
RISC OS 3

Programmer~s Reference Manual

Volume2

Acornf

RISC OS 3
Programmer's Reference Manual

Volume2

Acornl

2-ii

Copyright© 1992 Acorn Computers Limited. All rights reserved.

Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or
stored in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
Acorn Computers Limited in good faith . However, Acorn Computers Limited
cannot accept any liability for any loss or damage arising from the use of any
information or particulars in this manual.

If you have any comments on this manual. please complete the form at the back of
the manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your
supplier is available to help resolve any queries you might have.

Within this publication, the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

ACORN, ACORNSOFT, ACORN DESKTOP PUBLISHER, ARCHIMEDES, ARTHUR,
ECONET, MASTER. MASTER COMPACT, THE TUBE, VIEW and VIEWSHEET are
trademarks of Acorn Computers Limited.

Adobe and PostScript are trademarks of Adobe Systems Inc
ARM is a trademark of Advanced RISC Machines Ltd
TEX is a trademark of the American Mathematical Society
lmageWriter, LaserWriter and Macintosh are trademarks of Apple Computer Inc
DBase is a trademark of Ashton Tate Ltd
UNIX is a trademark of AT&T
Atari is a trademark of Atari Corporation
AutoCAD is a trademark of Auto Desk Inc
Amiga is a trademark of Commodore-Amiga Inc
Commodore is a trademark of Commodore Electronics Limited
SuperCalc is a trademark of Computer Associates
Corel Draw is a trademark of Corel Corporation
VT is a trademark of Digital Equipment Corporation
1st Word Plus is a trademark of GST Holdings Ltd

Deskjet, HP, HPGL, Laser)et and Paint)et are trademarks of Hewlett-Packard
Corporation
Colourjet is a trademark of lntegrex Ltd
IBM is a trademark of International Business Machines Corporation
lTC Zapf Dingbats is a trademark of International Typeface Corporation
Helvetica and Times are trademarks of Linotype Corporation
Lotus 123 is a trademark of The Lotus Corporation
MS-DOS is a trademark of Microsoft Corporation
MultiSync and NEC are trademarks of NEC Limited
Epson. EX and FX are trademarks of Seiko Epson Corporation
Sun is a trademark of Sun Microsystems Inc
Ethernet is a trademark of Xerox Corporation

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN for complete set of five volumes: I 85250 II 0 3
ISBN for this volume: I 85250 112 X
Edition I
Part number 0470,292
Issue I, December 1992

2-iii

2-iv

Contents

About this manual 1-ix

Part 1 -Introduction 1-1
An introduction to RISC OS 1-3
ARM Hardware 1-9
An introduction to SWis 1-23
*Commands and the CLI 1-33

Generating and handling errors 1-41
OS_Byte 1-49
OS_ Word 1-59

Software vectors 1-63
Hardware vectors 1-111
Interrupts and handling them 1-11 7
Events 1-145
Buffers 1-161

Communications within RISC OS 1-175

Part 2 - The kernel 1-195
Modules 1-197
Program Environment 1-283

Memory Management 1-337
Time and Date 1-399
Conversions 1-441
Extension ROMs 1-485

Part 3- Kernel input/output 1-487
Character Output I -489
VDU Drivers 1-527
Sprites 1-745
Character Input 1-835
The CLI 1-923
The rest of the kernel 1-935

2-v

2-vi

Part 4- Using filing systems 2-1
Introduction to filing systems 2-3

FileSwitch 2-9

FileCore 2-195

ADFS 2-261
RamFS 2-309
DOSFS 2-317

NetFS 2-337
NetPrint 2-385
PipeFS 2-405
ResourceFS 2-407
DeskFS 2-419
DeviceFS 2-421
Serial device 2-439
Parallel device 2-477
System devices 2-485

The Filer 2-489
Filer_Action and FilerSWis 2-503

Free 2-511

Part 5- Writing filing systems 2-519
Writing a filing system 2-521
Writing a FileCore module 2-587
Writing a device driver 2-597

Part 6 - Networking 2-607
Econet 2-609
File server protocol interface 2-693
The Broadcast Loader 2-727
BBC Econet 2-729
Hourglass 2-733
NetStatus 2-745

Part 7- The desktop 3-1
The Window Manager 3-3
Pinboard 3-293
Drag A Sprite 3-299
The Filter Manager 3-303
The TaskManager module 3-313
TaskWindow 3-321
SheiiCLI 3-329

Part 8 - Non-kernel input/output 3-333
ColourTrans 3-335
The Font Manager 3-403

SuperSample module 3-519

Draw module 3-523

Part 9- Printing 3-553
Printer Drivers 3-555
Printer Dumpers 3-663

PDumperSupport 3-679
Printer definition files 3-697
MakePSFont 3-733

Part 10 -lnternationalisation 3-735
MessageTrans 3-737
International module 3-759
The Territory Manager 3-785

Part 11 -Sound 4-1
The Sound system 4-3
WaveSynth 4-77

Part 12 - Utilities 4-81
The Buffer Manager 4-83
Squash 4-10 I
Screen Blank 4-1 07

