
RISC OS 3

Programmer's Reference Manual

Volume l

Acorn~

RISC OS 3

Programmer's Reference Manual

Volume l

1-ii

Copyright © 1992 Acorn Computers Limited . All rights reserved .

Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted , in any form or by
any means, electronic, mechanical. photocopying, recording or otherwise, or
stored in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
Acorn Computers Limited in good faith. However, Acorn Computers Limited
cannot accept any liability for any loss or damage arising from the use of any
information or particulars in this manual.

If you have any comments on this manual. p lease complete the form at the back of
the manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your
supplier is available to help reso lve any queries you might have.

Within this publication, the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation' .

ACORN, ACORNSOFT. ACORN DESKTOP PUBLISHER, ARCHIMEDES, ARTHUR.
ECONET, MASTER. MASTER COMPACT. THE TUBE, VIEW and VIEWSHEET are
trademarks of Acorn Computers Limited.

Adobe and PostScript are trademarks of Adobe Systems Inc
ARM is a trademark of Advanced RISC Machines Ltd
TEX is a trademark of the American Mathematical Society
lmageWriter, LaserWriter and Macintosh are trademarks of Apple Computer Inc
DBase is a trademark of Ashton Tate Ltd
UNIX is a trademark of AT&T
Atari is a trademark of Atari Corporation
AutoCAD is a trademark of Auto Desk Inc
Amiga is a trademark of Commodore-Amiga Inc
Commodore is a trademark of Commodore Electronics Limited
SuperCalc is a trademark of Computer Associates
Corel Draw is a trademark of Corel Corporation
VT is a trademark of Digital Equipment Corporation
I st Word Plus is a trademark of GST Holdings Ltd

Deskjet. HP, HPGL, LaserJet and Paint]et are trademarks of Hewlett-Packard
Corporation
Colourjet is a trademark of lntegrex Ltd
IBM is a trademark of International Business Machines Corporation
lTC Zapf Dingbats is a trademark of International Typeface Corporation
Helvetica and Times are trademarks of Linotype Corporation
Lotus 123 is a trademark of The Lotus Corporation
MS-DOS is a trademark of Microsoft Corporation
MultiSync and NEC are trademarks of NEC Limited
Epson, EX and FX are trademarks of Seiko Epson Corporation
Sun is a trademark of Sun Microsystems Inc
Ethernet is a trademark of Xerox Corporation

All other trademarks are acknowledged

Published by Acorn Computers Limited
ISBN for complete set of five volumes I 85250 II 0 3
ISBN for this volume: I 85250 Ill I
Edition I
Part number 0470,291
Issue I, December 1992

1-iii

1-iv

Contents

About thi s manual 1-ix

Part 1 -Introduction 1-1
An introduction to RISC OS ! -3
ARM Hardware 1-9
An introd uct ion to SWis 1-23
• Commands and the CLI 1-33
Generating and handling errors 1-41

OS_Byte 1-49
OS_ Word 1-59
Software vectors 1-63
Hardware vectors 1- 1 II
Interrupts and handling them 1- 117
Events 1-145
Buffers 1-16 1
Communicat ions within RISC OS 1- 175

Part 2- The kernel 1-195
Modules 1- 197
Program Environment 1-283
Memory Management 1-337
Time and Date 1-399
Conversions 1-44 1
Extension ROMs 1-485

Part 3- Kernel input/output 1-487
Character Output 1-489
VDU Drivers 1-527
Sprites 1-745
Character Input 1-835
The CLI 1-923
The rest of the kerne l 1-935

1-v

1-vi

Part 4- Using filing systems 2-1
Introduction to filing systems 2-3
FileSwitch 2-9

FileCore 2-195

ADFS 2-261
RamFS 2-309
DOSFS 2-317
NetFS 2-337
NetPrint 2-385
PipeFS 2-405
ResourceFS 2-407
DeskFS 2-419
DeviceFS 2-421
Serial device 2-439
Parallel device 2-4 77
System devices 2-485
The Filer 2-489
Filer_Action and FilerSWls 2-503
Free 2-511

Part 5 - Writing filing systems 2-519
Writing a filing system 2-521
Writing a FileCore module 2-587
Writing a device driver 2-597

Part 6- Networking 2-607
Econet 2-609
File server protocol interface 2-693

The Broadcast Loader 2-727
BBC Econet 2-729
Hourglass 2-733
NetStatus 2-745

Part 7 - The desktop 3-1
The Window Manager 3-3
Pinboard 3-293
Drag A Sprite 3-299

The Fi Iter Manager 3-303
The TaskManager module 3-313
TaskWindow 3-321
SheiiCLI 3-329

Part 8 - Non-kernel input/output 3-333
Colour'frans 3-335
The Font Manager 3-403
SuperSample module 3-519

Draw module 3-523

Part 9- Printing 3-553
Printer Drivers 3-555
Printer Dumpers 3-663

PDumperSupport 3-679
Printer definition files 3-697
MakePSFont 3-733

Part 10 -lnternationalisation 3-735
MessageTrans 3-737
International module 3-759
The Territory Manager 3-785

Part 11 - Sound 4-1
The Sound system 4-3
WaveSynth 4-77

Part 12- Utilities 4-81
The Buffer Manager 4-83
Squash 4-10 I
ScreenBiank 4-107

Part 13- Hardware support 4-113
Expansion Cards and Extension ROMs 4-1 15
Floating point emulator 4-163
ARM3 Support 4-185
The Portable module 4-195
Joystick module 4-207

Part 14 - Programmer's support 4-211
Debugger 4-213
The shared C library 4-231
BASIC and BASICTrans 4-337
Command scripts 4-345

1-vii

1-\/iii

Appendixes and tables 4-353
Appendix A: ARM assembler 4-355
Appendix B: Warnings on the use of ARM assembler 4-377
Appendix C: ARM procedure cal l standard 4-393
Appendix D: Code file formats 4-413
Appendix E: File formats 4-453

Appendix F System variables 4-495
Appendix G The Acorn Terminal Interface Protocol 4-503
Appendix H: Registering names 4-545
Table A: YOU codes 4-551
Table B: Modes 4-553
Table C: File types 4-557
Table D: Character sets 4-561

Indexes lndex-1
Index of • Commands Index-3
Index of OS_Bytes Index- II
Index of OS_ Words lndex-15
Numeric index of Service Calls lndex-17
Alphabetic index of Service Calls Index-21
Numeric index of SWls Index-25
Alphabetic index of SWls lndex-43
Index by subject Index-61

About this manual

Summary of contents

Part 1

This manual gives you eta iled information on the RISC OS operating system, so
that you can write prog ams to run on Acorn computers that use it.

Part I introduces you to the hardware used to run RISC OS, and to the fundamental
concepts of how RISC OS works.

Parts 2 to 5

Parts 2 to 5 inclusive gi e you more detailed information on separate parts of
RISC OS

• Part 2 describes the kernel (or central core) of RISC OS

• Part 3 describes the filing systems

• Part 4 describes the window manager

• Part 5 describes the system extensions to RISC OS

We've laid out the inforrration in these parts as consistently as possible, to help
you find what you need . Each chapter covers a specific topic, and in genera l
includes:

• an Introduction, so YOf-1 can tell if the chapter covers the topic you are looking for

• an Overview, to give you a broad picture of the topic and help you to learn it for
the first time

• Technical Details , to use for reference once you have read the Overview

• SWI calls, described in detail for reference

• • Commands, described in detail for reference

• Application notes, to help you write programs

• Example programs, to illustrate the points made in the chapter, and on which you
can base your own programs.

1-ix

Conventions used

Appendices

Tables

The Appendices contain :

• an introduction to writing assembler for the ARM chip, on which RISC OS runs

• information of interest to RISC OS programmers writing compilers and other
language-based tools

• file formats used by current RISC OS applications

The tables gather together information from the whole manual, giving lists that
you will find useful for quick reference.

Indexes

The separate volume of Indexes contains:

• an index of • Commands

• an index of OS_Byte calls

• an index of OS_ Word calls

• a numeric index of SWI calls

• an alphabetic index of SW! calls

• an index by subject.

Conventions used

1-x

Certain conventions are used in this manual:

Hexadecimal numbers

Hexadecimal numbers are extensively used. They are always preceded by an
ampersand . They are often followed by the decimal equivalent which is given
inside brackets:

&FFFF (65535)

This represents FFFF in hexadecimal, which is the same as 65535 in ordinary
decimal numbers.

About this manual

Typefaces

Courier type is used for the text of example programs and commands, and any
extracts from the RISC OS source code. Since all characters are the same width in
Courier, this makes it easier for you to tell where there should be spaces.

Bold Courier type is used in some examples to show input from the user. We
only use it where we need to distinguish between user input and computer output.

Command syntax

Special symbols are used when defining the syntax for commands:

• Italics indicate that you must substitute an actual value. For example,
filename means that you must supply an actual filename.

• Braces indicates that the item enclosed is optional. For example, [K) shows
that you may omit the letter 'K'.

• A bar indicates an option. For example, 0 11 means that you must supply the
value 0 or I .

Programs

Many of the examples in this manual are not complete programs. In general:

• BBC BASIC examples omit any line numbering

• BBC BASIC Assembler programs do not show the structure needed to perform
the assembly

• ARM Assembler programs assume that header files have been included that
define the SWI names as manifests for the SWI numbers. See the chapter
entitled An introduction to SWis on page 1-23

• C programs assume that similar headers are included; they also do not show
the inclusion of other headers, or the calling of main ().

1-xi

Finding out more

Finding out more

Reader comments

1-xii

For how to set up and maintain your computer, refer to the Welcome Guide supplied
with your computer. The Welcome Guide also contains an introduction to the desktop
which new users will find particularly helpful.

For details on the use of your computer and of its application suite. refer to the
RISC OS User Guide and RISC OS Applications Guide supplied with it.

If you wish to write BASIC programs on your RISC OS computer you will find the
BBC BASIC Reference Manual useful.

Your Acorn supplier has available the Acorn Desktop C and Acorn Desktop Assembler
products. which you can use to write programs in (respectively) C and ARM
assembler. Both products run in a desktop environment with full supporting tools .
The manuals for both products are available separately if required: they are
entitled Acorn ANSI C Release 4 and Acorn Assembler Release 2.

If you have any comments on this Manual. please complete and return the form on
the last page of the volume of Indexes to the address given there.

Part 1 - Introduction

1-1

1-2

1

Introduction

Structure

An introduction to RISC OS

R!SC OS is an operating system written by Acorn for its computers. Like any
operating system , it is designed to provide the facilities that you , the programmer,
need to control your computer and to get the most out of the programs you write
for it

RISC OS has a kernel which contains the main functions that the operating system
needs. To this are added various modules that extend the system, adding such
facilities as filing systems, a window manager, a font manager, and so on . These are
called system extension modules:

System
..,..1--------'~ extension

modules

Figure l . l The structure of RISC OS

The modules and the kernel provide their facilities very similarly, and there are few
occasions when you will be able to distinguish whether the facilities you are using
are provided by the kernel or by a system extension module. You are most likely to
notice the difference if you wish to alter or replace part of the operating system.

1-3

Facilities

Facilities

You can view RISC OS as a collection of routines that provide you with a wide range
of facilities . You can get a good overview of the range t hat is covered from the
earlier Contents pages of this manual

This co llection of routines can be broadly divided into three levels:

• those that RISC OS itself uses to automatica lly perform low-level tasks , such
as interrupt handling

• those that provide sophisticated and powerful interfaces for you to use from
programs, which are known as Software Interrupts, or SWis for short

• those that provide simpler calls that can be used from the command line as
well as from programs- these are the • Commands that you are probably
already familiar with.

There are chapters later in this part of the manual that cover the above topics in
more detail They are entitled:

• Interrupts and handling them

• An introduction to SWis

• • Commands and the CLI .

Altering and extending RISC OS

1-4

You can easily alter or extend RISC OS, because so much of it is written as
modules.

Modules

Each of these modules conforms to a standard, which means that the facilities
provided by the module are integrated into the system as if they were 'built-in' . You
too can write modules that conform to this standard, so you can add things to
RISC OS as you please.

You can also rewrite any of the standard RISC OS modules. Your replacement must
provide the same entry points, and return va lues in the same way- but its internal
workings can be functionally different See the chapter entitled Modules on
page 1-197 fo r further details.

An introduction to RISC OS

Vectors

Because the kernel is so large, it would not be easy for you to change it in the same
way. You can instead make changes by using vectors.

A vector is a chain of entries that RISC OS uses to decide where to pass control to
so it can perform a given function. Most vectors are used by SW!s. You can claim a
vector. and redirect those SW!s to code of your own. Your code must accept the
same input and provide similar output to the original SWI, but it can behave in a
totally different manner- just as if you are replacing a module.

Some vectors are used by just one SWI, but others are used by several SW!s that
perform simi lar functions. You can change how a whole group of SW!s behave by
claiming just one vector- for example. SW!s that output characters.

A few vectors are not used by SW!s at all, but instead by other parts of RISC OS, to
perform functions for which SW!s do not provide an interface.

For more information, see the chapter entitled Software vectors on page 1-63.

How RISC OS is written

Much of RISC OS- including the kernel- is written in ARM assembler. Some other
parts- such as the Filer_Action system extension module- are written inC, and so
need the Snared C Library to work.

Of course. RISC OS can only be used on ARM-based computers.

To use RISC OS effectively, it helps to have a working knowledge of the ARM
processor and of ARM assembler yourself. The chapter entitled ARM Hardware on
page 1-9 provides a brief introduction to the ARM processor and the set of chips
that support it The appendix entitled Appe11dix A: ARM assembler on page 4-355 will
give you a more detailed introduction to the ARM's assembly language

How RISC OS is supplied
Because RISC OS is relatively compact, it is cost-effective to supply it in ROM
chips. This also has advantages:

• it is much faster to start, as it does not need to be loaded into memory

• it cannot be easily lost or damaged, unlike disc-based operating systems.

There is an attendant disadvantage:

• it is harder to upgrade ROMs than a disc.

In practice. upgrades are done by patches that claim vectors or replace modules. as
outlined above.

1-5

The history of RISC OS

The history of RISC OS

Arthur

1-6

This manual describes RISC OS 3, which was developed from RISC OS 2. This in
turn derives from the Arthur operating system, which was the original operating
system written for the Archimedes computer.

RISC OS is designed to be as compatible as possible with Arthur. Consequently, it
supports some features of Arthur which have now been superseded. One example
is the interrupt handling system, which has been much improved under RISC OS.
However, old-style interrupt handlers written to run under Arthur will still work.

Two different versions of RISC OS 2 were released :

• RISC OS 2.00 was the original release

• RISC OS 2.0 I was a later release which added support for the Archimedes 500
series machines; it was not fitted to other machines.

The differences between these two versions are so few, that unless we need to
differentiate between them we sha ll refer to them both as 'RISC OS 2'.

There are cu rrently three different versions of RISC OS 3:

• Version 3.00 was the initial release , made for the A5000 computer.

• Version 3.10 was a considerably improved release that added support for other
Acorn computers. including both older RISC OS computers , and the new A4,
A30 I 0, A3020 and A4000 computers.

• Version 3.11 has very minor differences from 3.1 0, but its programmer's
interfaces are exactly the same, and you can treat it as identical.

Again, unless we need to differentiate between versions, we shall refer to them all
as 'RISC OS 3'.

There are very few remaining users of Arthur, and we consider it to be obsolete. You
should not worry about making your programs compatible with Arthur.

In view of this, we do not distinguish features and facilities that are available under
RISC OS but not under Arthur. However, you will find most of the facilities of Arthur
described in this manual, because they have been subsumed into RISC OS If you
need full details of how Arthur did things , so you can maintain old programs, you'll
have to refer to the Programmers Reference Manual that was released with Arthur.
Don 't throw your old manuals away- keep them!

An introduction to RISC OS

Some minor parts of the Arthur operating system, which were in the Programmers
Reference Manual released with Arthur, are not in this manual. This is because we
now consider them to be obsolete, even though they're generally still supported
Instead, we've documented the preferred way of getting the same results under
RISC OS. Likewise, some other parts of Arthur are only referred to in passing.

RISC OS 2 documentation

Because some users may prefer not to upgrade from RISC OS 2 to RISC OS 3, we
advise you to write applications so that they will still run under both versions. This
will maximise your potential market with very little extra effort. To help you in this,
we say explicit ly whenever a facility or feature is specific to a version of RISC OS.

We've derived this manual directly from the RISC OS Programmer's Reference Manual
written for RISC OS 2. Any changes or additions you notice have been made for one
of these reasons:

• To cover a change or addition to RISC OS.

In such cases this is explicitly stated, together with information on the
versions of RISC OS to which the change or addition are applicable.

• To improve the clarity and accuracy of the original RISC OS Programmer's
Reference Manual. or to correct an error.

Such improvements and corrections are not explicitly identified. You may
assume that. where this manual differs from the previous edition, it is this
later edition that is correct.

1-7

1-A

2

Introduction

ARM chip set

ARM Hardware

To get the most out of your RISC OS computer, some knowledge o f the hardware is
important. This chapter introduces you to those features that are common to all
RISC OS computers.

Each current RISC OS computer has a set of four chips in it. all designed by Acorn
Computers Limited :

• an ARM (Acorn RISC Machine) processor, which does the main processing of the
computer

• a VIDC (Video Controller) chip, which provides the video and sound outputs of
the computer

• an IOC (Input/Output Controller) chip, which provides the facilities to manage
interrupts and peripherals within the computer

• a MEMC (Memory Controller) chip, which acts as the interface between the ARM,
the VIDC chip, Input/Output controllers (including the IOC chip), and the
computer's memory.

Together these ch ips are known as the ARM chip set.

Some machines combine the functionality of one or more of these chips as
macrocells on a single chip: for example the A30 I 0 and A3020.

Other components

The other main electronic components of a RISC OS computer are:

• ROM (Read Only Memory) chips containing the operating system

• RAM (Random Access Memory) chips

• Periphera l con trollers (for devices such as discs, the serial port, networks and
so on).

Exactly which components and devices are present will depend on the model of
computer that you have; see the Guides supplied with your computer for further
details .

1-9

ARM chipset

Schematic

1-10

The diagram below gives a schematic of an Archimedes 400 series computer, which
may be viewed as typical of a RISC OS computer:

Address Bus

ARM

Data Bus

1/0 Data Bus

Figure 2. I Architecture of an Archimedes 400 series computer

1/0
Expansion

cards

ARM Hardware

The ARM processor

The ARM is a RISC (Reduced Instruction Set Computer) processor- it has a
comparatively small set of instructions. This simplicity of design means that the
instructions can be made to execute very quickly.

RISC and CISC processors

A traditional CISC (Complex Instruction Set Computer) processor, as used for the
main processor of a computer, provides a much larger and more powerful range of
instructions, but executes them more slowly.

A CISC processor typically spends most of the time executing a small and simple
subset of the avai lable instructions. The ARM's instruction set closely matches this
most common ly used subset of instructions. Thus, for the majority of the time , the
performance of the ARM is higher than that of comparable CISC chips; it is
executing sim ilar instructions more quickly.

The more complex instructions of a CISC chip are generally only occasionally used.
For the ARM to perform the same task, several instructions may be necessary. Even
then , the ARM st ill has a comparable performance, as it is replacing a single slow
instruction by severa l fast instructions.

Advantages of RISC

In summary, the simple RISC design of the ARM has these advantages:

• it has a high performance

• it uses much less power than comparable CISC chips

• it is cheaper to produce than CISC processors , making RISC OS computers
cheaper for you to buy

• it is much simpler to learn how to program the chip effectively.

ARM 2 and ARM 3

Currently Acorn uses two different versions of the ARM processor. The newer
ARM 3 is clocked at about three times the speed of the older ARM 2, and has a
4Kbyte on-chip cache. These two features mean that it delivers some three times
the power of the ARM 2 (13.5 million instructions per second, or MIPS, compared
to some 4- 5 MIPS for the ARM 2) .

From the programmer's point of view, there is little difference between the two
processors . The ARM 3 supports the full instruction set of the ARM 2, and provides
a few extra instructions: all but one of these instructions are used to control the
ARM 3's cache.

1-11

The ARM processor

1-1 ::>

Word size

The ARM uses 32 bit words. Each instruction fits in a single word. At any one time,
the processor is dealing with three instructions:

• one instruction is executed

• the next instruction is simultaneously decoded

• the one after that is fetched from memory

This is known as pipelining.

The ARM has a 32 bit data bus , so that complete instructions can be fetched in a
single step. Its address bus is 26 bits wide, so it can address up to 64 Mbytes of
memory (16 Mwords) .

Processor modes

The ARM has four different modes it can operate in :

• User Mode, the mode normally used by applications

• Supervisor Mode (SVC Mode) used mainly by SWI instructions

• Interrupt Mode (IRQ Mode) used to handle peripherals when they issue
interrupt requests

• Fast Interrupt Mode (FlO Mode) used to handle peripherals that issue fast
interrupt requests to show that they need prompt attention .

The last three modes are privileged ones that allow extra control over the
computer. They have been used extensively in writing RISC OS.

Changing mode

Note that if you force the ARM to change mode (usually done using a variant of the
TEQP instruction) you must follow this with a no-op (usually done using
MOV RO , RO). This is to avoid contention, giving the ARM time to finish writing to
the registers for one mode before switching to the other mode.

ARM Hardware

Registers

The ARM contains twenty-seven 32 bit registers; you can access sixteen of these in
each of the modes. Some of the registers are shared across different modes, whi lst
others are dedicated to one mode. In the diagram below, registers dedicated to a
pri vi leged mode have been shaded light grey:

User Mode SVCMode IRQ Mode

RO

R1 ... R6

R7

R8

R9

R10

R11

R12

R13 R13_svc R13_irq

R14 R14_svc R14_irq

R15 (PC/PSR)

Figure 2.2 ARM registers

Only two of the registers have specia l functions :

FIQMode

RS_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

• R 15 is used as the program cou nter (PC) and processor status register (PSR)

• R14 (and R14_svc, R14_irq, R14_fiq) are used as subroutine link registers

One other set of registers is conventionally used by R1SC OS for a specia l purpose:

• R 13 (and R 13_svc, R 13_irq) are used as private stack pointers for the different
processor modes.

All the remaining registers are general purpose.

1-13

The ARM processor

1-14

R15 - program counter and status register

R 15 contains 24 bits of program counter and 8 bits of processor status register:

31 30 29 28 27 26 252 1 0

Program Counter (PC)

Figure 2.3 Bit usage in R 15 by the PC and the PSR

• bits 0 and I are the processor mode flags MO and M I

00 User mode
01 FlO mode
10 IRQ mode
II SVC mode

• bits 2 - 25 are the program counter

• bit 26 is the FlO disable flag F

0 Enable
Disable

• bit 27 is the IRQ disable flag I

0 Enable
Disable

• bits 28- 31 are condition flags :

V oVerflow flag
C Carry flag
Z Zero flag
N Negative flag

The program counter must always be word aligned. and so the lowest two bits of
the address must always be zero. To maximise the available address space. these
two bits are not stored in R 15 , but are appended to the program counter when
fetching instructions, thus forming a 26-bit address.

R14- subroutine link registers

R 14 is used as the subroutine link register, and receives a copy of the return PC and
PSR when a Branch and Link instruction is executed. It may be treated as a general
purpose register at all other times. Similarly, R 14_svc, R 14_irq and R 14_fiq are
used to hold the return values of R 15 when interrupts and exceptions arise, when
Branch and Link instructions are executed within supervisor or interrupt routines,
or when a SWI instruction is used.

ARM Hardware

R13 - private stack pointers

R 13 (and R 13_svc, R 13_irq) are conventionally used by RISC OS as private stack
pointers for each of the processor modes.

If you write routines that are called from User mode and that run in SVC or IRQ
mode, you will need to use some of the shared registers ROtoR 12. You will
therefore need to preserve the User mode contents on a stack before you alter the
registers, and restore them before returning from your routine.

Note that the SVC and IRQ mode stacks must be full descending stacks, ending at
a megabyte boundary. You are strongly advised not to change the system stack
locations; if you do have to, you must be aware that they are reset to their default
positions when errors are generated, and when applications are started.

FlO routines need a faster response, so there are seven private registers in FlO
mode. In most cases these will be enough for you not to need to use any of the
shared registers, and so you will be spared the overheads of saving them to a stack.
If you do need to do so, you should for consistency use R 13_fiq as the stack
pointer.

You can use R 13 and/or R 13_fiq as conventional registers if you do not need to use
them as stack pointers .

Instruction set

The VIDC chip

You will find details of the ARM's instruction set in the appendix entitled Appendix
A: ARM assembler on page 4-355.

The VIDC chip controls and provides the computer's video and sound outputs. The
data to control these systems is read from RAM into buffers in the chip, processed,
and converted to the necessary analogue signals to drive the display's CRT guns
and the sound system's amplifier.

The VIDC chip can be programmed to provide a wide range of different display
formats. RISC OS uses this to give you its different screen modes. Likewise, you
can program the way the sound system works.

Buffers

The VIDC chip has three buffers for its input data. These are used for:

• video data

• cursor data

• sound data .

1-1!;

The VI DC chip

Video

Each of these buffers is a FIFO (first-in, first-out). The VI DC chip requests data from
RAM as it is required , using blocks of four 32-bit words at a time. The MEMC chip
controls the addressing and fetching of the data under direct memory access
(DMA) control.

Data from the video buffer is serialised by the VIDC chip into I. 2, 4 or 8 bits per
pixel. The data then passes through a colour look-up palette . The output from the
palette is passed on to three 4-bit digital to analogue converters (DACs). which
provide the analogue signals needed to drive the red. green and blue cathode ray
tube (CRT) guns in the display monitor.

The palette has 16 registers . each of which is 13 bits wide . This supports a choice
from 4096 different colours or an external video source.

The registers that control the video system give a wide choice of display formats

• the pixel rate can be selected as '13 . 112, 213 or l times the clock rate ofVlDC (on
older machines this is always 24M Hz. but on newer machines you may also
select clock rates of 25.175 or 36M Hz)

• the horizontal timing can be controlled in units of 2 pixels

• the vertical timing can be controlled in units of a raster

• the screen border can be set to any of the 4096 possible colours

• the width of the screen border can be altered .

If needed. support is provided for:

• interlaced displays

• external synchronisation

• very high resolution monochrome modes (up to 96 MHz pixel rate) .

Cursor

1-16

The cursor data controls a pointer that is up to 32 pixels wide, and any number of
rasters high (although RISC OS restricts the cursor to a maximum of 32 rasters in
height). Its pixels can be transparent (so the cursor can be any shape you desire) .
or can use any three of the 4096 possible colours .

The cursor may be positioned anywhere on the screen within the border.

Sound

The IOC chip

ARM Hardware

The sound data consists of digital samples of sound. The VI DC chip can support up
to eight separate channels of sound. It provides eight stereo image registers, so the
stereo position of each channel can be independently set

The VI DC chip reads data from the buffer at a programmable rate . The data is
passed to an eight bit DAC, which uses the stereo image registers to convert the
digital sample to a stereo analogue signal. This is then output to the computer's
internal amplifier.

The IOC chip provides the facilities to manage interrupts and peripherals within
your RISC OS computer. It controls an 8 to 32 bit Input/Output (1/0) data bus to
which on-board peripherals and any 1/0 expansions are connected. It also provides
a set of internal functions that are accessed without any wait states, and a flexible
control port

Internal functions

The following internal functions are provided by the IOC chip:

• Four independent 16 bit programmable counters. 1\vo are used as baud rate
generators- one for the keyboard, the other for the serial port. Another
(Timer 0) is used to generate system timing events. The last timer (Timer I) is
unused by RISC OS, and you can program it for your own purposes.

• Six programmable bidirectional control pins.

• A full-duplex , bidirectional seria l keyboard interface.

• Interrupt mask, request and status registers for both normal and fast
interrupts.

Peripheral control

The IOC is connected to the rest of the ARM chip set by the system bus. It provides
all the buffer control required to interface this high speed bus to the slower 1/0 or
expansion bus . The IOC supports:

• sixteen interrupt inputs (14 level sensitive, 2 edge-triggered)

• seven external peripheral select outputs

• four programmable peripheral timing cycles (slow, medium, fast and 2 MHz
synchronous).

1-17

The MEMC chip

The MEMC chip

Both the IOC and peripherals are viewed as memory-mapped devices. Most
peripherals are a byte wide, and word aligned. A single memory instruction (LDRB
to read , or STRB to write) can be used to:

• access the IOC control registers, or to

• select both a peripheral and the timing cycle it requires, and access it.

The IOC can support a wide range of peripheral controllers, including slower,
low-cost peripheral controllers that require an interruptible l/0 cycle .

The MEMC chip interfaces the rest of the ARM chip set to each other and to the
computer's memory. It uses a single clock input to provide all the timing signals
needed by the chip set.

Memory support

1-18

MEMC provides the control signals needed by the memory:

• timing and refresh control for dynamic RAM (DRAM)

• control signals for several access times of read-only memory (ROM)- 450ns,
325ns, and 200ns where MEMC is clocked at 8MHz, and lower (in inverse
proportion) where MEMC is clocked at l 0 or l2MHz.

Up to 32 standard DRAMs can be driven, giving 4 Mbytes of real memory using I
Mbit devices.

Fast page mode DRAM accesses are used to maximise memory bandwidth, so that
slow memory does not slow the system down too much.

Memory mapping

MEMC maps the physical memory into a !6 Mbyte slot. the base of which is at
32 Mbytes. RISC OS does not address this slot directly, though; instead it
addresses another 32 Mbyte logical slot within the 64 Mbytes logical address space
supported by the ARM's 26-bit address bus. Each page of the slot that RISC OS
addresses can be:

• unmapped

• mapped onto one page of the physical memory

• mapped onto many pages of the physical memory.

RISC OS can only read and write from pages that have a one-to-one mapping.
One-to-many mapping is used to 'hide' pages of applications away when several
applications are sharing the same address (&8000 upwards) under the Desktop.
These pages are, of course, not held at &8000.

ARM Hardware

The computer's physical memory is divided into physical pages. Likewise, the
32M bytes of logica l space is divided into logica l pages of the same size. MEMC
keeps track of which logica l page corresponds to which physical page, mapping the
26 bit logical addresses from the ARM's address bus to physical addresses within
the much smaller size of RAM.

Page size

MEMC has 128 pages to use for its memory mapping. Each page has its own
descriptor entry held in content-addressable memory (or CAM). This simple
structure allows the translation (of logica l address to physical address) to be
performed quickly enough that it does not increase memory access time.

In general. all 128 pages are used to map the RAM. Note that this is not always the
case; for example, the Archimedes 305 uses on ly 64 pages .

If MEMC does use all 128 pages (or any other constant number), then :

• as the size of the computer's physical memory increases, the size of each page
increases- a larger amount of physical memory is being split into the same
number of pages

• as the size of each page increases, the number of logical pages decreases -the
same amount of logical memory (32 Mbytes) is being split into larger pages .

MEMC addresses a maximum of 4 Mbytes of memory. Machines with more than
4 Mbytes fitted have an extra MEMC chip slaved to the master MEMC chip for each
additional 4 Mbyte fitted, so the page sizes are the same as for a 4 Mbyte machine.

The table below shows this. The values are those used in Archimedes computers,
and may be viewed as typical of RISC OS computers. They should not be relied on
for programming though ; future RISC OS computers may not use 128 pages per
MEMC chip, leading to anomalies such as those in the first row (the Archimedes
305) :

Physical RAM size Page size No. of Logical pages

0.5 Mbyte 8 Kbytes 4K

1 Mbyte 8 Kbytes 4K

2 Mbytes 16 Kbytes 2K

4 Mbytes 32 Kbytes 1 K

8 Mbytes 32 Kbytes 1 K

16 Mbytes 32 Kbytes 1 K

Figure 2.4 Page sizes for Archimedes computers

1-19

The MEMC chip

1-20

If you need to find out a machine's page size and so on, use OS_ReadMemMaplnfo
(page 1-383).

Number of pages programmed

RISC OS programs a minimum of 128 pages . even if it actually uses fewer pages
This is so that:

• random hits in the unused pages don't happen

• extra MEMC chips can be slaved to the master MEMC chip, allowing machines
to support 8 Mbytes or more of real memory.

Protection modes and levels

MEMC can run in three different protection modes: Supervisor, Operating System,
and User. Each page of memory has one of three different protection levels : 0, I
and 2. (There is also a level 3, which is identical to level 2.) Whether you have read
and/or write access to a page of memory is determined by MEMC's current
protection mode, and by the protection level of that page:

• Supervisor mode is the most privileged mode, adopted whenever the ARM is
in one of its privileged modes (SVC. IRQ or FlO) . It gives read/write access to
pages of all protection levels, so the whole address space can be freely
accessed.

• Operating System mode is entered by setting a bit in MEMC's control register,
which can only be altered if the ARM is in a privileged mode (although this bit
remains set when the ARM leaves such a mode) . It allows read/write access to
pages of protection level 0 or I, and read-only access to pages of protection
level 2. The page protection levels under RISC OS are such that it it is a more
privileged mode than User mode when accessing logically mapped RAM, but
acts as User mode in all other cases.

RISC OS itself does not use Operating System mode.

• User mode is the least privileged mode, adopted in all other circumstances. It
allows read/write access to pages of protection level 0, read-only access to
pages of protection level I, and no access to pages of protection level 2. Under
RISC OS it allows read/write access only to unprotected pages in the logically
mapped RAM, and read access to the ROM space.

If an attempt is made to access protected memory from an insufficiently privileged
mode, MEMC traps the exception and sends an abort signal to the ARM.

ARM Hardware

Memory map

The resulting memory map is shown below. You can only access the areas shaded
grey if you are in one of the ARM's privileged modes (SVC, IRQ or FlO). which force
MEMC to Supervisor mode by holding a pin high:

Read Write Hex address

3FFFFFF

ROM (high)
Logical to Physical
Address Translator

3800000
DMA Address
Generators 3600000

ROM (low)

Video Controller 3400000

lnpuVOutput Controllers 3000000

Physically Mapped RAM

2000000

Logically Mapped RAM

0000000

Figure 2.5 Memory map of a tljp ica l RISC OS computer

DMA support

MEMC also provides three programmable address generators to support direct
memory access (DMA). They support:

• a circular buffer for video refresh

• a linear buffer for the cursor sprite

• double buffers for sound data.

1-21

Finding out more

Finding out more

1-22

If you need to find out more about ARM assembler and the ARM chip set, there are
a number of sources you can turn to:

• ARM assembler is summarised in the appendix entitled Appendix A: ARM
assembler on page 4-355

• ARM assembler is thoroughly covered in the manual supplied with the Desktop
Assembler, available from your Acorn supplier

• The ARM chip set is described in much greater detail in the Acorn RISC Machine
family Data Manual. VLSI Technology Inc. (I 990) Prentice-Hall, Englewood Cliffs,
N). USA: ISBN 0-13-78I6I8-9.

In addition , a number of other publishers have produced books covering these
topics- such is the interest in the ARM chip set.

3

Introduction

An introduction to SWis

The main way you can access the routines provided by RISC OS is to use a SWI
instruction. SWI stands for SoftWare Interrupt, and is one of the ARM's built-in
instructions.

In brief, when you issue a SWI instruction, the ARM leaves your program. It jumps
to a fixed location in memory, where there is normally a branch instruction into the
RISC OS kernel code. This code examines the SWI instruction, and determines
which particular OS routine you wanted . This is called, and when it is finished,
control returns to your program.

The rest of the chapter will explain how to call SWis from different languages, and
will follow how a SWI works in rather more detail.

SWI numbers and names

RISC OS can work out what routine you require because the SWI instruction code
contains a 24-bit information field which uniquely identifies a routine. This field is
known as the SWI number. The section entitled SWI numbers in detail on page 1-26
describes how SWI numbers are allocated .

RISC OS provides several hundred different SWis. You would find it difficult to
remember what function each SWI number corresponds to, so each SWI also has a
name. These names are held in the RISC OS ROMs, and in any system extension
modules that have been loaded.

Parameters and results
Obviously, you need to be able to pass values to SWI routines (parameters), and
must be able to read values back (results) . The ARM registers are used to pass
information between the user and RISC OS. In general, you will use RO to pass the
first parameter, and then enough registers after that to pass the rest.

• SWis may use registers RO- R9 inclusive.

• Note that the mechanism for calling SWis from BASIC will only handle
registers RO- R7 inclusive. For this reason, parameters are normally restricted
to these registers.

1-23

An example

An example

Fortunately it is rare that a routine needs to use more than 4 or 5 registers.

When the information passed is numeric, character or address. you generally store
the data itself in the register. However. if the data is a string, or a large amount of
numeric data. then you pass a pointer to the data instead. For example. filenames
are passed as a pointer to the characters in memory, and the window manager uses
pointers to large window descriptors.

As an example of how to use a SWI. We will look at one called OS_ WriteC; its SWI
number is &00. It is used to output a character. It takes a single parameter- the
character you want to output- which is passed in RO . Suppose you wanted to
output the character'!\. the ASCII code of which is 65.

Calling from Assembler
In assembler you could write:

MOV
SWI

R0,#65
0

; Load RO with ' A '
; and output it

It would be clearer if you set a constant named OS_ WriteC to &00. We suggest you
do so in a standard header file that contains all SWI names and numbers. Using
such a file. you could then write:

MOV
SWI

R0,#65
OS_WriteC

; Load RO with 'A'
; and output it

When this is assembled. the bottom 24 bits of the SWI instruction are set to zero
the SWI number for OS_WriteC.

Calling from BBC BASIC

1-24

From BBC BASIC you can call a SWI routine in two different ways:

• use the built in assembler

• call it directly from BASIC.

BBC BASIC Assembler

BASIC's built in assembler is very similar to the standard ARM assembler. However,
the SWI names are available as strings; note that this means you must enclose
them in double quotes. The case of the letters is significant:

MOV
SWI

R0,#65
"OS_WriteC"

Load RO with 'A'
; and output it

BBC BASIC

Calling from C

You can use the BASIC keyword SYS to call SWI routines directly from interpreted
BASIC. BASIC just asks RISC OS what SWI number the given string corresponds to;
you will find full details of the syntax in the BBC BASIC Reference Manual. Our
example would be written:

SYS "OS_ WriteC ", 65

The Acorn C library provides a similar procedure to call a SWI routine. Again , you
shou ld see the ANSI C manual for full details of the syntax, and how errors are
handled. The example below assumes that relevant header files have been
#inc luded:

kernel swi_ regs regs ; /* declare register structure * /

regs . r[O] = 65 ; / * set pseudo RO to ' A' * /

_kernel_swi (OS_WriteC , ®s , ®s) ; / * call SWI * /

More about SWI numbers and names

In general, you don't have to worry about the exact mechanism used by RISC OS to
decode the SWI instructions. As long as you use the right SWI number, and pass
the correct parameters, the correct result will be obtained.

We strongly advise you to use SWI names in your code, for added clarity. This is
easy from BASIC, as the names are already set up; from other languages (such as
assembler and C above) you will find this easiest if you set up header files .
Examples In the rest of this manual will assume you have done so.

SWI name prefixes

The prefix of the SWI name (OS in the example above) determines which part of the
system will deal with the SWI. OS obviously refers to the calls handled directly by
RISC OS. Examples of other prefixes are Font, Wimp, and ADFS. The prefix is
determined by the module which implements the SWI.

1-25

Error handling - an introduction

Error handling - an introduction

RISC OS provides full error hand ling faci l ities for SW!s. In general, if a SWI has no
errors, the V flag in R 15 is clear as the routine exits; if there is an error, the V flag is
set and RO points to an error block on exit.

As the routine exits, RISC OS checks the V flag . If it is set (meaning there was an
error), then RISC OS looks at bit 17 (the X bit) of the SWI number:

• If it is set then control returns to your program, and you should deal with the
error yourself.

• If it is clear control is passed to the system error handler, which reports the
error to you. You can of course replace the system error handler with one of
your own; indeed, most programs do.

For further details, see the chapter entitled Generating and handling errors on
page 1-41.

SWI numbers in detail

1-26

The 24 bits used to encode the SWI number in the instruction allow SW!s in the
range 0 - &FFFFFF (16777215) to be used . This SWI 'address range' is divided up
into several parts under RISC OS. For example, SW!s in the range 0- &3FFFF
(262143) provide the basic operating system functions. (Only a small proportion of
these are currently used, however.) Modules can provide their own SW!s, and these
must be given unique numbers to avoid clashes.

You can also define your own SWI calls . When a program executes a SWI whose
number is not recognised by the OS or any of the modules in the machine, the OS
calls a special routine called the 'Unused SWI vector', or 'UKSWIV' for short.
Usually, this will just return the error No such SWI. However, a user program can
claim this and, if the SWI number is one that it recognises, perform the appropriate
task.

This section explains in detail how SWI numbers are allocated. The bottom 24-bit
section of the SWI op-code is divided up as follows:

Bits 20-23

These are used to identify the particu lar operating system that the SWI expects to
be in the machine. All SW!s used under RISC OS have these bits set to zero. Under
RISC iX, bit 23 is set to I and all other bits are set to zero.

An introduction to SW/s

Bits 18- 19

Bit 17

These are used to identify which part of the system software implements the SWI,
as follows:

Bit number
19 18

0 0
0 I

0

Meaning

Operating system
Operating system extension modules
Third party resident applications
User applications

Thus OS SWis, such as OS_ WriteC, have both bits clear.

Modules such as filing systems, device drivers for expansion cards, and the Font
manager have bit I 8 of their SWis set. so their SWI numbers start at &40000. Note
that this can include system extension modules written by third parties.

Any SWis provided by application software that is distributed by other software
houses should have bit I 9 set and bit I 8 clear.

This is used to determine the action taken on errors. It is the 'X' bit. Error handling
in SWis is described in the chapter entitled Generating and handling errors on
page 1-41.

Bits6-16

These are the SWI Chunk Identification numbers. They identify a block of 64
consecutive SWis, for use within a single application or system extension module.
Anyone wishing to use one of these blocks of SWis for distributed software should
apply in writing to Acorn Customer Service , who will allocate a unique value.

Bits 0-5

These identify individual SWis in a chunk. Hence a third party application may use
SWis in the following binary range:

OOOOIOnnnnnnnnnnnnOOOOOO to
OOOOIOnnnnnnnnnnnnllllll

where nnnnnnnnnnnn is the chunk number that the software house has been
allocated for the application or module .

1-27

Technical details

Technical details

1-28

Although in genera l you don't need to know how a SWI is decoded and executed,
there are some more advanced cases where you will need to know more. This is
what happens:

I The contents of R 15 are saved in R 14_svc (the SVC mode subrouti ne link
register) .

2 The MO and M I bits of Rl5 are set (the processor is forced to SVC mode) and
the I bit is also set (IRQ is d isabled)

3 The PC bits of R 15 are forced to &08.

4 The instruction at &08 is fetched and executed. It is normally a branch to the
code that RISC OS uses to decode SWis.

5 RISC OS uses the PC bits of the return address held in R 14_svc to pick up a
copy of the SWI instruction .

6 Interrupts are restored to the state they were in when the SWI was issued . This
is done by setting the I bit in R 15 to the va lue of the equivalent bit in R 14_svc.

7 The V bit of the return address held in R 14_svc is cleared, unless the SWI was
OS_BreakPt or OS_CaiiAVector (This is done for the error hand li ng system
see the chapter entitled Generating and handling errors on page 1-41 .)

8 RISC OS looks at the 24 bit SWI number field held in the SWI instruction, and
uses it to decide where to branch to.

9 If the SWI does not use a vector, RISC OS will branch directly to the actual SWI
routine.

If the SWI does use a vector, RISC OS branches to the routine that calls the
vector Unless you have claimed the vector, this will execute the actual SWI
routine.

10 The SWI routine is executed.

II Any error handling is performed

12 Any call back handling is performed

13 Control is returned to your program by using the instruction :

MOVS Rl5 , R1 4_sv c.

This restores both the mode you were in when you called the SWI, and the
interrupt status. Note however that a few SWis (such as OS_IntOn, which
enables interrupts) deliberately alter the mode and/or interrupt status so they
are not restored on exit.

If an error is being returned by setting the V bit. the instruction

ORRS Rl 5 , R14_sv c, #V_bit

is used instead.

4

Introduction

* Commands and the CLI

* Commands provide you with a simple way to access the facilities of RISC OS by
using text- for example:

*Time

will display the time and date. If you have read your computer's RISC OS User Guide,
you may already be familiar with many of these commands .

This chapter introduces you to * Commands and the CLI; the chapter entitled The
CLI on page 1-923 describes them in more detail.

Command Line mode

Perhaps the most common way of issuing a * Command is to type it when the
computer is in Command Line mode- also called Supervisor mode by some screen
displays. Each line starts with a '* ' character prompt, so you don't need to type it
yourself In the above example, all you need to type is the text Time.

OS_CLI and the CLI

When you type a * Command, the text is passed to RISC OS by a SWI, named
OS_CLI . The text is then interpreted by a part of RISC OS called the Command Line
Interpreter- or CLI for short. This converts the text to one or more SWis that do the
work of the * Command.

For example, the *Time command just calls three SWis. You can achieve the same
effect with a few lines of BASIC:

DIM block 24
?block = 0
SYS "0S_ Word " ,l4,block
SYS "0S_WriteN " ,block,24
SYS "OS_NewLine "

The * Command version is obviously more convenient.

1-33

• Commands v. SW/s

* Commands v. SWis

Documentation

• Commands have a number of advantages when compared to SW!s, mainly
because of their simplicity:

• they are simple for novice users to use

• they can be easily typed in directly, either from the command line or from
applications

• they are simpler to call from programs

• they provide simple access to powerful features.

Their simplicity also leads to some disadvantages:

• they are not as flexible as SW!s

• they cannot easily pass information back to a program, as they usually output
results to the screen.

It is up to you whether you use • Commands or SW!s. Sometimes you will have to
use SW!s, so you can do something that • Commands do not cater for. There will be
other times when you use • Commands for their simplicity and ease of use.

Each • Command is documented in the relevant chapter. For example, *Time is
described in the chapter entitled Time a11d Date on page l-439. You will find many of
the miscellaneous • Commands that the kernel supplies in the chapter entitled The
CLI on page l-923 . (This chapter also details the OS_CLI SWI.)

An example of documentation

1-34

The next page gives an example of how a • Command is documented. Again ,
comments are provided in grey boxes so you can understand exactly what each bit
means:

• Commands and the CLI

Name of * Command 1--- -----+• *Time

Displays the day, date and time of day •1111-- -------1 Summary

Syntax

*Time •1111-----------------~ Syntax

Parameters

None ~~~~~------------------~ Parameters

Use

*Time displays the day, date and time of day It is displayed in the same format as
OS_ Word 14,0.

Example

*Time •1111-----------------~

Related commands

None ~~~~~------------------~

Related SWis

OS_Word 14,0 (page 1-4 15) , OS_Word 15 (page 1-423).

OS_ConvertStandardDateAndTime (page 1-435) ,

OS_ConvertDateAndTime (page 1-437).

Territory_ConvertDateAndTime (page 3-807) ,

Territory_ConvertStandardDateAndTime (page 3-809)

Related vectors

WordY, WrchV

* Command

Example of use

Closely related
* Commands

(if any)

Closely related SWis
(if any)

Main vectors used by
the * Command (if

any)

Figure 4.1 Example * Command documentation

1-35

Using • Commands

Using * Commands

You don't have to be in Command Line mode to use • Commands. In fact. you can
call • Commands in a number of other ways- both from applications and
programming languages. The sect ions below outline these.

Issuing * Commands from applications with command lines

You can issue * Commands from most old-fashioned applications that provide a
command line by typing a '*' at the start of a command . The application recogn ises
the'* ' prefix and calls OS_CLI, instead of trying to execute it itself.

Should you write an appl icat ion that provides a command line (which we
deprecate in favour of the desktop), it too shou ld recognise any ··· prefixes, and
call OS_CLL

Issuing * Commands from assembler

You can issue * Commands from assembler by passing the string directly to the
SWI OS_CLI . Note the null byte terminating the command string:

TIMESTR

ADR RO,TIMESTR
SWI OS_CLI

DCB "Time " , 0
ALIGN

Make RO point to the text
and call OS_ CLI

Define the * Command text

Issuing * Commands from BASIC

1-36

There are a number of different ways you can issue • Commands from BBC BASIC.

Directly from programs

You can issue them directly from your program :

*TIME

The OSCLI keyword

Sometimes you won 't know all the text of the • Command you want to use; for
instance, you might want the user of your program to give the name of a file .
Instead of issuing the command directly, you can build up the text of the
* Command, and then use the OSCLI keyword :

INPUT "Name of file to delete " ; file$
OSCLI "Delete "+file$

4

Introduction

* Commands and the CLI

• Commands provide you with a simple way to access the facilities of RISC OS by
using text- for example:

*Time

will display the time and date. If you have read your computer's RISC OS User Guide.
you may already be familiar with many of these commands.

This chapter introduces you to • Commands and the CLI; the chapter entitled The
CLI on page 1-923 describes them in more detail.

Command Line mode

Perhaps the most common way of issuing a • Command is to type it when the
computer is in Command Line mode- also called Supervisor mode by some screen
displays. Each line starts with a ·• · character prompt, so you don't need to type it
yourself. In the above example. all you need to type is the text Time.

OS_CLI and the CLI

When you type a • Command , the text is passed to RISC OS by a SWI, named
OS_CLI . The text is then interpreted by a part of RISC OS called the Command Line
Interpreter- or CLI for short. This converts the text to one or more SWis that do the
work of the • Command.

For example, the *Time command just calls three SWis. You can achieve the same
effect with a few lines of BASIC

DI M block 24
?block = 0
SYS "0S_Word",l4,block
SYS "OS_WriteN ",block , 24
SYS "OS_NewLine "

The • Command version is obviously more convenient .

1-33

• Commands v. SW/s

* Commands v. SWis

Documentation

• Commands have a number of advantages when compared to SW!s. mainly
because of their simplicity:

• they are simple for novice users to use

• they can be easily typed in directly, either from the command line or from
applications

• they are simpler to call from programs

• they provide simple access to powerful features.

Their simplicity also leads to some disadvantages:

• they are not as flexible as SW!s

• they cannot easily pass information back to a program. as they usually output
results to the screen.

It is up to you whether you use • Commands or SW!s. Sometimes you will have to
use SW!s, so you can do something that • Commands do not cater for. There will be
other times when you use • Commands for their simplicity and ease of use.

Each • Command is documented in the relevant chapter. For example. *Time is
described in the chapter entitled Time and Date on page 1-439. You will find many of
the miscellaneous • Commands that the kernel supplies in the chapter entitled Tfle
CLI on page l-923. (This chapter also details the OS_CLI SWI.)

An example of documentation

1-34

The next page gives an example of how a • Command is documented. Again .
comments are provided in grey boxes so you can understand exactly what each bit
means:

• Commands and the CLI

Name of * Command t--------+IJo *Time

Displays the day, date and time of day •~---------1 Summary

Syntax

*Time •~-----------------~ Syntax

Parameters

None•~---------------------1 Parameters

Use

*Time displays the day, date and time of day. It is displayed in the same format as
OS_ Word 14,0.

Example

*Time •~-----------------__,

Related commands

None•~---------------------1

Related SWis

OS_Word 14,0 (page 1-415). OS_Word 15 (page 1-423),

OS_ConvertStandardDateAndTime (page 1-435),

OS_ConvertDateAndTime (page 1-437).

Territory_ConvertDateAndTime (page 3-807).

Territory_ConvertStandardDateAndTime (page 3-809)

Related vectors

WordY, WrchV

*Command

Example of use

Closely related
*Commands

(if any)

Closely related SWis
(if any)

Main vectors used by
the * Command (if

any)

Figure 4.1 Example • Command documentation

1-35

Using * Commands

Using * Commands

You don't have to be in Command Line mode to use • Commands. In fact , you can
call • Commands in a number of other ways- both from applications and
programming languages. The sect ions below outline these.

Issuing * Commands from applications with command lines

You can issue • Commands from most old-fashioned applications that provide a
command line by typing a··· at the start of a command. The application recognises
the ·•· prefix and calls OS_CLI, instead of trying to execute it itself

Should you write an application that provides a command line (which we
deprecate in favour of the desktop), it too should recognise any ·•· prefixes, and
call OS_CLI .

Issuing * Commands from assembler

You can issue • Commands from assembler by passing the string directly to the
SWI OS_CLL Note the null byte terminating the command string:

TIMESTR

ADR RO , TIMESTR
SWI OS_ CLI

DCB "Time ", O
ALIGN

Make RO point to the text
and call OS_CLI

Define the * Command text

Issuing * Commands from BASIC

1-36

There are a number of different ways you can issue • Commands from BBC BASIC.

Directly from programs

You can issue them directly from your program :

*TIME

The OSCLI keyword

Sometimes you won't know all the text of the • Command you want to use; for
instance, you might want the user of your program to give the name of a file .
Instead of issuing the command directly, you can build up the text of the
• Command, and then use the OSCLI keyword

INPUT "Name of file to delete "; file$
OSCLI "Delete "+file$

• Commands and the CL/

Calling OS_CLI directly

Of course, you can also ca l l OS_CLI d irect ly, as out lined in t he section entitled
Calling from BBC BASIC on page 1-24. You can ei ther use the SYS keyword :

DIM TIMESTR 4
$TIMESTR = "TIME "
SYS "OS_ CLI " , TIMESTR

or more simply:

SYS "OS_CLI", "TIME "

or you can use BBC BASIC's bui lt-in assembler:

. TIMESTR

ADR RO , TIMESTR
SWI "OS_CLI "

EQUS "TIME "
EQUB 0
ALIGN

Make RO point to the text
; and call OS_CL I

Define the * Command text
Terminating null for text

See the BBC BASIC Reference Manual for full details of al l the above syntax.

Issuing * Commands from C

Similarly, the Acorn C library provides different ways for you to issue • Commands.

The procedure system ()

You can use the procedure system, which takes as a parameter the text of the
• Command:

system("Time ") ;

You can run a replacement application using this call by prefixing it with
'CHAIN : ·. So:

system("CHAIN : BASIC ")

would start up BBC BASIC, returning control to the C application's parent when
BASIC quits, whereas:

system("BASIC ") ;

sta rts up BBC BASIC, but when BASIC quits control returns to the C application
rather than its parent.

1-37

Changing and adding • Commands

Calling OS_CLI directly

Alternatively, you could directly call OS_CLI:

_ kern e l_s wi _ reg s reg s ;
char timestr[J = "Time ";

regs.r[OJ = (int) timestr ;
_ kernel_ swi(OS_ CLI , ®s , ®s) ;

Changing and adding * Commands

1-38

One of the keynotes of RISC OS is the ease with which you can alter and extend it.
You've already been introduced to how you can alter, replace or add SWis. The
techniques that can be used for this are:

• claiming vectors

• replacing modules

• adding new modules.

In just the same way, you can use these techniques to alter, replace or add
• Commands.

Using vectors

If you claim a vector, and hence change how the SWI that uses it works, you will
also alter all functions of RISC OS that call that SWI- including • Commands.

As an example, let's assume that you have changed OS_ WriteC so that all letters
are converted to capitals You'd do this by claiming WrchV, the vector used for
character output, so that it passes on calls made to OS_ WriteC to your routine
instead.

This would mean that all * Commands that output their results via WrchV would
now do so in capitals only. This is true of all • Commands that output characters,
and our example of *Time is no exception.

See the chapter entitled Software vectors on page I-63 for further details of how to
use vectors.

• Commands and the CL/

Replacing modules

If you replace a module, you must provide the same services that the old module
did. So your replacement module should have the same • Commands. each of
which must have the same syntax and accept the same parameters as before.
However, they can be functionally different.

There is no reason why a replacement module cannot add extra • Commands as
well.

Adding modules

If you write a new module, it can provide • Commands, in exactly the same way as
any of the system modules. See the chapter entitled Modules on page I-197 for
details of how to write a module.

Using Alias$ command system variables

You can use system variables of the form AliasScommand to create new commands
from existing ones. or to rename existing commands. For more details, see the
section entitled Aliases on page 1-926, the command •set on page 1-325, and the
section entitled Changing and adding commands on page 4-497.

1-39

1-40

• Commands and the CLI

Calling OS_CLI directly

Of course, you can also call OS_CLI directly, as outlined in the section entitled
Calling from BBC BASIC on page I -24. You can either use the SYS keyword :

DIM TIMESTR 4
$TIMESTR = "TIME '
SYS ' OS_ CLI ", TIMESTR

or more simply:

SYS "OS_CLI', "TIME "

or you can use BBC BASIC's built-in assembler:

. TIMESTR

ADR RO , TIMESTR
SWI "OS_ CLI "

EQUS "TIME "
EQUB 0
ALIGN

Make RO point to the text
; and call OS_ CLI

Define the * Command text
Terminating null for text

See the BBC BASIC Reference Manual for full details of all the above syntax.

Issuing * Commands from C

Similarly, the Acorn C library provides different ways for you to issue • Commands.

The procedure system()

You can use the procedure system, which takes as a parameter the text of the
• Command:

sys tern ("Time ") ;

You can run a replacement application using this call by prefixing it with
'CHAIN : '. So:

system("CHAIN: BASIC ")

would start up BBC BASIC, returning control to the C application 's parent when
BASIC quits, whereas:

system(' BASIC ") ;

starts up BBC BASIC, but when BASIC quits control returns to the C application
rather than its parent

1-37

Changing and adding * Commands

Calling OS_CLI directly

Alternatively, you could directly call OS_CLI :

kernel swi_ regs regs ;
char tirnestr[J = "Time ";

regs . r[O] = (int) tirnestr ;
kernel swi(OS_CLI , ®s, ®s) ;

Changing and adding * Commands

1-38

One of the keynotes of RISC OS is the ease with which you can alter and extend it.
You've already been introduced to how you can alter. replace or add SWis. The
techniques that can be used for this are :

• claiming vectors

• replacing modules

• adding new modules.

In just the same way, you can use these techniques to alter. replace or add
• Commands.

Using vectors

If you claim a vector. and hence change how the SWI that uses it works. you will
also alter all functions of RISC OS that call that SWI- including • Commands.

As an example, let's assume that you have changed OS_WriteC so that all letters
are converted to capitals. You 'd do this by claiming WrchV. the vector used for
character output. so that it passes on calls made to OS_ WriteC to your routine
instead.

This would mean that all * Commands that output their results via WrchV would
now do so in capitals only. This is true of all * Commands that output characters.
and our example of *Time is no exception.

See the chapter entitled Software vectors on page 1-63 for further details of how to
use vectors.

• Commands and the CL/

Replacing modules

If you replace a module, you must provide the same services that the old module
did . So your replacement module should have the same *Commands, each of
which must have the same syntax and accept the same parameters as before .
However, they can be functionally different.

There is no reason why a replacement module cannot add extra * Commands as
well

Adding modules

If you write a new module, it can provide * Commands, in exactly the same way as
any of the system modules. See the chapter entitled Modules on page 1-197 for
details of how to write a module.

Using Alias$command system variables

You can use system variables of the form AliasScommand to create new commands
from existing ones , or to rename existing commands. For more details, see the
section entitled Aliases on page 1-926, the command *Set on page 1-325, and the
section entitled Changing and adding commands on page 4-497.

1-39

1-40

SWI Calls

Generating and handling errors

OS_GenerateError
(SWI &28)

Generates an error and invokes the error handler

On entry

RO = pointer to error block

On exit

Doesn't return- OS_ Generate Error (SWI &28) or
V flag is set- XOS_GenerateError (SWI &20028)

Interrupts

Interrupts are enabled by OS_GenerateError, but unaltered by the X form
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

OS_GenerateError generates an error and invokes the error handler. Whether or
not it return s depends on the type of SWI being used. If XOS_GenerateError is
used , t he only effect is to set the V flag . This is not very useful.

1-45

OS_GenerateError (SWI &28)

Here is an example of how OS_ Generate Error would be used:

1-46

SWI "OS_ ReadEscapeState"
BLCS acknowledge_escape

ADRCS RO,escapeBlock
MOVCS Rl,#O
MOVCS R2,#0
SWICS "XMessageTrans_ ErrorLookup "
SWICS "OS_GenerateError "

. noEscape

. escapeBlock
EQUD 17
EQUS "Escape "+CHR$0
ALIGN

Related SWis

None

Related vectors

ErrorV

Sets C if escape
acknowledge it - returns using
LDMFD Rl3! , {PC}A
Get ptr . to error block
Use global messages file
Use internal buffer
Look up token in message file
Do the error- doesn ' t return

Error number for escape
Error token to lookup

Generating and handling errors

*Commands

Generates errors

Syntax

*Error [error_no] text

Parameters

Use

error_no

text

the error number

a string of printable characters explaining the error

*Error

• Error generates an error with the given error number and explanatory text. This is
normally then printed on the screen. This command is useful for reporting errors
after trapping them within a command script.

If you omit the error number it is set to the default value of 0.

Errors are also, of course, generated by RISC OS itself.

Example

*Error 100 No such file prints 'No such file'

Related commands

None

Related SWis

OS_GenerateError (SWI &28)

Related vectors

ErrorV

1-47

1-48

6

Introduction

Parameters

OS_ Byte

Most SWis deal with only one task. For example, OS_Module deals with modules.
OS_RemoveCursors just removes cursors. and so on. However. there are two SWis
which perform a wide variety of operations. They are called OS_Byte and OS_ Word.
They exist, principally, to ease the conversion of software from the older BBC and
Master series of computers. The operating systems on these older machines have
two corresponding routines called OSBYTE and OSWORD.

Because the calls are multi-purpose. they tend to appear in more than one chapter
of this manual. This chapter documents OS_Byte in general terms, so that when
examples of its use are given later on, you will understand the entry and exit
conditions better. The next chapter outlines how OS_ Word works.

OS_Byte takes one, two or three parameters. The first parameter, passed in RO, is
the reason code. This indicates which particular action you require OS_Byte to
take. It has the range 0 - &FF Thus when we talk about 'OS_Byte 81 ·. this is
shorthand for 'OS_Byte with RO set to 81 on entry'. A complete list of the OS_Byte
numbers may be found in the Index of OS_Bytes on page Index- II.

The second and third parameters are passed in RI and R2. These too are in the
range 0 - &FF; the name OS_Byte comes from the fact that it deals with byte-wide
parameters.

In fact , all OS_Byte routines mask out the top 24 bits of the parameters when they
use them. Although these top bits are not used, calls to OS_Byte always preserve
them in RO; the same applies for RI ancl!or R2 where they are documented as
preserved . If you are writing a routine to implement or decode OS_Byte calls, you
must make sure you preserve the top 24 bits. at least in RO. This means you will
have to mask the parameter(s) into temporary registers rather than back into the
passed parameters.

Some OS_Byte calls return values . On earlier Acorn computers these were always
byte-wide, but on RISC OS computers some of these values may now be too large
to fit in a single byte, and should be treated as whole words. For example. if you

1-49

Calling OS_Byte

were reading the number of spaces left in a buffer using OS_Byte 128, you might
read the two 'byte' result returned in R I (low byte) and R2 (high 'byte' - in fact 24
bits) like this:

ADD Rn,Rl,R2,LSL#8

Calling OS_Byte

1-50

You call the OS_Byte SWI in exactly the same way as any other SWL See the
chapter entitled An introduction to SWis on page 1-23 for details.

The calls may be grouped into three main classes, according to the value of RO on
entry.

Calls where RO is less than 128

If RO is less than 128, then only R I is used to pass further information . However, R2
is often used as a temporary register and corrupted in the process. You use these
calls to set status variables, which the computer uses to control its operation. For
example, OS_Byte 5 sets the status variable for the type of printer that is
connected.

In addition to setting the appropriate status variable, these calls may also perform
some other task. For example, OS_Byte 5 also waits for the current printer buffer to
become empty before returning. Although these calls sometimes return the
'previous' state of the status variable, they are normally used for the action they
perform, rather than the information they return.

Calls where RO is between 128 and 165 (inclusive)

If RO is between 128 and 165, both Rl and R2 are used to hold parameters, and
both registers may contain information on exit from the call. The calls are often
used for the results they return, rather than to perform particular actions.

Calls where RO is between 166 and 255 (inclusive)

For calls with RO between 166 and 255 on entry, the action is always the same. RO
acts as an index into the RAM which holds the status variables. They are held in
consecutive memory locations, so RO= 166 accesses the first one, RO= 167 accesses
the second one, and so on. The contents of Rl and R2 determine what happens to
the status variable:

New Value= (Old Value AND R2) EOR Rl

On exit, R I holds the old value of the status variable, and R2 holds the value of the
status variable in the next memory location.

OS_Byte

Reading and writing values

The most useful application of this rule occurs when the old value is returned
without being altered (allowing the status to be read 'non-destructively') as shown
below:

R2 = &FF and Rl = &00

and where the value is set to a particular number:

R2 = &00 and Rl =new value

Altering selected bits

These are the only cases which are stated in the descriptions of OS_Bytes in this
guide. Other values of R I and R2 may be used to alter only selected bits of the
status variable. You should:

• clear the bits of R2 corresponding to the bits you want to alter

• set the corresponding bits of Rl to the new value you want these bits to have.

For example, to set bits 2 - 4 of a status variable to the binary pattern I 0 I, and
leave the rest unaltered, you would use:

R2 = &E3 (Ill 000 II in binary) and
Rl = &14 (00010100 in binary)

In all cases, the calls in the range 166- 255 return with the previous value of the
variable in R I and the value of the next variable in RAM (ie the one which would be
accessed with RO+ I) in R2 . The exception is where RO = 255, where there is no
defined 'next' location, and so the value of R2 is undefined.

Altering any of these variables does not have any immediate effect, but may often
seem to, as many are acted upon by interrupt routines.

Which call to use when
Many of the calls in this last group access the same status variable as the
low-numbered calls , between 0 and 127. However, as noted above, the lower group
may also perform some other action in addition to changing the variable value .
This means that the lower group should be used to alter a variable, whereas the
upper group may be used for reading the current value without changing it.

1-51

OS_Byte and interrupts

OS_Byte and interrupts

Like most important SWis, OS_Byte is vectored so you can alter how it works .
Before its vector is called , interrupts are disabled. Most OS_Byte routines are so
short that there is no need for them to re-enable interrupts- instead they rely on
RISC OS doing this when control is returned to you . Because these OS_Byte
routines do notre-enable interrupts they are also used by interrupt handling
routines .

If you replace or alter an OS_Byte routine, make sure that:

• you do not change the way it alters the interrupt status

• you do not make it take so long that interrupts are disabled for an
unreasonably long time.

Adding OS_Byte calls
You can add your own OS_Byte calls to RISC OS by installing a routine on the
software vector that OS_Byte calls use. For full details, see the chapter entitled
Software vectors on page I-63.

There is an alternative, but less preferable way of adding OS_Byte calls . If you issue
an OS_Byte with a number that RISC OS doesn 't recognise, it issues an Unknown
OS_Byte service call to all modules. Your module can then trap this service call and
implement the new OS_Byte. For full details, see the chapter entitled Modules on
page 1-197.

OS_Byte

The *FX command

Calling*FX

Because OS_Bytes perform many useful functions , a * Command is provided to
ca ll the routine direct ly. It has the syntax:

*FX <reason code>[[,] <rl> [[,] <r2>]]

The command is followed by one, two or three parameters . which may be
separated by spaces or commas. The values reason code, rl and r2 are loaded
into regi ster RO, R I and R2 respectively; then OS_Byte is called. Any omitted values
are set to zero. So:

MOV RO I #138
MOV Rl , #O
MOV R2 , #65
SWI OS_Byte

has the same effect as:

*FX138,0,65

The *FX command does not display any returned values; you cannot use it to read
the values of status variables from the command line. It is called in the same way
as any other * Command; see the chapter entitled * Commands and the CLI on
page 1-33 for details .

1-53

SWI calls

SWI calls

1-54

OS_Byte
(SWI &06)

General purpose call to alter status variables. and perform other actions

On entry

RO = OS_Byte number (so for OS_Byte I, RO = I)
R I, R2- as required by individual OS_Byte

On exit

RO preserved
R I, R2 - as returned by i nd ivid ua I OS_Byte

Interrupts

Interrupts are disabled by the OS_Byte decoding routine
Interrupt status is unaltered (ie remains disabled) for most values of RO
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant for some values of RO

The action taken by this SWI depends on the reason code passed in RO. You should
see the individual documentation of each OS_Byte for full details:

• If RO is less than 128. then generally only R I is used to pass further
information. These calls set a status variable, and may also perform some
other task. R2 is corrupted unless stated otherwise .

• If RO is between 128 and 165 (inclusive), both R I and R2 are used to hold
parameters, and both registers may contain information on exit from the call.
The calls are often used for the results they return .

OS_Byte

• For calls with RO between 166 and 255 (inclusive) on entry, the action is always
the same. RO acts as an index to a status variable, which is altered using the
contents of R I and R2 :

New Value= (Old Value AND R2) EOR Rl

To read the status variable, use R I = &00, and R2 = &FF. To write to the status
variable, use R I = new value, and R2 = &00.

For an index of all OS_Byte calls, see the Index of OS_Bytes on page Index- II .

Related SWis

OS_Word (page 1-61)

Related vectors

ByteV

1-SS

•commands

*Commands
*FX

Calls OS_Byte to alter status variables, and to perform other closely related actions

Syntax

*FX reason_code ([,] rl [[,] r2]]

Parameters

Use

reason_ code

rl
r2

from 0 to 255

from 0 to 255

from 0 to 255

The parameters are in decimal by default. but you may specify other bases (see
Examples below).

*FX alters status variables, which the computer uses to control its operation. You
can either read from them, or write to them . Some *FX commands will also
perform other actions closely related to the status variable that is being altered.

This command merely calls the SWI OS_Byte, passing the reason code in RO, rl in
R I , and r2 in R2 . The reason code determines which status variable is affected.

Individual * FX commands are not documented. You should instead refer to the
documentation of individual OS_Bytes For example, to see what *FX 138, ... will
do, see the entry for OS_Byte 138. For an index of all OS_Byte calls , see the Index
of OS_Bytes on page Index- II.

Examples

*FX 138,0,&41

*FX 247 4 01

Related commands

None

Related SWis

OS_Byte (page 1-54)

r2 is specified in hexadecimal

rl is specifi ed in base 4

Related vectors

ByteV

OS_Byte

1-57

1-58

7

Introduction

Parameters

OS Word

The OS_ Word call is very similar to the OS_Byte call. It is also used to read from, or
write to, values held in RAM by RISC OS. Much of what is said in the chapter
entitled OS_Byte also applies to OS_ Word .

You can add new OS_ Word calls by installing a routine on the software vector that
OS_ Word uses- see the chapter entitled Software vectors on page 1-63. Alternatively
you can use the Unknown OS_ Word service call, although this is not such a good
way to do so, and is hence deprecated- see the chapter entitled Modules on
page 1-197.

Like OS_Byte, interrupts are disabled when most OS_ Word routines are entered.

The major difference between the two calls is that an OS_ Word call deals with
larger amounts of data than an OS_Byte call . You therefore need to pass your data
in a different way.

OS_ Word always takes two parameters. RO is a reason code (as it is for OS_Byte)
R I , however, is a pointer to a parameter block. This is an area of memory where you
store parameters that you want to pass to OS_ Word, and where OS_ Word can store
its results. The size of the parameter block varies from call to call, and is
documented with each OS_ Word description. Often the parameter block contains a
sub-reason code, which can specify the length of the parameter block; so the size
can also vary for a given reason code in RO.

Like OS_Byte, OS_ Word is multi-purpose, and covers such areas as reading the
time and date, setting the screen's 'palette' , and reading the definition of a
re-definable character.

There are far fewer OS_ Words than OS_Bytes; 0 - 22 is the current range of RO on
entry. Most of these OS_ Word calls are provided to ease the task of porting
software from the earlier BBC and Master series computers .

Calling OS_ Word

You call the OS_ Word SWI in exactly the same way as any other SWL For details see
the earlier chapter entitled An introduction to SWis on page 1-23.

1-59

OS_ Word and *Commands

OS_ Word and * Commands

Unlike OS_Byte , no • Command equivalent to OS_ Word is provided .

1-no

SWI calls

OS_ Word

OS_Word
(SWI &07)

General purpose call to alter status variables, and perform other actions

On entry

RO = reason code
R I =pointer to parameter block

On exit

RO preserved

Interrupts

Interrupts are disabled by the OS_ Word decoding routine
Interrupt status is unaltered (ie remains disabled) for most values of RO
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The action taken by this SWI depends on the reason code passed in RO. In general.
OS_ Word is used to either read or write a large number of status variables at once.
R I points to a parameter block, the length of which varies depending on the reason
code. You should see the individual documentation of each OS_ Word for full
details. For an index of all OS_ Word calls, see the l11dex of OS_ Words on
page lndex-15

Related SWis

OS_Byte (page 1-54)

1-61

OS_ Word (SWI &07)

1-n2

Related vectors

WordY

8

Introduction

Software vectors

We have already seen that one of the most important features of RISC OS is the
ease with which it can be altered and extended. Most of RISC OS is written as
modules; these can be replaced , and extra ones can be added.

The exception to this is the kernel. which provides the central core of functions
necessary for RISC OS to work. You cannot replace the entire kerneL Instead, you
can change or replace how certain fundamental routines of the RISC OS kernel
work. You do this by using software vectors, or vectors for short These are held in the
computer's RAM; RISC OS uses them to record where it can find these routines.

Many of these routines perform all the functions of a given SWI. The correspond ing
SWI is then known as a vectored SWI.

Claiming vectors

When you call a SWI, RISC OS uses the SWI number to decide which routine in the
RISC OS ROMs you want For an ordinary SWI , RISC OS looks up the address of the
SWI routine and then branches to it However, if you call a vectored SWI, it instead
gets the address from the corresponding vector that is held in RAM. Normally this
would be the address of the standard routine held in ROM .

You can change this address by using the SWI OS_Ciaim, documented later in this
chapter. RISC OS will then instead branch to your own routine, held at the address
you pass to OS_Ciaim .

Your own routine can do one of the following:

• replace the original routine. passing control directly back to the ca ller

• do some processing before calling the standard routine, which then passes
control back to the caller

• call the standard routine , process some of the results it returns, and then pass
control back to the caller.

If your routine completely replaces the standard one, it is said to intercept the ca ll ;
otherwise it is said to pass on the call .

1-63

An example

An example

Vector chains

As an example, let's look at the OS_WriteC routine. When RISC OS decodes a SWI
with SWI number &00, it knows that you are requesting a write character operation.
RISC OS gets an address from a vector- in this case called WrchV- and passes
control to the routine.

Now by default. the WrchV contains the address of the standard write character
routine in ROM. If you claim the vector using OS_Ciaim, whenever an OS_ WriteC is
executed, your own routine will be called first

So far. we've deliberately been vague about how vectors store the addresses of the
routine. In fact. the vector is the head of a chain of structures, which point to the
next claimant on the vector. and to both the code and the workspace associated
with this claimant Consequently:

• there may be more than one routine on a given vector

• no claimant has to remember what the previous owner of the vector was

• vectors can be claimed and released by many different pieces of software in
any order, not just in a stack-like order.

The routines are called in the reverse order to the order in which they called
OS_Ciaim. The last routine to OS_Ciaim the vector will be the first one called. If
that routine passes the call on, the next most recent claimant will get the call, and
so on. If any of the routines on the vector intercept the call, the earlier claimants
will not be called.

When not to intercept a vector
There are some vectors which should not be intercepted; they must always be
passed on to other claimants. This is because the default owner, ie the routine
which is called if no one has claimed the vector, might perform some important
action. The error vector, ErrorV. is a good example. The default owner of this vector
is a routine which calls the error handler. If you intercept ErrorV, the error handler
will never be called, and errors won't be dealt with properly.

Multiply installing the same routine

1-64

When OS_ Claim adds a routine to a vector. it automatically removes any identical
earlier instances of the routine from the chain (ie instances having the same
pointer to code, and the same pointer to workspace). If you don't want this to
happen, use the SWI OS_AddToVector instead.

Software vectors

Desktop applications
Under an environment such as the desktop, multiple applications are run
concurrently The currently running application is mapped into memory at &8000.
Desktop applications periodically return control to the Window Manager (or Wimp)
by calling the SWI Wimp_Poll; at this point the Wimp may decide to swap to
another application . In doing so. it maps the current application out of the
application space, and maps the new application into that space. Thus every
application is given the illusion that it is the only one in the system.

If your application has claimed a vector using a routine in its own space, it must
obviously release that vector each time it (and the claiming routine) may be
swapped out of application space. Before each call your application makes to
Wimp_Poll (which is when it may be swapped out). it must call
OS_DelinkApplication (page I-74) to remove any claiming routines in application
space. When its call to Wimp_Poll returns (and hence it is swapped back in), it
must then call OS_RelinkApplication (page I-76) to reclaim those vectors.

1-65

SWI Calls

SWI Calls

1-66

Adds a routine to the list of those that claim a vector

OS_Ciaim
(SWI &1 F)

On entry

RO =vector number (see page 1-78)
R I =address of claiming routine that is to be added to vector
R2 =value to be passed in R 12 when the routine is called

On exit

RO- R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI cannot be re-entered as it disables IRQ

This call adds the routine whose address is given in R I to the list of routines
claiming the vector. This becomes the first routine to be used when the vector is
called .

Any identical earlier instances of the routine are removed . Routines are defined to
be identical if the values passed in RO, Rl and R2 are identicaL

The R2 value enables the routine to have a workspace pointer set up in R 12 when it
is called . If the routine using the vector is in a module (as will often be the case).
this pointer will usually be the same as its module workspace pointer.

Software vectors

Example

MOV RO, #ByteV
ADR Rl, MyByteHandler
MOV R2, #0
SWI "OS Claim" -

Related SWis

OS_Release (page 1-68), OS_CaiiAVector (page 1-70), OS_AddToVector (page 1-72)

Related vectors

All

1-67

OS_Re/ease (SWI &20)

1-68

OS_Release
(SWI &20)

Removes a routine from the list of those that claim a vector

On entry

RO =vector number (see page 1-78)
RI =address of routine that is to be released from vector
R2 =value given in R2 when claimed

On exit

RO- R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI cannot be re-entered as it disables IRQ

This call removes the routine, which is identified by both its address and
workspace pointer, from the list for the specified vector. The routine will no longer
be called. If more than one copy of the routine is claiming the vector, only the first
one to be called is removed.

Example

MOV RO, #ByteV
ADR Rl, MyByteHandler
MOV R2, #0
SWI "OS_Release"

Related SWis

OS_Claim (page 1-66). OS_CallAVector (page 1-70). OS_AddToVector (page 1-72)

Related vectors

All

Software vectors

1-69

OS_ CaliA Vector (SWI &34)

1-70

Calls a vector directly

OS_CaiiAVector
(SWI &34)

On entry

RO - R8 =vector routine parameters
R9 =vector number (see page I-78)
V and C flags in R I5 = flags to pass to vector

On exit

Dependent on vector called

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant- but not all vectors it calls are re-entrant

OS_CaiiAVector calls the vector number given in R9. RO- R8 are parameters to the
vectored routine; see the descriptions below for details.

This is used for calling vectored routines which don't have any other entry point,
such as some calls to RemV or CnpV. It is also used by system extensions such as
the Draw, ColourTrans and Econet modules to call their corresponding vectors.

You must not use this SWI to call ByteV and other such vectors. as the vector
handlers expect entry conditions you may not provide.

Related SWis

OS_Ciaim (page I-66), OS_Release (page I-68) , OS_AddToVector (page I-72)

Related vectors

All

Software vectors

1-71

OS_AddToVector (SWI &47)

1-72

OS_AddToVector
(SWI &47)

Adds a routine to the list of those that claim a vector

On entry

RO =vector number (see page 1-78)
Rl =address of claiming routine
R2 =value to be passed in R 12 when the routine is called

On exit

RO - R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

R~ntrancy

Use

SWI cannot be re-entered as it disables IRQ

This call adds the routine whose address is given in Rl to the list of routines
claiming the vector. This becomes the first routine to be used when the vector is
called.

Unlike OS_ Claim, any earlier instances of the same routine remain on the vector
chain.

The R2 value enables the routine to have a workspace pointer set up in Rl2 when it
is called. If the routine using the vector is in a module (as will often be the case),
this pointer will usually be the same as its IPodule workspace pointer.

Related SWis

OS_Claim (page 1-66), OS_Release (page 1-68). OS_Ca llAVector (page 1-70)

Related vectors

All

Software vectors

1-73

OS_ DelinkApplication (SWI &40)

1-74

OS_DelinkApplication
(SWI &40)

Remove any vectors that an application is using

On entry

RO =pointer to buffer
R I =buffer size in bytes

On exit

RO preserved
R I = number of bytes left in buffer

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI cannot be re-entrant because interrupts are disabled

When an application running at &8000 is going to be swapped out. it must remove
all vectors that it uses. Otherwise, if they were activated, they would jump into
whatever happened to be at that locat ion in the new application running in that
space.

RO on entry points to a buffer This is used to store details of the vectors used, so
that they can be restored afterwards. Each vector requires 12 bytes of storage and
the list is terminated by a single byte

If the space left returned in R I is zero, then you must allocate another buffer and
repeat the call; the buffer you have conta ins va lid information. When you relink you
must pass all the buffers returned by this call.

Related SWis

OS_RelinkApplication (page 1-76)

Related vectors

None

Software vectors

1-75

OS_RelinkApplication (SWI &4E)

1-76

OS_RelinkApplication
(SWI &4E)

Restore from a buffer any vectors that an application is using

On entry

RO =pointer to buffer

On exit

RO preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

When an application is going to be swapped in, all vectors that it uses must be
restored. RO on entry points to a buffer, which has previously been created by
OS_Del inkAppl ication.

Related SWis

OS_DelinkApplication (page l-74)

Related vectors

None

Software vectors

Use of registers

If you write a routine that uses a vector, it must obey the same entry and exit
conditions as the corresponding RISC OS routine . For example, a routine on WrchV
must preserve all registers , just as the SWI OS_ WriteC does.

If you pass the ca ll on, you can deliberately alter some of the registers to change
the effect of the call. However, if you do so, you must arrange for control to return
again to your routine . You must then restore the register values that the old
routine would normally have returned, before finally returning control to the
calling program . This is because some applications might rely on the returned
values being those documented in this manual.

Processor modes

The processor mode in which the routine is entered depends on the vector:

• Routines vectored through IrqV (Vector &02) are always executed in IRQ mode.

• Routines vectored through Even tV, InsV. RemV, CnpV (Vectors & I 0- & 16) and
TickerV (Vector & I C) are generally executed in IRQ mode, but may be executed
in SVC mode if called using OS_CaiiAVector, and in certain other unspecified
circumstances.

• All other routines are executed in SVC mode- the mode entered when the SWI
instruction is executed.

SVC mode

Note that if you call a SWI from a routine that is in SVC mode, you will corrupt the
return address held in R 14. Consequently, your routine should use the full,
descending stack addressed by R 13 to save R 14 first. See the section entitled
Important notes on page 1-31 for a more complete explanation of this.

IRQ mode

If your routine will be entered in IRQ mode there are other restrictions . These are
detailed in full in the section entitled Restrictions on page 1-126.

Returning errors

Routines using most of the vectors can return errors by setting the V flag , and
storing an error pointer in RO . The routine must not pass on the call. as one of the
parameters (RO) has been changed; this would cause problems for the next routine
on the vector. The routine must instead intercept the call, returning control back to
the calling program .

1-77

Returning from a vectored routine

You can't do this with all the vectors; some of them (those involving IRQ calls in
particular) have nowhere to send the error to.

Returning from a vectored routine

You should use one of two methods to return from a vectored routine. These are
described immediately below; for an example, see the section entitled An example
program on page 1-1 06.

Passing on the call

If you wish to pass on the call (to the previous owner). you should return by
copying Rl4 into the PC. Use the instruction:

MOVS PC , R14

Intercepting the call

If you wish to intercept the call, you should pull an exit address (which has been
set up by RISC OS) from the stack and jump to it. Use the instruction :

LDMFD Rl3!, {PC}

Control will return to the caller of the vector.

List of software vectors

1-78

The software vectors are listed below. The following section entitled Summary of
vectors gives a summary of each vector, and tells you where to find out more about
it. A few vectors also merit a more detailed description in the section entitled Vector
descriptions on page 1-85. Such vectors are indicated in the list below by a dagger T
Also, the names of the routines which can cause each vector to be called are in
brackets:

Vector No Description

UserY (&00) User vector (reserved)
ErrorY (&01) Error vector (OS_GenerateError)
lrqY t (&02) Interrupt vector
WrchY (&03) Write character vector (OS_ WriteC)
RdchY (&04) Read character vector (OS_ReadC)
CLIY (&05) Command line interpreter vector (OS_CLI)
ByteY (&06) OS_Byte indirection vector (OS_Byte)
WordY (&07) OS_ Word indirection vector (OS_ Word)
FileY (&08) File read/write vector (OS_File)
ArgsY (&09) File arguments read/write vector (OS_Args)
BGetY (&OA) File byte read vector (OS_BGet)

Software vectors

BPutV (&OB) File byte put vector (OS_BPut)
GBPBV (&OC) File byte block get/put vector (OS_GBPB)
FindV (&OD) File open vector (OS_Find)
ReadLineV (&OE) Read a line of text vector (OS_ReadLine)
FSCV (&OF) Filing system control vector (OS_FSControl)
Even tV (&10) Event vector (OS_GenerateEvent)
lnsV t (&14) Buffer insert vector (OS_Byte)
RemV t (&15) Buffer remove vector (OS_Byte)
CnpV t (&16) Count/Flush Buffer vector (OS_Byte)
UKVDU23V t (&17) Unknown VDU23 vector (OS_WriteC)
UKSWIV t (&18) Unknown SWI vector (SWI)
UKPLOTV t (&19) Unknown VDU25 vector (OS_WriteCi
MouseV (&lA) Mouse vector (OS_Mouse)
VDUXV t (&I B) VDU vector (OS_ WriteC)
TickerV t (&IC) I OOHz vector
UpcaiiV (&ID) Warning vector (OS_UpCall)
ChangeEnvironmentV (&IE) Environment change vector

(OS_ChangeEnvironment)
SpriteV (&IF) OS_SpriteOp indirection vector (OS_SpriteOp)
DrawV t (&20) Draw SWI vector (Draw_ ...)
EconetV t (&21) Econet activity vector (Econet_ ...)
ColourV t (&22) ColourTrans SWI vector (ColourTrans_ ..)
PaletteV t (&23) Read/write palette vector
SeriaiV (&24) OS_SeriaiOp indirection vector

All other vectors are reserved by Acorn.

Summary of vectors

Brief details of these vectors are given below.

Many of them are by default used to indirect calls of SWis, and so the routine they
call is the same as that the SWI calls. In these cases. you should see the
description of the SWI for details of entry and exit conditions. Vectors which do not
have corresponding SWis are instead documented in more detail later in this
chapter.

As an example, the default routine called by WrchV is the same as that used by
OS_ WriteC, and so you should see the description of OS_ WriteC for details of it

1-79

Summary of vectors

UserV

ErrorV

lrqV

WrchV

RdchV

About the filing system vectors

Note that the filing system vectors FileV (Vector &08) to FindV (Vector &00) have
'no default action ', ie they return immediately However, the FileSwitch module
(described in the chapter of the same name, starting on page 2-9) OS_ Claims the
vectors whenever the machine is reset, so effectively the default action is to
perform the appropriate filing system routine .

Other vectors and resets

Vectors are freed on any kind of reset, and system extension modules must claim
them again if they need to- just as FileSwitch does.

UserY is a reserved vector, and you must not use it. Its default action is to do
nothing

ErrorV is used to indirect all errors from error-generating SWis and from
OS_ Generate Error- see page I -45 for full details. The default action is to call the
error handler.

See also the rest of the chapter entitled Generating and handling errors; and the
chapter entitled Program Environment on page I -283 for more about handlers .

lrqV is called when an unknown IRQ is detected. It was provided in earlier versions
of RISC OS to enable you to add interrupt generating devices of your own to the
computer, but is now considered obsolete. The default action is to disable the
interrupting device. See page l-86later in this chapter for full details.

See also the chapter entitled Interrupts and handling them on page 1- I I 7, and the
chapter entitled Program Environment on page I -283 for more about handlers .

WrchV is used to indirect all calls to OS_WriteC- see page 1-501 for full details .
The default action is to call the ROM write character routine.

RdchV is used to indirect all calls to OS_ReadC- see page I -852 for full details.
The default action is to call the ROM read character routine.

CLIV

ByteV

WordV

FileV

ArgsV

BGetV

BPutV

Software vectors

CLIV is used to indirect all ca ll s to OS_CLI- see page l-929 for full details. The
default action is to call the ROM command line interpreter.

ByteV is used to indirect all calls to OS_Byte- see page l-54 for full details. The
default action is to call the ROM OS_Byte routine .

Note that interrupts are disabled when an OS_Byte is called. If you claim this
vector, your routine must enable interrupts if its processing takes a long time (over
l OOJ..ls), and be prepared to be re-entered .

WordV is used to indirect all calls to OS_ Word- see page l-61 for full details. The
default action is to call the ROM OS_ Word routine.

Note that interrupts are disabled when an OS_ Word is called. lf you claim this
vector, your routine must enable interrupts if its processing takes a long time (over
l OOJ..ls). and be prepared to be re-entered.

FileV is used to indirect all calls to OS_File- see page 2-30 for full details. The
default action is to call the ROM OS_File routine (see the note above) .

ArgsV is used to indirect all calls to OS_Args- see page 2-46 for full details. The
default action is to call the ROM OS_Args routine (see the note above)

BGetV is used to indirect all calls to OS_BGet- see page 2-60 for full details. The
default action is to call the ROM OS_BGet routine (see the note above).

BPutV is used to indirect all calls to OS_BPut- see page 2-62 for full details . The
default action is to call the ROM OS_BPut routine (see the note above).

GBPBV

GBPBV is used to indirect all calls to OS_GBPB- see page 2-63 for full details. The
default action is to call the ROM OS_GBPB routine (see the note above).

1-81

Summary of vectors

1-82

FindV

FindV is used to indirect all calls to OS_Find- see page 2-72 for full details . The
default action is to call the ROM OS_Find routine (see the note above)

ReadlineV

FSCV

ReadLineV is used to indirect all calls to OS_ReadLine- see page 1-910 for full
details. The default action is to call the ROM OS_ReadLine routine.

FSCV is used to indirect calls to OS_FSControl- see page 2-77 for full details. The
default action is to call the ROM OS_FSControl routine .

EventV

lnsV

RemV

CnpV

EventV is used to indirect all calls to OS_ Generate Event- see page 1-152 for full
details . The default action is to call the event handler.

See also the rest of the chapter entitled Events; and the chapter entitled Program
Environment on page 1-283 for more about handlers.

1nsV is called to place one or more bytes in a buffer. See page 1-88 later in this
chapter for full details.

See also the chapter entitled Buffers on page 1-161 .

RemV is called to remove one or more bytes from a buffer. See page 1-90 later in
this chapter for full details .

See also the chapter entitled Buffers on page 1-161.

CnpV is called to count the number of entries or spaces in a buffer, or to flush the
contents of a buffer. See page 1-92 later in this chapter for full details .

See also the chapter entitled Buffers on page 1-161.

UKVDU23V

UKVDU23V is called when a VDU 23,n command is issued with an unknown value of
n. The default action is to do nothing- unknown VDU 23s are usually ignored. See
page 1-94 later in this chapter for full details .

Software vectors

UKSWIV

UKSWIV is called when a SWI is issued with an unknown SWI number. The default
action is to call the unknown SWI handler, which by default generates a 'No such
SWI ' error. See page 1-95 later in this chapter for full details.

See also the chapter entitled An introduction to SWis on page 1-23; and the chapter
entitled Program Environment on page 1-283 for more about handlers .

UKPLOTV

UKPLOTV is called when a VDU 25,n (Plot) or a SWI OS_Plot n command is issued
with an unknown va lue of n. The defau lt action is to do nothing- unknown VDU 25s
(Plots) are usually ignored . See page I-96later in this chapter for full details .

MouseV

MouseY is used to indirect all calls to OS_Mouse- see page 1-699 for full details.
The default action is to call the ROM OS_Mouse routine.

VDUXV

VDUXV is called when VDU output has been redirected by setting bit 5 of the
OS_ WriteC destination flag. This vector is normally claimed by the Font manager,
to implement the Font system (see the chapter entitled The Font Manager on
page 3-403). If the Font module is disabled, the default action is to do nothing- no
output is sent to theVDU . See page 1-97 later in this chapter for full details .

See also the chapter entitled Character Output on page 1-489, and the chapter
entitled VDU Drivers on page 1-527.

TickerV

TickerV is called every centisecond. It must never be intercepted See page 1-98
later in this chapter for full details.

UpCaiiV

UpCaiiV is used to indirect all calls to OS_UpCall- see the chapter entitled
Communications within RISC OS on page 1-175 for full details. The default action is to
call the UpCall handler.

ChangeEnvironmentV

ChangeEnvironmentV is used to indirect all calls to OS_ChangeEnvironment- see
page I-315 for full details. The default action is to call the ROM
OS_ChangeEnvironment routine .

1-83

Summary of vectors

1-84

SpriteV

DrawV

SpriteV is used to indirect all calls to OS_SpriteOp- see page 1-761 for full details .
The default action is to call the relevant ROM OS_SpriteOp routine. (In fact there
are two claimants for this vector: one intercepts those calls handled by the kernel 's
sprite routines, the another intercepts those handled by the SpriteExtend module .)

DrawV is used to indirect all SWI calls made to the Draw module. The default
action is to call the ROM routine in the Draw module that decodes and executes
SWls. See page l-99later in this chapter for full details .

See also the chapter entitled Draw module on page 3-523.

EconetV

EconetV is called whenever there is activity on the Econet. The default action is to
display the Hourglass on the screen. See page 1-100 later in this chapter for full
details.

See also the chapter entitled Econet on page 2-609, the chapter entitled Hourglass on
page 2-733, and the chapter entitled NetStatus on page 2-745.

ColourV

ColourV is used to indirect all SWI calls made to the ColourTrans module. The
default action is to call the routine in the ColourTrans module that decodes and
executes SWls. See page 1-102 later in this chapter for full detail s.

See also the chapter entitled ColourTrans on page 3-335.

PaletteV

PaletteV is called whenever a call is made to read or write the palette. The default
action is to call the ROM routine to read or write the palette See page 1-104 later
in this chapter for full details.

This vector has no default owner under RISC OS 2.

SeriaiV

SeriaiV is used to indirect all calls to OS_SeriaiOp- see page 2-459 for full details.
The default action is to call the ROM OS_SeriaiOp routine.

This vector has no default owner under RISC OS 2.

Software vectors

Vector descriptions

The next section describes in detail those vectors which do more than indirecting a
single RISC OS SWI.

In most cases , the interrupt status is given as undefined. This is because the vectors
may be called either by the SWI(s) which normally use them, many of which ensure
a given interrupt status, or by OS_CaiiAVector, which does not alter the interrupt
status .

1-85

lrqV (Vector &02)

1-86

Called when an unknown IRQ is detected

lrqV
(Vector &02)

On entry

No parameters passed in registers

On exit

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Use

Processor is in IRQ mode

This vector is called when an unknown IRQ is detected.

It was provided in the Arthur operating system so you could add interrupt
generating devices of your own to the computer. RISC OS provides a new method
of doing so that is more efficient, which you should use in preference. This vector
has been kept for compatibility.

The default action is to disable the interrupt generating device by masking it out in
the IOC chip.

Routines that claim this vector must not corrupt any registers. You must not call
this vector using OS_CaliAVector.

You must intercept calls to this vector and service the interrupt if the device is
yours. You must pass them on to earlier claimants if the device is not yours, so that
interrupt handlers written to run under Arthur can still trap interrupts they
recognise .

Old software that handled Sound interrupts using this vector will no longer work,
as the new Sound module exclusively uses the RISC OS Sound!RQ device handler.

lnsV (Vector & 14)

1-88

Called to place a byte or block in a buffer

On entry

Byte insertion

RO =byte to be inserted

lnsV
(vector & 14)

R I =buffer number (bits 0- 30). with bit 31 clear(==> byte operation)

Block insertion

Rl =buffer number (bits 0- 30). with bit 31 set(==> block operation)
R2 =pointer to first byte of data to be inserted
R3 =number of bytes to insert

On exit

Byte Insertion

RO, R I preserved
R2 corrupted
C flag= I implies insertion failed

Block insertion

RO, R I preserved
R2 =pointer to remaining data to be inserted
R3 =number of bytes still to be inserted
C flag= I implies insertion failed

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SYC mode

Software vectors

See the chapter entitled Interrupts and handling them on page 1-117 for details of how
to add interrupt generating devices to your computer, and the chapter entitled
Program Environment on page 1-283 for more about handlers.

Related SWis

None

1-87

RemV (Vector & 15)

1-90

Called to remove a byte or block from a buffer

On entry

Byte removal

RemV
(Vector & 15)

R I =buffer number (bits 0- 30), with bit 3I clear(~ byte operation)
V flag= I if buffer to be examined only, or 0 if data should actually be removed

Block removal

RI =buffer number (bits 0- 30), with bit 3I set(~ block operat ion)
R2 = pointer to block to be filled
R3 =number of bytes to place into block
V flag= I if buffer to be examined only, or 0 if data should actually be removed

On exit

Byte removal

RO =next byte to be removed (examine option), or corrupted (remove option)
R I preserved
R2 =byte removed (remove option). or corrupted (examine option)
C flag= I if buffer was empty on entry

Block removal

RO , RI preserved
R2 =pointer to updated buffer position
R3 = number of bytes sti ll to be removed
C flag= I if buffer was empty on entry

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Use

Software vectors

This vector is called by OS_Byte 138 and OS_Byte 153. The default action is to call
the ROM routine to insert byte(s) into a buffer from the system buffers.

It may also be called using OS_CaiiAVector. It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can
only be entered with interrupts disabled and is not re-entrant.

The C flag is used to indicate if the insertion failed; if C= I then it was not possible
to insert all the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers
that are not handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers
for all of lnsV, RemV and CnpV. Under later versions of RISC OS you must instead
use the buffer manager SWis Buffer_Create or Buffer_Register.

See also the chapter entitled Buffers on page 1-161, and the chapter entitled The
Buffer Manager on page 4-83.

Related SWis

OS_Byte 138 (page 1-168). OS_Byte 153 (page 1-172)

1-89

Gnp V (Vector & 16)

1-92

CnpV
(Vector & 16)

Called to count the number of entries/amount of space left in a buffer. or to flush
the contents of a buffer

On entry

Rl =buffer number
V flag and C flag encode the action:

V flag= 0, C flag= 0 ~ return number of entries
V flag= 0, C flag= I ~ return amount of free space
V flag= I ~flush buffer

On exit

RO corrupted
R I , bits 0- 7 = least significant 8 bits of count. if V flag= 0 on entry; else preserved
R2, bits 0- 23 =most significant 24 bits of count , if V flag= 0 on entry; else
preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Use

Processor is in IRQ or SVC mode

This vector is called by OS_Byte 15, OS_Byte 21 and OS_Byte 128. The default
action is to call the ROM routine to count the number of entries in a buffer, or to
flush the contents of a buffer.

It may also be called using OS_CallAVector. It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can
only be entered with interrupts disabled and is not re-entrant.

The V flag gives a reason code that determines the operation :

V flag= 0 count the entries in a buffer
V flag= I flush the buffer

Use

Software vectors

This vector is called by OS_Byte 145 and OS_Byte 152. The default action is to call
the ROM routine to examine or remove byte(s) from the system buffers .

