1:= top half of A
MOV D,B,LSR #16 D := top half of B
BIC A,A,a1,LSL #16 A := bottom half of A
BIC B,B,D,LSL #16 B : = bottom half of B
MUL C,A,B Low section of result
MUL B,a1 ,B) Middle sections
MUL A,D,A) of result
MUL D,a1,D High section of result
ADDS A,B,A Add middle sections (couldn't use

MLA as we need C correct)
ADDCS D,D,#&10000 Carry from above add
ADDS C,C,A,LSL #16 c is now bottom 32 bits of product
ADC D,D,A,LSR #16 D is top 32 bits

(A. Bare registers containing the 32 bil integers; C. D arc registers for the 64 bit
result: a I is a temporary register. A and Bare overwritten during the mulliply)

Note that more recent ARM processors have a single instruction to do just this; see
the next section.

.. CPU instruction set

&--

Multiply Long and Multiply-Accumulate Long
(UMULL, SMULL, UMLAL, SMLAL)

Instructions for performing integer multiplication. giving a 64 bit result

This instruction is only available in 32 bit mode on the ARM7M series or later

Instruction format

31 28 27 23 2221 20 19 16 15 12 11 8 7

Operand registers

Destination registers

Set condition codes

4 3

0 do not alter condition codes

L
Assembler syntax

1 set condition codes

Accumulate bit
0 = multiply

= multiply and accumulate

Unsigned bit
0 unsigned
1 => signed

Condition field
(see page 53)

UMULLucond'' «SII RdL0 1 RdHi 1 Rm 1 Rs
SMULL<< cond 11 << S 11 RdLo 1 RdH i , Rm 1 Rs

UMLAL 11 cond 11 << S 11 RdLo 1 RdH i , Rm 1 Rs

SMLAL«cond1> uS>' RdLo 1 RdHi 1 Rm 1 Rs

0

<<COnd11 is a two-character condition mnemonic: see the section Tf1e

condition field on page 53.

«S11 means to set the PSR's cond ition codes from the operation.

RdLo. RdHi.
Rm&Rs

are expressions eva lualing to a val id ARM register number other
thanR15.

81

Multiply Long and Multiply-Accumulate Long (UMULL, SMULL, UMLAL, SMLAL)

82

Synopsis

The multiply long instructions perform integer multiplication on two 32 bit
operands, and produce a 64 bit result. The multiplication can be signed or
unsigned, which- with optional accumulate- gives rise to four variations.

The multiply forms of the instruction (UMULL and SMULL) give a 64 bit result of
the form RdHi.RdLo:=RmxRs.

The multiply-accumulate forms (UMLAL and SMLAL) give Rd =RmxRs+Rn. which
can save an explicit ADD instruction in some circumstances.

The lower 32 bits of the result and of the accumulator (where used) are held in
RdLo. and the upper 32 bits in RdHi.

The unsigned forms of the instruction (UMULL and UMLAL) treat all four registers
as unsigned numbers. The signed forms (SMULL and SMLAL) t reat the two
operand registers as 2's complement signed 32 bit numbers. and the two
destination registers as a 2's complement signed 64 bit number.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.

This instruction was first introduced on the ARM7M series of processor, and is on ly
available in 32 bit modes. This instruction is therefore unlikely to be of use under
RISC OS.

PSR flags

Setting the PSR flags is optional. and is controlled by the S bit in the instruction.
TheN and Z flags are set correctly on the result (N is equa l to bit 31 of the result. Z
is set if and on ly if the resu It is zero). and the V and C flags are set to a meaningless
value.

Operand restrictions

R 15 must not be used as any of RdHi. RdLo. Rm or Rs.

RdHi. RdLo and Rm must all specify different registers.

Examples
UMULL Rl,R4,R2,R3 Rl,R4:=R2*R3

UMLALS Rl,R5,R2,R3 Rl,R5:=R2*R3+Rl,R5,
also setting condition codes

... CPU instruction set

-···-·-
Single data transfer (LOR, STR)

Instructions for loading or storing single bytes or words of data

Instruction format

31 28 272625242322212019 16 15 12 11

Source/Destination register

Base register

Load/Store bit
0 = store to memory
1 = load from memory

Write-back bit
0 => no write-back
1 ""? write address into base

Byte/Word bit
0 = transfer word quantity
1 => transfer by1e quantity

Up/Down bit

0

0 => down: subtract offset from base
1 "7 up: add offset to base

Pre/Post indexing bit
0 post: add offset after transfer

pre: add offset before transfer

Immediate offset
0 offset is an immediate value

11

Immediate offset

0

Unsigned 12 bit immediate offset
=> offset is a register

11 4 3 0

Shift Rm

Shift applied to Rm Offset register
(see below, and page 57)

Condition field
(see page 53)

83

Single data transfer (LOR, STR)

Assembler syntax
LDRISTR«cond»«B»«T» Rd,address

84

LOR

STR

IICOnd»

liB I>

liT II

Rd

address

loads from memory into a register

stores from a reg1ster into memory

is d two-character cond ition mnemonic: see the section Tf1r
condition field on page 53.

means to transfer a byte. otherwise a word is transferred

means to set theW bit in a post-indexed instruction. forcing
non-privileged mode for the transfer cycle. Tis not allowed when
a pre-indexed addressing mode is specified or implied

is an expression evaluating to a valid ARM register number.

can be:

• An expression which generates an address :
expression

ObjAsm will allempt to generate an instruction using the PC
as a base and a corrected immed iate offset to address the
location given by evaluating the expression. This will be a PC
relative. pre-indexed address. If the address is out o f range,
an error will be generated.

• A pre-indexed addressing specification:

[Rn] offset of zero
(Rn, #expression] 11! • offset o f expression bytes
(Rn, 11+ 1-•Rm«, shift'' J 11! • o ffset of ±contents ot index

register. shifted by shift

• A post-indexed addressing speciflcation

[Rn],#expression

(Rn), «+ 1-»Rmll, shift»

offset of expression bytes
offset of ±contents of index
register. shifted by shift .

Rn and Rm are expressions evaluating to a valid ARM register
number. Note if Rn is R I '5 then ObjAsm will subtract 8 from the
offset value to allow for ARM pipelining
shift is a general shift operation (see the section Sfli{llyprs on
page 57). but note that the shift amount may not be specified by a
register.
11 1" if present sets theW bit to write-back the base register.

CPU instruction set

Synopsis

The single data transfer instructions are used to load or store single bytes or words
of data. The memory address used in the transfer is calculated by adding an offset
to or subtracting an offset from a base register. The result of this ca lcu lation may
be written back into the base register if 'auto-indexing· is required. If the contents
of the base are not destroyed by other instructions. the continued use of LDR (or
STR) with write back will continually move the base register through memory in
steps given by the index value. Note that I is invalid for post-indexed addressing.
as write back is automatic in this case.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.

For register to register transfers. see the section Data processing on page 66,
particularly the MOV instruction.

Offsets and auto-indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in
the instruction , or a second register (possibly shifted in some way). The offset may
be added to (U= I) or subtracted from (U=O) the base register Rn. The offset
modification may be performed either before (pre-indexed , P= I) or after (post-indexed ,
P=OJ the base is used as the transfer address.

TheW bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W= I). o r the o ld base value
may be kept (W=O) . In the case of post-indexed addressing. the write back bit is
redundant. since the old base value can be retained by setting the offset to zero.
Therefore post-indexed data transfers always write back the modified base. The
only use of theW bit in a post-indexed data transfer is in privileged mode code:
depending on the processor, setting theW bit either forces the TRANS pin to go
LOW or forces non-privileged mode for the transfer, allowing the operating system
to generate a user address in a system where the memory management hardware
makes suitable use of this hardware.

Shifted register offset

The 8 sh ift control bits are described in the section Data processing on page 66. but
the register specified shift amounts are not available in this instruction class.

85

Single data transfer (LOR, STR)

.. ...

86

Bytes and words

This instruction class may be used to transfer a byte (B= I) or a word (B=O) between
an ARM register and memory.

A byte load (LDRB) expects the data on bits 0 to 7 if the supplied address is on a
word boundary, on bits 8 to 15 if it is a word address plus one byte. and so on. The
selected byte is placed in the bottom 8 bits of the destination register. and the
remaining bits of the register are filled with zeroes.

A byte store (STRB) repeats the bottom 8 bits of the source register four t imes
across the data bus. The external memory system should activate the appropriate
byte subsystem to store the data.

A word load 1 LDR) or word store (STR) shou ld generate a word aligned address.
Using a non·word·aligned addresses has non·obvious and unspecified results.

UseofR15

These instructions will never cause the PSR to be modified, even when Rd or Rn is
R 15.

If R 15 is specified as the base register (Rn). the PC is used without the PSR tlags.
When using the PC as the base register you must remember that it contains an
address 8 bytes on from the address of the current instruction.

If Rl5 is specified as the register offset (Rm). the value presented will be the PC
together with the PSR.

When R 15 is the source register (Rd) of a register store (STR) instruction. the va I ue
stored will be the PC together with the PSR. The stored va lue of the PC will be 12
bytes on from the address of the instruction. A load register (LDR) wilh R 15 as Rd
will change only the PC. and the PSR will be unchanged.

Address exceptions

On an ARM2 or ARM3 processor. if the address used for the transfer (ie the
unmodified contents of the base register for post· indexed addressing. or the base
modified by the offset for pre-indexed addressing) has a logic one in any of the bits
26 to 31. the transfer will not take place and the address exception trap will be
taken.

Later versions of the ARM do not generate address exceptions when in a 32 bit
configuration (as used by RISC OS from very soon after reset). even when running
in 26 bit modes.

CPU instruction set

Note that it is only the address actually used for the transfer which is checked. A
base containing an address outside the legal range may be used in a pre-indexed
transfer if the offset brings the address within the legal range, and likewise a base
within the legal range may be modified by post-indexing to outside the legal range
without causing an address exception.

Data Aborts

A transfer to or from a legal address may still cause problems for a memory
management system. For instance. in a system which uses virtual memory the
required data may be absent from main memory. The memory manager can signal
a problem by taking the processor ABORT pin HIGH. whereupon the data transfer
instruction will be prevented from changing the processor state and the Data Abort
trap will be taken. It is up to the system software to resolve the cause of the
problem. then the instruction can be restarted and the original program continued.

32 bit operation

R 15 must not be used as the register offset (R m).

If R 15 is specified as the base register (Rn). you must not use write-back - inc! uding
post indexing.

For a post-indexed LOR or STR. Rm and Rn must not be the same register.

When using write-back - including post indexing -Rd and R11 must not be the same
register.

Examples
STR Rl,[BASE,INOEX)!

STR Rl, [BASE) , INDEX

LOR Rl,[BASE,#l6]

LOR Rl, (BASE,INDEX,LSL #2]

LDREQB Rl, (BASE,#5]

STR Rl,PLACE

'vtoro• iiJslructiOit;

PLACE

store Rl at BASE+INDEX (both of
which are registers) and write
back address to BASE

store Rl at BASE and writeback
BASE+INDEX to BASE

load Rl from contents of BASE+l6.
Don't write back

load Rl from contents of
BASE+INOEX*4

conditionally load byte at BASE+5
into Rl bits 0 to 7, filling bits
8 to 31 with zeroes

;generate PC relative offset to
; address PLACE

87

Block data transfer (LOM, STM)

88

Block data transfer (LDM, STM)

Instructions for loading or storing any subset of the currently visible registers

Instruction format

31 28 27 25242322212019 16 15 0

Assembler syntax

Register list

L Register list
(see below)

Base register

Load/Store bit
0 = store to memory
1 =-> load from memory

Write-back bit
0 no write-back
1 = write address into base

PSR & force user bit
0 = do not load PSR or force user mode
1 load PSR or force user mode

Up/Down bit
0 down: subtract offset from base

up add offset to base

Pre/Post indexing bit
0 post: add offset after transfer
1 pre. add offset before transfer

Condition field
(see page 53)

LDMISTM«cond»FD IEDIFAIEAIIAIIBIDAIDB Rn«I»,Rl i st«ft»

LDM

STR

IICOnd»

Rn

loads from memory into rcgislc r(s).

stores from register(s) into memory.

is a two-character condition mnemonic: see the section Tfte
condilion field on page 5'3.

is an expression evaluating to a va lid ARM register number.

CPU instruction set

Rlist is either a comma-separated list of registers and/or of register
ranges indicated by hyphens. all enclosed in {} (e.g.
{RO I R2-R7 1 Rl 0}); or an expression evaluating to the 16 bit
operand.

if present sets theW bit to write-back the base register.

" <C >> if present sets the S bit to load the PSR with the PC, or forces
storing of user bank registers when in a non-user mode.

Addressing mode names

There are different assembler mnemonics for each of the addressing modes. There
are alternative forms for each mnemonic: one form is intended for use with stacks.
and describes the type of stack the addressing mode supports; the other form
merely describes the instructions functiona lity. The equ ivalencies between the
names and the values of the bits in the instruction are

Name Stack

pre-increment load LDMED

post-increment load LDMFD

pre-decrement load LDMEA

post-decrement load LDMFA

pre-increment store STMFA

post-increment store STMEA

pre-decrement store STMFD

post-decrement store STMED

Other

LDMIB

LDMIA

LDMDB

LDMDA

STMIB

STMIA

STMDB

STMDA

L bit

I

I

0

0

0

0

p bit u bit

I I

0 I

I 0

0 0
I

0 I

I 0

0 0

In the stacking forms of the mnemonics (FD. ED. FA and EA). the F and E refer to a
full or empty stack. and the A and D refer to an ascending or descending stack:

• A full stack is one in which the stack pointer points to the last data item
written . whereas an empty stack is one in which the stack pointer points to the
first free slot

• A descending stack is one which grows from high memory addresses to low
ones. whereas an ascending stack is one which grows from low memory
addresses to high ones.

The other forms of the mnemonics (lA. lB. DA and DB) simply mean Increment
After. Increment Before. Decrement After. and Decrement Before.

89

Block data transfer (LDM, STM)

90

Synopsis

Block data transfer instructions are used to load (LDM) or store (STM) any subset
of the currently visible registers from or to memory They support all possible
stacking modes. maintaining full or empty stacks which can grow up or down
memory. and are very efficient instructions for saving or restoring context. or for
moving large blocks of data around main memory

The Instruction is only executed if the condition is true The various conditions are
defined in the section Tlie condition field on page 53

The register list

The instruction can cause the transfer of any registers in the current bank (and
non-user mode programs can also transfer to and from the user bank, see below).
The register list is a 16 bit field in the instruction. with each bit corresponding to a
register. A I in bit 0 of the register field will ca use RO to be transferred, a 0 will
cause it not to be transferred; simi larly bit I controls the transfer of R I . and so on.

Any subset of the registers. or all the registers. may be specified. The only
restriction is that the register Jist must not be empty

Addressing modes

The transfer addresses are determined by the contents of the base register (Rn).
the pre/post bit (P) and the up/down bit (U) The registers are stored such that the
lowest reg1ster is always at the lowermost address in memory the h1ghest register
IS always at the uppermost address. and the others are stored in numerical order
between them

(As an aside. this means that instruction sequences such as.

STMIA
LDMIA

RO,{Rl,R2}
RO,{R2,Rl}

do not swap the contents of R I and R2.)

By way of illustration, consider the transfer of R I , R5 and R7 in Lhe case where
Rn= I OOOH and write back of the modified base is required (W-1) The figures
below show the sequence of register transfers. the addresses used, and the value
of Rn after the instruction has completed

(In all cases. had write back of the modified base not been required (W=O). Rn
would have retained its initial value of IOOOH unless it was also in the transfer list
of a load multiple register instruction, when it would have been overwritten with
the loaded value)

Rn

llilliii**

100CH

1000H

OFF4H
(1)

100CH Rn

RS
R1 1000H

OFF4H
(3)

CPU instruction set

100CH
1--------l

R1 1000H

'---------'
OFF4H

(2)

100CH
R7
RS
R1 1000H

OFF4H
(4)

Figure 5.8 Post-increment addressing

100CH
1--------l

100CH
1--------l

R1
Rn _____. 1 000 H

1---------j 1000H
1---------i

'------'
OFF4H

(1)

100CH
1------:R=-:5::-----i

R1
1000H

'-----------'
OFF4H

(3)

Rn

'---------'
(2)

R7
R5
R1

(4)

Figure 5.9 Pre-increment addressing

OFF4H

100CH

1000H

OFF4H

91

Block data transfer (LDM, STM)

100CH
1---------i

An _____. 1 OOOH
1---------i

A1
OFF4H

L__-~-----'

(1) (2)

100CH

1000H A? - -AS AS -A1 A1
OFF4H An ----.

(3) (4)

Figure 5.10 Post-decrement addressing

100CH

An

1000H

OFF4H A1
(1) (2)

100CH

1000H

AS

t- A7
t- -AS

A1 OFF4H An __. A1
(3) (4)

Figure 5. 11 Pre-decrement addressing

92

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

CPU instruction set

••aawea••••••••••••--•••••••••••w•••·s

Transfer of R15

Whenever R 15 is stored to memory. the va lue transferred is the PC together with
the PSR flags The stored value of the PC wi II be 12 bytes on from the address of the
STM instruction.

If R 15 is in the transfer list of a load multiple (LDM) instruction the PC is
overwritten, and the effect on the PSR is control led by the S bil. If the S bit is 0 the
PSR is preserved unchanged, but if the S bit is I the PSR will be overwritten by the
corresponding bits of the loaded va lue. In user mode. however, the I. F, MO and M I
bits are protected from change whatever the value of the S bit The mode at the
start of the instruction determines whether these bits are protected, and the
supervi sor may return to the user program, re-enabli ng interrupts and restoring
user mode with one LDM instruction.

Forcing transfer of the user bank

For STM instructions the S bit is redundant as the PSR is always stored with the PC
whenever R 15 is in the transfer list. r'or LDM instructions the S bit is redundant if
R 15 is not in the transfer list.

In both the above cases, the S bit is instead used to force transfers in non-user
modes to use the user register bank instead of the current register bank. This is
useful for saving and restoring the user state on process switches. You must not
use write back of the base when forcing user bank transfer.

For an LDM instruction. you must lake ca re not to read from a banked register
during the following cycle: if in doubt insert a no-op.

Use of R15 as the base

When the base is the PC. the PSR bits will be used to form the address as well. so
unless all interrupts are enabled and all flags are zero an address exception will
occur. Also, write back is never allowed when the base is the PC (setting theW bit
will have no effect)

Inclusion of the base in the register list

When writeback is specified. the base is written back at the end of the second cycle
of the instruction. During a STM, the first register is written out at the start of the
second cycle. A STM which includes storing the base, with the base as the first
register to be stored. will therefore store the unchanged value. whereas with the
base second or later in the transfer order. will store the modified value. An LDM
will always overwrite the updateo base if the base is in the list.

93

Block data transfer (LDM, STM)

94

When the base register is in the list of registers
• The base register may be stored and if wnte back is not in operation. no

problem will occur

• If write back is in operation. the STM is performed in the following order

I write lowest-numbered register to memory

2 perform the write back

3 write other registers to memory in ascending order

Thus. if the base register is the lowest-numbered register m the list. its origina l
va lue is stored. Otherwise. its written back value is stored

• If the base register is loaded the pop operation will continue successfully The
entire block transfer runs on an internal copy of the base, and will not be aware
that the base register has been loaded with a new value

Address exceptions

On an ARM2 or ARM3 processor, if the address ot the first tran<;fer falls outside the
legal address space (ie has a I somewhere in bits 26 to 31). an address exception
trap will be taken . The instruction will first complete in the usual number of cycles,
though an STM will be prevented from writing to memory The processor state will
be the same as if a data abort had occurred on the first transfer cycle (see next
section)

Only the address of the first transfer is checked in this way; if subsequent
addresses over- or under-flow into Illegal address space they will be truncated to
26 bits but will not cause an address exception trap.

Later versions of the ARM do not generate address exceptions when in a 32 bit
configuration (as used by RISC OS from very soon after reset). even when running
in 26 bit modes.

Data Aborts

Some lega l addresses may be unacceptable to a memory management system. and
the memory manager can indicate a problem with an address by Laking the ABORT
signal HIGH. This can happen on any transfer during a multiple register load or
store. and must be recoverable if the ARM is to be used in a virtual memory
system

Aborts during STM Instructions

If the abort occurs during a store multiple instruction. ARM takes little action until
the instruct ion completes. whereupon it enters the data abort trap The memory
manager is responsible for preventing erroneous writes to the memory The only

CPU instruction set

---··
change to the internal state of the processor wi ll be the modification of the base
register if write-back was specified. and this must be reversed by software (and the
cause of the abort resolved) before the instruction may be retried.

Aborts during LDM instructions

When ARM detects a data abort during a load multiple instruction, it modifies the
operation of the instruction to ensure that recovery is possible

• Overwriting of registers stops when the abort happens. The aborting load will
not take place. but earlier ones may have overwritten registers. The PC is
always the last register to be written, and so will always be preserved.

• The base register is restored, to its modified value if write-back was requested.
This ensures recoverability in the case where the base register is also in the
transfer list, and may have been overwritten before the abort occurred.

The data abort trap is taken when the load multiple has completed, and the system
software must undo any base modification (and resolve the cause of the abort)
before restarting the instruction.

32 bit operation

For an STM instruction where R 15 is in the transfer list, the PC is stored, but the
CPSR is not stored to the current mode's SPSR. (The intuitive extension of the
26 bit behaviour would be for the CPSR to be stored.)

For an LDM instruction where R 15 is in the transfer list. if the S bit is set then as
well as overwriting the PC, the SPSR for the current mode is moved to the CPSR.
This is what you would expect as an extension of the 26 bit behaviour.

The S bit must not be set for instructions that are to be executed in user mode.

You must not use R 15 as the base register.

Examples
LDMFD SPI,{RO,Rl,R2} unstack 3 registers

STMIA BASE,{RO-Rl5} save all registers

These instructions may be used to save state on subroutine entry. and restore it
efficiently on return to the calling routine:

STMED SP!,{RO-R3,Rl4} save RO to R3 to use as workspace
and Rl4 for returning

BL somewhere this nested call will overwrite Rl4

LDMED SP!,{RO-R3,Rl5}'; restore workspace and return
(also restoring PSR flags)

95

Single data swap (SWP)

96

........

Single data swap (SWP)

Instruction for swapping atomica lly between a register and external memory

This instruction is not available on the ARM2 processor

Instruction format

31 28 27 23 2221 20 19

Assembler syntax

16 15 12 11 8 7

Source register

Destination register

Base register

Byte/Word bit

4 3

0 transfer word quantity
1 ~ transfer byte quanti1y

Condition field
(see page 53)

0

SWP«condll«B>> Rd,Rm, (Rn]

«cond»

«Bll

Rd. Rm & Rn

Synopsis

is a two-character cond ition mnemonic: see the section Tfte
condition field on page 53.

means to transfer a byte. otherwise a word is transferred.

are expressions eva luating to a val id ARM register number.

The data swap instruction is used to swap atomical ly a byte or word quantity
between a register and externa l memory. It is implemented as a memory read
followed by a memory wri te to the same address. which are 'locked' together. The
processor cannot be interrupted until both operations have completed. and the
memory manager is warned to treat them as inseparable. Thi s instruction is
particu larly useful for implementing software semaphores.

