
r

r

(

r

BRITISH BROADCASTING CORPORATION ~~

MICROCOMPUTER SYSTEM .~

rchimedes

•

u R

G U I D ~

BRITISH BROADCASTING CORPORATION iti~

MICROCOMPUTER SYSTEM .~

ii

Designed, and laser-typeset by Human-Computer Interface Limited, Cambridge.

Copyright© Acorn Computers Limited 1987

Neither the whole nor any part of the information contained in, or the product
described in, this guide may be adapted or reproduced in any material form
except with the prior written approval of Acorn Computers Limited (Acorn
Computers).

All correspondence should be addressed to:

Customer Support and Training,
Acorn Computers Limited,
Cambridge Technopark,
645 Newmarket Road,
Cambridge CB5 8PB.

Acorn is a trademark of Acorn Computers Limited.
Econet is a registered trademark of Acorn Computers Limited.
Archimedes is a trademark of Acorn Computers Limited.

Within this publication, the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

First published 1987
Issue 2 july 1987
Published by Acorn Computers Limited
Part number 04 76,002

The product described in this guide and products for use with it are subject to continuous development and improvement. All information of
a technical nature and particulars of the product and its use (including the information and particulars in this guide) are given by Acorn
Computers Limited in good faith. However, it is acknowledged that there may be errors or omissions in this guide or in the products it
describes. A list of details of any amendments or revisions to this guide can be obtained upon request from Acorn Computers. Acorn
Computers welcomes comments and suggestions relating to the product and this guide.

All maintenance and service on the product must be carried out by Acorn Computers' authorised dealers. Acorn Computers can accept no
liability whatsoever for any loss or damage caused by service, maintenance or repair by unauthorised personnel. This guide is intended only
to assist the reader in the use of this product, and therefore Acorn Computers shall not be liable for any loss or damage whatsoever arising
from the use of any information or particulars in, or any error or omission in, this guide, or any incorrect use of the product. Refer to the
explicit instructions for installation supplied with upgrades.

WARNING: THIS COMPUTER MUST BE EARTHED

Important: The wires in the mains lead for the computer are coloured in accordance with the following code:
Green and yellow Earth
Blue Neutral
Brown Live

For United Kingdom users
The moulded plug must be used with the fuse and fuse carrier firmly in place. The fuse carrier is of the same basic colour (though not
necessarily the same shade of that colour) as the coloured insert in the base of the plug. Different manufacturers' plugs and fuse carriers are
not interchangeable. In the event of loss of the fuse carrier, the moulded plug MUST NOT be used. Either replace the moulded plug with
another conventional plug wired as described below, or obtain a replacement fuse carrier from an Acorn Computers' authorised dealer. In
the event of the fuse blowing it should be replaced, after clearing any faults, with a 5-amp fuse that is ASTA approved to BS1362.

For all users
If the socket outlet available is not suitable for the plug supplied, either a different lead should be obtained or the plug should be cut off and
the appropriate plug fitted and wired as noted below. The moulded plug which was cut off must be disposed of as it would be a potential
shock hazard if it were to be plugged in with the cut off end of the mains cord exposed.

As the colours of the wires may not correspond with the coloured markings identifying the terminals in your plug, proceed as follows:

The wire which is coloured green and yellow must be connected to the terminal in the plug which is marked by one of the following: the
letter E, the safety earth symbol, the colour green, or the colour green and yellow.
The wire which is coloured blue must be connected to the terminal which is marked with the letter N, or coloured black.
The wire which is coloured brown must be connected to the terminal which is marked with the letter L, or coloured red.

iii

GUIDELINES FOR SAFE OPERATION

The equipment described in this guide is designed and manufactured to comply with International safety standards IEC65
(BS415) and IEC380 (BS5850), and is intended for use only as a desktop microcomputer. It should not be used for other
purposes. It is most important that unpacking and installation is carried out in accordance with the instructions given in the
Welcome Guide.

The equipment is robustly constructed but in the interests of continued safe and reliable operation, careful handling and the
following guidelines should be observed.

- DO keep the machine within a room temperature of 5 to 35 degrees C (41 to 95 degrees Fahrenheit) and a relative
humidity of 15% to 95% (non-condensing).

- DO avoid sudden extremes in temperature, exposure to direct sunlight, heat sources (such as an electric fan heater) and
rain.

- DO make sure that the equipment is standing on a suitable horizontal flat surface, allowing enough space for air to
circulate when the equipment is in use.
- DON'T spill liquids on the machine. If liquid does spill, turn the machine off immediately and take it to your dealer for
assessment.

- DON'T drop the equipment or subject it to excessive bumping and jarring. This is particularly important if you have a
hard disc installed.

- DO ensure that wires and cables are routed sensibly so that they cannot be snagged or tripped over. Don't tug or twist any
wires or cables, or use them tO hang or lift any of the units.

- DON'T poke objects through the ventilation openings in the computer casing, and don't let items such as necklaces or
bracelets drop into the openings.

- DON'T exceed a maximum power consumption of 20 watts from the Podule backplane supply.

- DON'T balance any objects or stand other equipment not designed for the purpose, on top of this equipment.

- DO switch off and unplug the equipment and any accessories before opening any unit, to install an upgrade, for example.
The main computer unit should normally be operated with the cover attached, but it can safely be switched on with the cover
removed, provided that care is taken not to short circuit any connections or to allow any fingers or objects in the area of the fan
or disc drives when these are running. Be especially careful with jewellery. Do not attempt to open any display or monitor
unit, whether supplied with this equipment or not.

- DO make sure you have read and understood any installation instructions supplied with upgrade kits before attempting
to fit them. If you have any doubts, contact your supplier.

iv

ONTENTS

GUIDELINES FOR SAFE OPERATION iv

INTRODUCTION 1
THE ARCHIMEDES USER GUIDE 1
CONVENTIONS USED IN THIS GUIDE

BASIC COMMAND MODE 3

BASIC PROGRAMS 7
ENTERING A PROGRAM 7
EDITING A PROGRAM 8
MORE ABOUT LINE NUMBERS 13
LISTING LONG PROGRAMS 15
COMMENTS AND MULTIPLE STATEMENTS 16
SAVING AND RECALLING PROGRAMS 18

VARIABLES AND EXPRESSIONS 21
WHAT IS A VARIABLE? 21
NUMERIC VARIABLES 22
STRING VARIABLES 28
ARRAYS 36

OUTPUTTING TEXT 45
PRINT FORMATTING 45
THE TEXT CURSOR 48
DEFINING YOUR OWN CHARACTERS 51

INPUTTING INFORMATION 53
INPUTTING DATA FROM THE KEYBOARD 53
INCLUDING DATA AS PART OF A PROGRAM 55

BASIC CONTROL STATEMENTS 59
IF ... THEN ... ELSE 59
IF ... THEN ... ELSE ... ENDIF 61
FOR ... ~EXT 63
REPEAT ... UNTIL 67
WHILE ... ENDWHILE 68

v

CASE ... OF ... WHEN ... OTHERWISE ... ENDCASE 69
GOTO 71
GOSUB ... RETURN 72
ON ... GOTO/GOSUB 72

PROCEDURES AND FUNCTIONS 75
DEFINING AND CALLING PROCEDURES 75
PARAMETERS AND LOCAL VARIABLES 76
ON ... PROC 79
RECURSIVE PROCEDURES 80
FUNCTIONS 82
FUNCTION AND PROCEDURE LIBRARIES 83

FILING SYSTEMS 87
SELECTING THE ADFS 87
LEAVING THE ADFS 87
SELECTING THE ANFS 88
LEAVING THE ANFS 88
DRIVE NUMBERS 89
D~CNAMES ~
FORMATTING A DISC 90
BACKING UP DISCS 92
COPYING USING A SINGLE FLOPPY DISC DRIVE 92
COPYING USING MORE THAN ONE FLOPPY DISC DRIVE 93
DIRECTORIES 94
PATHNAMES 100
DELETING FILES AND DIRECTORIES 101
COPYING AND MOVING FILES 102
FILE DETAILS AND ATTRIBUTES 104
DATA FILES 109
COMMAND FILES 112
•CONFIGURE OPTIONS 113

vi

SCREEN MODES
THE MODES AVAILABLE
TEXT SIZE
GRAPHICS RESOLUTION
COLOURS

GRAPHICS
THE GRAPHICS SCREEN
THE LINE COMMAND
RECTANGLE AND RECTANGLE FILL
CIRCLE AND CIRCLE FILL
ELLIPSE AND ELLIPSE FILL
GCOL
THE GRAPHICS CURSOR
USING PLOT TO PRODUCE OTHER SHAPES
PATTERN FILLS
FLOOD-FILLS
COPYING AND MOVING
PRINTING TEXT AT THE GRAPHICS CURSOR

WINDOWS
TEXT WINDOWS
GRAPHICS WINDOWS

SPRITES
THE SPRITE EDITOR
SPRITE • COMMANDS
PLOTTING SPRITES
DEFINING SPRITES FROM THE SCREEN

TELETEXT MODE
TEXT DISPLAYS
TELETEXT GRAPHICS

ONTENTS

117
117
119
119
I20

129
129
129
130
130
131
132
134
135
148
156
157
158

161
161
163

165
165
169
171
172

175
175
177

vii

viii

SOUND
THE SOUND Sf A TEMENT
THEBEATSSfATEMENT
THE BEAT STATEMENT
THE TEMPO STATEMENT

KEYBOARD, MOUSE AND FUNCTION KEYS
THE KEYBOARD
THE MOUSE
FUNCTION KEYS

INDIRECTION OPERA TORS
ACCESSING MEMORY LOCATIONS IN GENERAL
RESERVING A BLOCK OF MEMORY
THE'?' INDIRECTION OPERATOR
THE'!' INDIRECTION OPERATOR
THE 'I ' INDIRECTION OPERA TOR
THE '$' INDIRECTION OPERA TOR

BASES
HEXADECIMAL NUMBERS
BINARY NUMBERS AND BITS

PRINTERS
CONNECTING YOUR PRINTER
DEFINING THE PRINTER TYPE
SELECTING THE BAUD RATE
PRINTER IGNORE CHARACTERS
SENDING OUTPUT TO THE PRINTER

ERROR HANDLING AND DEBUGGING
GLOBAL ERROR HANDLING
LOCAL ERROR HANDLING
DEBUGGING

181
182
184
185
185

189
189
191
193

195
195
195
195
197
197
198

199
199
199

205
205
206
206
207
208

209
209
210
212

ONTENTS

BASIC KEYWORDS 215
ABS 215
ACS 216
ADVAL 216
AND 217
APPEND 218
ASC 219
ASN 220
ATN 220

AUTO 221

BEAT 222

BEATS 222
BGET# 223

BPUT# 224
BY 225
CALL 226
CASE 236
CHAIN 237
CHR$ 238
CIRCLE 238
CLEAR 239
CLG 239
CLOSE# 240
CLS 241
COLOUR (COLOR) 241
cos 243
COUNT 244
DATA 245
DEF 246
DEG 247
DELETE 247
DIM 248
DIY 250
DRAW 251
EDIT 252
ELLIPSE 252

ix

ELSE 253
END 154
ENDCASE 255
END IF 256
ENDPROC 256
ENDWHILE 157
EOF# 157
EOR 258
ERL 259
ERR 260
ERROR 260
EVAL 161
EXP 261
EXT# 262
FALSE 164
FILL 164
FN 265
FOR 266
GCOL 167
GET 269
GET$ 170
GET$# 171
GOSUB 171
GOTO 173
HELP 174
HIMEM 174
IF 175
IN KEY 177
INKEY$ 178
INPUT 179
INPUT LINE 280
INPUT# 280
INSTALL 181
INSTR(282
INT 283
LEFT$(283
LEN 285

X

LET
LIBRARY
LINE
LINE INPUT
LIST
LIS TO
LN
LOAD
LOCAL
LOCAL ERROR
LOG
LOMEM
LVAR
MID$(
MOD
MODE
MOUSE
MOVE
NEW
NEXT
NOT
OF
OFF
OLD
ON
OPEN IN
OPEN OUT
OPEN UP
OR
ORIGIN
OSCLI
OTHERWISE
PAGE
PI
PLOT
POINT
POINT(

ONTENTS

286
287
288
288
289
290
291
292
293
294
295
295
296
297
298
299
300
302
303
304
305
306
306
308
308
311
312
312
3I3
314
314
316
316
317
318
318
319

xi

POS 320
PRINT 321
PRINT# 324
PROC 325
PTR# 326
QUIT 327
RAD 327
READ 328
RECTANGLE 328
REM 330
RENUMBER 331
REPEAT 332
REPORT 332
REPORT$ 333
RESTORE 333
RESTORE ERROR 334
RETURN 334
RIGHT$(335
RND 337
RUN 338
SAVE 338
SGN 339
SIN 340
SOUND 341
SPC 342
SQR 343
STEP 344
STEREO 344
STOP 345
STR$ 346
STRING$(347
SUM 347
SWAP 348
SYS 349
TAB(351
TAN 351
TEMPO 352

xii

ONTENTS

THEN 353
TIME 354
TIME$ 355
TINT 356
TO 357
TOP 357
TRACE 358
TRUE 359
UNTIL 359
USR 360
VAL 361
VDU 361
VOICES 363
VPOS 363
WAIT 364
WHEN 365
WHILE 366
WIDTH 367

VDU COMMANDS 369
VDU 0 371
VDU 1 371
VDU 2 371
VDU 3 371
VDU 4 371
VDU 5 371
VDU 6 371
VDU 7 372
VDU 8 372
VDU 9 372
VDU 10 372
VDU 11 372
VDU 12 372
VDU 13 372
VDU 14 373
VDU 15 373
VDU 16 373

xiii

YOU 17,n 373
YOU 18,k,c 373
YOU 19,l,p,r,g,b 373
YOU 20 374
YOU 21 374
YOU 22,n 374
YOU 23,p1,p2,p3,p4,p5,p6,p7,p8,p9 374
YOU 24,x1;y1;x2;y2; 381
YOU 25,k,x;y; 381
YOU 26 381
YOU 27 382
YOU 28,lx,by,rx,ty 382
YOU 29,x;y; 382
YOU 30 382
YOU 3 l ,x,y 382

OPERATING SYSTEM COMMANDS 383
*AUDIO 383
*CHANNEL YO ICE 383
*CONFIGURE 384
*ECHO 390
*FX 390
*GO 390
*GOS 391
*HELP 391
*IF 391
*IGNORE 391
*KEY 391
*POINTER 392
*QSOUND 392
*SET 392
*SETEYAL 393
*SETMACRO 393
*SHADOW 393
*SHOW 393
*SOUND 393
*SPEAKER 394

xiv

ONTENTS

*STATUS 394

*STEREO 394

*TEMPO 394

*TIME 394

*TUNING 395

*TV 395

*VOICES 395

*VOLUME 395

*UNSET 396

*FX COMMANDS 397

•Fx o 397

*FX 1 397

*FX 2 397

*FX 3 398

*FX 4 398

*FX 5 400

*FX 6 400

*FX 7 401

*FX 8 401

*FX 9 402

*FX 10 402

*FX 11 402

*FX 12 402

*FX 15 403

*FX 18 403

*FX 19 403
*FX 20 403

*FX 21 403

*FX 25 404
*FX 106 404
*FX 112 404
*FX 113 405
*FX 114 405
*FX 118 405
*FX 120 405
*FX 124 405

xvi

*FX 125
*FX 126
*FX 138
*FX 139
*FX 143
*FX 144
*FX 153
*FX 156
*FX 162
*FX 163
*FX 178
*FX 181
*FX 196
*FX 197
*FX 200
*FX 201
*FX 202
*FX 203
*FX 204
*FX 211
*FX 212
*FX 213
*FX 214
*FX 216
*FX 217
*FX 218
*FX 219
*FX 220
*FX 221
*FX 222
*FX 223
*FX 224
*FX 225
*FX 226
*FX 227
*FX 228
*FX 229

405
406
406
406
406
406
407
407
407
408
408
408
408
409
409
409
409
410
410
411
411
411
411
411
412
412
412
412
413
413
413
414
414
414
415
415
415

*FX 230
*FX 238
*FX247
*FX 254
*FX 255

THE BASIC SCREEN EDITOR
ENTERING THE EDITOR
THE EDIT SCREEN
SAVING AND LOADING PROGRAMS
SEEING OTHER PARTS OF YOUR PROGRAM
RENUMBERING THE PROGRAM
MARKING A LINE
LINE COMMANDS
SEARCHING AND REPLACING
SETTING VARIOUS OPTIONS
USER DEFINED KEYS
FULL USE OF WINDOWS
KEYBOARD SUMMARY
ERROR MESSAGES

APPENDIX A- MINlMUM ABBREV1ATIONS

APPENDIX B -BASIC ERRORS

APPENDIX C- CHARACTER CODES
LA TIN ALPHABET 1
LA TIN ALPHABET 2
LA TIN ALPHABET 3
LATIN ALPHABET 4
GREEK ALPHABET
BFONT CHARACTER CODES

ONTENTS

APPENDIX D-TELETEXT CHARACTER CODES
TELETEXT ALPHANUMERIC CHARACTER CODES
TELETEXT GRAPHICS CHARACTER CODES

416
416
416
417
417

419
419
420
422
423
424
426
426
429
430
432
432
434
438

443

449

453
453
454
455
456
457
458

461
461
463

xvii

xviii

APPENDIX E- SCREEN MODES

APPENDIX F- INKEY VALUES

APPENDIX G- PLOT CODES

APPENDIX H- VDU COMMANDS

APPENDIX I- OPERATING SYSTEM COMMANDS

APPENDIX J - ADFS COMMANDS

APPENDIX K- *FX COMMANDS

APPENDIX L- PIN CONNECTIONS
VIDEO
SERIAL LINE
PRINTER
ECONET

INDEX

465

467

471

473

475

477

479

481
481
482
482
483

NTRODUCTION

THE ARCHIMEDES USER GUIDE

This guide describes the two levels of commands built into the Archimedes
computer, and available for those wishing to program it themselves: the operating
system commands, and the BBC BASIC programming language commands.

BBC BASIC is one of the most popular and widely-used programming languages.
It consists of special keywords from which the programmer can create sequences
of instructions, or programs, to be carried out by the computer. Such programs
might perform calculations, create graphics on the screen, manipulate data, or
carry out virtually any action involving the computer and the devices connected to
it. Several examples of programs written in BBC BASIC are provided on the
Archimedes Welcome Disc.

The BASIC language operates within an environment provided by the computer's
operating system. The operating system is responsible for controlling the devices
available to the computer, such as the keyboard, the screen, and the filing system.
For example, it is the operating system which reads each key you press and
displays the appropriate character on the screen. Commands can be passed to the
operating system from within BASIC by prefixing them with an asterisk'*'.

The first chapters of this guide explain how to program in BASIC, and introduce
many of the commands provided by the language. A complete alphabetical list
of the BASIC keywords is given in the chapter: BASIC KEYWORDS. The last
four chapters, and the appendices, list the features provided by the operating
system, and the commands available to control them.

CONVENTIONS USED IN THIS GUIDE

The following conventions are applied throughout this guide:

- Specific keys to press are denoted as IDelelel, !Qill, and so on.

- Text you type on the keyboard and text that is displayed on the screen appears
as follows:

PRINT "Hello"

2

After entering any text, press g to tell the computer that you have completed
the line and that you want the computer to act upon it.

- Extra spaces are inserted into program listings to aid clarity.

- Program listings are indented to illustrate the structure of the programs.

If at any time you wish to interrupt a program the computer is executing you can
do so safely by pressing IEscapel. Do not be afraid to experiment. Try modifying
the programs listed in this book and writing new ones of your own.

ASIC COMMAND MODE

When you enter BASIC it is in command or interactive mode. This means that you
can type commands and the computer responds straight away. For example, if you
type

PRINT "Hello"

the computer displays the following on the screen:

Hello

PRINT is an example of a keyword which the computer recognises. lt instructs the
computer to display on the screen whatever follows the PRINT statement.

If you make a mistake, the computer may not be able to make sense of what you
have typed. For example, if you type

PRINT "Hello

the computer responds with the message:

Missing "

This is an error message. lt indicates that the computer cannot obey your command
because it does not follow the rules of BASIC (in this case because it could not
find a second quotation mark).

If PRINT is followed by any series of characters enclosed in quotation marks,
then these characters are displayed on the screen exactly as you typed them. Thus:

PRINT "12 - 3 "

produces the output:

12 - 3

PRINT, however, can also be used to give the result of a calculation. For example,
typing

4

PRINT 12 - 3

produces the output:

9

In this case, because the sum was not enclosed in quotation marks, the computer
performed the calculation and displayed the result.

Similarly, multiplication and division can be performed using the symbols'*'
and '/'. For example:

PRINT 12 * 13

PRINT 111 I 11

Some commands, although they have an effect on the computer, do not give
evidence that anything has changed. If, for example, you type

LET FRED = 12

nothing obvious happens. Nevertheless, the computer now knows about the
existence of a variable called FRED which has the value 12. A variable is a name
which can have different values assigned to it. It is described in more detail later
in this manual.

Now if you type

PRINT FRED I 3

the computer responds by displaying the number 4.

The program below illustrates how you can give commands to produce some
graphics on the screen:

MODE 1

CIRCLE F ILL 600 ,500,100

ASIC COMMAND MODE

The MODE command sets up the computer to produce medium resolution graphics.
It also clears the screen.

The CIRCLE FILL command tells the computer to draw a circle at a position 600
graphics units from the left of the screen and 500 units up from the bottom. This is
near the centre of the screen because the screen is 1280 units across and 1024 units
high. The third number tells the computer how big the circle should be, in this
case giving a radius of 100 graphics units.

> CIRCLE FILL 600, 500, I 00

>

0

5

6

ASIC PROGRAMS

ENTERING A PROGRAM

A program is a list of instructions to be carried out by the computer. These
instructions are stored in memory and are only executed when you tell the
computer to do so. Each line of a program is numbered so that it can be referred
to more easily. For example, type the following:

10 PRINT "Hello"

Note that nothing happens. Now type

RUN

The message is displayed on the screen. The number 10 at the start of the line is
called the line number, and identifies the text after it as a program statement to
be stored in memory, rather than as a command to be executed immediately.

You can type spaces either between the start of the line and the line number, or
between the line number and the instruction without effecting the execution of the
program.

10 PRINT "Hel lo "

and

lOPRI NT " He llo"

are equally valid.

One of the advantages of programs is that they can be executed repeatedly:
typing RUN again here causes Hello to be displayed a second time- there is no
need to type the complete PRINT " Hello" statement again.

7

The following is a simple program demonstrating the use of a variable and the
INPUT statement:

10 PRINT "Can you give me a number ";

20 INPUT number

30 PRINT "The number you typed was ";number

Note that you must press [;!] at the end of each line.

The line numbers determine the order in which the computer executes these
instructions. They can take any whole value between zero and 65279.

Now RUN this program. The computer obeys line 10 and displays the message:

Can you give me a number ?

The question mark is added automatically by the execution of line 20. The
keyword INPUT instructs the computer to wait for you to type something, in this
case a number. Type

6

Line 30 is now obeyed, and the following message is displayed:

The number you typed was 6

EDITING A PROGRAM

8

Replacing and adding lines

Once you have entered a program, you may wish to make changes to it. You can of
course type in a whole new version of the program, but there are quicker methods
available. To see the program which is currently stored in memory, type

LIST

Lines 10, 20 and 30 are listed on the screen.

ASIC PROGRAMS

To add extra lines to the program, type in the new line with an appropriate line
number:

5 PRINT "Hello"

40 PRINT " Twice ";number" is ";2*number

and then:

LIST

Note that these two extra lines are added to the program in such a way that the
line numbers are listed in numerical order:

5 PRINT " Hello"

10 PRINT "Can you give me a number ";

20 INPUT number

30 PRINT "The number you typed was ";number

40 PRINT "Twice ";number;" i s "; 2*number

To replace lines, enter the new line with the line number of the one which is to be
replaced. For example:

40 PRINT number ;" squared is ";number*number

Now when you type

LIST

the following is displayed:

5 PRINT "Hello"

10 PRINT "Can you give me a number ";

20 I NPUT number

30 PRINT "The number you typed was ";number

40 PRINT number;" squared is ... number*number ,

9

10

Editing lines

If you wish to alter only part of a line, for example, to correct a single spelling
mistake, you can do so using the cursor edit keys. These are the arrow keys to the
right of the main keyboard.

Suppose you want to change the word typed to entered on line 40.

Begin by pressing the [I] key twice. The original cursor position which was under
line 30 becomes a white square and the CW'SOr moves up to the start of line 30.

Press ~ a few times. The cursor moves along line 30, the white square moves
along as well, and line 30 is copied underneath line 40. Keep on pressing ~
until the word typed is copied and then stop.

If you hold the key down, the repeat action allows you to move the cursor quickly
across the screen. A quick press and release gives you precise control, moving one
character position. The following is displayed on your screen:

5 PRINT "Hello"
10 PRINT "Can you give me a number "•

'
20 INPUT number
30 PRINT " The number you typed_was ";number
40 PRINT number;" squared is .. ; number*number
30 PRINT " The numbe r you typed

Press IDelelel until the word typed is deleted from the new line 30. Note that the
cursor on the old line 30 has not moved:

5 PRINT "Hello"
10 PRINT "Can you give me a number ";

20 INPUT number
30 PRINT "The number you typed_was ";number
40 PRINT number;" squared is "; number*number
30 PRINT " The number you

ASIC PROGRAMS

Type the word entered and press §iJ to copy the rest of line 30 to your new
version.

Press g. The white square disappears and the cursor moves to the start of a new
line. Now type LIST to produce the following:

5 PRINT "Hello"

10 PRINT "Can you give me a number ". I

20 INPUT number

30 PRINT "The number you entered was ";number

40 PRINT number;" squared is ". number*number I

There are no restrictions on how much you move the cursor around when you are
copying. You can use the right and left arrow keys to miss out parts of lines or to
repeat them. You can also copy from lots of different lines on to your new line as
you go.

Deleting lines

You can either delete lines one at a time, or delete a group of lines at once using
the DELETE command.

To delete a single line, you just type the line number followed by g. To delete
line number 5, for example, type

5

To check that line 5 is deleted, type

LIST

and the computer displays the following:

10 PRINT "Can you give me a number II'
I

20 INPUT number
30 PRINT " The numbe r you typed was " ;number
40 PRINT number;" squared is ". number*number I

11

12

The DELETE command allows you to delete a number of consecutive lines in
three different ways:

- By deleting a block of lines. To delete all line numbers between 10 and 30,
type

DELETE 10,30

- By deleting from the beginning of a program. To delete all lines from the
beginning of the program to line 30,type

DELETE 0,30

The number zero is the minimum line number that can be used in a program.
Therefore, all lines from the start of the programs to line 30 are deleted.

- By deleting from a line to the end of the program. To delete all lines from line
20 to the end of the program, for example, type

DELETE 20,65279

The number 652 79 is the maximum line number that can be used in a program,
so in this case all lines from line 20 to the end of the program are deleted.

Deleting whole programs

Before you enter a new program, make sure no program currently exists in
memory. If it does, the lines of the new program you enter will get mixed up with
the lines of the existing program, and this could produce strange results!

To delete any existing program, you can use the DELETE command described
above, but an easier method is to type

NEW

This tells the computer to forget about any existing program, and to be ready to
accept a new one.

ASIC PROGRAMS

Although the DELETE and LIST commands combined with cursor editing are fine
for making small changes to a BASIC program, you should note that the BASIC
Editor is much more versatile. See the chapter: THE BASIC SCREEN EDITOR
for details of using this program.

MORE ABOUT LlNE NUMBERS

Renumbering programs

There may be occasions when you want to change the line numbers of a program
without changing their order. The command to use is RENUMBER. This facility is
particularly useful when you want tO insert a large number of lines between two
existing ones.

You can specify two numbers after typing the RENUMBER command. The first
number tells the computer what you want the new first program line number to
be. The second number tells the computer how much to add to each line number to
get the next one. For example,

RENUMBER 100,20

makes the first line into line 100 and numbers the remaining lines 120, 140, 160,
and so on.

If you leave out the second number in the RENUMBER command, the computer
automatically increments the line numbers in steps of 10. So, for example, you
might want to renumber the following program:

23 PRINT "This demonstrates"

24 PRINT "the use of"

48 PRINT "the very useful"

67 PRINT "RENUMBER command"

Typing

RENUMBER 100

13

14

and then

LIST

produces the following display:

100 PRINT "Thi s demons trates"

110 PRINT "the use o f "

120 PRINT "the very useful"

130 PRINT "RENUMBER command"

Typing

RENUMBE R

without including a number after the command, means that your program lines
are renumbered 10, 20, 30, 40 and so on.

Automatic numbering of programs

You do not have to type line numbers at the beginning of each new program line.
The computer does it automatically when given the AUTO command.

For example, type

AUTO

The computer displays the number 10 on the line below. If you type the first
program line and press Q, the number 20 appears on the next line, and so on.

To switch off this automatic line numbering, press IEscapel.

You can start a program at a line other than line 10 by following the AUTO
command with the first line number you wish to use. Thus,

AUTO 25 0

ASIC PROGRAMS

generates lines which are numbered 250, 2 60, 270, and so on.

You can also specify the number of spare lines between each of your program
lines by adding a second number, separated from the first by a comma. Thus,

AUTO 250 , 15

starts at line number 2 50 and subsequently increases the line numbers in steps of
15, generating lines numbered 250, 2 65, 2 80, and so on.

LISTING LONG PROGRAMS

Listing sections of programs

The LIST command, used above to display the current program on the screen, can
be used to look at part of a program. This is particularly useful if the program is
very big and you want to concentrate on one part of it.

To look at one particular line, for example, type

LIST 40

To look at a number of consecutive lines, for example, type

LIST 20 , 40

To see from the beginning of the program up to a particular line, for example,
type

LIST , 30

To display from a particular line to the end of the program, for example, type

LIST 2 0,

15

Halting listings

If you list more of a program than can fit on the screen all at once, the beginning
of the listing disappears off the top of the screen before you have time to read it.
There are three ways of getting round this problem.

- Pressing the lscroiJ Lockl halts the listing; pressing it again allows the listing to
continue. This enables you to step through chunks of the listing.

- Holding down !QilliShlftl together after typing LIST, halts the displayed listing
on the screen. To continue the listing, take your finger off either [gill or I Shift!.

- Putting the computer into paged mode. This is the most reliable method. To
enter this mode press [gill N, then type LIST. The listing stops as soon as the
whole screen is filled. To display the next screenful of listing, press IShlftl. This
method ensures that you will not miss any of the listing. To cancel the effect of
[gill N, type [gill 0 when the listing is finished.

In addition to the methods described for halting listings, you can also slow the
listing down by pressing [gill. This makes the screen halt for I /25 of a second
between each new line. Thus it takes a second to scroll one screenful in a 25-line
text mode.

COMMENTS AND MULTIPLE STATEMENTS

16

Comments

When writing programs, especially long or complex ones, it is a good idea to
insert comments to remind you what each part of the program is doing. This is
done by using the REM keyword which is short for 'remark'. REM tells the
computer to ignore the rest of the line when it executes the program. For example,
to add comments to the following program:

10 PRINT "Can you give me a number ";
20 INPUT number
30 PRINT "The number you typed was ";number
40 PRINT number;" squared is ... number* number '

ASIC PROGRAMS

type

5 REM Read in a value and assign it to number
25 REM Now print out the number given.

35 REM And its square

and then

LIST

to display the complete program:

5 REM Read in a value and assign it to number
10 PRINT "Can you give me a number ";
20 INPUT number
25 REM Now print out the number given .
30 PRINT "The number you typed was " ;number
35 REM And its square
40 PRINT number;" squared is "; number*number

You may like to add further REM statements to underline comments or leave
space above them to make them clearer:

5 REM Read in a value and assign it to number

6 REM ---------------------------------------
10 PRINT "Can you give me a number ";

20 INPUT number
24 REM
25 REM Now print out the number given

26 REM ------------------------------
30 PRINT "The number you typed was ";number

34 REM
35 REM And its square

36 REM --------------
40 PRINT number;" squared is " ; number*number

17

Multiple statements

A line of BASIC can contain up to 238 characters and can be spread over several
lines on the screen. ln all the programs given so far, each line of BASIC contains a
single statement. Several statements, however, may be placed on one line
separated by colons. For example:

10 PRINT "Can you give me a number ";":INPUT number
30 PRINT "The number you typed was ";number: REM print out the number
40 PRINT number;" squared is "; number*number: REM and its square

Note that REM statements can only be placed at the end of a line since the whole
of the rest of the line is ignored. If you alter the program so that line 30 reads as
follows:

30 REM print out the number: PRINT "the number you typed was ";number

you will prevent the PRINT statement being executed.

SAVING AND RECALLING PROGRAMS

18

You can save a copy of the current program on a floppy disc at any time. This
allows you to recall (load) it at a later date, without having to retype all the
instructions.

Saving a program

Before you can save a program onto a floppy disc, you must make sure the disc is
formatted. Formatting prepares a disc to receive data. For information on how to
format a floppy disc, see the chapter: THE ADVANCED DISC FILING
SYSTEM.

To save a program, in this case a program called progl, insert a formatted
floppy disc into the drive and type

SAVE "progl"

ASIC PROGRAMS

The program with the name progl is now saved onto the floppy disc.

The name you use when saving a program can contain up to 12 characters. At this
stage, you should confine your names to numbers and upper- and lower-case
letters. Other characters may be used but some have special meanings. A full
explanation of these is given in the chapter: THE ADVANCED DISC FILING
SYSTEM.

After using SAVE, your program remains in memory and is unaltered in any way.
You can still edit, LIST, RUN, and so on.

Another capability of the REM statement is that it allows you to give the program
name for use by the SAVE command. The filename must be preceded by a'>'
character. Thus, if the first line of the program is

10 REM >deskTop

all you need to do is type the SAVE command on its own, and the name deskTop
will be used to save the program.

Loading a program

To load a program which you have previously saved, in this case progl type

LOAD "progl"

The LOAD operation replaces the current program with the one from the disc. You
can check this by listing the program currently in memory.

In addition tO loading a program, you can add a program to the end of the current
one using the APPEND command. The appended program is renumbered tO

ensure that its line numbers start after those of the initial program.

The statements INSTALL and LIBRARY may be used to add libraries of
procedures and functions to the current program(see the chapter:
PROCEDURES AND FUNCTIONS for details).

19

20

Other disc operations

BASIC programs are not the only type of information that can be stored on disc.
You can also, for example, store text from a word processor, data for use by a
program, or screen displays. In general, information saved on disc is called a file.

You can perform many operations on the files on a disc, including:

Copying individual files from one disc to another.
Copying all the files from one disc to another.
Renaming files.
Deleting files.
Protecting files so they cannot be deleted.
Grouping files together into 'directories'.

These operations are described in the chapter: THE FILING SYSTEMS.

ARIABLES AND EXPRESSIONS

WHAT IS A VARIABLE?

A variable has a name and a value associated with it. The name, for example
FRED or number or a single letter such as x, allows it to be identified and its
value to be accessed. This value can be changed and retrieved as many times as
required.

There are three different types of variables used to store different types of
information. These are:

- Integer variables which can only store whole numbers

- Floating point variables, which can store either whole numbers or fractions

- String variables which store characters.

Each type is distinguished by the last character of the variable name. A name by
itself, like Fred, signifies a floating point variable, Fred% an integer variable
and Fred$ a string variable.

The rules for naming variables are as follows:

- They can contain digits and unaccented upper· and lower-case letters

- Two additional 'letters' are' 'and'£'

- They must not start with a digit

- They must not start with a BASIC keyword.

All the following names are allowed:

X

xpos
XPOS
Xpos
x_position

21

greatest_ x_position
position_ of_ X
XPOSl

Note that upper· and lower-case letters are regarded by the computer as being
different, so that XPOS, xpos and Xpos are three separate variables.

The following names are not allowed:

lpos
TOTAL x
x-pos
X Position
X.pos

It does not begin with a letter.
It begins with TO which is a BASIC keyword.
It contains a minus sign.
It contains a space.
It contains a punctuation mark.

It is very easy to be caught out by the rule which says that the variables must not
start with a BASIC keyword. The best way to avoid this problem is to use lower
case variable names since BASIC keywords are all in upper-case. This has the
added advantage of making the program easier to read.

The values of the current variables are displayed at any time by typing LVAR at
the BASIC prompt and then pressing Ql.

NUMERIC VARIABLES

22

Floating point numbers and integers

Floating point variables can represent both whole numbers (integers) and
decimal fractions, but integer variables can only store whole numbers. For
example, the assignments

LET number K 4/3

LET number% • 4/3

RIABLES AND EXPRESSIONS

leave the variables with the following values:

number
number%

is 133333333
is 1

In the case of the integer variable, the decimal fraction part has been lost.

The advantages, however, of using integer variables are:

- They are processed more quickly by the computer
- They occupy less memory
- They are accurate (decimal numbers are only accurate to 9 figures).

The range and accuracy of floating point and integer variables is summarised
below:

Range
Accuracy
Stored in

Integers

-2147483648 to 2147483647
absolute
4 bytes

Floating point numbers

-1.7x10A38 to 1.7xlOA38
9 significant figures
5 bytes

The A symbol is used here to describe the range of floating point numbers. In
BASIC, the " operator means 'raised to the power'. Thus PRINT 2 "4 will print
two raised to the power offour: sixteen. So, the number 1.7xlOA38 means 1.7 times
ten raised to the power of 38: 1 with 38 zeros after it.

Another way of denoting powers of ten is to use 'E' notation. The number
1.7x10A38 may be written 1.7E38 in 'E' notation. Similarly, 1 234 567 may be
written 1.234567E6, as the 'E6' part means 'times ten to the sixth', which is a
million. BASIC uses 'E' notation when accepting floating point numbers, and may
be made to print numbers in this way.

23

24

Assigning values to variables

The value assigned to a numeric (floating point or integer} variable can be
specified as:

- a single number
- the current value of another variable
- an expression
- the result of a function.

For example:

LET base

LET he i ght

LET area

LET hypot

3

4

a (base * height) /2

SQR (base* base + height *height)

(base *height) I 2 is a mathematical expression consisting of the variables
base and height, and arithmetic operations to be performed on them.

SQR is a function which returns the square root of a number, in this case the
expression (base*base +height *height).

The above assignments leave the variables with the following values:

base is 3
height is 4
area is 6
hypot is 5

Note that giving a new value to base or height does not automatically update
area or hypot. Once the expression is evaluated using the values of base and
height current at that time, it is forgotten. In other words, area and hypot only
know what value they contain, not how it was obtained.

IABLES AND EXPRESSIONS

The use of LET is optional. For example,

LET x • x+ l

is equivalent to:

x = x-t l

Using LET, however, makes it easier initially to understand what is happening.
On its own x = x+ 1 looks like an unbalanced equation. Using LET makes it clear
that the '=' is not being used in its usual sense but as shorthand for 'become equal':
LET x = x+l can be read as 'let x become equal to its old value with one added to
it'.

An alternative way of expressing this is to use:

X +• 1

This means 'let x become equal to itself with one added to it'. Similarly,

X _ ,. 3

means 'let x become equal to itself with three subtracted from it'.

Special integer variables

The 26 integer variables A% to Z% are treated differently from the others. They
are called resident integer variables because they are not cleared when the
program is RUN, or when NEW or BREAK is used. This means that they can be used
to pass values from one program to another.

A special integer pseudo-variable is TIME. TIME is an elapsed time clock which
is incremented every hundredth of a second while the computer is switched on. It
is used to find out how long something takes by putting the following statements
around a program:

25

26

T% = TIME

PRINT TIME - T%

TIME may be assigned a starting value just like any other variable. So, for
example, the statement above could be replaced by:

TIME = 0

PRINT TIME

Arithmetic operators

The full list of arithmetic operators is given in the table on the following page.
Each operator is assigned a priority. When an expression is being evaluated, this
priority determines the order in which the operators are executed. Priority one
operators are acted upon first, and priority seven last.

IABLES AND EXPRESSIONS

Priority Operator

1 Unary minus
+ Unary plus
NOT Logical NOT
FN Functions
() Brackets
?!$1 Indirection operators

2 Raise to the power

3 * Multiplication
I Division
DIV Integer division
MOD Integer remainder

4 + Addition
Subtraction

5 Equal to
<> Not equal to
< Less than
> Greater than
<= Less than or equal co
>= Greater than or equal to
<< Shift left
>> Arithmetic shift right
>>> Logical shift right

6 AND Logical and bitwise AND

7 OR Logical and bitwise OR
EOR Logical and bitwise Exclusive OR

For example, 12+3 * 4"'2 is evaluated as 12+ (3 * (4 "'2)) and produces the
result 6 0.

27

STRING VARIABLES

28

Operators with the same priority are executed left to right, as they appear in the
expression. Thus, 22 MOD 3/7 is evaluated as (22 MOD 3) /7.

Note that the shift operators are entered by typing two '>'or'<' symbols, and
should not be confused with the «« and ,... characters in the ISO Latinl alphabet.

Assigning values to string variables

String variables may be used to store strings of characters, constituting words and
phrases. Each string can be up to 255 characters long. The following gives some
examples of strings:

day$ p "Monday"

Date$ • "29th February"

space$ - " "

ADDRESS$ k "1 0 Downing Street, London "

Age$ "21"

Note that the variable Age$ is assigned a string containing the two characters '2'
and '1 ', and not the number 21. So, if you type

Real AgeS 21 * 2

the result will not be "42" because BASIC cannot do arithmetic with strings.
Instead, the error message:

Type mismatch: number needed

appears on the screen, indicating that only a string expression can be assigned to a
string variable. A type mismatch error can also be caused by an attempt to
multiply strings, as in:

total$ • "1 2 "*"32"

RIABLES AND EXPRESSIONS

You should note that the 'null' string "" is valid. This is a string containing zero
characters. In comparisons, it is less than any other string (except, of course,
another null string).

In order to obtain a double quotation character, ", in a string, you use two of them
adjacent to each other. For example, to print the string A"here, you would use:

PRINT "A""here"

Joining strings together

Two strings may be joined together, or more correctly speaking concatenated. The
'+' operator is used to indicate this:

10 Road$ = "Downing Street"

20 City$ = " London"

30 PRINT Road$ + " " + City$

Typing RUN produces the following:

Downing Street London

The'+=' operator can also be used, and as the following program shows,
produces the same output as'+':

10 Address$ "Downing Street"

20 Address$ +~

30 Address$ += " London "

40 PRINT Address$

Note, however, that the'-=' operator is meaningless when applied to strings and
produces an error message.

Splitting strings

As well as joining two strings together, the computer can split a string into
smaller sequences of characters. Three functions are provided for doing this.

29

30

- LEFT$ (A$, n) which gives the first (left hand end) 'n' characters of a string.

- RIGHT$ (A$, n) which gives the last (right hand end) 'n' characters of a string.

- MID$ (A$, n, m) which gives 'm' characters from the middle, beginning at the
nth character.

For example,

PRINT LEFT$("HELL0",2) , RIGHT$("THERE",2) , MID$("GORDON",3,2)

gives

HE RE RD

and

10 titles = "Moonlight Sonata"

20 left_of_string$ = LEFT$ (title$, 4)

30 right_of_string$ = RIGHT$ (title$, 6)

4 0 middle_of_string$ = MID$ (title$, 5, 9)

50 PRINT left of string$

60 PRINT right_of_string$

70 PRINT middle_of_string$

produces the following when RUN:

Moon

Sonata

light Son

Each of these functions has a convenient shorthand form:

- LEFT$ (A$) gives all but the last character of the string

- RIGHT$ (A$) gives the last character of the string

IABLES AND EXPRESSIONS

- MID$ (A$, n) gives all the characters from the nth to the last

For example:

10 PRINT LEFT$ ("Hello")
20 PRINT RIGHT$ ("Hello")
30 PRINT MID$ ("Hello", 3)

produces the following:

Hell
0

llo

Replacing part of a string

LEFT$, RIGHT$ and MID$ may be used to replace part of a string. In each case
the number of new characters equals the number of characters being replaced,
and the string stays the same length. The number of characters being changed can
be determined by the length of the replacement string. Thus:

10 A$ - "Hello there."
20 MID$(A$,7) = "Susan"
30 PRINT A$
40 LEFT$(A$) = "Howdy"
50 PRINT A$
60 RIGHT$(A$) - "!"

70 PRINT A$

produces:

Hello Susan.
Howdy Susan.
Howdy Susan!

Alternatively, you can give the maximum number of characters to be replaced.
Then, if the length of the replacement string is less than the given value, all of it is

31

32

used. Otherwise only the first designated number of characters have an effect. For
example,

10 AS a "A BCDEFGHIJ"

20 RIGHTS (A$, 3)

30 PRINT A$

40 LEFTS(A$,4)

so PRINT A$

60 MIDS(A$,4,3)

70 PRINT A$

produces:

ABCDEFGHKL
MNOPEFGHKL

MNOSTUGHKL

= "KL"

~ "MNOPQR"

= " STUVW"

There are also BASIC keywords to produce a long string consisting of multiple
copies of a shorter string, to find the length of a string, and to determine whether
one string is contained within the other. These keywords are:

- STRING$ (n, A$), which returns a string consisting of'n' copies of A$.

- LEN (A$), which gives the length of string A$.

- INSTR (A$, B$), which looks for the string B$ within the string A$ and returns
the position of the first place where it is found.

For example,

PRINT STRING$ (20 , " +-")

produces the output:

+ -+-+- ~ -!- ! -+-+-+-+-+-+-+ -+-+-+-+-+-+-+-

PRINT LEN ("PAUL")

IABLES AND EXPRESSIONS

prints the number '4'

and

A$ - "Grea t Britain"

PRINT LEN (A$)

produces the result 13. Note that the space is treated like any other character.

A$ ~ "Great Britain"

P RI NT INSTR (A$, "it")

prints '9' because the string it is contained in Great Britain at the ninth
position.

If the substring in the INSTR function is not present in the first string, then '0' is
returned. Note also that you can start the search for the substring at any position,
not just from the start of the substring. This is done by specifying a third
parameter, so that for example,

PRI NT I NST R (" ' ello 'ello", '" ello ", 2)

will print '7', since the first occurrence of the substring will be skipped.

H ow characters are represented

Every character and symbol which can be reproduced on the screen is represented
within the computer by a number in the range zero to 255. The system used to
assign numbers to characters and symbols is known as ASCII which stands for
American Standard Code for Information Interchange. It is wise to follow such a
standard so that different computers can all understand the same numerical
alphabet.

BASIC provides a pair of functions for converting characters to their ASCII
number-codes and back again. These are:

- ASC ("A") , which gives the ASCII code of the first character of a string.

33

34

- CHR$ {n), which gives the character string whose ASCII code is 'n'.

Converting between strings and numbers

There are three keywords which convert between strings and numbers:

VAL(A$) , which converts a string of digits A$ into a number.

STR$ {n), which converts the number 'n' into a string.

EVAL {A$) , which evaluates the string A$ as though it were a BASIC
expression.

VAL returns the value of string, up to the first non-numeric character.

For example:

PRI NT VAL (" lOtolO")

prints the value 10, since all the characters after the 't' are ignored. The string
may, however, begin with a'+' or'-'. Thus,

number = VAL(" -5")

assigns the value - 5 to number. If, however, the string does not start with a number
or a plus or minus sign, VAL returns '0'.

EVAL, however, considers the whole string as an expression, allowing operators
and variable names to occur within it. Variables must be assigned values
beforehand.

10 r adius - 5

20 c i rcumference G EVA L (" 2 * PI * r adius")

3 0 PRINT circumf e r ence

RIABLES AND EXPRESSIONS

When this program is run the value printed is 7 8. 53 98163, which is the value of
PI (3.14159265) multiplied by 5 squared.

STR$ performs the opposite conversion to the above two functions. It takes the
number given and returns a string containing the digits in the number. For
example,

10 A 45

20 B - 30.5

30 A$ STR$ (A)

40 B$ STR$ (B)

50 PRINT A + B

60 PRINT A$ + B$

produces the following when it is RUN:

75.5

4530.5

STR$- gives the hexadecimal version. Thus,

10 A • 45

20 A$ • STR$- (A)

30 PRINT A$

produces:

20

For an explanation of hexadecimal numbers, see the chapter: BASES.

35

ARRAYS

36

Arrays are groups of variables. Each array has a name which applies to all
variables in the group. The individual members, known as the elements of the
array, are identified by a subscript. This is a whole number (zero or greater)
indicating the element's position within the array. For example, A (0) is the first
element in the array named 'A', and A (1) is the second element.

The DIM statement informs the computer as to how many elements you wish to use
in the array. For example,

DIM l\ (9)

allocates space in the computer's memory for ten elements, each called 'A', but
each having a different subscript, zero to nine. The DIM statement also assigns the
value zero to each of these elements, which may then be individually assigned
values, just like any other variables. For example:

l\(1) 0 . 56

l\(2) A(l) ~ 4

The example shown above is of a one-dimensional array: it may be thought of as a
line of variables, numbered from 0 to 9 in a sequence. More dimensions may be
used. Two dimensional arrays in which the individual variables are identified by
two subscripts can be thought of as the printing on a 1V screen. Each character
printed on the screen is at a particular position from the left, and a particular
position from the top.

A two dimensional array may be defined as follows:

DIM 8(2,2)

This allocates space for nine elements, each called 'B', and each identified by two
subscripts as shown in the following table:

IABLES AND EXPRESSIONS

B(O,O)
B(l,O)
B(2,0)

B(O,l)
B(l,l)
B(2,1)

B(0,2)
B(l,2)
B(2,2)

Arrays may have as many dimensions as you like, and may hold floating point
numbers, integers, or strings. For example,

DIM string$(1,3,2)

allocates space for 24 string variables, each of them containing up to 255
characters.

The subscript need not be specified as a number - a variable can be used
instead.For example:

10 DIM A (9)

20 X = 6

30 A (X) = 3

40 A(A(X)) = 1

This gives A (6) the value 3, and A (3) the value 1.

Any arithmetic expression may be used as a subscript. Since subscripts can only
be whole numbers, any expression giving a floating point result has the number
truncated to its integer value (the part before the decimal point).

When using arrays, remember that if you DIM the array using a particular
number of subscripts, each element of the array must be referenced with the same
number of subscripts:

10 DIM name$(2,2,2)

20 name$ (0) = "FRED"

produces an error. Line 20 should be replaced by:

20 name$(0,0,0) = "FRED"

37

38

In addition, the numbers used as subscripts must not be too big or less than zero:

10 DIM position(9,4)

20 p osition (- 1, 5) ~ 1

If you now type RUN, an error message is displayed because the first subscript
must be between zero and nine and the second between zero and four.

When you DIM a string array, the elements are initialised, just as they are for
numeric arrays. Each element in the array is set to the null string, "". No space is
allocated for the characters of each string element until they are assigned a value.

The operators += and -= are particularly useful with arrays, as they remove the
need to evaluate the subscript expressions twice. For example, suppose you had
the assignment:

a (lOO* (SI NRAD angle+ l)l ~a(lOO*(SI N RADangle+ ll) +incre ment

The expression 100* (SINRADangle+l) must be calculated twice, which could
be quite time-consuming. On the other hand, if you used

a (100* (SINRADangle+l l l += increment

the complex subscript expression would only be used once, saving time.

Finding the size of an array

Functions are available to find the number of dimensions of an array, and the size
of each dimension. To find the number of dimensions of an array type

PRI NT DI M(A())

To find the number of elements of the nth dimension, type

PRINT DIM(A(),n)

IABLES AND EXPRESSIONS

For example,

10 DIM A (4, 2, 7)

20 n = DIM(A())

30 PRINT n

40 PRINT DIM(A(),n)

produces:

3

7

These functions are useful mainly in procedures and functions which take array
parameters. See the chapter: PROCEDURES AND FUNCTIONS for more
details.

Operating on whole arrays

As described above, every element of an array is given the value zero when the
array is DIMmed. It is possible to set every element in an array to any given value
using a single assignment as follows:

10 DIM A(10), B(10)

20 n% = 2

30 A() = (3*n%)

40 B() = A()

Line 10 dimensions two arrays of the same size. Line 30 sets all of the elements of
A () to 3 *n %, ie 6. Then line 40 sets all of the elements of B () from the
corresponding elements in A () .

In addition, all the elements in an array can be increased, decreased, multiplied
or divided by a given amount:

10 DIM A(2,2), 8(2,2)

20 A(O,O) 4

30 A (1, 1) = 5

39

40

40 A(2 , 2) % 6
50 n\ = 2 : m% = 3

60 A() A() + (n%*n%)

70 A() A() - m%

80 B() A() * 6

90 B() B() I n%

When you RUN this program, the elements of the arrays 'A' and 'B' are assigned
the following values:

Array Value Array Value Array Value

A(O,O) 5 A(O,l) 1 A(0,2) 1
A(l,O) 1 A(l,l) 6 A(1,2) 1
A(2,0) 1 A(2,1) 1 A(2,2) 7

8(0,0) 15 8(0,1) 3 B(0,2) 3
8(1,0) 3 8(1,1) 18 8(1,2) 3
8(2,0) 3 8(2,1) 3 8(2,2) 21

Note that in line 60 the brackets around n%*n% are necessary. The amount being
added, subtracted, and so on may be either a constant, a variable, a function result
or an expression, provided that it is enclosed in brackets.

It is also possible to add, subtract, multiply or divide two arrays, provided that
they are of the same size. In the result, every element is obtained by performing
the specified operation on the two elements in the corresponding positions in the
operands.

For example, for two arrays which have been dimmed A (1 1 1) and B (1 1 1) , the
instruction

A() • A() + B()

is equivalent co the following four instructions:

ARIABLES AND EXPRESSIONS

A (0, 0)

A(0,1)

A(1, 0)

A(1 , 1)

A(O,Ol + 8(0,0)

A(0,1) + 8(0,1)

A(l,O) + 8(1,0)

A(1,1) + 8(1,1)

BASIC will perform proper matrix multiplication on pairs of two-dimensional
arrays. The first index of the array is interpreted as the row and the second as the
column. For example:

10 i • 2:j=3:1< • 4

20 DIM A (i, j) , B (j, l<) , C (i, k)

30

40 REM Set up the array contents ...

50

60 C() = A() .8()

Note that the first dimension of the array must be identical to the first dimension
of the second array.

Also, the matrix multiplication operation can multiply a vector (a one
dimensional array) by a two dimensional matrix to yield a vector. There are two
possible cases:

row() . matrix()

This gives a row vector as the result. The number of elements is equal to the
number of columns in the matrix.

matrix() .column()

This gives a column vector as the result. The number of elements is equal to the
number of rows in the matrix.

The first index of an array is interpreted as the row and the second as the
column.

For example:

41

42

10 i = 2: j - 3

20 DIM row (i), column (jl

30 DIM matrix <L j)

40:

50 REM lines to set up the arrays

200 column() • matrix() .co lumn ()

220 PROCpri nt (co l umn ())

260 row() • row() .matrix()

270 PROCprint (row())

Array operations

Arithmetic operations on arrays are not quite as general as those on simple
numbers. Although you can say a=b*b+c, you cannot use the equivalent
a () =b () *b () +c () . Instead, you would have to split it into two assignments:

a() b() *b()

a() a() +c()

Also, the only place these array operations may appear is on the right hand side
of an assignment to another array. You cannot, for example, say PRINT a () * 2.

The table below gives a complete list of array operations.

<array> <array> Copy all elements
<array> -<array> Copy all elements, negating
<array> <array> + <array> Add corresponding elements
<array> <array> - <array> Subtract corresponding elements
<array> <array> * <array> Multiply corresponding elements
<array> <array> I <array> Divide corresponding elements

<array> <factor> Set all elements

<array> <array> + <factor> Increment all elements
<array> <factor> + <array>
<array> += <expression>

ARIABLES AND EXPRESSIONS

<array> = <array> - <factor> Decrement all elements
<array> = <factor> - <array>
<array> -= <expression>

<array> <array> * <factor> Multiply all elements
<array> <factor> * <array>

<array> <array> I <factor> Divide all elements
<array> <factor> I <array>

<array> <array> <array> Matrix multiplication

<array> means any array variable. All of the operations on two arrays require
arrays of exactly the same size and type (real and integer arrays are treated as
different types for this purpose). Only the assignment and concatenational
operations are available on string arrays.

<factor> means a simple expression, such as 1, LENA$ or " HELLO " . If you
want to use an expression using binary operators, it must be enclosed in brackets:
(a+b).

The arrays used in these operations may all be the same, or all be different, or
somewhere in between. For example, you are allowed to use:

a() b() + c()

a() a() + c()

a() a() + a ()

The matrix multiplication operator works on two arrays which must be
compatible in size. This means that in the assignment

a () = b().c()

the following DIMs must have been used:

43

44

DIM b(i,j)

DIM c(j,k)

DIM a(i,k)

In addition, the following would be permitted:

DIM b (i. j)

DIM c(j)

DIM a (i)

or

DIM b(j)

DIM c (j,k)

DIM a(j)

UTPUTTING TEXT

PRINT FORMA TTlNG

The PRINT statement provides a number of ways of formatting the printed
output.