Part 13- Hardware support 4-113
Expansion Cards and Extension ROMs 4-115
Floating point emulator 4-163
ARM3 Support 4-185
The Portable module 4-195
Joystick module 4-207

Part 14 - Programmer's support 4-211
Debugger 4-213
The shared C library 4-231

BASIC and BASICTrans 4-337
Command scripts 4-345

2-vii

2-viii

Appendixes and tables 4-353
Appendix A: ARM assembler 4-355
Appendix B: Warnings on the use of ARM assembler 4-377
Appendix C: ARM procedure call standard 4-393

Appendix D: Code file formats 4-413

Appendix E: File formats 4-453
Appendix F: System variables 4-495
Appendix G: The Acorn Terminal Interface Protocol 4-503
Appendix H: Registering names 4-545
Table A: VDU codes 4-551
Table B: Modes 4-553
Table C: File types 4-557

Table D: Character sets 4-561

Indexes lndex-1
Index of • Commands Index-3
Index of OS_Bytes Index- II
Index of OS_ Words lndex-15
Numeric index of Service Calls lndex-17
Alphabetic index of Service Calls lndex-21
Numeric index of SWis lndex-25
Alphabetic index of SWis lndex-43
Index by subject Index-61

Part 4 - Using filing systems

2-1

2-2

26

Filing systems

FileSwitch

Introduction to filing systems

RISC OS uses filing systems to organise and access data held on external storage
media. Several complete filing systems are provided as standard:

• Advanced Disc Filing System (ADFS) for use with both floppy and hard disc
drives

• Network Filing System (NetFS) for controlling your access to Econet file
servers (eg Acorn FileStore, SJ MDFS, Acorn Level4 Fileserver)

• RAM Filing System (RamFS). for making memory appear to be a disc

• NetPrint, for printing using Econet printer servers (eg !Spooler).

Other modules provide extra filing systems:

• the DOSFS filing system provides access to MS-DOS format discs

• the ResourceFS filing system contains resource files needed by the Window
manager and ROM-resident Desktop utilities

• the System Devices module and the device filing systems provide various
system devices.

A module called FileSwitch is at the centre of all filing system operation in
RISC OS.

FileSwitch provides a common core of functions used by all filing systems. It only
provides the parts of these services that are device independent.

Obviously, FileSwitch cannot know how to control every single piece of hardware
that gets added to the system. The device dependent services that control
hardware are provided by separate modules, which are the actual filing systems.

Switching between filing systems

One of the main tasks that FileSwitch handles is keeping track of what filing
systems are active, and switching between them as necessary. Much of the
housekeeping part of the task is done for you; you just have to tell FileSwitch what
to do.

2-3

File Core

FileCore

2-4

Accessing hardware

When filing systems initialise, they tell FileSwitch their name, where to find their
routines for controlling the hardware. and any special actions they are capable of.

Some calls you make to FileSwitch don't need to access hardware, and it deals with
these itself. Other calls do need to access hardware; FileSwitch does the portion of
the work that is independent of this, and calls a filing system module to access the
hardware.

Finding out more ...

For full details of FileSwitch, see the chapter entitled FileSwitch on page 2-9.

Adding filing systems

You can add filing system modules to the system. just as you can add any other
module. They have to conform to the standards for modules, set out in the chapter
entitled Modules on page 1-197; they also have to meet certain other standards to
function correctly with FileSwitch as a filing system.

Because FileSwitch is already doing a lot of the work for you, you will have less
work to do when you add a filing system than would otherwise be the case. Full
details of how to add a filing system to FileSwitch are set out in the chapter
entitled Writing a filing system on page 2-521.

Data format

FileSwitch does not lay down the format in which data must be laid out on a filing
system, but it does specify what the user interface should look like.

One of the filing system modules that RISC OS provides is FileCore. It takes the
normal calls that FileSwitch sends to a filing system module, and converts them to
a simpler set of calls to modules that control the hardware. So, like FileSwitch, it
provides a common core of functions that are device independent, and it
communicates with secondary FileCore modules that access the hardware. Unlike
FileSwitch, it creates a fresh instantiation of itself for each module it supports.

Finding out more ...

For full details of FileCore, see the chapter entitled FileCore on page 2- I 95 .

DeviceFS

Introduction to filing systems

Adding FileCore modules

You can . of course. add FileCore modules to the system. Using FileCore to build
part of your filing system imposes a more rigid structure on it, as more of the filing
system is predefined than if you do not use it. The filing system will appear very
similar to ADFS or RamFS, both of which use FileCore. Of course. if you use
FileCore to write a filing system it will be even less work for you. as even more of
the system is already written .

For full details of using FileCore to implement a filing system. see the chapter
entitled Writing a FileCore module on page 2-587.

DeviceFS is another filing system module that takes the normal calls that
FileSwitch sends to a filing system module, and converts them to a simpler set of
calls to modules that control the hardware. It is intended for stream-based 1/0. The
secondary modules with which it communicates are known as device drivers :
examples of these are the serial and parallel ports. Only a single instantiation of
DeviceFS is needed.

DeviceFS is not included in RISC OS 2. and in RISC OS 3 will only support
character devices. Support for block devices may be added to a future release.

Finding out more ...