It may also be called using OS_CaiiAVector. It must be called with interrupts
disabled (the OS_Bytes do this automatically). therefore coc;le on the vector can
only be entered with interrupts disabled and is not re-entrant

The C flag is used to indicate if the operation failed ; if C=l then it was not possible
to remove/examine all the specified data , or the specified byte .

Block operations are not available in RISC OS 2, nor are they available for buffers
that are not handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers
for all of lnsV, RemV and CnpV Under later versions of RISC OS you must instead
use the buffer manager SWis Buffer_Create or Buffer_Register.

See a I so the chapter enti tied Buffers on page 1-161 and the chapter entitled The
Buffer Manager on page 4-83.

Related SWis

OS_Byte 145 (page 1-170). OS_Byte 152 (page 1-171)

1-91

UKVDU23V (Vector & 17)

1-94

Called when an unrecognised VDU 23 command is issued

On entry

RO = VDU 23 option requested
Rl =pointer to VDU queue

On exit

RO, R l preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Use

UKVDU23V
(Vector & 17)

This vector is called when a VDU 23,11 command is issued with an unknown value of
11 , ie it is in the range !8- 25 or 28- 3!.

The nine parameters sent after the VDU 23 command are stored in the VDU queue.
Rl points to the byte holding 11. and RO also conta ins 11.

The default action is to do nothing- unknown VDU 23s are ignored.

Related SWis

OS_WriteC (page l-50!)

Software vectors

If the entries are to be counted then the result returned depends on the C flag on
entry as fo llows:

C flag= 0 return the number of entries in the buffer
C flag= I return the amount of space left in the buffer

This call also copes with buffer manager buffers.

To use different sized system buffers under RISC OS 2, you must provide handlers
for all of lnsV, RemV and CnpV. Under later versions of RISC OS you must instead
use the buffer manager SWis Buffer_ Create or Buffer_Register.

See also the chapter entit led Buffers on page 1-161 and the chapter ent itled Tfle
Buffer Manager on page 4-83 .

Related SWis

OS_Byte 15 (page 1-164), OS_Byte 21 (page 1- 165). OS_Byte 128 (page 1-166)

1-93

Called when an unknown SWI instruction is issued

Software vectors

UKSWIV
(Vector & 18)

On entry

RO- R8 as set up by the caller
Rll = SWI number

On exit

Generates an error by default

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Use

Processor is in SVC mode

This vector is called when a SWI is issued with an unknown SWI number. Before
this vector is called, the OS tries to pass the call to any modules which have SWI
table entries in their header.

The default action is to call the Unused SWI handler, which by default returns a 'No
such SWI' error See the section entitled Unused SWI on page 1-291 for full details .

This vector can be used to add large numbers of SWis to the system from a single
module. Normally only 64 SWis can be added by a module; if you claim this vector,
you can then trap any additional SWis you wish to add. (You should always use the
module mechanism to add the first 64 SWis that a module adds, as it is more
efficient than using this vector.) Note that you must get an allocation of SWI
numbers from Acorn before adding any to commercially available software. This
will avoid clashes between your own software and other software.

See also the chapter entitled An introduction to SWis on page 1-23; and the chapter
entitled Program Environment on page l-283 for more about handlers.

Related SWis

OS_UnusedSWI (page 1-307)

1-95

UKPLOTV (Vector & 19)

1-96

Called when an unknown PLOT command is issued

UKPLOTV
(Vector & 19)

On entry

RO = PLOT number

On exit

RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Use

Processor is in SVC mode

This vector is called by the VDU drivers when a VDU 25,n (PLOT) or SWI OS_Plot
command is issued with an unknown value of n.

By using OS_ReadVduVariables you can read the co-ordinates of the last three
points that have been visited, and the one specified in the unknown PLOT
command. These are held in the VDU variables 140- 147. See the entry for
OS_ReadVduVariables for full details .

When the call returns to the VDU drivers they update the variables, so that the
point given in the unknown plot becomes the graphics cursor position . The
previous graphics cursor becomes the last point but one, the previous last point
but one becomes the last point but two , and the previous last point but two is lost.

The default action is to do nothing- unknown VDU 25s (Plots) are ignored .

Related SWis

OS_ WriteC (page 1-50 I). OS_ReadVduVariables (page 1-703),
OS_Plot (page 1-717)

TickerV (Vector & 1 C)

1-98

Called every centisecond

TickerV
(Vector & 1 C)

On entry

No parameters passed in registers

On exit

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Use

Processor is in IRQ or SVC mode

This vector is called every centisecond . It must never be intercepted, as this would
prevent other clients from being called .

Routines that take a long time (say> I OO!lS) may re-enable IRQ so long as they
disable it again before passing the call on. If you do so, other calls may be made to
TickerV in the meantime. Your routine needs to prevent or cope with re-entrancy.
One way of ensuring that the code is single threaded is:

• to use a flag in its workspace to note that it is currently threaded, and :

• to keep a count of how many calls to TickerV have been missed while it was
threaded, so the count can be examined on exit and corrected for

Related SWis

None

Called when VDU output has been redirected

Software vectors

VDUXV
(Vector & 1 B)

On entry

RO = byte sent to the VDU

On exit

RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Use

Processor is in SVC mode

This vector is called when VDU output has been redirected by setting bit 5 of the
OS_ WriteC destination flag When this bit is set. all characters sent to the VDU
driver are routed through this vector instead. Note that this only affects the display
driver: other output streams such as the printer and *Spool file are called as usual,
even when VDUXV is used for screen updating.

It is up to the owner of the vector to perform the usual queuing of parameter bytes
etc. The default owner of this vector does nothing, so issuing a *FX3,32 call is
much the same as disabling the VDU using ASCII 21.

This vector is normally claimed by the Font Manager, to implement the Font
system (see the chapter entitled Tfle Font Manager on page 3-403). If the Font
module is disabled, the default action is to do nothing- no output is sent to the
VDU .

See also the chapter entitled Cflaracter Output on page l-489, and the chapter
entitled VDU Drivers on page l -527.

Related SWis

OS_ WriteC (page l-50 l)

1-97

EconetV (Vector &21)

1-100

Called whenever there is activity on the Econet

EconetV
(vector &21)

On entry

RO = reason code
R I =total size of data. or amount of data transferred , or no parameter passed

On exit

RO. R I preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Use

Processor is in SVC mode

EconetV is called whenever there is activity on the Econet. The reason code tells
you what the activity is.

The bottom nibble of the reason code indicates whether the activity has started (0).
is part way through (I) or finished (2) The next nibble gives the type of operation

The table below shows the reason codes that are passed . The right hand column
shows what is passed in R I . or (for the less obvious cases) when the reason code is
passed :

&IO NetFS_StartLoad R I = total size of data
&II NetFS_PartLoad R I = amount of data transferred
&I2 NetFS_FinishLoad
&20 NetFS_StartSave R I = total size of data
&2I NetFS_PartSave R I = amount of data transferred
&22 NetFS_FinishSave
&30 Net FS_Sta rtCreate R I =total size of data
&3I NetFS_PartCreate R I = amount of data transferred
&32 NetFS_FinishCreate
&40 NetFS_StartGetBytes R I =total size of data

Used to indirect all SWI calls made to the Draw module

On entry

RO- R7 dependent on SWI issued
R8 = index of SWI within the Draw module SWI chunk

On exit

Dependent on SWI issued

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Use

Software vectors

DrawV
(vector &20)

This vector is used to indirect all SWI calls made to the Draw module . The default
action is to call the ROM routine in the Draw module that decodes and executes
SWis.

The index held in R8 is decoded as follows:

0 Draw_ProcessPath
2 Draw_Fill
4 Draw_Stroke
6 Draw_StrokePath
8 Draw_FlattenPath
10 Draw_TransformPath

See also the chapter entitled Draw module on page 3-523 .

Related SWis

Draw_ ... (page 3-535 onwards)

1-99

ColourV (Vector &22)

1-102

ColourV
(Vector &22)

Used to indirect all SWI calls made to the ColourTrans module

On entry

RO - R7 dependent on SWI issued
R8 =index of SWI within the ColourTrans module SWI chunk

On exit

Dependent on SWI issued

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Use

Processor is in SVC mode

This vector is used to indirect all SWI calls made to the ColourTrans module. The
default action is to call the routine in the ColourTrans module that decodes and
executes SWis.

The index held in R8 is decoded as follows:

0 ColourTrans_SelectTable
I ColourTrans_SelectGCOLTable
2 ColourTrans_ReturnGCOL
3 ColourTrans_SetGCOL
4 ColourTrans_ReturnColourNumber
5 ColourTrans_ReturnGCOLForMode
6 ColourTrans_ReturnColourNumberForMode
7 ColourTrans_ReturnOppGCOL
8 ColourTrans_SetOppGCOL
9 ColourTrans_ReturnOppColourNumber
I 0 ColourTrans_ReturnOppGCOLForMode
II ColourTrans_ReturnOppColourNumberForMode
12 ColourTrans_GCOLToColourNumber
13 ColourTrans_ColourNumberToGCOL

Software vectors

&41 NetFS_PartGetBytes R l =amount of data transferred
&42 NetFS_FinishGetBytes
&50 Net FS_Sta rtPut Bytes R l =total size of data
&51 NetFS_PartPutBytes R l =amount of data transferred
&52 NetFS_FinishPutBytes
&60 NetFS_StartWait start of a Broadcast_ Wait
&62 NetFS_FinishWait end of a Broadcast_ Wait
&70 NetFS_StartBroadcastLoad R l = tota I size of data
&71 NetFS_PartBroadcastLoad Rl =amount of data transferred
&72 NetFS_FinishBroadcastLoad
&80 NetFS_StartBroadcastSave R l =total size of data
&81 NetFS_PartBroadcastSave R l =amount of data transferred
&82 NetFS_FinishBroadcastSave
&CO Econet_StartTransmission start to wait for a transmission to end
&C2 Econet_FinishTransmission DoTransmit returns
&DO Econet_StartReception start to wait for a reception to end
&02 Econet_Fi nish Reception WaitForReception returns

This vector is normally claimed by the NetStatus module, which uses the
Hourglass module to display an hourglass whi le the Econet is busy. lt passes on
the call lf the Hourglass module is disabled, the default action is to do nothing
See the chapter entit led Hourglass on page 2-733, and the chapter entitled NetStatus
on page 2-745.

See also the chapter entitled NetFS on page 2-337, the chapter entit led NetPrint on
page 2-385, and the chapter entit led Econet on page 2-609.

Related SWis

Econet_ .. (page 2-647 onwards), NetFS_ ... (page 2-344 onwards),
NetPrint_ .. (page 2-389 onwards) and Hourglass_ ... (page 2-734 onwards)

1-101

PaletteV (Vector &23)

1-104

Called whenever the palette is to be read or written

On entry

Register usage is dependent on a reason code held in R4 :

Read palette

RO = logical colour
R I =type of colour (16, 17, 18,24,25)
R4 = I (reason code)

Set palette

RO = logical colour
Rl =type of colour (16, 17, 18,24,25)
R2 = 1st flash colour (&BBGGRRxx)- device colour
R3 =2nd flash colour (&BBGGRRxx)- device colour
R4 = 2 (reason code)

Set first flash state

R4 = 3 (reason code)

Set second flash state

R4 = 4 (reason code)

Set default palette

R4 = 5 (reason code)

On exit

Read palette

R2 = 1st flash colour (&BBGGRRxx)- device colour
R3 =2nd flash colour (&BBGGRRxx)- device colour
R4 = 0 => operation complete

Other reason codes

R4 = 0 => operation complete

PaletteV
(vector &23)

Use

Software vectors

This vector is called whenever the palette is to be read or written . Calls this applies
to include:

• VDU 19 page 1-568

• OS_Word 12 page 1-679

• OS_ReadPalette page 1-701

• ColourTrans_ReadPalette page 3-387

• ColourTrans_ WritePalette page 3-389

By claiming this vector, you can get replacement graphics hardware to intercept
such calls , and perform the operation using their own palette. On completion, you
should set R4 to zero on exit; R1SC OS then knows not to perform the operation
itself.

By default. this vector calls the ROM routines to read/write the computer's own
palette; they likewise set R4 to zero on exit to notify the caller that the operation
was completed.

This vector has no default owner under R1SC OS 2 or RISC OS 3 (version 3.00)
However, you can write software that calls this vector- and that works correctly
under all versions of R1SC OS- by checking the value of R4 on exit to see if the
operation is complete. If it is not complete, you then need to use your own code to
read or write the palette. For more information and example code fragments , see
the section entitled Application notes on page 1-109.

1-105

More complex uses of vectors

More complex uses of vectors

Sometimes, you may want to do more complex things with a vector, such as:

• preprocessing registers to alter the effect of a standard routine

• postprocessing to change the effect of future calls

• repeatedly calling a routine or group of routines.

There are a number of important things to remember if you are doing so. You must
make sure that:

• the vector still looks exactly the same to a program that is calling it. even if it
now does different things

• your routine will cope with being called in all the processor modes that its
vector uses (for example, SVC or IRQ mode for a routine on lnsV)

• the values of R I 0 and R I I are preserved when earlier claimants of the vector
are repeatedly called.

An example program

1-106

The example program below illustrates all these important points. You can adapt it
to write your own routines .

The program claims WrchV, adding a routine that:

• changes the case of the character depending on the state of a flag
(preprocessing)

• calls the remaining routines on the vector to write the altered character

• toggles the flag (postprocessing)

• ensures that all registers are set to the values that would be returned by the
default write character routine

• returns control to the calling program.

Note that the program releases the vector before ending, even if an error occurs.

Software vectors

DIM code% 100
FOR pass%=0 TO 3 STEP 3
P%=code%
[OPT pass%
.vectorcode%

r

save the entry value, the necessary state for the repeated call,
and our workspace pointer

STMFD rl3 ! , {rO, rl0-rl2 , rl4}

do our preprocessing ;
LDRB rl4, [rl2]

as a trivial example , convert to the current case
pick up upper/lowercase flag

CMP rl4, #0
rl, lowercase_table%
rl, uppercase_table%

decide which territory manager table to use
LDREQ
LDRNE
LDRB rO, [rl , rO] look up character and put back in rO

now do the call to the rest of the vector . Since this is WrchV , we know that
we are in SVC mode; however, the code below will correctly call the rest of
the vector whatever the mode.

STMFD
ADD

LDMIA

rl3 ! , {rl5}
rl2, rl3 , #B

rl2 , (rl0-rl2, rl5}

pushes PC+l2 , complete with flags and mode
stack contains pc,rO,rlO,rll,rl2,rl4
so point at the stacked rlO
and restore the state needed to call the
rest of the chain (rlO and rll), and
• return • to the non-vector claiming address .
The load of rl2 wastes one cycle .

we are now at the pc+l2 that we stacked ; this is therefore where the
rest of the vector returns to when it has finished .

LOR rl2, [rl3, #12] reload our workspace pointer
Note that the offset of #12 - and the earlie

#8 when we pushed onto the stack - refer to
this example only and are not general
Note also that the pc we pushed was
pulled by the vector claimer .

we could now do some more processing, set rO up to another character ,
and loop round to done_preprocess% again ; instead , we'll just do some
example postprocessing ; we ' ll toggle our upper/lowercase flag .

LDRB
EOR
STRB

rl4, [rl2]
rl4, rl4, #1
rl4, [rl2]

now return ; if there was no error then intercept the call to the
vector , returning the original character .

LDMVCFDrl3 ! , {rO , rl0-rl2 , rl4 , rl5}

could pass the call on instead by omitting rl4 from the addresses
to pull- ie use LDMVCFD rl3 ! , {rO, rl0-rl2 , rl5}

1-107

An example program

1-108

there was an error ; set up the correct error pointer, flags, and
claim the vector .

STR
LDMFD

rO, [rl3] ; save the error pointer
rl3 !, {rO , r10-r12, r14 , r15}

; return with V still set, and claim the vector

; reserve space to store the addresses of the territory manager case tables
.lowercase_table%

EQUD 0
.uppercase_table%

EQUD 0

NEXT
REM Get addresses of the territory manager case tables
SYS "Territory_ LowerCaseTable" , -1 TO ! lowercase_table%
SYS "Territory_UpperCaseTable " , -1 TO !uppercase_table%
DIM flag% 1
? flag%=0
WrchV%=3
ON ERROR SYS "XOS_ Release •, WrchV% , vectorcode%, flag% : PRINTREPORT$: END
SYS "OS_Claim ", WrchV%, vectorcode% , flag%
REPEAT

INPUT command$
OSCLI command$

UNTIL command$=" "
SYS · xos_Release•, WrchV%, vectorcode% , flag%
END

Software vectors

Application notes
The PaletteV vector has no default owner under RISC OS 2 or RISC OS 3 (version
3.00), but you may still wish to write software that calls this vector, and can hence
interact with (say) a replacement graphics card.

The two pieces of code below work correctly under all current versions of RISC OS.
They do so by checking the value of R4 on exit from PaletteV to see if the read/write
palette operation is complete. If it is not complete, the code is being run on a
RISC OS 2 machine, and there was no PaletteV claimant (such as code downloaded
from a graphics card) that was able to complete the operation . In such cases, the
code then reads/writes the palette itself.

Reading a palette entry

The following piece of code reads a palette entry:

In RO logical colour
Rl type of colour (16,17,18,24,25)

Out R2 1st flash colour (&BBGGRRxx) - device colour
R3 2nd flash colour (&BBGGRRxx) - device colour
vc = > flags preserved, vs => RO->error, flags corrupt
(mustn't be called with V set)

readpalette Entry "R4 , R9 "

MOV R4, n1

MOV R9 , #PaletteV
SWI XOS_CallAVector
EXIT VS

TEQ R4,#0
EXIT EQ

SWI XOS_ReadPalette

LDRVC R4 , =&FOFOFOOO

ANDVC Rl4,R2 , R4
ORRVC R2,R2,Rl4 , LSR

ANDVC Rl4 , R3 , R4
ORRVC R3 , R3,R14 , LSR

EXITS VC
EXIT
LTORG

#4

#4

read palette

returns &BBGGRRxx

returns &BOGOROxx

clears low nibbles a nd bottom byte
(we want to preserve bits 0 . . 7)

force to &BBGGRRxx

force to &BBGGRRxx

Note that if the vector is claimed, the resulting colours must be 24-bit, rather than
the restricted versions returned by OS_ReadPalette .

1-109

Writing a palette entry

Writing a palette entry

1-110

The following piece of code writes a palette entry:

In RO logical colour
Rl type of colour (16 , 17 , 18 , 24 , 25)
R2 1st flash colour (&BBGGRRxx) - device colour
R3 2nd flash colour (&BBGGRRxx) - device colour

Out VC => flags preserved , VS => RO->error , flags corrupt
(mustn ' t be called with v set)

NB : Doesn ' t cope with Rl=l6 , R2<>R3 (write different flash states).
It is in fact impossible to get R1=24or25 , R2<>R3 to work.

setpalette " R4 , R9 "

MOV R4 , ij2
MOV R9 , UPaletteV
SWI XOS_ CallAVector
EXIT VS

TEQ R4 , #0
EXITS EQ

AND R14,RO , #&FF
AND R4 , Rl , U&FF
ORR R4,Rl4 , R4 , LSL
BIC R14 , R2 , U&FF
ORR R4 , R4,Rl4 , LSL
MOV Rl4 , R2 , LSR #24

ns

ij8

Push "R0 , Rl,R4 , Rl4 "
ADD Rl , sp , #2*4
MOV RO , n12
SWI xos_word
STRVS RO , [sp]
Pull "R0 , Rl , R4 , Rl4 "

EXITS VC
EXIT

set palette

Rl4 = &BBGGRROO
R4 = &GGRRrlrO (green,red , Rl,RO)
Rl4 = &OOOOOOBB (blue)

Rl -> block
write palette

Note that when writing the palette, there is no need to alter the parameters when
calling VDU 19 or OS_ Word 12, since these only look at the top nibbles of each gun.

However, 24-bit palette values can only be received through the vector, since the
VDU 19 and OS_ Word calls cannot trust the values of the bottom nibbles of the
palette values passed to them, and must treat them as being copies of the
corresponding top nibbles.

9

Introduction

Reset vector

Hardware vectors

The hardware vectors are a set of words starting at logical address &0000000. The
ARM processor branches to these locations in certain exceptional conditions- in
general. either when a privileged mode is entered or when a hardware error occurs.
These cond itions are known as exceptions. Usually, each vector will contain a branch
to a routinE' to handle the exception. The vectors, their addresses and their default
contents are:

Addr VetCtor Default contents

&00 Reset
&04 Undefined instruction
&08 SWI
&OC Prefetch abort
&10 Data abort
&14 Address exception
&18 IRQ

B

LDR
R

LDR
LDR
LDR
B

branchThruOError
PC , UndHandler
decodeSWI
PC , PabHandler
PC , DabHandler
PC, AexHandler
handle IRQ

&1C FIQ FIQ code ...

When the computer is reset , amongst other things:

• the ROM is temporarily switched into location zero

• the program counter is loaded with &00.

The reset vector is hence read from the ROM and will always be the same.

Any attempt to jump to location zero in RAM will result in a 'Branch through zero'
error.

Hardware exception vectors
The middle group of vectors , except SWI , are under the control of various
'envi ronment' handlers . When the exception occurs, before any of these vectors is
ca lled, the ARM processor saves the current program counter (R 15) to Rl4_svc. The
ARM is then forced to SVC mode, and interrupts are disabled .

1-111

Hardware exception vectors

1-112

The usual action of these exceptions is to cause an error. The default handlers for
these exceptions also dump the aborting mode's registers into the current
exception dump area, and test to see if the exception occurred while the processor
was in FlO mode. If it was then F!Os are disabled on the IOC chip so that the
exception does not recur- this would overwrite the original register dump, and
probably hang the machine.

These vectors may be set and read as described in the chapter entitled Program
Environment on page l-283. Very few programs need to take account of them .

Undefined instruction vector

The undefined instruction vector is called when the ARM attempts to execute an
instruction that is not a part of its normal instruction set If the floating point
emulator (either hardware or software) is active, it intercepts the undefined
instruction vector to interpret floating point instructions, and passes on those that
it does not recognise.

Prefetch abort vector

The prefetch abort vector is called when the MEMC chip detects an illegal attempt
to prefetch an instruction . There are two possible reasons for this:

• an attempt was made to access protected memory from an insufficiently
privileged mode

• an attempt was made to access a non-existent logical page.

Data abort vector

The data abort vector is called when the MEMC chip detects an illegal attempt to
fetch data. There are two possible reasons for this:

• an attempt was made to access protected memory from an insufficiently
privileged mode

• an attempt was made to access a non-existent logical page.

Address exception vector

The address exception vector is called when a data reference is made outside the
range 0- &3FFFFFF

SWI vector

IRQ vector

FIQ vector

Hardware vectors

The SWI vector is called when a SWI instruction is issued. It contains a branch to
the RISC OS code which decodes the SWI number and branches to the appropriate
location . Before calling this vector, the ARM processor saves the current program
counter (R 15) toR 14_svc. The ARM is then forced to SVC mode, and interrupts are
disabled .

You are strongly recommended not to replace this vector.

For full details, see the earlier chapter entitled An introduction to SWis on page 1-23.

The IRQ vector is called when the ARM receives an interrupt request It also
contains a branch into the RISC OS code. This code attempts to deal with the
interrupt by examining the IOC chip, to find the highest priority device that has
interrupted the processor. If no interrupting device is found then the software
vector IrqV is called.

Before calling the hardware IRQ vector, the ARM processor saves the current
program counter (R 15) to R 14_irq, the ARM is forced to IRQ mode, and interrupts
are disabled.

For full details, see the chapter entitled Interrupts and handling them on page 1-117.

Finally, the FlO vector is called when the ARM receives a fast interrupt request For
some claimants (such as ADFS) this is the first instruction of a RAM-based routine
to deal with the fast interrupt requests . For other claimants (such as NetFS) this is
a branch instruction to the code that deals with the fast interrupt requests . (NetFS
uses FIOs to drive a state machine, so the overhead of copying code to the FlO
vector is much more than that of putting a Branch instruction there.)

Before calling this vector the ARM processor saves the current program counter
(R 15) to R 14_fiq, the ARM is forced to FlO mode, and both normal and fast
interrupts are disabled.

For full details, see again the chapter entitled Interrupts and handling them.

1-113

Claiming hardware vectors

Claiming hardware vectors

If you are the current application, you can change the effect of most of the
hardware vectors by installing the appropriate handler. If you are not. then you wi II
have to 'claim ' the vector yourself This is most likely to occur if you are a system
extension module. There is no SWI to claim a hardware vector; instead you have to
overwrite it with a

B myHandler

or an

LDR PC, [PC, #myHandlerOffset]

instruction, and do all the 'housekeeping' yourself.

Passing on calls to hardware vectors

You must make sure that if your own handler cannot process what caused the
vector to be called, the 'next' handler for the vector is called. The address of the
next handler can be dynamic, so you must be careful:

• If the instruction in the hardware vector location when you come to claim it is

B oldHandler

then you need to compute the address of the old handler and store it in your
workspace. You then need to store a pointer to this address.

• If the instruction is

LDR [PC, #oldHandlerOffset]

then you need to compute the address of the variab le where RISC OS stores
the installed handler's address, and store this pointer. You must not
dereference this pointer to get the actual address of the handler, as this value
may change as different applications are run.

In both cases above you now have a pointer to a variable which holds the address
of the next handler to call; you can then use identical code in both cases to pass on
a ca ll to the hardware vector that you cannot handle.

Releasing hardware vectors

1-114

If your module is killed, so you need to release a hardware vector, you must first
check to see that the instruction that is in the hardware vector location points to
your own handler. If it does not. your module must refuse to die, as another piece
of software has stored away the address of your handler, and may try to pass on a
call to your handler or to restore you when it exits.

Hardware vectors

Vector priorities

The hardware vectors have different priorit ies. so that if exceptions occur
simultaneously they are sensibly handled . This list shows the vectors in order of
priority:

Reset
Address exception
Data abort
FlO
IRQ
Prefetch abort
Undefined instruction
SWI

i High priority

,J, Low priority

1-115

1-116

10 Interrupts and handling them

Introduction

An interrupt is a signal sent to the ARM processor from a hardware device,
indicating that the device requires attention. One is sent, for example, when a key
has been pressed or when one of the software timers needs updating. This send ing
of a signal is known as an interrupt request .

RISC OS deals with the interrupt by temporarily halting its current task, and
entering an interrupt routine. This routine deals with the interrupting device very
quickly- so quickly, in fact. that you wi ll never realise that your program has been
interrupted.

Interrupts provide a very efficient means of control since the processor doesn't
have to be responsible for regularly checking to see if any hardware devices need
attention . Instead, it can concentrate on executing your code or whatever else its
current main task may be, and only dea l with hardware devices when necessary.

Devices handled

Amongst the devices which are handled under interrupts on RISC OS computers
are the:

• keyboard

• printer

• RS423 port

• mouse

• disc drives

• built-in timers .

Expansion cards

Additionally, external hardware such as expansion cards may cause new interrupts
to be generated. For example, the analogue to digital convertor on the BBC 1/0
expansion card can interrupt when it has finished a conversion. It is therefore
possible to install routines which deal with these new interrupts.

1-117

Device numbers

Device numbers

1-118

Each potential source of interrupts has a device number. There are corresponding
device vectors ; installed on each vector there is a default device driver that receives only
the interrupts from that device.

Unless you are adding your own interrupt-generating devices to the computer, you
should not need to alter the interrupt system .

The device numbers correspond directly to bits of the interrupt registers held in
the IOC chip:

Device number

0

7
8
9

I 5

Corresponds to:

Bit 0 of IRQ A registers
Bit I of IRQ A registers

Bit 7 of IRQ A registers
Bit 0 of IRQ B registers
Bit I of IRQ B registers

Bit 7 of IRQ B registers

See the section entitled IOC registers on page I- I 42 for more detai Is.

Not all RISC OS computers use the same interrupt generating hardware. Early
models (eg the Archimedes 300, 400 and 500 series. and the A3000) use a variety of
peripheral control chips; current models (eg the A5000) use the 82C7 I 0 or 82C7 I I
chip; future models may use other peripheral controllers. These different
peripheral controllers are mapped differently onto the IOC chip's IRQ registers .
Consequently, device numbers differ between models of RISC OS computers.

You can distinguish between the different peripheral controllers and their
properties by calling OS_ReadSysinfo (page I -7 I 9) using its various reason codes .

Interrupts and handling them

For early models (ie the Archimedes 300, 400 and 500 series, and the A3000). the
device numbers are:

0 Printer Busy
Serial port Ringing Indicator

2 Printer Acknowledge
3 VSync Pulse
4 Power on reset- this should never appear in normal use
5 IOC Timer 0
6 IOC Timer l
7 FlO Downgrade- reserved for the use of the current owner of FlO
8 Expansion card FlO Downgrade - this should normally be masked off
9 Sound system buffer change
l 0 Serial port controller interrupt
ll Hard disc controller interrupt
12 Floppy disc changed
13 Expansion card interrupt
14 Keyboard serial transmit register empty
15 Keyboard serial receive register full

For models using the 82C71 0 or 82C7ll peripheral controller (eg the A5000). the
device numbers are:

0 Printer interrupt from 82C710/7ll
Low battery warning

2 Floppy disc Index
3 VSync Pulse
4 Power on reset- this should never appear in normal use
5 IOC Timer 0
6 IOC Timer I
7 FlO Downgrade- reserved for the use of the current owner of FlO
8 Expansion card FlO Downgrade- this should normally be masked off
9 Sound system buffer change
l 0 Serial port interrupt from 82C7l 0/711 -also mapped to FlO device 4
ll IDE hard disc interrupt
12 Floppy disc interrupt from 82C7l 0/711
13 Expansion card interrupt
14 Keyboard serial transmit register empty
15 Keyboard serial receive register full

(Device numbers 3- 9 and 13- 15 have the same meaning as for early models.)

Note that RISC OS 2 does not support the 82C7l 0 or 82C7ll peripheral controller.

1-119

Device vectors

Device vectors

Just like other vectors in RISC OS, you can claim the device vectors and get them to
call a different routine. You do this using the SWI OS_CiaimDeviceVector.

Most of the device vectors only call the most recent routine that claimed the vector.
There is no mechanism to pass on the call to earlier claimants, as it is not sensible
to have many routines handling one device. However, old claimants remain on the
vector, and if you release the vector using OS_ReleaseDeviceVector, the previous
owner of the vector is re-installed .

The exceptions to this are device vectors 8 and 13, which handle FIGs and IROs
(respectively) which are generated by expansion cards. These can have many
routines insta lled on them, as it is possible to add many expansion cards to the
computer. Each claimant specifies exactly which interrupts it is interested in ;
RISC OS then ensures that only the correct routine is called.

Avoiding duplication of drivers

IRQUtils

1-120

Note that when you claim a device vector, RISC OS will automatically remove from
the chain any earlier instances of the exact same routine (ie one that uses the same
code and workspace).

Automatic interrupt disabling

If you release a device vector, and there are no earlier claimants of that vector,
RISC OS will automatically disable interrupts from the corresponding device. You
must not attempt to disable the interrupts yourself There is thus guaranteed to be
a device driver for each device number that can generate interrupts.

After the release of RISC OS 2, a module called IROUtils was released to improve
interrupt latency.

The changes this made have now been incorporated in RISC OS 's kernel. A dummy
module named IROUtils has been included with an appropriate version number, so
that applications written to run under RISC OS 2 that check for its presence will
st ill run correctly.

SWI Calls

Cla ims a device vector

Interrupts and handling them

OS_CiaimDeviceVector
(SWI &48)

On entry

RO =device number
R I =address of device driver routine
R2 =value to be passed in R I2 when device driver is called
R3 = address of interrupt status, if RO = 8 or I3 on entry (ie an expansion card)
R4 = interrupt mask to use. if RO = 8 or I3 on entry (ie an expansion card)

On exit

RO - R4 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call installs the device driver, the address of which is given in R I, on the device
vector given in RO. If the same driver has already been installed on the vector (ie
the same parameters were used to install a driver) then the old copy is removed
from the vector. Note that this call does not enable interrupts from the device (cf

OS_ReleaseDeviceVector).

The previous driver is added to the li st of earlier claimants.

1-121

OS_CiaimDeviceVector (SWI &48)

1-122

If RO = 8 or I 3 then the device driver routine is for an expansion card . R3 gives the
address where the expansion card 's interrupt status is mapped into memory- see
page 4- I 26 onwards of the chapter entitled Expansion Cards and Extension ROMs. Your
device driver is called if the IOC chip receives an interrupt from an expansion card,
and (LDRB [R3] AND R4) is non-zero.

For all other values of RO, your driver is called if the IOC chip receives an interrupt
from the appropriate device, the corresponding IOC interrupt mask bit is set , and
your driver was the last to claim the vector.

Related SWis

OS_ReleaseDeviceVector (page I- I 23)

Related vectors

None

Releases a device vector

Interrupts and handling them

OS_ReleaseDeviceVector
(SWI &4C)

On entry

RO =device number
Rl =address of device driver routine
R2=Rl2value
R3 = interrupt location if RO = 8 or 13 on entry (ie an expansion card)
R4 = interrupt mask if RO = 8 or 13 on entry (ie an expansion card)

On exit

RO - R4 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call removes a driver from the list of claimants of a device vector. The device
driver is identified by the contents of the registers on entry; RO- R2 (RO- R4 if
RO = 8 or 13) must be the same as when the device driver was installed on the
vector.

The previous owner of the vector is re-installed at the head of the chain. If there is
no previous owner, then IROs from the corresponding device are disabled.

You must not attempt to disable a device's IROs within IOC when you release its
vector. For expansion card IROs (ie RO = 8 or 13 on entry). you should prevent your
device from interrupting again by programming the hardware on your expansion
card .

1-123

OS_ReleaseDeviceVector (SWI &4C)

1-124

Related SWJs

OS_ClaimDeviceVector (page 1-121)

Related vectors

None

Interrupts and handling them

Technical details

This section gives you more technical details of how the RISC OS interrupt system
works. You should refer to it if

• you are adding an interrupt generating device to your computer - such as an
expansion card

• you wish to use Timer I from the IOC chip, which is not used by RISC OS

• you wish to change one of the default RISC OS device driving routines.

How a device driver is called

Interrupts are generated and the device driving routine called as follows:

The device that needs attention alters the status of its interrupt request pin,
which is connected to the IOC chip.

2 The corresponding bit of one of the IOC's interrupt status registers is set

3 The IOC's interrupt status registers are ANDed with its interrupt mask
registers, and the results put in its interrupt request registers .

4 If the result was non-zero (ie the device's bit was set in the mask) then an
interrupt is sent to the ARM processor.

5 If interrupts are enabled, the ARM saves R 15 in R 14_irq.

6 It then forces IRQ mode by setting theM I bit and clearing the MO bit of R 15,
and disables interrupts by setting the I bit

7 The ARM then forces the PC bits of R 15 to & 18.

8 The instruction at & 18 is fetched and executed. It is a branch to the code that
RISC OS uses to decode IROs.

9 RISC OS examines the interrupt request registers of the IOC chip to see which
device number generated the interrupt

I 0 If the device number was not 8 or 13 (ie the device was not an expansion card)
then RISC OS calls the last routine that claimed the corresponding device
vector.

If the device was an expansion card, RISC OS checks each routine on the
expansion card device vector, starting with the most recent claimant The
contents of the interrupt status byte are ANDed with the mask (as passed in R3
and R4 when the routine was installed) . If the result is non-zero, the routine is
called ; otherwise the next most recent claimant is checked.

1-125

Device driver routines

Whatever the device number, if no routine is found to handle the interrupt
then lrqV (the unknown IRQ vector) is called . By default this disables the
interrupting device by clearing the corresponding bit of its interrupt mask
but the call may be intercepted by routines written to work under the old
Arthur operating system.

II The device driving routine is executed and returns control.

The addresses of the IOC registers are given in the section entitled IOC registers on
page 1-142.

Device driver routines

Entry conditions

When a routine that has claimed a device vector is called :

• the ARM is in IRQ mode with interrupts disabled

• R3 points to the base of the IOC chip memory space

• R 12 has the same value as R2 had when the vector was claimed- this is usually
used to point to the routine's workspace.

Servicing the interrupt and returning

Your routine must:

• service the interrupt

• stop the device from generating interrupts, where necessary

• return to the kernel using the instruction MOV PC , R1 4 .

In doing so, you may corrupt registers RO- R3 and R 12.

Restrictions

1-126

There are more restrictions on writing code to run under IRQ mode than there are
under SVC mode. These apply to:

• speed of execution

• re-enabling interrupts

• calling SWis

• not using certain SW!s.

Interrupts and handling them

Speed of execution

Interrupt handling routines must be quick to execute . This is because they are
entered with interrupts disabled, so while they are running other hardware may be
kept waiting. This slows the machine down considerably.

In practice, I OOj.!s is the longest you shou ld leave interrupts disabled. If your
routine will take longer than this. try to make it shorter. If all else fails . your routine
must re-enable interrupts . It should do so by clearing the I bit of R I5, using for
example :

; I_Bit set in PSR MOV

TEQP
Rtemp, PC
Rtemp , #I_ bit ; Note TEQ is like EOR : so clears I _ Bit in PSR

where I_bi t is a constant having only the I bit set. You cannot simply do
TEQP PC , # I _bit , because in this instruction the PC is presented without the
PSR bits. For more details see Appendix A ARM assembler on page 4-355.

If your routine does re-enable interrupts. it must be able to cope if a second
interrupt occurs, and hence the routine being entered for a second time (ie
re-entrancy occurring) .

Calling SWis

Calling SWis from device driver routines is quite similar to calling them from SWI
routines . Again the problem is that R I4_svc (the return address for SWis) may get
corrupted . For example:

A SWI is called by a program that is running in User mode. R I5 (the return
address to the program) is copied to RI4_svc, and the processor is put into
SYC mode. The SWI routine is then entered.

2 While this routine is running, an interrupt occurs. The device driver routine
calls a second SWL The ARM enters SYC mode. and R I5 is copied to RI4_svc,
overwriting the return address to the program. The second SWI executes .

3 Control is returned to the interrupt handler.

4 When it finishes. control passes back to the first SWI routine by loading
RI4_irq back into RI5 .

5 The first SWI routine finishes executing, and tries to return control to the
program by loading R I4_svc back into R I5 .

6 Because R I4_svc was overwritten by the second SWI, control is not returned to
the program ; instead it passes back to the second SWI again , crashing the
computer.

1-127

Error handling

Error handling

1-128

Recommended procedure

The sol ution used with device driver routines is the same as that for SWI routines.
R 14_svc is pushed on the stack before the SWI is called. and pulled afterwards
However, this is more complex as you have to first change from IRQ to SVC mode.
A recommended way of doing so is:

MOV R9 , PC Save current status/mode
ORR RB , R9 , nsvc_ Mode Derive SVC-mode version of it
TEQP RB, no Enter SVC mode
MOV RO , RO No-op to prevent contention
STMFD Rl3 !, {R14} Save Rl4 - svc
SWI xxxx Do the SWI
LDMFD Rl3 !, {R14} Restore R14 - svc
TEQP R9 , #0 Re-enter original processor mode
MOV RO , RO No-op to prevent contention

SVC Mode is 3. Of course, you must preserve R8 and R9 as well , using the full
descending IRQ stack. If you want to check flags on exit from the SWI (eg the V
flag), you must do so before you re-enter the original processor mode, as this
method restores not just the mode bits, but also all the original flags .

An alternative method is shown below. It is one instruction longer, but only uses
one temporary register (R8), and allows testing the flags returned by the SWI after
restoring the original mode:

MOV RB , PC
AND RB , RB , #3
EOR RB , RB , #SVC_Mode
TEQP RB:')PC
MOV RO , RO
STMFD Rl3 !, {R14}
SWI xxxx
LDMFD R13 !, {R14}
TEQP RB , PC
MOV RO , RO

RB holds PC and PSR
Extract current mode bits
RS = current mode EOR SVC_Mode
Enter SVC mode
No-op to prevent contention
Save Rl4 _ SVC
Do the SWI
Restore Rl4_SVC
Restore mode, preserving other flags
No-op to prevent contention

Interrupt handling routines must only call error-returning SWis ('X' SWis) . If you do
get an error returned to the routine, you cannot return that error elsewhere .
Instead you must take appropriate action within the routine . You may also like to
store an error indication. so that the next ca ll to a SWI in the module that provides
the routine (or the current call , if already threaded) will generate an error.

Re-entrancy

Interrupts and handling them

There are some SW!s you shouldn't call at all from an interrupt handling routine.
even with the above precautions . This is because they are not re-entrant; that is.
they can't be entered while an earlier call to them may sti ll be in progress. One
common reason for this is if the routine uses some private workspace . For
example:

The SWI is called from a program . It stores some values in the workspace.

2 An interrupt occurs. The interrupt handling routine calls the same SWI a
second time.

3 The old va lues in the workspace are overwritten.

4 When control returns to the first instance of the SWI. the workspace is
corrupted and so the routine does not work correctly.

Documentation of re~entrancy

The documentation of each SWI clearly states if it is re-entrant- ie if you ca n call it
from an interrupt handling routine. There are three common entries:

• re-entrant can be used

• not re-entrant

• undefined

must not be used

the SWI's re-entrancy depends on how you ca ll it. or
it is subject to future change.

In general. OS_Byte and OS_ Word cal ls can be used. OS_WriteC and routines
which use it should never be ca lled.

Clearing interrupt conditions

Before your routine returns. it must service the interrupt- that is . give the device
the attention it needs. which originally caused it to generate the interrupt. You
must then clear the interrupt condition. to stop the device carrying on generating
the same interrupt. How you do this depends on the device. but will usually involve
accessing the hardware that is generating the interrupt . See the relevant hardware
data sheets for information.

Fast interrupt requests
There are actua lly two classes of interrupt requests . So far we have been looking at
the normal interrupt request . or IRQ. The second type is a fast interrupt request. or FlO.
Fast interrupts are generated by devices which demand that their request is dealt
with as quickly as possible . They are dealt with at a higher priority than interrupts
(ie normal IROs) .

1-129

Fast interrupt requests I

1-130

Fast interrupts are a separate system. There are separate registers in the IOC chip,
separate inputs to the chip, and a separate connection to the ARM. The ARM has a
processor mode reserved for FIGs, and a hardware vector.

FIQ devices

Devices handled under FIGs also have device numbers. Again , the device numbers
correspond to the bits in IOC registers : these are the FlO interrupt registers.

Device number

0

7

Corresponds to:

Bit 0 of FlO registers
Bit I of FlO registers

Bit 7 of FlO registers

Just like IRQ device numbers, FlO device numbers differ between models of
RISC OS computers, depending on the peripheral controller chips used. For early
models (eg the Archimedes 300, 400 and 500 series, and the A3000). the FlO device
numbers are:

0 Floppy disc data request
I Floppy disc controller interrupt
2 Econet interrupt
3 C3 pin on IOC
4 C4 pin on IOC
5 C5 pin on IOC
6 Expansion card interrupt
7 Force FlO- this bit is always set. but usually masked out

For models using the 82C71 0 or 82C711 peripheral controller (eg the A5000). the
FlO device numbers are:

0 Floppy DMA data request
I FHI pin on IOC
2 Econet interrupt
3 C3 pin on IOC
4 Serial port interrupt from 82C71 0/711 -also mapped to IRQ device I 0
5 C5 pin on IOC
6 Expansion card interrupt
7 Force FlO- this bit is always set. but usually masked out

(FlO device numbers 2, 3 and 5-7 have the same meaning as for early models .)

Again we make the point that RISC OS 2 does not support the 82C71 0 or 82C711
peripheral contro ller.

Interrupts and handling them

Similarities between FIQs and IRQs

In many ways F!Os are similar to IROs. So FlO routines must:

• keep FlO and IRQ disabled while they execute- if you're taking so long that
you need tore-enable them. you should be using IROs. not FIOs

Differences between FIQs and IRQs

There are three important differences:

• F!Os must be handled more quickly

• F!Os are vectored differently

• F!Os must never call SW!s.

The default owner

When a FlO is generated execution passes directly to code at the FlO hardware
vector. By default, the code that is installed here handles F!Os generated by the
Econet module. if it is present. The Econet module is the default owner of the FlO
vector.

When other parts of RISC OS want to use FIOs. for example to perform a disc
transfer under interrupts, they claim the vector, replace the default code. and then
release the vector. RISC OS automatically re-installs the default code.

Obviously only one current FlO owner is supported.

It is vital that you only claim the FlO vector for the absolute minimum time
necessary. For example. ADFS uses F!Os to perform disc transfers; but it releases
the FlO vector between each sector.

1-131

Fast interrupt requests

1-132

Using FIQs

You must follow a similar procedure if you want to use FIOs. This is the sequence
you must follow:

Claim FIOs using the module service call OS_ServiceCall. You can claim FIOs
either from the foreground , or from the background.

To claim from the foreground, the reason code in Rl must be &OC (Claim FlO)
This service ca ll will always succeed, but will wait for any cu rrent background
FlO process to complete.

To claim from the background, the reason code in Rl must be &47 (Claim FlO
in background). This service call may fail, but this failure does not imply an
error- merely that FIOs could not be claimed. You must leave your routine to
allow the foreground routine to finish using FIOs and release them. You
should schedule a later retry; for example with a disc, you would retry next
revolution of the disc. If R I = 0 on return, you successfully claimed the FlO
vector.

2 Set the IOC fast interrupt mask register to &00, to prevent fast interrupts while
you are changing the FlO code.

3 Poke your FlO handling routine into addresses & I C upwards. You may use
memory up to location &100 (ie the last possible instruction is at &FC).

4 Enable FlO generation from your device.

5 Set the bit corresponding to your device in the IOC fast interrupt mask register.

6 Start your FlO operation . You must either poll for its completion, or rely on the
completion starting the finalise process in the steps below.

7 End your FlO operation.

8 Set the IOC fast interrupt mask register to zero.

9 Disable FlO generation from your device.

I 0 Release FIOs using the module service call OS_ServiceCall. The reason code in
Rl must be &08 (Release FlO) . It doesn't matter which way you originally
claimed the FlO hardware vector.

How the FIQ vector is called

You may need to know in more detail how fast interrupts are generated and the FlO
hardware vector is called :

The device that needs attention alters the status of its fast interrupt request
pin, which is connected to the IOC chip.

2 The corresponding bit of the IOC's fast interrupt status register is set.

Interrupts and handling them

3 The IOC's fast interrupt status register is ANDed with its fast interrupt mask
register, and the result put in its request register.

4 If the result was non-zero (ie the device's bit in the mask was also set) then a
fast interrupt is sent to the ARM processor.

5 The ARM saves R 15 in R 14_fiq.

6 It then forces FlO mode by clearing theM I bit and setting the MO bit of Rl5 ,
and disables all interrupts by setting both the I bit and the F bit.

7 The ARM then forces the PC bits of R 15 to & I C.

8 The FlO handling routine at & I Cis entered.

The add resses of the IOC registers are given at the end of the chapter.

Disabling interrupts

There will be times when you want to disable interrupts (ie IROs) . You must only
do so with great care; and particularly not for long periods of time since this will
have various unwanted effects such as stopping the clock, disabling the keyboard,
etc.

SWis provided

The easiest way to disable andre-enable interrupts from user mode is to use the
SWis provided. These are OS_IntOff and OS_IntOn. They have no entry or exit
conditions, and are described in full below.

More advanced cases

To disable specific devices, or fast interrupts, you need to be in a privileged mode.
The example below shows you how to use the SWI OS_EnterOS to enter SVC mode.
This is described in more detail below.

Normally you won 't need to do this , because RISC OS places you in a privileged
mode during module initialisation , service and finalisation entries -the times you
are most likely to want to disable devices, or fast interrupts .

Once you are in a privileged mode, you can disable interrupts by setting the I bit in
R 15 . You can also disable fast interrupts by setting the F bit.

1-133

Disabling interrupts

1-134

To disable specific devices you must first have disabled all interrupts. You then
clear the relevant bits in any of the IOC's interrupt mask registers . This must be
done in very few (no more than five) instructions. Finally, you must re-enable
interrupts:

MOV R2 , #IOC Point R2 at IOC before disabling interrupts
SWI "OS_ EnterOS " Enter SVC mode
MOV RO , PC Get status in RO
ORR Rl , RO , #&OCOOOOOO ; Set the i n terrupt ma sks
TEQP Rl , #O Update PSR

Write to IOC here in < 5 instructions, eg :

LDRB Rl , [R2 , #IOCIRQMskA]
ORR Rl , Rl , #TimerlBit ; Enable Timerl

; If BIC is used instead of ORR , Timerl is disabled
STRB Rl, [R2 , #IOCIRQMskA]

TEQP
MOV

R0 , #3
RO , RO

End of write to roc

Restore entry state and return to user mode
NOP to avoid conten tion

FIOs must be disabled because the mask has FlO downgrade bits . If the current FlO
owning process alters these bits between your reading the mask and writing it. the
process will not then get the IRQ that it just requested the FlO be downgraded to .

Interrupts and handling them

Service Calls

Release FlO

Service ReleaseFIQ
(Service Call &08)

On entry

Rl = &OB (reason code)

On exit

Use

Rl = 0 to claim, else preserved to pass on

This service call must be issued by any module immediately after it releases the
FlO hardware vector. You may claim this service call if you wish to usurp the default
FlO owner (the Econet module) and install your own code on the FlO hardware
vector.

If no module claims this service call, then Econet does so. and installs its own code
on the FlO hardware vector. Should even Econet not claim the service call -for
example if the Econet module has been unplugged- then the kernel installs its
default FlO handler.

See the section entitled Using FlOs on page l-132 for details of other steps to take
when claiming or releasing the FlO hardware vector, and also the chapter entitled
Hardware vectors on page 1-lll for additional information about the vector.

1-135

Service_CiaimFIQ (Service Call &OC)

1-136

Claim FlO

Service ClaimFIQ
(Service Call &OC)

On entry

RI = &OC (reason code)

On exit

Use

R I = 0 to claim , else preserved to pass on

This service call must be issued by any module running as a foreground task (ie not
as an IRQ process) that wishes to claim the FlO hardware vector.

It informs the current FlO owner that it must release the vector as soon as it can
cleanly do so. The current owner must complete without disruption any unfinished
FlO processing, release the vector, and then claim the service call by setting R I to
zero. As soon as the claimant finds that the service call has been claimed , it knows
it has claimed the FlO hardware vector.

See the section entitled Using FIOs on page I- I 32 for details of other steps to take
when claiming or releasing the FlO hardware vector, and also the chapter entitled
Hardware vectors on page I- I I I for additional information about the vector.

Interrupts and handling them

Service_CiaimFIQinBackground
(Service Call &4 7)

Claim FlO in background

On entry

RI = &47 (reason code)

On exit

Use

RI = 0 to claim, else preserved to pass on

This service call must be issued by any module running as a background task (ie as
an IRQ process) that wishes to claim the FlO hardware vector. It may also be issued
by foreground tasks that wish to poll the FlO vector for availability Unlike
Service_CiaimFIO, this call may return with RI preserved (ie not claimed), meaning
that the current FlO owner has not released the vector.

The service call informs the current FlO owner that it must release the vector if it
can immediately do so. If the current owner is busy with a FlO, it must take no
action, merely passing on the service call ; if however it is idle, it may release the
vector and then claim the service call by setting R I to zero. If the claimant finds
that the service call has been claimed, it knows it has successfully claimed the FlO
hardware vector; however, if the claimant finds that the service call has not been
claimed , it knows the current owner has not released the FlO hardware vector, in
which case the claimant may reissue the service call at a later time.

Background claims are released by Service_ReleaseFIO, as before.

See the section entitled Using FIGs on page 1-132 for details of other steps to take
when claiming or releasing the FlO hardware vector, and also the chapter entitled
Hardware vectors on page 1-111 for additional information about the vector.

1-137

SWI Calls

SWI Calls

1-138

Enables interrupts

On entry

No parameters passed in registers

On exit

Registers preserved

Interrupts

Interrupt status is undefined on entry
Interrupts are enabled on exit
Fast interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

OS_IntOn
(SW1&13)

This call enables interrupts and returns to the caller with the processor mode
unchanged.

Related SWis

OS_IntOff (page 1-139)

Related vectors

None

Disables interrupts

On entry

No parameters passed in registers

On exit

Registers preserved

Interrupts

Interrupt status is undefined on entry
Interrupts are disabled on exit
Fast interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

Interrupts and handling them

OS_IntOff
(SWI &14)

This call disables interrupts and returns to the caller with the processor mode
unchanged.

Related SWis

OS_IntOn (page 1-138)

Related vectors

None

1-139

OS_EnterOS (SW/ &16)

1-140

Sets the processor to SVC mode

On entry

No parameters passed in registers

On exit

Registers preserved

Interrupts

Interrupt status is unaltered
Fast interrupt status is unaltered

Processor mode

Processor is in SVC mode during the routine, and on exit

Re-entrancy

SWI is re-entrant

Use

OS EnterOS
(SW1&16)

This call returns to the caller in SVC mode. This leaves you using the SVC stack. The
interrupt states remain unchanged.

Related SWis

None

Related vectors

None

Interrupts and handling them

Hardware addresses

It will help you to use interrupts to their full potential if you have a good knowledge
of the hardware used to build the computer. We don't have the space to give you
full details of every RISC OS computer built by Acorn in this manual.

Below we tell you where the IOC chip and some of the various peripheral
contro llers of a RISC OS computer are mapped into memory on an Archimedes
computer. Although these may be taken as typical of RISC OS computers, there is
no guarantee that other computers will be similarly mapped. Indeed, even the
details below are subject to change; the peripheral controllers may be changed as
improved ones become available, or the mapping may be redefined .

Always use defined software interfaces in preference to directly accessing the
hardware.

Finding out more

If you need to know more, you can:

• refer to the earlier chapter entitled ARM Hardware on page 1-9

• consult the Acorn RISC Machine familJ,J Data Manual. VLSI Technology Inc. (1990)
Prentice-Hall. Englewood Cliffs. NJ. USA: ISBN 0-13-781618-9.

• consu lt the datasheets for the various peripheral controllers used, available
from their manufacturers

• contact Acorn Customer Service.

1-141

Hardware addresses

IOC registers

The IOC regi sters are a single byte wide , and are mapped into memory like this:

Address Read Write

&3200000 Control Control
&3200004 Kbd serial receive Kbd serial transmit
&3200008 - -
&320000C - -

&3200010 IRQ status A -

&3200014 IRQ request A IRQ clear
&3200018 IRQ mask A IRQ mask A
&320001C - -

&3200020 IRQ status 8 -

&3200024 IRQ request 8 -
&3200028 IRQ mask 8 IRQ mask 8
&320002C - -

&3200030 FIQ status -

&3200034 FIQ request -

&3200038 FIQ mask FIQ mask
&320003C - -

&3200040 TO count low TO latch low
&3200044 TO count high TO latch high
&3200048 - TO go command
&320004C - TO latch command
&3200050 T1 count low T1 latch low
&3200054 T1 count high T1 latch high
&3200058 - T1 go command
&320005C - T1 latch command
&3200060 T2 count low T21atch low
&3200064 T2 count high T2 latch high
&3200068 - T2 go command
&320006C - T2 latch command
&3200070 T3 count low T31atch low
&3200074 T3 count high T3 latch high
&3200078 - T3 go command
&320007C - T3 latch command

Figure I 0.1 T1Jp ical memoriJ mapping of IOC reg isters

1-142

Interrupts and handling them

Control register

The IOC chip's control register allows you to read and write its six external control
pins CO - C6. and to read two other pins . Again there are differences between
models of RISC OS computers. depending on the peripheral controllers used. For
early models (eg the Archimedes 300. 400 and 500 series. and the A3000). the bits
of the control register are mapped as follows:

Bit Function

0 l!C serial bus data
IIC serial bus clock

2 Floppy disc ready
3 Reset enable (A540/R200 series only)
4 Current level of C4 pin on IOC (available on Auxiliary 1/0 connector)
5 Speaker mute
6 Current level of -IF pin on IOC (Printer Acknowledge signal)
7 Current level of IR pin on IOC (Vertical Flyback signal)

For models using the 82C71 0 or 82C7ll peripheral controller (eg the A5000) . the
bits of the control register are mapped as follows:

Bit Function

0 IIC serial bus data
IIC serial bus clock

2 Floppy disc density
3 Unique machine ID chip- control pin
4 Serial FlO
5 Speaker mute
6 Current level of -IF pin on IOC (Floppy disc Index signal)
7 Current level of IR pin on IOC (Vertical Flyback signal)

Again we make the point that RISC OS 2 does not support the 82C7l 0 or 82C7ll
peripheral controller.

1-143

Hardware addresses

Other devices

1-144

Other devices and peripheral controllers are mapped into memory in these
locations on early model RISC OS computers (eg the Archimedes 300, 400 and 500
series, and the A3000):

Address Type Bank IC Use

&3240000 Slow 4 - Internal Expansion cards
&3270000 Slow 7 - External Expansion cards
&32COOOO Med 4 - Internal Expansion cards
&32DOOOO Med 5 HD63463 Hard Disc register write
&32D0008 Med 5 HD63463 Hard Disc DMA read
&32D0020 Med 5 HD63463 Hard Disc register read
&32D0028 Med 5 HD63463 Hard Disc DMA write
&3310000 Fast 1 1772 Floppy disc controller
&3340000 Fast 4 - Internal Expansion cards
&3350010 Fast 5 HC374 Printer Data
&3350018 Fast 5 HC574 Latch B
&3350040 Fast 5 HC574 Latch A
&33AOOOO Sync 2 6854 Econet controller
&3380000 Sync 3 6551 Serial port controller
&33COOOO Sync 4 - Internal Expansion cards

Figure I 0.2 Early memory mapping of non-IOC devices and peripheral controllers

Current models that use the 82C710 or 82C711 (eg the A5000) use this mapping:

Address Type Bank IC Use

&3010000 82C710/1 Peripheral controller
&3012000 82C710/1 Floppy disc DMA control
&3240000 Slow 4 - Internal Expansion cards
&3270000 Slow 7 - External Expansion cards
&32COOOO Med 4 - Internal Expansion cards
&3340000 Fast 4 - Internal Expansion cards
&3350048 Fast 5 - Video clock![Sync polarity]
&3350050 Fast 5 - ASIC presence
&3350054 Fast 5 - (Clock speed]
&3350070 Fast 5 - Monitor ID field
&3350074 Fast 5 - VGA test pin/SCART sound
&33AOOOO Sync 2 6854 Econet controller
&33COOOO Sync 4 - Internal Expansion cards

Figure I 0. 3 Typical memory mapping of non-IOC devices and peripheral controllers

11

Introduction

Events

Events are used by RISC OS to indicate that something specific has occurred.
These are typically generated using the SWI OS_GenerateEvent when RISC OS
services an interrupt. The following events are available:

Number

0
I
2
3
4
5
6
7
8
9

10
II
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28

Event type

Output buffer has become empty
Input buffer has become full
Character has been placed in input buffer
End of ADC conversion on a BBC 1/0 expansion card
Electron beam has reached last displayed line (VSync)
Interval timer has crossed zero
Escape condition has been detected
RS423 error has been detected
Econet user remote procedure has been called
User has generated an event
Mouse buttons have changed state
A key has been pressed or released
Sound system has reached the start of a bar
PC Emulator has generated an event
Econet receive has completed
Econet transmit has completed
Econet operating system remote procedure has been called
MIDI system has generated an event
Reserved for use by an external developer
Internet has generated an event
Reserved for use by an external developer
Reserved for use by an external developer
Device overrun
Reserved for use by an external developer
A driver has received a frame for the Internet module
A driver has completed an Internet transmission request
Reserved for use by Acorn
Reserved for use by Acorn
Portable BMU has received an event

1-145

Enabling and disabling events

Note that you may generate events yourself, using event number 9, which is
reserved for users. You may also get an allocation of an event number from Acorn
if you need one- for example, if you are producing an expansion card that
generates events.

Enabling and disabling events

Generating events all the time would use a lot of processor time. To avoid this ,
events are by default disabled. You can enable or disable each event individually.

To avoid problems with several applications using events at the same time ,
RISC OS keeps a count for each event. This count is increased each time an event is
enabled , and decreased when an event is disabled. Thus disabling an event will not
stop it being generated if another program still needs the event.

RISC OS sets all event counts to zero at each reset , although some of its system
extension modules may need events, and so immediately increment the counts .

Expansion card modules

If the module that is using events has been loaded from an expansion card, it must
behave as follows:

• enable the event on all kinds of initialisation

• call OS_Byte 253 on a reset to find out what type it was :

• if it was a soft reset , enable the event

• if it was a hard reset or power-on do nothing, as the module will just have
been initialised, and so will already have enabled the event

• disable the event on all kinds of finalisation .

Using events

1-146

To use event(s). you must first OS_Ciaim the event vector EventV. See the chapter
entitled Software vectors on page 1-63 for further details of vectors. You must then
call OS_Byte 14 to enable each of the events you wish to use.

The event routine

When an event occurs, your event routine (that claimed the event vector) is
entered. The event number is stored in register RO; other information may be
stored in R1 onwards , depending on the event- see below.

The restrictions which apply to interrupt handlers also apply to event handlers
namely, event routines are entered with interrupts disabled, with the processor in
a non-user mode. They may only re-enable interrupts if they disable them again

Events

before passing on or intercepting the call, and they must ensure that the
processing of one event is completed before they start processing another. The use
of certain operating system calls must be avoided. For further details see the
section entitled Restrictions on page 1-126.

Finishing with events

When you finish using the events you must first call OS_Byte 13 to disable each
event that you originally enabled. You must then OS_Release the event vector
Even tV.

1-147

SWI Calls

SWI Calls

1-148

Disables an event

On entry

RO = 13
Rl =event number

On exit

RO preserved
R I =old enable state
R2 corrupted

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

OS_Byte 13
(SWI &06)

This call disables an event by decreasing the count of the number of times that
event has been enabled . If the count is already zero, it is not altered . The previous
enable state of the event is returned in R I:

Rl = 0 previously disabled
Rl > 0 previously enabled

Note that to disable an event totally, you must use OS_Byte 13 the same number of
times as you use OS_Byte 14.

Related SWis

OS_Byte 14 (page 1-150), OS_GenerateEvent (page 1-152)

Related vectors

EventV, ByteV

Events

1-149

OS_Byte 14 (SW/ &06)

1-150

Enables an event

On entry

RO = 14
Rl =event number

On exit

RO preserved
R I =old enable state
R2 corrupted

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

OS_Byte 14
(SWI &06)

This call enables an event by increasing the count of the number of times that
event has been enabled . The previous enable state of the event is returned in R I :

R I = 0 previously disabled
R I > 0 previously enabled

When you finish using the vector, you should disable it again by calling
OS_Byte 13.

Related SWis

OS_Byte 13 (page 1-148). OS_GenerateEvent (page 1-152)

Related vectors

EventV, ByteY

Events

1-151

OS_GenerateEvent (SWI &22)

1-152

Generates an event

On entry

RO =event number
R I ... = event parameters

On exit

All registers preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_GenerateEvent
(SWI &22)

Note that. as usual, the event vector will on ly be ca lled if the event number given in
RO has previously been enabled using OS_Byte 14.

Related SWis

OS_Byte 13 (page 1-148), OS_Byte 14 (page 1-150)

Related vectors

Even tV

Events

Details of events

Details of all the events and the values they pass to the event routines are given
below.

Output buffer empty event

RO = 0
R I =buffer number

This event is generated when the last character has just been removed from an
output buffer (e.g. printer buffer, serial port output buffer) which has output empty
events enabled, or an attempt is made to remove another character from the buffer
once it has been emptied. See the chapter entitled Buffers on page 1-161.

Input buffer full event

RO =I
R I =buffer number (bits 0- 30) and byte/block operation flag (bit 31):

bit 31 clear~ byte operation- R2 holds byte
bit 31 set~ block operation- R2 points to block of length R3

R2 =byte that could not be inserted into buffer (if byte operation);
else R2 =pointer to data not inserted (if block operation)

R3 =number of bytes not inserted (if block operation)

This event is generated when an input buffer (which has input full events enabled)
is full and when the operating system tries to enter a character into the buffer but
fails . See the chapter entitled Buffers on page 1-161.

Block operations do not occur in RISC OS 2, nor do they occur for buffers that are
not handled by the buffer manager.

Character input event

RO = 2
Rl =buffer number (0 for keyboard, or I for serial input)
R2 =byte being inserted into buffer

This event is generated when OS_Byte !53 is called to insert any character except
Escape into the keyboard buffer, or into the serial buffer when seria l input is
treated as keyboard input (ie OS_Byte 181 is set to zero). If the character is Escape,
then the Escape event is instead generated.

See the chapter entitled Character Input on page 1-835 for a description of buffer
values for the keyboard buffer.

OS_Byte !53 is called by the keyboard driver to insert keys into the keyboard buffer,
and by the serial device driver when it receives a character.

1-153

Details of events

1-154

ADC end conversion event

RO = 3
Rl =channel that just converted

This event is generated when the analogue-to-digital convertor on the BBC 110
expansion card finishes a conversion. See the documentation supplied with the
card.

Vertical sync event

RO = 4

This event is generated when the electron beam reaches the bottom of the
displayed area and is about to start displaying the border colour. This event
corresponds to the time when the OS_Byte 19 call returns to you. In low-resolution
modes this will be every fiftieth of a second; in modes requiring a multisync
monitor it will be more frequent.

You could use it. for example, to start a timer which will cause a subsequent
interrupt. On this interrupt you could change the screen palette, to display more
than the usual number of colours on the screen at once.

Interval timer event

RO = 5

This event is generated when the interval timer, which is a five-byte value
incremented 100 times a second, has reached zero. See OS_ Word 3 (SWI &07) on
page 1-4 12 for details of the interval timer.

The interval timer is obsolescent, since there is only one provided, which is not
very useful in a multi-tasking environment. You should instead use OS_CaiiAfter
(page 1-429) or OS_ Call Every (page 1-431).

Escape event

RO = 6

This event is generated either when Esc is pressed, or when an escape condition is
received from the RS423 input port and OS_Byte 181 is set to zero. See the chapter
entitled Character Input on page 1-835 for a discussion of escape conditions.

RS423 error event

RO = 7
R I =pseudo 6850 status register shifted right I place
R2 = character received

Events

This event is generated when an RS423 error is detected . Such errors are parity
errors, framing errors etc. On entry, the bits of R I have the following meanings:

Bit Meaning when set

5 Parity error
4 Over-run error
3 Framing error

Econet user remote procedure event

RO = 8
R I = pointer to argument buffer
R2 =remote procedure ca ll number
R3 =station number
R4 =network number

This event is generated when an Econet user remote procedure call occurs. See
chapter entitled Econet on page 2-609 for further details .

User event

RO = 9
R I .. . =values defined by user

This event is generated when you call OS_GenerateEvent with R0=9. The other
registers are as set up by you . Note that this is entered in SYC mode, not IRQ
mode.

1-155

Details of events

1-156

Mouse button event

RO = 10
R I =mouse X co-ordinate
R2 = mouse Y co-ordinate
R3 = button state
R4 = 4 bytes of monotonic centi-second value

This event is generated when a mouse button changes, ie when a button is pressed
or released. The button state is given in R3 as follows:

Bit Meaning when set

0 Right-hand button down
Centre button down

2 Left-hand button down

Key up/down event

RO= II
R I = 0 for key up, I for key down
R2 =key number
R3 = keyboard driver lD

This event is issued whenever a key on the keyboard is pressed or released. The key
number, R2, is a low-level internal key number transmitted by the keyboard to the
IOC device, and does not relate to other codes used elsewhere. The table below
li sts the values for each possible key, giving the high and low hex digit of the key
code:

high 0 2 3 4 5 6 7

low 0 Esc Home p G c Alt(R) Select
F1 Page Up [H v Ctrl (R) Menu

2 F2 2 Numlock l J 8 ~ Adjust
3 F3 3 I \ K N J.,
4 F4 4 Delete L M ~

5 F5 5 # Copy 0
6 F6 6 Tab PageDown "
7 F7 7 Q 7 Return I Enter
8 F8 8 w 8 4 Shift (R)
9 F9 9 E 9 5 i
A F10 0 R 6
8 F11 T Ctrl (L) + 2
c F12 y A Shift (L) 3
D Print £ u s Capslock
E Scroll lock ~ I D z Alt (L)
F Break Insert 0 F X Space

Figure I I Low-level internal kelj numbers

Events

Where there is some ambiguity, eg the digit keys, it should be clear from referring
to the keyboard layout which code refers to which key. The keys are numbered top
to bottom , left to right , starting from Esc at the top left corner. 40 is unused on the
UK model. but may be used on some other models for an extra key.

Note that the keycodes given in this event bear no relationship to any other code
you will see . They are not, for example, related to the INKEY numbers described in
the chapter entitled Cflaracter Input. They apply to the keyboard supplied on the UK
model.

Sound start of bar event

RO = 12
RI = 2
R2 = 0

This event is generated whenever the sound beat counter is reset to zero, marking
the start of a bar. See the chapter entitled Tfle Sound S!JStem on page 4-3 for more
details.

The 0 in R2 may change in future versions to give the invocation number of the task
causing the event.

PC Emulator event

RO = 13

This event is claimed by the PC Emulator package

Econet receive event

RO = 14
R I = receive handle
R2 = status of completed operation

This event is generated when an Econet reception completes. The status returned
in R2 will always be 9 (Status_Received) . See the chapter entitled Econet on
page 2-609 for further details .

1-157

Details of events

1-1 ~R

Econet transmit event

RO = 15
R I =transmit handle
R2 = status of completed operation

This event is generated when an Econet transmission completes . The status
returned in R2 can have the following values:

0 Transmitted
I Line jammed
2 Net error
3 Not listening
4 No clock

See the chapter entitled Econet on page 2-609 for further details.

Econet OS remote procedure event

RO = 16
R I = pointer to argument buffer
R2 = remote procedure call number
R3 = station number
R4 = network number

This event is generated when an Econet operating system remote procedure call
occurs . Current remote procedure call numbers are:

0 Character from Notify
Initialise Remote

2 Get View parameters
3 Cause fatal error
4 Character from Remote

See the chapter entitled Econet on page 2-609 for further details .

Events

MIDI event

RO = 17
R I =event code

This event is generated when certain MIDI events occur. The values Rl may have
are:

0 A byte has been received when the buffer was previously empty
I A MIDI error occurred in the background
2 The scheduler queue is about to empty, and you can schedule more

data .

These events only occur if you have fitted an expansion card with MIDI sockets . See
the manual supplied with the card for further details.

Internet event

RO = 19
R I = event code
R2 = socket descriptor

This event is generated when certain Internet events occur. The values R I may have
are :

0 A socket has input waiting to be read
I An urgent event has occurred , such as the arrival of out-of-band data
2 A socket connection is broken.

These events only occur if you are using the Internet module supplied with the
TCP/IP Protocol Suite. See the TCP/IP Programmer's Guide for further details .

Device overrun event

RO = 22
R I =device driver's handle
R2 =file handle
R3 = 0

This event is generated when the SWI DeviceFS_ReceivedCharacter is called on an
unbuffered stream, and the previously received character has not been read. The
new character overwrites any previous character.

1-159

Details of events

1-160

Internet receive event

RO = 24
Rl =pointer to data buffer chain containing Rx data
R2 = pointer to name of interface controlled by driver ('et', 'en' , etc)
R3 =physical unit number (0- 3)
R4 = Rx frame type

This event is generated by a driver to indicate to the Internet module that it has
received and stored a frame from the network.

Internet transmission status event

RO = 25
R I =pointer to data buffer chain containing Tx data
R2 =pointer to name of interface controlled by driver ('et', 'en ', etc)
R3 =physical unit number (0- 3)
R4 =error number (driver specific), or 0 if successful

This event is generated by a driver to indicate to the Internet module that it has
completed a transmission request. It does not necessarily imply successful
transmission and reception by the target host.

Portable BMU interrupt event

RO = 28
Rl =status bits for BMU variable 10 (see page 4-203)

This event is generated by the Portable module when it receives interrupts from the
BMU (battery management unit). You must not claim it yourself See the chapter
entitled Tfie Portable module on page 4-195 for further details.

12

Introduction

Buffers

The interrupt system on a RISC OS computer makes extensive use of buffers. These
act as temporary holding areas for data after you (or a device) generate it. and
before a device (or you) consume it. For example, whenever you type a character on
the keyboard, that character is stored in the keyboard input buffer by the keyboard
interrupt handler, and it remains there until your program is ready to use it.

The buffer manager

The buffer manager is a global buffer managing system used by DeviceFS to
provide buffers for the various devices that can be accessed . It provides a set of
calls for setting up a buffer, inserting and removing data from a buffer, and
removing a buffer. For more details about the buffer manager see the chapter
entitled The Buffer Manager on page 4-83.

Filing system buffers

Use of buffers

We are not concerned with filing system buffers in this section. However, these are
areas where RISC OS holds whole areas of files in memory to increase the
efficiency of file access. The use of file buffers is generally invisible to you; there is
no direct way of accessing their contents.

The buffers we are looking at are known as first-in first-out. or FIFO, buffers. This is
because the characters are removed from the buffer in the same order in which
they were inserted. Many operations on buffers are implicit. For example, when you
send a character to the printer or RS423 port, a character is inserted into a buffer.
When you read from the keyboard or RS423 port using OS_ReadC, a character is
removed from the buffer.

Additionally, there are several explicit buffer operations avai lable . These include:

• inserting a character into a buffer

• removing a character

• counting the space in a buffer

1-161

Details of buffers

• examining the next character without removing it

• purging a buffer (clearing its contents) .

All these operations are implemented as OS_Bytes- see below.

The buffer is also purged implicitly when the escape condition is cleared- see the
chapter entitled Character Input on page 1-835.

Details of buffers

1-162

There are ten buffers, numbered 0- 9. Their uses are as follows :

Number

0

2
3
4
5
6
7
8
9

Use

Keyboard
RS423 (input)
RS423 (output)
Printer
Sound channel 0
Sound channel I
Sound channel 2
Sound channel 3
Speech
Mouse

Size

255
255
191
1023 t
3
3
3
3
3
63

t From RISC OS 3 onwards, the size of the printer buffer is configurable
using •configure PrinterBufferSize.

Buffers 2 to 8 are output buffers . They hold data you generate until a device is ready
to consume it The others are input buffers . These store bytes generated by the
keyboard , RS423 and mouse respectively until you are ready to read them .

Buffers 4 to 8

Currently, buffers 4 to 8 are not used by RISC OS They are provided for
compatibility with BBC Micro software. Sound buffering and speech are
implemented differently on RISC OS hardware than they were on BBC hardware.
These buffers are not considered further.

Data format

The format of data in all buffers in current use, except for the mouse buffer, is
byte-oriented ASCII data , although top-bit-set characters are treated specially in
the keyboard buffer (and optionally in the serial input buffer) . See the chapter

Buffers

entitled Character Input on page 1-835 for a description of buffer values for the
keyboard buffer. The mouse buffer contents refer to buffered button clicks. The
format is as follows :

Byte

0

2
3
4
5

6
7

8

Value

Mouse x coordinate low
Mouse x coordinate high
Mousey coordinate low
Mousey coordinate high
Button state
Time of button change, byte 0
Time of button change, byte I
Time of button change, byte 2
Time of button change, byte 3

The bytes are listed in the order in which they would be removed using
OS_Byte 145- see page 1-170.

Usually OS_Mouse reads data from the mouse buffer. If none is available, it returns
the current state instead. The mouse buffer is 63 bytes long, so 7 entries may be
held at once.

OS_Byte calls provided

The OS_Bytes used to control buffers are described below.

They are, in fact. just an interface to the vectored buffer routines described on
page 1-88 onwards of the chapter entitled Software vectors. Usually, the OS_Bytes are
easier to use. However, there are times when it is preferable, or necessary (for
example to read the number of bytes free in an input buffer) to use the vectors.
They can be called directly using OS_C'.qiiAVector.

Changing buffer sizes

To use different sized system buffers under RISC OS 2, you must provide handlers
for all of InsV, RemV and CnpV You could do so in a module that replaces, say, the
printer buffer with a much larger one. You would claim the memory for this from
the relocatable module area. The module cou ld have its own configuration byte
held in CMOS RAM to specify the size of the buffer, which it would claim on
initialisation .

Under later versions of RISC OS you can alter the size of the printer buffer using
•configure PrinterBufferSize. To alter the size of other system buffers, rather than
claiming InsV, RemV and CnpV, you must instead use the buffer manager SWis
Buffer_Create or Buffer_Register.

1-163

SWI calls

SWI calls

1-164

Flushes all buffers. or the current input buffer

On entry

RO = 15
R I = reason code

On exit

RO preserved
Rl , R2 corrupted

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 15
(SWI &06)

This call flushes either all the buffers, or only the current input buffer:

Rl = 0 flush all buffers
Rl = I flush the current input buffer (keyboard/RS423)

The contents of the buffer(s) are discarded. Individual buffers may be flushed using
OS_Byte 21 .

Related SWis

OS_Byte 21 (page 1-165)

Related vectors

ByteV

Flushes a specified buffer

On entry

RO = 21
Rl =buffer number

On exit

RO, R I preserved
R2 corrupted

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call flushes the specified buffer.

Related SWis

OS_Byte 15 (page 1-164)

Related vectors

ByteV

Buffers

OS_Byte 21
(SWI &06)

1-165

OS_Byte 128 (SWI &06)

1-166

OS_Byte 128
(SWI &06)

Gets mouse coordinates, or number of bytes in an input buffer, or number of free
bytes in an output buffer

On entry

RO = 128
R I = reason code

On exit

RO preserved
R I, bits 0 - 7 = low 8 bits of answer
R2, bits 0- 23 = high 24 bits of answer

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SYC mode

Re-entrancy

Use

Not defined

The action of this call depends upon the reason code in R I. It returns either the
current x or y position of the mouse, or the number of bytes in a particular input
buffer, or how many bytes there are free in a particular output buffer:

On entry

Rl = 7
Rl = 8
Rl = 246
Rl = 252
Rl = 253
Rl = 254
Rl = 255

On exit R I & R2 contain the:

mouse x position
mousey position
number of bytes in the mouse buffer
number of bytes free in the printer buffer
number of bytes free in the RS423 output buffer
number of bytes in the RS423 input buffer
number of bytes in the keyboard buffer

Buffers

Obviously we are more concerned with the calls where R I ~ 246 here. Note that
R I = (255- buffer number) in these cases. If you want. you can also calculate this
as {(-(buffer number+ I)) AND &FF).

The calls to read the mouse position are considered obsolete, and are unreliable
because they read the buffered position rather than the actual position. You
shou ld use OS_Mouse (page 1-699) instead.

Related SWis

None

Related vectors

ByteV, CnpV

1-167

OS_Byte 138 (SW/ &06)

1-168

Inserts a byte into a buffer

OS_Byte 138
(SWI &06)

On entry

RO = I 38
RI =buffer number
R2 = byte to insert

On exit

RO - R2 preserved
C flag= 0 if character inserted
C flag= I if buffer was full

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call inserts the byte specified in R2 into the buffer identified by RI . If C=l on
exit. the byte was not inserted as there was no room .

inserting bytes into the mouse buffer isn't recommended, but if you must , you
should be careful to insert all nine bytes with interrupts disabled , to prevent a real
mouse transition from entering data into the middle of your data. You must do so
as quickly as possible to reduce latency in the interrupt system .

Related SWis

OS_Byte !45 (page l-!70). OS_Byte !52 (page l-!7!), OS_Byte !53 (page l-!72)

Related vectors

ByteV, lnsV

Buffers

1-169

OS_Byte 145 (SWI &06)

1-170

Gets a byte from a buffer

On entry

RO = 145
Rl =buffer number

On exit

RO, R I preserved
R2 = byte extracted
C flag= 0 if byte read
C flag = I if buffer was empty

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 145
(SWI &06)

This call extracts the next byte from a specified buffer. If the buffer was empty then
the C flag is set, and R2 will be invalid .

This call assumes the buffer number is correct; it does not generate an error if
passed a bad buffer number, and its behaviour is undefined

Related SWis

OS_Byte 138 (page l-168). OS_Byte 152 (page 1-171), OS_Byte !53 (page l-172)

Related vectors

ByteV, RemV

Examines the status of a buffer

On entry

RO = 152
Rl =buffer number

On exit

RO, R I preserved
R2 =next byte in buffer, or corrupted if buffer was empty
C flag= 0 if bytes were in buffer
C flag = I if buffer was empty

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Buffers

OS_Byte 152
(SWI &06)

This call returns the status of a specified buffer; the carry flag is set if the buffer is
empty. If a byte is available, it is returned in R2 but is not removed from the buffer.

This call assumes the buffer number is correct; it does not generate an error if
passed a bad buffer number, and its behaviour is undefined.

Related SWis

OS_Byte 138 (page 1-168), OS_Byte 145 (page 1-170), OS_Byte 153 (page 1-172)

Related vectors

ByteV, RemV

1-171

OS_Byte 153 (SWI &06)

1-172

Inserts a byte into one of the two input buffers

OS_Byte 153
(SWI &06)

On entry

RO = 153
Rl =buffer number (0 or I)
R2 = byte to insert

On exit

RO preserved
Rl, R2 corrupted
C flag= 0 if byte inserted
C flag= I if buffer was full

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call enables bytes to be inserted into one of the two input buffers as follows:

Rl = 0 insert byte into the keyboard buffer
Rl = I insert byte into the RS423 input buffer

If the buffer was full and a byte could not be inserted, then the C flag is set on
return .

If the current escape character (usually ASCII 27) is inserted, then appropriate
action is taken ; see the chapter entitled Character Input on page 1-835.

Buffers

Related SWis

OS_Byte 138 (page l-168). OS_Byte 145 (page l-170), OS_Byte !52 (page l-171)

Related vectors

ByteV, ln sV

1-173

1-174

13

Introduction

Vectors

Service calls

Communications within RISC OS

There are some important SWI calls that RISC OS uses to communicate between
different parts of itself, or to communicate with application programs. Because
these SWI calls are used by lots of different parts of RISC OS, you will find they are
referred to in many different places in the manual. It's therefore important that you
know of these SWis to understand such references. Most of the SWis belong to
modules that are described elsewhere in the manual. so we just cross reference
them here.

OS_ CaliA Vector is used to call the routine(s) on a software vector This SWI and the
ca lls necessary to add routines to a vector have already been described in the
chapter entitled Software vectors on page 1-63.

OS_ServiceCall is used to pass a service around modules. Modules can decide
whether they wish to provide the service, and if so whether they will then pass the
service call on to other modules. A reason code in R I indicates the type of service .
You have already seen some examples of OS_ServiceCall- the reason codes to
claim and release FIGs.

This ca ll is fully documented on page 1-250 onwards of the chapter entitled
Modules.

Window manager SWis
The window manager provides various SWis that enable it to communicate with
window based programs (notably Wimp_Poll); and further SWis so that programs
can communicate with and pass data to each other (notably Wimp_SendMessage).

These ca lls are all fully documented in the chapter entitled The Window Manager on
page 3-3.

1-175

Call Backs

Call Backs

UpCalls

1-176

CallBacks are routines that are called when RISC OS is threaded out. There are two
types:

• Transient CallBacks are set up using OS_AddCaiiBack (page 1-319). They are
called once only, and may be called when RISC OS is threaded but idle . They
might be used by an interrupt handling routine that is unable to do some
things itself (eg calling a re-entrant SWI , or performing a long operation that
would unacceptably increase interrupt latency). but wishes to have a routine
'ca lled back' later to do these things .

• Non-transient CallBacks are set up using OS_SetCaiiBack (page 1-308). They
are handled by the CallBack handler; you can replace the default one using
OS_ChangeEnvironment (page 1-315) .

For full details, see the chapter entitled Program Environment on page 1-283.

The kernel provides the SWI OS_UpCall, which warns applications of particular
situations. It is described below.

Communications within RISC OS

OS_UpCall
(SWI &33)

Calls that RISC OS makes up to an application to.warn of particular situations

On entry

RO = reason code
Other registers are reason code dependent

On exit

RO preserved
Other registers are reason code dependent

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This SWI calls the vector UpCaiiV. To use UpCalls, you must either claim the vector
and install a routine on it (see the chapter entitled Software vectors on page 1-63), or
install an UpCall handler (see the chapter entitled Program Environment on
page 1-283) .

They are called UpCalls because they are calls that RISC OS makes up to an
application , rather than calls that the application makes down to RISC OS. They
generally occur in the foreground, and are hence different to Events, which occur in
the background.

1-177

OS_UpCa/1 (SWI &33)

1-178

The reason code in RO may be one of the following:

Code Meaning Page

I Media not present (ie previously used but no longer 1-179
accessible)

2 Media not known (ie not previously used) 1-179

3 File is being modified 1-181

4 Media search end (ie medium supplied , or operation 1-186
cancelled)

6 Task wants to sleep until some termination condition is met 1-187

7 Open pipe has been closed or deleted 1-188

8 Buffer filling (ie free space has become less than threshold) 1-189

9 Buffer emptying (ie free space has become more than 1-190
threshold)

10 Stream created 1-191

II Stream closed 1-192

256 Application is starting 1-193

257 RISC OS would like to move memory 1-194

For full details of each reason code, see the entries on the given pages.

Some of the above are made for information only, others allow the application to
take appropriate action (such as to prompt for a missing floppy disc to be inserted
in the drive) The caller of the UpCall (normally RISC OS) may then look at any
returned state. and decide what action to take next. In many cases it will generate
an error if the application has not dealt appropriately with the situation .

Writing code to handle UpCalls

Routines that deal with UpCalls should be viewed as system extensions. and so
should only call error-returning SWis ('X' SWis) .

If a routine installed on the vector does deal with the situation it shou ld intercept
the call to the vector. as there is no longer any point informing any other routines
or the UpCall handler of the situation. If it cannot deal with the situation it must
pass the call on, as another may be able to do so.

Related SWis

None

Related vectors

UpCaliV

Communications within RISC OS

OS_UpCall 1 and 2
(SWI &33)

Warns your program that a filing medium is not present (OS_UpCall I) or not
known (OS_UpCall 2)

On entry

RO = I (Media not present) or 2 (Media not known)
Rl =filing system number (see page 2-19)
R2 =pointer to a null-terminated medium name string, or -I if irrelevant
R3 =device number, or -I if irrelevant
R4 =iteration count fo r repeated issuing of t he ca ll (0 initially)
R5 =minimum timeout period (in centiseconds)
R6 =pointer to a nul l terminated medium type string

On exit

Use

RO = 0 if medium changed, -I if medium no longer required, else preserved
R I - R6 preserved

This call is made by RISC OS filing systems when a program tries to access:

• a filing medium that it has previously used but can no longer access (RO = I)

• a filing medium that it has not previously used (RO = 2).

It calls the UpCall vector.

To use OS_UpCall I or 2, you must either claim UpCallV and install a routine on
the vector, or instal l an UpCall handler. Your routi ne should:

• prompt you to supply the medium with a string built up using:

I the medium type string (passed in R6)

2 the filing system name (obtained by calling XOS_FSControl 33 act ing on
the value of R I - see page 2-1 15 for detai Is)

3 the medium name (passed in R2)

for example:

Please insert disc adfs:Mike and press Space (Esc to abort)

• give you a way of indicating that you have either supplied the medium, or wish
to cancel the operat ion

• intercept the vector with RO =-I if you wish to cancel the operation.

1-179

OS_UpCa/11 and 2 (SWI &33)

1-180

• intercept the vector with RO = 0 if the timeout limit is reached, or if you say you
have supplied the medium

When you intercept the call to the vector, control passes back to the filing system
routine that called OS_UpCall:

• If RO = -1, then the routine calls OS_UpCall 4; it then returns an error to say
that the medium was not found .

• If RO = 0, then the routine checks for you that the medium has been changed
and the correct one supplied If so. it calls OS_UpCall 4; otherwise it just calls
OS_UpCall I or 2 again, after incrementing R4.

The timeout period in R5 is set to a small value for media that can detect when the
medium has been changed (such as floppy disc drives) and to a large value
(typically &FFFFFFFF) for other media. In the former case, this means that RISC OS
will automatically detect that new medium has been supplied, and check that it is
the correct one.

The most common use of OS_UpCall I and 2 is to request that a floppy disc is
inserted.

Related SWis

OS_UpCall 4 (page 1-186)

Warns your program that a file is being modi fi ed

Communications within RISC OS

OS_UpCall3
(SWI &33)

On entry

RO = 3 (Modifying file)
R1 - R7 vary, depending on the value of R9
R8 =filing system information word
R9 = reason code

On exit

Use

All registers preserved

This call warns your program that a file is being modified The reason code in R9
tells you how:

R9 Meaning

0 Saving memory to file
Writing catalogue information

2 Writing load address only
3 Writing execution address only
4 Writing attributes only
6 Deleting file
7 Creating empty file
8 Creating directory
257 Creating and opening for update
258 Opening for update
259 Closing file
512 Ensuring file's size
520 Renaming file
521 Setting attributes

It is made when a program calls one of several SWis provided by the FileSwitch
module:

• reason codes 0- 8 are caused by calls to OS_File (page 2-30)

• reason codes 257- 259 are caused by calls to OS_Find (page 2-72)

• reason codes 512 - 521 are caused by calls to OS_FSControl (page 2-77) .

1-181

OS_UpCa/13 (SWI &33)

R9=0

R9 = 1

R9 = 2

1-182

You may find it helpful to examine the documentation of the above FileSwitch SWI
calls.

The following general points apply:

• all strings are null terminated except where specified

• all object names will already have been expanded by FileSwitch, checked for
basic validity, and had filing system prefixes stripped

• object names will also be canonicalised, except under RISC OS 2.

This UpCall is made before the operation, which may subsequently fail. For
example, you may receive a rename UpCall for a locked file, which will
subsequently fail to rename (because it's locked) If a filename is invalid for a given
operation (eg you try to create a file with a wildcarded leafname) FileSwitch will
generate an error, and no UpCall will be generated.

The call is used by the desktop filer to maintain its directory displays. It is provided
for information only; if you wish to use this UpCall, you must not intercept it. nor
must you alter the contents of any of these registers used to pass parameters:

Saving memory to file

R I =pointer to filename
R2 = load address
R3 = execution address
R4 = pointer to start of buffer
R5 =pointer to end of buffer
R6 =pointer to special field (or 0)

Writing catalogue information

Rl =pointer to filename
R2 = load address
R3 =execution address
R5 =attributes
R6 =pointer to special field (or 0)

Writing load address only

R I = pointer to filename
R2 = load address
R6 =pointer to special field (or 0)

R9=3

R9=4

R9 = 6

R9=7

R9=8

Writing execution address only

R l =pointer to filename
R3 = execution address
R6 =pointer to special field (or 0)

Writing attributes only

R l =pointer to object name
R5 =attributes
R6 =pointer to special field (or 0)

Deleting file

R I =pointer to object name
R6 =pointer to special field (or 0)

Creating empty file

Rl =pointertofilename
R2 = load address
R3 = execution address
R4 = start address
R5 = end address
R6 =pointer to special field (or 0)

Creating directory

R I = pointer to directory name
R2 =load address (to be used as timestamp)
R3 =execution address (to be used as timestamp)
R4 =number of entries (0 for default)
R6 = pointer to special field (or 0)

Communications within RISC OS

1-183

OS_UpCa/13 (SWI &33)

1-184

R9 = 257

Creating and opening for update

R I =pointer to filename
R2 =external handle that file will be given (if successfully opened)
R6 =pointer to special field (or 0)

R9 = 258

Opening for update

Rl =pointer to filename
R2 =external handle that file will be given (if successfully opened)
R6 =pointer to special field (or 0)

R9 = 259

Closing file

Rl =external handle

R9 = 512

Ensuring file's size

Rl =externa l handle
R2 = size to ensure
R8 =filing system information word

R9 = 520

Renaming file

R I = pointer to current object name
R2 = pointer to desired ob ject name
R6 =pointer to current special field (or 0)
R7 =pointer to desired special field (or 0)

R9 = 521

Setting attributes

R I = pointer to object name
R2 =pointer to attribute string (control character terminated)
R6 =pointer to special field (or 0)

Related SWis

None

Communications within RISC OS

1-185

OS_UpCa/14 (SW/ &33)

1-186

OS_UpCall4
(SWI &33)

Informs your program that a missing filing medium has been supplied, or that an
operation involving one has been cancelled

On entry

RO = 4 (Media search end)

On exit

Use

RO preserved

This call is made by RISC OS to inform your program that a missing filing medium
has been supplied, or that an operation involving one has been cancelled. It is
always preceded by call(s) of OS_UpCall I or OS_UpCall 2. It calls the UpCall
vector.

To use OS_UpCall 4, you must either claim UpCaiiV and install a routine on the
vector, or install an UpCall handler. This call is typically used to remove error
messages displayed when OS_UpCall I or 2 was first generated .

Related SWis

OS_UpCall I and 2 (page 1-179)

Communications within RISC OS

OS_UpCall6
(SWI &33)

Informs the TaskWindow modu le that a task wants to sleep unti l some term ination
condition is met

On entry

RO = 6 (Sleep)
Rl =pointer to poll word (in a global memory area, eg the RMA)

On exit

Use

RO = 0 if UpCall claimed

This ca ll is made by a task that wants to sleep until some termination condition is
met, signa lled by the contents of the poll word becoming non-zero. It is not
available in RISC OS 2.

Control may return to the task before the poll word becomes non-zero, but is only
guaranteed to return if and when the poll word becomes non-zero.

While the task is sleeping other tasks will continue to be polled by the Wimp.

If the termination condition can be recognised externally (ie in another Wimp task
or under interrupt) hence causing the poll word to be set non-zero, the calling task
should set the poll word to zero on entry. Otherwise the poll word must be
non-zero on entry, so that control will return to the calling task after each Wimp
Poll

Note that a task must not use this UpCall if it is not re-entrant, or may have been
called by a task which is not re-entrant.

The calling task must be running in a task window. The TaskWindow module
intercepts this UpCall; you should not do so yourself. These two restrictions may
be removed in future versions of RISC OS.

Related SWis

OS_UpCall 7 (page 1-188)

1-187

OS_UpCa/1 7 (SWI &33)

1-188

OS_UpCall7
(SWI &33)

Informs the TaskWindow module that an open pipe has been closed or deleted

On entry

RO = 7 (Sleep no more)
R I =pointer to poll word (in a global memory area, eg the RMA)

On exit

Use

RO preserved if V flag clear
RO =pointer to error block if V flag set

This call is made by PipeFS if an open pipe is closed or deleted . It is not available
in RISC OS 2.

The TaskWindow modu le then traps this and objects if any of its tasks are currently
waiting for the poll word related to that pipe to become non-zero, by returning an
error.

This prevents a *Shut command from deleting the workspace which is being
accessed by the TaskWindow, which could potentially cause address exceptions.

Related SWis

OS_UpCall6 (page I-I87)

Communications within RISC OS

OS_UpCall8
(SWI &33)

A buffer's free space has become less than its specified threshold

On entry

RO = 8 (Buffer filling)
Rl =buffer handle
R2 = 0

On exit

Use

All registers preserved

The Buffer Manager issues this call when data is inserted into the specified buffer,
and the free space becomes less than its current threshold. For full details of buffer
handles and thresholds, see the chapter entitled The Buffer Manager on page 4-83.

This call is never issued under RISC OS 2.

Related SWis

OS_UpCall 9 (page 1-190)

1-189

OS_UpCa/19 (SWI &33)

1-190

OS_UpCall9
(SWI &33)

A buffer's free space has become greater than or equal to its specified threshold

On entry

RO = 9 (Buffer emptying)
R I = buffer handle
R2 =-1

On exit

Use

All registers preserved

The Buffer Manager issues this call when data is removed from the specified buffer,
and the free space becomes greater than or equal to its current threshold. For full
details of buffer handles and thresholds, see the chapter entitled Tfle Buffer Manager
on page 4-83 .

This call is never issued under RISC OS 2.

Related SWis

OS_UpCall8 (page 1-189)

Stream created

Communications within RISC OS

OS_UpCall10
(SWI &33)

On entry

RO = I 0 (Stream created)
R I = device driver's hand le
R2 = 0 if created for reception (else created for transmission)
R3 =file hand le for stream
R4 = DeviceFS stream hand le, as passed to device driver on ini tia lisation

On exit

Use

All registers preserved

DeviceFS issues this cal l when a stream is created. It serves as a broadcast, and all
registers shou ld be preserved. For fu ll details of device handles and streams, see
the chapter entitled DeviceFS on page 2-42 1.

This call is never issued under RISC OS 2.

Related SWis

OS_UpCall I I (pa~e 1- 192)

1-191

OS_UpCa/111 (SW/ &33)

1-192

Stream closed

OS_UpCall 11
(SWI &33)

On entry

RO = II (Stream closed)
Rl =device driver's handle
R2 = 0 if closed for reception (else closed for transmission)
R3 =file handle for stream
R4 = DeviceFS stream handle, as passed to device driver on initialisation

On exit

Use

All registers preserved

DeviceFS issues this call when a stream is closed. It serves as a broadcast, and all
registers should be preserved. For full details of device handles and streams, see
the chapter entitled DeviceFS on page 2-421.

This call is never issued under RISC OS 2.

Related SWis

OS_UpCall I 0 (page 1-191)

Communications within RISC OS

OS_UpCall 256
(SWI &33)

Warns your progra 11 that a new application is going to be started

On entry

RO = 256 (New app l ication)
R2 =proposed Currently Active Object pointer

On exit

Use

RO = 0 to stop app ication, else RO is preserved

This call is made just before a new application is going to be started in the current
application space-- for example due to a • Run or module command. It calls the
UpCall vector.

To use OS_UpCall 256, you must either claim UpCallV and install a routine on the
vector (see the chapter entitled Software vectors on page 1-63). or install an UpCall
handler (see the chapter entitled Program Environment on page 1-283)

One reason to use this call is so that an application can tidy up after itself before a
new one starts, eg removing routines from vectors. Again, see the chapter entitled
Program Environment on page 1-283.

Another reason to use this UpCall is to prevent an application from starting. If you
don't want the application to start. your routine shou ld set RO to 0, and intercept
the call to the vector. This will cause the error 'Unable to start appl ication' to be
given. Otherwise, you must pass the call on with all registers preserved.

Related SWis

None

1-193

OS_ UpCa/1257 (SWI &33)

1-194

OS_UpCall 257
(SWI &33)

Informs your program that RISC OS would li ke to move memory

On entry

RO = 257 (Moving memory)
RI =amount that application space is going to change by

On exit

Use

RO = 0 to permit memory move, else RO is preserved
R I is preserved

This call is made just before OS_ChangeDynam icArea tries to move memory The
call is only made if the currently active object is in the application space. It calls
the UpCall vector. By default (if you do not claim the vector) the memory is not
moved.

To allow the memory to be moved, you must either claim UpCallV and install a
routine on the vector (see the chapter entitled Software vectors on page I -63), or
install an UpCall handler (see the chapter entitled Program Environment on
page 1-283) Your routine must shuffle your application's workspace so that the
memory move can go ahead. It must then set RO = 0, and pass on the call to the
vector.

Related SWis

OS_ChangeDynamicArea (page 1-377)

Part 2 - The kernel

1-195

1-196

14 Modules

Introduction
A relocatable module is a piece of software which, when loaded into the machine
acts as either an extension to the operating system or a replacement to an existing
module in the operating system. Modules can contain programming languages or
filing systems; they can be used to add new SWis and • Commands.