Using print separators

The items in a PRINT statement can be separated by a variety of different
punctuation characters. Each of these characters affects the way in which the text is
formatted:

Items separated by semicolons are printed one after the other, with no spaces.
Items separated by commas are tabulated into columns.

- Items separated by apostrophes are printed on separate lines.

The following program demonstrates this:

10 PRINT "Hello" "Hello ","Hello"'"What's going on here then?"

Typing RUN produces the following output:

Hello Hello Hello
What's going on here then?

Printing numbers

Numbers are printed in the same way as text:

10 A% - 4
20 PRINT 4;" ";A%

45

46

Typing RUN produces:

4 4

Numbers are normally printed (displayed) as decimal values unless they arc
preceded by a'-', in which case they arc given in hexadecimal notation
(hexadecimal numbers are discussed in the chapter: BASES):

10 PRINT 10
20 PRINT &10
30 PRINT -10
40 PRINT -&10

produces:

10
16
A
10

Defining fields

The columns controlled by commas are called fields. By default a field is ten
characters wide. Each string which is printed following a comma starts at the left
hand side of the next field. In other words using commas is a convenient method of
left-justifying text. Numbers, on the other hand, are displayed to the right of the
next field, so that the units of integers, or the least significant decimal places of
floating point numbers, line up. Thus,

10 FOR N% - 1 TO 5
20 A$ = LEFT$ ("Hello", N%)
30 B%- N%*10~(N%-1)

40 PRINT A$,A$,A$,A$'B%,B%,B%,B%
50 NEXT N%

produces the following when RUN:

UTPUTTING TEXT

H H H H

1 1 1 1

He He He He

20 20 20 20
Hel Hel Hel Hel

300 300 300 300

Hell Hell Hell Hell

4000 4000 4000 4000

Hello Hello Hello Hello

50000 50000 50000 50000

Using@% to alter output

Problems may occur when printing out floating point numbers. For example:

PRINT 6,9,7/3,57

produces:

6 92.33333333 57

The nine and the decimal equivalent of 7/3 run into each other.

To prevent this, you can alter the field width or limit the number of decimal
places printed (or both) by using the integer variable @%.To see the effect of
altering the value of@%, type ·

@% ~ &20408

then

PRINT 6,9,7/3,57

and the following is produced:

6.0000 9.0000 2.3333 57.0000

47

THE TEXT CURSOR

48

The assignment of the variable @% is made up of a number of parts:

- & indicates that a hexadecimal number follows.

- The first number indicates the format of the print field, two means the
computer prints a fixed number of decimal places.

- Zero and four indicate the number of decimal places required.

- Zero and eight give the field width.

The format: the first figure after the'&' symbol, can take three values:

- Zero is the default configuration; the computer uses the number of decimal
places it requires up to a maximum of ten.

- One gives numbers in exponent form: a number between one and 9.99999999
followed by 'e' and then a power of ten.

- Two gives a number to a fixed number of decimal places giving up to a
maximum of ten significant figures.

Sec PRINT in the chapter: SYNTAX AND USAGE OF BASIC KEYWORDS
for more details on @%.

Text cursor coordinates

When text is entered at the keyboard or displayed using the PRINT statement,
the position it appears at on the screen depends on the location of the text cursor.
As each character is printed, this cursor moves on to the next character position.

Initially, the text cursor is at the top left-hand corner of the screen, which is
position (0, 0). The number of possible positions for the cursor depends on the
screen mode. For example, in MODE 1 which has 40 characters across the screen

0,0

0,31

UTPUTTING TEXT

and 32 rows, the coordinates it can have vary as follows:

---------------[> 39,0

Altering the position of the text cursor

You can use TAB with one parameter to control the position of the text cursor. For
example:

PRINT TAB(x)"Hello"

It works as follows. If the current value of COUNT (which holds the number of
characters printed since the last newline) is greater than the required tab column
(ie 'x'), a newline is printed. This moves the cursor to the start of the next line, and

49

50

resets COUNT to zero. Then 'x' spaces are printed, moving the cursor to the
required column.

Note that it is possible to tab to column 60 in a 40 column mode; the cursor will
simply move to column 20 of the line below the current one. Using TAB with one
parameter to position the cursor on the line will also work, for example, when
characters arc sent to the printer, as it is just printing spaces to achieve the desired
tabulation.

On the other hand, TAB with two arguments works in a completely different way:
it uses the Archimedes operating system to position the cursor at a specified
position on the screen- this is relative to the screen 'home' position, which is
normally the top left.

If you try to position the cursor on, say, column 60 in a 40 column mode, the
command will be ignored. Furthermore, this kind of tabbing does not affect any
characters being sent to the printer.

The VDU statement

In addition to TAB, there are other methods of altering the position of the cursor.
If, for example, you type

10 PRINT "A";

20 VDU 8

30 PRINT "8"

PRINT "A"; prints an 'A' at the current cursor position and moves the cursor one
place to the right. VDU 8 moves the cursor back one position so that it is underneath
the 'A'. Hence, PRINT "B" prints a 'B' at the same position as the 'A', and so rubs it
out.

UTPUTIING TEXT

VDU 8 Moves the cursor back one space
VDU 9 Moves the cursor forwards one space
VDU 10 Moves the cursor down one line
VDU 11 Moves the cursor up one line
VDU 12 Clears the screen and puts the cursor at the top left
VDU 13 Moves the cursor to the beginning of the line

For detail of these and other effects available with VDU sec the chapter: VDU
COMMANDS.

DEFINING YOUR OWN CHARACTERS

Each character is made up of a pattern of dots on an eight by eight grid. All
normal letters, numbers and so on arc pre-defined in this way. It is possible,
however, to define your own characters with ASCII values in the range 32 to 255.
To do this, use the vou 23 command, followed by the code of the character you
wish to define and then eight integers, each representing one row of the character,
from top to bottom. The bit pattern of each integer defines the sequence of dots
and spaces: one gives a dot and zero gives a space.

To set up character 128 to be the shape shown above, use the following:

VDU 23,128,24,60,126,219,126,36,66,129

Then, to displ ay this character, type

PRINT CHR$ (128)

<:;1

52

NPUTTING INFORMATION

INPUTTING DATA FROM THE KEYBOARD

INPUT

The INPUT statement allows a program to request information from the user. The
following program gives an example:

10 PRINT "Give me a number and I'll double it";

20 INPUT X

30 PRINT "Twice ";X " is ";X*2

When you RUN this program, the INPUT command on line 20 displays a question
mark on the screen and waits for you to enter data. The number you type is
assigned to the variable 'X'. If you do not type anything or type letters or symbols
instead, 'X' is assigned the value 0.

INPUT may also be used with string and integer variables:

10 PRINT "What is your name ";
20 INPUT A$

30 PRINT "Hello ";A$

Line 10 in each of the above two programs is used to print a message on the screen
indicating the type of response required. The INPUT statement allows text
prompts to be included, so the program above could be written more neatly as:

10 INPUT "What is your name ",A$

20 PRINT "Hello ";A$

The comma in line 10 tells the computer to print a question mark when it wants
input from the keyboard. If you leave out the comma, the question mark is not
printed. A semi-colon may be used, with exactly the same effect as the comma.

When the program is being executed, the INPUT statement requires you to press
g if you wish to send what you have typed to the computer. Until you press Q,
you can delete all or part of what you have typed by pressing IDelelel •

53

54

When you are inputting a string, the computer ignores any leading spaces and
anything after a comma, unless you put the whole string inside quotation marks.

To input a whole line of text, including commas and leading spaces, INPUT LINE
may be used:

10 INPUT A$
20 INPUT LINE B$
30 PRINT A$
40 PRINT B$

RUN the above program and, in response to each of the question marks, type

Hello, how are you?

This produces the following output:

Hello
Hello, how are you?

Several inputs may be requested at one time:

10 INPUT A,B,C$

You may enter the data individually, pressing G;!) after each one. In this case you
arc prompted with a question mark until you enter the number required.
Alternatively, you can give all the inputs on one line, separated by commas.

GET and GET$

GET$ may be used to read a single key press:

10 PRINT "Press a key"
20 A$ - GET$
30 PRINT "The key you pressed was ";A$

NPUTTING INFORMATION

In this example the program waits at line 20 until you press a key. As soon as you
do so, the character that key represents is placed in A$. You do not have to press
(d and so do not get the chance to change your mind.

GET is similar to GET$ but returns the ASCII code of the key pressed, instead of
the character.

INKEY and INKEY$

INKEY$ is similar to GET$, except that it does not wait indefinitely for a key to
be pressed. You give it a time limit and it waits for that length of time only. For
example:

10 PRINT "You have 2 seconds to press a key"
20 A$ - INKEY$(200)

The number following the INKEY$ is the number of hundredths of a second it
waits. If a key is pressed in time, A$ holds the character which was typed.
Otherwise, A$ is empty.

INKEY is used in a similar manner to INKEY$: it waits for a given time for a key to
be pressed, and then returns the ASCII code for the key pressed, or -1 if no key is
pressed within this time.

INCLUDING DATA AS PART OF A PROGRAM

Predefined data may be included within a program and saved as part of it. When
the program is RUN, individual items of data are read and assigned to variables
as follows:

10 FOR I% - 1 TO 4
20 READ age%, dog$
30 PRINT "Name: ";dog$ " Age: "; age%

55

56

40 NEXT I\
SO DATA 9,"Laddie",3,"Watson"
60 DATA 1
70 DATA "Mungo",3,"Honey"

You may use as many DATA statements as you like, but you must make sure that
the type of each item of data matches the type of the variable into which it is being
read. Each DATA statement can be followed by one or more items of data
separated by commas.

You can usually leave out the quotation marks around strings, but they are needed
if you want to include spaces or commas in the string.

For example,

10 DATA Hello, my name is

20 DATA Rose
30 READ A$,8$

40 PRINT A$;8$

produces:

Bellomy name is

To obtain the sentence Hello, my name is Rose, change the program as
follows:

10 DATA "Hello, my name is"
20 DATA •• Rose"

30 READ A$,8$

40 PRINT A$;8$

A DATA statement must appear as the first statement on a line, otherwise it will
not be found. If the computer reaches a DATA statement while executing a
program, it ignores it and goes on tO the next line.

NPUTTING INFORMATION

When it attempts to READ the first item of data, it scans through the lines of the
program from the top until it finds the first DATA statement and uses the first item
of data on this line. The next READ uses the second item and so on until the DATA

statement has no more items left, at which point the next DATA statement is
searched for and used.

If there is insufficient data, the computer produces an error message, such as:

Out of data at line 20

This indicates that it has tried to READ an item of data, but that all items have
already been read.

In general, if you use line numbers anywhere in a program (and there should be
very few situations where you have to), they should be simple numbers in the
range 0 to 65279, not expressions. Otherwise, if the program is renumbered, it
will stop working since BASIC does not know how to change the RESTORE
expression in the right way.

57

58

ASIC CONTROL STATEMENTS

IF ... THEN ... ELSE

Normally, lines in a BASIC program are executed by the computer in sequence,
one after the other. The language includes two types of structure which alter this
sequence:

Conditional structures allow statements to be executed only if certain conditions
are met.

Loop structures allow statements to be executed repeatedly, either for a fixed
number of times, or until a certain condition is met.

In all cases, the code is easier to read if it is clear which statements are in the loop
and which are conditional on certain factors. This clarity can be achieved by usc of
the LIS TO command before listing the programs, to indent the conditional and
loop structures in the listing. All programs included in this chapter arc listed as
if the command:

LISTO 3

had been typed beforehand; this gives a space after the line number and indents
structures.

The IF statement may be used to enable the computer to make a choice about
whether or not to execute a statement or group of statements. For example:

10 PRINT "What is 2 * 4"
20 INPUT ans%
30 IF ans%- 8 THEN PRINT "Well done" ELSE PRINT "No- you're wrong"

Line 30 contains a conditional expression. In the example shown the expression is
TRUE (ie has a non-zero value) when ans% is equal to eight, and is FALSE (ie has
a zero value) othetwise.

Three kinds of operators may be used in conditional expressions:

59

60

- numerical operators
string operators

- logical operators.

The following table lists the operators and their meaning:

Numerical operators

Operators Meaning

A B TRUE when A is equal tO B

A < B TRUE when A is less than B

A > B TRUE when A is greater than B

A <= B TRUE when A is less than or equal to B

A >= B TRUE when A is greater than or equal to B

A <> B TRUE when A is not equal to B

String operators

Operators Meaning

A$ = B$ TRUE when A$ and B$ are the same

A$ <> B$ TRUE when A$ and B$ are different

A$ < B$ String comparisons; see below:
A$ > B$

A$ <= B$
A$ >~ B$

Corresponding characters of each string are examined until either they are
different, or the end of a string is reached. If the strings are the same length, the

ASIC CONTROL STATEMENTS

strings are said to be equal; otherwise, the shorter string is less than the longer
one.

In the case where the two corresponding characters differ, the relationship
between the strings is the same as that between the ASCII codes of the mis
matched characters. For example, "HI" < "Hi", because the ASCII code of
upper case I is less than that of lower case i.

Logical operators

Operators Meaning

NOT A TRUE when A is false

A AND B TRUE if both A and B are true

A OR B TRUE if either A orB or both are true

A EOR B TRUE if either A or B but not both are true

If the result of the conditional statement ans% = 8 is TRUE, the computer executes
only the statement after the THEN. Otherwise, it executes only the statement after
the ELSE.

Several statements can be included after an IF statement; they will all only be
executed if the condition is true. For example:

IF ans% = 8 THEN PRINT "Well done" : answerscorrect% +- 1

IF ... THEN ... ELSE ... ENDIF

A block structured IF ... THEN ... ELSE ... END IF statement is available. It
executes a series of statements, which may be split over several lines,
conditionally on the result of the IF expression.

10 n% - RND (10)
20 m% RND(10)

61

62

30 PRINT "What is .. ;n% II * "m%;

40 INPUT ans%
so IF ans% - n% *IZ m%1Z THEN

60 PRINT "Well done"

70 ELSE PRINT "No - you're wrong"

80 PRINT n%;" * ";m% .. - ";n%*m%

90 END IF
100 RUN

The END IF on line 90 terminates the statement. It indicates that execution of the
following statements is not dependent on the outcome of the conditional
expression on line 50, so these statements are executed as normal. Without the
END IF the computer has no way of knowing whether or not the statements on lines
80 and 100 belong to the ELSE part.

There are certain rules which must be obeyed when using
IF ... THEN ... ELSE ... END IF constructions:

- The first line must take the form:

IF <conditional expression> THEN

THEN being the last item on the line.

- The ELSE need not be present, but if it is, it must be the first thing on line
(excluding spaces).

- The END IF statement must be the first thing on a line (excluding spaces).

IF ... THEN ... ELSE ... END IF statements may be nested: one may occur inside
another. For example:

10 DIM A% (10)
20 count% - 0
30 PRINT "Give me an integer between 0 and 9 ";
40 INPUT number%
SO IF number% >- 0 AND number% <- 9 THEN

FOR ... NEXT

IC CONTROL STATEMENTS

60 IF A%(number%) = 0 THEN
70 PRINT "Thank you"
80 A%(number%) - 1 : count%- count\+ 1
90 ELSE PRINT "You've already had that number"

100 ENDIF
110 ELSE PRINT number% " is not between 0 and 9 !"

120 ENDIF
130 IF count% < 10 GOTO 30

The FOR and NEXT statements are used to specify the number of times a block of
a program is executed. These statements are placed so that they surround the
block to be repeated:

10 FOR N% - 1 TO 6
20 PRINT N%
30 NEXT N%

Type RUN and the following is produced:

1

2

3
4

5
6

The variable N% is called the control variable. lt is used to control the number of
times the block of code is executed. The control variable can be started at any
number you choose, and you may alter the step size: the amount by which it
changes each time round the loop.

10 FOR N% - -5 TO 5 STEP 2
20 PRINT N%
30 NEXT N%

63

64

This program produces:

-5
-3
-1

1

3
5

The step size can be negative so that the control variable is decreased each time. It
does not have to be an integer value. You can also use a decimal step size,
although this is not generally advisable. The reason is that numbers such as 0.1 are
not exactly representable in the binary format used by the computer. This means
that when the step is added to the looping variable several times, small errors
may accumulate. You can see this by typing the program:

10 FOR i-0 TO 100 STEP 0.1
20 PRINT i

30 NEXT i

The looping variable i never quite reaches 100.

FOR ... NEXT loops may be nested. For example,

10 FOR N - 3.0 TO -1.0 STEP -2 .0
20 FORM- 2.5 TO 2.9 STEP 0.2
30 PRINT N,M
40 NEXT M
50 NEXT N

produces:

C CONTROL STATEMENTS

3 2.5
3 2.7
3 2.9
1 2.5
1 2 . 7
1 2.9

-1 2.5
-1 2.7
-1 2.9

You do not need to specify the control variable to which NEXT refers. The
following program produces the same results as the one above:

10 FOR N • 3.0 TO -1 . 0 STEP -2.0
20 FOR M • 2.5 TO 2.9 STEP 0.2
30 PRINT N,M
40 NEXT
50 NEXT

The computer assumes that NEXT applies to the most recent FOR.

If you put variable names after NEXT but mix them up as shown,

10 FOR N - 3.0 TO -1.0 STEP -2.0
20 FORM • 2.5 TO 2.9 STEP 0.2
30 PRINT N,M
40 NEXT N
50 NEXT M

the output produced is:

3.0 2.5
1.0 2.5

-1.0 2.5

Not in a FOR loop at line 50

65

66

Loops must be nested totally within each other: they must not cross. In the above
example, the 'N' and 'M' loops arc incorrectly nested. The computer tries to RUN

the program, but when line 50 is reached, it gives an error message indicating that
it cannot match the FOR statements with the NEXT statements.

The loop is ended when the control variable is:

- equal to or greater than the terminating value when a positive step size is used.

- equal to or less than the terminating value when a negative step size is used.

The loop is performed in the following sequence:

- Assign the initial value to the control variable.

- Execute the block of code.

- Increment the control variable by the step size.

- Test against terminating value, and if it is to be performed again, go back to 2.

One of the consequences of the way in which the loop is performed is that the
block of code is always executed at least once. Thus,

10 FOR N - 6 TO 0
20 PRINT N
30 NEXT

produces:

6

FOR ... NEXT loops are very versatile, since the initial and terminating values and
the step size can be assigned any arithmetic expression containing variables or
functions. For example:

REPEAT ... UNTIL

CONTROL STATEMENTS

10 REM Draw a sine curve
20 MODE 0 : MOVE 0,512
30 PRINT "Please give me a step size
40 INPUT step
50 ~OR angle - -2*PI TO 2*PI STEP step
60 DRAW 100*angle, 100*SIN(angle)+512
70 NEXT
80 END

The REPEAT ... UNTIL loop repeats a block of code until a given condition is
fulfilled. For example:

10 REM Input a number in a given range
20 REPEAT
30 PRINT "Please give me a number between 0 and 9 "
40 INPUT N
50 UNTIL (N >- 0) AND (N <= 9)
60 PRINT "Thank You"

If the result of the conditional expression following the UNTIL is TRUE, then the
loop is ended and the statement following the UNTIL is executed. If, however, the
result of the expression is FALSE, the block of code after the REPEAT is executed
again and the conditional expression is re-evaluated.

REPEAT ... UNTIL loops may be nested in the same way as FOR ... NEXT loops.
They are also similar to FOR loops in that the body of the loop is always done
once, since no test is done until the end of the loop is reached.

10 REM Repeat questions until answered right first time
20 REPEAT
30 tries% = 0
40 REPEAT
50 PRINT "What is 20 * 23 + 14 * 11 ";
60 INPUT ans%
70 tries% +- 1

67

WHILE ... ENDWHILE

68

80 UNTIL ans% - 20 * 23 + 14 * 11
90 REPEAT

100 PRINT "What is 12 + 23 * 14 + 6 I 3 ";
110 INPUT ans%
120 tries% += 1
130 UNTIL ans% = 12 + 23 * 14 + 6 I 3
140 UNTIL tries% - 2;

The WHILE ... ENDWHILE loop repeats a block of code while a given condition
holds true. For example:

10 X - 0
20 WHILE X < 100
30 PRINT X
40 X +- X + RND (5)
50 ENDWHILE

The WHILE ... ENDWHILE loop has a conditional expression at the start of it. If this
expression returns TRUE, the block of statements following the WHILE, down to
the ENDWHILE statement, is executed. This is repeated until the expression
returns FALSE, in which case execution jumps to the statement following the
ENDWHILE.

WHILE ... ENDWHILE is very similar to REPEAT ... UNTIL except that the
conditional expression is evaluated at the beginning of the loop and the loop is
executed again only if the result is TRUE. The following program demonstrates
the fact that REPEAT ... UNTIL loops are always executed at least once, whereas
the WHILE ... ENDWHILE loops need not be executed at all.

10 REPEAT
20 PRINT "Repeat"
30 UNTIL TRUE
40
50 WHILE FALSE
60 PRINT "While"

IC CONTROL STATEMENTS

70 ENDWHILE
80
90 PRINT "All done"

This program produces the following output:

Repeat
All done

CASE ... OF ... WHEN •.. OTHERWISE ... ENOCASE

The IF ... THEN ... ELSE ... END IF construct is useful if you wish to make a choice
between two alternatives. The CASE statement can be used when there are many
alternatives to be acted upon in different ways.

The following program is a keyboard controlled sketch pad. The statements after
the WHENs alter the values of X% andY%, and then DRAW a line.

10 REM Draw a line depending on the L,R,U,D keys

20 MODE 0
30 MOVE 640,512

40 X\ - 640: Y\ - 512
50 REPEAT
60 CASE GET$ OF
70 WHEN "L","l 11

: X\

80 WHEN "R .. ,"r": X%

90 WHEN "D","d": n
100 WHEN "U","u": Y%
110 ENDCASE

40: DRAW X\,Y\

+- 40: DRAW X\, Y\

40: DRAW X\,Y%

+- 40: DRAW X\, Y\

120 UNTIL FALSE : REM go on forever ...

REM go
REM go
REM go
REM go

left
right
down
up

This program reads in the character of the next key pressed and checks it against
each of the strings following the WHEN statements. If it matches one of these
values, the statements following WHEN are executed. The computer then finds the
ENDCASE and continues executing from there.

69

70

If you press a key which is not recognised by any of the four WHEN statements, the
program goes round again and waits for another key to be pressed. You can
include another line to warn you that you pressed the wrong key. For example:

105 OTHERWISE VDU 7 : REM Make a short noise

The OTHERWISE statement is used if none of the WHENs finds a matching key. The
VDU 7 makes a short bell sound to warn you that you have pressed the wrong key.

The following rules apply to CASE statements:

- CASE must be followed by an expression and then OF. This statement must be
at the end of the line.

- Each WHEN must start at the beginning of a line. It may be followed by one or
more values, separated by commas.

- The statements dependent on a WHEN may follow it on the same line after a
colon ' : ', or be spread over several lines following it.

- OTHERWISE is optional. If present it must be at the beginning of a line.

- An ENDCASE statement must be present. Like WHEN and OTHERWISE, it must
be the first non-space item on a line.

Whenever the result of the expression matches one of the values listed after a
WHEN, all the statements following this WHEN down to the next WHEN or
OTHERWISE or ENDCASE are executed. The computer then finds the statement
following the ENDCASE. This means that if the result matches a value in more than
one list, only the statements following the first one are executed: the others arc
ignored. Since OTHERWISE matches any value, having WHEN statements following
an OTHERWISE is pointless since they can never be reached.

The following gives another demonstration of its use:

10 REM Guess a number

20 X% - RND(lOO)

GOTO

IC CONTROL STATEMENTS

30 Still_guessing% - TRUE

40 tries% - 0
50 WHILE Still_guessing%
60 INPUT "What is your guess ",guess%
70 CASE guess% OF
80 WHEN X%:
90 PRINT "Well done, you've guessed it after ";tries% " attempts"

100 Still_guessing% FALSE
110 WHEN X%-1,X%+1: PRINT "Very close" : tries% -tries% + 1
120 OTHERWISE
130 IF guess%<X% THEN PRINT "Too low" ELSE PRINT "Too h igh"
140 tries% = tries% + 1
150 ENDCASE
160 ENDWHILE

Like all the other BASIC structures, CASE statements may be nested.

The GOTO instruction may be used to specify a line number from which the
computer is to continue executing the program. For example:

10 PRINT "Hello"
20 GOTO 10

Whenever the computer executes line 20 it is sent back to line 10 once again. Left
on its own, this program never ends. To stop it, press !Escape!

GOTO instructions send the control of the program either forwards or backwards.
The specified line number may be given as an expression. For example:

10 start% - 100
20 GOTO (start%+10)
30 PRINT "This line should not be executed"

100 REM start of the action
110 PRINT "Hello"
120 END

71

GOSUB ... RETURN

72

Using a variable, however, as the destination for a GOTO is not recommended
because while RENUMBER changes the line numbers, it does not alter GOTO
destinations that are given as anything other than a constant. If you must usc an
expression, it is best to put in inside brackets, since BASIC may get confused if
the expression starts with a number.

If you wish to make your programs easy to read, especially for other people, use
as few GOTOs as possible because they make a program very difficult to follow.
It is far better to use one of the loop constructs like REPEAT ... UNTIL which have
been described above.

GOSUB stands for 'go to subroutine' and is another variation of GOTO. Instead of
continuing indefinitely from the line number which is jumped to, the lines are
executed until a RETURN statement is reached. The computer then jumps back to
the instruction which comes after the GOSUB. For example,

10 GO SUB 100
20 PRINT "This is printed after the first GOSUB returns"

30 GO SUB 100
40 PRINT "This is printed after the second GOSUB returns"
50 END

100 PRINT "This is printed in the GOSUB"
110 RETURN

produces:

This is printed in the GOSUB

This is printed after the first GOSUB returns
This is printed in the GOSUB
This is printed after the second GOSUB returns

Like GOTO, GOSUB should be used sparingly. Better methods of providing blocks
of code, which once executed then return control back to the point from which they
were called are described in the chapter: PROCEDURES AND FUNCTIONS.

ON ... GOTO/GOSUB

IC CONTROL STATEMENTS

The ON ... GOTO statement is used to choose one of a number of different lines
depending on the value of a given expression. For example:

10 PRINT "Input a number between 1 and 4"

20 INPUT N%
30 ON N% GOTO 60, 100, 80, 120

60 PRINT "Your number is 1"

70 GOTO 999
80 PRINT "Your number is 3"
90 GOTO 999

100 PRINT "Your number is 2"
110 GOTO 999
120 PRINT "Your number is 4"
999 END

The computer checks the value of N% which is input, then jumps to the N%th line
number in the list. IfN% is three, the computer starts executing at line 80 and so on.
lfN% is less than one or greater than four, the error message
ON range at line 30 is displayed.

ELSE is used to catch all other values. It is followed by a statement which is
executed if the value of the expression has no corresponding line number. For
example, line 30 above could be replaced by:

30 ON N% GOTO 60,100,80,120 ELSE PRINT "Number out of range"
40 GOTO 999

Now, when the program is run, ifN% is not between 1 and 4 the message
Number out of range is displayed and the program ends normally.

ON ... GO SUB acts in exactly the same way:

73

74

10 PRINT " Input a number between 1 and 4"

20 INPUT N%

30 ON N% GO SUB 60, 100, 80, 120

40 END
60 PRINT "Your number is 1"

70 RETURN

80 PRINT "Your number is 3"

90 RETURN
100 PRINT "Your number is 2"

110 RETURN
120 PRINT "Your number is 4"

130 RETURN

Note, however, that when writing new programs, it is better to use CASE structures
rather than the ON ... GOTO ... GO SUB constructs.

OCEDURES AND FUNCTIONS

Procedures and functions provide a way of structuring a program by grouping
statements together and referring to them by a single name. The statements can be
executed from elsewhere in the program simply by specifying the procedure or
function name. In addition, a function returns a value.

DEFINING AND CALLING PROCEDURES

Procedure names begin with the keyword PROC, followed by a name.The
following shows how a procedure may be defined and called:

10 MODE 12
20 PRINT TAB(0,10)"Countdown commencing ";
30 FOR N% ~ 30 TO 1 STEP -1
40 PRINT TAB(22 ,10) II II TAB(22,10);N%;
50 PROCwait 1 second
60 NEXT
70 PRINT TAB(O,lO) "BLAST OFF";STRING$(14," ")
80 END
90

100 DEF PROCwait 1 second

110 TIME - 0
120 REPEAT
130 UNTIL TIME >= 100
140 ENDPROC

The important points about procedures are:

75

- The procedure definition must start with DEF PROC followed by the procedure
name.

- The procedure definition must end with the keyword ENDPROC.

- Procedures are called by the keyword PROC followed by the procedure name.

- Procedure names obey the same rules as variable names, except that they arc
allowed to start with a digit. Procedure names can also include or start with
reserved words such as PROCTO.

- The main body of the program must be separated from the procedure
definitions by an END statement.

Procedures enable you to split up a large amount of code into smaller distinct
sections which are easy to manage. The main body of a program can then consist
almost entirely of procedure calls, so that it can remain short and easy to follow
(since it should be obvious from the procedure names what each call is doing).

PARAMETERS AND LOCAL VARIABLES

76

Consider the following program:

10 REM Draw boxes centred on the screen
20 MODE 12

30 FOR N% - 1 TO 10
40 PRINT "What size do you want the next box to be ";
50 INPUT size
60 IF size < 1024 THEN PROCbox(size) ELSE PRINT "Too large"
70 NEXT
80 END

100 DEF PROCbox(edge)
110 RECTANGLE 640-edge/2, 512-edge/2, edge, edge
120 ENDPROC

The procedure PROCbox draws a box around the centre of the screen. The size of
this box is determined by the value of the variable edge. This variable has the

ROCEDURES AND
FUNCTIONS

current value of size assigned to it each time the procedure is called from line
60. The values being passed to the procedure are known as actual parameters. The
variable edge used within the procedure is known as a formal parameter.

A procedure can be defined with more than one parameter. However, it must
always be called with the correct number of parameters. These parameters may
be integers, floating point numbers, strings or arrays. If a string variable is used
as a formal parameter, it must have either a string or a string variable passed to it.
Floating point and integer parameters may be passed to one another and
interchanged freely, but remember that the fractional part of a floating point
variable is lost if it is assigned to an integer variable.

The formal parameters of a procedure are local to that procedure. This means
that assigning a value to any variable within the procedure does not affect any
variable elsewhere in the program which has the same name. In the following
program, the procedure PROCsquare has a parameterS % which is automatically
local. It also contains a variable, J%, which is declared as being LOCAL.

10 FOR I% - 1 TO 10
20 PROCsquare(I%)
30 PROCcube (I%)

40 NEXT
50 END
60

100 DEF PROCsquare(S%)
110 LOCAL J\
120 J% - S% "' 2
130 PRINT S% " squared equals "J%;
140 ENDPROC
150
200 DEF PROCcube (I\)
210 H-I% A 3

220 PRINT " and cubed equals "; I%
230 ENDPROC

77

78

In the case of PROCcube, the actual parameter passed and the formal parameter
rcfcred to within it are both called I%. This means that there are two versions of
the variable, one inside the procedure and another outSide it. Adding the line

35 PRINT I\

to the program above printS out the numbers 1 to 10, showing that the assignment
to I% within PROCcube does not affect the value of I% in the main body of the
program.

It is good practice to declare all variables used in a procedure as LOCAL, since
this removes the risk that the procedure will alter variables used elsewhere in the
program.

When declaring a local array, the LOCAL statement must be followed by a DIM
statement to dimension the local array. For example, consider the following
function which, when passed two vectors of the same size, returns their scalar
product:

100 DEF FNscalar_product(A(),B())
110 REM ** Both arrays must have a dimension of 1 **
120 IF DIM(A()) <> 1 OR DIM(B()) <> 1 THEN
130 PRINT "Vectors required"
140 -o
150 ENDIF
160 REM ** Both arrays must be the same size **
170 IF DIM(A(),1) <> DIM(B() ,1) THEN
180 PRINT "Vectors must be of same size"
190 =0
200 ENDIF
210 REM ** Create a temporary array of the same size **
220 LOCAL C ()
230 DIM C(DIM(A(),1))
240 REM ** Multiply the corresponding elements and place in C() **
250 C() - A()*B()
260 REM ** Finally sum all the elements of C() **
270 -SUM (C ())

ON ... PROC

ROCEDURES AND
FUNCTIONS

This example uses a function instead of a procedure. The two structures are very
similar, but they are used in slightly different circumstances. PROCs are used
wherever a statement can be executed. FNs are used in expressions, wherever a
built-in function might be used. Whereas procedures end with an ENDPROC
statement, functions return using =<expression>. The expression is returned as
the result of the function call. Note that SUM is a built-in function.

Value-result parameter passing

The simple parameter passing scheme described above is known as value
parameter passing because the value of the actual parameter is copied into the
formal parameter, which is then used within the procedure. The result of any
modification to the formal parameter is not communicated back to the actual
parameter. Thus the formal parameter is entirely local.

BASIC provides a second method of parameter passing known as value-result.
This is just like the simple value mechanism in that the actual parameter's value is
copied into the formal parameter for use inside the procedure. The difference is,
however, that when the procedure returns the final value of the formal parameter
is copied back into the actual parameter. Thus, a result can be passed back.

A statement specifying that you wish to pass a result back for a particular
parameter should be preceded by the keyword RETURN. For example:

100 DEF PROCorderedswap(RETURN A,RETURN B)
110 IF A > B SWAP A,B
120 ENDPROC

ON ... PROC is similar to ON ... GOTO which is described in the chapter: BASIC
CONTROL STATEMENTS. It evaluates the expression given after the ON
keyword. If the value N% is given, it then calls the procedure designated by N% on
the list. For example:

10 REPEAT
20 INPUT "Enter a number " ,num

79

30 PRINT "Type 1 to double it"
40 PRINT "Type 2 to square it"
50 INPUT action
60 ON action PROCdouble(num), PROCsquare(num)

70 UNTIL FALSE
100 DEF PROCdouble(num)
110 PRINT "Your number doubled is ";num*2

120 ENDPROC
200 DEF PROCsquare(num)
210 PRINT "Your number squared is ";num*num
220 ENDPROC

Note, however, that in most circumstances, the CASE statement provides a more
powerful and structured way of performing these actions.

RECURSIVE PROCEDURES

80

A procedure may contain calls to other procedures and may even contain a call to

itself. A procedure which does call itself from within its own definition is called
a recursive procedure:

10 PRINT "Please input a string ·"
20 INPUT A$
30 PROCremove_spaces(A$)
40 END

100 DEF PROCremove_spaces(A$)
110 LOCAL pos_space%
120 PRINT A$
130 pos_space%•INSTR(A$," ")
140 IF pos_space%•0 THEN ENDPROC
150 A$=LEFT$(A$,pos_space%-1)+RIGHT$(A$,pos_space%+1)
160 PROCremove_spaces(A$)
170 ENDPROC

In the example above, PROCremove_spaces is passed a string as a parameter.
If the string contains no spaces, the procedure ends. If a space is found within the
string, the space is removed and the procedure is called again with the new string

ROCEDURES AND
FUNCTIONS

as an argument to remove any further spaces. For example, inputting the string
The quick brown fox causes the following to be displayed:

The quick brown fox
Thequick brown fox
Thequickbrown fox
Thequickbrownfox

Recursive procedures often provide a very clear solution to a problem. There are
two reasons, however, which suggest that they may not be the best way to solve a
problem:

- Some operations are more naturally expressed as a loop, that is, using
FOR ... NEXT, REPEAT ... UNTIL, or WHILE ... ENDWHILE.

- Recursive procedures often use more of the computer's memory than the
corresponding loop.

As an example, the following two programs both print "Good morning '"
backwards. The first one uses a WHILE ... ENDWHILE loop. The second uses a
recursive technique to achieve the same result.

First example:

10 PROCreverseprint("Good morning !")
20 END

100 DEF PROCreverseprint(A$)
120 WHILE LEN(A$) > 0
130 PRINT RIGHT$(A$);
1 40 A$-LEFT$(A$)
150 ENDWHILE
160 ENDPROC

81

RJNCTIONS

82

Second example:

10 PROCreverseprint("Good morning !")

20 END
100 DEF PROCreverseprint(A$)

110 IF LEN(A$) > 0 THEN
120 PRINT RIGHT$(A$);
130 PROCreverseprint(LEFT$(A$}}
140 ENDIF
160 ENDPROC

Functions are similar to procedures, but differ in that they return a result. BASIC
provides many functions of its own, like the trigonometric functions SIN, COS, TAN
and RND. If you give RND a parameter with an integer value greater than 1, it
returns a random value between 1 and the number given inclusive. For example,

X - RND (10}

produces random numbers between 1 and 10.

You may define functions of your own using the keyword DEF followed by FN
and the name of your function. The function definition ends when a statement
beginning with an'=' sign is encountered. This assigns the expression on the right
of the sign to the function result. This result may be assigned to a variable in the
normal way.

Functions obey the same rules with regards to naming conventions, the use of
parameters and local variables. Procedures also follow these rules.

The following is an example of how a function may be defined and used:

10 FOR N% - 1 TO 10

ROCEDURES AND
FUNCTIONS

20 PRINT "A sphere of radius ";N%;" has a volume ";FNvolume(N%)

30 NEXT

40 END
100 DEF FNvolume(radius%)

110 - 4/3*PI*radius%A3

FUNCTION AND PROCEDURE LIBRARIES

Libraries provide a convenient way of adding frequently-used procedures and
functions to a BASIC program.

The libraries are kept in memory, and if a reference is made to a procedure or
function which is not defined in your program, a search of each library in turn is
made until a definition is found. If the routine is found in a library, it is executed
exactly as though it were part of the program.

The advantages of using libraries are:

- They standardise certain routines between programs.

- They reduce the time required to write and test a program. (The library
routines only need to be written and tested once, not each time a new program
is developed.)

- They make programs shorter and more· modular.

Loading a library into memory

There are two methods of loading a library into memory: INSTALL and
LIBRARY.

INSTALL loads the library at the top of memory, then lowers HIMEM and
BASIC's stack down by an appropriate amount. Any number of libraries can be
installed, provided there is enough memory for them. Since INSTALL affects the
stack, it cannot be used whenever there is anything on the stack. This means that it

83

84

cannot be used inside procedures or loops. Installed libraries are only removed
when you exit from BASIC.

LIBRARY reserves a sufficient area of memory for the library just above the main
BASIC program and loads the library. Any library loaded in this way remains
only until the heap is cleared. This occurs, for example, when the CLEAR or NEW

commands are given, or when a program is RUN.

For example:

10 MODE 1
20 REM Print out a story

30 REM Load output library

40

50

60
70

80
90

100
110

120
130

140
150

200

210
220
230
240

245
250

260
270

280
290
300

LIBRARY "Printout"
REM Read and print the heading

READ A$

PROCcentre (A$)
REM Print out each sentence in turn

REPEAT
READ sentence$

REM if sentence$ - "0" then have reached the end

IF sentence$ • "0" END
REM otherwise print it out
PROCprettyprint(sentence$)

UNTIL FALSE

DATA A story
DATA This,program,is,using,two,procedures:

DATA 'centre',and,'prettyprint' ,from,a,library
DATA called,'Printout'.

DATA The,library,is,loaded,each,time,
DATA the,program,is,run.

DATA The,procedure,'centre' ,places,a,string,in,the

DATA centre,of,the,screen.

DATA The,procedure, ' pettyprint',prints,out,
DATA a,word,at,the,current,text,cursor,

DATA position,unless,it,would,be,spilt,over,
DATA a,line,in,which,case,it,starts,the,word,

305 DATA on,the,next,line,down.
310 DATA 0

The library Printout could be as follows:

ROCEDURES AND
FUNCTIONS

10 REM Printout-Text output library-see PROCPrintouthelp

20 REM ************************************
30 DEF PROCPrintouthelp
40 REM Print out details of the library routines

50 PRINT "PROCcentre(a$)"
60 PRINT "Place a string in the centre";
70 PRINT "PRINT "of a 40 character line"'
80 PRINT "PROCprettyprint(a$)"
90 PRINT "Print out a word at the current";

100 PRINT "text cursor position, starting";
110 PRINT "a new 40 character line if required";
120 PRINT "to avoid splitting it over two lines";
130 ENDPROC

140 REM *******************************
200 REM Place a string in the centre
210 REM of a 40 character line
220 DEF PROCcentre(a$)
230 LOCAL strart%
240 start%- (40- LEN(a$))/2
250 PRINT TAB(start%);a$
260 ENDPROC

270 REM ********************************
300 REM Print out a word at the current
310 REM text cursor position, starting
320 REM a new 40 character line if required

330 REM to avoid splitting it over two lines
340 DEF PROCprettyprint(a$)
350 LOCAL end%
360 end% - POS + LEN(a$)
370 IF end% < 40 PRINT a$;" ";
380 PRINT 'a$;" ";

ENDPROC

85

86

390 ENDPROC
400 REM ********************************

Building your own libraries

There are certain rules which should be obeyed when writing library procedures
and functions:

- Line number references are not allowed.

Libraries must not use GOTO, RESTORE, etc. Any reference to a line number is
to be taken as referring to the current program, not to the line numbers with
which the library is constructed.

- Only local variables should be used.

It is advisable that library routines only use local variables, so that they are
totally independent of any program which may call them.

- Each library should have a heading.

It is recommended that a library's first line contains the full name of the
library and details of a procedure which prints out information on each of the
routines in the library.

This last rule applies because BASIC contains a command, LVAR, listing the
first line of all libraries which are currently loaded. As a result, it is
important that the first line of each library contains all the essential
information about itself.

ILING SYSTEMS

The Advanced Disc Filing System (ADFS) provides facilities for saving,
organising, and accessing data held on floppy and hard discs. Another filing
system, The Advanced Network Filing System (ANFS) is supplied for use with
Econet file servers. The Advanced Disc Filing System and the Advanced Network
Filing System are very similar in operation and most of the details in this chapter,
which concentrate on the Advanced Disc Filing System, apply equally to the
Advanced Network Filing System. Any important differences between the two
systems are mentioned where appropriate.

SELECTING THE ADFS

LEAVING THE ADFS

You may select the Advanced Disc Filing System at any stage by giving the
command:

*ADFS

If you are using a different filing system, such as the Advanced Net Filing
System, when you issue the command, the filing system you are using is closed
down and the Advanced Disc Filing System is selected.

If you are already using the Advanced Disc Filing System when you issue this
command, the system is reselected.

You may leave the Advanced Disc Filing System by issuing the command to enter
a different one. For example, to select the Advanced Net Filing System, type

*NET

When using a hard disc system, end each session by typing

ABYE

This moves the heads of the hard drive to a transit position. It prevents the heads
or disc surface from being damaged if the hard drive is moved or accidentally
knocked.

87

SELECTING THE ANFS

LEA VlNG THE ANFS

88

You may select the Advanced Network Filing System at any stage by typing

*NET

If you arc using a different filing system, such as the Advanced Disc Filing
System, when you issue this command, the filing system you arc using is closed
down and the Advanced Network Filing System is selected.

If you arc already using the Advanced Network Filing System when you type
*NET, the system is reselected.

If you intend to use the network file server to load and save files, you need to
introduce yourself to the file server by typing

*I AM <Name>

or the equivalent

*LOGON <Name>

where <Name> is the user name that has been issued to you by the manager of the
network system.

You may leave the Advanced Network Filing System by issuing the command to
enter a different filing system. For example, to select the Advanced Disc Filing
System, type

*ADFS

When you have finished using the network file server, end each session by typing

*BYE

DRlVE NUMBERS

DISC NAMES

ILING SYSTEMS

This finishes your session on the file server and closes down all your open files
and directories.

Many operations performed by the Advanced Disc Filing System require you to

identify the drive containing the disc you wish to usc. Disc drives are identified by
numbers. The Archimedes disc drive numbers arc as follows:

Drives 0-3
Drives 4-7

Floppy disc drives
Hard disc drives

It is because the software can support a maximum of four floppy disc drives and
four hard disc drives that this scheme allows each drive to be uniquely identified.

The single floppy disc drive supplied with your computer is numbered '0' while
additional second, third and fourth floppy disc drives are numbered
consecutively 'I', '2' and '3'. A single hard disc drive is numbered '4' while
additional second, third and fourth hard disc drives are numbered consecutively
'5', '6' and '7'.

You tell the computer which drive you wish to usc by including the drive number
when you issue a command. Examples are given in the discussions below.

When using the ANFS, you will rarely have to refer to the name of the disc you
arc using; most operations will use the default, which is the name of the disc on
which your user directory resides.

When using the ADFS, you can refer to a disc either by the drive number in which
it resides, or by the name of the disc itself. In the latter case, you should ensure
that the disc is actually in one of the drives or you will get a Disc not present
error.

89

To use the disc name when referring to a file, you prefix the name with a colon
and separate it from the filename using a period. For example, to load a BASIC
program called 'test' from a disc called 'Pete1', you would use:

LOAD ": Petel. test"

FORMATTING A DISC

90

Formatting discs is a fundamental function performed by the ADFS. Formatting
lays down the magnetic tracks on the disc and divides each of these tracks into
sectors. Each sector is given header information which prepares it for receiving
data. When using the Advanced Network Filing System, you should not need to
format discs for yourself as this will be done by the manager of the network.
Details of formatting and backing up discs for the file server are given in the
relevant file server manager's guide.

Before you format a disc, note the following points:

- You can format blank discs or reformat previously formatted discs using the
same procedures. However, formatting a disc destroys any information
currently stored on the disc. Be very careful about formatting any disc already
containing programs. Always make sure you no longer wish to keep them or
that you have copies of these programs on other discs.

- The disc you are formatting should not be write-protected.

- You can format a disc to hold either 640 or 800 Kbytes of information. Discs
formatted to hold 640 Kbytes are compatible with the BBC Master-Series
Microcomputers.

To format a floppy disc in drive 0 (to hold 800K of data):

- Place the disc in the disc drive.

- Type the following:

*ADFS

ILING SYSTEMS

Press g. The cursor drops down a line next to a new screen prompt.

- Type the following:

*FORMAT 0 D

Press g. The following prompt is displayed:

Are you sure (Y/N) ?

- Press 'N' if you change your mind about formatting this disc. The screen prompt
appears.

- Press 'y' to format the disc. The following message appears on the screen:

Formatting xx

The xx begins with zero and increases until 7 9 is reached. 79 is significant
because the disc has 80 tracks. When 7 9 appears, the following message is
displayed:

Verifying

The Archimedes takes a few seconds to verify that the disc is formatted
correctly. If there is a fault in the disc, an error message is displayed and
verification stops. If no fault appears, the following message is displayed:

Formatted 800k

The screen prompt appears and the format is done.

If you wish to format a disc to hold 640 Kbytes of information, follow the steps
above with one exception. At step 3, instead of typing *FORMAT 0 D, type
*FORMAT 0 L.

91

BACKING UP DISCS

If no errors occur during verification, the message,

Formatted 640k

is displayed before the screen prompt appears. The disc is now formatted to hold
640 Kbytes of data.

If a verification error occurs, repeat the process. If this is still unsuccessful, it
probably means that your disc is faulty. The safest thing to do is to destroy it and
start again with a different disc.

A very important facility of the ADFS is the opportunity it provides for making
backup copies of the information on floppy discs.

Floppy discs, like all other equipment, can develop faultS. If this happens then it
could mean that you are unable to load one or more programs from that disc,
resulting in lost information and time. It is a good idea, therefore, to keep more
than one copy of important programs.

You can copy information from one floppy disc to another, from one hard disc to
another, from a floppy disc to a hard disc, or from a hard disc to several floppy
discs.

- Note: when you make a backup copy of a disc, copying all the information from
the first disc to the second, any data already on the second disc is deleted and
replaced by an exact copy of the information on the first disc.

COPYING USING A SINGLE FLOPPY DISC DRIVE

92

To copy all the programs from one floppy disc to another floppy disc using a
single disc drive, take the following steps:

At the '>' prompt, type

*BACKUP 0 0

SYSTEMS

The following message is displayed:

Are you sure (Y/N) ?

Press 'y' to proceed with the backup, any other key to abort.

Insert source disc in drive 0 then press SPACE bar

Carry out this request. You will then see:

Insert destination disc in drive 0 then press SPACE bar

This cycle repeats until the whole disc has been backed up. You can make the
process quicker by adding the letter Q onto the end of the command. This tells the
backup program to use as much memory as possible to perform the backup, so it
requires fewer disc swaps. It is important, however, to realise that this option will
overwrite any BASIC program you may have loaded.

COPYING USING MORE THAN ONE FLOPPY DISC DRIVE

To copy programs from one floppy disc drive to another floppy disc drive, follow
the instructions below (your source drive is 0 and your destination drive is 1):

- At the'>' prompt, type

*BACKUP 0 1

The following message is displayed:

Insert source disc

- Place the disc containing the programs to be copied into drive 0.

The following message is displayed:

Insert destination disc

93

DIRECTORIES

94

- Place the disc onto which you wish to copy the programs into drive l. All data
on the disc in drive 0 is copied onto drive 1. When the backup is finished, the'>'
prompt is displayed.

Every time you save data or write and save a program, a file is produced. In order
to make it possible to organise files so that you can find them easily, the
Advanced Disc Filing System and the Advanced Network Filing System group
them together into units called directories.

When a floppy disc is formatted, one directory is automatically created. This is
known as the root directory and is identified by the'$' symbol. When the ADFS
is first selected it normally reads the contents of the root directory into memory.
If you save a file without changing the directory, the fi le is saved in the root
directory.

The Advanced Network Filing System also uses a root directOry identified by the
'$'symbol. When, however, you usc the Advanced Network Filing System to
access the file server, all users are provided with their own directory in which to
store files. This is known as their user root directory and is identified by a name
which is the same as their user name. If you save a file using the Advanced
Network Filing System without changing directory, the file is saved in your user
root directOry.

To work with a file you must give it a filename. A filename can contain up to ten
characters. These characters can be either letters or numbers. Other characters
may be used. This is not recommended, however, as the ADFS attaches a special
meaning to several characters.

There arc two special symbols, called wildcards, which you can usc to refer to a
group of files or directories in one command. These symbols arc the 'If (hash
sign) and the'*' (asterisk).

ILING SYSTEMS

- The 'Jt' is used to denote any single character.Thus,

ABt

can refer to ABC and ABZ, but not AB or ABCD.

- The'*' is used to denote any sequence of characters. Thus,

dirl. W*

refers to all the files and directories in the directory dirl which begin with
'w', including a file or directory called 'w'.

You can create new directories and subdirectories. The rules that apply to naming
files also apply to naming directories and subdirectories. Directories and
subdirectories may, however, be referred to by special symbols; the'$' symbol,
for example, defines the root directory. The special symbols arc:

$ The root directory.

& The user root directory. This is a directory you designate as your own root
directory using the *URD command.

@ The current directory. This is the directory you arc currently in.

The parent directory. This is the directory that is directly above the
current directory in the hierarchy ..

\ The previous directory. Using this symbol refers you to the directory you
were previously in.

% The library. This is the directory that contains utility programs used
frequently. Library is discussed in the chapter: FILING SYSTEMS in
the Reference guide.

These symbols can be used in place of directory names. Examples are included
in the discussions below.

95

96

The 'A' character in pathnames may not be valid on some Econct systems. Ot
depends on the fileserver software.) This applies also to the *UP command.

Note also that strictly speaking 'A' should be interpreted as 'the directory above
where we arc so far in this path name'. So, assuming we have a directory called
di r in the current directory, the path name@. dir. A. fred just refers to
@.fred: we went down a level, then up again. Similarly,@. A. A refers to a
directory two levels above the current one.

As mentioned above, the directory with which you are actively working is called
the current directory. How to create a new directory is discussed below.

- Note: the following discussion on saving files and creating directOries assumes
you are in BASIC, have typed the *ADFS command and are beginning with the
root directory as your current directory.

The number of files and subdirectories a directory can contain depends on how
the disc you arc using is formatted. If you format the disc to hold 800Kbytes of
information its directories can contain up to 77 files and subdirectories each. If
you format the disc to hold 640Kbytes of information its directories can contain up
to 4 7 files and subdirectories each.

Saving a file

To save a BASIC program file with the name progl type

SAVE "progl"

ILING SYST EMS

On disc, a file structure is created that can be shown in a diagram as follows:

Creating a directory

$
(root directory)

progl

(fife)

To create a directory with the name dirl, type

*CDIR dirl

The resulting file structure can now be shown in a diagram as follows:

progl

(file)

$
(root directory)

I

dirl

(dir ectory)

97

98

If you save a new file, say a file named prog2, the file structure is as follows:

progl prog2 dirl

Creating a new directory does not alter the current directory. As a result, the root
directory is still the current directory, so the file prog2 is saved there.

Changing directories

To change directories, making dirl your current directory, type

*DIR dirl

Now when a file is saved, it is saved in dirl. For example, to save a file named
prog3 type

SAVE "prog3"

ILING SYSTEMS

The resulting file structure is as follows:

$ ('""' drctory)

I
progl prog2 dirl

I
prog3

Similarly, if you create a new directory (in the following example a directory
named dir2) this also is created within dirl:

*CDIR dir2

The resulting file structure appears as follows:

$ ('""' dtrtory)

I
progl prog2 dirl

~
prog3 dir2

99

PATHNAMES

100

Files and directories within the current directory can be referenced using a single
name. It is possible, however, to reference any file at any time from any position
within the file structure by giving a pathname. A pathname contains a sequence of
directory names separated by a '.' character which shows the file or directory's
location within the hierarchical structure.

The file structure shown below is used in the examples throughout the remainder
of this chapter.

s
(roor directon·) I .

dir3 progl prog2 dirl

I
prog7 prog8 prog3 prog4 dir2

I
prog5 prog6 dir3

prog6

To load the file progS from the current directory, dirl, type either

LOAD "$.dirl.dir2.prog5"

or

LOAD "dir2.prog5"

ILING SYSTEMS

Both of these arc pathnames. The pathname in the first example starts from the
root directory. The pathname in the second example starts from the current
directory.

Notice that in the diagram above there are two files with the name prog6. Their
pathnames, however, are:

$.dirl.dir2.prog6

and

$.dirl.dir2.dir3.prog6

Since their pathnamcs are different, each can be uniquely identified.

The other directory symbols can be used to load a file from anywhere in the
hierarchy. For example, to load prog8 when the current directory is dirl, type

LOAD "".dir3.prog8"

DELETING FILES AND DIRECTORIES

Files can be deleted using the *DELETE command.

When deleting a file, you can either specify the full pathname, or you can make
the directory containing the file you wish to delete the current directory and just
specify the filename.

For example, to delete progS when dir2 is the current directory, type

*DELETE progS

To delete progS when the root directory is the current directory, type

*DELETE $.dirl.dir2.prog5

101

When you create a file using a command such as SAVE, it is not locked by default:
to delete it you do not have to unlock it using an *ACCESS command. On the other
hand, directories are locked by default, and have to be unlocked (and empty)
before they can be deleted.

A directory can also only be deleted if it is empty; each of the files and
subdirectories within it must therefore be deleted first. For example, to unlock
and delete directOry di r2 when the root directory is the current directory, type

*DELETE $.dirl.dir2 . dir3.prog6
*ACCESS $.dirl.dir2.dir3
*DELETE $.dirl.dir2.dir3
*DELETE $.dirl.dir2.prog5
*DELETE $.dirl.dir2.prog6
*ACCESS $.dirl.dir2
*DELETE $.dirl.dir2

This deletes prog6 in dir3.
This unlocks dir3
This deletes di r 3
This deletes progS
This deletes prog6
This unlocks dir2
This deletes dir2

COPYING AND MOVING FILES

102

Using the *COPY command

When you are using the COPY command note the following:

- Wildcards can be used to refer to groups of files or directories in one
command.

- Files may be copied between hard and floppy discs by including the
appropriate drive number.

- Files are added to the catalogue for the specified directory and therefore
Dir full or Disc full error messages could occur.

To copy one or more files from one directory to Z.:lother the *COPY command may
be used. If you type

*COPY $.dirl.dir2.prog# $. dirl.prog#

ILING SYSTEMS

the files progS and prog6 in directory$. dir1. dir2 are copied to the
directory $. di r 1.

You can also use the directory symbols to copy a file from one directory to
another. For example, tO copy the file $. di r 1 . prog 3 to the directory
$. dirl. dir2 type

*DIR $.dirl.dir2

This makes dir2 the current directory. Now type

*COPY h.prog3 @.prog3

This copies the file prog3 in dirl to the current directory, dir2.

Using the *RENAME command

Before using the *RENAME command, note the following:

- If you do not specify a new directory when giving the pathname, the computer
assumes you are moving a file or directory within the current directory.