CPU instruction set

The swap address is determined by the contents of the base register (Rn). The
processor first reads the contents of the swap address. It then writes the contents
of the source register (Rm) to the swap address. and stores the o ld memory
contents in the destination register (Rd) The same register may be specified as
both the source and destination; its contents are correctly swapped with memory.

The LOCK output goes HIGH for the duration of the read and write operations to
signal to the externa l memory manager that they are locked together, and shou ld
be allowed to complete without interruption This is important in multi-processor
systems, where the swap instruction is the only indivisible instruction which may
be used to implement semaphores. Control of the memory must not be removed
from a processor while it is performing a locked operation.

The SWP instruction is not supported by the ARM2 processor, but is ava ilable in
the ARM3, in the ARM2a5 macrocell(as used for the ARM250 chip in the Acorn
A30 I 0, 3020 and A4000i, and on the ARM6 series and later.

Bytes and words

This instruction may be used lo swap a byte (8= l) or a word (8=0) between a
register and memory. The SWP instruction is implemented as a LOR followed by a
STR. and the action of these is as described in Single dat.a transfer (LOR. STR) on
page 83 .

Use of R15

You must not useR 15 as an operand (Rd. Rn or Rm in a SWP instruction.

Data aborts

If the address used for the swap is unacceptable to a memory management system,
the internal MMU or externa l memory manager can fiag the problem by driving
ABORT HIGH. Th is can happen on either the read or the write cycle (or both). and
in either case. the Data Abort trap wil l be taken. It is up to the system software to
resolve the cause of the problem. Once this has been done. the instruction can be
restarted and the original program continued.

Examples
SI'IP RO,Rl,[R2]

SI'IPB R2,R3, [R4]

SI~PEQ RO, RO, [Rl]

load RO with t he word addressed by R2,
and then store Rl at the same address

load R2 with t he byte addressed by R4,
and then store bits 0 to 7 of R3 at the
same address

conditionally swap th~ word addressed
by Rl with the contents of RO

97

Software interrupt (SWI)

98

Software interrupt (SWI)

Instruction for entering supervisor mode in a controlled manner

Instruction format

31 28 27

Assembler syntax

24 23

Comment field (ignored by ARM)

Condition field
(see page 53)

SWiucondll expression

0

<<cond,, is a two-character cond ition mnemonic; see the section The
condition field on page 53

expression is eva luated and placed in the comment field as a SWJ number
(which is ignored by ARM).

Synopsis

The software interrupt instruction is used to enter supervisor mode in a controlled
manner. The instruction causes the software interrupt trap to be taken . which
effects the mode change. The PC is then forced to the SWI vector If this address is
suitably protected (by external memory management hardware) from modification
by the user. a fully protected operating system may be constructed

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.

Return from the supervisor

The PC and PSR are saved in Rl4_svc upon entering the software interrupt trap.
with the PC adjusted to point to the word after the SWI instruction.
MOVS RlS, R14_svc will return to the calling program, and restore the PSR.

Note that the link mechanism is not re-entrant. so if the supervisor code wishes to
use software interrupts within itself it must first save a copy of the return address.

CPU instruction set

Comment field

The bottom 24 bits of the instruction are ignored by ARM. and may be used to
communicate information to the supervisor code. For instance, the supervisor may
look at th is field and use it to index into an array of entry points for routines which
perform the various supervisor functions (as in RISC OS).

32 bit operation

The CPSR is saved in SPSR_svc. The MOVS R15, R14_svc instruction used to
return to the supervisor restores the CPSR from SPSR_svc. This is what you would
expect as an extension of the 26 bit behav1our

Examples
SI'II Read

SWI Writei+"k"

SWINE 0

get next character from read stream

output a "k" t o the write stream

conditionally call supervisor
with 0 in comment field

The above examples assume that suitable supervisor code exists at the SWI vector
address. for mstance

B Supervisor SWI entry point

EntryTable addresses of supervisor routines
OCO ZeroRtn
OCO ReadCRtn
OCO WriteiRtn

Zero EQU 0
Reade EQU 256
write I EQU 512

Supervisor

SWI has routine required in bits 8-23, data (if any) in bits 0-7.
Assumes Rl3 svc points to a suitable stack.

STM

BIC
LOR
BIC
MOV
ADR
LOR

Rl3, {RO-R2, Rl4}

RO,Rl4,#&FC000003
RO,[R0,#-4)
RO,RO,#&FFOOOOOO
Rl,RO ,LSR #8
R2,EntryTable
Rl5,[R2,Rl,LSL #2]

Save work registers and return
address
Clear PSR bits
Get SWI instruction
Clear top 8 bits
Get routine offset
Get start address of entry table
Branch to appropriate routine

WriteiRtn Enter with character in RO bits 0-7

LOM Rl3,{RO-R2,Rl5}' Restore workspace and return .

99

Coprocessor data operations (COP)

100

Coprocessor data operations (COP)

Instruction for telling a coprocessor to perform some mternal operation

Instruction format

31 28 27 24 23 20 19

Assembler syntax

16 15 12 11 8 7 5 4 3

I L Copcocessoc opecand cegistec

Coprocessor information

Coprocessor number

Coprocessor destination register

Coprocessor operand register

Coprocessor operation code

Condition field
(see page 53)

0

CDP<<condll CP#, operation ,CRd ,CRn ,CRmu, info,

ucond"

CP#

operation

CRd. CRn ,
&CRm

info

is a two-character condition mnemonic. see the section Tfu'
condition field on page 53.

is the unique number of the required coprocessor. which must be
a symbol defined via the CP d irective.

is evaluated to a constant and placed in the CP Ope field .

are expressions eva luating to a va l id coprocessor register number.
which must be a symbol defined via the CN directive.

where present is evaluated to a constant and placed in the CP
field

CPU instruction set

Synopsis

This instruction is used to tell a coprocessor to perform some internal operation
No result is communicated back to ARM, and it will not wait for the operation to
complete. The coprocessor could contain a queue of such instructions awaiting
execution. and their execution can overlap other ARM activity, allowing the
coprocessor and ARM to perform independent tasks in parallel

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.

The coprocessor fields

Only bit 4 and bits 24 to 31 are significant to ARM; the remaining bits are used by
coprocessors. The above field names are used by convention. and particular
coprocessors may redefine the use of all fie lds except CP# as appropriate. The CP#
field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor. and a coprocessor will ignore any instruction which does not contain
its number in the CP# field

The conventional interpretation of the instruction is that the coprocessor should
perform an operation specified in the CP Ope field (and possibly in the CP field) on
the contents of CRn and CRm. and place the result in CRd.

Restriction

Current ARM chips have a fault in the implementation of COP which will cause a
Software Interrupt to take the Undefined Instruction trap if the SWI is the next
instruction after the COP This problem only arises when a hardware coprocessor is
attached to the system. but if it is ever intended to add hardware to support a COP
(rather than trapping to an emulator) the sequence COP SWI should be avoided.

Examples

COP pl,lO,CRl,CR2,CR3

CDPEQ p2,5,CR1,CR2,CR3,2

Request coprocessor 1 to do
operation 10 on CR2 and CR3,
and put the result in CR1.

If z flag is set, request
coprocessor 2 to do operation 5
(type 2) on CR2 and CR3,
and put the result in CRl.

101

Coprocessor data transfers (LOG, STC)
,.

102

Coprocessor data transfers (LOG, STC)

Instructions for t ransferring data between the coprocessor and main memo ry

Instruction format

31 28 2726252423222120 19 16 15 12 11 8 7

Unsigned 8 bit immediate offset

Coprocessor number

0

Coprocessor source/destination register

Base register

Load/Store bit
0 = store to memory
1 = load from memory

Write-back bit
0 = no write-back
1 = write address into base

Transfer length

Up/Down bit
0 = down: subtract offset from base
1 up: add offset to base

Pre/Post indexing bit
o = post: add offset after transfer
1 = pre: add offset before transfer

'----------- Condition field
(see page 53)

CPU instruction set

Assembler syntax

LDCjSTCucond"uL" CP#,CRd,address

LDC

STC

«L>J

cccond,,

CP#

CRd

address

loads from memory to coprocessor (L= I) .

stores from coprocessor to memory (L=O).

when present perform long transfer (N= I), otherwise perform
short transfer (N =0)

is a two-character condition mnemonic; see the section Tlie
condition field on page 53 .

is the unique number of the required coprocessor, which must be
a symbol defined via the CP directive.

is an expression evaluating to a valid coprocessor register
number. which must be a symbol defined via the CN directive.

can be:

• An expression which generates an address:

expression

ObjAsm will attempt to generate an instruction using the PC
as a base and a corrected immediate offset to address the
location given by evaluating the expression This will be a PC
relative, pre-indexed address. If the address is out of range.
an error will be generated.

• A pre-indexed addressing specification:

[Rn] offset of zero

[Rn, #expression] cc ! ,, offset of expression bytes

• A post-indexed addressing specification:

[Rn],#expression offset of expression bytes

Rn is an expression evaluating to a valid ARM register number.
Note if Rn is R 15 then ObjAsm will subtract 8 from the offset
value to allow for ARM pipelining.

cc!" if present sets theW bit to write-back the base register.

103

Coprocessor data transfers (LOG, STC)

'888P888881dl I II IJ iiiiiiii H IIIIIIILL !Iii II

104

Synopsis

These instructions are used to load (LDC) or store (STC) a subset of the
coprocessor's registers directly to memory. ARM is responsible for supplying the
memory address, and the coprocessor supplies or accepts the data and controls
the number of words transferred.

The instruction is only executed if the cond ition is true. The various conditions are
defined in the section The conditio11 field on page 53.

The coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or
accept the data. and a coprocessor wi l l on ly respond if its number matches the
contents of this field.

The CRd field and theN bit contain information for the coprocessor which may be
interpreted in different ways by d ifferent coprocessors. but by convention CRd is
the register to be transferred (or the first register where more than one is to be
transferred). and the N bit is used to choose one of two transfer length options . For
instance N=O cou ld select the transfer of a single register, and N= I cou ld select the
transfer of all the registers for context switch ing.

Addressing modes

ARM is responsible for providing the address used by the memory system for the
transfer. and the addressing modes ava ilable are a subset of those used in single
data transfer instructions. Note. however. that the immediate offsets are 8 bits
wide and specify word offsets for coprocessor data transfers, whereas they are 12
bits wide and speci fy byte offsets for single data transfers.

The 8 bit unsigned immediate offsel is sh ifted left 2 bits and added to (U= I) or
subtracted from (U=Ol a base register (Rn): th is calculation may be performed
either before (P= I J or after (P=Ol the base is used as the transfer address. The
modified base value may be overwritten back into the base register (if W= I). or the
o ld va lue of the base may be preserved (W=O) Note that post-indexed addressing
modes requ ire explicit setting of theW bit. unlike LOR and STR which always
write-back when post-indexed

The va lue of the base register, modified by the offset in a pre-indexed instruction.
is used as the address for the transfer of the first word. The second word (if more
than one is transferred) wi ll go to or come from an address one word (4 bytes)
higher than the first transfer. and the address wi ll be incremented by one word for
each subsequent transfer.

CPU instruction set

Address alignment

The base address should normally be a word aligned quantity The bottom 2 bits of
the address will appear on Al l OJ and might be interpreted by the memory system.

Use of R15

If Rn is R 15, the value used will be the PC without the PSR flags. with the PC being
the address of this instruction plus 8 bytes Write-back to the PC is inhibited and
theW bit will be ignored

Address exceptions

If the address used for the first transfer is illegal the address exception mechanism
will be invoked. Instructions which transfer multiple words will only trap it the first
address is i llega l; subsequent addresses wi II wrap around inside the 26 bit address
space.

Data aborts

If the address is legal but the memory manager generates an abort. the data abort
trap will be taken The writeback of the modlfJCd base will take place. but all other
processor state will be preserved The coprocessor is partly responsible for
ensuring that the data transfer can be restarted after the cause of the abort has
been resolved. and must ensure that any subsequent actions it undertakes can be
repeated when the instruction is retried

32 bit operation

If R 15 is specified as the base register (Rn l. you must not use write-back

Examples

LDC pl,CR2,table

STCEQL p2 , CR3 , [R5 , #24] !

Load CR2 of coprocessor 1 from
address table, using a PC relative
address.

Conditionally store CR3 of
coprocessor 2 into an address
24 bytes up from RS, write this
address back i nto RS, and usc long
transfer option (probably to store
multiple words)

Note that though the address offset is expressed in bytes. the instruction offset
field is in words Ob1Asm will adjust the offset appropriately

105

Coprocessor register transfers (MCR, MRC)

106

Coprocessor register transfers (MCR, MRC)

Instructions for communicating information between ARM and a coprocessor

Instruction format

31 28 27

Assembler syntax

24 23 2120 19 16 15 12 11 8 7 5 4 3 0

L

Coprocessor operand register

Coprocessor information

Coprocessor number

ARM source/destination register

~--Coprocessor source/destination register

Load/Store bit
0 = store to coprocessor
1 = load from coprocessor

Coprocessor operation code

Condition field
(see page 53)

MCR I MRC<tcond11 CP#,operation, Rd ,CRn ,CRmtc, info>>

MCR

MRC

tcCOnd11

CP#

operation

Rd

moves from coprocessor to ARM register (L= I).

moves from ARM register to coprocessor (L=O) .

is a two-character condition mnemonic; see the section The
condition field on page 53.

is the unique number of the required coprocessor. which must be
a symbol defined via the CP directive.

is evaluated to a constant and placed in the CP Ope field .

is an expression evaluating to a valid ARM register number.

CPU instruction set

mrw::mww!# ; t.t :a -
CRn & CRm

info

Synopsis

are expressions evaluating to a valid coprocessor register number,
which must be a symbol defined via the CN directive.

where present is evaluated to a constant and placed in the CP
field.

These instructions are used to communicate information directly between ARM
and a coprocessor An example of a coprocessor to ARM register transfer (MCR)
instruction would be a FIX of a floating point value held in a coprocessor, where
the floating point number is converled into a 32 bit integer within the coprocessor.
and the result is then transferred to an ARM register A FLOAT of a 32 bit value in
an ARM register into a floating point value within the coprocessor illustrates the
use of an ARM register to coprocessor transfer (MRC).

An important use of this instruction is to communicate control information
directly from the coprocessor into the ARM PSR flags. As an example, the result of
a comparison of two floating point values within a coprocessor can be moved to
the PSR to control the subsequent flow of execution.

Note that the ARM6 series and later have an internal coprocessor (#15) for control
of on-chip functions. Accesses to this coprocessor are performed during
coprocessor register transfers.

The instruction is only executed if the condition is true. The various conditions are
defined in section The condition field on page 53.

The coprocessor fields

The CP# field is used. as for al l coprocessor instructions. to specify which
coprocessor is being ca lled upon to respond.

The CP Ope. CRn. CP and CRm fields are used only by the coprocessor. and the
interpretation presented here is derived from convention only. Other
interpretations are allowed where the coprocessor functionality is incompatible
with this one. The conventional interpretation is that the CP Ope and CP fields
specify the operation the coprocessor is required to perform. CRn is the
coprocessor register which is the source or destination of the transferred
information. and CRm is a second coprocessor register which may be involved in
some way which depends on the particular operation specified

107

Coprocessor register transfers (MCR, MRC)

108

Transfers to R15

When a coprocessor register transfer to ARM has R 15 as the destination. bits 31.
30, 29 and 28 of the transferred word are copied into the N, Z, C and V nags
(respectively) of the PSR. The other bits of the transferred word are ignored, and
the PC and other PSR nags are unaffected by the transfer.

Transfers from R15

A coprocessor register transfer from ARM with Rl5 as the source register wil l store
the PC together with the PSR nags.

32 bit operation

Transfers to Rl5

When a coprocessor register transfer to ARM has Rl5 as the destination, bits 31.
30. 29 and 28 of the transferred word are copied into theN. Z. C and v flags
(respectively) of the CPSR. The other bits of the transferred word are ignored. and
the PC and other PSR nags are unaffected by the t ransfer. This is what you would
expect as an extension of the 26 bit behaviour.

Transfers from Rl5

A coprocessor register transfer from ARM with R 15 as the source register wi II store
the PC+ 12. Unlike the 26 bit behaviour, it does not store the CPSR to the
coprocessor.

Examples
MRC 2 , 5,R3,CRS,CR6

MRCEQ 3,9 , R3,CR5 , CR6,2

Request Co-Proc 2 to perform
operation 5 on CRS and CR6, and
transfer the (single 32 bit word)
result back to R3.

Conditionally request Co-Proc 2 to
perform operation 9 (type 2) on
CRS and CR6, and transfer the
result back to R3.

CPU instruction set

Undefined instructions

Undefined instructions

Instruction format

31 28 27 2524 5 4 3 0

Cond 10 1 1lx X X X X X X X X X X X X X X X X X X xl1 lx X X xl

Assembler syntax

At present ObjAsm has no mnemonics for generating these instructions. If they are
adopted in the future for some specified use. suitable mnemonics will be added to
ObjAsrn Until such time. these instructions should not be used.

Synopsis

If the condition is true. the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering these
instructions to any coprocessors which may be present. and all coprocessors must
refuse to accept them by letting CPA float HIGH.

(Note that some instruction codes are not defined but do not cause the Undefined
instruction trap to be taken, for instance a Multiply instruction with bit 5 or bit 6
changed to a I. These instructions shou ld be avoided. as their action may change
in future ARM implementations.)

The instruction is on ly executed if the condition is t rue. The various conditions are
defined in section Tf1e condilion field on page 53.

109

Instruction set summary

110

*****tii &:a A• * 4 * WW 4 WI A i

Instruction set summary

Instruct ions available on ARM. briefly summarised

Instruction formats

31 28 2726252423222120 19 16 15 12 11 8 7 5 4 3 0

Cond 0 011 Opcode s Rn Rd Operand2

Cond 000000 AS Rd Rn Rs 1 0 0 1 Rm

Cond 0 0 0 0 1 UA s RdHi RdLo Rs 1 0 0 1 Rm

Cond 0 0 0 1 0 BOO Rn Rd 0 0 0 0 1 0 0 1 Rm

Cond 0 111 PU B~L Rn Rd Offset

Cond 0 1 1 X 1 X X X X

Cond 1 0 0 Pu sHL Rn Register list

Cond 1 0 1 L Offset

Cond 1 1 0 PUNr1_L Rn CRd CP# Offset

Cond 1 1 1 0 CP Ope CRn CRd CP# CP 0 CRm

Cond 1 1 1 0 PPOp L CRn Rd CP# CP 1 CRm

Cond 1 1 1 1 Comment field (ignored by ARM)

Assembler syntax

BIBL((cond" expression

MOV I MVN((cond» ccS» Rd ,op2
CMN I CMP I TEQ I TSTcccond» ccP» Rn, op2

Data Processing,
PSR transfer

Multiply

Multiply Long

Single
Data Swap

Single
Data Transfer

Undefined

Block
Data Transfer

Branch

Coprocessor
Data Transfer

Coprocessor
Data Operation

Coprocessor
Register Transfer

Software
Interrupt

ADC I ADD lAND I BIC I OR I ORR I RSB I RSC I SBC I SUBcccond>H<S" Rd, Rn, op2

MRS"cond» Rd,psr

MSR"cond» psr,Rm

MSR"cond» psrf,Rm
MSR"cond» psrf,#expression

MUL"cond>> ((S>I Rd, Rm, Rs

MLA"cond>l u$11 Rd, Rm, Rs, Rn

UMULL I SMULL I UMLAL I SMLAL cc cond 11 "S 1> RdLo, RdH i , Rm, Rs

LDR I STRcccond» ccB11 uT1> Rd, address

CPU instruction set

LDMjSTM«cond•FDjEDjFAIEAIIAIIBIDAjDB Rn«l»,Rlist«A»

SWP«cond11uB11 Rd,Rm, (Rn1

SWittcondn expression

CDP«cond11 CP#, operation, CRd, CRn, CRmtt, inf011

LDC jSTCucondn«Ln CP# , CRd , address

MCR I MRCttCond11 CP#, operation, Rd, CRn, CRmtt , inf011

Parameters for the above, alphabetically sorted

address can be:

• An expression which generates an address:

expression

ObjAsm wil l attempt to generate an instruct ion using the PC
as a base and a corrected immediate offset to address the
location given by eva luating the express ion This wi l l be a PC
relative. pre-indexed address. If the address is out of range.
an error will be generated.

• A pre-indexed addressing specification

[Rn1
[Rn,#expression 1 tt! 11

offset of zero

olfset of expression bytes

(Rn 1 tt + 1-IJRmtt 1 Shift II 1 tt ! Jl Offset Of ±COntentS Of indeX
register. sh1fted by shift
(not available for LDC/STCJ.

• A post-indexed addressing specification

(Rn1 , #expression
(Rn 1, tt+ 1- I>Rm« , shift11

offset of expression bytes

offset of ±contents of index
register. sh ifted by shift
(not available for LDC/STC)

Rn and Rm are expressions evaluating to a valid ARM register
number. Note if Rn is R 15 then ObjAsm wil l subtract X from the
offset va lue to allow for ARM pipelin ing.

shift is a genera l sh ift operation (see the section Shift types on
page 57). but note that the shift amount may no t be specified by a
register.

tt ! » if present sets theW bit to write-back the base register.

means to transfer a byte, otherwise a word is transferred

111

Instruction set summary

112

((cond,, is a two-character condition mnemonic; see the section Tfle
condition field on page 5'3.

CP# is the unique number of the required coprocessor. which must be
a symbol defined v1a the CP directive

CRd. CRn are expressions evaluating to a valid coprocessor register number.
& CRm which must be a symbol defined via the CN directive.

expression tor Band BL is a program-relative expression describing the
branch destination. from which Obj/\sm calculates the offset
for SWI. it is eva luated and placed in the comment field as a SWI
number (which is ignored by ARM) .

#expression is an expression symbolising a 32 bit value

info

«L"

op2

operation

ICPJJ

psr

If #expression is used . ObjAsm will attempt to match the
expression by generating a shifted immed iate 8-bit field . If thi s is
impossible. it will give an error.

where present is evaluated to a constant and placed in the CP
field

when present perform long transfer 1 N I). otherwise perform
short transfer (N 0)

may be any of the operands that the barrel shifter can produce
The syntax is Rmu, shift" or #expression
If #expression is used ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field If this is
Impossible. it wil l give an error

shift is shiftname Rs or shiftname #expression. o r
RRX (rotate right one bit with extend). shiftnames arc: ASL.
LSL, LSR. ASR. ;:md ROR (ASL is a synonym for LSL and the two
assemble to the sdme code.) See Sf1i{t types on page 57

1s evaluated to a constant and placed in the CP Ope field .

means to take the result of a CMN, CMP. TEO o r TST operation.
and move it to the bits of R 15 that hold the PSR - even though the
instruction has no destination register. Bits corresponding lo the
PC are masked out. as are (in User mode) the I. F. and mode bits.

is CPSR. CPSR_all, SPSR or SPSR_all

(CPSR and CPSR a l l are synonyms. as are SPSR and
SPSR_alL)

CPU instruction set

psrf 1s CPSR_flg or SPSR_flg The most significant four bits of Rm
or #expression arc written to the N. Z. C and V flags
respectively.