Relocatable modules run in an area of memory known as the Relocatable Module
Area (RMA) which is maintained by RISC OS. They are 'relocatable' because they
can be loaded at any particular location in memory. Their code must therefore be
relocatable.

RISC OS provides facilities for integrating modules in such a way that. to the user,
they appear to be a full part of the system . For instance, the operating system
responds to the • Help command, extracting automatically any relevant help text.

Several SWis and • Commands are provided by the operating system for handling
modules, such as one to load a module file from the filing system.

A major piece of software written for RISC OS should only be designed as a module
if it fulfils the following requirements:

• it is an extension to RISC OS or an enhancement to an existing RISC OS
module

• it is shared by many applications; for example the shared C library

• it needs to be persistently RAM resident over many invocations (even then you
should try to do this another way)

• it is small enough

or if:

• it is a desktop application- or part of one - which cannot be paged out (eg it
has Econet control blocks active).

Such programs must use RMA for workspace, and are hence easiest to write as
modules.

This chapter describes what is needed to write a module.

1-197

Overview

Overview

Using modules

This chapter is divided into two basic areas; using modules and writing them.

Use of modules is centralised around the SWI OS_Module. This contains a number
of operations that can:

• load, initialise, run and remove a module

• examine and change the amount of RMA space used by a module

• examine module details

• modify instantiations of modules.

All of the operations that a program is likely to need to operate with modules are
in this SWI. You could treat the RMA as a kind of filing system, since there are
commands to load things into it, remove them and run them.

Some modules are supplied with the computer in ROM. These may be 'unplugged'
and upgraded versions of them loaded into RMA. They may also be deliberately
copied from ROM into RMA, since modules in RAM will execute significantly
quicker than in ROM .

There are a number of* Commands that replicate several OS_Module commands
at a command line level. You can also obtain convenient lists of all modules
currently in the RMA and the system ROM using a * Command.

Instantiation

1-198

A module may be initialised more than once. This means that whilst only a single
copy of the code is kept in memory, multiple copies of its workspace are created .
The workspace is the area where all the data used by the module for dynamic
storage is kept. Note that constant data, such as lookup tables is kept inside the
main body of the module, with the code. Changing which workspace is used
changes the context of the module and allows it to be used for several purposes
concurrently. Each copy of the workspace, coupled with the code, is referred to as
an instantiation. A module is deemed to be reincarnated when a new instantiation
is created.

Only a single copy of the code is needed because it is not changed by being used
concurrently. The data is the only thing that provides the context for an initialised
module.

Modules

An example of the use of instantiations is in the module FileCore . This module
provides a core of commands that are common to all filing systems with an ADFS
structure, ie ADFS and RAMFS. It appears in one instantiation for each filing
system that is using it.

For example, typing *Modu les, you can see all t he modules that are current ly
loaded, including the various instantiations of the FileCore module:

*Modules

28 03839698
03839698
03839698

018114C4
01804374
00000000

FileCore%RAM
FileCore%ADFS
FileCore%Base

This enables you to refer to particular instantiations of a module. For example:

*RMKill WaveSynth%Base

Writing a module
The core of all modules is the module header. It is a table of II entries, each a word
in length . These are called by RISC OS to communicate with the module.

Module header

The entries in the header table describe the following things in the module. All but
one are offsets to code or some larger piece of data, such as a string, or table:

• Where to start executing in the module. This is used by languages and
applications.

• Where to call initialisation code. This has to be called before all the others.

• Where to call finalisation code. This is called before removing the module. It
allows the module to shutdown any hardware it is using and generally tidy up.

• A title for the module.

• A help string. This is used automatically by RISC OS when help is requested .

• Detailed help on • Commands.

• Entry points for • Commands. RISC OS will decode the • Commands and call
the right entry point for a command for you.

• A table to convert to and from SWI names and numbers.

• Entry points for all the SWis in the module.

1-199

Writing a module

1-200

• The chunk number for the module. This is the number that is the base for SWI
numbers. There can be up to 64 SWis in a module, all offsets from this chunk
number. This is the only entry in the header that isn't an offset

• Service call entry (see below).

All commun ication from RISC OS to a module takes place through this table . As
you can see, several features are used by RISC OS without you having to write code
to deal with them , such as the help text, and SWI names to numbers conversion.

Service calls

A number of special occurrences in RISC OS are passed around all the modules by
RISC OS. Some of these can be claimed . This means that if a module decides that
it wants to take control of that occurrence then it stops it being passed on to the
rest of the modules. Others cannot be claimed and are used by RISC OS to
broadcast some occurrence to all modules. Here is a brief list of the kinds of things
that can be sent as service ca lls. The first part are claimable service cal ls:

• Unknown command, OS_Byte, OS_ Word , •configure or •status.

• *Help has been called. This allows you to replace this command when you
detect a particular help call being made.

• Memory controller about to be remapped . This allows an application to stop a
memory remapping if it doesn 't want it to happen .

• Application is about to start. This allows a module to prevent an application
from starting. With this, a module cou ld prevent any other tasks running

• Lookup file type . This converts the 3 byte file type into a string, such as 'BASIC
or 'Text' .

• Various international services, such as handling different alphabets and
keyboards.

• The fast interrupt handler has been claimed/released. This is used by device
drivers for high data rate devices that depend on the state of the fast interrupt
system.

These are the service calls that cannot be claimed and are used to allow modules
to perform some action to cope with the occurrence, without stopping it being
passed on to all modules:

• An error has occurred. This is called before the error handler, but is only for
module's information, not claiming.

• Reset is about to happen/has just happened.

Modules

• Filing system re-initialise. This is called when FileSwitch has been
re-initialised and this is broadcast to all filing systems that use it to do the
same. This is necessary, because otherwise a filing system could get out of
sync with the context in FileSwitch .

• A screen mode change has occurred. This means that all modules can be aware
of the screen state and re-read VDU variables, for instance.

By monitoring these service calls , a module can be aware of many things that are
occurring outside its control in the system .

1-201

Technical Details

Technical Details

Module initialisation

1-202

When RISC OS is started it automatica lly initialises all modules in the computer. In
RISC OS 2 it does so in the order it finds modules. omitting any that are
unplugged.

The way in which the kernel initialises modules has been changed in later versions
of RISC OS. If there is more than one version of the same module present in the
main ROM, expansion cards or extension ROMs then only the newest version of
the module is initialised, where newest means the version with the highest version
number.

If there are two copies of the same version, then directly executable versions (ie in
main ROM or in a 32-bit wide extension ROM) are considered newer. If they are
equal in this respect, then the later one in scanning order is considered to be
newer.

The kernel first scans all modules in ROM (whether they be in the system ROM ,
expansion cards or extension modules). building a list of modules and their
version numbers. It uses this list to determine which is the newest version of a
particular module.

2 The kernel then scans down the list of modules in the system ROM. For each
module in this list, the kernel initialises the newest version of that module.

Hence if an expansion card or extension ROM contains a newer version of a
module in the main ROM, the kernel initialises that newer version at the point
where the main ROM version would have been initialised . This allows main
ROM modules to be replaced without any problems associated with
initialisation order.

3 The kernel next scans down the list of modules in expansion cards. For each
module in this list, the kernel initialises the newest version of that module, but
with the hardware address (in R II) corresponding to that of the expansion
card.

If a module is present both in the main ROM and in an expansion card, the
kernel therefore initialises the newest version of that module when scanning
the main ROM (as above). and then reinitialises the same module when
scanning the expansion cards.

4 The kernel finally scans down the list of modules in extension ROMs. For each
module in this list, the kernel checks that it is the newest version of that
module, and that it has not already been initialised in lieu of a module in the
main ROM or on an expansion card. If a module meets both these criteria the
kernel initialises it.

Using modules

Modules

OS_Module (page 1-224) is the main application interface to modules. In its
description you will find a complete list of its calls, and details of each of them.

A number of • Commands exist, most of which use OS_Module directly. Below is a
table summarising OS_Module entries and the •command equivalent.

Entry

0

2

3
4

5
6
7
8
9
10
II
12
13

Meaning

Run
Load
Enter

Relnit
Delete
Describe RMA
Claim RMA space
Free RMA space
Tidy modules
Clear
Insert module from memory
As above, and move to RMA
Extract module information
Extend block in RMA

14 Create new instantiation
15 Rename instantiation
16 Make preferred instantiation
17 Add expansion card module
18 Look-up module name
19 Enumerate ROM modules

•command equivalent

*RMRun
*RMLoad
module-dependent- usually
provided by the module, eg *BASIC
*RMRelnit
*RMKill

*RMTidy
*RMCiear

*RMFaster (if in ROM)
*Modules & *ROMModules

20 Enumerate ROM modules with version

Tidying- as mentioned above- refers to finalising all the modules. moving them
together so that free RMA space is in a single block, and then re-initialisi ng them.
This solves problems with memory fragmentation.

*RMEnsure is a command that will check that a given module and version number
is loaded into memory, and will execute a specified command if it is not- such as
loading a module from disc (which rep laces the currently loaded version, if any), or
generating an error.

*Unplug will disable the ROM version of a given module. This is useful. for
example, to save the RAM workspace claimed by a module you do not need to use.

*RM!nsert will reverse the action of *Unplug, without initialising any modules.

1-203

Workspace

Workspace

The operating system allocates one word of private workspace to each module
instantiation . Normally, the module will require more and it is expected that it will
use this private word as a pointer to the workspace which it claims from the RMA
using OS_Module 6. Whenever the system calls a module through one of its
header fields, it sets R 12 to point at this private word . Hence, if this word is a
pointer to workspace, the module can obtain a pointer to its true workspace by
performing the instruction:

LDR R1 2 , [R1 2]

The system works on the assumption that the private word is a pointer to
workspace claimed in the RMA. It therefore provides suitable default actions on
that basis. For example, when a module is killed the system will attempt to free any
workspace claimed using this pointer, after it has called the finalisation code .

Also, the system relocates the value held in a module's workspace pointer when
the RMA is 'shuffled ' as a result of an RMTidy call

Note that workspace allocated through XOS_Module will always lie on an address
&xxxxxxx4. This enables code written for time-critical software (eg sound voice
generators and FlO handlers) to be aligned within the module body.

Errors in module code

1-204

Any module code which provides system extensions (SW!s and • Commands) must
behave in a manner which is compatible with the operating system if an error
occurs. This means that only X SWis are called, and if anything goes wrong, the
module must:

• set up RO to point to the error block

• preserve all appropriate registers

• return with V set.

If no error has been encountered, V must be clear, and appropriate registers
preserved on exit.

The above does not .;tpply to application code within the module; this can follow
any convention it wishes.

Modules

Module header format

Service calls

The module indicates to the system if and where it wishes to be called by a module
header. This contains offsets from the start of the module to code and information
within the body of the module.

Offset Type Contains

&00 offset to code start code
&04 offset to code initialisation code
&08 offset to code finalisation code
&OC offset to code service call handler
&10 offset to string title string
&14 offset to string help string
&18 offset to table help and command keyword table
& IC number SWI chunk base number (optional)
&20 offset to code SWI handler code (optional)
&24 offset to table SWI decoding table (optional)
&28 offset to code SWI decoding code (optional)

All modules must have fields up to & 18. However. any of these offsets can be zero.
(which means don't use this entry since the module does not contain the relevant
data/code) . apart from the title string. This is the offset to the zero-terminated
name and if it is zero. the module cannot be referenced.

All code entries must be word aligned and inside the module code area. otherwise
the checking performed by RISC OS will consider it invalid. All tables and strings
must similarly be within the module or else it will be rejected

The SWI handler fields are optiona l and are only used if they contain valid values.

The module header entries are described in detail in the following section of this
chapter.

Service calls are made from RISC OS to a module to indicate an occurrence of
some kind. Some are claimable. and some are intended as broadcasts of the
occurrence only. See the description in OS_ServiceCall (page 1-250) for a complete
list of all service calls. It is followed by details of each call Some of these service
calls will also be relevant to other parts of this manual that describe modules. For
example. there are service calls that are provided explicitly to serve the
International module.

OS_Byte 143 is an obsolete way of calling OS_ServiceCall. It is documented. but
must not be used. as it is here only for compatibility with earlier Acorn operating
systems.

1-205

Module entry points

Module entry points

Start code

1-206

Start executing at the sta rt point of code in a module

Offset in header

&00

On entry

RO =pointer to command string, including module name
R 12 =pointer to private word for currently preferred instantiation of the module

On exit

Doesn't return unless error occurs.

Interrupts

Interrupts are enabled on entry
Fast interrupts are enabled

Processor Mode

Processor is in USR mode

Re-entrancy

Use

Entry point is not re-entrant

This is the offset to the code to call if the module is to be entered as the current
application. An offset of zero implies that the module cannot be started up as an
application, ie it is purely a service module and contains only a filing system or
• Commands, etc.

This field need not actua lly be an offset. If it cannot be interpreted as such, ie it is
not a multiple of four, or any bits are set in the top byte, then calling th is field will
actually execute what is assumed to be an instruction at word 0 in the module. This
allows applications to have a branch at this position and hence be run directly, eg
for testing. Once entered, a module may get the command line usiflg OS_GetEnv.

Whenever the module is entered via this field, it becomes the preferred
instantiation. Therefore Rll does not refer to the instantiation number.

Modules

You must exit using OS_Exit, or by starting another application without setting up
an exit handler.

Start code is used by OS_Module with Run or Enter reason codes.

Initialisation Code

Set up the module, so that all other entry points are operating

Offset in header

&04

On entry

R I 0 =pointer to environment string (ie initialisation parameters supplied by caller
of OS_Module)
R II = l/0 base or instantiation number (see below)
R 12 =pointer to private word for this instantiation of the module.

If the private word -:t 0, this implies reinitiali sat ion after an OS_Module 8.
R 13 =supervisor stack pointer

On exit

Must preserve processor mode and interrupt state
Must preserve R7- Rll and Rl3
RO- R6, R 12 , R 14 and the flags (except V of course) can be corrupted

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Entry point is not re-entrant

This code is called when the module is loaded and also after the RMA has been
tidied (OS_Module with Tidy reason code). The module will not be called via any
other entry point until this entry point has been called . Thus the initialisation code
is expected to set up enough information to make all other entry points safe.

1-207

Initialisation Code

1-208

An offset of zero means that the module does not need any initialisation. The
system does not provide any default actions.

The Initialisation code is used by OS_Module with Run, Load, Rein it and Tidy
reason codes.

If the module is being re-entered after a OS_Module 'tidy', the private word may
contain a non-zero value. This is the contents of the private word after the
finalisation, relocated (if necessary) by the system .

Typical actions are claiming workspace (via OS_Module) and storing the workspace
pointer in the private word. Other actions may include linking onto vectors,
declaring the module as a filing system, etc. During initialisation , your module is
not on the active module list, and so you cannot call SWis in your own SWI chunk.
Instead you must directly enter your own code .

You must not generate errors in your initialisation code. In particular, this means
that you must call the error-return ing (or 'X') form of SWis, and must not call
OS_ Generate Error. For more details, see the chapter entit led Generating and flandling
errors on page 1-41 .

If your module is unable to function- perhaps because of an error returned from a
SWI it called- it can refuse to be initialised by returning an error in the usual way
(ie by setting the V flag, and returning with RO as an error pointer) The system
removes the module and any workspace pointed to by its private word from the
RMA. Note that in this case it does not call your module's finalisation code .

The module is also passed an 'environment string' pointer in RIO on initialisation .
This points at any string passed after the module name given to the SWI.

Rll indicates where the module has come from : if Rll = 0, then the module was
loaded from the filing system or ROM or is already in memory; if R II is
> &03000000, then the module was loaded from an expansion card and R II points
at the synchronous base of the expansion card . Other va lues of R II mean that the
module is being reincarnated and there are <R II> other instantiations of the
module.

On exit (whether or not you are returning an error), use the link register passed in
Rl4 to return :

MOV PC , Rl4

Modules

Finalisation Code

Called before killing the module

Offset in header

&08

On entry

R I 0 =fatality indication: 0 is non-fatal. I is fatal
R II = instantiation number
R 12 =pointer to private word for this instantiation of the module.
R 13 = supervisor stack

On exit

Must preserve processor mode and interrupt state
Must preserve R7- Rll and Rl3
RO - R6, R 12, R 14 and the flags can be corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Entry point is not re-entrant

Th ,s is the reverse of initialisation . This code is called when the system is about to
kill an instantiation of the module- either completely, or temporarily whilst it
tidies the RMA

If the call is fatal. the module's workspace is freed, and the workspace pointer is set
to zero. If the call is non-fatal (eg the call is due to a tidy operation) , the workspace
(and the pointer) will be relocated by the module handler, assuming they were
allocated using OS_Module's 'claim' entry.

The module is told whether the call is fatal or not by the contents of Rl 0 as follows :

R I 0 = 0 means a non-fatal finalisation
R I 0 = I means a fatal finalisation

1-209

Service call handler

R II contains the dynamic instantiation number: ie the position of the
instantiation in the instantiation list. This will not be the same as the R II given to
initialisation . Position in the chain can vary and the length of the instantiation list
can also change.

If the module generates an error on finalisation, then it remains in the RMA, and is
assumed to still be initialised . The only way to remove the module from RMA in
this state is by a hard reset.

If the module has no finalisation entry, its workspace is freed automatically, if the
pointer conta ins a non-zero value.

Use link register given for normal exit. Set RO and return with V set if refusing to
die.

The module is (possibly temporarily) 'de-linked' when called, so you can't. for
example, execute SWis that you recognise yourself.

Used on OS_Module with Rei nit. Delete, Tidy and Clear reason codes. Also when a
module of the same name is loaded the old one is killed .

Service call handler

1-210

Called when a service call is issued

Offset in header

&OC

On entry

Rl =service number
R 12 =pointer to private word for this instantiation of the module
Rl3 =a full, descending stack

On exit

R l ca n be set to zero if the service is being claimed
RO, R2 - R8 can be altered to pass back a result. depending on the service call
Registers must not be corrupted unless they are returning values.
R 12 may be corrupted

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Modules

Processor Mode

Processor is in SYC or IRQ mode

Re-entrancy

Use

Entry point may be re-entered by RISC OS, and so must be able to handle this

This allows service calls to be recognised and acted upon. If the module does not
wish to provide the service it should exit with R I preserved. If it wishes to perform
the service and to prevent other modules also performing it it shou ld set R I to
zero before returning, otherwise it should preserve the registers in order that other
modules may have a chance to deal with the call An offset of zero means that the
module is not interested in any service calls.

It is important that you reject unrecognised service calls as quickly as possible
This example shows the recommended code to do so. It assumes the module
recognises three service calls, but you can easily adapt it for other cases:

TEQ Rl , #Service_ <l>
TEQNE Rl , #Service_ <2>
TEQNE Rl , #Service_ <3>
MOVNES PC , LR reject unrecognised calls asap

STMFD Rl3 !, { registers , LR}
LDR Rl2 , [R12]

TEQ Rl , #Service_ <3>
BEQ svc_ 3
TEQ Rl , #Service_ <2>
BEQ svc_ 2

if workspace pointer required

now find which call we ' ve got

svc_ l code to handle service call 1 if not 3 or 2 , then must be 1
LDMFD Rl3 !, { registers , PC }A and return

svc_2 code to handle service call 2
LDMFD Rl3! , { registers , PC }A and return

svc_3 code to handle service call 3
LDMFD Rl3! , { registers , PC }A ; and return

Some service calls can indicate an error condition by the contents of registers on
exit (the V set convention cannot be used) . Others, like unknown OS_Byte, can
either claim the service, in which case there is no way of indicating an error, or
ignore it, in which case an error will be given (if all modules ignore it) . If you want
to provide things like unknown OS_Bytes, and be able to generate an error for, say,
invalid parameters , you should use the OS_Byte vector instead.

Note that only RO - R8 can be passed into a service call .

1-211

Title string

The service call handler is used when a service call is issued or via an OS_Byte 143
(page 1-223) or OS_ServiceCall (page 1-250). The service ca ll s are described in the
section on OS_ServiceCall.

Title string

Offset of a null-terminated module name

Offset in header

&10

Use

This is the offset of a null -terminated string which is used to refer to the module
when OS_Module is ca lled. The module name should be made up of alphanumeric
characters and should not contain any spaces or control characters. This must be
present for the module to be recognised.

Module names which contain more than one word should follow the convention of
the system modules. eg 'FileSwitch ', 'SpriteUtils'. The case of the letters in a
module name isn't significant for the purposes of matching.

The string should be fairly short and descriptive, eg WindowManager or
DiscToolkit.

The string is used by OS_Module with reason codes Delete, Enter and Rein it, and
also by the *Modu les. *RMEnsure and *ROMModules commands .

Help string

1-212

Used when *Help prints information from the module

Offset in header

&14

Use

This is the offset of a null-terminated string printed out by *Help before any
information from the module, eg *Help Modules, *Help Commands. It is advisable
that this string is present to avoid confusion. The string must not contain any
control characters (except Tab, which tabs to the next multiple of eight column, or
character 31 which acts as a 'hard' space) but may contain spaces.

Modules

To make the output of • Help Modules look neat , you should adopt the same
spacing and naming conventions as the system modu les. The format is as follows:

module_name Tab[Tab] v. vv (DD MMM YYYY)

The module name is followed by one or two Tab characters to make it appear
sixteen characters long. The version number conta ins three digits and a full stop,
eg '1.00'. The creation date is of the form 06)un 1987.

Help and command keyword table
Get help on • Commands or enter them

Offset in header

&18

Use

This table contains a l ist of keywords with associated help text and, in the case of
commands , an entry address to the command code. Other associated data
provides information on the type of command, the limits on the number of
parameters it can take, etc.

It is used when OSCLI, *Status, *Configure and • Help wish to look for
user-supplied keywords.

The string to match should contain only the valid characters for its entry type. For
example, commands matched by OSCLI cannot contain any characters that have a
special meaning in filenames. In genera l it is best to st ick to alphanumeric
characters and the ·_·character. The case of the letters does not matter in
command matching, but shou ld be chosen for neat output from *Help. The
standard adopted by the system modules is the form 'Echo' , 'SetType' etc

1··213

Help and command keyword table

1~214

The tab le consists of a sequence of ent ri es, terminated by a zero byte. Each entry
has t he fo llowing format :

String to match, null terminated

ALIGN to word boundary

Offset of code from module start, or zero if no code

Information word

Offset of invalid syntax message from module start,
or zero for default message

Offset of help text from module start, or zero for no help

Fig ure 14.1 Fo rmat of entries in help and command keyword table

Code offset

The code offset is used fo r commands. A zero entry means that t he string has help
text only associated with it. The code is entered with t hese condi tions:

On entry

RO = pointer to the command tail, which you may not overwrite
Rl =number of pa rameters (as counted by OSCLI , which means space(s) separate

parameters except within double quotat ion marks)
Rl 2 =pointer to private word for thi s instantiation of the module
Rl 3 =pointer to a full descending stack
R 14 = return address

On exit

RO = error pointer if anything goes wrong
R7 - Rll must be preserved

Interrupts

Interrupts are enabled on entry
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re~entrancy

Entry point is not re-entrant

Modules

Information word

The information word contains limits on the number of parameters accepted by
the command, and also I6 flags . The format is:

Byte

0
I
2
3

Contents

Minimum number of parameters (0- 255)
OS_GSTrans map for first 8 parameters
Maximum number of parameters (0- 255)
Flags

The command ca n, therefore, accept between ze ro and 255 parameters . OSCLI
counts parameters by starting at the start of the command tail and looking for
items (quoted strings or continuous characters) separated by spaces. This is why it
is advisable to use spaces as parameter separators and not commas, as in
commands which are compatible with the BBC series of microcomputers.

Byte I works as follows . Each bit corresponds to one parameter (bit zero of the byte
equals the first parameter and so on). If the bit is set, the parameter is GSTrans'd
before being passed on to the module. If the bit is clear, the parameter is passed
directly to the module. Thi s is useful for filing system commands which need to do
filename transformations that are normally done by FileSwitch .

The flags are as fo llows:

Bit 31 = I

The match string is a filing system command and is therefore only matched after
OSCLI has failed to find the command in any of the module tables as a 'normal'
command. OSCLI only looks at filing system commands in the filing system
currently active. Commands that need this flag set are, therefore, the filing
system-specifi c ones such as • Bye, • Logon , etc.

Bit 30 = I
The string is to be matched by •status and •configure. The code in this case
should scan the command tail and return a status string or set non-volatile
memory as appropriate. The code is called with RO set as follows :

RO = 0 •configure has been issued with no option. The module prints a
syntax string and returns.

RO = I •status option has been issued. The module should print the currently
configured status for this configuration option .

1-215

Help and command keyword table

1-216

If RO is neither of the above, it means that *Configure option has been issued; RO is
a pointer to the command tail with leading spaces skipped The module must
decode the arguments and set the configuration accordingly If the command tail is
incorrect, the module should return with V set and RO indicating the error as
follows:

RO = 0
RO =I
RO = 2
RO = 3
RO > 3

Bad configure option
Numeric parameter needed
Configure parameter too large
Too many parameters
RO is a pointer to an error block for •configure to return

Note that this facility duplicates two of the service code entries. You should use
this method in preference, as the OS performs decoding of the option keywords for
you.

Bit 29 = I
• Help offset refers to a piece of code to call for that keyword, instead of the offset
of a text string. The code is called with the following entry conditions:

RO points at a buffer
R I is the buffer length
RI - R6 and RI 2 can be corrupted

On return, if RO is non-zero, it is assumed to point at a zero-term inated string to
pretty-print (see below)

Other flags

Other flags should be zero for upwards compatibility.

Invalid syntax message

The invalid syntax message is used by OSCLI as the text of an error message. If the
parameters, which are given, fall outside the range specified. If a zero offset is
given, a default 'Invalid number of parameters· error is given instead. See also
Service_SyntaxError on page I-265.

Help text

The help text is used by *Help. If a keyword in the *Help command tail matches the
match string, then the help text is pretty-printed using the RISC OS internal token
dictionary. Refer to OS_PrettyPri nt (page 1-5 I 8) for a full list of the token
dictionary.

Modules

A zero offset means no help text is to be printed. The string may contain carriage
returns to force newlines. Tab (ASCII 9) is also a special character; it forces
alignment to the next multiple of eight columns. Finally, ASCII 31 is a 'hard space',
around which words lines will not be split.

SWI chunk base number

The base of chunk numbers for the module

Offset in header

&IC

Use

This offset contains the base of chunk numbers for the module. Note that it is the
only offset that does not contain a pointer. RISC OS reads this offset to enable it to
call the module when a SWI using its chunk range is issued.

SWI handler code

Called to handle SWis belonging to the module

Offset in header

&20

On entry

RO- R9 are passed from the SWI caller by RISC OS
Rll = SWI number modulo Chunk Size (ie 0- 63)
R 12 = private word pointer
R 13 = supervisor stack
R 14 contains the flags of the SWI caller

On exit

RO- R9 are returned to SWI caller by RISC OS
RIO- Rl2 may be corrupted

Interrupts

Interrupts on entry are in the same state as when the SWI instruction was issued
Fast interrupts are enabled

1-217

SWI handler code

1-218

Your code should not explicitly enable interrupts. as if they are disabled on entry,
there is likely to be a good reason for this- such as your SWI being called from an
interrupt handling routine. If you do need to disable IROs during an atomic
operation. you should only do so for the minimum time possible. and should
afterwards restore them to their previous state. Recommended code to do so is:

MOV Rn, PC
ORR
TEQP

Rm, Rn, #I_bit
Rm , #0

Your code for snort atomic operation

TEQP Rn , #0

#I_bit is 1<<27
disable interrupts

must preserve Rn

restore interrupts

The TEOP instructions are not changing processor mode. but merely disabling
IROs in the current mode. so need not be followed by a no-op

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Your module may issue SWis to itself: if it does. it must handle them

These entries allow a module to ask to be given a range of otherwise unrecognized
SWis. The SWI chunk number is the base of the range to be intercepted. SWis in the
range:

base to (base + SWI chunk size- I)

are passed to the handler code. The module SWI chunk size is defined by the
operating system to be &40 (64). For example. this entry in the Wimp module is
&400CO. implying that it can accept SWis in the range &400CO- &400FF

These fields are optional; if they contain implausible values. the system will ignore
them . The checks made are:

• base is a multiple of the chunk size and has a 0 top byte

• code offset is a multiple of four with the top six bits zero.

See the section entitled SWlnurnbers in detail on page 1-26 for more details on SWI
and chunk numbers.

Modules

When the SWI handler code is ca lled , the SWI number reduced to the range 0 to
(chunk size - I) is passed in R I I . The module then checks whether it is one which
it recognises and if so, deals with it appropriately. The suggested code for doing
this is:

. SWientry
LOR
CMP

R12, [R12) ; get workspace pointer
Rll , #(EndOfJumpTable- JumpTable)/4

A DOLO
8

PC, PC , Rll, LSL #2 dispatch if in range

. JumpTable
8

8

UnknownSWierror

MySWI_O
MySWI_ l

8 MySWI_n
.EndOfJumpTable
.UnknownSWIError

ADR RO, ErrToken
MOV Rl. #0
MOV R2, #0
ADR
SWI
ORRS

R4 , ModuleTitle
"XMessageTrans_ErrorLookup"
PC , R14, #Overflow_Flag

; unknown SWI

From module header

. ErrToken
EQUD
EQUS
EQU8
ALIGN

&1E6
"8adSWI "
0

Same as system message
Token to look up

Note that the address ca lculation on the PC to jump to the appropriate branch
instruction relies on there being exactl y one instruction between the ADDLO and
the B MySWI_O instruction .

The R 14 given to the SWI code contains the flags of the SWI ca ller, except that V has
been cleared. So, to return without updat ing the flags, use

MOVS PC, Rl4

Otherwise alter the link register, for example by executing

ORRS PC, Rl4, #Overflow_Flag

Note that all the flags returned to the system are returned to the caller, so user's
conditional code must be written with this in mind.

Bit 17 in the given SWI number is not significant The cod~ is ca lled on the
assumption that it is the 'bit l 7 set' version of the SW!. This means that the code
must set RO and return V set on encountering an error. Any error is then
automatically dealt with by the system if the user actually asked for t he 'bit 17
clear' version .

1-219

SWI decoding table

SWI decoding table

1-220

Pointer to table of SWI names

Offset in header

&24

Use

When the SWis OS_SWINumberFromString and OS_SWINumberToString are
called, there are two ways that the conversion can occur. If the table pointed to by
this offset contains the string for the required entry, then that is used. If it isn 't
there and the table pointer is 0, then the following offset is ca lled, to allow the
module code to perform the conversion .

The table fo rmat is:

SWI group prefix
Name of Oth SWI
Name of I st SWI

Name of nth SWI
0 byte to terminate

All names are null terminated . The group prefix is the first part of the full SWI
name: ie the first SWI's full name is GroupPrefix_NameOflst. For example, SheiiCLI 's
table is :

EQUS "She l l "
EQUB 0
EQUS "Crea t e "
EQUB 0
EQUS "Destroy "
EQUB 0
EQUB 0

In this example, the chunk base number is &405CO. The SWI &405CI would
therefore be converted into 'Sheii_Destroy' if passed to OS_SWINumberToString.

The OS adds an 'X' if the SWI has bit I7 set. followed by the group prefix, followed
by ·_· , then the individual SWI name. If the table does not contain enough entries,
then the SWI name field is filled in by the offset from the chunk base (in decimal)

If the table field is zero, then the code field is used (see below). This field is also
used when converting from strings to numbers.

SWI decoding code

Entry for code to convert to and from SWI number and string

Offset in header

&28

On entry

R 12 =private word pointer
R 13 = supervisor stack
R 14 = return address

Text to number
RO =any number less than zero

Modules

R I =pointer to the string to convert (terminated by a control cha racter)

Number to text

On exit

RO = SWI number ANDed with 63 : ie offset within module's ch unk
R I =pointer to output buffer
R2 =offset within output buffer at which to place the text
R3 = size of buffer

R 12 preserved

Text to number
RO =offset into chunk (0- 63) if SWI recogn ised. <0 otherwise
R I - R6 preserved

Number to text

Interrupts

RO preserved
R I preserved
R2 = updated by length of text
R3 - R6 preserved

Interrupts are enabled on entry
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

1-221

SWI decoding code

Re-entrancy

Use

1-222

Entry point is not re-entrant

This entry is used where a SWI name is not defined in the SWI decode table. If it
cannot be decoded, and the table pointer is 0, then return with the registers
unchanged and RISC OS will provide a suitable default

When converting from number to text. RISC OS will append a null at the position
after the length you returned.

SWI Calls

Issue module service ca ll

On entry

RO = 143
R I = service type
R2 =argument for service

On exit

RO, R I preserved
R2 =may contain a return argument

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Modules

OS_Byte 143
(SWI &06)

This ca ll is provided for compatibility with the BBC series of microcomputers , and
is used for ca lling the modules' servi ce entries . Only OS_ServiceCall should be
used in new code.

Related SWis

OS_ServiceCall (page 1-250)

Related vectors

ByteV

1-223

OS_Module (SWI & 1 E)

1-224

Perform a module operation

On entry

RO = reason code

OS_Module
(SWI &1 E)

other registers are parameters and depend upon the reason code

On exit

RO preserved
other register states depends on the reason code

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This SWI provides a number of calls to manipulate modules. The value in RO
describes the operation to perform as below:

RO Meaning Page

0 Run 1-227

Load 1-228

2 Enter 1-229

3 Rein it 1-230

4 Delete 1-231

5 Describe RMA 1-232

6 Claim 1-233

7 Free l -234

8 Tidy l -235

Modules

RO Meaning Page

9 Clear I-236

IO Insert module from memory I-237

II Insert module from memory and move into RMA 1-238

I2 Extract module information I-239

I3 Extend block I-240

I4 Create new instantiation I-24I

I5 Rename instantiation I-242

I6 Make preferred instantiation I-243

I7 Add expansion card module I-244

I8 Lookup module name I-245

I9 Enumerate ROM modules I-246

20 Enumerate ROM modules with version I-248

This call performs simple checks when deleting and moving modules. These
actions give an error if the system 'thinks' you are applying them to a module
currently active, for example, if you try to *RMKill BASIC from within BASIC.

This check is applied whenever the system is about to call a module's finalise entry.
Hence simple applications need not keep checks on this explicitly. More complex
modules which. for example, run subtasks. need to keep their own state checks in
order to avoid being removed when they are due to be returned to at some point

Many of the OS_Module calls refer to a module title. This has some general
restrictions. The name passed is terminated by any control character or space and
can be abbreviated with a full stop. For example. 'Eco.· is an abbreviation for
'Econet' . The title field in the module is similarly terminated by control characters
and spaces. The pattern matching ignores the case of both strings, and allows any
characters other than space or full stop. You should restrict your titles, however. to
alphanumerics and ·_· for future compatibility

As usual. errors are indicated by V being set and an error pointer in RO . These
errors may be generated by one of the modules. and the error block addressed by
RO might reside in a module's code. You should therefore not rely on the error
block remaining in the same place across calls to OS_Module.

As the checks within this call cannot tell which instantiation of a module is active.
no instantiation may die when one of them is the current application. The module
name can also have an instantiation postfix. This cons ists of'%' followed by the
instantiation name. This name field can be abbreviated in the same way as the
module name. If no instantiation is given, the currently preferred instantiation is
referenced.

1-225

OS_Module (SWI & 1 E)

1-226

In the following pages , the reason codes for this command are fully explained . The
details of general SWI operation are as per this description .

Related SWis

None

Related vectors

None

Run

Modules

OS_Module 0
(SWI &1 E)

On entry

RO = 0 (reason code)
R I =pointer to path name plus optional parameters

On exit

Use

Does not return unless error occurs

This call is equivalent to loading, initialising, and then entering the module . If the
module can be started as an application, it will be, and so the call will not return.

Possible errors from RISC OS are 'File 'filename' not found ', 'Not enough memory in
module area ' (or, under RISC OS 2, 'No room in RMA') , 'This is not a relocatable
module'. The module itself may return errors such as 'Duplicate module refused to
die' , and 'Module refuses to initialise'.

Related reason codes

I , 2

1-227

OS_Modu/e 1 (SW/ & 1 E)

1-228

Load

OS Module 1
(SWI &1 E)

On entry

RO = I (reason code)
R I =pointer to path name and optional parameters

On exit

Use

RO , R I preserved

This reason code attempts to claim a block of the RMA and *Loads the file if it has
the correct file type of &FFA. The header fields of the module are then checked for
validity.

If another module has the same name, it attempts to kill the duplicate module.
This will give an error if the module refuses to die. Note that this allows system
modules to be upgraded with new versions simply by loading the new version . All
instantiations of the duplicate are killed.

It sets the private workspace word to 0, calls the module through its initialise
address and links it to the end of the module list. or replaces the old module of the
same name. The module is initialised as instantiation 'Base' .

The filename should be terminated suitably for OS_File The terminator can be
space, in which case there can be a parameter string after the filename to pass to
the module initialisation.

Possible errors are 'File 'filename' not found ', 'Not enough memory in module area'
(or, under RISC OS 2, 'No room in RMA'). 'This is not a relocatable module', and
other errors dependent on the module, such as 'Duplicate module refused to die' ,
and 'Module refuses to initialise'.

Related reason codes

0, 2

Enter

Modules

OS_Module 2
(SWI &1 E)

On entry

RO = 2 (reason code)
Rl =pointer to module name
R2 =pointer to parameters

On exit

Use

Does not return unless error occurs

If the modu le doesn't have a start address. then this call simply returns. If it does,
this call resets the supervisor stack pointer to the top of the stack. sets user mode
and enters the module, hence making it the current application. Any specified
instantiation will become the preferred instantiation. The possible error is 'Module
'rnodulenarne' not found '.

For a description of how a module is started up as an application, refer to
OS_FSControl 2 (page 2-82) .

Related reason codes

0

1-229

OS_Modu/e 3 (SW/ & 1 E)

1-230

Reinitialise

OS Module 3
(SWI &1 E)

On entry

RO == 3 (reason code)
Rl ==pointer to module name plus any parameters for initialisation

On exit

Use

RO, R I preserved

Thi s is equivalent to reloading the module. It is intended for use in forcing
modules that have become confused into a sensible state, without having to
reload them explicitly from the filing system . The instruction calls the module
through its finalise address and deletes any workspace . It then ca ll s it through its
initialisation address to reinitialise it If the module fails to initialise it is removed
from the RMA Possible errors are 'Module 'modulename' not found ', and others
dependent on the module.

Related reason codes

8, 9

Delete

Modules

OS_Module 4
(SWI &1 E)

On entry

RO = 4 (reason code)
R I =pointer to module name

On exit

Use

RO, R I preserved

This reason code (and • RMKill) ki ll off the currently preferred instantiation of the
module or the one speci fied in the name. For example:

*RMKill FileCore%Base

This ca lls the module through its finalise address, frees any workspace pointed at
by the private word , del inks the module from the module list and frees the space it
was occupying. Possible errors are 'Module not found' and others dependent on
the module .

Related reason codes

None

1-231

OS_Modu/e 5 (SWI & 1 E)

1-232

Describe RMA

On entry

RO = 5 (reason code)

On exit

Use

RO preserved
R2 =size of largest block available in bytes
R3 =total amount free in RMA in bytes

OS_Module 5
(SWI &1E)

Thi s cal l returns information on the state of the RMA. It does this by ca lling
OS_Heap with the appropriate descriptor.

Related reason codes

6

Claim

Modules

OS_Module 6
(SWI &1 E)

On entry

RO = 6 (reason code)
R3 = required size

On exit

Use

RO preserved
R2 =pointer to claimed block
R3 preserved

This calls the heap manager to claim workspace in the RMA. If it fails and
application workspace is not currently being used then it will attempt to reallocate
this memory and retry. It returns with V set if it is still unsuccessful. This call is
useful for claiming workspace during the module's initialisation. but may also be
used from other module entries.

The possible error is 'Not enough memory in module area· (or. under RISC OS 2.
'No room in RMA').

Related reason codes

5. 7

1-2~~

OS_Modu/e 7 (SW/ & 1 E)

1-234

Free

On entry

RO = 7 (reason code)
R2 =pointer to block

On exit

Use

RO preserved
R2 preserved

OS_Module 7
(SWI &1 E)

This calls the heap manager to free a block of workspace claimed from the RMA

The possible error is 'Not a heap block'.

Related reason codes

6

Tidy

Modules

OS_Module 8
(SWI &1 E)

On entry

RO = 8 (reason code)

On exit

Use

RO preserved

This gives each instantiation of all modules in turn, from the end of the module list
and working backwards, a non-fatal finalisation call. Instantiations of a particular
module are killed in the order they appear on the current instantiation list.

Should any instantiation of any module refuse to die, then any modules which
have already been killed are re-initialised . Should any of these give an error during
re-i nitialisation, they are then deleted from the system. The SWI then exits with the
original error returned by the module that first refused to die.

If all modules die successfully, this call then collects the RMA together into one
large unfragmented block, and reinitialises the modules again. Any private words
containing pointers to workspace blocks in the RMA are relocated. This should
enlarge application space.

Related reason codes

3, 9

1-235

OS_Module 9 (SWI & 1 E)

1-236

Clear

On entry

RO = 9 (reason code)

On exit

RO preserved

Use

OS_Module 9
(SWI &1 E)

This dea ls with each module in turn , removing it from t he module li st and calling it
through its fina lise address , i f it isn't a ROM module. Errors are generated i f
modu les fa il to die.

Related reason codes

3, 8

Insert module from memory

Modules

OS_Module 10
(SWI &1 E)

On entry

RO = I 0 (reason code)
R I =pointer to start of module

On exit

Use

RO, R I preserved

This takes a pointer to a block of memory and links it into the module chain ,
without moving it. Header fields are checked for validity. All duplicate modules are
killed . If it is successful, then the module is called at its initialisation entry.

Possible errors are 'Duplicate module refuses to die' and 'Module refuses to
initialise'.

The word immediately before the module start (ie at address Rl-4) must contain
the length of the module in bytes

Related reason codes

II

1-237

OS_Modu/e 11 (SWI & 1 E)

1-238

Insert module from memory and move into RMA

OS Module 11
(SWI &1 E)

On entry

RO = (reason code)
R I =pointer to start of module
R2 =length of module in bytes

On exit

Use

RO - R2 preserved

This takes a pointer to a block of memory, and checks its header fields for validity.
It then kills any duplicate module, copies the block into the RMA, initialises it and
links it into the module chain .

Possible errors are 'Duplicate module refuses to die' , 'No room in RMA' and
'Module refuses to initialise' .

Related reason codes

10

Extract module information

Modules

OS_Module 12
(SWI &1 E)

On entry

RO = 12 (reason code)
Rl =module number. or 0 for first call
R2 =instantiation number, or 0 for all

On exit

Use

RO preserved
Rl =updated module number
R2 =updated instantiation number
R3 =module base
R4 =private word (usually workspace pointer)
R5 = pointer to instantiation postfix

This returns pointers to modules and the contents of their private word . It searches
the list of modules to see if the module pointer given in Rl is valid . If it is valid, the
next descriptor in the module chain is referenced, otherwise the first module
descriptor is referenced. Information from the referenced descriptor is then
returned . The information returned is exactly that printed by the *Modules
command.

Specifying the instantiation number and index in the module list allows all module
instantiations to be enumerated. Enumeration can be started with 0 in R I and R2 .
This call will :

• count down the module list to find the R I th entry; error if list runs out

• count down the instantiation list to R2th entry; error if list runs out

• set up return information

If the module has more instantiations, R2 += I else R I += I, R2 = 0

Possible errors are 'No more modules' or 'No more incarnations of that module' .

Related reason codes

13

1-2~Q

OS_Module 13 (SWI & 1 E)

1-240

Extend block

On entry

RO = 13 (reason code)
R2 =pointer to workspace block
R3 =change in size in bytes

On exit

Use

RO preserved
R2 = pointer to new allocated block
R3 preserved

OS_Module 13
(SWI &1 E)

This allows modules to extend workspace blocks cla imed in the RMA It calls
OS_Heap with the appropriate descriptor and attempts to en large the RMA if this
fails .

The possible error is 'No room in RMA'

Related reason codes

12

Create new instantiation

On entry

RO = 14 (reason code)

Modules

OS_Module 14
(SWI &1 E)

R1 =pointer to new instantiation name and any parameters for initialisation

On exit

Use

RO, R1 preserved

This creates new instantiations of existing modules, using the syntax:

module_title%instantiation

For example:

FileCore%RAM

Related reason codes

15, 16

1-241

OS_Module 15 (SWI & 1 E)

Rename instantiation

On entry

RO = 15 (reason code)
R I =pointer to current module%instantiation name
R2 =pointer to new instantiation name

On exit

RO - R2 preserved

Use

OS_Module 15
(SWI &1 E)

This renames an existing instantia t ion of a module. For example:

1-242

FileCore%RAM

to

FileCore%ADFS

Related reason codes

14, 16

Make preferred instantiation

On entry

RO = 16 (reason code)
R I =pointer to module%instantiation name

On exit

RO, R I preserved

Use

Modules

OS_Module 16
(SWI &1 E)

This enables you to select the preferred instantiation of a particular module.

Related reason codes

14, 15

1-243

OS_Modu/e 17 (SWI & 1 E)

1-244

Add expansion card module

On entry

RO = 17 (reason code)
R I =pointer to environment stri ng
R2 =chunk number
R3 = ROM section

On exit

RO - R3 preserved

Use

OS_Module 17
(SWI &1 E)

This allows expansion card and extension ROM modules to be added to the
module list Note that extension ROMs are not supported in RISC OS 2.

Valid ROM sections are:

ROM section Meaning

-I System ROM

0 Expansion card 0
Expansion card I

2 Expansion card 2
3 Expansion card 3

-2 Extension ROM I
-3 Extension ROM 2
-4 Extension ROM 3 (etc)

Related reason codes

10

(not in RISC OS 2)
(not in RISC OS 2)
(not in RISC OS 2)

Look-up module name

On entry

RO = 18 (reason code)
R I =pointer to full module_title%instantiation name

On exit

Use

RO preserved
R I =module number
R2 = instantiation number
R3 =pointer to module code
R4 - private word contents
R5 pointer to postfix string

Modules

OS_Module 18
(SWI &1 E)

Thi returns pointers to modules and the contents of their private word. It searches
th list of modules to see if the module pointer given in R I is valid . If it is valid, the
m ule descriptor is referenced. Information from the referenced descriptor is
then returned .

Related r ason codes

12, 19, 20

1-245

OS_Modu/e 19 (SW/ &1E)

1-246

Enumerate ROM modules

OS_Module 19
(SWI &1 E)

On entry

RO = 19 (reason code)
Rl =module number (0 to start full enumeration)
R2 =ROM section (-I to start full enumeration)

On exit

Use

RO preserved
R I = module number of found module+ I
R2 = ROM section of found module
R3 =pointer to module name
R4 = -I unplugged

0 inserted but not in the module chain ie dormant
active

2 running
R5 =chunk number of expansion card or extension ROM module

This call returns information on one module that is currently in ROM , along with
its status. The module found is the given number of modules on from the start of
the given ROM section . If there are insufficient modules in the ROM section then
the search continues with the next section; so the fifth module in a four module
section would in fact be the first module of the next sect ion .

The ROM sections are scanned in this order:

ROM section

-I

0
I
2
3

-2
-3
-4

Meaning

System ROM

Expansion card 0
Expansion card I
Expansion card 2
Expansion card 3

Extension ROM I
Extension ROM 2
Extension ROM 3 (etc)

(not in RISC OS 2)
(not in RISC OS 2)
(not in RISC OS 2)

Modules

The values returned in RO- R2 are the correct ones to use this call to enumerate
the next module; hence repeated calls will give a full enumeration of all ROM
modules.

The call returns the error 'No more modules· (error number & I 07) if there are no
more modules from the point specified in the ordering

Related reason codes

12, 18, 20

1-247

OS_Module 20 (SWI & 1 E)

1-248

Enumerate ROM modules with version

OS_Module 20
(SWI &1 E)

On entry

RO =20 (reason code)
R1 =module number (0 to start full enumeration)
R2 =ROM section (-1 to start full enumeration)

On exit

Use

RO preserved
R 1 =module number of found module+ 1
R2 =ROM section of found module
R3 =pointer to module name
R4 = -1 unplugged

0 inserted but not in the module chain ie dormant
active

2 running
R5 =chunk number of expansion card or extension module
R6 =BCD version number (derived from module's help string)

This call returns information on one module that is currently in ROM, along with
its status. The call is identical to OS_Module 19, except that on exit R6 holds a BCD
(binary coded decimal) form of the module's version number, as derived from the
module's help string The top 16 bits of this value hold the integer part of the
version number, and the bottom 16 bits hold the fractional part : eg if the version
number of the module is '3.14 ' then the va lue returned would be &00031400.

The module found is the given number of modules on from the start of the given
ROM section . 1f there are insufficient modules in the ROM section then the search
continues with the next section ; so the fifth module in a four module section would
in fact be the first module of the next section .

The ROM sections are scanned in this order:

ROM section Meaning

-1 System ROM

0 Expansion card 0
I Expansion ca rd I
2 Expansion card 2
3 Expansion card 3

-2
-3
-4

Extension ROM I
Extension ROM 2
Extension ROM 3 (etc)

(not in RISC OS 2)
(not in RISC OS 2)
(not in RISC OS 2)

Modules

The values returned in RO- R2 are the correct ones to use this call to enumerate
the next module; hence repeated calls will give a full enumeration of all ROM
modules.

The call returns the error 'No more modules' (error number & I 07) if there are no
more modules from the point specified in the ordering.

Related reason codes

12, 18, 19

1-249

Service Calls

Service Calls

1-250

Issue a service call to a module

OS_ServiceCall
(SWI &30)

On entry

Rl =service number
other registers are parameters and depend upon the service number

On exit

R I = 0 if service was claimed, preserved otherwise
other registers up to R8 may be modified if the service was claimed

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

OS_ServiceCall is used to issue a service call. It can be used by any program
(including a module) which wishes to pass a service around the current module
list. For example, someone wishing to use FIGs might issue the claim/release
service calls .

A module may claim a service call by setting R I to 0 on exit; this prevents the
service call from being passed to any further modules. There are some service calls
that you must not claim , since it is essential that all modules receive them; such
cases are clearly documented .

Modules

Here is a list of the service calls available to application writers. the details of
which can be found on the specified pages The names given below omit the initial
'Service_' for clarity:

No Name Meaning Page
&04 UKCommand Unknown command 1-255

&06 Error Error has occurred 1-256

&07 UK Byte Unknown OS_Byte 1-257

&08 UKWord Unknown OS_ Word 1-258

&09 Help *Help has been called 1-259

&OB Release FlO Release FlO 1-135

&OC Claim FlO Claim FlO 1-136

&II Memory Memory controller about to be 3-68
remapped

&12 StartUpFS Start up filing system 2-22

&27 Reset Post-Reset 3-69

&28 UKConfig Unknown *Configure 1-260

&29 UKStatus Unknown *Status 1-261

&2A NewApplication Application about to start 1-262

&40 FSRedeclare Start up filing system 2-23

&41 Print For internal use only 3-598

&42 LookupFileType Look up file type 1-263

&43 International International service 3-763

&44 Keyhandler Keyboard handler 1-851

&45 Pre Reset Pre-reset 4-134

&46 ModeChange Mode change 1-617

&47 ClaimFIOinBackground Claim FlO in background 1-137

&48 ReAllocate Ports Econet restarting 2-642

&49 StartWimp Start up any resident module 3-70
tasks using Wimp_StartTask

&4A StartedWimp Request to task modules to set 3-72
taskHandle variable to zero

&48 StartFiler Request to filing-system-specific 2-490
desktop filers to start up

&4C Started Filer Request to filing-system-specific 2-492
desktop filers to set taskHandle
variable to zero

&40 PreModeChange Mode change 1-618

1-251

OS_ServiceCa/1 (SWI &30)

No Name Meaning Page
&4E MemoryMoved OS_ChangeOynamicArea has l-361

just finished

&4F FilerOying Notification that the Filer 2-493
module is about to close down

&50 Mode Extension Allow soft modes l-620

&51 ModeTranslation Translate modes for unknown l-624
monitor types

&52 MouseTrap The Wimp has detected a 3-74
significant mouse movement

&53 WimpCioseOown Notification that the Window 3-75
Manager is about to close down
a task

&54 Sound Parts of the Sound system are 4-17
starting or dying

&55 NetFS Either a *Logon, a *Bye or a 2-342
*SOisd*Mount has occurred

&56 EconetOying Econet is about to leave 2-643

&57 WimpReportError Request to suspend trapping of 3-77
YOU output so an error can be
displayed

&59 ResourceFSStarted The file structure inside 2-411
ResourceFS has changed

&5A ResourceFSOying ResourceFS is killed 2-412

&58 CalibrationChanged Screen calibration is changed 3-344

&5C WimpSaveOesktop Save some state to a desktop 3-78
boot file

&50 WimpPalette Palette change 3-79

&5E MessageFileCiosed Message files have been closed 3-741

&5F NetFSOying NetFS is dying 2-343

&60 ResourceFSStarting ResourceFS module is reloaded 2-4 13
or reinitialised

&64 TerritoryManagerLoaded Tell territory modules to register 3-790
themselves.

&65 POriverStarting POriver sharer module started 3-599

&66 POumperStarting POriverOP module starting up 3-676

&67 POumperDying POriverOP module dying 3-677

&68 CloseFile Close an ob ject , and any children 2-24
of that object

1-252

Modules

No Name Meaning Page
$69 IdentifyDisc Identify disc format 2-218

&6A Enumerate Formats Enumerate available disc 2-494
formats

&68 Identify Format Identify disc format name 2-277

&6C DisplayFormatHelp Display list of available formats 2-278

&6D ValidateAddress OS_ ValidateAddress has been 1-362
called with an unrecognised area

&6E FontsChanged New FontSPath detected 3-417

&6F BufferStarting Notifies modules that the buffer 4-85
manager is starting

&70 DeviceFSStarting DeviceFS is starting 2-424

&71 DeviceFSDying DeviceFS is dying 2-425

&72 SwitchingOutputToSprite Output switched to sprite, mask 1-760
or screen

&73 Postlnit All modules have been 1-264
initialised

&75 TerritoryStarted New territory starting 3-791

&76 MonitorLeadTranslation Translate mon itor lead ID 1-625

&78 PDriverGetMessage Get common messages file 3-600

&79 Device Dead Device has been killed by 2-426
DeviceFS

&7A Screen Blanked Screen blanked by screen blanker 4-108

&78 Screen Restored Screen restored by screen 4-109
blanker

&7C Desktop Welcome Desktop starting 3-80

&7D DiscDismounted Disc dismounted 2-496

&7E ShutDown Switcher shutting down 3-81

&7F PDriverChanged Currently selected printer driver 3-601
has changed

$80 ShutdownComplete Shutdown completed 3-82

&81 DeviceFSCioseRequest Opening a device which already 2-427
has the maximum number of
streams open

&82 lnvalidateCache Broadcast whenever the cache is 3-345
flushed within ColourTrans

&83 Protocol Dying Part of the AUN Driver Control 2-644
Interface

1-253

OS_ServiceCa/1 (SWI &30)

No Name Meaning Page
&84 FindNetworkDriver Part of the AUN Driver Control 2-645

Interface

&85 WimpSpritesMoved Wimp sprite pools have moved 3-77

&86 WimpRegisterFilters Allows the Filter Manager to 3-77
install filters with the Window
Manager

&87 FilterManagerinstalled Filter Manager starting up 3-304

&88 FilterManagerDying Fil ter Manager dying 3-305

&89 ModeChanging Mode change I-627

&8A Portable Power down or up 4-I97

&88 NetworkDriverStatus Part of the AUN Driver Control 2-646
Interface

&8C SyntaxError Syntax error translation I-265

&I0800 ADFSPodule Issued by ADFS to locate an 4-I35
ST506 expansion card

&I080I ADFSPoduleiDE Issued by ADFS to locate an IDE 4-I36
expansion card

&I0802 ADFSPoduleiDEDying IDE expansion card dying 4-I37

Related SWis

OS_Byte 143 (page I-223)

Related vectors

None

1-254

Unknown command

Modules

Service_UKCommand
(Service Call &04)

On entry

RO =pointer to command
Rl = &04 (reason code)

On exit

Use

RO = 0 if command performed with no error, or error pointer if command performed
with error, or preserved to pass on

R I = 0 to claim the command , or preserved to pass on

This service call is issued when a command is unknown . It is issued after OSCLI
has searched modules, but before the filing system is ca lled to try to *Run the
command . It is also used to implement NetFS file server commands.

If your module recognises the command , you should try to execute it, claiming the
service call by setting R I to 0 as usual. If the command was successful you should
set RO to 0 when claiming the call; if an error occurred you should instead set RO to
point to the error buffer.

Note that this is the 'historical ' way of dealing with unknown commands. You
should, in preference, use the command string entry point.

1-255

Service_Error (Service Call &06)

1-256

Error has occurred

On entry

RO =pointer to error block
R l = &06 (reason code)

On exit

RO preserved
R l preserved to pass on (must never be claimed)

Use

Service_Error
(Service Call &06)

This call is issued after an error has occurred but before the error handler is called .
lt is included 'for your information', and must not be claimed.

Unknown OS_Byte

Modules

Service_UKByte
(Service Call &07)

On entry

R I = &07 (reason code)
R2 = OS_Byte number (ie value in RO when OS_Byte was called)
R3 =first parameter (ie value in Rl when OS_Byte was called)
R4 =second parameter (ie value in R2 when OS_Byte was called)

On exit

Use

R I = 0 to claim, else preserved to pass on
R3 =value to return in R I to caller
R4 =value to return in R2 to caller
Errors cannot be returned

If the OS_Byte number is one used by your module, you should execute it and
claim the call by setting R I to zero.

If you don 't recognise the OS_Byte number, pass the call on by returning with the
registers preserved.

This method of adding OS_Byte calls is deprecated, and you should instead claim
the ByteV software vector. See the chapter entitled Software vectors on page 1-63.

1-257

Service_UKWord (Service Call &08)

1-258

Unknown OS_ Word

Service_UKWord
(Service Call &08)

On entry

Rl = &08 (reason code)
R2 =OS_ Word number (ie va lue in RO when OS_ Word was called)
R3 =pointer to OS_ Word parameter block (ie va lue in R I when OS_ Word was

called)

On exit

Use

R I = 0 to claim, else preserved to pass on
Errors cannot be returned

If the OS_ Word number is one used by the module it is passing through, you
should execute it and claim the ca ll by setting R I to zero.

If you don't recognise the OS_ Word number, pass the ca ll on by returning with the
registers preserved.

This method of adding OS_ Word ca ll s is deprecated, and you should instead claim
the WordY software vector. See the chapter entitled Software vectors on page 1-63.

*Help has been ca lled

Modules

Service_Help
(Service Call &09)

On entry

RO =pointer to command
R I = &09 (reason code)

On exit

Use

RO preserved
R I = 0 to claim , else preserved to pass on

This is issued at the start of *Help . You should claim thi s ca ll only if you wish to
replace *Help completely. The usual way for a module to provide help is through
its help text table.

1-259

Service_UKConfig (Service Call &28)

1-260

Unknown •configure

Service_UKConfig
(Service Call &28)

On entry

RO =pointer to command tail. or 0 if none given
R I = &28 (reason code)

On exit

Use

RO < 0 for no error, or a small integer for errors described below,
or error pointer for other errors

R I = 0 if configure option recognised and no error, else preserved to pass on

If RO = 0 on entry, you should print your •configure syntax line(s). if any, and exit
with registers preserved.

If RO ::F 0, then RO is a pointer to the command tail. If you decode the command tail,
and recognise it, you should claim the call by setting Rl to 0. If an error is detected,
should also return with V set and return the error in RO as follows:

Value

0
I
2
3
>3

Meaning

Bad •configure option
Numeric parameter needed
Parameter too large
Too many pa rameters
RO is an error pointer returned by •configure

If you don't recognise the command tail. you shou ld exit with registers preserved.

Note that it is also possible to trap unknown •configure commands through the
module's command table (see the section entitled Help and command keyword table on
page 1-213)- which is the preferred method. Only one of these mechanisms
should be used .

Unknown •status

Modules

Service UKStatus
(Service Call &29)

On entry

RO =pointer to command tail. or 0 if none given
R I = &29 (reason code)

On exit

Use

RO preserved
R I = 0 is status option recognised and no error, else preserved to pass on

If RO = 0, you should list your status(es) and pass on the service call.

If RO ::~- 0, then RO is a pointer to the command tail. If you decode the command tail.
and recognise it, you should print the associated information and claim the call.
Otherwise you should not claim the call .

Note that it is also possible to trap unknown •status commands through the
module's command table (see the section entitled Help and command keyword table on
page 1-213)- which is the preferred method. On ly one of these mechanisms
should be used.

1-261

Service_NewApplication (Service Call &2A)

1-262

Application about to start

Service_NewApplication
(Service Call &2A)

On entry

R I = &2A (reason code)

On exit

Use

R I = 0 to prevent application from starting, else preserved to pass on

This service is called when an application is about to start due to a *Go, *RMRun
or *Run-type operation. If you don't want the application to start. you should claim
the call. otherwise pass it on.

Look up fil e type

Modules

Service_LookupFileType
(Service Call &42)

On entry

R 1 = &42 (reason code)
R2 =file type (in lower three nibbles)

On exit

Use

R 1 = 0 if the module knows the file type, else preserved to pass on
R2 =first four cha racters, if known, else preserved
R3 = last four characters, if known, else preserved

This cal l is passed round when FileSwitch is unable to convert a hexadecimal
3-digit file type xxx into a textual name, because it is unable to find the system
variab le Fi le$Type_xxx. If the file type passed in R2 is known to you, you should
return with R 1 =0, and R2, R3 containing the eight characters in the name. If no-one
claims the ca ll , FileSwitch wi l l convert the number into a three-digit hex va lue
padded with spaces This might be loaded as foll ows:

ADR Rl , nameString
LDMIA Rl , {R2 , R3}
MOV Rl , #0

MOV PC, R14
. nameString

EQUS "My Type String must be eight bytes long

1-263

Service_Postlnit (Service Call &73)

1-264

All modules have been initialised

On entry

On exit

This service call should not be claimed.

Use

Service_Postlnit
(Service Call &73)

This is issued on a reset , after all the ROM resident modules (including those on
extension ROMs and expansion cards) have been initialised.

Syntax error translation

Modules

Service_SyntaxError
(Service Call &8C)

On entry

R I = &8C (reason code)
R2 =pointer to the issued command's code offset in the module's help and

command keyword table (ie R2+4 is the command 's information word;
see page 1-213)

R3 =base address of module providing command
R4 =pointer to command string in module

On exit

Use

RO =pointer to error block giving new syntax message, else preserved to pass on
R I = 0 to claim service call, else preserved to pass on
R2 - R4 preserved

This service call is issued just before a syntax error is returned from a module
* Command. It is provided so that modules can localise their error messages for a
particular territory.

On entry, the registers hold sufficient information to identify the particu lar
command being issued. and in which module it resides.

If the service call is claimed. RISC OS outputs the returned error string in the block
pointed to by RO; otherwise it uses the syntax error message in the module's help
and command keyword table (see page 1-213) .

This service call is only issued by RISC OS 3 (version 3.1 0) or later.

1-265

•commands

*Commands

1-266

*Modules

Displays informat ion about all installed relocatable modules

Syntax

*Modules

Parameters

Use

None

*Modu les displays information about all relocatable modules which are currently
installed in the machine.

The command displays the number allocated to each module, its position in
memory, the address of its workspace, and its name.

• The number may change as other modules are installed and removed.

• The names listed by this command are the module titles, which are used as
parameters for other commands such as *RMKill.

Example

*Modules
No . Position Workspace Name

1 0380BED8 00000000 UtilityModule
2 038251A8 01800014 Podule

81 039EAF10 00000000 !Edit
82 039F17E4 0181E984 DOSFS

Related commands

*ROMModules

Related SWis

OS_Module (page 1-224)

Related vectors

None

Modules

1-267

•RMC/ear

1-268

*A MClear

Deletes all relocatable modules from the module area

Syntax

*RMClear

Parameters

Use

None

*RMCiear deactivates all relocatable modules in the module area, deletes them,
and frees their workspace. Use this command on ly with extreme caution, as it is so
drastic in its effects.

ROM resident modules are not affected by *RMCiear; if you wish to disable such a
module, you should use *RMKi ll or *Unplug

Related commands

*RM!nsert. *RMKill, *RMRelnit, *RMTidy, *Unplug

Related SWis

OS_Module (page 1-224)

Related vectors

None

Modules

*AM Ensure

Checks the presence and version of a module

Syntax

*RMEnsure module_ title version_number [command]

Parameters

Use

module_ti tle

version_ number

command

the title of any currently installed module

a number against which the version number will be
checked

a Command Line command

*RMEnsure checks that a module is present and is the given version (or a more
recent one). A command, optionally given as a third parameter, is executed if this
is not the case, or- if none is specified- an error is generated. * RMEnsure is
usually used in command scripts or programs to ensure that modules they need
are loaded and of a recent enough version.

Example

*RMEnsure WindowManager 2 .01 *RMLoad System:Wimp

Related commands

None

Related SWis

OS_Module (page 1-224)

Related vectors

None

1-269

*RMFaster

1-270

*AM Faster

Makes a module faster by copying it from ROM to RAM

Syntax

*RMFaster module_title

Parameters

Use

module_ti tle the title of any ROM resident module

• RMFaster makes a copy of a ROM resident relocatable module and places it in
RAM. The module will run faster because RAM can be accessed faster than ROM .

In doing so, the module is moved to the end of the module list You should be
aware that this can cause problems later; for example, the relative ordering of
some modules is important to the *RMTidy command, which a number of
applications use.

Example

*RMFaster BASIC

Related commands

None

Related SWis

OS_Modu le (page 1-224)

Related vectors

None

Modules

*AM Insert

Reverses the action of a previous *Unplug command

Syntax

*RMinsert module_ title [ROM_ secti on]

Parameters
module_ ti tle

ROM_ section

the title of any ROM resident module

ROM section to restrict command to

Use

*RMinsert reverses the action of a previous *Unplug command, but without
reinitiali sing any modules.

If no ROM section number is specified, then this command clears the unplug bit
for all versions of the specified module present in the machine.

If a ROM section number is specified, then this command clears the unplug bit for
all versions of the specified module present in the given section. ROM section
numbers are :

ROM section

-I

0
I
2
3

-2
-3
-4

Meaning

System ROM

Expansion card 0
Expansion card I
Expansion card 2
Expansion card 3

Extension ROM I
Extension ROM 2
Extension ROM 3 (etc)

This command is not available in RISC OS 2.

Example

*RMinsert MIDI 1

Related commands

*RMRelnit , *Unplug

1-271

*RM/nsert

Related SWis

OS_Module (page 1-224)

Related vectors

None

1-272

Modules

*RMKill

Deactivates and deletes a relocatable module

Syntax

*RMKill module_title[%instantiation]

Parameters

Use

module_ti tle

instantiation

the title of any currently installed module

the instantiation of any currently installed module

*RMKill deactivates the preferred instantiation of a relocatable module (or the
specified instantiation if the second argument is used) and releases its workspace.
If the module is in RAM, it is also deleted. If it is ROM resident. it is made inactive
until reinitialised by the *RMReinit command, or until the next hard reset. Use this
command only with extreme caution, as it may be drastic in its effects.

Example

*RMKill Debugger

Related commands

• RMCiear, • RMinsert. • RMReinit, • RMTidy, • Unplug

Related SWis

OS_Module (page l-224)

Related vectors

None

1-273

•RMLoad

1-274

*AM Load

Loads and initialises a relocatable module

Syntax

*RMLoad filename [module_init_string]

Parameters

Use

filename a valid path name specifying a module file

*RMLoad loads and initialises a relocatable module. It can then be accessed by
the help system, and can provide SWis and * Commands if available.

The file must have file type &FFA, otherwise the module handler will refuse to load
it.

The optional initialisation string can be used to pass parameters to certain
modules so they initialise themselves in a particular way. For example, you might
use it to specify the amount of workspace that the module should claim, or a file
that the module should load.

Example

*RMLoad WaveSynth $.Waves.Brass14

Related commands

*RMRun

Related SWis

OS_Module (page 1-224)

Related vectors

None

Modules

*RMRelnit

Reinitialises a relocatable module

Syntax

*RMReinit module_title [module_init_s tring]

Parameters

Use

module_ti tle

module_init_ string

the title of any currently installed module, active
or otherwise

optional parameters to the module

*RMReinit reinitialises a relocatable module, reversing the action of any previous
*RMKill or *Unplug command. The module is returned to the state it was in when
it was loaded. Use this command only with extreme caution , as it may be drastic in
its effects.

• If the specified module is active, then it is killed and then re-initialised .

• If the specified module is not active, but is in the ROM , then the unplug bit in
CMOS RAM is cleared for all versions of the specified module, and then the
newest version of the module is initialised . (Under RISC OS 2 it is the first
found version that is initialised)

The optional initialisation string can be used to pass parameters to certain
modules so they reinitialise themselves in a particular way. For example, you might
use it to specify the amount of workspace that the module should claim, or a file
that the module should load.

This command can produce unexpected results, for a variety of reasons. For
example:

• The order of module initialisation is important in RISC OS. If a module relies
on a second module being later initialised, you cannot successfully reinitialise
the first module without then reinitialising the second.

• Under the desktop, a reinitialised module does not get restarted as a task
unless you re-enter the desktop.

Example

*RMReinit Debugger

1-275

*RMRelnit

Related commands

*RMCiear, *RMlnsert. *RMKill, *RMTidy, *Unplug

Related SWis

OS_Module (page l -224)

Related vectors

None

1-276

Modules

*RMRun

Loads and initialises a relocatable module, and then runs it

Syntax

*RMRun filename [module_init_string]

Parameters

Use

filename

module_init_string

a valid pathname specifying a module fi le

optional parameters to the module

*RMRun loads and initialises a relocatab le modu le, and then runs it.

The module is first loaded and initialised . (This is equivalent to a call to • RMLoad .)
The module can then be accessed by the help system, and can provide SW!s and
• Commands if available.

The file must have file type &FFA, otherwise the module handler will refuse to load
it.

The module is then run, if it can be. This is equivalent to an enter operation in
OS_Module. Consequently, if the module cannot be run, then this command is
equivalent to a *RMLoad command.

Example

*RMRun My_Module

Related commands

*RMLoad

Related SWis

OS_Module (page 1-224)

Related vectors

None

1-277

•RMTidy

1-278

*RMTidy

Compacts the module area and reinitialises all the modules it contains

Syntax

*RMTidy

Parameters

Use

None

*RMTidy collects together free space in the module area by moving and
reinitialising all the modules it contains. The free space is gathered into a
consecutive chunk o f memory.

Use this command only with extreme caution, as it is so drastic in its effects.

Related commands

*RMCiear

Related SWis

OS_Module (page l-224)

Related vectors

None

Modules

*ROM Modules

Displays information about all relocatable modules currently installed in ROM

Syntax

*ROMModules

Parameters

Use

None

• ROM Modules di splays information about all relocatable modules which are
currently installed in ROM .

The command di splays the number allocated to each module, whether it is part of
the system or in expansion cards or in an extension ROM , its name, and its status:
active, running, dormant or unplugged . (Note that RISC OS 2 does not support
extension ROMs, nor does it give a version number or report modules as running .)

• The names l isted by this command are the module titles, which are used as
parameters for other commands such as *RMKill.

System modules are stored in ROM , but may still be *RMKilled , *Unplugged , or
replaced by RAM-based modules.

Example

*ROMModules
No . Position Module name Version Statu s

1 System ROM UtilityModule 2.20 Active
2 System ROM Podule 1. 23 Active
3 System ROM FileSwitch 1 . 98 Active
4 System ROM ResourceFS 0 . 09 Active
5 System ROM Messages 0 . 16 Active

1 Podule 1 Support16a 1 . 00 Active

1 Extn ROM 1 Tube6502Emulator 1.] 7 Dorman t
1 Extn ROM 2 Turbo6502Emu1ator 1.1 7 Dorma n t
1 Extn ROM 3 Tube6502Emulator 1.17 Active
2 Extn ROM 3 Turbo6502Emulator 1. 17 Active
1 Extn ROM 4 FontManager 2 .85 Active

1-279

•ROM Modules

or under RISC OS 2:

*ROMModules
No . Position Module Name

1 System ROM UtilityModule
2 System ROM FileSwitch
3 System ROM Desktop

1 Podule 0 MailBleep
2 Podule 0 ROMBoard

Related commands

*Modu les

Related SWis

OS_Modu le (page 1-224)

Related vectors

None

1-280

Status
Active
Active
Active

Dormant
Dormant

Modules

*Unplug

Kills and disables al l copies of a ROM resident modu le

Syntax

*Unplug [module_title [ROM_section]]

*Unplug [module_title] {RISC OS 2)

Parameters

Use

the title of any ROM resident module module_ti tle

ROM_ section ROM section to restrict command to- this pa rameter is
not recognised by RISC OS 2

*Unplug kills all copies of the named ROM module, releasing any workspace used.
(In RISC OS 2 only the first copy found is deleted.) It also disables all versions of
that module- whether in the system ROM, expansion cards or extension ROMs
by preventing them from being initialised (and hence available for use) Th is
setting is stored in the CMOS RAM, and so is permanent even across a reset. To
enable the module again you must use the *RMRelnit or *RMlnsert command.
(The latter command is not available in RISC OS 2)

If you supply a ROM section parameter, *Unplug restricts its effects to modu les
that are in that ROM section. ROM section numbers are:

ROM section Meaning

-I System ROM

0 Expansion card 0
Expansion card I

2 Expansion card 2
3 Expansion card 3

-2 Extension ROM l
-3 Extension ROM 2
-4 Extension ROM 3 (etc)

You should use this command with caution, otherwise you may find programs stop
working because you have unplugged a module that is essentia l to them.

lf no parameters are given, the unplugged ROM modules are listed.

1-281

*Unplug

Example

*Unplug RAMFSFiler disables the RAMFSFiler module

Related commands

*RMlnsert . *RMKill , *RMRelnit

Related SWis

OS_Module (page 1-2 24)

Related vectors

None

1-282

15 Program Environment

Introduction
The program environment refers to the condit ions under which a program or
module executes. There are three aspects to this environment.

• The memory used by the code and allocated for transient workspace.

• The handlers used by a program or module.

A handler is a piece of code ca lled when certain conditions occur. RISC OS
provides a set of default handlers, so that a sensib le default action will occur
under such conditions . Here is a brief list of the kinds of conditions that we are
talking about:

• an error

• an escape condi tion

• an event

• certain hardware exceptions, such as an undefined instruction

• a break point

• an unknown SWI being called

• a program or module terminating.

• The system variables are a textual way of finding information about various
aspects of the system . There are several kinds of variables :

• string variables which contai n characters only

• integer variables which con tain an integer

• macro variables which are like string va riables, except that they can
contain references to specia l characters and other system variab les .

1-283

Overview and Technical Details

Overview and Technical Details

Executing code

1-284

There are several ways of executing a piece of code . You can :

• *RMRun a module

• OS_Module 'Enter' a module

• *Run a program

• •co, to execute a program in memory

Modules

The first two are described in the chapter entitled Modules. They are really the same
thing. When a file is *RMRun , it is loaded into the relocatable module area . Its
initialisation code is called , so that it can claim workspace etc, then its start code
is called .

A module can also cause its own start entry point to be called if it wants to become
the current application, using OS_Module BASIC is an example of this. The
*BASIC command is recognised by the OS using the BASIC module's • Command
table . The OS calls the routine which handles the *BASIC command , and this
routine calls OS_Module with the reason code 'enter' . For details on calling
modules see the chapter entitled Modules on page 1-197.

Programs on file

The third case applies to files which have no file type , or have type &FF8. In the first
case, the file is loaded at its load address, then it is started as an application
through its execution address. If the file type is &FF8, the file is loaded at &8000
and started as an application there. See also the section entitled Transient programs
below.

Programs in memory

Finally, if you call a machine code program using the *Go command , it becomes
the current application. (This implies that you shouldn 't use *Go to call
RAM-based routines from a language, as the routine can 't return- R 14 contains no
return address at this point.)

In all of these cases, the program is called in user mode, with interrupts enabled .
Where a module is called, R 12 points to the module's private word .

Program Environment

Transient programs

Ending a task

A file with type &FFC (Utility) must contain position independent code. When such
a file is *Run, it is loaded into the RMA and executed. This is used when you want
to run a utility and then return to the program environment that you were in before
running it. On entry to a transient program, registers are as follows:

RO =pointer to command line
R I =pointer to command tail
R 12 = pointer to workspace
R 13 =pointer to workspace end (stack)
R 14 = return address
User mode, interrupts enabled

The workspace is I 024 bytes long, in the location given by R 12 and Rl3 on entry If
more is required, it may be allocated from the RMA The utility should return using
MOV PC.R 14 (freeing any extra workspace first). It does not become the current
application and must not call OS_Exit; see the section entitled Ending a task be low.

Note that RO points to the first character of the command name, and R I points to
the first character of the command tail (with spaces skipped). This will be a control
character if there were no parameters.

When a utility returns, the space it occupies is freed. Utilities are nestable- you
can execute one utility from within another.

Note that utilities are viewed as system extensions. This means that they must
only use the X form SW!s, so that the error handler is not called by their actions. A
utility can return with an error by setting V and pointing RO at an error block as
usual.

Before describing the calls which control the application program's environment. it
is worth explaining how to leave an application. In general. a simple 'retu rn from
subroutine' using MOV PC,R 14 won 't suffice. Instead, you should use a routine
called OS_Exit (page 1-300) . This passes control back to a well-defined place,
which defaults to the supervisor • prompt. but could equally be a location in the
previous application .

•Quit is equ ivalent to a call to OS_Exit.

OS_ExitAndDie (page 1-318) is like OS_Exit, but will kill a named module as well.
This may be used, for example, when a module is specific to a particular
application and you wish to kill the module when the application exits.

1-285

System variables

System variables

1-286

The system variables, maintained by the operating system in the system heap,
provide a convenient way by which programs can communicate. Variables are
accessed by their textual name. The name may contain any non-space, non-control
character. When a variable is created, the case of the letters is preserved. However,
when names are looked up the case is ignored , and you can use the characters '#'
and···- just like looking up filenames.

Naming

Types

You should avoid the use of wholly numeric names for system variables, such as
123, as this causes difficulties when the GS string operations are used to look up a
variable's contents . In particular, they will always take< 123> to mean the ASCII
code 123, and wi ll not attempt to look up the name as a variable. See the chapter
entitled Conversions on page 1-441 for details of the GS calls, specifically
OS_GSRead and OS_GSTrans.

There are several types o f system variable:

• String variables can contain any characters you like; these are returned when
the string is read . They can be set with •set.

• Integer variables are four-byte signed integers. They can be set with •setEval.

• Macros are strings that are passed through OS_GSTrans when the string is
read . This means that if the macro contains references to variables or other
OS_GSReadable items, the appropriate translation takes place whenever the
variable is accessed. They can be set with •setMacro.

A class ic example of using a macro is to set the command line prompt
CLISPrompt to the current time using:

*SetMacro CLI$prompt <Sys$Time><&20>

Every time the prompt is displayed, it shows the current time, followed by a
space .

• The final type of variable is machine code routines. A routine is called
whenever the variable is to be read, and another when it is set. This allows
great flexibility in the way in which such variables behave. For example, you
could make a variable directly control a CMOS RAM location using this
technique. SysSTime is a good example of a code variable.

All the above types can be set with OS_SetVarVal (page 1-311) and read with
OS_ReadVarVal (page 1-309)

Program Environment

Any non-code variable can be removed using •unset. *Show will list the setting of
one or more variables .

Miscellaneous environment features
OS_GetEnv (page 1-298) is a multi-purpose SWI that provides three useful pieces
of information :

The address of the • Command string used to run the program .

This can be processed with OS_ReadArgs, which is described on page 1-465 of
the chapter entitled Conversions.

2 The real time that the program was started.

3 The maximum amount of memory available to the program .

This can be altered with reason code 0 of OS_ChangeEnvironment; see
page 1-315 for more details.

OS_ WriteEnv (page 1-317) allows you to set the program start time and the
command string.

1-287

Handlers

Handlers

SWis

1-288

Handlers are short routines used to cope with special conditions that can occur
under RISC OS. Here is a complete li st of the handlers:

Handler

Undefined instruction
Prefetch abort
Data abort
Address exception
Error
CallBack
BreakPoint
Escape
Event
Exit
Unused SWI
UpCall

All of the calls that install user handlers pass through ChangeEnvironmentV. This
can be intercepted to stop a subprogram changing parts of the environment that
its parent wants to keep: for example, a debugger.

Before reading this section , you shou ld be familiar with the chapters entitled
Software vectors on page 1-63 and Hardware vectors on page 1-111 , since many of these
handlers are directly called from these vectors.

OS_ChangeEnvironment (page 1-315) is the central SWI for handlers . There are
several other routines that perform subsets of its actions. You are strongly
recommended to use OS_ChangeEnvironment in any new applications as the
others are only provided for compatibility

The other calls are OS_Control (page 1-296) , OS_SetEnv (page 1-302),
OS_CaiiBack (page 1-304). OS_BreakCtrl (page 1-306) and OS_UnusedSWI
(page 1-307) .

OS_ReadDefaultHandler allows you to get the address and details of any of the
default handlers . This would be used if you wished to set up a well -defined state
before running a subprogram : for example, the Desktop does so.

Program Environment

Details of Handlers

When a handler is called, you should not expect to be able to see the foreground
application 's registers. You should only rely on those registers explicitly defined in
each handler as being meaningful on entry.

You should take care not to corrupt R 14_SYC during handler code. This implies
saving it on the stack if you use SWis; see the chapter entitled Interrupts and nand ling
tflem on page 1-117 for details. The details of each of the handlers follows

Undefined instruction, Prefetch abort, Data abort and Address exception

These handlers are all called from hardware vectors. For a description of them see
the chapter entitled Hardware vectors on page 1-111. These handlers are all entered
with the processor in SYC mode.

Error

All of the default handlers simply generate errors, which are passed to the current
error handler.

The error handler is called after any error has been generated. It is called by the
default routine on the error vector; thus any routines using this vector should
always 'pass it on'. Continuing after an error is not generally recommended . You
should always use the X form SWis if you wish to stay in control even when an error
occurs.

The error handler is entered in User mode with interrupts enabled. Note that if the
error handler is set up using OS_ChangeEnvironment, the workspace pointer is
passed in RO , not R 12 as is usual for other handlers.

The error handler rnust provide an error buffer of size 256 bytes, the address of
which should be set along with the handler address . On an error the buffer will be
set to contain the following:

Offset

0-3
4- 7

8 ..

Contents

PC when error occurred
Error number provided with the error.
Error string, terminated with a 0

The default error handler reports the error message and number- although
applications frequently set up their own error handlers . BASIC is one such
example.

1-289

Details of Handlers

1-290

BreakPoint

This handler is called when the SWI OS_BreakPt (page 1-305) is called . All the user
mode registers are dumped into a buffer (the register save block), and then the
handler is entered in SVC mode.

When setting the address of a replacement break point handler you must also
specify the address of the register save block, which must be word aligned and 16
words long. You can also specify a pointer to workspace to pass in R 12 when your
handler is called .

The following code is suitable to restore the user registers and return :

ADR
LDMIA

MOV
LDR
MOVS

Rl4 , saveblock
R14 ' {R0-R14} A

RO , RO
Rl 4 , [Rl4 , #15 * 4);
PC , R14

get address of saved registers
load user registers from block ;
note that user Rl3 ,RI4 are altered
no-op after forcing User mode
load user PC into SVC R 14
return to correct address and mode

The default handler displays the message 'Break point at &xxxxx' and calls OS_Exit.

Escape

Event

This handler is called when an escape condition is detected . See the chapter
entitled Character Input on page 1-835 for details of this. You can specify a pointer to
workspace to pass in R 12 when this handler is called .

When the handler is entered , registers have the following values

R II bit 6 set, implying escape condition
R 12 pointer to workspace, if set up- should never be I
R 13 a full, descending stack pointer

To continue after an escape, the handler should reload the PC with the contents of
R 14. If R 12 contains I on return then the CallBack flag is set; for details of the
action this causes, see the section entitled CallBack on page 1-292. Typically (eg for
BASIC). the handler will set an internal flag which is checked by the foreground
program .

This handler is called by the default owner of EventV when an event occurs. You
can specify a pointer to workspace to pass in Rl2 when this handler is called.

Exit

Program Environment

When the handler is entered the processor is in either SVC or IRQ mode, with the
following register values:

RO event reason code
Rl . .
Rl2
Rl3

parameters according to event code
pointer to workspace, if set up- should never be I
a full, descending stack pointer

To continue after an event, the handler should reload the PC with the contents of
R 14. Again, if R 12 contains I on return then the Call Back flag is set; for details of
the action this causes , see the section entitled CallBack on page 1-292.

This handler is called when the SW!s OS_Exit (page 1-300) or OS_ExitAndDie
(page 1-318) are called . It is entered with the processor in user mode. You can
specify a pointer to workspace to pass in R 12 when this handler is called.

Unused SWI

UpCall

This handler is called by the default owner of the UKSWIV. (If RISC OS can 't decode
the number of a SWI into one which it supports directly, it offers it as a service call
to modules. If none of them claim the service, it then calls the vector UKSWIV. This
allows a user routine on that vector to try to deal with the SWI. If there is no such
routine, or the one(s) that is present passes the call on , then the default owner of
the vector calls the Unused SWI handler)

You can specify a pointer to workspace to pass in R 12 when this handler is called .

When the handler is entered the processor is in SVC mode, with interrupts in the
same state as the caller The registers have the following values :

R II SWI number (Bit 17 clear)
R 13 SVC stack pointer
R 14 user PC with V cleared

R I 0, R II and R 12 are stacked and are free for your own use.

This handler is called by the defau lt owner of UpCai iV when OS_UpCal l
(page 1-186) is called. OS_UpCall is used to warn your program of errors and
situations that you may be able to recover from. See the chapters entitled Software
vectors on page 1-63 and Communications witliin RISC OS on page 1-175. You can
specify a pointer to workspace to pass in R 12 when this handler is ca lled.

1-291

Gal/Backs in more detail

CallBack

This handler is called whenever RISC OS's internal CallBack flag is set. and the
system next exits to User mode with interrupts enabled . It uses a register save
block (the address of which should be set along with the handler address) in which
all the registers are dumped when the handler is called . This must be word-aligned
and 16 words long. You can specify a pointer to workspace to pass in R 12 when this
handler is called. A more detailed description follows.

CallBacks in more detail

1-292

There are two types of CallBack usage under RISC OS

• Transient CallBacks are placed in a list by calling OS_AddCaiiBack
(page 1-319) . They are used to deal with a specific case. and are called once
before being removed .

• The CallBack handler is permanent and takes all CallBacks that are not
intercepted by transients . These CallBacks are explicitly requested by calling
OS_SetCaiiBack (page 1-308). They can also be implicitly requested by setting
R 12 to I on exit from either an escape or event handler. There is a system
default CallBack handler, but you can of course replace it using
OS_ChangeEnvironment.

Transient CallBacks

Transient CallBacks may be called on the system being threaded out of- that is,
when it enters User mode with interrupts enabled . They can also be called when
RISC OS is idling; for example, while it is waiting in OS_ReadC.

Transien t CallBacks are usually set up by an interrupt routine that needs to do
complex processing that would take too long in an interrupt. or that needs to call a
non-re-entrant SWI. OS_AddCaiiBack tells RISC OS that the interrupt routine
wishes to be ·called back' when the machine is in a state that no longer imposes
the restrictions associated with an interrupt routine. OS_RemoveCaiiBack removes
a transient CallBack; this is most useful if the module is being killed before the
transient CallBack has been serviced .

Transient CallBacks can safely be used by many clients.

Other CallBacks

The CallBack handler is only ever called on the system being threaded out of- that
is, when it enters User mode with interrupts enabled. Unlike transient CallBacks, it
is not called when RISC OS is idle. This means that you cannot rely on being called
back within any given time. You must take this into consideration before using a
CallBack handler.

Program Environment

Also, you must not allow a second Ca llBack before your first one has completed;
see the sect ion entit led Application Notes on page 1-332 for an example of how to
implement a semaphore to prevent this .

The CallBack code is called in IRQ or supervisor mode with interrupts disabled. The
PC stored in the save block will be a user mode PC with interrupts enabled. Note
that if the currently active program has interrupts disabled or is running in
supervisor mode, CallBack is not used.

In the si mple case the CallBack routi ne shou ld be exited by:

ADR Rl4, saveblock get address of saved registers
LDMIA Rl4, {R0-R14} " load user registers from block -

note that user R 13,R 14 are altered
MOV RO, RO no-op after forcing User mode
LDR Rl4 , [Rl4, #15*4] ; load user PC into SYC R 14
MOVS PC, R14 return to correct address and mode

In RISC OS 3 (version 3.1 0) or later, the supervisor stack must also be empty when
the CallBack handler is called. This ensures that certain module SWis that
temporarily enter User mode (so that transient CallBacks are called) do not cause
the CallBack handler to be called.

Currently active object pointer

This is a pointer to the address of: the last application started, or the last error
handler called, or the last exit handler called. It is used by OS_Module to
determine whether a module can be killed.

Setting up and restoring the environment
In order to deal correct ly with the various ways in which applications can be run,
and killed off, the following approach has been developed for setting up the
program environment when an application starts, and restoring it when it is killed.
The basic problems are:

• if a new application is started 'on top' of the currently active one, it should
completely replace the first. and should therefore have the same 'parent'
environment as the first application.

• if the current ly active application is killed off, it must restore its 'pa rent '
environment.

1-293

Setting up and restoring the environment

1-294

Using high level languages

Typically these are handled for you by run-time language libraries, and so if you are
writing in a high-level language you do not need to worry.

Using machine code or writing a run-time language library

However, if you are yourself writing a run -t ime language library, or if you are wri t ing
your application in machine code (for example as a module which runs as a Wimp
task) you must take one of these two possible approaches:

• Do not set up any handlers at all, and always call the ·x· form of SWls, to avoid
ca lling t he error handler. If the error handler is cal led, the appli cation will be
term inated, as the parent error handler wi ll be invoked.

• Set up Error, Exit and UpCall handlers as described below, so that the
program environment can be restored correctly when the program terminates .
You must provide all three of these handlers if you use any handlers at all.
otherwise there wi ll be some circumstances in which your applicat ion can be
replaced or killed without restoring its 'parent' envi ronment.

Starting an application

When you start an applicat ion, you must:

Check that there is sufficient memory to do so- if not. ca ll OS_GenerateError
('Not enough application memory')

2 Set up your handlers using the SWI XOS_ChangeEnvironment; store the
va lues returned in Rl-R3 so you ca n later restore the old handlers.

Note that you must store the previous va lues not only for Exit. Error and UpCall
handlers, but also for any other handlers that are set up.

If your Error handler is called

If you r error handler is ca lled and you want to ca ll the 'external' error handler (eg
BASIC if '-quit' was on the command line), you should

restore all hand lers to their original va lues (Rl- R3 for each)

2 ca ll OS_GenerateError.

If your Exit handler is called

If your exit handler is ca lled you should:

J restore all handlers to their original values (R I - R3 for each)

2 ca ll OS_Exit.

Program Environment

If your UpCall handler is called

If your UpCall handler is called and RO = UpCaii_NewApplication (256), you
shou ld :

restore all handlers to their original va lues (R I - R3 for each)

2 return to the caller, preserving all registers (ie carry on and start the new
application).

Summary

The approach described above ensures that it is not possible for your application
to be terminated without it first restoring all handlers to their original values.

1-295

SWI Calls

SWI Calls

1-296

Read/write handler addresses

OS Control
(SWI &OF)

On entry

RO = pointer to error handler, or 0 to read
R l = pointer to error buffer, or 0 to read
R2 = pointer to escape handler, or 0 to read
R3 = pointer to event handler. or 0 to read

On exit

RO =pointer to previous error handler
R l = pointer to previous error buffer
R2 = pointer to previous escape handler
R3 = pointer to previous event handler

Interrupts

Interrupts are not enabled
Fast interrupts are enabled

Processor Mode

Processor is in IRQ or SVC mode

Re-entrancy

Use

SWl cannot be re-entered as interrupts are disabled

OS_ Control sets some of the exception handlers. The addresses of the error
handler, error handler buffer, escape handler and event handler are passed in
RO - R3 . Zero for any of these means no change- hence you can read the current
value. The error buffer must be 256 bytes long.

Note that the call OS_ChangeEnvironment provides all of the facilities that this
call provides, and should be used In preference. ln fact. this call uses
OS_ChangeEnvironment.

Related SWis

OS_ChangeEnvironment (page l-315)

Related vectors

ChangeEnvironmentV

Program Environment

1-297

OS_ GetEnv (SWI & 10)

1-298

Read environment parameters

OS_GetEnv
(SWI &10)

On entry

On exit

RO = pointer to environment string
Rl =permitted RAM limit (ie highest address available+ l)
R2 =pointer to real time the program was started (5 bytes)

Interrupts

Interrupt status is unaltered
Fast interrupt status is unaltered

Processor Mode

Processor is in SYC mode

Re-entrancy

Use

SWl is re-entrant

This SWl reads some information about the program environment.

The environment string pointed to by RO is normally a copy of the command line
used to start the program . However, there may be some circumstances where a
command line was not used to start the program ; in such cases a meaningful string
is still passed. For example, if a module is started using OS_Module 2, the string
passed will be '<module title> <parameter string passed in R2 on entry to
OS_Modu le>'.

R l returns the address of the byte above the last one avai lable to the application .
You can alter this using reason code 0 of OS_ChangeEnvironment.

The five bytes pointed to by R2 give the real time the program was started: ie
cent iseconds since 00:00:00 0 l-Jan-1900.

You can set these va lues usi ng OS_WriteEnv.

Program Environment

Related SWis

OS_ChangeEnvironment (page 1-315), OS_WriteEnv (page 1-317)

Related vectors

None

1-299

OS_Exit (SWI & 11)

1-300

Pass control to the most recent exit handler

OS Exit
(SWI &11)

On entry

RO =pointer to error buffer
R I = 'ABEX' (&58454241) if return code is to be set
R2 = return code

On exit

Never returns

Interrupts

Interrupt status is unaltered
Fast interrupt status is unaltered

Processor Mode

Processor is in USR mode

Re-entrancy

Use

SWI is not re-entrant

When OS_Exit is called, control returns to the most recent exit handler. The BASIC
statement QUIT performs an OS_Exit. Before executing OS_Exit. however. you
must restore any of the handlers changed in starting the application .

If the exiting program wishes to return with a return code. it must set R I to the hex
value shown above, and R2 to the desired value . The value should be zero to
indicate no error; otherwise the value should indicate the severity of the error, so I.
for example might indicate a trivial error or warning. The return value is assigned to
the variable SysSReturnCode. which can be interrogated by any program using
OS_ReadVarVal

If the returned value is greater than the value of the system variable SysSRCLimit,
RISC OS also gives the error 'Return code limit exceeded' (&I E2). The user can
alter the value of SysSRCLimit to control which errors are returned; your
application should not itself alter the variable.

Program Environment

Related SWis

OS_ExitAndDie (page 1-318)

Related vectors

None

1-301

OS_SetEnv (SWI &12}

1-302

Set envi ronment parameters

OS_SetEnv
(SWI &12)

On entry

RO =pointer to exit handler, or 0 to read
R I =permitted RAM limit (ie highest address available+ I). or 0 to read
R4 =pointer to undefined instruction handler, or 0 to read
R5 =pointer to prefetch abort handler, or 0 to read
R6 = pointer to data abort handler, or 0 to read
R7 =pointer to address exception handler, or 0 to read

On exit

RO = pointer to previous exit handler
R I =previous permitted RAM limit (ie highest address avai lable+ I)
R4 =pointer to previous undefined instruction handler
R5 =pointer to previous prefetch abort handler
R6 =pointer to previous data abort handler
R7 = pointer to previous address exception handler

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

OS_SetEnv sets several of the handlers for a program .

Note that the call OS_ChangeEnvi ronment provides all of the facilities that this
call provides, and should be used In preference. In fact, this ca ll uses
OS_ChangeEnvironment .

Related SWis

OS_ChangeEnvironment (page l-315)

Related vectors

ChangeEnvironmentV

Program Environment

1-303

OS_Cai/Back (SW/ &15)

1-304

Set up the CallBack handler

On entry

RO =pointer to CallBack register save block, or 0 to read
R I =pointer to CallBack handler, or 0 to read

On exit

RO =pointer to previous CallBack register save block
Rl =pointer to previous CallBack handler

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

OS_ CallBack
(SW1&15)

OS_ CallBack sets up the address of the CallBack handler and the register save
block, zero for either value meaning no change- hence you can read the current
value . The register save block must be word-aligned and 16 words long.

Note that the call OS_ChangeEnvironment provides all of the facilities that this
call provides, and should be used in preference. In fact. this call uses
OS_ChangeEnvironment.

Related SWis

OS_ChangeEnvironment (page 1-315)

Related vectors

ChangeEnvironmentV

Program Environment

OS BreakPt
(SWI &17)

Cause a break point trap to occur and the BreakPoint handler to be entered

On entry

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

When OS_BreakPt is executed, all the user mode registers are saved in a block and
the BreakPoint handler is called. The saved registers are only guaranteed to be
correct for user mode.

The default handler displays the message 'Break point at &xxxxx' and calls OS_Exit.

This SWI would be placed in code by the debugger at required breakpoints.

Related SWis

OS_BreakCtrl (page 1-306)

Related vectors

None

1-305

OS_BreakCtrl (SWI &18}

1-306

Set up the BreakPoint handler

OS_BreakCtrl
(SWI &18)

On entry

RO =pointer to BreakPoint register save block, or 0 to read
R I =pointer to BreakPoint handler, or 0 to read

On exit

RO =pointer to previous BreakPoint register save block
R I =pointer to previous BreakPoint handler

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

OS_BreakCtrl sets up the address of the BreakPoint handler and the BreakPoint
register save block, zero for either value meaning no change- hence you can read
the current value . The register save block must be word-aligned and 16 words long

Note that the call OS_ChangeEnvironment provides all of the facilities that thi s
call provides, and should be used in preference. In fact. this call uses
OS_ChangeEnvironment

Related SWis

OS_BreakPt (page 1-305) , OS_ChangeEnvironment (page 1-315)

Related vectors

ChangeEnvironmentV

Set up the handler for unused SWis

On entry

RO =pointer to unused SWI handler; or 0 to read

On exit

RO =pointer to previous unused SWI handler

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not enabled

Use

Program Environment

OS_UnusedSWI
(SWI &19)

OS_UnusedSWI sets up the address of the unused SWI handler, zero meaning no
change- hence you can read the current value.

Note that the call OS_ChangeEnvironment provides all of the facilities that this
call provides, and should be used in preference. In fact, this call uses
OS_ Change Environment.

Related SWis

OS_ChangeEnvironment (page 1-315)

Related vectors

ChangeEnvironmentV

1-307

OS_SetCai/Back (SWI &18)

1-308

Cause a ca ll to the CallBack handler

On entry

On exit

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

OS_SetCaiiBack
(SWI &1 B)

SWI cannot be re-entered because interrupts are dis
1

bled

Use

OS_SetCaiiBack sets the CallBack flag and so cause entry to the Ca ll Back handler
when the system next exits to user mode code with nterrupts enabled (apart, of
course, from the exit from this SWI) . This SWI may b used if the code linked into
the system (via a vector or as a SWI handler, etc) is qui red to do things on exit
from the system.