For full details of DeviceFS. see the chapter entitled DeviceFS on page 2-42 I .

Adding device drivers

As you'd expect. you can also add device drivers to RISC OS. For full details of
using DeviceFS to implement a device driver, see the chapter entitled Writing a device
driver on page 2-597.

2-5

Image filing systems

Image filing systems

2-6

As well as standard filing systems, FileSwitch supports image filing systems. These
provide facilities for RISC OS to handle media in foreign formats, and to support
image files (or partitions) in those formats. They differ from standard filing systems
in that they do not themselves access hardware; instead they rely on standard
RISC OS filing systems to do so. DOSFS is an example of an image filing system,
used to handle DOS format discs.

Image filing systems are not available in RISC OS 2.

There are three parts to an image filing system:

• The image handler manages files held within an image file. using FileSwitch
and standard filing systems to do so.

Image filing systems provide these facilities in a manner that is transparent to
the end user; image files appear to be the same as any other file on the host
filing system. The host filing system need not be aware of image filing systems
to support this functionality.

• The identifier identifies the format of foreign media.

To do so it communicates with a filing system using a service call. The host
filing system needs to be aware of image filing systems (ie must support the
service call) to provide this functionality. Currently FileCore is the only
standard filing system that does so.

• The formatter helps to format media, which is actually done by a standard
filing system.

Again, the host filing system needs to be aware of image filing systems to
support this functionality. Currently ADFS is the only standard filing system
that does so.

Finding out more ...

For full details of DOSFS (a typical image filing system). see the chapter entitled
DOSFS on page 2-3I7.

Adding image filing systems

You can add image filing systems to the system. For full details. see the chapter
entitled Writing a filing S!JStem on page 2-52 I.

The Filer

Introduction to filing systems

The Filer module provides the facilities needed to display files and directories on
the desktop, and to interact with them. It does so for all filing systems.

Finding out more ...

For full details of the Filer, see the chapter entitled The Filer on page 2-489.

Filer Action

Filers

Filer_Action performs file manipulation operations for the Filer without the
desktop hanging whilst they are under way.

Finding out more ...

For full details of Filer_Action, see the chapter entitled Filer_Action and FilerSWls on
page 2-503 .

Each filing system that provides an icon on the icon bar has a Filer module to do
this , and to provide any associated services: for example, the ADFSFiler module. A
Filer module can use service calls to interact with image filing systems, and add
their formats to its menu of those it already supports .

2-7

Summary

Summary
The diagram below summarises the structure described above:

Figure 26.1 Structure of RISC OS 3 printing system

2-8

27 FileSwitch

Introduction and Overview
FileSwitch provides services common to all filing systems. It communicates with
the filing systems using a defined interface; it uses this to tell the filing systems
when they must do things. It also switches between the different filing systems,
keeping track of the state of each of them.

See also the chapter entitled Introduction to filing systems on page 2-3.

Adding filing systems
You can add filing system modules to the system, just as you can add any other
module. They have to conform to the standards for modules, set out in the chapter
entitled Modules on page I-I97; they also have to meet certain other standards to
function correctly with FileSwitch as a filing system.

Because FileSwitch is already doing a lot of the work for you, you will have less
work to do when you add a filing system than would otherwise be the case. Full
details of how to add a filing system to FileSwitch are set out in the chapter
entitled Writing a filing system on page 2-52I.

Data format

FileSwitch does not lay down the format in which data must be laid out on a filing
system, but it does specify what the user interface should look like.

2-9

Technical Details

Technical Details

Terminology

Filenames

2-10

The following terms are used in the rest of this chapter:

• a file is used to store data; it is distinct from a directory

• a directory is used to contain files

• an object may be either a file or a directory

• a pathname gives the location of an object, and may include a filing system
name, a special field, a media name (ega disc name). directory name(s) , and
the name of the object itself; each of these parts of a path name is known as an
element of the path name

• a full path name is a path name that includes all relevant elements

• a leafname is the last element of a full pathname.

Filename elements may be up to ten characters in length on FileCore-based filing
systems (such as ADFS) and on NetFS. These characters may be digits or letters.
FileSwitch makes no distinction between upper and lower case, although filing
systems can do so. As a general rule, you should not use top-bit-set characters in
filenames, although some filing systems (such as FileCore-based ones) support
them. You may use other characters provided they do not have a special
significance. Those that do are listed below:

*

s
&
@

II

%

\

Separates directory specifications, eg S.fred

Introduces a drive or disc specification , eg :0, :welcome. It also marks
the end of a filing system name, eg adfs:

Acts as a 'wildcard' to match zero or more characters , eg prog*

Acts as a 'wildcard' to match any single character, eg S.ch##

is the name of the root directory of the disc

is the user root directory (URD)

is the currently selected directory (CSD)

is the 'parent' directory

is the currently selected library directory (CSL)

is the previously selected directory (PSD- available on
FileCore-based filing systems, and any others that choose to do so)

Directories

Filing systemr

FileSwitch

There is a subtle difference in wildcard matching between RISC OS 2 and later
versions. Under RISC OS 2, commands acting only on files try to match wildcarded
specifications against files only. However, under later versions these commands try
to match against all objects; the first match found may be a directory, hence
causing an error. (Similarly, a wildcarded specification passed to a command acting
only on directories may get matched to a file.)