- You cannot use the *RENAME command to move a locked file or directory.

- You cannot use the *RENAME command to move a file or directory to a named
file or directory which already exsists.

- If you are moving a directory, all the files and subordinate directories within it
remain unchanged but are accessible only by their new pathname.

You can move files using the *RENAME command if a different pathname is given
as the second parameter. For example,

*RENAME progS $.prog8

moves$. dir1. dir2. progS to directory'$' and changes its name to prog8.

103

FlLE DET AlLS AND ATTRIBUTES

104

The *CAT command: displaying files and directories

You can display the files and subdirectories in any given directory. For example,
if you type

*CAT $.dirl.dir2

a list of the files and directories in dir2 is displayed on the screen.

If no path name is given, the files and directories in the current directory arc
displayed.

The information given in a screen display listing files and directories includes
one or more lines of general information, followed by the filenames listed in
columns in alphabetical order. Next to each filename is a sequence of characters.
For example a listing of the files and directories in dir2 includes:

DeskTop Disc "No Name" :0 Option 03 (Exec) URD"Unset"
Dir. DeskTop Lib. "Unset"

dir3 DL progS WR prog6 WR

The letters following the filenames show what attributes, or access restrictions,
the files and directories have:

L The file or directory is locked so it may not be deleted or overwritten

W The file may be written to and updated

R The file may be read from and loaded

D The object is a directory

The default attributes for a file arc WR. Hence the file can be both written to and
read from. Those for a directory are DL, so LhaL it cannot be deleted.

ILING SYSTEMS

When using the Advanced Network Filing System, two additional attributes or
access restrictions can be associated with each file. These attributes are used to
control how other users of the file server may use your files. The access which
others may have to files is separated from your own access attributes by a '/'
symbol. For example, an attribute description of WR/ R specifies that the file may
be both written to and read from by you, and that other users may only read from
the file.

The *ACCESS command: changing file attributes

The attributes (other than D) for a file or directory can be al tercd using the
command *ACCESS. For example,

*ACCESS prog4 R

alters the file prog4 so that it is read only.

The *INFO command: displaying file size

Further information about the size of a file can be obtained by entering the
*INFO command. If you type

*INFO progl

the following information is d isplayed:

progl WR FFFFFB40 1C65E33A 00000155 00202600

The first three sets of numbers are in hexadecimal (hex) notation. The chapter:
BASES discusses hexadecimal numbers.

Each column of data is defined as follows:

progl This is the name of the file.

WR These are the file attributes.

105

106

FFFFFB40 This gives the file type and part of the date stamp.

1C65E33A This is the remainder of the date stamp.

00000155 This is the size of the file in bytes.

00202600 This is the disc address where the file starts.

The wildcard symbols'#' and'*' can also be included in a *INFO command. For
example:

*INFO $.dir1.dir2.progt

The *INFO and *EX commands will convert the load and execution addresses of
a file into a type name and date stamp if the file has been date stamped
correctly. The example below shows typical *INFO information for a date
stamped and unstamped file:

DSFile WR BASIC 17:37:26
UnDSFile WR 00123456

17-Jun-1987
00123456

The •EX command: displaying file information

00004387
00002310

00001100
00015400

Information about all the files in a directory can be obtained using the *EX
command. For example, when'$' is the current directory, typing

*EX $.dir1.dir2

displays information about all the files in di r2.

The •OPT command: setting file system options

The *OPT command determines what filing system information is displayed
during load, save and at auto-start when a disc is in the disc drive.

ILING SYSTEMS

The following options are possible:

*OPT 0 Restores default settings

*OPT 1 0 File information suppressed during load and save
*OPT 1 1 Some file information to be displayed
*OPT 1 2 Full file information to be displayed

*OPT 4 0 Disable the auto-start facility
*OPT 4 1 *RMLOAD the ! BOOT file on auto-boot
*OPT 4 2 *RUN the ! BOOT file
*OPT 4 3 *EXEC the ! BOOT file

When using the Advanced Network Filing System, the auto-start option differs in
the following ways:

- The file that is used by the auto-start system is called ! ARMBOOT instead of
!BOOT.

- The auto-start option is remembered by the file server and only comes into
effect when you log on to the file server by typing

*I AM <name>

The auto-start option determines what happens when 1Shlf111BI'eakl is pressed with a
disc in the disc drive. It can either have no eff~t, or it can access a file called
! BOOT in directory'$'. This file can be a machine code program, in which case it is
either loaded into memory (*LOAD) or executed (*RUN), or it can be an ordinary
text file.

If the file is an ordinary text file created using the *BUILD command (see the
section below: Command files), the *EXEC option may be used.

The auto-start option is usually set to *EXEC on commercially available software.
This enables the user to press IShlftiiBreakl, so causing the ! BOOT file to execute the
commands needed to load the appropriate files into memory and start the
program.

107

108

The action of IBreakl and IShiftiiBreakl may be reversed using the *CONFIGURE BOOT
command. When this is issued, and [Qill iBreakl pressed to bring it into effect,
subsequent resets will cause the auto-boot action to occur. Holding down lshif11
during a reset suppresses the auto-boot option.

You can restore the auto-boot action to the normal state by issuing the command
*CONFIGURE NOBOOT and pressing [Qill iBreakl.

The *FREE, *MAP, and *COMPACT commands: displaying disc space

To sec how much free space is left on the disc in drive 0, type

*FREE 0

ThL~ produces the following output:

Bytes Free

Bytes Used

&00097EOO - 622080
&00008200 = 33280

*FREE, however, displays the total amount of free space on the disc. It docs not
give any information as to how this free space is distributed on the disc. The space
mi~:ht be all in one large block, or it might be divided into small sections across
the disc. (Fragmentation of the free space occurs when files arc frequently
deleted or overwritten.)

On the other hand, when using the Advanced Network Filing System, *FREE
displays information about the total free space on the file server discs, and also
information about the free space available to you as a user. This user free space
can be set by the manager of the file server.

It is possible to find that, although there is sufficient space in total on the disc to
save a particular file, there is no single section of free space large enough to hold
it. If this occurs, the error message Compaction required is displayed. You
should then type

*COMPACT 0

DATA FILES

ILING SYSTEMS

This moves files around on the disc, collecting all the free space into a continuous
block.

The message Compaction recommended may also occur. The ADFS keeps a
map of all the segments of free space. When the map is approximately three
quarters full, the Compaction recommended message is given, indicating that
it is advisable to compact the disc at once to prevent the map from filling up
completely, making it impossible for you to complete a command.

The amount of free space applies to the disc containing the current directory
unless the *MAP command is followed by a different disc name, in which case that
disc's free space is displayed.

Entries printed by the *MAP command have the format (start, length),
where start is the start address of the free area on the disc, and length is its
size. Both arc in bytes.

Programs can create and read information from files, called data files. For
example, if you write a program that creates a list of names and telephone
numbers, you may wish to save the names and telephone numbers as a data file.

The data file is specified in a program by one of the OPEN keywords.

You can create a data file using the keyword OPENOUT. For example, typing

A • OPENOUT "books"

creates a data file named books and opens it so that it is ready to receive data.
The variable 'A' is called a channel number and allows the computer to
distinguish this data file from other data files. All future communication with the
file books is made via the file channel number in 'A' rather than via the name of
the file.

Writing information to a data file is done using PRINT#. For example:

109

110

10 A - OPENOUT "books"
20 FOR I - 1 TO 5
30 READ book$

40 PRINT* A, book$

50 NEXT I
60 CLOSE* A
70 END
80 DATA "Black Beauty"
90 DATA "Lord of the Rings"

100 DATA "The Wind in the Willows"
110 DATA "The House at Pooh Corner"
120 DATA "Little Women"

Closing a data file is done using CLOSEt.

You can read data from a file using OPEN IN and INPUT#. OPEN IN opens an
existing data file so that information may be read from it. INPUT# then reads the
individual items of data. For example:

10 channel - OPENIN "books"
20 REPEAT
30 INPUTt channel, title$
40 UNTIL EOFt channel
50 CLOSE~ channel
60 END

EOF# is a logical operator which is TRUE wh<;n the end of a file is reached.

Other useful keywords for reading or writing data are:

- BPUTit which writes a single byte co a file

- BGET# which reads a single byte from a file.

The following writes all the upper-case characters to a file using BPUT it as part
of the program:

10 channel = OPENOUT "characters"
20 FOR N% - ASC("A") TO ASC("Z")
30 BPUTI channel,N%
40 NEXT
50 CLOSE* channel

ILING SYSTEMS

BGET It is used as part of a program that allows each character to be read into a
string as follows:

10 channel = OPENIN "characters"
20 string$ -
30 REPEAT
40 string$ +• CHR$(BGETf channel)
50 UNTIL EOFI channel
60 CLOSE* channel

The BPUTf statement and GET$# function can also be used to write text to a file,
and read text from a file. These write and read the text in a form compatible with
other programs, such as text editors, unlike PRINT It and INPUT It which write and
read strings in BASIC string format.

When you PRINTi an expression to a file, it is written as an encoded sequence of
bytes. For example, an integer is stored on the file as the byte & 4 0 followed by
the binary representation of the number. A string is written as & 0 0 followed by
the length of the string, followed by the string itself in reverse order.

To write information as pure text, you can use:

BPUTichannel,"string"

The characters of the string, which may be any string expression, are written to the
file. If there is no semi-colon at the end of the statement (as in the example
above), then a newline character (ASCII 10) is written after the last character of
the string. If the semi-colon is present, no newline is appended to the string.

To read an ASCII string from a fi le, you can usc:

111

COMMAND FILES

112

string$~GET$ichannel

This function reads characters from the file until a newline (ASCII 10), carriage
return (ASCII 13), or nul (ASCII 0) character is read. This terminates the string,
but is not returned as part of it.

As you use the computer, you may find yourself typing the same sequence of
commands over and over to perform frequently used tasks. With the ADFS you
can put the command sequence into a special file called a command file, and then
execute the entire sequence by typing the filename along with the appropriate
ADFS command (*BUILD or *SPOOL). The commands in the command file arc
processed as if they were typed at the keyboard.

There are two types of command file:

- The first type contains commands which would be entered using standard
keyboard characters. They arc sent directly co the file from the keyboard.

- The second type contains YOU control codes and characters.

To set up a command file from the keyboard, usc the *BUILD command. For
example, if you type

*BUILD keyfile

cverylhing subsequently typed from the keyboard is sent directly to the file
called keyfile. If there is a file named keyfile already, it is deleted when
the command is entered.

When you finish entering the commands, press ~ to end keyboard input to
keyfile.

To execute the commands in keyfile, type

*EXEC keyfile

lUNG SYSTEMS

The contents of keyf ile are read and executed a character at a time as if they
were being typed at the keyboard.

Another way to make a command file directly from the keyboard is to use the
*SPOOL command. If you type

*SPOOL vdufile

a new file called vdufile is created. If there is already a file named vdufile,
it is deleted when the command is entered.

All subsequent VDU output is sent to this file until *SPOOL is used again, either
with a different name, in which case the current file is closed and spooling
continues with the new file, or no name, in which case the current file is closed and
VDU data is directed to the screen as normal.

•CO~GURE OPTIONS

If you arc using a disc frequently, you can set the computer to default
automatically to the ADFS whenever you turn the machine on. This is done by
typing

*CONFIGURE FILE 8

The '8' indicates that you are configuring the computer for ADFS.

- Noce: if you want to configure the Archimedes for ANFS, type
*CONFIGURE 5. The '5' indicates that you are using ANFS.

You may also need to set other configuration parameters. What these parameters
arc, and how to set them are described below (the discussion assumes you have
typed *CONFIGURE FILE 8):

- Indicating a dri(Je number

If you are using the Archimedes with one floppy disc drive (drive 0), when you
start the computer the ADFS automatically accesses that drive.

113

114

If you are using more than one disc drive with the Archimedes (a hard or
floppy drive) you can tell the AOFS to go automatically to one of these drives.

To set a drive, type the following:

*CONFIGURE DRIVE n

'n' is the number of the drive which the ADFS is to select.

Once you configure the computer to default to a specific drive using
*CONFIGURE DRIVEn, you can tell the Archimedes tO look for dala in
another drive by typing the following:

*DRIVE n

This temporarily redirects the computer to the drive indicated until you do one
of three things:

choose another drive using *DRIVEn

switch the computer off
press the reset button

- Indicating the number of floppy disc drives

If you arc using the Archimedes with more than one floppy disc drive, you
need to tell the computer another drive is attached. To do so, type

*CONFIGURE FLOPPIES n

'n' is the number of floppy disc drives you are using.

- Indicating the number of hard disc drives

If you arc using the Archimedes with a hard disc drive as well as a floppy disc
drive, you need to tell the computer the hard drive is attached. To do so, type

ILING SYSTEMS

*CONFIGURE HARDDISCS n

'n' is the number of hard disc drives you arc using.

In addition to the *CONFIGURE options mentioned in this section, there arc:
*CONFIGURE BOOT /NOBOOT, DIR/NODIR, and STEP. The first option has
already been described. The DIR/NODIR option controls whether the FS will
access the disc drive on reset. If you type

*CONFIGURE DIR

and press [QilliBreakl, the subsequent resetS will cause the ADFS to load in the root
directory from the configured drive. On the other hand, if the NODIR option is
configured, the disc will not be accessed on reset and the current directOry will be
"Unset".

The STEP configuration allows you to set the track-to-track stepping time for any
single (floppy) drive or all of the drives in the system. It has the form:

*CONFIGURE STEP <delay> [<drive>)

The <delay> value is 0, 1, 2 or 3. This corresponds ro a step time of 6, 12,2 and
3ms respectively. The CMOS RAM default value is 3, which is suitable for the
built-in drive. If you give the second parameter, then the step speed is set for just
that drive. If you omit it, the step times for all drives are set .

115

116

CREEN MODES

THE MODES AVAILABLE

The display produced on a standard monitor can be in any of 21 different modes.
These arc referred to by numbers from zero to 20. Each mode gives a different
combination of values to the following four items:

- the number of characters you can display on the screen

- the graphics resolution

- the number of colours available on the screen at any one time

- the amount of memory allocated to the screen display.

For example, mode 0 allows 32 rows of text to be displayed, each containing up
to 80 characters. It provides high resolution graphics, but allows just two colours
to be displayed on the screen. In contrast, mode 1 can display just 40 characters on
a row and provides medium resolution graphics; it supports, however, up to four
colours. Different modes use different amounts of memory to hold the picture;
the amount of memory is determined by the resolution and by the number of
colours. Mode 0, for example, requires 20K.

The mode which uses the most memory is the one with the highest resolution and
the highest number of colours available. This is mode 15 which combines the
highest resolution with the facility to use all 256 colours at once. The last three
modes, numbered 18 to 20, require a special 'multisync' monitor. They provide
double the usual vertical resolution: 512 lines instead of 256. The horizontal
resolution is 640 pixels, and the numbers of colours available are 2, 4 and 16
rcspecti vely.

Changing mode

To change mode, type MODE followed by the mode number you want. For
example,

MODE 12

117

118

changes the display to mode 12. This is one of the most useful modes since it
provides high resolution graphics in 16 colours.

Shadow modes

In addition to mode numbers 0 to 20, you can use 128 to 148. These modes use the
so-called 'shadow' memory. If you imagine that there are two separate areas of
memory which may be used to hold the screen information, then selecting a
normal mode will cause one area tO be used, and selecting a shadow mode (in the
range 128 to 148) will cause the alternative bank to be used.

You can force all subsequent mode changes to use the shadow bank by issuing the
command:

*SHADOW

After this, you can imagine 128 to be added to any mode number in the range 0 to
20. To disable the automatic use of the shadow memory, issue the command:

*SHADOW 1

In order to usc the shadow bank, the ScreenSize configuration must reserve at
least twice as much screen memory as the amount required for the shadow mode.
For example, if you want tO use both mode 0 and mode 128, 40K of screen
memory must be available, as mode 0 takes 20K.

In fact, for a given mode, there may be several banks available. You can work out
how many by dividing the amount of configured screen memory by the
requirement of the current mode. On the Archimedes 305, for example, 80K is
reserved for the screen by default. This means that you can have four banks of
mode 0.

The normal, non-shadow bank is numbered bank I, and the shadow bank, used by
mode 128, is bank 2. There arc two more, banks 3 and 4. Using operating system
calls, you can choose which of the four banks is displayed, and which is used by
the VDU drivers when displaying text and graphics.

TEXT SIZE

CREEN MODES

A full description of the available modes is given in APPENDIX E.

The number of characters displayed on the screen is affected by the number
which are allowed per row (ie the width of each character) and the number of
rows which can be displayed on the screen (ie the spacing between the rows). The
permitted number of characters per row is either 20, 40, 80 or 132. There are two
possibilities for the number of rows on the screen, either 25 or 32. The former is
particularly useful for text displays since the larger separation between the rows
makes the text easier tO read.

GRAPHICS RESOLUTION

The graphics resolution is specified by the number of pixels (rectangular dots)
which can be displayed horizontally and vertically. The greater the number of
pixels which the screen can be divided into the smaller each pixel is. Since all
lines have to be at least one pixel thick, smaller pixels enable the lines to appear
less chunky. To see the difference the pixel site makes try typing the following in
BASIC:

10 MODE 2
20 MOVE 100,100
30 DRAW 100,924
40 MOVE 100,100
50 DRAW 1180,100
60 MOVE 100,100
70 DRAW 1180,924

and then:

10 MODE 0
20 MOVE 100,100
30 DRAW 100, 924

40 MOVE 100,100

50 DRAW 1180,100

119

COLOURS

120

60 MOVE 100,100
70 DRAW 1180,924

The number of colours available on the screen at any given time is either two, four,
16 or 256. When you first turn your computer on and enter a particular mode, the
computer selects the default colours which it uses for that particular mode. These
are assigned to colour numbers:

Two-colour mode

0 =black
1 = white

Four-colour modes

0 =black
1 =red
2 = yellow
3 =white

16-colour modes

0 =black
1 =red
2 =green
3 = yellow
4 =blue
5 = magneta
6 =cyan
7 =white
8 = flashing black-white
9 = flashing red-cyan
10 = flashing green-magenta
11 = flashing yellow-blue
12 = flashing blue-yellow
13 = flashing magenta-green
14 = flashing cyan-red
15 = flashing white-black

256-colour modes

CREEN MODES

These modes are explained fully in the section: Control of the palette in 256-
colour modes.

The computer chooses one colour to display text and graphics and another for the
background. These two colours are chosen so that under default conditions the text
and graphics are in white and the background is black. For example, in four
colour modes the computer chooses to draw text and graphics in colour three
(white) on a background which is colour zero (black).

You may, however, choose to display your text, graphics, or background in a
different colour. To do this, use the following commands:

- COLOUR n selects colour 'n' for text

- GCOL n selects colour 'n' for graphics

121

122

Each command can affect both the foreground and background colours,
depending on the value it is given:

- If 'n' is less than 128, the foreground colour is set to colour 'n'.

- If 'n' is 128 or greater, the background colour is set to colour 'n' - 128.

If the colour number is greater than the number of colours available in a
particular mode then it is reduced to lie within the range available. For example,
in a four-colour mode COLOUR 1 is equivalent to COLOUR 5 and COLOUR 9, and so
on.

Try the following example:

10 MODE 1

20 COLOUR 129
30 COLOUR 2

40 PRINT "Hello There"

Using the colour palette

Besides being able to select the colour in which numbers, text and so on are
displayed, you can also change the physical colour associated with each colour
number.

At the simplest level, you can reassign the colour numbers to produce a different
one in the standard set of eight steady and eight flashing colours. This requires the
command:

COLOUR n,m

where 'n' is the colour number (often called the logical colour) to be assigned to,

and 'm' is the physical colour (the colour which you actually see) you wish tO

assign to it. For example:

CREEN MODES

10 MODE 1
20 COLOUR 0,4 REM make colour number 0 appear as blue
30 COLOUR 128 REM choose this as the background
40 COLOUR 1,3 REM make colour number one appear as yellow
50 COLOUR 1 REM choose this for the foreground text
60 PRINT "Yellow on Blue"

Alternatively, you can define the amount (as one of 16 levels) of red, green, and
blue which go to make up the colour displayed for each of the logical colour
numbers. Thus, any of the 16 colour numbers can be made to appear as a shade
selected from the full range, or 'palette', of 16*16*16 = 4096 colours.

To assign any of the shades available to a logical colour use the following
command:

COLOUR n,r,g,b

This assigns 'r' parts red, 'g' parts green and 'b' parts blue to logical colour 'n'.
Each of 'r', 'g' and 'b' must be values between zero and 255. A value of zero
specifies that none of that colour should be used and a value of 255 that the
maximum intensity of that colour should be used. Thus setting all of them to zero
gives black and setting all to 255 gives white.

The following program allows you to try out various combinations and to see each
displayed:

10 REPEAT
20 MODE 1
30:
40 REM Input values from the user
50:
60
70
80
90:

INPUT"Amount of red (0
INPUT"Amount of green (0
INPUT"Amount of blue (0

15) "red%
15) "green%
15) "blue%

100 REM Force the numbers into the range required
110:

123

124

120 red\ - red% << 4

130 green\ - green\ << 4

140 blue\ - blue% << 4
150:
160 COLOUR O,red%,green%,blue%
170 GCOL 0
180 RECTANGLE FILL 540,412,200,200
190:

200 Now- TIME

250 REPEAT UNTIL TIME > Now + 500
260:
270 UNTIL FALSE : REM Repeat forever

This program asks you for three values, one for each of the amounts of red, green
and blue you require. It then plots a rectangle in that colour. After it has
displayed it for five seconds it clears the screen and starts again. To stop the
program at any stage press IEscapel .

To return to the default settings for each of the colours type

VDU 20

- Note: the current hardware only supports 16 levels for each colour component
numbered 0, 16,32 ... up to 240. Intermediate numbers will give the next lowest
level.

Also note that full control is not available over the colour palette setting in 256-
colour modes. See the section below for details.

256-colour modes

In these modes, a choice of 64 colours is available directly from the simple
COLOUR and GCOL commands. For example:

10 MODE 15
20 FOR Col% - 0 TO 63
30 COLOUR Col\
40 PRINT ":";Col%;
50 NEXT

CREEN MODES

As in the other modes the colour of the background can be changed by adding
12 8 to the parameter of the COLOUR command. Try modifying line 30 of the
above program and running it again.

To understand the manner in which the colour number dictates the actual shade of
colour which you see you need to consider the binary pattern which makes up the
number. Only the bottom six bits are relevant. For an explanation of'%' and
binary numbers, see the chapter: BASES.

In common with the other modes colour zero {%000000} is black.

1 {%000001) is dark-red
2 {%000010) is mid-red
3 {%000011} is bright-red

4 {%000100} is dark-green
8 {%001000} is mid-green
12 (%001100} is bright-green

16 (%010000} is dark-blue
32 {%100000) is mid-blue
48 {%110000} is bright-blue

63 {%111111} is white

Of the six bits which are used for the colour, the bottom two <.ontrol the amount of
red, the middle two the amount of green and the top two the amount of blue.

For example, COLOUR 35 is composed as follows:

125

126

35 = %100011 and so contains two parts of blue, no green and three parts of red,
and appears as a purple shade. The remaining two bits of the eight bits of colour
information cannot be provided via COLOUR because the very top bit has already
been used to signify foreground or background colour. They are, therefore,
supplied via a special TINT keyword.

The range of the TINT value is 0 to 255; but there are only four distinct tint levels
within this range, and so the following ranges all have the same effect:

0-63
64-127
128-191
192-255

For example:

No extra brightness
Some extra brightness
More extra brightness
Maximum extra brightness

COLOUR 35 TINT 128

or

GCOL 17 TINT 0

The effect of the TINT is to change the small amount of white tint which is used in
conjunction with the base colour. This gives four subtle variations to each colour.

The following program demonstrates how to get 256 different shades on the
screen at the same time just using COLOUR and TINT:

10 MODE 15
20 FOR Col\ - 0 TO 63
30 FOR tint\ - 0 TO 192 STEP 64
40 COLOUR 128 + Col% TINT tint\
50 PRINT " ";
60 NEXT
70 NEXT

CREEN MODES

Control of the palette in 256-colour modes

This is only possible with an understanding of the VIDC video controller chip
and is beyond the scope of this guide. For further information see the Reference
guide.

The default settings for the palette have been very carefully chosen tO enable the
use of COLOUR and TINT as defined above. If the settings of the palette are
changed, these simple relationships no longer apply.

127

128

RAPHICS

THE GRAPHICS SCREEN

Whatever mode is being used, the graphics screen always has the same
coordinate system:

1023

y

0

0 X --t> 1279

PointS outSide these values may be used. For example, a line may be drawn
between (-144,-350) and (1060,1200). What appears on the screen in this case is
the portion of the line which crosses the region (0,0) to (1279,1023).

THE LINE COMMAND

BASIC provides a very simple way of drawing lines on the screen. All you need
to do is to work out the positions of the two ends of the line. You can then draw a
line with a single instruction such as:

LINE 120,120,840,920

You could draw the line the other way and produce the same result:

LINE 840,920,120,120

The following program uses LINE four times to draw a box on the screen.

129

10 MODE 0

20 left% - 100
30 right% - 400
40 bottom% .. 200

50 top% - 800
60:
70 LINE left%,bottom%,right%,bottom%

80 LINE left%, top%, right%, top%

90 LINE left%,bottom%,left%,top%

100 LINE right %, bottom%, right%, top%

RECTANGLE AND RECTANGLE FILL

130

The RECTANGLE commands provide an easier way of drawing boxes on the
screen. The first Lwo parameters of RECTANGLE are the 'x' and 'y' coordinates of
one of the corners. The second two paramaters are the width and height of the
rectangle. For example:

RECTANGLE 440,412,400,200

If Lhc width and height are equal, ie for a square, the fourth parameter may be
omitted:

RECTANGLE 400,312,400

RECTANGLE FILL is used in exactly the same way as RECTANGLE, but inslead of
drawing the ourlint.: of a rectangle, it produces a solid rectangle. The following
program plots sol1d squares of gradually decreasing size in different colours:

10 MODE 15

20 FOR I% = 63 TO 1 STEP -1

30 GCOL I%

40 RECTANGLE FILL 640-I%•8,512-I%*8,!*16

50 NEXT

RAPHICS

CIRCLE AND CIRCLE FILL

To draw the outline of a circle or to plot a solid circle, you need to provide the
centre of the circle and the radius.

For example:

CIRCLE 640,512,100

CIRCLE FILL 640,512,50

This produces the outline of a circle centred at (640,512), which is the centre of the
screen, and of radius 100. Inside this is a solid circle, again centred at (640,512),
which has a radius of 50.

Try the following program:

10 MODE 15
20 REPEAT
30 GCOL RND (64} :MOUSE x,y,z
40 CIRCLE FILL x, y, RND(400)+50

50 UNTIL FALSE

This program produces circles in random colours, centred at any position on the
screen between (1,1) and (1279,1023) and with a radius of between 51 and 450. To
stop it press !Escape!.

131

ELLIPSE A1\TD ELLIPSE FILL

132

To draw the outline of an ellipse or to plot a solid ellipse you need to provide its
centre point and the size of its major and minor axes. In addition, you may also
give the angle by which it is rotated from the horizontal.

\11)0f UIS

Minor axis

For example:

ELLIPSE 640,512,200,100,PI/4

This produces the outline of an ellipse centred at (640,512). The length of it is
200, the width is 100 and it is rotated by Pl/4 radians (45 degrees) from the
horizontal.

If the anr,:le is omitted, an axis-aligned e ll ipse is produced:

ELLIPSE 400,500,320,80

Try the following program:

10 MODE 1
20 GCOL 1
30 FOR angle - 0 TO 3*PI/4 STEP PI/4
40 ELLIPSE FILL 640,512,200,60,angle
50 NEXT
60 GCOL 2
70 FOR angle - PI/8 TO 3*PI/4+PI/8 STEP PI/4

GCOL

80 ELLIPSE FILL 640,512,100,30,angle

90 NEXT

RAPHICS

This plots eight ellipses in two different sizes with the same centre point to form
multi-petalled flowers.

In previous examples, GCOL has taken one parameter, a number which selects the
current logical colour for the graphics foreground or background. For example,

GCOL 3
GCOL 129

selects the graphics foreground colour to be logical colour three and the
background colour to be one.

GCOL may, however, take two parameters, in which case the second selects the
foreground and background graphics colours, and the first selects the manner in
which this colour, 'c', is applied to the screen as follows:

0 The colour 'c'

OR the colour on the screen with 'c'.

2 AND the colour on the screen with 'c'

3 EOR the colour on the screen with 'c'

4 Invert the colour on the screen (disregards 'c')

5 Leave the colour on the screen unchanged (disregards 'c')

6 AND the inverse of the colour on the screen with 'c'.

7 OR the inverse of the colour on the screen with 'c'.

133

134

Two of the options ignore the second parameter and either leave the colour on the
screen unchanged or invert it. Inverting a colour means that all the bits in the
colour number arc altered: zeros are set to ones and vice versa. For example:

10 MODE 9 : REM 16 colours 0(~0000) - 15 (%1111)
20 GCOL 128+5

30 CLG
40 GCOL 4,0 : DRAW 100,100

The colour on the screen is colour 5 (%0101). The colour used to draw the line is,
therefore, colour J 0 (% 1010).

The OR, AND and EOR operators act on the bits of the colour already on the screen
and on the colour given as the second GCOL parameter as described in the chapter:
VARIABLES AND EXPRESSIONS. Thus:

10 MODE 2 : REM 16 colours 0(%0000) - 15 (%1111)

20 GCOL 128+5
30 CLG
40 GCOL 0,6 DRAW 100,100

50 GCOL 1,6 DRAW 200,200

60 GCOL 2,6 DRAW 300,300

70 GCOL 3,6 DRAW 400,400

so GCOL 6, 6 DRAW 500,500

90 GCOL 7, 6 DRAW 600,600

The colour already on the screen when the lines arc drawn is colour five (%0101).
The foreground colour is selected as colour six (%0110) in all cases. The method
of applying it to the screen, however, alters the actual colour displayed as
follows:

- The first line appears in colour six

- The second line appears in colour seven
(%0101 OR %0 I 10 = %0111)

- The third line appears in colour four
(%0101 AND %0110 = %0100)

- The fourth line appears in colour three
(%0101 EOR %0110 = %0011)

- The fifth line appears in colour one
(%0101 AND %1001 = %0001)

- The sixth line appears in colour two
(%1010 OR %0110 = %0010)

THE GRAPHICS CURSOR

RAPHICS

The graphics cursor is an invisible point on the screen which affects where lines
and other items arc drawn from. For example:

10 MODE 1
20 MOVE 100,100

30 DRAW 200,200

This moves the graphics cursor to (100,100), then draws a line to (200,200) and
leaves the graphics cursor at this position. Now, if a further line is added to the
program as follows:

40 DRAW 300,100

this adds a line from (200,200) to (300, 1 00).

USING PLOT TO PRODUCE OTllER SHAPES

The commands such as MOVE, DRAW, CIRCLE, etc are special cases of a more
general PLOT command. This command can give a far wider range of options over
what kind of shape you produce and how you produce it. Of course, the added
functionality it provides makes it more complicated to usc.

PLOT takes the following format:

135

136

PLOT k,x,y

where 'k' is the mode of plotting, and 'x' and 'y' are the coordinates of a point to

be used to position the shape. PLOT takes one pair of coordinates. To produce
shapes which need more than one pair to define them, such as rectangles, it uses
the previous position or positions of the graphics cursor to provide the missing
information. This means that you must pay careful attention to the position of the
graphics cursor after a shape has been drawn. Otherwise future plots may
produce unexpected results.

Each type of plot has a block of eight numbers associated with it. These are listed
below in both decimal and hexadecimal notation. (See the chapter: BASES).

0-7 (&00 - &07) Solid line including both end points
8-15 (&08 - &OF) Solid line excluding final points
16-23 (&10 - &17) Dotted line including both end points
24-31 (&18 - &1F) Dotted line excluding final points
32-39 (&20 - &27) Solid line excluding initial point
40-47 (&28 - &2F) Solid line excluding both end points
48-55 (&30 - &37) Dotted line excluding initial point
S6-63 (&38 - &3F) Dotted line excluding both end points
64-71 (&40 - &47) Point plot
72-79 (&48 - &4F) Horizontal line fill (left & right) to non-

background
80-87 (&50 - &57) Triangle fi ll
88-95 (&58 - &SF) Horizontal line fill (right only) to

background
96-103 (&60 - &67) Rectangle fill
104-111 (&68 - &6F) Horizontal line fill (left & right) to

foreground
112-119 (&70 - &77) Parallelogram fill
120-127 (&78 - &7F) Horizontal line fill (right only) to non-

foreground
128-135 (&80 - &87) Flood to non-background
136-143 (&88 - &8F) Flood to foreground
144-151 (& 90 - & 97) Circle outline
152-159 (&98 - &9F) Circle fill

RAPHICS

160-167 (&AO - &A7) Circular arc
168-175 (&AS - &AF) Segment
176-183 (&80 - &87) Sector
184-191 (&88 - &8F) Block copy/move
192-199 (&CO - &C7) Ellipse outline
200-207 (&C8 - &CF) Ellipse fill
208 215 (&DO - &D7) Graphics characters
216-223 (&D8 - &DF) Reserved for Acorn expansion
224-231 (&EO - &E7) Reserved for Acorn expansion
232-39 (&E8 - &EF) Sprite plot
240-247 (&FO - &F7) Reserved for user programs
248-255 (&F8 - &FF) Reserved for user programs

Within each block of eight, the offset from the base number has the following
meaning:

0 8 move cursor relative (to last graphics point visited)

1 cr draw relative using current foreground colour

2 ,4 draw relative using logical inverse colour

3 1 draw relative using current background colour

4 c move cursor absolute (ie move to actual co-ordinate given)

5 0 draw absolute using current foreground colour

6 tf draw absolute using logical inverse colour

7 t' draw absolute using current background colour

PLOT is a good example of where using hexadecimal notation helps to make
things clearer. Each block of eight starts at either & xO or & x8, where 'x'

represents any hexadecimal digit, so a plot absolute in the current foreground
colour, for example, has a plot code of &x5 or &xD. Thus, it is obvious which mode
of plotting is being used. Similarly, it is obvious which shape is being plotted, and

137

138

so, for example, if the plot is between & 90 and & 9F, then it is a circle. This is a far
easier range to recognise than 144 to 159.

Each of the types of plot is described in further detail below.

Plotting simple lines;

A line is plotted between the coordinates given by the PLOT and the previous
position of the graphics cursor. The following examples draw a line from
(200,200} to (800,800}:

10 MODE 0
20 PLOT &04,200,200
30 PLOT &05,800,800

These two PLOT statements are equivalent to MOVE 2 0 0, 2 00 and DRAW

800, 800 respectively.

The same line can be drawn by a different PLOT code:

10 MODE 0
20 PLOT &04,200,200
30 PLOT &01,600,600

This demonstrates the use of relative plotting. The coordinate (600,600) which has
been given in line 30 is relative to the position of the graphics cursor. The absolute
value is obtained by adding this offset to the previous position ie
(600,600) + (200,200} which gives a position of (800,800}. This is equivalent to
DRAW BY 600, 600.

Dot-dash lines

Straight lines do not have to be drawn as a continuous line. Instead you can set up
a pattern of dots and dashes and use that.

RAPHICS

A doc-dash pattern is set up using:

VDU 23,6,n1,n2,n3,n4,n5,n6,n7,n8

where nl to n8 define a bit pattern. Each bit which is set to one representS a point
plotted and each bit set to zero representS no point. The maximum pattern repeat
is 64. However, you can set up any repeat between one and 64 using:

*FX 163,242,n

If you set 'n' to zero, this setS up the default pattern which has a repeat of eight
and is alternately on and off, ie %10101010 (&AA).

There are four different methods which may be used to plot the line:

PLOT range

&10-&17

&18-&lF

&30-&37

&38-&3F

Triangles

Effect

Both end points included, the pattern being restarted
when each new line is drawn.

Final point omitted, the pattern being restarted when
each new line is drawn.

Initial point omitted, the pattern being continued when
each new line is drawn.

Both end pointS omitted, the pattern being continued
when each new line is drawn.

To draw a triangle, you need the coordinates given with the triangle PLOT code
and two previous pointS which mark the other corners. For example:

10 MODE 12
20 MOVE 200,200

139

140

30 MOVE 600,200
40 PLOT &55,400,400

This plots a triangle with comers (200,200), (600,600) and (400,400). Adding a
further line:

50 PLOT &55,800,400

plots a further triangle using corners (600,200), (400,400) and (800,400).

Rectangles

An axes-aligned rectangle can be plotted between the coordinates given by the
PLOT and the previous position of the graphics cursor. For example:

MOVE 200,200
PLOT &65,800,800

This is equivalent to RECTANGLE FILL 200,200, 600, 600.

RAPHICS

Parallelograms

Parallelograms are constructed as rectangles which have been sheared sideways.
For example:

(400,800) (900,800)

(200,200) (700,200)

These require three points to define them. Thus to plot the parallelogram shown
above the following could be used:

MOVE 200,200

MOVE 700,200

PLOT &75,900,800

Although any three corners of the parallelogram may be used to define it, the
order in which these are given affects which way round the parallelogram
appears. Consider the three points given below:

141

142

(700,800)

(200,500) (600,500)

These could produce any of the following three parallelograms, depending on
the order in which they were used:

MOVE 200 , 500
MOVE 600,500
PLOT &75,700,800

or

MOVE 700,800

MOVE 600,500

PLOT &75,200,500

RAPHICS

(300,800) (700,800)

CJ
(200,500) (600,500)

MOVE 200,500

MOVE 700,800

PLOT &75,600,500

or

MOVE 600,500

MOVE 700,800

PLOT &75,200,500

143

(700,800)

(600,500)

MOVE 600,500
MOVE 200,500

I? LOT &75,700,800

or

MOVE 700,800
MOVE 200,500

I? LOT &75,600,500

144

RAPHICS

(700,800) (1100,800)

(200,500) (600,500)

Hence the points are taken as moving around the edge of the parallelogram in
sequence, the final point being opposite the middle one defined.

Circles

To plot a circle define the centre by moving it, and then use PLOT with the
relevant plot code and the coordinates of a point on its circumference. For
example, to plot a solid circle in the centre of the screen with a radius of 100, type

MOVE 640,512 :REM centre
PLOT &90,740,512 :REM Xcentre+radius,Ycentre

Alternatively you could use relative plotting :

MOVE 640,512
PLOT &99,100,0

:REM centre
:REM radius,O

In both these examples the circles are solid and could have been produced using
the CIRCLE FILL command. The equivalent of the CIRCLE command for
producing outlines of circles would be PLOT & 9 5 and PLOT & 91.

145

146

Ellipses

Ellipses are more complicated to define than circles. To plot an ellipse the
following information is required:

- the centre point
- an outermost point (either to the right or left) at the same height as the centre
- the highest or lowest point of the ellipse.

(800,712)

(740,512)

(460,312) (640,512)

For example, to draw the ellipse above, you could use:

MOVE 640,512
MOVE 740,512
PLOT &C5,800,712

or alternatively:

MOVE 640,512
MOVE 540 ,512
PLOT &C5,480,312

the centre
the right-hand point
the top point

the centre
the left-hand point
the bottom point

Note that only the 'x' coordinate of the second point is relevant, although for
clarity it is good practice to give the same 'y' coordinate as for the centre point.

RAPHICS

The following example creates a pattern using a number of differently shaped
ellipses:

10 MODE 0

20 FOR step% = 0 TO 400 STEP 25

30 MOVE 640,512
40 MOVE 215+step%,512

50 PLOT &C5,640,512+step%

60 NEXT

Solid ellipses arc drawn in the same way using the plot codes &C8 to &CF.

The BASIC ELLIPSE keyword provides an easier way of specifying rotated
ell i pscs.

Arcs

We saw above how circle outlines are defined and drawn. In a similar way, just a
portion of the circle outline may be drawn to produce an arc. In this case, three
points are required: the centre of the circle and two points to indicate the starting
and finishing points of the arc. Ideally, these would be given as follows:

Cen1re Stantng po>nt

In the example above, however, both the starting and finishing points are on the
arc itself. This is a design which requires a large amount of calculation. It is easier
for the starting point to be taken as being on the arc and used to calculate the
radius, the finishing point being used just to indicate the angle the arc subtends.

147

148

For example:

Possible
finislun' pointS

Cenm: Slllrlins poon1

This is the method used by BASIC. To draw an arc, you need to specify the centre
of the circle it is based upon and the starting point of the arc, and then to plot to a
third point to specify the angle.

The example below draws an arc based on a circle whose centre is at (640,512). It
draws the portion of the arc from 0 to 270. Since arcs are drawn anticlockwise this
means that its starting position is the point (440,512) (2 70) and its finishing
position (640,512+n) (0):

MOVE 640,512
MOVE 440,512

PLOT &A5,640,1000

Sectors

A sector is a filled shape enclosed by two straight radii and the arc of a circle.

Finish

SlAt!

Centre

PA TfERN FILLS

RAPHICS

Sectors are defined in a similar manner to arcs. For example:

MOVE 640,512
MOVE 440,512
PLOT &85,640,1000

centre point
starting point on the circumference
point indicating angle of sector

Again the sector is taken as going anti-clockwise from the starting point to the
finishing point.

Segments

A segment is an area of a circle between the circumference and a chord as shown
below:

Cen1re

Segments are defined in exactly the same way as arcs and sectors.

Any of the colours which are available in a given mode may be interwoven to give
a tremendous range of colour patterns. When using modes with a limited number
of colours, for example any of the four-colour modes, this feature may be used to
extend the colours available, since combini~g similar colours produces further
shades which look like pure colours. Alternatively, contrasting colours may be
used to give checks, wavy lines, and so on.

Default patterns

Default patterns are set up for you as follows:

149

150

Mode(s)

0

4,18

1,5,8,19

2,9,12,20

13,15

Pattern Colour

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Dark grey
Grey
Light grey
Hatching

Dark grey
Grey
Light grey
Hatching

Red-orange
Orange
Yellow-orange
Cream

Orange
Pink
Yellow-green
Cream

White-grey stripes
Black-grey stripes
Green-black stripes
Pink-white stripes

To use these patterns you issue a GCOL with a plot action which depends on the
pattern desired. In general, to use pattern 'n', the GCOL command should be

GCOL n*l6+action,col

where action is the plotting action you want to use with the pattern (for example
0 for force, 1 for OR etc, as described earlier), and col is 0 if you want to set the
foreground colour as a pattern or 128 for a background pattern. The parameter 'n'
is in the range 1 to 4 for the normal patterns, or 5 for a large pattern which is
formed by placing patterns 1 to 4 next to each other.

RAPHICS

Plotting using pattern fills

All the shapes which have been described above can be plotted using these
colour patterns. A pattern may be selected using GCOL. The first parameter to

GCOL affects the plotting action as was seen in the chapter: SCREEN MODES.
Patterns can be used in future plots by using values in the following ranges:

16-31 Pattern 1
32-47 Pattern 2
48-63 Pattern 3
64-79 Pattern 4

Try the following:

10 MODE 9
20 GCOL 16,0

30 MOVE 100,100

40 MOVE 800,800
50 PLOT &55,700,200

or

10 MODE 1
20 GCOL 32,0
30 MOVE 640,512

40 PLOT &9D,740,512

It is possible to plot lines using these colour patterns in a similar manner, but the
effects may be rather strange. Consider, for example, a line drawn at 45 degrees
in mode one. If the pattern being used was alternate black and white pixels, then
this line would be drawn either in all white or all black, the latter not being
visible on a black background.

Defining your own patterns

You may define your own colour patterns using VDU commands as follows:

151

152

VDU 23, 2, n1, n2, n3, n4, nS, n6, n7, n8 defines GCOL 16,0 ic pattern one.

VDU 23, 3, n1, n2, n3, n4, nS, n6, n7, n8 defines GCOL 32, 0 ie pattern two

VDU 23, 4, n1, n2, n3, n4, nS, n6, n7, n8 defines GCOL 48, 0 ie pattern three

VDU 23, 5, n1, n2, n3, n4, nS, n6, n7, n8 defines GCOL 64,0 ie pattern four

The pattern produced by a set of parameters depends upon which pattern mode
is being used. There are two modes available, one where the parameters are
interpreted in the same manner as on a BBC Master 128 and another simpler
method used by this machine only. The default is the BBC Master 128 mode. To
change to the Archimedes (native) mode type

VDU 23,17,4,1,0,0,0,0,0,0

To revert back again to the Master mode type

VDU 23,17,4,0,0,0,0,0,0,0

The pattern fill works with blocks of pixels. The size of these blocks depends on
the number of colours available in the mode:

Pixels hori:ontally

8
4
2
1

Pixels vertically

8
8
8
8

Colours in mode

2
4
16
256

In all cases, each pixel may be assigned a colour independently of the others.
Each parameter of the YOU command corresponds to a row in the pixel block.
The first parameter contains the value of the top row, the second the value of the
second row, and so on. The way the value of the parameter is interpreted depends
on the mode being used.

RAPHICS

Native mode patterns

In native mode the bits of the parameter are used in a straightforward manner to
give the colour of the pixels.

- Two,colour modes: Each bit of the parameter is assigned to a pixel, the least
significant bit applying to the pixel on the left. For example, to set a row of the
pattern as follows:

black, white, white, white, black, black, black, white

%0 %1 %1 %1 %0 %0 %0 %1

the value required is 142 (%10001110).

- Four,colour modes: Each pair of bits of the parameter is assigned to a pixel,
the least significant pair applying to the pixel on the left. For example, to set a
row of the pattern as follows:

yellow red white yellow

%10 %01 %11 %10

the value required is 182 (%10110110).

- J6,colour modes: Each set of four bits of the parameter is assigned to a pixel,
the least significant set applying to the pixel on the left. For example, to set a
row of the pattern as follows:

green white

%0010 %0111

the value required is 114 (%01110010).

- 256,colour modes: The value of the parameter defines the colour assigned to

the pixel directly.

153

154

BBC Master 128 compatible patterns

The patterns in these cases are more complex since they involve interweaving the
bits from the colour to obtain the parameter value.

- Two-colm~r modes: This is the easiest case to understand. Each pixel in the
block corr~ponds to one bit of the parameter, the least significant bit
applying to the pixel on the right. For example, to set a row of the pattern as
follows:

black, white, white, white, black, black, black, white

%0 %1 %1 %1 %0 %0 %0 %1

the value required is 113 (%01110001).

Defining a pattern in a two-colour mode is equivalent to setting up a user
defined character.

- Four-colour modes: In four-co lour modes each colour is defined using two bits
as follows:

yellow (2) red (1) white (3) yellow (2)

%10 %01 %11 %10

0
0 1

0
1 0 1 0 1 0

and the value required is 182 (%10110110).

RAPHICS

- 16-colour modes: In 16-colour modes the situation is different again. There arc
just two pixels in a row, four bits of the parameter being used to hold the value
of each colour. However, it is not the case that the top four bits correspond to
the first colour and the bottom four bits to the other. Instead, the bits of each
are interleaved:

green (2) white (7)

%0111 %0111

0 0 1 0
0 1 1

0 0 0 1 0 1

and the value required is 29 (%00011101).

To get the colours the other way around different numbers are required:

white (7) green (2)

%0111 %0010

0 1 1
0 0 1 0

00101 0

and the value required is 46 (%00101110).

Thus a cross-hatch pattern of alternate white and green pixels can be defined:

VDU 23,2,29,46,29,46,29,46,29,46

Giant patterns

Giant patterns can be set up which take all four of the separate patterns and
place them side by side, giving an overall pixel size as shown below:

155

156

Pixels horizontally

32
16
8
4

Pixels vertically

8
8
8
8

Colours in mode

2
4
16
256

To produce a giant pattern in this way, the first parameter given to GCOL should
be in the range 80 to 95.

Simple patterns

Often the most effective way of using the pattern fills is for simple cross-hatch
patterns. If you want to use this sort of colour pattern, a simpler way of defining it
is available. In this method, just a small block of eight pixels is defined which is
used to form the normal-sited block as shown below.

16 colour modes 4 colour modu

The eight pixel colours are set up using

VDU 23,2,nl,n2,n3,n4,n5,n6,n7,n8

FLOOD-FILLS

RAPHICS

where n 1 to n8 correspond to the actual colour to be used. The numbers are given
in the following order:

mm rrrn
Mode4 Mode .If

This section is concerned with how to fill the inside of any closed region, however
awkward the shape. The method used is flood-filling; with this you can start off at
any point within the boundaries of the shape. The whole shape is then filled at
once.

Flood to non-background

This can be used on shapes which are in the current background colour and
bordered by non-background colours. The shape is filled with the current
foreground colour.

To use this flood-fill method, type, for example:

FILL 640,512

This starts filling from the point (640,512): the middle of the screen. If this point
is in a non-background colour then it returns immediately. Otherwise it fills in all
directions until it reaches either a non-background colour or the edge of the
screen.

Flood-fills may be performed using either pure colours or colour patterns. Note
that if you wish to colout in a shape it must be totally enclosed by a solid border.
If there is a gap anywhere then the colour leaks out into other regions.

157

Flood until foreground

Whereas the previous flood-fill filled a shape currently in the background
colour, this one fills a shape currently in any colour except the present
foreground one, with the present foreground colour. This is performed by a PLOT
command with plot codes & 8 8 to & BF. For example:

PLOT &80,640,512

Flood-filling will only succeed when the region being filled does not already
contain any pixels in the colour being used. For example, if you arc attempting a
flood to non-background when the background colour is black, you should not try
to flood in black or in a pattern which contains black pixels.

COPYING AND MOVING

158

Using RECTANGLE ... TO and RECTANGLE FILL ... TO, you can pick up a
rectangular area of the screen and either make a copy of it elsewhere on the
screen or move it to another position, replacing it with a block of the background
colour. For example:

RECTANGLE FILL 400,600,60,80 TO 700,580

This marks out the source rectangle as having one corner at coordinates (400,600),
a width of 60 and a height of 80. It then moves this rectangular area so that the
bottom left of it is at the coordinates (700,580). The old area is replaced by
background.

The new position can overlap with the rectangular area, as in the example above,
and the expected result is still obtained.

The rectangle move and copy commands may also be expressed in terms of PLOT
codes. The relevant range of codes is &BB to &BF: first move to two points which
denote the bottom left and top right of the rectangle to be copied or moved; then
plot, using one of the range of codes described above, to the bottom left corner of
the destination rectangle. The meanings of the plot codes are as follows:

RAPHICS

&B8 Move relative (no copy/move operation)
&B9 Relative rectangle move
&BA Relative rectangle copy
&BB Relative rectangle copy
&BC Move absolute (no copy/move operation)
&BD Absolute rectangle move
&BE Absolute rectangle copy
&BF Absolute rectangle copy

The rectangle move operations erase the source rectangle, whereas the copy
operations leave it intact. So, the RECTANGLE FILL ... TO example above could
also be expressed as:

MOVE 400,600
MOVE BY 60,80
PLOT &80,700,580

PRINTING TEXT AT THE GRAPHICS CURSOR

Printing text at the text cursor positions gives only limited control over the places
at which characters may be located. In addition it does not allow characters to
overlap. Attempting to print one character on top of an existing one deletes the
existing one first. You may find that you would like to be able to place text in
different positions, for example to label the axes of a graph or to type two
characters on top of each other, so as to add an accent'"' to a letter. To do either of
these type

VDU 5

You are now in YOU 5 mode. Whilst you are in this mode of operation, any
characters you print are placed at the graphics cursor position. The text cursor is
ignored. Use the MOVE statement to locate the text precisely.

Since this method of printing makes use of graphics facilities, it is not allowed in
text-only modes. If the command VDU 5 is given in any of these screen modes it
has no effect.

1~0

1oo

Each character is actually placed so that the top left of it is at the position of the
graphics cursor. After the character has been printed, the graphics cursor moves to
the right by the width of one character. Although the graphics cursor also
automatically moves down by the height of a character (32 units or 16 units in
modes 18 to 0) when the right-hand side of the screen is reached, the screen docs
not scroll when a character is placed in the bottom right-hand comer. Instead the
cursor returns to the tap left.

To return to the normal mode of operation type

VDU 4

INDOWS

TEXT WlNDOWS

The Archimedes operating system allows the programmer to set up special
rectangular areas of the screen, called windows, in order to restrict where text or
graphics can appear on the screen.

Text windows provide automatic scrolling of text written into the window area,
and so are also referred to as 'scrolling windows'.

Graphics windows restrict the area affected by graphics operations, so that, for
example, lines are clipped to lie within the window area. Graphics windows are
therefore also referred to as 'clipping windows'.

Text and graphics windows are supported directly by the VDU drivers, and are
quite distinct from the bordered, moveable windows used by the desktop
manager software.

Normally, text may appear anywhere on the screen. However, you can set a text
window, which allows the text to appear only inside the window. To set up a text
window, use the VDU 28 command as follows:

VDU 28,a,b,c,d

161

162

where a,b is the bottom left-hand and c,d the top right-hand position inside the
window given in text coordinates:

f, t.

D

B

Text
A window

v

c
~

'-1

Nothing outside the text window is affected by text statements, such as CLS to
clear the text screen, or screen scrolling. Note that TAB (X, Y) positions the text
cursor relative to the position of the top left of the current text window. The
following program demonstrates how text windows behave:

10 MODE 1
20 REM Set up a text window 6 characters square
30 VDU 28,5,10,10,5
40 REM Change the background colour to colour 1 (red)
50 COLOUR 129
60 REM Clear the text screen to show where it is

70 CLS
80 REM Demonstrate scrolling

90 FOR N% - 1 TO 20
100 PRINT N%
110 NEXT N%
120 REM Show position of character (2,3)
130 PRINT TAB(2,3);"*"
140 END

IN DOWS

To revert back to having the whole screen as the text window type

VDU 26

The precise actions of the VDU 2 6 command are as follows:

- Restore text window to the whole screen
- Restore graphics window to the whole screen
- Home the text cursor
- Restore graphic origin to bottom left of screen
- Home graphics cursor to (0,0)

GRAPHICS WINDOWS

Just as text may have a text window defined, so a graphics window may be set up
using

VDU 24,c;b;r;t;

where (c ,b) and (r, t) are the coordinates of the lower left-hand and upper
right-hand pixels inside the window. (Be sure to use semi-colons as indicated, not
commas.)

<l- R -C>

L ~ b
~

GraP.hics
winc.tow

~
T

B

~ ~

163

164

Nothing outside the graphics window is affected by graphics commands, such as
CLG to clear the graphics screen. When a graphics window is set up, the graphics
origin (0,0) is unaltered. The following program demonstrates how graphics
windows behave:

10 MODE 12
20 REM Set up a graphics window,a quarter of the screen size
30 VDU 24,320;256;960;768;
40 REM Change the background colour to colour 1 (red)

50 GCOL 129
60 REM Clear the graphics window
70 CLG
80 REM Show position of 0,0
90 CIRCLE 0,0,600

100 END

To revert back to having the whole screen as the graphics window type

VDU 26

THE SPRITE EDITOR

A sprite is a user-defined graphics character which can be any siz.e or shape and
which can contain different colours. Sprites can be used for animating pictures,
games, and so on. A sprite editor is provided to help you to define spri tes for use
in a program. The sprites can then be plotted and unplotted (removed from the
screen) using a simple PLOT command.

When sprites are being defined or used they reside in memory. The amount of
memory allocated for storing sprites is configurable in chunks of 8K. For
example,

*CONFIGURE SPRITESIZE 3

configures the machine so that 24K (3 * 8K) is reserved automatically for sprite
workspace when the machine is powered on.

You can use the sprite editor provided on the Welcome Disc to create new sprites
and to modify existing ones. To load and run the editor, place the Welcome Disc
in the disc drive and (unless you happen to be in the Utilities directory already)
type

CHAIN "$.UTILITIES.SEDIT"

You may also, of course, select the sprite editor from itS icon in the desktop
program.

The program displays a list of the sprites currently in memory. The name, width,
height and mode of each sprite is given.

The first time you use this program, the list is empty since you have not yet created
any sprites. To create a sprite, move the pointer to the CREATE option at the
bottom of the screen and press any of the mouse buttons. You are then prompted
for a name and a mode. The name can contain up to ten characters:
spritel, man_right, 2, and so on. The mode is the screen mode which you will
use when you plot the sprite.

165

166

When one or more sprites exist, one of the entries is highlighted. To edit the
sprite concerned, move the pointer so that it is pointing to the highlighted entry
and press any of the mouse buttons. The mode changes to that of the sprite
selected and the screen changes to the sprite editing screen.

To edit a different sprite, you must first select it by pointing to it and pressing any
of the mouse buttons. This highlights it so that you can select it as described above.
If you have a large number of sprites in memory, you may find that they will not
all fit on the screen. You can scroll through them by pointing above the first sprite
entry or below the bottom one and pressing any button.