Related SWis

OS_CaiiBack (page 1-304)

Related vectors

None

Read a variable value

Program Environment

OS_ReadVarVal
(SWI &23)

On entry

RO =pointer to variable name, which may be wildcarded (using'*' and '#')
R I = pointer to buffer to hold variable value
R2 = maximum length of buffer, or bit 31 set to check existence/length of variable
R3 =context pointer (used with wildcarded names). or 0 for first call
R4 = 3 if an expanded string is to be converted on return

On exit

RO, Rl preserved
R2 =number of bytes read
R3 =new context pointer (null-terminated)
R4 = variable type

Interrupts

Interrupts are enabled
I Fast interrupts are enabled

Prof essor Mode
Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

OS_ReadVarVal reads a variable and returns its value and its type.

Before reading a variable you must check the length of the data that will be
returned. To do so, call XOS_ReadVarVal with R2 set to a value less than zero (bit
31 set) on entry. You can also use this to check for the existence of a variable.

• If. the variable exists, R2 will still be negative on exit; furthermore, if R4 '1:- 3 on
entry (ie the variable is not an expanded string) the value of R2 is NOT (length
of valud).

• If the vJriable does not exist R2 will be zero on exit.

1-309

OS_ReadVarVal (SWI &23)

1-310

When using the call in this manner, you may get an error on exit, which you should
ignore. This feature is not available under RISC OS 2; in this case you may assume
that the length of the variable will be at most 256 bytes .

For a wildcarded name R3 should be 0 on entry the first time the call is made, and
thereafter preserved from the previous call. On exit, R3 points to the name of the
variable found . This enables all matches to be found . The XOS_ReadVarVal form of
the call should be used if you don't want an error to occur after the last name has
been found .

R4, if set to 3 on entry, indicates that a suitable conversion to a string should be
performed. String variables are unaltered, numbers are converted to (signed)
decimal strings , and macros are OS_GSTrans'd.

If R4 isn't 3 on entry, the un-OS_GSTrans'd version of a macro is returned , and the
four-byte binary of a number is returned.

The type of the variable read is returned in R4 as follows:

Value

VarType_String
VarType_N umber
VarType_Macro

(0)
(I)

(2)

Type
String
4 byte (signed) integer
Macro

Returned strings are not terminated, and you should use the length returned in R2
when reading them .

See the section entitled Application Notes on page 1-332 for an example of reading a
variable.

Related SWis

OS_SetVarVal (page 1-311)

Related vectors

None

Write a variable value

Program Environment

OS_SetVarVal
{SWI &24)

On entry

RO =pointer to variable name, which may be wi ldcarded (*and#) if
updating/deleting

Rl =pointer to variable value
R2 =length of value, or negative to delete the variable
R3 =context pointer (used with wildcarded names). or 0 for first call
R4 =variable type

On exit

RO - R2 preserved
R3 =new context pointer (null-terminated)
R4 =variable type created if expression is evaluated

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

OS_SetVarVal either creates, updates or deletes a variable . The variable's name is
pointed to by RO, and may be terminated by any character whose ASCII value is 32
or less. It may be wildcarded if the variable is to be updated or deleted (ie if it
already exists).

To delete a variable, R2 must be negative on entry; if the variable is a code variable
(see below). the variable type in R4 must be set (ie R4 = 16) .

When creating or updating a variable, Rl must point to the value to be assigned .
The interpretation of this value depends on the type given in R4 as follows:

1-311

OS_SetVarVal (SW/ &24)

1-312

Value Type

VarType_String (0)

VarType_Number (I)
VarType_Macro (2)

VarType_Expanded (3)

VarType_LiteralString (4)

VarType_ Code (16)

Value is a string which will be OS_GSTrans'd
immediately
Value is a 4 byte (signed) integer
Value is a string which will be OS_GSTrans'd
each time it is used
Value is a string which will be evaluated as
an expression using
OS_EvaluateExpression, and assigned to a
number or string variable, depending on the
expression type
Value is a literal string (ie it will not be
OS_GSTrans'd)
Special case (see below)

With the exception of a literal string, all strings must be terminated by a linefeed
(ASCII 10) or carriage return (ASCII 13) or null (ASCII 0).

If the call is successfuL R3 is updated to point to the new context so allowing the
next match of a wildcarded name to be obtained on a subsequent call. R4 returns
the type created if an expression was evaluated (ie if R4 was 3 on entry).

VarType_Code

When R4 is set to 16 on en~ry (and R2 ~ 0) a code variable may be created. In this
case Rl is the pointer to the code fragment associated with the variable, and R2 is
the length of the code fragment. This code must be word-aligned and takes the
following format:

Offset

0
4
8 ...

Contents

Branch instruction to entry point for write operation
Entry point for read operation
Body of code ...

Values are always written to (and read from) code variables as strings. The entry for
the write operation is called whenever the variable is to be set, as follows:

On entry

Rl =pointer to the value to be used
R2 = length of value

On exit

Rl. R2, R4, RIO- Rl2 may be corrupted

Errors

Program Environment

The entry for the read operation is called whenever the variable is to be read by a
call to OS_ReadVarVal, as follows:

On entry

On exit

RO =pointer to value
Rl =corrupted
R2 =length of value

Both entries are called in SVC mode, therefore if any SWis are used. Rl4 must be
saved on the stack so that it does not become corrupted . The SVC stack is used,
and no workspace is reserved . You can return errors by setting the V flag as usual.

See the section entitled Application Notes on page 1-332 for an example of a code
variable .

Note that when a function key is input. the appropriate variable Key$rr is read using
OS_ReadVarVal. Therefore by creating your own code variables with these names,
you can cause the reading of a function key to cause a routine to be called instead
of just a string being read .

OS_SetVarVal can return the following errors:

• Bad name

• Bad string

• Bad macro value

• Bad expression

• Variable not found

• No room for variable

• Variable value too long

• Bad variable type

Wildcards/control characters in name when
creating

OS_GSTrans unable to translate string

Control characters in the value string (RI)

Expression cannot be evaluated

For deletion or update

Not enough room to create/update it
(system heap full)

Variables are limited to 256 bytes in
RISC OS 2 and RISC OS 3 (version 3.00)

Related SWis

OS_ReadVarVal (page 1-309)

1-313

OS_SetVarVal (SWI &24)

1-314

Related vectors

None

Install a handler

Program Environment

OS_ChangeEnvironment
{SWI &40)

On entry

RO =handler number
RI =pointer to new handler, or 0 to read
R2 =value of RI 2 with which to call the handler, or 0 to read
R3 =pointer to buffer (if appropriate), or 0 to read

On exit

RO preserved
RI =pointer to previous handler
R2 =previous value of RI2 with which to call the handler
R3 = pointer to previous buffer

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

OS_ Change Environment is a single routine which performs the actions of
OS_Control, OS_SetEnv, OS_CaliBack, OS_BreakCtrl, and OS_UnusedSWI. In fact,
all of those routines use this call. In new programs, you should always use this call
in preference to the earlier ones.

For full details of the handlers, see the section earlier in this chapter.

On entry, RO contains a code which determines which particular handler's address
is to be set up. The new address is passed in R I. RO also determines whether R2
and R3 are relevant or not. This is summarised in the table below:

1-315

OS_ChangeEnvironment (SWI &40)

1-316

RO Handler R2 R3
0 Memory Limit Ignored Ignored

Undefined instruction Ignored Ignored
2 Prefetch abort Ignored Ignored
3 Data abort Ignored Ignored
4 Address exception Ignored Ignored
5 Other exceptions Ignored Ignored
6 Error RO when called Error buffer address
7 CallBack R 12 when called Register buffer address
8 BreakPoint R 12 when called Register buffer address
9 Escape R 12 when called Ignored
10 Event Rl2 when called Ignored
II Exit R 12 when called Ignored
12 Unused SWI Rl2 when called Ignored
13 Exception registers Ignored Ignored
14 Application space Ignored Ignored
15 Currently active object Ignored Ignored
16 UpCall R 12 when called Ignored

The 'Memory limit' (handler 0) is the permitted RAM limit, as used by OS_GetEnv.
The 'Application space' (handler 14) is the amount of read/write memory in
application space. Consequently it should always be the case that Application
space :2: Memory limit.

'Other exceptions' (handler 5) is for future expansion .

The error buffer (handler 6) must be 256 bytes long.

The register buffers (handlers 7 and 8) must be word-aligned and 16 words long.

Handler 13 sets the address of the area in memory where the registers are dumped
when one of the exceptions (I - 5) occurs. if the default handlers are used. Again.
this must be word-aligned and I6 words long.

Note that in order to perform its function. OS_ChangeEnvironment vectors
through ChangeEnvironmentY. A routine linked onto this vector can stop the
change from happening by setting R I (and if appropriate R2, R3) to zero and
passing the call on; see the chapter entitled Software vectors on page I-63.

Related SWis

OS_Control (page I-296). OS_SetEnv (page I-302). OS_CallBack (page I-304)
OS_BreakCtrl (page I-306). OS_UnusedSWI (page I-307)

Related vectors

ChangeEnvironmentV

Program Environment

OS_WriteEnv
(SWI &48)

Set the program environment command string and start time

On entry

RO = pointer to environment string
Rl =pointer to real time the program was started (5 bytes)

On exit

RO, Rl preserved

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call sets the environment string and start time for an application , as returned
by OS_GetEnv For more details see OS_GetEnv on page 1-298.

This SWI is mainly used by debuggers.

Related SWis

OS_GetEnv (page 1-298)

Related vectors

None

1-317

OS_ExitAndDie (SWI &50)

1-318

OS_ExitAndDie
(SWI &50)

Kill a module and pass control to the most recent exit handler

On entry

RO = pointer to error buffer
R I = 'ABEX' (&58454241) if return code is to be set
R2 = return code
R3 =pointer to module name

On exit

never returns

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This SWI is like OS_Exit, except that it will kill a module before exiting. R3 points to
a string containing the module's name. For more details, see OS_Exit on
page 1-300.

Related SWis

OS_Exit (page 1-300)

Related vectors

None

Add a transient CallBack to the list

Program Environment

OS_AddCaiiBack
(SWI &54)

On entry

RO = address to call
Rl =value of Rl2 to be called with

On exit

RO = preserved
Rl =preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call places a transient CallBack on a list of tasks who want to be called as soon
as RISC OS is not busy. Usually, this will be just before returning from a SWI or
while waiting for a key and so on.

This SWI is usually called from an interrupt routine that needs to do complex
processing that would take too long in an interrupt, Qr that needs to call a
non-re-entrant SWI. Note that you don't also need to call OS_SetCallBack, which is
only needed when using the CallBack handler.

A routine called by this mechanism must preserve all registers and return by

MOV PC, R14

Related SWis

OS_RemoveCallBack (page 1-322)

1-319

OS_AddCai/Back (SWI &54)

1-320

Related vectors

None

Program Environment

OS_ReadDefaultHandler
(SWI &55)

Get the address of the default handler

On entry

RO =reason code (0- 16)

On exit

RO preserved
Rl =pointer to default handler
R2 = pointer to workspace
R3 =pointer to buffer

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

Using the same handler number in RO as those in OS_ChangeEnvironment (see
page I-3I6). this SWI returns details about the default handler.

Zero in Rl, R2 or R3 on exit means that it is not relevant.

Related SWis

OS_ChangeEnvironment (page 1-3 I 5)

Related vectors

None

1-321

OS_RemoveCai/Back (SW/ &SF)

1-322

OS_RemoveCaiiBack
(SWI &5F)

Removes a transient CallBack from the list

On entry

RO = address that was to be called
R I =value of R I 2 that the routine was to be called with

On exit

RO. RI preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call removes a transient CallBack from the list. You should do so if your
module has an outstanding CallBack request. but will not be able to service the
request when it is granted- for example if the module is being killed.

This call is not available in RISC OS 2, which can cause problems. For example. if a
module is being killed and it has outstanding CallBack requests. it must refuse to
die. otherwise the CallBack may be granted after that memory has been reused for
something else.

Related SWis

OS_AddCallBack (page I-3I9)

Related vectors

None

Program Environment

*Commands
*Go

Calls machine code at the given address

Syntax

*Go [hexadecimal_address] environment]

Parameters

Use

hexadecimal_address

environment

address of machine code to call

environment string to pass to machine code

*Go calls machine code at the given address. passing it an optional environment
string. If the address is omitted, it defaults to &8000, which is where application
programs (such as the C compiler) are loaded.

*Go enters an application, and you cannot use it to run machine code subroutines.

Example

*Go 9000

Related commands

None

Related SWis

None

Related vectors

None

SrcList Call machine code at &9000, passing it the string
'SrcList'

1-323

*Quit

1-324

Exits from the current application

Syntax

*Quit

Parameters

None

Use

*Quit

*Quit exits from the current application- that is. it returns to the previous context.

Related commands

*GOS

Related SWis

OS_Exit (page 1-300)

Related vectors

None

Program Environment

*Set

Assigns a string value to a system variable

Syntax

*Set varname value

Parameters

Use

varname a variable name, or a wildcard specification for a single
variable name

value string value to GSTrans and then assign to the system
variable varname

*Set assigns a string value to a system variable, like an assignment statement in a
programming language. For example:

*Set varname text

assigns the string 'text' to the variable varname. The string is OS_GSTrans'd before
it is assigned.

Aliases

Another use for the *Set command is to change the name of a command to one
which is more convenient for the user:

*Set Alias$name cname

establishes name as an alternative name for the command cname; for example
after:

*Set Alias$Aid Help

the command *Aid is now a synonym for *Help; both commands access the help
system. Another example is:

*Set Alias$Mode Echo 1<22>1<%0>
*Mode 12

The command implements a new command *Mode, which sets the screen to
mode 12 (in the above case). The Echo command reflects the string which follows
it; 1<22> generates the ASCII character 22, Ctrl V. which is equivalent to the VDU
command to change mode. k%0> reads the first parameter from the command
line, and generates the corresponding ASCII code.

1-325

*Set

The command *Show Alias$* lists all aliases.

Example

*Set Sys$Year 1992

Related commands

*SetEval. *SetMacro, *Unset

Related SWis

OS_SetVarVal (page 1-311), OS_GSTrans (page 1-454)

Related vectors

None

1-326

Program Environment

*SetEval

Evaluates an expression and assigns its value to a system variable

Syntax

*SetEval varname expression

Parameters

Use

varname

expression

a valid variable name

a valid Command Line expression

•setEval evaluates an expression and assigns its value to a system variable.

See the section entitled Evaluation operators on page 1-444 for a description of the
operators that you can use.

Example

*Set rate 12
*SetEval rate rate + 1
*Show rate
rate (Number) : 13

*SetEval fred "jim"+"sheila"
*Show Fred
fred : jimsheila

Related commands

•set. •setMacro, *Unset, *Eva!

Related SWis

OS_SetVarVal (page 1-311)

Related vectors

None

1-327

*SetMacro

1-328

*SetMacro

Assigns a string macro to a system variable

Syntax

*SetMacro varname macro

Parameters

Use

varname

macro

a variable name. or a wildcard specification for a single
variable name

string value to assign to the system variable varname,
which is GSTrans'd each time it is read

*SetMacro assigns a string value to a system variable. like function definition in a
programming language. For example:

*Set varname text

assigns the string 'text' to the variable varname. The string is not OS_GSTrans'd
before it is assigned; instead it is OS_GSTrans'd each time the variable is read .

Example

*SetMacro CLI$Prompt
13:43:17
Return
13:43:19

"<Sys$Time> "
system time replaces existing prompt
Return key pressed two seconds later
new system time displayed as prompt

This resets the Command Line prompt. which appears as the first item on each
line. to be the current time whenever the prompt is given. Compare this with using
the *Set command:

*Set fred <Sys$Time>
*Show fred
FRED 13:43:59

the *Show command issued five minutes later will still produce:

*Show fred
FRED 13:43:59

Notice that the time is fixed at the time the *Set command was performed. in
contrast to the * SetMacro command.

Program Environment

Related commands

*Set. *SetEval , *Unset

Related SWis

OS_SetVarVal (page 1-311). OS_GSTrans (page 1-454)

Related vectors

None

1-329

*Show

1-330

*Show

Displays the list of system variables

Syntax

*Sh ow [variable_ spec]

Parameters

var i abl e_ sp ec a variable name or a wildcard specification for a set of
variable names

Use

•show displays the name, type and current value of any system variables matching
the name given as a parameter. These include the 'special ' system variables, which
may be altered , but which cannot be deleted.

If no name is given, all system variables are displayed.

Example

*Show
*Sh ow CLI $Prompt
*Sh ow Alias$ *

Related commands

• set, • setEval , •setMacro

Related SWis

OS_ReadVarVal (page I -309)

Related vectors

None

lists all system variables

lists all aliases

Program Environment

*Unset

Deletes a system variable

Syntax

*Unset variable_spec

Parameters

var i abl e_spec a variable name or a wildcard specification for a variable
name

Use

*Unset deletes a system variable, which may be specified using wildcards.

Example

*Unset My_var

Related commands

*Set *SetEval, *SetMacro

Related SWis

OS_SetVarVal (page 1-311)

Related vectors

None

1-331

Application Notes

Application Notes

Reading a variable

Here is a short example of reading a variable using OS_ReadVarVal:

;Print all sys$
ADR
MOV

.loop
ADR
MOV
SWI
MOVVSS
MOV
SWI
SWI
B

.strName

variable names
Rl, valBuffer
R3, #0

RO , strName
R2 , #bufferLen
"XOS_ReadVarVal "
PC,Rl4
RO, R3
"OS_WriteO "
"OS_ NewLine"
loop

EQUS "SYS$*" + CHR$0

; Buffer to place value
;Initial context

; Wildcarded name to find
; Length of value buffer
;Non-error reporting one
; Return and clear V
;Get address of name
;Print it
; and new line
; again

Checking the value of a variable

Code variable

1-332

The short code fragment below checks if a variable has a particular value, without
giving an error if it does not exist or contains quotes.

*SetMacro App$Temp <Variable>
If App$Temp = " desired_ value " Then commands ...

Don't forget to *Unset the App$Temp macro when you have finished using it.

Below is a complete example of a program to create a variable called Mode. The
read action is to return the current display mode, and the write action to set the
mode.

. start ADR RO, varName ;Pointer to the name
ADR Rl , code ; Start of code body
MOV R2 , #endCode-code ;Length of code body
MOV R3 , #0 ; Context pointer
MOV R4 , #&10 ; ' special' type
SWI "OS_ SetVarVal " ;Create it
MOV PC, Rl4 ;Return

.code
B writeCode ;Branch to write code

. readCode
STMFD Rl3!' {Rl4} ;Save return address
MOV RO, #&87 ;OS_Byte read mode number

SWI "XOS_ Byte "
MOV RO, R2
ADR Rl, buffer
MOV R2, #4
SWI "XOS_ BinaryToDecimal "
MOV RO , Rl

LDMFD Rl3 !, {PC}

.writeCode

.buffer

.endCode

.varName

STMFD Rl3 !, {RO , Rl4}
SWI
SWIVC
MOVVC

"XOS_ReadUnsigned "
&20100+22
RO , R2

SWIVC "XOS_WriteC "
LDMVCFD Rl3 !, {RO,PC}
ADD Rl3 , Rl3, #4
LDMFD Rl3!, {Rl,PC}

EQUD 0

EQUS "Mode "

Program Environment

;Mode in RO for conversion
;Buffer for ASCII conversion
;Max len of buffer

;Pointer in RO
;length already in R2
;Return

; Save registers
; Rl set correctly already
;VDU mode change
;Get integer read in RO
; Do mode change
; Retu rn without error
; Move stack pointer past RO , so we
;don't overwrite error pointer

; Buffer for string conversion

;Name of variable

The routine at 'start' creates the variable. Obviously as the code body is copied into
the system heap, it must be position independent. The two routines readCode and
writeCode are called whenever an access to the variable is made. For example, a
*Set Mode command will call the write code entry, and *Show SysSMode or
*Echo Mode will call the read entry.

Notice that in the body of the code variable, only XOS_ SWis are used. This is
because it is important that errors are not generated when the read or write code
executes. A more rigorous version of the code above would check V after each SWI
and return if it was set.

1-333

OS_AddCai/Back

OS_AddCaiiBack

The next example shows the use of OS_AddCallBack; it prints 'Run away!' after 2
seconds:

DIM code 100
P%=code

.alarm

. timer

STMFD R13! , {R14}
SWI "XOS_WriteS"
EQUS "Run away !"
EQUB 10:EQUB 13 :EQUB
ALIGN
LDMFD R13!, {PC}
STMFD R13!, {RO , R14}
MOV RO, R12

SWI "XOS_AddCallBack "
LDMFD R13 !, {RO, PC}

0

SYS "OS_CallAfter", 200, timer , alarm

set up for us by BASIC bit
R12 is not used in alarm ,
so R1 here is don't-care

A CallBack handler

1-334

The final example shows a CallBack handler, with a semaphore to prevent recursive
CallBack; it prints 'Run away!' when mouse buttons are pressed.

DIM code 200
P%=code

.serna EQUB 1
ALIGN

.saveblock :] :P%=P%+16*4: [

. callback

.events

TEQP PC, #3
SWI "XOS_WriteS "
EQUS "Run away ! "
EQUB lO:EQUB 13:EQUB 0
ALIGN
ADR Rl4, saveblock
LDMIA R14 , {R0-R14}~

MOV RO, RO
TEQP PC, #3+(1<<27)
MOV Rl4, #1
STRB R14 , serna
LDR R1 4 , saveb lock+15 *4

MOVS PC, R14

CMP RO , #10

entered here in a privileged mode,
with interrupts disabled
first thing to do is enable IRQs
force SVC mode, IRQs on.

most registers reloaded

disable IRQs for serna update
and return

must not allow another Cal l Back
request until the stashed PC is safe
return , enableing IRQs etc

mouse button state change?

MOVNES PC , R14
STMFD R13 !, { R14}
LDRB R12, sema
MOV R14, #0
STRB R14, sema
LDMFD R13 !, {PC}

Program Environment

no - run away

possibly request CallBack

and disable any futher requests
until that one serviced.

SYS "OS_ChangeEnvironment " ,7 , callback , O,saveblock , O TO , ocall , , osave
REM Note that we aren ' t using R12 in the Cal l Back handler;
REM if this was in a module , for example , sema would be in the workspace ,
REM and we would have to access it R12-relative ; R12 would therefore be
REM set to be the workspace pointer on entry .
SYS "OS_ ChangeEnvironmen t ", 10 , events , O TO , oldev
*FX 14,10
REPEAT UNTILINKEY -1 : REM loop until shift
*FX 13 , 10
SYS "OS_ChangeEnvironment ", 10 , oldev , O
SYS "OS_ChangeEnvironment",7 , ocall, , osave
REM Note that in both the above calls , the R12 values are explicitly l eft
REM alone, because we didn ' t use them earlier .

1-335

A CallBack handler

1-336

16 Memory Management

Introduction
This chapter describes the memory management in RISC OS. This covers memory
allocation by a program or module as well as using the MEMC chip to handle how
memory is mapped.

In many environments, such as BASIC and C, you can use the language's intrinsic
memory allocation routines, which use the calls described in this chapter
transparently. For example, refer to Wimp_SlotSize on page 3-206 of the chapter
entitled The Window Manager.

Similarly, smalL transiently loaded utilities may not require any memory over the
I 024 bytes they are automatically allocated. Some programs and modules,
however, will require arbitrary amounts of memory, which can be freed after use.
For example, filing systems, specialised VDU drivers such as the font manager and
so on . The memory manager provides simple allocation and deallocation facilities .
Relocatable modules can use this manager either directly, to manipulate their own
private heap, or indirectly using the module support calls .

A block of memory can be set up as a heap. This is a structure that allows arbitrary
parts of the block to be allocated and freed. A program simply requests a block of a
given size and is given a pointer to it by the heap manager. This block can be
expanded or contracted or freed by using this pointer as a reference.

The part of the screen RAM that is not visible on the screen is also available as a
temporary buffer. This memory is temporarily available because of the way that
vertical scrolling is done.

One of the other memory resources available is the battery-backed CMOS RAM.
This is used to hold default system parameters while the power is off. Some spare
locations in CMOS RAM are reserved for users' own purposes, and for the use of
expansion cards; application authors wishing to use CMOS RAM should ask Acorn
for an allocation (although this will not be given if options can instead be saved to
file) .

The MEMC chip controls how logical addresses (those used by programs or
modules) are mapped into the physical memory location to use. Numerous calls
are used to control how it does this, though generally this is something that most
programs would not want to do.

1-337

Overview

Overview

Heap manager

RISC OS contains a heap management system. This is used by the operating
system to allocate space within the relocatable module area and also to maintain
the system heap. A heap is just an area of memory from which bytes may be
allocated, then deallocated for later use. An area can also be reallocated , meaning
that its size changes.

The heap manager is also available to the user. You provide an area of memory
which is to be used for the heap, which can be any size you require. If you are a
module, then the heap would be a block within the RMA, and if you are a program ,
then it would be within the application space.

Thus, it would be a heap within a heap; for example a block in the RMA would be
allocated by a module, and then declared as a heap. In theory, this process could
continue indefinitely, but in practice this is as far as you need to go.

At the start of a heap, the heap manager sets up the heap descriptor, which is a
block containing information on the limits of the heap, etc. This descriptor is
updated by the heap manager when necessary.

When a block within this heap is required, a request is made to the heap manager,
which returns a pointer to a suitable block of memory. The heap manager keeps a
record of the total amount of memory which is free in the heap and the largest
individual block which is available.

Heap fragmentation

1-338

The heap management system does not provide free-space collation . This is the
technique of moving blocks of allocated memory around so as to maximise the
contiguous free space and avoiding excessive fragmentation of the heap.

Also, the heap management system will never attempt to move a block within the
heap, since it has no knowledge of whether the block contains pointers that need
to be relocated , or whether there are any pointers to the block which need
updating. Hence, unless an area of contiguous free space of the size requested is
available, a request for a block will fail.

MEMC control

Memory Management

The MEMC chip maps logical onto physical addresses. To do this, it maintains a
table of entries that map a given memory block to a particular address. Generally,
the system will take care of the operation of this mapping for you. Calls are
provided to allow you to read this mapping and alter it. but you should have a very
good reason to do so, and be certain of what you are doing.

Screen memory

The vertical scrolling technique used under RlSC OS is to change the memory
location that the screen starts at. This means that part of the screen memory may
be unused, depending on the screen mode and the amount of memory reserved .
You can use this memory temporarily, as long as you don't cause any output that
may scroll the screen. Also remember that this memory is limited to one program
using it at a time, so it may not be available every time you request it.
Consequently, you cannot rely on it being there when writing a module or
application .

Battery-backed CMOS RAM

A block of 240 bytes of battery-backed CMOS RAM is available under RISC OS.
Each location has a specific meaning and should not be directly modified unless
you are sure of the meaning of the value. Many of these locations are changed
indirectly using the *Configure commands. These can be found throughout this
manual, in the chapter appropriate to their function .

Some bytes are not allocated, and are reserved for users and applications to use. If
you want to use one or more of the application bytes, you should request a
location in writing from Acorn Computers. This is so that different applications
don't accidentally use the same location.

1-339

Technical Details

Technical Details

Guidelines on using memory efficiently

This section provides basic information on memory management by RISC OS
applications. It is intended to provide some specialist knowledge to help you write
efficient programs for RISC OS, and to provide some practical hints and tips.

All the information in this chapter relating to programs written in C refers to
Acorn 's Desktop C product.

You should follow the guidelines in this section to make the best use of available
memory. The guidelines are explained in more detail on the following pages.

• Use recovery procedures- Your program should keep the machine
operational. Don't allow your program to lock up when memory runs out; your
program should indicate that it has run out of memory (with an error or
warning message) and only stop subsequent actions that use more memory.
Ideally, ensure that actions which free up memory have enough reserved
memory to run in.

• Return unwanted memory- You should return any memory you have no
further use for. Claiming memory then not returning it can tie up memory
unnecessarily until the machine is re-booted . RISC OS has no garbage
collection, so once you have asked for memory RISC OS assumes that you
want it until you explicitly return it, even if your program terminates execution .
Language libraries often provide you with protection from this, as long as
memory is cla imed from them.

• Don't waste memory- You should avoid wasting memory. It is a finite
resource, often wasted in two ways:

• by permanently claiming memory for infrequent operations

• by fragmenting it, so that although there is enough unused memory, it is
either in the wrong place, or it is not in large enough blocks to use.

Recovery from lack of memory

1-340

An important consideration when designing programs for RISC OS is the recovery
process, not just from user errors, but also from lack of system resources.

An example of a technique that can be designed into an application is to make an
algorithm more disc-based and less RAM-based on detection of lack of memory.
This could allow you to continue using an application on a small machine
(especially one with a hard disc) at the expense of some speed.

Memory Management

When implementing your code, expect the unexpected and program defensively.
Be sure that when the system resources you need (memory, windows, files

1
etc) are

not available, your program can cope. Make sure that, when a document managed
by your program expands and memory runs out. the document is still valid and can
be saved. Don't just check that your main document expansion routines work;
check that all routines which require memory (or in fact any system resource) fail
gracefully when there is no more.

Centralising access to system resources can help: write your program as if every
operating system interface is likely to return an error.

Avoiding permanent loss of memory

Permanent loss of memory is mainly a problem for applications or modules written
entirely in assembly language. When interworking assembler routines with Cor
another high level language you should use memory handed to you by the high
level language library (eg use malloc to get a memory area from C and pass a
pointer to it as an argument to your assembler routine). The language library
automatically returns such areas to RISC OS on program exit. Additional types of
program requiring care to avoid memory loss are those expected to run for a long
time (ega printer spooler) and those making use of RMA directly through SWI
calls.

When using the RMA for storage directly through SWI calls, especially for items in
linked lists, consider using the first word as a check word containing four
characters of text to identify it as belonging to your program. When a block of RMA
is deallocated, the heap manager puts it back into a list of free blocks, and in so
doing overwrites the first word of the block.

This technique therefore serves two purposes:

after your program has been run and exited, your check word can be searched
for, showing up any blocks you have failed to deallocate

2 it avoids problems when accidentally referencing deallocated memory.

A typical problem of referencing deallocated blocks results from using the first
word as a pointer to your program's next block, then accidentally referencing a wild
pointer when it is overwritten.

1-341

Avoiding memory wastage

You can use the following BASIC routine to search for any lost blocks:

100 REM > LostMemory checks for un-released blocks
110 SYS "OS_ReadDynamicArea" , l TORMA%: RMAEnd% = RMA% + (RMA% !12)
120 FOR PossibleBlock% = RMA%+20 TO RMAEnd%-12 STEP 16
130 REM Now loop look ing for "Frog "
140 IF PossibleBlock %! 0 = &676F7250 THEN
1 50 PRINT "Block found at &"; -PossibleBlock%
160 ENDIF
170 NEXT PossibleBlock%
180 END

When writing relocatable module initialisation code you should check that
memory and other system resources are returned if initialisation is unable to
complete and is going to return with V set. It is often useful to construct module
finalisation code as a mirror image of initialisation code so that it can be jumped
to when initialisation is going to return an error and cleaned up. A typical
algorithm is:

Initialisation
Claim main workspace: If error then keep this error and goto Exit3
Claim secondary workspace: If error then keep this error and goto Exit2
Claim tertiary workspace: If error then keep this error and goto Exit!
Return

Finallsation
Set kept error to null
Release tertiary workspace

Exit! Release secondary workspace
Exit2 Release main workspace
Exit3 Get kept error (if there was one)

Return

Avoiding memory wastage

1-342

The key factor in writing programs that use memory efficiently and don't waste it is
understanding the following:

• how SWI XOS_Module and SWI XOS_Heap work if you are constructing a
relocatable module or are using the RMA from an application

• how C flex and malloc work when writing a C program (parts of which may
be written in assembler) .

This understanding will lead you to writing programs that will work in harmony
with the storage allocator. See the following section for a description of C memory
allocation.

Memory Management

The C storage manager

Understanding the C storage manager is obviously useful to writers of C. But it may
also be useful to writers of assembly language for two reasons: to assist in
constructing part C and part assembler programs; to assist in constructing their
own memory allocation routines, both as an example algorithm and as an allocator
that may be running for other applications at the same time as their own.

Normal C applications (ie those not running as modules) claim memory blocks in
two main ways:

• from rnalloc

• from flex.

The rnalloc heap storage manager is the standard interface from which to claim
small areas of memory. It is tuned to give good performance to the widest variety of
programs.

In the following sections, the word heap refers to the section of memory currently
under the control of the storage manager (usually referred to as rnalloc, or the
rnalloc heap).

The flex facility is available as part of RISC_OSLib, and can be useful for claiming
large areas of data space. It manages a shifting set of areas, so its operation can be
slow, and address-dependent data cannot be stored in it. However, it has the
following advantages:

• it doesn't waste memory by fragmenting free space

• it returns deallocated memory to RISC OS for use by other applications .

Allocation of malloc blocks

All block sizes allocated are in bytes and are rounded up to a multiple of four bytes.
All blocks returned to the user are word-aligned. All blocks have an overhead of
eight bytes (two words). One word is used to hold the block's length and status, the
other contains a guard constant which is used to detect heap corruptions. The
guard word may not be present in future releases of the ANSI C library. When the
stack needs to be extended, blocks are allocated from the rnalloc heap.

When an allocation request is received by the storage manager, it is categorised
into one of three sizes of blocks

• small

• medium

• large

0 ~ 64 bytes

65 ~ 512 bytes

513 ~ 16777216 bytes.

1-343

Avoiding memory wastage

1-344

The storage manager keeps track of the free sections of the heap in two ways. The
medium and large sized blocks are chained together into a linked list (overflow list)
and small blocks of the same size are chained together into linked lists (bins). The
overflow list is ordered by ascending block address, while the bins have the most
recently freed block at the start of the list.

When a small block is requested, the bin which contains the blocks of the required
size is checked, and, if the bin is not empty, the first block in the list is returned to
the user. If there was not a block of the exact size available, the bin containing
blocks of the next size up is checked, and so on until a block is found. If a block is
not found in the bins, the last block (highest address) on the overflow list is taken.
If the block is large enough to be split into two blocks, and the remainder is a
usable size (> I 2 including the overhead) then the block is split, the top section
returned to the user and the remainder, depending on its size, is either put in the
relevant bin at the front of the list or left in the overflow list.

When a medium block is requested, the search ignores. the bins and starts with the
overflow list. This is searched in reverse order for a block of usable size, in the same
way as for small blocks.

When a large block is requested , the overflow list is searched in increasing address
order, and the first block in the list which is large enough is taken . If the block is
large enough to be split into two blocks, and the size of the remainder is larger
than a small block (> 64) then the block is split, the top section is returned to the
overflow list, and bottom section given to the user.

Should there not be a block of the right size available, the C storage manager has
two options:

Take all the free blocks on the heap and join adjacent free blocks together
(coalescing) in the hope that a block of the right size will be created which can
then be used

2 Ask the operating system for more heap, put the block returned in the overflow
list, and try again.

The heap will only be coalesced if there is at least enough free memory in it to
make it worthwhile (ie four times the size of the requested block, and at least one
sixth of the total heap size) or if the request for more heap was denied. Coalescing
causes the following:

• the bins and overflow list are emptied;

• the heap is scanned;

• adjacent free blocks are merged;

• the free blocks are scattered into the bins and overflow list in increasing
address order.

Memory Management

Deallocation of malloc blocks

When a block is freed, if it will fit in a bin then it is put at the start of the relevant
bin list, otherwise it is just marked as being free and effectively taken out of the
heap until the next coalesce phase, when it will be put in the overflow list. This is
done because the overflow list is in ascending block address order, and it would
have to be scanned to be able to insert the freed block at the correct position.
Fragmentation is also reduced if the block is not reusable until after the next
coalesce phase. It is worth noting that deal locating a block and then reallocating a
block of the same size can not be relied upon to deliver the original block.

Reallocation of malloc blocks

You should be cautious when using realloc. Reallocating a block to a larger size
will usualiy require another block of memory to be used and the data to be copied
into it. This means that you cannot use the whole of the heap as both blocks need
to be present at the same time.

If consecutive calls keep increasing the block size until all memory is used up, then
only about a third of the heap is likely to be available in one block. A typical course
of events is:

The first block is present (block A).

2 It is extended to a larger sized block (block B) . Block A must still be present
(see above) .

3 It is again extended to a larger sized block (block C) . Block B must still be
present (see above) . However, block A also still exists because it is too small to
use, and cannot be coalesced with another block because block B is in the way.

Wimp slots and the C flex system

A typical C application running under the Wimp has a single contiguous
application area (wimp slot) into which are placed the following:

• program image

• stack

• static data

• rnalloc data.

The initial wimp slot size is set by the size of the Next slot (in the Task display
window) when the application is started, or by *WimpSlot commands in the !Run
file associated with the C application. If the rnalloc heap is full and the operating
system has free memory, the wimp slot grows, raising its highest address. Once
enlarged by rnalloc, the wimp slot never reduces again until program
termination.

1-345

Avoiding memory wastage

1-346

The application area is used as follows:

low memory: the application image
the static data

high memory: the malloc heap

The stack is allocated on the heap, in 4K (or as big as needed) chunks: the ARM
procedure call standard means that disjoint extension of the stack is possible. The
only other use that the ANSI C library makes of the malloc heap is in allocating
file buffers, but even this usage can be prevented by making the appropriate calls
to the ANSI C library buffer handling facilities (s etvbuf). The operation of the
malloc heap is described above and is designed to provide good performance
under heavy use. Its design is such that small blocks can be allocated and freed
rapidly.

Any malloc heap tends to fragment over time. This is particularly serious in the
following circumstances:

• no virtual memory

• multitasking- if memory is not in use, it should be handed to other
applications

• if a prog~am runs out of memory it must not crash, but must recover and
continue.

These are just the conditions under which a desktop application operates!

Because of this, the flex facilities are available as part of RISC_OSLib (the
RISC OS-specific C library provided with Desktop C) . These provide a shifting heap,
intended for the allocation of large blocks of memory which might otherwise
destroy the structure of a malloc-style heap.

Flex works by increasing the size of the application area, using space above that
reserved for use by malloc. When the malloc heap grows, flex areas are shifted.
The benefits of using flex can be seen in Draw, Paint and Edit, which are all written
inC using early versions of RISC_OSLib. Their application areas expand when new
files are added, contract when files are discarded, and do not suffer from needless
incremental application area growth over time.

The implementation of flex is quite simple. There is no free list as memory is
shifted whenever a block is destroyed or changed in size. New blocks are always
allocated at the top. When blocks are deallocated or resized, those above are
moved. This means that deallocating or changing the size of a block can take quite
a long time (proportional to the sum of the sizes of the blocks above it in memory).
Flex is also not recommended for allocation of small blocks. Its other limitation is
that as flex blocks can be shifted, you should not use them for address-dependent
data (eg pointers or indirected icon data).

Memory Management

In addition to the facilities described above, RISC_OSLib also provides an obsolete
malloc-like allf,cator of non-shifting blocks called heap.

Two facilities ar provided, because no one storage manager can solve all
problems in the absence of Virtual Memory. A program which works adequately
with malloc should feel no compulsion to use anything else. The use of flex,
however, particularly in desktop applications such as editors (which are likely to be
resident on the desktop for a long period of time) can go a long way towards
improving their memory usage.

Using memory from relocatable modules

Relocatable modules should use memory from three sources: the supervisor stack;
the RMA; and application workspace. Use of pc-relative written data should be
avoided as it makes a module unsuitable to ROM, unsuitable for multiple
instantiation, and permanently reserves space, possibly only for occasional use.

The supervisor stack is small and not extendable, so care must be taken to use this
resource very economically.

The RMA is the standard source of workspace for any of the non-user mode
routines contained in a module. Care must be taken to deallocate unwanted
blocks- the marker word hint described earlier in this chapter may be useful. C
malloc uses RMA when called from non-user mode.

Application workspace only belongs to a module when referenced from module
user mode code running as the sole current application (with RISC OS desktop
multitasking halted) or when running as a RISC OS application having dealt with
the Service_Memory (&11) service call (sent round by the wimp when your
program issues SWI Wimp_Ini tialise) to keep application workspace.

Never access your application's workspace from an interrupt routine. During
interrupts. the state of the application area is effectively random. Since your
interrupt routine could execute at any time, it could happen while some other
application is switched in. If this did happen, and the interrupt routine updated
application space, then some other application could be affected. To get around
this problem, allocate some RMA space for your interrupt routine to use when it
needs to; this memory will be visible when your application is running. Remember
to free up the RMA space when you've finished with it.

1-347

Heap Manager

Heap Manager

1-348

Using memory from relocatable modules written in C

There are additional points you should note if you are writing modules in C
(although most of the points made above apply equally well- particularly the
preceding paragraph).

All memory allocated by malloc comes from the RMA when your program is
executing in non-user mode. So remember to free it up when you've finished with
it. If your module allocates any RMA blocks by calling SWI XOS_Module directly,
the C run-time system does not clear them out when your module finalises, so
make sure you do!

There are two sets of atexi t () routines, the ones which you registered during
initialisation ie before your module was entered via the main () entry point
(because the module was RMRun for instance). and the ones you registered after.
The ones registered before will be executed when your module is finalised- this is
how to clear up after yourself; the ones after will be called when your module exits
from being run , ie when main () terminates.

When you are writing a C module, use exit () , not SWI XOS_Exit.

When executing as C module SVC mode code (during initialisation, finalisation,
service or interrupt entry) your stack will be small. Also, your stack, unlike when in
USR mode (ie running as an application) will not extend dynamically. It is therefore
very important to be extremely economical with stack space; eg avoiding large auto
arrays, using malloc where larger spaces are required, and freeing claimed
memory at the routine end.

Static variables (and arrays etc.) in a C module are extant for the lifetime of the
module, ie the entire time it is loaded. If they are only needed when it is running as
an application, then they should be claimed using malloc instead.

The heap is controlled by a single SWI, OS_Heap (page I-370 onwards). This has a
reason code and can perform the following operations:

Reason code Meaning
0 Initialise heap

Describe heap
2 Allocate a block from a heap
3 Free a block
4 Change the size of a block
5 Change the size of a heap
6 Read the size of a block

Memory Management

Internal format of the heap

A description of the structure used by the heap manager is given below. It should
be noted that this structure is not guaranteed to be preserved between releases of
the software and should not be relied upon. It is given purely for advanced
programmers who may want to interpret the current state of the heap when testing
and debugging their own code.

The heap descriptor is a block of four words:

&00 Special heap word

&04 Free list offset

&08 Heap base offset

&OC Heap end offset

Figure 16.1 Format of heap descriptor

The 'special' heap word contains a pattern which distinguishes correct heap
descriptors. The pattern is made up of the characters 'Heap' -which is & 706 I 6548
in hex.

All other words are offsets into the heap. This means that the heap is relocatable
unless you place non-relocatable information in it.

The free list offset is an offset to the first free block in the heap, or zero if there are
no free blocks. If the word is non-zero, the first free block is at address:

heap start + free list offset+ 4

The other entries iUe offsets from the start of the heap which refer to boundaries
within the heap structure. The heap is delimited as follows:

heap start
free list points into here
somewhere, or is zero

low memory heap blocks unused space high memory

internal information heap base heap end

Figure I 6.2 How the heap is delimited

Blocks in the free list have information in the first two words as follows:

• Word 0 is the link to the next free block or 0 if at the end

1-349

Logical memory map

• Word I is the size of this block (including these two words)

Allocated blocks start with a word which holds the size of the allocated block. The
pointer returned by SWI OS_Heap when a block is allocated actually points to the
second word which is the start of the memory available.

Allocation forces the block size to be a multiple of eight, to ensure that no matter
what you do, the fragments can always be freed. Therefore, the minimum size of
area that can be initialised is 24 bytes (16 for the fixed information and 8 for a
block).

Logical memory map

1-350

The organisation of the logical address space is currently as follows:

32M

31M

30M

28M

24M

20M

16M

32K

0

Cursor I system space I sound DMA

Font cache

System heap and supervisor stack

Relocatable Module area (RMA)

Sprite area

RAM disc

Application workspace

System workspace

0-480K Configured
/Dynamic

32K

0-1 M Configured
/Dynamic

16K-2M Configured
/Dynamic

0-4M Configured
/Dynamic

0-4M Configured
/Dynamic

0-4M Configured
/Dynamic

Dynamic

32K

Figure 16.3 Typical logical memory map

You must not assume that any of the above addresses will remain fixed (save
for the base of application workspace). There are defined calls to read any
addresses you need, and you must use them.

Memory Management

Setting up the memory map

The memory map is set up on hard reset as follows:

• The permanent 32K allocations for system workspace at addresses &0000000
and & I FOOOOO (31 Mbytes) are made, as well as some other fixed allocations
(such as an initial part of the system heap) .

• Then space is allocated to the various adjustable size regions, such as the
screen, the system heap, the RMA, etc. Some of these have an absolute
configured size, such as the screen. This is allocated in full. For other regions
(such as the system heap and RMA). the configured size is the amount of free
space that will be left; these only have a minimal allocation made at this stage.

• The rest of memory is then allocated to the application workspace, from
address &8000 up

• System ROM and expansion card modules are then initialised.

• Finally, the regions that have a configured free space get allocated. First they
are shrunk as far as possible (to ensure as close to 0 bytes free as possible),
then a block of the configured size is requested and freed, so that the heaps
contain as close to the configured free space as possible.

Example memory allocation

Here is an example of how memory might be allocated given some typical RAM
size allocations on an A310 (8K page size):

Area Pages Page size Total

FontSize 20 4K 80K
RamFsSize 0 8K 0
RMASize 16 8K 128K
Screen Size 20 8K 160K
SpriteSize 10 8K 80K
System Size 4 8K 32K+32K
System workspace 32K
Cursor etc. workspace 32K

Total 576K

Application area 1024K- 576K = 448K

Note that although the FontSize is configured in un its of 4K, it is always allocated
in multiples of the MEMC page size. A configured screen size of 0 means 'default
for this machine', which is 160K on an A310 (see •configure ScreenSize) .

1-351

Logical memory map

1-352

As outlined above, the size of the system area (at 28M) is shrunk as far as possible
after all module initialisation and then 'n' extra pages are added. 8K of this is used
for the system stack. The rest is for OS variable storage (eg alias variables) and
module information. The configured amount is added to the 32K initially allocated.

Altering the memory map

While no application is running (ie in the supervisor prompt). the memory map can
be altered as required. For example, if you load a module from disc and the RMA
isn't big enough to hold it, the size of the RMA will be increased by an appropriate
amount. The OS can only do this when there is no application active, as the extra
memory has to be taken from the application workspace. Most programs don't
react too kindly to large areas of their memory allocation disappearing.

Under an environment such as the desktop, multiple applications are run
concurrently. The currently running application is mapped into memory at &8000.
Desktop applications periodically return control to the Window Manager (or Wimp)
by calling the SWI Wimp_Poll ; at this point the Wimp may decide to swap to
another application . In doing so, it maps out the current application , and maps the
new application into that space. Thus every application is given the illusion that it
is the only one in the system.

Page size

The SWI OS_ReadMemMaplnfo (page 1-383) returns the page size used in the
system and the number of pages present. For more details of page sizes. see the
section entitled Page size on page 1-19.

Controlling memory allocation

OS_ChangeDynamicArea (page 1-377) allows control of the space allocated to the
system heap, RMA, screen , sprite area, font cache and RAM filing system. Any
space left over is the application space by default. Any of these settings can be
read with OS_ReadDynamicArea (page 1-388). OS_ReadRAMFsLimits (page 1-382)
will read the range of bytes used by the RAM filing system. The size of it can be set
in CMOS RAM using *Configure RamFsSize. See also *Configure RMASize and
*Configure SystemSize.

Memory protection

You have read/write access to much of the logically mapped RAM. There are
exceptions, such as the 32K system workspace at & I FOOOOO (31M) , the RAM disc,
and the font cache. More areas may become protected in future releases of
RISC OS. The only areas normal applications should directly access are the
application workspace and the RMA. Specialist programs may access other areas of
memory; for example a set of extension graphics primitives may write directly to

Memory Management

the screen (of course reading the screen's base address using a defined call: in this
case OS_ReadVduVariables). In general, though, it is very dangerous to write to
these other areas, or rely on certain locations containing given information, as
these are subject to change. You should always use OS routines to access
operating system workspace.

OS_ ValidateAddress (page 1-379) will check a range of logical addresses to see if
they are mapped into physical memory.

Changing the logical map

The mapping that MEMC maintains from logical to physical address space can be
read with OS_ReadMemMapEntries (page 1-384). This gives a list of physical
addresses for a matching set of logical page numbers.

The reverse operation, OS_SetMemMapEntries (page 1-386) will write the mapping
inside MEMC. Note that this is an extremely dangerous operation if you are not
sure what you are doing.

OS_UpdateMEMC (page 1-366) is a lower level operation that alters the bits in the
MEMC control register.

Screen memory

The screen workspace is at the end of logical memory, adjacent to the physical
RAM which is mapped onto those addresses. This means that there are two
adjacent copies of the screen memory.

Writing to the screen

The display is normally set up by RISC OS's VDU drivers, which write to the logical
memory.

You can read various VDU and mode variables to find the addresses used for this.
In particular, the ScreenStart VDU variable give the logical address of the base of
screen memory, the ScreenSize mode variable gives the amount of memory used
by the current mode (and hence the logical address of the top of screen memory).
and the TotalScreenSize VDU variable gives the amount of memory allocated to the
display.

The screen-size is configurable in units of one page. Hence for a 20K screen on a
400 series machine, 32K will have to be used since it is the next highest multiple of
32K. For an 80K screen, 96K would be used, etc. In addition, if you want to use
multiple banks of screen memory (eg for animation). enough memory must be
reserved for each bank.

1-353

Screen memory

1-354

Because the total screen memory is often much more than is required at a given
time, the SWI OS_ClaimScreenMemory (page 1-380) is provided so you can claim
the 'extra' RAM for short periods. It can be used as a buffer, in a data transfer
operation , for example.

Displaying the screen

The display is output by MEMC using DMA to access the area of physical memory
corresponding to the logical area used by the VDU drivers. and passing this area's
contents to VIDC for conversion to a video signal. The area is treated as a circular
buffer.

Video DMA is controlled by the physical addresses in various MEMC registers . At
the start of a frame the Vptr register (ie the video DMA pointer) is set to the
address in the Vi nit register- which normally corresponds to the logical address in
the ScreenStart VDU variable. Each read Vptr is incremented, unless it has reached
the end of the buffer (as delimited by the Vend register). in which case Vptr is reset
to the start of the buffer (given by the Vstart register) .

Summary and hardware scrolling

This section gives two diagrams to illustrate the above; they also show how
hardware scrolling is implemented.

For an unscrolled screen. access to screen memory takes place as follows:

ze PhysRam + TotaiScreenSi Vend MEMC register

PhysRam (32

Available for
OS Claim

ScreenMemory

M)

~
r;

MEMC
DMA

Q)Cil~
NQ)Ill

en~~
c~lll
3l ::::> .!11 .._o.c
()> ~
(/)~-

~-
Ci5
c
Q)

~
()
(/)
(ij

~

Vstart and Vinit MEMC
registers

PhysRam - TotaiScreenSi ScreenStart VDU variable ze

Figure 16.4 Screen memory

Memory Management

Vertical hardware scrolling is implemented by altering MEMC's Vi nit register. At the
same time the ScreenStart VDU variable must be altered so that the VDU drivers
write to the corresponding location in logical memory. This means that with larger
amounts of scrolling, a part of the logical area to which the VDU drivers are writing
is in fact an area of physical memory:

PhysRam + li:>taiScreenSize----+--------.

Available for
OS Claim

ScreenMemory

PhysRam (32M)

PhysRam - liJtaiScreenSize L--------.....J

Vend MEMC register

Vinit MEMC register

Vstart MEMC register

ScreenStart VDU variable

Figure 16.5 Screen memory after hardware scrolling

Normally hardware scrolling is performed automatically, and you don't have to
concern yourself with it. However, if you need to implement it yourself- for a game,
for instance- you should be in a privileged processor mode. so you can both alter
MEMC's Vi nit register and write to physical memory.

Non-volatile memory
(CMOS RAM)

240 bytes of non-volatile memory are provided. The majority of these bytes are
reserved for, or used by Acorn. Some bytes are reserved for each expansion card;
before using these, see the section entitled CMOS RAM on page 4-132. There are
also bytes reserved for the user; you must not use these in any distributed product.
Finally, there are bytes reserved for applications; for an allocation. contact Acorn in
writing, but see first the section entitled CMOS RAM bytes on page 4-547.

CMOS usage is subject to change in different versions of RISC OS, and your
application should not assume the location of any particular information.

OS_Byte 161 (page 1-363) allows you to read the CMOS memory directly, while
OS_Byte 162 (page 1-365) can write to it.

1-355

Non-volatile memory (CMOS RAM)

1-356

RISC OS3

The full usage of CMOS RAM in RISC OS 3 is given below. Locations marked 'f' are
unused in RISC OS 2, and are therefore reserved for Acorn use. Locations marked
'*' have differing usage in RISC OS 2, and you should see page I-360 for details:

Location

0
1
2

3
4

5
6 - 7 t
8-9
10

Function

Econet station number (not directly configurable)
Econet file server station id (0 => name configured)
Econet file server net number (or first char of name- rest in bytes
I 53- 157)
Econet printer server station id (0 => name configured)
Econet printer server net number (or first char of name- rest in
bytes 158 - 172)
Default filing system number
*Unplug for ROM modules: I6 bits for up to I6 modules
Reserved for Acorn use
Screen info:

Bits 0 - 3 * reserved for Acorn use
Bit 4 TV interlace (first *TV parameter)
Bits 5 - 7 TV vertical adjust (signed three-bit number)

I I Shift, Caps mode:
Bits 0 - 2 reserved for Acorn use
Bits 3- 5 001 => ShCaps, 010 => NoCaps, 100 =>Caps
Bit 6 - 7 reserved for Acorn use

12 Keyboard auto-repeat delay
13 Keyboard auto-repeat rate
14 Printer ignore character
15 Printer information:

Bit 0 reserved for Acorn use
Bit 1 0 =>Ignore, 1 => Noignore
Bits 2-4 serial baud rate (0=75, ... ,7=19200)
Bits 5 - 7 printer type

I 6 Miscellaneous flags:

17

Bit 0 reserved for Acorn use
Bit 1 0 => Quiet, 1 => Loud
Bit 2 reserved for Acorn use
Bit 3 0 =>Scroll, 1 => NoScroll
Bit 4
Bits 5-7

NetFiler:

0 => NoBoot, 1 => Boot
serial data format (0 ... 7)

Bit 0 FS list sorting mode: 0 => by name, 1 => by
number

Bit 1 library type: 0 =>default library returned by

18- 19 t
20- 21 t

22 t
23 t
24 t
25 t
26 t
27 t
28 t

29
30 ~ 45
46 ~ 79
80- Ill
112- 127
128- 129
130- 131
132

Memory Management

file server. I ~ S.ArthurLib
Bits 2- 3 FS list display mode: 0 ~ large icons,

I ~ small icons, 2 ~full info, 3 reserved
Bits 4 - 7 reserved for Acorn use

*Unplug for ROM modules: 16 bits for up to 16 modules
*Unplug for extension ROM modules: 16 bits for up to 16
modules
Wimp double-click move limit
Wimp auto-menu delay
Territory
Printer buffer size
IDE disc auto-spindown delay
Wimp menu drag delay
FileSwitch options:

Bit 0 truncate names: 0 ~ give error,
I~ truncate

Bit I
Bit 2
Bit 3

DragASprite: 0 ~ don't use, I ~ use
interactive file copy: 0 ~ use, I ~ don't use
Wimp's use of dither patterns on desktop:
0 ~don't use, I ~ use

Bit 4 Shift toggle size behaviour: 0 ~ standard
RISC OS 3 behaviour, I ~ never obscure
icon bar

Bit 5 reserved for Acorn use
Bits 6- 7 state of last shutdown: 0 ~don't care,

I ~failed, 2 ~due to power loss,
3 ~ undefined

Reserved for Acorn use
Reserved for the user
Reserved for applications
Reserved for RISC iX
Reserved for expansion card use
Current year
Reserved for Acorn use
DumpFormat and Tube expansion card:

Bits 0, I control character print control: 0 ~print
in GSTrans format, I ~ print as a dot,
2 ~ print decimal inside angle brackets,
3 ~ print hex inside angle brackets

Bit 2 treat top-bit-set characters as valid if set
Bit 3 AND character with &7F in *Dump
Bit 4 treat TAB as print 8 spaces
Bit 5 Tube expansion card enable

1-357

Non-volatile memory (CMOS RAM)

Bits 6,7 Tube expansion card slot (0- 3)
133 * Sync, monitor type, some mode information:

1-358

134
135- 137
138
139 t

140 *
141 t

142
143
144
145
146
147
148

149-152
153-157
!58- 172
173- 176
177- 180

181- 184
185
186
187
188

Bits 0, 7 0 ::::) vertical sync, I ::::) composite sync,
3 ::::) auto sync)

Bit I reserved for Acorn use
Bits 2 - 6 monitor type: 0::::) 0, I ::::) I , .. , 31 ::::) auto

FontSize in units of 4K
ADFS use
Allocated to CDROMFS
TimeZone in 15min offsets from UTC, stored as signed 2's
complement number (RISC OS 3 version 3.10 onwards)
Desktop features:

Bit 0 3D: 0::::) standard RISC OS 2 look, I ::::) 3D
Bits I - 7 reserved for Acorn use

Currently selected printer, stored as printer number within current
PrData file
Allocated to Twin
Screen size, in pages
RAM disc size, in pages
System heap size to add after initialisation, in pages
RMA size to add after initialisation. in pages
Sprite size, in pages
SoundDefault parameters:

Bits 0- 3 channel 0 default voice
Bits 4- 6 loudness (0- 7::::) &0 I, & 13, &25, &37, &49,

&58, &6D, & 7F)
Bit 7 loudspeaker enable

Allocated to BASIC Editor
Printer server name
File server name
*Unplug for ROM modules: 32 bits for up to 32 modules
*Unplug for expansion card modules: 4 x 8 bits for up to 8
modules per card
Wild card for BASIC editor
Configured language
Configured country
VFS
Miscellaneous:

Bits 0- I
Bit 2 t
Bits 3- 5

ROMFS Opt 4 state
cache icon enable state

t screen blanker time: 0::::) off. I ::::) 30s,
2::::) !min, 3::::) 2mins, 4::::) 5mins,
5 ::::) I Om ins, 6::::) 15m ins, 7::::) 30m ins

Memory Management

Bit 6 t screen blanker/Wrch interaction: 0 => ignore
Wrch, I => Wrch unblanks screen

Bit 7 t hardware test disable: 0 => full tests,
I => disable long tests at power-up

189- 192 Winchester size
193 Protection state:

Bit 0 Peek
Bit I Poke
Bit 2 JSR
Bit 3 User RPC
Bit 4 OS RPC
Bit 5 Halt
Bit 6 GetRegs

194 Mouse multiplier
195 t Miscellaneous:

Bit 0 AUN BootNet: 0 => disabled, I => enabled
Bit I reserved for Acorn use
Bit 2 type of last reset: 0 => ordinary, I => CMOS

reset (RISC OS 3 version 3.10 onwards)
Bit 3 power saving: 0 =>disabled, I =>enabled
Bit 4 mode and wimp mode: 0 => use byte 196,

I=> auto
Bit 5 cache enable for ARM3
Bit 6 broadcast protocols enable
Bit 7 colour hourglass enable

196 t Mode and Wimp mode
197 Wimp flags
198 Desktop state:

Bits 0, I Filer display mode: 0 => large icons,
I => small icons, 2 =>full info. 3 reserved

Bits 2, 3 Filer sorting mode: 0 =>sort by name,
I => sort by type, 2 =>sort by size, 3 => sort
by date

Bit 4 t force option (I =>force)
Bit 5 confirm option (I =>confirm)
Bit 6 verbose option (I =>verbose)
Bit 7 t newer option (I => newer)

1-359

Non-volatile memory (CMOS RAM)

1-360

I99
200- 207
208 t

209 t
2IO t
2I I- 2I4
224- 238
239 t

ADFS directory cache size
FontMax, FontMax I - FontMax7
SCSIFS flags

Bits 0- 2 number of discs (0- 4)
Bits 3 - 5 default drive- 4
Bits 6, 7 reserved

SCSIFS file cache buffers (must be 0)
SCSIFS directory cache size

t SCSIFS disc sizes (their maps' sizes I 256)
Reserved for RISC iX
CMOS RAM checksum

The checksum must be correct for some of the above locations to have effect. See
the documentation of OS_Byte I 62 on page I-365 for more details.

RISCOS2

Locations marked 't' above are unused in RISC OS 2, and are therefore reserved for
Acorn use. Locations marked 'f above have this differing usage in RISC OS 2:

Location Function

IO Screen info:
Bits 0 - 3 Configured screen mode, held in 5 bits, with

the fifth bit in bit I of byte I 33
I 33 Sync, monitor type, some mode information

Bit 0 0 ~vertical sync, I ~ composite sync
Bit I top bit of configured mode (rest held in

byte IO)
Bits 2 - 3 monitor type
Bits 4- 7 reserved for Acorn use

I40 PrinterDP state:
Bit 0 print line feeds: 0 ~ do, I ~don ' t

Bits I - 2 strip control: 0 ~ monochrome. I ~grey
scale, 2 ~colour, 3 reserved

Bit 3 feed: 0 ~auto feed . I ~ manual feed
Bit 4 print quality: 0 ~draft , I ~ NLO
Bits 5 - 6 halftone type: 0 ~ small, I ~ large,

2 ~ dithered, 3 reserved
Bit 7 reserved for Acorn use

I 96 Wimp mode (actual mode EOR &OC)

Memory Management

Service Calls
Service_MemoryMoved

(Service Call &4E)

OS_ChangeDynamicArea has just finished

On entry

Rl = &4E (reason code)

On exit

Use

Rl preserved to pass on (do not claim)

This call is made whenever OS_ChangeDynamicArea (page 1-377) has just
finished. It is used by the Wimp to tidy up and should never be claimed.

1-361

Service_ ValidateAddress (Service Call &60)

1-362

Service_ ValidateAddress
(Service Call &60)

OS_ValidateAddress has been called with an unrecognised area

On entry

RI = &60 (reason code)
R2 =start of area (value passed in RO on entry to OS_ ValidateAddress)
R3 =end of area+ I (value passed in RI on entry to OS_ ValidateAddress)

On exit

Use

RI = 0 to indicate area is valid; else preserved to pass on

This call is intended for internal use only. Application modules should not need to
claim or issue this service.

SWI Calls

Read battery-backed CMOS RAM

On entry

RO= 161
R I = RAM location

On exit

RO, Rl preserved
R2 = contents of location

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Memory Management

OS_Byte 161
(SWI &06)

This call provides read access to any of the locations in the battery-backed CMOS
RAM. For example, this call may be used by a module to read a default
configuration parameter. Moreover, this parameter could be examined by the user
using the *Status command, if the module provides a suitable entry in its
command decoding table. See the section entitled Help and command keyword table on
page 1-213 for more details .

Related SWis

OS_Byte 162 (page 1-365)

1-363

OS_Byte 161 (SWI &06)

1-364

Related vectors

ByteV

Write battery-backed CMOS RAM

On entry

RO = 162
Rl =RAM location
R2 =value to be written

On exit

RO, Rl preserved
R2 corrupted

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Memory Management

OS_Byte 162
(SWI &06)

This call writes to any of the locations in the battery backed RAM with the
exception of location zero, which is protected. In doing so the CMOS RAM
checksum is maintained but not recalculated; ie it will remain in the same state of
correctness as before this call. To keep the checksum correct, you should always
use this call to write to the CMOS RAM, and never write to the checksum location.
This call can take a comparatively long time to return (eg 20ms).

Related SWis

OS_Byte 161 (page 1-363)

Related vectors

ByteV

1-365

OS_UpdateMEMC (SWI & 1A)

1-366

OS_UpdateMEMC
(SWI &1A)

Read or alter the contents of the MEMC control register

On entry

RO = new bits in field
R I = field mask

On exit

RO = previous bits in field
R I = previous field mask

Interrupts

Interrupts are disabled
Fast interrupts are disabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI cannot be re-entered because interrupts are disabled

The memory controller (MEMC) chip is a write-only device. The operating system
maintains a software copy of the current state of the control register and
OS_UpdateMEMC updates MEMC from the software state. To allow the
programming of individual bits the call takes a field and a mask. The new MEMC
value is:

newMemC
RO

= (oldMEMC AND NOT Rl) OR (ROAND Rl)
=oldMEMC

So to read the contents without altering them, RO and Rl should both be zero. To
set them to n. RO = n and R I =&FFFFFFFF.

Related SWis

None

Related vectors

None

Memory Management

1-367

OS_Heap (SW/ & 1 D)

1-368

Perform various operations on the heap

On entry

RO = reason code
Rl =pointer to heap
R2 =pointer to block (if relevant to reason code)
R3 is reason code dependent

On exit

RO, Rl preserved
R2 and R3 are reason code dependent

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

OS_Heap
(SWI &1 D)

This call performs various operations on the heap, depending on the reason code
passed in RO:

RO Meaning Page

0 Initialise heap 1-370

Describe heap 1-371

2 Get heap block 1-372

3 Free heap block 1-373

4 Extend or shrink heap block 1-374

5 Extend or shrink heap 1-375

6 Read block size 1-376

Related SWis

None

Related vectors

None

Memory Management

1-369

OS_Heap 0 (SWI &10)

1-370

Initialise heap

OS_Heap 0
(SWI &1 D)

On entry

RO = 0 (reason code)
Rl =pointer to heap to initialise
R3 = size of heap

On exit

Use

RO, Rl , R3 preserved

This call checks the given heap pointer, and then writes a valid descriptor into the
heap it points at. The heap is then ready for use. The value given for Rl must be
word-aligned and less than 32Mbytes (ie must point to an area of logical RAM) . R3
must be a multiple of four and less than 16Mbytes.

Describe heap

On entry

RO = I (reason code)
RI =pointer to heap

On exit

Use

RO, RI preserved
R2 = largest available block size
R3 = total free

Memory Management

OS_Heap 1
(SWI &1 D)

This call returns information on the space available in the heap. An error is
returned if the heap is invalid . This may be for any of the following reasons:

• the heap descriptor is corrupt

• the information within the heap is not sensible

• RI does not point to a heap

1-371

OS_Heap 2 (SWI & 1 D)

1-372

Get heap block

On entry

RO = 2 (reason code)
Rl =pointer to heap
R3 =size required in bytes

On exit

Use

RO, Rl preserved
R2 = pointer to claimed block or zero if allocation failed
R3 preserved

OS_Heap 2
{SWI &1 D)

This allocates a block from the heap. An error is returned if the allocation failed for
any of the following reasons:

• there is not a large enough block left in the heap

• the heap has been corrupted

• Rl does not point to a heap

Free heap block

Memory Management

OS_Heap 3
{SWI &1 D)

On entry

RO = 3 (reason code)
Rl =pointer to heap
R2 = pointer to block

On exit

Use

RO - R2 preserved

This checks that the pointer given refers to an allocated block in the heap, and
deal locates it. Deallocation tries to join free blocks together if at all possible, but if
the block being freed is not adjacent to any other free block it is just added to the
list of free blocks. An error is returned if the deallocation failed which may be
because:

• Rl does not point to a heap

• the heap descriptor or heap was corrupted

• R2 does not point to an allocated block in the heap

1-373

OS_Heap 4 (SWI &10)

1-374

Extend or shrink heap block

OS_Heap 4
(SW1&1D)

On entry

RO = 4 (reason code)
R I = pointer to heap
R2 = pointer to block
R3 =required size change in bytes (signed integer)

On exit

Use

RO, Rl preserved
R2 =new block pointer, or -I if heap block extended to size 0 (or less)
R3 preserved

This attempts to enlarge or shrink the given block in its current position if possible,
or, if this is not possible, by reallocating and copying it. Note that if the block has
to be moved, it is your responsibility to note this (by the fact that R2 has been
altered). and to perform any necessary relocation of data within the block.

Extend or shrink heap

Memory Management

OS_Heap 5
(SW1&10)

On entry

RO = 5 (reason code)
Rl =pointer to heap
R3 =required size change in bytes (signed integer)

On exit

Use

RO, Rl preserved
R3 preserved, or amount of bytes heap shrunk by if requested shrink failed

This updates the heap size information to take account of the new size. lf the heap
cannot shrink as far as requested- because of data that has already been
allocated- it will shrink as far as possible, set R3 to the amount by which it shrank,
and return an error.

1-375

OS_Heap 6 (SWI &10)

1-376

Read block size

OS_Heap 6
(SWI &1 D)

On entry

RO = 6 (reason code)
Rl =pointer to heap
R2 = pointer to block

On exit

Use

RO - R2 preserved
R3 = current block size

This reads the size of a block in the specified heap. This includes any overheads
associated with the block, and so will be larger, for example, than the required size
of a block newly created with OS_Heap 2. An error is returned if the heap or the
block could not be found.

Memory Management

OS_ChangeDynamicArea
(SWI &2A)

Alter the space allocation of a dynamic area

On entry

RO =area to alter
Rl =amount to move in bytes (signed integer)

On exit

RO = preserved
Rl =number of bytes moved (unsigned integer)

Interrupts

Interrupts are disabled in critical periods, but otherwise in the caller's state
(Under RISC OS 2 interrupts are disabled throughout the call)

Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

OS_ChangeDynamicArea allows the space allocated to an area to be altered in size
by removing or adding workspace from the application workspace.

The area to be altered depends on RO as follows:

Value of RO

0

2
3
4
5

Area to alter

system heap
RMA
screen area
sprite area
font cache
RAM filing system

1-377

OS_ ChangeDynamicArea (SWI &2A)

1-378

The amount to move is given by the sign and magnitude of Rl:

+ve means enlarge the selected area by at least the given amount
-ve means shrink the selected area by no more than the given amount

If the amount to be moved is not an exact number of pages, it is rounded up (ie in
the +ve direction) to the next number of pages

Note that normally, this cannot be used while the application work area is being
used; for example when BASIC is active outside the RISC OS desktop. An attempt
to do so will result in a 'Memory in use' error. (In fact , when this call is made, the
OS passes a service call round to modules, which can veto the change if they can't
handle it correctly. See Service_Memory (Service Call & II) on page 3-68 and
Service_MemoryMoved (Service Call &4E) on page 1-361 for more details.

Any area size change will fail if the new size is smaller than the current
requirements, but will shrink the area as far as it can. If you need to release as
much space as possible from an area, try to reduce its size by 16 Mbytes.

Expanding, on the other hand, does nothing if it can't move enough. In this case, if
you asked for the extra space you probably need it all; RISC OS assumes that half
the job is no use to you.

This SWI also does an UpCall, to enable programs running in application
workspace to allow movement of memory. If the UpCall is claimed when the
application is running in application workspace, the memory movement is allowed
to proceed For full details see OS_UpCall 257 (SWI &33) on page 1-194.

An error is returned if not all the bytes were moved, or if application workspace is
being used- ie an application is active.

Related SWis

OS_UpCall257 (page 1-194), OS_ReadDynamicArea (page 1-388)

Related vectors

None

Memory Management

OS_ ValidateAddress
(SWI &3A)

Check that a range of addresses are in logical RAM

On entry

RO =minimum address
RI =maximum address

On exit

RO, RI preserved
C flag is clear if the range is OK, set otherwise

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This SWI checks the address range between RO and (R I - I) inclusive to see if they
are valid. If they are equal. then that single address is checked. Valid addresses are
those in logical RAM (0- 32M) which have memory mapped to them, and also the
second mapping of screen RAM at the start of physical memory (32M) . From
RISC OS 3 onwards, if the area is not recognised as valid Service_ ValidateAddress
is issued, which if claimed indicates the area is valid, and results in the C flag being
cleared on exit from the SWI. See page I-362.

Related SWis

None

Related vectors

None

1-379

OS_CiaimScreenMemory (SWI &41)

1-380

Use spare screen memory

OS_CiaimScreenMemory
(SWI &41)

On entry

RO = 0 for release, I for claim
Rl =length required in bytes (if RO = I)

On exit

RO preserved
if the C flag is 0, then memory was claimed successfully

Rl =length available
R2 = start address

if the C flag is I, then memory could not be claimed
Rl =length that is available

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SYC mode

Re-entrancy

Use

SWI is not re-entrant

There are several restrictions to the use of screen memory. It can only be claimed
by one 'client' at a time, who gets all of it. It can only be claimed if no bank other
than bank I has been used. You can't claim it, for example, if the shadow bank has
been used.

While you have claimed the screen memory, you must not perform any action
which might causes the screen to scroll. This means avoiding the use of routines
which might cause screen output.

It is important to release the memory after it has been used.

This call is mainly intended for internal use; you should not need to use it.

Related SWis

None

Related vectors

None

Memory Management

1-381

OS_ReadRAMFsLimits (SWI &4A)

1-382

OS_ReadRAMFslimits
(SWI &4A)

Get the current limits of the RAM filing system

On entry

On exit

RO = start address
R I = end address + I byte

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This reads the start and end addresses of the RAM filing system. This information
can also be read from OS_ReadDynamicArea

If the RamFS is configured to zero size then RO and Rl have the same value on exit.

The size of the RamFS after a hard reset (ie the difference between the two return
values) can be configured using *Configure RamFsSize .

Related SWis

OS_ReadDynamicArea (page 1-388)

Related vectors

None

Read the page size and count

On entry

On exit

RO = page size in bytes
Rl =number of pages

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

Memory Management

OS_ReadMemMaplnfo
(SWI &51)

This call reads the page size used by MEMC and the number of pages in use. The
valid page numbers are 0 to Rl - I, and the total memory size is RO x Rl bytes.

Related SWis

None

Related vectors

None

1-383

OS_ReadMemMapEntries (SW/ &52)

1-384

OS_ReadMemMapEntries
(SWI &52)

Read by page number the logical to physical memory mapping used by MEMC

On entry

RO =pointer to buffer to receive request list

On exit

RO preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call reads the logical to physical memory mapping used by MEMC. For given
page numbers, it finds the corresponding logical address and protection level

The returned request list is a series of entries three words long, terminated by a -I
in the first word . The three words are used for:

Word

I

2

3

Meaning

page number (from 0 upwards)

logical address that it is mapped to

protection level:
0 readable and writable by everybody

read-only in user mode
2 or 3 inaccessible in user mode

All other values are reserved.

On entry, the page number fields must be set; on exit, all fields are set.

Memory Management

Related SWis

OS_SetMemMapEntries (page l-386), OS_FindMemMapEntries (page l-390)

Related vectors

None

1-385

•

OS_SetMemMapEntries (SWI &53)

1-386

OS_SetMemMapEntries
{SWI &53)

Write the logical to physical memory mapping used by MEMC

On entry

RO =pointer to request list

On exit

RO preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call writes the logical to physical memory mapping used by MEMC.

The request list is a series of entries three words long, terminated by a -1 in the
first word . The three words are used for:

Word Meaning

I page number (from 0 upwards)

2 logical address that it is mapped to

3 protection level:
0 readable and writable by everybody

read-only in user mode
2 or 3 inaccessible in user mode

All other values are reserved and must not be used.

All fields must be set on entry.

Memory Management

Any address above 32Mbyte (&2000000) makes that page inaccessible . This also
sets the protection level to minimum accessibility. For future compatibility, you
should use an address of -I (&FFFFFFFF) for this.

This SWI assumes you know what you are doing. It will set any page to any address,
with no checks at all.

If you are using this call, then you can only use OS_ChangeDynamicArea if the
kernel 's limits are maintained, and all appropriate areas contain continuous
memory.

Related SWis

OS_ChangeDynamicArea (page 1-377). OS_ReadMemMapEntries (page 1-384).
OS_FindMemMapEntries (page 1-390)

Related vectors

None

1-387

OS_ReadDynamicArea (SWI &5C)

1-388

OS_ReadDynamicArea
(SWI &5C)

Read the space allocation of a dynamic area

On entry

RO = area to read

On exit

RO = pointer to start of area
Rl =current number of bytes in area
R2 =maximum size of area, if bit 7 of RO was set on entry; preserved otherwise

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This SWI reads the size and- optionally- the maximum size of an area. The area
read depends on RO as follows :

Value of RO

0

2
3
4
5

Area to read

system heap
RMA
screen area
sprite area
font cache
RAM filing system

RISC OS 2 ignores bit 7 of R2, and always preserves R2 .

Related SWis

OS_ChangeDynamicArea (page 1-377)

Related vectors

None

Memory Management

1-389

OS_FindMemMapEntries (SWI &60)

1-390

OS_FindMemMapEntries
(SWI &60)

Read by logical address the logical to physical memory mapping used by MEMC

On entry

RO = pointer to request list

On exit

RO preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call reads the logical to physical memory mapping used by MEMC. For a given
logical address , it finds the corresponding page number and protection level.

The request list is a series of entries three words long, terminated by a -I in the
first word. The three words are used for:

Word Meaning

I page number (from 0 upwards)

2 logical address that it is mapped to

3 protection level:
0 readable and writable by everybody

read-only in user mode
2 or 3 inaccessible in user mode

All other values are reserved .

Memory Management

On entry, the logical address fields must be set. You may supply probable page
numbers, which (if correct) will make this call return more quickly than it might
otherwise. If you have no idea what the page number might be, you should set the
page number to zero on entry. The protection level is ignored on entry.

If the page number is -I on exit, then the memory map entry was not found; in this
case, the protection level will always be 3. Otherwise the request list has been
updated with the page number and protection level for the given logical address.

This call is not available in RISC OS 2.

Related SWis

OS_ReadMemMapEntries (page 1-384). OS_SetMemMapEntries (page 1-386)

Related vectors

None

1-391

*Commands

*Commands

1-392

*Configure

Sets the value of a configuration option in the CMOS RAM

Syntax

*Configure [option [value]]

Parameters

Use

option

value

the name of a configuration option

its new value(s)

*Configure sets the value of a configuration option in the CMOS RAM. These are
used to permanently store the configuration (or set-up) of the computer. The time
they take effect differs; some take effect immediately, whereas some are only made
current on initial power-on or after a hard break (Ctrl-Reset).

If no parameters are specified, the available configuration options are listed.

If parameters are specified , the, given value is stored in the location in CMOS RAM
appropriate for the given option. Some options require more than one value, and
some require none at all.

Where a number is required, you may give it in decimal, as a hex number preceded
by&, or a number of the form base_num , where base is the base of the number in
decimal in the range 2 to 36. For example 2_I 0 I 0 is another way of saying I 0.

Here is a list of the available configuration options, the details of which can be
found on the appropriate pages:

User Preferences Chapter Page

*Configure Boot FileS witch 2-I46

*Configure Caps Character Input I-9I 5

*Configure Delay Character Input I-9I6

*Configure Dir FileCore 2-25 I

*Configure DumpFormat FileS witch 2-I47

*Configure FileSystem FileS witch 2-149

*Configure FontMaxi The Font Manager 3-500

*Configure FontMax2 The Font Manager 3-502

Memory Management

User Preferences Chapter Page

*Configure FontMax3 The Font Manager 3-504

*Configure FontMax4 The Font Manager 3-506

*Configure FontMax5 The Font Manager 3-506

*Configure Language The rest of the kernel i-945

*Configure Lib NetFS 2-373

*Configure Loud VDU Drivers i-728

*Configure Mode VDU Drivers i-729

*Configure MouseStep VDU Drivers i-733

*Configure NoBoot FileS witch 2-i50

*Configure NoCaps Character input i-917

*Configure NaDir FileCore 2-252

*Configure NoScroll VDU Drivers i-734

*Configure Quiet VDU Drivers i-735

*Configure Repeat Character input i-9i8

*Configure Scroll VDU Drivers i-737

*Configure ShCaps Character input 1-9i9

*Configure SoundDefault The Sound S!JStem 4-57

*Configure Truncate FileS witch 2-15i

*Configure WimpAutoMenuDelay The Window Manager 3-268

*Configure WimpDoubleClickDelay The Window Manager 3-269

*Configure WimpDoubleClickMove The Window Manager 3-270

*Configure WimpDragDelay The Window Manager 3-27i

*Configure WimpDragMove The Window Manager 3-272

*Configure WimpFiags The Window Manager 3-273

*Configure WimpMenuDragDelay The Window Manager 3-275

*Configure WimpMode The Window Manager 3-276

Hardware configuration Chapter Page

*Configure Baud Serial device 2-473

*Configure Country international module 3-778

*Configure Data Serial device 2-475

*Configure Drive ADFS 2-30i

*Configure DST The Territor!J Manager 3-844

*Configure Floppies ADFS 2-302

*Configure FS NetFS 2-372

1-393

*Configure

1-394

Hardware configuration

*Configure HardDiscs

*Configure IDEDiscs

*Configure Ignore

*Configure MonitorType

*Configure NoDST

•configure Print

*Configure PS

*Configure Step

*Configure Sync

*Configure Territory

*Configure TimeZone

*Configure TV

Memory allocation

*Configure ADFSbuffers

*Configure ADFSDirCache

*Configure FontMax

*Configure FontSize

*Configure PrinterBufferSize

*Configure RamFsSize

*Configure RMASize

*Configure ScreenSize

*Configure SpriteSize

*Configure SystemSize

Example

*Configure Baud 7

Related commands

•status

Related SWis

OS_Byte 162 (page 1-365)

Related vectors

None

Chapter Page

ADFS 2-303

ADFS 2-303

Character Output 1-524

VDU Drivers 1-731

The Territory Manager 3-845

Character Output I -525

NetPrint 2-400

ADFS 2-305

VDU Drivers 1-738

The Territory Manager 3-846

The Territory Manager 3-847

VDU Drivers 1-739

Chapter Page

ADFS 2-299

ADFS 2-300

The Font Manager 3-498

The Font Manager 3-510

Memory Management 1-395

RamFS 2-3 I 5

Memory Management 1-396

VDU Drivers 1-736

Sprites 1-816

Memory Management l-397d

Memory Management

*Configure PrinterBufferSize

Sets the configured amount of memory reserved for printer buffering

Syntax

*Configure PrinterBufferSize mKin

Parameters

mK

n

Use

number of kilobytes of memory reserved

number of pages of memory reserved; n :::; 127

*Configure PrinterBufferSize sets the configured amount of memory reserved for
printer buffering after the next hard reset.

If the parameter is 0, a default amount of memory is reserved.

Example

*Configure PrinterBufferSize 32K

Related commands

None

Related SWis

None

Related vectors

None

1-395

•configure RMASize

1-396

*Configure RMASize

Sets the configured extra area of memory reserved for relocatable modules

Syntax

*Configure RMASize mKln

Parameters

mK

n

Use

number of kilobytes of memory reserved

number of pages of memory reserved; n ~ 127

*Configure RMASize sets the configured extra area of memory reserved in the
relocatable module area (RMA) after all modules have been initialised.

If the parameter is 0, no extra memory is reserved.

Example

*Configure RMASize 128K

Related commands

None

Related SWis

OS_ChangeDynamicArea (page 1-377)

Related vectors

None

Memory Management

*Configure SystemSize

Sets the configured extra area of memory reserved for the system heap

Syntax

*Configure SystemSize mKin

Parameters

mK

n

Use

number of kilobytes of memory reserved

number of pages of memory reserved; n ~ 63

*Configure SystemSize sets the configured extra area of memory reserved for the
system heap after all modules have been initialised.

If the parameter is 0, no extra memory is reserved.

Example

*Configure SystemSize 32K

Related commands

None

Related SWis

OS_ChangeDynamicArea (page 1-377)

Related vectors

None

1-397

*Status

1-398

*Status

Provides information on how the computer is configured

Syntax

*Status [option]

Parameters

Use

option the name of a configuration option

*Status displays the value of a configuration option in the CMOS RAM. If no option
is specified, the values of all configuration options are shown.

Because the values of these configuration options are held in non-volatile memory
(the battery-backed CMOS RAM) they are preserved even when the computer is
switched off. until reset by using either the Configure application from the desktop
or the *Configure command from the command line.

Example

*Status TV

Related commands

*Configure

Related SWis

OS_Byte 161 (page 1-363). OS_ReadDynamicArea (page 1-388)

Related vectors

None

17 Time and Date

Introduction
There are two basic aspects of time dealt with in this chapter: passive aspects such
as reading various clock settings; and active ones, where an event occurs when a
given time is reached. In this chapter, a clock is a place where a stored value is
incremented on a regular basis. The time is the name of the value as it is read or
written .

There are several clocks that increment every 1/IOOth of a second (centisecond) .
One of them cannot be changed except by a hard reset. This is useful for
time-stamping events, such as mouse moves. Another can be changed by a
program, so is useful for elapsed time calculations.

The real-time clock keeps the real-world time, and represents time in centiseconds
since 00:00:00 on January I 1900. There are calls to present this information in a
number of ways. The real-time can be converted to a string with complete program
control over its format.

A variety of timer events can be set up. There are SW!s that will call your
application after a given delay has passed or every time that delay has elapsed. You
can set up a routine to sit on the ticker vector, to enable it to be called every
centisecond.

A specialised form of timer event is one that will occur every time the screen
driving hardware reaches the bottom of the screen. This event is useful for
flicker-free redrawing. See the chapter entitled VDU Drivers on page 1-527 for further
details.

1-399

Overview and Technical Details

Overview and Technical Details
There are four timers, which increment at a centisecond rate. They are:

• the monotonic timer (read-only)

• the system timer (read/write)

• the interval time (read/write)

• the real-time clock (read only in general- ie only users should change it) .

Monotonic timer

System clock

1-400

A monotonic timer cannot be written, except by a hard reset or when the machine
is turned on . OS_ReadMonotonicTime (page 1-434) allows you to read this value. It
is useful for time-stamping within an application , such as event times. Because it
can never be changed, the order of events cannot be confused.

It is stored as a 4-byte value with least significant byte first. It is incremented every
centisecond, which means that it would take nearly 500 days for it to wrap around.

The system clock is stored as a 5-byte value. Like the monotonic timer it is reset by
hard resets and increments every centisecond. However it can be altered. This is
useful for measuring elapsed times in an application OS_ Word I reads the value
and OS_ Word 2 writes it.

Time and Date

Real-time

The real-time clock is stored as a 5-byte value in the CMOS clock chip and reflects
the normal usage of the word clock. That is, it stores the elapsed number of
centiseconds since 00:00:00 on January I 1900. You can set it using the Alarm
application on the desktop.

Under RISC OS 2 the real-time clock is assumed to be set to local time. Under later
versions, the real-time clock is assumed to be set to UTC, or Universal Time
Coordinated. (This used to be called GMT, or Greenwich Mean Time.) Territory modules
provide the necessary information for the kernel to convert the real-time clock
value to a local time in a suitable format.

A soft copy of the real time clock is also kept by RISC OS and is used by the filing
system to date-stamp files . This soft copy is updated from the CMOS clock chip
following a hard reset.

String format

*Time displays the local time and date as a string. It calls OS_ Word 14,0 to do so.
The format of the string depends on the territory which the computer is set to use.
(It is fixed in RISC OS 2, which does not support territories.) For example:

Tue , 28 Mar 19 89.13:25:54

5-byte format

The real-time clock can be read in the standard 5-byte format using OS_ Word 14,3.
This, or any, 5-byte time can be converted into a string using
OS_ConvertStandardDateAndTime (page 1-437) or OS_ConvertDateAndTime
(page 1-435).

Changing real-time

The real-time clock's time of day can be altered with OS_ Word 15,8, its date with
OS_ Word 15, 15, or both with OS_ Word 15,24. These calls all use the time in a
string format (see above).

1-401

Real-time

1-402

Format field names

For most of the above calls the time string is passed or returned in a fixed ,
call-dependent format. However, for some calls you can customise the way that the
time and date is presented by supplying a format string. The string is copied
character for character to the output buffer unless a '%' is found. If this character is
followed by any of the following codes- which may be in upper or lower case
then the appropriate value is copied to the output buffer:

Name Value Examples (UK)

cs Centiseconds 99
SE Seconds 59
Ml Minutes 05
12 Hours in 12 hour format 07
24 Hours in 24 hour format 23
AM AM or PM indicator (in local language) PM
PM AM or PM indicator (in local language) AM

WE Weekday- full (in local language) Thursday
W3 Weekday- short (in local language) Thu
WN Weekday- number 5

DY Day of the month (in local language) 01
ST Ordinal pre/suffix (in local language) st nd rd th

MO Month name- full (in local language) September
M3 Month name- short (in local language) Sep
MN Month- number 09

CE Century 19
YR Year within century 87

WK Week of year (using local start of week) 52

ON Day of the year 364
TZ Timezone BST

0 Insert an ASCII 0 zero byte
% Insert a '%'

You must not make any assumptions about the nature or length of any fields that
use the local language. For example: short forms of the weekday or month are three
characters long in the UK territory, but may have a different length in other
territories; the day of the month may not be numeric; ordinals may be null; and so
on . However. you can find out the maximum length of fields for your territory by
calling Territory_ReadCalendarlnformation (page 3-839) .

To cause leading zeros to be omitted, prefix the field with the letter ·z·. For
example. '%zmn' means the month number without leading zeros. '%0' may be
used to split the output into several zero-terminated strings.

Time and Date

As an example, this format string:

%W3 , %DY %M3 %CE%YR . %24 : %MI : %SE

would produce this time string in the UK territory:

Tu e , 28 Mar 1989 .1 3 : 2 5: 54

OS_ConvertDateAndTime (page 1-437) will convert a 5-byte time into a string
using a supplied format string.

BCD conversions

Timer events

The CMOS clock chip stores the time internally in a Binary Coded Decimal (BCD)
format. OS_ Word 14,1 will read the time as a 7-byte BCD block. OS_Word 14,2 will
convert this BCD block into a string. These calls are provided for compatibility only,
and you should not use them .

There are three different causes of timer events: the interval timer, the timer chain
and the VSync timer. You should not use these under the Wimp, as you cannot
guarantee that your task will be paged in at the time of the event.

Interval timer

The interval timer is a 5-byte clock that increments every centisecond . If enabled by
OS_Byte 14, an event will occur when the counter reaches zero. Thus to wait for a
given time, the interval timer must be set to the negative of it using OS_ Word 4.
OS_ Word 3 can read the current setting of the interval timer.

For example, to wait 10 seconds, -1000 must be passed to OS_ Word 4.

The interval timer is kept for compatibility with earlier Acorn operating systems. Its
use should be avoided if possible . It is especially important that this is not used
under the Wimp, since it cannot cope with more than one program using it at once.

Timer chain

An easier to use and more sophisticated way for an application to be called at a
given time is the timer chain . These are independent of event routines, but are
used in a similar manner. OS_CallAfter (page 1-429) can be used to get a given
address to be called after a certain time has elapsed. OS_ Call Every (page 1-431) is
like this, but automatically reloads the counter when it has expired.
OS_RemoveTickerEvent (page 1-433) will cancel either OS_CallAfter before it
occurs or OS_ Call Every to stop it repeating forever.

1-403

Obsolete timers

OS_CaiiAfter and OS_CaiiEvery are passed an address to call, the delay to wait and
an identification word to return in Rl2 . Thus, many timers can be running
concurrently.

These are stored in a list which can be any size up to the machine memory limit.

Vertical sync timer

The screen is refreshed at a mode-dependent rate: typically from 50Hz (standard
monitor type modes) to 70Hz or more (particularly with VGA or Super VGA monitor
modes) . From the time that the bottom of the screen is complete till the top of the
screen commences again is a delay called the Vertical sync period . This allows the
electron beam to go to this start position . The Vertical sync event coincides with
the vertical sync beginning. You can use OS_Byte 14 to enable this event. so that
flicker-free re-drawing can be done while the VDU is not being written to.

OS_Byte 176 provides access to a one byte counter that decrements at the rate of
the Vertical sync event. Because the rate of this timer varies, you should not use it
for running timing loops for games, music, etc.

Obsolete timers

1-404

OS_Byte 243 reads a temporary location used by the timer software. It is kept for
compatibility with earlier Acorn operating systems and must not be used.

J

SWI Calls

Read/write 50Hz counter

Time and Date

OS_Byte 176
{SWI &06)

On entry

RO = 176
Rl = 0 to read or new value to write
R2 = 255 to read or 0 to write

On exit

RO preserved
Rl =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The value stored is changed by being masked with R2 and then exclusive ORd with
Rl: ie ((value AND R2) XOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

This call reads or writes a one-byte counter which is decremented at the rate of the
Vertical sync interrupt. This rate is mode and monitor dependent, typically in the
range 50- 70Hz, Consequently you should not use this timer for precise timing
loops.

1-405

OS_Byte 176 (SWI &06)

1-406

Related SWis

None

Related vectors

ByteV

Read timer switch state

Time and Date

OS_Byte 243
(SWI &06)

On entry

RO = 243
Rl =0
R2 = 255

On exit

RO preserved
Rl =switch state
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

In order to protect the centisecond clock against corruption during reset . the OS
keeps two copies. One of them is the one which will be read or written when one of
the OS_ Words is called . the other is the one which will be updated during the next
I OOHz interrupt. When the update has been performed correctly, the values are
swapped. This OS_Byte enables you to read the byte which indicates which copy is
being used. Its only practical use is as a location which changes I 00 times a
second.

This call is obsolete and should not be used.

Related SWis

OS_ Word 3 (page 1-412). OS_Word 4 (page 1-413)

1-407

OS_Byte 243 (SWI &06)

1-408

Related vectors

ByteV

Read system clock

On entry

RO =I
RI =pointer to five byte block

On exit

RO, RI preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Time and Date

OS_Word 1
(SWI &07)

On exit, the parameter block contains the value of the system clock at the instant
of the call .

RI+O =time (least significant byte)
RI+I =
RI+2 = ...
RI+3 =
RI+4 =time (most significant byte)

The clock is incremented every centisecond . The value of the clock is preserved
over a soft break and set to zero after a hard break.

Related SWis

OS_Word 2 (page I-4II)

1-409

OS_ Word 1 (SWI &07)

1-410

Related vectors

WordY

Write system clock

On entry

RO = 2

Time and Date

OS_Word 2
{SWI &07)

R 1 =pointer to five byte block with centisecond clock value in it

On exit

RO, Rl preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

On entry, the parameter block contains the value to set the system clock.

Rl+O =time (least significant byte)
Rl+l =
Rl+2 =
Rl+3 =

Rl+4 =time (most significant byte)

This allows the clock to be set to a specified value.

Related SWis

OS_Word 1 (page 1-409)

Related vectors

WordY

1-411

OS_ Word 3 (SWI &07)

1-412

Read interval timer

On entry

RO = 3
Rl =pointer to five byte block

On exit

RO, Rl preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Word 3
{SWI &07)

On exit, the parameter block contains the value of the interval timer at the instant
·of the call.

Rl+O =time (least significant byte)
Rl+l =
Rl+2 =

Rl+3 =
Rl+4 =time (most significant byte)

Related SWis

OS_Word 4 (page 1-413)

Related vectors

WordV

Write interval timer

On entry

RO = 4
Rl =pointer to five byte block

On exit

RO , Rl preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Time and Date

OS_Word 4
(SWI &07)

On entry, the parameter block contains the value to set the interval timer.

Rl+O =time (least significant byte)
Rl+l =
Rl+2 = .. .
Rl+3 = .. .
Rl+4 =time (most significant byte)

This call resets the interval timer to a specified value.

Like the system clock, the interval timer is incremented 100 times a second. The
interval timer can be made to cause an event when its value reaches zero. To do
this, it must be set to minus the number of centiseconds that are to elapse before
the event takes place.

1-413

OS_ Word 4 (SW/ &07)

1-414

To produce repeated events, the routine servicing the timer event should reload
the timer with the appropriate number. For example, to produce an event every I 0
seconds, reload it with -1000 (&FFFFFFFCI8). An alternative is to use the special
ticker event, described in the chapter entitled Events on page I- I 45.

Note that you must use OS_Byte I4 to enable the interval timer event.

Related SWis

OS_Word 3 (page I-4I2)

Related vectors

WordY

Time and Date

OS_Word 14,0
(SWI &07)

Read soft copy of the real-time clock as a string, converting to local time

On entry

RO = 14
Rl =pointer to parameter block

RI+O = 0 (reason code)

On exit

RO, Rl preserved

Interrupts

Interrupts are enabled (in RISC OS 2, the interrupt status is not altered)
Fast interrupts are enabled

Processor Mode j
Processor is inS C mode

Re-entrancy

Not defined

Use

On exit, the para eter block contains the local time as a string terminated by a
Return character ASCII 13) . The format of the string depends on the territory which
the computer iss t to use. (It is fixed in RISC OS 2, which does not support
territories .)

This time string c mes from the soft copy of the real-time clock maintained by
RISC OS, rather t an from the CMOS clock chip itself.

This call is equivalent to the *Time command .

Related SWis

OS_Word 15 (page 1-423)

1-415

OS_ Word 14,0 (SWI &07)

1-416

Related vectors

WordY

Time and Date

OS_Word 14,1
(SWI &07)

Read time in Binary Coded Decimal (BCD) format, converting to local time

On entry

RO = 14
Rl =pointer to parameter block

Rl+O =I (reason code)

On exit

RO, Rl preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

On exit , the parameter block contains a seven-byte BCD clock value:

Rl +0 =year (00- 99)
Rl+l =month (01-12;01 =Januaryetc)
Rl+2 =day of month (01- 31)
Rl+3=dayofweek (01-07; 01 =Sundayetc)
Rl+4 =hours (00- 23)
Rl+5 =minutes (00- 59)
Rl+6 =seconds (00- 59)

Under RISC OS 2 the clock value is read directly from the CMOS real time clock
chip, which is assumed to be set to local time, and so the value is not further
converted. Under later versions of RISC OS the clock is read from a soft copy of the
real time, which is assumed to be set to UTC, and so the value is then converted to
local time.

1-417

OS_ Word 14,1 (SWI &07)

Related SWis

OS_Word 15 (page 1-423)

Related vectors

WordY

1-418

Convert BCD clock value into string format

Time and Date

OS_Word 14,2
(SWI &07)

On entry

RO = 14
Rl =pointer to parameter block

RI+O = 2
Rl+l =year
Rl+2 =month
Rl+3 =day of month
Rl+4 =day of week
Rl+5 =hours
Rl+6 =minutes
Rl+7 =seconds

On exit

RO, Rl preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

reason code
(00- 99)
(0 I - 12; 0 I = January etc)
(01 - 31)
(01- 07; 01 = Sunday etc)
(00- 23)
(00- 59)
(00- 59)

On entry, the parameter block contains a 7-byte BCD clock value:

On exit, the parameter block contains a string terminated by a Return character
(ASCII 13), representing the same time. The format of the string depends on the
territory which the computer is set to use. (It is fixed in RISC OS 2, which does not
support territories .)

1-419

OS_ Word 14,2 (SWI &07)

Related SWis

OS_Word 15 (page 1-423)

Related vectors

WordY

1-420

Read real-time in 5-byte format

Time and Date

OS_Word 14,3
(SWI &07)

On entry

RO = 14
R1 =pointer to parameter block

R1+0 = 3 (reason code)

On exit

RO preserved
R1 preserved:

R1+0 = LSB of time
R1+1 = .. .
R1+2 =.
R1+3 =.
R1+4 = MSB of time

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

On exit the parameter block contains the 5-byte real time read directly from the
soft copy of the real-time clock. This number gives the elapsed number of
centiseconds since 00:00:00 on January I 1900. Under RISC OS 2 the real-time clock
is assumed to be set to local time; under later versions the real-time clock is
assumed to be set to UTC.