You may group files together into directories; this is particularly useful for
grouping together all files of a particular type. Files in the directory currently
selected may be accessed without reference to the directory name. Filenames must
be unique within a given directory. Directories may contain other directories,
leading to a hierarchical file structure.

The root directory, S, forms the top of the hierarchy of the media which contains
the CSD. Through it you can access all files on that media. S does not have a parent
directory. Trying to access its parent will just access S. Note also that files have
access permissions associated with them, which may restrict whether you can
actually read or write to them.

Files in directories other than the current directory may be accessed either by
making the desired directory the current directory, or by prefixing the filename by
an appropriate directory specification. This is a sequence of directory names
starting from one of the single-character directory names listed above, or from the
current directory if none is given.

Each directory name is separated by a '.'character. For example:

$.Documents.Memos

BASIC.Games.Adventures

%.BCPL

File Memos in dir Documents in S
File Adventures in dir Games in dir
@.BASIC

File BCPL in the current library

Files may also be accessed on filing systems other than the current one by
prefixing the filename with a filing system specification. A filing system name may
appear between'-' characters, or suffixed by a':'. For example:

-net-$.SystemMesg
adfs:%.Msm

You are strongly advised to use the latter, as the character '-' can also be used to
introduce a parameter on a command line, or as part of a file name.

2-11

Special fields

Special fields
Special fields are used to supply more information to the filing system than you
can using standard path names; for example NetFS and NetPrint use them to
specify server addresses or names. They are introduced by a# character; a variety of
syntaxes are possible:

net#MJHardy : :disc l.mike
#MJHardy : :discl.mike

-net#MJHardy -:di scl.mike
-#MJHardy-:discl.mike

The special fields here are all MJHardy, and give the name of the fileserver to use.

Special fields may use any character except for control characters, double quote
· " ·, solidus · 1' and space. If a special field contains a hyphen you may only use the
first two syntaxes given above.

Special fields are passed to the filing system as null-terminated strings, with the '#'
and trailing' :' or'-' stripped off. If no special field is specified in a pathname, the
appropriate register in the FS routine is set to zero. See below for details of which
calls may take special fields.

The system variable FileSwitchSSpecialField is also used to store the special field.

Current selections

FileSwitch keeps track of which filing system is currently selected. If you don't
explicitly tell FileSwitch which filing system to use, it will use the current selection.

FileSwitch also keeps a record of each filing system's current selections, such as its
CSD, CSL, PSD and URD. (Under RISC OS 2, this is independently recorded by
individual filing systems, rather than by FileSwitch.)

System variables

2-12

Some of these values are available in system variables under RISC OS 3. These are:

Variable

FileSwitchSCurrentFilingSystem
FileSwitchSTemporaryFilingSystem
FileSwitchSfsSCSD
FileSwitchSfsSPSD
FileSwitchSfsSLib
FileSwitchSfsSURD
FileSwitchSSpecialField

Meaning
current filing system
temporary filing system
CSD for filing system fs
PSD for filing system fs
library for filing system fs
URD for filing system fs
special field, evaluated as path is
processed

File attributes

FileSwitch

See also the section entitled Using FileSwitch$SpecialField with path variables on
page 2-18.

The top 24 bits of the file attributes are filing system dependent, eg NetFS returns
the file server date of creation/modification of the object (see the section entitled
File attributes on page 2-341). The low byte has the following interpretation:

Bit

0

2

3
4
5
6
7

Meaning if set

Object has read access for you
Object has write access for you
Owner execute only (BBC ADFS only). or
Private (SJ Research file servers only)
Object is locked against deletion by you
Object has read access for others
Object has write access for others
Undefined
Object is locked against deletion for others

FileCore based filing systems (such as ADFS and RamFS) ignore the settings of bits
4 and 5, but you can still set these attributes independently of bits 0, I and 3. This
is so that you can freely move files between ADFS, RamFS and NetFS without
losing information on their public read and write access.

You should clear bits 2, 6 and 7 when you create file attributes for a file. They may
be used in the future for expansion, so any routines that update the attributes
must not alter these bits, and any routines that read the attributes must not
assume these bits are clear.

Addresses I File types and date stamps

All files have (in addition to their name, length and attributes) two 32-bit fields
describing them. These are set up when the file is created and have two possible
meanings:

Load and execution addresses

In the case of a simple machine code program these are the load and execution
addresses of the program:

Load address
Execution address

&XXXLLLLL
&GGGGGGGG

2-13

Addresses I File types and date stamps

2-14

When a program is *Run, it is loaded at address &XXXLLLLL and execution
commences at address &GGGGGGGG. Note that the execution address must be
within the program or an error is given. That is:

XXXLLLLL :::; GGGGGGGG < XXXLLLLL + Length of file

Also note that if the top twelve bits of the load address are all set (ie 'XXX' is FFF).
then the file is assumed to be date-stamped. This is reasonable because such a
load address is outside the addressing range of the ARM processor.

File types and date stamps

In this case the top I 2 bits of the load address are all set. The remaining bits hold
the date/time stamp indicating when the file was created or last modified, and the
file type.