It is important at this stage to note that when you edit an existing sprite you are
updating the only copy of it which exists in memory. There is no way of leaving the
editor and retaining the original state of the sprite. Consequently, it is a good idea
ro save a copy of the original sprite to disc first, so that if you make a mistake
whilst editing it and wish to return to the original, you can load it back into
memory again.

Editor display

The sprite editor shows you two versions of the sprite, one actual-sized one in a
display box on the right and another larger version in an enlargement box on the
left. The version in the display box shows you what your spri te will look like
when you use it in your program. The version in the enlargement box is the one you
usc to make your alterations. If your sprite is too large for all of it ro be
displayed in the enlargement box, only the bottom left-hand corner of it is
visible. The lines in the border of the display box indicate the position of the
pixel in the centre of the enlargement box.

At the rop of the screen some information representing the status of the current
sprite is displayed. The name of the sprite is printed on the top line. Below this is
the mode you are using and the current siz.e of the sprite given in bytes
horizontally and vertically. Beneath this is a letter'S' or 'T', which indicates
whether the sprite is solid (has no mask) or transparent (has a mask defined).

PRITES

Below the text is a small solid block which is plotted in the current colour. The
current logical colour can be selected by pointing to one of the available colours
displayed in the bar beneath it and pressing any mouse button.

In the two-, four- and 16-colour modes the colour bar is one row deep and contains
two, four or 16 sections, each representing one of the colours which may be used.
In addition, there are three boxes below this which can be used to change the
palette for the current colour. Each has a line across it indicating the amount of
red, green and blue contained in the current colour. The higher up the line, the
more of that primary colour the actual colour contains. To alter any of these
settings, point to a new position within one of the boxes and press a button.
Pressing the left-hand button selects it as a solid colour, the middle button selects
it as the first flash state and the right-hand button selects it as the second flash
state. Note that altering the palette also alters any of the pixels in the sprite
which are currently plotted in the current colour.

In 256-colour modes the colour bar is four rows deep and 64 sections across,
giving 256 different colours which may be selected. No control of the palette is
available in these modes.

Colouring in the pixels

The colour of a pixel can be altered by pointing to it in the enlargement box and
pressing a button. The left-hand button sets it to the current colour as displayed at
the top of the screen, the middle button sets it to the logical colour for text or
graphics, which is by default white, and the right-hand button sets it to the logical
colour for background, which is by default. black.

Moving about the sprite

If the sprite is too large to be displayed in the enlargement box, you can move
around it by pointing to the part of the complete sprite, shown in the display box,
which you want to appear in the centre of the enlargement box and pressing any
button.

167

168

Altering the size of a sprite

The size of a sprite can be altered by adding rows and columns to the top and
right of it using the following keys:

- ~ adds another row at the top

- [!!] adds another column at the right

- IShlftl~ deletes the top row

lShifti!HJ deletes the right-hand column

It is possible for the sprite to reach such a size that it cannot allow you to add any
further rows or columns. This occurs when the size of a sprite (in bytes) would be
greater than the amount of memory left in the space reserved for your sprites. If
this occurs, you need to leave the sprite editor and alter the sprite space as
described above.

It is good practice to remove any unused rows and columns when you have finished
designing a sprite since these make the sprite appear larger than necessary. They
also waste memory and increase the time taken to plot the sprite.

Often, when designing symmetrical shapes, it is easier to work inwards from the
edges towards the centre. This invariably means that you end up wanting to add or
delete a number of rows and columns in the middle of the sprite.

To add an extra row or column, press IIID or ITID respectively and a new blank row
or column is added at the current pointer position (which must be within the
enlargement box}.

lShiftl@ and lShiftl@ have the opposite effects. They delete the row or column
currently pointed at.

PRITES

Other useful commands

You can use [l] to speed up the colouring process. This fills the row sideways out
from the pointer position in the current colour until it finds a pixel which is in a
different colour from the one it is changing. Thus, if the cursor is on top of a white
pixel and the current colour is red, it looks along to the left and right to find the
first non-white pixel in each direction and changes all the pixels in between to
red. [!g) works in a similar manner on columns.

Two other commands are [W and @I which allow you to reflect your sprite so that
it either faces the other way or is turned upside down. ffZ1 is particularly useful for
games in which the shape you are moving around the screen often needs to face the
way it is moving, so two copies are required which are mirror images of each other.

To create a mask for the sprite you are editing, press I Shift I@]. This changes the'S'
at the top of the screen to a 'T' so indicating that the sprite has a mask. Pressing @]
sets the current colour to transparent which is indicated by a black and white
cross-hatch pattern. This allows the mask to be defined. To delete a mask press
[Qill@].

Finally when you are happy with the sprite you have designed, press IEscapel to
leave the sprite editor.

SPRITE • COMMANDS

Several * commands are provided to enable you to act on the sprites in memory.
These are totally separate from the sprite editor and can either be issued whilst
in BASIC command mode or included within programs.

Changing the name of a sprite

You can change the name of a particular sprite by typing

*SRENAME name,newname

This renames sprite name as sprite newname. Note that if there is a sprite in
memory already with the identifier newname, an error message is displayed.

169

170

Copying sprites

To copy a sprite definition type

*SCOPY name,newname

This copies the definition of sprite name and uses it to identify the new sprite
newname.

Deleting sprites

To delete a sprite, type

*SDELETE name

This deletes the sprite whose identifier is name.

To delete all the sprites, type

*SNEW

Loading and saving sprites

All the sprites which you currently have in memory can be saved as a file by
typing

*SSAVE filename

You can also load a sprite file back into memory so that you can either plot or
edit the sprites in it by first reserving a sufficient area of memory for it using
*SSPACE, and then typing

*SLOAD filename

If you wish to merge a file of sprites with those you have in memory, then you can
usc:

PLOTTING SPRITES

PRITES

*SMERGE filename

This command, however, should be used with care if there is a sprite currently in
memory which has the same number as one of the sprites in the file, since when the
two are merged, the version which was in memory will be lost.

It is very simple to plot one of the sprites which you currently have in memory.
All you have to do is select which sprite you wish to plot and where you want it to
appear on the screen. To select a particular sprite, usc:

*SCHOOSE name

A PLOT command is then used to put it on the screen. The possible plot numbers
which may be used are &E8 to &EF. For example:

*SCHOOSE horse
PLOT &ED, 640, 512

plots sprite horse with its bottom left-hand corner exactly in the centre of the
screen.

As an alternative to *SCHOOSE, the following VDU command may be used for
certain sprites:

VDU 23,27,0,n,O,O,O,O,O,O

This is equivalent to *SCHOOSE when the name of the sprite contains just digits,
the values of which are numbers between zero and 255. The advantage of using the
VDU command is that it can contain variables. If you wish to plot eight sprites,
whose names are 1 to 8, you can use, for example:

FOR sprite_num% - 1 TO 8
VDU23,27,0,sprite_num%,0,0,0,0,0,0
PLOT &ED,x%,y%
NEXT

171

Any * command, however, can only be used with constant parameters, and so if
* SCHOOSE is to perform an equivalent task you will have to type

*SCHOOSE 1
PLOT &ED,x%,y%
*SCHOOSE 2
PLOT &ED,x%,y\

*SCHOOSE 8
PLOT &ED,x%,y\

Plotting with a mask

If a sprite has a mask defined, this can be used whilst plotting so that the area of
the mask leaves the background unchanged: the mask area is treated as if it were
transparent. To plot using the mask, use the GCOL plotting modes 8 to 15. For
example:

GCOL 8,0
*SCHOOSE horse
PLOT &ED, 640, 512

Plotting within graphics windows

Sprites are clipped to the edges of the screen so they appear to scroll on and off.
This is handled for you by the plotting routines which only display the part of the
sprite which should be on the screen. This clipping also applies to graphics
windows.

DEFINING SPRITES FROM THE SCREEN

177.

As well as using the editor to design a sprite, it is also possible to pick up any
rectangular area of the screen and make this into a sprite. To do this you should

PRITES

mark the rectangle by moving to its bottom left-hand corner and then its top right
hand corner. Then use the command:

*SGET name

or alternatively:

VDU 23,27,l,n,O,O,O,O,O,O

Either of these defines a sprite which contains whatever is currently in the
rectangle. This sprite may then be used in exactly the same way as any other. The
*SGET commands can give the sprite any name it likes, but the VDU 23 command
is limited to creating sprites with names 0 to 255.

173

174

ELETEXT MODE

TEXT DISPLAYS

The teletext mode, mode 7, is unique in the way its displays text and graphics.
Commands such as COLOUR, GCOL, MOVE and DRAW do not work in this mode.
Instead colourful displays are produced using teletext control codes.

Mode 7 is compatible with the teletext pages broadcast by CEEFAX and Oracle.
You can produce your own teletext displays using the limited but effective
graphics which are available.

Coloured text

Type in the following program and run it:

10 MODE 7
20 PRINT "THIS" ;CHR$(129) ; " demonstrates";CHR$(130);"the";CHR$(131);"use"

30 PRINTCHR$ (132); "of" ;CHR$ (133); "control " ; CHR$ (134); "codes"

The characters 129, etc, which are printed using CHR$ (12 9) are the control codes.
Note that the control codes are invisible but take up a character position, so the
words are separated by a space. Each code affects the way in which the remaining
characters on that particular line are displayed. For example, printing
CHR$ (12 9) makes the computer display the text in red. The full list of colours
and their associated control codes is given below:

Code Text colour

129 Red
130 Green
131 Yellow
132 Blue
133 Magenta
134 Cyan
135 White (default)

Every line starts off with the text in white. So, if you want several rows of text to

appear in red, for example, you must start each of these rows with CHR$ (12 9) .

175

176

Making text flash

Text can be made to flash. For example:

10 MODE 7
20 PRINT CHR$(136)"Flash";CHR$(137)"Steady"; CHR$(136)"Flash"

Flashing coloured text can be produced be using two control codes:

10 MODE 7
20 PRINT "Steady white";CHR$(129);CHR$(136)"Flashing red"

Since each control code occupies a character position, the words white and
Flashing are separated by two spaces on the screen.

Double-height text

Double-height text can be produced as follows:

10 MODE 7
20 PRINT CHR$(141)"Double height"

30 PRINT CHR$(14l)"Double height "

To obtain double-height text, the same text must be printed on two successive
lines beginning with CHR$ (141) . If the text is only printed once, only the top
half of the letters is displayed.

To revert back to single-height graphics on the same line, the control code is 140.
For example:

10 MODE 7
20 PRINT CHR$(141)"Double Height'';CHR$(140)"Single Height"

30 PRINT CHR$(141)"Double Height";CHR$(140)"Single Height"

TELETEXT GRAPI-flCS

ELETEXT MODE

Changing the background colour

Changing the background colour requires two codes:

10 MODE 7

20 PRINT CHR$(131);CHR$(157)"Hello"

The first code is for yellow text. The second tells the computer to use the previous
control code as the background colour. The net effect of the two codes is to give
yellow text on a yellow background as you can see when you run the program
above. Hence to print text visibly on a coloured background, three control codes
are required, two to change the background colour, and a third to change the
colour of the text. For example:

10 MODE 7
20 PRINT CHR$(13l);CHR$(157);CHR$(132)"Blue on yellow"

Certain characters, such as the lower-case letters, may eiLher be printed normally
as text or made to appear as graphics shapes by preceding them with one of the
graphics control codes. These are:

Code Graphics colour

145 Red
146 Green
147 Yellow
148 Blue
149 Magenta
150 Cyan
151 White
156 Set background to black
157 Set background colour to the current foreground colour

Each line of the Teletext display starts with the following attributes: white, alpha
(ie non-graphics) characters on a black background.

177

178

Each graphics shape is based on a two by three grid:

A 8

A full list of graphics shapes is given in APPENDIX C. It is possible, however, to
calculate the code for any particular graphics shape, since each of the six cells
contributes a particular value to the code as follows:

I 2

4 8

16 64

The base value for the codes is 160, so that they lie in the ranges 160 to 191 and
224 to 255. For example,

ELETEXT MODE

has a code of 160 + 1 + 8 + 16 = 185 and so may be produced on the screen in red.
To do this, type

PRINT CHR$(145);CHR$(185)

Normally, the blocks of colours are continuous. For example,

PRINT CHR$(145);CHR$(255)

produces a solid block of red. Nevertheless, the graphics can be separated, with a
thin black line around all the segments. To see the effect of this, try typing

PRINT CHR$(145);CHR$(154);CHR$(255)

So far we have seen that each of the teletext control characters appears on the
screen as a space. This means that it is not normally possible to have graphics
blocks of different colours touching each other. They have to be separated by at
least one space to allow for the graphics colour control codes.

However, if you wish to use different colours next to each other, you can do so by
using some of the more advanced teletext controls. For example, try typing

PRINT CHR$(145)CHR$(152)CHR$(255)CHR$(158)CHR$(146) CHR$(147)CHR$(159)

The code 152 conceals the display of all graphics characters until a colour change
occurs. Hence the solid red graphics block is not displayed.

The code 158 holds the graphics. This means that it remembers the previous
graphics character, in this case the solid block, and displays all future graphics
shapes and control codes as the remembered character.

The code 146 is the first colour change. As a result, it reverses the concealing
effect of code 152 so that future characters are displayed, and also selects green
graphics.

The code 14 7 is a control code displayed as a solid graphics block in the current
colour which is green. It selects yellow graphics.

179

180

The code 159 is a control code displayed as a solid graphic block in the current
colour which is yellow. It releases the graphics, ie it reverses the effect of any
previous 158 codes.

OUND

The computer contains a sound synthesizer which enables you to imitate up to

eight different instruments playing at once, giving either mono or stereo sound
production for each instrument.

The sound system can be activated or de-activated using the statements

SOUND ON

and

SOUND OFF

You need to select how many different sound channels you wish to use. The
default value is one, but you can alter this by typing

VOICES n

The maximum number allowed is eight. Any number between one and eight can
be spccifed, but the number which the computer is to handle has to be a power of
two, and so the number you give is rounded up by the computer to either one, two,
four or eight.

Since the sound system uses up a lot of the computer's processing power, you
should minimise the number of active channels; otherwise, the computer will take
longer to perform other tasks such as drawing to the screen.

For each active channel, the stereo position of the sound can be altered using:

STEREO chan,pos

pos can take any value between -127 (indicating the sound is fully to the left)
and + 12 7 (indicating the sound is fully to the right). The default value of each is
zero which gives central (mono) production.

Although the range of the pos argument in the STEREO keyword is -127 to 127,
there are actually only seven discrete stereo positions. These are:

181

-127 to-80
-79 tO -48
-47 to -16
-15 to +15
+16to+47
+48 to +79
+80 to+ 127

Full left
2/3 left
1/3 left
Central
1/3 right
2/3 right
Full right

THE SOUND STATEMENT

182

BASIC provides a SOUND statement to create a note on any of the channels. This
requires four parameters which can be summarised as follows:

SOUND channel, amplitude, pitch, duration, after

Channel

There are eight different channels, numbered 1 to 8. Each of these is identical.

Amplitude

Setting the second parameter to an integer between 0 and -15 determines how
loud a note is to be played. A value of -15 is the loudest, -7 is half-volume and
zero produces silence.

Alternatively, a logarithmic scale can be used, by giving a value between 256
(&100) and 383 (&17F). A change of 16 represents a doubling or halving of the
volume.

Pitch

The pitch can be controlled in steps of a quarter of a semitone by giving a value
between 0 and 255. The lowest note (0) is the Bone octave and a semitone below
middle C. The highest note is the D four octaves and a tone above middle C. A
value of 53 produces middle C itself. The following table is a quick reference
guide to help you find the pitch you require:

OUND

Octave number
Note 2 3 4 5 6

A 41 89 137 185 233
A# 45 93 141 189 237
B 1 49 97 145 193 241
c 5 53 101 149 197 245
C# 9 57 105 153 201 249
D 13 61 109 157 205 253
0# 17 65 113 161 209
E 21 69 117 165 213
F 25 73 121 169 217
F# 29 77 125 173 221
G 33 81 129 177 225
G# 37 85 133 181 229

Alternatively, a finer control is available by giving a value between 256 (&0100)
and 32767 (& 7FFF). Each number consists of 15 bits. The top three bits control the
octave number. The bottom 12 bits control the fractional part of the octave. This
means that each octave is split up into 4096 different pitch levels. Middle C has
the value 16384 (&4000).

Using hexadecimal notation is a particularly useful way of seeing what level a
particular value defines. Each value in hexadecimal notation is comprised of four
digits. The top one gives the octave number and the bottom the fractional part of
the octave. The following table illustrates this:

183

Octave number
Note 1 2 3 4 5 6 7 8 9

A &OCOO &1COO &2COO &3COO &4COO &5COO &6COO &?COO
A# &0055 &1055 &2055 &3055 &4055 &5055 &6055 &7055
B &OEAA &lEAA &2EAA &3EAA &4EAA &5EAA &6EAA &7EAA
c &1000 &2000 &3000 &4000 &5000 &6000 &7000
C# &0155 &1155 &2155 &3155 &4155 &5155 &6155 &7155
D &02AA &12AA &22AA &32AA &42AA &52AA &62AA &72AA
0# &0400 &1400 &2400 &3400 &4400 &5400 &6400 &7400
E &0555 &1555 &2555 &3555 &4555 &5555 &6555 &7555
F &06AA &16AA &26AA &36AA &46AA &56 AA &66AA &76AA
F# &0800 &1800 &2800 &3800 &4800 &5800 &6800 &7800
G &0955 &1955 &2955 &39AA &49AA &59AA &69AA &79AA
G# &OAAA &lAAA &2AAA &3AAA &4AAA &5AAA &6AAA & 7 AAA

Duration

This determines the duration of a sound. A value of 0 to 254 specifies the duration
in twentieths of a second. For example, a value of 20 causes the note to sound for
one second. A value of 255 causes the note to sound continuously, stopping only
when you press ~.

THE BEATS STATEMENT

1R4

The channels can be synchronised by using the beat counter. You can set the value
that this counter will count up to by typing

BEATS n

The counter then countS from '0' to n-1 and when it reaches 'n' it resetS irself to
zero. To find the current beat counter value, type

PRINT BEATS

OUND

THE BEAT ST A TBvfENT

In addition, the current beat value is found by typing

PRINT BEAT

THE TEMPO STATEMENT

The rate at which the beat counter counts depends on the tempo which can be set as
follows:

TEMPO n

'n' is a hexadecimal fractional number, in which the three least-significant digits
are the fractional part. A value of &1000 corresponds to a tempo of one tempo
beat per centi-second; doubling the value causes the tempo to double (2 tempo
beats per centi-second), halving the value halves the tempo (to half a beat per
centi-second).

To find the current tempo type

PRINT TEMPO

Sounds can be scheduled to happen a given number of beats from the last reset
by giving a fifth parameter to the SOUND statement. For example, the listing
below repeatedly waits for the start of the 'bar, then schedules the sounds to be
made after 50 beats and 150 beats respectively. Given that a bar is 200 beats long,
this corresponds to the second and fourth beat of a 4/4 time:

185

186

10 BEATS 200
15 VOICES 2
20 *CHANNELVOICE 1 1
30 *CHANNELVOICE 2 1
40 REPEAT
50 REPEAT UNTIL BEAT=O
60 SOUND 1, -15, 100, 5, so
70 SOUND 2, -15, 200, 5, 150

80 REPEAT UNTIL BEAT<>O
90 UNTIL FALSE

Notice that having scheduled the sounds, the program waits in another REPEAT
loop until the current beat is not zero. This prevents the sounds from being
scheduled more that once in a bar. Note also that if other things were happening
in a program, such as screen updating, it would not be very safe to test for
BEAT=-0, in case the program missed the centi-second period where that was true.
It would be better to test for something like BEAT<lO and treat beat 10 as the
'start' of the bar.

Increasing the number of beats increases the time taken before the two notes are
repeated. It has no effect on the time interval between the two notes themselves.

Increasing the tempo decreases both the time taken before the two notes are
repeated and the time interval between the two notes.

The after parameter

The optional 'after' parameter in the SOUND statement specifies the number of
beats which should elapse before the sound is made. The beats are counted from
the last time the beat counter was set to zero (ie the start of the bar). If the beat
counter is not enabled (because no BEATS statement has been issued), the beats
arc counted from the time the statement was executed.

If the parameter is given as -1, then instead of being scheduled for a given
number of beats, the sound is synchronised with the last sound which was
scheduled. For example,

SOUND 1,-10,200,20,100
SOUND 2,-10,232,20, -1

OUND

will cause two sounds, an octave apart, to be made 100 beats from the present
moment, assuming that at least two channels are active and assigned voices.

187

188

I!IEYBOARD, MOUSE, AND FUNCTION KEYS

THE KEYBOARD

Waiting for input

We saw in the chapter: INPUTIING INFORMATION how a program can wait
for a key to be pressed, either indefinitely using GET and GET$ or for a defined
length of time using INKEY and INKEY$.

Normally the keyboard allows type-ahead. Every time you press a key it is
placed in the keyboard buffer which is a temporary block of memory. The GET
and GET$ instructions look in this buffer for a key, not at the keyboard itself.
Hence they take note of keys which were pressed before the input instructions
were executed.

To get around this problem, you can empty or flush the buffer before using these
instructions. Then you can be sure that the key obtained is in response to the
prompt and not just an accidental press of the keyboard a few moments before.
To do this, use the command:

*FX 15,1

The cursor editing keys can be made to generate ASCII codes when they are
pressed, rather than performing their normal cursor editing functions, by typing

*FX 4,1

The codes they return are:

Key Code

~ 135
8 136
B 137
rn 138
rn 139

The ~ key can be made to return any ASCII value you choose by typing

189

190

*FX 219,n

where 'n' is the ASCII code you want it to return.

The following program uses these features to move a block around the screen
until ~ or ~ is pressed, and then to leave it at its current location:

10 MODE 1
20 *FX 4,1
30 *FX 219,135
40 X = 600 : y - 492
50 oldx - x : oldy - y

60 RECTANGLE FILL x,y,80,40
70 REPEAT

80 *FX 15,1
90 key - GET

100 CASE key OF
110 WHEN 135 END

120 WHEN 136
X --

20

130 WHEN 137 X +- 20
140 WHEN 138 y 20
150 WHEN 139 y +- 20
160 END CASE
170 RECTANGLE FILL oldx,oldy,80,40 TO x,y

180 oldx - x : oldy = y
190 UNTIL FALSE

Scanning the keyboard

INKEY, when it is given a positive parameter, waits for a given length of time for a
particular key to be pressed; but it has an additional function. If INKEY is given a
negative parameter it tests to see if a particular key is pressed at that instant. For
example:

10 IF INKEY(-66) -TRUE PRINT "You were pressing A"

THE MOUSE

EYBOARD, MOUSE,
AND FUNCTION KEYS

The list of negative values associated with each of the keys is given in
APPENDIX F.

This feature is particularly useful for real-time applications where the computer
is constantly reacting to the current input it is being given, rather than stopping and
waiting for you to decide what to do next.

The mouse provides a convenient method of supplying information to a program.
This information is in two parts:

- a position
- details of which of the buttons are currently being pressed.

To input this information, type

MOUSE x,y,z

The values returned in 'x' and 'y' give the position of the mouse. The variable 'z'
gives details of the buttons currently pressed as follows:

Variable

0
1
2
3
4
5
6
7

Details

No buttons pressed
Adjust only pressed
Menu only pressed
Adjust and Menu pressea
Select only pressed
Select and Adjust pressed
Select and Menu pressed
All three buttons pressed

The following program is a very simple sketchpad program which draws lines as
you move the mouse around and hold down its buttons:

191

192

10 MODE 12

20 MOVE 0, 0

30 REPEAT

40 MOUSE x,y,button

50 GCOL button + 1

40 DRAW x,y

50 UNTIL FALSE

In order to be able to see the position of the mouse on the screen, it can be linked
to one of four different pointers, numbered 1 to 4.

To select one of these pointers and link it to the mouse so that the mouse drives it,
type

MOUSE ON n

'n' is the pointer number. If you do not specify a number, pointer number one is
used.

Before you enable the mouse pointer using MOUSE ON, you should give it a shape.
By default, all four pointer shapes are invisible, so just using the MOUSE
statement will not appear to have any effect. The simplest way to give the pointer
a shape is to use the *POINTER command. This makes pointer 1 into a blue arrow
and displays it. Once you have used *POINTER, you can turn the pointer on and
off using the BASIC MOUSE statement.

Now, whenever you move the mouse, the pointer moves with it on the screen
indicating its current position. This enables the sketchpad program shown above
to be altered so that you can move to the position you want and then draw a line to
this new position by pressing any button:

5 *POINTER

10 MODE 15

20 MOVE 0,0

30 MOUSE ON

40 REPEAT

50 REPEAT

FUNCTION KEYS

60 MOUSE x,y,button%

70 UNTIL button% <> 0
80 DRAW x,y
90 UNTIL FALSE

EYBOARD, MOUSE,
AND FUNCTION KEYS

The keys across the top of the keyboard labelled [!] to 1!11 are function keys.
These can be programmed so that they generate any string you like when they are
pressed. For example, type

*KEY1 "*CAT"

Now when you press ITIJ the string *CAT is printed on the screen as though you had
typed it.

Try changing the definition to:

*KEY1 "*CAT IM"

The' I' sign means that the character following it is to be interpreted as a control
character. In this case it is a [gill M which is being included in the string. This
performs the same function as pressing g. A full list of the control characters is
given in APPENDIX H .

Now when you press [!], the string *CAT is printed and ld is pressed
automatically so the current directory is catalogued immediately.

A whole series of commands can be stored in one key. The following defines a
key to select screen mode 3 and list the current program in paged mode.

*KEY2 "MODE 3 IM IN LIST IM"

You can even define a key so that it contains a small BASIC program:

*KEY 3 "10 MODE 15 IM 20 FOR I% - 1 TO 1001M 30 CIRCLE RND(1279),
RND(1024), 50 + RND (300) IM 40 N. IM RUN IM"

193

194

The quotation marks around the string are not necessary. However, it is important
to remember that everything on the line after the *KEY command is treated as
part of the string. So if *KEY is used in a program, it must be the last statement on
the line.

The key labelled IPrintl acts as function key 0. In addition, the cursor editing keys
and~ can be made to behave as function keys 11 to 15 by giving the command:

*FX 4,2

Following this command, the keys, instead of having their normal cursor editing
effects, return the function key strings assigned to them:

Key *KEY number

~ 11

El 12
El 13
[I] 14
g 15

To return them to their normal state, rype

*FX 4,0

In addition to the use of' I ' to indicate a control code, the following ~re also
possible in function key strings:

II
I !<ch>
! ?

I"

means' I'
means the following character code + 128
means DELETE (ie CHR$ (127))

means " (useful for making " the first character)

NDIRECTION OPERA TORS

ACCESSING MEMORY WCATIONS IN GENERAL

Individual memory locations can be accessed from BASIC by using four
indirection operators:

Symbol

c I I
'$'

Purpose

Byte indirection operators
Four-byte indirection operatOr
Five-byte indirection operator
String indirection operator

Number of bytes

1
4
5
1 to 256

These operators can be used either to read the value(s) in one or more memory
locations or to alter the value(s) there. You must be very careful that you only
read from or write to memory locations which you have set aside specially. Using
these operators on other areas of the memory can have undesirable effects.

RESERVING A BLOCK OF MEMORY

You can reserve a block of memory using the DIM command. For example:

DIM pointer% 100

This reserves a block of memory and makes the variable pointer% contain the
address of the first block. The bytes arc at addresses pointer%+0 to
pointer%+100, a total of 101 bytes.

Note that this differs from the use of DIM to dimension an array in that the size is
not contained in brackets.

THE'?' INDIRECTION OPERATOR

You can set the contents of the first byte of this block of memory to 63 by typing

?pointer% - 63

To check that this value has been inserted correctly, type

lO'i

196

PRINT ?pointer%

The'?' indirection operator affects only a single byte. Only the least significant
byte of the number is stored. Thus, if you give it a value of 256 or more, only the
remainder of n/2 56 will be stored.

For example,

?pointer% = 356

PRINT ?pointer%

produces the result:

100

because 356 divided by 256 gives 1 with a remainder of 100.

If you wish to set or examine the contents of the location which is five bytes after
pointer%, you can do this by typing

?(pointer%+ 5) - 25

Alternatively, a shorter form is available as follows:

pointer%?5 ~ 25

The following program prints out the contents of all the memory locations in the
reserved block:

10 DIM block_of_memory% 100

20 FOR N% - 0 TO 100
30 PRINT "Contents of ";N%;" are ";block_of_memory%?N%
40 NEXT N%

NDIRECTION OPERATORS

THE'!' INDIRECTION OPERATOR

BASIC integer variables are stored in four consecutive bytes of memory. The '!'
operator can be used to access these four bytes. For example, type

DIM pointer% 100
!pointer% = 356
PRINT !pointer%

The bottom byte of the integer is stored in the first memory location, and the top
byte in the fourth location. This can be seen in the following example:

10 DIM pointer% 100
20 !pointer% - &12345678
30 PRINT -pointer%?0
40 PRINT -pointer%?1
50 PRINT -pointer%?2

60 PRINT -pointer%?3

This printS:

78
56
34
12

THE' I' INDIRECTION OPERATOR

Similarly, floating point numbers which are stored in five consecutive bytes can
be accessed using ' I '. For example:

DIM pointer% 100
!pointer%- 3.678
PRINT !pointer%

197

THE'$' INDIRECTION OPERATOR

198

Strings can be placed directly in memory, each character's ASCII code being
stored in one byte of memory. For example:

DIM pointer% 100
$pointer\ - "STRING"
PRINT $pointer\

The '$' indirection operator places a carriage return (ASCII 13) after the last
character of the string. Thus, the example above uses seven bytes: six for the
characters of the word STRING, plus one for the terminating carriage return. To
see this, run the following program:

10 DIM space% 10
20 REM set all bytes to zero
30 FOR N% - 0 TO 10
40 space%?N% - 0
50 NEXT N%
60 REM Store the string
70 $space% - "STRING"
80 REM Print out the bytes

90 FOR N% - 0 TO 10
100 PRINT space%?N% " ";CHR${space%?N%)
110 NEXT N%

The '1' and'$' indirection operators may only be used as unary operators, with
the address following the operator. For example, although you may use
$ (string+l) and I (base+offset), the forms string$1 and
base I offset are not allowed.

SES

We are most familiar with numbers expressed in terms of powers of ten, or
decimal numbers. Sometimes it is more convenient to give numbers in a program
in another base. BASIC also allows numbers to be given in hexadecimal, or base
16, and binary, or base 2.

HEXADECIMAL NUMBERS

The computer treats any number which is preceded by an'&' sign as a
hexadecimal (hex) number.

Whereas decimal numbers can contain ten separate digits, from 0 to 9,
hexadecimal numbers can contain sixteen separate digits, 0 to 9 and A to F. The
first few hexadecimal numbers and their decimal equivalents are given below:

Hex Decimal Hex Decimal

&1 1 &9 9
&2 2 &A 10
&3 3 &B 11
&4 4 &C 12
&5 5 &D 13
&6 6 &E 14
&7 7 &F 15
&8 8

The next hexadecimal number is & 10 which is equivalent to 16 in decimal
notation. Thus, in hexadecimal notation, one in a column represents a power of
sixteen rather than a power of ten. For example, & 10 0 represents 256 which is
16*16.

BINARY NUMBERS AND BITS

You can enter numbers in binary notation, ie in base 2, by preceding them with the
percent sign '% '.

Binary numbers consist entirely of the digits 0 and 1. The following table gives
the binary equivalents of the decimal values one to 10.

199

200

Binary Decimal Binary Decimal

%1 1 %110 6
%10 2 %111 7

%11 3 %1000 8
%100 4 %1001 9
%101 5 %1010 10

A one in a particular column represents a power of two:

... 128 64 32 16 8 4 2

Thus:

%1000101 = 1*64 + 0*32 + 0*16 + 0*8 + 1*4 + 0*2 + 1*1 c 69

Binary digits are usually referred to as bits.

Shift operators

There are three operators which act upon the 32 bits of an integer, shifting them
either left or right by a given number of places.

The simplest of these is<<. This shifts the bits of an integer to the left a given
number of times and inserts 'O's in the right-hand bits. For example:

A\- 10
B% = A% << 1

C% - A% << 2
0% = A% << 3

This leaves the variables with the following values:

Variable

A%
B%
C%
D%

ASES

Value

10(9n00000000000000000000000000001010)
20 (%00000000000000000000000000 10100)
40 (% 101000)
80 (%0000000000000000000000000 1010000)

The>>> operator shifts the bits of an integer to the right a given number of times,
losing the bits which were in those positions and introducing zeros at the left. For
example:

A% %1010
B% A% >>> 1
C% A% >>> 2
D% A% >» 3

This leaves the variables with the following values:

Variable

A%
B%
C%
D%

Value

10(o/o00000000000000000000000000001010)
5 (o/o00000000000000000000000000000101)
2 (9nOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 10)
1 (%00000000000000000000000000000001)

The>> operator is similar, but instead of introducing zeros at the top at each
stage, the top bit is set to either one or zero depending on what the current setting
is. The top bit of an integer is normally used to indicate whether the integer is
positive (top bit= zero) or negative (top bit= one). Consequently, this operator
performs an integer division on a number, retaining its sign. For example:

A\ - %10100000000000000000000000000000

8\ - \00100000000000000000000000000000

C% - A% >>> 2
D% - B% >>> 2

E% - A% >> 2
F% = B% >> 2

201

202

This leaves the variables with the following binary values:

Variable

C%
D%
E%
F%

Value

%0101000000000000000000000000
%00010000000000000000000000000000
o/ollOlOOOOOOOOOOOOOOOOOOOOOOOOOOOO
%00010000000000000000000000000000

The shift operators may be used for multiplication and division by powers of two.
The left shift operator acts as a multiply. The expression val<<n is equivalent to
val * 2"n. So fred<<3 is the same as fred* B. Although using shift can be
faster than the equivalent multiply, you should bear in mind that bits may be
shifted off the end of the number, so leading to incorrect results which will not be
trapped as errors. For example, & 1 0 0 0 < < 1 6 yields 0, whereas the correct
'multiply' result is &100000000 (which cannot be represented in a 32-bit
integer).

The two right shift operators perform a similar role in division. The >> operator
gives division of 'signed' numbers by a power of two. This means that both positive
and negative numbers may be divided; the result is always rounded towards the
integer less than or equal to the exact value. For example, - 3 > > 1 is the same as
INT (-3/2) (not -3 DIV 2), which is -2. The»> operator ignores the sign when
shifting negative numbers, so should only be used to divide positive numbers by a
power of two.

AND, OR and EOR

The operators AND, OR and EOR produce a result which depends upon the bits of
two other integers:

- In the case of AND, the bits in the two integers are compared and if they arc
both one, then a one is placed in the corresponding bit of the result.

- In the case of OR, a one is placed in the corresponding bit of the result if either
or both of the bits in the integers are one.

ASES

- In the case of EOR, a one is placed in the corresponding bit of the result if
either (but not both) of the bits in the integers is one.

For example:

A% %1010
B% %1100
C% A% AND B%
D% A% OR B%
E% A% EOR B%

This leaves the variables with the following values:

Variable Value

A% 10 (%1010)
B% 12 (%1100)
C% 8 (%1000)
D% 14 (%1110)
E% 6 (%0110)

The logical operators AND, OR and EOR are symmetrical, like'+' and'*'. Thus
x ANDy= y AND x for all possible values of 'x' and 'y'. This applies to the other
two operators as well.

203

204

TRUE and FALSE

The truth values TRUE and FALSE have the values -1 and zero respectively. This

means that:

- TRUE AND TRUE gives TRUE (-%1 AND -%1 = -%1)
TRUE AND FALSE gives FALSE (-%1 AND %0 %0)
FALSE AND FALSE gives FALSE (%0 AND %0 = %0)

- TRUE OR TRUE gives TRUE (-%1 OR -%1 = -%1)

TRUE OR FALSE gives TRUE (-%1 OR %0 = -%1)

FALSE OR FALSE gives FALSE (%0 OR %0 = %0)

- TRUE EOR TRUE gives FALSE (-%1 EOR -% 1 = %0)
TRUE EOR FALSE gives TRUE (-%1 EOR %0 = -%1)
FALSE EOR FALSEgives FALSE (%0 EOR %0 = %0)

RINTERS

CONNECTING YOUR PRINTER

This computer contains two different sockets to which printers can be connected.
These are:

- Parallel printer (Centronics-compatible) port
- Serial printer (RS232/423) port

Printers which should be connected to the parallel ports usually have a 36-way
Amphenol socket. A suitable lead to connect a parallel printer to your computer
is available.

The standard connector plug for serial printers is a Cannon 25-way 0-type. This
needs to be connected to the 9-way 0-type connectOr on the computer.

I 18 ••••• • •••••••••••

• ••••••••• • •••••• 19 36

36-wly Amphenol socket

••••••••••••• 13
14 ••••••••••••• 26

Connects to 1 26-way plug

13 I
0000000000000

000000000000
2S 14

2S way D type socket

Connects to 1 9-way D·type plu'

Refer to your printer documentation for details of connections. Your dealer
should be able tO supply a cable.

Refer to Appendix L for details of the computer connections. Please note that all
connections must be used.

205

DEFINlNG THE PRINfER TYPE

Once you have connected your printer, you need to tell the computer which of the
ports it is connected to so that the computer knows where to send its printer output.

If you are using a parallel printer, type

*FX 5,1

If you are using a serial printer, type

*FX 5,2

To select a printer on an Econet system, type

*FX 5,4

You can configure your machine so that it remembers which type of printer you
are using when you tum it on each time by typing, for example:

*CONFIGURE PRINT 1

SELECTING THE BAUD RATE

206

The computer defaults to sending characters at 9600 baud. However, some serial
printers run at other rates. If your printer expects to receive characters at a
different rate, then you should select the one required as follows:

RINTERS

*FX 8, 1 75 baud
*FX 8,2 150 baud
*FX 8,3 300 baud
*FX 8,4 1200 baud
*FX 8,5 2400 baud
*FX 8,6 4800 baud
*FX 8,7 9600 baud
*FX 8,8 19200 baud

You can configure the baud rate that is used by default using the command:

*CONFIGURE Baud <n>

The number given in the command has the same meaning as that in the *FX8
command, with the addition that 0 means 9600 baud.

You can also configure the default ignore character. When the configurations are
reset, the default ignore character is set to 10. To change it, usc

*CONFIGURE ignore <n>

where <n> is the ASCII code of the character which you want to be suppressed by
default. If you want all characters to be sent to the printer, omit the number from
the command. As with all configure options, this will not come into effect until the
next !QilliBreakl or power-on.

PRINTER IGNORE CHARACTERS

The final item which should be selected before starting to print anything is the
printer ignore character. This specifies a particular character which the computer
is to ignore and not send to the printer.

At the end of each line, the computer sends a carriage return (ASCII 13) and
linefced (ASCII 10). However, some printers automatically move the paper up
by one line when they receive a carriage return. Normally on these printers, the
paper would move up two lines instead of just one. The printer ignore character
can, however, be set to be the linefeed character to get around this problem. Type

207

*IGNORE 10

To make the computer send all characters type

*IGNORE

SENDING OUTPUT TO THE PRINTER

208

When you are ready to send output to the printer, you should enable it by
pressing [9ill1Breakl, or by typing

VOU2

All output after this is sent to both the screen and the printer.

The printer can be disabled again by pressing [9illc, or by typing

VDU 3

RROR HANDLING AND DEBUGGING

GLOBAL ERROR HANDLING

By default, when the computer finds an error it halts execution of the program
and prints an error message on the screen. Some errors are generated by incorrect
programming, such as using a variable which has not had a value assigned to it.
You have to correct this kind of error to make the program work. However, even if
the syntax of the program is correct, errors can occur whilst it is being executed,
because it cannot cope with the data it is given. For example:

10 REPEAT
20 INPUT "Number",N
30 L - LOG (N)
40 PRINT "LOG of II ;N" is ";L

so UNTIL FALSE

This program takes a number from the keyboard and prints the log of that
number. If you type in a negative number, however, the program gives the
message:

Logarithm range at line 30

The same thing happens if you type '0', or a character such as 'w', or a word such as
TWELVE.

You may decide that you would like to trap such an error and print a message to

tell the user what he or she has done wrong instead of having the program end
abruptly. You can do this using the ON ERR'OR statement. For example:

S ON ERROR PROCerror
10 REPEAT
20 INPUT "Number",N
30 L - LOG(N)
40 PRINT "LOG of ";N"
so UNTIL FALSE
60 END

100 DEFPROCerror
110 IF ERR-22 THEN

is ";L

209

120 PRINT "The number must be greater than 0"
130 ELSE REPORT
140 PRINT " at line ";ERL
150 END
160 ENDIF
170 ENDPROC

The ON ERROR statement can be followed by a series of statements given on the
same line. In many cases, it is more convenient to follow it with a call to an error
handling procedure, as in the example above, which can then be as complex as
you like.

Each error has an error number associated with it. When a particular error occurs,
its number is placed in a variable called ERR. A full list of error numbers is
given in APPENDIX B.

In the example above, the error handling procedure tests for error 22 which is the
Log a ri thrn range error. If it was this error which occurred, it is dealt with
appropriately. If a different error occured, the program executes the REPORT
instruction which prints out the error message and then prints the line number
where the error occured which is stored in the variable ERL. Then it executes the
END to end the execution of the program. Trapping all errors is not necessarily a
good idea since you then would not be able co press IEscapel, which is created as an
error, co stop the program.

If a program contains more than one ON ERROR statement, the most recently
executed one is used when an error occurs.

Error handling can be turned off at any stage in the program using the instruction
ON ERROR OFF.

LOCAL ERROR HANDLING

210

When an error occurs, the ON ERROR command can be used to deal with it. The
computer, however, forgets all about what it was doing at the time the error
happened. For example, if it was in the middle of a FOR ... NEXT loop or

RROR HANDLING
AND DEBUGGING

executing a procedure, it is not possible to jump back to the place the error
occurred and carry on as though nothing had happened.

The ON ERROR LOCAL command can be used to get around this problem. This
command traps errors which occur inside an individual procedure or function and
then continues executing within the procedure or function rather than jumping
back to the top level. For example:

10 PROCcalculate{100)

20 END
100 DEFPROCcalculate{A)
110 LOCAL I

130 FOR I - -15 TO 15
140 ON ERROR LOCAL PRINT"Infinite Result":NEXT I:ENDPROC

150 PRINT A I I
160 NEXT I
180 ENDPROC

Normally, when one ON ERROR or ON ERROR LOCAL statement is used, all
previous ERROR statements are forgotten about, but it is possible to use one error
handler and then restore the previous one. To do this, use the instruction
LOCAL ERROR to store the old error handler, and RESTORE ERROR to activate it
again. For example:

1 ON ERROR PRINT "Error ";REPORT$;:END

10 PROCcalculate{100)
15 this line will give an error ! !!

20 END
100 DEFPROCcalculate{A)
110 LOCAL I
120 LOCAL ERROR

130 FOR I - -15 TO 15
140 ON ERROR LOCAL PRINT"Infinite Result":NEXT I:ENDPROC
150 PRINT A I I
160 NEXT I
170 RESTORE ERROR
180 ENDPROC

211

DEBUGGING

212

This shows that the local error handler is in force during the procedure, but that
the original one set up by the first line of the program is restored when the PROC

has finished.

Strictly speaking, the RESTORE ERROR is not required here because it is done
automatically when the ENDPROC is reached.

A program may contain errors which cause it to behave differently from the way
you intended. In these circumstances, you may wish to watch more closely how the
program is being executed.

One option you have available is to place a STOP statement at a particular point
in the program. When this line is reached, execution of the program stops and you
can then investigate the values assigned to any of itS variables using the PRINT

statement.

Another option is to use the TRACE faci lity. The standard trace prints the BASIC
line numbers in the order these lines are executed, thus showing the path being
taken through the program. This can be invoked by typing

TRACE ON

To trace only those lines with a line number below 1000, for example, type

TRACE 1000

Alternatively you may trace procedures only as follows:

TRACE PROC

Tracing can be performed in single-step mode where the computer stops after
each line or procedure call and waits for a key to be pressed before continuing.
Single-step tracing can be invoked by typing

TRACE STEP ON

to stop after every line traced, or

TRACE STEP n

RROR HANDLING
AND DEBUGGING

to trace all lines below 'n' and stop after each one, or

TRACE STEP PROC

to stop after every procedure call. Any TRACE option affectS all programs which
are subsequently run until tracing is turned off by typing

TRACE OFF

213

214

ABS

ASIC KEYWORDS

Complete descriptions of the statements, commands and functions that BASIC
understands follow, in alphabetical order.

If you have a ROM version of BBC BASIC, you can obtain a list of the keywords
on the screen by typing

HELP

Function giving magnitude of its numeric argument.

Syntax

ABS<factor>

Argument

Any numeric.

Result

Same as the argument if this is positive, or -(the argument) if it is negative.

Note

The largest negative integer does not have. a legal positive value, so that if
a%=-2147483648, ABS (a%) yields the same value: -2147483648.

Example

diff-ABS(lengthl-length2)

215

ACS

ADVAL

216

Function giving the arc-cosine of its numeric argument.

Syntax

ACS<factor>

Argument

Real or integer between -1 and 1 inclusive.

Result

Real in the range 0 to PI (radians)

Examples

ang- ACS(normvecl(l)*normvec2(1) + normvecl(2)*normvec2(2))

angle-DEG(ACS(cosl)) : PRINT ACS(O.S)

Funtion reading data from an analogue port if fitted, or giving buffer data.

Syntax

ADVAL<numeric factor>

Argument

Negative integer -n, where 'n' is a buffer number between 1 and 9.

Result

The number of spaces or entries in the buffer is given in the table below:

AND

n

-1
-2
-3
-4
-5
~
-7
--8

Buffer name

Keyboard (input)
RS-423 (input)
RS-423 (output)
Printer (output)
Sound 0 (output)
Sound 1 (output)
Sound 2 (output)
Sound 3 (output)

ASIC KEYWORDS

Result

Number of characters used (0-31)
Number of characters used (0-255)
Number of characters free (0-191)
Number of characters free (0-63)
Number of bytes free (0-15, step 3)
Number of bytes free (0-15, step 3)
Number of bytes free (0-15, step 3)
Number of bytes free (0-15, step 3)

In the table step 3 means that one entry in the buffer uses three bytes.

The ADVAL function only returns a result for positive arguments if the optional
analogue/digital converter podule is fitted. If this is absent, the function
AD VAL (1) , for example, will result in a Bad command error.

Example

IF ADVAL(-1)-0 THEN PROCinput

Operator giving logical or bitwise AND.

Syntax

<relational> AND <relational>

Operands

Relational expressions, or bit values to be ANDed.

217

APPEND

218

Result

The logical bitwise AND of the operands. Corresponding bits in the integer
operands are ANDed to produce the result. Hence a bit in the result is one if both
of the corresponding bits of the operands are one. Otherwise it is zero.

If used to combine relational values, AND operands should be either TRUE (- 1)
or FALSE (0). Otherwise, unexpected results may occur. For example, 2 and 4 are
both true: non-zero, but 2 AND 4 yields FAL SE: zero.

Examples

a = x AND y : REM a is set to binary AND of x and y

PRINT variable AND 3 : REM print lowest 2 bits of variable

IF day-7 AND month$-"March" THEN PRINT "Happy birthda y"

IF temp>50 AND NOT windy THEN PROCgo_ out ELSE PROCstay_in

REPEAT
a - a+l
b- b-1
UNTIL a>lO AND b<O

i sadog - feet - 4 AND tails- ! AND hairy
REM set isadog to logical true if all conditions are met

Command to append a file to a BASIC program.

Syntax

APPEND <expression>

ASC

ASIC KEYWORDS

Argument

<expression> is a string which should evaluate to a filename that is valid for
the filing system in use.

Purpose

The file specified is added to the end of the BASIC program currently in
memory. If the file contains a BASIC program, the line numbers and any
references to them in the added section are renumbered so that they start after the
last line of the current program.

Examples

APPEND ":O.lib"

APPEND second half$

Function giving the ASCII code of the first character in string.

Syntax

ASC<factor>

Argument

String of 0 to 255 characters.

Result

ASCII code of the first character of the argument in the range 0 to 255, or -1 if the
argument is a null string.

219

ASN

ATN

220

Examples

x2=ASC (name$)

IF code >- ASC("a") AND code <- ASC("z ") THEN PRINT "Lower case"

Function giving the arc-sine of its numeric argument.

Syntax

ASN<factor>

Argument

Numeric between - 1 and 1 inclusive.

Result

Real in the range -PI/2 to + PI/2 radians.

Examples

PRINT ASN(opposite/hypotenuse)

angle-DEG(ASN(0.2213))

Function giving the arc-tangent of its numeric argument.

Syntax

ATN<factor>

AUTO

ASIC KEYWORDS

Argument

Any numeric.

Result

Real in the range -PI/2 to +PI/2 radians.

Examples

ang = DEG(ATN(sin/cos))

PRINT "The slope is ";ATN(opposite/adjacent)

Command initiating automatic line numbering.

Syntax

AUTO [<integer>) [,<step>)

Parameters

<integer> is an integer constant in the range 0 to 652 79 and is the first line to be
generated automatically

<step> is an integer constant in the range 1 to 65279 and is the amount by which
the line numbers increase when [d is pressed. If omitted, 10 is assumed.

Purpose

AUTO is used when entering program lines to produce a line number
automatically, so that you do not have to type them yourself. To end automatic line
numbering use lEscapel . AUTO will stOp if the line number becomes greater than
65279.

221

BEAT

BEATS

222

Examples

AUTO

AUTO 1000

AUTO 12,2

Function returning the current beat value.

Syntax

BEAT

Result

An integer giving the current beat value. This is the value yielded by the beat
counter as it counts from zero to the number set by BEATS at a rate determined by
TEMPO. When it reaches its limit it resets to zero. Synchronisation between sound
channels is performed in relation to the last reset of the beat counter.

Example

PRINT BEAT

Function returning or statement altering the beat counter.

Syntax

(1) BEATS <expression>
(2) BEATS

BGEf#

ASIC KEYWORDS

Arguments (1)

<expression> gives the value beyond which the beat counter is to reset. This
counter is used in conjunction with the SOUND and TEMPO statements to
synchronise sound outputs from different sound channels.

Result (2)

An integer giving the current value of the beat counter.

Examples

BEATS 2000 PRINT BEATS

Function returning the next byte from a file.

Syntax

BGETI<factor>

Argument

A channel number returned by an OPEN function.

Result

The ASCII code of the character read (at position PTRf) from the file, in the
range 0 to 255.

Note

PTRf is updated to point to the next character in the file. If the last character in
the file has been read, EOFf for the channel will be TRUE. The next BGET# will
return an undefined value and the one after that will produce an EOF error.

223

BPUT#

224

Examples

char%-BGETt(channel) char$-CHR$(BGETtfileno)

WHILE NOT EOFt(channel)
char%- BGETt(channel)
PROCprocess(char%)
ENDWHILE

Statement to write a byte to a file.

Syntax

(1) BPUTt<factor>,<numeric expression>
(2) BPUTi<factor>, <string expression>

Arguments (1)

<factor> is a channel number as returned by an OPEN function. The
<numeric expression> is truncated to an integer 0 to 255, and is the ASCII
code of the character to be sent to the file.

Arguments (2)

<factor> is a channel number as returned by an OPEN function.
<string expression> is a string containing 0 to 255 characters. The ASCII
codes of all the characters in the string are sent to the file followed by a newline
(ASCII value 10), unless the statement is terminated by a';'.

Note

PTR# is updated to point to the next character to be written. If the end of the file
is reached, the length (EXT#) increases too. It is only possible to use BPUT# with
OPENUP and OPENOUT files, not OPEN IN ones.

BY

ASIC KEYWORDS

Examples

BPUTioutputfile,byte%

BPUTichannel,ASC(mid$(name$,pos,l))

BPUTifile,"Hello"

BPUTichan,A$+B$

Part of the MOVE BY, DRAW BY, POINT BY, or FILL BY Statements.

Syntax

(1) MOVE BY <expression>,<expression>
(2) POINT BY <expression>, <expression>
(3) DRAW BY <expression>,<expression>
(4) FILL BY <expression>,<expression>

Arguments (1)

The <expression>s are 'x' and 'y' offsets from the graphics cursor in the range
-32768 to 32767, ie two-byte integers. This is equivalent to PLOT 0.

Arguments (2)

The <expression>s are integer numerics in the range-32768 to +32767. They
are offsets from the graphics cursor at which the point will be placed. The point is
plotted in the current graphics foreground colour and the graphics cursor is
updated to these coordinates. This is equivalent to PLOT 65.

Arguments (3)

The <expression>s are integer numerics in the range -32768 to +32767. They
are the offsets from the current graphics cursor to which a line is drawn in the

225

CALL

226

current graphics foreground colour. The graphics cursor position is updated to
these coordinates. DRAW BY is equivalent to PLOT 1.

Arguments (4)

This is equivalent to PLOT & 81

Examples

MOVE BY 4*x\,4*y\

POINT BY 100,0

DRAW BY x%*16, y%=4

FILL BY x%, y%

Statement to execute a machine code subroutine.

Syntax

CALL<expression> [,<variable>] etc

Arguments

<expression> is the address of the routine to be called. The zero or more
parameter variables may be of any type, and must exist when the CALL statement
is executed. They are accessed through a parameter block which BASIC sets up.
The format of this parameter block and of the variables accessed through it is
described below.

Purpose

CALL can be used to enter a machine code program from BASIC. Before the
routine is called, the assembler's registers are set up as follows:

RO
Rl
R2
R3
R4
R5
R6
R7
R8
R9
RIO
Rll
Rl2
R13
R14

A%
B%
C%
D%
E%
F%
G%
H%
Pointer to BASIC's workspace

ASIC KEYWORDS

Pointer to list of L-values of the parameters
Number of parameters
Pointer to BASIC's string accumulator (STRACC)
BASIC's LINE pointer (points to the current statement)
Pointer to BASIC's stack
Link back to BASIC and environment information pointer.

Format of the CALL parameter block

R9 contains a list giving details of each variable which is passed as a parameter to
CALL. For each variable two word-aligned words are used. The first one is the L
value of the parameter. This is the address in memory in which the value of the
variable is stored. The second is the type of variable. This list is in reverse order.
The pointer to the list is always valid, even when if the list is null. The values for
the types are as follows:

227

228

BASIC Type Address poin ts to

?name 0 byte-aligned byte
!name 4 byte-aligned word
name% 4 word-aligned word
name%{n) 4 word-aligned word
I name 5 byte-aligned 5 bytes
name 5 byte-aligned 5 bytes
name{n) 5 byte-aligned 5 bytes
name$ 128 byte-aligned 5 bytes (address of string and

length)
name$ (n) 128 byte-aligned 5 bytes (address of string and

length}
$fred 129 byte-aligned bytes, terminated by ASCII 13
name% () 256+4 word-aligned word pointing to array of name %
name() 256+5 word-aligned word pointing to array of name
name$ () 256+128 word-aligned word pointing to array of name$

For types zero, four and five, the address points to the actual byte, four-byte
integer or five-byte floating point value.

For types 128, the address points to five bytes which contain a byte-aligned word
pointing to the first character of the string which is on a word boundary, followed
by a byte-aligned byte containing the length of the string.

For types 256+'n' the value points to a word-aligned word. If the array has not
been allocated, this word contains zero, signifying an undimensioned array.
Otherwise, the word points to a word-aligned list of integer subscript limits (the
values in the DIM statement plus 1) terminated by a word of zero, followed by a
word which contains the total number of entries in the array followed by the
zeroth element of the array.

For example, suppose the statements

100 DIM a\(10,20)
200 CALL code, a\()

ASIC KEYWORDS

""" were executed. The type at address [R944] would be 256+4 or 260. The word at
[R9) would contain a pointer to a word. The contents of this word would be the
address of the subscript list, of the form:

word+O 11

word+4 21
word+S 0

word+12 231
word+16 a%(0,0)

The access method into the arrays is given by the following algorithm:

position - 0

number - 0
REPEAT
IF subscript(number) > array(number) THEN fault

number - number+1
IF number<>total THEN position - (position+subscript)*array(number}
UNTIL no_more_subscripts
position- position*size(array)

This means that the last subscript references adjacent elements. For a simple two
dimensional array DIM A (L IMI -1, LIMJ -1) the address of A (I, J) is
(I*LIMI+J)*size+base_address.