Rd. RdLo, RdHi ,
Rm, Rn & Rs are expressions eva I ualing to a valid ARM register number

Rlist is either a comma-separated list of registers and/or of register
ranges indicated by hyphens. al l enclosed in {} (e g
{RO I R2-R7 I RlO}). or an expression evaluating to the 16 bit
operand.

rrSJJ means to set the PSR's condition codes from the operation
ObjAsm forces this for CMN. CM P. TEO and TST. provided the P
flag is not specified.

rrTJJ means to set theW bit in a post-indexed instruction. forcing
non-privileged mode for the transfer cycle. Tis not allowed when
a pre-indexed addressing mode is specified or implied

if present sets theW bit to write-back the base register

((,..)1 if present sets the S bit to load the PSR with the PC. or forces
storing of user bank registers when in a non-user mode.

Synopsis

For a detailed synopsis o f the various instructions. see the fol lowing sections:

Section

Branch. Branch with Link (8. BL)

Data processing

PSR trdnsfer (MRS. MSRJ

Multiply dnd Multiply-Accumulate (MUL. MLAl

Multiply Long and Multiply-Accumulate Long
(UMULL. SMULL, UMLAL. SMLAL)

Single data transfer (LDR. STRl

Block data transfer (LDM. STM 1

Single data swap (SWP)

Software interrupt (SWI)

Coprocessor data operations (CDP)

Coprocessor data transfers (LDC. STCl

Coprocessor register transfers IMCR MRCl

Undefined instructions

Further instructions

Page

63

66
74

78
81

83
88
96
98
100
102
106

109
114

113

Further instructions

Further instructions

The above completes the description of all the basic ARM instructions. However,
ObjAsm understands a number of other instructions. which it translates into
appropriate basic ARM instructions.

Extended range immediate constants

11 4

Synopsis

In the case of an instruction such as

MOV RO,#VALUE

ObjAsm will evaluate the expression and produce a CPU instruction to load the
value into the destination register. This may not in fact be the machine level
instruction known as MOV, but the programmer need not be aware that an
alternative instruction has been substituted. A common example is

MOV Rn,#-1

which the CPU cannot handle directly (as - I is not a va lid immediate constant)
ObjAsm will accept this syntax, but will convert it and generate object code for

MVN Rn,#O

which results in Rn containing - I . Such conversions also takes place between the
following pairs of instructions:

e BIC/AND

e ADD/SUB

e ADC/SBC

e CMP/CMN

CPU instruction set

The ADA instruction

Assembler syntax

ADR11cond" register 1 expression

Synopsis

This produces an address in a register ARM does not have an explicit ·calculate
effective address instruction. as this can genera lly be done using ADD. SUB. MOV
or MVN To ease the construction of such instructions. ObjAsm provides an ADR
instruction

The expre~sion may be register-relative. program-relative or numeric:

• Register-relative: ADD I SUB register 1 register2 1 #constant
wi ll be produced. where register2 is the register to which the expression is
relative.

• Program-relative:

wi ll be produced.

• Numeric:

will be produced

ADD JSUB register 1 PC 1 #constant

MOV JMVN register 1 #constant

In all three cases. an error will be generated if the immediate constant required is
out of range

If the program has a fixed origin (that is. if the ORG directive has been used) the
distinction between program-relative and numeric values disappears In th1s case.
ObjAsm will first try to treat such a value as program-relative. If this fails. it will try
to treat it as numenc An error will only be generated if both attempts fail.

The ADRL instruction

Assembler syntax

ADR~econdnL register,expression

Synopsis

Th i ~ form of ADR is provided by ADRL and allows a wider collection of effect ive
addre~se~ to be produced. ADRL can be used in the same way as ADR. except that
l he allowed range of constants is any constant specified as an even rotation of a
va lue less than &10000. Again program-relative . register relative and numeric

115

Literals

Literals

11 6

forms exist. The resu lt produced wil l always be two instructions. even if it could
have been done in one. An error wi l l be generated if the necessary immediate
constants cannot be produced

Assembler syntax

LOR register,=expression

Synopsis

Litera ls are intended to enable the programmer to load immed iate values into a
register which might be out of range as MOV/ MVN arguments.

ObjAsm will take certain actions with literals. It will :

• if possible. replace the instruction with a MOV or MVN.

• otherwise. generate a program-relative LDR and if no such literal al ready ex ists
within the addressable range. place the litera l in the next literal pool.

Program-relative expressions and imported symbols are also valid literals. See the
section Organisational directives- END. ORG. LTORG and KEEP on page 141 for
further information.

6 Floating point instructions

T he ARM has a general coprocessor interface The first coprocessor available is
one which performs floating point calculations to the IEEE standard. To ensure

that programs using floating point arithmetic remain compatible with all
Archimedes machines. a standard ARM floating point instruction set has been
defined. This can be implemented invisibly to the customer program by one of
severa l systems offering various speed performances at various costs. The current
'bundled' floating point system is the software only floating point emulator
module. Floating point instructions may be incorporated into any assembler text,
provided they are called from user mode. These instructions are recognised by the
Assembler and converted into the correct coprocessor instructions.

Genera lly, programs do not need to know whether a coprocessor is fitted. the only
effective difference is in the speed of execution. Note that there may be slight
variations in accuracy between hardware and sohware- refer to the instructions
~upplied with the coprocessor for details of these variations

117

Programmer's model

Programmer's model

The ARM IEEE floating point system has eight 'high precision' fioating point registers ,
FO to F7. The format in which numbers are stored in these registers is not specified.
Floating point formats on ly become visible when a number is transferred lo
memory, using one of the formats described below.

There is also a fioating point status register (FPSR) which. like the ARM's combined PC
and PSR, holds all the necessary status and control information that an application
is intended to be able to access. It holds fiags wh ich indicate various error
condit ions, such as overflow and division by zero. Each flag has a corresponding
trap enable bit, which can be used to enable or disable a 'trap· associated with the
error cond ition. Bits in the FPSR allow a cl ient to distinguish between different
implementations of the floating point system.

There may also be a fioating poinL control register (FPCR); this is used to hold status
and control information that an application is not intended to access. For example.
there are privileged instructions to turn the float ing point system on and off. to
permit efficient context changes Typica lly, hardware based systems have an FPCR,
whereas software based ones do not

Available systems

118

Floating point systems may be built from software only. hardware only. or some
combination of software and hardware. The fol lowing terminology wil l be used to
differentiate between the various ARM fioati ng point systems already in use:

System name

Old FPE

FPPC

FPE 400

FPA

System components

Versions of the fioating point emu lator up to (but not
including) 4.00

Floating Point Protocol Convertor (interface chip between
ARM and WE32206). WE32206 (AT&T Math Acceleration Unit
chip). and support code

Versions o f the floating point emu lator from 4.00 onwards

ARM Floating Point Accelerator chip. and support code

The results look the same to the programmer. However. if clients are aware of
which system is in use, they may be able to extract better performance. For
example. compi lers can be tuned to generate bunched FP instructions for the FPE
and dispersed FP instructions for the FPA. which wi ll improve overall performance

Precision

Floating point instructions

The old FPE has two different variants Versions up to (but not including) 3.40 do
not provide any hardware support. whereas versions 3 40 to 3 99 inclusive provide
support for the FPPC hardware- if it is fitted All versions of the FPE 400 provide
support for the FPA hardware.

All basic floating point instructions operate as though the result were computed to
infinite precision and then rounded to the length. and in the way. specified by the
instruction The rounding is selectable from:

• Round to nearest

• Round to +infinity (P)

• l~ou nd to -infinity (M)

• Round to zero (Z).

The defau lt is ·round to nearest'; in the event of a tie. this rounds to 'nea rest even' .
If any of the others are required they must be given in the instruction.

The working precision of the system is 80 bits. comprising a 64 bit mantissa. a I '5
bit exponent and a sign bit. Specific instructions that work on ly with single
precision operands may provide higher performance in some implementations.
particularly the fully software based ones

Floating point number formats
Like the ARM instructions. the floating point data processing operations refer to
registers rather than memory locations Values may be stored into ARM memory in
one of five formats (on ly four of which are visible at any one time. since P and EP
are mutually exclusive):

119

Floating point number formats

120

IEEE Single Precision (S)

31 30 2322 0

~n I Exponent I msb Fraction ~
Figure 6 I Single precision format

• If the exponent is 0 and the fraction is 0, the number represented is ±0

• If the exponent is 0 and the fraction is non-zero. the number represented is
±0/raction x 2 126

• If the exponent is in the range I to 254. the number represented is
± I .fraction x 2''\fWit'"' - 127.

• If the exponent is 25'5 and the fraction is 0. the number represented i~ ±::o.

• If the exponent is 255 and the lraclion is non-zero. a NaN (not-a-number) is
represented If the most significant bit of the fraction is set. it is a non-trapping
NaN; otherwise it is a trapping NaN

IEEE Double Precision (D)

31 30

First word Sign

Second word msb

2019

Exponent msb Fraction

Fraction

Figure 6.2 Double precision formal

• If the exponent is 0 and the fraction is 0. the number represented is ±0.

0

• If the exponent is 0 and the frclCllon is non-zero the number represented is
±0./racliOtl X r 1022

• If the exponent is in the range I to 2046. the number represented is
±!.fraction x 2r~poom1f- 1023.

• If the exponent is 2047 and the fraction is 0. the number represented is ±oo.

• If the exponent is 2047 and the fraction is non-zero. a NaN (not-a-number) is
represented If the most significant bit of the fraction ts set. it is a non trapping
NaN: otherwise it is a trapptng NaN

Double Extended Precision (E)
31 30

First word Sign

Second word J msb

Third word msb

zeros

Floating point instructions

1514 0

I
Exponent

-
Fraction lsb

Fraction lsb

Figure 6.'3 Doubll' l'~ll'nd£'d pmisi011 format

• If the exponent is 0. J is 0. and the fraction is 0. the number represented 1s ±0.

• If the exponent is 0. J is 0. and the fraction is non-zero. the number represented
is ±O.fraction x 2 16382

• If the exponent is in the range 0 to '32766. J is I . and the fraction is non-zero.
the number represented is ± l.{ractiOtt x 2aponmt- 16383

• If the exponent is 32767. J is 0. and the fraction is 0. the number represented is

• If the exponent is 32767 and the fraction is non-zero. a NaN (not-a-number) is
represented If the most significant b1t of the fraction is set. it is a non-trapping
NaN: otherwise it is a trapping NaN.

Other values are illega l and shall not be used (ie the exponent is in the range I to
32766 and J is 0: or the exponent is 32767. J is I. and the fraction is 0)

The FPPC system stores the sign bit in bit I '5 or the first word. rather than in bit 31

Storing a float1ng point register in 'E' format is guaranteed to maintain precision
when loaded back by the same floating point system in this format. Note that in
the past the layout of E format has varied between floating point systems so
software should not have been written to depend on it being readable by other
floating point systems. For example. no softwdre should have been wntten which
saves E format data to disc. to have then been potentia lly loaded into another
system In particu lar. E format in the FPPC system varies from all other systems in
its positioning of the sign bit. However. for the FPA and the FPE 400. theE format
is now defined to be a particular form or IEEF: Double Extended Precision and wil l
not vary in future

121

Floating point number formats

···-~-----------a&&&aM&·---~m&&&&&&&&&Mm=-DE~n.&a&&&&&&---&&&&&&&&&&&&&&&&&&--&&M

122

Packed Decimal (P)

31 0

First word Sign e3 e2 e1 eO d18 d17 d16

Second word d15 d14 d13 d12 d11 d10 d9 d8

Third word d7 d6 d5 d4 d3 d2 d1 dO

Figure 6.4 Packed decimal format

The sign nibble contains both the significand's sign (top bit) and the exponent's
sign (next bit); the other two bits are zero.

d 18 is the most significant digit of the significand d, and e'3 of the exponent e. The
significand has an assumed decimal point between d 18 and d 17, and is normalised
so that for a normal number I s d 18 s 9. The guaranteed ranges ford and e are 17
and 3 digits respectively; dO, d I and c3 may always be zero in a particular system.
(By comparison, an S format number has 9 digits of significand and a maximum
exponent of 53; aD format number has 17 digits in the significand and a maximum
exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A- F. save for a
representation of ±oc or a NaN (see below)

• If the exponent's sign is 0, the exponent is 0. and the significand is 0. the
number represented is ±0.

Zero will always be output as +0, but either +0 or -0 may be input.

• If the exponent is in the range 0 to 9999 and the significand is in the range I to
9.999999999999999999, the number represented is ±d x IO±e

• If the exponent is &FFFF (ie all the bits in e3- eO are set) and the significand is
0. the number represented is ±:x: .

• If the exponent is &FFFF and dO-d 17 are non-zero. a NaN (not-a-number) is
represented . If the most significant bit of d 18 is set. it is a non-trapping NaN;
otherwise it is a trapping NaN .

All other combinations are undefined.

. Floating point instructions ... --------
Expanded Packed Decimal (EP)

31

First word Sign e6

Second word d23 d22

Third word d15 d14

Fourth word d7 d6

e5

d21

d13

d5

-
e4 e3 e2

d20 d19 d18

d12 d11 d10

d4 d3 d2

Figure 6. 5 Exptmded packed decimal format

0

e1 eO

d17 d16

d9 d8

d1 dO

The sign nibble contains both the significand's sign (top bit) and the exponent's
sign (next bit); the other two bits are zero.

d23 is the most significant digit of the significand d. and e6 of the exponent e. The
significand has an assumed decimal point between d23 and d22. and is normalised
so that for a normal number I s d23 s 9. The guaranteed ranges ford and e are 21
and 4 digits respectively; dO. d I. d2, c4. e5 and e6 may always be zero in a particular
system. (By comparison. an S format number has 9 digits of significand and a
maximum exponent of 53; aD format number has 17 digits in the sign ificand and a
maximum exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A- F. save for a
representation of ±oo or a NaN (see below)

• If the exponent's sign is 0, the exponent is 0. and the sign ificand is 0. the
number represented is ±0.

Zero will always be output as +0. but either +0 or -0 may be input.

• If the exponent is in the range 0 to 9999999 and the significand is in the range
I to 9.99999999999999999999999. the number represented is ±d x IO±e

• If the exponent is &FFFF'FFF (ie all the bits in e6- eO are set) and the
sign ificand is 0. the number represented is ±oc .

• If the exponent is &FFFFFFF' and dO - d22 are non-zero, a NaN (not-a-number)
is represented. If the most significant bit of d23 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined

This format is not available in the old FPE or the FPPC. You shou ld only use it if
you can guarantee that the floating point system you are using supports it.

123

Floating point status register

Floating point status register

124

There is a floating point status register (PPSR) which, like ARM's combined PC and
PSR. has all the necessary status for the floating point system. The FPSR contains
the IEEE flags but not the result flags- these are only avai lable after floating point
compare operations.

The FPSR consists of a system 10 byte. an exception trap enable byte. a system
control byte and a cumulative exception flags byte.

31 2423 1615 87 0

FPSR System 10 Trap Enable System Control Exception Flags

Figure 6.6 Floating point status register byte usage

System ID byte

The System 10 byte allows a user or operating system to distinguish which floating
point system is in use. The top bit (bit 31 of the FPSR) is set for hardware (ie fast)
systems. and clear for software (ie slow) systems Note that the System 10 is
read·only.

The following System IDs are currently defined:

System

Old FPE
FPPC
FPE 400
FPA

System ID

&00
&80
&01
&81

Exception Trap Enable Byte

Each bit of the exception t rap enable byte corresponds to one type of float ing
point exception. which are described in the section Cumulative Exception Flags B!Jte on
page 126.

23 22 21 20 19 18 17 16

FPSR I ~ _____ R_e_s_eN __ ed----~~~-N_x~ __ u_F_L~ __ o_F_L_L_o_v_z~~~-v_o~
Figure 6.7 Exception trap enable byte

If a bit in the cumu lative exception flags byte is set as a result of executing a
floating point instruction. and the corresponding bit is also set in the exception
trap enable byte. then that exception trap will be taken.

Floating point instructions

Currently, the reserved bits sha ll be written as zeros and will return 0 when read.

System Control Byte

These control bits determine which features of the floating point system are in use.

15 14 13 12 11 10 9 8

FPSR I Reserved AC EP so NE ND

Figure 6.8 System control byte

By placing these control bits in the FPSR, their state will be preserved across

context switches, allowing different processes to use different features if necessary.
The fol lowing five control bits are defined for the FPA system and the FPE 400

ND No Denormalised numbers
NE NaN Exception
SO Select synchronous Operation of FPA
EP Use Expanded Packed decima l format

AC Use Al ternative definition for C flag on compare operations

The old FPE and the FPPC system behave as if all these bits are clear.

Currently, the reserved bits shall be written as zeros and will return 0 when read .
Note t hat a ll bits (including bits 8 - 12) are reserved on FPPC and early FPE
systems.

NO - No denormalised numbers bit

If this bit is set, then the software will force all denormalised numbers to zero to
prevent lengthy execution times when dealing with denormalised numbers. (Also

known as abrupt underflow or flush to zero.) This mode is not IEEE compatible but
may be required by some programs for performance reasons.

If this bit is clear. then denormal ised numbers will be handled in the normal
IEEE-conformant way.

NE - NaN exception bit

If this bit is set. then an attempt to store a signal! i ng NaN that involves a change of
format will cause an exception (for full IEEE compatibility)

If this bit is clear, then an attempt to store a signalling NaN that involves a change
of format will not cause an exception (for compatibility with programs designed to
work with the old FPE)

125

Floating point status register

126

SO - Select synchronous operation of FPA

If this bit is set. then all floating point instructions will execute synchronously and
ARM will be made to busy-wait until the instruction has completed. This will allow
the precise address of an instruction causing an exception to be reported. but at
the expense of increased execution time.

If this bit is clear. then that class of floating point instructions that can execute
asynchronously to ARM will do so. Exceptions that occur as a resu lt of these
instructions may be raised some lime after the instruction has started. by which
time the ARM may have executed a number of instructions fol lowing the one that
has fai led. In such cases the address of the instruction that caused the exception
will be imprecise.

The state of this bit is ignored by software-on ly implementations. which always
operate synchronously.

EP - Use expanded packed decimal format

If this bit is set. then the expanded (four word) format will be used for Packed
Decimal numbers. Use of this expanded format allows conversion from extended
precision to packed decimal and back again to be carried out without loss of
accuracy.

If this bit is clear. then the standard (three word) format is used for Packed Decimal
numbers.

AC- Use alternative definition for C flag on compare operations

If this bit is set. the ARM C flag, after a compare. is interpreted as 'Greater Than or
Equal or Unordered' . This interpretation allows more of the IEEE predicates to be
tested by means of single ARM conditiona l instructions than is possible using the
original interpretation of the C flag (as shown below)

If this bit is clear. the ARM C flag. after a compare. is interpreted as 'Greater Than or
Equal'.

Cumulative Exception Flags Byte

7 6 5 4 3 2 0

FPSR I Reserved INX UFL OFL DVZ IVO

Figure 6.9 Cumulative exception flags byte

Whenever an exception cond ition ari ses, the appropriate cumu lative exception flag
in bits 0 to 4 will be set to I. If the relevant trap enable bit is set. then an exception
is also delivered to the user's program in a manner specific to the operating

Floating point instructions

system (Note that in the case of underflow, the state of the trap enable bit
determines under which conditions the underflow flag will be set.) These flags can
on ly be cleared by a WFS instruction.

Currently, the reserved bits shall be written as zeros and will return 0 when read .

IVO - invalid operation

The IVO flag is set when an operand is invalid for the operation to be performed
Invalid operations are

• Any operation on a trapping NaN (not-a-number)

• Magnitude subtraction of infinities. eg +:JO + -:JO

• Multiplication of 0 by :too

• Division of 0/0 or oo/oo

• x REM y where x = :x: or y = 0

(REM is the 'remainder after floating point division' operator.)

• Square root of any number< 0 (but v(-0) = -0)

• Conversion to integer or decimal when overflow, oo or a NaN operand make it
impossible

If overflow makes a conversion to integer impossible, then the largest positive
or negative integer is produced (depending on the sign of the operandi and
IVO is signal led

• Comparison with exceptions of Unordered operands

• ACS, ASN when argument's absolute value is> I

• SIN. COS, TAN when argument is :~:oo

• LOG. LGN when argument is :s; 0

• POW when first operand is< 0 and second operand is not an integer. or first
operand is 0 and second operand is :s; 0

• RPW when first operand is not an integer and second operand is< 0, or first
operand is :s; 0 and second operand is 0.

DVZ - division by zero

The DVZ flag is set if the divisor is zero and the dividend a finite. non-zero number.
A correctly signed infinity is returned if the trap is disabled.

The flag is also set for LOG[O) and for LGN(O) . Negative infin ity is returned if the
trap is disabled.

127

Floating point status register

128

- ---····-------------------- MM

OFL - overflow

The OFL flag is set whenever the destination format's largest number is exceeded
in magnitude by what the rounded result would have been were the exponent
range unbounded. As overflow is detected after rounding a resu lt, whether
overflow occurs or not after some operations depends on the rounding mode.

If the trap is disabled either a correctly signed infinity is returned. or the format's
largest finite number. This depends on the rounding mode and floating point
system used.

UFL - underflow

Two correlated events contribute to underflow:

• Tininess - the creation of a tiny non-zero result smaller in magnitude than the
format's smallest normalised number.

•

• Loss of accuracy- a loss of accuracy due to denormalisation that may be greater
than would be caused by round ing alone.

The UFL flag is set in different ways depending on the value of the UFL trap enable
bit If the trap is enabled, then the UFL flag is set when tininess is detected
regard less of loss of accuracy If the Lrap is d isabled, then the UFL flag is set when
both tininess and loss of accuracy are detected (in which case the INX flag is also
set): otherwise a correctly signed zero is returned.

As underflow is detected after rounding a resu lt, whether underflow occurs or not
after some operations depends on the round ing mode.

INX - inexact

The INX flag is set if the rounded result of an operation is not exact (different from
the va lue computable with infinite precision). or overflow has occurred while the
OFL trap was disabled, or underflow has occurred while the UFL trap was disabled.
OFL or UFL traps take precedence over INX.

The INX flag is also set when computing SIN or COS. with the exceptions of SIN(Ol
and COS! I 1.

The old FPE and the FPPC system may differ in their handling of the INX flag
Because of this inconsistency we recommend that you do not enable the INX trap.

Floating point instructions

Floating Point Control Register

The Floating Point Control register (FPCR) may only be present in some
implementations: it is there to control the hardware in an implementation-specific
manner. for example to disable lhe noating point system The user mode of the
ARM is not permitted to use this register (since the right is reserved to alter it
between implementations) and the WFC and RFC instructions will trap if tried in
user mode.