The date/time stamp is a five byte unsigned number which is the number of
centi-seconds since 00:00:00 on I st Jan I 900. The lower four bytes are stored in the
execution address and the most-significant byte is stored in the least-significant
byte of the load address.

The remaining 12 bits in the load address are used to store information about the
file type. Hence the format of the two addresses is as follows:

Load address
Execution address

&FFFtttdd
&dddddddd

where 'd' is part of the date and 't' is part of the type.

The file types are split into three categories:

Value

&EOO- &FFF
&800- &OFF
&000- &7FF

Meaning

Reserved for Acorn use
For allocation to software houses
Free for the user

For a list of the file types currently defined, see the Table entitled File types .

If you type:

Show File$Type_

you will get a list of the file types your computer currently knows about.

Additional information

Some filing systems may store additional information with each file . This is
dependent on the implementation of the filing system.

FileSwitch

Load-time and run-time system variables
When a date stamped file of type xxx is *LOADed or *RUN, FileSwitch looks for the
variables Alias$@LoadType_xxx or Alias$@RunType_xxx respectively. If a variable of
string or macro type exists, then it is copied (after macro expansion). and the full
pathname is used to find the file either on File$Path or Run$Path. Any parameters
passed are also appended for *Run commands. The whole string is then passed to
the operating system command line interpreter using XOS_CLI.

An example of LoadType

For example, suppose you type

*LOAD mySprites

when in the di rectory adfs: :HardDisc. $.Sprites, and where the type of the
file mySpri tes is &FF9. FileSwitch will issue:

*@LoadType_FF9 adfs: :HardDisc.$.Sprites.mySprites

The value of the variable Alias$@LoadType_FF9 is SLoad %*0 by default, so
the CLI converts the command via the alias mechanism to:

*SLoad adfs: :HardDisc.$.Sprites.mySprites

• Note that RISC OS 2 does not expand file names to full pathnames and so
would only issue:
*@LoadType_FF9 mySprites

which is then converted to:
*SLoad mySprites

An example of RunType

Similarly, if you typed:

*Run BasicProg pl p2

where BasicProg is in the directory adfs: : HardDisc. $.Library, and its
file type is &FFB, FileSwitch would issue:

*@RunType_FFB adfs::HardDisc.$.Library.BasicProg pl p2

The variable Alias$@LoadType_FFB is Basic -quit I" %0 1" %*1 by
default , so the CLI converts the command via the alias mechanism to:

*Basic -quit "adfs: :HardDisc.$.Library.BasicProg" pl p2

2-15

File$Path and Run$Path

Default settings

The filing system manager sets several of these variables up on initialisation,
which you may override by setting new ones.

In the case of BASIC programs the settings are made as follows:

*Set Alias$@LoadType_FFB Basic -load 1" %01" %*1
*Set Alias$@RunType_FFB Basic -quit l" %0 1" %*1

You can set up new aliases for any new types of file. For example, you could assign
type & I23 to files created by your own word processor. The variables could then
take be set up like this:

*Set Alias$@LoadType_123 Wo r dProc %*0
*Set Alias$@RunType_1 2 3 WordProc %*0

File$Path and Run$Path

2-16

There are two more important variables used by FileSwitch. These control exactly
where a file will be looked for, according to the operation being performed on it.
The variables are:

FileS Path
Run SPath

for read operations
for execute operations

The contents of each variable should expand to a list of prefixes, separated by
commas.

When FileSwitch performs a read operation (eg load a file, open a file for input or
update), then the prefixes in FileSPath are used in the order in which they are
listed. The first object that matches is used, whether it be a file or directory.

Similarly, when Fi leSwitch tries to execute a file (• Run or •filenamefor example), the
prefixes listed in RunSPath are used in order. If a matching object is a directory
then it is ignored, unless it contains a !Run file. The first file, ordirectory.!Run file
that matches is used.

Note that the search paths in these two variables are only ever used when the
pathname passed to FileSwitch does not contain an explicit filing system
reference. For example, *RUN file would use RunSPath , but *RUN adfs:file
wouldn't.

Default values

By default, FileSPath is set to the null string, and only the current directory is
searched. RunSPath is set to ',%.' , so the current directory is searched first ,
followed by the library.

•

FileSwitch

Specifying filing system names

You can specify filing system names in the search paths. For example. if FileSwitch
can't locate a file on the ADFS you could make it look on the Econet fileserver
using:

Set File$Path ,%.,Net:Lib.,Net:Modules.

This would look for:

@.file. %.file. Net: Lib• .file and Net:Modules.file.

Resulting filenames

If after expansion you get an illegal filename it is not searched for. So if you had set
RunSPath like this:

*Set Run$Path adfs:, ,net:,%.,!

then :

*Run $.mike

would search in turn for adfs: $.mike.$.mike and net:$.mike. but not for
% . $. mike or ! $. mike as they are illegal.

Path variables may expand to have leading and trailing spaces around elements of
the path . so:

*Set Run$Path adfs:$. net:%.

is perfectly legal. If you attempt to parse path variables . you must be aware of this
and cope with it.

Avoiding using File$Path and Run$Path

Certain SWI calls also allow you to specify alternative path strings. and to perform
the operation with no path look-up at all.