This 5-byte real-time is used for time/date stamping by the filing system. It is also
useful for utilities which are used for building consistent systems, eg 'Make'.

1-421

OS_ Word 14,3 (SW/ &07)

Related SWis

OS_Word 15 (page 1-423)

Related vectors

WordV

1-422

Time and Date

OS_Word 15,8
(SWI &07)

Writes the time of day to both the CMOS clock and its soft copy

On entry

RO = 15
R I = pointer to parameter block

RI+O = 8 (reason code)
Rl +I ... =string giving time of day (in local language)

On exit

RO, Rl preserved.

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call writes the time of day to both the CMOS clock and its soft copy.

On entry, the parameter block contains the local time of day as a string; the format
this string must have depends on the territory which the computer is set to use. (It
is fixed in RISC OS 2, which does not support territories)

The format for the UK territory (and for RISC OS 2) is:

HH:MM:SS eg 17: 3 5: 04

Related SWis

OS_Word 14 (page 1-415)

1-423

OS_ Word 15,8 (SWI &07)

1-424

Related vectors

WordV

Time and Date

OS_Word 15,15
(SWI &07)

Writes the date to both the CMOS clock and its soft copy

On entry

RO = 15
RI =pointer to parameter block

Rl+O =I 5 (reason code)
Rl +I ... =string giving date (in local language)

On exit

RO, RI preserved

The C flag will be set on exit , if the parameter block contained a format error

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call writes the date to both the CMOS clock and its soft copy.

On entry, the parameter block contains the local date as a string; the format this
string must have depends on the territory which the computer is set to use. (It is
fixed in RISC OS 2. which does not support territories.)

The format for the UK territory (and for RISC OS 2) is:

Day ,DD MMM YYYY eg Mon, 17 Feb 1992

Related SWis

OS_ Word 14 (page 1-41 5)

1-425

OS_ Word 15,15 (SWI &07)

1-426

Related vectors

WordY

Time and Date

OS_Word 15,24
(SWI &07)

Writes the time of day and date to both the CMOS clock and its soft copy

On entry

RO = 15
Rl =pointer to parameter block

Rl+O = 24 (reason code)
Rl+l ... =string giving time of day and date (in local language)

On exit

RO, Rl preserved

The C flag will be set on exit. if the parameter block contained a format error.

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call writes the time of day and date to both the CMOS clock and its soft copy.

On entry, the parameter block contains the local time of day and date as a string;
the format this string must have depends on the territory which the computer is set
to use. (It is fixed in RISC OS 2, which does not support territories.)

The format for the UK territory (and for RISC OS 2) is:

Day,DD MMM YYYY.HH:MM:SS eg Mon, 17 Feb 19 9 2 . 17 : 3 5 : 0 4

Related SWis

OS_Word 14 (page 1-415)

1-427

OS_ Word 15,24 (SWI &07)

1-428

Related vectors

WordV

Call a specified address after a delay

Time and Date

OS_CaiiAfter
{SWI &38)

On entry

RO =time in centiseconds
Rl =address to call
R2 =value of Rl2 to call code with

On exit

RO - R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

OS_CallAfter calls the code pointed to by Rl after the delay specified in RO. The
code is called in SVC mode with interrupts disabled. It must preserve all registers.
and return using the instruction MOV R15, R14 .

OS_RemoveTickerEvent can be used to cancel a pending OS_CallAfter

In RISC OS 2 this call may return incorrect error pointers. An invalid value of RO
now generates the error message 'Invalid time interval' , rather than the null string
generated by RISC OS 2.

Related SWis

OS_ Call Every (page 1-431). OS_RemoveTickerEvent (page 1-433)

1-429

OS_ Gal/After (SWI &38)

1-430

Related vectors

None

Call a specified address every time a delay elapses

Time and Date

OS_CaiiEvery
{SWI &3C)

On entry

RO =(delay in centiseconds)- I
Rl =address to call
R2 =value of Rl2 to call code with

On exit

RO - R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant l
Use

OS_CaiiEvery calls the code pointed to by RI every (RO l) centiseconds, until
OS_RemoveTickerEvent is executed or Break is pressed. The code is called in SVC
mode with interrupts disabled. It must preserve all registers, and return using the
instruction MOV R15 , R14.

The minimum value for RO is l, which means the minimum possible delay is
2 centiseconds. If you wish to be called every centisecond, you must instead claim
TickerV.

In RISC OS 2 this call may return incorrect error pointers. An invalid value of RO
now generates the error message 'Invalid time interval', rather than the null string
generated by RISC OS 2.

Related SWis

OS_CaiiAfter (page 1-429), OS_RemoveTickerEvent (page 1-433)

1-431

OS_ Gal/Every (SWI &3C)

1-432

Related vectors

None

Time and Date

OS_Remove TickerEvent
(SWI &30)

Remove a given call address and Rl2 value from the ticker event list

On entry

RO = call address
Rl =value of R 12 used in OS_ Call Every or OS_CaliAfter

On exit

RO, Rl preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

OS_RemoveTickerEvent takes RO as the address and R I as the R 12 value of the
event to find and remove from its list.

It is used to stop an event set up by a call to OS_CaliAfter or OS_ Call Every. The
parameters passed must match those originally passed to OS_ Cal I Every or
OS_CallAfter for it to remove the correct event.

Related SWis

OS_CaliAfter (page 1-429). OS_CaliEvery (page 1-431)

Related vectors

None

1-433

OS_ReadMonotonicTime (SWI &42)

1-434

OS_ReadMonotonicTime
(SWI &42)

Number of centiseconds since the last hard reset

On entry

On exit

RO =time in centiseconds

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

OS_ReadMonotonicTime returns the number of centiseconds since the last hard
reset, or switching on of the machine. 'Monotonic' refers to the fact that this timer
is guaranteed to change with time (increasing until it wraps around). It is used, for
example, to time-stamp mouse events.

Related SWis

None

Related vectors

None

Time and Date

OS_ConvertStandardDateAndTime
(SWI &CO)

Converts a 5-byte time into a string

On entry

RO = pointer to 5-byte time block
Rl =pointer to buffer for resulting string
R2 = size of buffer

On exit

RO =pointer to buffer (Rl on entry)
RI =pointer to terminating zero in buffer
R2 =number of free bytes in buffer

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

OS_ConvertStandardDateAndTime converts a five-byte value representing the
number of centiseconds since 00:00:00 on January I st I 900 into a string. It converts
it using a standard format string stored in the system variable 'Sys$DateFormat'
and places it in a buffer (which should be at least 20 bytes).

For details of the format field names see the section entitled Format field names on
page 1-402.

From RISC OS 3 onwards this SWI simply calls
Territory_ConvertStandardDateAndTime, which you should use instead.

1-435

OS_ConvertStandardDateAndTime (SWI &CO)

1-436

Related SWis

OS_ConvertDateAndTime (page 1-437).
Territory_ConvertStandardDateAndTime (page 3-809)

Related vectors

None

Time and Date

OS_ ConvertDateAndTime
{SWI &C1)

Convert 5-byte time into a string using a supplied format string

On entry

RO = pointer to 5-byte time block
R I = pointer to buffer for resulting string
R2 = size of buffer
R3 =pointer to format string (null terminated)

On exit

RO =pointer to buffer (RI on entry)
R I = pointer to terminating zero in buffer
R2 =number of free bytes in buffer
R3 preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

centiseconds since 00 00.00 on January I st 1900 into a string. It converts it using
the format string supplied.

Apart from the following exception. the format string is copied directly into the
result buffer. However. whenever '%' apfears in the format string, the next one or
two characters are treated as a special r eid name which is replaced by a
component of the current time. l
For details of the format field names see the section entitled Format field names on
page 1-402.

1-437

OS_ConvertDateAndTime (SWI &C1)

1-438

From RISC OS 3 onwards this SWI simply calls Territory_ConvertDateAndTime,
which you should use instead.

Related SWis

OS_ConvertStandardDateAndTime (page 1-435),
Territory_ConvertDateAndTime (page 3-809)

Related vectors

None

Time and Date

*Commands
*Time

Displays the day, date and time of day

Syntax

*Time

Parameters

None

Use

*Time displays the day, date and time of day. It is displayed in the same format as
OS_Word 14,0.

Example

*Time

Related commands

None

Related SWis

OS_Word 14,0 (page 1-415). OS_Word 15 (page 1-423),
OS_ConvertStandardDateAndTime (page 1-435).
OS_ConvertDateAndTime (page 1-437).
Territory_ConvertDateAndTime (page 3-807),
Territory_ConvertStandardDateAndTime (page 3-809)

Related vectors

WordY, WrchV

1-439

1-440

18 Conversions

Introduction
This chapter is a collection of SWis that convert data from one form to another.
Here is a summary of the conversions that can be done:

• Convert a number to a string in binary, decimal or hex, with some format
control. You can specify the source number in a variety of sizes: I, 2, 3 or 4
bytes in length in most cases.

• Convert a string containing a number in any base from 2 to 36 to a number.

• Process a string with control codes and other special characters. This allows a
string with any control codes to be created by passing a string with only
printable characters in it.

• Substitute a string containing arguments with the given values. Used with
command line arguments to an application .

• Evaluate an expression with logical, arithmetic, bit and string operations,
giving a logical, numeric or string result.

• Extract options from a command line using a given key.

• Convert a SWI number to a string with its full name and vice versa.

• Convert a network station pair of numbers number into a string.

• Convert a file size into a string, for example ·I 2 Kbytes'

1-441

Overview and Technical Details

Overview and Technical Details
This section leads through the details of the differing conversion calls . Whilst most
are mutually independent, some SW!s may use others within this chapter to give a
multi-layered functionality.

Numbers to strings

The simplest option to convert a signed 32-bit integer into a string, the most
common operation , is to use OS_BinaryToDecimal (page l-456) .

For a far greater functionality, there is a set of 24 SW!s with a common calling
convention that allow a wide ranging list of conversions. Generically, these SW!s
are called OS_ConvertNameNumber (page 1-469). The Name refers to the destination
format of the string. It can be hex, signed and unsigned integer (optionally with
spaces between the thousands, millions and so on). or binary. The Number is the
number of bytes to use on input. For all apart from hex, this is I , 2, 3, or 4 bytes.
Hex can be I , 2, 4, or 8 nibbles long. See the description of these SW!s for detail.

Note that OS_BinaryToDecimal is equivalent to OS_Convertlnteger4 (page 1-4 70)
from these SW!s.

Strings to numbers

OS_ReadUnsigned (page 1-448) will read a number in an ASCII string and convert
it into an unsigned integer. The number in the string can be specified to be in any
base from 2 to 36. Base 36 has 0- 9, A- Z as numbers. No prefix means that the
number is decimal by default, while the conventional'&' is used to indicate hex. All
bases can be specified by the base_numberform : eg 2_11 00 is 12 in binary.

GS string operations

1-442

The GS operations are a way of putting any characters from 0- 255 into a string
using only the printable character set. OS_GS!nit (page 1-450) and OS_GSRead
(page 1-452) work together to scan a string on a character at a time basis.
OS_GSTrans (page 1-454) performs both these functions and scans the string.
Unless you need character by character control, OS_GSTrans is easier to use.

Conversions

I character

The '/' character is used by OS_GSRead and OS_GSTrans as a flag for a special
character. It affects how the character following it is interpreted. Here is a list of its
effects:

ASCII code

0
I- 26
27
28
29
30
31
32 - 126

<
127
128 - 255

Symbols used
/@
/letter eg /A (or Ia) =ASCII I, IM (or lm) =ASCII 13
II or I{
1\
I] or I}
/A or I-
I_ or/ ' (grave accent)
kel}board character. except for:
, ..
II
I<
I?
I !coded SIJmbol eg ASCII I 28 = I!/@ ASCII 129 = I! /A

Note that'/! ' means set the top bit of the following character, even if it is set by
another '/' character.

To include leading spaces in a definition, the string must be in quotation marks, "" ,
which are not included in the definition . To include a single " character in the
string, use /" or "".

Substitute arguments

The reason why '<' must be preceded by a '/ ' is that you can put values and
variables inside angle brackets.

You can use the form <number>, where the number between the angle brackets will
be interpreted as if it was a parameter to OS_ReadUnsigned: that is, a number in
any base from 2 to 36. The value returned from this SWI will be placed as a
character in the output stream; bits 8- 3 I are ignored.

A string with a name enclosed in '< >' characters will be used to look up a system
variable. You must have used *Set, *SetMacro or *SetEval to set the variable. The
value of the variable will be substituted for the name and the angle brackets using
OS_ReadVarVal; eg if the variable 'hisname' had been set to 'Fred', then the string
'My friend's name is <hisname>' would be translated to 'My friend's name is Fred'.
System variables and the calls that operate on them are described in the chapter
entitled Program Environment on page 1-283.

1-443

Evaluation operators

Flags

*Echo

There are options which can be used to determine the way in which the string is
interpreted. This is done by setting the top three bits in R2 passed to OS_GSinit or
OS_GSTrans, as follows:

Bit Meaning

29 If set then a space is treated as a string terminator

30 If set control codes are not converted (ie 'I' syntax is ignored)

3 I Double quotation marks "" are not to be treated specially, ie they are
not stripped around strings .

The *Echo command will pass a string through OS_GSTrans and then send it to the
display.

Evaluation operators

1-444

A string containing an expression can be evaluated. An expression consists of any
of the operators listed below, brackets (for grouping), strings, and numbers. It can
return a result that is a number or a string OS_EvaluateExpression (page I -457) is
the core routine here. It is in turn called by *Eva!. This allows you to perform
evaluations from the command line.

The *If command also uses this call to perform a logical decision about which
• Command to perform.

Any strings in the evaluation string are passed to OS_GSTrans. so all its operators
will be used. This of course means that OS_ReadUnsigned and OS_ReadVarVal will
in turn be called if you use a string that requires them. Note, however, that vertical
bar escape sequences (eg 'IG' for ASCII 7) are not recognised .

As well as passing <name> operators in strings to OS_ReadVarVal. any item which
cannot immediately be treated as a string or a number is also looked up as a
system variable. For example, in the expression FRED+ I , FRED will be looked up
as a variable.

Conversions

The operators recognised by the expression evaluator are as follows:

Arithmetic operators

+

*
I
MOD

Logical operators

<>
>=
<=
<
>

Bit operators

>>
>>>
<<
AND
OR
EOR
NOT

String operators

+
RIGHT11

LEFT 11

LEN

Conversions

STR
VAL

Add two integers
Subtract two integers
Multiply two integers
Integer part of division
Remainder of a division

Equal -I is TRUE
Not equal 0 is FALSE
Greater than or equal
Less than or equal
Less than
Greater than

Arithmetic shift right
Logical shift right
Logical shift left
AND
OR
Exclusive OR
NOT

Concatenate two strings eg "HI"+ "LO" = "HILO"
Take 11 characters from the right

eg "HELLO" RIGHT 2 = "LO"
Take 11 characters from the left

eg "HELLO" LEFT 3 = "HEL"
Return the length of a string eg LEN "HELLO" = 5

Convert a number into a string
Take the value of a string

eg STR 24 = "24"
eg VAL "12d3" = 12

1-445

Parameter substitution

Where appropriate, type conversions are performed automatically. For example, if
an integer is subtracted from a string, then the string is evaluated and an integer
result is produced ("2"-1 gives the result I). The null string"" is converted to 0 by
both the implicit and explicit (VAL) conversions.

Similarly, integers will be converted to strings if necessary: the expression 1234
LEFT 2 will yield" 12".

The operators have the same relative priorities as their equivalents in BBC BASIC.
eg • is higher than+ which is higher than>. etc. Remember you can use brackets to
override this standard precedence.

Parameter substitution

Given a list of space separated arguments, OS_SubstituteArgs (page 1-463) will
replace references to those parameters in a string: "'eO refers to the first string in the
argument list and so on. This is generally used when processing command lines.

For a more powerful handling of command lines, use OS_ReadArgs (page 1-465).
This is passed a list of parameter definitions and an input string. The parameters
can be described as being in any order or in a fixed order. They can handle on/off
switches (ie presence is indicated). or values. The values can also be automatically
passed through OS_GSTrans or OS_EvaluateExpression if required

SWI number to/from string

Two calls can be used to translate a SWI number to and from its full name as a
string. OS_SWINumberToString (page 1-459) will convert from a SWI number to a
string, and OS_SWINumberFromString (page 1-461) will convert from a string to a
SWI number.

Note that having bit 17 set will result in the string being prefixed with an 'X', and
vice versa .

Econet numbers

1-446

The pair of numbers that refer to the network number and station number can be
converted into a string by OS_ConvertFixedNetStation (page 1-473) This will pad
the string with leading zeros where required. If you don't want this padding, use
OS_ConvertNetStation (page 1-475).

File size

Conversions

There are two SWis that will convert a file size from an integer into a string. They
can decide whether to display as bytes, Kbytes or Mbytes. OS_ConvertFileSize
(page 1-479) will convert an integer into a number up to 4 digits followed by an
optional 'K' if it is in kilobytes or 'M' if in megabytes, followed by the word 'bytes'
and a null to terminate.

OS_ConvertFixedFileSize (page 1-477) is exactly the same, except that it will
always print the numeric field as four characters, padding with spaces if necessary.

1-447

SWI Calls

SWI Calls

1-448

Convert a string to an unsigned number

OS_ReadUnsigned
(SWI &21)

On entry

RO =base in the range 2- 36 (else 10 assumed), and flags in top 3 bits
R I = pointer to string
R2 =maximum value if RO bit 29 set

On exit

RO preserved
Rl =pointer to terminator character
R2 =value

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

OS_ReadUnsigned takes a pointer to a string and tries to convert it into an integer
value which is returned in R2.

Valid strings may start with a digit (where 'digits' may also be letters. depending on
the base) or one of the following:

& The number is in hexadecimal notation

base_ The number is in a given base, where base is in the range 2 to
36. For example. 2_1010 is a base two (binary) number.

Conversions

These override any base specified in RO. (If RO contains an illegal base, I 0 is
assumed.) Characters following them are read until a character is reached which is
not consistent with the base in use. For example, assuming RO= I 0 on entry, the
terminator of 43AZ is A, whereas the terminator of &43AZ is Z.

In addition, RO contains three flags which cause checks to be performed on the
terminator and the range of the number obtained:

Bit Meaning if set

29 Restrict range to 0- R2 inclusive; a 'Number too big' error is given
otherwise

30 Restrict value range to 0 - 255

3 I Check terminator is a control character or space

If either of these checks fail. a 'Bad number' error is given. This error also occurs if
the first character is not a valid digit. If a base is given at the start of the number
and isn 't in the range 2- 36, a 'Bad base' error is given.

Related SWis

None

Related vectors

None

1-449

OS_GS/nit (SWI &25)

1-450

Initialises registers for use by OS_GSRead

OS_GSinit
(SWI &25)

On entry

RO =pointer to string, terminated by ASCII I 0 (LF) or 13 (CR) or 0 (NUL)
R2 =flags

On exit

RO =value to pass back in to OS_GSRead
R I = first non-blank character
R2 =value to pass back in to OS_GSRead

Interrupts

Interrupt state is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

OS_GSinit is one of the string routines which are used by the operating system
command line interpreter to process the strings sent to it. One of the advantages
of these routines is that they enable you to use the character 'I' to introduce control
characters which would otherwise be difficult to enter directly from the keyboard.

See the section entitled GS string operations on page 1-442 for a list of the
conversions that are performed by the routines, and of the flags passed in R2.

OS_GSinit also returns the first non-blank character in the string. However, this is
not necessarily the same as the output from the first OS_GSRead, since OS_GSinit
doesn't perform any expansion.

Related SWis

OS_GSRead (page 1-452). OS_GSTrans (page 1-454)

Related vectors

None

Conversions

1-451

OS_GSRead (SWI &26)

1-452

OS_GSRead
{SWI &26)

Returns a character from a string which has been initialised by OS_GS!nit

On entry

RO from last OS_GSRead/OS_GSlnit
R2 from last OS_GSRead/OS_GSlnit

On exit

RO updated for next call to OS_GSRead
Rl =next translated character
R2 updated for next call to OS_GSRead
C flag is set if end of string reached

Interrupts

Interrupt state is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

OS_GSRead reads a character from a string, using registers initialised by a
OS_GS!nit immediately prior to this call The next expanded character is returned
in R l. The values in RO and R2 are updated so they are set up for the next call to
OS_GSRead.

The interpretation of characters which pass through OS_GSRead is described in
the section entitled GS string operations on page 1-442. Note that this call does not
correctly handle quoted termination in RISC OS 2.

An error is returned for a bad string- for example. mismatched quotation marks.

Related SWis

OS_GS!nit (page 1-450). OS_GSTrans (page l-454)

Related vectors

None

Conversions

1-453

OS_GSTrans (SWI &27)

1-454

OS_GSTrans
{SWI &27)

Equivalent to a call to OS_GSinit and repeated calls to OS_GSRead

On entry

RO =pointer to string, terminated by ASCII I 0 (LF) or 13 (CR) or 0 (NUL)
Rl =buffer pointer
R2 =buffer size (maxlen) and flags in top 3 bits

On exit

RO =pointer to character after terminator
Rl =pointer to buffer, or 0
R2 =number of characters in buffer. or maxlen if the buffer overflowed
C flag is set if buffer overflowed

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

OS_GSTrans is equivalent to a call to OS_GSinit followed by repeated calls to
OS_GSRead until the end of the source string is reached. Each time it obtains a
character and translates it. OS_GSTrans then places it in a buffer.

The flags in R2. on entry, are the same as those supplied to OS_GSinit. On exit . RO
points to the character after the terminator of the source string. and R I +R2 points
to the terminator of the translated string. If the C flag is set on exit the buffer was
too small for the translated string; R2 is set to the length of the buffer.

The flags and interpretation of characters which pass through OS_GSTrans are
described in the section entitled GS string operations on page 1-442. Note that this
call does not correctly handle quoted termination in RlSC OS 2.

Conversions

An error is returned for a bad string- for example, mismatched quotation marks.

Related SWis

OS_GS!nit (page I-450). OS_GSRead (page l-452)

Related vectors

None

1-455

OS_BinaryToDecimal (SWI &28)

1-456

Convert a signed number to a string

On entry

RO = signed 32-bit integer
Rl =pointer to buffer
R2 = maximum length

On exit

RO, Rl preserved
R2 =number of characters given

Interrupts

Interrupt state is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

OS_BinaryToDecimal
(SWI &28)

OS_BinaryToDecimal takes a signed 32-bit integer in RO and converts it to a string,
placing it in the buffer. Rl points to the buffer and R2 contains its maximum
length. Leading zeros are suppressed and the string will start with a minus sign , ·-·.
if RO was negative. The number of characters given is returned in R2 .

The error 'Buffer overflow' is given if the converted string is too long to fit in the
buffer.

Related SWis

None

Related vectors

None

Conversions

OS_EvaluateExpression
{SWI &20)

Evaluate a string expression and return an integer or string result

On entry

RO = pointer to string
RI =pointer to buffer
R2 = length of buffer

On exit

RO preserved
RI = 0 if an integer returned, else preserved
R2 =integer result, or length of string in buffer

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

OS_EvaluateExpression takes a string pointed to by RO, evaluates it, and returns
the result. The location and type of the result is given by RI as follows:

Value

0
Not 0

Meaning

Integer result returned in R2
String is returned in buffer pointed to by R I, length returned
in R2 , RO and RI preserved

See the section entitled Evaluation operators on page I -444 for a description of the
operators that you can use. Note that monadic plus/minus operators are not
correctly handled in RISC OS 2 (eg *Eva! 50*-3 gives a 'Missing operand' error).

1-457

OS_EvaluateExpression (SW/ &20)

1-458

The resulting string is unterminated. If the buffer is not large enough to hold it.
then a 'Buffer overflow' error is generated.

Related SWis

None

Related vectors

None

Conversions

OS_SWINumberToString
(SWI &38)

Convert a SWI number to a string containing its name

On entry

RO = SWI number
R l = pointer to buffer
R2 = buffer length

On exit

RO, R l preserved
R2 = length of string in buffer

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

OS_SW!NumberToString converts a SWI number to a SWI name.

The returned string is null-terminated, and starts with an X if the SWI number has
bit 17 set.

SWI numbers < &200 have an 'OS_' prefix to the main part, and a SWI-dependent
end section (which is 'Undefined' for unknown OS SWis) .

SWI numbers in the range & I 00 to & IFF are converted in the form OS_ Writei+"A",
or OS_ Writel+23 if the character is not a printable one.

SWI numbers &200 are looked for in modules. If a suitable name is found. it is
given in the form module_name or module_number, eg. Wimp_Initialise, Wimp_32. If no
name is found in the modules, the string 'User' is returned.

Note that this call does not correctly handle negative SWI numbers in RISC OS 2.

1-459

OS_SWINumberToString (SWI &38)

1-460

Related SWis

OS_SWINumberFromString (page 1-461)

Related vectors

None

Conversions

OS_SWINumberFromString
{SWI &39)

Convert a string to a SWI number if valid

On entry

RI =pointer to name (which is terminated by a character~ 32)

On exit

RO = SWI number
RI preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

OS_SWINumberFromString converts a SWI name to a SWI number. An error is
given if the SWI name is not recognized.

The conversion is as follows:

• A leading X is checked for and stripped. If present, &20000 is added to the
number returned (ie bit 17 will be set).

• System names are checked for. Note that the conversion of SW!s is not quite
bidirectional: the name OS_Writei+" "can be produced, but only OS_Writei is
recognized.

• Modules are scanned. If the module prefix matches the one given, and the
suffix to the name is a number, then that number is added to the module's SWI
'chunk' base, and the sum returned. ·For example, Wimp_&23 returns &400E3,
as the Wimp's chunk number is &400CO.

1-461

OS_SW/NumberFromString (SWI &39}

1-462

• If the suffix is a name, and this can be matched by the module, the appropriate
number is returned . For example, Wimp_Poll returns &400C7.

See the chapter entitled Modules on page 1-197 for more information on how
modules provide the conversion .

Note that SWI names are case sensitive, so you must spell them exactly as
returned by OS_SWINumberToString.

Related SWis

OS_SWINumberToString (page 1-459)

Related vectors

None

Substitute command line arguments

Conversions

OS_SubstituteArgs
(SWI &43)

On entry

RO =pointer to argument list, and flag in top bit
Rl =pointer to buffer for result string
R2 = length of buffer
R3 = pointer to template string
R4 = length of template string

On exit

RO, Rl preserved
R2 =number of characters in result string (including the terminator)
R3, R4 preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call performs the hard work involved in substituting a list of arguments into a
'template' string. Its main use is in the processing of command Alias$... variables
by the system. As it is also useful in other situations. it has been made available to
users. For example, FileSwitch uses it in the processing of Alias$@LoadType_'ITI'
variables .

The argument list is a string consisting of space-separated items which will be
substituted into the template string. Spaces within double quotation marks are not
counted as argument separators. Typically, the argument string will just be the tail
of a * Command. It is control-character terminated.

1-463

OS_SubstituteArgs (SWI &43)

1-464

The result of substituting the arguments into the template string is placed in the
buffer. The length of the buffer is given so that the call can check for buffer overflow.

The template string is copied into the result buffer character for character.
However, when a'%' appears in the template string (even within quotation marks),
it marks where an argument should be placed into the output buffer. The '%' is
followed by a single digit from 0 to 9. %0 stands for the first argument in the
argument list, and so on. %*n means all of the arguments from the nth one
onwards.%% means a single'%'. Anything else following the'%' is not treated
specially, ie both the '%' and the character are copied over.

The template string does not have a terminator; instead its length is given. At the
end of the substitution, any arguments after the highest one mentioned in the
template string are appended to the result string. This can be stopped by setting
the top bit of RO on entry.

If a non-existent argument is specified in the template string, then a null string is
substituted; no error is given.

Related SWis

None

Related vectors

None

Given a keyword definition, scan a command string

Conversions

OS_ReadArgs
(SWI &49)

On entry

RO = pointer to keyword definition
RI =pointer to input string
R2 = pointer to output buffer
R3 = size of output buffer

On exit

RO - R2 preserved
R3 = bytes left in output buffer

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This SWI processes a command string using a keyword definition for syntax. The
results are written out to the output buffer using a specialised format for this
command.

Keyword definition

The keyword definition defines the parameters that can be in the command string.
It is composed of a sequence of keywords, separated by commas. Each of these is
made up of one or two names, followed by a sequence of qualifiers. The syntax of a
keyword is:

[keyword_name[=alias_name]][I qualifier ...]

1-465

OS_ReadArgs (SWI &49)

1-466

The keyword_name is what you want users to identify the parameter with . This can be
any string composed of alphanumerics and the ·_· character. The alias name is an
optional alternative name for the same keyword. You can have a keyword with no
name. See the command string description below for details of how to set it.

The qualifier describes what kind of a parameter it is. There can be as many
qualifiers as you like with one parameter, but some are mutually exclusive. The
qualifiers can be any one of the following characters in upper or lower case:

/A keyword must always be given a value

/K keyword must always precede its value

IS the option is a switch ie presence only is reported

/E OS_EvaluateExpression will be called to transform the value. This can
return a number or a string. Note that numeric evaluations only can
be performed.

Note that in RISC OS 2 a 'Buffer full' error is generated if this
argument evaluates to a string

/G OS_GSTrans will be called to transform the value

Command string

The command string contains a sequence of commands using the syntax defined
by the keyword definition. A command string is made of definitions of the
following syntax:

[-keyword_name] value

If the keyword name is used. then the value will be attached to the named keyword.
These can appear in any arbitrary order in the command string. The name after the
·-· can be the full name of the keyword or its alias, or the first letter of either. For
example, if the keyword definition contains "name=title", then all of the following
are valid in the command string:

"-name fred", "-title fred", "-n fred", "-t fred"

Note that if more than one keyword has the same first letter, then the single letter
form will be used by the first occurrence of a given letter in the keyword definition .

Also note that case is ignored, so "-FILE" and "-file" are identical.

If a definition has no -keyword_name preceding it, then the first unused keyword that
is not a switch in the definition string will be given that value. This is how nameless
keywords are set. For example, if the definition string is "infile./a .outfile" and the
command string is "-infile one -outfile two three", then the first and nameless
keyword will be set to three, because it was the first undefined keyword in the
definition.

Conversions

Keywords are marked by a preceding ·-· character. but this does not disallow these
characters from appearing in values anywhere but at the start. For example. if the
keyword definition is "formula/e" , then "-formula 6-3" will set it to the value of 3. If
the command is "-formula -3+6", then this will cause an error. Furthermore. whilst
some evaluated expressions can be done without spaces (I +2 for example). there
are many that cannot.

A workround for these problems is to evaluate your expression in quotes. which
allow leading minuses. or spaces- as in this example:

"&3F AND &17"

With GSTrans'd strings, if you want to put a quoted string inside quotes then you
must use double quotes. as follows:

11 Thi s is 1111 IT"""

Output buffer

The output buffer contains the results for all of the possible keywords. For n
keywords in the keyword definition. the first n words of the output buffer contain
values giving the results of parsing the command line. If the keyword was a switch
(with /S qualifier). then a non-zero value indicates that the switch was used. For all
other kinds of result. the value is a pointer; the actual results are appended
sequentially to the output buffer. A pointer of zero indicates that the parameter
was not present.

The following example uses a keyword definition of "ax,bx,on/s.cx" and a command
string of "one two three -on". The output buffer looks like this:

ax bx on ex

4~ 4~ ~7FFFFFFF 0 'one' 'two' 'three'

~ j n

Figure 18.1 Example output buffer

1-467

OS_ReadArgs (SWI &49)

1-468

The results of GSTrans'd strings and evaluated expressions are stored differently. In
a GSTrans'd string, the result pointer points to a block of the following format:

length two byte length
string length bytes of string

In an evaluated expression, the pointer points to a block like the following:

type one byte result type (which at present can only be zero for an integer)
value four byte integer

For an example showing /e and /g switches, if the keyword definition was
"formula/e,time/g" and the command string was "-f 6+6-1 -t ""Time is
<Sys$Time>""", then the result looks like this:

formula time type value length

0 0 0 11 16

Jll n

Figure I 8.2 Example output buffer

Examples

Keyword definition:

number=times/e ,file / k /a ,expandtabs/s

can be matched by any of:

-n 10 -file jeff
-times 1+7 -file jeff -expandtabs
-file thingy -e

but not by either of:

thingy -number 4
-number 20 -times 4 -file jeff

Related SWis

None

Related vectors

None

'Time is 11 : 14:53'

Conversions

OS_ ConvertNameNumber
(SWis &DO- E8)

These calls convert a number into a string

On entry

RO =value to be converted
R I =pointer to buffer for resulting string
R2 = size of buffer

On exit

RO =pointer to buffer (RI on entry)
Rl =pointer to terminating null in buffer
R2 = number of free bytes in buffer

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWis are re-entrant

Use

This range of SWis use a common form an~ can convert a number into a string in a
variety of ways.

RO returns pointing to the start of the buf r. This is convenient for calling
qs_ WriteO. R I points to the null at the en of the buffer. This is convenient for
adding further text after it.

The Name part of the SWI name can be an of the following groups:

1-469

OS_ConvertNameNumber (SW/s &DO- EB)

1-470

Hex

Convert to a hexadecimal string

The Number is the number of ASCII digits in the output string, either I, 2, 4, 6 or 8.
Only enough significant bits to perform the conversion are used. The string does
not include an ampersand ('&') but is padded with leading zeros, so is of fixed
length . The SWis in this group are:

SWI SWI Output for ...
name number zero largest value

OS_ConvertHex I &DO '0' 'F'
OS_ ConvertHex2 &Dl '00' 'FF'
OS_ConvertHex4 &D2 '0000' 'FFFF'
OS_ConvertHex6 &D3 '000000' 'FFFFFF'
OS_ConvertHex8 &D4 '00000000' 'FFFFFFFF'

Cardinal

Convert to an unsigned decimal number

The Number is the number of bytes to be used from the input value. The string is
not padded with zeros, so is of variable length. The SWis in this group are:

SWI SWI Output for ...
name number zero largest value

OS_ConvertCardinal1 &D5 '0' '255'
OS_ConvertCardinal2 &D6 '0' '65535'
OS_ConvertCardinal3 &07 '0' '16777215'
OS_ConvertCardinal4 &D8 '0' '4294967295'

Integer

Convert to a signed decimal number

The Number is the number of bytes to be used from the input value. If the most
significant bit is set (of the number bytes used). the number is taken to be negative,
and a leading ·-· is produced. The string is not padded with zeros, so is of variable
length. The SWis in this group are:

SWI SWI Output for ...
name number largest -ve largest +ve value

OS_ Convertlnteger I &D9 '-128' '127'
OS_Convertinteger2 &DA '-32768' '32767'
OS_Convertinteger3 &DB '-8388608' '8388607'
OS_Convertlnteger4 &DC '-2147483648' '2147483647'

Binary

Conversions

Convert to a binary number

The Number is the number of bytes to be used from the input value. The string is
padded with leading zeros, so is of fixed length (number x 8). The SWis used in this
group are:

SWI
name

OS_ ConvertBinary I
OS_ConvertBinary2
OS_ConvertBinary3
OS_ConvertBinary4

SWI
number

&DD
&DE
&DF
&EO

Output for
largest value

'lllllll I'
'1111111 Ill I IIIII'
'111111 I I IIIII I 1111111111'
'lllllllllllll IIlli llllllllllll I I '

SpacedCardinal

Convert to an unsigned decimal number, with spaces every three digits

The Number is the number of bytes to be used from the input value. The string is
not padded with zeros, so is of variable length In addition, every three digits from
the right , a space is inserted. The SW!s used in this group are:

SWI
name

OS_ConvertSpacedCardinall
OS_ConvertSpacedCardinal2
OS_ConvertSpacedCardinal3
OS_ConvertSpacedCardinal4

Spaced Integer

SWI
number

&El
&E2
&E3
&E4

Output for ...
zero largest value

'0' '255'
'0' '65 535 '
'0' '16 777 215 '
'0' '4 294 967 295'

Convert to a signed decimal number, with spaces every three digits

The Number is the number of bytes to be used from the input value. If the most
significant bit is set (of the number bytes used). the number is taken to be negative,
and a leading ·-· is produced The string is not padded with zeros, so is of variable
length. In addition, every three digits from the right, a space is inserted. The SWis
in this group are:

SWI
name

OS_ConvertSpacedintegerl
OS_ConvertSpacedlnteger2
OS_ConvertSpacedinteger3
OS_ConvertSpacedinteger4

SWI
no.

&D9
&DA
&DB
&DC

Output for ...
largest -ve largest +ve val.

'-128' 'I27'
'-32 768' '32 767'
'-8 388 608' '8 388 607'
'-2 I 4 7 483 648' '2 147 483 647'

1-471

OS_ConvertNameNumber (SWis &DO- EB)

1-472

Related SWis

OS_BinaryToDecimal (page 1-456)

Related vectors

None

Conversions

OS_ConvertFixedNetStation
(SWI &E9)

Convert from an Econet station/network number pair to a string

On entry

RO =pointer to two word block (value to be converted)
R I = pointer to buffer for resulting string
R2 = size of buffer

On exit

RO =pointer to buffer (RI on entry)
Rl =pointer to terminating null zero in buffer
R2 =number of free bytes in buffer

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

RO points to two words in memory. The first word contains the station number and
the second word contains the network number.

This call always converts into a form 111111 .555, where 111111 is the network number and
555 the station number. If the network number is zero, the first four characters are
spaces; if it is non-zero, leading zeros are converted to spaces. If the network
number was zero, leading zeros in the station number are converted to spaces;
otherwise they are left as zeros.

RO returns pointing to the start of the buffer. This is convenient for calling
OS_ WriteO. R I points to the null at the end of the buffer. This is convenient for
adding further text after it.

1-473

1-474

Related SWis

OS_ConvertNetStation (page 1-475)

Related vectors

None

Conversions

OS_ ConvertNetStation
(SWI &EA)

Convert from an Econet station/network number pair to a string

On entry

RO =pointer to two word block (value to be converted)
Rl =pointer to buffer for resulting string
R2 = size of buffer

On exit

RO =pointer to buffer (RI on entry)
Rl =pointer to terminating null in buffer
R2 =number of free bytes in buffer

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

RO points to two words in memory. The first word conta ns the station number and
the second word contains the network number.

This call performs the same conversion as OS_ Convert · ixedNetStation, but
suppresses zeros and spaces wherever possible, to yiel the shortest possible
string.

RO returns pointing to the start of the buffer. This is co venient for calling
OS_ WriteO. R I points to the null at the end of the buff r. This is convenient for
adding further text after it.

Related SWis

OS_ConvertFixedNetStation (page 1-4 73)

1-475

OS_ConvertNetStation (SWI &EA)

1-476

Related vectors

None

•

Conversions

OS_ConvertFixedFileSize
(SWI &EB)

Convert an integer into a fi les ize string of a fixed length

On entry

RO = filesize in bytes
Rl =pointer to buffer
R2 = length of buffer in bytes

On exit

RO =pointer to buffer (Rl on entry)
Rl =pointer to terminating null in buffer
R2 = number of free bytes in buffer

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This SWI will convert an integer into a filesize string of a fixed length. The format of
the string is:

4_digit_number MIKispacebytesnu11

The 4_digit_number at the start is padded with spaces if it is less than four digits in
length; space and null are the ASCII characters 32 and 0 respectively.

RO returns pointing to the start of the buffer. This is convenient for calling
OS_WriteO. RI points to the null at the end of the buffer. This is convenient for
adding further text after it.

1-477

OS_ConvertFixedFileSize (SWI &EB)

1-478

Related SWis

OS_ConvertFileSize (page 1-4 79)

Related vectors

None

Convert an integer into a filesize string

Conversions

OS_ConvertFileSize
(SWI &EC)

On entry

RO = filesize in bytes
Rl =pointer to buffer
R2 = length of buffer in bytes

On exit

RO =pointer to buffer (RI on entry)
Rl =pointer to terminating null in buffer
R2 =number of free bytes in buffer

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This SWI will convert an integer into a filesize string. The format of the string is:

number [MIK)bytesnu11

The number at the start is up to four digits in length; null is the ASCll character 0. For
small sizes the optional 'M' or 'K' is omitted.

RO returns pointing to the start of the buffer. This is convenient for calling
OS_ WriteO. R I points to the null at the end of the buffer. This is convenient for
adding further text after it.

Related SWis

OS_ConvertFixedFileSize (page 1-4 77)

1-479

OS_ConvertFileSize (SWI &EC)

1-480

Related vectors

None

Conversions

*Commands
*Echo

Displays a string on the screen (after translating it using OS_GSTrans)

Syntax

*Echo string

Parameters

string string to display

Use

*Echo takes the string following it, translates it using OS_GSTrans, and then
displays it on the screen.

The main use for *Echo is in command scripts, where the command provides a
useful way of checking the progress of a script, especially when debugging a faulty
script, or when monitoring the progress of a series of operations.

Example

*Echo IGError! IM

Related commands

None

Related SWis

None

Related vectors

None

1-481

*Eva/

1-482

*Eval

Evaluates an integer, logical , bit or string expression

Syntax

*Eval expression

Parameters

Use

expression any combination of the operators listed earlier

*Eva! evaluates an integer, logical. bit or string expression, carrying out type
conversions where necessary, in a similar way to the BASIC EVAL command. It will
not handle floating point numbers. You can use *Eva! to do simple arithmetic
(although the desktop Calculator is easier to use for four-function arithmetic). or to
evaluate more complex expressions. Programmers may find the command useful
for doing 'off-line' calculations (checking on remaining space, for example).

See the section entitled Evaluation operators on page I -444 for a description of the
operators that you can use. Note that monadic plus/minus operators are not
correctly handled in RISC OS 2 (eg *Eva! 50*-3 gives a 'Missing operand' error).

Example

*Eval 127 * 23 >> 2
Result is an integer, value 730

Related commands

*If. •setEval

Related SWis

OS_EvaluateExpression (page 1-457)

Related vectors

None

Conversions

*If

Conditionally executes a * Command, depending on the value of an expression

Syntax

*If expression Then command [Else command]

Parameters

Use

expression

command

an integer expression

any valid * Command

If conditionally executes a Command, depending on the value of an expression.
The expression can be any integer expression, including (if necessary) variable
names enclosed in angled brackets.

The expression is evaluated by the operating system's expression evaluation. If the
If-expression evaluates to a non-zero value, the Then-clause is executed. If the
If-expression evaluates to zero, and there is an Else-clause, the Else-clause is
evaluated.

If you wish to compare a variable to a string both must be enclosed in double
quotes to ensure a string comparison is performed; see the first example.

See the section entitled Evaluation operators on page I -444 for a description of the
operators that you can use.

Example
*If "<name> " = "Michael" Then Echo Hi Mike! Else Echo Go away <name> !

If <Sys$Year>=l992 Then Run Calendar

Related commands

*Eva!

Related SWis

None

Related vectors

None

1-483

1-484

19 Extension ROMs

Extension ROMs are ROMs fitted in addition to the main ROM set, which provide
software modules which are automatically loaded by RISC OS on a reset. Note that
RISC OS 2 does not support extension ROMs.

Extension ROMs are provided so that Acorn can add extra modules to RISC OS, or
provide replacement modules for those already in RISC OS. You must not use
them. It is the Expansion Card Manager's responsibility to recognise extension
ROMs. For it to do so, extension ROMs need to have headers. which are detailed in
the chapter entitled Expansion Cards and Extension ROMs on page 4-115. That chapter
also gives details of the software that RISC OS provides to manage and
communicate with extension ROMs (and, of course, expansion cards). Expansion
cards and extension ROMs are covered together because both use substantially
the same layout of code and data. and the same SWis.

It is the kernel's responsibility to load any relocatable modules from any extension
ROMs- once the Expansion Card Manager has recognised them. For your
information, the chapter entitled Modules on page 1-197 gives details of how the
modules are loaded on a reset.

1-485

1-486

Part 3 - Kernel input/output

1-487

1-488

20 Character Output

Introduction
The Character Output system can send characters to the computer's output
devices. They can be any or all of the following:

e the VDU

• the serial port

• a file on any filing system

• the currently selected printer

The Character Output system gives full control of the operation of each of these
devices. Since they all have different characteristics, they must be controlled in
different ways .

Character Output provides a means of directing characters to the device(s) that are
required . It is like a train shunting yard that can send characters, like trains, to the
right destination. It can also hold them, waiting until the destination is free to take
them.

1-489

Overview

Overview
The Character Output system can be divided by an imaginary horizonta l line.
Above it is the part independent of the device(s) that the characters will end up at
Below the line is the control of each of the devices.

Terminology used
• A device is the hardware that is used to send characters to some external form,

such as shapes on a VDU or voltages on a serial line or onto a floppy disk and
so on.

• A port is like a device, though it really refers more to the actual connection to
the outside.

• A device driver is the low level code that operates a device.

• A stream is a connection between a program and a device. Streams can also go
from one program to many devices.

Back-doors

Normally, a program will go through the stream system to access output devices.
However, 'back-doors' are provided to allow directly writing to a given device. A
major reason for wanting to do this is speed, since the stream system necessarily
takes time . Another is that this back-door approach gives much more direct control
of the device and more immediate feedback on problems. A modem driving
program , for example, needs to be able to react quickly to information on the serial
line.

Device independence

1-490

Device independence means that any program using the stream system doesn't
have to know the destination of the characters it is outputting. Most programs
don't , since it will not affect their actions . If they do need to, then back-doors are
available.

OS_WriteC

The core of the stream system is the SWI OS_ WriteC which outputs a single
character. It looks at which of the devices have been enabled and sends a copy of
the character to each of them. It is in turn called by many other SW!s, printing a
string for example. Characters from these other SW!s stream into OS_WriteC and
from there out to the correct device.

Character Output

Buffers

A program running in RISC OS works at one rate, while the hardware devices all
work at different rates. This is called asynchronous operation, since the two are not
synchronised. To solve this problem, buffers are used. A buffer is simply an area of
memory that has been set aside to temporarily hold data. RISC OS provides
buffering for all the devices used by the stream system. A program will write into a
buffer, while interrupts asynchronously read it out. If a buffer became full, then
RISC OS would wait until it had emptied somewhat. then continue, without the
calling program ever being aware it had happened.

Devices

Printer stream

OS_ WriteC can be set up to send to one or many of the following list of devices:

• the printer stream

• the serial driver

• the spool (filing system) driver

• the VDU driver.

The control of which devices are enabled at any time is very simple and can be
changed as frequently or infrequently as desired.

These are briefly summarised below, and described in depth in later sections.

There are several ways in which the printer stream may be directed. Unlike the high
level output streams previously discussed, where several devices may be used at
once, only one printer device may be active at any one time. The printer stream is,
in effect. a subpart of the full stream system.

Like the stream system, the printer stream has a number of devices it can use. The
ones available by default are:

• printer sink

• Centronics parallel

• serial port

• network printer

• user printer driver.

The printer sink is a special case. Unlike the other drivers, which operate some
hardware, the printer sink is a null printer device. This simply absorbs any
characters sent to it. For example, it is a device that can be used when you don't
want any form of printer output with an application that uses the printer.

1-491

Serial output device

The Centronics parallel device allows printing on any standard parallel printer. This
includes virtually all of the low cost printers sold.

The RS423 serial device can be connected to any serial printer. RS423 is like the
more usual RS232 serial standard, but is better whilst still being compatible with
any RS232 device.

The network printer is the one that is accessed remotely across a network. See the
chapter entitled NetPrint on page 2-385 for details of this.

Finally, the user printer driver allows programmers to write a driver to support a
device not listed here.

Note that this chapter concerns itself only with the character print routines. See
the chapter entitled Printer Drivers on page 3-555 for information on the drivers that
must be used for any graphical printing.

Serial output device

Spool device

1-492

The device driver software takes characters from the stream system and puts them
into the serial hardware, manipulating it to send them off.

The serial hardware itself changes the character into a series of voltage changes on
its connection with the outside. These voltages and other control lines work
together to communicate with another serial port on another machine. The baud
rate of a serial port is the number of bits per second that it is sending or receiving.
Under RISC OS, these rates can be controlled independently, although not all
machines will support different transmit and receive rates .

Calls that are specific to the serial port , whether they refer to input or output (eg
those to set the baud rate , or to explicitly~send/receive a character from/to the
serial port), are gathered together in the chapter entitled Serial device on page 2-439.

In RISC OS, you can spool characters to a file on a filing system as if it were a
sequential device. The term itself is an archaic one that has passed down from
early mainframe computers.

It is very easy to use a spool file . There is a command to start spooling output to a
named file , and another to stop spooling and close the file. Also, you can change
the file you are spooling to at any time, without having to close and re-open it.

VDU device

Character Output

The VDU device driver will put any characters or graphics onto the screen. Some
characters are displayed directly, while others are interpreted as graphics
commands. This chapter contains details of the interface to the VDU system, but
for a detailed description of the VDU system, refer to the chapter entitled VDU
Drivers on page 1-527.

1-493

Technical Details

Technical Details

Device independence

Printer stream

The core of the output stream is the SWI OS_ WriteC. This is called via WrchV. the
Write Character vector. Note that if this vector is ever replaced then all of the other
routines that use it will also be redirected. OS_ WriteC is called by many routines;
in this chapter OS_ WriteS, OS_ WriteO, OS_ WriteN , OS_NewLine, OS_PrettyPrint
and OS_ Write!.

OS_Byte 3 controls which devices characters get sent to. It sets a byte in which
each bit represents a different output device state. Some of these bits enable
whether a device gets characters or not. There are complications however, which
are described fully in the following sections.

The printer stream can be enabled by OS_Byte 3 or using VDU codes. The selection
of the printer is done by OS_Byte 5. The printer can be made to ignore a specific
character by using OS_Byte 6.

OS_Byte 3

1-494

Three bits in the byte sent to OS_Byte 3 to select output streams control whether a
character is sent to the printer. In addition, a character may also be sent to the
printer under the control of the VDU stream.

Bit 2 provides global control over the printer. If this bit is set, then it is not possible
for OS_WriteC to cause a character to be inserted into the printer buffer. If it is
clear, then the character may or may not be sent to the printer, depending on the
state of the other bits.

Bit 6 acts in a similar way: if it is clear. characters may be sent to the printer, but if
it is set, they are stopped. There is still one way of getting characters to the printer
if bit 6 is set; this is described below.

Assuming bits 2 and 6 are clear, then the simplest way of enabling the printer is by
setting bit 3. When this is done, all characters sent to OS_WriteC (except the
printer ignore character) will be inserted into the printer buffer.

Character Output

VDU printer control

The most common way of controlling the printer is through the YOU driver. If the
YOU stream is enabled (bit I of the output stream's byte is clear), then sending the
code ASCII 2 (Ctrl-8) to OS_ WriteC enables the YOU printer stream. Once this is
done, all printable characters and some control characters sent to the YOU stream
will also go to the printer. Sending ASCII 3 (Ctrl-C) to the YOU disables the copying
of characters to the printer.

A further control code, ASCII I (Ctrl-A). causes the next character to be sent to the
printer (if enabled by Ctrl-8), but not to the screen. All characters may be sent this
way, including the control codes which are usually ignored by the YOU printer
stream, and the printer ignore character.

If either bit 6 or bit 2 of the streams byte is set. then the YOU printer stream has no
effect. The exception is when the character is preceded by a Ctri-A. In this case, bit
6 will not prevent the character from being sent, although bit 2 will.

More details of the YOU printer stream control codes are given in the chapter
entitled YOU Drivers on page I -527.

1-495

Printer stream

1-496

The flow of control of the filtering- which controls which characters sent to the
VDU stream also get sent to the printer- is summarised by the diagram below:

Bit 6 clear

Character in
range 8-13,
32-126, or
128-255

Bit 2 clear

Figure 20.1 Flow of control of filtering in the printer stream

Character Output

OS_Byte 5

Regardless of how a character gets to the printer stream, it is then sent to the
current printer device. This is set by OS_Byte 5. It is passed a byte which can select
one of 256 potential drivers, 4 of which are supplied with RISC OS.

• printer sink

• parallel

• serial

• network

When an OS_Byte 5 is used, the new destination streams come into effect only
when all the current contents of the printer buffer have been sent to the
previously-selected driver. This means that when you issue this OS_Byte, the
calling task may appear to hang until the current printer buffer's contents are
cleared. This may be forced by generating an escape condition.

The default printer device is stored in CMOS RAM and is set by *Configure Print.

OS_Byte 245

OS_Byte 245 (SWI &F5) may be used to read the current printer type, but not to set
it. as it does not wait for the printer buffer to empty first. Because of this, it does
not enable interrupts, so may be used to read the printer type from within an
interrupt routine.

Ignore character

The printer ignore character is one which is suppressed from the printer stream,
unless it got there via the VDU printer stream and was preceded by ASCII I (Ctrl-A).
The character can be set and read using OS_Byte 246. For compatibility with older
Acorn operating systems, OS_Byte 6 can also set it and OS_Byte 245 can read it.

*Ignore can be used to set the printer ignore character from the CLI. *Configure
Ignore will set it permanently in CMOS RAM. The default value is 10, an ASCII
linefeed.

No ignore

There may be no printer ignore character, in which case all characters are sent. This
is called the Nolgnore state and can be set with OS_Byte 182.

*Ignore with no parameter has the same effect from the CLI. *Configure Ignore
with no other parameters will set the Nolgnore state permanently in CMOS RAM.

1-497

Serial device

Serial device
The serial device is provided as a DeviceFS (Device Filing System) device. For full
details, see the chapter entitled DeviceFS on page 2-421, and the chapter entitled
Serial device on page 2-439. The latter chapter also contains all calls that are specific
to the serial port, whether they refer to input or output- such as those to set the
baud rate , or to explicitly sencl!receive a character to/from the serial port.

(Under R1SC OS 2, the serial device was provided by the SystemDevices module.
See the section entitled The RISC OS 2 serial device on page 2-487.)

OS_Byte calls in this chapter

Spool device

OS_Bytes 3 and 5 can be used to select the serial port as an output stream.
OS_WriteC and the SWis that use it would be used to write to its buffer, with
RISC OS handling buffer full conditions and so on. (However, there are preferred
calls for sending a byte to the serial port; see the chapter entitled Serial device on
page 2-439.)

When bit 0 of the OS_Byte 3 streams byte is set, characters sent to OS_ WriteC are
passed to the serial output stream. In particular, they are inserted into the serial
output buffer (buffer number 2). where they remain until removed by the interrupt
routine dealing with serial transmission.

Note that if the serial port is selected as the printer by OS_Byte 5, and the serial
port is enabled by setting bit 0 of the stream's byte with OS_Byte 3, then the
character is inserted into both buffers. This means that eventually the character is
printed twice, first from the serial output buffer and then from the printer buffer. To
solve this problem, make the printer another device type, such as the printer sink,
which allows data sent to the printer to be ignored.

When a spool file is opened, all characters subsequently displayed using
OS_WriteC are also sent to that file, using the OS_BPut routine. This action
continues until the file is closed.

Opening and closing

1-498

There are two ways of opening and closing a spool file. The simplest is to use the
CLI commands *Spool or *SpoolOn to start output going into the named file.

To stop spooling and close the file, a *Spool or *SpoolOn command with no
parameters must be issued, or you can stop it directly by using OS_Byte 199
documented below.

Character Output

OS_Byte 3

The spool file stream can be temporarily disabled by setting bit 4 of the streams
byte in OS_Byte 3. This does not close the file . but prevents OS_WriteC from trying
to send the character to file.

OS_Byte 199

VDU device

OS_Byte 199 (SWI &C7) provides direct control over the spool file. without the
necessity of using the CLI . It reads and writes the location which holds the handle
of the current spool file. If this is zero. OS_ WriteC makes no attempt to use the
spool stream . as no file is open. You will only need to use this command for
sophisticated programs that. say, keep swapping between several spool files .

The VDU driver will display characters and graphics on the screen. The value of the
character sent determines its effect. Below is a list of the meanings of different
characters. Note that in Teletext modes. a different set is in use.

Character

0- 31
32- 126
127
128- 159
160 - 255

Meaning

VDU commands (graphics and control)
ASCII characters
Delete
Acorn defined characters. and user definable characters
ISO international characters

Note that if defining characters in the range 128- 159 under the Desktop, you
should always first read the current definition of the character using OS_ Word I 0
and then redefine it for the duration of the redraw. Always ensure that the character
definition is restored (not set to the default using *FX 25) before calling
XWimp_Poll again .

Disabling VDU driver

If an OS_Byte 3 with bit I set is sent. then the VDU driver is disabled. This prevents
all output from appearing on the screen . Also. as control codes will not be acted
on, it disables the VDU printer stream. described in an earlier section .

Disabling the VDU. by setting this bit. is independent of the ASCII 2 I (Ctrl-U).
which will disable the VDU drivers . The main difference is that the VDU printer
stream will still work. if already enabled by ASCII 2 (Ctrl-B). after an ASCII 21 .

1-499

VDUdevice

1-500

VDUXV
VDUXV is the VDU extension vector. When an OS_Byte 3 with bit I clear
(VDU enabled) and bit 5 set (VDUXV enabled) is issued. characters that would
usually be sent to the VDU drivers are sent instead to the routine on the VDU
extension vector. This allows you to replace the VDU drivers. usually temporarily.
The font manager. for example. uses this facility.

The character sent to VDUXV can be sent to the printer stream by setting the carry
flag on return from the vector.

See the chapter entitled Software vectors on page 1-63 for more details on installing a
routine on this vector.

Direct Control

OS_Plot can be used to write to the VDU directly rather than going through the
stream system. It is consequently faster. It is described on page 1-717.

SWI Calls

Writes a character to all of the active output streams

Character Output

OS_WriteC
{SWI &00)

On entry

RO = character to write

On exit

RO preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

use

SWI is not re-entrant

This call sends the byte in RO to all of the active output streams. This is called as a
low level writer by several other routines.

OS_ WriteC calls the Write character vector WrchV, the default action of which is to
send the character to all active output streams. If this vector is replaced using
OS_ Claim (see page I -66). then all of the SW!s that use this vector will be
funnelled into the rep:acement routine.

All the routines that call OS_ WriteC may not actually call OS_WriteC or even WrchV
unless there is some pressing reason to do so. For example, if WrchV is being
intercepted by someone else as well as the default ROM routine, or if a spool file is
active, or if the printer is active etc.

1-501

OS_ WriteC (SWI &00)

1-502

Related SWis

OS_WriteS (page 1-503), OS_WriteO (page 1-504). OS_NewLine (page 1-505).
OS_PrettyPrint (page 1-518). OS_WriteN (page 1-522). OS_Writel (page 1-523),
OS_Byte 3 (page 1-506)

Related vectors

WrchV

Writes the following string to all of the active output streams

On entry

On exit

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

Character Output

OS_WriteS
{SWI &01)

This call sends the string that immediately follows the SWI instruction to all of the
active output streams. It uses OS_ WriteC directly a character at a time. The string
is terminated by a null byte.

This SWI alters its return address so that execution continues at the word after the
end of the string. Consequently you must not conditionally execute this SWI.

Related SWis

OS_ WriteC (page I -50 I)

Related vectors

WrchV

1-503

OS_ WriteO (SWI &02)

1-504

Writes an indirect string to all of the active output streams

On entry

RO =pointer to null-terminated string to write

On exit

RO =pointer to the byte after the null byte

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

OS_WriteO
(SWI &02)

This call sends the string pointed to by RO to all of the active output streams. It
uses OS_WriteC directly a character at a time. The string is terminated by a null
byte.

Related SWis

OS_ WriteC (page 1-50 I)

Related vectors

WrchV

Character Output

OS_Newline
(SWI &03)

Writes a line feed followed by a carriage return to all of the active output streams.

On entry

On exit

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call writes a line feed followed by a carriage return to all of the active output
streams. It uses two calls to OS_Writei to do so, which in turn call OS_WriteC.

Related SWis

OS_ WriteC (page I -501), OS_Writei (page 1-523)

Related vectors

WrchV

1-505

OS_Byte 3 (SWI &06)

1-506

Selects the output streams that are active

On entry

RO = 3 (reason code)
R I = bit mask for output streams

On exit

RO preserved
R I = previous stream specification
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SYC mode

Re-entrancy

SWI is not re-entrant

Use

OS_Byte 3
(SWI &06)

This call selects which output stream(s) are active, and will hence receive all
subsequent output. A bit mask in Rl determines this:

Bit Effect if set

0 Enables serial driver
Disables YOU drivers

2 Disables YOU printer stream
3 Enables printer (independently of the YOU)
4 Disables spooled output
5 Calls YDUXY instead of YOU drivers (see the chapter on YOU)
6 Disables printer, apart from YOU I ,n
7 Not used

Character Output

The interpretations of all of these bits are described in subsequent sections. All
bits are zero by default. This means that the VDU drivers, the VDU printer stream
and the spool stream are enabled, and other streams disabled

Details of how bits I, 2, 3 and 6 interact is described in the section entitled Technical
Details on page 1-494 onwards.

Related SWis

OS_Byte 236 (page 1-514)

Related vectors

ByteV. VDUXV, WrchV

1-507

..

•

OS_Byte 5 (SWI &06)

1-508

OS_Byte 5
(SWI &06)

Sets which PrinterTypeS .. variable holds the printer output path

On entry

RO = 5 (reason code)
Rl =number n of PrinterTypeSn variable to use (0- 255)

On exit

RO = preserved
Rl =previous printer driver type
R2 =corrupted

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call sets which PrinterType$... variable holds the path to use for subsequent
printer output.

For Rl = n the path held in the variable PrinterTypeSn is used. The default values of
these variables route printed output as follows:

n Printer
0 Null (no output)
I Parallel port
2 Serial port
3 Path in system variable PrinterType$3 (reserved for user printer driver)
4 Network printer (handled through NetPrint)
5-255 Paths in system variables PrinterType$5 to PrinterType$255

Character Output

Under RISC OS 2 values of 0, l or 2 explicitly set output as given above, rather than
by consulting the variables PrinterType$0, Sl and $2.

The default variable to use is set by •configure Print; for this purpose, n is
restricted to the range 0- 7.

Note that if the current PrinterType$... variable is set to the serial device's path,
and the serial port is enabled by setting bit 0 of the stream's byte, then the
character is inserted into both buffers. This means that eventually the character is
printed twice (first from the serial output buffer). so this practice is not
recommended.

The new PrinterType$.. . variable comes into effect only when all the current
contents of the printer buffer have been sent to the path held in the previously
selected variable. This means that when this OS_Byte is issued, or the
corresponding *FX command , the machine may appear to hang until the current
printer buffer's contents are cleared. (You may force this to happen by
acknowledging an escape condition from the foreground, provided that the escape
side effects are enabled .)

Related SWis

OS_Byte 8 (page 2-445). OS_Byte 245 (page l-515)

Related vectors

ByteV

1-509

OS_Byte 6 (SW/ &06)

1-510

Sets the printer ignore character

On entry

RO = 6 (reason code)
Rl =ASCII code of ignore character

On exit

RO =preserved
R I = previous ignore character
R2 =corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 6
(SWI &06)

This call sets the printer ignore character to the specified ASCII code. This
character is filtered out when printing is enabled via the VDU printer stream or
OS_Byte 5(page 1-508).

The default value of the printer ignore character is set by *Configure Ignore. You
may temporarily change it using this OS_Byte, or *Ignore. The latter has the
advantage that it also allows a Noignore state to be set.

Related SWis

OS_Byte 5 (page 1-508). OS_Byte 182 (page 1-511). OS_Byte 246 (page 1-517)

Related vectors

ByteV

Reads/writes the printer Noignore state

Character Output

OS_Byte 182
(SWI &06)

On entry

RO = I82 (reason code)
R I = 0 to read or new state to write
R2 = 255 to read or 0 to write

On exit

RO =preserved
R I = state before being overwritten
R2 =corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The state stored is changed by being masked with R2 and then exclusive ORd with
RI: ie ((state AND R2) XOR RI). This means that R2 controls which bits are
changed and RI supplies the new bits.

This call allows reading the current Noignore state or changing it to a new value.

Ifthe value read or written is &80 (ie has bit 7 set). then the printer ignore character
is not used. If bit 7 is clear, then the current printer ignore character is filtered out.

The default setting of this flag is controlled by *Configure Ignore and may be
changed temporarily using *Ignore.

1-511

OS_Byte 182 (SWI &06)

Related SWis

OS_Byte 6 (page I -5 I 0). OS_Byte 246 (page I -5 I 7)

Related vectors

ByteV

1-512

Reads/writes the spool file handle

On entry

RO = 199 (reason code)

Character Output

OS_Byte 199
(SWI &06)

Rl = 0 to read or new handle (as returned by OS_Find) to write
R2 = 255 to read or 0 to write

On exit

RO = preserved
R I = handle before being overwritten
R2 = corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call reads/writes the spool file handle, which sets the destination of spooled
data. The handle must have been correctly returned from a previous call to
OS_Find (page 2-72). If the file handle is zero, or if spooling is disabled by
OS_Byte 3, then no spooled data is sent.

Related SWis

OS_Byte 3 (page 1-506), OS_Find (page 2-72)

Related vectors

ByteV

1-513

OS_Byte 236 (SWI &06)

1-514

Read/write character destination status

On entry

RO = 236 (reason code)
Rl = 0 when reading or new status when writing
R2 = 255 to read or 0 to write

On exit

RO =preserved
R I = status before being overwritten
R2 =cursor key status (see OS_Byte 237, page 1-898)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 236
(SWI &06)

The status stored is changed by being masked with R2 and then exclusive ORd with
Rl. ie ((status AND R2) XOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

This call reads and writes the output stream's value. This can also be written by
OS_Byte 3. See OS_Byte 3 for a list of the bit values.

Related SWis

OS_Byte 3 (page 1-506)

Related vectors

ByteV

Character Output

OS_Byte 245
(SWI &06)

Reads which PrinterTypeS ... variable holds the printer output path

On entry

RO = 245 (reason code)
Rl = 0
R2 = 255

On exit

RO = preserved
Rl =value before being overwritten
R2 =value of printer ignore character (see OS_Byte 246, page 1-517)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call reads which PrinterTypeS .. variable holds the path to use for subsequent
printer output

For Rl = n the path held in the variable PrinterTypeSn is used. The default values of
these variables route printed output as follows:

n Printer

0 Null (no output)
I Parallel port
2 Serial port
3 Path in system variable PrinterType$3 (reserved for user printer driver)
4 Network printer (handled through NetPrint)
5-255 ~aths in system variables PrinterType$5 to PrinterType$255

1-515

OS_Byte 245 (SWI &06)

1-516

Under RISC OS 2 values of 0, I or 2 explicitly set output as given above, rather than
by consulting the variables PrinterType$0, S I and $2.

The value stored must not be changed by making RI and R2 other than the values
stated above. Use OS_Byte 5 instead to write.

This call does not wait for the printer buffer to empty first. Because of this, it does
not enable interrupts, and so may be used to read the printer type from within an
interrupt routine.

Related SWis

OS_Byte 5 (page I -508)

Related vectors

ByteV

Read/write printer ignore character

On entry

RO = 246 (reason code)
RI = 0 to read or new ASCII value to write
R2 = 255 to read or 0 to write

On exit

RO = preserved
RI =value before being overwritten
R2 = corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Character Output

OS_Byte 246
(SWI &06)

The value stored is changed by being masked with R2 and then exclusive ORd with
RI: ie ((value AND R2) XOR RI). This means that R2 controls which bits are
changed and RI supplies the new bits.

This call allows reading the current state of the printer ignore character or changing
it to a new value.

Related SWis

OS_Byte 6 (page 1-510). OS_Byte 182 (page 1-511)

Related vectors

ByteV

1-517

OS_PrettyPrint (SW/ &44)

1-518

OS_PrettyPrint
(SWI &44)

Write an indirect string with some formatting to all of the active output streams

On entry

RO = pointer to null-terminated string to write
Rl =pointer to dictionary (0 means use the internal RISC OS dictionary)
R2 = pointer to null-terminated special string

On exit

RO = preserved
R I = preserved
R2 = preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call acts like OS_WriteO (page 1-504), with several differences:

• Several characters have special meanings to OS_PrettyPrint.

• It will break a line at a SPACE (ACSII 32) if the next word will not fit on the line;
it will not do this at hard spaces.

• Compacted text is handled.

The following characters in the string have special meanings:

• CR (ASCII 13) causes a newline to be generated.

• TAB (ASCII 9) causes a tabulation to the next multiple of eight columns.

e SPACE (ASCII 31) is a hard space.

Character Output

• ESC (ASCII 27) indicates that a dictionary entry should be substituted.

Compacted text uses an escape character in the print string to indicate a dictionary
entry. It is followed immediately by a byte which is the dictionary entry number. If
this byte is in the range I to 255, then the appropriate string in the dictionary is
substituted. If it is 0, then the special string pointed to by R2 on entry is
substituted. (This is used in particular by the *Help command.)

The format of a dictionary is a linear list of entries, which can recursively refer to
other dictionary entries; each entry is a length byte followed by a null-terminated
string. This means that a dictionary does not have to have 255 entries. It can be
ended at any point with a zero length entry.

The content of the RISC OS dictionary is summarised below:

Token String
0 string pointed to by R2
I "Syntax: *"string pointed to by R2
2 " the "
3 "director "
4 "filing system "
5 "current "
6 " to a variable . Other types of value can be assigned with *"
7 "file "
8 "default "
9 "tion "
IO "*Configure
II "name"
12 " server "
13 "number"
14 "Syntax: *"string pointed to by R2 " < "
15 " one or more files that match the given wildcard"
16 " and "
I 7 " relocatable module "
18 CR"C(onfirm) "TAB" Prompt for confirmation of each "
19 "sets the "
20 "Syntax: *"string pointed to by R2 " [<disc spec.>]"
21 "}"CR"V(erbose)"TAE"Print information on each file"
23 "spriteLandscape [<XScale> [<YScale> [<Margin> [<Threshold>]]]]]"
24 " is used to print a hard copy of the screen on EPSON-"
25 "."CR"Options: (use- to force off, eg. -"
26 "printe"
27 "Syntax: *"string pointed to by R2" <filename> "
28 "select "
29 "xpression"
30 "Syntax: *"string pointed to by R2" ["
31 "sprite"
32 " displays "
33 "free space"
34 " {off} "
35 "library"
36 "parameter"
37 "object"

1-519

OS_PrettyPrint (SWI &44)

38 all "
39 "disc "
40 to
41 is

Related SWis

OS_WriteC (page 1-501)

Related vectors

None

1-520

Send a character to the printer stream

On entry

RO = character to print

On exit

RO = preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Character Output

OS_PrintChar
{SWI &50)

This call sends a character to the printer. OS_Bytes 3 and 5 control whether there is
a printer selected and which device it is.

Note that the printer ignore character (see OS_Byte 6, page 1-510) is not used by
this call.

Related SWis

None

Related vectors

None

1-521

OS_ WriteN (SWI &46)

1-522

Write a counted string to the VDU

On entry

RO = pointer to string to write
Rl =number of bytes to write

On exit

RO, Rl preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

OS_WriteN
(SWI &46)

If the VDU is the only active stream, this call uses the low-level VDU drivers directly,
and is therefore much more efficient than using multiple calls to OS_WriteC. Also,
because no special character is used to mark the end of the string, any VDU
sequence may be sent.

Related SWis

OS_ WriteC (page 1-50 I). OS_ WriteS (page 1-503). OS_ Writ eO (page 1-504)

Related vectors

WrchV

Character Output

OS_Writel
(SWis &1 00-1 FF)

Write an immediate byte to all of the active output streams

On entry

On exit

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call writes the character contained in the bottom byte of the SWI number,
using OS_WriteC. It has the advantage of being more compact and quicker for a
program using it than the equivalent usage of OS_ WriteC. For example, to write a
T character, you would use:

SWI OS_Writei + ASC"J"

Related SWis

OS_WriteC (page 1-501)

Related vectors

WrchV

1-523

*Commands

*Commands

1-524

*Configure Ignore

Sets the configured printer ignore character

Syntax

*Configure Ignore [ASCII_code]

Parameters

Use

ASCII_ code ASCII code, from 0 to 255

*Configure Ignore sets the configured printer ignore character to the specified
ASCII code. This character is filtered out when printing is enabled via the VDU
printer stream or OS_Byte 5. With no parameter, the Noignore state is configured,
so all characters will be printed.

The default value is I 0 (ASCII linefeed). On some printers, you may find this causes
lines to overprint each other, in which case you should omit the ASCII code so all
characters are sent to the printer. *Configure Ignore 0 will not ensure all characters
are printed; it will set the configured printer ignore character to ASCII 0 (the null
character).

The change takes effect on the next hard reset.

Example

*Configure Ignore 10

*Configure Ignore

Related commands

*Ignore

Related SWis

Do not print ASCII character I 0

Print all characters

OS_Byte 6 (page 1-51 0), OS_Byte 5 (page 1-508), OS_Byte 182 (page 1-511),
OS_Byte 246 (page 1-517)

Related vectors

None

Character Output

*Configure Print

Sets the configured default destination for printed output

Syntax

*Configure Print n

Parameters

Use

n 0 to 7

*Configure Print sets the configured default destination for printed output. For a
value n the path held in the variable PrinterTypeSn is used. The default values of
these variables route printed output as follows:

n Printer

0 Null (no output)
I Parallel port
2 Serial port
3 Path in system variable PrinterType$3 (reserved for user printer driver)
4 Network printer (handled through NetPrint)
5-7 Paths in system variables PrinterType$5, 6 or 7

Under RISC OS 2 values of 0, I or 2 explicitly set output as given above, rather than
by consulting the variables PrinterType$0, S I and $2.

The change takes effect on the next hard reset.

Example

*Configure Print 1 select the parallel printer port

Related commands

None

Related SWis

OS_Byte 5 (page 1-508)

Related vectors

None

1-525

*Ignore

1-526

*Ignore

Sets the printer ignore character

Syntax

*Ignore [ASCII_code]

Parameters

Use

ASCII_ code ASCII code, from 0 to 255

*Ignore sets the printer ignore character to the specified ASCII code. This character
is filtered out when printing is enabled via the VDU printer stream or OS_Byte 5.
With no parameter, the Nolgnore state is set, so all characters are printed.

The default value is I 0 (ASCIIlinefeed) . On some printers, you may find this causes
lines to overprint each other, in which case you should omit the ASCII code so all
characters are sent to the printer. *Ignore 0 will not ensure all characters are
printed; it will set the printer ignore character to ASCII 0 (the null character) .

OS_Byte 6 performs the same action as this command; OS_Byte 246 also reads
and writes the printer ignore character. OS_Byte 182 controls the Nolgnore state .

Example

*Ignore 10

*Ignore

Related commands

None

Related SWis

Do not print ASCII character I 0

Print all characters

OS_Byte 5 (page 1-508), OS_Byte 6 (page 1-51 0), OS_Byte 182 (page 1-511),
OS_Byte 246 (page 1-517)

Related vectors

None

21 VDU Drivers

Introduction
Though strictly speaking part of the character output system, the VDU drivers are
quite complex, and deserve a chapter of their own. This chapter introduces the
important concepts relating to the VDU, such as:

• screen modes

• graphics and text windows

• colour palette

• colour patterns

• the mouse

• putting text and graphics on the screen

• multiple display pages

The chapter entitled Character Output on page 1-489 described how to write to the
VDU. This chapter describes what special effects occur when particular characters
are sent.

There are also a large number of VDU specific commands that allow fine control of
its operation .

There are five important aspects ofVDU interaction which are not described in this
chapter. These are:

• the Font manager

• the Window manager

• the Draw module

• Sprites

• the ColourTrans module

These are implemented as modules separate from the RISC OS kernel. and are
described in their own chapters.

1-527

Overview

Overview
The most important call relating to the VDU is OS_ WriteC, as this is used in nearly
all programs which have to output to the screen. Other calls can be used for more
direct control of the VDU facilities.

The VDU display on RISC OS comes from the VIDC chip. This reads the contents of
a block of memory and converts it into a form that can drive a video monitor.

VDU commands

Modes

1-528

This chapter differs from others in this manual in that, in addition to a list of SWis
and •commands, there is also a list of VDU commands. To issue VDU commands,
simply use OS_ WriteC to send characters to the VDU stream. All characters are
strictly VDU commands, but those between 0 and 3 I, and I 27 are of special interest
because they cause special actions to take place. The others are simply printed on
the screen as a character.

These special characters are used as commands. They can be followed by a
sequence of characters. the length of which depends on the command . In some
cases , the character on its own is sufficient. but it can require up to 9 following
bytes to complete the command . These bytes are queued until the required
number are in the queue before the command is executed.

To represent these sequences of characters sent to the VDU using OS_ WriteC, a
shorthand is used in this chapter. You will see VDU followed by numbers separated
by commas. This represents each character being sent through OS_ WriteC.

For example, VDU 65 sends character 65 , an ASCII 'P\, to OS_ WriteC. VDU I 7.3
sends character I 7 followed by character 3.

RISC OS supports many different ways of displaying information on the screen.
Each of these different ways is called a mode. The exact number of modes available
depends on the type of monitor you have. They are all bit-mapped displays, in
which one or more bits of screen memory control the colour of a dot. or pixel. on
the screen. Two main characteristics distinguish the modes.

• The resolution of a mode relates to the number of pixels which can be
displayed horizontally and vertically.

• The number of colours that can be displayed at once is determined by the
number of bits used to store each pixel. Typically, this can be I, 2, 4 or 8 bits.
leading to 2, 4, I6 or 256 colours on the screen at once .

VDU Drivers

Between them, the resolution and number of colours determine the amount of
screen memory used by a mode.

A complete list of the available modes is given in the description of VDU 22 on
page 1-574, which is the command that changes modes.

Text and graphics
There are two distinct types of object that the VDU drivers can draw onto the
screen.

• The text VDU deals with drawing text characters

• The graphics VDU handles any arbitrary drawing of dots, lines, shapes, etc.

Windows

Different commands will act to either text or graphics areas. Each has a window, or
area where their output will go. After a mode change, both text and graphic
windows fill the screen and overlap each other exactly. There is no conflict in
having them overlap, since the window is just a declaration of boundaries . Either
window can be changed at any time to be any size. Any output to a window will be
clipped to it. For example, if only part of a line appears in the graphics window,
then only that part will be shown and the rest ignored.

A cursor is the place at which the next output will go. There are independent text
and graphics cursors, which must remain inside their relevant window.

Various control commands are provided to affect the output in text and graphics
windows. Examples of such actions are:

• changing the colours in which output occurs,

• moving the appropriate cursor,

• clearing the window.

Text VDU

Text characters are patterns of pixels which are positioned on the screen at
character-aligned positions. That is, the screen is treated like an array of character
sized boxes, into which can go any printable character.

All text display is normally confined to the text window. All scrolling is confined to
this region, sometimes called the scrolling window, because text can be scrolled
within it. The graphics window cannot be scrolled automatically; but you can use
block move to perform scrolling.

1-529

Cursor editing

The text cursor shows the position on the screen of the next character to be
displayed. This is usually a flashing underline. There can be a second cursor which
is used with cursor editing (this is described later).

Note that there are some screen modes that will only display text.

Graphics VDU

The graphics VDU handles the drawing of objects such as points, lines, circles,
ellipses, etc. The graphics window, like the text window, starts as the whole screen
after a mode change. The graphics cursor, which is invisible, marks the last point at
which a graphics operation ended.

Joining text and graphics

Cursor editing

1-530

The VDU driver can be configured to print text at the graphics cursor instead of the
text cursor. This means that text will be drawn using the current graphics cursor for
positioning, and using the graphics colour, etc. The advantage of this mode is that
it enables characters to be drawn at any pixel alignment, and to be clipped to the
graphics window (important when you use the Wimp environment). The
disadvantages are that the characters take longer to draw and scrolling is not
available. Generally, when text is printed at the graphics cursor, this is referred to
as VDU 5 mode because this is the command that enables it.

Although the cursor editing facility isn 't strictly part of the VDU drivers, its
presence does have some interaction with the VDU.

Usually there is only one text cursor, but when you press one of the four cursor
direction keys, cursor editing mode starts. There are now two cursors; the output
cursor, which is now shown as a steady 'blob', and the input cursor, which is an
underline flashing at twice the usual rate . The Copy key has the action of copying
what is under the input cursor to the output cursor as if it was typed.

See the chapter entitled Character Input on page I -835 for a full description of these
keys and their control.

Cursor editing mode is not available in VDU 5 mode, and it is cancelled when you
send an ASCII I 3 (carriage return) to the VDU stream. This is usually done when
you press Return at the end of an input line.

Colours

VDU Drivers

The number of colours available on the screen at any time is either 2, 4, 16 or 256.
When you first enter a mode, the default colours are assigned. These can
subsequently be changed with the palette.

256-colour modes

In 256 colour modes, there are 64 different colours, and each colour may have four
different shades, resulting in a total of 256 different colours.

Foreground and background

You may choose to display your text or graphics in a different colour from the
defaults. To do this , there are commands to change the foreground and
background of each. Usually, the foreground colour is that in which the text or
graphics drawing is done, and the background colour is used for all other drawing,
such as a screen clear. RISC OS can be changed so that the background colour is
used for drawing if required.

The palette

Another important part of the VDU is the palette. This is the control of what
colours appear on the screen. The palette is a table built into the VIDC chip which
determines the relationship between the colour number stored in the screen
memory (logical colour). and the actual colour information sent to the monitor
(physical colour). Care should be taken not to confuse logical and physical colours.
Thus, while colour 0 on RISC OS is black by default, it can be made to be any colour
by changing how the palette maps it.

The palette is programmed in terms of the intensity of the signal on each of the
red, green and blue guns in a colour monitor. These intensities have 4 bits each,
which gives twelve bits altogether, hence the 4096 (2 12) physical colours. Flashing
colours are accomplished by a logical colour having 2 physical colours associated
with it. These are swapped at a programmable rate, causing flashing.

The palette also controls the colour of the border around the screen and the
colours of the mouse pointer. These can be set independently of any other colour
on the screen.

1-531

Tints

Tints

ECF patterns

Bell

In 256 colour modes, each pixel is represented by an 8-bit value. Six bits are the
logical colour, and the other two bits are the tint. The tint is a direct control of the
amount of grey which is added to the base colour, to one of 4 levels.

The six bits in the logical colour set the basic colour from the range of different
shades of colours provided by the palette. The tint is the fine control within this
range.

The Extended Colour Fill patterns are a means of increasing the apparent number
of colours by producing a fine chequerboard mix of colours. This is of most use in
modes where there are few colours available, because it gives the effect of having
more colours on the screen than there are.

Four different ECF patterns are provided, and can be independently defined.

Normally, the origin of the ECF patterns is based on the bottom left corner of the
screen. This can be changed, so that it aligns with any point on the screen, such as
the current graphics window.

The VDU drivers control how the bell will sound. The bell is a sound that is made
when the standard ASCII character 7 (Ctrl-G) is sent to the VDU. Its volume , pitch
and duration can all be customised.

Mouse and pointer

1-532

The mouse is a device that is moved on a surface, rolling an internal ball , usually
with several buttons. The pointer is a reflection on the screen of the mouse's
movements. Normally, it appears as a small arrow, but can be programmed to be
any shape. It is also possible to disconnect the pointer from the mouse and move
the pointer to where the program wants it to be. This is useful when switching
between windows under program control.

RISC OS provides control over how much the pointer moves in response to a
mouse movement. This sensitivity control can be useful in situations where fine or
coarse movement is required by different programs.

VDU Drivers

Screen configuration

Multiple banks

Full control is given over how video information is generated. Depending on how it
looks on screen, the display can be shifted up or down. Some monitors do not
allow for this adjustment, so this facility is provided.

Also, the interlace can be switched on or off. Interlace means that images sent to a
monitor alternate one scan line up and down on alternate frames. On a monitor
which has a long persistence phosphor (images take some time to fade). an
interlaced image eliminates the 'lined' effect of a screen image. On a short
persistence screen interlace can cause a flicker, because the first image has faded
before the second one is finished.

RISC OS supports many different kinds of monitor. Depending on the type of
monitor used, only a subset of all possible modes are available on it. Thus there is
a command to set which monitor is connected , so that incorrect modes are not
accidentally entered.

Normally, there is one bank of memory that is used for the screen. If it is changed,
then this is reflected on the screen as it is refreshed by VIDC. Sometimes it is useful
to write to one bank of screen memory, while another is displayed and then swap
when finished . This produces an 'instant draw' effect. which is visually pleasing.

Whilst normally only two banks would be used for this kind of application , you can
have as many banks as will fit in the allocated screen RAM area. This requires
copies of the screen RAM requirements for each bank. For example, with two banks
of screen memory, an 80K mode will require I60K.

Writing to the screen
Many different kinds of things can generate output on the screen, or more strictly
speaking, the current screen bank. Text or graphics can be written, and many
commands exist to alter where and how output will appear on the screen.

Writing text

Sending printable characters through OS_ WriteC (page 1-50 I) will result in it
appearing at the text cursor position in the current window. It will wrap around to
following lines when it reaches the right hand side of the window. Certain control
commands can move the text cursor in all directions or to a given place in the
window. Usually, the cursor moves right after a character is printed. This can be
changed so it moves in any of the four directions.

1-533

Writing to the screen

1-534

Writing graphics

Many different kinds of graphics can be put onto the screen, such as:

• circles. ellipses. arcs, segments, and sectors

• triangles, rectangles and parallelograms

• filled areas, such as all those above and any irregular shape

• dots

• solid and dotted lines

• text in VDU 5 mode

See the chapter entitled Sprites on page 1-7 45 to see how any sized array of pixels
can be written to the screen.

As well as different shapes, there is control over how it is written over what is
already on the screen. It can be configured to:

• overwrite existing graphics,

e OR with it,

e AND with it.

• exclusive OR with it.

• invert it,

and so on.

As well as having control over the colour and writing mode. you can use any of the
ECF patterns to write with .

Clearing the screen

The graphics or text windows can either be completely or partially cleared. This will
be done with the current graphics or text background colour as appropriate.

Synchronised writing

There is a method under RISC OS of waiting until a Vsync event occurs and then
writing to the screen. This can make screen update very smooth, as writing to the
screen memory does not clash with the VIDC chip reading it to send to the monitor.
If they do clash, then a 'tearing' can appear briefly. This is because one part of the
memory being written to is displayed in its old state and the other part in the new.

Unless you plan to use multiple paging techniques, then this is a good way of
achieving smooth animation.

VDU Drivers

Reading from the screen

As well as writing to the screen, it is possible to read some information back from
it. There is a command to read a character from under the text cursor and work out
what its ASCII value is . Cursor editing uses this facility.

You can also read the logical colour and tint of a point. Given that there is another
call to return the palette setting for a colour, it is easy to combine the two and work
out the 'real' colour of pixels on the screen.

The screen can be saved as a file, which can be subsequently treated as a sprite, or
edited with Paint for example. There is a complementary command to load it back
onto the screen.

Information about the VDU

There are a number of calls to get all kinds of information about the configuration
and status of the VDU driver. Here is some of the information that can be read:

• size and position of graphics and text windows

• position of graphics and text cursors

• description of current screen mode

• size of screen memory

• palette mapping

• foreground and background text and graphics colours

• banks used by VDU and screen

• number of bytes queued for a VDU command being composed

• number of lines printed since last page halt

• in VDU 5 mode or not.

VDU extension vector

The normal VDU driver can be completely replaced with a custom driver if required.
The VDU extension vector, called VDUXV. can be called instead of the normal VDU
vector. This can be useful if you want to change the characteristics of screen output
in a dramatic way.

1-535

Technical Details

Technical Details

VDU commands

Screen modes

1-536

As mentioned earlier, 'VDU' followed by a series of numbers separated by commas
is used in this chapter to represent a character being sent to OS_WriteC. For
convenience, we will use the shortcuts that BBC BASIC uses with its YOU
statement. Here is a brief reminder of the syntax of that statement:

• YOU 11 sends character 11 to OS_ WriteC. YOU m,l1 sends ASCII m followed by
ASCII11 .

• YOU 11; sends the number 11 as two bytes, first 11 MOD &100, then 11 DIY &100.
This sends 16-bit numbers to the YOU drivers; eg coordinates in graphics
commands.

• YOU 111 sends 11 as a single byte, followed by eight 0 bytes. This is used as
shorthand in calls in which not all of the parameter bytes are needed. As nine
is the largest number of bytes required by any YOU sequence, ending the
command with 'I' guarantees enough bytes to complete it. Any extra zeros are
ignored by the YOU drivers.

Of course, as long as the correct characters are sent to the YOU, it doesn't matter
how they get there. For example, an assembly language equivalent to YOU 12 (clear
screen) is:

SWI OS_Writei+12

The effect is the same in both cases.

When changing mode, a great many things are initialised. For a complete list of
these and other mode notes, see YOU 22 (page 1-574).

*Configure Mode (page 1-729) will set up the screen mode to be used after a hard
reset.

When a program wishes to change mode, it must check that there is enough
memory allocated for the screen for that mode and that the monitor being used is
compatible with the mode. OS_CheckModeYalid (page 1-715) must be called to
check these two things . If you don't, then YOU 22 will do it anyway, but it is better
for the program to be aware of what's happening. If the mode requested cannot be
used, OS_CheckModeYalid will also return a suggestion for a mode to use in place
of it.

VDU Drivers

Colours and resolution

Both commands are passed 8 bytes that define the pattern. The number of pixels
depends on how many colours are available in the screen mode you are using:

Colours
available

2
4
16
256

Number of pixels set by each line
VDU 23,2-5 VDU 23,12-15

8 2
4
2
I

2
2
I

You can see that while the number of pixels in the pattern diminishes. the number
of potential colours increases.

256 colour patterns

As you can see, in a 256 colour mode, the pattern is simply a colour description for
each line. VDU 23 ,2-5 uses the internal 256 colour map, while VDU 23,12-15 uses
the simpler colour map. When stored, the internal form is used. This should be
borne in mind if you use OS_ Word I 0 to read the ECF definitions.

VDU 23,12-15

This call uses a simpler pattern . The 8 parameters passed form a pattern as follows:

1 2

3 4

5 6

7 8

So it describes a simple 2 by 4 pattern for all but 256 colour modes. Here it is one
colour per line, for all 8 lines, like VDU 23,2-5.

VDU 23,2-5

This call is more complex. It uses one line per parameter, and there is a direct
trade-off between colours and resolution. Thus. for a 2 colour mode, it can display
an 8 by 8 pattern of on or off pixels, in 256 colour mode, it can only generate 8 lines
of a single different colour each.

1-541

Bell

Bell

Cursors

1-542

VDU 23,17,4

YOU 23 ,17,4 is used to select between BBC/Master compatible mode and native
RISC OS mode. These modes describe how ECF colour descriptions are mixed
when using YOU 23 ,2-5 . For some examples, see the section entitled Application
Notes on page 1-742.

Initialisation

YOU 23 , II will reset the ECF pattern definitions to their default values. It will also
reset the YOU 23 , I 7,4 flag to the default BBC/Master compatible state.

Setting the origin

By default, patterns are written as if their bottom left hand corner is aligned with
the bottom left hand corner of the screen. Using OS_SetECFOrigin, you can
instead align an ECF pattern to any point on the screen , or to an object such as the
graphics window. YOU 23,17,6 has the same effect as this call.

The bell can be made to sound by sending a YOU 7 to OS_ WriteC.

To configure how it will sound:

• OS_Byte 2 I I (page 1-66 I) will select the sound channel used

• OS_Byte 2I2 (page I-662) will adjust the volume

• OS_Byte 2I3 (page I-664) will adjust the frequency

• OS_Byte 2I4 (page I-666) will adjust the duration

*Configure Quiet will select a quiet volume, while *Configure Loud will select a
loud volume.

YOU 5 (page I -553) will link text and graphics cursors and cause all subsequent
output to be printed at the graphics cursor position . This command can be
cancelled using YOU 4 (page I-552). The text input cursor is normally displayed
unless disabled by YOU 23, I. Both this and YOU 23,0 can be used to change the
appearance of the cursor.

There are a number of YOU commands that affect the position of the text cursor
directly:

• YOU 30 (page I -6I4)- send the text cursor to its home position , which is
usually the top left corner of the current window.

VDU Drivers

• VDU 31 (page 1-615) - set the text cursor to any position on the screen.

• VDU 8 (page 1-556)- backspace

• VDU 9 (page 1-557)- horizontal tab

• VDU 10 (page 1-558) -linefeed (ie move down)

• VDU II (page 1-559)- vertical tab (ie move up one line)

• VDU 13 (page 1-561) -move back to the start of t he line

• VDU 127 (page 1-616) - delete (ie backspace, print a space then backspace
again).

The position of the text cursor can be read wit h OS_Byte 134 (page 1-64 7). If cursor
editing is in progress, then OS_Byte 165 (page 1-656) can be used to read the
position of the output cursor, usually displayed as a solid blob.

Normally, when a character is printed, the cursor currently used will move to the
right. This action can be controlled by VDU 23 , 16. It can set the cursor to move in
any of four directions. It also controls how cursors act at the end of lines, and so
on.

OS_RemoveCursors (page 1-712) will remove the input and output cursors and
store their state internally. A subsequent call to OS_RestoreCursors (page 1-714)
will restore them exactly. These calls are used mainly by low-level draw routines to
avoid mixing the cursors with what is drawn on the screen.

OS_ Word 13 (page 1-681) will return the current and previous graphics cursor
positions. Using OS_ReadVduVariables (page 1-703), even earlier coordinates can
be read.

Mouse and pointer

When a mouse button is pressed or released a record is kept in the mouse buffer.
OS_Mouse (page 1-699) will read a mouse record from this buffer. It stores the
position of the mouse, the state of its buttons and the time the record was put into
the buffer. OS_Byte 128 can also be used for this as well as reading how much free
space is in the mouse buffer.

OS_ Word 21,3 (page 1-689) will set the mouse position, so subsequent writes to
the mouse buffer will assume the mouse is at the specified location, and move
from there .

I

OS_ Word 21.4 (page 1-691) will read the unbuffered mouse position That is, where
it is at the moment of calling this function. This bypasses the buffer, so subsequent
reads of the buffer may not tie up with this position . It is better to use one or the
other method exclusively in a program .

1-543

Getting information

Pointer

The ratio of mouse movement to pointer movement on screen can be controlled by
OS_ Word 21 ,2 (page 1-687) or permanently set by *Configure MouseStep
(page 1-733).

The pointer that appears on the screen can be defined in four shapes . OS_ Word
21 ,0 (page 1-683) can define the shape and colour of each of these. OS_Byte I 06
(page 1-637) is used to select which pointer to use, or switch it off completely.
*Pointer can also be used to switch it on or off.

The pointer will be confined to the box defined by OS_ Word 21, I (page 1-685) This
would usually be set to the graphics window.

The pointer's position on the screen can be set with OS_ Word 21 ,5 (page 1-693)
and read with OS_Word 21,6 (page 1-695).

Getting information

1-544

There are many ways of extracting information about the state and configuration of
the VDU system .

OS_Byte 217 (page 1-667) will read the number of lines since the display was last
stopped scrolling if it was in paged mode.

OS_Byte 218 (page 1-669) returns how many bytes are in the VDU queue. This is
used when a multiple byte VDU command is being collected.

OS_Byte 163 (page 1-654) will return the current dot-dash line length and the
amount of memory allocated for sprites . It can also set the dot-dash length.

OS_ReadDynamicArea (page 1-388) is a better way to read the amount of memory
allocated for system sprites- this call will also return the memory allocated for
screen bank use.

OS_Byte 117 (page 1-645) reads the VDU status. This involves:

• whether the printer output is enabled

• if paged scrolling is enabled

• if in shadow mode

• if in VDU 5 mode

• if cursor editing

• if the screen is disabled with VDU 21

VDU Drivers

Colours and resolution

Both commands are passed 8 bytes that define the pattern . The number of pixels
depends on how many colours are available in the screen mode you are using:

Colours
available

2
4
16
256

Number of pixels set by each line
VDU 23,2~5 VDU 23,12~15

8 2
4
2

2
2
I

You can see that while the number of pixels in the pattern diminishes, the number
of potential colours increases.

256 colour patterns

As you can see, in a 256 colour mode, the pattern is simply a colour description for
each line. VDU 23 ,2-5 uses the internal 256 colour map, while VDU 23,12-15 uses
the simpler colour map. When stored, the internal form is used. This should be
borne in mind if you use OS_ Word I 0 to read the ECF definitions.

VDU 23,12-15

This call uses a simpler pattern. The 8 parameters passed form a pattern as follows:

1 2

3 4

5 6

7 8

So it describes a simple 2 by 4 pattern for all but ·256 colour modes. Here it is one
colour per line, for all 8 lines, like VDU 23,2-5.

VDU 23,2•5

· This call is more complex. It uses one line per parameter, and there JS a direct
trade-off between colours and resolution. Thus, for. a 2 colour mode, it can display
an.8 by 8 pattern of on or off pixels, in 256 colour mode, it can only generate 8 lines
of; a srngJe different colour each. · '

1~541

Bell

Bell

Cursors

1-542

VDU 23,17,4

VDU 23 , I 7,4 is used to select between BBC/Master compatible mode and native
RISC OS mode. These modes describe how ECF colour descriptions are mixed
when using VDU 23,2-5. For some examples, see the section entitled Application
Notes on page I-742.

Initialisation

VDU 23 , I I will reset the ECF pattern definitions to their default values. It will also
reset the VDU 23 , I 7.4 flag to the default BBC/Master compatible state.

Setting the origin

By default, patterns are written as if their bottom left hand corner is aligned with
the bottom left hand corner of the screen. Using OS_SetECFOrigin, you can
instead align an ECF pattern to any point on the screen, or to an object such as the
graphics window. VDU 23, I 7,6 has the same effect as this call.

The bell can be made to sound by sending a VDU 7 to OS_ WriteC.

To configure how it will sound:

• OS_Byte 2 I I (page I -66I) will select the sound channel used

• OS_Byte 2I2 (page I-662) will adjust the volume

• OS_Byte 2I 3 (page I-664) will adjust the frequency

• OS_Byte 2I4 (page I-666) will adjust the duration

*Configure Quiet will select a quiet volume, while *Configure Loud will select a
loud volume.

VDU 5 (page I -553) will link text and graphics cursors and cause all subsequent
output to be printed at the graphics cursor position . This command can be
cancelled using VDU 4 (page I -552) . The text input cursor is normally displayed
unless disabled by VDU 23. I. Both this and VDU 23 ,0 can be used to change the
appearance of the cursor.

There are a number of VDU commands that affect the position of the text cursor
directly:

• VDU 30 (page I -6 I 4) -send the text cursor to its home position, which is
usually the top left corner of the current window.

VDU Drivers

• VDU 31 (page 1-615)- set the text cursor to any position on t he screen.

• VDU 8 (page 1-556)- backspace

• VDU 9 (page 1-557)- horizontal tab

• VDU 10 (page 1-558) - linefeed (ie move down)

• VDU II (page 1-559)- vertical tab (ie move up one line)

• VDU 13 (page 1-561) -move back to the start of the line

• VDU 127 (page 1-616)- delete (ie backspace, print a space then backspace
again) .

The position of the text cursor can be read with OS_Byte 134 (page 1-64 7) . If cursor
editing is in progress, then OS_Byte 165 (page 1-656) can be used to read the
position of the output cursor, usually displayed as a solid blob.

Normally, when a character is printed , the cursor currently used will move to the
right This action can be controlled by VDU 23, 16. It can set the cursor to move in
any of four directions. It also controls how cursors act at the end of lines, and so
on .