You are unlikely to need to access the FPCR: this information is principally given
for completeness

The FPPC system

The FPCR bit allocation in the r'PI)C system is as shown below

31

FPCRC
8 7 6 5 4 3 2

Figure 6.10 FPCR bit allocation in tf1e FPPC syslem

Bit M eaning

31·8 Reserved- always read as zero
7 PR Last RMF instruction produced a partial remainder
6 SBd Use Supervisor Register Bank 'd'
5 SBn Use Supervisor Register Bank ·n·
4 SBm Use Supervisor Register Bank ·m·
3 Reserved- always read as zero
2 AS Last WE32206 exception was asynchronous
I EX Floating point exception has occurred
0 DA Disable

0

Reserved bits are ignored during write operations (bul should be zero for future
compatibility) The reserved bits will return zero when read.

129

Floating Point Control Register

130

- -~~-·~-~-------·--·····------·--------

The FPA system

In the FPA. the FPCR wil l also be used to return status information required by the
support code when an instruction is bounced. You shou ld not alter the register
unless you really know what you·re doing. Note that the register will be read
sensitive: even reading the register may change its value, with disastrous
consequences.

The F'PCR bit allocation in the FPA system is provisionally as follows

3 1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPCRIRul
15 14

(cont'd) I OP I

Bit

31 RU
30
29
28 IE
27 MO
26 EO
25, 24
23-20 OP
19 PR
18- 16 5 1
15 OP
14-12 OS
II SB
10 AB
9 RE

8 EN
7 PR
6. 5 RM
4 OP
3-0 52

l iE IMoiEol OP 1-1
13 12 11 10 9 8 7 6 5 4 3

OS lssiAs iREI ENIPR I RM loP I
Figure 6. 1 I FPCR bit al/ocaLion in the FPA system

Meaning

Rounded Up Bit
Reserved
Reserved
Inexact bit
Mantissa overflow
Exponent overflow
Reserved
AU operation code
AU precision
AU source register I
AU operation code
AU destination register

81

2 0

82

Synchronous bounce: decode (R 14) to gel opcode
Asynchronous bounce opcode supplied in rest of word
Round ing Exception Asynchronous bounce occurred during

rounding stage and destination register was written
Enable FPA (default is off)
AU precision
AU rounding mode
AU operation code
AU source register 2 (bit 3 set denotes a constant)

Note that the SB and AB bits are cleared on a read of the FPCR. Only the EN bit is
writable. All other bits shall be set to zero on a write.

Floating point instructions

Assembler directives and syntax

The precision letter determines the format used to store the number in memory. as
follows:

Letter Precision Memory usage

s Single I word
D Double 2 words
E Extended 3 words
p Packed BCD 3 words
CP Extended Packed BCD 4 words

For details of these formats see the section F'loatiMg poiMt number formats on page 119.

Floating point number input

A floating point number recognised by the assemb lers consists of an optional sign.
followed by an optional mantissa part followed by an optional exponent part. One
or other of the mantissa part and the exponent part must be present. The mantissa
part consists of a sequence of zero or more decimal digits. followed by an optional
decimal point followed by a sequence of zero or more decimal d igits. If present. the
mantissa must contain a non-zero number of d igits overall . The exponent part
begins with ·e· or 'E'. followed by an optional sign, followed by a sequence of one
or more decimal digits.

Examples are

1
0 . 2
SE9
E-2
-.7
+31 . 415926539E-1

The value generated represents the mantissa multiplied by ten to the power of the
exponent. where the mantissa is taken to be one if missing. and the exponent is
taken to be zero if missing. All reading is done to double precision. and is then
rounded to single precision as required. The required precision is determined by
the context as shown in the sections Floating point store loadiMg directives on page 132
and Floating poiMt literals on page 133.

NOFP directive

If you know that your code should not use float ing point instructions and want to
ensure that you don't accidentally include them. you can use the NOFP directive It
must occur before any floating point instructions or directives.

Syntax· NOFP

131

The instruction set

.. _....a;;awc== =-

Floating point register equating: FN

The directive FN is used to assign a floating point register number 0-7 to a symbol

Syntax: label FN numeric expression

Floating point register numbers are taken to be constants when included in
arbitrary expression, but on ly floating point register names are val id when a
floating point register is requ ired

Floating point store loading directives

Directives DCF'S and DCFD are provided to load store with respectively single and
double precision floating point numbers. Single precision floating point numbers
occupy one word of store. double precision floating point numbers occupy two
words. but are not constra ined to be double word aligned

Syntax label DCFx floating point number« 1 floating point number»

where the syntax of floating point numbers is defined in the section F/oati11g point
number input above.

? label wil l have the va lue of the number of bytes of code generated by its
defining line in a way ana logous to DCD.

The instruction set

132

Floating point coprocessor data transfer

op 11 condition'' prec Fd, addr

op is LDF for load. STF for store

condition is one of the usual ARM conditions

prec is one of the usual floating point precisions

addr is [Rn 1 11 I #offset" or [Rn , #offset 1 11!"

I"!" if present indicates that writeback is to take place.)

Fd is a floating point register symbol (defined via the FN directive)

Load 1 LDF) o r store (STF) the high precision va lue from or to memory, using one of
the five memory formats. On store. the value is rounded using the ·round to
nearest' rounding method to the destination precision, or is precise if the
destination has sufficient precision Thus other rounding methods may be used by
having previously appl ied some suitable floating point data operation; this does
not compromise the requirement of 'rounding once on ly', since the store operation
introduces no additiona l rounding error.

Floating point instructions

a..m~--~a..ma. .. ~ .. ~--a. .. a. .. a..a .. ~ .. a. .. a.-=a..u~~~~az

The offset is in words from the address given by the ARM base register. and is in the
range -I 020 to+ I 020. In pre-indexed mode you must explicitly specify writeback to
add the offset to the base register: but in post-indexed mode the assembler forces
writeback for you. as without write back post-indexing is meaningless

You shou ld not useR 15 as the base register if writeback will take place.

Examples:

LDFS FO, [RO 1 load FO from address held in RO
(single precision)

STFP Fl, [R2 1

Floating point literals

store number held in Fl at R2
as a packed decimal number

LDFS and LDFD can be given literal values instead of a register relative address,
and the Assembler will automatically place the required value in the next avai lable
litera l pool In the case of LDFS a single precision value is placed. in the case of
LDFD a double precision value is placed. Because the allowed offset range within a
LDFS or LDFD instruction is less than that for a LDR instruction (-I 020 to+ I 020
instead of - 4095 to +4095). it may be necessary to code LTORG directives more
frequently if noating point literals are being used than would otherwise be
necessary.

Syntax LDFx Fn, = floating point number

Floating point coprocessor multiple data transfer

The LFM and SFM multiple data transfer instructions are supported by the
assemblers. but are not provided by the FPPC system. or by some versions of the
o ld FPE

• versions 2.80- 2.84 do not support them

• versions 2.85- 3.39 do support them

• version 3.40- which is effectively a version of 2.80 that also provides FPPC
hardware support- does not support these instructions.

Attempting to execute these instructions on systems that do not provide them will
cause undefined instruction traps, so you should only use these instructions in
software intended for machines you are confident are using an appropriate version
of the old FPE, or the FPE 400, or the FPA system.

The LFM and SFM instructions allow between I and 4 fioating point registers to be
transferred from or to memory in a single operation; such a transfer otherwise
requires several LDF or STF operations. The multiple transfers are therefore useful

133

The instruction set

134

----- -- r .
for efficient stacking on procedure entry/exit and context switching These new
instructions are the preferred way to preserve exactly register contents within a
program.

The values transferred to memory by SFM occupy three words for each register. but
the data format used is not defined, and may vary between floating point systems.
The only lega l operation that can be performed on this data is to load it back into
floating point registers using the LFM instruction. The data stored in memory by an
SFM instruction should not be used or modified by any user process

The registers transferred by a LFM or SFM instruction are specified by a base
floating point register and the number of registers to be transferred. This means
that a register set transferred has to have adjacent register numbers. unlike the
unconstrained set of ARM registers that can be loaded or saved using LDM and
STM. Floating point registers are transferred in ascending order. register numbers
wrapping round from 7 to 0 eg transferring three registers with F6 as the base
register results in registers F6. F7 then FO being transferred.

The assembler supports two alternative forms of syntax. intended for genera l use
or just stack manipulation:

opC<condition» Fd,count,addr
op((condition»stacktype Fd, count, [Rn] ''! »

op

condition

Fd

count

addr

stacktype

is LFM for load. SFM for store.

is one of the usual ARM conditions.

is the base floating point register. specified as a floating point
register symbol (defined via the FN directive).

is an integer from I to 4 specifying the number of registers to be
transferred.

is [Rn 1 '',#offset'' or [Rn, #offset 1 ((! 11

(" ! » if present indicates that writeback is to take place)

is FD or EA. standing for Full Descending or Empty Ascending, the
meanings as for LDM and STM.

The offset (only relevant for the first, genera l. syntax above) is in words from the
address given by the ARM base register, and is in the range -I 020 to + I 020. 1 n
pre-indexed mode you must explicitly specify writeback to add the offset to the
base register; but in post-indexed mode the assembler forces writeback for you , as
without write back post-indexing is meaningless.

You shou ld not useR 15 as the base register if writeback will take place

Floating point instructions
M ••••wwww••&AWLwaaw••••--•=-

Examples:

SFMNE

LFMFD
LFM

F6, 4, [RO)

F4,2,[Rl3]!
F4,2, [Rl3] ,#24

if NE is true, transfer F6, F7,
FO and Fl to the address
contained in RO

load F4 and FS from FD stack -
equiva l ent to same instruction
in general syntax

Floating point coprocessor register transfer

FLTacondition»precaround» Fn,Rd
FLTacondition»precaround>> Fn ,#value
FIX«condition»«round» Rd,Fn
WFS«condition» Rd
RFS«condition» Rd
WFC«condition» Rd
RFC«condition» Rd

<<round»

Rd

Fn

is the optional rounding mode P, M or Z; see below.

is an ARM register symbol

is a noating point register symbol.

•

The value may be of the following 0. I. 2. 3, 4, 5. 10, 0.5. Note that these values
must be written precisely as shown above, for instance '0.5' is correct but ·.5' is not.

FLT

FIX

WFS

RFS

WF'C

RFC

lnleger to Floating Point

Floating point to integer

Write Floating Point Status

Read Floating Point Status

Write Floating Point Control

Read Floating Point Control

The rounding modes are:

Mode

Nearest

Plus infinity

Minus infinity

Zero

Letter

(no letter required)
p

M

z

Fn := Rd

Rd := Fm

FPSR := Rd

Rd := FPSR

FPC = Rd

Rd :=FPC

Supervisor Only

Supervisor Only

135

The instruction set

' •

136

•••• w

Floating point coprocessor data operations

The formats of these instructions are:

binop((condition»prec((round» Fd,Fn,Fm
binop((condition»prec((round" Fd,Fn#value
unopucondition"precuround)/ Fd,Fm
unopucondition"precuround" Fd,#value

binop

unop

Fd

Fn

Fm

#value

is one of the binary operations listed below

is one of the unary operations listed below

is the FPU destination register

is the FPU source register (binops only)

is the FPU source register

is a constant, as an alternative to Fm. It must be 0. I , 2. 3, 4. 5, 10
or 0.5. as above.

The binops are:

ADF Add

MUF Multiply

SUF Subtract

RSF Reverse Subtract

DVF Divide

RDF Reverse Divide

POW Power

RPW Reverse Power

RMF Remainder

FML Fast Multiply

FDV Fast Divide

FRD Fast Reverse Divide

POL Polar angle

The unops are

MVF

MNF

ABS

RND

SOT

Move

Move Negated

Absolute value

Round to integral value

Square root

Fd := Fn + Fm

Fd := Fn x Fm

Fd := Fn - Fm

Fd := Fm - Fn

Fd := Fn I Fm

Fd = Fm I Fn

Fd = Fn to the power of Fm

Fd = Fm to the power of Fn

Fd =remainder of Fn I Fm
(Fd = Fn- integer value of (Fn I Fm) x Fm)

Fd = Fn x Fm

Fd = Fn I Fm

Fd := Fm I Fn

Fd :=polar angle of Fn. Fm

Fd = Fm

Fd = -Fm

Fd = ABS (Fm)

Fd := integer value of Fm

Fd := square root of Fm

•

Floating point instructions

LOG Logarithm to base I 0 Fd = log Fm

LGN Logarithm to base e Fd :=In Fm

EXP Exponent Fd = e to the power of Fm

SIN Sine Fd := sine of Fm

cos Cosine Fd :=cosine of Fm

TAN Tangent Fd :=tangent of Fm

ASN Arc Sine Fd :=arcsine of Fm

ACS Arc Cosine Fd := arccosine of Fm

ATN Arc Tangent Fd =arctangent of Fm

URD Unnormalised Round Fd = integer value of Fm (may be abnormal)

NRM Normalise Fd := normalised form of Fm

Note that wherever Fm is mentioned. one of the floating point constants 0. I. 2, 3,
4, 5. 10, or 0.5 can be used instead.

FML. FRD and FDV are only defined to work with single precision operands. These
·fast' instructions are likely to be faster than the equiva lent MUF, DVF and RDF
instructions. but this is not necessarily so for any particular implementation

Rounding is done only at the last stage of a SIN. COS etc- the ca lculations to
compute the value are done with 'round to nearest' using the full working
precision

The URD and NRM operations are only supported by the FPA and the FPE 400.

Floating point coprocessor status transfer

op((condition))prec((round)) Fm,Fn

op is one of the following:

CMF

CNF

CMFE

CNFE

Compare floating

Compare negated floating

Compare floating with exception

Compare negated floating with exception

~<condition" an ARM condition.

prec

~<round,,

Fm

Fn

a precision letter

an optional rounding mode: P. M or Z

A floating point register symbol.

A floating point register symbol

compare Fn with Fm

compare Fn with -Fm

compare Fn with Fm

compare Fn with -Fm

137

Finding out more ...

• ••••• ww,www ••• ·-·····

Compares are provided with and without the exception that could arise if the
numbers are unordered (ie one or both of them is not-a-number) . To comply with
IEEE 754. the CMF instruction should be used to test for equality (ie when a BEO
or BNE is used afterwards) or lo test for unorderedness (in the V flag) The CMFE
instruction should be used for all other tests (BGT, BGE. BLT, BLE afterwards}.

When the AC bit in the FPSR is clear. the ARM flags N, Z. C. V refer to the following
after compares:

N

z
c
v

Less than

Equal

Greater than or equal

Unordered

ie F11less than Fm (or-Fm)

ie FM greater than or equal to Fm (or -Fm)

Note that when two numbers are not equa l. Nand Care not necessarily opposites.
If the result is unordered they wi ll both be clear.

When the AC bit in the FPSR is set, the ARM flags N. Z. C. V refer to the fol low ing
after compares:

N Less than

Z Equa l

C Greater than or equa l or unordered

V Unordered

In th is case. Nand Care necessarily opposites.

Finding out more ...

138

Further details of the float ing point instructions (such as the format of the bitfields
within the instruction) can be found in the Acorn RISC MachiMe family Data Ma11ual.
VLSI Technology Inc. (1990) Prentice-Hall , Englewood Cliffs. Nl. USA
ISBN 0-13-78 1618-9.

7
··-·

Directives
--·-----· -=

T his chapter describes the directives available in the assembler. which provide a
powerful range of extra features.

Storage reservation and initialisation- DCB, DCW and DCD
DCB

DCW

DCD

%

Defines one or more bytes: can be replaced by=

Defines one or more half-words (16-bit numbers)

Defines one or more words: can be replaced by &

Reserves a zeroed area of store

The syntax of the first three directives is :

«label" directive expression-list

DCD can take program-relative and external expressions as well as numeric ones .
In the case of DCB, the expression-list can include string expressions. the characters
of which are loaded into consecutive bytes in store. Unlike C-strings, ObjAsm
strings do not contain an implicit trailing NUL, so a C-string has to be fabricated
thus:

C_string DCB "C_string",O

The syntax of % is

cdabel" % numeric-expression

This directive will initialise to zero the number of bytes specified by the numeric
expression.

Note that an external expression consists of an external symbol followed optionally by
a constant expression . The external symbol must come first.

139

Floating point store initialisation - DCFS and DCFD

Floating point store initialisation - DCFS and DCFD

DCFS

DCFD

Defines single precision floating point values

Defines double precision floating point values

The syntax of these directives is:

«label'' directive fp-constant", fp-constant"

Single precision numbers occupy one word. and double precision numbers occupy
two: both should be word aligned. An fp-corrstant. takes one of the following forms:

<~-~>integer E<~-~>integer

<~-~><~integer~> . integer<~E<~-~>integer"

E may also be written in lower case.

e.g. 1E3, -4E-9
e.g 1 . o.-. 1. 3. 1E6

Describing the layout of store - " and #

140

Sets the origin of a storage map

Reserves space within a storage map

The syntax of these directives is:

" expression1c ,base-register"
«label" # expression

The A directive sets the origin of a storage map at the address specified by the
expressiorr. A storage map localion counter.@. is also set to the same address. The
expressiorr must be fully evaluable in the first pass of the assembly, but may be
program-relative. If no A directive is used. the@ counter is set to zero. @can be
reset any number of times using A to allow many storage maps to be established.

Space within a storage map is described by the# directive. Every time# is used its
label (if any) is given the value of the storage location counter@. and@ is then
incremented by the number of bytes reserved .

Directives

In a 1\ directive with a base register. the register becomes implicit in all symbols
defined by# directives which follow. until cancelled by a subsequent 1\ directive
These register-relative symbols can later be quoted in load and store mstructions
For example

" O,r9
4

Lab # 4
LOR rO , Lab

is equ ivalent to:

LOR rO , (r9 , #4]

Organisational directives- END, ORG, LTORG and KEEP

END

The assembler stops processing a source fi le when it reaches the END directive. If
assembly of the file was invoked by a GET directive. the assembler returns and
continues after the GET directive (see Links to oilier source files- GET/INCLUDE on
page 142) If END is reached in the top-level source file during the first pass
without any errors. the second pass will begin . railing to end a file with END is an
error

ORG numeric-expression

A program 's origin is determined by the ORG directive. which sets the initial value
of the program location counter. Only one ORG is allowed in an assembly and no
ARM instructions or store initialisation directives may precede it. If there is no
ORG the program is relocatable and the program counter is initia lised to 0

LTORG

LTORG directs that the current literal pool be assembled immediate ly following it
A defau lt LTORG is executed at every END directive which is not part of a nested
assembly, but large programs may need severa l li teral pools, each closer to where
their l itera ls are used to avoid vio lating LOR's 4KB offset l imit.

KEEP ~<Symbol »

The assembler does not by defaul t describe loca l symbols (i .e. non-exported
symbols: see Links to otf1erobjecl files - IMPORT a11d EXPORT on page 142) in its
output object file. However, they can be retained in the object fil e's symbol table by
using the KEEP directive. If the directive is used alone all symbols are kept; if on ly
a specific symbol needs to be kept it can be specified by name

141

Links to other object files -IMPORT and EXPORT

_ lllllillllilll'lilllllll llllllllllllllllllllll IIIII -
Links to other object files -IMPORT and EXPORT

IMPORT symbol 11 [FPREGARGS] » 11, WEAK»

EXPORT symbol u [FPREGARGS, DATA, LEAF))>

IMPORT provides the assembler with a name (symbol) which is not defined in this
assembly, but will be resolved at link time to a symbol defined in another. separate
object file. The symbol is treated as a program address: if the WEAK attribute is
given the Linker will not faul t an unresolved reference to this symbol, but will zero
the location referring to it. If JFPREGARGS J is present. the symbol defines a
function which expects floating point arguments passed to it in floating poin t
registers.

EXPORT declares a symbol for use at link time by other. separate object fi les.
FPREGARGS sign ifies that the symbol defines a function which expects floaling
point arguments to be passed to it in floating point registers. DATA denotes that
the symbol defines a code-segment datum rather than a fu nction or a procedure
entry point. and LEAF that it is a leaf funct ion which calls no other functions.

Links to other source files- GET/INCLUDE

GET filename
INCLUDE filename

GET includes a file within the file being assembled. Thi s file may in turn use GET
directives to include further files Once assembly of the included file is complete.
assembly continues in the including file at the l ine following the GET directive.
INCLUDE is a synonym for GET

Diagnostic generation - ASSERT and !

142

ASSERT logical-expression
. ! arithmetic-expression, string-expression

ASSERT supports diagnostic generation . If the logical expression returns {FALSE}. a
diagnostic is generated during the second pass of the assembly. ASSERT can be
used both inside and outside macros.

' is related to ASSERT but is inspected on both passes of the assembly, providing a
more flexible means for creating custom error messages. The arithmetic
expression is evaluated: if it equals zero. no action is taken during pass one. but
the string is printed as a warning during pass two: if the expression does not equa l
zero. the string is printed as a diagnostic and the assembly halts after pass one.

Directives

Dynamic listing options - OPT

The OPT directive is used to set listing options from within the source code.
providing that listing is turned on. The default setting is to produce a normal
listing including the declaration of variables. macro expansions. call -cond itioned
directives and MEND directives. but without producing a pass one listing. These
settings can be altered by adding the appropriate values from the list below, and
using them with the OPT directive as follows:

OPT 1t

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

Titles - TTL and SUBT

Effect

Turns on normal listing.

Turns off normal listing.

Page throw: issues an immediate form feed and starts a new page

Resets the line number counter to zero.

Turns on the listing of SET, GBL and LCL directives.

Turns off the listing of SET. GBL and LCL directives.

Turns on the listing of macro expansions

Turns off the listing of macro expansions

Turns on the listing of macro calls.

Turns off the listing of macro calls.

Turns on the pass one listing.

Turns off the pass one listing.

Turns on the listing of conditional directives.

Turns off the listing of conditional directives.

Turns on the listing of MEND directives.

Turns off the listing of MEND directives.

Titles can be specified within the code using the TTL (title) and SUBT (subtitle)
directives. Each is used on all pages until a new litle or subtitle is ca lled. If more
than one appears on a page, only the latest will be used: the directives alone create
blank lines at the top of the page. The syntax is

TTL title
SUBT subtitle

143

Miscellaneous directives - ALIGN, NOFP, RUST and ENTRY

.....,......,........,. 111,.......,....,......,..,.., .. r:::r------

Miscellaneous directives- ALIGN, NOFP, RLIST and ENTRY

144

ALIGN «power-of-two«, offset-expression»''

After store-loading directives have been used. the program counter (PC) wi ll not
necessarily point to a word boundary. If an instruction mnemonic is then
encountered. the assembler will insert up to three bytes of zeros to achieve
alignment However. an intervening label may not then address the following
instruction. If this label is required, ALIGN should be used. On its own. ALIGN sets
the instruction location to the next word boundary. The optional power-of-two
parameter- which is given in bytes- can be used to align with a coarser byte
boundary, and the offset expression parameter to define a byte offset from that
boundary

NOFP

In some circumstances there will be no support in either target hardware or
software for floating point instructions. In these cases the NOFP directive can be
used to ensure that no floating point instructions or directives are allowed in the
code.

RLIST

The syntax of this directive is

label RLIST list-of-registers

The RUST (register li st) directive can be used lo give a name to a set of registers to
be transferred by LDM or STM. List-of-registers is a list of register names or ranges
enclosed in {} (see Block data transfer (LDM. STM) on page 88).

ENTRY

The ENTRY directive declares its offset in its contain ing AREA to be the unique
entry point to any program containing this AREA.