MOV PC, R14 returns to the value Rl4, but it also points to an array of useful
values:

B CALL2REAL

& STRACC

& PAGE
& TOP
& LOMEM

Oth entry in table is return address
the following values are words containing an offset
from ARGP (R8)
word-aligned 256 bytes
string accumulator
word-aligned words offset from ARGP
current program PAGE
current program TOP
current variable start

229

230

& HIMEM current stack end
& MEMLIMIT limit of available memory
& FSA free space start (high water mark/FD stack limit)
& TALLY value of COUNT
& TIMEOF not used
& ESCWORD exception flag word (contains escflg, trcflg) byte-

aligned bytes offset from ARGP
& WIDTHLOC value of WIDTH internal BASIC routines
B VARIND get value of L-value
B STOREA store value into L-value
B STSTORE store string into type 128 strings
B LVBLNK convert string variable name to L-value address and

type
B CREATE create new variable
B EXPR use expression analyser on string
B MATCH lexical analyse source string to destination string
B TOKEN AD DR pointer to string for given token
& 0 end of list

The word at address [R14 J is a branch instruction which returns you to the
BASIC interpreter. The following words contain useful addresses which are not
absolute, but are offsets from the contents of the ARGP register, R8.

The first offset word, at [R14+4), gives the location of the string accumulator,
STRACC, where string results are kept. Thus if you execute

LOR RO, [Rl4,t4)
ADD RO,R8,RO

RO will give the base address of the string accumulator. The offsets from PAGE to
WIDTHLOC give the addresses, when added to R8, of useful word-size quantities.
After these come the branches useful to BASIC routines. For example, to call
STOREA, which is at offset 42 from Rl4, you might use:

ASIC KEYWORDS

STMFD Rl3!, Rl4 ; Save BASIC return address
LOR RO, [Rl4,t42];Get address of B STOREA
ADR Rl4,myReturn;Set up return address to my code
MOV PC,RO ;Do the 'branch'

.myReturn

LDMFD Rl3!, PC ;Return to BASIC

The internal routines are only guaranteed to work in processor user mode. The
following functions are provided:

VARIND

Entry with RO:

RO
R9
R12

address of L-value
type of L-value
LINE

Returns with RO .. R3 as the value, R9 the type of the value as follows:

R9
0

&40000000
&80000000

type
string

integer
float

where
in STRACC, R2 points to end (R2-STRACC is
length)
inRO
inRO .. R3

Uses no other registers (including stack). Possible error if asked to take value of
an array fred ():will need R12 valid for this error to be reported correctly.

231

232

STOREA

Entry with RO .. R3 value

R4
R5
R8
R9
R12

address of L-value
type of L-value
ARGP
type of value
LINE (for errors)

Converts berween various formats, for example integer and floating point
numbers, or produces an error if conversion is impossible.

Returns with RO to R 7 destroyed. Stack not used.

STSTORE

Entry with:

R2
R3
R4
R8
R12

length (address of end)
address of start
address of L-value
ARGP
LINE (for out of store error)

The string must start on a word boundary and the length must be 255 or less.

Uses RO, Rl, R5, R6, R7. Preserves input registers. Stack not used.

LVBLNK

Entry with:

R8
Rll
R12
R13

ARGP
pointing to start of string
LINE (many errors possible, such as subscript error in array)
stack (used for evaluation of subscript list: calls EXPR)

ASIC KEYWORDS

The string is processed to read one variable name and provide an address and
type which can be given to VARIND.

Returns with NE status if a variable has been found. Address in RO, type (see
above) in R9. If there is an EQ status then if the carry is set it cannot possibly be a
variable, or else if the carry is clear it could be, but is not known to the interpreter
(and registers are set to values for CREATE).

Uses all registers.

CREATE

Create a variable. Input is the failure of LVBLNK to find something. Thus we have:

R3
R4
R8
R9
RIO
Rll
Rl2
R13

second char of item or 0
pointers to start of other chars
ARGP

contains the number of zero bytes on the end
first char of item
pointers to end ofother chars
LINE

STACK

It is recommended that CREATE is only called immediately after a failed
LVBLNK.

Uses all registers. Returns parameters as LVBLNK. The LVBLNK and CREATE
routines can be combined together to provide a routine which checks for a variable
to assign to, and creates it if necessary:

. SAFELV STMFD SP!,R14

BL LVBLNK
LDMNEFD SP ! , PC

LDMCSFD SP ! , PC

BL CREATE

LDMFD SP! , PC

233

234

EXPR

Entry with:

R8
Rll
R12
R13

ARGP

pointing to start of string
LINE

STACK

EXPR stops after reading one expression (like those in the PRINT statement).

The value is returned like VARIND. If there is an EQ status it reads a string. If
there is a NE statuS and plus it reads an integer word (in RO). If there is a NE status
and minus it reads a floating point value (in RO .. R3). R9 contains the type: the
statuS can be recreated by TEQ R9, tO. RIO contains the delimiting character; Rll
points to the one after.

MATCH

Entry with:

Rl
R2
R3
R4
R13

pointing to the source string (terminated by ASCII 13 <CR>),
pointing to the destination string
MODE

CONSTA

STACK

Note that MATCH does not need ARGP or LINE.

The MODE value is 0 for LEFT-MODE (before an'=' sign) and 1 for RIGHT-MODE

(in an expression).

The CONSTA value is 0 for do not pack constants using &80, 1 for PACK.

Both MODE and CONSTA will be updated during the use of the routine. For
example, GOTO will set CONSTA to 1 to read the line number, PRINT will change

ASIC KEYWORDS

MODE to 1 to read an expression. Starting values of zero for both will lexically
analyse a statement:

MODE-landCONSTA=O
MODE=O and CONSTA=l

will analyse an expression
is used to extract line numbers in command
mode.

MODE affects the values assigned to tokens for HIMEM, PAGE etc.

The routine uses RO to R5.

On exit, Rl and R2 are left pointing one byte beyond the terminating CR codes of
the strings. R5 contains status information, it can usually be disregarded: values
>= &1000 imply mismatched brackets, bitS set implies that a number which was
too large to be encoded using & BD (ie was greater than 65279) was found. If R5
AND 2 55 = 1 then mismatched string quotes where found.

TOKENADDR

Entry:

RO
R12

the token value
pointer to next byte of token string.

The value ofR12 is only used when two byte tokens are required. No other
registers are used or required.

Returns Rl as a pointer to the first character of the string, terminated by a
character >=&7F (Note that & 7F is a valid token!). RO is set to the address of the
start of the token table itself. Rl2 will have been incremented by 1 if a two byte
token has been used.

If the CALL statement is used with an address which corresponds to a MOS entry
point on the BBC Micro/Acorn Electron/Master 128 series machines and there
are no other parameters, then BASIC treats the call as if it had been made from
one of those machines. The way in which the registers are initialised is then as
follows:

235

CASE

236

RO A%
Rl X%
R2 Y%
Carry C%

This means that programs written to run on earlier machines using legal MOS
calls can continue to work. For example, the sequence

10 osbyte•&FFF4

1000 A\-138
1010 X\-0

1020 Y%-65

1030 CALL osbyte

will be interpreted as the equivalent SYS OS_ Byte call:

1000 SYS "0S_Byte",138,0,65

This facility is provided for backwards compatibility only. You should not use it
in new programs. Also, you must be careful that any machine code you assemble
in a program does not lie in the address range &FFCE to &FFF7; otherwise when
you call it, it might be mistaken for a call to an old MOS routine.

Statement marking the start of an CASE ... OF ... WHEN ... OTHERWISE ... ENDCASE

construct. It must be the last statement on the line.

Syntax

CASE <expression> OF

Arguments

<expression> can be any numeric or string expression. The value of
<expression> is checked against the values of each of the expressions in the
list following the first WHEN statement. If a match is found, then the block of

CHATN

ASIC KEYWORDS

statementS following the WHEN down to either the next WHEN or OTHERWISE or
ENDCASE is executed. Then control moves on to the statement following the
ENDCASE. If there is no match, then the next WHEN is used, if it existS. OTHERWISE

is equivalent to a WHEN but matches any value.

Examples

CASE A$ OF

CASE Y*2 + X*3 OF

CASE GET$ OF

Statement to load and run a BASIC program.

Syntax

CHAIN<expression>

Argument

<express ion> should evaluate to a string which is a valid filename for the
filing system in use.

Notes

A filing system error may be produced if, for example, the file specified cannot
be found. When the program is loaded, all existing variables are lost (except the
system integer variables and installed libraries).

Examples

CHAIN "partB"

CHAIN a$+"2"

237

CHR$

CIRCLE

238

Function giving the character corresponding to an ASCII code.

Syntax

CHR$<factor>

Argument

An integer in the range zero to 255

Result

A single-character string whose ASCII code is the argument.

Examples

PRINT CHR$ (code)

lower$• CHR$(ASC(upper$) OR &20)

Statement to draw a circle.

Syntax

(1) CIRCLE <expressionl>,<expression2>,<expression3>
(2) CIRCLE FILL<expressionl>,<expression2>,<expression3>

Arguments

<expressionl>,<expression2> and <expression3> are integer
numerics in the range -32768 to+ 32768. The first two values give the 'x' and 'y'
coordinates of the centre of the circle. The third gives the radius. CIRCLE
produces a circle outline, whereas CIRCLE FILL plots a solid circle.

CLEAR

cw

ASIC KEYWORDS

Note

In both cases, the position of the graphics cursor is updated to lie at the radial
point: at the position on the circumference which has an 'x' coordinate of
<expressionl> + <expression3> and a 'y' coordinate of <expression2>.
The 'previous graphics cursor' position (as used by, for example, triangle
plotting) will be updated to lie at the centre of the circle plotted.

Examples

CIRCLE 640,512,50

CIRCLE FILL RND(l278),RND(l022),RND(200)+50

Statement to remove all program variables.

Syntax

CLEAR

Purpose

When this statement is executed, all variables are removed and so become
undefined. In addition, any currently activ~ procedures, subroutines, loops, and so
on are forgotten. The exceptions to this are the system variables and installed
libraries which still remain.

Statement to clear the graphics window to the graphics background colour.

Syntax

CLG

239

CLOSE#

240

Notes

This statement also moves the graphics cursor back to the graphics origin (0,0).

Examples

CLG

MODE 1
GCOL 2
VDU 24,200;200;1080;824;

CLG

Statement to close an open file.

Syntax

CLOSEt<factor>

Argument

A channel number as returned by the OPEN function. If zero is used all open files
on the current filing system are dosed. Otherwise, only the file with the channel
number specified is dosed.

Purpose

Closing a file ensures that its contents are updated on whatever medium is being
used. This is necessary as a certain amount of buffering is used to make the
transfer to data between computer and mass-storage device more efficient.
Closing a file, therefore, releases a buffer for use by another file.

CLS

COLOUR (COLOR)

ASIC KEYWORDS

Examples

CLOSEfindexFile

CLOSEIO : REM This closes all open files on the current filing system.

Statement to clear the text window to the text background colour.

Syntax

CLS

Notes

CLS also resets COUNT to zero and moves the text cursor to its home position,
which is normally the top left of the screen.

Examples

CLS

MODE 1
COLOUR 129
VDO 28,4,28,35,4

CLS

Statement to set the text colours or alter the palette settings.

Syntax

(1) COLOOR<expression> [TINT <expression1>)
(2) COLOOR<expression>, <expression>
(3) COLOOR<expression>,<expression>,<expression>,<expression>

241

242

Arguments (1)

<expression> is an integer in the range zero to 255. The range zero to 127 sets
the text foreground colour. Adding 128 to this (ie 128 to 255) sets the text
background colour. The colour is treated MOD the number of colours in the current
mode. The argument is the logical colour. For a list of the default logical colours,
see the chapter: SCREEN MODES.

The optional TINT is only effective in 256-colour modes. It selects the amount of
white to be added to the colour. The value can lie in the range 0 to 255, with only
the values 0, 64, 128 and 192 currently being used to obtain different whiteness
levels.

Arguments (2)

The first expression is an integer in the range zero to 15 giving the logical colour
number. The second expression is an integer in the range zero to 15 giving the
actual colour to be displayed when the logical colour is used. The actual colour
numbers correspond to the default colours available in 16-colour modes: eight
steady colours and eight flashing colours. The colour list is given in the chapter~
SCREEN MODES.

Arguments (3)

The first expression is an integer in the range zero to 15 giving the logical colour
number. The next three expressions are integers in the range zero to 255 giving the
amount of red, green and blue which are to be assigned to that logical colour.
Only the top four bits of each are relevant.

Notes

The keyword is listed as COLOUR in programs, even if it was typed in using the
alternative spelling.

In all modes the default state, before any changes to the palette, dictates that
colour 0 is black and colour 63 is white.

cos

ASIC KEYWORDS

Note that only colours zero and one are unique in two-colour modes. After that the
cycle repeats. Similarly, only colours zero, one, two and three are distinct in the
four-colour modes.

Examples

COLOUR 128+1 : REM Sets background colour to colour one

COLOUR 1,5 : REM Sets logical colour one to actual colour five (magenta)

COLOUR 1,255,255,255 : Sets logical colour one to white

Function giving the cosine of its numeric argument.

Syntax

COS<factor>

Argument

<factor> is an angle in radians.

Result

Real between -1 and+ 1 inclusive.

Notes

If the argument is outside the range - 8388608 to 8388608 radians, it is impossible
to determine how many Pis to subtract. The error message
Accuracy lost in sine/ cosine/tangent is displayed.

243

COUNT

244

Examples

PRINT COS(RAD(45))

adjacent • hypotenuse*COS(angle)

Function giving the number of characters printed since the last newline.

Syntax

COUNT

Result

Positive integer, giving the number of characters output since the last newline was
generated by BASIC.

Notes

COUNT is reset to zero every time a carriage return is printed (which may happen
automatically if WIDTH is being used). It is incremented every time a character is
output by PRINT, INPUT or REPORT, but not when output byVDU or any of the
graphics commands. COUNT is also reset to zero by CLS and MODE ,

Examples

REPEAT PRINT " ";
UNTIL COUNT•20

chars • COUNT

DATA

KEYWORDS

Passive statement marking the position of data in the program.

Syntax

DATA [<expression> I [,<expression> I, etc

Arguments

The expressions may be of any type and range, and are only evaluated when a
READ statement requires them.

Notes

The way in which DATA is interpreted depends on the type of variable in the
READ statement. A numeric READ evaluates the data as an expression, whereas a
string READ treats the data as a literal string. Leading spaces in the data item are
ignored, but trailing spaces (except for the last data item on the line) are counted.
If it is necessary to have leading spaces, or a comma or quote in the data item, it
must be put between quotation marks. For example:

DATA " HI","A,B,", "" "ABCD"

If an attempt is made to execute a DATA statement, BASIC treats it as a REM. In
order to be recognised by BASIC, the DATA statement, like other passive
statements, should be the first on a line. ·

Examples

DATA Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec

DATA 3.26,4,4.3,0

245

DEF

246

Passive statement defining a function or procedure.

Syntax

(1) DEF FN<proc part>
(2) DEF PROC<proc part>

where <proc part> has the form <identifier> (<parameter list>]

Parameters (1) and (2)

The optional parameters, which must be enclosed between round brackets and
separated by commas, may be of any type. For example: parm, parm%, parm$,
! pa rm, $pa rm. In addition, whole arrays may be passed as parameters.

Purpose

The DEF statement marks the first line of a user-defined function or procedure,
and also indicates which parameters are required and their types. The
parameters are local to the function or procedure, and are used within it to stand
for the values of the actual parameters used when it was called.

Notes

Function and procedure definitions should be placed at the end of the program,
so that they cannot be executed except when called by the appropriate PROC
statement of FN function. The DEF statement should be the first on the line. If not,
it is (like REM) ignored.

Examples

DEF FNmean(a,b)

DEF PROCinit

DEG

DELETE

DEF PROCthrow_dice(d%,tries,mesg$)

DEF PROCarray_determinant(A())

ASIC KEYWORDS

Function returning the number of degrees of its radian argument.

Syntax

DEG<factor>

Argument

Any numeric value.

Result

A real equal to 180*n/PI where 'n' is the argument's value.

Example

angle-DEG(ATN(a))

PRINT DEG (PI/4)

Command to delete a section of the program.

Syntax

DELETE<integer>,<integer>

247

DIM

248

Arguments

Integer constants in the range zero to 65279. They give the first and last line to be
deleted respectively. If the first line number is greater than the second, no lines
are deleted. To delete just a single line the DELETE command is not necessary.
Instead type the line number and press g.

Examples

DELETE 5,22

DELETE 110,150

Statement declaring arrays or reserving storage.

Syntax

DIM <dim part> [,<dim part>] etc

where <dim part> is:

(1) <identifier>[% or $] (<expression>[,<expression>]etc)

or

(2) <numeric variable><space><expression>

or as a function:

(3) DIM (<arrayname> ())
(4) DIM (<arrayname>(),<numeric expression>)

ASIC KEYWORDS

Arguments (1)

The <identifier> can be any real, integer or string variable name. The
expressions are integers which should be greater than or equal to zero. They
declare the upper bound of the subscript; the lower bound is always zero.

This is the way to declare arrays in BASIC. They may be multi-dimensional: the
bounds are limited only by the amount of memory in the computer. Numeric
arrays are initialised to zeros and string arrays to null strings.

Arguments (2)

The <numeric variable> is any integer or real name. The <expression>
gives the number of bytes of storage required minus one, and should be -1 or
greater. It is limited only by the amount of free memory.

The use of this form of DIM is to reserve a given number of bytes of memory, in
which to put for example, machine code. The address of the first byte reserved is
placed in the <numeric variable>. The byte array is uninitialised.

Arguments (3)

The <array name> is the name of any previously DIMed array. The result of the
function is the number of dimensions which that array has.

Arguments (4)

The <array name> is the name of any previously DIMed array. The
<numeric expression> is a number between one and the number of
dimensions of the array. The result of the function is the subscript of the highest
element in that dimension, or one less than the number of elements since
subscripts start at 0.

Notes

It is possible to have local arrays, whose contents are discarded when the
procedure or function in which they are created returns. Sec LOCAL.

249

DIV

250

The address returned by the byte form of DIM is guaranteed to lie on a word
boundary: it will be a multiple of four. This is useful when you DIM space for
machine code.

Examples

DIM name$(num_names%)

DIM sin(90)

DIM matrix%(4,4)

DIM A(64), B%(12,4), C$(2,8,3)

DIM bytes% size*10+ov erhead

PRINT DIM(name$())

size%-DIM(name$(),1)

Integer operator giving the quotient of itS operands.

Syntax

<operand>DIV<operand>

Operands

Integer-range numerics. Reals are convened to integers before the divide
operation is carried out. The right-hand side must not evaluate to zero.

Result

The (integer) quotient of the operands, always rounded towards zero. The
remainder can be found using MOD.

DRAW

Examples

PRINT (first-last) DIV 10

a%-space\ DIV &100

Statement to draw a line to specified coordinates.

Syntax

(1) DRAW<expression>,<expression>
(2) DRAWBY<expression>,<expression>

Arguments (1)

ASIC KEYWORDS

The <expression>s are integer numerics in the range -32 768 to +32767. They
are the coordinates to which a line is drawn in the current graphics foreground
colour. The graphics cursor position is updated to these coordinates. DRAW is
equivalent to PLOT 5.

Arguments (2)

The <expression>s are integer numerics in the range -32768 to +32767. They
are the offsets from the current graphics cursor to which a line is drawn in the
current graphics foreground colour. The graphics cursor position is updated to

these coordinates. DRAWBY is equivalent to PLOT 1.

Examples

DRAW 640,512 REM Draw a line to the middle of the screen

DRAW BY x%*16, y\-4

251

EDIT

ELLIPSE

252

Command to enter the BASIC screen editor.

Syntax

EDIT

Purpose

EDIT enters the BASIC screen editor to allow you to create a new program or
amend the current one. Full details of the editor are given in the chapter: THE
BASIC SCREEN EDITOR.

Statement to draw an ellipse.

Syntax

(1) ELLIPSE <expl>,<exp2>,<exp3>,<exp4>
(2) ELLIPSE FILL <expl>,<exp2>,<exp3>,<exp4>
(3) ELLIPSE <expl>,<exp2>,<exp3>,<exp4>,<exp5>
(4) ELLIPSE FILL <expl>,<exp2>,<exp3>,<exp4>,<exp5>

Arguments

<expl> to <exp4> are integer numerics giving the 'x' and 'y' coordinates of the
centre of the ellipse, the length of the semi-major axis and the length of the semi
minor axis respectively. <expS> is an optional parameter giving the angle in
radians between the 'x' axis and the semi-major axis. If this parameter is absent
then the angle is zero and the ellipse is axes-aligned.

ELLIPSE draws the outline of an ellipse. ELLIPSE FILL plots a solid ellipse.

ELSE

ASIC KEYWORDS

Notes

The ELLIPSE statement has some restrictions about the size of its operands: if
both of the semi-axes are of length zero, then you are not allowed to specify a
rotation value. If the semi-minor axis length is zero, then the rotation, if specified,
must not be zero. The result of trying to draw any of these 'illegal' ellipses is a
Division by zero error.

Examples

ELLIPSE 640,512,200,100

ELLIPSE FILL x%,y%,major%,minor%,ang

Part of the ON GOTO/GOSUB/PROC ... ELSE or IF ... THEN ... ELSE or IF ... THEN ...
ELSE ... END IF constructs.

Syntax

(1) ELSE<statements>
(2) ELSE<statements>

<statements>
<statements>
END IF

Notes (1)

ELSE may occur anywhere in the program, but is only meaningful after an IF or
ON ... GOSUB/GOTO/PROC statement. If the expression after the IF evaluates to
FALSE (zero), or the expression after the ON is not in the correct range, then the
statements following the ELSE are executed. Elsewhere ELSE is treated as a REM
statement.

253

END

254

Notes (2)

When ELSE is used as part of a block structured IF construct, and the expression
after the IF evaluates to FALSE, all statements after the ELSE down to an END IF
statement are executed. The ELSE must be the first non-space object on the line.

Examples

If a-b THEN PRINT "hello" ELSE PRINT "goodbye"

IF ok ELSE PRINT "Error"

ON choice GOSUB 100,200,300,400 ELSE PRINT"Bad choice"

IF num>-0 THEN
PRINT SQR (num)
ELSE
PRINT "Negative number"
PRINT SQR(-num)
END IF

Statement terminating the execution of a program or a function returning the top
of memory used.

Syntax

as a statement:
(1) END

as a function:
(2) END

Purpose (1)

The END statement terminates the execution of a program.

ENDCASE

ASIC KEYWORDS

Note

This statement is not always necessary in programs; execution stops when the line
at the end of the program is executed. However, END (or STOP) must be included
if execution is to end at a point other than at the last program line. This prevents
control falling through into a procedure, function or subroutine. END is also useful
in error handlers.

Purpose (2)

The END function returns the address of the top of memory used by a program
and its variables.

Example

PRINT END

Statement marking the end of a CASE ... OF ... WHEN ... OTHERWISE ... ENDCASE
construct.

Syntax

ENDCASE

Notes

END CASE must be the first non-space object on the line. When the statements
corresponding to a WHEN or OTHERWISE statement have been executed, control
then jumps to the statement following the ENDCASE. If END CASE itself is
executed, it signals the end of the CASE statement, no matches having been made.
Control then continues as normal.

255

ENDIF

ENDPROC

256

Terminates an IF ... THEN ... ELSE ... END IF construct.

Syntax

END IF

Notes

END IF marks the END of a block-structured IF statement. It must be the first non
space object on a line. When the statements corresponding to the THEN or ELSE
statement have been executed, control jumps to the statement following the
END IF. If END IF itself is executed, it signals the end of the IF statement, nothing
having been executed as a result of it. Control then continues as normal.

Statement marking the end of a user-defined procedure.

Syntax

ENDPROC

Purpose

When executed, an ENDPROC statement causes BASIC to terminate the execution
of the current procedure and to restore local variables and actual parameters.
Control is passed to the statement after the PROC which called the procedure.
ENDPROC should only be used in a procedure. Otherwise, when it is encountered,
a Not in a procedure error message is displayed.

Examples

ENDPROC

IF a<•O THEN ENDPROC ELSE PROCrecurse(a-1)

END WHILE

EOF#

ASIC KEYWORDS

Statement to terminate a WHILE ... ENDWHILE loop.

Syntax

ENDWHILE

Notes

When an ENDWHILE is executed, control loops back to the corresponding WHILE

statement. The statements forming the WHILE ... ENDWHILE loop are executed
until the condition following the matching WHILE evaluates to FALSE when
control jumps to the statement following the ENDWHILE.

Example

MODE 15
INPUT X
WHILE X > 0

GCOL X

CIRCLE 640,512,X

X -- 4
ENDWHILE

Function indicating whether the end of a file has been reached.

Syntax

EOFI<factor>

Argument

A channel number returned by an OPEN function.

257

EOR

258

Result

TRUE if the last character in the specified file has been read, FALSE otherwise.

Examples

REPEAT
VDU BGETHile
UNTIL EOFHile

IF EOFtinvoices PRINT "No more invoices"

Operator giving the logical or bitwise exclusive-OR.

Syntax

<relational>EOR<relational>

Operands

Relational expressions, or bit values to be exclusive-ORed

Result

The logical bitwise exclusive-OR of the operands. Corresponding bits in the
operands are ex-ORed to produce the result. Each bit in the result is zero if the
corresponding bits in the operands are equal, and one otherwise.

Examples

PRINT height>lO EOR weight<20

bits = mask EOR valuel

ERL

ASIC KEYWORDS

Function returning the last error line.

Syntax

ERL

Result

Integer between zero and 65279. This is the line number of the last error to occur.
An error line of zero implies that the error happened in immediate mode or that
there has not been an error.

Note

If an error occurs inside a LIBRARY procedure, ERL is the number of the last line
of the main program. It does not indicate where in the library the error occured.

Examples

REPORT
IF ERL<>O THEN PRINT " at line "; ERL

IF ERL-3245 PRINT "Bad function, try again"

259

ERR

ERROR

260

Function returning the last error number.

Syntax

ERR

Result

A four-byte signed integer. Errors produced by BASIC are in the range one to
127.

Notes

The error number zero is classed as a fatal error and cannot be trapped by the
ON ERROR statement. An example of a fatal error is that produced when a
BASIC STOP statement is executed.

Examples

IF ERR-18 THEN PRINT "Can't use zero; try again!!"

IF ERR-17 THEN PRINT"Sure?" : IF GET$-"Y" or GET$- "y" THEN STOP

Generates an error, or is part of the ON ERROR statement.

Syntax

(1) ON ERROR
(2) ERROR<expression1>,<expression2>

Notes (1)

See ON ERROR for details of the error handling statements.

EVAL

ASIC KEYWORDS

Arguments (2)

<express ionl> evaluates to a four-byte signed integer corresponding to an
error number.
<expression2> evaluates to a string associated with this error number. The
error described is generated.

Examples

ERROR 6, "Type mismatch: number needed"

ERROR ERR,REPORT$

Function causing its argument to be evaluated.

Syntax

EVAL<factor>

Argument

A string which EVAL evaluates as a BASIC expression.

Result

EVAL can return anything that could appear on the right-hand side of an
assignment statement. It can also produce the same errors that occur during
assignment. For example: Type mismatch: number needed, and
No such function/procedure.

261

EXP

EXT#

262

Examples

INPUT hex$
PRINT EVAL("&"+hex$)

f$ - "LEFT$ (" : e$-EVAL(f$+"""ABCDE'"', 2) ")

Function returning the exponential of its argument.

Syntax

EXP<facto r>

Argument

Numeric from the largest negative real (about - 1E38} to approximately +88.

Result

Positive real in the range zero to the largest positive real (about 1E38}. The result
could be expressed as e" (argument) , where 'e' is the constant 2. 718281828.

Example

DEF FNcosh(x) - (EXP(x) + EXP(-x))/2

Pseudo-variable returning or controlling the length (extent} of an open file.

Syntax

(1) EXTt<factor>
(2) EXTlt<factor>-<expression>

ASIC KEYWORDS

Argument (1)

Channel number, as allocated by one of the OPEN functions.

Result

Integer giving the current length of the file from zero to, in theory 214 7483648,
although in practice the extent is limited by the file medium in use.

Argument (2)

Channel number as allocated by one of the OPEN functions.

<expression> is the desired extent of the file, whose upper limit depends on
the filing system. The lower limit is zero. The main use of the statement is to
shorten a file. For example: EXTtfile=EXTHile-&1000. A file may be
lengthened by using PTRt.

Note

The operators +~ and- = cannot be used.

Examples

IF EXTtfile>90000 THEN PRINT "File full":CLOSEtfile

EXTtop-EXTtop+&2000

263

FALSE

FILL

264

Function returning the logical value FALSE.

Syntax

FALSE

Result

The constant zero. The function is used mnemonically in logical or conditional
expressions.

Examples

flag-FALSE

REPEAT
CIRCLE RND(l279},RND(l024},RND(200}

UNTIL FALSE

Flood-fill an area in the current foreground colour.

Syntax

FILL <expression>,<expression>

FILL BY <expression>,<expression>

Arguments

The <expression>s are integer numerics in the range - 32728 to +32767. They
are the coordinates from which flooding is to commence. If this point is in a non
background colour, nothing happens. Otherwise, it fills in all directions until it
reaches either a non-background colour, the edge of the screen, or the edge of the
graphics window.

FN

Word introducing or calling a user-defined function.

Syntax

(I) DEF FN<proc part>
(2) FN<proc part>

Arguments (1)

ASIC KEYWORDS

For the format of <proc part>, see DEF above. It gives the names and types of
the parameters of the function, if any. For example:

1000 DEF FNmin(a%,b%) IF a%<b% THEN •a% ELSE •b%

a% and b% are the formal parameters. They stand for the expressions passed to

the function (the actual parameters) when FNmin is called. The result of a user
defined function is given by a statement starting with '-'. As the example above
shows, there may be more than one'=' in a function. The first one which is
encountered during execution terminates the function.

Notes

User-defined functions may span several program lines, and contain all the
normal BASIC statementS. For example, FOR loops, IF statementS, and so on.
They may also declare local variables using the LOCAL keyword.

Arguments (2)

<proc part> is an identifier followed by a list of expressions corresponding to
the formal parameters in the DEF statement for the function. The result depends
on the assignment that terminated the function, and so can be of any type and
range. An example function call is:

PRINT FNmin(2*bananas%, 3*apples%+1)

265

FOR

266

Examples

DEF FNfact(n\) IF n%<1 THEN •1 ELSE •n*FNfact(n%-1)

DEF FNhex4 (n\) •RIGHT$ ("000"+STR$- (n\), 4)

REPEAT PRINT FNhex4(GET): UNTIL FALSE

Part of the FOR ... NEXT statement.

Syntax

FOR <numeric variab1e>•<expression> TO <expression> [STEP<expression>)

Arguments

The <numeric variable> can be any numeric variable reference. The
<expression>s can be any numeric expressions, though they must lie in the
integer range if the <numeric variable> is an integer one. It is recommended
that integer looping variables are used for the following reasons:

- the loops go faster
- rounding errors are avoided.

If the STEP part is omitted, the step is taken to be + 1.

Notes

The statements between a FOR and its corresponding NEXT are executed at least
once: the test for loop termination is performed at the NEXT rather than the FOR.
Thus a loop started with: FOR I=l TO 0 ... executes once, with 'I' set tO '1' in the
body of the loop. The value of the looping variable when the loop has finished
should be treated as undefined, and should not be used before being reset by an
assignment.

GCOL

ASIC KEYWORDS

Examples

FOR addr\-200 TO 8000 STEP 4

FOR I=l TO LEN(a$)

Statement to set the graphics colours and actions.

Syntax

(1) GCOL <expression> [TINT <expression!>)

(2) GCOL <expressionl>,<expression2> [TINT <expression3>)

Argument (1)

<expression> is an integer between zero and 255 which determines the
graphics foreground and background colours to be used in subsequent graphics
commands. If it is in the range zero to 127 it affectS the foreground colour. If it is
in the range 128 to 255 it affectS the background colour. The colour is treated MOD

the number of colours in the current mode.

Hence, in two-colour modes only zero and one are unique. After this, the cycle
repeats. Similarly, in four-colour modes, only zero, one, two and three are unique,
eoc.

Arguments (2)

<expression!> is the plot action in the range 0 to 255. It determines the effect
of future PLOT commands on the screen. Currently defined values are:

zr-.7

268

Plot action
0
1
2
3
4
5
6

7

Meaning
Store the colour <expression2> on the screen
OR the colour on the screen with <expression2>
AND the colour on the screen with <expression2>
EOR the colour on the screen with <expression2>
Invert the current colour, disregarding <expression2>
Do not affect the screen at all
AND the colour on the screen with the inverse of
<expression2>
OR the colour on the screen with the inverse of <expression2>

<expression2> determines the colour that will combine with the screen for
PLOT actions 0 to 3, 6 and 7. It is in the range zero to 12 7, and is treated MOD the
number of colours in the present mode. Adding 128 to the expression causes the
background colour to be changed instead of the foreground.

If 16, 32, 48, or 64 is added to the values of <expressionl> above, the first,
second, third, or fourth extended colour fill pattern respectively is used instead
of <expression2>. Adding 80 causes all four ECF patterns to be used, placed
side by side.

VDU 2 3 1 2 to VDU 2 3 1 5 are used to set the colour fill patterns. If the currently
selected pattern is re-defined, it becomes active immediately.

Notes

See the keyword TINT for details of the optional TINT value.

In addition to the plot actions listed, those in the range 8 to 15 are available. The
effect of these is the same as the corresponding values in the range 0 to 7, except
that in the range 8 to 15 it is possible to plot 'transparently'. This facility is used in
two situations. When a sprite is plotted in one of these modes, and it has a 'mask',
then only pixels where the mask is a 1 bit are plotted; the rest of sprite is made
transparent.

The other situation is where colour patterns are used. Where a pixel in the
pattern is the same as the current background colour, then that pixel is not plotted.

GET

ASIC KEYWORDS

For example, suppose the display is a four-colour one, and the current
background colour is 129 (red).

Now, if pattern 1 was selected as the foreground colour (GCOL 16, 0), a solid
rectangle would be red-yellow, as pattern 1 consists of alternating red and
yellow pixels. However, if the foreground colour was set using GCOL 2 4, 0
(adding 8 to the plot action number), then a solid rectangle would appear yellow,
with transparent 'holes' where the red pixels would have been plotted.

Examples

GCOL 2 : DRAW 100,100 : REM Draw a line in logical colour 2

GCOL 4,128 : CLG : REM Invert the graphics window

GCOL 1,2: REM OR the screen with colour 2

Function returning a character code from the input stream.

Syntax

GET

Result

An integer between zero and 255. This is the ASCli code of the next character in
the buffer of the currently selected input stream (keyboard or RS423). The
function will not return until a character is available, and so it can be used to halt
the program temporarily.

Note

The character entered is not reflected on the screen. To make it appear you must
explicitly PRINT it.

269

GET$

270

Examples

PRINT "Preee epace to continue"
REPEAT UNTIL GET•32

ON GET- 127 PROCa, PROCb, PROCc ELSE PRINT "Illegal entry"

Function returning a character from the input stream.

Syntax

GET$

Result

A one-character string whose value would be CHR$ (GET) if GET had been
called instead. This is provided so you can usc statements like IF GET $ • " *" ...

rather than IF CHR$ (GET)="*" ...

Examples

PRINT "Do you want another game ";reeponse$ -GET$

IF response$ • "Y" or response$ • "y" CHAIN "program"

STOP

PRINT "Input a digit ";
PRINT GET$

GET$#

GO SUB

ASIC KEYWORDS

Function returning a string from a file.

Syntax

GET$i<factor>

Argument

A channel number returned by an OPENIN, OPENOUT, or OPENUP function.

Result

A string of characters read until a linefeed (CHR$10), carriage return (CHR$13),
null character (CHR$ 0) or the end of the file is encountered, or else the maximum
of 255 characters is reached.

Note

PTRf is updated to point to the next character in the file. If the last character in
the file has been read, EOF t for the channel will be TRUE.

Examples

string$ • GET$i channel

PRINT GETSt fileno

Statement to call a subroutine.

Syntax

(1) GOSUB <expression>
(2) ON <expression> GOSUB <expression!> [,<expression>] [ELSE<statement>]

271

272

Argument (1)

<expression> should evaluate to an integer between zero and 65279, in other
words a line number. If the expression is not a simple <integer> (eg 1030) it
should be between round brackets. The line given is jumped to, and control is
returned to the statement after the GOSUB by the next RETURN statement.

Arguments (2)

<expression> should evaluate to an integer. If this integer is 'm' then the rnth
subroutine listed after the GO SUB is jumped to. If the integer is zero or negative or
greater than the number of line numbers given, the statement following the ELSE,

if it is present, is executed.

Notes

The RENUMBER command will only work correctly if all GOSUB, GOTO and
RESTORE line numbers are <integer>s. Line numbers that are expressions
cannot be renumbered, so the program will stop working correctly.

Procedures should be used in preference to subroutines since they are more
flexible and produce a better structured program.

Examples

GOSUB 2000

GOSUB (2300+20*opt)

ON x% GOSUB 100,200,300 ELSE PRINT "number out of range"

GOTO

ASIC KEYWORDS

Statement to transfer control to another line.

Syntax

(1) GOTO <expression>
(2) ON <expression> GOTO <expression!> (,<expressionn>] (ELSE <statement>]

Argument (1)

<expression> should evaluate to an integer between zero and 65279: a line
number. If <expression> is not a simple <integer>, it should be between
round brackets. This line number is then jumped to and execution carries on from
this new line.

Arguments (2)

<expression> should evaluate to an integer.
<expressionl>- <expressionn> should evaluate to integer line numbers
between rero and 65279. If the first integer is 'm' then the mth line after the GOTO

is jumped to. If the integer is rero or negative or greater than the number of line
numbers given, the statement following the ELSE, if it is present, is executed.

Notes

The RENUMBER command only works correctly if all GOSUB, GOTO and RESTORE

line numbers are <integer>s. Line numbers that are expressions cannot be
renumbered, so the program stops working correctly.

Examples

GOTO 230

IF TIME<lOOO THEN GOTO 1000

ON x GOTO 20,50,30,160

273

HELP

HIM EM

274

Command giving help information.

Syntax

HELP

Purpose

HELP displays a list of useful information about the status of BASIC.

Pseudo-variable holding address of the top of the BASIC stack.

Syntax

(1) HIMEM
(2) HIMEM-<expression>

Result(l)

An integer giving the address of the location above the end of user memory. The
amount of user memory is given by H IMEM - LOMEM and the amount of free
memory by HIMEM- END.

Argument (2)

<expression> should be an integer between LOMEM and the top of usable
memory. It restricts the amount of memory which the current program can use for
workspace etc, hence giving an area where data, or machine code routines can be
stored.

Notes

If HIMEM is set carelessly, running the program may produce the No room error.

IF

ASIC KEYWORDS

When an attempt is made to set HIMEM, LOMEM, or PAGE to an illegal value, a
warning message is displayed, but the program nevertheless continues to run. This
means that such errors cannot be trapped using ON ERROR.

Examples

PRINT "Memory available - ";HIMEM - LOMEM

a%-HIMEM-1000 : HIMEM-a%

Statement to execute statements conditionally.

Syntax

(1) IF <expression> [THEN] [<statements>] [[ELSE] [<statements>]]
(2) IF <expression> THEN

<statements>
ELSE
<statements>
END IF

Arguments (1)

<expression> is treated as a truth value. If it is non-zero, it is counted as TRUE
and any <statements> in the THEN part are executed. If the expression
evaluates to zero, then the ELSE part <statements> are executed.

<statements> is either a list of zero or more statements separated by colons,
or a line number. In the latter case there is an implied GOTO after the THEN,
which has to be present.

275

276

Notes

The THEN is optional before <statements> except before'*' commands. For
example:

IF a THEN *CAT

The ELSE part matches any IF, so be wary of nesting IFs on a line. Constructs of
the form:

IF a THEN ... IF b THEN ... ELSE ...

should be avoided by using instead:

IF a AND b THEN ... ELSE ...

However, the form:

IF a THEN ... ELSE IF b THEN ...

can be used.

Arguments (2)

<expression> is treated as a truth value. If it is non-zero, it is counted as TRUE
and any <statements> on the line after the THEN down to either an ELSE or an
END IF are executed. If the expression evaulates to zero, any <statements>
following the ELSE until the END IF are executed.

Examples

IFtemp<-lOPROClow_ temp

IF a%>b% THEN SWAP a%, b% ELSE PRINT "No swap"

INKEY

IF BA2 >- 4*A*C THEN
PROCroots{A,B,C)
END IF

IF r$ - "Y" OR r$ - "y" THEN
PRINT "YES"
ELSE
PRINT "NO"
STOP
END IF

ASIC KEYWORDS

Function returning a character code from the input stream or keyboard.

Syntax

(1) INKEY<positive integer>
(2) INKEY<negative integer>
(3) INKEY<-256>

Argument (1)

An integer in the range zero to 32767, which is a time limit in centi-seconds.

Result

The ASCII code of the next character in the current input buffer if one appears in
the time limit set by the argument, or -1 when the timeout occurs.

Argument (2)

An integer in the range -255 to -1, which is the negative IN KEY code of the key
being interrogated (see APPENDIX E for details).

277

INKEY$

278

Result

TRUE if the key is being pressed at the time of the call, FALSE if it is not.

Argument (3)

- 256

Result

A number indicating which version of the operating system is in use.

Examples

DEF PROCwait(secs%)
dummy=INKEY(lOO*secs%)
ENDPROC

IF INKEY(-99) THEN REPEAT UNTIL NOT INKEY(-99)

Function returning a character from the input stream.

Syntax

INKEY$<factor>

Argument

As INKEY

Result

Where INKEY would return -1, INKEY$ returns the null string. In all other
situations, it returns CHR$ (INKEY<argument>).

INPUT

ASIC KEYWORDS

Example

A$ - INKEY$ (500)

Statement obtaining a value or values from the input stream.

Syntax

INPUT is followed by an optional prompt, which, if present, may be followed by
a semi-colon or comma, which causes a'?' to be printed out after the prompt. This
is followed by a list of variable names of any type, separated by commas. After
the last variable, the whole sequence may be repeated, separated from the first
by a comma. In addition the position of prompts may be controlled by the SPC,
TAB (and''' print formatters (see PRINT).

Notes

Leading spaces of the input string itself are skipped, and commas are taken as
marking the end of input for the current item.

Examples

INPUT a$ REM Print a simple"?" as a prompt

INPUT "How many",num% REM prompt is "How many?"

INPUT "Address &"hex$ REM prom:.;>t is "Address&" (no"?" because no,)

INPUT TAB(lO)"Name ",n$,'TAB(l0)"Address ",a$

INPUT a,b,c,d,"More ",yn$

INPUT SPC(5)"Letter",char$

279

INPUT LINE

INPUT#

280

Syntax

This has the same syntax as INPUT

Result

If the input variable is a string, all the user's input is read into the variable,
including leading and trailing spaces and commas. If the input variable is
numeric, only a single value will be selected from the beginning of the input line.

Note

INPUT LINE is equivalent to LINE INPUT

Example

INPUT LINE ">" basic$

Statement obtaining a value or values from a file.

Syntax

INPUTt<factor> [,<variable>) etc

Arguments

<factor> is the channel number of the file from which the information is to be
read, as obtained by OPENIN or OPENUP. The list of zero or more <variable>s
may be of any type. The separators may be semi-colons.

Integer variables are written as & 4 0 followed by the twos complement
representation of the integer in four bytes, least significant byte first.

INSTALL

KEYWORDS

Real variables are written as &FF followed by four bytes of mantissa and one
byte exponent. The mantissa is sent lowest significant bit (LSB) first. 31 bits
represent the magnitude of the mantissa and 1 bit the sign. The exponent byte is in
twos complement excess 128 form.

String variables are written as & 0 0 followed by a 1 byte count and then the
characters in the string in reverse order.

Examples

INPUTtdata,name$,addrl$,addr2$,addr3$,age%

INPUTidata,Sbuffer,len

Command to load a function or procedure library into memory.

Syntax

INSTALL <expression>

Argument

<expression> is a string which should evaluate to a filename that is valid for
the filing system in use.

Purpose

INSTALL loads the chosen function and procedure library into the top of memory
and lowers the BASIC stack and value of HIMEM by an appropriate amount. The
library remains in memory until you QUIT from BASIC. Any number of libraries
may be installed provided that there is enough memory for them.

When searching for a procedure or function, BASIC looks in the following order:
first, the current program is searched, in line-number order; next, any procedure
libraries loaded using LIBRARY are searched- the most recently loaded file is

281

INSTR(

282

searched first; finally, any INSTALLed libraries are examined, again in the
reverse order of loading.

The LVAR command listS libraries in the order in which they are examined.

Examples

INSTALL "Printout"

A$ - "Libraryl"
INSTALL A$

Function to find the position of a substring in a string.

Syntax

INSTR(<expressionl>,<expression2>[,<expression3>})

Arguments

<expressionl> is any string which is to be searched for a substring.
<expression2> is the substring required. <expression3> is a numeric in the
range zero to 255 and determines the position in the main string at which the
search for the substring will start. This defaultS to one.

Result

An integer in the range zero to 255. If zero is returned, the substring could not be
found in the main string. A result of one means that the substring was found at the
first character of the main string, and so on. The position of the first occurrence
only is returned.

INr

LEFf$(

ASIC KEYWORDS

Notes

If the substring is longer than the main string, zero is always returned. If the
substring is the null string, the result is always equal to <expression3>, or one
if this is omitted.

Examples

REPEAT a$-GET$:UNTIL INSTR("YyNn",a$) <> 0

pos%-INSTR(com$,"*FX",l0)

Funtion giving the integer part of a number.

Syntax

!NT< factor>

Argument

Any integer-range numeric.

Result

Nearest integer less than or equal to the argument.

Examples

DEF FNround(n)-INT(n+O.S)

size-len*INT((top-bottom)/100)

Function returning, or statement altering the left part of a string.

283

284

Syntax

(1) LEFT$(<expression>)
(2) LEFT$(<expressionl>,<expression2>)
(3) LEFT$(<string variable>) -<expression>
(4) LEFT$(<string variable>,<expressionl>) = <expression2>

Arguments (1)

<express ion> is a string of between zero and 255 characters.

Result

A string containing all characters except the right-most one is returned.

Arguments (2)

<expressionl> is a string of between z.ero and 255 characters.
<expression2> is a numeric in the range zero to 255.

Result

A string taken from the leftmost <expression2> characters of
<expressionl>. If <expression2> is greater than LEN (<expressionl>)
then the whole string is returned.

Arguments (3)

<string variable> is the name of the string variable to be altered. The
characters in <varname> are replaced, starting from the left-hand character
(position 1), by the string <expression>.

Arguments (4)

<string variable> is the name of the string variable to be altered. The
characters in <string variable> arc replaced, starting from the left-hand
character (position 1), by the string <expression2>. <expressionl> is the

LEN

ASIC KEYWORDS

maximum number of characters which will be displaced. In other words, the
number of characters being altered is the lesser of <expressionl> and
LEN <expression2>.

Examples

start$ - LEFTS(a$)

left_ half$- LEFT$(input$,LEN(input$)DIV2)

LEFTS(A$) - "ABCD"

LEFT$(A$,n\) - B$

Function returning the length of a string.

Syntax

LEN< factor>

Argument

Any string of zero to 255 characters.

Result

The number of characters in the argument string, from zero to 255.

Examples

REPEAT INPUT a$: UNTIL LEN(a$)<- 10

IF LEN(in$) > 12 THEN PRINT " Too long"

285

lEf

286

Statement assigning a value to a variable.

Syntax

LET <variable>-<expression>

Arguments

The <variable> is any addressable object, such as 'a', a$, a%, ! a, a ?10, $a,
a (),and so on. <express ion> is any expression of the range and type allowed
by the variable: for reals, any numeric; for integers, any integer-range numeric;
for strings, any string of zero to 255 characters, and for bytes any integer in the
range zero to 255 (though an integer-range number will be treated MOD 256).

Notes

The LET keyword is always optional in an assignment, and must not be used in the
assignment to a pseudo-variable. For example, LET TIME= 1 0 0 is illegal.

Examples

LET starttime• TIME

LET a$• LEFT$(addr$,10)

LET table?i=127*SIN(RAD(i))

LET a() • 1

LET A%() • B%() + C%()

LIBRARY

ASIC KEYWORDS

Command to load a function or procedure library into memory.

Syntax

LIBRARY <expression>

Argument

<express ion> is a string which should evaluate to a filename that is valid for
the filing system in use.

Purpose

LIBRARY DIMs an area in the BASIC heap and loads the chosen function and
procedure library into this area. It remains there until the heap is cleared. Whilst
it is in memory, the current program can call any of the procedures and functions
it contains. See also INSTALL.

Examples

LIBRARY "Printout"

A$ - "Libraryl"
LIBRARY A$

287

UNE

LINE INPUT

288

Draw a line between two points.

Syntax

LINE <expression>,<expression>,<expression>,<expression>

Arguments

The <expression>s are integer numerics in the range -32768 to +32767. They
are two pairs of coordinates between which the line is drawn. The line is drawn in
the current graphics foreground colour and the graphics cursor position is
updated to the latter pair of coordinates. It is equivalent to a MOVE followed by a
DRAW.

Examples

LINE 100,100,600,700

LINE xl,y1,x2,y2

LINE x1,y1,x1+xoffset,y1+yoffset

Syntax

This has the same syntax as INPUT

Result

If the input variable is a string, all the user's input is read into the variable,
including leading and trailing spaces and commas. If the input variable is
numeric, only a single value will be selected from the input line.

LIST

ASIC KEYWORDS

Note

LINE INPUT is equivalent to INPUT LINE

Example

LINE INPUT "Your message" mess$

Command to list the program.

Syntax

LIST [<line range>) [IF <string>)

Arguments

<line range> gives the start and end lines to be listed. Both values are optional
and should be separated by a comma. The first value defaults to zero and the last
to 65279. The IF, when present, is followed by a string of ASCII characters. Only
lines which contain this string are listed.

Notes

The string given after the IF is tokenised before it is checked against the program.
Hence, LIST IF PRINT and LIST IF P. both list lines containing the PRINT
keyword. However, LIST IF PR does not.

Because the string after IF is tokenised, only one version of the pseudo-variables
(each of which has two tokens) may be found. This is the one acting as a function
(as in PRINT TIME), rather than the statement version (as in
TIME=<expression>).

289

LISTO

290

Examples

LIST list the whole program

LIST 1000, list from line 1000 to the end

LIST ,50 list from the start to line 50

LIST 10,40 list from line 10 to 40 inclusive

LIST IFDEF list all lines containing a DEF

LIST ,100 IFfred%= list all lines up to line 100 containing fred%=

Command to set the LIST indentation options.

Syntax

LISTO<expression>

Argument

<expression> should be in the range zero to 31 and is treated as a five-bit
number. The meaning of the bits is as follows:

Bit

0
1
2
3

4

Meaning

A space is printed after the line number
Structures are indented
Lines are split at the': statement delimiter
The line number is not listed. An error is displayed at line
number references
List tokens in lower case

LN

ASIC KEYWORDS

Notes

BASIC strips trailing spaces from program lines when they are entered. If the
current LISTO option is non-zero, it also strips leading spaces. To enter blank
lines (eg 100 0), either execute LI STO 0 first, or include a colon on the blank line
(eg 1000:).

Examples

LISTO 0

LISTO 2

LISTO %10011

Default

All loops and conditionals indented by rwo characters

Tokens in lower case, structures indented, line numbers
given with a space after each

Function returning the natural logarithm of its argument.

Syntax

LN<factor>

Argument

Any strictly positive value: a numeric greater than zero.

Result

Real in the range -89 to +88 which is the log to base 'e' (2.718281828) of the
argument.

JQI

LOAD

292

Examples

DEF FNlog2(n)•LN(n)/LN(2)

PRINT LN (10)

Command to load a BASIC program at PAGE

Syntax

LOAD <expression>

Argument

<express ion> is a string which should evaluate to a filename that is valid for
the filing system in use.

Note

Any program which is currently in memory is overwritten and lost.

Examples

LOAD "PeteDisc:disasm"

where PeteDisc is the name of a floppy disc.

LOAD FNnextFile

LOCAL

ASIC KEYWORDS

Statement to declare a local variable in a procedure or function.

Syntax

LOCAL [<variable>) [,<variable>), etc

Arguments

<variable>s following the LOCAL may be of any type, such as 'a', 'a%', 'a$',
$buffer, and so on. The statement causes the current value of the variables cited
to be stored on BASIC's stack, ready for retrieval at the end of the procedure or
function. This means the value inside the procedure may be altered without fear
of corrupting a variable of the same name outside the procedure. At the end of the
procedure, the old value of the variable is restored.

Notes

Local numerics are initialised to zero, and local strings are initialised to the null
string.

Arrays can be declared as being local and then dimensioned using DIM as
normal.

Examples

LOCAL dx,dy

LOCAL a$,len%,price

LOCAL a(), B() DIM a(2), B(4,5)

293

LOCAL ERROR

294

Makes the error control status local.

Syntax

LOCAL ERROR

Notes

LOCAL ERROR can be used anywhere inside a program. It remembers the currem
error handler so a subsequent use of ON ERROR does not overwrite it. This error
handler can later be restored using RESTORE ERROR.

If LOCAL ERROR is used within a procedure or function it must be the last item to
be made local.

Returning from a procedure or function call which contained a LOCAL ERROR

automatically restores any stored error status.

See also ON ERROR LOCAL

Example

ON ERROR PROCerror
res - FNdivide(opp,adj)
END
DEFFNdivide(x,y)
LOCAL ERROR
ON ERROR LOCAL PRINT "attempt to divide by zero" :-0
-x/y : REM end of function restores previous error status

ASIC KEYWORDS

LOG

Function returning the logarithm to base ten of its argumem.

Syntax

LOG <factor>

Argument

Any strictly positive value: a numeric greater than zero.

Result

Real in the range -38 to + 38, which is the log to base ten of the argument.

Example

PRINT LOG(2.4323)

LOMEM

Pseudo-variable holding the address of BASIC variables.

Syntax

(1) LOMEM
(2) LOMEM=<expression>

Result (1)

The address of the start of the BASIC variables.

295

LVAR

296

Arguments (2)

<express ion> is the address at which BASIC variables start. The expression
should be in the range TOP to HIMEM to avoid corruption of the program and/or
No room errors.

Notes

LOMEM should not be changed after any assignments in a program. If it is,
variables assigned before the change are lost. LOMEM is reset to TOP by CLEAR
(and thus by RUN).

If you attempt to set LOMEM to an impossible value, a warning message is given
and LOMEM is not altered.

Examples

LOMEM- TOP+&400 REM reserve lK above TOP

PRINT-LOMEM

Command displaying the first line of all current libraries.

Syntax

LVAR

Purpose

LVAR lists all the values of BASIC variables, sizes of arrays, known procedures
and functions. It also lists the first line of all libraries currently loaded. These
are displayed in the same order as that in which the libraries are searched when a
library procedure or function is called.

MID$(

ASIC KEYWORDS

Note

In order for LVAR to be useful, you should ensure that the first line of each
library includes the full name of the library and the name of a procedure which
can be called co provide details of all the routines which the library contains.

Function returning, or statement assigning to a substring of a string.

Syntax

(1) MID$(<expressionl>,<expression2>[,<expression3>))
(2) MID$(<string variable>,<expressionl>[,<expression2>)) - <expression3>

Arguments (1)

<expressionl> is a string of zero to 255 characters. <expression2> is the
position within the string of the first character required. <expression3>, if
present, gives the number of characters in the substring. The default value is 255
(or to the end of the source string).

Result

The substring of the source string, of a length given in the third argument, and
starting from the position specified. The result string can never be of greater
length than the source string.

Arguments (2)

<string variable> is the name of the string variable which is to be altered.
<expression3> evaluates to a string which provides the characters to replace
those in <string variable>. <expressionl> is the position within the string
of the first character to be replaced. <express ion2>, if present, gives the
maximum number of characters to be replaced. The replacement stops when the
end of the string variable is reached, even if there are characters in
<expression3> which are unused.

297

MOD

298

Examples

PRINT MID$("ABCDEFG",2,3);" : REM should print "BCD"

PRINT MID$(any$,LEN(any$)+l,any%);" : REM gives a null string'"'

right_half$~MID$(any$,LEN(any$) DIV 2)

MID$(A$,4,4) ~ B$

MID$(A$,2,5) - MID$(8$,3,6)

Operator giving the integer remainder of its operands.

Syntax

<operand>MOD<operand>

Arguments

The <operand>s arc integer-range numerics.

Result

Remainder when the left-hand operand is divided by the right-hand one using
integer division.

Examples

INPUT i\: i% - i\ MOD max num%

count%-count% MOD max% + 1

PRINT result% MOD 100

MODE

ASIC KEYWORDS

Function returning, or statement changing the display mode.

Syntax

(1) MODE <express ion>
(2) MODE

Argument (1)

<expression> should be in the range 0 to 255.