OS_RemoveCursors (page 1-712) will remove the input and output cursors and
store their state internally A subsequent call to OS_RestoreCursors (page 1-714)
will restore them exactly. These calls are used mainly by low-level draw routines to
avoid mixing the cursors with what is drawn on the screen.

OS_ Word 13 (page 1-681) will return the current and previous graphics cursor
positions. Using OS_ReadVduVariables (page 1-703), even earlier coordinates can
be read.

Mouse and pointer

When a mouse button is pressed or released a record is kept in the mouse buffer.
OS_Mouse (page 1-699) will read a mouse record from this buffer. It stores the
position of the mouse, the state of its buttons and the time the record was put into
the buffer. OS_Byte 128 can also be used for this as well as reading how much free
space is in the mouse buffer.

OS_ Word 21.3 (page 1-689) will set the mouse position, so subsequent writes to
the mouse buffer will assume the mouse is at the specified location , and move
from there.

OS_ Word 21,4 (page 1-691) will read the unbuffered mouse position. That is, where
it is at the moment of calling this function . This bypasses the buffer, so subsequent
reads of the buffer may not tie up with this position . It is better to use one or the
other method exclusively in a program .

1-543

Getting information

Pointer

The ratio of mouse movement to pointer movement on screen can be controlled by
OS_ Word 21 ,2 (page 1-687) or permanently set by *Configure MouseStep
(page 1-733).

The pointer that appears on the screen can be defined in four shapes. OS_ Word
21,0 (page 1-683) can define the shape and colour of each of these. OS_Byte I 06
(page 1-637) is used to select which pointer to use, or switch it off completely.
*Pointer can also be used to switch it on or off.

The pointer will be confined to the box defined by OS_ Word 21 , I (page 1-685). This
would usually be set to the graphics window.

The pointer's position on the screen can be set with OS_ Word 21 ,5 (page 1-693)
and read with OS_Word 21,6 (page 1-695).

Getting information

1-544

There are many ways of extracting information about the state and configuration of
the VDU system.

OS_Byte 217 (page 1-667) will read the number of lines since the display was last
stopped scrolling if it was in paged mode.

OS_Byte 218 (page 1-669) returns how many bytes are in the VDU queue. This is
used when a multiple byte VDU command is being collected.

OS_Byte 163 (page 1-654) will return the current dot-dash line length and the
amount of memory allocated for sprites. It can also set the dot-dash length.

OS_ReadDynamicArea (page 1-388) is a better way to read the amount of memory
allocated for system sprites -this call will also return the memory allocated for
screen bank use.

OS_Byte 117 (page 1-645) reads the VDU status. This involves:

• whether the printer output is enabled

• if paged scrolling is enabled

• if in shadow mode

• if in VDU 5 mode

• if cursor editing

• if the screen is disabled with VDU 21

VDU Drivers

OS_ReadYduYariables (page 1-703) provides a large number of variables that can
be read . OS_Byte 160 is a subset of this, kept for BBC/Master compatibility
reasons . Almost all information about windows, cursors and colours can be
accessed here. 1\vo special variables provided are a pointer to a fast horizontal line
draw routine and access to colour blocks .

OS_ReadModeYariable (page 1-709) returns the fixed information about a mode,
such as how many pixels across and down it is, and how many colours it supports.

Reading from the screen

OS_Byte 135 (page 1-649) will read the ASCII value of the character at the text
cursor position and also reads the current screen mode.

OS_ReadPoint (page 1-707) will read the logical colour of a pixel. OS_ Word 9
performs much the same function, but is kept mainly for compatibility with
BBC/Master series.

*ScreenSave (page 1-820) will copy the screen contents into a file where it can
subsequently be edited with Paint or reloaded to the screen with *ScreenLoad
(page 1-819).

Writing to the screen

Text

Output to the screen can be disabled by YOU 21 (page l-573) . lt can be restored by
YOU 6 (page 1-554).

YOU 26 (page 1-61 0) will restore the graphics and text windows to their default
states. That is, both filling the screen .

Text can be sent to the screen with any YOU command from 32 to 255, excepting
127 which is the delete command .

YOU 28 (page 1-612) defines the text window. YOU 12 (page 1-560) will clear the
window that the text cursor is in. After a YOU 12, the text cursor is moved to its
home position, usually the top left hand corner. YOU 23,8 (page 1-586) will clear a
block within the text window.

Paged mode means that when about 75% of a screenful has been shown, then the
system will pause and wait for Shift to be pressed before starting again. This stops
text being lost from scrolling off the top of the screen too quickly Paged mode can
be enabled by YOU 14 and disabled with YOU 15 (page 1-562). By default. paged
mode is off.

1-545

Writing to the screen

1-546

*Configure Scroll (page 1-737) and NoScroll (page 1-734) configure whether text
will scroll when it reaches the bottom of the text window. This means that when
NoScroll is set a character can be printed at the bottom right of the screen without
immediately scrolling the screen . This feature can also be controlled with
VDU 23,16 (page 1-594) and allows a full screen of text to be simply printed.

VDU 23,7 (page 1-584) can scroll the text window or the whole screen in any
direction.

In VDU 5 mode, it is possible to change the size and spacing of text with
VDU 23,17,7 (page 1-600) This is how you would generate a message with large
gaps between the characters.

Redefining characters

Printer

Each printable character (one that is not a command) is an array of 8 by 8 pixels
that is defined in the shape of standard ASCII and ISO characters. All of these
characters can be redefined to be any pattern .

To change the definition of a printable character, VDU 23,32-255 (page 1-605) must
be used. The character number that you wish to redefine is the second parameter,
in the range 32-255. It is followed by 8 bytes that define the bit pattern to be used.

OS_Byte 20 (page 1-633) will reset character definitions 32- 127 to their default.
OS_Byte 25 (page 1-635) will reset a given group ofthem. OS_ Word I 0 (page 1-675)
can read the definition of any character from the current system font .

VDU I (page 1-549) will send the following character to the printer stream . VDU 2
(page 1-550) will enable the stream, so that all characters sent to the VDU are also
sent to the printer stream . This state can be disabled by VDU 3 (page 1-551).

Graphics

VDU 24 (page 1-606) will define the position of the graphics window. VDU 16
(page 1-564) will clear it to the current graphics background colour.

VDU 25 (page 1-607) is the main graphics plot command. OS_Plot (page 1-717) has
the same effect as it, but is much faster, avoiding the delays inherent in the VDU
stream. They both have a type parameter followed by x andy coordinates. The type
covers moving the graphics cursor, plotting points, lines (solid and dotted).
triangles. rectangles, parallelograms, circles, arcs, sectors, segments, ellipses and
other graphic forms. These figures can be hollow or filled with the graphics
foreground colour. It handles relative or absolute drawing That is, the x andy are
relative to the current x andy or moving to a new absolute position on the screen .

Vsync

VDU Drivers

When plotting dotted lines, the default pattern is a dot-space pattern repeated.
This can be changed to any pattern. YOU 23,6 (page 1-583) is passed 8 bytes that
define a pattern up to 64 bits in length to be repeated. OS_Byte 163 (page 1-654)
sets how many bits are to be used. Simple patterns like &FF (solid line), &AA (the
default dot-space) and &EE (dashed line: dot-dot-dot-space) can be used or any
more complex pattern up to 64 bits in length. OS_ Word 10 (page 1-675) can read
the current definition.

YOU 29 (page 1-613) sets the graphics origin This is the point on the screen that
becomes the 0,0 point for all subsequent graphics operations.

OS_ Changed Box (page 1-724) will tell you what area of the screen has been
changed . This can be used to reduce the amount of redrawing that needs to be
done by an application

*Screen Load (page 1-819) complements *ScreenSave, discussed earlier and load a
file into the screen memory.

OS_Byte 19 (page 1-631) will wait until a Ysync occurs before returning. This allows
programs that are quick enough to write to the screen without any kind of flickering
or tearing of images.

Screen memory and hardware scrolling

This is described fully in the section entitled Screen memory on page 1-339.

1-547

VDUCalls

VDU Calls

1-548

VDU 0

Null Operation

Syntax

VDU 0

Parameters

Use

VDU 0 does nothing. It is this that enables the 'I' character in the VDU statement to
work. Any of the nine zeros that are sent which aren 't required by the current VDU
command are 'swallowed up'.

VDU Drivers

VDU 1

Next character to printer only

Syntax

VDU 1,character

Parameters

Use

character to send to the printer stream

VDU I sends the next character to the printer stream only, provided that the printer
has been enabled by VDU 2. Otherwise, the next character is ignored. This enables
the printer ignore character, and any other character which is not usually passed on
by the VDU printer driver, to be sent to the printer through the VDU.

Example

VDU 1 , 10 Send a linefeed to the printer stream, if enabled

1-549

VDU2

1-550

VDU2

Enable printer stream

Syntax

VDU 2

Parameters

Use

VDU 2 enables the printer stream. After this call, most characters sent to the screen
will also be sent to the currently selected printer device. OS_Byte 5 controls this,
as described on page 1-508. Only characters in the following ranges are sent to the
printer: 32- 126, 128- 255 (ie the printable characters). 8- 13 (backspace,
horizontal tab, linefeed, vertical tab, form feed and carriage return, respectively) .
No multi-byte control sequences. except the argument of VDU I, are sent to the
printer.

Even if the VDU drivers are disabled (using VDU 21) the characters sent to the VDU
drivers will still be sent to the printer although they will no longer affect the screen .
However, if the VDU is disabled using OS_Byte 3, then VDU 2 printing will not take
place.

The effect of VDU 2 can be cancelled using VDU 3.

You can determine whether VDU printing is enabled using OS_Byte 117.

VDU Drivers

VDU 3

Disable printer stream

Syntax

VDU 3

Parameters

Use

YOU 3 cancels the effects of YOU 2 so that all subsequent printable characters are
not passed through the kernel printer driver.

1-551

VDU4

1-552

VDU4

Split cursors

Syntax

VDU 4

Parameters

Use

YOU 4 cancels YOU 5 mode. It causes all subsequent printable characters to be
printed at the current text cursor position using the current text foreground and
background colours . The text cursor is normally displayed (unless it has been
disabled using YOU 23 , I) and after each character has been printed the cursor
moves on by one character. The direction of cursor movement is normally to the
right but may be altered using YOU 23, I6.

After a character has been printed at the end of a row (or column if vertical printing
is used)·the cursor moves on to the start of the next screen line (or column).
scrolling the screen when there are no more rows (or columns). providing scrolling
is enabled . Again, you can use YOU 23 ,16 to enable or disable scrolling Cursor
editing is allowed in this mode.

You can determine whether the cursors are split or joined using OS_Byte 117
(page 1-645) .

VDU Drivers

VDU5

Join cursors

Syntax

VDU 5

Parameters

Use

This enters VDU 5 mode. It links the text and graphics cursors and causes all
subsequent printable characters to be printed at the current graphics cursor
position, the topmost row, lefthand edge of the character being placed there.
Characters are displayed in the current graphics foreground colour using the
current graphics action. The background pixels in the character shape are not
plotted.

You can set the character sizing and spacing using VDU 23, 17,7 ..

After the character has been printed, the graphics cursor is moved by one character
position. The direction of cursor movement is normally to the right but may be
altered (using VDU 23, 16). It moves to a new row (or column if vertical printing is
being used) when necessary, or to the opposite corner of the graphics window if
there are no more rows (or columns). Scrolling does not occur.

This command allows characters to be placed at any position on the screen, but
means that the text is printed somewhat slower than when the cursors are split. In
addition, each character is superimposed onto the existing text or graphics. Hence,
printing a backspace character followed by a space moves the graphics cursor back
by one character and then superimposes a space onto the character already there,
thereby leaving it unaltered.

Cursor editing is not possible in this mode.

VDU 5 has no effect in text-only or Teletext modes. In other modes it m?y be
cancelled using VDU 4.

1-553

VDU6

1-554

VDU 6

Enable screen output

Syntax

VDU 6

Parameters

Use

VDU 6 restores the functions of the VDU driver after it has been disabled by
VDU 21 . It causes all subsequent printable characters to be sent to the screen and
control sequences to be obeyed.

You can determine whether the VDU is enabled or disabled using OS_Byte 117
(page 1-645).

VDU Drivers

VDU 7

Bell

Syntax

VDU 7

Parameters

Use

VDU 7 generates the current bell sound. The initial default is specified by
*Configure Loud/Quiet and *Configure SoundDefault; you may subsequently alter
it using OS_Bytes 211-214.

1-555

VDUB

1-556

VDU 8

Backspace

Syntax

VDU 8

Parameters

Use

VDU 8 causes either the text cursor (by default) or the graphics cursor (in VDU 5
mode) to be moved back one character position (ie in the negative x direction).
This normally means moving it to the left but will be different if the direction of
cursor movement is altered (using VDU 23, 16).

If the cursor was at the start of a row (or column if vertical printing is used) then it
is moved back to the end of the previous row (or column), scrolling the screen if
necessary. It does not cause the last character to be deleted.

VDU Drivers

VDU5

Join cursors

Syntax

VDU 5

Parameters

Use

This enters VDU 5 mode. It links the text and graphics cursors and causes all
subsequent printable characters to be printed at the current graphics cursor
position, the topmost row, lefthand edge of the character being placed there.
Characters are displayed in the current graphics foreground colour using the
current graphics action . The background pixels in the character shape are not
plotted .

You can set the character sizing and spacing using VDU 23 , 17,7 ...

After the character has been printed, the graphics cursor is moved by one character
position . The direction of cursor movement is normally to the right but may be
altered (using VDU 23, 16). It moves to a new row (or column if vertical printing is
being used) when necessary, or to the opposite corner of the graphics window if
there are no more rows (or columns). Scrolling does not occur.

This command allows characters to be placed at any position on the screen , but
means that the text is printed somewhat slower than when the cursors are split . In
addition, each character is superimposed onto the existing text or graphics. Hence,
printing a backspace character followed by a space moves the graphics cursor back
by one character and then superimposes a space onto the character already there,
thereby leaving it unaltered.

Cursor editing is not possible in this mode.

VDU 5 has no effect in text-only or Teletext modes. In other modes it m?Y be
cancelled using VDU 4.

1-553

VDU6

1-554

VDU 6

Enable screen output

Syntax

VDU 6

Parameters

Use

VDU 6 restores the functions of the VDU driver after it has been disabled by
VDU 21. It causes all subsequent printable characters to be sent to the screen and
control sequences to be obeyed.

You can determine whether the VDU is enabled or disabled using OS_Byte 117
(page 1-645).

VDU Drivers

VDU 7

Bell

Syntax

VDU 7

Parameters

Use

VDU 7 generates the current bell sound. The initial default is specified by
*Configure Loud/Quiet and *Configure SoundDefault; you may subsequently alter
it using OS_Bytes 211 - 214.

1-555

VDUB

1-556

VDU 8

Backspace

Syntax

VDU 8

Parameters

Use

VDU 8 causes either the text cursor (by default) or the graphics cursor (in VDU 5
mode) to be moved back one character position (ie in the negative x direction).
This normally means moving it to the left but will be different if the direction of
cursor movement is altered (using VDU 23, 16) .

If the cursor was at the start of a row (or column if vertical printing is used) then it
is moved back to the end of the previous row (or column). scrolling the screen if
necessary. It does not cause the last character to be deleted.

VDU Drivers

VDU13

Carriage return

Syntax

VDU 13

Parameters

Use

VDU 13 causes the text cursor or, in VDU 5 mode, the graphics cursor to be moved
to the negative x edge of the relevant window at the same y value. The negative
x edge is normally the left edge but it may be changed using VDU 23, 16.

When sent to a printer, this character generally causes the print head to move to
the start of the current line. Additionally, some printers may also generate a
linefeed

1-561

VDU 14

1-562

VDU14

Paged mode on

Syntax

VDU 1 4

Parameters

Use

YOU 14 causes the screen display to wait for Shift to be pressed before the next
scroll and periodically thereafter. Normally, approximately 75% of the number of
lines in the current window is scrolled before it waits again . The effects of the
command may be cancelled using YOU 15.

OS_Byte 117 (page 1-645) may be used to determine whether paged mode is
enabled. See also OS_Byte 217 (page 1-667).

Paged mode off

Syntax

VDU 15

Parameters

Use

VDU Drivers

VDU15

VDU 15 cancels the effect of VDU 14 so that scrolling is unrestricted.

1-563

VDU 16

1-564

VDU16

Clear graphics window

Syntax

VDU 16

Parameters

Use

YOU 16 clears the current graphics window to the current graphics background
colour using the graphics background action. It does not affect the position of the
graphics cursor.

VDU Drivers

VDU17

Set text colour

Syntax

VDU 17,co1our

Parameters

Use

colour logical text colour

VDU 17 is used to assign a logical colour to either the text foreground or
background according to the value of colour, as follows:

Value

0- 127
128 - 255

Colour

foreground
background (colour in range 0- 127)

If the absolute value of the parameter lies outside the allowed set for the current
mode, it is treated MOD (the number of colours- 64 in 256 colour mode) so that it
lies within that range. For example, in mode I, which allows four colours, the
commands VDU 17,9 and VDU 17,5 are equivalent to VDU 17, I.

The interpretation of colour depends on the type of mode:

Colours

2,4,16
256

colour parameter meaning

Logical colour for that pixel
Bottom 6 bits of colour provide colour information:

Bit 5 Blue bit 3
Bit 4 Blue bit 2
Bit 3 Green bit 3
Bit 2 Green bit 2
Bit I Red bit 3
Bit 0 Red bit 2

This allows 64 different colours to be obtained. Each of these can be used in one of
four different tints, giving 256 available shades. See VDU 23,17 for more details.
The current text colours may be read using OS_ReadVduVariables.

Example

VDU 17,12 Set to logical colour 12

1-565

VDU 18

1-566

VDU18

Set graphics colour and action

Syntax

VDU 18,action,colour

Parameters

Use

acti on

colour

operation to perform

colour to use

YOU 18 is used to define either the graphics foreground colour or the graphics
background colour, and the way in which it is to be plotted on the screen.

The graphics plotting action is determined by action as follows:

Value

0

2
3
4
5
6
7
8- 15
16- 31
32-47

48 - 63
64- 79
80-95

Action

Overwrite colour on screen with colour
OR colour on screen with colour
AND colour on screen with colour
exclusive OR colour on screen with colour
Invert colour on screen
Leave colour on screen unchanged
AND colour on screen with (NOT colour)
OR colour on screen with (NOT colour)
As 0 to 7, but background colour is transparent
Colour pattern I using action 0- 15
Colour pattern 2 using action 0- 15
Colour pattern 3 using action 0- 15
Colour pattern 4 using action 0- 15
Giant colour pattern (patterns I - 4 placed side by side)

The range 8 - 15 is used in the following circumstances:

• If a sprite has a transparency mask, then plotting it using one of these actions
causes the mask to be used.

• Where the mask has a 0 bit, nothing is plotted; where it has a I bit, the
appropriate sprite colour is plotted. If an action in the range 0- 7 is used, the
sprite mask is ignored. See the chapter on sprites for more details.

VDU Drivers

These actions are also used in colour pattern plotting. If a pixel in the pattern has
the same colour as the current graphics background colour. it is not plotted but left
transparent instead. (If the action is used when setting a background colour
pattern. then the pixel is left unplatted if it has the same colour as the current
graphics foreground colour)

The graphics colour is determined by colour as follows:

Value

0- I27
I28- 255

Meaning

Foreground colour specified
Background colour specified (colour in range 0 - I 27)

If the absolute value of the parameter lies outside the allowed set for the current
mode. it is altered so that it lies within the range (as for VDU I 7) .

Where action has specified a colour pattern. then colour is used only to determine
whether the pattern is used for the graphics foreground or background colour
(depending on whether it is less than I 28 or not).

The interpretation of colour depends on the type of screen mode. See the table for
VDU I 7 above for details.

The current graphics colours and actions may be read using OS_ReadVduVariables
(page I-703).

Example

VDU 1 8 , 1 ,6 Write. ORing with the screen in colour 6

1-567

1-568

VDU19

Set palette

Syntax

VDU 19,logical colour ,mode,red,green,blue

Parameters

Use

logical colour
mode
red, green, blue

colour to set

how to set the colour

physical colour information

VDU 19 defines the colour palette relationship. It causes a specified logical colour
for either the screen, border or pointer to be represented by a given physical
colour.

The action depends on the value of 'mode' as follows:

mode = 0- 15 logical colour= physical colour specified by mode
parameter (see below);
red, green and blue are ignored, and should be zero

mode = 16 both flash palettes for logical colour =
red units red, green units green, blue units blue

mode = 17 first flash palette for logical colour=

mode= 18

mode= 24

mode= 25

red units red, green units green, blue units blue

second flash palette for logical colour =
red units red , green units green, blue units blue

border colour =
red units red, green units green, blue units blue;
logical colour is not used, and should be zero

logical colour (I - 3) of pointer=
red units red, green units green, blue units blue

If you add 128 to the 'mode' value, you also set the 'supremacy' bit of the
appropriate palette entry. This is used when the computers' video is mixed with an
external video source, to provide a superimposed image.

In all cases. the red, green and blue parameters have a range 0- 255. However, as
only the top four bits are significant, the 16 possible values are &OX, &IX, &2X, ...
&FX, where X means 'don't care'. The bottom nibble may be significant in future

VDU Drivers

versions of the hardware- to cater for this you should replicate the top nibble in
the bottom nibble, by multiplying each RGB component by I7fi6 . Therefore,
&FOFOFOOO becomes &FFFFFFOO.

In normal non-flashing colours, what this means is that both of the flash colours
are the same. RISC OS will swap colours at a programmed interval. If they are the
same colour, then there is no noticeable effect. 'Mode' values of I 7 and I8 allow
any colour to be made to flash with any combination of colours.

There are I6 palette registers, which means that in modes with one, two and four
bits per pixel, there is a register available for each of the logical colours. Therefore,
each can be assigned a physical colour by a simple one-to-one relationship.

By default (after a mode change or VDU 20), the palette is set up using a setting
where the 'mode' value is in the range 0- I 5. The actual colour number depends on
the logical colour and the number of bits per pixel used in a given screen mode as
follows:

Logical
colour

0

2
3
4
5
6
7
8
9
IO
I I
I2
I3
I4
I5

Bits per pixel in a screen mode
I 2 4

0 0 0
7 I

3 2
7 3

4
5
6
7
8
9
IO
I I
I2
I 3
I4
I 5

1-569

VDU 19

1-570

The meanings of the physical colours specified by the mode parameter when it is in
the range 0- I5 are:

Physical colour Colour

0 Black
Red

2 Green
3 Yellow
4 Blue
5 Magenta
6 Cyan
7 White
8 Black-white flashing
9 Red-cyan flashing
IO Green-magenta flashing
II Yellow-blue flashing
I2 Blue-yellow flashing
I3 Magenta-green flashing
I4 Cyan-red flashing
I5 White-black flashing

In modes with eight bits per pixel the situation is more complex. A simple mapping
of the logical colour to the physical colour via the palette is not possible. Instead,
the eight bits of the logical colour are treated as two nibbles as follows:

7 6 5 4 3 2 0

I I I I I I I I I
~~------~ ~------~~~------~ ~------~/ v v

passed directly to the digital index to a palette register
to analogue converter (DAC)

Bit 7
Bit 6
Bit 5
Bit 4

Figure 2I.I Treatment of logical colours in eight bit per pixel modes

goes directly to the top bit of blue
goes directly to the top bit of green
goes directly to the second bit of green
goes directly to the top bit of red

By default, the palette registers are set to have the following effect:

Bit 3
Bit 2
Bit I
Bit 0

is sent to the second bit of blue
is sent to the second bit of red
is sent to the third bits of blue, green and red
is sent to the fourth bits of blue, green and red

VDU Drivers

Hence the palette cannot be used to produce extreme effects upon the colour; it
does not have any effect upon the top (most significant) bits of any colour or the
second bit of green. It can only control the second bits of blue and red, and the
white tint which is obtained by the settings of all three of the third and fourth (least
significant) bits.

You can also set the palette using OS_ Word 12 (page 1-679). and read the current
palette using OS_ Word II (page 1-677) and OS_ReadPalette (page 1-70 I).

Example

VDU 19,5,12 ,0,0,0 Set logical colour 5 to be pftysical colour 12

1-571

1-572

VDU 20

Restore default colours

Syntax

VDU 20

Parameters

Use

VDU 20 restores the default palette for the current mode. It also resets the default
text and graphics background colour to black, and the text and graphics foreground
colour to white. The graphics foreground and background actions are set to 0
(overwrite). In 256-colour modes the tints are set to their default values (0 for
background tints and &CO for foreground ones) .

VDU Drivers

VDU 21

Disable screen display

Syntax

VDU 21

Parameters

Use

VDU 21 prevents the VDU screen drivers performing any of their normal functions
until a VDU 6 is issued. Any control sequences sent to the VDU drivers are queued
in the usual way. Therefore, sending the character VDU 19 causes the next 5
characters to be treated as parameters for this (ignored) command .

For example, the sequence VDU 22 ,6 is treated as one whole command in the usual
way and not as VDU 22 followed by VDU 6 which would re-enable the VDU drivers.

This command does not prevent characters from being sent to the VDU printer
driver (if already enabled by a VDU 2). or any of the other output streams.

You can use OS_Byte 117 (page 1-645) to determine whether the VDU driver is
currently enabled or disabled.

1-573

VDU22

1-574

VDU 22

Change display mode

Syntax

VDU 22 , mode

Parameters

Use

mode the screen mode to select

VDU 22 is used to select a screen mode. The bottom seven bits of the mode
parameter are used to select the mode. The modes available in RISC OS depend on
the configured monitor type (see •configure MonitorType on page I-73 I) and the
model of computer. Below is a table of all modes provided by RISC OS, which
shows:

• the mode number

• the text resolution in columns x rows

• the graphics resolution in pixels, which corresponds to the clarity of the
mode's display

• the resolution in OS units, which corresponds to the area of workspace shown
by the mode

• the number of logical colours available

• the memory used to display the screen (to the nearest 0. I Kbyte)

• the vertical refresh rate to the nearest Hz (invalid for monitor type 5). which
indicates the degree of flickering that you may perceive

• the bandwidth used to display the screen (to the nearest 0. I Mbyte/second).
which corresponds to the load the mode places on the computer

• the monitor types that support that mode:

Type Monitor

0 50Hz TV standard colour or monochrome monitor
I Multi-frequency monitor
2 64Hz high-resolution monochrome monitor
3 60Hz VGA-type monitor
4 Super-VGA-type monitor (not available in RISC OS 2)
5 LCD (liquid crystal display) (not available in RISC OS 2)

• the notes on the following page that are relevant to the mode.

VDU Drivers

Mode Text Pixel OS units Logical Mem Refresh Band~ Monitor Notes
resolution resolution resolution colours used rate width types

0 80 X 32 640 X 256 1280 X 1024 2 20K 50Hz 1M/s 0, 1.3.4.5 ®
1 40 X 32 320 X 256 1280 X 1024 4 20K 50Hz 1M/s 0, 1.3.4.5 ®
2 20 X 32 160 X 256 1280 X 1024 16 40K 50Hz 2M/s 0, 1.3.4.5 ®
3 80 X 25 Text only Text only 2 40K 50Hz 2M/s 0, 1.3.4.5 @@<l)

4 40 X 32 320 X 256 1280 X 1024 2 20K 50Hz 1M/s 0, 1.3.4.5 ®
5 20 X 32 160 X 256 1280 X 1024 4 20K 50Hz 1M/s 0, 1.3.4.5 ®
6 40 X 25 Text only Text only 2 20K 50Hz 1M/s 0, 1.3.4.5 @@<l)

7 40 X 25 Teletext Teletext 16 80K 50Hz 4M/s 0, 1.3.4.5 @@

8 80 X 32 640 X 256 1280 X 1024 4 40K 50Hz 2M/s 0, 1.3.4.5 ®
9 40 X 32 320 X 256 1280 X 1024 16 40K 50Hz 2M/s 0, 1.3.4.5 ®
10 20 X 32 160 X 256 1280 X 1024 256 80K 50Hz 4M/s 0, 1.3.4.5 ®
11 80 X 25 640 X 250 1280 X 1000 4 40K 50Hz 2M/s 0, 1.3.4.5 ®®
12 80 X 32 640 X 256 1280 X 1024 16 80K 50Hz 4M/s 0, 1.3.4.5 ®
13 40 X 32 320 X 256 1280 X 1024 256 80K 50Hz 4M/s 0, 1.3.4.5 ®
14 80 X 25 640 X 250 1280 X 1000 16 80K 50Hz 3.9M/s 0, 1.3.4.5 ®®
15 80 X 32 640 X 256 1280 X 1024 256 160K 50Hz 8M/s 0, 1.3.4.5 ®
16 132 X 32 1056 X 256 2112 X 1024 16 132K 50Hz 6.6M/s 0,1 ®
17 132 X 25 1056 X 250 2112 X 1000 16 132K 50Hz 6.5M/s 0,1 ®®
18 80x64 640 X 512 1280 X 1024 2 40K 50Hz 2M/s 1

19 80x64 640 X 512 1280 X 1024 4 80K 50Hz 4M/s

20 80x64 640 X 512 1280 X 1024 16 160K 50Hz 8M/s

21 80x64 640 X 5]2 1280 X 1024 256 320K 50Hz 16M/s

22 96 X 36 768 X 288 768 X 576 16 108K 50Hz 5.4M/s 0,1 (j)@

23 144 X 56 1152 X 896 2304 X 1792 2 126K 64Hz 8.1M/s 2

24 132 X 32 1056 X 256 21]2 X 1024 256 264K 50Hz 13.2M/s 0,1 ®
25 80x60 640 X 480 1280 X 960 2 37.5K 60Hz 2.3M/s 1.3.4.5

26 80 X 60 640 X 480 1280 X 960 4 75K 60Hz 4.5M/s 1.3.4.5

27 80 X 60 640 X 480 1280 X 960 16 150K 60Hz 9M/s 1.3.4.5

28 80 X 60 640 X 480 1280 X 960 256 300K 60Hz 18M/s 1.3.4.5

29 100 X 75 800 X 600 1600 X 1200 2 58.6K 56Hz 3.3M/s 1.4 (j)@

30 100 X 75 800 X 600 1600 X 1200 4 117.2K 56Hz 6.6M/s 1.4 (j)@

31 100 X 75 800 X 600 1600 X 1200 16 234.4K 56Hz 13.2M/s 1.4 (j)@

33 96 X 36 768 X 288 1536 X 1152 2 27K 50Hz 1.4M/s 0,1 (j)

34 96 X 36 768 X 288 1536 X 1152 4 54K 50Hz 2.7M/s 0,1 (j)

35 96 X 36 768 X 288 1536x 1152 16 108K 50Hz 5.4M/s 0,1 (j)

36 96 X 36 768 X 288 1536x 1152 256 216K 50Hz 10.8M/s 0,1 (j)

37 112 X 44 896 X 352 1792 X 1408 2 38.5K 60Hz 2.3M/s I (j)

38 112 X 44 896 X 352 1792 X 1408 4 77K 60Hz 4.6M/s (j)

39 112 X 44 896 X 352 1792 X 1408 16 154K 60Hz 9.2M/s (j)

40 112 X 44 896 X 352 1792 X 1408 256 308K 60Hz 18.5M/s (j)

41 80 X 44 640 X 352 1280 X 1408 2 27.5K 60Hz 1.7M/s 1.3.4.5 (j)@@

42 80 X 44 640 X 352 1280 X 1408 4 55K 60Hz 3.3M/s 1 ,3,4,5 (j)@@

43 80 X 44 640 X 352 1280 X 1408 16 II OK 60Hz 6.6M/s I ,3,4,5 (j)@@

44 80 X 25 640 X 200 1280 X 800 2 15.7K 60Hz 0.9M/s 1.3.4.5 (j)@

45 80 X 25 640 X 200 1280 X 800 4 31.3K 60Hz 1.9M/s 1.3.4.5 (j)@

46 80 X 25 640 X 200 1280 X 800 16 62.5K 60Hz 3.8M/s 1.3.4.5 (j)@

1-575

VDU22

1-576

Notes on display modes

These modes are not available in RISC OS 2.00, nor (except for mode 3 I) are
they available in RISC OS 2.0 I .

2 These modes are not available on early models of RISC OS computers (ie the
Archimedes 300, 400 and 400/1 series, and the A3000). because they are unable
to clock VIDC at the necessary rate.

3 These modes are handled differently with a VGA or Super-VGA-type monitor. If
you are using such a monitor:

• RISC OS 2.00 does not implement these modes.

• These modes are all displayed on a screen having 352 raster lines. Where a
mode has fewer than 352 vertical pixels, it is centred on the screen with
blank rasters at the top and bottom. Because of their appearance these
modes are known as letterbox modes.

• The refresh rate is 70Hz.

• The bandwidths shown in the table for these modes are lower than these
monitor types consume, because no allowance has been made for the
blank rasters .

• Early models of RISC OS computers (ie the Archimedes 300, 400 and 400/1
series, and the A3000) scan these modes some 4. 7% slow. Again this is
because they are unable to clock VIDC at the necessary rate . Most VGA and
Super-VGA-type monitors can still successfully lock onto this signal. but
some may not. Furthermore, these models do not provide a Sync Polarity
signal. This makes the effect of letterbox modes (see above) more severe.

4 Early models of RISC OS computers (ie the Archimedes 300, 400 and 400/1
series, and the A3000) also scan these modes some 4. 7% slow with
multi-frequency monitors. Again this is because they are unable to clock VIDC
at the necessary rate.

5 These modes do not display graphics, and are provided for compatibility with
BBC/Master series computers.

6 In these modes circles, arcs, sectors and segments do not look circular. This is
because the aspect ratio of the pixels is not in a I :2, I: I or 2: I ratio.

7 These are gap modes, where the colour of the gaps is not necessarily the same as
the text background.

8 These modes are not a multiple of eight pixels high. By default. in these modes
the bottom of the screen corresponds to the bottom line of ECF patterns, but
the top line will not correspond to the top line of ECF patterns.

VDU Drivers

9 This mode is not available in RISC OS 3 (version 3.00) . It provides a
double-sized display suitable for use by visually impaired people
Unfortunately some applications may not provide correct displays when used
with this mode.

Other notes

Mode 32 has not been defined.

If an attempt is made to select a mode which is not appropriate to the current
monitor type (or OS version) , a suitable mode for that monitor is used. For
example, an attempt to select mode 23 on a type 0 monitor will result in mode 0
being used.

In 256 colour modes, there are some restrictions on the control of the colours. Only
64 base colours may be selected ; 4 levels of tinting turn the base colours into 256
shades. Also, the selection from the colour palette of 4096 shades is only possible
in groups of 16.

Banks of screen memory

If I 28 is added to the mode number, the so-called shadow bank is used if possible.
Any display mode may have several banks of memory available. The number of
banks depends on the size of the screen memory (as allocated by *Configure
ScreenSize) and the size of the current mode. For example, if I 60K is allocated, and
20K is used for the display, eight banks are available.

Usually, bank I is used. However, if I 28 is added to the mode number, or a
*Shadow command has been issued, bank 2 is used after a mode change. Shadow
memory can only be used if ScreenSize is at least twice the memory for the
required mode.

The other banks may be accessed using OS_Bytes I I 2 - I I 3.

Effect of the mode command

The mode command causes the following actions:

• Cursor editing is terminated if currently in use

• VDU 4 mode is entered

• The text and graphics windows are restored to their default values

• The text cursor is moved to its home position

• The graphics cursor is moved to (0,0)

• The graphics origin is moved to (0,0)

• Paged mode is terminated if currently in use

• The logical-physical colour map is set to the new mode's default

1-577

VDU22

1-578

• The text and graphics foreground colours are set to white

• The text and graphics background colours are set to black (colour 0)

• The colour patterns are set to their defaults for the new mode

• The ECF origin is set to (0.0)

• The dot pattern for dotted lines is reset to &MAAAAAA

• The dot pattern repeat length is reset to 8

• The screen is cleared to the current text background colour (ie black) .

If there is not enough configured screen RAM for the mode you have selected, and
the application workspace area is not in use, then memory is moved out of the
application workspace area to the screen area .

Getting Information on a mode

The current screen mode may be read using OS_Byte I 35 (page 1-649).

The size of the screen in a given mode can be determined by reading VDU variables
XWindLimit , YWindLimit , XEigFactor. YEigFactor.

Example

VDU 22 , 7 Select Teletext mode

VDU Drivers

VDU 23

Miscellaneous commands

Syntax

VDU 23 , command,nl ,n2 ,n3 ,n4,n5,n6,n7,n8

Parameters

Use

command

nl.n2,n3,n4,n5,n6,n7,n8

the command to perform

the 8 parameters which follow it

VDU 23 is a multi-purpose command taking nine parameters. of which the first
identifies a particular function . Each of the available functions is described below.
Eight additional parameters are required in each case, though often most of these
are ignored. This enables you to use · I · as shorthand in BASIC VDU statements. as
in the example below.

Examples

VDU 23 , 0 , 101 These two lines have the same effect
VDU 23 , 0 ,1 0 , 0 , 0 , 0 , 0 , 0 , 0 ,0

1-579

VDU23,0

1-580

VDU 23,0

Set the interlace and control cursor appearance

Syntax

VDU 23,0,action,mode,O,O , O,O,O,O

Parameters

Use

action

mode

Sets which action to perform

Defines the mode for a given action

If action= 8, this sets the interlace as follows:

Mode

0

Effect

sets the screen interlace state to the opposite of the current
*TV setting

I
&80
&81

sets the screen interlace state to the current *TV setting
turns the screen interlace off
turns the screen interlace on

If action= I 0 or II, this controls the height of the cursor on the screen and its
appearance.

action= I 0 mode defines the start line for the cursor and its appearance:

Bits 0- 4 define the start line (0 being the top)
Bits 5 - 6 define its appearance as follows:

Bit 6 Bit 5 Meaning

0 0 Steady
0 I Off

action= II

0 Fast flash
Slow flash

mode defines the end line for the cursor.

The bottom line of the cursor is 7 for 'normal' modes, 9 for standard 'gap' modes,
and 19 for mode 7.

Example

VDU 23,0,8,&811 Turn the screen interlace on

VDU Drivers

VDU 23,1

Control the appearance of the text cursor

Syntax

VDU 23 ,1,mode , O,O,O,O,O,O,O

Parameters

Use

mod e determines which cursor mode

VDU 23, I controls the appearance of the text cursor on the screen depending on
the value of mod e:

Value

0

2
3

Meaning

stops the cursor appearing
makes the cursor re-appear
makes the cursor steady
makes the cursor flash

The effect of this call is cancelled when cursor editing occurs. The effect of the
previous call is not changed by cursor editing. See also SWI OS_RemoveCursors
and SWI OS_RestoreCursors.

Example

VDU 23 ,1, 3 1 makes the cursor flash

1-581

VDU23,2-5

1-582

VDU 23,2-5

Define ECF pattern and colours

Syntax

VDU 23 ,pattern_no+l ,nl ,n2 ,n3 ,n4,n5,n6,n7 ,n8

Parameters

Use

pattern_no+l

nl,n2,n3,n4,n5,n6,n7,n8

number of pattern to set (I - 4) plus one

colour for each row

YOU 23,2- YOU 23,5 are used to define the four colour patterns:

YOU 23,2 sets pattern I
YOU 23,3 sets pattern 2
YOU 23,4 sets pattern 3
YOU 23,5 sets pattern 4

Each of the integers n I to n8 defines the colours of one row of the pattern, n I being
the top row and n8 being the bottom. For a given parameter, the logical colours of
the pixels in each row depend upon the number of colours available in the current
screen mode and which pattern mode is used. There are two available pattern
modes. The default is the BBC/Master compatible mode. The other is the native
RISC OS mode which decodes the values in a simpler fashion. To change between
these modes use YOU 23 , 17,4.

If the bit settings in one of the n parameters is denoted by 76543210, then the
logical colours of the pixels in each row (from left to right) are:

Bits per No. of No. of pixels BBC/Master RISC OS
pixel colours in a line colours colours

I 2 8 7,6,5,4,3, 2, I ,0 0, I ,2,3 ,4 ,5,6,7
2 4 4 73 , 62 , 51 , 40 10, 32, 54 , 76
4 16 2 7531 ' 6420 3210, 7654
8 256 76543210 76543210

There are many examples of using these and the YOU 23, I 2-15 commands to alter
ECF functions in the section entitled Application Notes on page 1-742.

In any 256 colour mode, each parameter refers to the colour of each line. Use the
colour byte as described by YOU 19 (page 1-568).

VDU Drivers

VDU 23,6

Set dot-dash line style

Syntax

VDU 23,6,nl,n2,n3,n4,n5,n6,n7,n8

Parameters

Use

nl,n2,n3,n4,n5,n6,n7,n8 bit pattern for style

VDU 23,6 sets the dot-dash line style used by dotted line PLOT commands (see
also VDU 25- which does the plotting- on page 1-607, and OS_Byte 163- which
sets the dot-dash repeat length- on page 1-654).

Each of the integers n I to n8 defines eight elements of the line style, n I being at
the start and n8 at the end. The bits in each byte are read from most significant to
least significant, each !-bit indicating a dot and each O-bit a space. The default is
&AAAAAAM (alternating dots and spaces) with a repeat length of eight (so only n I
is used).

Example

VDU 23,6,&FO,&FO,&FO,&FO,&FO,&FO,&FO , &FO

1-583

VDU23,7

1-584

VDU 23,7

Scroll text window or screen

Syntax

VDU 23,7,extent,direction,movement,O,O,O,O,O

Parameters

Use

extent

direction

movement

text window or screen

direction to scroll

how much movement

VDU 23,7 allows the current text window or whole screen to be scrolled directly in
any direction without moving the cursor. The extent. direction and movement
determine the area to be scrolled. the direction of scrolling and the amount of
scrolling as follows:

extent

0

direction

0

2
3
4
5
6
7

movement

0

Effect

scroll the current text window
scroll the entire screen

Effect

scroll right
scroll left
scroll down
scroll up
scroll in positive x direction (as set by VDU 23 ,16)
scroll in negative x direction (as set by VDU 23,16)
scroll in positive y direction (as set by VDU 23,16)
scroll in negative y direction (as set by VDU 23.16)

Effect

scroll by one character cell
scroll by one character cell vertically or one byte horizontally

VDU Drivers

If movement is I, the horizontal movement depends on the number of colours in
the current mode as follows:

Example

Number of colours

2
4
I6
256

VDU 23 , 7 ,0, 3 ,01

Number of pixels moved

8
4
2

Scroll window up one character

1-585

VDU23,8

1-586

VDU 23,8

Clear a block of the text window

Syntax

VDU 23 , 8 ,base_ start , base_end,xl, yl,x2,y2 ,0,0

Parameters

Use

base_start

base_ end

xl, yl, x2, y2

base position of start of block

base position of end of block

displacements of block

VDU 23 ,8 causes a block of the current text window to be cleared to the text
background colour. The parameters base_start and base_end indicate base
positions relating to the start and end of the block to be cleared respectively:

Value Meaning

0 top left of window
top of cursor column

2 off top right of window

4 left end of cursor line
5 cursor position
6 off right of cursor line

8 bottom left of window
9 bottom of cursor column
10 off bottom right of window

References to 'left', 'up' and so on are dependent upon the cursor movement
control set by VDU 23 , 16. 'Off' means 'one character beyond (in the positive x
direction)' . The effects of other values. ie. 3, 7 and any number over I 0, are
undefined.

The parameters xi ,yl and x2 ,y2 are displacements from the positions specified by
the base start and base end; they determine the start and end of the block:

xi Displacement from base start in x direction
yl Displacement from base start in y direction
x2 Displacement from base end in x direction
y2 Displacement from base end in y direction

VDU Drivers

The result is undefined if the absolute values defining the start and end of the
block produce values outside the range -I 28 to I 27. If the end point of the block
lies before the start point then no clearing takes place

The action of this command can be viewed as equivalent to moving the text cursor
to the start of the block, then printing spaces until the end of the block is reached
(but without printing a space at the last position).

Example

VDU 23,8,5,10 ,0,0,0,01 Clear from cursor to end of screen

1-587

VDU23,9

1-588

VDU 23,9

Set flash time for first flashing colour

Syntax

VDU 23,9,duration,O,O,O,O,O,O,O

Parameters

Use

duration number of VSyncs

VDU 23,9 sets the flash time for the first flashing colour. The length is determined
by the value of duration as follows:

duration= 0
duration::;; 0

sets a steady flash colour I
sets the duration

A Vsync is the time between refreshes of the screen display. It varies between
display modes and countries. In the UK for modes 0- 17 it is approximately l/50th
second.

This command is equivalent to OS_Byte 9 (see page 1-628).

Example

VDU 23,9,11 Set to one Vsyrrc

VDU Drivers

VDU 23,10

Set flash time for second flashing colour

Syntax

VDU 23 , 10 , dura tion,O,O,O,O,O,O,O

Parameters

duration number of VSyncs

Use

VDU 23 , I 0 sets the flash time for the second flashing colour. The length is
determined by the value of duration as follows:

duration= 0
duration"# 0

sets a steady flash colour 2
sets the duration

This command is equivalent to OS_Byte 10 (page 1-630).

Example

VDU 23 ,1 0 , 2 1 Set to two VSyncs

1-589

VDU 23,11

VDU 23,11

Set default patterns

Syntax

VDU 23,11,0,0,0,0,0,0,0,0

Parameters

Use

VDU 23, II selects the Master 128 compatible pattern mode and causes the four
colour patterns to be reset to their defaults for the current screen mode. With the
default logical-physical map, these defaults are :

ModeO

I - Red-orange 2- Orange 3- Yel-orange 4- Cream

11001100 11110000 11111111 00000011
00000000 00001111 00110011 00001100
11001100 11110000 11111111 01000100
00000000 00110011 01010101 10001000

Other 2 colour modes

I- Dark grey 2- Grey 3 - Light grey 4- Hatching

10101010 11001100 11111111 00010001
00000000 00110011 01010101 00100010
10101010 11001100 11111111 01000100
00000000 00110011 01010101 10001000

4 colour modes

I - Red-orange 2- Orange 3- Yel-orange 4- Cream

2121 2121 2222 2323
II II 1212 1212 3232
2121 2121 2222 2323
II II 1212 1212 3232

1-590

VDU Drivers

I 6 colour modes

I- Orange 2- Pink 3- Yel -green 4- Cream

21 61 32 37
12 16 23 73
21 61 32 37
12 16 23 73

256 colour modes

I- Grey 2- Slate 3- Green 4- Pink

3F 00 0 co 4 co 38 00
40 80 80 40
80 40 40 80
co 00 00 co

All the patterns repeat after four rows, so only the first four are shown.

Example

VDU 23 ,111

1-591

VDU 23,12-15

1-592

VDU 23,12-15

Define simple ECF patterns and colours

Syntax

VDU 23 , pa tt ern , nl , n2 , n3 ,n4 ,n5 ,n6 ,n7 , n8

Parameters

Use

Define a two by four block of pixels as follows:

n1 n2

n3 n4

n5 n6

n7 n8

The pattern parameter determines which colour pattern is set:

pattern

12
13
14
15

Sets colour pattern

I
2
3
4

VDU 23 ,12- 15 are used to define the four colour patterns in a simpler way than that
provided by VDU 23,2-5 . The limitation is that you can only set a two-by-four
pattern of pixels.

The pixels of the top row of the resulting pattern are assigned alternating logical
colours n I and n2, those of the next row have colours n3 and n4 etc.

In any 256 colour mode, the declared use of the parameters does not apply. In this
case, each parameter refers to the colour of each line, from I to 8. Use the colour
byte as described by VDU 19 (page 1-568).

VDU Drivers

Example

To set up the following pattern in mode I for colour pattern I:

RedYel 12
VVhtRed 31
BlkRed 01
VVhtYel 32

the required sequence is:

VDU 23,12,1,2,3,1,0,1,3,2

1-593

VDU23,16

1-594

VDU 23,16

Control the movement of cursor after printing

Syntax

VDU 23 , 16 , x , y , O, O, O, O, O, O

Parameters

Use

x exclusive OR value

y ANDvalue

VDU 23,16 gives control of the movement of the cursor after a character has been
printed . This movement is under the control of a byte of flags. VDU 23, 16 replaces
the byte by:

((current byte) ANDy) XOR x

The interpretation of the flags is as follows:

Bit Value Effect

7 0 Normal.
Undefined.

6 0 In VDU 5 mode, cursor movements beyond the current edge
of the window cause special actions. For example, they
generate newlines at the end of the line.

In VDU 5 mode, cursor movements beyond the edge of the
window do not cause special actions. This is the most useful
mode of VDU 5; used in the Window Manager.

5 0 Cursor moves in the positive x direction after the character is
printed . If this results in the cursor moving beyond the edge
of the window, the settings of bits 6, 4 and 0 define the action
which is taken .

I Cursor does not move after the character is printed.

4 0 When a cursor movement in they direction results in the
cursor moving beyond the window edge, the window is
scrolled if in VDU 4 mode. If in VDU 5 mode, the cursor moves
to the opposite edge of the window.

When a cursor movement in they direction results in the
cursor moving beyond the window edge, the cursor is always
moved to the opposite edge of the window.

3

2

0

Example

0
I

0

x direction is horizontal, y direction is vertical.
x direction is vertical, y direction is horizontal.

Positive vertical direction is down.
Positive vertical direction is up.

VDU Drivers

0 Positive horizontal direction is right.
I

0

Positive horizontal direction is left.

Disables the scroll-protect option. When printing a character
in VDU 4 mode results in the cursor moving beyond the edge
of the window, the cursor is instead moved to the negative
x edge of the window and one line in the positive y direction.
Enables the scroll protect option. When printing a character
in VDU 4 mode results in the cursor moving beyond the edge
of the window, a 'pending newline' is generated. It is actually
executed just before the next character is printed, provided
that it has not been deleted or executed by another cursor
control character. For example VDU I27 would cancel it;
VDU 9 would execute it.

VDU 2 3 ,16, %00000100,%111110111 Set vertical direction up

1-595

VDU 23,17,0-3

1-596

VDU 23,17,0-3

Set the tint for a colour

Syntax

VDU 23,17,action ,tint,O, O, O, O,O ,O

Parameters

Use

action

tint

determines which colour is to be set

what the tint is to be set to

VDU 23,17,0-3 is used to set the amount of white tint given to a colour in the
256-colour modes. The action determines which colour's tint is set, as follows:

action

0

2
3

Colour
sets the tint for the text foreground colour
sets the tint for the text background colour
sets the tint for the graphics foreground colour
sets the tint for the graphics background colour

The value of the tint is given by the top two bits of the tint parameter:

tint

&00
&40
&80
&CO

Tint effect

Bit 0 and bit I clear (darkest)
Bit 0 set and bit I clear
Bit I set and bit 0 clear
Bit 0 and bit I set (lightest)

For more details, see the section entitled 256-colour modes on page 1-538.

Example

VDU 23 ,1 7 ,0, &CO I Set the text foreground colour to lightest tint

vou'orivers

VDU 23,17,4

Choose the patterns used to interpret subsequent VDU 23 ,2 - 5 .. calls

Syntax

VDU 23,17,4,patterns,O ,O,O,O,O,O

Parameters

Use

patterns which mode of patterns

This command chooses which set of colour patterns are used to interpret
subsequent VDU 23,2- 5 ... calls, depending on the value of <patterns>:

patterns

0

Mode

Use 6502 BBC Micro compatible colour patterns
Use native colour patterns

Example

VDU 23 ,1 7 ,4,11 Use native colour patterns

1-597

VDU23,17,5

1-598

VDU 23,17,5

Exchange text foreground and background colours

Syntax

VDU 23,17,5,0,0,0,0,0,0,0

Parameters

Use

This command exchanges the current text foreground and background colours.
After the first time it's called, subsequent characters printed are in inverse video.
After the second time it's called, subsequent characters printed are of normal
appearance.

Example

VDU 23 ,1 7 ,51

VDU Drivers

VDU 23,17,6

Set ECF origin

Syntax

VDU 23 ,1 7 , 6,x;y; O,O , O

Parameters

x,y point coordinates

Use

By default. the alig m~nt of ECF patterns is with the bottom left corner of the
screen. This comma d changes it so that the bottom left pixel of the pattern
coir cides with the J ixel at the specified point.

The origin is restored to the default after a mode change.

OS_SetECFOrigin (page 1-718) performs the same action .

Example

VDU 23, 17 ,6,200; 300 ;0,0,0

1-599

VDU23,17,7

1-600

VDU 23,17,7

Set character size/spacing

Syntax

VDU 23,17,7,flags,x;y;O ,O

Parameters

flags

x,y

what to set the size of

size in pixels

Use

This command allows changing the size and spacing of VDU 5 characters. They are
reset when a mode change occurs. Bit I of the flags refers to the size of VDU 5
characters. Bit 2 refers to the spacing between VDU 5 characters. x andy are sizes
in pixels.

Sizes of 8xl6 and 8x8 are optimised for speed. All other settings are much slower.
The spacing settings do not affect the speed. The default size and spacing ofVDU 5
characters is 8x8.

Example

VDU 23,17,7,%100,10;8;0,0 change VDU 5 spacing to I 0 pixels

VDU Drivers

VDU 23,18-24

Reserved for future expansion

1-601

VDU 23,25-26

1-602

VDU 23,25-26

These calls are provided by the Font Manager for compatibility with earlier
operating systems. You must not use them. See the chapter entitled The Font
Manager on page 3-403 for further details.

VDU Drivers

VDU 23,27

This call is provided by the Sprite Manager. See the chapter entitled Sprites on
page 1-745 for further details.

1-603

VDU 23,28-31

VDU 23,28-31

Reserved for use by application programs.

1-604

VDU Drivers

VDU 23,32-255

Redefine the printable characters

Syntax

VDU 23 , 32 - 255 , n l,n2 , n3 , n 4,n5,n6,n 7 ,n8

Parameters

Use

32 - 255

n l,n2 , n3 , n 4,n5 ,n6 ,n7 ,n8

character to define

definition by row

VDU 23 ,32 to VDU 23,255 redefine the printable ASCII characters. The redefined
character depends on the value of the second parameter. For example, VDU 23,65
redefines the character whose ASCII value is 65 , ie capital A. The parameters n I to
n8 are integers representing the eight rows of the character to be redefined, n I
being the top row and n8 the bottom row. Each bit of a value represents one pixel
of the corresponding row, with a ' I· indicating that the corresponding pixel is to be
plotted in the foreground colour and a '0' that it is to be plotted in the background
colour (or not at all in the case of VDU 5 mode printing) . The most significant bit of
the byte corresponds to the left-hand pixel of its row, and the others follow linearly.

Although the delete character (ASCII I27) can be redefined, redefining has no
effect as it cannot be displayed.

You can read the pattern for a given character using OS_ Word IO (page I-675) .

You should not use this call in programs that might be run under the desktop, as
your redefinitions may affect other programs. If you must use this call, ensure you
only redefine characters that are normally unused.

Note that the desktop redefines some characters for its own use. and you must not
redefine these yourself. To determine which characters are normally unused, view
the entire system font under the desktop (the !Chars application is ideal for this):

• In RISC OS 2, the unused characters are those remaining from the underlined
string 'These·characters·are·not-defined'

• In later versions of RISC OS, the unused characters are those represented as
small hexadecimal numbers

Example

VDU 23,65,&AA,&55,&AA,&55,&AA,&55,&AA,&55 redefine '/'\

1-605

VDU24

1-606

VDU24

Define graphics window

Syntax

VDU 2 4, xl ;yl ; x2 ;y2 ;

Parameters

Use

xl, yl , x2 , y2 coordinates of window

VDU 24 allows the user to define a graphics window. Any graphics objects which
are drawn (including VDU 5 mode and fancy-font characters) and which lie outside
this window are clipped to the edges of the window. The four parameters define the
left, bottom, right and top boundaries of the window respectively, relative to the
current graphics origin (the bottom left of the screen, by default) . The window
which you are defining must lie within the screen boundaries, otherwise the
command is ignored.

The coordinates are inclusive- that is, the points you specify lie within the
window.

Use OS_ReadVduVariables (page I -703) to discover the size of the current graphics
window.

Example

VDU 2 4,100;150; 7 00;800;

The following example shows how to derive (in this instance, xsize) the size of a
window in OS units

DIM blk% 12
VduExt_XEigFactor% = 4
VduExt_XWindLimit% = 11
blk%!0 = VduExt_XEigFactor%
blk% ! 4 = VduExt_ XWindLimit%
blk% ! 8 = -1
SYS "OS_ ReadVduVariables ", blk% , blk%
xeigfactor% = bl k %! 0
xwindlimit% bl k %! 4: REM in pixels
xwindsize% = (xwindlimit% + 1) << xeigfactor%: REM in OS units

VDU Drivers

VDU 25

General PLOT command

Syntax

VDU 25,type,x;y;

Parameters

Use

type

x,y

what kind of plot to perform

where to plot

VDU 25 is a multi-purpose graphics plotting command. The first parameter defines
a particular function. The other parameters are the x coordinate and they
coordinate. They are relative either to the current graphics origin, or to the last
point visited, depending on the value of type

The bottom three bits of type determine the manner in which the plot is to be
performed Thus (type AND 7) has the following effects:

type AND 7

0

2
3
4
5

6
7

Effect

move cursor relative (to last graphics point visited)
plot relative using current foreground colour
plot relative using logical inverse colour
plot relative using current background colour
move cursor absolute (ie move to actual coordinates given)
plot absolute using current foreground colour
plot absolute using logical inverse colour
plot absolute using current background colour

The remaining bits of type determine the action to be performed. The value given
here is added to the 0- 7 range above to get all the possible combinations. The
value here is the decimal starting value:

Value

0
8
16
24
32
40
48

Effect

Solid line including both end points
Solid line excluding the final point
Dotted line including both end points, pattern restarted
Dotted line excluding the final point, pattern restarted
Solid line excluding the initial point
Solid line excluding both end points
Dotted line excluding the initial point, pattern continued

1-607

VDU25

•

1-608

56
64
72
80
88
96
104
112
120
128
136
144
152
160
168
176
184
192
200
208
216
224
232
240
248

Dotted line excluding both end points, pattern continued
Point Plot
Horizontal line fill (left and right) to non-background
Triangle fill
Horizontal line fill (right only) to background
Rectangle fill
Horizontal line fill (left and right) to foreground
Parallelogram fill
Horizontal line fill (right only) to non-foreground
Flood to non-background
Flood to foreground
Circle outline
Circle fill
Circular arc
Segment
Sector
Block copy/move •
Ellipse outline
Ellipse fill
Font printing- see the chapter entitled The Font Manager
Reserved for Acorn Expansion
Reserved for Acorn Expansion
Sprite Plot - see the chapter on sprites
Reserved for User programs
Reserved for User programs

The eight values in the range 184- 191, which perform a block copy/move, have
the following meanings:

Value Effect

184 Move relative
185 Relative rectangle move
186 Relative rectangle copy
187 Relative rectangle copy
188 Move absolute
189 Absolute rectangle move
190 Absolute rectangle copy
191 Absolute rectangle copy

VDU Drivers

Some of the objects require several points to be specified in order to define the
shape completely. The last plot does the actual drawing. The sequences of moves
and draws required for each type are:

Example

Shape

Line

Triangle

Rectangle

Parallelogram

Circle

Arc, segment. sector

Block copy/move

Ellipse

VDU 2 5, 69 ,1 00 ; 200 ;

Sequence of moves

Move to one endpoint. Plot line to other endpoint.

Move to first vertex. Move to second vertex. Plot
triangle to last vertex.

Move to one corner. Plot rectangle to diagonally
opposite corner.

Move to first corner. Move to second corner. Plot
parallelogram to third corner. The fourth corner is
derived from the other three, and is opposite the
second one.

Move to centre. Plot circle to point on the
circumference.

Move to centre of circle. Move to start of arc. Plot to
a point on the line from the centre to the end of the
arc. Arcs, etc, are always drawn counter-clockwise.

Move to one corner of source rectangle. Move to
diagonally-opposite corner of source rectangle. Plot
block copy/move to lower left of destination
rectangle.

Move to centre. Move to intersection of ellipse
circumference and centre's y coordinate. Plot ellipse
to highest or lowest point on the ellipse.

plot point absolute

1-609

VDU26

1-610

VDU26

Restore default windows

Syntax

VDU 26

Parameters

Use

VDU 26 causes the text and graphics windows to be reset to their default states, ie
both become the full screen. In addition, the command resets the graphics origin
to (0,0). moves the graphics cursor to (0,0) and moves the text cursor to its home
position . Hardware scrolling of the text window is initiated.

No operation

Syntax

VDU 27

Parameters

Use

This VDU has no effect

VDU Drivers

VDU 27

1-611

VDU28

1-612

VDU 28

Define text window

Syntax

VDU 28 , x l,yl , x2 , y2

Parameters

Use

x l left-most x column

y 1 bottom-most y row

x2 right-most x column

y2 top-most y row

YOU 28 defines (or redefines) a text window. The parameters are integers
specifying the boundary of the window as above.

If the command attempts to define a window which extends outside the screen
boundaries, has xi greater than x2 , or has yi less than y2 , it will have no effect. The
smallest possible window is one character.

You can read the size of the current text window using OS_ReadVduVariables
(page I -703) .

Example

VDU 28 ,10,1 5 , 20 , 5

VDU Drivers

VDU 29

Set graphics origin

Syntax

VDU 29 , x ; y ;

Parameters

Use

x, y where the origin is to be set

VDU 29 defines the point specified as the origin to be used for all subsequent
graphics output using VDU 25 commands, and for the graphics window defined by
VDU 24. The parameters are the two pairs of bytes specifying the absolute x andy
coordinates of the new origin.

• Note: changing the graphics origin does not alter the position of the graphics
window on the screen. The window's coordinates in terms of the origin
therefore effectively change after a VDU 29.

You can read the position of the current origin using OS_ReadVduVariables
(page 1-703) .

Example

VDU 29 ,1 00 ; 20 0;

1-613

VDU30

1-614

VDU30

Home text cursor

Syntax

VDU 30

Parameters

Use

VDU 30 moves the text cursor to its 'home' position. This is normally the top left of
the window but may be changed (using VDU 23, 16). In VDU 5 mode the graphics
cursor is moved instead. It may have an offset of up to (character size -I) pixels out
of the corner along one or both of the axes to allow for the height or width of the
character depending on the direction of character printing.

VDU Drivers

VDU 31

Position text cursor

Syntax

VDU 31,x, y

Parameters

Use

x, y text position to move to

VDU 31 moves the text cursor to a specified x andy coordinate on the screen. The
parameters x andy are the column and row numbers.

In VDU 4 mode, x andy are given relative to the text 'home' position which is at
(0,0) . If the position lies outside the text window, nothing happens, unless the
scroll protect option is enabled and the x coordinate is just beyond the positive
x edge of the window. In this case. the text cursor is moved to position (x-1 ,y) and
a pending newline is generated.

In VDU 5 mode the graphics cursor is moved to its 'home' position plus
(x character spacing x x) pixels in the positive x direction, plus
(y character spacing x y) pixels in the positive y direction. It is possible to move
the cursor outside the graphics window in VDU 5 mode.

You can read the position of the text cursor using OS_Byte 134 (page 1-64 7).

Example

VDU 31,10,5

1-615

VDU 127

1-616

VDU 127

Delete

Syntax

VDU 12 7

Parameters

Use

Unless the previous use of YOU 23, 16 indicates that no cursor movement is to take
place after character printing, the cursor is moved backwards as if by YOU 8. Then
the character under the cursor is deleted by overprinting it with a space (in YOU 4
mode) or a solid block of graphics background colour (in YOU 5 mode). These
space and solid block characters are selected from the 'hard' (rather than the 'soft ')
font , so redefining these characters will not change the results .

VDU Drivers

Service Calls

Mode change

Service_ModeChange
{Service Call &46)

On entry

Rl = &46 (reason code)
R2 = mode number
R3 = monitor type

On exit

Use

All registers preserved (do not claim)

This call is made whenever a mode change has taken place. It is made for the
benefit of modules which may want to re-read some VDU variables to keep a
consistent view of the world. Neither RISC OS 2 nor RISC OS 3 (version 3.00) pass
the mode number and monitor type.

You should not claim this service call ; there is nothing a module can do to prevent
the mode change from taking place.

1-617

Service_PreModeChange (Service Call &40)

1-618

Mode change

On entry

Rl = &40 (reason code)

Service_PreModeChange
(SeNice Call &40)

R2 =selected mode (before possible translation)

On exit

Case I

Rl preserved
R2 preserved

This is the normal action for a module which does not want to interfere

Case 2

Rl = 0 (service claimed)
RO=O

This implies that the module does not want the mode change to take place, and
has taken an alternative action.

Case 3

Rl = 0 (service claimed)
RO pointer to an error block

This implies that the module does not want the mode change to take place, and
wishes to return the error pointed to by RO.

Case 4

Rl preserved
R2 =new mode

This implies that the module wants to substitute a mode for the specified mode.
This is not a very good way of doing it, as other modules further down the chain will
be offered the service with this new mode. The Service_ModeTranslation
mechanism described below should be ysed by modules providing new monitor
types.

VDU Drivers

Use

This service call is now of little use , as better alternatives are available.

1-619

Service_ModeExtension (Service Call &50)

1-620

Allow soft modes

Service_ModeExtension
(Service Call &50)

On entry

Rl =&50 (reason code)
R2 = mode number that information is requested for
R3 = monitor type (or - I for don't care)

On exit

Use

All registers preserved (if not claimed)

If claimed:
Rl = 0
R2 preserved
R3 = pointer to VIDC list
R4 = pointer to workspace list

This service call is issued when information is needed on a particular mode: for
example on a mode change, or when mode variables are read . In RISC OS it is
possible to load modules which provide additional screen modes and additional
monitor types; such modules must claim this call if they recognise the passed
mode and monitor type, and return the information.

Under RISC OS 3 (version 3.1 0) and later this service call is no longer issued for
mode/monitor combinations that RISC OS itself already supports.

If writing a module providing soft modes, the mode number you use must fit this
scheme:

Modes

0-63
64-95
96- 127

Use

Reserved for use by RISC OS
Reserved for third party applications
Reserved for user defined modes

Mode numbers in the range 64- 95 are allocated by Acorn .

Likewise, monitor types are allocated by Acorn . There are no monitor types
pre-reserved for general use by users.

VDU Drivers

VIDC list: format 0

The returned VIDC list consists of a series of words. The first word specifies the
format of the list. so this can be altered to cope with new hardware such as new
versions of VIDC. There are currently two different formats. The first is:

Offset Value

0 0 (format of list)
4 VIDC base mode
8 VIDC parameter
I2 VIDC parameter

n -I

The VIDC base mode is the number of an existing operating system screen mode
which is used to determine the values of VIDC registers not expli.citly mentioned in
the list. The VIDC parameters are in the form that would be written to the hardware:
ie the top 6 bits specify which register is programmed. and the remainder specify
the value to be programmed in that register.

However. bits 6 and 7 of the control register should be set to 0, as these will be
modified by RISC OS to take the configured sync and the *TV interlace setting into
account. Similarly the vertical parameters for border start. display start. display
end and border end are modified by RISC OS to take the *TV vertical offset into
account.

VIDC parameters below &80000000 are ignored. since these correspond to palette
registers (determined by the workspace base mode) and sound registers (not part
of the display system).

VIDC list: format I

On older machines, the VIDC clock is fixed at 24MHz, and the pixel rate is only
determined by VIDC's internal dividers. as specified in bits 0 and I of the Control
Register (VIDC address &EO). Newer machines have extra hardware to allow the
selection of different VIDC clocks, and to determine the polarity of the sync lines.
VIDC uses its clock together with a set of internal dividers to provide a range of
pixel rates. For example, the A540 hardware provides the following pixel rates:

24000 kHz. 25 I 75 kHz. 36000 kHz with a multiplier of 2/2
I6000 kHz. I6783 kHz, 24000 kHz with a multiplier of 2/3
I 2000kHz, I 2587 kHz, I 8000kHz with a multiplier of 112
8000 kHz, 8392 kHz. I 2000 kHz with a multiplier of 113

The second format of VIDC list was introduced to support these features. It is
similar to format 0 (see above), but adds extended parameters:

1-621

Service_ModeExtension (Service Call &50)

1-622

Offset Value

0 I (format of list)
4 VIDC base mode
8 VIDC parameter
12 VIDC parameter

n -1
n+4 Extended parameter
n+8 Extended parameter

m -1

Extended parameters are of the form:

(0 « 24) +(pixel rate in kHz)

or:

This will override the settings of bits 0 and I of a Control Register specifier in
the main body of the list. If no pixel rate is specified, then the VIDC clock is set
to 24M Hz, and the settings of the divider in the Control Register are used as
normal.

If the pixel rate specified is not achievable with the hardware on the machine,
the nearest available pixel rate is used. When specifying a pixel rate for a
hi-res-mono display, the pixel rate specified should be the actual pixel rate
divided by 4, ie 24000 not 96000.

(I « 24) + (sync polarity)

where the sync polarity is defined as follows:

Bits Meaning

0 0 ~ HSync +ve (as on a standard Archimedes), I ~ HSync -ve
0 ~ VSync +ve (as on a standard Archimedes), I ~ VSync -ve

2- 23 reserved; must be zero

If no sync polarity is specified, a default of 0 is used (ie the same as a normal
Archimedes).

or, from RISC OS 3 (version 3.1 0) onwards:

(2 « 24) +(true VIDC clock rate in kHz)

This is intended to be used in systems where the clock rate fed to VIDC is
under the control of some external device, rather than being selected by the
clock select latch. (For example, on the portable machine, the LCD ASIC feeds
either 8MHz or 16MHz into VIDC when LCD modes are selected).

The values programmed into the clock select latch and the VIDC divider are still
determined either from the control register specifier or a pixel rate specifier
assuming the same range of clock speeds as on the A540; but the VIDC clock rate

VDU Drivers

specifier is used to determine the video memory rate, which in turn determines the
VIDC FIFO Request Pointer values (bits 4 and 5 of the VIDC control register). The
VIDC clock rate specifier is also stored in VDU variable VIDCClockSpeed (&AC),
which is used by the SoundDMA module to determine the VIDC Sound Frequency
Register value.

Workspace list

All values are words in the workspace list; its format is:

Offset Value

0 0 (indicates format of list)
4 Workspace base mode
8 Mode variable index
12 Mode variable value
16 Mode variable index
20 Mode variable value

n -I

The workspace base mode is the number of an existing operating system screen
mode which is used to determine the values of mode variables not explicitly
mentioned in the list. The mode variable indices are the same as for
SWI OS_ReadModeVariable.

General notes

Modules can provide their own palette programming routines, including setting of
the default palette, by claiming PaletteV. For more details see PaletteV on
page 1-104, and Service_ModeChanging on page 1-627. This feature is not available
under RISC OS 2, nor under RISC OS 3 (version 3.00); for these you should choose
a workspace base mode which has an appropriate palette already set.

When the service is received, the module should check that R2 contains a mode
that it knows about and that R3 holds a monitor type that is suitable for that mode.
If not. the service should be passed on. If R3 holds -I then the MOS is making a
general enquiry about that mode (eg to determine the attributes of a sprite defined
in that mode) so the module should only check R2.

Note that it is possible for a mode to have two or more different sets of VIDC
parameters for different monitor types, but the workspace parameters must be the
same, as the mode number is used as an identifier in sprites and in calls such as
OS_ReadModeVariable.

1-623

Service_ModeTranslation (Service Call &51)

1-624

Service_ModeTranslation
(Service Call &51)

Translate modes for unknown monitor types

On entry

RI =&51 (reason code)
R2 = mode number that requires translation
R3 = monitor type

On exit

Use

All registers preserved (if not claimed)

If claimed:
RI = 0
R2 = substitute mode
R3 preserved

This service is offered during a call to OS_CheckModeValid or a screen mode
change. if the selected mode is not available with the current monitor type (this
having been ascertained by offering Service_ModeExtension) and the monitor type
is not one known to the MOS (ie not in the range 0- 3 for RISC OS 2.00, or 0 - 4
otherwise) .

If the monitor type passed in R3 is known to the module. then the module should
discover what the attributes of the mode in R2 are (by calling
OS_ReadModeVariable) and then choose a mode which is suitable for this monitor
type and is closest in attributes to the selected mode. This mode number should
be returned in R2 .

VDU Dfivers

Service_MonitorleadTranslation
(Service Call &76)

Translate monitor lead 10

On entry

Rl = &76 (reason code)
R2 = monitor lead 10 (see below)

On exit

Use

If monitor lead 10 is recognised, then the module should set:

Rl = 0 (claim service)
R3 =default screen mode number to use on this type of monitor
R4 =monitor type number to use (as used in *Configure MonitorType)
R5 = sync type to use on this type of monitor

(0 ::::} separate syncs, I ::::} composite sync)

All other registers must be preserved.

If the monitor lead 10 is not recognised, the module should preserve all registers .

This service call is issued if SWI OS_ReadSysinfo is called with RO= I and any of the
configured Mode, MonitorType or Sync are set to Auto.

The monitor connector provides 4 10 pins, 100-103, each of which may be
connected to Ov, +5v or to the Hsync pin . The monitor lead 10 represents the state
of these 4 10 pins by 4 2-bit fields, with 100 in bits 0 and I, 101 in bits 2 and 3, 102
in bits 4 and 5, and 103 in bits 6 and 7. The meaning of each field is as follows:

Value Meaning

0 10 pin is tied to Ov
10 pin is tied to +5v

2 10 pin is tied to Hsync
3 Indeterminate- either the state is fluctuating, or the machine is not

capable of reading the ID

If your module recognises the monitor lead 10, you should claim the service call
and return a monitor type, sync type, and default screen mode to use. For example,
the Portable module (which is only present on portables) recognises the 10 I I II
returned when no lead is connected, and sets the monitor type to 5 (LCD), the sync
to 0, and the default mode to 27.

1-625

Service_MonitorLeadTranslation (Service Call &76)

1-626

If the service is not claimed, then RISC OS checks the monitor lead ID against the
following list of recognised IDs, and adopts these defaults:

100 IDI 102 103 Monitor type Sync type

H X 0 (TV standard) I (composite)
H X I (Multisync) I (composite)

I 0 X 3 (Mono VGA) 0 (separate)
0 I X 3 (Colour VGA) 0 (separate)
0 0 X 4 (Super VGA) 0 (separate)

where the values in the ID columns have the following meanings:

Value Meaning

0 ID pin must be tied to Ov
ID pin must be tied to +5v

H ID pin must be tied to Hsync
X Value of ID pin is immaterial

Default mode

I2
27
27
27
27

If RISC OS still does not recognise the monitor lead ID, it assumes it to be a TV
standard monitor, and uses those settings (ie composite sync, default mode I 2) .

This service call is not issued by RISC OS 2. Furthermore, older machines such as
the A300 and A400 series, and the A3000, cannot detect the sense of the monitor
lead IDs.

Mode change

On entry

Rl = &89 (reason code)
R2 =mode number
R3 = monitor type

On exit

All registers preserved (do not claim)

Use

VDU Drivers

Service_ModeChanging
(Service Call &89)

This service call is issued during a mode change, after Service_PreReset has been
issued and a mode change is inevitable, but before it has actually happened. It is
intended for use by modules that wish to claim PaletteV on particular
combinations of mode number and monitor type. They should claim or release
PaletteV depending on whether or not their module recognises the combination of
mode number and monitor type This allows modules providing extended palettes
and the like to intercept RISC OS's palette programming.

For example, it is used in this way by the Portable module when an LCD screen
mode is selected.

For more details, see the documentation of PaletteV on page 1-104.

This service call is not issued by RISC OS 2, nor by RISC OS 3 (version 3.00) .

1-627

SWI Calls

SWI Calls

1-628

Write duration of first flash colour

OS_Byte 9
(SWI &06)

On entry

RO = 9 (reason code)
R1 =new duration to write

On exit

RO = preserved
R1 =duration before being overwritten
R2 =corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-en(rancy

Use

Not defined

This call sets the duration of the first flash colour.

Flashing colours are displayed as a sequence of two alternating colours. By default,
each colour is displayed for 25 video frames at a time, which is approximately 0.5
seconds for 50Hz screen modes in the UK. This command allows you to alter the
duration for which the first colour is displayed as follows:

Value Meaning

0 Set an infinite duration (first colour constantly displayed)
n Set the duration ton video frames (approximately n/50 seconds)

This variable may also be set using VDU 23,9. It may be read (but not set) by
OS_Byte 195 (page 1-660).

VDU Drivers

Related SWis

OS_Byte 10 (page 1-630), OS_Byte 195 (page 1-660)

Related vectors

ByteV

1-629

OS_Byte 10 (SWI &06)

1-630

Write duration of second flash colour

On entry

RO = 10
Rl =duration to write

On exit

RO preserved
Rl =duration before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 10
{SWI &06)

This call sets the duration for the second flash colour. See OS_Byte 9 for an
explanation .

This variable may also be set using VDU 23, 10. It may be read (but not set) by
OS_Byte 194.

Related SWis

OS_Byte 9 (page 1-628), OS_Byte 194 (page 1-659)

Related vectors

ByteV

Wait for vertical sync

VDU Drivers

OS_Byte 19 _
(SWI &06)

On entry

RO == 19

On exit

RO preserved
R I , R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The video display frame is drawn approximately fifty times a second for most
screen modes in the UK. This call synchronises a software routine with the signal
produced when the video output reaches the bottom of the displayed area of the
picture (ie the start of the border).

From this time until the next frame starts to be displayed, you can redraw the
screen.

It is possible to have more than this time by drawing from top to bottom. or setting
a timer to wait until video output has passed the place on the screen you want to
redraw.

If even this is not enough time to produce a flicker-free update of the screen. you
should consider using more than one bank of screen memory and switching
between them (using OS_Bytes I 12-113 for example).

1-631

OS_Byte 19 (SWI &06)

Related SWis

OS_Byte 112 (page 1-639), OS_Byte 113 (page 1-641)

Related vectors

ByteV

1-632

Reset font definitions

VDU Drivers

OS_Byte 20
(SWI &06)

On entry

RO = 20

On exit

RO preserved
Rl, R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The shape of the character displayed when printing ASCII codes 32-255 may be
redefined using the VDU 23,32-255 commands. Any such changes remain in force
until the next hard reset. This command may be used to restore the default
character definitions for ASCII codes in the range 32- I 27.

Note that you should anyway not redefine characters in the range 32 - I 27, since
they all have standard meanings which should be preserved for use in applications
such as word processors.

See OS_Byte 25 for details on how to restore the other codes or how to restore a
smaller selected group.

Related SWis

OS_Byte 25 (page 1-635)

1-633

OS_Byte 20 (SWI &06)

1-634

Related vectors

ByteV

--1

Reset group of font definitions

On entry

RO = 25
Rl =group to restore

On exit

RO preserved
Rl, R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Byte 25
(SWI &06)

All ASC!l characters between 32 and 255 may be redefined using the VDU 23
command. This call restores all or a particular group of characters to their default
settings according to Rl, as follows:

Value Range of characters to restore

0 32-255
32-63

2 64-95
3 96-127
4 128-159
5 160-191
6 192-223
7 224-255

1-635

OS_Byte 25 (SWI &06)

Related SWis

OS_Byte 20 (page 1-633)

Related vectors

ByteV

1-636

Select pointer/activate mouse

VDU Drivers

OS_Byte 106
(SWI &06)

On entry

RO == 106
Rl ==pointer shape and linkage flag

On exit

RO preserved
Rl ==shape and linkage flag before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

You can define four 'pointer buffers' using OS_ Word 21 , each holding a different
shape definition for the mouse pointer. This call allows you to select one of these
definitions for future use. or to turn off the pointer depending on the bottom seven
bits of Rl:

Value
0
1-4

Meaning
Turn off current pointer
Select given pointer

If a pointer is selected it can be linked to the mouse so the mouse drives it,
depending on bit seven of Rl as follows:

Value Meaning
&00 Link pointer to mouse
&80 Pointer unlinked

1-637

OS_Byte 106 (SWI &06)

1-638

For example, a value in Rl of &03 selects pointer three and links it to the mouse.
and a value of &82 selects pointer two but leaves it unlinked.

Related SWis

OS_Word 21 (page 1-683)

Related vectors

ByteV

Write VDU driver screen bank

VDU Drivers

OS_Byte 112
(SWI &06)

On entry

RO = 112
Rl =bank number

On exit

RO preserved
Rl =previous bank number
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call selects the bank of screen memory which is to be used by the VDU drivers
according to R I , as follows:

Value

0
n

Bank
Default for the current screen mode (I or 2)
Select bank 'n'

The maximum value for 'n' is (TotalScreenSize)/(ModeSize). where TotaiScreenSize
is the amount actually present in screen memory and ModeSize is the size of the
current mode. For example, in mode 0, a 20K mode with 160K set aside for the
screen makes eight banks available, so 8 is the maximum value for 'n'.

The default bank for a non-shadow mode is bank I; for a shadow mode it is bank 2.
OS_Byte 250 may be used to read the bank number without writing it.

1-639

OS_Byte 112 (SW/ &06)

Related SWis

OS_Byte 250 (page 1-671)

Related vectors

ByteV

1-640

Write display hardware screen bank

On entry

RO = 113
Rl =bank number

On exit

RO preserved
Rl =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Byte 113
(SWI &06)

This call selects the bank of screen memory which is to be used by the display
hardware according to Rl :

Value

0
n

Bank

Default for the current screen mode
Select bank n

The bank may be read (but not set) using OS_Byte 251 .

Related SWis

OS_Byte 251 (page 1-672)

1-641

OS_Byte 113 (SWI &06)

1-642

Related vectors

ByteV

Write shadow/non-shadow state

VDU Drivers

OS_Byte 114
(SWI &06)

On entry

RO = 114
R 1 = shadow state

On exit

RO preserved
R 1 =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SYC mode

Re-entrancy

Use

Not defined

This call determines whether future MODE commands will be forced into the
shadow state, depending on Rl:

Value

0

Meaning
Modes will be shadow
Modes will be non-shadow

Shadow state requires twice the amount of RAM than the equivalent non-shadow
mode since two copies of the screen are stored in memory. OS_Bytes 112 and 113
control the use of the banks .

To select a shadow state temporarily when in non-shadow mode, you can use the
MODE 128+n convention. Future MODE commands will not be influenced by this.

1-643

OS_Byte 114 (SWI &06)

Related SWis

OS_Byte 112 (page 1-639) , OS_Byte 113 (page 1-641)

Related vectors

ByteV

1-644

Read YOU status

On entry

RO = 117

On exit

RO preserved
R I = status byte

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SYC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Byte 117
(SWI &06)

This call returns the content of the YOU status byte . This byte gives information on
the way in which characters are output according to their bit settings:

Bit Status when set

0 Printer output enabled by YOU 2
I Unused
2 Paged scrolling selected by YOU 14
3 Text window in force (ie software scrolling)
4 In a shadow mode
5 In YOU 5 mode
6 Cursor editing in progress
7 Screen disabled with YOU 21

Related SWis

None

1-645

OS_Byte 117 (SWI &06)

1-646

Related vectors

ByteV

Read text cursor position

VDU Drivers

OS_Byte 134
{SWI &06)

On entry

RO = 134

On exit

RO preserved
Rl =position in x direction
R2 = position in y direction

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call returns the current text cursor position unless cursor editing is in
progress, in which case the position returned is that of the input cursor.
OS_Byte 165 reads the position of the output cursor irrespective of cursor editing
mode.

Text is printed at x positions 0 to n-1, where 'n' is the number of characters per line
in the current text window. Therefore, the value obtained is normally in this range.
However, if there is a pending newline (see VDU 23, 16), a position of 'n' will be
returned.

Related SWis

OS_Byte 165 (page 1·656)

1-647

OS_Byte 134 (SWI &06)

1-648

Related vectors

ByteV

Read character at text cursor posit ion and screen mode

On entry

RO = 135

On exit

RO preserved
Rl =ASCII value of character (0 if unreadable)
R2 = screen mode

lnt~rrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Byte 135
(SWI &06)

This call returns the screen mode and the ASCII code of the character at the text
cursor position . If cursor editing is in progress, it returns the character code
returned by the character at the input cursor position (ie the character that would
be copied as input the next time Copy is pressed).

Note that the screen mode does not have bit 7 set, even if it is a shadow mode.

Related SWis

None

Related vectors

ByteV

1-649

OS_Byte 144 (SWI &06)

1-650

Set vertical screen shift and interlace

On entry

RO = 144 I
RI =vertical screen shift (as a signed 8 bit number)
R2 = interlace flag

On exit

RO preserved
Rl =previous vertical screen shift
R2 = previous interlace flag

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 144
(SWI &06)

This call specifies the vertical screen alignment and interlace options after the next
mode change. Rl sets the vertical offset. R2 turns interlace on and off as follows:

Value

0

Meaning

Interlace on
Interlace off

This is equivalent to *TV. which is described in this chapter.

Related SWis

None

Related vectors

ByteV

VDU Drivers

1-651

OS_Byte 160 (SWI &06)

1-652

Read VDU variable value

On entry

RO = 160
Rl = VDU variable number (0-15)

On exit

RO preserved
R I =value of variable
R2 =value of next variable (RI on entry+ I)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 160
{SWI &06)

The VDU driver uses a number of locations in RAM to store transient information.
This call allows some of these locations to be examined. Note that the variables
are not necessarily stored in the order implied by the value of Rl on entry.
However, the relationship between Rl and the variable read is guaranteed to
remain the same for all versions of RISC OS.

Value

0
I
2
3
4
5
6
7

8
9
10
II
12
13
14
15

Location

LSB of graphics window left column (ic)
MSB of graphics window left column (ic)
LSB of graphics window bottom row (ic)
MSB of graphics window bottom row (ic)
LSB of graphics window right column (ic)
MSB of graphics window right column (ic)
LSB of graphics window top row (ic)
MSB of graphics window top row (ic)
Text window left column
Text window bottom row
Text window right column
Text window top row
LSB of graphics origin x coordinate (ec)
MSB of graphics origin x coordinate (ec)
LSB of graphics origin y coordinate (ec)
MSB of graphics origin y coordinate (ec)

VDU Drivers

• (ic) means internal coordinates: the origin is always the bottom left of the
screen. One unit is one pixel wide and one pixel high.

• (ec) means external coordinates: a pixel is (I « XEigFactor) units wide and
(I « YEigFactor) units high. where XEigFactor and YEigFactor are VDU
variables.

This OS_Byte is provided mainly for compatibility with the BBC/Master 128. You
can read many more of the VDU variables using OS_ReadVduVariables and
OS_ReadModeVariable.

Related SWis

OS_ReadVduVariables (page 1-703) . OS_ReadModeVariable (page 1-709)

Related vectors

ByteV

1-653

OS_Byte 163 (SWI &06}

1-654

Read/write general graphics information

OS_Byte 163
(SWI &06)

On entry

RO = 163
Rl = 242
R2 = dot-dash repeat length or action code

On exit

RO preserved
Rl =status, or preserved
R2 = status, or preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call is a general purpose one reserved for Acorn applications. The only value of
Rl which is guaranteed to perform a useful function is 242. The type of action
depends on the value of R2:

Value

0
1-64
65
66

Meaning

Set default dot-dash pattern and length
Set dot-dash line repeat length to the value given
Return status information
Return information on the current sprite

The status information is returned in Rl and R2 as follows:

Rl bits
Bit 7 =I
Bit 6 =I
Bits 0-5

R2 bits
Bits 0-31

Meaning

Sprites are always active
Flood fill is always active
Current dot dash line repeat length (0 means 64)

Meaning

Current size of the system sprite area in bytes.

VDU Drivers

The information on the current sprite is returned in Rl and R2 as follows:

Rl =width in pixels (ie internal coordinates)
R2 =height in pixels (ie internal coordinates)

Related SWis

None

Related vectors

ByteV

1-655

OS_Byte 165 (SWI &06)

1-656

Read output cursor position

On entry

RO = 165

On exit

RO preserved
R I = position in x direction
R2 = position in y direction

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 165
(SWI &06)

This call returns the position of the output cursor, even while cursor editing is in
progress .

Related SWis

OS_Byte 134 (page 1-64 7)

Related vectors

ByteV

Read/write flash counter

VDU Drivers

OS_Byte 193
(SWI &06)

On entry

RO = 193
Rl = 0 to read or new duration to write
R2 = 255 to read or 0 to write

On exit

R preserved
Rl =duration before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The duration stored is changed by being masked with R2 and then exclusive ORd
with Rl : ie ((duration AND R2) XOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

This call accesses the location used as a count-down timer for the flashing colours.
The location is loaded with the count for the first colour and decremented at a
VSync rate, providing that the current flash period is not infinite. When it reaches
zero, the colours are swapped and the counter is loaded with the duration of the
second colour.

1-657

OS_Byte 193 (SWI &06)

1-658

Related SWis

OS_Byte 9 (page 1-628), OS_Byte 10 (page 1-630). OS_Byte 194 (page 1-659).
OS_Byte 195 (page 1-660)

Related vectors

ByteV

Read duration of second colour

On entry

RO = 194
R1 = 0
R2 = 255

On exit

RO preserved
R1 =duration
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Byte 194
(SWI &06)

This call reads the duration of the second colour, as set by OS_Byte 10.

The value read is only a record of the current duration. You must not attempt to
use this call to write the value; doing so would merely change the stored value,
without making any actual change. To change the duration you must instead call
OS_Byte 10. This call is only included for backwards compatibility.

Related SWis

OS_Byte 10 (page 1-630)

Related vectors

ByteV

1-659

OS_Byte 195 (SWI &06)

1-660

Read duration of first colour

On entry

RO = 195
Rl = 0
R2 = 255

On exit

RO preserved
Rl =duration
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 195
{SWI &06)

This command will read the location that has been set by OS_Byte 9.

The value read is only a record of the current duration. You must not attempt to
use this call to write the value; doing so would merely change the stored value,
without making any actual change. To change the duration you must instead call
OS_Byte 9. This call is only included for backwards compatibility.

Related SWis

OS_Byte 9 (page 1-628)

Related vectors

ByteV

Read/write bell channel

On entry

RO = 211
Rl = 0 to read or new channel to write
R2 = 255 to read or 0 to write

On exit

RO preserved
Rl =channel before being overwritten
R2 =bell sound information (see OS_Byte 212)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Byte 211
(SWI &06)

The channel stored is changed by being masked with R2 and then exclusive ORd
with Rl: ie ((channel AND R2) XOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

The bell (VDU 7) sound is output on channel I by default. This call provides a
means of determining the current channeL or changing it if required .

Related SWis

OS_Byte 212 (page 1-662), OS_Byte 213 (page 1-664), OS_Byte 214 (page 1-666)

Related vectors

ByteV

1-661

OS_Byte 212 (SWI &06)

1-662

Read/write bell volume

OS_Byte 212
(SWI &06)

On entry

RO = 212
Rl = 0 to read or new volume to write
R2 = 255 to read or 0 to write

On exit

RO preserved
Rl =volume before being overwritten
R2 =bell frequency (see OS_Byte 213)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The volume stored is changed by being masked with R2 and then exclusive ORd
with R1: ie ((volume AND R2) XOR Rl). This means that R2 controls which bits are
changed and R I supplies the new bits.

This allows you to read or set the volume of the sound used to make the Ctri-G bell
sound. Values for the amplitude are in the range &80 (loudest) to &F8 (softest) in
steps of &08 . The default setting depends on the *Configure Loud/Quiet setting
(&90/&DO respectively) .

Related SWis

OS_Byte 211 (page 1-661). OS_Byte 213 (page 1-664). OS_Byte 214 (page 1-666)

Related vectors

ByteV

VDU Drivers

1-663

OS_Byte 213 (SWI &06)

1-664

Read/write bell frequency

OS_Byte 213
(SWI &06)

On entry

RO = 213
Rl = 0 to read or new frequency to write (in range 0- 255)
R2 = 255 to read or 0 to write

On exit

RO preserved
Rl =frequency before being overwritten
R2 =bell duration (see OS_Byte 214)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The frequency stored is changed by being masked with R2 and then exclusive ORd
with Rl: ie ((frequency AND R2) XOR Rl). This means that R2 controls which bits
are changed and Rl supplies the new bits.

This call provides a means of reading or changing the frequency associated with
the bell sound. The default value is 100, and it has the same interpretation as the
*Sound command.

The frequency must be an old-style BBC frequency: ie in the range 0- 255.

Related SWis

OS_Byte 211 (page 1-661). OS_Byte 212 (page 1-662). OS_Byte 214 (page 1-666)

Related vectors

ByteV

VDU Drivers

1-665

OS_Byte 214 (SWI &06)

1-666

Read/write bell duration

On entry

RO = 214
Rl = 0 to read or new duration to write
R2 = 255 to read or 0 to write

On exit

RO preserved
Rl =duration before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 214
(SWI &06)

The duration stored is changed by being masked with R2 and then exclusive ORd
with Rl: ie ((duration AND R2) XOR Rl). This means that R2 controls which bits are
changed and R I supplies the new bits.

This call provides a means of reading or changing the duration of the bell sound.
The default value is 6, and the unit is 20ths of a second.

Related SWis

OS_Byte 211 (page 1-661). OS_Byte 212 (page 1-662). OS_Byte 213 (page 1-664)

Related vectors

ByteV

Read/write paged mode line count

VDU Drivers

OS_Byte 217
{SWI &06)

On entry

RO = 217
R I = 0 to read or new count to write
R2 = 255 to read or 0 to write

On exit

RO preserved
Rl =count before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The count stored is changed by being masked with R2 and then exclusive ORd with
Rl : ie ((count AND R2) XOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

In the paged output mode, the display is prevented from scrolling (awaiting the
depression of Shift) when approximately 75% of the height of the current text
window has been scrolled. The number of lines printed since the last page halt is
maintained in the location accessed by this call and it may be either read or
changed (normally to 0 before requesting user input) .

If you are using OS_ Word 0 or OS_ReadLine to perform the input, this call is made
automatically. OS_ Word 0 is provided for compatibility only and should not be
used.

1-667

OS_Byte 217 (SWI &06)

1-668

Related SWis

None

Related vectors

ByteV

Read/write bytes in VDU queue

VDU Drivers

OS_Byte 218
(SWI &06)

On entry

RO = 218
Rl = 0 to read or new count to write
R2 = 255 to read or 0 to write

On exit

RO preserved
R I = count before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The count stored is changed by being masked with R2 and then exclusive ORd with
Rl: ie ((count AND R2) XOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

This call affects the count of the number of characters which remain to be passed
to the VDU driver in order to complete the current VDU sequence. The value is
(minus the number of bytes left). and is held in 2's complement notation (eg. &FF
means one byte to go). The call may be used to read the value or to change it
(normally to zero, which has the effect of abandoning an incomplete VDU
command).

1-669

OS_Byte 218 (SWI &06)

1-670

You can use this call when an escape condition is acknowledged. This prevents the
first few characters of an error message from being 'swallowed' by an incomplete
VDU sequence.

Related SWis

None

Related vectors

ByteV

Read VDU driver screen bank number

On entry

RO = 250
Rl = 0
R2 = 255

On exit

RO preserved
Rl =screen bank used by VDU drivers
R2 =display screen bank (see OS_Byte 251)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Byte 250
(SWI &06)

This call reads the current VDU driver screen bank number, as set by OS_Byte 112.

The value read is only a record of the current VDU driver screen bank. You must not
attempt to use this call to write the value; doing so would merely change the
stored value, without making any actual change. To change the duration you must
instead call OS_Byte 112. This call is only included for backwards compatibility.

Related SWis

OS_Byte 112 (page 1-639)

Related vectors

ByteV

1-671

OS_Byte 251 (SWI &06)

1-672

Read display screen bank number

On entry

RO = 251
Rl = 0
R2 = 255

On exit

RO preserved
R I = screen bank used by the display
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 251
(SWI &06)

This call reads the current display screen bank number, as set by OS_Byte 113.

The value read is only a record of the current display screen bank. You must not
attempt to use this call to write the value; doing so would merely change the
stored value, without making any actual change. To change the duration you must
instead call OS_Byte 113. This call is only included for backwards compatibility.

Related SWis

OS_Byte 113 (page 1·641)

Related vectors

ByteV

Read pixel logical colour

On entry

RO = 9 (reason code)
Rl =pointer to parameter block

R I +0 = LSB of x coordinate
R I+ I = MSB of x coordinate
Rl +2 = LSB of y coordinate
R I+ 3 = MSB of y coordinate

On exit

RO preserved
Rl preserved:

Rl +4 =the logical colour of the pixel specified.

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Word 9
(SWI &07)

This call determines the logical colour of the pixel at given coordinates on the
graphics screen. In 256 colour modes this call ignores the tint, and returns a value
in the range 0- 63. Consequently you should always use OS_ReadPoint
(page 1-707) in preference , since it returns both the logical colour and tint.

If the colour is returned as &FF then either:

• the pixel is off the screen

• the screen is in a non-graphics mode.

1-673

OS_ Word 9 (SWI &07)

This call is provided for backwards compatibility only.

Related SWis

OS_ReadPoint (page 1-707)

Related vectors

WordY

1-674

Read a character definition

On entry

RO= 10
Rl =pointer to parameter block

R I +0 =ASCII code of character required

On exit

RO preserved
Rl preserved:

Rl+l =top row of definition

R I +8 = bottom row of definition

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Word 10
(SWI &07)

The characters displayed in all modes other than Teletext mode are defined as an
eight-by-eight matrix of dots. This call enables you to read the definition for a
specified ASCII code. However. the definitions returned for ASCII codes 0 to 31 and
127 (ie the non-printing characters) are not meaningful apart from the following
characters:

1-675

OS_ Word 10 (SWI &07)

1-676

Value

2
3
4

5
6

Information returned

ECF pattern I (in native mode)
ECF pattern 2 (in native mode)
ECF pattern 3 (in native mode)
ECF pattern 4 (in native mode)
Dot-dash pattern

Bits set in each row of the character definition are displayed in the current text
foreground colour; bits clear in each row are displayed in the current text
background colour. In VDU 5 mode, bits which are set are plotted in the graphics
foreground colour and action; bits which are clear are not plotted at all.

Related SWis

None

Related vectors

WordY

Read the palette

VDU Drivers

OS_Word 11
(SWI &07)

On entry

RO =II
Rl =pointer to parameter block

R I +0 = logical colour to read

On exit

RO preserved
Rl preserved:

R I+ I = physical colour associated with the specified logical colour
Rl+2 =red component
Rl+3 =green component
Rl+4 =blue component

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call allows you to determine the physical colour associated with a particular
logical colour. The call can only return one of the colours associated with a flashing
colour. To read the full information about a logical colour's palette entry, or to read
the border and pointer palettes, you should use OS_ReadPalette (page 1-70 I) . The
OS_ Word is provided for compatibility only.

Related SWis

OS_ReadPalette (page 1-701)

1-677

OS_ Word 11 (SWI &07)

1-678

Related vectors

WordV

Write the palette

On entry

RO = 12
Rl =pointer to parameter block

R I +0 = logical colour to change
Rl+l =new physical colour
Rl+2 =red component
Rl+3 =green component
Rl+4 =blue component

On exit

RO. Rl preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Word 12
(SWI &07)

This call allows you to change the physical colour associated with a particular
logical colour. It duplicates the function of VDU 19 command . However. the
OS_ Word call is faster and may be used in interrupt routines. The five bytes of the
parameter block are equivalent to the five parameters l,p,r,g,b described in the
section on VDU 19 (see page 1-568).