8 Symbolic capabilities

T he assembler also has a range of symbolic capabilities, with which you can set
up symbols as constants or as variables. These are described below.

Setting constants

The EOU and *directives are used to give a symbolic name to a fixed or
program-relative value. The syntax is

label EQU expression
label * expression

RN defines register names. Registers can on ly be referred to by name. The names
RO -R15. r0-r15 , PC, pc , LR, lr, SP and spare predefined Names may also be
defined for the registers used by the ARM Procedure Ca ll Standard: see Controlling
syntax on page I I.

FN defines the names of floating point registers. The names FO-F7 and fO-f7 are
bui lt in. The syntax is

label RN numeric-expression
label FN numeric-expression

CP gives a name to a coprocessor number. which must be within the range 0 to 15.
The names p0-p15 are pre-defined.

CN names a coprocessor register number; cO-c 15 are pre-defined. The syntax is

label CP numeric-expression
label CN numeric-expression

145

Local and global variables GBL, LCL and SET

Local and global variables- GBL, LCL and SET

146

While most symbols have fixed values determined during assembly. variables have
values wh ich may change as assembly proceeds The assembler supports both
global and local variables. The scope of global variables extends across the entire
source file while that of local variables is restricted to a particular mstant1ation of
a macro (see the chapter Macros on page 1571 Vanables must be declared before
use with one of these directives.

GBLA

GBLL

GBLS

LCLA

LCLL

LCLS

Declares a global arithmetic variable. Values of arithmetic
variables are 32-bit unsigned integers

Declares a global logical variable

Declares a globa l string variable

Declares and initialises a loca l arithmetic variable (initia l state
zero)

Declares and initialises a loca l logica l variable (initial sta te false)

Declares and initialises a local string variable (initial state null
string)

The syntax of these directives is

directive variable- name

The value of a va riable can be altered using the relevant one of the following three
directives

SETA

SETL

SETS

Sets the value of an arithmetic variable

Sets the value of a logical variable

Sets the value of a string variable

The syntax of these directives is.

variable-name directiv e expr ession

where t>xprt>ssion eva luates to the va lue being assigned to the variable named.

(You can also declare and set the va lue of globa l variables at assembly t ime; see
!'redefining a variable on page 12.)

Symbolic capabilities ·-- II·- W:* -- ===·----···
Variable substitution - $

Once a variable has been declared its name cannot be used for any other purpose.
and any attempt to do so will result in an error. However. if the S character is
prefixed to the name. the variable's value will be substituted before the assembler
checks the line's syntax . Logical and arithmetic variables are replaced by the result
of performing a : STR: operation on them (see Unary operators on page 149); string
variables are replaced by their value.

Built-in variables

There are seven built-in variables. They are:

{PC} or.

{VAR} or@

{TRUE}

{FALSE}

{OPT}

{CONFIG}

{END IAN}

Current value of the program location counter.

Current value of the storage-area location counter.

Logical constant true.

Logical constant false

Va lue of the currently set listing option The OPT directive can be
used to save the current listing option. force a change in it or
restore its original value.

Has the value 32 if the assembler is in 32-bit program counter
mode, and the value 2 6 if it is in 26-bit mode.

Has the value "big" if the assembler is in big-endian mode. and
the value "little" if it is in little-end ian mode.

147

l!!fliiWIIk•w:e••····--------.----·-·-···--·:a:••·················------···

148

9 Expressions and operators

Expressions are combinations of simple values. unary and binary operators. and
brackets There is a strict order of precedence in their evaluation expressions

in brackets arc evaluated first. then operators are applied in precedence order.
Adjacent unary operators evaluate from right to left: binary operators of equa l
precedence are eva I uated from left to right

The assembler includes an extensive set of operators for use in expressions. many
of which resemble thei r counterparts in high-level languages.

Unary operators

Unary operators have the highest precedence (bind most tightly) so are eva luated
hrst A unary operator precedes its operand. and adjacent operators are evaluated
from right to left.

Operator

?

BASE
INDEX

LEN

CHR

STR

+

NOT

Usage

?A

: BASE : A
: INDEX: A

: LEN :A

: CHR:A

: STR:A

+A

-A

:NOT:A

Explanation

;\lumber of bytes generated by line defining
label A

If A 1s a PC-relallvc or register-relative
expression then BASE returns the number of
its register component. and INDEX the offset
from that base reg1ster.

BASE and INDEX arc most likely to be of use
within macros

l.ength of string A

ASCII string of A

Hexadecimal string o l A. STR returns an
eight-digit hexadecimal string corresponding
to a numeric expression. or the string T or F if
used on a logica l expression

Unary plus

Unary negate.

+and -can act on numeric. program-relative
and string expressions

Bitwise complement of A

149

Binary operators

Operator

LNOT

DEF

Usage

: LNOT : A

:DEF:A

Explanation

Logical complement of A

{TRUE} if A is defined. otherwise {FALSE}

Binary operators

150

Binary operators are written between the pair of sub-expressions on which they
operate Operators of equal precedence are evaluated in left to right order The
binary operators are presented below in groups of equal precedence. in decreasing
precedence order

Multiplicative operators

These arc the binary operators which bind most tightly and have the highest
precedence:

Operator Usage Explanation

* A*B Multiply

I A/B Divide

MOD A: MOD : B A modulo B

These operators act only on numeric expressions

String manipulation operators

Operator

LEFT

RIGHT

cc

Usage
A: LEFT :B

A: RIGHT:B

A: CC:B

Explanation

The leftmost B characters of A

The rightmost B characters of A

B concatenated on to the end of A

In the two slicing operators LEFT and RIGHT. A must be a stnng and B must be a
numeric expression.

Shift operators

Operator

ROL

ROR

SHL

SHR

Usage

A:ROL:B

A:ROR:B

A:SHL:B

A:SHR:B

Explanation

Rotate A left B bits
Rotate A right B bits

Shift A left B bits

Shift A right B bits

The shift operators act on numeric expressions. shifting or rotating the first
operand by the amount specified by the second Note that SHR is a log1cal shift
and does not propagate the sign bit

Expressions and operators

rw···--·----·~•••••••••w:ec•r•w '***w•wr•wrn:oot •.:z..c.c -lll:IC--.S:::: ..

Addition and logical operators

Operator Usage Explanation

AND A:AND : B Bitwise AND of A and B

OR A:OR:B Bitwise OR of A and B

EOR A:EOR:B Bitwise Exclusive OR of A and B

+ A+B Add A to B

A-B Subtract B from A

The bitwise operators act on numeric expressions The operation is performed
independently on each bit of the operands to produce the result

Relational operators

Operator Usage Explanation

A=B A equa l to B

> A>B A greater than B

>= A>=B A greater than or equal to B

< A<B A less than B

<= A<=B A less than or equal to B

I= A/=B A not equa l to B

<> A<>B A not equal to B

The relational operators act upon two operands of the same type to produce a
logica l value. Allowable types of operand are numeric. program-relative.
register-relative. and strings. Strings are sorted using ASCII ordering. String A will
be less than string B if it is either a lead ing substring of string B. or if the left -most
character of A in which the two strings differ is less than the corresponding
character in string B. Note that arithmetic values are unsigned. so the value of
0>-1 is {FALSE}.

Boolean operators

These are the weakest binding operators with the lowest precedence.

Operator

LAND

LOR

LEOR

Usage

A:LAND:B

A:LOR:B

A:LEOR:B

Explanation

Logical AND of A and B

Logical OR of A and B

Logica l Exclusive OR of A and B

The Boolean operators perform the standard logica l operations on their operands.
which should evaluate to {TRUE} or {FALSE}.

151

152

cx::a;a;a;c:waaaa:a::a;a:a:a:&&&&&aawwaaaa1B!Bl: FEW•• •--•iW8****** aw•• .. Wif

10 Conditional and repetitive
assembly

This chapter describes the features avai lable within the Assembler for
constructing conditional assembly statements and cond itional looping

statements.

Conditional assembly

The I and I directives mark the start and finish of sections of the source file which
are to be assembled only if certain condi t ions are true. The basic construction is
IF ... THEN ... ENDIF; however. ELSE is also supported. giving the full IF ... THEN.
ELSE ... ENDIF conditional assembly.

The sta rt of the section is known as the IF directive:

[logical_expression

This is the ELSE directive

and this is the ENDIF directive:

o r IF logical_expression

or ELSE

or ENDIF

A block which is being conditionally assembled can contain severa l [I)
directives: that is. conditional assembly can be nested.

153

Conditional assembly

154

Simple use of the IF and ENDIF directives

You Ccln use the IF and ENDIF directives (without the ELSE directive) like this

1 logical expression

.. . code ...

The code will only be assembled if the logical expression is true: it will be skipped
Jf the logical expression is false.

Simple use of the IF, ELSE and ENDIF directives

/\ltcrnatively you can use all three direct ives. thus:

r logical expression

... first piece of code ...

... second piece of code ...

rr the logical expression is true. the first piece of code will be assembled and the
second skipped If the expression is false, the first piece of code will be skipped and
the second assembled

Conditional assembly and the No Terse option

Lines conditionally skipped by these directives are not listed unless ObjAsm is
switched from its default terse mode. For desktop assembly you must choose
NoTerse from ObjAsm·s menu rsee Listings on page 15). for command line usage.
you must specify the -NoTerse command line option (see page 22) .

Conditional and repetitive assembly

An example

An example of a notiona l data storage routine is given below. This rout ine can
either use a disc or a tape data storage system To assemble the code for tape
operation . the programmer prepares the system by altering just one line or code.
the label SWITCH.

DISC 0
TAPE
SI-IITCH * DISC

.. . code ...
(SI<HTCH=TAPE
... tape interface code ...
1
[SWITCH=DISC
... disc interface code ...

.. . code continues ...

or alternatively:

DISC
TAPE
SIHTCH

0
1

DISC
.. . code ...
[SWITCH=TAPE
... tape interface code ...

I
.. . disc interface code ...

. .. code continues ...

The IF construction can be used inside macro expans ions as eas ily as it is used in
the main program.

155

Repetitive assembly

Repetitive assembly

156

It is often useful for program segments and macros to produce tables To do this
they must be able to have a conditiona l looping statement. The Assembler has the
WH ILE WC:ND construction. This produces an assembly t ime (not runtime) loop

The syntAx I<;

WHILE logical expression

to start the repetitive block. and

WEND

to end it

For example

GBLA counter
counter SETA 100

WHILE counter >0
OCO &$counter

counter SETA counter-1
WEND

produces the same result as the following (but is shorter and less prone to typmg
errors)

DCD 100
DCD 99
DCD 98
DCD 97

DCO 2

DCO

Since the test for the WHILE condition is mnde at the top of the loop. it is possible
that the source within the loop will not generate any code at all

Listing of conditionally skipped lines is as for conditional assembly

11 Macros

Macros give you a means of placing a single mslrucllon tn your source which
will be expanded at assembly time to several assembler mstructtons and

directives. just as if you'd written those instructions and directives within the
source at that point

As an example. we wi II define a TestAndBranch instruction This wou ld normally
take two AI~M instructions. So we tell the Assembler. by means of cl macro
deli nit ion. that whenever it meets the TesLAndBranch instruction, it is Lo insert the
code we have given it in the macro definition This is of course a convenience; we
cou ld just as easily write the relevant instructions out each time. but instead we let
the Assembler do it for us.

The Assembler determines the destination of the branch with d macro parameter.
This is a piece of information specified each time the macro is coded. the macro
definition specifies how it is used In the TestAndBranch example. we might also
make the register to be tested a parameter. and even the condition to be tested for
Thus our macro definition might be

MACRO

Slabel TestAndBranch Sdest,Sreg,Scc

$label CHP
BScc
MEND

$reg,#O
$dest

A use of the macro might be:

Test TestAndBranch Nonzero,RO,NE

Nonzero

This is called the macro prototype
statement
These two lines are the ones that
will be substituted in the source.
This says the macro definition is
finished

The result. as far as the Assembler is concerned. is:

Test C~lP RO,#O
BNE NonZero

NonZero

157

Syntax

Syntax

158

The fact that a macro is about to be defined is given by the directive MACRO in the
instruction field

MACRO

This is immediately followed by a macro prototype statement wh ich takes the form:

u$label" macroname <<$parameter"", $parameter>> u, $parameter>> ...

«$label" if present. it is tre<Jted as an additiona l parameter

"$parameter" Parameters are passed to the macro as strings and substituted
before syntax analysis Any number of them may be given

The purpose of the macro prototype statement is to tell the Assembler the name of
the macro being defined. The name ol the macro is found in the opcode field of t he
macro prototype statement

The macro prototype statement diso tells the Assembler the names of the
pdrameters . if any. of the macro Parameters may occur in two places in the macro
prototype statement A single optional parameter may occur in the label field ,
shown as $label above. This is normally used if the macro expansion is to
contain a program label, and is merely an aid to clarity, as can be seen in the
TestAndBranch example. Any number of parameters. separated by commas. may
occur in the operand field. All parameter names begin with the character$. to
distmguish them from ordinary program labels.

The macro prototype statement can also tell the Assembler the default values of
any of the parameters . This is done by following the parameter name by an equa ls
sign, and then giving the default value. If the default value is to begin or end with a
space then it should be placed within quotes. For example:

Sreg = RO
$string = " a string "

It is not possible to give a default value for the parameter m the label field

For example

HACRO
$label ~!ACRONAME Snum, $string, $etc

$label ... lots of ...
. . • . • code

MEND

$num
$string
"the price is $etc"
0

Local variables

Macros

• MACRONAME is the name of this particular macro and $nurn, $string and

$etc are its parameters. Other macros may have many more parameters, or
even none at all .

• The body of the macro follows after MACRONAME, with $label being optional
even if it was given in the macro prototype statement

• $etc will be substituted inlo the string "the price is "when the macro
is used.

• The macro ends with MEND.

The macro is called by using its name and any missing parameters are indicated by
commas. or may be omitted entirely if no more parameters arc to follow. Thus.
MACRO NAME may be called in various ways:

HACRONAHE 9, "disc", 7

or:

HACRONAME 9

or:

MACRO NAME ,"disc",

Local variables are similar to global variables. but may only be referenced with in
the macro expansion in which they were defined. They must be declared before
they are used. The three types of local variable are arithmetic. logical and string.
These are declared by:

Directive Local variable type Initial state

LCLA Arithmetic zero

LCLL Logical FALSE

LCLS String null string.

New va lues for local variables are assigned in precisely the same way as new
variables for globa l variables: that is, using the directives SETA, SETL and SETS.

Syntax variable_ name SETx expression

Directive

SETA

SETL

SETS

Local variable type

Arithmetic

Logica l

String

159

MEXIT directive

MEXIT directive

Default values

Normally, mt~cro expansion termina tes on encountering the MEND directive. at
which point there must be no unclosed WHILE/WEND loops or pieces of
conditional assembly. Early termination or a macro expansion can be forced by
means or the MEXIT directive. and this may occur within WHILE/WEND loops and
conditiona I assembly

Macro parameters can be given default values at macro definition t1me. usmg the
syntax:

$parameter=default_value

In the example of the macro MACRONAME already used:

~!ACRO

$label ~CRONAME $num,$string,$etc

Slabel ... lots of ...
. code

MEND

Snum
$string
"the price is $etc"
0

you could instead write $num= 10 in the macro prototype statement. Then. when
ca lling the macro. a vertical bar character· I· will cause the defau lt value 10 to be
used rather than lhe value $num. For exdmple·

MACRONAME I , • disc· , 7

will be eqUiva lent to:

MACRONAME 10,"disc",7

Note that this defau lt is not used when the macro argument is omitted the value
is then empty.

Macro substitution method

160

Each line of a macro is scanned so it can be bui lt up in stages before being passed
to the syntax analyser The fi rst stage is to substitute macro parameters throughout
the mdcro and then to consider the variables If string variables. logical variables
and arithmetic variables are prefixed by the $ symbol, they are replaced by a string
equivalent Normal syntax checking is performed upon the line after these
substi tutions have been performed.

Macros

An important exception to these values is that vertical bar characters(' l 'l prevent
substitution from taking place in some circumstances. To be specific. if a line
contains vertical bars. substitution will be turned off after this first vertical bar. on
again after the second one. off again after the third. and so on. This allows the use
of dollar characters in symbols and labels (see the section Symbols on page 49 for
details).

In certain circumstances. it may be necessary to prefix a macro parameter or
variable to a labeL In order to ensure that the Assembler can recogn ise the macro
parameter or variable. it can be terminated by a dot· . · The dot will be removed
during substitution.

For example:

HACRO
$T33 HACRONAME

$T33.L25 ... lots of ...
. code
HEND

If the dot had been omitted. the Assembler would not have related the $T33 part
of the label to the macro statement and would have accepted $T33L25 as a label
in its own right, which was not the intention.

Nesting macros

The body of a macro can conta in a cal l to another macro; in other words. the
expansion of one macro can contain references to macros. Macro invocation may
be nested up to a depth of 255.

161

A division macro

A division macro

162

As a final example, the following macro does an unsigned integer division

A macro to do unsigned integer division. It takes four parameters, each of
which should be a register name:

$Div: The macro places the quotient of the division in this register -
ie $Div :- $Top DIV $Bot.
$Div may be omitted if only the remainder is wanted.

$Top: The macro expects the dividend in this register on entry and places
the remainder in it on exit - ie STop :~ $Top HOD $Bot.

$Bot: The macro expects the divisor in this register onentry. It does not
alter this register.

$Temp:The macro uses this register to hold intermediate results. Its initial
value is ignored and its final value is not useful.

$Top, $Bot, $Temp and (if present) $Div must all be distinct registers.
The macro does not check for division by zero; if there is a risk of this
happening, it should be checked for outside the macro.

MACRO
$Label DivMod

ASSERT
ASSERT
ASSERT
I
ASSERT
ASSERT
ASSERT
I

$Label MOV
CMP

90 MOVLS
CMP
BLS
I
MOV
I

91 CMP
SUBCS
I
ADC
1
~IOV

CMP
BHS
MEND

SDiv,$Top,$Bot,$Temp
STop <> $Bot
STop <> $Temp
$Bot <> $Temp
"$Div" !~ ...
$Div <> $Top
$Div <> $Bot
$Div <> $Temp

$Temp,$Bot
$Temp,$Top,LSR #1
$Temp,$Temp,LSL #1
$Temp,$Top,LSR #1
\b90
·soiv" /=""
SDiv,#O

$Top,$Temp
STop, $Top, $Temp
"SDiv 1~ ""

$Div,$Div ,$Div

$Temp,$Temp ,LSR #1
$Temp,$Bot
\b91

Produce an error if the
registers supplied are
not all different.

Put the divisor in $Temp
Then double it until
2 * $Temp > $Top.

Initialise the quotient.

Can we subtract $Temp?
If we can, do so.

Double $Div & add new bit

Halve $Temp,
and loop until we've gone
past the original divisor.

The statement

Divide DivMod R0,R5,R4,R2

would be expanded to:

ASSERT RS <> R4
ASSERT RS <> R2
ASSERT R4 <> R2
ASSERT RO <> RS
ASSERT RO <> R4
ASSERT RO <> R2

Divide MOV R2,R4
CNP R2,RS,LSR #1

90 MOVLS R2 , R2 , LSL #1
CMP R2,RS,LSR #1
BLS %b90
MOV RO,#O

91 CMP RS,R2
SUBCS R5,R5,R2
ADC RO,RO,RO
MOV R2,R2,LSR #1
CMP R2,R4
BHS %b91

Similarly. the statement:

DivMod ,R6,R7,R8

would be expanded to

ASSERT R6 <> R7
ASSERT R6 <> RB
ASSERT R7 <> RB
MOV R8,R7
CNP RB,R6,LSR #1

90 MOVLS RB,RB ,LSL #1
C~IP R8,R6,LSR #1
BLS %b90

91 C~IP R6,R8
SUBCS R6,R6,R8
~IOV RB,RB,LSR #1
CMP R8,R7
BHS %b91

Note:

Produce an error if the
registers supplied are
not all different

Put the divisor in R2.
Then double it until
2 * R2 > RS.

Initialise the quotient.
Can we subtract R2?
If we can, do so.
Double RO & add new bit.
Halve R2,
and loop until we've gone
past the original divisor.

Produce an error if the
registers supplied are
not all different.
Put the divisor in RB.
Then double it until
2 * RB > R6.

Can we subtract RB?
If we can, do so.
Halve R8,
and loop until we've gone
past the original divisor.

Macros

• Conditional assembly is used to reduce the size of the assembled code (and
increase its speed) in the case where only the remainder is wanted.

• Local labels are used to avoid multiply defined labels if DivMod is used more
than once in the assembler source.

• The letter 'b' is used in the loca l label references (indicating that the
Assembler shou ld search backwards for the correspond ing local labels) to
ensure that the correct local labels are found.

163

164

W*M--~---·····-·-········---------· -

Part 3 - Developing software
for RISC OS

165

166

--
12
••••-c ==

·--- --
Exception handling

== = .;-------·

This chapter describes the processor configuration and modes used by RISC OS
when running on 32 bit architecture ARMs (i.e. ARM6 series and later). and the

ways in which this affects exception handling. If you are writing any exception
handler that you wish to run on such a processor, you must read both this chapter
and the chapter The ARM CPU on page 29, especially the section Exceptions.

RISC OS processor configuration and modes

Early in its startup code, RISC OS writes to the ARM's control register to change it
into the 32 bit program and data space configuration, where it remains. You must
not alter the processor's configuration yourself when writing code for RISC OS.

Although RISC OS runs under a 32 bit configuration. it remains in 26 bit modes for
normal operation. providing a high degree of backward compatibility with code
written to run on earlier 26 bit processors

However, because the processor is in a 32 bit configuration, all exceptions
[including Undefined Instruction and Software Interrupt) force the processor to a
privileged 32 bit mode appropriate to the exception. There are therefore some
differences in exception handling between 26 and 32 bit architecture ARM chips,
although RISC OS provides a considerable degree of backward compatibility by
faking 26 bit behaviour on 32 bit architecture chips in most circumstances. F'or full
details. see the next section.

The pre-veneers

To ensure easy backward compatibility, 32 bit aware versions of RISC OS install a
pre-veneer on all hardware vectors apart from FlO (see the section Writing to the F'IO
veclor on page 168) and address exception (which is never generated by a 32 bit
configured ARM) Each pre-veneer first sets up Rl4 to contain a combined PC and
PSR that will return the processor to the 26 bit mode it was in when the exception
arose. It then places the processor in the privileged 26 bit mode used by the earl ier
26 bit chips for that exception It thus effectively fakes the earlier chips' behaviour.
The pre-veneer is called before any exception handlers that are installed with
software interfaces such as OS_ChangeEnvironment, so you can usually use such
exception handlers unchanged on all versions of RISC OS (hardware dependencies
excepted!.

167

Claiming the hardware vectors

Entering 32 bit modes

One consequence of this is that you may not enter a 32 bit mode with IROs
enabled. Were you to do so, and an IRQ were to occur, the IRQ pre-veneer would
be entered; then the IRQ handler wou ld return you to a 26 bit mode, rather than
the 32 bit mode you were in at the time of rhc IRQ.