There arc 21 different modes, from z,ero to 20, although modes 18, 19 and 20 are
only available when using multi-sync monitors. If <expression> is over 128,
the mode used is <expression>-128. Sufficient memory, however, for two
copies of the screen is reserved wherever possible. This allows you to have one
copy on display whilst you are updating the other, which means that smooth
animation can be obtained.

Details of all the modes available are given in APPENDIX E.

Note

Changing mode also does the following:

- clears the screen to the current text background colour
- sets COUNT to z,ero
- sets the text and graphics windows to their defaults of the whole screen
- homes the text cursor
- moves the graphics cursor to (O,Q)
- resets the logical-physical colour map to the default for the new mode
- resets the colour-fill patterns to their defaults for the new mode
- sets the dot pattern for dotted lines to &AA.

299

MOUSE

300

Result (2)

An integer giving the current screen mode. If the screen mode was entered using a
number greater than or equal to 128 (ie a shadow mode), this is not reflected in
the value returned by the MODE function. For example, if you typed MODE 12 9,

the MODE function would return 1.

Examples

MODE 0

MODE m\+128

PRINT MODE

Statement returning the mouse position and button status.

Syntax

(1) MOUSE <variablel>,<variable2>,<variable3>
(2) MOUSE ON [<numeric expr> 1

(3) MOUSE OFF
(4) MOUSE COLOUR <numeric expr>,<numeric expr>,<numeric expr>,<numeric expr>
(5) MOUSE TO <numeric expr>,<numeric expr>
(6) MOUSE STEP <numeric expr>[,<numeric expr>]
(7) MOUSE RECTANGLE <numeric expr>,<numeric expr>, <numeric expr>,

<numeric expr>

Arguments (1)

The first two variables are assigned the 'x' and 'y' positions of the mouse as values
in the range -32768 to 32767. The third integer is assigned a value giving the status
of the mouse buttons as follows:

Value

0
l
2
3
4
5
6
7

Arguments (2)

Status

No buttons pressed
Right button only pressed
Middle button only pressed
Middle and right buttons pressed
Left button only pressed
Left and right buttons pressed
Left and middle buttOns pressed
All three buttons pressed

ASIC KEYWORDS

This causes the mouse pointer to be displayed. The optional numeric
expression is the pointer shape to be used.

Purpose (3)

This turns off the mouse pointer.

Arguments (4)

This sets the colour components of the mouse logical colour given in the first
expression to the values given in the second, third and fourth.

Arguments (5)

This moves the mouse pointer to a position given by the first and
second numeric arguments.

Arguments (6)

This controls the speed of movement of the mouse. If there is one
argument, it is used as a multiplier for both the 'x' and 'y' movements. If there are
two, the first is used for 'x' and the second for 'y'.

301

MOVE

302

Arguments (7)

This sets a bounding rectangle outside which the mouse cannot move. The
arguments arc the left, bottom, right and top of the rectangle in graphics units. If
the mouse pointer is outside the box when this command is given, it will be moved
to the nearest point within it.

Example

MOUSE xpos%,ypos%,button%

MOUSE ON

MOUSE OFF

MOUSE TO 100,100

MOUSE RECTANGLE 640,512,1023,1279

MOUSE STEP 3,2

MOUSE COLOUR Col%,red%,green%,blue%

Statement tO set the position of the graphic cursor.

Syntax

(1) MOVE <numeric expr>,<numeric expr>
(2) MOVEBY <numeric expr>,<numeric expr>

Arguments (1)

The <expression>s are 'x' and 'y' coordinates in the range to 32768 to 32767, ie
two-byte integers. The usual screen range for the x-coordinate is zero to 1279 and

NEW

ASIC KEYWORDS

for they-coordinate it is zero to 1023, though this changes if a graphics origin has
been defined. MOVE is equivalent to PLOT 4.

Arguments (2)

The <expression>s are 'x' and 'y' offsets from the graphics cursor in the range
-32768 to 32767, ie two-byte integers. MOVEBY is equivalent to PLOT 0.

Examples

MOVE 0,0 : REM Goto the origin

MOVE BY 4*x%,4*y%

Command to remove the current program, and to intialise the computer so that it is
ready to receive a new program.

Syntax

NEW

Purpose

The NEW command does not destroy the program, but merely sets a few internal
variables as if there were no program in the memory. The effect of NEW may be
undone using the OLD command, providing no program lines have been typed in,
or variables created, between the two commands. BASIC does an automatic NEW

whenever it is entered.

303

NEXT

304

Part of the FOR .. TO .. NEXT structure.

Syntax

NEXT [<variable>][, [<variable>]], eoc

Arguments

The <variable>s are of any numeric type, and if present should correspond tO

the variable used to open the loop.

Notes

The variables after the NEXT should always be specified as this enables BASIC
to detect improperly nested loops. If the loop variable given after a NEXT does
not correspond to the innermost open loop, BASIC closes the inner loops until a
matching looping variable is found. The indentation produced using LI STO to

format the listing will help to highlight this kind of error.

Examples

NEXT a%

NEXT REM close one loop

NEXT j%,i% REM close two loops

NEXT , , , REM close four loops

NOT

ASIC KEYWORDS

Function returning the logical or bitwise NOT of its argument.

Syntax

NOT<factor>

Argument

An integer-range numeric.

Result

An integer in which all the bits of the argument have been inverted: ones have
changed to zeros and zeros have changed to ones. If the argument is a truth value,
NOT can be used in a logical statement to invert the condition. In this case, the truth
value should only be one of the values -1 (TRUE) and zero (FALSE).

Examples

IF NOT ok THEN PRINT "Error in input"

inv%=NOT mask%

REPEAT UNTIL NOT INKEY(-99)

305

OF

OFF

306

Part of the CASE ... OF ... WHEN ... OTHERWISE ... ENDCASE statement.

Syntax

CASE <expression> OF

Arguments

<express ion> may yield any type of value: integer, floating point, or string.

Notes

The OF keyword must be the last item on the line.

Examples

CASE n\ OF

CASE LEFT$(answer$) OF

Statement to turn off the cursor or part of the ON ERROR, TRACE, MOUSE, or
SOUND statements.

Syntax

(1) OFF
(2) ON ERROR OFF
(3) TRACE OFF
(4) MOUSE OFF
(5) SOUND OFF

ASIC KEYWORDS

Purpose (1)

OFF turns the cursor off so that it is no longer visible. When the cursor is disabled
using the OFF keyword, it is only temporarily removed. It will reappear if you
start to perform cursor editing, and remain visible when you press g. To disable
the cursor in a more permanent way, usc

VDU 23,0,10,321

and to re-enable it use

VDU 23,0,10,1071

Purpose (2)

ON ERROR OFF disables error trapping so that when an error occurs, the default
error action of printing the error message (and line number) and terminating the
program takes place. See ON ERROR.

Purpose (3)

TRACE OFF turns off the tracing of the current program. This is done
automatically when an error occurs. See TRACE.

Purpose (4)

Turns off the mouse pointer. See MOUSE.

Purpose (5)

Turns off all sound output. Cancelled by SOUND ON. See SOUND.

307

OLD

ON

308

Command to retrieve a program after NEW has been typed.

Syntax

OLD

Purpose

The OLD command retrieves a program lost by NEW or BREAK providing no new
program lines have been entered, or variables defined. When you recover the
previous program using OLD, you may notice that the first line number has
changed. In particular, it is now its old value MOD 256. So if the first line used to
be 1000, it will now be 232. You can remedy this slight problem using the
RENUMBER command.

Statement to tum the cursor on or part of the ON ... GOTO/GOSUB/PROC and ON

ERROR, MOUSE and SOUND statements.

Syntax

(I) ON

(2) ON <expressionO> GOTO <expressionl> [,<expressionn>] [ELSE<statement>]

(3) ON <expressionO> GOSUB <expressionl> [, <expressionn> I [ELSE<statement>)

(4) ON <expressionO><proc>[,<proc>) (ELSE<statement>)

(5) ON ERROR [<statements>)

(6} ON ERROR LOCAL (<statements>)

(7) SOUND ON

(8) MOUSE ON [<expression> I

Purpose (1)

ON turns the cursor on so that it is visible. This is the default status. However, it can
be altered using OFF.

ASIC KEYWORDS

Arguments (2) and (3)

<e·xpressionO> following the ON is an integer between '1' and 'n', where 'n' is
the number of expressions following the GOTO/GOSUB. The expressions from
<expressionl> to <expressionn> are line numbers (see GOSUB for the
rules for line numbers). The optional ELSE pan follows the last line number,
and is followed by a statement.

Purpose

The ON ... GOTO/GOSUB statement provides a multi-way branch facility.
<expressionO> is evaluated. If its value is 'm', then the mth line number
following the GOSUB/GOTO is jumped to. If 'm' is less than one or greater than the
number of line numbers given, the ELSE part is executed. If there is no ELSE part,
an ON range error is generated. Note that only a single statement may come after
ELSE. Any other following statements, separated by colons, will be executed
unconditionally. For example:

10 ON a GOSUB 100,200,300 ELSE PRINT"error":PROCerrStuff

The call to PROCerrStuff will be made whether the value of'a' is outside of
the range of one to three or not. Only one statement is subject to the ELSE. The
consequence of this is that the ELSE part of an ON statement usually contains a
procedure call or GOTO statement.

The difference between the GOTO and GOSUB versions is that in the latter case
control is returned to the statement following the ON when a RETURN is executed.

Arguments (4)

<expressionO> following the ON is an integer between one and 'n', where 'n' is
the number of <proc> parts. The <proc> parts are normal calls to procedures,
with or without parameters. The optional ELSE part follows the last line number,
and is followed by a statement.

309

310

Purpose

The ON ... PROC statement is very similar to ON ... GOSUB, the difference being that
a call is made to a procedure instead of to a subroutine. The note about ELSE

made above applies here too.

Arguments (5) and (6)

The <statement>s following ERROR arc zero or more legal BASIC statements
separated by colons.

Purpose

When an ON ERROR or ON ERROR LOCAL is executed, BASIC remembers the
position of the statements following it. When an error is subsequently
encountered, BASIC jumps to and executes the statements it has remembered.
After an ON ERROR, all loops, procedures, etc are closed. However, after an ON
ERROR LOCAL the current status is remembered. Hence ON ERROR NEXT is not
sensible, but ON ERROR LOCAL NEXT can be.

Purpose (7)

Enables SOUND output.

Purpose (8)

Turns on the mouse pointer. See MOUSE.

Examples

ON

ON choice% GOSUB 1000,2000,3000,4000 ELSE PRINT "Bad choice"

ON ASC(c$) - 127 GOTO 100,120,10,200

ON choice%+1 PROCload(prog$), PROCsave(prog$) ELSE PROCerr

OPENIN

ASIC KEYWORDS

ON ERROR GOTO 10000

ON ERROR PROCerr

ON ERROR IF ERR-17 THEN RUN ELSE REPORT:PRINT "at line";ERL:END

ON ERROR OFF : REM Disable the error trapping

ON ERROR LOCAL Print"Operation failed":NEXT

Function opening a file for input only.

Syntax

OPENIN<factor>

Argument

A string which evaluates to a valid filename for the filing system in use.

Result

An integer acting as a channel number for the file. The exact value depends upon
the filing system and how many files are already open. The value is zero if the
file was not found. The file is opened for input only.

Examples

in_file%-OPENIN("Invoices")

data%-OPENIN(":O"+data$)

311

OPEN OUT

OPEN UP

312

Function for opening a new file for output.

Syntax

OPENOUT<factor>

Argument

A string which evaluates to a valid filename for the filing system in use.

Result

An integer acting as a channel number for the file. lf the file docs not already
exist, then a new one is created. lf a file of the same name does exist then that file
is deleted before the new one is created. The file is opened for output only.

Examples

out_file%=0PENOUT ("Customers")

data\•OPENOUT (": 0. "+data$)

Function for opening a file for input and output.

Syntax

OPENUP<factor>

Argument

A string which evaluates to a valid filename for the filing system in use.

OR

ASIC KEYWORDS

Result

An integer acting as a channel number for the file. If the file does not already
exist, a new one is created. If a file of the same name does exist, that file is
deleted first and a new one created. The file is opened for input and output.

Example

random_file%-OPENUP("records")

Operator giving the logical OR of its operands.

Syntax

<relational>OR<relational>

Arguments

<relational>s can be any integer-range numerics.

Result

An integer obtained by ORing together the corresponding bits in the operands.
The operands may be interpreted as bit-patterns, in which case a bit in the result
is set to one if either or both of the corresponding bits in the operands are one.
Alternatively, they may be interpreted as logical values, in which case the result
is TRUE if either or both of the operands are TRUE.

Examples

PRINT a% OR &AASS

IF a<l OR a>lO THEN PRINT "Bad range "

ORIGIN

OSCLI

~14

Statement to move the graphics origin.

Syntax

ORIGIN <expression>,<expression>

Arguments

The <expression>s are integer numerics in the range -32768 to +32767. They
are the absolute coordinates of the new graphics origin: the position of the point
(0,0). The graphics origin is used by all commands which create graphics, such as
MOVE, LINE, PLOT, CIRCLE, and so on, and also by VDU 2 4 which creates a
graphics window.

Example

ORIGIN 640,512 Set new origin to the centre of the screen

Statement to pass a string to the operating system.

Syntax

OSCLI<expression>

Argument

<expression> should be a string of between zero and 255 characters. It is
passed to the operating system OSCLI routine to be executed.

ASIC KEYWORDS

Notes

The difference between passing a string to the operating system via a'*'
command and via OSCLI is that the former makes no attempt to process the text
following it, whereas the latter evaluates the text as a BASIC string expression.

BASIC provides extra information when using'*' or OSCLI to allow these
systems to be ported onto this computer. {Note that this does not happen for
SYS 5, "fred").

Because the high user mode registers are not conveniently readable from other
modes, the low registers pass values that must be moved to the correct registers.
For further information see CALL.

RO
Rl
RZ
R3
R4
R5

contains CLI string pointer
contains &BA51 Cxxx
ARGP

LINE
current string pointer
environment information pointer {as CALL)

The value in register 1 should be inspected by any routine in order to validate that
the call is, indeed, from BASIC (it may be a good idea to check RZ to R5 for valid
addresses); the value is also at R5l-4. The BASIC interpreter provides
&BA51CXl05, the next &BA51C006 and so on. The value in LINE should not be
relied on, except that it is sufficient for BASIC to produce the correct line number
error definition. When BASIC is eventually returned to at the end of the
SWI CLI call, its (user mode) registers must not have been disturbed.

Examples

OSCLI "CAT"

OSCLI "LOAD "+filet+" "+STR$buff% : REM get the file in buffer

OSCLI "FX138,0,"+STR$(ASC(c$}) :REM insert a character into input buffer

OTHERWISE

PAGE

Part of the CASE ... OF ... WHEN ... OTHERWISE ... ENDCASE statement.

Syntax

OTHERWISE <statements>

Notes

The OTHERWISE statement is executed only when the previous WHEN statements
have failed to match the value of the CASE expression. OTHERWISE matches any
values. If it is present, therefore, all statements following it will be executed.
Control then jumps tO the statement following the ENDCASE.

Examples

OTHERWISE PRINT "Bad input"

OTHERWISE PROCdraw(x,y) : PROCwait

Pseudo-variable holding the address of the program.

Syntax

(1) PAGE

(2) PAGE-<expression>

Result (1)

An address which is an unsigned number. PAGE is the location at which the current
BASIC program starts.

PI

ASIC KEYWORDS

Argument (2)

<expression> is an integer in the range OSHWM to HIMEM, and should be on a
word boundary. By changing PAGE, several BASIC programs may reside in the
machine at once.

Note

If you attempt to set PAGE to an invalid address, a warning message is given and
PAGE is not altered.

Example

PAGE - HIMEM - &4000

Function ren.trning the value of 7t.

Syntax

PI

Result

The constant 3.141592653

Examples

DEF FNcircum(r)-2*PI*r

~17

PWf

POINT

318

Statement performing an operating system PLOT function.

Syntax

PLOT <expressionl>,<expression2>,<expression3>

Arguments

<expressionl> is the plot number in the range from zero to 255. For example,
85 is the plot number for an absolute triangle plot in the foreground colour. The
second and third expressions are the 'x' and 'y' coordinates respectively, in the
range -32768 to +32767. See APPENDIX F for a full list of PLOT codes.

Examples

PLOT 85,100,100 REM Draw a triangle

PLOT 69,x,y : REM Plot a single point

Statement to plot a single point or move the on-screen pointer.

Syntax

(1) POINT <expression>,<expression>
(2) POINTBY <expression>,<expression>
(3) POINTTO <expression>,<expression>

Arguments (1)

The <expression>s are integer numerics in the range -32768 to +32767. They
are the coordinates at which the point will be placed. The point is plotted in the
current graphics foreground colour, and the graphics cursor is updated to these
coordinates.

POINT(

ASIC KEYWORDS

Arguments (2)

The <expression>s are integer numerics in the range -32768 to +32767. They
are offsets from the graphics cursor at which the point will be placed. The point is
plotted in the current graphics foreground colour, and the graphics cursor is
updated to these coordinates.

Arguments (3)

The <expression>s are integer numerics in the range -32768 to +32767. They
are the coordinates at which the on-screen pointer will be placed if it is not linked
to the mouse position. If the pointer is linked to the mouse this command is
ignored.

Examples

POINT 320,600

POINT X%+4, Y%+4

POINT BY 100,0

POINT TO 640,512

Finds the logical colour of a graphics pixel.

Syntax

POINT(<expression1>,<expression2>)

Arguments

<expressionl> is the 'x' coordinate of the pixel and <expression2> is the
'y' coordinate. These are integers in the range -32768 to +32767.

319

POS

320

Result

This is an integer in the range -1 to 'n', where 'n' is less than the number of logical
colours in the current mode. For example, 'n' is 15 in a 16-colour mode. If the
point specified lies outside the current graphics window, - 1 is returned.
Otherwise, it is the logical colour of the point. Note that the value returned is in
the range 0 to 63.

The function TINT {x, y) will read the tint of the given co-ordinate, returning a
value in the range 0 to 255.

Example

REPEAT Y\ - Y\+4:UNTIL POINT(640,y%}<>0

Function returning the x-coordinate of the text cursor.

Syntax

POS

Result

An integer between zero and 'n', where 'n' is the width of the current text window
minus one. This is the position of the text cursor which is normally given relative tO

the left-hand edge of the text window. If the cursor direction has been altered
using VDU 23, 16, ... then it is given relative to the negative 'X' edge of the screen
which may be top, bottom, left or right.

Examples

old x\-POS

IF POS<>O THEN PRINT

PRINT

ASIC KEYWORDS

Print information on the output stream(s).

Syntax

The items following PRINT may be string expressions, numeric expressions, and
print formatters. By default, numerics are printed in decimal, right justified in the
print field given by'@%' (see below). Strings are printed left justified in the print
field. The print formatters have the following effects when printing numbers:

, (comma)

Do not right justify (print leading spaces before) numbers in the
print field. Set numeric printing to decimal. Semi-colon stays in
effect until a comma is encountered. Do not print a new line at
the end if this is the last character of the PRINT statement.

Right justify numbers in the print field. Set numeric printing to
decimal. This is the default print mode. Comma stays in effect
until a semi-colon is encountered. If the cursor is not at the start
of the print field, print spaces to reach the next one.

Print numbers as hexadecimal integers, using the current
left/right-justify mode. T ilde stays in effect until a comma or
semi-colon is encountered.

' (apostrophe) Print a new line. Retain current left/right justify and
hexadecimal/decimal modes.

TAB (If there is one argument, for example, TAB (n), print (n
COUNT) spaces. If the cursor is initially past position 'n' (ie
COUNT >n), print a new line first. If there are two arguments, for
example, TAB (10 , 2 0) , move directly to that tab position.
Left/right-justify and hexadecimal/decimal modes are
retained.

321

322

SPC(

space

Print the given number of spaces. For example SPC (5) outputs
five spaces. Right-justify and hexadecimal/decimal modes are
retained.

Print the next item, retaining left/right-justify and
hexadecimal/decimal modes.

When strings are printed the descriptions above apply, except that hexadecimal
mode does not affect the string. Also no trailing spaces are printed after a string
unless it is followed by a comma. This prints enough spaces to move to the start of
the next print field.

The format in which numbers are printed, and the width of print fields are
determined by the value of the special system integer variable, @%. Each byte in
the variable has a special meaning. These are described below.

Byte4

This determines whether the STR$ function uses the print format determined by
@%, when converting its argument to a string, or whether it will use a default
general format. If the byte is zero (the default), STR$ uses a general format. If it
is non-zero, STR$ uses the format determined by @ %.

Byte3

This selects the format to be used. The legal values are:

- 0- General format: Numbers have the form nnn.nnn, the maximum number
of digits printed being given in byte 2. This is the default format.

- 1- Exponent format: Numbers have the form n.nnnEnn, the number of digits
printed being given in byte 2.

- 2- Fixed format: Numbers have the form nnn.nnn, the number of digits after
the decimal point being given in byte 2.

ASIC KEYWORDS

Byte2

This determines the number of digits printed. In General format, this is the
number of digits which may be printed before reverting to Exponent format (1 to
10); in Exponent format it gives the number of significant figures to be be printed
after the decimal point (l to 10). In fixed format it gives the number of digits
(exactly) that follow the decimal point.

Byte 1

This gives the print field width for tabulating using commas, and is in the range
zero to 255.

Examples of @%

@%=&0102020A uses Fixed format with two decimal places in a tab field width
of ten. In addition, STR$ uses this format instead of its default (which is &OAOA).
Numbers are printed out in the form 1. 23, 92 3 .10, etc.

@ %=& 0 0 010 4 0 8 uses Exponent format. Four significant digits are printed, in a
field of eight characters. These numbers look like 1. 234EO, 1.100E-3, etc.

@ %=& 0 0 0 0 0 9 OA uses General format with up to nine significant digits in a field
width of ten characters. Note that General format reverts to Exponent format
when the number is less that 0.1. This is the default setting of@%.

Notes

Setting byte two to 10, eg & OAOA, shows the inaccuracies which arise when trying to
store certain numbers in binary. For example:

PRINT 7.7

prints 7. 699999999 when @%=&0AOA.

The print formatters''', TAB (and SPC may also be used in INPUT statements.

323

PRINT#

324

Examples

PRINT"Hello there";

PRINTa,SIN(RAD(a)),x,y''p,q

PRINT TAB(l0,3)"Profits"SPC(l0);profits;

Print information to an open file.

Syntax

PRINTi<factor>(,<expression>],e~

Arguments

<factor> is the channel number of a file opened for output or update. The
expressions, if present, are any BASIC integer, real or string expressions. They
are evaluated and sent to the file specified with the corresponding type
information.

Integers are written as & 4 0 followed by the twos complement representation of
the integer in four bytes, least significant byte first.

Reals are written as &FF followed by four bytes of mantissa and one byte
exponent. 31 bits of the mantissa represent its magnitude and one bit its sign. It is
sent with its least significant byte first. The exponent is in twos complement
excess 128 form.

Strings are written as & 0 0 followed by a one byte count of the length of the string,
followed by the characters in the string in reverse order.

Example

PRINTtfile,name$+":",INT(lOO*price+.S),qnty\

PROC

ASIC KEYWORDS

Word introducing or calling a user-defined procedure.

Syntax

(1) DEF PROC<proc part>
(2) PROC<proc part>

Arguments (1)

<proc part> has the form <identifier> ((<parameter list>)]. It gives
the name of the procedure (the <identifier>) and the names and types of the
optional parameters, which must be enclosed in brackets and separated by
commas.

Arguments (2)

The second form is used when the procedure is actually invoked, and this time the
parameter list comprises expressions of types corresponding to the parameters
declared in the DEF PROC statement. The expressions are evaluated and assigned
(locally} to the parameter variables. Control returns to the calling program when
an ENDPROC is executed.

Examples

DEF PROCdelay{n)
TIME-O :REPEAT UNTIL TIME-n*lOO:ENDPROC

IF ?flag-0 THEN REPEAT PROCdelay{O.l): UNTIL ?flag

325

PTR#

326

Pseudo-variable accessing the pointer of a file.

Syntax

(l) PTRI<factor>
(2) PTRI<factor>~<expression>

Argument (1)

<factor> is a channel number, as returned from an OPENIN, OPENOUT, or
OPENUP function.

Result

An integer giving the position of the next byte to be read or written in relation to

the start. The minimum value is zero and the maximum value depends on the
filing system in use.

Argument (2)

<factor> is as (1). The <expression> is an integer giving the desired position
of the sequential pointer in the file.

Examples

PRINT PTRifile;"bytes processed"

PTRtchan%-rec_len%

QUIT

RAD

Command to leave BASIC.

Syntax

QUIT

Purpose

QUIT leaves the BASIC interpreter.

Function returning the radian value of its argument.

Syntax

RAD<factor>

Argument

A number representing an angle in degrees.

Result

ASIC KEYWORDS

A real giving the corresponding value in radians: <argument>*PI/ 180.

Examples

sin%?i%•SIN(RAD(i%))

PRINT RAD(theta)-PI/2

~?7

READ

RECfANGLE

328

Statement reading information from a DATA statement.

Syntax

READ [<variable>), [<variable>],e~

Arguments

The zero or more variables should correspond in type to the items in the DATA

statement being read. In fact, a string READ item is able to read any type of DATA

and interpret it as a string constant after stripping leading spaces. A numeric
READ item tries to evaluate its DATA; so in the latter case, the DATA expression
should yield a suitable number.

Examples

READ n%

READ a$,fred%,float

Statement to draw a rectangle or copy/move a rectangular area of the screen or
set the mouse bounding box.

Syntax

(1) RECTANGLE <expl>,<exp2>,<exp3>,<exp4>
(2) RECTANGLE FILL <expl>,<exp2>,<exp3>,<exp4>
(3) RECTANGLE <expl>,<exp2>,<exp3>,<exp4> TO <exp5>,<exp6>
(4) RECTANGLE FILL <expl>,<exp2>,<exp3>,<exp4> TO <exp5>,<exp6>
(5) MOUSE RECTANGLE <expl>,<exp2>,<exp3>,<exp4>

ASIC KEYWORDS

Arguments (1) and (2)

<expl> and <exp2> are expressions evaluating to integer numerics in the range
-32768 to +32767. They are the coordinates of one of the corners of the rectangle.
<exp3> and <exp4> are similar expressions giving the offsets of the opposite
corner: the width and height of the rectangle. If <exp4> is not present, then it is
assumed to be the same as <exp3>.

Purpose

RECTANGLE draws the outline of a rectangle which is aligned with the 'x' and 'y'
axes. RECTANGLE FILL plots a solid axes-aligned rectangle. The rectangles are
drawn in the current graphics foreground colour.

RECTANGLE leaves the graphics cursor at the starting position. However, with
RECTANGLE FILL, the graphics cursor is updated to the position of the opposite
corner specified.

Arguments (3) and (4)

<expl> to <exp6> are all expressions evaulating to integer numerics in the
range -32768 to +32767. <expl> and <exp2> are the coordinates of a corner of
the source rectangle being defined. <exp3> and <exp4> are as in (1) and (2).
<expS> and <exp 6> give the position to which the lower left corner of the source
rectangle is copied or moved.

Purpose

RECTANGLE ... TO copies the original rectangular area defined to the new
position, hence making a second copy of a rectangular screen area.
RECTANGLE FILL ... TO moves the original rectangular area defined to the new
position, replacing the old area with the current graphics background colour. The
new position can overlap with the rectangular area.

Purpose (5)

To set a bounding box for the mouse pointer. See MOUSE.

329

REM

330

Examples

RECTANGLE 500,500,-200,-100

RECTANGLE FILL bottomleft%(1),bottomleft%(2),width%,height%

RECTANGLE 400,400,60,60 TO 460,400

RECTANGLE FILL x,y,size,size TO xnew,ynew

Statement indicating a remark.

Syntax

REM<string>

Argument

<string> can be absolutely anything; it is ignored by BASIC. The purpose of a
REM is to provide comments to make the program clear to any reader.

Example

REM find the next prime

RENUMBER

ASIC KEYWORDS

Command to renumber the program lines.

Syntax

RENUMBER [<integer>] [,<step>]

Arguments

See AUTO for a description.

Purpose

RENUMBER resequences the lines in the program so that the first line is
<integer> and the line numbers increase in steps of <step>. It also changes
line numbers within the program, such as after GOTOs, so that they match the new
line numbers. If the line used in a GOTO cannot be found, the message

Failed with nnnn on line 1111

is given, where nnnn is the line number which was referenced but which does not
appear in the program, and 1111 is the line on which the reference was made.

RENUMBER needs some workspace, and if there is not enough room to change the
line numbers successfully, a RENUMBER space error is generated.

Examples

RENUMBER

RENUMBER 1000,20

331

REPEAT

REPORT

332

Statement marking start of a REPEAT ... UNTIL loop.

Syntax

REPEAT

Purpose

The statementS following REPEAT arc repeatedly executed until the condition
following the matching UNTIL evaluates to FALSE. The statementS may occur
over several program lines, or may all be on the same line separated by colons.
The second approach is useful in immediate statements. The statementS arc
executed at least once.

Examples

REPEAT UNTIL NOT INKEY-99 REM wait for SPACE to be released

REPEAT
a%+- l:c%-c% >> 1
UNTIL c%-0

Statement printing the message of the last error encountered.

Syntax

REPORT

Examples

REPORT:PRINT "at line",ERL;END

REPORT:PRINT "error!!"'' :END

REPORT$

RESTORE

ASIC KEYWORDS

Function returning the message of the last error encountered as a string.

Syntax

REPORT$

Examples

PRINT REPORT$

ERROR ERR,REPORT$

Statement setting the DATA pointer.

Syntax

RESTORE [<expression>]

Argument

<expression> is a line number. If it is absent, the DATA pointer is reset to the
first DATA statement in the progam, and the next item READ comes from there. If
the line number is present, the DATA pointer is set to the first item of data on or
after the line specified, so that subsequent READs access that particular data item
(and those which follow).

Examples

RESTORE

RESTORE 1000

333

RESTORE ERROR

RETURN

334

Statement to restore saved error status.

Syntax

RESTORE ERROR

Notes

RESTORE ERROR restores the error status previously saved using LOCAL ERROR.
If an error status has not been saved then a fatal error arises.

The error status is restored automatically when returning from a procedure or
function.

Examples

LOCAL ERROR
ON ERROR PRINT"Negative value"
INPUT x
PRINT "Square root of x = ";SQR(x)
RESTORE ERROR

Statement returning control from a subroutine.

Syntax

(1) RETURN
(2) RETURN<parameter>

Purpose (1)

RETURN returns control to the statement following the most recent GOSUB. If
there are no GO SUBs currently active, a Not in a subroutine error occurs.

RIGHT$(

ASIC KEYWORDS

Purpose (2)

RETURN indicates value-and-result parameter passing (as distinct from value
passing, the default) when applied to a parameter in the definition.

Example

DEF PROCSwapifDisordered (RETURN A, RETURN 8)
IF A>B SWAP A,B

ENDPROC

Function returning or statement altering the right-most character(s) of a string.

Syntax

(1) RIGHT$(<expressionl>)
(2) RIGHT$(<expressionl>,<expression2>)
(3) RIGHT$(<string variable>) -<expression>
(4) RIGHT$(<string variable>,<expressionl>) • <expression2>

Argument (1)

<expression!> should be a string of zero to 255 characters.

Result

A string consisting of the right-hand character is returned.

Arguments (2)

<expression!> should be a string of zero to 255 characters. <expression2>
should be a numeric, 'n', in the range zero to 255.

335

336

Result

A string consisting of the right-most 'n' characters from the source string
(<expressionl>). lf 'n' is greater than the length of the source string, the whole
source string is returned.

Arguments (3)

<string variable> is the name of the string variable to be altered. The right·
hand characters in <string variable> are replaced by the string
<express ion>.

Arguments (4)

<string variable> is the name of the string variable to be altered. The right
hand characters in <string variable> are replaced by the string
<expression2>.

<expressionl> is the maximum number of characters which will be replaced:
the number of characters altered is the lesser of <expressionl> and
LEN <expression2>.

RND

ASIC KEYWORDS

Examples

PRINT RIGHT$(any$,4)

year$• RIGHT$(date$,2)

RIGHT$(birthday$) "' "May"

RIGHTS(name$,4) - "Mary"

Function returning a random number.

Syntax

(1) RND

(2) RND (<expression>)

Result (1)

A four-byte signed random integer berween - 2147483648 and +2147483647

Result (2)

<expr ession> < 0 This reseeds the random number generator, and the
function returns its argument as a result. Reseeding the
generator with a given seed value always produces the
same sequence of random numbers.

<expression> .. 0 This uses the same seed as the last RND call and
returns the same random number rounded between zero
and .999999999.

<expression> • 1 This returns a random real number between zero and
.999999999.

337

RUN

SAVE

338

<expression> > 1 This expression, 'n', should be an integer. The result is
an integer between one and 'n' inclusive.

Note that there should be no space before the opening bracket.

Examples

dummy-RND(-TIME} REM reseed the generator 'randomly'

ON RND(4} PROCone, PROCtwo, PROCthree, PROCfour

x%-RND (1280) : y%=RND (1024}

Statement to execute the current program.

Syntax

RUN

Purpose

RUN executes the program in memory, if one is present, after clearing all
variables and resetting LOMEM.

Command to save a program as a file.

Syntax

(l) SAVE<expression>
(2) SAVE

SGN

ASIC KEYWORDS

Argument (1)

<expression> should evaluate to a string which is a valid filename under the
filing system in usc. The current BASIC program is stored (without variables, etc)
on the medium under this name.

Notes (2)

SAVE can be used without an expression, in which case the name is taken from the
first line of the program which should have the format:

REM > <filename>

For example:

10 REM > Gamel

Examples

SAVE "Versionl"

SAVE FNprogName

SAVE

Function returning the sign of its argument.

Syntax

SGN<factor>

Argument

Any numeric.

SIN

340

I •

Result

-1 for negative arguments, 0 for zero-valued arguments, and + 1 for positive
arguments.

Examples

DEF FNsquare(th)•SGN(SIN(th))

ON SGN(arg)+2 PROCone, PROCtwo, PROCthree

Function returning the sine of its argument.

Syntax

SIN<factor>

Argument

A numeric representing an angle in radians.

Result

A real in the range -1 to 1, being the sine of the argument.

Notes

If the argument is outside the range -8388608 to +8388607 radians, an
Accuracy lost in Sine/Cosine/Tangent error is displayed.

Examples

PRINT SIN(RAD(135))

opp•hyp*SIN(theta)

SOUND

ASIC KEYWORDS

Statement generating a sound or suppressing/allowing subsequent sound
generation.

Syntax

(1) SOUND ON
(2) SOUND OFF
(3) SOUND <expressionl>,<expression2>,<expression3>,<expression4>
(4) SOUND <expressionl> , <expression2>,<expression3>,<expression4>,

<expressionS>

Purpose (1) and (2)

SOUND ON is the default setting. It allows sounds to be produced by subsequent
usc of the SOUND (3) statements. SOUND OFF suprcsses sounds and means that
subsequent SOUND (3) statements have no effect.

Arguments (3) and (4)

<expressionl> is the channel number, <expression2> is the amplitude,
<expression3> is the pitch, <expression4> is the duration, and
<expressionS> is the delay.

Channel number

A two-byte integer giving the channel number to be used. It has the range 1 to 8.

Amplitude

This is an integer in one of two different ranges. The range - 15 to zero is a simple
volume (amplitude), -15 being the loudest and zero being the quietest (no sound).
The range 256 (&100) to 511 (&IFF) is a logarithmic volume range, a difference
of 16 providing a doubling or halving of the volume.

341

SPC

342

Pitch

This is treated as an integer. In the range zero to 255, the note middle C has a pitch
value of 53; a difference in 'p' of 48 corresponds to a difference in pitch of one
octave. In other words, there are four pitch values per semi-tone. In the range 256
(&100) to 32767 (&7FFF), the note middle C has a pitch value of &4000, and a
difference in 'p' of &1000 corresponds to a difference in pitch of one octave.

Duration

The last SOUND parameter is also treated as a one-byte integer. It gives the
duration of the note in twentieths of a second. A value of 255 gives a note with an
infinite duration: one that does not stop unless the sound queue is flushed in some
way. When an envelope is in use, 'D' gives the time for which the note sounds
before the release phase is entered.

Delay

This is the number of beat counts from the last beat counter reset before the sound
is produced. See BEATS and TEMPO for more details.

Examples

SOUND 1, - 15,255,10

SOUND &102,&140,&2400,200

SOUND 3,300,300,100,200

Print modifier to generate spaces.

Syntax

SPC<factor>

SQR

ASIC KEYWORDS

Argument

A one-byte integer between zero and 255. It gives the number of spaces to be
printed.

Examples

PRINT a$;SPC(l0);b$

INPUT SPC(7)"How many",a$

Function returning the square-root of its argument.

Syntax

SQR<factor>

Argument

Any postive numeric.

Result

A real which is the argument's square-root.

Examples

DEF FNlen(xl,yl,x2,y2)-SQR((x2-xl)A2+(y2-yl)A2)

disc-SQR(b*b-4*a*c)

343

STEP

STEREO

344

Part of the FOR ... TO ... STEP statement or part ofMOUSESTEP.

Syntax

(1) FOR ... TO ... [STEP<expression>)

(2) MOUSE STEP <expression>[,<expression>)

Argument (1)

<expression> is any numeric (preferably an integer) giving the step by which
the FOR variable is to be incremented when a NEXT is encountered. If the STEP
part is omittted, it is assumed to be one.

Purpose (2)

To control the speed of mouse movements. Sec MOUSE.

Examples

FOR i%-32 TO 128 STEP 32

FOR addr\• HIMEM TO HIMEM-&2000 STEP - 4

Statement setting the stereo position of a sound channel.

Syntax

STEREO <expressionl>,<expression2>

Arguments

<expressionl> is the channel number which should be between one and the
number of active channels (the maximum being eight). <expression2> is a

STOP

ASIC KEYWORDS

value giving the stereo position. It can take any value between -127 (meaning that
the sound is fully to the left) and + 12 7 (meaning that the sound is fully to the
right). The default value of each is rero, giving central (mono) production.

If the number of physical channels is eight, only the channel specified is
programmed. Otherwise, the following occurs:

No of channels

l
2
4

Examples

STEREO 4,-60

STEREO n%, stereo%

Channels programmed

<pos> to eight
<pos> and every other channel up to eight
<pos> and <pos>+4 if <pos>+4 is less than or equal
to eight

Statement producing the fatal error STOP to terminate the program.

Syntax

STOP

Purpose

The STOP statement gives the fatal (untrappable) error message Stopped. It
differs from END, as the latter produces no message. It may be used as a
debugging aid to halt the program at a given point so that the current values of the
program's variables can be determined.

345

STR$

346

Example

IF NOT ok THEN PRINT"Bad data":STOP

Function producing the string representation of its argument.

Syntax

STR$[-)<factor>

Argument

Any numeric for decimal conversion, any integer for hexadecimal conversion.
Decimal conversion is used when the tilde('-') is absent, hex conversion when it is
present.

Result

Decimal or hex string representation of the argument, depending upon the
absence or presence of the tilde.

Notes

The string returned by STR$ is usually formatted in the same way as the
argument would be printed with@ % set to &AOA. However, if the most significant
byte of@% is non-zero, STR$ returns the result in exactly the same format as it
would be printed, taking the current value of@% into account. See also PRINT.

Examples

DEF FNhex4(a%) -RIGHT$("000"+STR$-(a%), 4)

DEF FNdigits(a%) -LEN(STR$(a$))

dp-INSTR(STR$(any_val),".")

STRING$(

SUM

ASIC KEYWORDS

Function retumi.ng multiple copies of a string.

Syntax

STRING$(<expressionl>,<expression2>)

Arguments

<expressionl> is an integer, 'n', in the range zero to 255. <expression2>
should be a string of length zero to (255DIV n).

Result

A string comprising 'n' concatenated copies of the source string, of a length
between zero and 255.

Examples

MODE 1
PRINT STRING$(40,"_"); :REM underline across the screen

pattern$•STRING$(20,"<-->")

Function returning the arithmetic sum or string concatenation of an array.

Syntax

SUM(<array identifier>)

Argument

<array identifier> is the name of an array.

347

SWAP

348

Result

If the result is an integer or floating point array, it is an integer or floating point
value of the sum of all the elementS in the array.

lf the result is a string array, it is the string which contains each of the clementS of
the array concatenated.

Examples

A{) - 1
PRINT "There are ";SUM(A())" elements."

IF DIM(A()) ~ 1 AND DIM(B()) - 1 THEN
IF DIM(A(),1)- DIM(B(),l) THEN

DIM C(DIM(A(),l))

C () - A() *B ()

PRINT "Scalar product is ";SUM (C ())

END IF

END IF

Statement exchanging the value of two variables or arrays.

Syntax

SWAP <identifierl>,<identifier2>

Arguments

The argumentS are variables or array names. Values must be of compatible type:
string or numeric. Arrays must be of identical type elementS (integer, floating
point, string), but can be of differing sizes.

SYS

ASIC KEYWORDS

Purpose

The SWAP statement exchanges the contents of the two variables or arrays. In the
case where arrays are swapped, the number of subscripts and their upper limits
are also swapped. For example, if you have

DIM A(l0),B(20,20)
SWAP A () , B ()

then after the SWAP, it would be as if the arrays had been DIMed:

DIM A(20,20),B(l0)

Examples

SWAP A%, B%

SWAP forename$, surname$

SWAP arr(l,2), arr(2,1)

SWAP arrayl (), array2 ()

SWAP a, B%

SWAP A$, $A%

SWAP matrix(), vector()

A statement for calling operating system routines.

Syntax

SYS <expl> [,<expn>) [TO <variablel>[,<variable2>)) [;<flags>)

349

350

Arguments

<expl> defines which operating system routine is to be called. It may evaluate to
an integer numeric giving the routine number, or to a string which is the name of a
routine. The optional list of expressions following this, up to a maximum of eight,
is passed to the routine via the registers. If the expression evaluates to a numeric,
it is converted to an integer and placed directly in a register. If the expression
evaluates to a string, the string is placed on BASIC's stack, beginning at a word
boundary and terminating with a null character. A pointer to it is put in the
register. Any expressions not given default to zero.

The optional TO is followed by a variable list. Each variable is assigned any
value returned by the routine in the registers RO to R7 respectively. If the variable
to assign to is numeric, the integer in the register is converted to an appropriate
format and stored in it. If the variable to assign to is a string, the register is treated
as a pointer to a string terminated by zero, 10 or 13 and this string is assigned to
the variable. The strings given on input can be overwritten, but should not be
extended.

< f 1 a g s > is an optional variable, to which the processor flag bits are returned.
The value stored in the <flags> value is a binary number of the form %NZCV,
where the letters stand for the result flags of the ARM status register.

Purpose

SYS provides access to the routines supplied by the operating system for entering
and outputting characters, error handling, sprite manipulation, and so on. Details
of these operating system routines is beyond the scope of this book.

Examples

SYS O,ASC"A" : REM Write the character A to the ecreen

SYS 5,"CAT" :REM Equivalent to OSCLI"CAT"

SYS 4 TO char% : REM Read the ASCII value of a character input

TAB(

TAN

ASIC KEYWORDS

Print modifier to position text cursor.

Syntax

(1) TAB(<expression>)
(2) TAB(<expressionl>,<expression>)

Argument (1)

A numeric in the range zero to 255. It expresses the desired x-coordinate of the
cursor. This position is obtained by printing spaces. A new line is generated first
if the current position is at or to the right of the required one. COUNT is updated
correctly.

Arguments (2)

<express ion 1> is the desired 'x'-coordinate; <express ion2> is the desired
'y' -coordinate. The position is reached using the VDU 31 command. Both
coordinates must lie within the current text window, otherwise, no cursor
movement will take place. COUNT is no longer correct.

Examples

PRINT TAB(lO) "Product";TAB(20) "Price"

INPUT TAB(O,lO)"How many eggs",eggs\

Funtion giving the tangent of its argument.

Syntax

TAN<factor>

351

TEMPO

352

Argument

A real number interpreted as an angle in radians.

Result

A real giving the tangent of the angle, in the range - 1E38 to+ 1E38.

Notes

If the argument is outside the range -8388608 to +8388607 radians, an
Accuracy lost in Sine/Cosine/Tangent error message is displayed.

Example

opp-adj*TAN(RAD(theta))

Function returning or statement altering the beat counter rate.

Syntax

(1) TEMPO <expression>
(2) TEMPO

Argument (1)

<expression> is a hexadecimal fractional number, in which the three least
significant digits are the fractional part. A value of &1000 corresponds to a
tempo of one tempo beat per centi-second; doubling the value causes the tempo to

double (two tempo beats per centi-second), halving the value halves the tempo (to
half a beat per centi-second).

The tempo affects the rate at which the beat counter increases.

THEN

ASIC KEYWORDS

Result (2)

A number giving the current tempo.

Examples

TEMPO &2000

PRINT TEMPO

Pan of the IF ... THEN ... ELSE and IF ... THEN ... ELSE ... END IF statements.

Syntax

(1) IF <expression> [THEN) [<statements>) [ELSE [statements>))

(2) IF <expression> THEN
[<statements>]

[ELSE)
[<statements]

END IF

Notes (1)

THEN is optional except in the case where a pseudo-variable is being assigned. It
must also be included in statements of the form
IF <expression> THEN <expression>, where the second expression
evaulates to an integer between z.ero and 64279; that is, a line number followed
by a GOTO is implied.

Notes (2)

THEN is necessary in the block structured IF construct and must be the last object
on the line.

353

TIME

354

Examples

IF a>3 THEN PRINT "Too large"

IF mem THEN HIMEM - HIMEM - &2000

IF A$- "Y" THEN 1200 ELSE GOTO 1400

MODE 1
IF colour$
COLOUR 1

CLS
ELSE

"red" THEN

COLOUR 0 CLS
END IF

REM THEN optional

Pseudo-variable reading or altering the value of the centi-second clock.

Syntax

(1) TIME
(2) TIME-<expreseion>

Result (1)

An integer giving the number of centi-seconds that have elapsed since the last
time the clock was set to zero.

Arguments (2)

<expression> is an integer value used to set the clock. TIME is initially set to
the lowest four bytes of the five byte clock value maintained by the operating
system. Assigning to the TIME pseudo-variable alters the system centi-second
timer: the one which is read and written by OS_ Words &01 and &02
respectively. There is, however, an additional system clock which is monotonic: it

TIME$

ASIC KEYWORDS

always increases in value with time, and cannot be reset by software. TIME docs
not affect this timer.

Example

DEF PROCdelay(n) TIME-O:REPEAT UNTIL TIME>=n*lOO

Pseudo-variable accessing the real-time clock.

Syntax

(1) TIME$
(2) TIME$=<expression>

Result (1)

TIME$ returns a 24-character string of the format:

Fri,24 May 1984.17:40:59

The date and time part are separated by a full stop ' . '

(2)

The expression should be a string specifying the date, the time, or both.
Punctuation and spacing are crucial and should be as shown in the examples
below.

355

TINf

356

Examples

PRINT TIME$

TIME$-"Tue, 1 Jan 1972"

TIME$="21:12:45"

TIME$-"Tue, 1 Jan 1972.21:12:06"

Part of the COLOUR or GCOL statements for use in 256-colour modes, or a
statement on its own, or a function.

Syntax

(1) COLOUR <num-expr> [TINT <num-expr>)
(2) GCOL <num-expr>[,<num-expr>) [TINT <num-expr>)
(3) TINT<num-expr>
(4) TINT<x, y>

Arguments

The numeric expression following TINT is used to select the lowest two
significant bits of the colour in 256-colour modes. Values between zero and 255
are permitted but only the lowest two bits of the number are significant.

Examples

COLOUR l+J% TINT N%

GCOL 128+63 TINT 255 : REM Set the graphics background colour to solid white

The TINT keyword may also be used as a function. In the 256-colour modes it
returns the tint value with which a pixel was written onto the screen. Examples are

ro

TOP

GCOL 3 TINT TINT(x,y)
t=TINT (0, 0)

ASIC KEYWORDS

Part of the FOR ... TO ... STEP statement, part of MOUSE TO or part of POINT TO.

Syntax

See FOR, MOUSE or POINT

Examples

FOR i%•1 TO 100

MOUSE TO x%,y%

POINT TO x%,y%

Function returning the address of the end of the program.

Syntax

TOP

Result

TOP gives the address of the first byte after the BASIC program. The length of
the program is equal to TOP-PAGE. LOMEM is usually set to TOP, so this is where
the variables start.

Example

PRINT TOP

357

TRACE

358

Statement to initiate line tracing.

Syntax

(1) TRACE<expression>

(2) TRACE ON

(3) TRACE PROC

(4) TRACE STEP<expression>

(5) TRACE STEP ON

(6) TRACE STEP PROC

(7) TRACE OFF

Arguments (1) and (2)

<expression> is a line number. All line numbers below this line number are
printed out when they are encountered during the execution of the program.

TRACE ON is the same as TRACE 6 52 7 9 ie all line numbers are printed as they
are met.

Purpose (3)

TRACE PROC prints out the name of each procedure called.

Purposes (4), (5) and (6)

These are the same as TRACE<expression>, TRACE ON and TRACE PROC
respectively, except that when each line number or procedure name has been
printed, execution of the program stops and does not continue until a key is
pressed.

Purpose (7)

TRACE OFF disables tracing.

TRUE

UNTIL

ASIC KEYWORDS

Examples

IF debug THEN TRACE 9000

TRACE STEP PROC

IF debug THEN TRACE OFF

Function returning the constant -1.

Syntax

TRUE

Result

TRUE always returns -1, which is the number yielded by the relational operators
when the condition is true. For example, 1 + 1 <3 gives TRUE as its result.

Example

debug=TRUE
IF debug PRINT"debug in operation"

Statement to terminate a REPEAT loop.

Syntax

UNTIL <expression>

359

USR

360

Argument

<expression> can be any numeric expression which can be evaluated to give a
truth value. If it is zero (FALSE), control passes back to the statement
immediately after the corresponding REPEAT. If the expression is non-zero,
control continues to the statement after the UNTIL.

Examples

DEF PROCirritate
REPEAT VDU ?:UNTIL FALSE:ENDPROC

REPEAT PROCmove:UNTIL gameOver

Function returning the value of the first register after executing a machine code
routine.

Syntax

USR<factor>

Argument

The address of the machine code to be called. Calls to the 6502-based BBC
Microcomputer operating systems are handled by USR for compatibility.

USR is similar to CALL except that it returns the integer value of the first register
as a result and cannot be passed any parameters (other than the address).

Result

An integer.

VAL

VDU

ASIC KEYWORDS

Example

DEF FNmachinecode :=USR(start_of_code)

Function returning the numeric value of a decimal string.

Syntax

VAL<£ actor>

Argument

A string of zero to 255 characters.

Result

The number that would have been read if the string had been typed in response to

a numeric INPUT statement. The string is interpreted up to the first character that
is not a legal numeric one (0 to 9, 'E' and'.').

Example

date•VAL (date$)

Statement sending bytes to the YOU drivers.

Syntax

VDU [<expression>) [, or or I or <expression>) etc [; or ll

361

362

Arguments

The zero or more <expresssion>s may be followed by a comma, a semi-colon,
a vertical bar, or nothing in the case of the <expression> at the end of the line.

Expressions followed by a semi-colon are sent as two bytes (low byte first) to the
operating system VDU drivers.

Expressions followed by a comma (or nothing in the case of the last expression)
are sent to the VDU drivers as one byte, taken from the least significant byte of
the expression.

The vertical bar means , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , and so sends the
<expression> before it as a byte followed by nine zero bytes. Since the
maximum number of parameters required by any of the VDU statements is nine,
the vertical bar ensures that sufficient parameters have been sent for any
particular call. Any surplus ones arc irrelevant, since VDU 0 does nothing.

Notes

For the meanings of the VDU codes, sec the chapter: VDU CODES.

Examples

VDU 24,400;300;1000;740;

VDU 7,7 :Emit 2 beeps

VDU 23,9,200)23,10,200)

colours

REM set up a graphics window

Slow down the flash rate of both alternating

VOICES

VPOS

ASIC KEYWORDS

Statement specifying the number of sound channels to be used.

Syntax

VOICES <expression>

Arguments

<expression> is the number of channels to be used. The maximum number
allowed is eight. Any number between one and eight can be specifed, but the
number which the computer is to handle must be a power of two and so the
computer rounds up the number you give to either one, two, four or eight.

Note

The sound system uses up a lot of the computer's processing power, and so it is
good practice to minimise the number of active channels. Otherwise, the computer
will take longer to perform other tasks such as drawing to the screen.

Examples

VOICE 4

VOICE n%*2

Function returning the 'Y' coordinate of the text cursor.

Syntax

VPOS

363

WAIT

364

Result

The vertical position of the text cursor relative to the top of the text window.

Examples

DEF FNmyTab (x%)
PRINT TAB(x%,VPOS);: -""

IF VPOS>lO THEN PRINT TAB(O,lO);

Statement to wait for end of the current display frame. Waiting until the end of
the frame maximises the amount of time available in which to draw objects while
the electron beam is 'blanked'.

Syntax

WAIT

Purpose

To enable a program to synchronise animation effects with the scanning of the
display hardware.

WHEN

ASIC KEYWORDS

Pan of the CASE ... OF ... WHEN ... OTHERWISE ... ENDCASE statement.

Syntax

WHEN <expression!> <,expressionn> <statements>

Arguments

WHEN is followed by a list of expressions separated by commas. These
expressions should evaluate to the same type as that of the expression following
the corresponding CASE statement. If the value of the expression following the
CASE statement matches that of any of the list following the WHEN,
<statements> are executed and control is then passed to the statement
following the ENDCASE.

Notes

WHEN must be the first non-space object on a line. A CASE statement can contain
any number of WHEN statements, but only the statements of the first one which
contains a matching value will be executed. To match any value, an OTHERWISE
should be used.

Examples

WHEN 1 : PROCload

WHEN 2,4,6,8 : PRINT "Even" : remainder- 0

WHEN "Y","y","YES","Yes","yes" : PROCgame

365

WHILE

366

Statement marking the Start of a WHILE ... ENDWHILE loop.

Syntax

WHILE <expression>

Arguments

<expression> can be any numeric or string condition which can be evaluated to
give a truth value. If it is zero (FALSE), control passes forward to the statement
immediately after the corresponding ENDWH I LE. If it is non-zero, control
continues until the ENDWHILE statement is reached, then loops back to the WHILE

statement, and <expression> is re-evaluated.

Notes

The statements making up the WHILE ... ENDWHILE loop are never executed if the
initial value of <expression> is FALSE (zero).

Examples

WHILE TIME < 1000

PROCdraw
ENDWHILE

WHILE flag PROCmainloop ENDWHILE

WIDTH

ASIC KEYWORDS

Statement setting the line width in BASIC.

Syntax

WIDTH<expression>

Arguments

<expression> should be a positive integer. Expressions in the range 1 to

2147483627 cause BASIC to print a new line and reset COUNT to z.ero every time
COUNT exceeds that number. If the expression is zero-valued, BASIC stops
generating auto-newlines, which is the default. The WIDTH keyword may also be
used as a function. It returns the current value of the print width, or 0 if none has
been set.

Examples

WIDTH 0: REM 'infinite width'

WIDTH 40: REM newline every 40 characters horizontally

367

368

DU COMMANDS

The VDU (Visual Display Unit) driver is a part of the operating system which
provides a set of routines used to display all text and graphical output. Any bytes
sent to the VDU driver are treated either as characters to be displayed or as
VDU commands: instructions which tell the driver to perform a specific function.
Their interpretation depends on their ASCII values as follows:

ASCII value

0-31
32-126
127
128-159
160-255

Interpretation

VDU commands
Characters to be displayed
I Delete!
Characters to be displayed I Teletext control codes
Characters to be displayed

The statement VDU X is equivalent to PRINT CHR$ (X) ; except that VDU ignores
the value of WIDTH and does not affect COUNT.

In addition, the VDU commands can be given from the keyboard by holding
down [Qill and one further key as shown in the table below. For example, to give
the command VDU 0, you would press [Qill and @. Some VDU commands require
extra data to be sent. The number of bytes extra is also given in the table.