Related SWis

None

1-679

OS_ Word 12 (SWI &07)

1-680

Related vectors

WordY

Read current and previous graphics cursor positions

On entry

RO = 13
R I = pointer to parameter block

On exit

RO preserved
Rl preserved:

RI+O = LSB of previous x coordinate
R I+ I = MSB of previous x coordinate
R I +2 = LSB of previous y coordinate
Rl+3 = MSB of previous y coordinate
Rl+4 = LSB of current x coordinate
Rl +5 = MSB of current x coordinate
R I +6 = LSB of current y coordinate
R I+ 7 = MSB of current y coordinate

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Word 13
(SWI &07)

All the coordinates are in external form . You can read points visited before the
previous one (and many other VDU variables) using OS_ReadVduVariables
(page 1-703) . The OS_ Word is provided for compatibility only.

Related SWis

OS_ReadVduVariables (page 1-703)

1-681

OS_ Word 13 (SW/ &07)

1-682

Related vectors

WordY

Define pointer size. shape and active point

VDU Drivers

OS_ Word 21,0
(SWI &07)

On entry

RO = 21
R I = pointer to parameter block

RI+O = 0
Rl+l = Shape number (1-4)
Rl+2 = Width (w) in bytes (0-8)
Rl+3 = Height (h) in pixels (0-32)
Rl+4 = ActiveX in pixels from left (0-(wx4-l))
Rl+5 = ActiveY in pixels from top (0-(h-1))
Rl +6 = Least significant byte of pointer (P) to data
Rl+7
Rl+8
R I +9 = Most significant byte of pointer to data

On exit

RO. Rl preserved

Interrupts

Interrupts are enabled (in RISC OS 2, the interrupt status is not altered)
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

You can define four shapes. These are numbered one to four and may be selected
using OS_Byte I 06.

As the pointer is always displayed in 2 bits per pixel (four pixels per byte). and the
maximum width in bytes is 8, the maximum width is 32 pixels.

1-683

OS_ Word 21,0 (SWI &07)

1-684

The ActiveX and ActiveY entries give the distance of the cursor 'hot spot' from the
top left corner of the pointer. If these are zero. then positioning the pointer at
coordinates (x. y) will move the top left corner to that position. Suppose the shape
was a cross-hair 9 pixels in each direction; then making ActiveX and ActiveY (5 ,5)
would position the hot-spot at the centre of the cross.

The data for the shape is pointed to by RI +6--RI +9. This data table contains the
information for each row. from top to bottom. and the data within each row is given
from left to right. Each byte contains the colours for four pixels. Bits 0, I hold the
colour number for the left-most pixel. bits 6, 7 the colour for the right-most pixel.
(So the pixels are displayed in reverse order to the order in which the byte would
be written down.)

Colour zero is always transparent (ie the screen information shows through pixels
in this colour). The other three colours may be set independently of any other
colours on the screen using VDU I 9 or the equivalent OS_ Word.

However, note that colour two should be used with caution in defining pointer
shapes. as it does not work correctly on high-resolution mono screens.

Related SWis

OS_Byte 106 (page 1-637)

Related vectors

WordY

Define mouse coordinate bounding box

On entry

RO = 2I
RI =pointer to parameter block

RI+O = I (sub-reason code)
RI+I = LSB of left coordinate
R I+ 2 = MSB of left coordinate
RI+3 = LSB of bottom coordinate
R I +4 = MSB of bottom coordinate
RI+5 = LSB of right coordinate
RI+6 = MSB of right coordinate
R I+ 7 = LSB of top coordinate
RI+8 = MSB of top coordinate

On exit

RO, RI preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Word 21,1
(SWI &07)

All treated as signed I6-bit
values, relative to screen
origin at the time the
command is issued

The coordinates should be given as signed I6-bit values relative to the graphics
origin at the time the command is issued.

If (left> right) or (bottom> top) then the command is ignored.

1-685

OS_ Word 21,1 (SWI &07)

1-686

An infinite box can be obtained by setting:

left &8000 (-32768)
bottom = &8000 (-32768)
right &7FFF (32767)
top &7FFF (32767)

If the current mouse position is outside the box, it is homed to the nearest point
inside the box. The buffer is not flushed, but any buffered coordinates will be
moved inside the bounding box when they are read.

When the mode changes, the box is set to the size of the screen.

Related SWis

None

Related vectors

WordY

Define mouse multipliers

VDU Drivers

OS_ Word 21,2
(SWI &07)

On entry

RO = 21
Rl =pointer to parameter block

Rl+O = 2
Rl+l = x multiplier (treated as a signed 8-bit value)
Rl+2 = y multiplier (treated as a signed 8-bit value)

On exit

RO, Rl preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The multipliers control the ratio between the movement of the mouse and the
change in the coordinates of the mouse. The higher each value, the greater the
amount the pointer moves (if linked to the mouse) for a given movement of the
mouse.

The multipliers should both be given as signed eight-bit values. By specifying
negative values (eg. 255 for -1). you can make the pointer move in the opposite
direction from usual.

1-687

OS_ Word 21,2 (SWI &07)

1-688

Both multipliers default to the configured MouseStep value. The factory defaults
for this have varied between versions of RISC OS:

RISC OS version

2
3 (version 3.00)
3 (version 3.10)

Related SWis

None

Related vectors

WordY

MouseStep

I
2
3

Mouse movement per screen width

15cm
7.5cm
5cm

Set mouse position

On entry

RO =(reason code)
Rl =pointer to parameter block

RI+O = 3
R I+ I = LSB of x position
R I +2 = MSB of x position
R I+ 3 = LSB of y position
R I +4 = MSB of y position

On exit

RO, Rl preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_ Word 21,3
{SWI &07)

The new values for the x andy positions of the mouse are given as two signed
16-bit values. If the new position lies outside the bounding box of the mouse, this
command will be ignored.

Note that this call sets the position of the mouse rather than the pointer. If the
mouse and pointer are not linked, the position of the pointer on the screen is left
unchanged.

Related SWis

None

1-689

OS_ Word 21,3 (SWI &07)

1-690

Related vectors

WordY

Read unbuffered mouse position

VDU Drivers

OS_ Word 21,4
(SWI &07)

On entry

RO = 21
Rl =pointer to parameter block

RI+O = 4

On exit

RO preserved
R I preserved:

Rl +I = LSB of x position
R I +2 = MSB of x position
R I+ 3 = LSB of y position
R I +4 = MSB of y position

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call will read the position of the mouse at the time of the call . That is, it will
not read the position from the mouse buffer.

Care should be taken when reading this position, as the buffer positions may be
significantly out of step.

With RISC OS 2.00 this call generates an undefined instruction trap due to a stack
mismatch. This was fixed in RISC OS 2.0 I.

1-691

OS_ Word 21,4 (SWI &07)

1-692

Related SWis

None

Related vectors

WordV

Set pointer position

On entry

RO = 21 (reason code)
Rl =pointer to parameter block

RI+O = 5
R I+ I = LSB of x position
Rl +2 = MSB of x position
Rl + 3 = LSB of y position
R I +4 = MSB of y position

On exit

RO, Rl preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_ Word 21,5
(SWI &07)

The new values for the x andy positions of the pointer are given as two signed
16-bit values.

Note that this call sets the position of the pointer rather than the mouse. If the
mouse and pointer are linked, then the pointer position will be updated with the
mouse position on the next VSync interrupt.

Related SWis

None

1-693

OS_ Word 21,5 (SWI &07)

1-694

Related vectors

WordY

Read pointer position

On entry

RO = 21
Rl =pointer to parameter block

RI+O = 6

On exit

RO preserved
Rl preserved:

R I+ I = LSB of x position
Rl+2 = MSB of x position
R I+ 3 = LSB of y position
R I +4 = MSB of y position

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_ Word 21,6
(SWI &07)

This call will read the position of the pointer. If the mouse and pointer are not
linked, then this call reads the position that the pointer was last set to .

If they are linked, then the pointer is updated from the unbuffered mouse position
every VSync.

Related SWis

None

1-695

OS_ Word 21,6 (SWI &07)

1-696

Related vectors

WordV

Write screen base address

On entry

RO = 22
Rl =pointer to parameter block

Rl+O =Type
Rl+l =Least significant byte of offset
Rl+2 . . .
Rl+3 . .
RI +4 =Most significant byte of offset

On exit

RO, RI preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

VDU Drivers

OS_Word 22
(SWI &07)

This routine sets up a new screen base address. It is given as the offset from the
address of the base of the screen buffer to the start of the screen display. This
address can be used as the area of the buffer which is to be updated, ie written to
by the VDU drivers, or the area which is to be displayed by the hardware, or both,
depending on the bits of the first byte in the parameter block:

Bit 0
Bit I

Used by VDU drivers
Displayed by hardware

1-697

OS_ Word 22 (SWI &07)

1-698

This allows multiple screens to be used. For example, in mode 12 two copies of the
screen can be kept. One of these can be updated whilst the other is being
displayed using the following parameter blocks:

R I +0 Contains 2 Displayed
RI+I-RI+4 Contains &00

RI+O
RI+I-RI+4

Contains I
Contains &14000

Updated

Then the two screens can be swapped over (at VSync) by changing over the
addresses so that smooth animation is obtained.

The configured ScreenSize determines the amount of RAM initially set aside for the
screen. This can subsequently change, for example if you drag the screen memory
bar in the Task Manager, or call OS_ChangeDynamicArea. You can read the current
amount set aside for the screen by reading the VDU variable TotalScreenSize; and
you can read the amount needed for a single screen by reading the mode variable
Screen Size.

A slightly simpler way of achieving bank switching is to use OS_Bytes 112-113.
With these, you only have to specify the bank number, not the actual offset.

Related SWis

OS_Byte 112 (page 1-639). OS_Byte 113 (page 1-641)

Related vectors

WordV

Read a mouse state from the buffer

VDU Drivers

OS_Mouse
(SWI &1C)

On entry

On exit

RO = mouse x coordinate
Rl =mousey coordinate
R2 = mouse buttons
R3 =time of button change

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI cannot be re-entered as interrupts are disabled

OS_Mouse reads from the mouse buffer the mouse x andy positions as values
between -32768 and 32767. Unless the graphics origin has been changed, the
coordinates will lie within the mouse bounding box, which initially defaults to the
screen area . The call also returns buttons currently pressed as a value in the range
0-7:

Bit Meaning when set

0 Right button down
Middle button down

2 Left button down

If there is no entry in the mouse buffer. the current status is returned. R3 gives the
time the entry was buffered, or the current time if it is not a buffered reading. It
uses the monotonic timer (see OS_ReadMonotonicTime).

1-699

OS_Mouse (SWI & 1 C)

1-700

Related SWis

OS_ReadMonotonicTime (page 1-434)

Related vectors

MouseY

Read the palette setting of a colour

On entry

RO = logical colour
R I = type of colour

On exit

R2 = setting of first flashing colour
R3 = setting of second flashing colour

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

VDU Drivers

OS_ReadPalette
(SWI &2F)

OS_ReadPalette reads the setting of a particular colour that is sent to the
hardware. Rl selects whether the normal colour, border colour or pointer colour is
read as follows:

Value

16
24
25

Meaning

Read normal colour
Read border colour
Read pointer colour

1-701

OS_ReadPalette (SWI &2F)

1-702

The settings for the first flash colour and second flash colour are returned in R2
and R3 respectively. If these are identical then the colour is a steady, non-flashing
one. The value contained in each of these is interpreted as follows:

Bits Meaning

0-6 Value showing how colour was programmed
7 Supremacy bit
8-15 Amountofred
I 6-23 Amount of green
24-31 Amount of blue

The bottom byte (bits 0-7) returns the value of the second parameter to the
VDU 19 command which defines the palette (bit 7 is the supremacy bit). For
example:

Value

0-15
16
17-18

Meaning

Actual colour (BBC compatible)
Defined by giving amounts of red, green and blue
Flashing colour defined by giving amounts of red, green and
blue

RISC OS 3 (version 3.1 0) and later versions no longer return values in the range
0 - 15. Instead they always return 16 for BBC colours 0 - 7, and 17 and 18 for BBC
flashing colours 8 • 15.

Related SWis

None

Related vectors

None

Read a series of VDU variables

VDU Drivers

OS_ReadVduVariables
(SWI &31)

On entry

RO = pointer to input block
Rl =pointer to output block

On exit

RO, Rl preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

OS_ReadVduVariables reads in a series of VDU variables and places them in
sequence into a block of memory. The input block consists of a sequence of words.
Each word is the number of the variable to be read. A value of -I terminates the
list. The value of each variable is put as a word into the output block, any invalid
variables being entered as zero. The output block has no terminator. Both blocks
must be word-aligned.

The possible variable numbers are the same as for OS_ReadModeVariable (see
page 1-709) with the following additions:

Name

GWLCol
GWBRow
GWRCol
GWTRow
TWLCol

No. Meaning

128 Left-hand column of the graphics window (ic)
129 Bottom row of the graphics window (ic)
130 Right-hand column of the graphics window (ic)
131 Top row of the graphics window (ic)
132 Left-hand column of the text window

1-703

OS_ReadVduVariab/es (SWI &31)

TWBRow 133 Bottom row of the text window
TWRCol 134 Right-hand column of the text window
TWTRow 135 Top row of the text window
OrgX 136 x coordinate of the graphics origin (ec)
OrgY 137 Y coordinate of the graphics origin (ec)
GCsX 138 x coordinate of the graphics cursor (ec)
GCsY 139 Y coordinate of the graphics cursor (ec)
OlderCsX 140 x coordinate of oldest graphics cursor (ic)
OlderCsY 141 Y coordinate of oldest graphics cursor (ic)
OldCsX 142 x coordinate of previous graphics cursor (ic)
OldCsY 143 Y coordinate of previous graphics cursor (ic)
GCs1X 144 x coordinate of graphics cursor (ic)
GCs1Y 145 Y coordinate of graphics cursor (ic)
NewPtX 146 x coordinate of new point (ic)
NewPtY 147 Y coordinate of new point (ic)
Screen Start 148 Address of the start of screen used by VDU drivers
DisplayStart 149 Address of the start of screen used by display hardware
TotalScreenSize 150 Amount of memory currently allocated to the screen
GPLFMD 151 GCOL action for foreground colour
GPLBMD 152 GCOL action for background colour
GFCOL 153 Graphics foreground colour
GBCOL 154 Graphics background colour
TForeCol 155 Text foreground colour
TBackCol 156 Text background colour
GFTint 157 Tint for graphics foreground colour
GBTint 158 Tint for graphics background colour
TFTint 159 Tint for text foreground colour
TBTint 160 Tint for text background colour
MaxMode 161 Highest mode number available
GCharSizeX 162 x size of VDU 5 chars (in pixels)
GCharSizeY 163 Y size of VDU 5 chars (in pixels)
GCharSpaceX 164 x spacing ofVDU 5 chars (in pixels)
GCharSpaceY 165 Y spacing of VDU 5 chars (in pixels)
HLineAddr 166 Address of fast line-draw routine
TCharSizeX 167 x size of VDU 4 chars (in pixels)
TCharSizeY 168 Y size of VDU 4 chars (in pixels)
TCharSpaceX 169 x spacing of VDU 4 chars (in pixels)
TCharSpaceY 170 Y spacing of VDU 4 chars (in pixels)
GcoiOraEorAddr 171 Address of colour blocks for current GCOLs
VlDCCiockSpeed 172 VIDC clock speed in kHz (eg 24000 ~ 24 MHz)

-not available in R1SC OS 2.00

1-704

VDU Drivers

WindowWidth 256 Characters that will fit on a row of the text window
without a newline being generated

WindowHeight 257 Rows that will fit in the text window without scrolling it

• ic means internal coordinates, where (0.0) is always the bottom left of the
screen. One unit is one pixel.

• ec means external coordinates, where (0,0) means the graphics origin , and the
size of one unit depends on the resolution. The number of external units on a
screen is dependent upon the video mode used; for example Mode 16 has
1280 by I 024 external units. The graphics origin is stored in external
coordinate units, but is relative to the bottom left of the screen.

• new point is the internal form of the coordinates given in an unrecognised PLOT
command. When the UKPlot vector is called, the internal format coordinates
(variables 140-145) have not yet been shuffled down, so the graphics cursor
(144-5) contains the coordinates of the last point visited. The external
coordinates version of the current point (138-9) is updated from the
coordinate given in the unrecognised plot.

• HLineAddr points to a fast horizontal line draw routine. It is called as follows:

RO = left x coordinate of end of line

Rl = y coordinate of line

R2 = right x coordinate of end of line

R3 = 0 plot with no action (ie do nothing)
I plot using foreground colour and action
2 invert current screen colour
3 plot using background colour and action
:2:4 pointer to colour block (on 64-byte boundary):

Offset Value
0 OR mask for top ECF line
4 exclusive OR mask for top ECF line
8 OR mask for next ECF line
12 exclusive OR mask for next ECF line

56 OR mask for bottom ECF line
60 exclusive OR mask for bottom ECF line

R 14 = return address

Must be entered in SVC mode

All registers are preserved on exit

All coordinates are in terms of pixels from the bottom left of the screen. The
line is clipped to the graphics window, and is plotted using the colour action
specified by R3. The caller must have previously called OS_RemoveCursors
and call OS_RestoreCursors afterwards.

1-705

OS_ReadVduVariables (SWI &31)

1-706

• GcoiOraEorAddr points to colour blocks for current GCOLs. If the value
returned is n, then:

n+&00-n+&3F is a colour block for the foreground colour+ action
n+&40-n+&7F is a colour block for the background colour+ action
n+&80-n+&BF is a colour block for the background colour with store
action

Each colour block is as described above. These are updated whenever a GCOL
or TINT is issued or the ECF origin is changed. They are intended for programs
which want to access screen memory directly and have access to the current
colour/action settings.

Related SWis

OS_ReadModeVariable (page 1-709)

Related vectors

None

VDU Drivers

OS_ReadPoint
(SWI &32)

Read the colour of a point

On entry

RO = x coordinate
Rl = y coordinate

On exit

RO, Rl preserved
R2 =colour
R3 =tint
R4 =screen flag

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

The coordinates passed are in external units and are relative to the current
graphics origin.

OS_ReadPoint takes a point and returns its colour in R2 and its tint setting
(amount of white, in the range 0-255) in R3. R4 returns the following:

Value

0
-[

Meaning

Point on the screen
Point off the screen (R2 =-I also)

See VDU rl9 (page 1-568) for a description of colour and tint values.

1-707

OS_ReadPoint (SWI &32)

Related SWis

None

Related vectors
I

None

1-708

VDU Drivers

OS_ReadModeVariable
(SWI &35)

Read information about a screen mode

On entry

RO = scr~en mode, or -I for current mode
Rl =variable number

On exit

RO, Rl preserved
R2 =value of variable
the C flag is set if variable or mode numbers were invalid

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

OS_ReadModeVariable allows you to read information about a particular screen
mode without having to change into that mode. The possible variable numbers are
given below:

1-709

OS_ReadModeVariable (SWI &35)

Name No. Meaning

Mode Flags 0 The bits of the result have the following meanings:
Bit 0 =0 graphics mode

=I non-graphics mode
Bit I =0 non-Teletext mode

=I Teletext mode
Bit 2 =0 non-gap mode

=I gap mode
Bit 3 =0 non-gap mode

=I 'BBC' gap mode (eg modes 3 and 6)
Bit 4 =0 not Hi-resolution mono mode

=I Hi-resolution mono mode
Bit 5 =0 VDU characters are normal height

=I VDU characters are double height
Bit 6 =0 hardware scroll used

=I hardware scroll never used.

ScrRCol Maximum column number for printing text ie number of
columns-!.

ScrBRow 2 Maximum row number for printing text ie number of
rows-! .

NColour 3 Maximum logical colour ie either I. 3. 15 or 63 (not 255).

XEigFactor 4 This indicates the number of bits by which an
X coordinate must be shifted right to convert to screen
pixels. Thus if this value is n. then one screen pixel
corresponds to 2n external coordinates in the X direction.

YEigFactor 5 This indicates the number of bits by which a Y coordinate
must be shifted right to convert to screen pixels. Thus if
this value is n. then one screen pixel corresponds to 2n
external coordinates in theY direction.

Line Length 6 Offset in bytes from a point on a pixel row to the same
point on the pixel row below.

On current hardware this is the same as (characters per
row) x (bits per pixel) x (pixel width of character) I 8; for
example. in mode 15 it is 80x8x8/8. or 640. You must not
assume this will always be the case.

ScreenSize 7 Number of bytes one screen buffer occupies. This must
be a multiple of 256 bytes.

1-710

YShftFactor

Log2BPP

Log2BPC

XWindLimit

YWindLimit

Related SWis

8

9

10

II

12

VDU Drivers

Scaling factor for start address of a screen row. This
variable is kept for compatibility reasons and should not
be used.

LOG base 2 of the number of bits per pixel.

LOG base 2 of the number of bytes per character. It is in
fact the LOG base 2 of the number of bytes per character
divided by eight. So in mode 0, for example. it is LOG
base 2 of (8/8). or 0. In mode 15 it is LOG base 2 of (64/8).
or 3. It would be exactly the same as Log2BPP. except for
the 'double pixel' modes.

Number of x pixels on screen-!.

Number of y pixels on screen-! .

OS_ReadVduVariables (page 1-703)

Related vectors

None

1-711

OS_ RemoveCursors (SWI &36)

1-712

Remove the cursors from the screen

OS_RemoveCursors
(SWI &36)

On entry

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

OS_RemoveCursors removes the cursors (output and copy, if active) from the
screen, saving the old state (their positions, flash rate etc.) on an internal stack so
that it may be recovered later. This instruction must always be balanced later by a
OS_RestoreCursors to restore the cursor again .

This call is provided only for routines that need direct screen access.

Note that routines that directly access the screen may need to run in SVC mode if
the routines are to work with hardware scrolled screens, which may straddle the
logical-physical memory boundary at 32M Byte. If the routines do not need to work
with hardware scrolled screens, then USR mode is adequate.

Related SWis

OS_RestoreCursors (page 1-714)

Related vectors

None

VDU Drivers

1-713

OS_RestoreCursors (SWI &37)

1-714

Restore the cursors to the screen

On entry

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

OS_RestoreCursors
(SWI &37)

OS_RestoreCursors restores the cursor state previously saved on the internal stack
using OS_RemoveCursors .

This call is provided only for routines that need direct screen access.

Related SWis

OS_RemoveCursors (page 1-712)

Related vectors

None

VDU Drivers

OS_CheckModeValid
(SWI &3F)

Check if it is possible to change to a specified mode

On entry

RO =mode number to check

On exit

if C flag= 0 then mode is valid:
RO preserved

if C flag= I then mode is invalid:
if RO = -I then mode is non-existent:

RI =mode that would be used, or -2 if unable to select
alternative mode

if RO = - 2 then not enough memory:
RI preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

OS_CheckModeValid determines whether you can change to a given mode and
return with the carry bit appropriately set. If the mode you're checking is not
available on the current type of monitor, then Rl will contain the mode that will be
used if an attempt is made to select the mode which you are checking, using
VDU 22. If there is insufficient memory or the call is unable to determine an
alternative for another reason, then -2 will be returned .

If this call returns that there is insufficient memory for the required mode, then it
can be borrowed from other areas of the machine. See the chapter entitled Memory
Management on page 1-337 for details.

1-715

OS_CheckModeValid (SWI &3F)

1-716

Related SWis

None

Related vectors

None

Direct VDU call

On entry

RO =plot command code
Rl = x coordinate
R2 = y coordinate

On exit

RO - R2 corrupted

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

VDU Drivers

OS_Piot
(SWI &45)

This call is equivalent to a VDU 25 command. However, it is much more efficient as
only one call is required (instead of six calls to OS_WriteC). The call goes directly
to the VDU drivers unless spooling has been turned on, redirection has been
turned on or if WrchV has been claimed.

Related SWis

None

Related vectors

WrchV

1-717

OS_SetECFOrigin (SWI &56)

1-718

Set the origin of the ECF patterns

On entry

RO = x coordinate
RI = y coordinate

On exit

RO, RI preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

OS_SetECFOrigin
{SWI &56)

By default, the alignment of ECF patterns is with the bottom left corner of the
screen. This command makes the bottom left of the pattern coincide with the
bottom left of the specified point.

The origin is restored to the default after a mode change.

VDU 23, I 7,6 performs the same action .

Related SWis

None

Related vectors

None

VDU Drivers

OS_ReadSyslnfo
(SWI &58)

Read system information

On entry

RO = reason code

On exit

RO - R4 depend on reason code

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads various system information, depending on the reason code passed
in RO. Current reason codes are:

RO
0

2

3

Related SWis

None

Related vectors

None

Meaning

Read configured screen size in bytes

Read configured Mode, MonitorType, and Sync

Read presence of chips, and unique machine ID

Read features mask for 82C710 chip family

Page

1-720

1-72 I

1-722

1-723

1-719

OS_ReadSyslnfo 0 (SWI &58)

1-720

Read the configured screen size in bytes

OS_ReadSyslnfo 0
(SWI &58)

On entry

RO = 0 (reason code)

On exit

Use

RO =amount of configured screen memory, in bytes

This call reads the configured screen size in bytes (which is that used after the next
hard reset). See *Configure ScreerrSize on page 1-736.

VDU Drivers

OS_ReadSyslnfo 1
(SWI &58)

Read the configured Mode/WimpMode, MonitorType, and Sync

On entry

RO = I (reason code)

On exit

Use

RO =configured Mode!WimpMode
Rl =configured MonitorType
R2 =configured Sync

This call reads the configured Mode!WimpMode (which, from RISC OS 3 onwards,
are identical). MonitorType, and Sync. See *Configure Mode on page 1-729, *Configure
WimpMode on page 3-276, *Configure Monitor'I'ype on page 1-731, and *Configure Sync
on page 1-738.

If any of the above have been configured to 'Auto', then the appropriate value for
the attached monitor is returned.

This call is not available under RISC OS 2.

1-721

OS_ReadSys/nfo 2 (SW/ &58)

1-722

OS_ReadSyslnfo 2
(SWI &58)

Read the presence of various chips, and unique machine ID

On entry

RO = 2 (reason code)

On exit

Use

RO = lOEB ASIC presence flag
0 ~absent
I ~ present (type I)

Rl = 82C710 (or similar) presence flag
0 ~absent
I~ present

R2 = LCD ASIC presence flag
0 ~absent
I ~ present (type I)

R3 =word 0 of unique machine ID, or 0 if unavailable
R4 =word I of unique machine ID, or 0 if unavailable

This call checks for the presence of various chips, returning flags. It also reads the
unique machine ID if a suitable chip is fitted to the computer; if none is, then the
call returns an ID of zero.

Flag values not shown above are reserved for future hardware platforms that may
have versions of the chips which are not backwards compatible.

This call is not available under RISC OS 2.

Read features mask for 82C71 0 chip family

VDU Drivers

OS_ReadSyslnfo 3
(SWI &58)

On entry

RO = 3 (reason code)

On exit

Use

RO = 82C71 0/82C711 basic features mask (see below)
R I = 82C71 0/82C711 extra features mask (reserved for upwards compatible

additional functionality)
R2-R4 reserved for future expansion

The 82C71 0 family of chips are composed of several sub-units. Future chips in the
family may have some sub-units which are incompatible with earlier versions,
while leaving the functionality of other sub-units unchanged. This call returns a
features mask, sub-fields within which show the 'compatibility level ' of each
sub-unit. Differing values of a sub-field indicate incompatible versions of the
corresponding sub-unit. A sub-field of zero indicates that the sub-unit is not
present. The values for the 82C710 and 82C711 are:

Bits
0 -3
4 - 7
8- II
12 - 15
16- 19
20 - 23
24 - 31

Sub-unit 82C710 82C711

IDE hard disc interface
floppy disc interface
parallel port
I st serial port
2nd serial port
chip configuration
reserved

I
0
I
0

2
0

(The 710 only supports a single serial port. Obviously the 710 and 711 have
differing chip configurations.)

If a sub-unit gains additional backwards-compatible functionality in future
versions of the chip, this will be indicated by having bits set in the value returned
in Rl. Information on extra sub-units will be accommodated in the remaining bits
of RO, or in R2-R4.

This call is not available under RISC OS 2, nor under RISC OS 3 (version 3.00).

1-723

OS_ChangedBox (SWI &5A)

1-724

Determine which area of the screen has changed

OS_ChangedBox
(SWI &5A)

On entry

RO = 0

2
-I

disable changed box calculations
enable changed box calculations
reset changed box to null rectangle
read changed box information

On exit

RO =previous enable state in bit 0 (0 for disabled, I for enabled)
Rl =pointer to a fixed block of 5 words, containing the following info:

RI+O =new disable/enable flag (in bit 0)
Rl +4 = x coordinate of left edge of box
Rl+8 = y coordinate of bottom edge of box
R I+ 12 = x coordinate of right edge of box
R I+ 16 = y coordinate of top edge of box

The (RI+4) to (RI+I6) values are only valid if the change box calculations were in
an enabled state immediately after the call; otherwise they are undefined.

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call checks which areas of the screen have changed over calls to the VDU
drivers. When this feature is enabled, RISC OS maintains the coordinates of a
rectangle which completely encloses any areas that have changed since the last
time the rectangle was reset.

VDU Drivers

This is particularly useful for applications which switch output to sprites, and then
want to repaint the sprite onto the screen after performing VDU operations on the
sprite. The application can make significant speed improvements by only
repainting the section of the sprite which corresponds to the changed box.

All coordinates are measured in pixels from the bottom left of the screen. If a
module provides extensions to the VDU drivers, it should read the address of this
block on initialisation, and update the coordinates as appropriate. If an exact
calculation of which areas have been modified is difficult, then the module should
extend the rectangle to include the whole of the graphics window (or indeed the
whole screen, if the operation can affect areas outside the graphics window) .

The disable/enable flag at offset 0 in the block is for information only- it must not
be modified directly, as RISC OS holds the master copy of this flag.

Changed box calculations are disabled on a mode change. However, the
disable/enable state and the coordinates of the rectangle form part of the
information held in save areas when output is switched between the screen and
sprites.

Related SWis

None

elated vectors

None

1-725

OS_SetColour (SWI &61)

1-726

Sets the foreground or background graphics colours

OS_SetColour
(SWI &61)

On entry

RO =flags:
bits 0- 3 graphics plotting action (see below)
bit 4 set~ alter background, clear~ alter foreground
bit 5 set~ R1 =pattern data, clear~ R1 =colour number
bits 6-31 reserved (must be zero)

R1 =colour number (if RO bit 5 is clear).
or pointer to eight words of pattern data (if RO bit 5 is set)

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call sets the foreground or background graphics colours.

You can obtain the colour number to use from ColourTrans_ReturnColourNumber
(page 3-353). You can supply an eight word pattern block to use giant ECFs instead
of solid colours. With this call you can define a giant pattern for both the
foreground and background colours, whereas the VDU drivers only allow you to set
a single pattern for both (see VDU 23 ,2-5 on page 1-582).

The graphics plotting action passed in bits 0- 3 of RO is as follows:

Value

0

2
3
4
5

6
7
8- I 5

Related SWis

Action
Overwrite colour on screen with colour
OR colour on screen with colour
AND colour on screen with colour
exclusive OR colour on screen with colour
Invert colour on screen
Leave colour on screen unchanged
AND colour on screen with (NOT colour)
OR colour on screen with (NOT colour)
As 0 to 7, but background colour is transparent

ColourTrans_ReturnColourNumber (page 3-353)

Related vectors

None

VDU Drivers

1-727

*Commands

*Commands

1-728

Sets the configured volume for the beep to be loud

Syntax

*Configure Loud

Parameters

None

Use

*Configure Loud

*Configure Loud sets the configured volume for the beep to be loud.

The change takes effect on the next reset.

Related commands

*Configure Quiet

Related SWis

OS_Byte 212 (page 1-662)

Related vectors

None

VDU Drivers

*Configure Mode

Sets the configured screen mode used

Syntax

*Configure Mode screen_modeiAuto

Parameter

Use

screen_mode

Auto

the display mode that the computer should use after a
power-on or hard reset, and when entering or leaving the
desktop

automatic setting of appropriate mode using monitor
lead

*Configure Mode sets the configured screen mode used by the machine when it is
first switched on, or after a hard reset, and when entering or leaving the desktop. It
is identical to the command *Configure WimpMode; the two commands alter the
same value in CMOS RAM.

You can also set a value of Auto (not available in RISC OS 2) More recent Acorn
computers can sense the type of monitor lead connected, and hence set an
appropriate mode. If no lead can be sensed, either because none is present or
because the computer is of an older design, the mode defaults to mode 12.

Under RISC OS 2,. this command only sets the configured screen mode used for the
command line; *Configure WimpMode sets the configured screen mode used for
the Desktop.

Example

*Configure Mode 27 selects VGA mode with 16 colours

Related commands

*Configure WimpMode, VDU 22

Related SWis

None

1-729

*Configure Mode

1-730

Related vectors

None

VDU Drivers

*Configure MonitorType

Sets the configured monitor type

Syntax

*Configure MonitorType niAuto

Parameters

Use

n

Auto

0 to 5

automatic sensing of monitor type using monitor lead

*Configure MonitorType ~ets the configured monitor type that is connected to the
computer. The values of n correspond to the following monitors:

n Monitor

0 50Hz TV standard colour or monochrome monitor
Multiscan monitor

2 Hi-resolution 64Hz monochrome monitor
3 VGA-type monitor
4 Super-VGA-type monitor (not available in RISC OS 2)
5 LCD (liquid crystal display) (only available on portables)

You can also set a value of Auto (not available in RISC OS 2). More recent Acorn
computers can sense the type of monitor lead connected, and hence set the
monitor type. If no lead can be sensed, either because none is present or because
the computer is of an older design, the monitor type defaults to 0, save for
portables. which default to 5 (an LCD).

You can also configure the monitor type by holding down the corresponding key
from the numeric keypad while the computer is switched on.

Example

*Configure MonitorType 3

Related commands

VDU 22

Related SWis

None

configure VGA-type monitor

1-731

*Configure MonitorType

1-732

Related vectors

None

VDU Drivers

*Configure MouseStep

Sets the configured value for how fast the pointer moves as you move the mouse

Syntax

*Con figure MouseStep n

Parameters

Use

n a number between 1 and 127

*Configure MouseStep sets the configured value for how fast the pointer moves as
you move the mouse. Useful values of n are 1, 2 or 3 for slow, medium or fast,
respectively.

The mouse position is moved by n coordinates for each movement of the mouse.
Although values up to 127 are accepted. anything above 6 is impractical because
the step is too large.

You can also use OS_ Word 21 ,2 to set the mouse step dynamically.

Example

*Configure MouseStep 3 select a fast speed

Related commands

None

Related SWis

OS_ Word 21.2 (page 1-687)

Related vectors

None

1-733

*Configure NoScro/1

1-734

*Configure NoScroll

Sets the configured scrolling so the screen does not scroll upwards at the end of a
line

Syntax

*Configure NoScroll

Parameters

Use

None

*Configure NoScroll sets the configured scrolling so that a newline is not
generated when a character is printed at the end of a line. The default value is
Scroll.

When printing a character in VDU 4 mode results in the cursor moving beyond the
edge of the window, a 'pending newline' is generated. It is actually executed just
before the next character is printed, provided that it has not been deleted or
executed by another cursor control character. For example VDU 127 would cancel
it; VDU 9 would execute it.

Refer to VDU 23,16 for a lengthier description of NoScroll. and for details of how to
set this option dynamically.

Related commands

*Configure Scroll

Related SWis

None

Related vectors

None

VDU Drivers

*Configure Quiet

Sets the configured volume for the beep to half its loudest volume.

Syntax

*Configure Quiet

Parameters

None

Use

*Configure Quiet sets the configured volume for the beep to half its loudest
volume.

The change takes effect on the next reset.

Related commands

*Configure Loud

Related SWis

OS_Byte 212 (page 1-662)

Related vectors

None

1-735

*Configure ScreenSize

1-736

*Configure ScreenSize

Sets the configured amount of memory reserved for screen display

Syntax

*Configure ScreenSize mKin

Parameters

Use

mK number of kilobytes of memory reserved

n number of pages of memory reserved; n ~ 127

*Configure ScreenSize sets the configured amount of memory reserved for screen
display. The default value is 80Kbytes on a 0.5Mbyte machine, and 160Kbytes for
all other machines.

You can also use OS_ChangeDynamicArea (page 1-377) to alter the screen memory
allocation dynamically. For more information, refer to the chapter entitled Memory
Management.

You cannot configure more than 480Kbytes of screen memory, due to limitations in
the MEMC1 and MEMC1a memory controllers .

Example

*Configure Sc reenSize 1 60K reserve 160Kbytes for screen display

Related commands

None

Related SWis

OS_ChangeDynamicArea (page 1-377)

Related vectors

None

VDU Drivers

*Configure Scroll

Sets the configured scrolling so the screen scrolls upwards at the end of a line

Syntax

*Con f igure Scroll

Parameters

Use

None

*Configure Scroll sets the configured scrolling so that a newline is generated
automatically when a character is printed at the end of a line. This is the default
value.

When printing a character in VDU 4 mode results in the cursor moving beyond the
edge of the window, the cursor is instead moved to the negative x edge of the
window and one line in the positive y direction.

Refer to VDU 23,16 for a lengthier description of Scroll, and for details of how to set
dynamically this option

Related commands

•configure NoScroll

Related SWis

None

Related vectors

None

1-737

*Configure Sync

1-738

*Configure Sync

Sets the configured type of synchronisation for vertical sync output

Syntax

*Configure Sync 0111Auto

Parameters

0 vertical sync

composite sync

Use

1

Auto automatic sensing of required synchronisation type
using monitor lead

*Configure Sync sets the configured type of synchronisation that is provided on
the vertical sync output of the video connector. This may be vertical sync
(parameter of 0) or composite sync (parameter of I).

You can also set a value of Auto (not available in RISC OS 2). More recent Acorn
computers can sense the type of monitor lead connected, and hence set the
required synchronisation type. If no lead can be sensed, either because none is
present or because the computer is of an older design, the synchronisation type
defaults to I (composite sync) .

Example

*Configure Sync 1

Related commands

None

Related SWis

None

Related vectors

None

VDU Drivers

*Configure TV

Sets the configured vertical screen alignment and screen interlace

Syntax

*Configure TV [vert_align[[,]interlace]]

Parameters

vert_align

interlace

Use

adjusts the vertical screen alignment 0 to 3 lines up
(values of 0-3 respectively). or I to 41ines down (values of
255-252 respectively)

switches screen interlace on (with a value of 0). or off
(with a value of I)

*Configure TV sets the configured vertical screen alignment and screen interlace.
The default values are 0, I (no vertical alignment offset and interlace off).

Example

*Configure TV 0,1 the default value

Related commands

*TV

Related SWis

None

Related vectors

None

1-739

·shadow

1-740

*Shadow

Sets which bank of screen memory is used on subsequent mode changes

Syntax

*Shadow [011)

Parameters

Use

0 or 1 or nothing

*Shadow sets which bank of screen memory is used on subsequent changes to the
screen mode. It controls two banks of screen memory: the normal bank (bank I,
known as the non-shadow bank). and an alternate bank (bank 2, known as the shadow
bank) .

If you give either no parameter, or a parameter of 0, the shadow bank is used on the
next mode change. If you give a parameter of I , the non-shadow bank is used on
the next mode change.

For the shadow bank to be used, there must be at least double the memory for the
selected screen mode available in the screen area of memory. For example, to use
shadow memory in screen mode 8 (a mode which requires 40Kbytes). at least
80Kbytes of screen memory must be available.

This command is provided for backwards compatibility only, since there is no
useful benefit in using twice as much screen memory.

Example

*Shadow 1

Related commands

*Configure ScreenSize

Related SWis

None

Related vectors

None

VDU Drivers

*TV

Adjusts the vertical screen alignment and screen interlace

Syntax

*TV [vert_align[[,]interlace]]

Parameters

vert_align

interlace

Use

adjusts the vertical screen alignment 0 to 3 lines up
(values of 0-3 respectively). or I to 4 lines down (values of
255-252 respectively)

switches screen interlace on (with a value of 0). or off
(with a value of I)

*TV adjusts the vertical screen alignment and screen interlace.

The change takes effect on the next mode change.

Example

*TV 3,0 move the picture up 3 lines. and turn interlace on

Related commands

*Configure TV

Related SWis

None

Related vectors

None

1-741

Application Notes

Application Notes

Examples of ECF pattern use

1-742

This section gives some examples of how you might set ECF patterns using the
VDU 23,2-5 ... commands .

In BBC/Master compatible mode

For example in modes with four bits per pixel, bits 7, 5, 3 and I of then parameter
control the logical colour of the left-hand pixel. and bits 6, 4, 2 and 0 control the
right-hand pixel. To set the left pixel to colour 2 (green by default) and the right one
to colour 7 (white). the colours are combined as follows:

Pixel I colour (left) Green 2 00 I 0
Pixel 2 colour (right) White 7 Oil!

Bit 7 6 5 4 3 2

Left pixel 0 0
Right pixel 0

Result 0 0 0

Resulting value= & I D (29)

Whereas in modes with two bits per pixel the method is :

Pixel I colour (left) Yellow 2 I 0
Pixel 2 colour Red I 0 I
Pixel 3 colour White 3 II
Pixel 4 colour (right) Yellow 2 I 0

Bit

Pixel!
Pixel2
Pixel3
Pixel4

Result

7

I

Resulting value= &86 (182)

6

0

0

5 4 3

0

0

2

0

0

0

0

0

0

VDU Drivers

In RISC OS native mode

In RISC OS mode, for example, in modes with four bits per pixel. the colour of the
left-hand pixel is formed from bits 3, 2, I and 0 of then parameter, and the colour
of the right-hand pixel comes from bits 7, 6, 5 and 4 of the parameter. So, if the
pixels are to be logical colours 2 and 7 again, the colours are combined as follows:

Pixel I colour (left) Green 2 00 I 0
Pixel 2 colour (right) White 7 0111

Bit 7 6 5 4 3 2 0
Right pixel 0 I
Left pixel 0 0 0

Result 0 0 0 0

Resulting value= &72 (114)

Notice that the pixel colours on the left, as displayed, are derived from the bits on
the right , as written down, and vice versa.

In modes with two bits per pixel the method is:

Pixel I colour (left) Yellow 2 10
Pixel 2 colour Red I 01
Pixel 3 colour White 3 II
Pixel 4 colour (right) Yellow 2 10

Bit 7 6 5 4 3 2 0
Pixel4 0
Pixel 3
Pixel2 0
Pixel I 0

Result 0 0 0

Resulting value= &86 (182)

1-743

Examples of ECF pattern use

1-744

Further examples of ECF patterns

Here are examples of how to produce a pattern of alternating red (colour I) lines
and white (colour 7) lines (with the default palette). Each of the VDU 23,2 or
VDU 23, I2 commands alters ECF pattern I to cause the same effect.

in a 2 colour mode (black and white only available)

VDU 23,I2,I,I ,O,O,I,I ,O,O
VDU 23 ,2,&FF,O,&FF,O,&FF,O,&FF,O
VDU 23, I7,4, II has no effect

in a 4 colour mode:

VDU 23, I2, I, I ,3,3, I , I ,3,3
VDU 23,2,&0F,&FF,&OF,&FF,&OF,&FF,&OF,&FF
after VDU 23, I7,4, II
VDU 23,2,&55,&FF,&55,&FF,&55,&FF,&55,&FF

in a I6 colour mode:

VDU 23,I2,I,I,7,7,I,I,7,7
VDU 23,2,3 ,&3F,3,&3F,3,&3F,3,&3F
after VDU 23, I7,4, II
VDU 23,2,&II,&77,&II,&77,&II,&77,&II,&77

in a 256 colour mode:

VDU 23, 12,&C3,&FF,&C3,&FF,&C3,&FF,&C3,&FF
VDU 23,2,& 17,&FF,& I7,&FF,& I7,&FF,& 17,&FF
VDU 23, 17,4, II has no effect

22 Sprites

Introduction
A sprite is an area of memory that can be treated like a small block of screen
memory. It contains a graphic shape made up of an array of pixels .

A sprite has the following attributes:

• a name used to identify the sprite. up to 12 characters in length

• the number of the screen mode whose format the sprite imitates

• a height and a width

• optionally, a transparency mask

• optionally, a palette defining the colours used in the sprite.

If the sprite has a transparency mask, you can cause certain pixels in the sprite not
to be written to the existing screen display. By using this mask, you can effectively
make a sprite any shape.

A sprite can be defined by grabbing some or all of the screen, or defining it a pixel
at a time or by making the VDU plot operations go into a sprite instead of the
screen memory.

Once defined, a sprite can be manipulated in many ways, such as having rows and
columns inserted or deleted. flipping it about the x or y axis and changing the
colour of particular pixels.

A sprite can be plotted onto the screen scaled to any size, or transformed, and its
colours can be altered using a lookup table.

Sprites are stored in sprite files. which may contain one or more sprites with
different names.

1-745

Overview

Overview

Sprite memory areas

1-746

RISC OS can use sprites from the system sprite area, from the Wimp's common sprite
pool. or from any number of user sprite areas.

System sprite area

The system sprite area is defined by the kernel. Its size can be controlled by a slider
in the task manager application on the desktop.

This area is public and can be accessed from any program or module, so is a
convenient place to experiment using sprites. However, you should not use the
system sprite area in commercial applications and should instead use a
combination of the Wimp's common sprite pool and user sprite area as
appropriate.

Note that the Sprite module * Commands only work with sprites in the system
sprite area.

User sprite area

Alternatively, an application or a module may reserve its own space. This is private
space, which can only be used by the application or module that reserved it. For
example, the Wimp has a shared sprite pool. which is passed to OS_SpriteOp as a
user area .

Unlike the system area, there can be several user areas which are referenced via
pointers to the start of the areas. In user areas, as well as being able to refer to a
sprite by name, you can also refer to it by address. This plainly will be much faster,
since there is no overhead to search through the available names.

Memory operations

With the sprite module, it is possible to issue calls to:

• clear a sprite area

• check how large an area is and how many sprites are in it

• scan through the list of names of sprites in an area

File operations

Sprites

Sprites can be loaded and saved to any valid pathname. The simplest way of doing
this is to use the calls to load or save the current graphics window as a single sprite
file.

For more sophisticated control, a sprite area (system or user) can be saved, or
loaded. It is also possible to merge a sprite file with what is already in memory.

Sprite files can be edited by the Paint application.

Creating sprites

You can create a blank sprite of a specified height and width. Subsequently,
individual pixels can be changed within it.

You also have various ways of grabbing some or all of the graphics window and
putting it into a sprite.

The various sprite editing utilities all use one or other of these techniques.

Mask control

The mask can be enabled and disabled as required. Like a sprite. it can have
individual pixels set or cleared. A sprite may have up to 256 colours. depending on
which mode it was created in ; the mask pixels are either on (solid). in which case
the pixel colour is used, or off (transparent). in which case it is not plotted .

VDU output to sprite

The other way of writing to a sprite or its mask is to redirect the VDU operations to
a sprite. This means that the sprite rectangle is treated like a graphics window.
putting data into the sprite in the same format as the screen memory.

Sprite manipulation
Once a sprite is in memory, it can be manipulated in a number of ways, for example
you can:

• rename. copy, delete the sprite or append it to another sprite

• insert or delete rows and columns

• flip about the x or y axis

• change an individual pixel's colour.

1-747

Plotting a sprite

Plotting a sprite

1-748

There are several ways of plotting a sprite into the screen memory. There is a SWI
that will simply plot the sprite. You can also plot it using the mask if one is
attached to it. The scale of the sprite can be changed to be any desired size . Thus,
zooming into a sprite is made very easy.

The anti-aliasing technique used by the font manager with characters can be used
here with sprites. A range of close colours are used to shade the sprite, which can
be plotted with or without a mask, and scaled to any size.

Technical Details

Format of a sprite area

The format of a sprite area is as follows :

Control Extension Free
Block Area Sprite Sprite Space (Optional)

Figure 22.1 Format of a sprite area

The sprite area control block contains the following:

Bytes

0 - 3
4- 7
8- 11
12- 15
16 . ..

Contents

Byte offset to last byte+ I (ie total size of sprite area)
Number of sprites in area
Byte offset to first sprite
Byte offset to first free word (ie byte after last sprite)
Extension words (usually null)

The above offsets are relative to the start of the sprite area control block.

Sprites

The format of the file created by a *Screen Save or *SSave command is the same as
a sprite area, save that word I of the control block is not saved. (There is no need
to save this, as the total size of the sprite area is the size of the file).

Format of a sprit~
T e format of a sprite is as follows:

Control Palette Sprite Plotting
Area Mask Block (optional) Image (optional)

Figure 22.2 Format of a sprite

Tr e Sprite Control Block contains the following:

Bytes Content

0 - 3 Offset to next sprite
4- 15 Sprite name, up to 12 characters with trailing zeroes
16- 19 Width in words -I
20- 23 Height in scan lines -I

1-749

Format of a sprite

24- 27
28- 31
32- 35
36- 39

40-43
44 ...

First bit used (left end of row)
Last bit used (right end of row)
Offset to sprite image
Offset to transparency mask or offset to sprite image if no
mask
Mode sprite was defined in (see page 1-751)
Palette data (optional)

The size of the palette data block depends on the number of bits per pixel in the
sprite's mode, since there will be one entry for each potential logical colour.

Each entry is two words long. These are the words returned from OS_ReadPalette.
The format of these words is described with this SWI on page 1-70 I .

256 colour modes

256 colour modes may be an exception to this rule, because there are only I6
palette registers in VIDC. Most 256 colour sprites will have I 6 palette entries; those
created by *ScreenSave actually have 64 palette entries; some generated by
programs will have a full 256 palette entries. The standard RISC OS display
routines pass the last 16 entries to VIDC. For notes on using sprites with 256 entry
palettes, see the section entitled Using sprites witli 256 entry palettes on page 1-832.

Format of a sprite image

1-750

The format of a sprite image is as follows:

Left hand wastage 1 pixel

* -*-
~---'----I.-.I....L..-...L....(~ < I

t

Right hand wastage

*
I

1 word

Figure 22 .3 Format of a sprite image

The image contains the rows of the sprite from top to bottom. all word-aligned
Each pixel is a group of bljtes per cliaracter bits (see OS_ReadVduVariables on
page I-703) . The least significant pixel in a word is the left-most one on the screen.

Note that in the diagram above, bit 0 of each word has been shown on the left, and
bit 31 has been shown on the right; this is to clarify how wastage occurs. Note also
that there will not necessarily be 4 pixels per word .

Sprites

Format of a sprite mask

A sprite mask is the same size as the corresponding sprite image, and the same
bits refer to each pixel. In the mask, the bits of each pixel must either all be set (the
sprite's pixel is solid) or all be cleared (the pixel is transparent).

Common parameters
Several kinds of parameter are used by many SWis within the sprite module. Rather
than repeating their definitions each time, they are described here.

Pointer to control block of sprite area and sprite pointer

Many of the sprite SWis use a pointer to control block of sprite area parameter in
RI or that and a sprite pointer in R2 . When either of these appear, then bits 8 and
9 in RO control how these two registers are interpreted.

RO bit 8 & 9 values

00 (+0)

OI (+256)

IO (+5I2)

I I (+768) is invalid

Rleffect

not used
(system sprite area used)

pointer to user sprite area

pointer to user sprite area

R2 effect

pointer to sprite name

pointer to sprite name

pointer to sprite

Note that the sprite names are nulrterminated.

For example OS_SpriteOp 256+33,CBiock,NamePtr will interpret CBiock as a
pointer to the user sprite area and use NamePtr as a pointer to the name of the
sprite to use within that area.

Using a pointer to a sprite in the user area (R0+5 I 2) is the quickest way of using
sprites, because the string lookup doesn't need to be done. Note however that
direct pointers to sprites in a given area will become invalid if any sprite in that
area changes size or is replaced.

Sprite modes

To make your sprites readable by old releases of RISC OS, we recommend you use
the following mode numbers in a sprite (see the section entitled Format of a sprite on
page I -749) :

2 x 4 OS unit pixels

4 x 4 OS unit pixels

2 x 2 OS unit pixels

2 colours 4 colours 16 colours 256 colours
0 8 12 15

4

18

I

I9

9

20

13

2I

1-751

Common parameters

1-752

Scale factors

The scale factor will change the size of a sprite. It is a pointer to a block of four
words with the following elements:

9ffset
0
4
8
12

Meaning
x multiplier
y multiplier
x divisor
y divisor

The size of the specified sprite on the screen when it has been plotted in pixels
(not OS units), is multiplied by the multiplier and divided by the divisor, ie :

x pixel size= x start size (in pixels) x x multiplier I x divisor
y pixel size= y start size (in pixels) x y multiplier I y divisor

If the plot action is using an ECF pattern , then the pattern will not be scaled up
with the sprite. This is so that the patterning will be correct when used with a large
scale factor. See the section entitled ECF patterns on page 1-532 for a description of
ECF patterns.

If the pointer is zero, then no scaling is performed; ie I : I scale.

The Wimp uses a similar system to provide mode independence. For details see
Wimp_ReadPixTrans on page 3-208.

Pixel translation table

This allows a logical colour to be substituted for each colour in the sprite. It is a
pointer to a table of bytes. The number of bytes in the table depends on the
number of colours in the mode in which the sprite was created .

A pixel of colour n in the sprite will be translated to the nth entry in the pixel
translation table. The first entry in the table is at offset 0 (ie the Oth colour) So
colour 3 in a pixel will get the value 3 bytes into the table and use that as its logical
colour.

If the pointer is zero, then the colours in the sprite will be used. However, if the
destination bits per pixel is less than the source bits per pixel. you will get an error.

The Wimp uses a similar system to provide mode independence. For details see
Wimp_SetPalette, Wimp_ReadPalette, and Wimp_SetColour from page 3-190
onwards.

The ColourTrans module provides facilities for translation table calculations . For
more information refer to the chapter entitled ColourTrans on page 3-335.

Sprites

Plot action

The plot action is the way in which pixels are plotted onto the screen. Some SWis
use the VDU I8 setting, and others can be passed the number directly. In either
case, the format is the same, apart from bit 3 (&08)

Save area

Value

0
I
2
3
4
5
6
7
&08

Action

Overwrite colour on screen with sprite pixel colour
OR colour on screen with sprite pixel colour
AND colour on screen with sprite pixel colour
exclusive OR colour on screen with sprite pixel colour
Invert colour on screen
Leave colour on screen unchanged
AND colour on screen with NOT of sprite pixel colour
OR colour on screen with NOT of sprite pixel colour
If set, then use the mask; otherwise don't

When you switch output to a sprite or its mask using OS_SpriteOp 60 (page I -811)
or OS_SpriteOp 61 (page 1-813). you can save the VDU context in a save area. The
save area you pass is where the state that has just been entered will be saved if
another redirection of VDU output is made.

The save area is a block of memory, the required size of which you can obtain by
calling OS_SpriteOp 62 (page 1-815). You cannot directly manipulate the contents,
but for your reference the save area stores:

e ECF patterns, BBC/Native ECF flag, ECF origin

• Dotted line pattern and length, and current position in pattern

• Graphics foreground and background actions, colours and tints

• Text foreground and background colours and tints

• Graphics and text window definitions

• Graphics origin

• Graphics cursor and two previous positions

• Text and input cursor positions

• VDU status (VDU 2 state, page mode, windowing, shadowing, VDU 5 mode,
cursor editing state and VDU disabled/enabled)

• VDU queue and queue pointer

• Character sizes and spacings

1-753

Common parameters

1-754

• Changed box coordinates and status

• WrCh destinations flag

• Spool handle.

Mode variables are reconstituted from the sprite mode number or the display
mode number as appropriate.

The kernel maintains a system save area for the screen. Therefore, if you swap
output to a sprite, perform some operations and swap back, it will not be necessary
to allocate a save area.

When you first switch output to a sprite or mask your save area must have a zero in
the first word ; it is therefore ignored, and the VDU state set to the default for the
mode in which the sprite is defined. When you switch output away from the sprite
or mask, RISC OS saves the VDU state to the save area, setting the first word to a
non-zero value. Hence when that save area is next passed to OS_SpriteOp 60 or 61 ,
RISC OS recognises that it contains a VDU state and restores it.

The use of save areas allows the VDU 'context' to be switched between various
destinations, so that each area has its own separate VDU state.

Here are a couple of examples highlighting the above points. The first example
shows how to set-up a once-off drawing into a sprite:

SYS "OS_ Sprite0p ", 256+60,myarea , mysprite$,0 TO r0 , rl,r2,r3
REM we don ' t need a save area , because nobody can swap output away from
REM our sprite ; and we won ' t want to restore the state we ' re in when
REM we ' ve finished our work on the sprite .
. . . do whatever graphics we want
SYS "OS_ Sprite0p ", r0,rl , r2,r3
REM whatever output state was in force on entry is now restored

The second example shows how to draw into a sprite, interact with the user, while
maintaining ECF patterns etc:

SYS "0S_ Sprite0p ", 256+62,myarea , mysprite$ TO , , ,size
DIM sarea size
sarea ! O=O : REM mark as unset
REPEAT

SYS "OS_Sprite0p ", 256+60 , myarea , mysprite$, sarea TO r0 , rl , r2,r3
... work on the sprite ...

SYS "0S_Sprite0p ", r0 , rl , r2 , r3 : REM return to previous output
REM at this point, our save area has been filled with our state;
REM the next time we switch output to our sprite the OS variables
REM will therefore be reset from it.

. . . talk to the user ...
UNTIL bored

Sprites

Memory operations

To initialise the system sprite area. you can call OS_SpriteOp 9 (*page 1-767) or
*SNew (page 1-829). To change the system sprite area size, you can call
OS_ChangeDynamicArea (page 1-377); you can also change the configured size of
this area (which is used on a hard reset) by calling *Configure SpriteSize
(page 1-816). or- except under RISC OS 2- by using the Configure application.

In order to setup a user sprite area, you must first allocate space for it using the
usual memory allocation calls. You must then set up the header for the area before
you call OS_SpriteOp 9 to initialise it as a sprite area .

Reading a sprite area

To check the state of a sprite area . *Sinfo (page I -825) or OS_SpriteOp 8
(page 1-766) will tell you how large the area is, how much has been used and how
many sprites are in it. *Sinfo will, of course. only work with the system area.

Finding the names of sprites

File operations

*SList will list the names of all sprites in the system area. OS_SpriteOp 13
(page 1-771) allows you to find the name of a sprite given its number in the list.
You would call OS_SpriteOp 8 first to find out how many sprites there are and then
use this call to get the names one at a time.

The simplest sprite file operations are screen save and load. The screen save will
take the entire graphics window and convert it into a sprite file . *ScreenSave
(page 1-820) and OS_SpriteOp 2 (page 1-764) will perform this operation .
*Screen Load (page I-819) and OS_SpriteOp 3 (page 1-765) will load it back again,
aligned with the bottom left hand corner of the current graphics window.

There is also a set of operations based around loading and saving sprite areas to a
file. *SLoad (page 1-827) and OS_SpriteOp 10 (page 1-768) will load a sprite file
into an initialised sprite area and set up all the pointers within it. To save, *SSave
(page 1-831) and OS_SpriteOp 12 (page 1-770) will create a sprite file and write all
the sprites from the specified sprite area into it.

The sprite load operations will delete all sprites currently in memory. If you wish to
keep them, then *SMerge (page 1-828) and OS_SpriteOp I I (page 1-769) will
merge the sprite file sprites with those in memory. Any name clashes will result in
the file sprite replacing the memory one.

1-755

Creating a sprite

Creating a sprite
There are two main ways of creating a sprite. You can grab a piece of screen
memory using OS_SpriteOp I4 (page I-772) or I6 (page I-774), or *SGet
(page I-824). Alternatively, you can create a blank sprite with OS_SpriteOp I 5
(page I-773) to be subsequently filled in. With this blank sprite, you can alter
individual pixels or you can direct VDU operations into it. These are discussed
later.

Creating a mask

To create a mask, OS_SpriteOp 29 (page I-780) must be used. It will initialise all
the pixels solid, so that all of the sprite is plotted. You must alter it afterwards to
set the mask that you require.

Sprite manipulation

1-756

The contents of a sprite may be manipulated in many ways.

Copy, rename or delete

You can copy, rename or delete a sprite in the following ways:

• To make a copy of a sprite, OS_SpriteOp 27 (page I-778) or *SCopy
(page I -8 I 8) can be used. They will return an error if the designated name
already exists.

• To rename a sprite, OS_SpriteOp 26 (page I -777) or *SRename (page I -830)
can be used. Again, the same error condition applies to existing destination
names.

• To delete a sprite, its mask and palette, OS_SpriteOp 25 (page I -776) or
*SDelete (page I -82 I) can be used. You can delete the mask of a sprite only, by
calling OS_SpriteOp 30 (page I-78I). Free space is automatically reclaimed in
the sprite area.

Insert and delete row or column

You can insert and delete rows and columns at any place you wish in the sprite.
These are the operations that you need to do this:

• OS_SpriteOp 3 I (page I -782) to insert a row

• OS_SpriteOp 32 (page I-783) to delete a row

• OS_SpriteOp 45 (page 1-796) to insert a column

• OS_SpriteOp 46 (page I-797) to delete a column

Sprites

• OS_SpriteOp 57 (page 1-809) to insert or delete rows

• OS_SpriteOp 58 (page 1-809) to insert or delete columns

Axis flipping

A sprite can be flipped about its x or y axis. Flipping it about the x axis using
OS_SpriteOp 33 (page 1-784) or *SFiipX (page 1-822) will make it appear upside
down. Flipping it about they axis with OS_SpriteOp 47 (page 1-798) or *SFiipY
(page 1-823) will make it look back to front.

Remove wastage

If a sprite is not a whole number of words wide, it is possible that part of each row
on the left and right is ·wasted '; that is. it does not form part of the sprite image. To
remove this wastage, OS_SpriteOp 54 (page 1-805) will align the sprite with the left
hand side. If more than 32 free bits are on the right of the sprite. then these words
will be removed.

Appending

Sprites can be tacked together. either horizontally or vertically, using
OS_SpriteOp 35 (page 1-786). No extra memory is used to do this.

Reading and altering pixels

To check the size of a sprite. OS_SpriteOp 40 (page 1-791) will return its width.
height. screen mode and whether it has a mask or not.

If you wish to read a pixel in a sprite. then OS_SpriteOp 41 (page 1-792) will return
colour and tint for a given x andy coordinate in the sprite. To write a pixel colour.
OS_SpriteOp 42 (page 1-793) must be used. It is given the coordinates. colour and
tint to use.

Reading and altering the mask

Similar to these last two SWis. OS_SpriteOp 43 (page 1-794) will read a mask pixel
and OS_SpriteOp 44 (page 1-795) will write it. Remember that a mask has the same
number of bits per pixel as the image, but that the bits for each pixel must either
be all set. or all clear.

1-757

Plotting sprites

VDU output to sprites

Plotting sprites

The VDU drivers can be directed to put their output into a sprite instead of the
screen. OS_SpriteOp 60 (page 1-811) will switch output to a sprite or to the screen.
OS_SpriteOp 61 (page 1-813) will switch output to a mask or the screen.

The save area described earlier is used by these calls. The space required for a save
area can be determined by calling OS_SpriteOp 62 (page 1-815).

To plot a sprite on the screen, OS_SpriteOp 28 (page 1-779) and 34 (page 1-785)
are the simplest to use. They plot the sprite at the current graphics cursor position.
using the current GCOL action. OS_SpriteOp 48 (page 1-799) and 49 (page 1-800)
are similar, but the coordinates and GCOL action are instead passed explicitly.

Scaled and transformed plotting

A sprite can be plotted at any magnification using OS_SpriteOp 50 (page 1-80 I)
and 52 (page 1-803).

Like these SWis, OS_SpriteOp 53 (page 1-804) will plot a sprite using scale 'factors
and a translation table, but it uses the anti-aliased colour technique that the font
manager uses for characters.

OS_SpriteOp 51 (page 1-802) will paint a character onto the screen using scale
factors.

OS_SpriteOp 55 and 56 (page 1-806) will plot a sprite or mask with a linear
transformation. such as a shear, stretch or reflection.

VDU commands

1-758 '

There are ways of selecting a sprite so that it can subsequently be used by the VDU
commands described below to plot sprites.

The VDU commands are included for compatibility only and in RISC OS are of very
little use since they only allow access to the system sprite area, whereas you will
more likely be using user sprite areas.

Any programs being written for the Wimp must not use these VDU commands
because there is only one location storing the setting for the selected sprite, not
one per process.

Sprites

As well as '*SChoose and OS_SpriteOp 24, a sprite can be selected for

VDU 23,27,m,nl

where: m = 0 is equivalent to *SChoose n
m = I is equivalent to *SGet n

Plotting a sprite

Once a sprite has been selected by either of the three techniques above, it can be
plotted using:

VDU 25,232 - 239,x;y;

The range of eight plot numbers are the standard plot options as defined in VDU 25
(see page 1-607). x and !:1 are in OS coordinates.

1-759

Service Calls

Service Calls

1-760

Service_SwitchingOutputToSprite
{Service Call &72)

Output switched to sprite, mask or screen

On entry

Rl = &72 (reason code)
R2 =value passed in RO to SpriteOp that caused output to switch
R3 =value passed in Rl to SpriteOp that caused output to switch
R4 =value passed in R2 to SpriteOp that caused output to switch
R5 =value passed in R3 to SpriteOp that caused output to switch

On exit

Use

All registers preserved

Issued when output is switched from and to a sprite immediately after the output
is switched.

This service call should not be claimed.

SWI Calls

Controls the sprite system

On entry

RO =reason code
Other registers depend on reason code

On exit

RO preserved
Other registers depend on reason code

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Sprites

OS_SpriteOp
(SWI &2E)

SWI is not re-entrant (RISC OS 2.00); SWI is re-entrant (RISC OS 2.0 I or later)

Use

This call controls the sprite system. It is indirected through SpriteV.

The particular action of OS_SpriteOp is given by the reason code in RO as follows:

RO Meaning Page

2 Screen save 1-764

3 Screen load 1-765

8 Read area control block 1-766

9 Initialise sprite area 1-767

10 Load sprite file 1-768

II Merge sprite file 1-769

12 Save sprite file 1-770

1-761

OS_SpriteOp (SWI &2E)

RO Meaning Page

13 Return name 1-771

14 Get sprite 1-772

15 Create sprite 1-773

16 Get sprite from user co-ordinates 1-774

24 Select sprite 1-775

25 Delete sprite 1-776

26 Rename sprite 1-777

27 Copy sprite 1-778

28 Put sprite 1-779

29 Create mask 1-780

30 Remove mask 1-781

31 Insert row 1-782

32 Delete row 1-783

33 Flip about x axis 1-784

34 Put sprite at user coordinates 1-785

35 t Append sprite 1-786

36 t Set pointer shape 1-788

37 t Create/remove palette 1-790

40 Read sprite information 1-791

41 Read pixel colour 1-792

42 Write pixel colour 1-793

43 Read pixel mask 1-794

44 Write pixel mask 1-795

45 Insert column 1-796

46 Delete column 1-797

47 Flip about y axis 1-798

48 Plot sprite mask 1-799

49 Plot mask at user coordinates 1-800

50 t Plot mask scaled 1-801

51 t Paint character scaled 1-802

52 t Put sprite scaled 1-803

53 t Put sprite grey scaled 1-804

54 Remove lefthand wastage l-805

55 t Plot mask transformed 1-806

56 t Put sprite transformed 1-806

57 t Insert/delete rows 1-809

1-762

Sprites

RO Meaning Page

58 t Insert/delete columns I-809

60 Switch output to sprite I-8I I

6I Switch output to mask I-8I 3

62 Read save area size I-8I 5

For details of each of these reason codes, see below.

Note that the reason codes marked with a dagger are provided by the SpriteExtend
module, which must be loaded for them to work.

Related SWis

None

Related vectors

SpriteV

1-763

OS_SpriteOp 2 (SWI &2E)

1-764

Screen save

On entry

RO = 2
R2 = pointer to path name
R3 =palette flag (0 not to save, I to save)

On exit

RO, R2 , R3 preserved

Use

OS_SpriteOp 2
(SWI &2E)

This saves the current graphics window as a sprite file . The file contains a single
sprite called 'screendump'. If R3 is 0, no palette information is saved with the file;
if it is I, the current palette is saved. It is equivalent to •screenSave.

See reason code 3 to reverse the operation and load a screen.

Related SWis

OS_SpriteOp 3 (page 1-765)

Related vectors

SpriteV

Screen load

Sprites

OS_SpriteOp 3
(SWI &2E)

On entry

RO = 3
R2 = pointer to path name

On exit

Use

RO, R2 preserved

This plots a sprite directly from a file to the screen. It changes mode if necessary
and sets the palette to the setting held in the file. The sprite is plotted at the
bottom left of the graphics window. After a mode change, this is the bottom
left-hand corner of the screen . It is equivalent to •screen Load.

See reason code 2 to reverse the operation and save a screen.

Related SWis

OS_SpriteOp 2 (page 1-764)

Related vectors

SpriteV

1-765

OS_SpriteOp 8 (SWI &2E)

1-766

Read area control block

On entry

RO = 8
Rl =pointer to control block of sprite area

On exit

Use

RO, Rl preserved
R2 =total size of sprite area in bytes
R3 = number of sprites in area
R4 = byte offset to the first sprite
R5 = byte offset to the first free word

OS_SpriteOp 8
(SWI &2E)

This returns all the information contained in the control block of a sprite area .

Setting bit 8 or 9 of RO alters the interpretation of Rl- for a description see the
section entitled Common parameters on page 1-751.

Related SWis

None

Related vectors

SpriteV

Initialise sprite area

Sprites

OS_SpriteOp 9
(SWI &2E)

On entry

RO = 9
RI =pointer to control block of sprite area

On exit

Use

RO, RI preserved

This initialises a sprite area . It is equivalent to *SNew when used with the system
area.

If you are initialising a user sprite area . then you must first initialise two words in
the area header:

Address

area+ 0
area+ 8

Contents of word

total size of area
offset to first sprite(= I6, if the extension area is null)

Setting bit 8 or 9 of RO alters the interpretation of RI- for a description see the
section entitled Common parameters on page I -751.

Related SWis

None

Related vectors

SpriteV

1-767

OS_SpriteOp 10 (SW/ &2E)

1-768

Load sprite file

OS_SpriteOp 1 0
(SWI &2E)

On entry

RO= 10
Rl =pointer to control block of sprite area
R2 = pointer to path name

On exit

Use

RO- R2 preserved

This loads the sprite definitions contained in the file into the sprite area,
overwriting any definitions stored there already. It is equivalent to *SLoad when
used with the system area.

The sprite area must be initialised before you call this SWI.

Setting bit 8 or 9 of RO alters the interpretation of Rl- for a description see the
section entitled Common parameters on page 1-751 .

Related SWis

None

Related vectors

SpriteY

Merge sprite file

Sprites

OS_SpriteOp 11
(SWI &2E)

On entry

RO =II
Rl =pointer to control block of sprite area
R2 = pointer to path name

On exit

Use

RO - R2 preserved

This merges the sprite definitions contained in the file with those in the sprite
area. It is equivalent to *SMerge when used with the system area.

Note that there must be enough free space in the sprite area to hold both the new
file and the original sprites, since it is only after the new file has been loaded that
any of the original sprites are replaced by new ones that have the same name.

Setting bit 8 or 9 of RO alters the interpretation of R I -for a description see the
section entitled Common parameters on page 1-751.

Related SWis

None

Related vectors

SpriteY

1-769

OS_SpriteOp 12 (SWI &2E)

1-770

Save sprite file

OS_SpriteOp 12
(SWI &2E)

On entry

RO = 12
Rl =pointer to control block of sprite area
R2 = pointer to pathname

On exit

Use

RO - R2 preserved

This saves the contents of a sprite area to a file. It is equivalent to *SSave when
used with the system area.

The first word of the sprite area (its size) is not saved.

Setting bit 8 or 9 of RO alters the interpretation of Rl -for a description see the
section entitled Common parameters on page 1-751.

Related SWis

None

Related vectors

SpriteV

Return name

Sprites

OS_SpriteOp 13
{SWI &2E)

On entry

RO = 13
Rl =pointer to control block of sprite area
R2 =pointer to buffer
R3 =maximum name length (ie buffer size)
R4 =sprite number (position in workspace- the first one is numbered I)

On exit

Use

RO - R2 preserved
R3 = name length
R4 preserved

This returns the name of the sprite whose position in the workspace (eg 3 for the
third sprite) is given in R4. The name is placed in the buffer pointed to by R2 as a
null-terminated string, the length of which is returned in R3.

Setting bit 8 or 9 of RO alters the interpretation of Rl- for a description see the
section entitled Common parameters on page l-751.

Related SWis

None

Related vectors

SpriteV

1-771

OS_SpriteOp 14 (SW/ &2E)

1-772

Get sprite

OS_SpriteOp 14
(SWI &2E)

On entry

RO = 14 (&OE)
RI =pointer to control block of sprite area
R2 = pointer to sprite name
R3 =palette flag (0 to exclude palette data, I to include it)

On exit

Use

RO, Rl preserved
R2 =address of sprite (if in user sprite area)
R3 preserved

This defines the identified sprite to be the current contents of an area of the
screen. It is delimited by the current and old cursor positions (inclusive). If the
sprite already exists, it is overwritten . It is equivalent to *SGet when used with the
system area .

Any part of the designated area which lies outside the current graphics window is
filled with the current background colour in the sprite.

Setting bit 8 or 9 of RO alters the interpretation of R I -for a description see the
section entitled Common parameters on page I -75 I . You must not call this SWI with
bit 9 of RO set; that is, R2 must always point to a sprite name.

Related SWis

OS_SpriteOp 16 (page 1-774)

Related vectors

SpriteV

Create sprite

Sprites

OS_SpriteOp 15
(SWI &2E)

On entry

RO = I5 (&OF)
RI =pointer to control block of sprite area
R2 = pointer to sprite name
R3 =palette flag (0 to exclude palette data. I to include it)
R4 = width in pixels
R5 = height in pixels
R6 =mode number

On exit

Use

RO - R6 preserved

This creates a blank sprite of a given size.

Setting bit 8 or 9 of RO alters the interpretation of RI- for a description see the
section entitled Common parameters on page I -75 I. You must not call this SWI with
bit 9 of RO set; that is, R2 must always point to a sprite name.

Related SWis

None

Related vectors

SpriteV

1-773

OS_SpriteOp 16 (SWI &2E)

1-774

Get sprite from user coordinates

OS_SpriteOp 16
(SWI &2E)

On entry

RO = 16 (&10)
Rl =pointer to control block of sprite area
R2 = pointer to sprite name
R3 =palette flag (0 to exclude palette data. I to include it)
R4 =left hand edge OS screen coordinate (inclusive)
R5 =bottom edge OS screen coordinate (inclusive)
R6 =right hand edge OS screen coordinate (inclusive)
R7 =top edge OS screen coordinate (inclusive)

On exit

Use

RO. R I preserved
R2 =address of sprite (if in user sprite area)
R3- R7 preserved

This picks up an area of the screen. which is delimited by the coordinates supplied
(inclusive). as a sprite. If the sprite already exists. it is overwritten.

Any part of the designated area which lies outside the current graphics window is
filled with the current background colour in the sprite.

Setting bit 8 or 9 of RO alters the interpretation of Rl -for a description see the
section entitled Common parameters on page 1-751. You must not call this SWI with
bit 9 of RO set; that is. R2 must always point to a sprite name.

Related SWis

OS_SpriteOp 14 (page 1-772)

Related vectors

SpriteV

Select sprite

Sprites

OS_SpriteOp 24
{SWI &2E)

On entry

RO = 24 (&18)
Rl =pointer to control block of sprite area
R2 = sprite pointer

On exit

Use

RO , Rl preserved
R2 =address of sprite (if in user sprite area). otherwise preserved

Select a particular sprite for subsequent plotting. That is, the VDU 25,232-239
commands will use the selected sprite. It is equivalent to *SChoose when used
with the system area.

The returned address only remains valid until the next SpriteOp which may
rearrange the sprite area, such as OS_SpriteOp II (merge sprite file) or
OS_SpriteOp 25 (delete sprite).

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751 .

Related SWis

None

Related vectors

SpriteV

1-775

OS_SpriteOp 25 (SWI &2E)

1-776

Delete sprite

On entry

RO = 25 (&19)
R I = pointer to control block of sprite area
R2 = sprite pointer

On exit

RO - R2 preserved

Use

OS_SpriteOp 25
(SWI &2E)

This deletes the definition of a particular sprite It is equivalent to *SDelete when
used with the system area.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

None

Related vectors

SpriteV

Rename sprite

On entry

RO = 26 (&lA)
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = pointer to new name

On exit

RO - R3 preserved

Use

Sprites

OS_SpriteOp 26
(SWI &2E)

This changes the name of a sprite . An error is produced if a sprite of the new name
already exists in the same sprite area . It is equivalent to *SRename when used with
the system area .

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

None

Related vectors

SpriteV

1-777

OS_SpriteOp 27 (SWI &2E)

1-778

Copy sprite

OS_SpriteOp 27
(SWI &2E)

On entry

RO = 27 (&I B)
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = pointer to new name

On exit

Use

RO - R3 preserved

This copies a sprite within a sprite area. An error is produced if a sprite of the new
name already exists in the same sprite area. It is equivalent to *SCopy when used
with the system area.

Setting bit 8 or 9 of RO alters the interpretation of RI and R2- for a description see
the section entitled Common parameters on page I -751.

Related SWis

None

Related vectors

SpriteV

Put sprite

On entry

RO = 28
R I = pointer to control block of sprite area
R2 = sprite pointer
R5 =plot action (see page 1-753)

On exit

RO - R2 , R5 preserved

Use

Sprites

OS_SpriteOp 28
{SWI &2E)

This plots the sprite identified with its bottom left corner at the current graphics
cursor position using the plot action specified in R5.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751 .

Related SWis

OS_SpriteOp 48 (page 1-799)

Related vectors

SpriteV

1-779

OS_SpriteOp 29 (SWI &2E)

1-780

Create mask

On entry

RO = 29
Rl =pointer to control block of sprite area
R2 = sprite pointer

On exit

RO - R2 preserved

Use

OS_SpriteOp 29
(SWI &2E)

This creates a mask for the specified sprite with all pixels set to be solid .

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_SpriteOp 30 (page 1-781)

Related vectors

SpriteV

Remove mask

On entry

RO = 30
R I = pointer to control block of sprite area
R2 = sprite pointer

On exit

RO - R2 preserved

Use

This removes the mask definition for a given sprite.

Sprites

OS_SpriteOp 30
(SWI &2E)

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_SpriteOp 29 (page 1-780)

Related vectors

SpriteV

1-781

OS_SpriteOp 31 (SWI &2E)

1-782

Insert row

OS_SpriteOp 31
(SWI &2E)

On entry

RO = 31
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = row number

On exit

Use

RO - R3 preserved

This inserts a row in the sprite at the position identified, shifting all rows above it
up one. All pixels in the new row are set to colour zero, or to transparent if the
sprite has a mask. Rows are numbered from the bottom upwards with the bottom
row being number zero. If the row number is equal to the height of the sprite it will
go on top. Any value above this will generate an error.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_SpriteOp 32 (page 1-783), OS_SpriteOp 45 (page 1-796),
OS_SpriteOp 46 (page 1-797)

Related vectors

SpriteV

Delete row

Sprites

OS_SpriteOp 32
(SWI &2E)

On entry

RO = 32
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 =row number

On exit

Use

RO - R3 preserved

This deletes a row in the sprite at the position identified, shifting all rows above it
down one. Rows are numbered from the bottom upwards with the bottom row
being number zero. If the row number is greater than or equal to the height of the
sprite it will generate an error.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_SpriteOp 31 (page 1-782). OS_SpriteOp 45 (page 1-796),
OS_SpriteOp 46 (page 1-797)

Related vectors

SpriteV

1-783

OS_SpriteOp 33 (SWI &2E)

1-784

Flip about x axis

OS_SpriteOp 33
(SWI &2E)

On entry

RO = 33
Rl =pointer to control block of sprite area
R2 = sprite pointer

On exit

Use

RO - R2 preserved

This takes the sprite identified and reflects it about the x axis so that it is upside
down. Thus, its top row on entry becomes the bottom row on exit. and so on .

It is equivalent to *SFlipX when used on the system area sprites.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751 .

Related SWis

OS_SpriteOp 47 (page 1-798)

Related vectors

SpriteV

Put sprite at user coordinates

Sprites

OS_SpriteOp 34
(SWI &2E)

On entry

RO = 34
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate at which to plot
R4 = y coordinate at which to plot
R5 =plot action (see page 1-753)

On exit

Use

RO - R5 preserved

This plots a sprite at the external coordinates supplied . using the plot action
supplied in R5.

No check is made that the plotted sprite's screen mode is compatible with the
current screen mode; if they are not compatible you will get a display that may not
be particularly useful.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751 .

Related SWis

None

Related vectors

SpriteV

1-785

OS_SpriteOp 35 (SWI &2E)

1-786

Append sprite

OS_SpriteOp 35
(SWI &2E)

On entry

RO = 35
Rl =pointer to control block of sprite area
R2 = sprite pointer I
R3 = sprite pointer 2
R4 = 0 to merge horizontally, or I to merge vertically

On exit

Use

RO - R4 preserved

This call can be used to merge two sprites of the same height or width into one
sprite, tacking them together vertically or horizontally.

The sprites are appended horizontally in the following order:

The sprites are appended vertically in the following order:

2

The result of the merge is stored in sprite I and sprite 2 is deleted. Thus the merge
does not consume any extra memory.

Attempting to merge two sprites with different vertical or horizontal sizes will
result in an error.

Sprites

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

None

Related vectors

SpriteV

1-787

OS_SpriteOp 36 (SWI &2E)

1-788

Set pointer shape

OS_SpriteOp 36
(SWI &2E)

On entry

RO = 36
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = bitfield (see below)
R4 = x offset of active point
R5 = y offset of active point
R6 =scale factors (0 to scale for the mode)
R7 = pixel translation table

On exit

Use

RO - R3 preserved

This call sets any of the hardware pointer shapes to be programmed from a sprite,
with some degree of mode independence- ie the aspect ratio is catered for.

Note that in high resolution monochrome modes (eg mode 23), the pointer shape
resolution is four times worse horizontally than the pixel resolution, and only
colours 0, I and 3 can be used in the pointer shape definition. This call will cater
for this problem by halving the width of the pointer, so that it is still possible to see
what it is, although the pointer will be twice as wide as usual.

R3 on entry is a bitfield composed of the following fields:

Bit Meaning

0- 3 pointer shape number, currently in the range I - 4
4 if clear, then set the pointer shape data
5 if clear, then set the palette from the sprite
6 if clear, then program the pointer shape number
7- 31 reserved; must be zero

Bits 4, 5, and 6 of this bitfield can be used to defer certain aspects of this call until
later. For example, if you wanted to set up the pointer shape without displaying the
pointer, bits 5 and 6 would be set.

Sprites

The coordinates in R4 and R5 are relative pixels from the top left corner of the
sprite.

Setting bit 8 or 9 of RO alters the interpretation of R1 and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_Word 21,0 (page 1-683). Wimp_SetPointerShape (page 3-166)

Related vectors

SpriteV

1-789

OS_SpriteOp 37 (SWI &2E)

1-790

Create/remove palette

OS_SpriteOp 37
(SWI &2E)

On entry

RO = 37
R I = pointer to control block of sprite area
R2 = sprite pointer
R3 = sub-reason code:

-I ~ read current palette size
0 ~ remove palette from sprite
otherwise ~ create palette in sprite, extended to 256 entries if bit 31 set

On exit

Use

RO- R2 preserved
R3 =size of palette or 0 if none (if R3 =-I on entry); else preserved
R4 =pointer to palette or 0 if none (if R3 =-I on entry)
R5 =mode (if R3 =-I on entry)

This call creates a palette, removes a palette, or finds the size of the palette
associated with a given sprite.

If you add or remove a sprite's palette when output is switched to the sprite you
will invalidate the current display pointers In such cases you should switch output
away from the sprite, modify the palette, and then switch output back to the sprite.

To create 256 entry p9lettes you must set bit 31 of R3 on entry. This facility is not
available in RISC OS 2.

Related SWis

None

Related vectors

SpriteV

Read sprite information

Sprites

OS_SpriteOp 40
(SWI &2E)

On entry

RO = 40
RI = pointer to control block of sprite area
R2 = sprite pointer

On exit

Use

RO - R2 preserved
R3 =width in pixels
R4 = height in pixels
R5 = mask status (0 for no mask, I for mask)
R6 = screen mode in which the sprite was defined

Th is returns information about the sprite, giving its width and height in pixels,
whether the sprite has a mask and the screen mode in which the sprite was
defined.

Setting bit 8 or 9 of RO alters the interpretation of RI and R2- for a description see
the section entitled Common parameters on page I -75 I.

Related SWis

None

Related vectors

SpriteV

1-791

OS_SpriteOp 41 (SWI &2E)

1-792

Read pixel colour

OS_SpriteOp 41
(SWI &2E)

On entry

RO = 41
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate (in pixels)
R4 = y coordinate (in pixels)

On exit

Use

RO - R4 preserved
R5 =colour
R6 =tint

Given x andy coordinates in R3 and R4 (in pixels relative to the bottom left of the
sprite definition). this call returns the current colour of the pixel at that position .

The colour and tint returned depends on the mode. If it is not a 256 colour mode.
then colour is from zero to the number of colours-! and tint is zero. In 256 colour
modes, the colour is from 0 to 63 and tint is either 0. 64. 128 or 192.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751 .

Related SWis

OS_SpriteOp 42 (page 1-793)

Related vectors

SpriteV

Write pixel colour

Sprites

OS_SpriteOp 42
(SWI &2E)

On entry

RO = 42

Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate (in pixels)
R4 = y coordinate (in pixels)
R5 =colour
R6 =tint

On exit

Use

RO- R6 preserved

Given x andy coordinates (in pixels relative to the bottom left of the sprite
definition). and colour and tint in R5 and R6, this call sets the colour of the pixel at
that position.

The colour and tint values used depend on the mode. If it is not a 256 colour mode,
then colour is from zero to the number of colours-! and tint is ignored. In 256

colour modes, the colour is from 0 to 63 and tint is either 0, 64, 128 or 192: ie only
bits 6 and 7 are used.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_SpriteOp 41 (page 1-792)

Related vectors

SpriteY

1-793

OS_SpriteOp 43 (SWI &2E)

1-794

Read pixel mask

On entry

RO = 43
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate (in pixels)
R4 = y coordinate (in pixels)

On exit

RO- R4 preserved
R5 =mask status (0 =transparent, l =solid)

Use

OS_SpriteOp 43
(SWI &2E)

Given x andy coordinates in R3 and R4 (in pixels relative to the bottom left of the
sprite definition), this call returns the current state of the mask at that position.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page l-751.

Related SWis

OS_SpriteOp 44 (page l-795)

Related vectors

SpriteV

Write pixel mask

On entry

RO = 44
R I = pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate (in pixels)
R4 = y coordinate (in pixels)
R5 =mask status (0 =transparent, I =solid)

On exit

RO - R5 preserved

Use

Sprites

OS_SpriteOp 44
(SWI &2E)

Given x andy coordinates (in pixels from the bottom left of the sprite definition),
and mask state in R5, this call sets the pixel at the position given to that mask.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751 .

Related SWis

OS_SpriteOp 43 (page 1-794)

Related vectors

SpriteV

1-795

OS_SpriteOp 45 (SWI &2E)

1-796

Insert column

OS_SpriteOp 45
(SWI &2E)

On entry

RO = 45
R I = pointer to control block of sprite area
R2 = sprite pointer
R3 = column number

On exit

Use

RO - R3 preserved

This inserts a column at the position identified, shifting all columns after it one
place to the right. The new column is set to have either transparent or colour zero
pixels, depending on whether the sprite has a mask or not. Columns are numbered
from the left with the left-hand one being number zero.

If the column number is equal to the width of the sprite it will go after the right
hand side. Any value above this will generate an error.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751 .

Related SWis

OS_SpriteOp 31 (page 1-782), OS_SpriteOp 32 (page 1-783),
OS_SpriteOp 46 (page 1-797)

Related vectors

SpriteV

Delete column

Sprites

OS_SpriteOp 46
(SWI &2E)

On entry

RO = 46
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 =column number

On exit

Use

RO - R3 preserved

This deletes a column from the position identified, shifting all columns after it one
place to the left. Columns are numbered from the left with the left-hand one being
number zero.

If the column number is greater than or equal to the width of the sprite it will
generate an error.

Setting bit 8 or 9 of RO alters the interpretation of R I and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_SpriteOp 31 (page 1-782). OS_SpriteOp 32 (page 1-783).
OS_SpriteOp 45 (page 1-796)

Related vectors

SpriteV

1-797

OS_SpriteOp 47 (SWI &2E)

1-798

Flip about y axis

OS_SpriteOp 47
(SWI &2E)

On entry

RO = 47
Rl =pointer to control block of sprite area
R2 = sprite pointer

On exit

Use

RO- R2 preserved

This takes the sprite identified and reflects it about they axis so that it is facing in
the opposite direction. Thus, its leftmost column on entry becomes the rightmost
column on exit , and so on.

It is equivalent to *SFlipY when used with the system sprite area.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751 .

Related SWis

OS_SpriteOp 33 (page 1-784)

Related vectors

SpriteV

Plot sprite mask

Sprites

OS_SpriteOp 48
(SWI &2E)

On entry

RO = 48
Rl =pointer to control block of sprite area
R2 = sprite pointer

On exit

Use

RO - R2 preserved

This plots a sprite mask in the background colour and action with its bottom left
corner at the graphics cursor position. That is, all I bits in the mask are plotted in
the background colour and action , and all 0 bits are ignored. If the sprite has no
mask, a solid rectangle the same size as the sprite is drawn in the current
background colour and action (as if there was a mask which was completely solid) .

The plot action for this call is the same as that for normal graphics operations,
rather than that used in plotting sprites.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2 - for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_SpriteOp 28 (page 1-779)

Related vectors

SpriteV

1-799

OS_SpriteOp 49 (SW/ &2E)

1-800

Plot mask at user coordinates

OS_SpriteOp 49
(SWI &2E)

On entry

RO = 49
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate at which to plot
R4 = y coordinate at which to plot

On exit

Use

RO - R4 preserved

This plots in the background colour and action through a sprite mask at the
external coordinates supplied.

The plot action for this call is the same as that for normal graphics operations,
rather than that used in plotting sprites.

Setting bit 8 or 9 of RO alters the interpretation of R I and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_SpriteOp 48 (page 1-799)

Related vectors

SpriteV

Plot mask scaled

Sprites

OS_SpriteOp 50
(SWI &2E)

On entry

RO =50
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate at which to plot
R4 = y coordinate at which to plot
R6 =scale factors

On exit

Use

RO - R6 preserved

A sprite mask is plotted on the screen , using the current background colour and
action and the scaling factors provided.

The plot action for this call is the same as that for normal graphics operations,
rather than that used in plotting sprites

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751 .

Related SWis

None

Related vectors

SpriteV

1-801

OS_SpriteOp 51 (SWI &2E)

1-802

Paint character scaled

On entry

RO =51
R I = character code
R3 = x coordinate at which to plot
R4 = y coordinate at which to plot
R6 = scale factors

On exit

RO, Rl, R3 , R4, R6 preserved

Use

OS_SpriteOp 51
(SWI &2E)

The specified character is plotted on the screen with its lower left hand corner at
the specified coordinate, using the current graphics foreground colour and action .

The plot action for this call is the same as that for normal graphics operations.
rather than that used in plotting sprites.

Related SWis

None

Related vectors

SpriteV

Put sprite scaled

On entry

RO =52

R I = pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate at which to plot
R4 = y coordinate at which to plot
R5 =plot action (see page 1-753)

Sprites

OS_SpriteOp 52
(SWI &2E)

R6 =scale factors: 0:::::} no scaling (ie I: I, sprite pixel to screen pixel)
R7 = pixel translation table: 0:::::} no translation

On exit

RO- R7 preserved

Use

This will plot a sprite on the screen using:

• the coordinate specified by R3 and R4

• the plot action specified by R5.

• the scale factors specified by R6

• the pixel translation table pointed to by R7

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_SpriteOp 53 (page 1-804)

Related vectors

SpriteV

1-803

OS_SpriteOp 53 (SWI &2E)

1-804

Put sprite grey scaled

OS_SpriteOp 53
(SWI &2E)

On entry

RO =53
R I = pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate at which to plot
R4 = y coordinate at which to plot
R5 = 0
R6 = scale factors
R7 = pixel translation table

On exit

Use

RO - R7 preserved

This call is similar to OS_SpriteOp 52 . except that it performs anti-aliasing on the
sprite as it scales it. This is the same technique that the Font Manager uses on
characters . This means that the sprite must have been defined in a 4 bits per pixel
mode (16 colours). and the pixels must reflect a linear grey scale. as with
anti-aliased font definitions.

This call is considerably slower than OS_SpriteOp 52 (Put sprite scaled) and
should only be used when the quality of the image is of the utmost importance. To
speed up redrawing of an anti-aliased sprite. it is possible to draw the image into
another sprite (using OS_SpriteOp 60- switch output to sprite). which can then be
redrawn more quickly.

Setting bit 8 or 9 of RO alters the interpretation of R1 and R2- for a description see
the section entitled Common parameters on page 1-751 .

Related SWis

OS_SpriteOp 52 (page 1-803)

Related vectors

SpriteV

Remove left hand wastage

Sprites

OS_SpriteOp 54
(SWI &2E)

On entry

RO =54
R I = pointer to control block of sprite area
R2 = sprite pointer

On exit

Use

RO - R2 preserved

In general. sprites have a number of unused bits in the words corresponding to the
left and right hand edges of each pixel row. This call removes the left hand wastage,
so that the left hand side of the sprite is word aligned.

The right hand wastage is increased by the number of bits that were removed. If
this is now more than 32 bits then a whole word is removed from each row of the
sprite, and the rest of the sprite area moved down to fill the gap.

Note that when you switch output to a sprite using OS_SpriteOp 60 or 61, the
left-hand wastage is also removed.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751 .

Related SWis

OS_SpriteOp 60 (page 1-811), OS_SpriteOp 61 (page 1-813)

Related vectors

SpriteY

1-805

OS_SpriteOp 55 and 56 (SWI &2E)

1-806

Transformed sprite handling

OS_SpriteOp 55 and 56
(SWI &2E)

On entry

RO = 55 (PlotMaskTransformed) or 56 (PutSpriteTransformed)
Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = flag word:

bit 0 set=> R6 = pointer to destination coordinates. else matrix
bit I set => R4 = pointer to source rectangle inside sprite
bits 2-31 reserved (must be 0)

R4 =pointer to source rectangle coordinate block (if R3 bit I set) :
R4+0.4 = xO, yO: one corner in sprite (in pixels)
R4+8,12 =xi, yl : second corner in sprite (in pixels)

R5 = GCOL action (for PutSpriteTransformed)
+8 if mask is to be used

R6 =pointer to matrix (if R3 bit 0 clear) :
R6+0.4.8.12,16,20 =matrix (as for Draw module)

R6 =pointer to destination coordinate block (if R3 bit 0 set) :
R6+0.4 = XO.YO on screen (l/256th OS unit)
R6+8,12 =X l ,Y I on screen (l/256th OS unit)
R6+ 16,20 = X2,Y2 on screen (l/256th OS unit)
R6+24.28 = X3.Y3 on screen (l/256th OS unit)

R7 =pointer to translation table(~ 0 =>none)

On exit

Use

This call is not available in RISC OS 2.

The source coordinates are inclusive at the bottom-left, and exclusive at the
top-right. If no source rectangle is given, the default is xO = 0, xi =width of sprite
(in pixels). and yO= height of sprite (in pixels). yl = 0. Note that they coordinates
are the reverse of what you might expect; this is only relevant when plotting to a
destination parallelogram (see below) .

Sprites

When specifying a destination parallelogram, the source rectangle is mapped onto
the destination as follows:

xO,yO XO,YO
xl,yO XI,YI
xl,yl X2,Y2
xO,yl X3,Y3

In future it may be possible to set the destination to an arbitrary quadrilateral.
rather than a parallelogram. In order to reserve this possibility, the current version
returns an error if the destination is not a parallelogram.

For PutSpriteTransformed, the sprite is plotted through its mask only if it both has
one, and bit 3 of R5 is set. R5 is ignored for PlotMaskTransformed.

The SWI returns an error if any of R3 bits 2 - 31 are set. to ensure that these are left
clear by software developers.

The SWI covers exactly those pixels on the screen that a call to Draw_Fill would
produce for a rectangle of the same size with the same transformation matrix,
where it is filling to half-way through the boundary.

When plotting using a destination parallelogram, the source rectangle must be
entirely within the sprite. For plotting with a matrix, the source rectangle will be
clipped to the sprite boundaries prior to transformation ; any of the sprite's pixels
outside the source rectangle will behave as if they had a transparent mask.

If the source rectangle (after clipping, if using a matrix) has no area, i.e. xO = xl OR
yO= yl then an error will be generated, as it is not possible to choose a colour in
which to fill the destination.

Note that the SWI does allow xO>xl or yO>yl or both . When plotting with a matrix
there is no difference between xO and xl swapped, or yO and yl swapped, but when
specifying a destination parallelogram the image will be reflected.

Due to the mechanism of the routine the accuracy is not absolute. The SWI will
always cover the same area as a Draw filled path, but not necessarily with the right
source pixel data from the sprite. The worst possible error (in a fraction of a source
pixel) at one end of the plotted area is given by destination width or fteigftU65536.

1-807

OS_SpriteOp 55 and 56 (SWI &2E)

1-808

The table below gives more information on the maximum errors attainable:

Destination size

5
10
50
100
500
1000
5000
10000

Worst possible error in source pixels

0.0000763
0.0001526
0.0007629
0.0015259
0.0076294
0.0152588
0.0762939
0.1525879

(The largest output possible is 32767 pixels)

For example, when plotting a sprite to a destination width of 5000 pixels, the worst
error possible in the position in the source rectangle of the final pixel plotted is
about If1 3 of a source pixel.

Note that if these errors (usually too small to notice) must be avoided then the
sprite should be plotted in parts- perhaps by dividing the plotting into four areas.

Errors:

'Attempt to set reserved flags ':

RO bits 2 - 31 must be zero.

'Source rectangle area zero':

The area of the source rectangle must be non-zero, so the sprite routine(s) will
have some valid colour with which to plot the output.

'Source rectangle not inside sprite' :

The source rectangle must be totally inside the sprite.

'SpriteExtend can only do linear transformations':

The current version of the transformation routines can only perform linear
transformations, and not any arbitrary distortion.

Related SWis

None

Related vectors

SpriteV

Sprites

OS_SpriteOp 57 and 58
{SWI &2E)

Insert/delete rows/columns from a sprite

On entry

RO = 57 (InsertDeleteRows) or 58 (lnsertDeleteColumns)
R I = pointer to control block of sprite area
R2 = sprite pointer
R3 =row/column to start deletion at or to insert before
R4 =number of rows/columns to insert (if +ve) or delete (if -ve)

On exit

Use

RO - R4 preserved

This call is not available in RISC OS 2.

For insertion R4 > 0, and R3 specifies the row or column to insert before. For a
sprite of n rows x m columns the rows are numbered from 0 at the bottom to n-1 at
the top, and columns from 0 at the left to m-1 at the top. Thus to insert
rows/columns on the edges of the sprite:

RO
57

58

R3
0
n
0
m

Insertion point

bottom edge (ie before the first row)
top edge (ie before the row beyond the last row)
left edge (ie before the first column)
right edge (ie before the column beyond the last column)

The inserted rows/columns are set to colour 0. If the sprite has a mask then
rows/columns are inserted into that as well , and the inserted area is transparent.