Claiming the hardware vectors

Under earlier versions of RISC OS. you could also claim the hardware vectors
directly, by overwriting the existing instruction on the vector. and replacing it
afterwards It was your responsibility to do any housekeeping. in particular
checking for subsequent claimants before restoring the original instruction.

Under 32 bit aware versions of RISC OS. if you attempt to write to any hardware
vector other than FlO a data abort is generated. You must instead ca ll Lhc new SWI
OS_ Claim ProcessorVector (page 5-46 of the RISC OS 3 Programmers Reference
Manual). passing it the address of your exception handler. The handler is installed
on the vector. and is called directly, before the pre-veneers. Such handlers are
therefore entered in a 32 bit mode.

For handlers installed directly on the vector to work across all versions of RISC OS,
you must therefore change the method of claiming and releasing the vector
depending on the version of RISC OS:

• On versions up to RISC OS 3.1. you must write directly to the vector. doing any
appropriate housekeeping yourself

• On later versions you must call OS ClaimProcessorVector.

Your handler must also cope with running in both 26 bit and 32 bit modes

Writing to the FIQ vector

168

On a 32 bit architecture ARM. the FlO vector is entered in FlO mode (i e the 32 bit
form of the mode). There are no pre-veneers to simulate 26 bit behaviour To install
a FlO handler, you must write directly to the FlO vector, just as always.

The sample code below is the recommended way to write to the FlO vector on both
26 and 32 bit configu red processors- you can use the same code on all versions of
RISC OS. Obviously the handler you install must cope with running in both 26 bit
and 32 bit FlO modes. In practice this is unlikely to be a problem, and most
existing handlers will run unchanged once installed

In the code. comments that are prefixed by '32 : ·apply to a 32 bit configured
processor, and comments that are prefixed by '26 : ·apply to a 26 bit configured
processor.

Exception handling

we assume that at this point, you are already in a privileged 26 bit mode.

40

26: Does not alter processor mode. Reads as follows:
NOP 26: Encodes a NOP (TST Ra,RO)
Push Ra
ORR Ra, Ra, #2 11000000
NOP
ORR Ra, Ra, #2 10000
NOP

32: Switch to 32 mode with -

26: Pushes entry Ra onto stack
26: Corrupts Ra
26: Encodes a NOP (TEQ R9,Ra)
26: Corrupts Ra
26: Encodes a NOP (TEO R9,Rb)

IRQs and FIQs off.
32:
32:

MRS

Must switch interrupts
an interrupt after the

Ra, CPSR all

off before switching mode as there can be
MSR instruction but before the next one.

32 : Read privileged 26 bit mode,
Push Ra
ORR Ra, Ra, #2
MSR CPSR_all,
ORR Ra, Ra, #2
MSR CPSR_all,

11000000 -
Ra

10000
Ra

32: and push it onto the stack
32: Set IRQ and FIQ disable bits
32 : Disable IRQs and FIQs
32 : Set M4 bit (for 32 bit mode)
32: Change to 32 bit mode

; Now do a NOP, to let things settle down:
NOP ; e.g. MOV RO,RO

Now in a suitable mode to write FIQ handler code to FIQ vector
(&lC-&FC incl.), whatever the processor configuration.
Code written should be able to run in both fiq_ 32 and fiq_26 modes,
and should end with a SUBS PC,Rl4,#4 to return normally.
For example we might write the handler code like this:

; Assume Rb already points to location from which to copy the handler.

HOV LR, #FIQVector Get address of FIQ vector

LOR Ra, [Rb], #4 Get opcode.
TEQS Ra, #0 All done?
STRNE Ra, [LR], #4 No, so copy to FIQ area ...
BNE %BT40 ... and repeat for next opcode.

; The above may not be optimal, and is for illustration only.

Having written FIQ vector, now need to restore the original
privileged 26 bit mode.

26: Does not alter processor mode. Reads as follows:
PULL Ra 26: Pull entry Ra from stack
NOP 26: Encodes a NOP (TST Ra,RO)

Ra 32: Pull saved CPSR, and PULL
MSR CPSR_all, Ra 32: Restore privileged 26 bit mode

Now back where we started, except Ra and Rb should be treated as corrupted.
(We must assume neither is preserved, because we don't know the processor
configuration.)

169

170

•....w··----~--
.......................................

13 Writing relocatable modules in
assembler

Relocatable modules are the basic building blocks of RISC OS and the means by
which RISC OS can be extended by a user.

The relocatable module system provides mechanisms suitable for

• providing device drivers

• extending the set of RISC OS *commands

• providing shared services to applications (eg the shared C library)

• implementing 'terminate and stay resident' (TSR) applications

All these projects require code either to be more persistent than standard RISC OS
applications or to be used by more than one application. hence resident in the
address space of more than one application If your program does not have these
requirements it is not recommended to put it in modules. as relocatable modules
are more persistent consumers of system resources than applications. and are also
more difficu lt to debug.

This chapter is not intended to provide a complete set of the technical details you
need to know to construct any relocatable module. For more information on such
details. see the RISC OS '3 Programmer's Reference Manual. The points covered here
are intended to provide help for constructing relocatable modules specifically in
assembly language

For more detai Is of memory management in relocatable modules. you should
again see the RISC OS 3 Programmer's Reference Manual.

Unlike the construction of relocatable modules in high level languages. no tools
are provided to generate substantial standard portions of code. This means that
you have to construct the module header table. workspace routines. etc. yourself.

Note that some of the relocatable module entry points are called in SVC mode.
Such routines may use SWis implemented by other parts of RISC OS. but unlike
being in user mode, SWis corrupt R 14. so this must be stored away Floating point
instructions should not be used from SVC mode.

171

Assembler directives

Assembler directives

172

ObjAsm can be used to assemble a module from a set of source files. a link step
being required to join the output object files to form the usable module The
separation of routines into separately assembled files has several advantages

It can be a good idea to construct a module with the module header and the small
routines/data associated with it in one source file. to be linked w1th the code
forming the body of the module.

Such a module header file must be linked so that it is placed first in the module
binary. To do this it should contain an AREA directive at its head such as.

AREA I !!!Module$$Headerl, CODE, READONLY

Areas are sorted by type and name; a name beginning with · ! · is placed before an
alphabetic name, so the above can be used to ensure first placing.

The module header source needs to contain IMPORT directives making avai lable
any symbols referenced in the module body. In addition, the initialisation routine
should call_Reloccode. a routine added by the linker which relocates any
absolute references to symbols when the module is initialised If the module
header source contains the initialisation routine, it must use the IMPORT directive
to make RelocCode available

The module header must be preceded by the ENTRY directive

ENTRY

Module BaseAddr
DCD RM Start -Module BaseAddr
DCD RM Init -Module BaseAddr
DCD RM Die -Module BaseAddr
DCD RM Service -Module BaseAddr
DCD RM Title -Module BaseAddr
DCD RM_HelpStr -Module BaseAddr
DCD RM HC Table -Module BaseAddr

Example

Writing relocatable modules in assembler

This product is supplied with the source for an example relocatable modu le that
provides an extra soft screen mode: Mode 6'3. Th is has to be done via service ca ll
handling. and to be useful must be persistent. so providing a typica l usc of
relocatable modu lcs.

There are two source fi les held in AcornC_C++. Examples . AsmModule. s.

• The ModeExHdr file produces the module header, and may be useful for you
to copy and edit to form headers for you r own modules.

• The other file. ModeExBody, is the source for the main module body

To build the modu le, use ObjAsm to assemble the source. Then l ink the resultant
object files using Link, remembering first to set the Module option on its Setup
dialogue box.

The module is specific to VI DC l and VI DC I a, dnd so will not work on Acorn
computers that are fitted with later ve rsions of VI DC- such as the Rise PC

173

----------·······-- ------······------------
______ .,

174

14

Examples

lnterworking assembler with C

Interworking assembly language and C - writing programs w1th both assembly
language and C parts - requires using both ObjAsm and CIC++

lnterworking assembly language and C allows you to construct top quality RISC OS
applications. Using this technique you can take advantage of many of the strong
poin ts of both languages Writing most of the bu lk of you r application inC allows
you to take advantage of the portability of C, the maintainabi li ty o f a high level
language. and the power of the C libraries and language. Writing critica l portions of
code in assembler allows you to take advantage of all the speed o f the Arch imedes
and all the features of the machine (eg the complete floating point instruction set).

The key to interworking C and assembler is writing assembly language procedures
that obey the ARM Procedure Call Standard (APCS) This is a contract between two
procedures. one ca lling the other. The called procedure needs to know which ARM
and floating point registers it can freely change without restoring them before
returning, and the caller needs to know which registers it can rely on not being
corrupted over a procedure call. Additionally both procedures need to know which
registers contain input arguments and return arguments and the arrangement of
the stack has to follow a pattern that debuggers. etc can understand For the
specification of the APCS. see the appendix ARM procedurr call standard on page 249
of the accompanying Desktop Tools guide

The fol lowing examples are provided to demonstrate how to write programs
combining assembly language and C.

Printlib

The directory AcornC_C++ . Examples. PrintLib. s contains three source
files from which you can build a library PrintStr. PrintHex and PrintDble.
These arc the assembly language sources for three screen printing routines:
print_string, print_hex and print_double. These respectively print null
terminated strings. integers in hexadecimal. and double precision floating point
numbers in scientific format.

175

Examples

176

Each routine is written to obey the APCS. so it can be cal led from assembler. C. or
any other high level language obeying the APCS The sources for Print Lib illustrate
several aspects of the APCS such as the distinction between leaf and non-leaf
procedures. and how noating point arguments are passed into a procedure

Compiling the CTestPrLib example

To show you that you can call the routines in PrintUb from C. we·ve supplied a
small C program in Acornc _C++. Examples. PrintLib. c. CTestPrLib. To
build thi s example, you must

1:3uild the PrintLib library; you' ll find instructions for this in the section
Assembler example on page 134 of the Desktop Tools guide

2 Start CC if you've not already got it loaded.

3 Drag the CTestPrLib fi le to the CC icon. which will display its Setup
dialogue box with CTestPrLib already entered as the source to compile

4 Add the full path name of the PrintLib library to the li st of Libraries on the
Setup menCI .

5 Click on Run to compile and link the program.

6 Save the program to disc.

To run the program. double click on its icon in the directory display to which you
saved it. A standard RISC OS command line output window appears containing
text printed by the assembly language library routines as a result of arguments
passed from C

Flln SCSI .. M-lardv $ AoomC Cu.. ExamDies PmtL1b CT estPrllb
~;A&8or,rtd
- 1..234 6E-1.
1.8888El
- 1..8888E-1.

t.8888E9
. 8889E199

Press SPACE or click Mouse to cont i nue

·-

,.
lnterworking assembler with C

•

Compiling and linking CTestPrLib in separate stages

If you prefer, you can instead use the Compile only option of CC to compile
CTestPrLib to an object fi le.

You can then use Link to link this object file with the libraries it uses. As well as the
Printlib l ibrary, it also uses the C library, so you must link three files: the object
code for CTestPrLib, the library built from the PrintLib source, and the C library
stubs held in AcornC C++. Libraries. clib. o. stubs.

(In the above section Compiling the CTestPrLib example, the C library stubs were linked
in because they were already in the Setup menu's default l ist of Libraries)

CStatics

The directory AcornC_C++ . Examples. cstatics gives an example of
accessing C static variables from both assembler and C source code. The example
bu i lds to form a relocatable module providing a single* Command: *CStatics.

The files in the directory are as fol lows:

• c .Cinit is the C source code. lt declares two variables: extern int varl.
which is provided by and initialised to 0 ins .Asminit (see belowl, and
int var2. which it initialises as 0. It prints the values of the two variables. It
then calls the routine Asm_Change_ vars provided by s .Asminit (see
below), which changes the va lues of the two variables. Finally it prints the new
volues.

• cmhg . Header is the CMHC description file for the module. hdr. cvars is
an assembler source file that contains a series of macros used by s. Asmini t.
You will find these useful if you too ever need to share static data between
assembler and C.

• MakeFile is the make file for the CStatics module.

• o is an empty directory used to hold the object files created when making the
CStatics module.

• s . Asminit is the assembler source code. It initia l ises the variable varl to 0
and exports it: it also imports the va riable var2 . It also provides an APCS
conformant routine Asm_Change_Vars which adds 10 to var l and
subtracts 10 from var2. All this code makes heavy use of the macros in
hdr.CVars.

To build the CStatics module. simply double click on the MakeFilc.

177

Examples

178

When Make has completed. you can sec lhe example in use. Load the resu ltant
CStatics module by double clicking on it, then type CStatics at the command
line. You will get this output:

var1 0
var2 0
var1 10
var1 -10

If you repeal the *CStatics command you will see the variables change again :

varl 10
var2 -10
varl 20
varl -20

and so on. every Lime you repeat the command.

1 AM*AA?A8 ISS II 911....,atW W*t*** B'*** • *AU&JILW" ** •• •• * • ** **C***W***WM«A

Part 4- Appendixes

179

180

ry I

Appendix A: Changes to the assembler
v;;;;;;;;;;; e:a:w•••:awwwwww-e ,

T his release o f the assembler replaces the product Acorn Assembler Release 2. It has
seen the following major changes:

• The product has been merged with the C compiler.

• ObjAsm has added support for the ARM6, ARM7 and ARM7M versions of the
processor. All new instructions are implemented. and there is also support for
other new featu res such as big- and l itt le-endian memory systems

• ObjAsm now accepts instruction mnemonics in lower case: thi s feature can be
disabled for backward compatibility.

• ObjAsm now supports many more options through its Setup menu.

• The AAsm tool is no longer supplied. bu t has been replaced- at least for t his
release - by a backward compatible mode.

• The Toolbox has been added to the product. to facilitate the design and cod ing
o f cons istent user interfaces for RISC OS desktop applications See the
accompanying User Interface Toolbox guide.

181

182

..
Appendix B: Error messages
~=======================-.JI"'Li"'"ICJII---~·····-----

T his appendix lists most of the common error messages that you may get when
using the assembler, and gives an explanation for each one of the

circumstances that may provoke the error.

• ADRL can't be used with PC
The destination register of an ADRL opcode cannot be PC.

• Area directive missing
An attempt has been made to generate code or data before the first AREA
directive.

• Area name missing
The name for the area has been omitted from an AREA directive.

• Bad alignment boundary
An alignment has been given which is not a power of two.

• Bad area attribute or alignment
Unknown attribute or alignment not in the range 2-12.

• Bad based number
A digit has been given in a based number which is not less than the base, for
example: 7 _8.

• Bad exported name
The wording following the EXPORT d irective is syntactica lly not a name.

• Bad exported symbol type
The exported symbol is not a program-relative symbol.

• Bad expression type
For example, a number was expected but a string was encountered.

• Bad floating point constant
The only allowed floating point constants are 0. I, 2, 3. 5. 10 and 0. 5. They must
be written in exactly these forms

• Bad global name
An incorrect character appears in the global name.

• Bad hexadecimal number
The & introducing a hexadecimal number is not followed by a valid
hexadecimal digit.

• Bad imported name
The wording following the IMPORT directive is syntactically not a name.

183

Error messages

184

• Bad local label number
A local label number must be in the range 0·99

• Bad local name
An incorrect character appears m the local name

• Bad macro parameter default value

• Bad opcode symbol
A symbol has been encountered in the opcode field which 1s not a directive
and is syntactical ly not a label.

• Bad operand type
l'or example. a logical value was supplied where a string was requi red.

• Bad operator
The name between colons is not an operator name.

• Bad or unknown attribute
Faulty attribute on an IMPORT direclive.

• Bad register list symbol
/\n expression used as a register set definition (e~ in I.DM or STM) was not
understood or of the wrong type.

• Bad register name symbol
A register name is wrong. Note that all register names must be defined using
the RN directive.

• Bad register range
A reg1ster range from a higher to a lower register has been given. for example.
R4-R2 has been typed.

• Bad rotator
The rotator value supplied must be even and in the range 0· 30

• Bad shift name
Syntax error in shift name.

• Bad string escape sequence
1\ C style escape character sequence (beginning with'\') within a st ring was
mcorrect.

• Bad symbol
Syntax error in a symbol name.

• Bad symbol type
This will occur after a# or* directive and means thai I he symbol being defined
hac; already been assumed to be of a type which cannot be defined in this way.

• Branch offset out of range
The destination of a branch is not within the ARM address space

Error messages

• Code generated in data area
An opcode has been found in an area which is not a code area.

• Coprocessor number out of range

• Coprocessor operation out of range

• Coprocessor register number out of range

• Data transfer offset out of range
The immediate value in a data transfer opcode must be in the range
-4095 s e s +4095

• Decimal overflow
The number exceeds 3L bits.

• Division by zero
Entry address already set
This is the second or subsequent ENTRY directive.

• Error in macro parameters
The macro parameters do not match the prototype statement in some way

• Error on code file
An error occurred while writing the output file.

• External area relocatable symbol used
A symbol which is an address in another area has been used in a non-trivial
expression.

• Externals not valid in expressions
An imported symbol has been used in a non-trivial expression

• Floating point register number out of range

• Floating point overflow

• Floa~ing point number not found

• Global name already exists
This name has already been used in some other context

• Hexadecimal overflow
The number exceeds '32 bits.

• Illegal combination of code and zero initialised
An object file area cannot be declared both to be code and zero initialised
data.

• Illegal label parameter start in macro prototype

• Illegal line start should be blank
A label has been found at the start of a line with a directive which cannot be
labelled.

185

Error messages

186

• Immedi ate value out of range
An Immediate value in a data processing instruction cannot be obtained by
rotating an 8-bit value by an even amount

• Imported name a l ready exi sts
The name has already been defined or used for something else.

• Incorrect routine name
The optional name following a branch to a loca l label or on a local label
defin ition does not match the routine's name.

• Invalid line start
A I inc may only start with a letter character (the first letter o f a label). a digit
(the first character of a local label). a semi-colon or a space

• Invalid operand to branch instruction

• Label missing from line start
The absence of a label where one is required: for example. in the • d irect ive

• Local name already exists
A loca l name has been defined more than once.

• Locals not allowed outside macros
A loca l va riable has been defi ned in the main body of the source fi le

• MEND not allowed within condi t i onals
A MEND has been found amongst 11 I or WHILEJWEND directives.

• Missing c l ose bracket
A missing close bracket or too many opening brackets

• Missing c l ose quote
No closing quote at the end of a string constant

• Missing c l ose square bracket
A 1 is absent

• Missing comma
Syntax error due to missing comma.

• Missing hash
The hash (#l preceding an immediate value has been forgotten.

• Missing open bracket
A missing open bracket or too many closing brackets.

• Missing open square bracket

• Multiply or incompatibly defined symbol
A symbol has been defined more than once

• Multiply destination equals first source

Error messages

• No current macro expansion
A MFND. MEXIT or local va riable has been encountered but there ts no
corresponding MACRO

• Non-zero data within uninitialised area

• Numeric overflow
The number exceeds 32 bits.

• Register occurs multiply in LDM/STM list

• Register symbol already defined
A rcgtstcr symbol has been defined more than once.

• Register value out of range
l~eg i ster values must be in the range 0-15.

• Shift option out of range
The range permitted is 0-31. 1-32 or I -31 depending on the shift type.

• String overflow
Conca tenation has produced a string o f more than 25(J chnracters

• String too short for operation
An attempt has been made to manipulate a string using I.F.FT or RIGHT:
which has insufficient cha racters in it

• Structure mismatch
Mtsmatch of 1 with I or I. or WEND and WHILE.

• Substituted line too long
Durtng variable and macro parameter substitution the line length has
exceeded 256 characters

• Symbol missing
An attempt has been made to reference the length attribute of a symbol but
the symbol was omitted or the name found was not recogntsed as a symbol.

• Syntax error following directive
An oper<Jnd has been provided to a directive which cannot take one. for
exdmple: the 'I' directive.

• Syntax error following label
A label can on ly be followed by spaces. a semi -co lon or th e E'nd-of-line
c;ymbol.

• Syntax error following local label definition
A space, comment, or end-of-line did not immediately follow the local label

• Too late to define symbol as register list
!\register list was defined for a symbol alreddy used for another purpose

• Too late to ban floating point

187

Error messages

188

• Too late to set origin now
The ORG must be set before t he Assembler generates code.

• Too many actual parameters
A macro ca ll is trying to pass too many parameters.

• Translate not allowed in pre-indexed form
The translate option may not be specified in pre-indexed forms of LDR and
STR.

• Unable to close code file

• Unable to open code file

• Undefined exported symbol
The symbol exported is undefined.

• Undefined symbo l
A symbol has not been given a va lue.

• Unexpected characters at end of line
The line is syntactica lly complete. but more information is present. The
semi-colon prefixing comments may have been o mitted.

• Unexpected operand
An operand has been found where a binary operator was expected .

• Unexpected operator
A non-unary operator has been found where an operand was expected

• Unexpected unary operator
A unary operator has been found where a binary operator was expected

• Unknown opcode
A name in the opcode fie ld has been fo und which is not an opcode. a directive.
nor a macro.

• Unknown operand
An operand in the bracketed format {PC} {VAR} {OPT} {TRUE} {FALSE} is not of
the correct form.

• Unknown or wrong type of global/local symbol
Type m ismatch, for example, attempting to set or reset the value of a local or
global symbol as logical. where it is a string va riable.

• Unknown shift name
Not o ne of the six lega l sh ift mnemo nics.

Appendix C: Example assembler
fragments

T he following example assembly language fragments show ways in which the
basic ARM instructions can combine to give efficient code None of the

techniques illustrated save a great dea l of execution time (although they all save
5omel. mostly they just save code.

Note that. when optimising code for execution speed. consideration to different
hardware bases should be given. Some changes which opti mise speed on one
machine may slow the code on another. An example is unrolling loops (eg divide
loops) which speeds execution on an ARM2. but can slow execution on an ARM'3.
which has a cache.

Using the conditional instructions

Using conditionals for logical OR
CMP
BEQ

Rn,#p
Label

CMP Rm,#q
BEQ Label

can be replaced by

CMP

CMPNE
BEQ

Absolute value

Rn,#p
Rm,#q
Label

TEQ Rn, #0
RSBMI Rn , Rn,#O

Combining discrete and range tests
TEQ Rc,#l27
CMPNE Rc ,#" "-1

MOV!.S Rc ,#"."

IF Rn=p OR Rm=q THEN GOTO Label

If condition not satisfied try
another test.

Test sign
and 2's complement if necessary.

discrete test
range test
IF Rc<#" " OR Rc=CHR$127 THEN Rc:="."

189

Pseudo-random binary sequence generator

Division and remainder

Enter with dividend in Ra, divisor in Rb.
Divisor must not be zero.

NOV Rd,Rb Put the divisor in Rd.
CHP Rd,Ra,LSR #1 Then double it until

Div1 ~IOVLS Rd,Rd,LSL #1 2 * Rd > divisor.
CHP Rd,Ra,LSR #1
BLS Divl
HOV Rc,#O Initialise the quotient

Div2 CNP Ra,Rd Can we subtract Rd?

SUBCS Ra,Ra,Rd If we can, do so
ADC Rc,Rc,Rc Double quotient and add new
HOV Rd,Rd,LSR #1 Halve Rd.