369

VDU Code CfRL Extra bytes Meaning

0 @(2) 0 Do nothing

1 A 1 Send next character to printer
only

2 B 0 Enable printer

3 c 0 Disable printer

4 D 0 Write text at text cursor

5 E 0 Write text at graphics cursor

6 F 0 Enable VDU driver

7 G 0 Generate bell sound
8 H 0 Move cursor back one character

9 I 0 Move cursor on one space
10 J 0 Move cursor down one line
11 K 0 Move cursor up one line
12 L 0 Clear text window
13 M 0 Move cursor to start of current line
14 N 0 Turn on page mode
15 0 0 Turn off page mode
16 p 0 Clear graphics window
17 Q 1 Define text colour
18 R 2 Define graphics colour
19 s 5 Define logical colour
20 T 0 Restore default logical colours
21 u 0 Disable VDU drivers
22 v 1 Select screen mode
23 w 9 Multi-purpose command
24 X 8 Define graphics window
25 y 5 PLOT
26 z 0 Restore default windows
27 [0 Does nothing
28 \ 4 Define text window
29 I 4 Define graphics origin
30 "(6) 0 Home text cursor
31 _(-) 2 Move text cursor

The VDU commands are described below.

370

VDUO

VDU 1

VDU2

VDU3

VDU4

VDU5

VDU6

DU COMMANDS

VDU 0 docs nothing.

VDU 1 sends the next character to the printer only, if the printer has been enabled
(with VDU 2 for example).

VDU 2 causes all subsequent printable characters to be sent to the printer as well
as to the screen.

VDU 3 reverses the effects of VDU 2 so that all subsequent printable characters
are sent to the screen only.

VDU 4 causes all subsequent printable characters to be printed at the current text
cursor position using the current text foreground colour.

VDU 5 links the text and graphics cursors· and causes all subsequent printable
characters to be printed at the current graphics cursor position using the current
graphics foreground colour and action.

VDU 6 restores the functions of the YOU driver after it has been disabled (using
VDU 21). Hence, this command causes all subsequent printable characters to be
sent to the screen.

371

'DU7

rou 8

IDU9

vDU 10

VDU 11

VDU 12

VDU 13

372

VDU 7 generates the bell sound.

VDU 8 causes either the text cursor (by default or after a VDU 4 command} or the
graphics cursor (after a VDU 5 command} to be moved back one character
position. It does not cause the last character to be deleted.

VDU 9 causes either the text cursor (by default or after a VDU 4 command} or the
graphics cursor (after a VDU 5 command} to be moved on one character position.

VDU 10 causes either the text cursor (by default or after a VDU 4 command} or the
graphics cursor (after a VDU 5 command) to be moved on one line.

VDU 11 causes either the text cursor (by default or after a VDU 4 command} or the
graphics cursor (after a VDU 5 command) to be moved back one line.

VDU 12 clears either the current text window (by default or after a VDU 4
command) or the current graphics window (after a VDU 5 command) to the current
text or graphics background colour respectively. In addition the text or graphics
cursor is moved to its home position (see VDU 3 0).

VDU 13 causes the text cursor (by default or after a vou 4 command) or the
graphics cursor (after a VDU 5 command} to be moved to the start of the current
line.

VDU 14

VDU 15

VDU 16

VDU 17,n

VDU 18,k,c

VDU 19,l,p,r,g,b

DU COMMANDS

VDU 14 enters paged mode, and so makes the screen display wait for lshiftl to be
pressed before displaying the next page.

vou 15 cancels the effect of VDU 14 so that scrolling is unrestricted.

VDU 1 6 clears the current graphics window to the current graphics background
colour using the graphics and action. It does not affect the position of the graphics
cursor.

vou 17 sets either the text foreground ('n'< 128) or background ('n'>= 128)
colours to the value 'n'. It is equivalent to COLOUR n.

vou 18 is used to define either the graphics foreground or background colour and
the way in which it is to be applied to the screen. The BASIC equivalent is
GCOL k, c.

VDU 1 9 is used to define the physical colours associated with the logical colour 1.

IfO <= p <= 15, r, g and bare ignored, and one of the standard colour settings is
used. This is equivalent to COLOUR 1, p.

If p = 16, the palette is set up to contain the levels of red, green and blue dictated
by r, g and b. This is equivalent to COLOUR 1, r, g, b.

If p • 24, the border is given colour components according to r, g and b.

373

VDU20

VDU21

VDU22,n

If p = 25, the mouse logical colour 1 is given colour components according to r,g
and b. This is equivalent to MOUSE COLOUR 1, r, g, b.

vou 2 0 restores the default palette for the current mode and so cancels the effect
of all VDU 19 commands or their BASIC keyword counterparts. It also sets the
default text and graphics foreground and background colours.

VDU 21 stops all funher text and graphics output to the screen until a VDU 6
command is received.

VDU 22 is used to change mode. It is equivalent to MODEn.

Sec APPENDIX E for full details of the modes available.

VDU 23,pl,p2,p3,p4,p5,p6,p7,p8,p9

374

VDU 23 is a multi-purpose command taking nine parameters, of which the first
identifies a particular function. Each of the available functions is described
below. Eight additional parameters are required in each case.

VDU 23,0,n,m,O,O,O,O,O,O

If'n' = 8, this sets the interlace as follows:

Value

m=O

m=l
m=&80
m= &81

Effect

sets the screen interlace state to the opposite of the current
*TV setting
sets the screen interlace state to the current *TV setting
turns the screen interlace off
turns the screen interlace on

DU COMMANDS

If'n' = 10 or 11, this controls the height of the cursor on the screen and its
appearance.

If 'n' = 10, then 'm' defines the start line for the cursor and its appearance. Thus:

Bits

0-4
5--{)

Effect

define the start line
define its appearance:

Bit6

0
0
1
1

BitS

0
1
0
1

Meaning

steady
off
fast flash
slow flash

If 'n' = 11, then 'm' defines the end line for the cursor.

VDU 23,1 ~.o,o,o,o,o,o,o

This controls the appearance of the cursor on the screen depending on the value of
'n'. Thus:

Value

n=O
n = 1
n=2
n=3

Effect

stops the cursor appearing
makes the cursor reappear
makes the cursor steady
makes the cursor flash

These define the four colour patterns. Each of the parameters nl to n8 defines
one row of the pattern, nl being the top row and n8 the bottom row. See the
chapter: GRAPHICS for more details.

375

376

VDU 23,6,nl,n2,n3,n4,n5,ro,n7 ,n8

This sets the dot-dash line style used by dotted line PLOT commands. Each of the
parameters n 1 to n 8 defines eight elements of the line style, n 1 controlling the
start and n8 the end. The bits in each are read from the most significant to the
least significant, zero representing a space and one representing a dot. See the
chapter: GRAPHICS for more details.

VDU 23,7,m,d,z,O,O,O,O,O

This scrolls the current text screen. The values of 'm', 'd' and 'z' determine the
area to be scrolled, the direction of scrolling and the amount of scrolling
respectively. Thus:

Value

m=O
m=l
d=O
d = 1
d=2
d=3
d=4
d=5
d=6
d=7
z = 0
z = 1

Effect

scroll the current text window
scroll the entire screen
scroll right
scroll left
scroll down
scroll up
scroll in the positive X direction
scroll in the negative X direction
scroll in the positive Y direction
scroll in the negative Y direction
scroll by 1 character cell
scroll by 1 character cell vertically or 1 byte horizontally

VDU 23,8,tl,t2,xl,yl,x2,y2,0,0

This clears a block of the current text window to the text background colour. The
parameters t 1 and t 2 indicate the base positions relating to the start and end of
the block to be cleared respectively. The positions to which the values of 't' refer
are shown below:

Value

t= 0
t = 1
t= 2
t= 4
t= 5
t= 6
t= 8
t= 9
t= 10

Position

top left of window
top of cursor column
off top right of window
left end of cursor line
cursor position
off right of cursor line
bottom left of window
bottom of cursor column
off bottom right of window

DU COMMANDS

The parameters xl, yl and x2, y2 are the 'x' and 'y' displacements from the
positions specified by t 1 and t2 respectively. They determine the start and end
of the block.

VDU 23,9 to lO,n,O,O,O,O,O,O,O

These set the flash time for the first and second flashing colours respectively. The
time is set to 'n' frame periods (approximately 1/SOth of a second).

VDU 23,11,0,0,0,0,0,0,0,0

This sets the four-colour patterns to their default values. See the chapter:
GRAPHICS for more details.

VDU 23,12 to 15,nl,n2,n3,n4,n5,n6,n7,n8

These set up the simple colour patterns. A block of two-by-four pixels is defined
using the eight parameters. Each pair of parameters corresponds to the colours of
the pixels on a given row, nl and n2 being the top row and n7 and n8 the bottom
row. See the chapter: GRAPHICS for more details.

VDU 23,16,n,O,O,O,O,O,O,O

This alters the direction of printing.

377

378

Normally when a character has been printed, the cursor moves to the right by one
place, and then to the start of the row below when a character is entered in the
right-hand column. This movement, however, can be altered so that, for example,
the cursor moves down one row after each character, and moves to the top of the
next column to the right when the bottom of the screen has been reached. This
effect can by produced by typing

VDU 23,16,8,0,0,0,0,0,0,0

The effect on cursor movement depends on the value 'n' as shown below:

Value

0
2
4
6
8
10
12
14

Effect

Positive X direction is right, positive Y direction is down
Positive X direction is left, positive Y direction is down
Positive X direction is right, positive Y direction is up
Positive X direction is left, positive Y direction is up
Positive X direction is down, positive Y direction is right
Positive X direction is down, positive Y direction is left
Positive X direction is up, positive Y direction is right
Positive X direction is up, positive Y direction is left

Altering the direction of cursor movement also affects the way in which the screen
scrolls; so in the example above, when a character has been entered at the bottom
right-hand corner, the screen scrolls to the left by one column rather than
scrolling up by one row as it usually does.

The following is the complete list of YOU commands for moving the cursor:

Command

VDU 8

VDU 9
VDU 10
VDU 11

Movement

moves the cursor one place in the negative X direction
moves the cursor one place in the positive X direction
moves the cursor one place in the negative Y direction
moves the cursor one place in the positive Y direction

DU COMMANDS

VDU 23,17 Am,O,O,O,O,O,O

If 'n' = 0 to 3, this command sets the tint to the value 'm' for the text foreground,
text background, graphics foreground and graphics background colours
respectively. It is equivalent to TINT n, m. Sec the chapter: SCREEN MODES for
more details.

If 'n' = 4, this command chooses which set of default ECF patterns is used. 'm' = 0
gives the Master 128-compatible set; 'm' = 1 gives the native set. See the chapter:
GRAPHICS for more details.

If 'n' = 5, this command swaps the text foreground and background colours.

VDU 23,18 to 24,nl,n2,n3,n4,n5,n6,n7,n8

These are reserved for future expansion.

VDU 23,25,nl,n2,n3,n4,n5,n6,n7 ,n8

VDIJ 23, 25 is used for aliased fonts.

VDU 2 3 1 2 5 1 1-4 sets the transfer function which allows the initial 16 grey levels
used for anti-aliased fonts to be translated into eight, four or two levels. n 1
specifics the number of bits per pixel used for anti-aliasing. The threshold
values, n2 to n 7 are used to decide which output bits are produced from the
original values (0 to 15). There are either one, three or seven of them depending
on the number of bits per pixel.

vou 2 3 1 2 5, 12 8-14 3 sets up the relevant palette registers for anti-aliasing in
two, four, or 16 colour modes. n2 specifies the foreground logical colour to be
used for anti-aliasing, and n 1 to n 12 8 specify the background logical colour. The
start and end physical colours are specified by n3,n4,n5 and n6,n7 ,n8
respectively; in each case the three colours give the amount of red, green, and blue
to be used in the colour. The background logical colour is set to the specified start
physical colour, and subsequent logical colours up to n2 are set to intermediate
values up to the end physical colour.

379

380

VDU 2 3 , 2 5, & FF defines the setting of one of the 16 logical colours, n2, in the
pseudo palette maintained for anti-aliasing in 256-colour modes. n3,n4,n5 give
the amounts of red, green and blue for the start physical colour. n5,n6,n7 give
them for the end physical colour.

VDU 23,26,h,s,pl,p2,sl,s2,0,0

VDU 23, 2 6 selects the font whose name is given with point size's' and gives it the
handle 'h'.

pl and p2 give the number of pixels per inch horizontally and vertically in the
screen mode in which the font will be painted. If zero, the values are chosen
depending on the current screen mode.

s 1 and s2 are the 'x' scale and 'y' scale respectively. They allow non-integer
point sizes to be used, and also allow the horizontal and vertical point sizes of a
font to be different. The size of the font is calculated in 16ths of a point, by
multiplying the point size by the 'x' and 'y' scales respectively.

VDU 23,2 7 ,m,n,O,O,O,O,O,O

If 'rn' = 0, this command selects the sprite whose name is 'n'. It is equivalent to
*SCHOOSE n.

If 'rn' = 1, this command defines sprite 'n' to contain the contents of the previously
marked rectangle. It is equivalent to *SGET n.

See the chapter: SPRITES for more details.

VDU 23,28 to 31,nl,n2,n3,n4,n5,n6,n7 ,n8

These are reserved for use by applications programs.

VDU 24,xl;yl;x2;y2;

VDU 25,k,x;y;

VDU26

DU COMMANDS

VDU 23,32 to 255,nl,n2,n3,n4,n5,n6,n7 ,n8

These redefine the printable ASCII characters. The bit pattern of each of the
parameters nl to n8 corresponds to a row in the eight-by-eight grid of the
character. See the chapter OUTPUTTING TEXT for more details.

VDU 2 4 defines a graphics window. The four parameters define the left, bottom,
right and top boundaries respectively, relative to the current graphics origin.

The parameters may be sent as shown, with semicolons after them. This indicates
that the values are each two bytes long. Alternatively, they can be sent as eight
one-byte values separated as usual by commas. The first of each pair contains the
low byte for the boundary; the second contains the high byte. For example,

VDU 24,160;300;360;800;

is equivalent tO

VDU 24,160,0,44,1,104,1,32,3.

See the chapter: WINDOWS for more details.

VDU 2 5 is a multi-purpose graphics plotting command. It is equivalent to PLOT
k, x, y. See the chapter: GRAPHICS for more details.

VDU 2 6 returns the text and graphics windows to their default states: full screen
size. In addition, it resets the graphics origin to (0,0), moves the graphics cursor to
(0,0), and moves the text cursor tO its home position.

381

VDU27

VDU 28,lx,by,rx,ty

VDU29,x;y;

VDU30

VDU 31,x,y

382

VDU 2 7 has no effect.

VDU 28 defines a text window. The parameters specify the boundary of the
window; the left-most column, the bottom row, the right-most column and the top
row respectively. See the chapter: WINDOWS for more details.

VDU 2 9 moves the graphics origin. 'x' and 'y' specify the 'x' and 'y' coordinates of
the new position. Normally the origin is at the bottom left of the screen at (0,0):
whenever a position is given as an absolute value, for example MOVE 2 0, 8 0, the
coordinates are taken as being relative to the graphics origin. This command,
therefore, affects all movements of the graphics cursor and all subsequent
graphics window commands. The position on the screen of any existing graphics
window is not affected. This command is equivalent to ORIGIN x, y.

VDU 30 moves the text cursor to its home position.

VDU 31 moves the text cursor to a specified position on the screen. It is equivalent
to PRINT TAB (x, y);

PERA TING SYSTEM COMMANDS

•CHANNEL VOICE

Commands can be sent to the operating system either by preceding them with an
asterisk or by using the BASIC OSCLI statement. For example, you can use either

*KEY 1 MODE liM

or its equivalent

OSCLI "KEY 1 MODE liM"

This chapter provides a brief description of all the operating commands which
may be called.

This command takes a parameter ON or OFF. It is used to enable or disable the
sound system. Once disabled, the sound system will cease to process any more
SOUND or *SOUND commands. The most recent command, however, will be
retained and processed when the sound system is re-enabled. The *AUDIO
command is equivalent to SOUND ON and SOUND OFF in BASIC.

The CHANNELVOICE command is used to a assign a voice name or number to one
of the eight sound channels. It has the form:

*Channel Voice <channel> <index> l.<name>

The <channel> is the channel number to which you want the voice to be attached.
<index> is the number of the voice required, as printed by the *VOICES* 1
command. Alternatively you can specify a <name>. This is the textual name of the
voice, which is also printed by *VOICES. Note that if you use a name instead of a
number for the voice, it must have exactly the same spelling, which includes the
case of the letters, as the name printed by *VOICES.

383

CONFIGURE

384

*CONFIGURE defines the CMOS RAM configurations as shown below:

Command

BAUD n

BOOT

CAPS

Effect

sets the RS423 transmit and receive rate as
follows:

'n' baud rate

0 9600
1 75
2 150
3 300
4 1200
5 2400
6 4800
7 9600
8 19200

reverses the actions of IBreal<l and lshlftiiBreal<l.

sets the keyboard caps lock mode to on.

DATA n

DELAY n

DIR

DRIVE n

PERA TING SYSTEM
COMMANDS

specifies the data format used by the RS423
interface as follows:

'n' word parity stop
length bits

0 7 even 2
I 7 odd 2
2 7 even 1
3 7 odd 1
4 8 none 2
5 8 none 1
6 8 even 1
7 8 odd 1

sets the keyboard auto-repeat delay to 'n'/100
seconds.

causes ADFS to initialise with a directory
selec ted.

causes the machine to initialise with drive n
selected. On a machine with both Winchester
and floppy drives, n has the following
meaning:

n = 4-7
n • 0-3

Select Winchester drive 4- 7
Select floppy drive 0- 3

385

DUMPFORMAT n

FILE n

FLOPPIES n

FONTSIZE n

FS [nnn.]sss

HARDDISCS n

386

selects the format to be used by *DUMP,
*LIST, *LIST commands and the VDU: output
device. 'n' is a four-bit number. The bottom two
bits define how control characters are
displayed, as follows:

value meaning

0 GSREAD read format is used (eg I A

for ASCII 1)
1 period (.) is used
2 <n> is used, where 'n' is in decimal
3 <&n> is used, where 'n' is in hex

If bit 2 is cleared, top-bit set characters arc
treated as control codes, otherwise they are
treated as printable characters.

If bit 3 is set, characters are ANDed with & 7F
before being processed, otherwise they are left
as they are.

defines the default filing system to file 'n'

causes the machine to initialise as though 'n'
floppy drives were attached

reserves n * 4K pages for the font cache. If
n = 0 then no space is reserved for fonts. The
maximum space allowed is 255 * 4K.

selects the number of the network fileserver.
sss is the station number. nnn is the net
number, which is optional.

causes the machine to initialise believing that
'n' Winchester discs are attached.

IGNORE n

LOUD

MODE n

MONITORTYPE n

NO BOOT

NOCAPS

NODIR

NO SCROLL

PERA TING SYSTEM
COMMANDS

sets the printer ignore character to CHR$ (n) . If
'n' is missing, all characters are sent.

sets full volume for the bell sound.

defines the default screen mode tO be mode
'n'.

The parameter is the type of monitor fitted to
the machine, as follows:

parameter

0

1
2

type

15-17KHz (TV standard)
25-32 KHz Multisync
64 KHz High resolution
monitors (400 series only)

assigns the normal functions to IBreakl and
IShlftiiBreakl.

resets the keyboard caps lock (ie caps lock is
off).

causes ADFS to initialise with no directory
selected.

enables the scroll protect option.

387

PRINT n

PS [nnn.]sss

QUIET

RAMFSSIZE n

RMASIZE n

REPEAT n

SCREENSIZE n

388

defines the printer driver type as follows:

'n' printer driver type

0 sink (ie no output printed}
1 printer port (ie parallel, Centronics

type)
2 RS423 port (ie serial}
3 user printer driver
4 network printer

selects the number of the network printer
server. sss is the station number. nnn is the net
number, which is optional.

sets half volume for the bell sound.

sets the number of 3 2K pages for the RAM
filing system (when that module is present).

reserves n • 32K pages in the relocatable
module area (RMA) for modules. If n = 0 then
the default number is reserved. The maximum
allowed is 255 * 32K.

sets the keyboard auto-repeat rate to 'n'/100
seconds.

reserves 'n' pages for the screen. The page size
and default setting (when n = 0) depend on the
machine's RAM size. Thus:

RAM Page

O.SM 8K
1M 8K
4M 3ZK

Default

80K (ten pages)
160K (20 pages}
160K (5 pages}

SCROLL

SHCAPS

SOUNDDEFAULT sp vl vo

SPRITESIZE n

STEP n

SYNC n

SYSTEMSIZE n

PERATING SYSTEM
COMMANDS

disables the scroll protect option

sets the keyboard SHIFf caps lock option so
that alphabetic keys produce upper-case
characters and SHIFf ed alphabetic keys
produce lower-case characters. See NOCAP S
and CAPS.

sets the default sound characteristics. The s p
parameter is 0 to disable the internal speaker
on reset, 1 to enable it.

The v l parameter sets the overall sound
volume, and is in the range 0 (min) to 7 (max).

The vo parameter sets the voice which will be
assigned to channel1, and is in the range 1 to
16.

reserves n • 8K pages for the sprite system. If
n = 0 then no sprite space is reserved. The
maximum allowed is 255 • 8K.

sets the floppy disc drive step rate to <n>.
Values are:

selects either separate (n = 0) or composite
(n = 1) sync on the monitor.

reserves 'n' pages for the system heap. The
page size for a given RAM configuration is as
for ScreenSize. If n = 0 then the default
number (one page) is reserved. The maximum
allowed is 255.

389

*ECHO

*FX

*GO

390

TV n ((,]m] selects the default setting for the *TV

command parameters. See the *TV command
details of 'n' and 'm'.

*ECHO outputs characters to the screen.

Given a string, it simply reflects it back. For example,

*ECHO text

prints the string text on the screen.

Certain characters are interpreted as requests for special treatment. For example
the angle-bracket characters:

*ECHO <19><0><6><0><0><0>

This is equivalent to VDU 19, 0, 6, 0, 0, 0 from BASIC. It can therefore be used
to issue any VDU command sequence from the operating system command
prompt, or from any language which can issue commands to the OSCLI. It can also
have variable references. For example:

*ECHO <Sys$Time>

*FX accesses the operating system OS BYTE routine. The actions are described in
the chapter: *FX COMMANDS.

This command is followed by the address of machine code to call. If the address
is omitted, it defaults to &8000, which is where application programs (such as
RAM BASIC) are loaded.

•GOS

*HELP

*IF

*IGNORE

•KEY

PERATING SYSTEM
COMMANDS

GOS calls the operating system 'supervisor'. This allows you to type ''
commands. To rerum from the supervisor, use the *QUIT command.

*HELP provides help information about commands.

*HELP . provides help information on all commands.

*HELP name prints help information on command name. This can include
wildcard characters in order to allow commands to be specified precisely.

The IF command allows you to execute'*' commands conditionally. Its syntax is:

*IF <expression> THEN <command> [ELSE <command>]

<expression> can be any legal BASIC integer expression, including variable
names enclosed in angled brackets. The expression is evaluated by the operating
system's expression evaluation (not by BASIC). For example:

*IF <Sys$Year>=l987 THEN RUN Calendar

*IGNORE sets the printer ignore character.

*IGNORE n sets the printer ignore character to CHR$ (n) .

*KEY assigns a string to a function key.

*KEY n text assigns the string text to function key 'n'.

391

*POINTER

*QSOUND

*SET

392

This command is provided by the WIMP manager. If the command is used
without any parameters (or with the value 1), mouse pointer one is set to a blue
arrow and enabled. *POINTER 0 disables the pointer.

This command is used to add an item to the queue of sounds to be produced at
some later time. The parameters are the same as the *SOUND command
described below, with the addition of one parameter giving the number of tempo
beats at which to make the sound. The number of beats is relative to the start of the
current bar, or relative to the present moment if no BEATS command has been
issued. See the BASIC SOUND statement for more details.

*SET assigns a string to a variable.

*SET varname text assigns string text to variable varname.

Special variables exist which can be assigned values but not deleted. These are:

SYS$TIME
SYS$DATE
SYS$ABORT
SYS$RETURNCODE

*SET ALIAS$name cname sets name as the alternative name for the command
cname.

Further information is contained in the Reference guide.

*SETEVAL

*SETMACRO

*SHADOW

*SHOW

*SOUND

*SETEVAL assigns a value to a variable.

PERA TING SYSTEM
COMMANDS

*SETEVAL varname exp assigns expression exp to variable varname.

* SETMACRO assigns an expression to a variable.

*SETMACRO varname exp assigns the expression exp to the variable varname.
This expression is evaluated each time the variable is used.

*SHADOW enables and disables automatic use of shadow memory after a mode
change. The command *SHADOW causes the shadow bank (bank 2) to be used;
*SHADOW 1 causes the non-shadow bank (bank 1) to be used on the next mode
change. To allow the shadow bank to be used, there must be enough memory for
two of the screen mode displays. For example, to use a shadow bank in mode 8 (a
40K mode), at least 80K of screen memory must be configured.

*SHOW lists all variables defined.

*SHOW name lists all variables matching name, which may include wildcards.

This command is directly equivalent to the BASIC SOUND statement. It takes four
parameters: channel, volume, pitch, and duration of the sound. Note that the
parameters must be separated by spaces, not commas. Note also that the volume
parameter must be unsigned. This means that -15 (loudest) is written as &FFFl,

- 6 as &FFFA and so on.

393

*SPEAKER

*STATUS

•STEREO

*TEMPO

*TIME

394

*SPEAKER enables and disables the internal speaker. When disabled, the
speaker is prevented from making any sound, although the 3.5mm stereo jack
socket may still be used to play the sound through an amplifier. The parameter to
the *SPEAKER command is ON or OFF.

*STATUS displays default values held in battery-backed RAM.

*STATUS displays all values.

*STATUS name displays the value of the *CONFIGURE option name.

This command takes two parameters:

*STEREO <channel> <position>

The <channel> parameter indicates which channel's stereo position is to be set;
the <position> parameter sets the stereo position. The ranges are 1 to 8 for the
channel, and -127 {full left) to 127 {full right) for the position. See the BASIC
STEREO statement for the interpretation of the position parameter.

The *TEMPO command sets the sound system tempo: the rate at which the beat
counter increments. Its parameter is a number which has the same meaning as
BASIC's TEMPO parameter. See the BASIC TEMPO statement for more details.

*TIME prints the day, date and time.

*TUNING

*TV

*VOICES

•VOLUME

PERA TING SYSTEM
COMMANDS

This is followed by a number in the range 1 to 32767 to set the overall tuning for
the sound system. The default value is 27312. You should avoid the use of this
command if possible; a better way of controlling the sound system pitch will be
introduced later.

*TV specifies the vertical screen alignment and interlace options.

*TV n, 0 adjusts vertically by 'n' lines and turns interlace on.

*TV n, 1 adjusts vertically by 'n' lines and turns interlace off.

*VOICES displays a list of the installed sound voices by name and number, and
shows which voice is attached to each of the eight sound channels. A typical output
from the command is:

Voice Name

12 1 WaveSynth-Beep
34 2 Percussion-Soft

56 3 Percussion-Medium
78 4 Percussion-Snare

5 Percussion-Noise

Channel Allocation Map

*VOLUME sets the overall volume for the sound system. It takes a parameter in the
range 1 to 127 (softest to loudest). Sound voices use this figure in order to

determine the amplitude of the sounds they make. The default setting can be set
using the *CONFIGURE SoundDefault command.

395

*UNSET

396

*UNSET deletes variables set by *SET, etc.

*UNSET vamame deletes all variables matching name varname, which may
include wildcards.

In addition to the'*' commands listed above, there are several which relate to the
Module manager. These are outside of the scope of the User guide.

FX COMMANDS

*FXO

*FX 1

*FX 2

Each *FX command is used to control a particular operating system effect, such as
the rate at which flashing colours flash or output to a particular printer. This
chapter provides a brief description of the •FX commands which can be used
from within BASIC.

*FX 0 displays the operating system title and version number.

Command Effect

*FX 0,0 Displays the information.

*FX 1 writes to the location left free for the user.

Command Effect

*FX 1,n Writes 'n' to the location.

*FX 2 specifies the stream for all subsequent character input.

Command

*FX 2,0
*FX 2,1
*FX 2,2

Effect

Selects keyboard input and disables the RS423 port.
Selects and enables the RS423 port.
Selects keyboard input and enables the RS423 port.

*FX3

*FX4

398

*FX 3 specifies the streams for all subsequent character output.

Command

*FX 3,n

Effect

Specifies the stream depending on the bits of 'n' as shown
below:

Bit Effect if set

0
1
2
3

4
5
6
7

Enables RS423 driver.
Disables VDU driver.
Disables printer driver.
Enables printer (independently of [Qill B and
!Qillc).
Disables spooled output.
Calls VDUXV instead of VDU driver.
Disables printer apart from VDU 1, 'n'.
Not used.

*FX 4 controls the cursor key status.

Command

*FX 4,0
*FX 4,1

Command

*FX 4,2

COMMANDS

Effect

Enables cursor editing.
Disables cursor editing. The cursor keys return ASCII
values as shown below:

Key ASCII code

§iJ 135
8 136
B 137
II) 138
rn 139

Effect

Disables cursor editing. The cursor keys act as function keys
as shown below:

Key Function key number

§iJ 11
8 12
B 13
II) 14
rn 15

399

400

*FX 5 selectS where subsequent printer output is sent.

Command

*FX 5,0
*FX 5,1
*FX 5,2
*FX 5,3
*FX 5,4

Effect

SelectS printer sink.
SelectS parallel (Centronics) printer driver.
SelectS RS423 output.
SelectS user printer driver.
SelectS network printer driver.

*FX 6 selectS the printer ignore character.

Command Effect

*FX 6,n SelectS the character with ASCII code 'n'.

FX COMMANDS

•FX 7

*FX 7 selects the RS423 baud rate for receiving data.

Command Effect

*FX 7,0 Selects 9600 baud.
*FX 7,1 Selects 7 5 baud.
*FX 7,2 Selects 150 baud.
*FX 7,3 Selects 300 baud.
*FX 7' 4 Selects 1200 baud.
*FX 7,5 Selects 2400 baud.
*FX 7,6 Selects 4800 baud.
*FX 7,7 Selects 9600 baud.
*FX 7, 8 Selects 19200 baud.

*FX8

*FX 8 selects RS423 baud rate for transmitting data.

Command Effect

*FX 8,0 Selects 9600 baud.
*FX 8,1 Selects 7 5 baud.
*FX 8,2 Selects 150 baud.
*FX 8,3 Selects 300 baud.
*FX 8,4 Selects 1200 baud.
*FX 8,5 Selects 2400 baud.
*FX 8,6 Selects 4800 baud.
*FX 8,7 Selects 9600 baud.
*FX 8,8 Selects 19200 baud.

401

•FX 11

•FX 12

402

*FX 9 selects the flash rate for first flashing colour.

Command

*FX 9,0
*FX 9,n

Effect

Sets constant display of first colour.
Sets the duration to approximately 'n'/50 seconds.

*FX 10 selects the flash rate for second flashing colour.

Command

*FX 10,0
*FX 10,n

Effect

Sets constant display of second colour.
Sets the duration to approximately 'n'/50 seconds.

*FX 11 selects the keyboard auto-repeat delay.

Command

*FX 11,0
*FX 11,n

Effect

Disables auto-repeat.
Sets the auto-repeat delay to 'n'/100 seconds.

*FX 12 selects the keyboard auto-repeat rate.

Command

*FX 12,0
*FX 12,n

Effect

Sets rate and delay to their configured settings.
Sets the auto-repeat rate to 'n'/100 seconds.

*FX 15

*FX 18

*FX 19

*FX20

FX COMMANDS

* FX 15 flushes one or more buffers.

Command Effect

Flushes all buffers. *FX 15,0
*FX 15,1 Flushes the current input buffer.

*FX 18 resets the function keys.

*FX 19 waits for vertical sync (vsync).

*FX 2 0 resets the font definitions for chars 32 to 12 7.

*FX 21 flushes a selected buffer.

Command Effect

*FX 21,0 Flushes keyboard buffer.
*FX 21 ,1 Flushes RS423 input buffer.
*FX 21,2 Flushes RS423 output buffer.
*FX 21,3 Flushes printer buffer.
*FX 21,4 Flushes sound channel 0.
*FX 21,5 Flushes sound channel 1.
*FX 21,6 Flushes sound channel 2.
*FX 21,7 Flushes sound channel 3.
*FX 21,8 Flushes speech buffer.
*FX 21,9 Flushes mouse buffer.

403

*FX25

•FX 106

•FX 112

404

*FX 2 5 resets a group of font definitions.

Command Effect

*FX 25,0 Restores characters 32 to 255.
*FX 25,1 Restores characters 32 to 63.
*FX 25,2 Restores characters 64 to 95.
*FX 25,3 Restores characters 96 to 12 7.
*FX 25 ,4 Restores characters 128 to 159.
*FX 25,5 Restores characters 160 to 191.
*FX 25,6 Restores characters 192 to 223.
*FX 25,7 Restores characters 224 to 255.

*FX 10 6 selects the pointer or activates the mouse.

Command

*FX 106,0
*FX 106,n
*FX 106,n+128

Effect

Turns off current pointer.
Selects pointer 'n' and links it to the mouse.
Selects pointer 'n' and unlinks it from the mouse.

Write screen bank number addressed by YOU driver.

Command

*FX 112,0
*FX 112,n

Effect

Selects default for current mode.
Selects bank 'n'.

*FX 113

*FX 114

•FX 118

*FX 120

*FX 124

*FX 125

FX COMMANDS

Write screen bank number addressed by display hardware.

Command

*FX 113,0
*FX 113,n

Effect

Selects default for current mode.
Selects bank 'n'.

Sets up automatic shadow mode.

Command

*FX 114,0

*FX 114, 1

Effect

Subsequent MODEn commands to be interpreted as MODE
n+128.
Cancels the above command.

*FX 118 reflects the keyboard status in the LEDs.

*FX 120, x, y writes the internal key numbers of the two most recently pressed
keys. These are 'x' (the most recent key) and 'y' (the original key).

*FX 12 4 clears an escape condition.

*FX 125 sets an escape condition.

405

*FX 126

*FX 138

*FX 143

*FX 144

406

*FX 126 acknowledges an escape condition.

*FX 138 inserts a character code into a buffer.

Command

*FX 138,0,n
*FX 138,1,n
*FX 138,2,n
*FX 138,3,n
*FX 138,4,n
*FX 138,5,n
*FX 138,6,n
*FX 138,7,n
*FX 138,8,n
*FX 138,9,n

Effect

Inserts CHR$ (n) into keyboard buffer.
Inserts CHR$ (n) into RS423 input buffer.
Inserts CHR$ (n) into RS423 output buffer.
Inserts CHR$ (n) into printer buffer.
Inserts CHR$ (n) into sound channel 0.
Inserts CHR$ (n) into sound channel).
Inserts CHR$ (n) into sound channelZ.
Inserts CHR$ (n) into sound channel3.
Inserts CHR$ (n) into speech channel.
Inserts CHR$ (n) into mouse buffer.

*FX 13 9, x, y sets the filing system options. It is exactly the same as *OPT x, y.
You should, therefore, refer to that command for details (in the chapter: FlUNG
SYSTEMS).

This call issues a module service call. See the section on Modules in the
Reference guide for details.

*FX 144, x, y is exactly equivalent to *TV x, y.

*FX 153

*FX 156

FX COMMANDS

*FX 153 inserts a character into an input buffer, checking for escape.

Command

*FX 153,0,n
*FX 153,1,n

Effect

Inserts CHR$ (n) into keyboard buffer.
Inserts CHR$ (n) into RS423 input buffer.

This command controls the RS423 port. In the command *FX 15 6, x, you may
regard 'x' as an eight-bit number. The meanings of the bits are as follows:

Any command with bits 0 and 1 both set cause the RS423 port to be reset. Any
other combination of bits 0 and 1 is ignored.

Bits 2 to 4 form a three bit number which controls the data format used by the
RS423 port. See the *CONFIGURE Data command for the eight possible values
that these bits may take on.

Bits 5 and 6 control the RS423 transmitter:

hit 6 hit 5

0
0
1
1

0
1
0
1

RTS low, transmit interrupt disabled
RTS low, transmit interrupt enabled
RTS high, transmit interrupt disabled
RTS high, transmit interrupt disabled

Bit 7 controls the receiver interrupt; if it is set, the interrupt is enabled.

*FX 162 writes a value to the battery-backed CMOS RAM. The call

*FX 162,x,y

407

*FX 163

*FX 178

*FX 181

•FX 196

408

writes the value 'y' into location 'x' of the CMOS RAM. See the Reference guide
for details of the locations available for use.

*FX 16 3 sets the dot-dash line pattern length.

Command

*FX 163,242,0
*FX 163,242,n

Effect

default pattern and length.
line repeat length set to 'n'.

This may be used to enable or disable the keyboard, as shown below:

Command

*FX 178
*FX 178,255

Effect

Disables the keyboard.
Enables the keyboard.

*FX 181 sets the way in which the RS413 input port is handled. It normally
differs from the keyboard in that the escape character does not have any effect,
function key codes are not 'expanded' into strings, and input event are not
generated. Using * FX 181 you can make the RS4 13 port act as the keyboard, so
that all of these things do happen. Thus:

Command

*FX 181
*FX 181,1

Effect

Makes the RS413 act like the keyboard.
Treats the RS423 in the normal way.

This is a synonym for * FX 11.

*FX 197

*FX 200

*FX 201

FX COMMANDS

This is a synonym for *FX 12.

*FX 2 0 0 selectS the IBreakl and IEscapel effectS.

Command Effect

Normal ~ and IBreakl action. *FX 200,0
*FX 200,1
*FX 200,2
*FX 200,3

~ disabled, normal iBreakl action.
NormaliEscapel action, IBreakl clears memory.
~ disabled, IBreakl clears memory.

* FX 2 01 sees the keyboard status.

Command

*FX 201,0
*FX 201,1

Effect

Enables keyboard input.
Disables keyboard input.

*FX 2 02 alters the keyboard status byte.

*FX 203

•FX 204

410

Command

*FX 202,n

Effect

Indicates the status depending on the bitS of 'n' as shown
below:

Bit Indication when set

0
1
2
3
4
5
6
7

[M) pending
I Scroll Lock I engaged
INIJll Lock I disengaged
!§HID depressed
leaps lock I disengaged
reserved
(gill depressed
IShlftl enabled

*FX 203, n setS the number offree spaces which must be left in the RS423 input
buffer before the Archimedes tells the remote machine to stop sending. It
defaultS to 9, but may be set to any value between 1 and 255.

This determines whether characters received by the RS423 port will be placed
into the buffer or discarded:

Command

*FX 204
*FX 204,1

Effect

Insert received characters into buffer.
Ignore received characters.

Note that RS423 eventS may still occur, even when characters are not being
buffered.

FX COMMANDS

•FX 211

*FX 211 selects the bell channel number.

Command Effect

*FX 211,n Sets the bell channel number to 'n'.

•FX 212

*FX 212 selects the bell amplitude.

Command Effect

*FX 212,n Sets the bell amplitude to 'n'.

•FX 213

*FX 213 selects the bell frequency.

Command Effect

*FX 213,n Sets the bell frequency to 'n'.

•FX 214

*FX 214 selects the bell duration.

Command Effect

*FX 214,n Sets the bell duration to 'n'/20 seconds.

•FX 216

'
*FX 216 may be used to cancel the reading of a function key string. If a function
key has been pressed thereby causing subsequent keyboard input be read from

411

*FX 217

*FX 218

*FX 219

*FX 220

412

that key's string definition, this command will cause the string to be ignored, and
input to come from the next key to be pressed.

This command setS the 'paged mode line count'. This count determines how many
more lines the screen may scroll before the lshlftl key must be pressed. Using this
command to set the count to zero ensures that a program docs not 'freeze' while
waiting for IShlftl to be pressed. Note that it is not necessary to use this command
before a BASIC INPUT statement since this is done automatically for you.

*FX 218 cancels the current YOU command sequence, just as *FX 216 cancels
the current function key input string. Its main use is in machine code programs'
error handling routines, in order to abort any YOU sequence which is partially
completed when an error occurred. You should never have to use it in BASIC.

*FX 219 selects the ~ key code.

Command Effect

*FX 219,n Sets the ASCII code generated by ~ to 'n'.

*FX 220 selects the !Escape) character.

Command Effect

*FX 220,n Sets the ASCII code of the~ key to 'n'.

•FX 221

*FX 222

*FX 223

FX COMMANDS

*FX 221 selects the interpretation of input values 192 to 207.

Command

*FX 221,0
*FX 221,1
*FX 221,2
*FX 221,n

Effect

Ignores the code
Code generates the corresponding function key string.
Code generates a zero followed by 128 + (code MOD 16).
Code generates the value 'n'(3-225) + (code MOD 16).

*FX 222 selects the interpretation of input values 208 to 223.

Command

*FX 222,0
*FX 222,1
*FX 222,2
*FX 222,n

Effect

Ignores the code.
Code generates the corresponding function key string.
Code generates a zero followed by 128 + (code MOO 16).
Code generates the value 'n'(3-225) + (code MOD 16).

*FX 2 2 3 selects the interpretation of input values 224 to 239.

Command

*FX 223,0
*FX 223,1
*FX 223,2
*FX 223,n

Effect

Ignores the code.
Code generates the corresponding function key string.
Code generates a zero followed by 128 + (code MOD 16).
Code generates the value 'n'(3-225) + (code MOD 16).

413

*FX224

*FX 225

*FX 226

414

*FX 2 2 4 selects the interpretation of input values 240 tO 255.

Command

*FX 224,0
*FX 224,1
*FX 224,2
*FX 224,n

Effect

Ignores the code.
Code generates the corresponding function key string.
Code generates a zero followed by 128 + (code MOD 16).
Code generates the value 'n'(3-225) + (code MOD 16).

*FX 2 2 5 selects the function key interpretation.

Command

*FX 225,0
*FX 225,1
*FX 225,2
*FX 225,n

Effect

Ignores the key depression .
Key generates the corresponding function key string.
Key generates a zero followed by 128 + (code MOD 16).
Key generates the value 'n'(3-225) + (code MOD 16).

*FX 2 2 6 selects the I Shift I plus the function key interpretation.

Command

*FX 226,0
*FX 226,1
*FX 226,2
*FX 226,n

Effect

Ignores the key depression.
Key generates the corresponding function key string.
Key generates a zero followed by 128 + (code MOD 16).
Key generates the value 'n'(3-225) + (code MOD 16).

•FX 227

COMMANDS

*FX 2 2 7 selects the [Qill plus the function key interpretation.

Command

*FX 227,0
*FX 227,1
*FX 227,2
*FX 227 ,n

Effect

Ignores the key depression.
Key generates the corresponding function key string.
Key generates a zero followed by 128 + (code MOD 16).
Key generates the value 'n'(3-225) + (code MOD 16).

*FX 228 selects the IShlfti[Qill plus the function key interpretation.

Command

*FX 228,0
*FX 228,1
*FX 228,2
*FX 228,n

Effect

Ignores the key depression.
Key generates the corresponding function key string.
Key generates a zero followed by 128 + (code MOD 16).
Key generates the value 'n'(3-225) + (code MOD 16).

*FX 22 9 selects the IEscapel key status.

Command

*FX 229,0
*FX 229,n

Effect

Makes escape character generate an escape condition.
Makes escape character generate its ASCII code.

415

•FX 230

•FX 238

•FX 247

416

*FX 2 3 0 selects the lEscapel effects.

Command

*FX 230,0
*FX 230,n

These effects are:

Effect

Enables side effects.
Disables side effects.

- All active buffers are flushed
- Any currently open *EXEC file is closed
- The VDU queue is cleared
- The VDU line count used in paged mode is cleared
- Any sound being produced is terminated.

The lEscapel effects mentioned only take place when the escape condition is
acknowledged (using *FX 12 6), not when the escape condition first occurs. If you
use *FX 124 to clear the escape condition, the effects will never occur.

*FX 238 selects the numeric keypad interpretation.

Command Effect

*FX 238,n Resets base value for keypad codes to 'n'.

*FX 2 4 7 , x controls the effects of pressing the lBreald key on the operation of the
machine. The parameter 'x' consists of 4 two-bit numbers. Bits 0 and 1 control
lBreal<l; bits 2 and 3 controllShittiiBreakl; bits 4 and 5 control [Qill!Breakl, and bits 6 and 7
control [QilllShHIIIBreakl.

Each two-bit number may take on one of these values:

•FX 254

•FX 255

FX COMMANDS

Value Effect

0 Perform reset.
1 Perform Escape.
2 No effect.
3 Undefined.

The default value of 'x' is 1, so IBreakl causes an Escape condition, and all other
combinations cause a reset.

* FX 2 54 selects the effect of lshlftl on the numeric keypad.

Command

*FX 254,0
*FX 254,n

Effect

Enables the effect of lshiftl
Disables the effect of lshml

*FX 255 selects the IBreakl and IShmiiBreakl startup options.

Command

*FX 255,0
*FX 255,8

Effect

Interchanges the effects
Restores normal functions

In addition to the *FX calls mentioned in this chapter, there are several more
which may be used to read information instead of writing it. To access these, and
other operating system routines, you must use the SYS statement in BASIC.
Detailed descriptions of the OS routines can be found in the Reference guide.

417

418

HE BASIC SCREEN EDITOR

The screen editor allows you to move around and change any part of a program
currently loaded in the Archimedes.

ENTERING THE EDITOR

To enter the screen editor from BASIC type

EDIT

and press g,

This command enters the editor with the current program.

The editor tries to re-enter the program at the point at which you left it. If you have
changed the program from within BASIC, it may not be possible to maintain the
context, in which case editing starts from the top of the program.

If you wish to enter the editor at a particular point, such as line 100, rype

EDIT 100

BASIC enters the editor with line 100 displayed at the top of the screen. If line
100 does not exist, the editor chooses either the next line or the end of the
program.

You may wish to enter the editor with the first occurrence of a particular piece of
text at the top of the screen. For example: ·

EDIT three

The editor displays the program starting with the first occurrence of the word
three at the top of the screen. If the string cannot be found, the computer 'beeps'
and editing starts at the top of the program.

419

THE EDIT SCREEN

420

Once in the editor, your program is displayed with the line numbers at the left
hand side. If you enter the editor with no program loaded the screen is nearly
blank, with just the number 10 at the top left.

The cursor is at the beginning of the top line on the screen, just to the right of the
line number. Note that the editor automatically puts a line number on the
beginning of each line: there is no need for you to type them in.

The status line

The status line is at the bottom of the screen, displayed in reversed colours in
order to make it stand out from your program text. lt contains various useful
pieces of information such as the size of your program, its name, and whether it
has been modified since you entered the editor.

The status line displays the following information (if it will fit):

- Program size
- Original/Modified indicator
- Program name
- Copy if in cursor copy mode.

In addition, the statuS line is used for prompts such as Replace? (Y /N) which
appear in the SELECTIVE REPLACE facility. See the section: Searching and
replacing below for details.

Moving the cursor

The cursor can be moved around using the four arrow keys. Note, however, that you
cannot move the cursor into that area of the screen containing the line numbers.
This is because in gene.ral you need never be concerned with providing line
numbers for your BASIC statements. As a result, cursor movement is restricted to
the area of the screen which contains program text.

Changing a line

HE BASIC SCREEN
EDITOR

To change a line, use the cursor keys to position the cursor on the correct line. You
can then delete part or all of the line and type new text in place of the old.

Now, assume that the program looks like this:

10 FOR X - 2 TO 30
20 PRINT X+X

30 NEXT X

and that it needs to be changed to look like this:

10 FOR X - 2 TO 20
11 PRINT X*X
20 PRINT X+X
30 NEXT X

To achieve this you must change line 10 and add a new line: line 11.

Position the cursor on the '0' of 30 on line 10, press IDeletel and type '2'. The 30 is
replaced by 2 0.

Adding a line

To create a new line in the middle of the program move the cursor to the line
above the place where you want the new line and press [;!).

In the example above, move the cursor to line 10 and press[;!).

Line 11 is now created.

To complete the above program type

PRINT X*X

421

The program should now be complete. You may like to experiment with the Q
and cursor keys to create a larger program.

Inserting lines at the top or bottom of a program.

There are two function keys which, no matter where you are in the program, create
a new line at the top or end of the program and move you there directly. These
keysare!Q!i]ffru (INSERT AT START) and!Q!i][iQ] (INSERT AT END).

Deleting text

There are two ways to delete single characters. The IDelelel key removes the
character to the left of the cursor and moves the characters to the right of the cursor
back one space.

To delete the character immediately above the cursor, hold the IShHtl key down and
press the IDeletel key. IDeletel and IShiiiHDeletel both move the following text back a
space, but lshlftiiDeletel leaves the cursor in the same position.

To delete all the characters from the cursor position to the end of the line, press
the [illJ key.

Long lines

If a statement is too long to fit on one line of the screen, it wraps around to the next
line. To see this, try typing more text after one of the lines in the program. As in a
BASIC program, the length of a line is limited by the BASIC editor to 251
characters.

SAVING AND LOADING PROGRAMS

Saving a program

To save a program which you have created or changed press [@ (SAVE).

422

HE BASIC SCREEN
EDITOR

A window appears into which you should type the name of the program. Once you
are sure that you have typed the correct name for the program press g or [ill)
(EXECUTE) to perform the save operation.

The program name need not be enclosed within quotation marks.

If you wish to save only a portion of a program you may do this by setting limits.
See the section on Line Commands below for details of how to do this.

Loading a program

You may now wish to load in one of your own programs to experiment with before
moving on to the next chapter. To do this press~ (LOAD).

A window appears ready to accept the filename.

Type in the name of the program and press Q) or [ill) (EXECUTE).

If the current program has been modified but not saved a warning message is
given.

Appending a program

You can also join one program onto the end of the current one.

To do this press I Shiftl~ (APPEND) and then proceed in the same manner as for
loading.

SEEING OTHER PARTS OF YOUR PROGRAM

Several commands are provided to help you move quickly around when you are
editing a large program, such as one which is too large to be displayed on the
screen at one time.

421

Moving vertically

If you move the cursor to the top screen line and keep pressing the [I) key,
previous statements are brought onto the screen one at a time until you reach the
beginning of the program. Similarly, pressing [l] from the bottom screen line
brings the following statements onto the screen one at a time until you reach the
end of the program.

To move directly to the top of your program, press IQill [I) which moves the cursor
to the first line of the program. Pressing IQill [l] moves to the last line.

If you press IShiftl and the rn key, the next screenful of your program is displayed.
In this way, you can move quickly around your program from beginning to end.
Similarly, if you press lshlfti[I), you can see the previous screenful. These functions
are duplicated by the ~ and I Page Down I keys.

Moving horizontally

Pressing the IShlftl key together with the 5J and 8 keys enables you to move
sideways across the screen at twice the normal speed.

Pressing !Qill[B takes you to the beginning of the previous statement and !Qill5J
takes you to the end of the current line.

RENUMBERING THE PROGRAM

424

If new lines are created in the middle of a program, the editor automatically
adjusts the numbering where necessary. If this happens in a program containing a
GOTO or a GO SUB to a line number as yet non-existent, then that line number is
replaced by the characters @@@@ •

You may at any time renumber the program yourself by pressing ffiD
(RENUMBER). This renumbers the program starting at line 10 with an increment
of 10.

Further editing functions

Swapping case

HE BASIC SCREEN
EDITOR

If you have typed in some text in either upper or lower case and you want to
change it to the opposite case, move to the area to be changed and press [!Q)
(SWAP). This converts one alphabetic character at a time from lower case to
upper case and vice versa.

Undoing changes to a line

If you want to abandon any changes you have made to a statement before you have
left it, press IShifti[!Q) (UNDO). This restores the statement to the way it was
before you made the changes.

Splitting and joining lines

Occasionally, you may want to split one statement into two or more. You can do
this by positioning the cursor on the character which is to be at the start of the new
statement and pressing lshlfll[i) (SPLIT). You can only split a statement from
somewhere in the middle. As you are creating a new statement, this may cause
renumbering to take place.

There may also be occasions when you want to join two statements together. To do
this, move the cursor to the first of the two statements and press !Qill[i) (JOIN). The
editor automatically puts a colon between the two statements. If the combined
length of the two statements would exceed the maximum space available, the join
is not carried out and an error message is displayed.

Repeating a line

To create an exact copy of any statement immediately after it, move to the
statement you wish to copy and press IShttti[!ID (REPEAT). As in the case of SPLIT,
this may cause renumbering to be carried out.

425

MARKING A LINE

LINE COMMANDS

426

Placing the marker line

As you move about your program, there may be a statement which you wish to
come back to later on. The editor provides a way of marking a statement so that
you can go back to it with a single key-stroke. To mark a statement, first move to it
and press @ (TOGGLE MARK). Pressing the same key again removes the
marker. A full stop appears on the screen between the line number and the start
of the text, indicating that this statement has been marked. Up to four marks may
be set at any time.

Finding a marker

Wherever you are in the program, pressing IShHtl@ (OOTO MARK) brings the
marked statement to the top of the screen and positions the cursor there. If there is
no marked line, pressing GOTO MARK displays an error; pressing IEscapel then
allows you to continue.

These are commands which allow you to delete, move and copy either a single
line or a block of lines. They can be inserted into the left-hand margin and are not
executed until lffi) (EXECUTE) is pressed.

For example, to delete a single line, move the cursor onto that statement, hold
down the (gill key and press 'D'. The line number is removed and replaced by the
letter 'D'. To delete the line from your program, press !ill) (EXECUTE) . The line
is removed from the screen and the cursor positioned on the previous line.

Deleting lines

If there is a block of lines which you want to delete, move to the first line in the
block and press !QillD twice. The line number disappears and is replaced by the
letters DD. Now move to the last line in the block and press [QillD twice more.
Finally, press 1ffi1 (EXECUTE) to remove this block of lines from your program.

HE BASIC SCREEN
EDITOR

You may wish to delete from the current line to the end of the program. In this
case, press !Qillo twice on the current line and then press [QillE. The line number is
replaced by DDE and the block from there to the end of the program can be
removed by pressing [ill) (EXECUTE).

In a similar way, you can delete from the current line to the top of the program by
using [QillT instead of [QillE and then pressing [ill) (EXECUTE).

[QillE and [QillT are examples of destinations and we shall encounter more of these
later.

Moving a block

To move a single statement from its current position to the end of the program,
move to it and press !QillM followed by !QillE. The line number is replaced by ME
and pressing [ill) (EXECUTE) moves that line to the end of the program.

[QillT can be used likewise to move a statement to the top of a program.

Instead of using [QillT or [Qii)E to specify the destination as the top or the end of the
program you can specify that the destination is before or after a certain line.

To move text to a position after a particular line, move to the destination and press
[QillA.

Alternatively you can use [QillB to move text to a position before a particular line.

Blocks of lines can be moved as easily as a single line by putting MM around the
block to be moved, choosing your destination, and pressing [ill) (EXECUTE).

Copying lines

Whereas moving text removes it from its original position, copying text leaves the
original unchanged and duplicates it elsewhere. The command to copy text is
!Qillc instead of !QillM, but otherwise the move and copy commands are the same.

427

428

Naturally, for both the move and copy commands the destination must not be
within the block being moved or copied.

Denoting limits

You can limit the effect of certain operations either to one line or to a block of
lines. These operations are:

- SA YE: Part of a program can be saved.

- RENUMBER: Part of the program is renumbered.

- SEARCH, SEARCH & EDIT: The search is limited to the line or block.

- SELECTIVE REPLACE, GLOBAL REPLACE: The replacement is limited to
the line or block.

To limit the operation to a single line, move the cursor to that line and press !Qii)L.
To delimit an entire block of lines press !Qii)L twice each on the first and last line
of the block in question.

When a limit is set up, the functions which take account of it display the limit in
their window.

Justifying text

The editor can indent all or part of a program automatically. To reformat a part
of the program, move to the first line of the block you want to justify and press
!Qii)J twice. Then move to the last line of the block and press !Qii)J twice more.
Pressing [ill) (EXECUTE) justifies the block so that the indentation of each line is
identical to that of the first line.

Removing line commands

To remove a line command, move to the line in question and press !9!i]R. This
deletes the line command from the screen and replaces the line number. Pressing
!9!i]R on a line which does not contain any line commands removes all line

HE BASIC SCREEN
EDITOR

commands no matter where they are. You do not, however, have to remove a line
command in order to change it: to replace the old command simply overtype it
with a new one.

[QillR can also be used to remove the line marker set by[!§] (TOGGLE MARK);
but unlike the line commands, the marker can only be removed when you are on
the marked statement.

Things to notice about line commands

Line commands are not stored as part of your program text but are only held
internally in the editor. There is no need, therefore, to remove line commands or
the marker before saving your program.

Note that copying or moving statements causes renumbering to take place
automatically.

SEARCHING AND REPLACING

SEARCH & EDIT

To search for the first occurrence of a particular piece of text, press IHl (SEARCH
& EDIT). A window appears where you should enter the text to be found. When
you have done this press llliJ (EXECUTE) and the search is carried out. The cursor
reappears on the first match within the program.

SEARCH

As an alternative to SEARCH & EDIT you can find all occurrences of a given
string and have them displayed. To do this press [!] (SEARCH) and enter the
string which is to be located. Then press llliJ (EXECUTE) to perform the search.
Any line on which a match is found is displayed. You may then move up and down
the list, choose one to look at and press IHomel. This line is then placed at the tOp of
the full edit screen and you can edit it.