Using other path variables

You can set up other path variables and use them as pseudo filing systems. For
example if you typed:

*Set Basic$Path adfs:$.basic .. net:$.basic .

you could then refer to the pseudo filing system as Basic: or (less preferable) as
-Basic-.

These path variables work in the same way as FileSPath and RunSPath.

2-17

System devices

Using FlleSwltch$SpeciaiField with path variables

System devices

2-18

FileSwitch$SpecialField is often used as part of a macro to define a path variable.
For example, the default definition of Serial$Path is this macro:

devices#<FileSwitch$SpecialField>:$.Serial.

You could change this to set up default values for the serial port as follows:

devices#baud=9600,bits =B,<FileSwitch$SpecialField>:$.Serial.

Any settings passed to FileSwitch as a special field would then override the
defaults in the definition of Serial$Path.

In addition to the filing systems already mentioned, the module SystemDevices
provides some device-oriented 'filing systems'. These can be used in redirection
specifications in * Commands, and anywhere else where byte-oriented file
operations are possible. The devices provided are:

kbd: & rawkbd: the keyboard
null : the 'null device'
printer:
vdu : & rawvdu :

the printer
the screen

Various other modules also provide system devices:

device: the device filing system
netprint: the network printer
parallel: the parallel port
pipe: the pipe filing system
resource: the resource filing system
serial: the serial port

For full details, see each chapter between NetPrint on page 2-385 and System devices
on page 2-485.

FileSwitch

Filing system numbers
These are the currently allocated filing system numbers:

File system Number

None 0
RomFS 3
NetFS 5
ADFS 8
NetPrint 12
Null 13
Printer 14
Serial 15
Vdu 17
RawVdu 18
Kbd 19
RawKbd 20
DeskFS 21
Computer Concepts RomFS 22
RamFS 23
RISCiXFS 24
Streamer 25
SCSIFS 26
Digitiser 27
Scanner 28
MultiFS 29
NFS 33
CDFS 37
DOSFS 43
ResourceFS 46
PipeFS 47
DeviceFS 53
Parallel 54

2-19

Re-entrancy

Re-entrancy
FileSwitch can cope fully with recursive calls made to different streams -whether
through the same or different entry points. For example:

• Handle 254 is an output file on a disc that's been removed.

• Handle 255 is a spool file.

You call OS_BPut to put a byte to 254; this fills the buffer and causes a flush to
the filing system.

2 The filing system generates an UpCall to inform that the medium is missing.

3 An UpCall handler prints a message asking the user to supply the medium.

4 This goes through OS_BPut to 255, filling the buffer and causing a flush to the
filing system.

If the filing systems are different then both calls to OS_BPut will work as expected.
If they are the same, then it is dependent on the filing system whether it handles it.
FileCore based systems, for example, do not.

Interrupt code

You must not call the filing systems from interrupt code; FileCore based systems in
particular give an error if you try to do so.

FileSwitch and the kernel

Further calls

2-20

Some of the * Commands and SWI calls listed below are provided by the kernel,
and some by the FileSwitch module; they are grouped together here for ease of
reference.

As well as the kernel and FileSwitch, the appropriate filing system module must be
present for these commands to work, as it will carry out the low-level parts of each
of the calls you make.

In addition to the calls in this section, there are OS_Bytes to read/write the *Spool
and *Exec file handles. See page 1-513 and page 1-877 respectively for details.

FileSwitch

Support of calls

Some filing systems do not support all the commands that are detailed in this
chapter, and you should be aware of this when writing code. In generaL filing
systems for handling mass-storage media will provide full support , whereas more
esoteric filing systems may have omissions, mostly because a particular function is
meaningless to that filing system. If you call an unsupported command, an error
will be returned , and you should program to handle this.

2-21

Service Calls

Service Calls

2-22

Start up filing system

On entry

Rl = &12 (reason code)
R2 =filing system number (see page 2-19)

On exit

Use

Rl preserved (never claim)
R2 preserved

Service_StartUpFS
{Service Call & 12)

This is an old way to start up a filing system. It must not be claimed.

Filing system reinitialise

FileSwitch

Service FSRedeclare
(Service Call &40)

On entry

Rl = &40 (reason code)

On exit

Use

Rl preserved to pass on (do not claim)

This service is called when the FileSwitch module has been reinitialised (due to a
•RMRelnit, for example) . If you are in a filing system, you should make yourself
known to FileSwitch by calling OS_FSControl 12 (see page 2-93) . You must not
claim this call.

2-23

Service_CioseFile (Service Call &68)

2-24

Close an object. and any children of that object

Service CloseFile
{Service Call &68)

On entry

Rl = &68 (reason code)
R2 =pointer to canonical filename (null terminated)
R3 =number of files closed as a result of this service call (initially 0)

On exit

Use

R I, R2 preserved
R3 =number of files closed as a result of this service call (ie incremented

appropriately)

This call requests that the object specified by R2 be closed , and also any other
objects that are beneath it in the directory tree. Your module need not close the
file if this may potentially cause problems.

You must not claim this service call. Before passing this service call on you must
increment R3 by the number of files you closed.