CMP Rd,Rb And loop until we've gone
BHS Div2 past the original divisor,

Now Ra holds remainder, Rb holds original divisor,
Rc holds quotient and Rd holds junk.

bit

Pseudo-random binary sequence generator

190

It is often necessary to generate (pseudo-) random numbers, and the most efficient
algorithms are based on sh ift generators with a feedback rather like a cyclic
redundancy check generator. Unfortunately, the sequence of a 32 bit generator
needs more than one feedback tap to be maximal length (that is, 232-1 cycles
before repetition). A 33 bit sh ift generator with taps at bits 20 and 33 is required.

The basic algorithm is :

• new bit:= bit 33 EOR bit 20

• shift left the 33 bit number

• pul in new bit at lhe bottom.

• Repeat for all the 32 11ew bits needed.

All this can be done in fiveS cycles

Enter 1~ith seed in Ra (32 bits),Rb (1 bit in Rb lsb)
; Uses Rc

TST
HOVS

ADC
EOR

Rb,Rb,LSR #1

Rc,Ra,RRX
Rb,Rb,Rb
Rc,Rc,Ra,LSL#12

EOR Ra,Rc,Rc,LSR#20
New seed in Ra, Rb as before

top bit into carry
33 bit rotate right
carry into lsb of Rb
(involved!)
(similarly involved!)

Multiplication by a constant

Multiplication by 2" (1 ,2,4,8, 16,32 ...)

MOV Ra,Ra,LSL #n ;

Multiplication by 2"+1 (3,5,9,17 ...)

ADD Ra,Ra,Ra,LSL #n .

Multiplication by 2"-1 (3,7,15 ...)

RSB Ra,Ra , Ra , LSL #n

Multiplication by 6

ADD
MOV

Ra,Ra,Ra,LSL #1
Ra,Ra,LSL #1

Multiply by 10 and add in extra number

AD
ADD

Ra,Ra,Ra,LSL #2
Ra,Rc,Ra,LSL #1

Example assembler fragments

Hultiply by 3
and then by 2 .

Hultiply by 5
Multiply by 2 and add in next digit

General recursive method for Rb := Ra xC, C a constant

If C even . say C = 2°xD. D odd:

0•1 : MOV Rb,Ra,LSL #n
D<>l : (Rb : ~ Ra*D}

MOV Rb,Rb,LSL #n

If C MOD 4 = I . say C = 2°xD+ I . Dodd. n> I:

D•l : ADD Rb,Ra,Ra,LSL #n
D<>l : (Rb : = Ra*D}

ADD Rb,Ra,Rb,LSL #n .

If C MOD 4 = '3. say C = 2nx D-1 . D odd. n> I :

D•1 : RSB Rb,Ra,Ra,LSL #n
D<>l: (Rb : • Ra*D}

RSB Rb,Ra,Rb,LSL #n.

191

Loading a word from an unknown alignment

This is not quite optimal. but close. 1\n example of its non-optimal use is multiply
by 4'5 which is done by

RSB Rb,Ra,Ra,LSL #2 Multiply by 3
RSB Rb,Ra,Rb,LSL #2 Multiply by 4•3-1 .. 11
ADD Rb,Ra,Rb,LSL #2 Multiply by 4*11+1 • 45

rather than by:

ADD Rb,Ra,Ra,LSL 113 Multiply by 9
ADD Rb,Rb,Rb,LSL #2 Multiply by 5*9 • 45

Loading a word from an unknown alignment
There is no instruction to load a word from an unknown alignment To do this
requires some code (which can be a macro) along the following lines:

Enter with 32-bit address in Ra
uses Rb, Rc; result in Rd
Note d must be less than c

BIC Rb,Ra,#3
LDHIA Rb, {Rd,Rc}
AND Rb,Ra,#3
MOVS Rb,Rb,LSL #3
MOVNE Rd,Rd,LSR Rb

RSBNE Rb,Rb,/132
ORRNE Rd,Rd,Rc,LSL Rb

Get word-aligned address
Get 64 bits containing answer
Correction factor in bytes
... now in bits and test if aligned
If not aligned, produce bottom
of result wotd

Get other shift amount
Combine two halves to get result

Sign/zero extension of a half word
MOV
MOV

Ra,Ra,LSL #16
Ra,Ra,LSR #16

Move to top,
and back to bottom
use ASR to get sign extended version

Return setting condition codes

192

CFLAG * &20000000
BICS PC,Rl4,#CFLAG

ORRCCS PC,Rl4,#CFLAG

Returns clearing C flag
from link register

Conditionally returns setting c flag

This code should not be used except in user mode. since il will reset the interrupt
mode to 1 he state which existed when the R 14 was set up This rule generally
applies to non-user mode programming.

Full multiply

Example assembler fragments

For example in supervisor mode:

MOV PC,R14

is safer than

MOVS PC,R14

llowever. note that MOVS PC, Rl4 is required by the ARM Procedure Call
Standard. used by code compiled from the high level language C Such code. of
course. runs in user mode.

The ARM's multiply instruction multiplies two 32 bit numbers together and
produces the least significant 32 bits of the result. These 32 bits are the same
regardless of whether the numbers are signed or unsigned.

To produce the full 64 bits of a product of two unsigned 32 bit numbers. the
following code can be used:

Enter with two unsigned numbers in
MOVS Rd,Ra,LSR #16
BIC Ra,Ra,Rd,LSL #16
MOV Re,Rb,LSR #16
BIC Rb,Rb,Re,LSL #16
MUL Rc,RA,Rb
MUL Rb,Rd,Rb
HUL Ra,Re,Ra
HULNE Rd,Re,Rd

ADDS Ra,Ra,Rb

ADDCS Rd,Rd, #&10000

ADOS Rc,Rc,Ra,LSL #16
ADC Rd,Rd,Ra,LSR #16

Ra and Rb.
Rd is ms 16 bits of Ra
Ra is ls 16 bits
Re is ms 16 bits of Rb
Rb is ls 16 bits
Low partial product
First middle partial product
Second middle partial product
High partial product - NE
condition reduces time taken
if Rd is zero

Add middle partial products -
could not use MLA because we
need carry

Add carry into high partial
product

Add middle partial product
sum into low and high words
of result

Now Rc holds the low word of the product, Rd its high word ,
and Ra, Rb and Re hold junk.

Of cou rse, the ARM7M core provides the Multiply Long class o f instructions to
perform a 64 bit signed or unsigned multiply or multiply-accumulate (see Multiply
Long and Multiplw·AcwmulaLe Long (UMULL. SMULL. UMLAL, SMLAL) on page 81).

193

194

Appendix D: Warnings on the use of ARM
assembler

• ..,...___.......,. iltWWWWWat&•&·S~JIII·•;;a•R;;!I!!I!:IMI:l!I!IIE:II!I!CI.IIE:IIMt:l*ll£;;llllliii<;JiiL~-~~~~31:lW-l:l--l:l*----------·llll•lllll•--•----

The ARM processor family uses Reduced Instruction Set (RISC) techniques to
maximise performance: as such. the instruction set allows some instructions

and code sequences to be constructed that will give rise to unexpected (and
potentially erroneous) results. These cases must be avoided by all machine code
writers and generators if correct program operation across the whole range of ARM
processors is to be obtained.

In order to be upwards compatible with future versions of the ARM processor
family never use any of the undefined instruction formats:

• those shown in the section Undefined instructions on page I 09, which the
processor traps;

• those which are not shown in the manual and which don't trap (for example, a
Multiply instruction where bit 5 or 6 of the instruction is set I

In addition the condition code II II (which was given the mnemonic 'NV' , i.e.
never) should not be used. We recommend that you use the instruction 'MOV
RO,RO' as a general purpose no-op

This appendix lists the instructions and code sequences to be avoided. It is
strongly recommended that you take the time to familiarise yourself with these
cases because some will only fail under particular circumstances which may not
arise during testing.

For more details on the ARM chip and its instruction set see the chapters The ARM
CPU on page 29 and CPU i11struction set on page 53, and the datasheets for the
different versions of the ARM chip.

195

Restrictions to the ARM instruction set

Restrictions to the ARM instruction set

196

There are three main reasons for restricti ng the use o f certa in parts of the
instruction set

• Dangerous instructions

Such instructions can cause a program to fail unexpectedly, for example
LDM Rl5,R1ist

uses PC+PSR as the base and so can cause an unexpected address exception.

• Useless instructions

It is better to reserve the instruction space occupied by existing ·useless·
instructions for instruction expansion in future processors For example:

MUL RlS,Rm,Rs

on ly serves to scramble the PSR.
This category also includes ineffect ive instructions. such as a PC relative
LDC/STC with writeback: the PC cannot be written back in these instructions.
so the writeback bit is ineffective (and an attempt to use it should be nagged
as an error)

• Instructions with undesirable side-effects
It is hard to guarantee the side-effects of instructions across different
processors If, for example. the fo llowing is used:

LOR Rd,[RlS,#expression]!
the PC writeback will produce different results on different types of processor.

Warnings on the use of ARM assembler
~llll&l:lll ____ llllll_lllll:ll ____ llll_l::llllll:l_II'IW£M-M1£1--M-.:IIMIII:BB:IIIRilfOMiiiUIII0tllllllllllfi1111111111h-liiiJlllli-ll'!i&-&I'IIWII'i&llll""":

Instructions and code sequences to avoid

The instructions and code sequences are split into a number of categories. Each
category starts with an indication of which of the two main ARM variants (ARM2.
ARM3} it applies to. and is followed by a recommendation or warning. The text
then goes on to explain the conditions in more detail and to supply examples
where appropriate

Unless a program is being targeted specifically for a single version of the ARM
processor family, all of these recommendations should be adhered to.

TSTP/TEQP/CMPP/CMNP: Changing mode

Applicability ARM2

When the processor's mode is changed by altering the mode bits in the PSR
using a data processing operation. care must be taken not to access a banked
register (R8-R 14) in the following instruction. Accesses to the unbanked
registers (R0-R7, Rl5} are safe.

The following instructions are affected. but note that mode changes can on ly be
made when the processor is in a non-user mode:

TSTP Rn,Op2
TEQP Rn,Op2
CMPP Rn,Op2
CMNP Rn,Op2

These are the only operations that change all the bits in the PSR (including the
mode bits) without affecting the PC (thereby forcing a pipeline refill during which
time the register bank select logic settles)

The following examples assume the processor starts in Supervisor mode:

a) TEQP PC,#O
MOV RO,RO Safe: NOP added between mode change and
ADD RO,Rl,R13 usr access to a banked register (R 13_usr)

b) TEQP PC,#O
ADD RO,Rl,R2 Safe: No access made to a banked register

c) TEQP PC,#O
ADD RO,Rl,R13_ usr Fails: Data not read from Register R 13_usr!

The safest default is always to add a NOP (e.g. MOV RO.RO) after a mode changing
instruction; this will guarantee correct operation regardless of the code sequence
following it.

197

Instructions and code sequences to avoid

198

LDM/STM: Forcing transfer of the user bank (Part 1)

App/icabilitl}: ARM2, ARM3

Do not use writeback when forcing user bank transfer in LDM/STM.

For STM instructions the S bit is redundant as the PSR is always stored with the PC
whenever R 15 is in the transfer list. In user mode programs the S bit is ignored. but
in other modes it has a second interpretation; S= l is used to force transfers to take
values from the user register bank instead of from the current register bank. This is
useful for saving the user state on process switches.

Similarly, in LDM instructions the S bit is redundant if R 15 is not in the transfer list.
In user mode programs, the S bit is ignored, but in non-user mode programs where
R 15 is not in the transfer list. S= I is used to force loaded values to go to the user
registers instead of the current register bank.

ln both cases where the processor is in a non-user mode and transfer to or from the
user bank is forced by setting the S bit. writeback of the base will also be to the
user bank though the base will be fetched from the current bank. Therefore don't
use writeback when forcing user bank transfer in LDM/STM.

The following examples assume the processor to be in a non-user mode and
Rlist not to include R 15:

STMxx Rn! ,Rlist

LDMxx Rn! ,Rlist

STMxx Rn,Rlist"

STMxx Rn!,Rlist"

LDMxx Rn! ,Rlist"

Safe: Storing non-user registers with write
back to the non-user base register

Safe: Loading non-user registers with write
back to the non-user base register

Safe: Storing user registers. but no base
write-back

Fails: Base fetched from non-user register.
but written back into user register

Fails: Base fetched from non-user register,
but written back into user register

Warnings on the use of ARM assembler

LDM: Forcing transfer of the user bank (Part 2)

Appl1cabilrty ARM2, ARM3

When loading user bank registers with an LDM in a non-user mode, care must
be taken not to access a banked register (R8 R 14) in the follow1ng instruction
Accesses to the unbanked registers (R0-R7.R 15) are safe.

Because the register bank switches from user mode to non-user mode during the
first cycle of the instruction following an LDM Rn, Rl ist". an attempt to access a
banked register in that cycle may cause the wrong register to be accessed

The following examples assume the processor to be in a non-user mode and
Rlist not to include R 15:

LDM
ADD

LDM
MOV

Rn Rlist~
RO,Rl,R2

Rn,Rlist~

RO,RO

Safe: Access to u n ban ked registers after
LDM"

ADD RO,Rl,R13_ svc
Safe: NOP inserted before banked register

used following an LDM"

LDM Rn,Rlist"
ADD RO,Rl,R13 svc Falls: Accessing a banked register

immediately after an LDM" returns the
wrong data

ADR R14 svc, saveblock
LDMIA R14_svc, {RO - R14_usr} ~

LOR R14 svc, [Rl4_ svc,#l5*4) Fails: Banked base register
MOVS PC, R14_ svc (RI4_svc) used immediately

after the LDM"

ADR R14 svc, saveblock
LDMIA R14 - svc, {RO - R14_usr}~

MOV RO,RO Safe: NOP inserted before
LOR R14 svc, (R14_ svc,#15*4] banked register
MOVS PC, R14 svc - (R I tl_svc) used

Note: The ARM2 and ARM3 processors usually give the expected result, but ca nnot
be guaranteed to do so under all circumstances. therefore this code sequence
should be avoided in future.

199

Instructions and code sequences to avoid

..

200

SWI/Undefined Instruction trap interaction

Applicability: ARM2

Care must be taken when writing an undefined instruction handler to al low for
an unexpected call from a SWI instruction. The erroneous SWI call shou ld be
intercepted and redirected to the software interrupt handler.

The implementation of the COP instruction on ARM2 may ca use- under certain
circumstances - a Software Interrupt (SWI) to take the Undefined Instruction trap if
the SWI was the next instruction after the COP. For example:

SIN FO
SWI &11 Fails: ARM2 may take the undefined instruction

trap instead of software interru pt trap.

All Undefined Instruction handler code should check the failed instruction to see if
it is a SWI. and if so pass it over to the software interrupt handler by branching to
the SWI hardware vector at address 8.

Undefined instruction/Prefetch abort trap interaction

Applicability: ARM2. ARM3

Care must be taken when writing the Prefetch abort trap handler to allow for an
unexpected call due to an undefined instruction.

When an undefined instruction is fetched from the last word of a page. where the
next page is absent from memory, the undefined instruction will cause the
undefined instruction trap to be taken, and the following (aborted) instructions
wi ll cause a prefetch abort trap. One might expect the undefined instruction trap to
be taken first. then the return to the succeeding code will cause the abort trap. In
fact the prefetch abort has a higher priority than the undefined instruction trap, so
the prefetch abort handler is entered before the undefined instruction trap.
indicating a fault at the address of the undefined instruction (which is in a page
which is actua lly present). A normal return from the prefetch abort handler (after
loading the absent page) will cause the undefined instruction to execute and take
the trap correctly. However the indicated page is already present. so the prefetch
abort handler may simply return control. causing an infinite loop to be entered.

Therefore, the prefetch abort handler should check whether the indicated fault is in
a page which is actually present. and if so it shou ld suspect the above condition
and pass control to the undefined instruction handler. This will restore the
expected sequential nature of the execution sequence. A normal return from the
undefined instruction handler will cause the next instruction to be fetched (whi ch
will abort), the prefetch abort handler will be re-entered (with an address pointing
to the absent page). and execution can proceed normally.

Warnings on the use of ARM assembler
m•a•-•:11111:111C--Ilii•ICO•IIrlll_tlm_llll'. ____ • ______ lll:=>=======:::- C'C:E- .11 .-a.....-

Single instructions to avoid

Applicability: ARM2. ARM3

The following single instructions and code sequences shou ld be avoided in
writing any ARM code.

Any instruction that uses the I I I I condition code

Avoid using the condition code II II (which was given the mnemonic 'NV', i .e.
never):

opcodeNV • •.

i.e. any operation where 11Cond"= NV

By avoiding the use of the 'NV' condition code. 228 instructions become free for
future expansion.

Note: It is recommended that the instruction MOV RO, RObe used as a general
purpose NOP.

Data processing

Avoid using R 15 in the Rs position of a data processing instruction:

MOV I MVN<~cond'' 11$11 Rd, Rm, shiftname RlS

CMPICMNITEQITST<~cond))ICP~> Rn,Rm,shiftname RlS

ADC I ADD I SBC •• • I EORacond'' ((S)) Rd, Rn, shiftname RlS

Shifting a register by an amount dependent upon the code position should be
avoided.

Multiply and multiply~accumulate

Do not specify R 15 as the destination register as only the PSR wi l l be affected by
the result of the operation:

MUL11Cond11 11S11 RlS ,Rm, Rs
MLAacond1111S11 RlS,Rm,Rs,Rn

Do not use the same register in the Rd and Rm positions. as the result of the
operation will be incorrect:

MULacond1111S11 Rd,Rd,Rs
MLA(ICOnd1111$11 Rd,Rd,Rs

201

Instructions and code sequences to avoid

202

Single data transfer

Do not use a PC relative load or store with base writeback as the cfrects may vary in
future processors:

LORISTRIICond,,ll8lliiTll Rd, (Rl5,#expression) !
LORI STR11cond,, 11811 ICT,, Rd, [Rl5, 11-11Rm11 , shiftll)!

LOR I STR11Condll 11811 11T11 Rd, [Rl5],#expression
LOR I STR11Condll 118111CT11 Rd, (Rl5], 11-11Rm11, shift,,

Note It is safe to use pre-indexed PC relative load::. and ::.torcs without base
writeback.

Avoid using R 15 as the register offset 1 Rm) in single data transfers as the va I ue
used will be PC+PSR which can lead to address exceptions:

LOR ISTRICcond»IC8lliCTll Rd,[Rn,«-llR15n,shift»)«!»
LORISTR«cond»ICB»«T» Rd,[Rn],«-»Rl5«,shift•

1\ byte load or store operation on R 15 must not be specified. as R 15 contains the
PC. and shou ld always be treated as a 32 bit quantity

LDRISTRncond»8«T» R15,address

A post-mdexed LDRISTR where Rm=Rtt must not be used (this instruction is very
difficult for the abort handler to unwind when late aborts are configured- which do
not prevent base writeback):

LORI STRIICOnd,,ICB»IIT,, Rd, [Rn), 11-11Rn« ,shift ,,

Do not use the same register in the Rd and Rm pos1t1ons of an LDR which spec1fies
(or implies) base writeback; such an instruction is ambiguous. as it is not clear
whether the end value in the register should be the loaded data or the updated
base

LDR«cond»II8»11T» Rn, [Rn,#expression]!
LDRncond,, 11811 11T» Rn, [Rn, 11-»Rm11, shift,,) !

LDR«cond11uB•Hc T,, Rn, (Rn) ,#expression
LDR«cond11 uB11 ICT,, Rn 1 (Rn], 11-11Rm11 1 shift 11

Warnings on the use of ARM assembler

Block data t ransfer

Do not specify base wri teback when forcing user mode block data transfer as the
writeback may target the wrong register·

STM(Ccond,<FDIED ••• I DB> Rn!,Rlist "
LDMcccond"<FD IED • • • I DB> Rn! ,Rlist"

where Rlist does not include Rl5.

Note The instruction:

LDM(Ccond"<FDIED •• • loB> Rn!,<R1ist,R15>"

does not force user mode data transfer. and can be used safely.

Do not perform a PC relative block data transfer. as the PC-1 PSR is used to form the
base address wh ich can lead to address exceptions:

LDMI STM(Ccond"<FD I ED ••• I DB> RlS« I »,Rlist•""

Single data swap

Do not perform a PC relative swap as its behaviour may change in the future

SWP11condl>IIB>J Rd,Rm, (RlS]

Avoid specifying R 15 as the source or destination register:

SWPncondl> (C B>> RlS ,Rm , [Rn)
SWP11condl11> Rd,RlS, [Rn)

Coprocessor data transfers

When performing a PC relative coprocessor data transfer. writeback toR 15 is
prevented so theW bit should not be set:

LDCISTC«cond»«L" CP#,CRd,[RlS)!

LDC I STC « cond)) cc L" CP#, CRd , (R15, #expression) !

LDC I STCncond» ceLl) CP#, CRd, [RlS]#expression!

203

Instructions and code sequences to avoid

204

Undefined instructions

ARM2 has two undefined instructions. and ARM3 has only one (the other ARM2
undefined instruction has been defined as the Single data swap operation)

Undefined instructions should not be used in programs as they may be defined as
a new operation in future ARM variants.

Register access after an in-line mode change

Care must be taken not to access a banked register (R8-R 14) in the cycle following
an in line mode change. Thus the following code sequences should be avoided

I TSTP I TEQP I CMPP I CMNP << cond" Rn, Op2

2 any instruction that uses R8-RI4 in its first cycle.

Register access after an LDM that forces user mode data transfer

The banked registers (R8-RI4) shou ld not be accessed in the cycle immediately
after an LDM that forces user mode data transfer. Thus the following code
sequence shou ld be avoided

LDM«cond>~<FDIED ... IDB> Rn , Rlist"
where Rlist does not include R 15

2 any instruction that uses R8-RI4 in its first cycle.

Other points to note

Thrs section highlights some obscure cases of ARM operation which should be
borne in mind when writing code.

Use of Rl5

Applicability: ARM2, ARM3

Warning: When the PC is used as a destination. operand, base or shift register.
different results will be obtained depending on the instruction and the exact
usage of R I 5.

Fu ll detai ls of the value derived from or written into R 15-t PSR for each instruction
class is given in the chapter CPU instruction set on page 5'3. Ca re musl be taken when
using R 15 because smal l changes in the instruction can yield significantly different
results. For example, consider data operations of the type·

opcodeucond>~<~S>~ Rd,Rn,Rm
or opcodeucond,,uS>~ Rd,Rn,Rm,shiftname Rs

Warnings on the use of ARM assembler

• When R 15 is used in the Rm position. it will give the value of the PC together
with the PSR nags

• When R 15 is used in the Rn or Rs positions. it will give the value of the PC
without the PSR nags (PSR bits replaced by zeros)

MOV RO,#O
ORR Rl,RO,RlS
ORR R2,Rl5,RO

: R I :=PC+PSR
; R2:=PC

(bits 31 26.1 0 reflect PSR flags)
(bits 31 26.1 0 set to zero)

Note: The relevant instruction description in the chapter CPU instruction set on
page 53 shou ld be consulted for full details of the behaviour of R 15

STM: Inclusion of the base in the register list

Applicabilil!J: ARM2, ARM3

Warning In the case of a STM with writeback that includes Lhe base register in
the register l ist, the va lue of the base register stored depends upon its
position in the register list.