429

GLOBAL REPLACE

To change one string for another throughout your entire program press ffiD
(GLOBAL REPLACE) and enter the text to be changed. You must then enter the
new text, and when you are happy with it press [ill) (EXECUTE) to carry out the
change.

SELECflVE REPLACE

It is possible to perform a replace operation selectively. To do so press lshlftii!ID
(SELECTIVE REPLACE). You must then enter both the text to be changed and
the new text. Press [ill) (EXECLITE) to start the search. Each match is displayed
and you are prompted for either 'y' or 'N' to indicate whether the replacement is
to be performed or not.

NEXT MATCH and PREVIOUS MATCH

It is possible to move on to the next occurrence of the text searched for in the last
search operation or back to the prevoius one. To do this press either IShlftl[!l]
(NEXT MATCH) or !Qill[!l] (PREVIOUS MATCH).

SETTING VARIOUS OPTIONS

430

Pressing lshllti~J]l brings up a window which allows you to select various options.
This is called the Options Window. The options are displayed in three groups
described below. Pressing IErterl allows you to cycle through the groups.

Keyboard options

The ~ ke-y: This enables you to move more quickly across the screen. It moves the
cursor to every fifth character position. At the end of a line, it takes the cursor to
the beginning of the next line.

Pressing lshlftl~ moves the cursor in the opposite direction.

The options can be used to set the width of the tab movement to any value
(numbers of characters) in the range 0 to 63.

HE BASIC SCREEN
EDITOR

Auto indentation: The editor can automatically line up text in a program so that
each line starts beneath the first position of the line above which is not blank. This
is known as auto-indentation. It can be turned on or off using the Options Window:

Auto-indent (on/off)

Insert mode vs overtype mode: There will be times when you want to insert new
text into a line rather than overtype what is already there. To do this, press linsertl
and you will see that the cursor has changed to a block. This indicates that you are
in insert mode, and that text which you type in will move any following text to the
right. To return to overtype mode, press Hnsertl again, and you will be able to
overtype text as before. In overtype mode, an underline cursor is used. In insert
mode, a block cursor is used.

When you enter the editor, the default setting (insert or overtype) is used. You
can change this default using the Options Window. Your choice is retained in non
volatile memory.

Wildcard options

There are four wildcards, each of which may be customised using the options
available.

- Single character (default is 1
• ').

- Multiple characters (default is 1 1 ').

- Start case insensitivity: this will match both PRINT and print (default is
c {,) •

- End case insensitivity: this will match exactly what is entered. This is the
normal method of searching (default is '} ').

Wildcards can be changed to any punctuation character, or can be disabled by
using the Space Bar. Different wildcards must not use the same character.

431

USER DEFINED KEYS

Mode and colours

The editor works in 40-, 80- or 132-column modes. You can choose the default
mode using the Options Window. The value is held between sessions in non
volatile memory.

Note that 256-colour modes and modes with 20-column text are not allowed.

You can also set up your default choice of foreground and background colours.

The editor makes extensive use of the normal function keys, but you can still
program your own in the usual way via the *KEY command. To access them you
must press [9.ill1Shlftl together with the function key, and not just the function key on
its own.

FULL USE OF WINDOWS

432

Windows are displayed whenever user input is required or information is
displayed.

Input windows

Valid keys and their actions are:

Moves the cursor to the next field

Moves the cursor to the previous field

Cancels the window and returns to editing

EXECUTE(@ Validates the input and executes the command

Toggles insert/overtype for this window only

HE BASIC SCREEN
EDITOR

Deletes the character to the left of the cursor

IShlftiDeletel Deletes the character above the cursor

DELETE TO END OF LINE lillJ Deletes characters from the cursor to the end of
the field

DELETE TO START OF LINE Deletes all characters before the cursor
I Shlfti[TI)[Til

DELETE LINE !Qilllill] Deletes all text in this field

8/IShlftiE) Moves the cursor left 1 or 2 positions

8/IShlftiE) Moves the cursor right 1 or 2 positions

!QillB Moves the cursor to the beginning of the field

!QillB Moves the cursor to the end of the field

Information windows

Removes the window and returns to editing.

Entering data

Data can be entered in one of three ways:

- Typing in text (eg program name)

- Selecting a prompted action (eg Y /N)

- Pressing the Space Bar to cycle through a list of valid choices (eg foreground
colour)

433

Pressing another function key whilst a window is present usually executes its
function. The exceptions are those functions which manipulate the program text
(eg SPLIT and JOIN).

KEYBOARD SUMMARY

The following actions are performed directly via key presses:

Editing keys

81 Moves right

El Moves left

rn Moves up

[]] Moves down

lSh11118) Moves right two characters

lShlftiE] Moves left two characters

lShilti[I) Moves cursor up a screenful

lShittl[l] Moves cursor down a scrcenful

[Qill8J Moves to the end of the statement

[Q!i]EJ Moves to the beginning of the statement

[Qill[I) Moves to the beginning of the program

[Qill[]] Moves to the end of the program

~ Moves cursor up a screenful

IPage Downl Moves cursor down a screenful

434

IShlftiDeletel

Function keys

ITIJ (* COMMAND)

[lli (LOAD)

lim (SAVE)

~ (SEARCH & EDIT)

@] (GLOBAL REPLACE)

!!§) (TOGGLE MARK)

[!] (SEARCH)

[IID (RENUMBER)

HE BASIC SCREEN
EDITOR

Moves right to next tab position

Moves left to previous tab position

Brings statement to top of screen

Enters copy mode

Ends copy mode

Toggles insert/overtype mode.

Deletes character to left of cursor

Deletes character at cursor position

Creates a new statement after the current one

Perform OS command

Load a program

Save a program

Find string and edit from it

Global search and replace

Set or remove a marker. Up to four markers
are allowed

Find all occurrences of a string.

Renumber the entire program

4~5

436

iiru (OLD) Same as BASIC OLD

[[1Q] (SWAP) Swap case of alphabetic characters

[ill
(DELETE TO END OF LINE) Delete from cursor to end of line

Iilli (EXECUTE) Execute line commands

Function keys with lshlftl

IShlftl[!) (SPLIT)

IShittllrn (APPEND)

IShi!tl~ (OPTIONS)

lshlttljffi (EXIT)

IShittl@l
(SELECTIVE REPLACE)

lshlfti[!ID (GOTO MARK)

IShittl[i] (NEXT MATCH)

IShittii!ID (REPEAT)

lshltti!IID (NEW)

IShlfti[[!Q] (UNDO)

I Shift I [ill
(DELETE TO START OF LINE)

Split statement at the cursor

Append a program

Present the Options Window

Return to BASIC. Any variables will be lost if
changes were made

Selective replace. When prompted, only
'Y','N', IEscapel and IHomel are valid

Go to next marker, with program wraparound

Go to next occurrence of search string

Copy current statement

Same as BASIC NEW. Prompts if program
has been modified

Undo changes to current statement

Delete all characters before the cursor

HE BASIC SCREEN
EDITOR

IShtttl[ill]
(GOTO LINE COMMAND)

Go to next line command, with program
wraparound

Function keys with [gill

[gill[!] (JOIN) Join two statements, with a colon separator

[gill@ Reserved

[gill~ Reserved

[Qill!m Reserved

[gill[!§) Reserved

[gill@ Reserved

[Qill[W (PREVIOUS MATCH) Go to previous occurrence of search string

[Qii)[!ID (EXTEND) Add a line to current statement

[gill@) (INSERT AT START) Add a statement at beginning of program

[Qill[TIQJ(INSERT AT END) Add a statement at end of program

[Qill[ill](DELETE LINE) Delete alt text from current statement

[Qill[lli)(GO TO LINE) Go to selected line number

Function keys are used with [gill and lShlltl for user-defined strings.

437

ERROR MESSAGES

438

The editor displays the following messages. In each case, an explanation is given
below the message.

Limit is xxxx to xxxx/Limit is xxxx only

A range has been set using the L or LL line commands, and this function will only
operate within the range.

Line xxxx is too long to be edited

The program already contains a line which is too long.

Not enough room in RMA for The BASIC Editor

RMA initialisation failed to acquire workspace.

Replace? (Y/N)

Displayed on the status line when prompting during the SELECfiVE REPLACE
operation.

Tab must be between 0 and 63

Displayed by OPTIONS.

The combined length of these statements would be too big

The two statements cannot be joined.

The destination must be outside the block being moved or copied

Raised by EXECUTE.

The first statement in the block to be justified must not be blank

Raised by EXECUTE.

The maximum line is 65279

Raised by GOTO LINE.

The name has been truncated

HE BASIC SCREEN
EDITOR

On saving, the program name following REM> in the first line of the program is
longer than can be displayed in the window.

The named program is invalid

The user appended a program which was invalid. The editor restored the original.

The named program is too big

The user tried to load or append a program for which there was not enough room
in memory

The renumber has failed . Unmatched line numbers have been replaced by @@@@

When trying to renumber the program one or more line number references could
not be resolved.

The search string has no text

The search string must not be blank, and must not contain only wildcards.

The string could not be found

The search string could not be found.

There is not enough memory to update the program

All available memory has been used up.

439

440

This is not a valid mode

An invalid screen mode was specified in OPTIONS.

This is not a valid program

OLD was pressed with no valid BASIC program in memory, or the user tried to
load an invalid program.

This program could not be found

The named program on a load or append was not in the directory.

This program has not been saved

The user is warned on a load if the program has been modified and not saved.

This program has not been saved

Press NEW again to confirm

Press ESCAPE to cancel

The user pressed NEW but the program had been modified and not saved.

This statement is too long

The statement is too long, and needs to be shortened.

This statement is too long to be changed

Replacing or justifying would make the statement too long.

This statement is too long to be split

Even after splitting, both parts of the statement would still be too long.

Wildcards must not be the same

Raised by OPTIONS.

You cannot load a directory

HE BASIC SCREEN
EDITOR

The filename specified in LOAD or APPEND is a directory.

You do not need to enter a destination for this command

Raised by EXECUTE.

You do not need to enter a repetition factor for this command

Raised by EXECUTE.

You have entered a destination but no command

Raised by EXECUTE.

You have entered too many commands

Raised by EXECUTE.

You have not entered any line commands

Raised by GOTO LINE COMMAND when there are no line commands.

You have not entered any markers

Raised by GOTO MARKER when no markers are set.

You have not yet entered a search string

Raised by NEXT MATCH or PREVIOUS MATCH when no find string has been
entered.

441

442

You have used the maximum number of statements. No more can be added

The program already contains the maximum number of statements allowed by
BASIC (65279) and the user tried to add another.

You must enter a destination for this command

Raised by EXECUTE.

You must enter a mode

No screen mode was specified within OPTIONS.

You must enter a program name

The program name was not entered for LOAD, APPEND or SAVE.

You must enter a search string

The search string was not entered.

You must enter a tab value

No tab value was specified in OPTIONS.

You need to specify both ends of the range for this command

Raised by EXECUTE.

You should not enter two different commands

Raised by EXECUTE.

*ARMBE is only valid from BASIC

The user invoked the editor from outside BASIC.

PENDIX A - MINIMUM ABBREVIATIONS

Command Abbreviation

ABS ABS
ACS ACS
AD VAL AD.
AND A.
APPEND AP.
ASC ASC
ASN ASN
ATN ATN
AUTO AU.
BEAT BEAT
BEATS BEA.
BGET B.
BPUT BP.
CALL CA.
CASE CASE
CHAIN CH.
CHR$ CHR$
CIRCLE CI.
CLEAR CL.
CLG CLG
CLOSE CLO.
CLS CLS
COLOR c.
COLOUR c.
cos cos
COUNT cou.
DATA D.
DEF DEF
DEG DEG
DELETE DEL.
DIM DIM
DIV DIV
DRAW DR .
EDIT EDIT
ED ITO ED.
ELLIPSE ELL.

443

Command Abbreviation

ELSE EL .
END END
ENDCASE ENDC.
END IF END IF
ENDPROC E.
ENDWHILE ENDW.
EOF EOF
EOR EOR
ERL ERL
ERR ERR
ERROR ERR.
EVAL EV.
EXP EXP
EXT EXT
FALSE FA.
FILL FI.
FN FN
FOR F.
GCOL GC.
GET GET
GET$ GE.
GO SUB GOS.
GOTO G.
HELP HE.
HIMEM H.
IF IF
INKEY INKEY
INKEY$ INK.
INPUT I.
INSTR(INS.
INT INT
LEFT$(LE.
LEN LEN
LET LET
LINE LINE
LIST L.

444

INIMUM ABBREVlA TIONS

Command Abbreviation

LIS TO LIS TO
LN LN
LOAD LO.
LOCAL LOC.
LOG LOG
LOMEM LOM.
LVAR LV.
MID$(M.
MOD MOD
MODE MO.
MOUSE MOU.
MOVE MOVE
NEW NEW
NEXT N.
NOT NOT
OF OF
OFF OFF
OLD 0.
ON ON
OPEN IN OP.
OPENOUT OPENO .
OPENUP OPENUP
OR OR
ORIGIN OR.
OSCLI OS.
OTHERWISE OT .
PAGE PA.
PI PI
PLOT PL.
POINT POINT
POINT(PO.
POS POS
PRINT P.
PROC PROC
PTR PTR
QUIT Q.

445

Command Abbreviation

RAD RAD

READ READ
RECTANGLE REC.
REM REM
RENUMBER REN.
REPEAT REP.
REPORT REPO.
RESTORE RES.
RETURN R.
RIGHT$(RI.
RND RND

RUN RUN
SAVE SA .
SGN SGN
SIN SIN
SOUND so.
SPC SPC
SQR SQR
STEP s.
STEREO STER.
STOP STOP
STR$ STR$
STRING$(STRI.
SUM SUM
SWAP sw.
SYS SYS
TAB(TAB(
TAN T.
TEMPO TE.
THEN TH.
TIME TI.
TO TO
TOP TOP
TRACE TR.
TRUE TRUE
UNTIL u.

446

INIMUM ABBREVIATIONS

Command Abbreviation

USR USR
VAL VAL
VDU v.
VOICES vo.
VPOS VP.

WAIT WA.
WHEN WHEN
WHILE w.
WIDTH WI.

447

448

PPENDIX B - BASIC ERRORS

Erro r
number

0
0
0

0
0
0
0
0
0

0
0
0
1

1
2
2
2
3
4

4
4
5
6
6
6
6
6
6

6
6
6
7

Error
message

Silly!
No room to do this renumber
Line numbers larger than 65279 would be
generated by this renumber
No room
Stopped
Invalid LISTO option
Invalid EDITO option
Corruption of stack
Error control status not found on stack for
RESTORE ERROR
Missing incore name
LIST/EDIT found line number reference
HELP has no information on this keyword
No such mnemonic
No such suffix on EQU
Bad immediate constant
Bad address offset
Bad shift
Bad register
Missing
Missing in FOR statement
Mistake
Missing
Type mismatch: number needed
Type mismatch: numeric variable needed
Type mismatch: string needed
Type mismatch: string variable needed
Type mismatch: array needed
Type mismatch between arrays
Can't assign to array of this size
Array type mismatch as parameter
Can't SWAP arrays of different types
Not in a function

449

Error
number

8
9
10
10
10
10
10
10
10
10
12

13
14
14
14
14
15
15
16
17
18
19
20
20
21
22
23
24
26
26
27
27
27

450

Error
message

Too low a value for $<number>
Missing "
DIM() function needs an array
No room for this dimension
Impossible dimension
No end of dimension list)
Bad DIM statement
Can't DIM negative amount
No room for this DIM
Arrays cannot be redimensioned
Items can only be made local in a function or
procedure
Not in a procedure
Reference array incorrect
Unknown array
Unknown array in DIM() function
Undimensioned array
Subscript out of range
Incorrect number of subscripts
Syntax error
Escape
Division by zero
String too long
Number too big
Number too big for arc Sine or arc Cosine
Negative root
Logarithm range
Accuracy lost in Sine/Cosine/Tangent
Exponent range
Unknown or missing variable
Can't use array reference here
Missing)
Missing]
Missing {

Error
number

27
28
28
28
29
30
31
31
31
32
33
34
35
36
38
39
40
41
42
43
45
46
47
48

49
50
51
51

Error
message

Missing
Bad Hex
Hex number too large
Bad Binary

ASIC ERRORS

No such function/procedure
Bad call of function/procedure
Arguments of function/procedure incorrect
Invalid RETURN actual parameter
Invalid array actual parameter
Not in a FOR loop
Can't match FOR
Bad FOR control variable
The step cannot be zero
Missing TO
Not in a subroutine
ON syntax
ON range
No such line
Out of data
Not in a REPEAT loop
Missing t
Not in a WHILE loop
Missing ENDCASE
CASE statement must be the last thing on a
line
Missing ENDIF
Bad MOUSE variable
Too many input expressions for SYS
Too many output variables for SYS

451

452

PPENDIX C- CHARACTER CODES

LATIN ALPHABET 1

b.o o o o n o 11 ~ ~ 1 1 11 11
b. 0 0 1 1 0 0 0 0 1 T 1
b. 0 1 1 0 0 1 1 0 0 1 -, 0 1 -1
b. 0 1 0 1 0 1 0 1 c

b. lb. b. lb.
oo o1 ozlo3I041os o6lo7 oa 091o 1111z13141s

0 0 lo lo 00 :;:;: :;:;:;::: SP 0 @ p p ::::: :;:;:;:;:::-; ·-·
0 A f) a ~

lo 0!011 01 .. 1

''.::::: I 1 A Q a q :t:·r::~, I + A N a n
lo 0 11 lo [0 ~ ~f{t " 2 8 R b r : ¢ 2 A 0 a 0
1oo1!1.o3 t:==H':::::::: # 3 c s c s £ 3 A 6 a 6
io 1 0 0 0 4 :=tf': l·= $ 4 D T d t [(~(. a ' 'fi. Q a 0
01n105 i'f}t}}\ 1. 5 E U e u : ~ Jl. A 0 § o
o 1 1 o o 6 :::t:::: n::::= & 6 F v f v [:t' : , ~ o ce a
,o 1 1 1 01 ·ti:== ;:::m, • 7 G w g w t:::: l}r:, § • ~ x r; -
11 o o o oa < a H x h x I.:::: 1'':''''=':' .. • E 0 e rzs
1 I 0 0 1 0 9 • :'::;-:·:) 9 I y 1 y [t n::::: © 1 E 0 e u
1 o 1 o 1 o :=:: ::=:.,: * : J z i z :::=::,,, ! 2 e u e u
1 o 1 1 11 -:::::''' + ; K c k { , m- « » e o e o
1 1 n 0 12 :f:f!::{t'i , < L \ l I '::·:: · -. '14 i U l U
1 . 1 o 1 1 3 ?fj - = M J m }):::: s v 1/z f y i y
1 1 1 1 o 1 4 J :::f'J . > N A n - :::::/::: ® 34 1 p 1 p

I 1 1 1 • • 1 1 5 :=::mi :=~r: 1 ? o _ o :-. o::m: :::=:,':::: - ~ 1 f3 , y

453

LATIN ALPHABET 2

b.O 0 0 u 0 0 0 1 1 1 1 1 1 1 11
b. 0 0 0 0 1 1 0 0 0 0 1 1 1 1
b. 0 0 1 0 0 l 1 0 0 1 1 0 0 1 _1
b. 0 1 0 1 1 0 1 0 1 1 _0 1 0 1

00 01 02 03 04 iDS 06 107 08 09 10 11 12 13 14 1 5
b. lb. b. b.

[o [o 0 0 00 . 0 @ p . p 1·:::::::::::. ;:::;::::::;:
INBSP

0 R t> f d SP

0 [0 0 1 01 ··:·: ··

ltL
I 1 A Q a }f~j :::f A q A N

I

ri q a
o [o [1 0 to=> l:=~=f~ :;::=~: ~ " 2 8 R b r ~:II: ::: A N a ri t:::;:;:;: ;:.:-:;: '
lo lo [1 1 10 3 r:=::::::: ;;;:::;::::: # 3 c s t. t 'A 6 v I

r:::::::: ~ ,'.;: c s :;:::::::: a 0

10 I 1 lo 0 ID4 ht::t
:·: $ 4 D T d)\} i{=:: ,

'li.
A a 6 t D 0

[o 1 0 1 0 ... u:=:::1 I. 5 E u e u :/ff \:II ([t.: 6 r 6

lo 1 1 0 06 f:(l{: · & 6 F v f Ht1: i'U?: s s c 0 I 0 v c
,o 11 11 1 07 t Uf:':: I 7 G w g w tt ':~:}:,- § ..,

~)(c;
,, 0 u ,O 0 1::::::

(8 H X h X
:,:;:::,•::: ::,:::::::::, .. ·c ~ c r =-;:;::::;:· ::::::::;:;:: ;:::::::;::::

[1 0 0 1 09 t'•?tt ::::-) 9 I y 1 y ~ ''':t:: (:[('· s s E 0 e u
[1 [0 1 0 10 Itt~:: :~{} * : J z j z ,t}'' @t s $ ~ u ~ u
[1 lo I 1 1 11 l:n:r (/? + ; K (k { f"tt' [?=:::::: i f E l] e u
1 I 1 lo 0 2 1::=:::::· , < L \ l I t•>:::::. i z E u e G

13 It=\ :):(M] } r.:::-::::=: 1,:;:::;::: ,s y
,, I y I y '1 [1 [o [1 - = m I 1

1 [1 [1 lo 4 t:t) =r > N - - [/}{ l'if(;.' 1 z 1 r " t . n 1

1 1 .1
,, 15 · ··:·~=@: .. I ? 0 - 1·•_-:-;: 1:;}::·: i . 0 (3 a . 0 z

454

HARACTER CODES

LATIN ALPHABET 3

~0 10 D 0 ~ 11 11 11 11 [1
~a o o o 1 1 1 o o o 1 1 1
b. o o 1 1 o o 1 1 ·o a 1 o o 1 1
b. (1 (1 (1

b. b, b, tb.
0001 02030405[06[07[08091011121314 15

IO lo !O IO [00 k::: SP 0 @ p • p Nm
0 A m a ~

IO 0 .o 11 0 1 I 1 A Q a q 1i h J. N a fi
.0 ,o [1 IO [o " 2 8 R b r v z J. 6 a 0
IO IO 11 11 IO ':Z II 3 c s c s £ 3 ~ 6 ~ 6
lo 11 lo I o [0 4 $ 4 o T d t a ' A 0 · ~ 6

1 u i 1 I O I1IO~ 1=::) IFf': ;< 5 E U e U F:=== ~ P. C G C g
IOI1Il lolo6 :::; t:m: & 6 F v f v R R li e 0 c 0
01111~1 o1 1,~:Jr !rr · 7 G w 9 w § • ~)(c;
11 lo lo lo loa : f { 8 H X h X .. E G e ~-
1 1o 1o 11 Ia; : ,:,:, > 9 1 v ; Y i , E u e u
1 lo 111 o 1 * : J z j z S $ E u e u

11 lo 1111 11 'Jt:: .. !I + ; K [k { ~ ·::::: G g E 0 e 0

! 1 11 I o I o [1 2 I == ''T II= , < L \ L I :.::;;, j j i U i 0

111110 ll 113 =:r t ~tt - - M] m } r :::;; SHY 'h I 0 1 u
11 [1 11 I o 11 4 lfUJ b'' . · > N ~ n - :=:=:== ~ [X% f S i s
11 11 11 11 · 5 1?''''''' n: I ? O - 0 Eft: i. i. I f3 1 ·

455

LA TIN ALPHABET 4

~0 0 0 0 0 0 11 11 11 11 11 11 11
0 1 1 1 1 0 0 0 0 1 ~

~ 0 _!! _} ll 0 1 1 (0 1 _1 0 _Q 1 1
101 (1 101 (

h lb. b. lb.
00 01 02103104 OSI06I07I08 09 10 11112113 14 15

lotolotoiO• SP 0 @ p p INBSF
0 A -e a :ct

lo to to 11 0 1 1 1 A Q a q , ,,,, : ,,, A q A ~ .! Q

IOIOI1IO 02IJ :::::~:;,;,,, II 2 8 R b r){H:= K • A 0 a 6

1o o 1 11 o 3 1;,. ~ ~~:='=·=· ~~ 3 c s c s · ::mm~ ,,,, ~ r. A ~ a ~
lo 1 o o 0 4 1/: $ 4 0 T d t . . !fj:jj ll ' ~ 0 a 6
to 1 0 ! 1 0 5 ~=:::: ::::: Y. 5 E u e u I ; a 6 § 0

IO 1 1 IO 06 l:=?:f ;:;:::: & 6 F v t v t(: . ' 1,. ~ It 0 ffi 0
I 0 1 1 ! 1 0 (I 7 G w 9 w 1:::;::;:: § 1)(1

11 0 0 'o Oo .'{· ' ?'' (8 H X h x nr:: " C 0 C 0
1110 .o !1 .09 o:::,::;::::) 9 I y ; y i·=: s s E v e v
111o 11 1 o 11 u :::: r··' * : J z j z . ,,, E e I; u ~ u
11 lo 1111 11 + ; K [k { ::::m: I::; G g E 0 e 0

11111o1o 1&:: :=::=: , < L ' L 1 ,,,.,,, :r t E u e u
111110 11 13 klli - - M] m } [(,): . SHY n I 0 f G
1111111014 • > N A n- I z I 0 1 0

11 11 11 11 1 5 t : ;:=: I ? o o F:'::r '\;. ..· · - rJ i r3 1 '

456

GREEK ALPHABET

HARACTER CODES

cJ 0 0 0 0 0 11 11 11 11 11 11 11 11
0 0 0 0 ,

0. 0 1 1 Q 1 _Q 0 1 1
b.C 1 C 1C 101 C 10101

0 0 0 1 0 2 0 3
1

0 4 0 5 0 6 0 7 0 8 0 9 1 0 11 1 2 1 311 4 1 5
b. lb. b. ib.
10 0 0 to 0Q ::::":::::: :::::::::::::: SP Q @ p p NSSP 0 r I1 b 7r

10 o
1

o 11 0 1 ::::::::, :;::::. 1 1 A Q a q t:: · 1 ± A P ex p

IO 0 11 IO Ia 2 II 2 8 R b r ' 2 B ~ {3 s
o o ;1 11 03 . # 3 c s c s £ 3 r E -y a

a 11 Ia a Ia 4 ~mtt :::<::: $ 4 o r d t tt Q(' Ll T o 1

o 1110 1 IO 5 ,:,,,,,:, i. 5 E U e u 'X .~ E T E u

a ·1 11 a a6 :==f ::::::::::· & 6 F v f v : 'A z 4> r <1>

tO 11 1 i1 07 ~\I::~;::'::;;;::: I 7 G w 9 w § . H X 11 X
11 lo 0 Ia 0 Q . (8 H X h X .. 'E e '}r e t/;
·110 a 1 o9 ::::::=::::: > 9 r y ; y }::; :t:::::· © 'H I n ~, w
:1 0 1 I 0 1 "' ::::':: * : J z j z ~ I I K K L

1101'1 11 ::-.·:·:· + ; K [k { «»AT Au
.1 11 o o 1 2 :y::: '': , < L \ L I gj }l('' ... '0 M a J.1. o
11 11 a 1 1 3 't: ;II::: - = M] m } · SHY 1/z N € v u
1 11 11 a 1 4 ;::::' ::::::::::: • > N ~ n - • · »;; 'T Z '1 ~ w

111111 11 15 lli@f W:'·' 1 ? o _ o b=:t w:Ir 1\.:\n - ·n o o ~

457

BFONT CHARACITR CODES

~ '\~ "'~ 'b~ b.~ ':>~ 10~ '\~ OJ~ ... ~
Nothing Do ... n Default Move

logical text
0 colours cursor

to 00

Next to Up Disable Move
printer VDU text

cursor

Start (')ear Select

II 2
prmter text mode

Stop Start of Reprogram

II :I
prmter line characters

Separate Paged Define lilil 4 cur~ors mode graphiCS
area

Join Scroll P lot rn 5 cursors mode

Enable Clear Default

~ 6 VDU graphics text/
graphics
areas

Beep Define Nothing

t! i text
colour

Back Define Define

8
graphics text ~ colour area

Forward Define Define

9 logical graphics II colours origan

458

HARACTER CODES

459

460

PPENDIX D- TELETEXT CHARACTER CODES

TELETEXT ALPHANUMERIC CHARACTER CODES

~ \ ,\ ...
""'

... ~ ,.,. '\' ~ ..,, ,lit ,,, , ...
Not.hinc Down Nothinc Move

I I I II II I E II I -• toN

Nntto Up Diable Move

I I li I! II li I II I 1 printer VDU eunor

St&Jt Clear Select

I II II I I II II II e 2 printer ecreen mode l!
Stop St&Jt of Reprocram

I II I I II I li E I I 3
printer line c:tw.<:teno

No thine Paced No thine

I I II I I II II II II ID • mode

No thine Scroll No thine

Iii I I I I II I II I I 6 mod•

Enable No thine No thine

II I .1 I I! I II D II li 6 VDU

Beep No thine Nothinc

I I I I II II E: II I
Beck

7 apece and
delete

Back No thine Nothinc

I I I
No thine

8 I I I li II I
f'orw8rd ~ No thine

I II I! II IE
Alpha

9 I I I I -.d

461

"""~ ~ <;,~
\. ,ro~ ,-..~ '0~

\.
">~
' '),~ '\, ~ '\,'),~ ~~

~
'\, ... ~ ,,:~~

Alpha Nonnal • Graphic

I li II I li li I II li E ~n height cyan

Alpha Double Graphic

II li I I II I • E E I yeUow height white

Alpha Nothing Conceal

I I I ~ I II II li II Ill blue display

Alpha l'othing Contiguous

I! I I (I II II w II li I magenta graphics •

Alpha Nothing Separated

II I E B I! I I D It li cyan graphics

Alpha • Graphic Nothing

I I Ei I li I E II I I white red

Fluh Graphic Black •

I I I I! II I li II I green background

Steady • Graphic New

I II I I! I I E II I yeUow background

Nothing Graphic Hold

I I! II li II r! E li I blue graphics

Nothing Graphic Reluae •

I E i I! fl • ; I I magenta graphics

• every line start8 with these options selected .

462

ELETEXT CHARACTER CODES

TELETEXT GRAPHICS CHARACTER CODES

I~ ' 'l>' ~·
.,,

to' "' 'b' ~ ...,,. ""'' Nothing Down Nothing Move

~ [i li ! ~ Q3 ~
curaor

-= ~ • toN

Nut to ur Oioable Move

I rl li ~ ~ ~ I prmter VDU cureor ., ~ ~
St•rt Cloer Select

I ~ 2 printer acreen mode ~ ·~ li II II ~ ~ ~
Stop Sttrt or Ropropam

il ~ ~ w II I li ~ ~ B3 3 pnntor tino chvtctors

Nothing Po god Nothing

ll = ~ m I II II ~ ~ m 4 mode

Nodung Scroll Nothing

Iii ~ ~ rl II II ~ ~ ~ ~ 5 mode

Enable Nothinc Nothing

Cl ~ ~
6 VDU II I! I i 13 ~ ~
7

Betp Nothing No thine

II li II ~ i) ~
Boca

~ w ~ apett end
delete

Bock Nothing Nothing

·II II I ~ ~ ~
Noth•ng

8 rl ~ ~
Forwonl Nothing No thine

I! I II ~ ~ EE
Alpha

9

~ ~ ~ ~d

<"'lrlj .., .. , <;,\

"
,~\ ,"-~tJ ,'b~:tJ 0;~

' '1,~ n,"~ n,'l,~ 'l_,'b~ '1, .. ~ n,'='~

Alpha Nonnal • Graphic

I ~ tl ~ li fi II ~ ~ ~ green height cyan

Alpha Double Graphic

il ~ ll ~ u B • ~ ~ 83 yeUow height white

Alpha Nothing Conceal

li = tj ii I II li ~ ~ m blue display

Alpha Nothing Contiguous

i ~ Ei I II I Iii ~ 83 l±J magenta graphics •

Alpha Nothing Separated

~ ~ ~ 11 I! I ~ ~ ~ ~ cyan graphics

Alpha • Graphic Nothing

~ w ~ " ltJ IJ ~ i3 [J I white red

Flash Graphic Black •

~ ~ green background ~ II II tl 13 ~ ~
Steady • Graphic New

~ ~ ~ I! I I ~ ~ E8 yeUow background

Nothing Graphic Hold

~ ~ blue graphics ~ li li I ~ ~ ~
Nothing Graphic Release

~ I! (I ; ~ ~ ~ magenta CT•phics • ~ EC
• every line atarta with these options

464

PENDIX E - SCREEN MODES

Mode Text Resolution Log.Cols Memory used
col x row horx ver

0 80x32 640 X 256 2 20K
1 40x32 320 X 256 4 20K
2 20 x32 160 X 256 16 40K
3 80x25 Text only 2 40K
4 40x32 320 X 256 2 20K
5 20x32 160 X 256 4 20K
6 40x25 Text only 2 20K
7 40x25 TELETEXT 16 80K
8 80x32 640 X 256 4 40K
9 40x32 320 X 256 16 40K
10 20x32 160 X 256 256* 80K
11 80x 25 Text only 4 40K
12 80x32 640 X 256 16 80K
13 40x32 320 X 256 256* 80K
14 80 X 25 Text only 16 80K
15 80x32 640 X 256 256* 160K
16 132 X 32 Text only 16 132K
17 132 X 25 Text only 16 132K
18t 80x64 640 X 512 2 40K
19t 80x64 640 X 512 4 80K
2ot 80 X 64 640 X 512 16 160K

• In the 256 colour modes, there are some restrictions on the control of the colours.
In particular, the COLOUR and GCOL commands can only be used to select from
64 base colours. The full 256 can be obtained via the TINT option. Also, the
selection from the colour palette of 4096 shades is only possible in groups of 16.

t Modes 18 to 20 should only be used on multiple scan-rate monitors (for
example, NEC Multisync). On ordinary monitors they do not produce a usable
picture.

465

PPENDIX F - INKEY VALUES

Key INKEY number

I1ID -33
ITII -114
1m - 115
@ -116
[H) -21
[tiD -117
@ - 118
1!11 -23
!!ID - 119
~ - 120
ffiQJ -31
lilll -29
(ill] -30
A -66
B -101
c -83
D -51
E -35
F -68
G -84
H -85
I -38
J -70
K -71
L -87
M - 102
N -86
0 -55
p -56
Q - 17
R -52
s -82
T -36
u -54
v -100

467

Key INKEY number

w -34
X -67
y -69
z -98
0 -40
1 -49
2 -50
3 -18
4 -19
5 -20
6 -53
7 -37
8 -22
9 -39

-103
-24
-104

I -105
I -57
\ -121
1 -89
; -88
~ -113
!!il -97
leaps Lock I -65
!Scroll Lock I -32
INI.Ill Lock! -78
I Break! -45
Back Tick/- -46
£/Currency -47
Back Space -48
ltnsertl -62
I Home I -63
~ -64
IPaqe Oownl -79

468

Key

'I"
I Shift I
l9ill
[MJ
IShiftl

l9ill
~
IShittl

l9ill
[@
Space Bar
I Delete I
g
~
[]]
El
B
rn
Keypad 0
Keypad 1
Keypad 2
Keypad 3
Keypad 4
Keypad 5
Keypad 6
Keypad 7
Keypad 8
Keypad 9
Keypad +
Keypad
Keypad .
Keypad I
Keypad #

Keypad *
Keypad g

(either/both)
(either/both)
(either/both)
(left-hand)
(left-hand)
(left-hand)
(right-hand)
(right-hand)
(right-hand)

NKEY VALUES

INKEY number

-80
-1
-2
-3
-4
-5
-6
-7
-8
-9
-99
-90
-74
-106
-58
-26
-122
-42
-107
-108
-125
-109
- 123
- 124
-27
-28
-43
-44
-59
-60
-77
-75
-91
-92
-61

469

470

Key

Select
Menu
Adjust

INKEY number

- 10
- 11
- 12

PPENDIX G - PLOT CODES

The groups of PLOT codes are as follows:

0- 7
8 - 15

16 - 23
24- 31
32 - 39
40 - 47
48 - 55
56- 63
64 - 71
72 - 79
80 - 87
88- 95
96 - 103

104 - 111
112 - 119
120 - 127
128 - 135
136 - 143
144 - 151
152 - 159
160 - 167
168- 175
176- 183
184 - 191
192 - 199
200 - 207
208 - 215
216 - 223
224 - 231
232 - 239
240 - 247
248 - 255

(&00 - &07)
(&08- &OF)
(&10- &17)
(&18- &lF)
(&20- &27)
(&28- &2F)
(&30- &37)
(&38- &3F)
(&40- &47)
(&48- &4F)
(&50- &57)
(&58- &SF)
(&60 - &67)
(&68 - &6F)
(&70- &77)
(&78- &7F)
(&80- &87)
(&88- &8F)
(&90- &97)
(&98- &9F)

(&AO- &A7)
(&AB- &AF)
(&BO - &B7)
(&BB- &BF)
(&CO- &C7)
(&CB- &CF)
(&DO- &07)
(&08- &OF)
(&EO- &E7)
(&E8- &EF)
(&FO- &F7)
(&F8- &FF)

Solid line including both end points
Solid line excluding final points
Dotted line including both end points
Dotted line excluding final points
Solid line excluding initial point
Solid line excluding both end points
Dotted line excluding initial point
Dotted line excluding both end points
Point plot
Horizontal line fill (left & right) to non-background
Triangle fill
Horizontal line fill (right only) to background
Rectangle fill
Horizontal line fill (left & right) to foreground
Parallelogram fill
Horizontal line fill (right only) to non-foreground
Flood to background
Flood to foreground
Circle outline
Circle fill
Circular arc
Segment
Sector
Block copy/move
Ellipse outline
Ellipse fill
Graphics characters
Reserved for Acorn expansion
Reserved for Acorn expansion
Sprite plot
Reserved for user programs
Reserved for user programs

471

472

Within each block of eight the offset from the base number has the following
meaning:

0 Move cursor relative (to last graphics point visited)
1 Draw relative using current foreground colour
2 Draw relative using logical inverse colour
3 Draw relative using current background colour
4 Move cursor absolute (ie move to actual co-ordinate given)
5 Draw absolute using current foreground colour
6 Draw absolute using logical inverse colour
7 Draw absolute using current background colour

The above applies except for COPY and MOVE where the codes

are as follows:

184 (&B8)
185 (&B9)
186 (&BA)
187 (&BB)
188 (&BC)
189 (&BD)
190 (&BE)
191 (&BF)

Move only, relative
Move rectangle relative
Copy rectangle relative
Copy rectangle relative
Move only, absolute
Move rectangle absolute
Copy rectangle absolute
Copy rectangle absolute

PPENDIX H- VDU COMMANDS

VDU [9ill Extra Meaning
Code bytes

0 @ 0 Does nothing
1 A 1 Sends next character to printer only
2 B 0 Enables printer
3 c 0 Disables printer
4 D 0 Writes text at text cursor
5 E 0 Writes text at graphics cursor
6 F 0 Enables YOU driver
7 G 0 Generates bell sound
8 H 0 Moves cursor back one character
9 I 0 Moves cursor on one space
10 J 0 Moves cursor down one line
11 K 0 Moves cursor up one line
12 L 0 Clears text area
13 M 0 Moves cursor to start of current line
14 N 0 Turns on page mode
15 0 0 Turns off page mode
16 p 0 Clears graphics area
17 Q 1 Defines text colour
18 R 2 Defines graphics colour
19 s 5 Defines logical colour
20 T 0 Restores default logical colours
21 u 0 Disables YOU drivers or deletes current line
22 y 1 Selects screen mode
23 w 9 Multi-purpose command
24 X 8 Defines graphics window
25 y 5 PLOT
26 z 0 Restores default windows
27 [0 Does nothing
28 \ 4 Defines text window
29 I 4 Defines graphics origin
30 A 0 Homes text cursor
31 2 Moves text cursor

4H

474

PPENDIX I - OPERATING SYSTEM COMMANDS

Command

*AUDIO
*CHANNELVOICE
*CONFIGURE
*ECHO
*FX
*GO
*GOS
*HELP
*IF
*IGNORE
*KEY
*POINTER
*QSOUND
*SET
*SETEVAL
*SETMACRO
*SHADOW
*SHOW
*SOUND
*SPEAKER
*STATUS
*STEREO
*TEMPO
*TIME
*TUNING
*TV
*UNSET
*VOICES
*VOLUME

Meaning

Enables/disables the sound system
Assigns a voice to a channel
Defines the CMOS RAM configurations
Reflects a string to the screen
Accesses a particular operating system routine
Starts execution at a given address
Enters the Arthur supervisor
Provides help information about commands
Conditionally executes a command
Sets the printer ignore character
Assigns a string to a soft key
Enables/disables the mouse pointer
Queues a sound for later processing
Assigns a string to a variable
Assigns a value to a variable
Assigns an expression to a variable
Enables/disables automatic shadow mode
Listsall variables defined
Makes a sound
Enables/disables the internal loudspeaker
Displays default values held in CMOS RAM
Sets the stereo position of a channel
Sets the sound system tempo
Prints the day, date and time
Sets the overall sound system tuning
Gives the vertical screen alignment and interlace opts
Deletes variables set by *SET, etc
Displays the available voices and channel map
Sets the overall sound system volume

476

PPENDIX J - ADFS COMMANDS

Command

*ACCESS
*ADFS
*APPEND
*BACK
*BACKUP
*BUILD
*BYE
*CAT
*CDIR
*CLOSE
*COMPACT
*COPY
*CREATE
*DELETE
*DIR
*DISMOUNT
*DRIVE
*DUMP
*ENUMDIR
*EX
*EXEC
*FORMAT
*FREE
*INFO
*LCAT
*LEX
*LIB
*LIST
*LOAD
*MAP
*MOUNT
*MOVE
*OPT
*PRINT
*REMOVE

Description

Sets the file attributes
Selects the Advanced Disc Filing System
Appends subsequent keyboard input to a file
Makes the previously selected directory current
Makes an exact copy of all information from one disc to another
Opens a new file and appends keyboard input to it
Ends an ADFS session and 'parks' the Winchester disc
Displays a directory catalogue
Creates a new directory
Closes all open files in the current filing system
Reorganises the free space on a disc
Copies one or more files from one directory to another
Reserves space for a file
Deletes a file from the current file catalogue
Changes the current directory
Closes all currently open files on a drive
Sets current drive to the drive number specified
Displays a HEX and ASCII dump of a file
Sends a list of filenames to an output file
Displays file catalogue information for a directory
Takes subsequent input from a file
Formats a floppy disc for use with the ADFS
Displays the amount of free space on a drive
Displays file catalogue information for one or more files
Displays the catalogue for the library directory
Displays file catalogue information for the library directory
Sets the current library directory
Displays the contents of a file with line numbers
Loads a file into memory
Shows the distribution of free space on a drive
Initialises an ADFS disc
Moves a file between filing systems
Sets up filing system options
Displays the content of a file in ASCII format
Deletes a file which need not exist

477

478

Command

*RENAME
*RUN
*SAVE
*SETTYPE
*SHUT
*SHUTDOWN
*SPOOL
*SPOOLON
*STAMP
*TITLE
*TYPE
*UP
*WIPE

Description

Changes the name and/or directory of a file
Loads and executes a file
Saves a block of memory as a file
Sets the rype of a file
Closes all open files in all filing systems
Closes down all files and fileservers
Creates a file and sends all subsequent VDU output to it
Appends all subsequent YOU output to an existing file
Date-stamps a file; sets type to &FFD if untyped
Alters the title string of a directory
Displays the content of a file, without line numbers
Moves n levels up the directory structure
Deletes a wildcard file selection

PPENDIX K - *FX COMMANDS

The following is a summary. A complete list is included in the Reference guide.

Command Description

*FX 0 Displays operating system title and version number
*FX 1 Writes to location left free for the user
*FX 2 Specifies stream for all subsequent data input
*FX 3 Specifies stream for all subsequent data output
*FX 4 Controls cursor key status
*FX 5 Selects where subsequent printer output will be sent
*FX 6 Selects printer ignore character
*FX 7 Selects RS423 baud rate for receiving data
*FX 8 Selects RS423 baud rate for transmitting data
*FX 9 Selects flash rate for first colour
*FX 10 Selects flash rate for second colour
*FX 11 Selects keyboard auto-repeat delay
*FX 12 Selects keyboard auto-repeat rate
*FX 15 Flushes buffer
*FX 18 Resets function keys
*FX 19 Waits for vertical sync (vsync)
*FX 20 Resets font definitions
*FX 21 Flushes a selected buffer
*FX 25 Resets a group of font definitions
*FX 106 Selects cursor I activates mouse
*FX 112 Writes screen bank number addressed by VDU driver
*FX 113 Writes screen bank number addressed by display hardware
*FX 114 Sets up automatic shadow mode
*FX 118 Reflects keyboard status in LEOs
*FX 120 Writes keys pressed information
*FX 124 Clears~ condition
*FX 125 Sets ~ condition
*FX 126 Acknowledges ~ condition
*FX 138 Inserts character code into buffer
*FX 139 *OPT equivalent
*FX 143 Issues module service call
*FX 144 *TV equivalent
*FX 153 Inserts character into input buffer

47Q

Command Description

*FX 156 Sets RS423 attributes
*FX 162 Writes a value in CMOS RAM
*FX 163 Sets the dot-dash line pattern length
*FX 178 Enables/disables keyboard
*FX 181 Alters RS423 character actions
*FX 196 *FX 11 equivalent
*FX 197 *FX 12 equivalent
*FX 200 Selects IBreakl and IEscapel effects
*FX 201 Sets keyboard status
*FX 202 Alters keyboard status byte
*FX 203 Sets RS423 'buffer full' limit
*FX 204 Enables/disables RS423 buffering
*FX 211 Selects bell channel number
*FX 212 Selects bell amplification
*FX 213 Selects bell frequency
*FX 214 Selects bell duration
*FX 216 Cancels function key expansion
*FX 217 Resets paged mode line count
*FX 218 Cancels VDU command sequence
*FX 219 Selects ~ key code
*FX 220 Selects ~ character
*FX 221 Selects interpretation of input values 192 to 207
*FX 222 Selects interpretation of input values 208 to 223
*FX 223 Selects interpretation of input values 224 to 239
*FX 224 Selects interpretation of input values 240 to 255
*FX 225 Selects soft key interpretation
*FX 226 Selects IShtttl plus the soft key interpretation
*FX 227 Selects [Qill plus the soft key interpretation
*FX 228 Selects IShttti[Qill plus the soft key interpretation
*FX 229 Selects IEscapel key status
*FX 230 Selects iEscapel effects
*FX 238 Selects numeric keypad interpretation
*FX 247 Sets the IBreakl key effects
*FX 254 Selects effect of IShtttl on numeric keypad
*FX 255 Selects lstvttl and lshlfiiiBreakl startup options

480

IPPENDIX L - PIN CONNECTIONS

VIDEO

All plugs and sockets are viewed from the outside of the Archimedes case
looking in.

9-way D-type socket, SK2.

1 Red
2 Green
3 Blue
4 CSYNC
5 NC
6 Ov
7 Ov
8 Ov
9 Ov

481

SERIAL LINE

PRINTER

482

9-way D-type plug, PLl .

1 2 3 4 5 \ .. 0? () 0 • •

1
2
3
4
5
6
7
8
9

6 7 8 9

DCD
RxD
TxD
DTR
Ov
DSR
RTS
CTS
RI

1 /'v

~
(I

25-way D-type socket, SK3.

13 12 11 10 9 8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

25 24 23 22 21 20 19 18 17 16 15 14

IN CONNECTIONS

1 SfB 13 NC
2 DO 14 NC
3 Dl 15 NC
4 D2 16 NC
5 D3 17 Ov
6 D4 18 Ov
7 D5 19 Ov
8 06 20 Ov
9 07 21 Ov
10 ACK 22 Ov
11 BSY 23 Ov
12 NC 24 Ov

25 Ov

ECONET

5-way DIN socket, SK4.

Q_
GUARD

35241

1 Data
2 Ov
3 Clock
4 Data
5 Clock

4JH

484

NDEX

ABS 215
*ACCESS 105
ACS 216
*ADFS 87
ADFS commands 4 77
ADVAL 216
Advanced Disk Filing System 87
after parameter 186
amplitude 182
AND 202,217
ANFS 87
APPEND 218
arc plotting 14 7
arithmetic operators 26
array operations 39
array, size of 38
arrays 36
ASC33, 219
ASN 220
assigning to variables 24
ATN 220
*AUDIO 383
AUTO 14,221
auto-start options 107
automatic numbering 14

backing up discs 92
bases 199
BASIC

command mode 3
editor error messages 438
editor keys 434
errors 449
keywords 215
keywords, abbreviations 443
screen editor 419

baud rate, printer 206

BBCBASIC 1
BBC Master 128 compatible patterns

154
BEAT 185,222
BEATS 184, 222
BFONT character codes 458
BGET
binary numbers 199
BPUT
*BUILD 112
BY 225
*BYE 87

CALL 226
CASE ... OF ... WHEN ...

OTHER WISE ... ENDCASE 69
CASE 236
*CAT 104
CHAIN 237
channel182
*CHANNELVOICE 383
character codes 453
characters

defining 51
representation of 33

CHR$34, 238
CIRCLE 131, 238
CIRCLE FILL 131
circle plotting 145
CLEAR 239
CLG 239
CLOSE
CLS 241
COLOUR (COLOR) 121, 241
colour palette 122
coloured text 175
colours 120

command files 112 dot-dash lines 138
comments 16 DRAW 251
*COMPACT 108 drawing lines 129
*CONFIGURE 113, 384 *DRIVE 114
conventions 1 drive numbers 89
*COPY 102 duration of sound 184
copying and moving graphics 158
copying discs 92 *ECH0390
copying files 102 EDIT 252
cos 243 editing a program 8
COUNT244 editing lines 10
CREATE233 editor, BASIC 419
cursor movements 50 ELLIPSE 252
cursor, graphics 135 ELLIPSE FILL 132

ellipse plotting 146
DATA 55,245 ELSE 253
data files 109 END 254
debugging 209 ENDCASE 255
DEF 246 ENDIF 256
defining characters 5 I ENDPROC 256
DEG 247 ENDWHILE 257
DELETE 12,247 EOF
deleting EOR 202,258

files and directories 101 ERL 259
lines 11 ERR 260
programs 12 ERROR 260

DIM 36,248 error handling 209
directories 94 error message 3
directories, deleting 101 errors, BASIC 449
disc directories 94 errors, BASIC editor 438
disc options, configuring 113 EVAL 34, 261
disc space 108 *EX 106
discs *EXEC 112

backing up 92 EXP 262
copying 92 EXPR 234
formatting 90 EXT

DIY 250 FALSE 204, 264

4~1\

filename in program using REM 19
files

copying and moving 102
deleting 101

FILL 264
flashing text 176
floating-point numbers 22
flood-fills 157
FN 82,265
FOR ... NEXT63
FOR 266
formatting a disc 90
*FREE 108
function keys 193
functions 82
*FX 390
*FX commands 397, 4 79

GCOL 121, 133,267
GCOL for pattern fills 151
GET 54
GET269
GET$ 54,270
*G0390
*GOS 391
GOSUB ... RETURN 72
GOSUB 271
GOTO 71,273
graphics 5, 129
graphics cursor 135
graphics resolution 119
graphics screen 129
graphics windows 163
Greek alphabet codes 457

halting listings 16
HELP 215,274

*HELP 391
hexadecimal numbers 199
hierarchical directory structure 96
HIMEM 274

*I AM 88
IF ... THEN ... ELSE ... ENDIF 61
IF 275
*IF 391
IF ... THEN ... ELSE 59
*IGNORE 208, 391
indirection operators 195
*INFO 105
INKEY 277
INKEY values 467
lNKEY$ 278
INPUT 53,279
INPUT LINE 54, 280
inputting data 53
INSTALL 281
INSTR 32, 282
!NT 283
integer variables 25
integers 22
joining strings 29

*KEY 193, 391
key presses, reading 54
keyboard 189
keyboard scanning 190
keys, in BASIC editor 434

Latin alphabet codes 453
LEFf$ 30, 283
LEN 32,285
LET24, 286

4~7

4RR

libraries of procedures and functions
83

LIBRARY 83, 287
LINE 129, 288
LINE INPUT 288
lines

deleting 11
editing 10

LIST 15, 289
listing programs 15
listings, halting 16
LISTO 290
LN 191
LOAD 19,292
loading a program 19
LOCAL 76, 293
LOCAL ERROR 194
local error handling 110
local variables 76
LOG 295
*LOGON 88
LOMEM 295
LVAR 196
LVBLNK 132

"'MAP 108
MATCH 234
matrix multiplication 43
memory, reserving 195
MID$ 30,297
MOD 298
MODE 299
modes 465
modes, screen 11 7
MOUSE 300
MOUSE ON 191
mouse 191

MOVE 302
moving files 101

native mode patterns 153
"'NET87
NEW 303
NEXT 304
NOT 305
numeric variables 22

OF 306
OFF 306
OLD 308
ON ... GOTO/GOSUB 72
ON ... PROC79
ON308
OPENIN 311
OPENOUT 312
OPENUP 312
operating guidelines iv
operating system commands 383, 4 75
operators

in conditional expressions 59
priority of 27

•OPT 106
OR102,313
ORIGIN 314
OSCLI314, 383
OTHERWISE 316

PAGE 316
palette, colour 122
parallelogram plotting 141
parameters in procedures 76
parameters, value-result 79
pathnames in ADFS 100
pattern fills I 49

patterns
defining 151
giant 155
simple 156

PI 317
pin connections 481
pitch 182
PLOT 135,318
PLOT codes 4 71
plotting

arcs 147
circles 145
ellipses 146
parallelograms 141
rectangles 140
sectors 148
segments 149
simple lines 138
sprites 171
triangles 139

plug and socket connections 481
plug connections iii
POINT 318,319
*POINTER 392
POS320
PRINT 45, 321
print formatting 45
printer ignore characters 207
printers, connecting 205
printing at the graphics cursor 159
PROC 75,325
procedures, defining and calling 75
procedures, recursive 80
programs

deleting 12
editing 8
loading 19

renumbering 13
saving 18

PTR

*QSOUND 392
QUIT 327

RAD 327
READ55,328
READ 328
RECf ANGLE 130, 328
RECf ANGLE FILL 130
rectangle plotting 140
recursion 80
REM 16, 330
*RENAME 103
RENUMBER 13,331
renumbering in BASIC editor 424
renumbering programs 13
REPEAT ... UNTIL 67
REPEAT 332
REPORT 332
REPORT$ 333
RESTORE333
RESTORE ERROR 334
RETURN 334
RIGHT$ 30, 335
RND 337
RUN 338

SAVE 18,338
saving a program 18
*SCHOOSE 171
*SCOPY 170
screen coordinate system 129
screen modes 11 7, 465
*SDELETE 1 70

489

490

searching and replacing, in BASIC
editor 429

sector plotting 148
SEDIT 165
segment plotting 149
*SET 392
*SETEVAL 393
*SETMACRO 393
*SGET 173
SON 339
*SHADOW 118,393
shadow modes 118
*SHOW 393
SIN 340
*SLOAD 170
*SMERGE 171
SOUND 341
*SOUND 393
sound 181, 182
SPC342
*SPEAKER 394
splitting strings 29
*SPOOL 113
sprite * commands 169
sprite editor 165
sprites 165
SQR343
*SRENAME 169
*SSAVE 170
*STATUS394
STEP 344
STEREO 181,344
*STERE0394
STOP 345
STOREA 232
STR$34, 346
STRING32

string variables 28
STRING$ 347
strings

copying 32
joining 29
length of 32
replacing part of 31
splitting 29

STSTORE232
SUM 347
SWAP 348
SYS 349

TAB49,351
TAN 351
Teletext character codes 461
teletext mode 175
TEMPO 185, 352
•TEMPO 394
text cursor 48
text windows 161
THEN 353
TIME 354
*TIME 394
TIME$ 355
TINT 126, 356
T0357
TOKENADDR 235
TOP 357
TRACE 212,358
triangle plotting 139
TRUE 204, 359
*TUNING 395
*TV 395

*UNSET 396
UNTIL 359

USR 360

VAL34,361
value-result parameter passing 79
variable names 21
variables 21
variables, assigning to 24
VARIND 231
VDU 50,361
VDU commands 369, 473
VOICES 181,363
*VOICES 395
*VOLUME 395
VPOS 363

WAIT 364
WHEN 365
WHILE ... ENDWHILE 68
WHILE 366
WIDTH 367
wildcards, in BASIC editor 431
windows 161

I operator 197
$ operator 198
? operator 195
@% in PRINT 4 7
I in function key definitions 194
I operator 197

491

...

()

~ Acornt