For deletion R4 < 0, and R3 specifies the first row or column to be deleted. The
rows/columns from R3 to (R3-R4-1) will be deleted. An error will be given if R3 or
R4 are out of range for the sprite.

Related SWis

None

1-809

OS_SpriteOp 57 and 58 (SWI &2E)

1-810

Related vectors

SpriteV

Switch output to sprite

Sprites

OS_SpriteOp 60
(SWI &2E)

On entry

RO = 60
Rl =pointer to control block of sprite area
R2 = sprite pointer to switch to sprite, or 0 to switch to screen
R3 = pointer to save area, or 0 for no save area, or 1 for system save area

On exit

Use

RO preserved
Rl = previous value
R2 =previous value
R3 =previous value

This call can cause VDU calls to be sent to the screen memory, or to a sprite's
image.

R2 has its usual function as a sprite pointer; alternatively it can be zero, in which
case output is switched to the screen.

A save area is used to save graphics context. This call can be thought of as
switching to a particular graphics context as well as switching output.

The save area's location (specified in R3) can have a number of values. If it is zero,
then no save area will be used; you should avoid this if possible. If it is one, then
the system save area is used; RISC OS uses this area to save the screen's graphics
context , and you should not use this area yourself if you wish to preserve the
screen 's graphics context. Any other value of R3 is considered to be a pointer to a
user specified save area, usually used to preserve a sprite's graphics context.

When you make this call. the current graphics state is saved to the current graphics
save area, the first word of which is set to a non-zero value. The save area specified
by R3 is then made the current save area. If its first word is non-zero, it is assumed
to contain a graphics context , which is restored; if its first word is zero (or no save
area is specified). then it is assumed to be a new save area. and the VDU state is
instead initialised to suitable defaults for the mode in which the sprite was
defined. Output is then switched, as specified by R2.

1-811

OS_SpriteOp 60 (SWI &2E)

1-812

You can find the required size of a save area by calling OS_SpriteOp 62.

You must not poll the Wimp whilst output is switched to a sprite, as other
applications will not expect this.

For more details of save areas. and examples of their use, see the section entitled
Save area on page 1-753.

Setting bit 8 or 9 of RO alters the interpretation of R1 and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_SpriteOp 61 (page 1-813). OS_SpriteOp 62 (page 1-815)

Related vectors

SpriteV

Switch output to mask

Sprites

OS_SpriteOp 61
(SWI &2E)

On entry

RO = 61
Rl =pointer to control block of sprite area
R2 = sprite pointer to switch to mask, or 0 to switch to screen
R3 = pointer to save area, or 0 for no save area, or I for system save area

On exit

Use

RO preserved
Rl =previous value
R2 =previous value
R3 = previous value

This call can cause VDU calls to be sent to the screen memory, or to a sprite's mask.

See OS_SpriteOp 60 for a general description of how this call works.

A sprite's mask has the same number of bits per pixel as its image, where a value of
0 is a transparent pixel and a value of all I 's represents a solid pixel. For example,
&OF for 4 bits per pixel. Other values are not permitted. Hence when plotting into a
sprite's mask, the only colours that should be used are 0 and (number of colours
I), that is:

• in 2 colour modes use colours 0 and I

• in 4 colour modes use colours 0 and 3

• in 16 colour modes use colours 0 and 15

• in 256 colour modes use colour 0 tint 0, and colour 63 tint 255.

Setting bit 8 or 9 of RO alters the interpretation of Rl and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_SpriteOp 60 (page 1-811), OS_SpriteOp 62 (page 1-815)

1-813

OS_SpriteOp 61 (SWI &2E)

1-814

Related vectors

SpriteV

Read save area size

Sprites

OS_SpriteOp 62
{SWI &2E)

On entry

RO = 62
R1 =pointer to control block of sprite area
R2 = sprite pointer, or 0 for the screen

On exit

Use

RO - R2 preserved
R3 = size of required save area in bytes

This calls calculates how large a save area must be for a given sprite. This is a
constant for a particular release of R1SC OS, but may vary between versions.
Remember that a save area must be word aligned.

Setting bit 8 or 9 of RO alters the interpretation of R1 and R2- for a description see
the section entitled Common parameters on page 1-751.

Related SWis

OS_SpriteOp 60 (page 1-811), OS_SpriteOp 61 (page 1-813)

Related vectors

SpriteV

1-815

*Commands

*Commands

1-816

*Configure SpriteSize

Sets the configured amount of memory reserved for the system sprite area

Syntax

*Configure Sp r iteSize mK in

Parameters

Use

mK number of kilobytes of memory reserved

n number of pages of memory reserved; n::;; 127

•configure SpriteSize sets the configured amount of memory reserved for the
system sprite area. If you pass a parameter of 0, then no space is reserved for
system sprites. The default value is one page of memory.

You can also use OS_ChangeDynamicArea (page 1-377) to alter dynamically the
system sprite size. For more information, refer to the chapter entitled Memory
Management.

The change takes effect on the next hard reset.

Example

*Configure Sprit eS ize 2 0K

Related commands

None

Related SWis

None

Related vectors

None

Sprites

*SChoose

Selects a sprite for use in subsequent sprite plotting operations

Syntax

*SChoose sprite_name

Parameters

spri te_name name of a sprite in the system sprite area

Use

*SChoose selects a sprite from the system sprite area for use in subsequent sprite
plotting operations. It is used in conjunction with VDU 25,232-239 operations. You
should see the warning in the section entitled VDU commands on page I -758 about
using these obsolescent VDU calls.

The sprite name is not case-sensitive.

Example

*SChoose fish

Related commands

None

Related SWis

OS_SpriteOp 24 (page 1-775)

Related vectors

SpriteV

1-817

*SCopy

1-818

*SCopy

Makes a copy of a sprite within the system sprite area

Syntax

*SCopy source_sprite_name dest_sprite_name

Parameters

Use

source_sprite_name

dest_ sprite_name

name of source sprite in the system sprite area

name of destination sprite (to be placed in the
system sprite area)

•scopy makes a copy of the source sprite within the system sprite area, and
renames it as the destination sprite. An error is generated if the destination sprite
already exists.

Example

*SCopy acorn squirrel

Related commands

None

Related SWis

OS_SpriteOp 27 (page 1-778)

Related vectors

SpriteV

Sprites

*Screen load

Loads the contents of a sprite file into the graphics window

Syntax

*ScreenLoad fi len ame

Parameters

Use

f i l ename a valid pathname, specifying a sprite file

*ScreenLoad loads the contents of a sprite file (saved. for example, with the
*ScreenSave command) into the graphics window, which is typically the whole
screen.

It changes mode if necessary and sets the palette to the setting in the file . The first
sprite in the file is plotted at the bottom left hand corner of the graphics window.
After a mode change, this is the bottom left hand corner of the screen .

Example

*ScreenLoad $. s prites .anirnals.koala

Related commands

*ScreenSave

Related SWis

OS_SpriteOp 3 (page 1-765)

Related vectors

SpriteV

1-819

•screenSave

1-820

*Screen Save

Saves the contents of the graphics window and its palette to a file

Syntax

*ScreenSave filename

Parameters

filename a valid pathname, specifying a file

Use

•screenSave saves the contents of the graphics window (typically the whole
screen) and its palette to a file, which is saved as a sprite. The sprite file created
will contain one sprite called 'screendump'.

You can then load this file into Paint or Draw.

Example

*ScreenSave My.Pic

Related commands

•screen Load

Related SWis

OS_SpriteOp 2 (page 1-764)

Related vectors

SpriteV

Sprites

*SDelete

Deletes one or more sprites from the system sprite area

Syntax

*SDelete sprite_namel [sprite_name2 ...]

Parameters

spri te_namel

spri te_ name2 ...

name of a sprite in the system sprite area

optional extra sprites to delete

*SDelete deletes one or more sprites from the system sprite area.

If ar error occurs (such -as a sprite not existing) *SDelete will stop immediately,
and no further sprites will be deleted.

Example

*SDelete fish cake elephant

Related commands

I None

Related SWis

OS_SpriteOp 25 (page 1-776)

Related vectors

SpriteV

1-821

•sFiipX

1-822

*SFiipX

Reflects a sprite in the system sprite area about its x axis

Syntax

*SFlipX sprite_name

Parameters

spri te_name name of a sprite in the system sprite area

Use

*SFiipX reflects a sprite in the system sprite area about its x axis so it is upside
down.

Example

*SFlipX sloth

Related commands

*SFiipY

Related SWis

OS_SpriteOp 33 (page 1-784)

Related vectors

SpriteV

Sprites

*SFiipY

Reflects a sprite in the system area about its y axis

Syntax

*SFlipY sprite_ name

Parameters

spr it e_name name of a sprite in the system sprite area

Use

*SFiipY reflects a sprite in the system sprite area about its y axis so it faces in the
opposite direction.

Example

*SFlipY sloth

Related commands

*SFiipX

Related SWis

OS_SpriteOp 47 (page 1-798)

Related vectors

SpriteV

1-823

·sGet

1-824

*SGet

Gets a sprite from the screen

Syntax

*SGet sprite_ name

Parameters

spr it e_ name name of new sprite in the system sprite area

Use

*SGet gets a sprite from a rectangular area of the screen, defined by the two most
recent graphics positions (inclusive). It then saves this sprite in the system sprite
area with the given name. If the sprite already exists, it is overwritten.

Any part of the designated area which lies outside the current graphics window is
filled in the sprite with the current background colour.

Example

*SGet screenpart

Related commands

*ScreenSave

Related SWis

OS_SpriteOp 14 (page 1-772)

Related vectors

SpriteV

Sprites

*Sinfo

Displays information on the system sprite workspace

Syntax

*Sinfo

Parameters

None

Use

*Sinfo displays information on the system sprite workspace. It prints out the
amount of system sprite workspace currently reserved, the amount of free space in
that workspace and the number of sprites defined.

Example

*Sinfo
Sprite status

8 Kbytes sprite workspace
7328 byte(s) free
2 sprite(s) defined

Related commands

None

Related SWis

OS_SpriteOp 8 (page 1-766)

Related vectors

SpriteV

1-825

·sust

1-826

Lists the names of all the sprites in the system sprite area

Syntax

*SList

Parameters

None

Use

*SList lists the names of all the sprites in the system sprite area.

Example

*SList
!koala
!sloth

Related commands

None

Related SWis

OS_SpriteOp 8 (page 1-766)

Related vectors

SpriteV

*Slist

Sprites

*Sload

Loads a sprite file into the system sprite area

Syntax

*SLoad filename

Parameters

filename full name of file to load

Use

*SLoad loads a file containing sprite definitions into the system sprite area . If
there is insuf cient memory, then an error is given and nothing is loaded. Any
sprites which re in memory when this command is given are lost.

Example

*SLoad $. s f r ites . an i ma l s . koa l a

Related commandk

*Screen Load

Related SWis

OS_SpriteOp 0 (page 1-768)

Related vectors

SpriteV

1-827

*SMerge

1-828

*SMerge

Merges the sprites in a file with those in the system sprite area

Syntax

*SMerge filename

Parameters

Use

filename full name of file to load

*SMerge merges the sprites in a file with those in the system sprite area. If there is
insufficient memory, then an error is given and nothing is loaded. Any sprites in
memory with the same name as any in the file are lost.

Note that there must be enough free space in the sprite area to hold both the new
file and the original sprites, since it is only after the new file has been loaded that
any of the original sprites are replaced by new ones that have the same name.

Example

*SMerge $.sprites.animals.koala

Related commands

None

Related SWis

OS_SpriteOp II (page 1-769)

Related vectors

SpriteV

Sprites

*SNew

Deletes all the sprit.es in the system sprite area

Syntax

*SNe w

Parameters

None

Use

*SNew deletes all the sprites in the system sprite area, and so frees all the sprite
workspace.

Related commands

None

Related SWis

OS_SpriteOp 9 (page 1-767)

Related vectors

SpriteV

1-829

·sRename

1-830

*SRename

Renames a sprite within the system sprite area

Syntax

*SRename old_sprite_name new_sprite_name

Parameters

old_ sprite_ name

new_spri te_name

name of a sprite in the system sprite area

new name of the sprite

Use

*SRename renames a sprite within the system sprite area . An error is generated if
a sprite having the new name already exists.

A sprite name can contain any sequence of printable characters. other than a
space; although upper-case letters will be changed to lower-case ones.

Example

*SRename thong flipflop

Related commands

None

Related SWis

OS_SpriteOp 26 (page 1-777)

Related vectors

SpriteV

Sprites

*SSave

Saves the system sprite area as a sprite file

Syntax

*SSave filename

Parameters

filename name of file to save

Use

*SSave saves all the sprites currently in the system sprite area as a sprite file. You
can then load or merge the file later on.

Example

*SSave $.sprites.animals.koala

Related commands

*SLoad, *SMerge

Related SWis

OS_SpriteOp 12 (page 1-770)

Related vectors

SpriteV

1-831

Application notes

Application notes

Using sprites with 256 entry palettes

1-832

Introduction

By careful use of sprite operations and ColourTrans , sprites with 256 entry palettes
can be created and displayed on all RISC OS machines. Of course, this ability to
create and process a sprite with (say) 256 grey levels in it does not magically endow
the hardware with the ability to display 256 grey levels! The display will be as close
as possible (ie 16 grey levels with standard hardware). but will not be exact unless
the machine's hardware has been extended using a product such as a graphics
enhancer expansion card .

Format of a 256 entry palette sprite

A 256 entry palette sprite is precisely like a 16 entry palette sprite, save that there
are 256 palette entries, each one consisting of a pair of 'palette entry' words of the
form &BBGGRROO as for ColourTrans. All bits of the entry are significant

Creating a 256 entry palette sprite

If you use OS_SpriteOp 15 to create a sprite with a palette for a 256 colour mode,
the palette will not have 256 entries. To create a sprite with the full 256 palette
entries, the best thing to do is to create one with no palette, and then to add 2048
to the following entries:

Entry

word 4 of Sprite Area control block

word l of Sprite control block
word 9 of Sprite control block
word I 0 of Sprite control block

Meaning

offset to first free word

offset to next sprite
offset to sprite image
offset to transparency mask

Sprites

You should then write the 256 double words of palette entries starting at word 12
of the sprite, keeping both items in a pair identical:

SYS "OS_Sprite0p " ,&l0f,ram% , name$, 0,X , Y, spritemode
sptr%=ram%+ram%! 8
pa l %=sptr% +1 1 *4
! (sptr%+8 *4)+=2048
! (sptr%+9*4) +=2048
!sptr%+=2048
! (ram%+12)+ =2048
FORZ%=0T0255:B%=palette ! (Z%<<2)ANDNOT&FF
pal% ! (Z%*8)=B%:pal% ! (Z%*8+4)=B%
NEXT

Manipulating a 256 entry palette sprite

All sprite operat ions work on the 256 entry palette sprite. One can even switch
output to it and generate 256 grey level output into it (with appropriate care over
the GCOL and TINT values required by RISC OS) . Sprite areas conta ining 256 entry
palette sprites may be loaded, saved etc.

Testing to see if a sprite is a 256 entry palette sprite

After creation, the 256 entry palette sprite behaves just like all the others, so it is
important you can distinguish it on the occasions when you need to (such as when
displaying it on the screen).

A 256 entry palette sprite will have the lowest of words 9 and I 0 of the sprite
control block equal to 2048+44 (&82C) If you already know that the sprite has no
transparency mask, then you can test only word 9.

1-833

Using sprites with 256 entry palettes

1-834

Displaying a 256 entry palette sprite

The SWI ColourTrans_SelectTable takes a 64 entry palette sprite (and 2, 4 and I 6)
and returns a pixel translation table as needed for OS_SpriteOp 52. For a 256 entry
sprite, one needs to build a similar pixel translation table directly. The following
code will compute a pixel translation table for any sprite which hasn't a
transparency mask:

IF sptr%!32=44 THEN
palptr%=0
ELSE
FOR grab%=0 TO 2048-8 STEP 8
palternp%! (grab%>>1)=sptr%! (grab%+44)
NEXT
palptr%=palternp%
END IF
FORQ%=0T0255:pixtrans%?Q%=Q%:NEXT
IFsptr%!32=44+2048 THEN
FORQ%=0T0255
SYS"ColourTrans_ReturnColourNurnber",palptr%! (Q%<<2) TO
pixtrans%?Q%
NEXT
ELSE
SYS "ColourTrans_SelectTable",rn,palptr%,-1,-l,pixtrans%
END IF
spx%=-l:FORQ%=0T0255:IFpixtrans%?Q%<>Q% spx%=pixtrans%
NEXT

spx% is equal either to- I if no translation needs to be done (which speeds up
OS_SpriteOp 52 a lot), or to pixtrans%; it is passed to OS_SpriteOp 52 in register 7.

Conclusion

The ability to store, process and display 256 entry palette sprites represents a
small but useful gain for the RISC OS desktop. Common formats can be converted
to sprites without any loss of information and meaningfully displayed. It's still a
good idea to use the default desktop palette whenever possible.

23 Character Input

Introduction
The Character Input system can get characters from the computer's input devices.
They can be any one of the following:

• the keyboard

• the serial port

• a file on any filing system

It gives full control of the operation of each of these devices. Since they all have
different characteristics, they must be controlled in different ways.

It provides a means of directing characters from the selected device to the program
that requests them. It can also hold them, waiting until the program is ready to
take them.

For details of input to Wimp applications, see the chapter entitled The Window
Manager on page 3-3.

1-835

Overview

Overview

Streams

Before you read this chapter, you should have read the chapter entitled Character
Output on page 1-489. In many ways, character input and output are one entity,
which has been logically split in this manual. So there are some things which are
mentioned there and not here that apply to both chapters.

Like character output, a stream system is used by character input. Here, you can
select from one of three streams; keyboard, serial and file. Only one stream can be
selected at once otherwise data coming from two places would get jumbled. Direct
control of devices is available, especially in the case of the keyboard.

Any program taking input from the stream system doesn't have to know where
characters are coming from. Most programs don't since it will not affect the way
they run .

OS_ReadC

The core of the input stream is OS_ReadC (page 1-852) which gets a single
character from the currently selected input stream. It is in turn called by many
other SWis, OS_ReadLine (page 1-910) for example. This device independence
makes programs much easier to write.

Buffers

Keyboard

1-836

Like character output, all input streams are buffered. Input devices are
asynchronous to programs and must have their characters stored in a temporary
place in memory until required. A good example of buffering in use is a terminal
emulator program. It waits until something appears at the serial input buffer, then
sends it to the VDU. At the same time, it waits until something appears in the
keyboard buffer and sends it to the serial output buffer. Because of the buffering of
inputs and outputs, the program can do all this at its own pace.

The keyboard is the most used part of character input, and its driver the most
complex. In principle it is simple enough, but many features are changeable and
key presses can be looked at in a number of ways.

Character Input

Keyboard handlers

The keyboard driver is actually two sections. One, which is fixed, handles the
keyboard interrupt and low-level control. It feeds the raw code onto the second
part , the keyboard handler.

The keyboard handler converts the keycode into an ASCII form, with extensions for
special characters. This can be replaced by a custom version if required.

Basic operation

At a basic level. the keyboard works like this:

One or more keys are pressed, which cause an interrupt.

2 The keyboard driver gets a raw key number from the keyboard.

3 The raw key number is passed to the keyboard handler, where it is converted
into a form more like the program expects. This can be:

• an ASCII character.

• a non-ASCII character, such as a function key or arrow.

• a special key, such as Escape or Break that must be acted on immediately.

4 Apart from some special keys, this character is then stored in the keyboard
buffer.

When a program wants a character from the input stream (in this example, the
keyboard):

• When called by a program , the stream system gets the first character from the
keyboard buffer (or waits if there is none there) .

• Return the character to the program or perform the appropriate action if it is a
function key, arrow, etc.

Advanced features

Also, there are a number of extra operations that the keyboard driver can perform:

• The interpretation of function keys, arrow keys and the numeric keypad can all
be changed to various modes.

• The auto-repeat of keys can be adjusted, both the initial delay and the rate of
repeat.

• The keyboard can be scanned directly, rather than going through any buffering.

• The keyboard handler can even be completely replaced with a custom handler.

About 30 SWis and six * Commands exist purely for keyboard control. The section
entitled Technical Details on page 1-841 covers how they work together.

1-837

Reset, Break and Escape

Reset, Break and Escape

Reset

1~838

These three terms can become very confused, especially so when talking about the
keyboard versus a program 's view of the keyboard driver.

Reset is a unique key. Unlike all others it does not send a key code to the keyboard
driver. It is connected to a separate line on the keyboard connector and physically
resets the computer. This cannot be stopped by a program. When a reset occurs,
some parts of the system are initialised.

Pressing the Reset switch alone causes a 'soft ' reset. This resets your machine,
restarting RISC OS. You will lose any unsaved work.

You can get other types of Reset options by holding down certain keys whilst you
press the Reset switch :

• Holding down the Ctrl key causes a 'hard reset' . This is more severe than a soft
reset (but still doesn't reset your machine as thoroughly as switching it off,
then on again).

• Holding down the Shift key reverses the action of the configured boot option
If there Is a boot file set to run, it is not run. If there is a boot file not set to run ,
it Is run.

• Holding down *(on numeric keypad)~Reset causes the Command Line to be
entered, rather than the configured language (such as the Desktop or BASIC) .

You can combine the effects of these keys; for example pressing *(on numeric
keypad)~Ctri~Shlft~Reset on a machine configured to auto-boot would cause a
hard reset. after which the Command Line would be entered , and the boot file
would not be run.

BBC/Master users note that Reset is what used to be called Break on those
machines.

Break

Character Input

Break is a key. You can separately configure Break, Shift-Break, Ctrl-Break and
Ctrl-Shift-Break to cause a reset. an escape condition or do nothing.

By default, pressing the Break key (to the right of the twelve function keys) on its
own acts like pressing the Escape key; for instance it may interrupt a program.
However, if you press it whilst holding down any of the keys that affect the Reset
switch it acts like the Reset switch , except that it does not reset the computer's
hardware. For example:

• Pressing Shift~Break causes a soft restart of RISC OS, reversing the normal
auto-boot behaviour.

• Pressing Ctri~Break causes a hard restart of RISC OS, which is more severe in
its effects.

The computer has a Break key as well as a Reset switch so that applications such as
emulators can respond differently to them. For example, 65Host uses Break to
reset the emulated computer, while Reset still resets the RISC OS computer itself.

Escape

Escape is a way of the user sending a signal to a program or its runtime
environment. From a program 's point of view, we talk about an escape condition.
This can be caused by an escape key or the program itself.

By default, the key that causes an escape condition is Escape. RISC OS can be
configured so that the escape key is any key on the keyboard.

When an escape condition occurs, RISC OS will call the escape handler of the
program or the language environment. See the description of handlers in the
section entitled Handlers on page I -288. The escape handler or running program
should then clear the escape condition and act in an appropriate way. Note that it
is perfectly valid for a program to ignore an escape condition as long as it is
cleared .

The escape event can also be enabled. This is called in place of the escape handler.
(See the chapter entitled Events on page 1-145.)

1~839

Serial port

Serial port

*Exec

1-840

A character which comes into the serial port interrupts the computer. It is then
placed into the serial input buffer, if it is enabled. RISC OS can be configured so
that serial input is ignored.

The computer can be set up so that input coming in from the serial port is treated
exactly as if it had come from the keyboard. This means that the escape character
and function key codes will be recognised .

If characters come in the serial port too quickly to be processed, then the serial
input buffer would become full. After this point, data would be lost. To solve this
problem , the serial driver will notify the sender to stop transmitting before it gets
full. From a program's point of view, this all happens invisibly.

Calls that are specific to the serial port, whether they refer to input or output (eg
those to set the baud rate. or to explicitly send/receive a character from/to the
serial port). are gathered together in the chapter entitled Serial device on page 2-439.

*Exec is the opposite of spooling, which is used in character output. *Exec makes
a file the current input stream. Keyboard and serial input is ignored.

A SWI is provided to allow the Exec file to be changed or stopped under program
control.

Character Input

Technical Details

Events

Streams

There are a number of events associated with the character input system. In
particular:

• input buffer has become full

• character placed in input buffer

• a key has been pressed/released

• serial error has occurred

• escape condition detected

See the chapter entitled Events on page 1-145 for more details of these events.

OS_ReadC (page 1-852) is the core of the input stream system. It is called by many
SW!s and it uses one of the three streams as an input source. The stream that it
uses can be controlled by OS_Byte 2 (page 1-854) for keyboard and serial port. To
use the third stream, the file, then *Exec (page 2-165) or OS_Byte 198 (page 1-877)
can be used. OS_Byte 177 (page 1-873) can be used to read the setting of the last
OS_Byte 2.

OS_ReadC is also responsible for handling cursor-editing during input.

OS_Readline

Keyboard

OS_ReadLine (page 1-91 0), and its obsolete equivalent OS_ Word 0, will read a line
of input from the current input stream. It copes with the deleting of characters or
the whole line. Thus, a single call which returns a simple string to the program
allows the user much flexibility.

When a key is pressed (or released), a code unique to that key is transmitted to the
computer through the keyboard connector cable. This code is read into some
hardware, which causes an interrupt to occur. The keyboard driver responds to this
interrupt by reading the keycode, and passing it on to the keyboard handler for
further processing.

1-841

Keyboard

1-842

At this stage, a key press/release event may be generated, which you can handle as
required. Also, at this level mouse button presses look exactly the same as any
other key press . It is only when the mouse button presses reach the keyboard
handler that they are recognised as such , and RISC OS is informed that the mouse
button state has changed.

Keyboard buffer

The keyboard buffer is often termed a type-ahead buffer, as it enables the user to
type commands ahead of the program being ready for them. You must not assume
it to be any particular length.

Disabling buffering

OS_Byte 20 I (page 1-881) wi II stop the keyboard handler from putting any
characters it gets into the keyboard buffer. This means that most keyboard reading
calls will not work. Where this function is useful is if you want a program to insert
codes directly into the buffer without any of the user's key strokes appearing in the
middle of them.

Keyboard status

If the key pressed (or released) is one of the shifting keys (Shift. Ctrl or Alt) or one
of the locking keys (Caps Lock, Num Lock or Scroll Lock) is pressed , then the key
handler just makes a note of this fact by updating its status information. Normally
this doesn't cause any character to be inserted into the keyboard buffer; although
the Alt key can in combination with the numeric keypad- see Table 0: Character sets
on page 4-561.

OS_Byte 202 (page 1-883) allows reading and writing of the keyboard status byte.
This is a bitfield that represents the state of Shift, Ctrl , Alt and all the Lock keys. If
it is written and any of the Lock keys with LEOs are changed, then this will not be
reflected in the LEOs. OS_Byte 118 (page 1-862) must be called to do this.

The next time any key goes down or up, then the Shift, Alt and Ctrl states will
reflect their real position and the LEOs will be updated to their current status.

You can use *Configure Caps, NoCaps and ShCaps (page 1-915 onwards) to set the
default Caps Lock key state.

Scanning keys

Scanning refers to being able to get the low level key codes without the buffering
and interpretation that is placed on keys by the higher level routines. The internal
key number returned is not the code that the keyboard itself sends the computer.
This is translated to a standard internal key number that maintains compatibility
with BBC/Master series keyboard codes.

Character Input

There are three OS_Bytes that can scan the keyboard . OS_Byte 121 (page 1-863)
can scan a particular key or a range or keys. Like this call. OS_Byte 122 (page 1-865)
can scan a fixed range of keys, all but the Shift. Alt. Ctrl and mouse keys.
OS_Byte 129 (pagE 1-870) can scan a particular key, like OS_Byte 121. It can also
read a key with a time limit. This is discussed later.

Key handler

The character stored in the keyboard buffer is derived from a table in the key
handler, which maps the low level key codes into buffer codes. using the state of
the various shifting and locking keys to alter the character if appropriate. In
addition , the key-press is recorded in a 'last key pressed' location. This is to enable
auto-repeating keys to be implemented, as described below.

For the standard keys, eg the letters. digits, punctuation marks etc, the buffer code
is the ASCII code ofthe symbol. Thus when the code comes to be removed from the
keyboard buffer (by OS_ReadC, for example). it is returned directly to the user. The
other keys, such as the function keys and cursor keys, are entered as top-bit set
characters, in the range &80- &FF.

Custom key handler

The SWI OS_InstaiiKeyHandler (page 1-914) allows replacing the module that
decodes key numbers into ASCII. It is outside the scope of this manual to discuss
this procedure in depth.

Read with time limit

OS_Byte I 29 (page 1-870) supports two operations, one of which, low level
keyboard scanning, was discussed in the earlier section on scanning keys.

The other allows reading a character from the keyboard buffer within a time limit.
This is useful in cases where a program waits for a response for a time, and if none
is entered , continues . It can be used in a situation where the keyboard buffer needs
to be checked periodically, but the program doesn't wish to be trapped waiting in
OS_ReadC for a character to be entered. To achieve this, this call would be used
with no waiting time, so if no characters are available in the buffer, then the
program can continue.

Tab key

OS_Byte 2 I 9 (page I -887) reads or modifies the code inserted into the keyboard
buffer when the Tab key is pressed (the default is 9). If the value specified is in the
range &80 to &FF, then the value to be inserted is modified by the state of the Shift
and Ctrl keys, in a similar fashion to the function keys.

1-843

Keyboard

1-844

Auto-repeat

The auto-repeat of keys has two aspects: the delay before the key starts repeating,
and the rate of repeating. The delay can be read and changed with OS_Byte 196
(page 1-874). or changed with OS_Byte II (page 1-858). The rate can be read and
changed with OS_Byte 197 (page 1-875). or changed with OS_Byte 12 (page 1-859).
Both are adjustable from I to 255 centiseconds. Auto-repeat can also be disabled.

The delay and rate can be set up using *Configure Delay and Repeat (page 1-916
onwards). which use the same parameter as the appropriate OS_Bytes.

Arrow and Copy keys

In a default system, these keys are used for on-screen editing. The arrows move a
cursor and Copy copies the character that it is on to the second cursor.

OS_Byte 237 (page 1-898) reads how the cursor keys are interpreted. As well as the
default editing state, they can be in two other modes. In one, the keys return
characters in the range 135 to 139. In the other, they act as function keys, and can
be treated as all the other function keys.

Although you can also use OS_Byte 237 to change this state, OS_Byte 4
(page 1-856) is the preferred way of doing so.

Numeric keypad

There is a base value for the numeric keypad. A key on the numeric keypad adds an
offset to this to get the character that is placed in the keyboard buffer. The offset of
each key is such that the default base value of 48 will give each key the ASCll value
of the character on the key.

This base value can be changed with OS_Byte 238 (page 1-900) See the
documentation on this call for details of the offsets of each key.

Shift and Ctrl can alter the value returned from the keypad. By default, this feature
is disabled, but you can enable it with OS_Byte 254 (page 1-906).

Interpreting characters &80- &FF

When referring to function keys, we are talking about two separate things. There are
the keys, many discussed earlier, that generate buffer codes in the range &80 to
&FF. Then there is the interpretation placed upon these buffer codes by RISC OS as
it reads them from the buffer.

Character Input

Interpreting these keys as function keys is only one way of using them. OS_Bytes
22 I - 228 (page I -89 I) allow control over how buffer codes from &80 to &FF are
interpreted by RISC OS. Each OS_Byte handles a group of I6 characters. Each
group can be configured so that its characters are:

• interpreted as function keys

e preceded by a NULL (ASCII 0)

• offset by any number from 3- &FF

• discarded

Function keys

If a character is read from the keyboard buffer and is in a group that is configured
as function keys, then a special action is taken by the keyboard handler. First of all.
it looks up the value of the KeySn system variable which corresponds to the
function key. The function key number is the lower nibble of the character. Thus, if
the character is &8 I , the variable read is KeyS I .

The variable refers to a string, which is copied into the function key buffer. If the
string was a null string (the function key wasn 't set). then RISC: OS continues.
removing the next character from the input buffer.

Otherwise. the first character is removed from the function key buffer and returned
to the calling program . Characters read from this buffer are returned without
interpretation in any way.

Subsequent calls to OS_ReadC and OS_Byte I 29 spot that a function key is being
read. and remove characters from the function key buffer instead of looking in the
input buffer. This continues until the last character has been read from the buffer.
Input then reverts to the normal input buffer.

OS_Byte 2 I 6 (page I -885) is used to see how much of a function key string remains
to be read from the function key buffer. It can also change this value. to terminate
for instance, but must be used with care.

Setting and clearing

To set a function key, a number of commands can be called:

• • Key n string

• *Set KeySn string

• *SetMacro KeySn expression . This is passed through OS_GSTrans when it is
copied to the function key buffer. This is interesting because it means that the
string generated by a function key can change every time it is used.

1-845

Reset, Break and Escape

To reset one or more function keys, there is also a variety of commands that can be
used:

• *Key 11 will reset function key 11

• *Unset Key$11 will also reset function key 11

• *Unset KeyS* will reset all function keys

• OS_Byte 18 will also reset all function keys

Reset, Break and Escape

Reset

Break

1-846

When you press the Reset button , then the RISC OS ROM is paged into the bottom
of memory and performs certain housekeeping actions. It then pages itself out and
restarts the system.

A soft reset distinguishes itself from a hard reset in a matter of degree. A hard reset
will initialise far more things in the system. A soft reset , for instance, will not
change the settings for PrinterType and the printer ignore character, nor will it
reinitialise relocatable modules. It will, however, reset vectors that have been
claimed .

OS_Byte 200 (page 1-879) sets whether a reset will act as described above or will
cause a complete memory clear. This makes it a power-on reset. If this is used, then
all things kept in memory will be lost and settings restored to the defaults stored in
CMOS RAM. This command should be used with discretion because of its powerful
effects .

OS_Byte 253 (page 1-904) can be used to see what kind of reset the last one was .

Break is configurable with OS_Byte 247 (page 1-902). This sets how Break, Shift
Break, Ctrl Break and Ctrl Shift Break act. They can each be set to cause a reset or
an escape or have no effect. A reset caused by the break key does not page the
ROM into the bottom of memory (as one caused by the Reset button does);
instead, it just jumps to the correct location in the ROM.

Character Input

Escape

The diagram below illustrates how all the calls in the escape system work together.
A description of this interaction follows the diagram.

Causing escape

Language environment
or program Escape

handler

Figure 23.1 Interaction of calls in the escape system

An escape condition can be caused by a key or under program control. By default,
the escape key is Escape. OS_Byte 220 (page 1-889) can read or alter which key will
cause an escape condition . OS_Byte 247 (page 1-902) can alter the Break key (or
Shift and Ctrl modifiers of it) so that it causes an escape condition . Thus, it is
possible to have two escape keys on the keyboard, and this is indeed the default
state.

Under program control , OS_Byte 125 (page 1-867) can force an escape condition to
occur. Note that it will not generate an event, but the escape handler is called.

1-847

Serial device

Serial device

*Exec

1-848

OS_ReadEscapeState (page 1-912) can check whether an escape condition has
occurred. It can be called at any time, even from within interrupts

Disabling escape

OS_Byte 229 (page 1-894) controls recognition of this escape character. It can
disable the effect of the escape character and allow it to pass through the input
stream unaltered. OS_Byte 200 (page 1-879) can disable all escape conditions
apart from those caused by OS_Byte 125. In this case, any escape characters would
be discarded.

OS_Byte 14,6 (page 1-150) controls whether the escape event is enabled or not. If
the escape event is enabled, then it will be called and not the escape handler.

After an escape

OS_Byte 126 (page 1-868) will acknowledge an escape condition and call the
escape handler to clear up. OS_Byte 124 (page 1-866) will clear an escape
condition without calling the escape handler.

OS_Byte 230 (page 1-896) controls whether the normal effects of an escape occur
or not when it is acknowledged. These include flushing buffers, closing the Exec
file, terminating any sounds and so on.

The serial device is provided as a DeviceFS (Device Filing System) device. For full
details, see the chapter entitled DeviceFS on page 2-421, and the chapter entitled
Serial device on page 2-439. The latter chapter also contains all calls that are specific
to the serial port, whether they refer to input or output (eg those to set the baud
rate, or to explicitly send/receive a character from/to the serial port).

There are two ways of causing a file to be made the input stream. The simplest is to
use *Exec (page 2-165), which will open the specified file and attach it as the input
stream. For more control. OS_Byte 198 (page 1-877) does what *Exec does, and
can also terminate the Exec stream at any time or change to another file.

Character Input

Internal key numbers

@

The diagrams below show the BBC/Master compatible internal key numbers
generated by different keyboards.

General points

Some keys generate two numbers; this is for compatibility with Master computers.
Codes 0 - 2 are generated by both of the Shift, Ctrl and Alt keys respectively; this is
useful for testing if either or both of the left and right hand keys have been pressed.

Furthermore, the mouse buttons generate internal key numbers:

Figure 23.2 Internal key numbers for mouse

Standard Archimedes keyboard

The standard Archimedes keyboard generates these internal key numbers:

@80@ §0@0 §@@@ @@@
@@(ID@@@(ID@@@@(ID@@@ @@@ @@§)@
@@@@@@@@@@@@@@) @~@ @@@@
CD @@@@@@@@@aD§CiD @§@@

0 @@@@§@§)§§§ (0) @ @0§8 3 6
60 CD (98) CD GJ @@@ ~@

extra key fitted to some international keyboards

Figure 23.3 Internal key numbers for standard Archimedes keyboard

1-849

Internal key numbers

Keyboard used in portable machines

1-850

The keyboard used in portable machines generates these internal key numbers:

Figure 23.4 Internal key codes for keyboard used in portable machines

When the key to the left of the space bar is pressed (labelled 'FN' for UK machines),
some keys generate different internal key codes, as shown below:

0 @@00000000[]0000
0000®00@@@@§0CJO
00@@000§0@@@0~0 60

CJJ000000§@~@00 0
00000000~0@0000
GJOJO 00000
Figure 23.5 Alternative internal key codes for keyboard used in portable machines

You should not rely on the behaviour of other keys when pressed in conjunction
with the FN key, as this may change in the future.

Character Input

Service Calls

Keyboard handler

Service_KeyHandler
(Service Call &44)

On entry

Rl == &44 (reason code)
R2 ==keyboard lD

On exit

Use

Rl preserved to pass on (don't claim)
R2 preserved

This call is made on reset, when the OS has established which type of keyboard is
present, and after an OS_InstallKeyHandler SWI (see page 1-914). It is for the
information of keyboard handler modules which need to know what sort of
keyboard is present; it should not be claimed.

Standard Archimedes keyboards all have a keyboard lD of I. The A4 internal
keyboard, or a PC external keyboard, give a keyboard lD of 2, except under
RISC OS 2, which does not support them.

1-851

SWI Calls

SWI Calls

1-852

Read a character from the input stream

OS_ReadC
(SWI &04)

On entry

On exit

if C flag= 0 then RO =ASCII code
if C flag= I then RO = error type: & I B in RO means an escape

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call will read a character from the input stream. OS_Byte 2 can be used to
change the selection of the current input stream.

Cursor key presses go into the buffer. When OS_ReadC reads a cursor key code
from the buffer it handles the cursor editing for you, assuming the cursor keys are
set up to do cursor editing. That is, if one of the arrow keys is pressed, cursor edit
mode is entered, indicated by the presence of two cursors on the screen. You can
copy characters from underneath the input cursor by pressing Copy. The character
read is returned from the routine as if you had typed it explicitly.

Cursor editing only applies if enabled (see OS_Byte 4 on page 1-856). and is
cancelled when ASCII 13 is sent to the VDU driver.

Character Input

Related SWis

OS_Byte 2 (page 1-854), OS_ReadLine (page 1-910)

Related vectors

RdchV

1-853

OS_Byte 2 (SWI &06)

1-854

Specify input stream

OS_Byte 2
(SWI &06)

On entry

RO = 2
Rl =stream selection (0, I or 2)

On exit

RO preserved
Rl =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call selects the device from which all subsequent input is taken by OS_ReadC.
This is determined by the value of Rl passed as follows:

• 0 for keyboard input with serial input buffer disabled

• I for serial input

• 2 for keyboard input with serial input buffer enabled

The difference between the 0 and 2 values is that the latter allows characters to be
received into the serial input buffer under interrupts at the same time as the
keyboard is being used as the primary input. If the input stream is subsequently
switched to the serial device, then those characters can then be read .

Note that the value returned in Rl from this call is:

• 0 when input was from the keyboard

• I when input was from the serial port

The state of this variable can be read by OS_Byte 177.

Related SWis

OS_Byte 177 (page 1-873)

Related vectors

ByteV

Character Input

1-855

OS_Byte 4 (SWI &06)

1-856

Write cursor key status

On entry

RO = 4
R I = new state

On exit

RO preserved
Rl =state before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 4
(SWI &06)

This call alters the effect of the four arrow keys and the Copy key. The value of Rl
determines their state:

0 Enables cursor editing. This is the default state.

Disables cursor editing. When pressed, the keys return the following
ASCII values :

Key

Copy
Left arrow
Right arrow

Value

135
136
137

Down arrow 138
Up arrow 139

Character Input

2 Cursor keys act as function keys . The function key numbers assigned
are:

Key

Copy
Left arrow
Right arrow
Down arrow
Up arrow

Function key number

I I
I2
I3
I4
I 5

OS_Byte 237 may be used to write and read this state.

Related SWis

OS_Byte 237 (page I-898)

Related vectors

ByteV

1-857

OS_Byte 11 (SWI &06)

1-858

Write keyboard auto-repeat delay

On entry

RO= II
R I = delay period in centiseconds

On exit

RO preserved
Rl =previous delay period
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 11
(SWI &06)

You must hold down each key on the keyboard for a number of centiseconds before
it begins to autorepeat. This call enables you to change the initial delay from the
default set by *Configure Delay.

If the delay period is zero, then auto-repeat is disabled.

This variable may also be read and set using OS_Byte 196.

Related SWis

OS_Byte 12 (page 1-859). OS_Byte 196 (page 1-874). OS_Byte 197 (page 1-875)

Related vectors

ByteV

Write keyboard auto-repeat rate

Character Input

OS_Byte 12
{SWI &06)

On entry

RO = 12
Rl =repeat rate in centiseconds (unless Rl = 0)

On exit

RO preserved
R I = previous repeat rate
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

After the auto-repeat delay specified by OS_Byte II , each key will repeat until
released at the rate passed to this call. This call enables you to change the initial
rate from the default set by *Configure Repeat. One particular use of this is to
speed up cursor editing.

If the rate is zero. then the auto-repeat and delay values are reset to their
configured settings.

This variable may also be read and set using OS_Byte 197.

Related SWis

OS_Byte II (page 1-858), OS_Byte 196 (page 1-874), OS_Byte 197 (page 1-875)

1-859

OS_Byte 12 (SWI &06)

1-860

Related vectors

ByteV

Reset function key definitions

On entry

RO = I8

On exit

RO preserved
RI , R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Character Input

OS_Byte 18
(SWI &06)

This call removes the system variables Key$0 to Key$ I5. which contain the function
key definitions. It also cancels any key string currently being read .

You can also clear individual strings by *Key 11 . or all of them by *Unset Key$* .
Neither of these commands cancel the current key expansion . though .

Related SWis

None

Related vectors

ByteV

1-861

OS_Byte 118 (SWI &06)

1-862

Reflect keyboard status in LEOs

On entry

RO = 118

On exit

RO preserved
Rl , R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 118
{SWI &06)

The settings of Caps Lock, Scroll Lock and Num Lock are held in a location referred
to as the keyboard status byte. See OS_Byte 202 on page 1-883 for detail of this .

Under normal circumstances they are shown by the keyboard LEOs which are set
into the keycaps However, if the keyboard status byte is written to using
OS_Byte 202 , then the LEOs will not update. This call ensures that the current
contents of the keyboard status byte are reflected in the LEOs.

Related SWis

OS_Byte 202 (page 1-883)

Related vectors

ByteV

Keyboard scan

Character Input

OS_Byte 121
(SWI &06)

On entry

RO = 121
R I = key(s) to be detected

On exit

RO preserved
Rl =if/which key has been detected
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call allows checking the keyboard to see whether a particular key or a range of
keys is being pressed. It uses the internal key number (see the section entitled
Internal key numbers on page 1-849 for a complete list).

Single key

To check for a single key, Rl must contain the internal key number exclusive ORd
with &80 (Rl EOR &80) . The value returned in Rl will be &FF if that key is currently
down and zero if it is not.

1-863

OS_Byte 121 (SWI &06)

1-864

Key range

To check for a range of key values, it is possible to set the 'low tide' mark. That is,
no internal key number below the value in Rl on entry will be recognised. Since
Shift, Ctrl, Alt and the mouse keys are at the bottom then this is very convenient.

The value returned in Rl will be the internal key number if a key is currently down
or &FF if no key is down.

Related SWis

OS_Byte 122 (page 1-865), OS_Byte 129 (page 1-870)

Related vectors

ByteV

Character Input

OS_Byte 122
{SWI &06)

Keyboard scan (other than Shift , Ctrl, Alt and mouse keys)

On entry

RO = 122

On exit

RO preserved
Rl =internal key number of key, or &FF if none
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call allows checking the keyboard to see whether any key is being pressed. It
uses the internal key number (see the section entitled Internal key numbers on
page 1-849 for a complete list). All key numbers below 16 are ignored. This
excludes all Shift, Ctrl, Alt and mouse keys. It is equivalent to calling OS_Byte 121
with Rl = 16.

Related SWis

OS_Byte 121 (page 1-863). OS_Byte 129 (page 1-870)

Related vectors

ByteV

1-865

OS_Byte 124 (SWI &06)

1-866

Clear escape condition

On entry

RO = 124

On exit

RO preserved
Rl. R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 124
(SWI &06)

This call clears any escape condition by calling the escape handler with Rll = 0,
and then returns.

Related SWis

OS_Byte 125 (page 1-867). OS_Byte 126 (page 1-868)

Related vectors

ByteV

Set escape condition

On entry

RO = 125

On exit

RO preserved
Rl, R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Character Input

OS_Byte 125
(SWI &06)

This call is used to set the escape flag and call the escape handler. An escape event
is not generated.

Related SWis

OS_Byte 124 (page 1-866). OS_Byte 126 (page 1-868)

Related vectors

ByteV

1-867

OS_Byte 126 (SWI &06)

1-868

Acknowledge escape condition

OS_Byte 126
{SWI &06)

On entry

RO = 126

On exit

RO preserved
Rl = 255 if escape condition has been cleared, or 0 if none to clear
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call attempts to clear an escape condition if one exists. It may or may not need
to perform various actions to tidy up after the escape condition depending on
whether the escape condition side effects (see OS_Byte 230) have been enabled or
not.

The escape handler is called to indicate clearing of the escape condition.

The value returned in Rl indicates whether or not the escape condition has been
cleared. &FF indicates success. while zero means that there was no escape
condition to clear.

Related SWis

OS_Byte 124 (page 1-866). OS_Byte 125 (page 1-867), OS_Byte 230 (page 1-896)

Related vectors

ByteV

Character Input

1-869

OS_Byte 129 (SWI &06)

1-870

Read keyboard for information

On entry

RO = 129

To read a key within a time limit:
Rl =time limit low byte
R2 =time limit high byte (in range &00- &7F)

To read the OS version identifier:
Rl =0
R2 = &FF

To scan the keyboard for a range of keys:

OS_Byte 129
(SWI &06)

Rl =lowest internal key number EOR &7F (ie a value of &01 - &7F)
R2 = &FF

To scan the keyboard for a particular key:

On exit

Rl =internal key number EOR &FF (ie a value of &80- &FF)
R2 = &FF

RO preserved

If reading a key within a time limit:
Rl =ASCII code if character read, else undefined
R2 = &00 if character read, & I B if an escape condition exists , or &FF if

timeout

If reading the OS version identifier:
Rl = &AO for Arthur 1.20, &AI for RISC OS 2.00, &A2 for RISC OS 2.01 ,

&A3 for RISC OS 3 (version 3.00). or &A4 for RISC OS 3 (versions
3.10and3.11)

R2 = &00

If scanning the keyboard for a range of keys:
Rl =internal key number, or &FF if none pressed
R2 is corrupted

If scanning the keyboard for a particular key:
Rl = &FF if the required key was pressed, 0 otherwise
R2 = &FF if the required key was pressed, 0 otherwise

Character Input

Interrupts

Interrupt status:

• Enabled when reading a key within a time limit

• Not altered for remaining three operations

Fast interrupts are enabled for all operations

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This OS_Byte is four separate operations in one:

• read an ASCII key value read from the keyboard with a timeout

• read the OS version identifier

• scan the keyboard for a range of keys

• scan the keyboard for a particular key.

Read key with time limit

In this operation, RISC OS waits up to a specified time for a key to be pressed, if
there are none in the keyboard buffer.

The time limit is set according to the following calculation:

RI+(R2x256) centiseconds

The upper limit is 32767 centiseconds. To indicate the time of (n) centiseconds,
then :

Rl = n MOD &100
R2 = n DIV &100

If an escape condition is detected during this operation it should be acknowledged
by the application using OS_Byte 126, or cleared using OS_Byte 124.

1-871

OS_Byte 129 (SWI &06)

1-872

While RISC OS is waiting for a keyboard character during one of these calls . it also
deals with cursor key presses. That is. if one of the arrow keys is pressed. cursor
edit mode is entered. indicated by the presence of two cursors on the screen. You
can copy characters from underneath the input cursor by pressing Copy. The
character read is returned from the routine as if you had typed it explicitly. Cursor
editing is cancelled when Return (ASCII 13) is sent to the VDU driver. Cursor
editing can be disabled with OS_Byte 4.

Read the OS version Identifier

If R2=&FF and Rl =0. then the OS version identifier is read .

Scan for a range of characters

If R2=&FF and R I is in the range & I to & 7F. then the keyboard is scanned for any
keys that are being pressed, which have an internal key number greater than or
equal to Rl EOR &7F. If found . the internal key number is returned . If no key is
found . then &FF is returned.

Scan for a particular key

If R2=&FF and R I is in the range &80 to & 7F. then the keyboard is scanned for a
particular key with internal key number equal to Rl EOR &FF.

In BBC/Master series computers. the internal key numbers are the same as the
keyboard scan numbers; but the two differ for other Acorn computers .

A list of all internal key numbers can be found in the section entitled Internal keiJ
numbers on page 1-849.

Related SWis

OS_Byte 121 (page 1-863). OS_Byte 122 (page 1-865)

Related vectors

ByteV

Read input stream selection

On entry

RO = 177
Rl = 0
R2 = 255

On exit

RO preserved
Rl =value of stream selection
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SYC mode

Re-entrancy

Not defined

Use

Character Input

OS_Byte 177
(SWI &06)

This returns the number of the buffer from which character input gets characters:

• 0 when input was from the keyboard

• I when input was from the serial port

You must not alter this number with this call by using other values in Rl and R2.

Related SWis

OS_Byte 2 (page 1-854)

Related vectors

ByteV

1-873

OS_Byte 196 (SWI &06)

1-874

Read/write keyboard auto-repeat delay

On entry

RO = 196
Rl = 0 to read , or new delay to write
R2 = 255 to read. or 0 to write

On exit

RO preserved
Rl =value before being overwritten
R2 = keyboard auto-repeat rate (see OS_Byte I 97)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 196
(SWI &06)

The delay stored is changed by being masked with R2 and then exclusive ORd with
Rl: ie ((delay AND R2) EOR RI). This means that R2 controls which bits are
changed and Rl supplies the new bits .

This call can read and set the keyboard auto-repeat delay value. OS_Byte I I can
also write this variable, and has more information about it.

Related SWis

OS_Byte I I (page 1-858), OS_Byte 12 (page 1-859). OS_Byte 197 (page 1-875)

Related vectors

ByteV

Read/write keyboard auto-repeat rate

Character Input

OS_Byte 197
{SWI &06)

On entry

RO = 197
Rl = 0 to read , or new rate to write
R2 = 255 to read , or I to write

On exit

RO preserved
Rl =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The rate stored is changed by being masked with R2 and then exclusive ORd with
Rl : ie ((rate AND R2) EOR Rl). This means that R2 controls which bits are changed
and Rl supplies the new bits.

This call can read and set the keyboard auto-repeat rate value. OS_Byte 12 can also
write this variable , and has more information about it. Note the difference between
*FX 12,0 (which sets the auto-repeat rate and delay to their configured values) and
*FX 197,0 (which sets the auto-repeat rate to zero) .

Related SWis

OS_Byte II (page 1-858). OS_Byte 12 (page 1-859). OS_Byte 196 (page 1-874)

1-875

OS_Byte 197 (SWI &06)

1-876

Related vectors

ByteV

Read/write *Exec file handle

Character Input

OS_Byte 198
(SWI &06)

On entry

RO = I98
RI = 0 to read , or new handle to write
R2 = 255 to read, or 0 to write

On exit

RO preserved
RI =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The handle stored is changed by being masked with R2 and then exclusive ORd
with RI : ie ((handle AND R2) EOR RI). This means that R2 controls which bits are
changed and R I supplies the new bits.

This command can be used to read or write the location that holds the Exec file
handle.

If reading, it can tell whether an Exec file is the current input stream or not. Any
non-zero number is a handle and hence the input stream.

If writing a handle over a zero, then it causes the same effect as a *Exec command.

1-877

OS_Byte 198 (SWI &06)

1-878

If writing over a Exec file handle, the current Exec file will be switched off. This
handle, which is returned, should then be properly closed after use. If you write a
new handle value in its place, then this has the effect of switching input in
mid-stream. If you write a zero in this case, then it will have terminate the current
input stream.

In both these cases care must be taken not to cause the Exec file to stop at an
inconvenient point.

If you are writing a file handle, the new file must be open for input or update,
otherwise a Channel error occurs. If an attempt is made to use a write-only file for
the *Exec file, a 'Not open for reading' error is given.

Related SWis

None

Related vectors

ByteV

Read/write Break and Escape effect

On entry

RO = 200
R I = 0 to read, or new state to write
R2 = 255 to read, or 0 to write

On exit

RO preserved
Rl =state before being overwritten
R2 =keyboard disable flag (see OS_Byte 20 I)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Character Input

OS_Byte 200
.(SWI &06)

The state stored is changed by being masked with R2 and then exclusive ORd with
Rl: ie ((state AND R2) EOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

This call can read or change the effects of a reset (including resets caused by Break)
and of Escape.

1-879

OS_Byte 200 (SWI &06)

1-880

The bottom two bits of Rl have the following significance:

Bit Value Effect

0 0 Normal escape action

Related SWis

None

Related vectors

ByteV

I Escape disabled unless caused by OS_Byte 125
0 Normal reset action

Power on reset (only if bits 2- 7 of Rl are zero)
This means a value of 2_000000lx causes a memory clear.

Read/write keyboard disable flag

Character Input

OS_Byte 201
(SWI &06)

On entry

RO = 201
RI = 0 to read , or new flag to write
R2 = 255 to read, or 0 to write

On exit

RO preserved
RI =flag before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The flag stored is changed by being masked with R2 and then exclusive ORd with
Rl: ie ((flag AND R2) EOR RI). This means that R2 controls which bits are changed
and Rl supplies the new bits.

This call allows you to read and change the keyboard state (ie whether the
keyboard is enabled or disabled). When it is enabled, all keys are read as normal.
When it is disabled, the keyboard interrupt service routine does not place these
keys into the keyboard buffer.

A value of zero will enable keyboard input, while any non-zero value will disable it.

Related SWis

None

1-881

OS_Byte 201 (SWI &06}

1-882

Related vectors

ByteV

Read/write keyboard status byte

Character Input

OS_Byte 202
(SWI &06)

On entry

RO = 202
Rl = 0 to read , or new status to write (with bit 0 clear)
R2 = 255 to read, or I to write

On exit

RO preserved
Rl =status before being overwritten
R2 =serial input buffer space (see OS_Byte 203)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SYC mode

Re-entrancy

Use

Not defined

The status stored is changed by being masked with R2 and then exclusive ORd with
Rl : ie ((status AND R2) EOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

The keyboard status byte holds information on the current status of the keyboard,
such as the setting of Caps Lock. This call enables you to read and change these
settings.

The bit pattern in Rl determines the settings. In this table, the State column has
on and off in it. On means a LED is lit or a key is pressed, and off means the
opposite. Take careful note of the state, because they are not all in the same order:

1-883

OS_Byte 202 (SWI &06)

1-884

Bit Value State Meaning

0 Reserved for use by keyboard handler: must be
preserved when writing

0 off Scroll Lock
1 on

2 0 on Num Lock
off

3 0 off Shift
1 on

4 0 on Caps Lock
off

5 Normally set

6 0 off Ctrl
1 on

7 0 off Shift Enable
on

If Caps Lock is on. then Shift will have no effect on letters. If Shift Enable and Caps
Lock are on . then Shift will get lower case. You can enter this state from the
keyboard by holding Shift down and pressing Caps Lock.

This call does not update the LEOs. The next key down or up event will update
them. or you can call OS_Byte I I8.

Related SWis

OS_Byte I I8 (page I-862)

Related vectors

ByteV

Read/write length of function key string

Character Input

OS_Byte 216
(SWI &06)

On entry

RO = 216
Rl = 0 to read, or new length to write
R2 = 255 to read , or 0 to write

On exit

RO preserved
R I = length before being overwritten
R2 =paged mode line count (see OS_Byte 217)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The length stored is changed by being masked with R2 and then exclusive ORd with
Rl : ie ((length AND R2) EOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

This call reads and changes the count of characters left in the currently active
function key definition. An active function key is one that is being read by
OS_ReadC instead of the current input stream.

If the length is zero, then no function key string is being read. A zero length must
never be changed with this call.

A non-zero value shows that a function key string is active. Setting it to zero
effectively cancels that function key from that point. Changing it to any non-zero
value will have an indeterminate effect.

1-885

OS_Byte 216 (SW/ &06)

Related SWis

OS_ReadC (page 1-852)

Related vectors

ByteV

1-886

Read/write Tab key value

Character Input

OS_Byte 219
(SWI &06)

On entry

RO = 219
Rl = 0 to read, or new value to write
R2 = 255 to read , or 0 to write

On exit

RO preserved
Rl =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The value stored is changed by being masked with R2 and then exclusive ORd with
Rl : ie ((value AND R2) EOR Rl). This means that R2 controls which bits are
changed and R I supplies the new bits.

OS_Byte 219 reads or modifies the code inserted into the keyboard buffer when the
Tab key is pressed (the default is 9) . If the value specified is in the range &80 to &FF.
then the value to be inserted is modified by the state of the Shift and Ctrl keys as
follows:

• Shift exclusive ORs the value with &10

• Ctrl exclusive ORs the value with &20

1-887

OS_Byte 219 (SWI &06)

1-888

The value inserted will be interpreted by OS_ReadC in the normal way. For
example, if the value specified is &82 , then the Tab key behaves in an identical way
to the function key F2 .

Related SWis

OS_ReadC (page l-852)

Related vectors

ByteV

)

Read/write escape character

On entry

RO = 220
Rl = 0 to read , or new value to write
R2 = 255 to read, or 0 to write

On exit

RO preserved
R I =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Character Input

OS_Byte 220
(SWI &06)

The value stored is changed by being masked with R2 and then exclusive ORd with
RI: ie ((value AND R2) EOR RI). This means that R2 controls which bits are
changed and RI supplies the new bits.

This call can read and change the character that will cause an escape condition
when it is read from the input stream. Escape (ASCII 27) is the default.

1-889

OS_Byte 220 (SWI &06)

For example:

Value

27
53
&81
&AI

Related SWis

Key that causes an escape condition

Escape
'5 '

Fl
Ctrl FI

OS_ReadC (page 1-852)

1-890

Related vectors

ByteV

Read/write interpretation of buffer codes

On entry

RO = 221 - 228
Rl = 0 to read . or new value to write
R2 = 255 to read. or 0 to write

On exit

RO preserved
Rl =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Character Input

OS_Bytes 221 - 228
(SWI &06)

The value stored is changed by being masked with R2 and then exclusive ORd with
Rl : ie ((value AND R2) EOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

This call provides a way of reading and changing how the codes from &80 to &FF
are interpreted when read from the input buffer.

1-891

OS_Bytes 221 - 228 (SWI &06)

1-892

They are split into eight groups as follows:

OS_Byte Range of buffer codes controlled

221 &CO- &CF
222 &DO-&DF
223 &EO- &EF
224 &FO- &FF
225 &80- &8F
226 &90- &9F
227 &AO- &AF
228 &BO- &BF

The list below shows the keys that can produce codes in these groups:

Key Code +Shift +Ctrl +Ctrl~Shift

Print &80 &90 &AO &BO
Fl &81 &91 &AI &Bl
F2 &82 &92 &A2 &B2

F9 &89 &99 &A9 &B9

Copy &8B &9B &AB &BB
f- &8C &9C &AC &BC
~ &8D &9D &AD &BD
..[. &8E &9E &AE &BE
i &8F &9F &AF &BF

Page Down &9E &8E &BE &AE
Page Up &9F &8F &BF &AF

FlO &CA &DA &EA &FA
Fll &CB &DB &EB &FB
Fl2 &CC &DC &EC &FC
Insert &CD &DD &ED &FD

These SWis only affect the codes generated by the Copy and arrow keys if they have
been set up to act as function keys by calling OS_Byte 4 with Rl = 2. Normally this
is not the case. and you should use OS_Byte 4 to control the action of these keys.

Also. when a reset occurs, the code &CA is inserted into the input buffer. This
causes the key definition for function key I 0 to be used for subsequent input if it is
defined.

Character Input

Some of these codes cannot be generated from the main keyboard, but must be
produced via one of the following techniques:

• use these calls to generate them with keys

• re-base the numeric keypad with OS_Byte 238

• insert into the buffer with OS_Byte 138

• insert into the buffer with OS_Byte !53

• receive via the serial input port

The interpretation of these codes depends upon the value of Rl passed. This is the
interpretation value. It determines what action will be taken with a code in the
appropriate block:

Value Interpretation

0 discard the code
I generates the string assigned to function key (code MOD 16)
2 generates a NULL (ASCII 0) followed by the code
3- &FF acts as offset: ie (code MOD 16) +value

If any block has been set to interpretation value 2, then a Ctrl-@ (ASCII 0) will be
passed as two zeros to differentiate it from a high code. This mode is used with
software that can cope with the international character set in the range &AO- &FF
It is recommended that the function keys return a NULL followed by the key code.
so that they can be distinguished from actual ASCII characters in this range.

This is the default setting for each of the blocks:

Block Default Interpretation

&80- &8F I function keys
&90- &9F &80 return (buffer code- & I 0)
&AO- &AF &90 return (buffer code- & I 0)
&BO- &BF 0 discard
&CO- &CF function keys
&DO- &OF &DO return buffer code unchanged
&EO- &EF &EO return buffer code unchanged
&FO- &FF &FO return buffer code unchanged

Related SWis

OS_Byte 4 (page 1-856), OS_Byte 138 (page 1-168). OS_Byte !53 (page 1-172).
OS_Byte 238 (page 1-900)

Related vectors

ByteV

1-893

OS_Byte 229 (SWI &06)

1-894

Read/write Escape key status

OS_Byte 229
(SWI &06)

On entry

RO = 229
R I = 0 to read. or new status to write
R2 = 255 to read , or 0 to write

On exit

RO preserved
R I = status before being overwritten
R2 =escape effects (see OS_Byte 230)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The status stored is changed by being masked with R2 and then exclusive ORd with
R 1: ie ((status AND R2) EOR R I) . This means that R2 controls which bits are
changed and Rl supplies the new bits.

This call allows you to enable or disable the generation of escape conditions, and
to read the current setting. Escape conditions may be caused by pressing the
current escape character or by inserting it into the input buffer with OS_Byte 153.

If the value of R I passed is zero, which is the default, then escape conditions are
enabled. Any non-zero value will disable them . When they are disabled, the current
escape character set by OS_Byte 220 will pass through the input stream unaltered.

OS_Byte 200 can also control the enabling of escape conditions.

Character Input

Related SWis

OS_Byte 153 (page 1-172). OS_Byte 200 (page 1-879). OS_Byte 220 (page 1-889)

Related vectors

ByteV

1-895

OS_Byte 230 (SWI &06)

1-896

Read/write escape effects

On entry

RO = 230
Rl = 0 to read, or new status to write
R2 = 255 to read, or 0 to write

On exit

RO preserved
Rl =status before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 230
{SWI &06)

The status stored is changed by being masked with R2 and then exclusive ORd with
Rl : ie ((status AND R2) EOR Rl). This means that R2 controls which bits are
changed and R I supplies the new bits.

By default. the acknowledgement of an escape condition produces the following
effects :

• Flushes all active buffers

• Closes any currently open *Exec file

• Clears the VDU queue

• Clears the VDU line count used in paged mode

• Terminates the sound being produced.

Character Input

This call enables you to determine whether the escape effects are currently
enabled or disabled, and to change the setting if required.

If the value of Rl passed is zero, which is the default. then escape effects are
enabled. Any non-zero value will disable them.

Related SWis

None

Related vectors

ByteV

1-897

OS_Byte 237 (SW/ &06)

1-898

Read/write cursor key status

OS_Byte 237
{SWI &06)

On entry

RO = 237
Rl = 0 to read . or new state to write
R2 = 255 to read . or 0 to write

On exit

RO preserved
Rl =value before being overwritten
R2 = numeric keypad interpretation (see OS_Byte 238)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The state stored is changed by being masked with R2 and then exclusive ORd with
Rl : ie ((state AND R2) EOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

This can read and modify the cursor key status. OS_Byte 4 can perform an identical
write operation . See the description of that SWI in this chapter for details of the
status .

Related SWis

OS_Byte 4 (page 1-856)

Related vectors

ByteV

Character Input

1-899

OS_Byte 238 (SWI &06)

1-900

Read/write numeric keypad interpretation

OS_Byte 238
(SWI &06)

On entry

RO = 238
Rl = 0 to read, or new value to write
R2 = 255 to read, or 0 to write

On exit

RO preserved
Rl =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The value stored is changed by being masked with R2 and then exclusive ORd with
Rl: ie ((value AND R2) EOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits .

This call controls the character which is inserted into the input buffer when you
press one of the keypad keys. The inserted character is derived from the sum of a
base value (set by this call) and an offset, which depends on the key pressed. The
inner (lighter) keys have two different offsets. The offset used depends on the state
of Num Lock.

By default. the base number is 48 : ie they generate codes which are displacements
from 48 (ASCII '0').

Character Input

This table shows the effect of the default settings on the keypad:

Base Character Num Lock Character
Key Offset Generated Offset Generated

0 0 0 +157 Insert
+I +91 Copy

2 +2 2 +94 Down
3 +3 3 +110 Page Down
4 +4 4 +92 Left
5 +5 5 ignored
6 +6 6 +93 Right
7 +7 7 -18 Home
8 +8 8 +95 Up
9 +9 9 +Ill Page Up

-2 +79 Delete
I -I I unchanged

-6 * unchanged
-1 3 # unchanged

-3 unchanged
+ -5 + unchanged
Enter -35 Return unchanged

Unlike the function keys, you can set the numeric keypad base number to any value
in the range 0 - 255. (If a generated code lies outside this range it is reduced
MOD 256). If a character generated by the numeric keypad is in the range &80 to
&8F, then it will act like a soft function key.

OS_Byte 254 controls how Shift and Ctrl act upon numeric keypad characters.

Related SWis

OS_Byte 254 (page 1-906)

Related vectors

ByteV

1-901

OS_Byte 247 (SW/ &06)

1-902

Read/write Break key actions

On entry

RO = 247
RI = 0 to read, or new value to write
R2 = 255 to read, or 0 to write

On exit

RO preserved
RI =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 247
(SWI &06)

The value stored is changed by being masked with R2 and then exclusive ORd with
RI: ie ((value AND R2) EOR RI). This means that R2 controls which bits are
changed and RI supplies the new bits.

This call reads and changes the result of pressing Break. The value byte alters Break
and modifiers of it as follows:

Bits

0,1
2,3
4,5

6,7

Key Combination

Break
Shift Break
Ctrl Break
Ctrl Shift Break

Character Input

Each two bit number may take on one of these values:

Value Effect

00 Act as Reset
01 Act as escape key
10 No effect
II Undefined

The default is 2_00000001, so Break causes an escape condition, and Shift-Break,
Ctrl-Break and Ctrl-Shift-Break all act as resets.

Related SWis

None

Related vectors

ByteV

1-903

OS_Byte 253 (SW/ &06)

Read last reset type

On entry

RO = 253
Rl = 0
R2 = 255

On exit

RO preserved
R I = break type
R2 =effect of Shift on keypad (see OS_Byte 254)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 253
(SWI &06)

This call returns the type of the last reset performed in Rl :

1-904

Value

0
I
2

Related SWis

None

Reset type

Soft reset
Power-on reset
Hard reset

Related vectors

ByteV

Character Input

1-905

OS_Byte 254 (SWI &06)

1-906

Read/write effect of Shift and Ctrl on numeric keypad

OS_Byte 254
{SWI &06)

On entry

RO = 254
Rl = 0 to read, or new value to write
R2 = 255 to read. or 0 to write

On exit

RO preserved
Rl =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The value stored is changed by being masked with R2 and then exclusive ORd with
RI: ie ((value AND R2) EOR RI). This means that R2 controls which bits are
changed and Rl supplies the new bits.

This call allows you to enable or disable the effect of Shift and Ctrl on the numeric
keypad or to read the current state. These keys may modify the code just before it
is inserted into the input buffer.

If the value of RI passed is zero. then Shift and Ctrl are enabled. Any non-zero
value will disable them; this is the default.

Character Input

If they are enabled then the following actions occur depending on the value
generated by a key:

• if the value:?: &80:
Shift exclusive ORs the value with &10
Ctrl exclusive ORs the value with &20

• if the value< &80:

Related SWis

None

Related vectors

ByteV

Shift and Ctrl still have no effect

1-907

OS_ Word 0 (SWI &07)

1-908

Read a line from input stream to memory

OS_Word 0
(SWI &07)

On entry

RO = 0
Rl =pointer to parameter block

On exit

RO preserved
Rl =preserved (and parameter block unaltered)
R2 =length of input line, not including the Return
the C flag is set if input is terminated by an escape condition

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call is equivalent to OS_ReadLine, but has restrictions on the location of the
character buffer used. It is provided for compatibility with older Acorn operating
systems.

The parameter block pointed to has the following structure:

Offset Purpose Equivalent in OS_ReadLine

0 LSB of buffer address RO
MSB of buffer address

2 size of buffer Rl
3 lowest ASCII code R2
4 highest ASCII code R3

Character Input

Because the parameter block only uses 2 bytes to specify the character buffer's
address, it must lie in the bottom 64K of memory Furthermore, the range &0000 to
&7FFF is reserved for RISC OS, so in fact the buffer must lie in the range &8000 to
&FFFF.

Related SWis

OS_ReadLine (page 1-910)

Related vectors

WordV

1-909

OS_ReadLine (SWI &OE)

1-910

Read a line from the input stream

OS_Readline
(SWI &OE)

On entry

RO = pointer to buffer to hold the line (bits 0-29). and flags (bits 30-31)
bit 31 set ~ echo only those characters that enter the buffer
bit 30 set~ echo characters by echoing the character in R4

Rl =size of buffer
R2 =lowest ASCll value to pass
R3 =highest ASCll value to pass
R4 = character to echo if bit 30 of RO is set

On exit

RO corrupted
Rl = length of buffer read, not including Return.
R2, R3 corrupted
the C flag is set if input is terminated by an escape condition

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SYC mode

Re-entrancy

Use

SWI is not re-entrant

OS_ReadLine reads a line of text from the current input stream using OS_ReadC.
Characters in the range specified by R2 and R3 are placed in a read buffer, the
address of which is given in RO. These characters are also echoed to OS_ WriteC; if
bit 31 of RO is clear on entry, characters outside the range are also echoed.
Alternatively- by setting bit 30 of RO- you can echo the character held in R4,
rather than the actual character that was read . This is useful, for example, to read a
password without echoing its actual characters to the screen.

Character Input

Certain characters and conditions are specially treated:

• A carriage return (ASCII 13) or a linefeed terminates input. A carriage return is
placed in the read buffer, but the length returned in Rl will not include it. A
carriage return and a linefeed are echoed to OS_ WriteC.

• An escape condition also terminates input. This can represent the escape key
being pressed, but it can also be caused by other means, such as an
OS_Byte 125.

• A delete (ASCII 127) or a backspace (ASCII 8) character act in the same way. If
there are no characters in the read buffer they have no effect. Otherwise they
each remove the character last written into the buffer, and echo a delete
character to OS_WriteC.

• Ctrl-U (ASCII 2 I) acts similarly to delete. Again , if there are no characters in the
read buffer it has no effect. Otherwise it removes all the characters in the
buffer, and echoes that many delete characters to OS_WriteC, effectively
erasing the line.

If the number of characters input reaches the number passed in RI , further
characters are ignored and cause Ctrl-G (ASCII 7) to be sent to OS_WriteC, which
will normally cause a sound to be emitted . The deleting keys mentioned above will
still function .

You must not call OS_ReadLine from an interrupt or event routine.

Related SWis

OS_WriteC (page l -50I), OS_ReadC (page 1-852). OS_Word 0 (page I-908)

Related vectors

ReadLineV, WrchV

1-911

OS_ReadEscapeState (SWI &2C)

1-912

OS_ReadEscapeState
(SWI &2C)

Check whether an escape condition has occurred

On entry

On exit

the C flag is set if an escape condition has occurred

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

OS_ReadEscapeState sets or clears the carry flag depending on whether escape is
set or not. Once an escape condition has been detected (either through this call or.
for example, with OS_ReadC), it should be acknowledged using OS_Byte 126 or
cleared using OS_Byte 124.

This call is useful if a program is executing in a loop which the user may want to
escape from , but isn't performing any input operations which would let it know
about the escape.

Note that OS_ReadEscapeState may be called from an interrupt routine. However,
OS_Byte 126 may not be, so if an escape is detected under interrupts, the interrupt
routine must set a flag which is checked by the foreground task. rather than
attempt to acknowledge the escape itself.

Related SWis

OS_Byte 124 (page 1-866), OS_Byte 126 (page 1-868)

Related vectors

None

Character Input

1-913

OS_Instai/KeyHandler (SWI &3E)

1-914

OS_InstaiiKeyHandler
(SWI &3E)

Install a key handler or read the address of the current one

On entry

RO = 0 to read address of current keyboard handler
I to read keyboard ID from keyboard
>I to set address of new keyboard handler

On exit

RO = address of current/old keyboard handler, or keyboard ID

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

OS_InstallKeyHandler installs a new keyboard handler to replace the default code.
Alternatively you can read the address of the current handler, or read the keyboard
ID. The returned keyboard ID may be:

Value Meaning

I standard Archimedes keyboard
2 A4 internal keyboard, or PC external keyboard

Related SWis

None

Related vectors

None

"'

Character Input

*Commands
*Configure Caps

Sets the configured value for Caps Lock to ON

Syntax

*Configure Caps

Parameters

None

Use

*Configure Caps sets the configured value for Caps Lock to ON, so that when you
switch on or reset your machine, you will start typing in capital letters. This was the
default value on RISC OS 2; NoCaps is the default value from RISC OS 3 onwards.

Example

*Configure Caps

Related commands

*Configure NoCaps, *Configure ShCaps

Related SWis

OS_Byte 202 (page I -883)

Related vectors

None

1-915

*Configure Delay

1-916

*Configure Delay

Sets the configured delay before keys start to auto-repeat

Syntax

*Configure Delay n

Parameters

Use

n delay (in centiseconds)

*Configure Delay sets the configured delay before keys start to auto-repeat. A value
of zero disables auto-repeat. The default value is 32 .

Example

*Configure Delay 20

Related commands

*Configure Repeat

Related SWis

OS_Byte II (page 1-858)

Related vectors

None

Character Input

*Configure NoCaps

Sets the configured value for Caps Lock to OFF

/
Syntax

*Configure NoCaps

Parameters

None

Use

*Configure NoCaps sets the configured value for Caps Lock to OFF, so that when
you switch on or reset your machine, you will start typing in lower case. This is the
default value from RISC OS 3 onwards; Caps was the default value on RISC OS 2.

Example

*Configure NoCaps

Related commands

*Configure Caps, *Configure ShCaps

Related SWis

OS_Byte 202 (page 1-883)

Related vectors

None

1-917

*Configure Repeat

1-918

*Configure Repeat

Sets the configured interval between the generation of auto-repeat keys

Syntax

*Cor figure Repeat n

Parameters

Use

n interval (in centiseconds)

*Configure Repeat sets the configured interval between the generation of
auto-repeat keys. A value of zero sets an infinite interval, so the character repeats
just once, after the auto-repeat delay. To completely disable auto-repeat, set the
delay to zero; *Configure Delay 0 will do this.

The default value is 8.

Example

*Configure Repeat 3

Related commands

*Configure Delay

Related SWis

OS_Byte 12 (page 1-859)

Related vectors

None

Character Input

*Configure ShCaps

Sets the configured value for Caps Lock to ON, Shift producing lower case letters

Syntax

*Configure ShCaps

Parameters

None

Use

*Configure ShCaps sets the configured value for Caps Lock to ON, so that when
you switch on or reset your machine, you will start typing in capital letters. Holding
down the Shift key will produce lower case letters, which does not happen when
Caps is the configured value. Caps is the default value from RISC OS 3 onwards;
Caps was the default value on RISC OS 2.

Example

*Configure ShCaps

Related commands

*Configure NoCaps, *Configure Caps

Related SWis

OS_Byte 202 (page 1-883)

Related vectors

None

1-919

*Key

1-920

*Key

Assigns a st ring to a funct ion key

Syntax

*Key keynumber [string]

Parameters

Use

keynumber

string

a number from 0 to 15

any GSTrans-compatible string

*Key assigns a string to a function key. It provides a very simple way of setting up
function keys so that repetitive or error-prone strings (such as complex commands)
can be initiated with a single keystroke. You can use any string up to 255 characters
long

The string is transformed by GSTrans before being stored. This means that you can,
for example, represent Return using 'IM' (as in the example below). See the section
entitled GS string operations on page 1-442 for details.

The string is stored in the system variable Key$keynumber, for example Key$ I for
function key I. This enables a key's definition to be read before it is used, and
manipulated like any other variable. Also, because a key string can be set as a
macro, its value may be made to change each time it is used.

In addition to Fl to Fl2, these keys can act as function keys by default:

• Print as FO

• Insert as Fl3

and these keys can be made to act as function keys by the command *FX4,2:

• Copy as Fll

• left arrow as Fl2

• right arrow as Fl3

• down arrow as Fl4

• up arrow as Fl5

Function keys are generally unaffected by a soft break, but lost following a hard
break.

Example

*Key 8 *Audio OniM *Speaker On lm *Volume 1271m

*SetMacro Key$1 I IThe time is <Sys$Time> lm

Related commands

•set, •setMacro

Related SWis

OS_SetVarVal (page 1-311)

Related vectors

None

Character Input

1-921

1-922

24 The CLI

Introduction
There are two ways in which you can interact with the OS and the various modules
which provide extensions to it. The first way is to call one of the many SWI routines
provided , such as OS_Byte, OS_ReadMonotonicTime, Wimp_Initialise etc. The SWI
interface provides an efficient calling mechanism for use within programs in any
language.

However, for users wishing to issue commands to the operating system, the SWI
interface is not so convenient . As it is difficult to remember SWI names, reason
codes, register contents on entry and exit , etc, the command line interpreter (CLI)
interface is often used. Using this technique, you enter a textual command string,
possibly followed by parameters, which is then passed by the application to the
OS. The OS tries to decode the command and carry out the appropriate action . If
the command is not recognised by the OS, the other modules in the system try to
execute the command instead.

The CLI interface is a powerful one because the OS performs a certain amount of
pre-processing on the line before it attempts to interpret it. For example, variable
names may be substituted in the parameter part of the line, and command aliases
may be used.

By convention, an application passes commands to the OS if they are prefixed by
the* character. For example, from the BASIC'>' prompt, any OS command may be
issued simply by making * the first non-space character on the line. The * is not
part of the command; the OS, in fact strips any leading *s and spaces from a
command before it tries to decode it.

Some languages also provide built-in statements which can be used to perform an
OS command . Again, BASIC provides the OSCLI statement, which evaluates a
string expression and passes this to the OS command line interpreter. The 'C'
language provides the system() function for the same purpose.

1-923

Overview and Technical Details

Overview and Technical Details
A program can call the CLI using the SWI OS_CLI (page I -929). This simply passes
a string from the program to the CLI to be interpreted. If you wish to allow the user
to type a number of CLI commands, then you can pass 'GOS' (see page I -933) as
the string to OS_CLI. See the chapter entitled Program Environment on page I -283,
for information on how to set up RISC OS to return to your program when the user
types *Quit.

CLI effects

1-924

When a CLI command is received by the kernel. it performs a number of operations
upon it. Note that in most cases. the case of commands is ignored. Only if you are
creating something with a name is the case kept. The sections below go through
each of these .

Leading characters

Certain leading characters will be treated in a special way:

'*' all leading stars are discarded
all leading spaces are discarded

'I' this indicates that the line is a comment, and will be ignored
'/' treat the rest of the command as if it had been prefixed with *Run
'%' skip alias checking.
- override current filing system name: eg -adfs-

check for Alias$. and use *Cat if it doesn't exist

Apart from '%' and ·-·, the above commands should be self-explanatory. '%' is used
to access a built-in command that currently has an alias overriding it; see the
section entitled Aliases. For more information on ·- ·, see the section below on
Context overriding.

Context overriding

The currently selected filing system can be overridden in two different ways. The
command can be prefixed with -name- or name: , where name is the name of a
filing system or module. That is, you supply an absolute name of the filing system
or module to send the command to. This gets around the problem of having to
select the other filing system, perform the command and then re-enter the original
filing system. For example, if you are on the net and want to look at a file on the
current adfs device, the sequence of commands:

*adfs
*Info Fred
*net

can be replaced with either:

*-adfs-Info Fred

or even more succinctly:

*adfs:Info Fred

Here are some examples of overrides:

*-net-cat
*SpriteUtils:Slist

The CLI

Note that if you are using -net- or net:. you cannot specify nodes on the net: eg
-net#spqr-. This is because the command prefix only alters the filing system
selected for the command. The part of an object specification after the '#'character
is not part of the filing system name but is part of the object name. For example. if
you wish to issue a command such as:

*net#oz:info fred

you can use instead:

*net:info #oz:fred

Redirection

Normally, input comes from the keyboard and output goes to the screen.
Redirection allows this source and destination to be changed to any file or device.
Output redirection can be viewed as having a *Spool file open for the duration of
the command. and disabling all streams except for that one. Input redirection is
like having a *Exec file open for the duration of the command.

The syntax of a redirection specifier is:

{ redirection_command [redirection_commands]

where each redirection_command may be any of:

> filename
< filename
>> filename

Output goes to filename
Input read from filename
Output appended to filename

The redirection specifier can appear anywhere in a line. Note that there must be
exactly one space between each element. or it will not be recognised as one. After
being decoded. The redirection specifier is stripped before the rest of the
command is interpreted. You can put as many redirection commands as you like
within the curly brackets; however. only the last one in a given direction will be
acted on .

1-925

CLI effects

1-926

Here are some examples of redirection:

*Cat { > mycat }
*Lex { > printer: }
*BASIC -quit { < answers } prog
*fred { < infile > outfile }
*Cat { > outl < infile > out2 }

The fourth example shows how redirections can be concatenated within the same
pair of braces.

In the final example, outl will be created with nothing in it. input will be read from
infile and output will go to out2.

Abbreviations

Commands may be abbreviated by terminating them with a '.'. For example, you
could type '* Mod.' instead of '*Modules'. When the CLI finds a terminating·.· , it
remembers that the command is an abbreviation , and when trying to match it to
possible aliases or commands to execute (see below), it is satisfied if the
abbreviation is a leading substring of the alias or command, rather than an exact
match.

It is very dangerous to use abbreviations in programs, as they are dependent on
the environment in which they are run. The command they execute can be changed
completely by the presence of an alias, or by any addition of commands and
change in module ordering under different releases of RISC OS

Aliases

An alias is a variable of the form Alias$cmd, where cmd is the command name to
match, made up from alphanumeric characters and these others:

! ' ()+-.;=?@JJ_'{}-

If an alias exists which matches the current • Command, RISC OS obtains the value
of the variable and replaces any of "'oO to "'o9 in the value by the parameters,
separated by spaces, that it reads on the rest of the input line. "'o*n in an alias
stands for the rest of the command line, from parameter 'n' onwards.

Any unused parameters, which are given, are directly appended to the alias. The
OS then recursively calls OS_CLI for all lines in the expanded value. However, it
may give up at this stage if either the stack or its buffer space becomes full. For
example, suppose this command is issued:

*SetPS 0.235

The CL/

Suppose further that a variable exists called AliasSSetPS. and that this has the
value -NET-PS %OIMConfigure PS %0. The OS will match the command name
against the alias variable. It will then substitute all occurrences of %0 in the
variable's value by 0.235. Then. the two lines of the variable will be executed thus:

-NET-PS 0.235
Configure PS 0.235

So. the net effect of executing the original command is to set the network printer
server both temporarily, and also in the permanent configuration .

Another example using the parameter substitution is

*Set Alias$Mode Echo 1<22>1<%0 >

The 'l's before the angle brackets are to stop them from being evaluated when the
*Set command is entered. Typing *Moden will then set the display to mode 'n'.

Look-up the command

After all the previous steps have been completed, the command that is left after
pre-processing must be executed. This is a list in order of the things that RISC OS
will check to execute a command :

I A check is made to see whether the command is in the kernel.

2 The kernel checks each module to see whether it supplies the command.
Modules are checked in the order of the module list, as printed by the
*Modules command.

Amongst the modules checked is the filing system manager. File Switch, which
contains those commands that apply to all filing systems, such as *Cat.

3 After the module search is complete. the kernel inspects the filing system
specific commands in the current filing system module.

4 If the command is not recognised by the filing system module. the kernel
issues an 'unknown command' service call.

If the net is the current filing system, the command is sent to the file server. to
see if the command is implemented there . For example. *Pass is implemented
in this way.

5 Ifthe command is still not recognised. then an attempt will be made to *Run it
using the current path. The result of this *Run is passed back to the user.

1-927

Reading CLI parameters

Reading CLI parameters

1-928

If you are writing a module, the chances are t hat you wi ll want to recognise one or
more • Commands. The chapter entitled Modules on page 1-197 explains how you
can cause the OS to recognise commands for you , and pass control to your module
when one has been found. This section describes the OS calls which are available
to facilitate the decoding of the rest of the command line.

The ca lls mentioned here may also be used by • Commands activated in other
ways, ega transient command loaded from disc. However, the way in which the tail
of the command line is discovered will vary for these types of commands. See the
chapter entitled Program Environment on page 1-283 for details .

On entry to your • Command routine, RO contains a pointer to the 'tail' of the
command , ie the first character after the command name itself (with spaces
skipped) . R1 contains the number of parameters , where a parameter is regarded as
a sequence of characters separated by spaces.

The way in which the command uses the parameters depends on what it is doing.
First. if there are too many or too few parameters, an error could be given. (A
module can arrange for the OS to do this automatically.)

If a parameter is to be regarded as a string, OS_GSTrans may be used to decode
any special sequences, eg control codes, variable names etc. If the parameter is a
number, OS_ReadUnsigned might be used to convert it into binary. Finally,
OS_EvaluateExpression could be used to read a whole arithmetic or string
expression , and return the result in a buffer.

These calls are documented in the chapter entitled Conversions on page 1-44 I .

Note that the convention in RISC OS is to have parameters separated by spaces .
Some of the built-in commands which have been carried over from the BBC/Master
machines also allow commas. You should not support this option.

SWI Calls

Process a supervisor command

The CLI

OS_CLI
{SWI &05)

On entry

RO =pointer to string terminated by Null, Linefeed or Return

On exit

RO = preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not-re-entrant

OS_CLI will execute a string passed to it as if it had been typed in at the supervisor
command line. When it is called, it performs the following actions :

Check stack space

The OS needs a certain amount of workspace to deal correctly with a command. If
this is not available, the error 'No room on supervisor stack' will be generated.

Check command length

A* Command line must be less than or equal to 256 bytes long, including the
terminating character. If it is not, the error 'Too long' is returned.

1-929

OS_CLI (SWI &05)

1-930

Execute command

The command is then passed to the command line interpreter and executed as any
other * Command. This is described in the Overview and Technical Details .

Related SWis

None

Related vectors

CLIV

The CLI

OS_ChangeRedirection
(SWI &5E)

Read or write OS_CLI input/output redirection handles

On entry

RO =new file handle for input
0 = not redirected
-1 =leave alone

R I = new file handle for output
0 = not redirected
-1 = leave alone

On exit

RO =old file handle for input
0 = not redirected

Rl =old file handle for output
0 =not redirected

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This SWI reads or writes the file handles used by OS_CLI to redirect input/output.
It is mainly provided for the use of the TaskWindow module, but you may also find
the call useful.

Related SWis

None

1-931

OS_ChangeRedirection (SWI &5E)

1-932

Related vectors

None

The CLI

*Commands
*GOS

Calls Command Line mode, and hence allows you to type * Commands

Syntax

*GOS

Parameters

Use

None

*GOS starts the RISC OS Supervisor application from the current environment. The
supervisor can only execute *Commands.

This is useful for entering simple commands for immediate execution, or for
testing longer sequences of commands - while building command line scripts -on
a line-by-line basis.

However you should be careful when calling it from the middle of an application
which does not 'shell' new applications. For example, calling *GOS in the middle of
writing a BASIC program will mean that you will lose all of your unsaved work.

From the desktop, pressing FI 2 has a similar effect. To return to the desktop, press
Return at the start of a line with the Supervisor prompt('* '). If you do not have this
prompt, you will first have to type *Quit to leave the application you are using.

See the section entitled Overview and Technical Details on page I -924 for a description
of how the command line interface works.

Related commands

*Quit, *Desktop

Related SWis

None

Related vectors

None

1-933

1-934

25 The rest of the kernel

Introduction
Kernel calls and commands are covered here that do not merit a chapter by
themselves.

The following SWis are described:

Name Meaning
OS_Byte 0 display OS version information

OS_HeapSort a fast and memory efficient sorting routine

OS_ Confirm get a yes or no answer to a question

OS_CRC calculate a cyclic-redundancy check for block

IIC_Control control of external IIC devices

The following • Commands are also described:

Name
•configure Language

*Help

Meaning
select the language to use at power on

get help on commands

Page
1-936

1-937

1-940

1-942

1-944

Page
1-945

1-947

1-935

SWI Calls

SWI Calls

1-936

Display OS version or return machine type

On entry

RO=O

OS_Byte 0
(SWI &06)

RI = 0 to display OS version string, or I to return machine type

On exit

RO preserved
RI =machine type if RI = I on entry
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

If this is called with R I =0, then an error is returned, the text of which shows the
version number and creation date of the operating system. If this is called with
RI = I, then the machine type is returned in RI. All RISC OS computers return a
machine type of 6; earlier non-RISC OS Acorn machines return different values.

Related SWis

None

Related vectors

ByteV

Heap sort a list of objects

The rest of the kernel

OS_HeapSort
(SWI &4F)

On entry

RO = number of elements to sort
RI =pointer to array of word size objects, and flags in top 3 bits
R2 =type of object (0- 5). or address of comparison routine
R3 =workspace pointer for comparison procedure (only needed if R2 > 5)
R4 =pointer to array of objects to be sorted (only needed if flag(s) set in RI)
R5 =size of an object in R4 (only needed if flag(s) set in RI)
R6 =address of temporary workspace of R5 bytes

(only needed if R5 > I6k or bit 29 of RI is set)

On exit

RO - R6 preserved

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This SWI will sort a list of any objects using the heap sort algorithm. Details of this
algorithm can be found in :

Sorting and Searching D.E. Knuth (1973) Addison-Wesley, Reading
Massachusetts, pages 145-149.

It is not as fast as a quicksort for average sorts, but uses no extra memory beyond
that which is initially passed in.

1-937

OS_HeapSort (SWI &4F)

1-938

Basic usage

Used in the simplest way, only RO, Rl and R2 need be set up. RO contains the
number of objects that are in the list. R I points to an array of word-sized entries.
The value of R2 controls the interpretation of this array:

R2 value

0

2
3
4
5

>5

Comparison routine

Treat R I as pointing to an array of ...

cardinal (unsigned integer)
integer
pointer to cardinal
pointer to integer
pointer to characters (case insensitive)
pointer to characters (case sensitive)
pointer to custom object
In this last case, R2 is the address of the comparison routine

If the R2 value is less than 6, then this ca ll will handle sorting for you. If you want
to sort any other kind of object, then you must provide a routine to compare two
items and say which is the greater. Using this technique, any complex array of
structures may be sorted. If you wish to use a comparison routine, then R2
contains the address of it. R3 must be set up with a value, usually a workspace
pointer.

When called, the comparison routine is entered in SVC mode, with interrupts
enabled. RO and Rl contain two objects from the array passed to this SWI in Rl.
What they represent depends on what the object is, but in most cases they would
be pointers to a structure of some kind. Rl2 contains the value originally passed in
R3 to this SWI. Usually this is a workspace pointer, but it is up to you what it is used
for.

Whilst in this routine, RO- R3 may be corrupted, but all other registers must be
preserved. The comparison routine returns a less than state in the flags if the
object in RO is less than the object in Rl . A greater or equal state must be returned
in the flags if the object in RO is greater than or equal to the object in Rl .

The rest of the kernel

Advanced features

In cases where R2 is greater than I, then there are two arrays in use. The word sized
array of pointers pointed to by RI and the 'real' object array. You can supply the
address of this real array in R4 and the size of each object in it in R5. If this is done,
then a number of optional actions can be performed. The top bits in RI can be
used as follows:

Bit Meaning

29 use R6 as workspace
30 build word-array of pointers pointed to by RI from R4,R5
3 I sort true objects pointed to by R4 after sorting the pointers

Bit 30 is used to build the pointer array pointed to by RI using R4 and R5 before
sorting is started . It will create an array of pointers, where the first pointer points to
the first object, the second pointer to the second object and so on . After sorting,
these pointers will be jumbled so that the first pointer points to the 'lowest' object
and so on.

Bit 3 I is used to sort the real objects pointed to by R4 into the order described by
the pointers in the array pointed to by RI after sorting is complete. It may
optionally be used in conjunction with bit 30.

If the size in R5 is greater than I6 Kbytes or if bit 29 is set in RI , then a pointer to
workspace must be passed in R6. This points to a block R5 bytes in length. One
reason for setting bit 29 is that this SWI will otherwise corrupt the RISC OS scratch
space.

Related SWis

None

Related vectors

None

1-939

OS_ Confirm (SWI &59)

1-940

Get a yes or no answer

OS_Confirm
{SWI &59)

On entry

On exit

RO = key that was pressed, in lowercase
the C flag is set if an escape condition occurred
the Z flag is set if the answer was Yes

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This SWI gets a yes or no answer from the user. If the mouse pointer is visible, then
it changes it to a three button mouse shape. The left button indicates yes, while
the other two indicate no. On the keyboard, a key appropriate to the territory
indicates yes, and any other key indicates no.

You should always check whether the answer was yes or no by testing the Z flag,
rather than the value returned in RO; this ensures that your program will not need
modifying for use with different territories.

The result in RO is returned in lowercase, irrespective of the keyboard state. It is
made available should you need to reflect a character to the screen.

An escape condition will abort the SWl and return with the C flag set.

Related SWis

None

Related vedtors

None

The rest of the kernel

1-941

OS_CRC (SWI &58)

1-942

Calculate the cyclic-redundancy check for a block of data

OS_CRC
(SWI &58)

On entry

RO = CRC continuation value, or zero to start
Rl =pointer to start of block
R2 = pointer to end of block
R3 =increment (in bytes)

On exit

RO = CRC calculated
R I - R3 preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This SWI calculates the cyclic-redundancy check value for a block of data. This is
used to check for errors when, for example, a block of data is stored on a disk
(although ADFS doesn't use this call) or is sent across a network and so on. If the
CRC calculated when checking the block is different from the old one, then there
are some errors in the data.

The block described in Rl and R2 is exclusive. That is, the calculation adds R3 to Rl
each step until Rl equals R2. If they never become equal. then it will continue until
crashing the machine. For example RI=IOO, R2=200, R3=3 will never match Rl with
R2 and is not permitted.

The rest of the kernel

The value of the increment in R3 is the unit that you wish to use for each step of the
CRC calculation. Usually, it would be I . 2 or 4 bytes. but any value is permitted.
Note that the increment can be negative if you require it.

Related SWis

None

Related vectors

None

1-943

IIC_Control (SWI &240)

1-944

ControliiC devices

On entry

RO =device address (bit 0 = 0 to write, bit 0 =I to read)
Rl =pointer to block
R2 = length of block in bytes

On exit

RO - R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

IIC_Control
(SWI &240)

This call allows reading and writing to IIC devices. IIC is an internal serial protocol.
It is used in RISC OS machines for writing to the clock chip and llC compatible
devices on expansion cards.

The possible error is 'No acknowledge from llC device' (&20300) .

Related SWis

None

Related vectors

None

The rest of the kernel

*Commands
*Configure Language

Sets the configured module that will be run as an application at power on

Syntax

*Conf i gure Language module_no

Parameters

Use

module_ no the number of the module which will be run as an
application at power on. The default is the desktop.

*Configure Language sets the configured module that will be run as an application
at power on. The module is specified by its module number. as returned by the
*Modules command . You should use that command to check the number you 're
configuring, especially if you have added or removed modules. You should also be
aware that module numbers may differ between versions of RISC OS.

Note that the Desktop module checks on entry if a file- such as a boot file- is
being run using *Exec. and if so exits. This means your machine will fail to enter
the desktop if you 've configured your machine both to use the desktop as its start
up language, and to run a boot file at power-on using *Exec. The cure is either to
select the desktop at the end of the boot file using the *Desktop command. or to
configure the machine to boot from an Obey file .

The unusual use of the word 'language' in this command's name dates from earlier
Acorn operating systems. and is preserved for backwards compatibility.

Example

*Conf i gure Language 0 Starts up in Command Line mode. with * prompt

Related commands

*Configure Boot. *Desktop, *Modules. *Opt 4

Related SWis

None

1-945

"Configure Language

1-946

Related vectors

None

The rest of the kernel

*Help

Gives brief information about each command

Syntax

*Help [keyword]

Parameters

Use

keyword the command name(s) to get help on

• Help gives brief information about each command in the machine operating
system, including its syntax. It also has help on some special keywords:

*Help Commands lists all the available utility commands

*Help FileComrnands lists all the commands relating to filing
systems

*Help Modules lists the names of all currently loaded
modules, with their version numbers and
creation dates

*Help Station displays the current network and station
numbers of your machine

*Help Syntax explains the format used for syntax
messages

The usual use of *Help is to confirm that a command is appropriate for the job
required, and to check on its syntax (the number, type and ordering of parameters
that the command requires). When you issue the *Help command at the normal
Command Line prompt. 'paged mode' is switched on: the computer displays a
screenful of text. then waits until you press Shift before moving on.

Example

The specification of the keyword can include abbreviations to allow groups of
commands to be specified. For example,

*Help Con.

*Help

Related commands

None

produces information orr *Configure and *Continue

gives help orr all subjects

1-947

*Help

1-948

Related SWis

None

Related vectors

None

AKJ03