During an STM. the first register is written out at the start of the second cycle of the
instruction. When writeback is specified. the base is written back at the end of the
second cycle. An STM which includes storing the base. with the base as the first
register to be stored. will therefore store the unchanged value. whereas with the
base second or later in the transfer order. it will store the modified value.

For example

MOV RS,#&lOOO
STMIA RS!,{RS-R6}

MOV RS,#&lOOO
STMIA RS!,{R4-R5}

MUUMLA: Register restrictions

Applicability: ARM2, ARM3

:Stores value of R5=&1000

:Stores value of R5=&1008

Given
or

MUL Rd ,Rm, Rs
MLA Rd ,Rm, Rs, Rn

Then Rd & R m must be different registers
Rd must not be R 15

Due to the way the Booth's algorithm has been implemented, certa in
combinations of operand registers should be avoided. (The assembler will issue a
warning if these restrictions are overlooked l

205

Instructions and code sequences to avoid

206

The destination register (Rd) should not be the same as the Rrn operand register. as
Rd is used to hold intermediate values and Rrn is used repeatedly during the
multiply A MUL will give a zero result if Rm=Rd, and a MLA will give a meaningless
resu lt

The destination register (Rd) should also not be R 15 R 15 IS protected from
modification by these instructions. so the instruction will have no effect. except
that it will put meaningless values in the PSR flags H the S bit is set

All other register combinations will give correct results. and Rd. Rn and Rs may use
the same register when required.

LDM/STM: Address Exceptions

Applicabilit!J: ARM2, ARM3

Warning Illega l addresses formed during a LDM or STM operation wi ll not
cause an address exception.

On ly the address of the first transfer of a LDM or STM is checked for an address
exception: if subsequent addresses over-flow or under-flow into i llega l address
space they will be truncated to 26 bits but will not cause an address exception trap.

The following examples assume the processor is in a non-user mode and MEMC is
being accessed.

MOV RO ,#&04000000 ; R0=&04000000
STMIA RO, {Rl- R2} ; Address exception reported

MOV R0,#&04000000
SUB RO,R0 , #4
STMIA RO, {Rl- R2}

(base address illegal)

; R0=&03FFFFFC
; No address exception reported

(base address lega l)
; code will overwri te data at address &00000000

Note: The exact behaviour of the system depends upon the memory manager to
whi ch the processor is attached: in some cases. the wraparound may be detected
and the instruction aborted.

Warnings on the use of ARM assembler

LDC/STC: Address Exceptions

ApplicabililfJ ARM2. ARM3

Warning Illegal addresses formed during a LDC or STC operation will not
cause an address exception (affects LDF/STF)

The coprocessor data transfer operations act like STM and LDM with the processor
generating the addresses and the coprocessor supplying/reading the data As with
LDM/STM. only the address of the first transfer of a LDC or STC is checked for an
address exception: if subsequent addresses over-flow or under-flow into illega l
address space they will be truncated to 26 bits but will not cause an address
exception trap.

Note that the floating point LDF/STF instructions are forms of LDC and STC.

The fo llowing examples assume the processor is in a non-user mode and MEMC is
being accessed

MOV RO ,#&04000000 : R0=&04000000
STC CP 1, CRO, [RO] :Address exception reported

(base address illegal)

MOV R0,#&04000000
SUB RO,R0,#4
STFD FO,[RO]

: R0=&03FFFFFC
: No address exception reported

{base address legal)
; code will overwrite data at address &00000000

Note The exact behaviour of the system depends upon the memory manager to
wh1ch the processor is attached: in some cases. the wraparound may be detected
and the instruction aborted.

LDC: Data transfers to a coprocessor fetch more data than expected

Applicability: ARM 3

Data to be transferred to a coprocessor with the LDC instructi on should never
be placed in the last word of an addressable chunk of memory. nor in the word
of memory immediately preceding a read-sensitive memory loca tion.

Due to the pipelining introduced into the ARM3 coprocessor interface. an LDC
operation will cause one extra word of data to be fetched from the internal cache or
external memory by ARM3 and then disca rded: if the extra data is fetched from an
area of external memory marked as cacheable. a whole line o f data will be fetched
and placed in the cache.

207

Static ARM problems

A particular case in point is that an LDC whose data ends at the last word of a
memory page will load and then discard the first word (and hence the first cache
line) of the next page. A minor effect of this is that it may occasionally cause an
unnecessary page swap in a virtual memory system The major effect of it is that
twhether in a virtual memory system or not). the data for an LDC should never be
placed in the last word of an addressable chunk of memory the LDC will attempt
to read the immediately following non-existent location and thus produce a
memory fault

The fol lowing example assumes the processor is in a non user mode. rru
hardware is attached and MEMC is being accessed:

MOV Rl3,#&03000000
STFD FO,[Rl3,#-8]!

LDFD Fl,[Rl3],#8

; R l3=Address of l/0 space
, Store r P. register 0 at top of phy~ ica l memory
: (two words of data transferred)
; Load F. P. register I from top of physica l

memory. but three words of data are
transferred, and the third access wil l read
from 1/0 space which may be read sensitive

Static ARM problems

208

The static ARM is a variant of the ARM processor designed for low power
consumption, that is built using static CMOS technology (The difference between
it and the standard ARM is similar to that between SRAM and DRAM.)

The static ARM exhibits different behaviour to ARM2 and ARM3 when executing a
PC relative LDR with base writeback. This class of instruction has very limited
appliCation, so the discrepancy should not be a problem but if you wish to use any
of the following instructions in your code you are advised to contact Acorn
Computers

LDR Rd,[PC,#expression]!
LDR Rd,[PC],#expression
LDR Rd,[PC,{-}Rm{,shift}]!
LDR Rd,[PC],{-}Rm{,shift}

Note: A PC relative LDR without writeback works exactly as expected.

Provided that this instruction class is unused. il is likely that writeback to the PC
on LOR and STR will be disabled completely in the future The fewer incidental
ways there are to modify the PC the better.

Warnings on the use of ARM assembler

Unexpected Static ARM2 behaviour when executing a PC relative LOR with
writeback

The instruct ions affected are:-

• LDR Rd,[PC,#expression]!

• LDR Rd,[PC],#expression

Case I : LOR Rd,IPC,#expressiottl!

Expected result.

Actual ARM2 result

Rd +- (PC+8+expression)
PC -- PC+8+expression

... so execution continues from PC+8+expression

Rd +- Rd l no change!
PC +- PC+8+expression+4

... so execution continues from PC+ 12+cxprcssion

Case 2: LOR Rd,IPCI,#expression

Expected result Rd +- (PC+8l
PC+- PC+8+expression

... so execution continues from PC+8+expression

Actual AI~M2 result: Rd +- Rd (no change}
PC +- PC+8+expression+4

... so execution continues from PC+ 12+cxprcss ion

209

210

Appendix E: Support for AAsm source

A Asm was an alternative variant of the assembler supplied with previous
.1"\. releases of this product. It has been removed from this product. but to ease
porting source code written for AAsm. some limited support has been added to
ObjAsm This support for AAsm may be re moved In future releases of Acorn
Assembler.

To enable this support you must pass the new -ABSolute option to ObjAsm.
There is no option on the Setup menu directly corresponding to this option: the
best way to pass the option from the desktop is to include it in the Setup menu's
Others oplion (see Specifying other command line options on page 181.

The -ABSolute option

The new -ABSolute option makes ObjAsm accept AAsm source code. This option
IS provided to simplify the use of code originally developed using AAsm Unlike
AAsm. the output format produced is AOF. as for any ordinary assembly operation.
and this must be linked by the linker as usual. in order to create an absolute image
However. the contents of the AOF file will be marked as having an absolute address
(if either the ORG or LEADR directive is used). and the linker. given suitable
options, can produce an image file equivalent to that previously generated directly
by AAsm The following changes to normal ObjAsm input syntax apply

• There is an implicit AREA declaration before the start of the source The
normal rule that there must be an AREA directive in the source before use of
any instruction or data generating statements does not apply The implicitly
declared area is ca lled ABS$$BLOCK. and has the new ABS attribute (see Area
allributes on page 48) implying that it must be loaded at a fixed absolute base
dddress.

• The directive LEADR is accepted (Previously on ly AAsm implemented th is:
ObjAsm did not.)

• The ORG directive. if used within the source file. wi ll apply to the implicitly
declared current area.

• The following directives are not recognised (since they were not avai lable with
AAsm). and may be used for any other purpose. in particular as macro names:
AREA, IMPORT.EXPORT,STRONG, ENTRY.KEEP, AOF,AOUT

This change is important. since ObjAsm recognises directives before it does
macro names

211

212

Index

Symbols
! 142

- 149. 1'51
140-141

s 147. 160
% 50, 1'39
~ 145, 150

+ 149. 15 1
147

I 150

I= 151
< 15 1

= 151
> 151
>= 151
? 149
(ri 147

1 15'3-155
1 153-155
I\ 140-141

153-155

A
AAsm 25. 181.21 1

Abort mode see ABT mode

aborts 42-43

see also data aborts and prefetch aborts

ABS 48,49. 136- 137.2 11
ABS$$BLOCK 21 I

ABT mode 37. 39. 42. 43
ACS 136-137
ADC 66-73. I 14
ADD 66-73, 114 . 115

address bus 29. 31. 34, 41

address exceptions 36, 37. 41-42 46 86. 94. 167.

206-207

addressing 89-94. 103. 104

ADF 136-137
ADR 115
ADRL 11 5- 11 6

ALIGN 49, 144
ALU 29. 3 1. 54
an see registers (names)

AND 66-73. 114. 15 1

AOF 211
AOUT 211
APCS 11. 24, 145. 175, 176

AREA 48, 172.211

AREAs 47-49. 144

ISSSSSSSI 48
ICSScodel 48
attributes II. 48
code 24, 47

data 47
relocatable address constants 48

arithmetic logic unit see ALU

Arithmetic Shift Left see ASL

Arithmetic Shirt Right see ASR
ARM

configuration 24

core 31
CPU 29-46

versions 2. 12, 32 , 36, 167

ARM Procedure Ca ll Standard see APCS

ARM2 29, '32-35. 74, 96

ARM250 97
ARM3 29. 32-35, 74, 97
ARM6 12. 36. 38. 97, 167. 181

ARM? 12. 36, 38. 97, 167. 181

ARM7M 12, 36. 81. 181. 193

ASL 58

213

Index

AsmHello example 21
AsmModule example 173
ASN 136 137
ASR 60
assembly language 27-163

examples 189-193
ASSERT 142
ATN 136-137

8
B 63-65
barrel sh ifter 29, 31. 55-56

ca rry in 55
ca rry out 55

BASE 149
BASED Rn 48
bibliography 3
BIC 66-73,114
BL 63-65
booleans see constants
buttons see applicatron (butlon name)

c
C flag 35. 55. 69. 76-77
Clanguage 175 178

static variables 177-??
cacheing sel' ObjAsm (cacheingl
Carry flag see C flag
casesensitivity 11,47,49, 181
cc 150
CDP 100- 101,200
changes 181
CHR 149
Clanguage

static variables ??-178
CMF 137-138
CMFE 137-138
CMN 35.66-73 76. 114, 197
CMNP seeCMN

214

CMP 35.66-73.76. 114. 197
CMPP see CMP
CN 62. 145
CNF 137-138
CNFE 137-138
CODE 48
COMDEF 48
comments 51
COMMON 48
condition codes 29. 3'5. 53-54. 189-190. 192-193.

195. 201
conditional assembly 15. 1 53 155
CONFIG II , 24, 147
configurations 36. 37.4 1.1 67- 168
constants 51, 145

immedialc 56
conventions 3
coprocessors 30. 44, 62. 100-108. 145

floating point 62
COS I 36- 1'57
CP 62. 145
CPSR 36, 38. 39. 40. 65. 74-77
CStatics example 177- 178
C-strings 139
current program status reg1ster 51'1' CPSR

D
DATA 48, 142
data aborts 37, 43, 46. 87.94-95,97, 105, 168
data bus 29. 31
data types 30
DCB 139
DCD 1 '39
DCFD 132.140
DCFS 132, 140
DCW 139
DDT 10
debugging I 0

machine level 10
source level 10
tables I 0

DH ISO
dependency lists 24
dialogue boxes see applicatiOn (dralogue box name)
directives 47, 49, 139-144,211

see also drrectil•t• naiiH'
DVF 136-137

E
ELSE 153-155
END 51, 14 1
CN DIAN 2'3. 147
EN DIF 153- 155
ENTRY 144, 172,2 11
EO I~ 66-73. 151
COU 145
errors 9, 14, 19, 142. 183-188

brow~er 9, 19

escape~ II

exception vectors see hardware vectors
exceptions 35. 37 . 40-46, 167 169

priority system 45
see also t•xct•ption names

EXP 136 137
EXPORT 142. 211
expressions 149-151

F
FALSC. 51, 147
Fast Interrupt mode St't' 1'10 mode
FDV 136- 137
FlO 40-4 1,46, 167. 168- 169

latency 46
FlO disable flag 35. 38. 40. 4 1. 45
FlO mode 32, 37. 41. 168
FIX 135
flags St'l' nag name'S

floating point I 17- 138, 144, I 71
available systems 118
C flag 126, 138
denormalised numbers 125
division by zero 127
double extended precision 121
expanded packed decimal 123, 126
exponents 120-123
IEEE double precision 120
IEEE single precision 120
inexact results 128
infin ities 120- 123. 127
inva lid operations 127
NaNs 120- 123. 125, 127
number formats I 19- 123
number input 131
overflow 128
packed decimal 122. 126
precision I 19
rounding 135
store loading directives 132
synchronous operation 126
underflow I 28
writeback 134

FLT 135
FML 136-137
FN 132. 145
fp see registers (names)
FPREGARGS 142
FRD 136-137

G
GBL 13. 49. 146
G F:T 9, I 7. 14 I , I 4 2

H
hardware vectors 37. 168

see also exceptions

Index

215

Index

icons see app/icatio11 1ico11 nam1')
IF 153-155
image files 7. 10.21
immediate constants see constants t immediate)
IMPORT 142. 172. 211
INCLUDE 9. 142
include file searchmg 9
INDEX 149
initialising memory Sl'l' memory (initialising)
i nsta llalion I
instruct ion set 29-30
instructions

block data transfer 30. '32. 42. 43, 88-95
branches 33.35.42.63-65
conversions I 14
coprocessor data operations I 00- 101
coprocessor data transfers I 02-105
coprocessor register transfers I 06-1 08
data process1ng '30. '55, 55. 66-73 197. 201
floating point coprocessor data

operations 136-137
floating point coprocessor data

transfer 1'32-I'H
floating point coprocessor multiple data

transfer 13'3-135
floallng point coprocessor register

transfer 135
floatmg point coprocessor status

transfer I 37 I 38
further 11411 6
multiplies 78-82. I 09. 195
PSR transfer 36. 37. 38. 74-77
single data swap 96-97
single data transfer 30, 43. 48. 55. 83-87
soflware interrupl '35 . 37.44.98-99, 10 1. 171
SWI 35
t imings 54
undefined 37.44,46,62, 101 . 109 133.195.

200. 204
Interrupt mode see IRO mode
interrupts 35

216

ip see registers tnames)
IRQ 41. 168

latency 46
IRQdisableflag 35. 38.40.41 , 42.43,44.45.168
IRQ mode 32. 3'3. ·n. 41

K
KEEP 141 ,2 11

L
labels 47. 50

loca l 50
LAND 151
layout of memory Sl't' memory (ldyi ng out)
LCL 49. 146. I 59
LOC I 02- I 05, 20'3. 207. 207-208
LOF 132- I 'H. 207
LOM 88-95. 144. 196, 198-199,203,204,206
LOR 83-87. 116. 196 202, 208-209
LORB St'1' LOR
LEAOR 211
U:.AF 142
LEFT 150
LEN 149
LEOR 15 1
LI-M 133- 135
LGN 136 137
libraries 7

Link 2. 7. 24. 47
Debug 10
Module 173

link register see LR
listings 15-17. 154

options 143
literals 116. 141

floating point 133
LNK 17
LNOT 150
LOG 136-137

LogiC<l I Shift Left St't' I.Sl.
Logical Shift Rrghts1'1' LSR
LOR 151
LR 33, 35,40,63·65,167,171
LSL 55 58
LSR 55, 59
LTORG 133 141

M
MACRO 158-159
macros 155, 157-163.21 1

labels 50
names II
nesti ng Io l
parameters 158, 160 16 1
prototype statements 158 159

Make 7. 22 24
MCR I 06-108
memory

initlalisrng 139-140
interface '30
laying out 140-141
reserving I '39

MEND 143. 159
menus 51'1' application (llfi'IW name)
MEXIT 160
MLA 78-80,201,205
MNI 136-137
MOD 150
modes 32. 36, 37 167- 168

changing 35, 70, 77. 197
flags '35. 40
privi leged se1• privi leged modes
see also mod1• r·rarnes

modu les 7. 40. 17 1 17'3
MOV 66-73, 1111.1 15. 116
MRC 106-108
MRS 74-77
MSR 74-77
MUI· 136-137
MUL 78-80 196. 201, 205

multiplication 191-192. 193
see also instructions (multiplies!

multiplier 29. 31
MVF 136-I'H
MVN 66-73, 114. 115, 116

N
N flag 35,69, 76 77
Negative nag sec N nag
NOFP 1'31, 144
NOINIT 48
no-op I 95. 20 I
NOT 149
NRM 1'36- l 'H
numbers srt> constants

0
ObjAsm 2. 7-25

Auto run 20
Auto save 20
C stnngs II
cacheing 1·3
command line 18, 22-25
Command line (menu option) 10
CPU 12
Cross reference 17
Debug 10
Define 12
Display 20
Errors to fi le I 11
Help 20
icon ba r menu 20
Include 9
Length 16
Listing 15
MaxCache 13
No APCS regrsters II
NoCache 13
NoTerse 15. 154

Index

217

Index

Options 20
Others IX
output 18-19
Run 9, 10
Save options 20
SetUp dialogue box 7. 8-10
SetUp menu 8
Source X. 9
Suppress warnin~s 1-1
Throwback 9
Upper case II
Width 16
Work directory 17

object fi les 7. 21.-17. 1112
operators I t19- l '5 I

add it ion and logica l I '5 1
binary I 50- I '5 1
booleCJn I 5 I
multiplicative I 50
precedence 149. I 50
relation<JI I '51
shifts 1'50
stnng mantpulallon I 50
unary I -19-1 50

OPT 143. 147
OR 151
ORG 49. 115, 141.211
origin 141
ORR 66-73
OS_ChangeEnvironment 167
OS_ Cia i m ProcessorVector 168
output 18. 20
Overflow flag see V flag

p
PC 33. 34 35, '36, '3H, '39, 40,63-65, 71, 86, 108.

144. 147. 167. 197, 19X, 20 1.202,204-205
PIC 48
pipeline 30, 3 1, 54, 64, 197, 207
POL 136 137
POW 136-137

218

prefetch aborts 42-4'3. 200
pre-veneers 16 7
PrintLib example 175-177
privileged modes 32. 36. 39

user bank transfer 9'3, 19X-199
processor configurations S1'1' configurations
processor modes se1• modes
processor status register se1' PSI~
program counter see PC
PSR 34-35,38.40,54 55. 64,69 79, 82, 167. 197,

19X

R
R 11 sff sr
R 14 ser LR
R 15 see PC atrd PSR
random numbers 190
RDF 1'36- I 'H
READONLY 4X
REENTRANT 48
registers 11.32-35.38-39

bank organisation 33. 38
floating point 118
floating point control I 18. 129-130
floating point status I 18. 124-128
names I I, 24. 47. 145
see also regista names

I~[L 48
relocatable modules see modules

RelocCode 172
repeti t ive assembly 156
reserving memory see memory (reserving)
resets 45
I~FC 13'5
RI'S 135
RIGI IT 150
RISC OS 165- 178
RUST 144
RMr 136-1'37
RN 145
Rtt and rn see registers (names)

RND 136 137
ROL 1'50
ROR 61 1'50
Rotate Right Sl'l' ROR
Rotate Right w1th Fxtcnd St'l' RRX
rotates 55 ·62. 71
ROUT 50
RPW 136-137
RRX 55 62
RSB 66-73
RSC 66-73
RSF 136-137

s
saved program status register see SPSR
SBC 66-73, 114
semaphores 96
SET 13 49 146, 159
SFM 133-13'5
shift types 57-62
shifts '55-62. 70

amount 57
mnemonics 57

SHL 150
SHR 150
sign extension 19 2
SIN 136-137
sl see registers JnamesJ
SMLAL 81-82. 193
SMULL 81-82, 193
software interrupts 44, 46
source files 142

line length 47
SP 33
SPSR '36, '39, tlO, 74-77
SOT I '~6- 1 '37
SrcEdit 19
stack pointer set' SP
stack-l imit checking 24
stacks 89-92. 134
STC 102-10'5. 203.207

sn 1 '32-133 207
STM 88-9'5. 144,198199.203. 20'5 206
STR 83-87. 147. 149, 202
STRB ~ee STR
strings see constants
STRONG 211
SUB 66-73. 114. 115
subroutines 64
SUBT 143
sur 136-137
summary 19. 20
Supervisor mode see SVC mode
SVC mode 32. 33, 37, 42, 43, 44, 45, 98. 17 1
SWI 98-99. 101, 17 1.200
SWP 96-97, 203
symbols 17, 49, 116, I t12, 145- 147

external 139
length 49
local 141

T
TAN 1'36-137
TEO 35. 66-73. 76. 197
TEOP see TEO
throwback 19
titles 143
tools 5-25

common features 7, 19
TRUE 51. 147
TST 35. 66-73. 76. 197
TSTP see TST
TTL 143
typographic conventions Sl'l' conventions

u
UMLAL 81-82. 193
UMULL 81-82. 193
UND mode 37. 39. 44

Index

219

Index

undefined 1 nsrrucr 1ons St't' i nsrructions
(undefined)

Undefined mode S1'1' UN D mode
URD 1'36-1'37
User mode 32. 35, 37

v
V flag 35, 69, 76-77
VAR 147
variables 11. 12 13, 145- 147

globa l 146
local 146. 159
ser also varia/J/e I·Wmes

vn ~er reg istNs (names)

w
warnings 14
WEAK 142
WF.ND 156, 160
WFC 1'35
\VFS 135
WHILE 156. 160
work directory 17

z
Z tlag 35, 69. 76-77
Zero flag Sl'l' Z fl ag

220

.Ju

Reader's Comment Form
Acorn Assembler. Issue I

0484 233

We would greatly appreciate your comments about this Manual. which will be taken mto account for the
next issue

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments. please cont1nue overleaf

How would you classify your experience with computers?

Used computers before Experienced User Programmer Experienced Programmer

Cut out (or pfwtocop~) and post to

Dept RC. Technicdl Publicdtions
Acorn Computers l.imited
Acorn House. Vision Park
Histon. Cambridge CB4 4AE
England

Your name and address:

I This information will only be used to get1n touch w1th you 1n case we w1sh to explore your
comments further

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