For example, this call might be issued by the PC Emulator to cause a DOSFS
partition file to be closed by FileSwitch. This doesn't cause problems as the
partition would be spontaneously reopened if needed later.

This call is not issued by RISC OS 2.

SWI Calls

File Switch

OS_Byte 127
(SWI &06)

Tells you whether the end of an open file has been reached

On entry

RO = 127
R 1 = file handle

On exit

RO preserved
R1 indicates if end of file has been reached
R2 undefined

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call tells you whether the end of an open file has been reached, by checking
whether the sequential pointer is equal to the file extent. It uses OS_Args 5 to do
this ; you should do so too in preference to using this call. which has been kept for
compatibility only. See OS_Find (page 2-72) for details of opening a file. The values
returned in R1 are as follows:

Value

0
Not 0

Meaning

End of file has not been reached
End of file has been reached

2-25

OS_Byte 127 (SWI &06)

Related SWis

OS_Args 5 (page 2-53). OS_Find (page 2-72)

Related vectors

ByteV

2-26

Selects file options (as used by *Opt)

On entry

RO = 139
Rl =option number (first *Opt argument)
R2 =option value (second *Opt argument)

On exit

RO preserved
R I, R2 undefined

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

File Switch

OS_Byte 139
(SWI &06)

This call selects file options. It uses OS_FSControl 10 to do this. It is equivalent to
*Opt, which is documented in detail on page 2-176.

Related SWis

OS_FSControl 10 (page 2-91)

Related vectors

ByteV

2-27

OS_Byte 255 (SWI &06)

2-28

OS_Byte 255
{SWI &06)

Reads the current auto-boot flag setting, or temporarily changes it

On entry

RO = 255
Rl = 0 or new value
R2 = &FF or 0

On exit

RO preserved
Rl =previous value
R2 corrupted

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call reads the current auto-boot flag setting, or changes it until the next hard
reset or hard break. It uses OS_FSControl I 0 to do this, which you should use in
preference to this obsolete call. The auto-boot flag defaults to the value configured
in the Boot/NoBoot option. If NoBoot is set, then, when the machine is reset, no
auto-boot action will occur (ie no attempt will be made to access the boot file on
the filing system). If Boot is the configured option, then the boot file will be
accessed on reset. Either way, holding down the Shift key while releasing Reset
will have the opposite effect to usual.

With this OS_Byte you can read the current state. On exit, if bit 3 of Rl is clear, then
the action is Boot. If it is set, then the action is NoBoot.

File Switch

The effect can be changed by writing to bit 3 of the flag , but this only lasts until the
next hard reset or hard break. You should preserve the other bits of the flag.

Related SWis

OS_FSControl I 0 (page 2-91). OS_FSControl 15 (page 2-96)

Related vectors
ByteV

2-29

OS_Fi/e (SWI &08)

2-30

OS File
(SWI &08)

Acts on whole files , either loading a file into memory, saving a file from memory, or
reading or writing a file's attributes

On entry

RO = reason code
Other registers depend on reason code

On exit

RO corrupted
Other registers depend on reason code

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use
OS_File acts on whole files, either loading a file into memory, saving a file from
memory, or reading or writing a file's attributes. The call indirects through FileV.

The particular action of OS_File is given by the low byte of the reason code in RO as
follows:

RO Action Page
0 Saves a block of memory as a file 2-33

I Writes catalogue information for a named object 2-34

2 Writes load address only for a named object 2-34

3 Writes execution address only for a named object 2-34

4 Writes attributes only for a named object 2-34

FileSwitch

RO Action

5 Reads catalogue information for a named object, using
FileSPath

6 Deletes a named object

7 Creates an empty file

8 Creates a directory

9 Writes date/time stamp of a named file

10 Saves a block of memory as a file, and date/time stamps it

II Creates an empty file, and date/time stamps it

12 Loads a named file, using specified path string

13 Reads catalogue information for a named object. using
specified path string

14 Loads a named file, using specified path variable

15 Reads catalogue information for a named object. using
specified path variable

16 Loads a named file, using no path

17 Reads catalogue information for a named object. using no
path

18 Sets file type of a named file

19 Generates an error message

20 Reads catalogue information for a named object, using
FileSPath

21 Reads catalogue information for a named object, using
specified path string

22 Reads catalogue information for a named object, using
specified path variable

23 Reads catalogue information for a named object, using no
path

24 Reads the natural block size of a file

255 Loads a named file, using FileSPath

For details of each of these reason codes, see below. Reason codes 20- 24
inclusive are not supported by RISC OS 2.

Page
2-35

2-37

2-38

2-39

2-34

2-33

2-38

2-40

2-35

2-40

2-35

2-40

2-35

2-34

2-42

2-43

2-43

2-43

2-43

2-45

2-40

FileSwitch will check the leafname for wildcard characters (* and#) before some of
these operations. These are the ones which have a 'destructive' effect, eg deleting a
file or saving a file (which might overwrite a file which already exists). If there are
wildcards in the leafname. it returns an error without calling the filing system.

2-31

OS_File (SWI &08)

2-32

Non-destructive operations, such as loading a file and reading and writing
attributes may have wildcards in the leafname. However, only the first file found
will be accessed by the operation . The order of the search is filing system
dependent. but is typically ASCII order.

Related SWis

None

Related vectors

FileV

Save a block of memory as a file

FileSwitch

OS File 0 and 10
(SWI &08)

On entry

RO=OorlO
Rl =pointer to non-wild-leaf filename
If RO = 0

R2 = load address
R3 = execution address

!fRO= 10
R2 =file type (bits 0 - I I)

R4 =start address in memory of data (inclusive)
R5 =end address in memory of data (exclusive)

On exit

Use

Registers preserved

These calls save a block of memory as a file . setting either its load and execution
addresses (RO = 0). or its date/time stamp and file type (RO = I 0).

An error is returned if the object is locked against deletion. or is already open. or is
a directory.

See also OS_File 7 and II (page 2-38); these create an empty file. ready to receive
data.

2-33

OS_Fi/e 1, 2, 3, 4, 9, and 18 (SWI &08)

2-34

OS_File 1, 2, 3, 4, 9, and 18
{SWI &08)

Write catalogue information for a named object

On entry

R0=1,2 , 3, 4,9,orl8
Rl =pointer to (wildcarded) object name
If RO =I or 2

R2 = load address
Else if RO = 18

R2 = file type (bits 0- II)
If RO =I or 3

R3 = execution address
If RO =I or 4

R5 =object attributes

On exit

Use

Registers preserved

These calls write catalogue information for a named object to its catalogue entry,
as shown below:

RO
I
2
3
4

9
18

Information written

Load address, execution address , object attributes
Load address
Execution address
Object attributes
Date/time stamp; file type is set to &FFD if not set already
File type, and date/time stamp if not set already

If the object name contains wildcards, only the first object matching the wildcard
specification is altered.

FileCore based filing systems (such as ADFS) can write a directory's attributes;
NetFS may generates an error if you try to write a directory's attributes, depending
on the server you are using.

Under RISC OS 2 FileCore based filing systems do not generate an error if the
object doesn't exist, whereas NetFS does so. Later versions of RISC OS always
generate an error in these circumstances.

FileSwitch

OS_File 5, 13, 15 and 17
(SWI &08)

Read catalogue information for a named object

On entry

RO = 5, 13, 15 or 17
Rl =pointer to (wildcarded) object name
If RO = 13

R4 =pointer to control-character terminated comma separated path string
If RO = 15

R4 = pointer to name of a path variable that contains a control-character
terminated comma separated path string

On exit

Use

RO =object type
R I preserved
R2 = load address
R3 = execution address
R4 =object length
R5 =object attributes
(R2- R5 corrupted if object not found)

The load address. execution address, length and object attributes from the named
object's catalogue entry are read into registers R2 , R3 , R4 and R5. The value of RO
on entry determines what path is used to search for the object:

RO
5
13
15
17

Path used

File$Path system variable
path string pointed to by R4
path variable, name of which is pointed to by R4
none

For a description of the path strings that are held in path variables. see the section
entitled File$Path and Run$Path on page 2-16.

2-35

OS_File5, 13, 15and17(SWI&OB)

2-36

On exit, RO contains the object type:

RO
0

2
3

Type

Not found
File found
Directory found
Image file found (ie both file and directory)

If the object name contains wildcards. only the first object matching the wildcard
specification is read.

Deletes a named object

FileSwitch

OS File 6
(SWI &08)

On entry

RO =6
Rl =pointer to non-wildcarded object name

On exit

Use

RO = object type
Rl preserved
R2 = load address
R3 = execution address
R4 = object length
R5 = object attributes
(R2- R5 corrupted if object not found)

The information in the named object's catalogue entry is transferred to the
registers and the object is then deleted from the structure. It is not an error if the
object does not exist.

An error is generated if the object is locked against deletion, or if it is a directory
which is not empty, or is already open.

The version of NetFS supplied in RISC OS 2 behaves unusually in two ways:

• it always sets bit 3 of R5 on return (the object is 'locked')

• it returns the object's type as 2 (a directory) if it is successfully deleted.

The version supplied in RISC OS 3 does not behave like this.

2-37

OS_File 7 and 11 (SWI &08)

2-38

Creates an empty file

OS File 7 and 11
{SWI &08)

On entry

RO = 7 or II
Rl =pointer to non-wild-leaf file name
If RO = 7

R2 = reload address
R3 = execution address

lfRO =II
R2 =file type (bits 0- II)

R4 = start address (normally set to 0)
R5 =end address (normally set to length of file)

On exit

Use

Registers preserved

Creates an empty file, setting either its reload and execution addresses (RO = 7). or
its date/time stamp and fjle type (RO = II) .

Note: No data is transferred. The file does not necessarily contain zeros; the
contents may be completely random. Some security-minded systems (such as
NetFS/FileStore) will deliberately overwrite any existing data in the file .

An error is returned if the object is locked against deletion, or is already open, or is
a directory.

See also OS_File 0 and I 0 (page 2-33); these save a block of memory as a file.

Creates a directory

FileSwitch

OS File 8
(SWI &08)

On entry

RO = 8
Rl =pointer to non-wild-leaf object name
R4 = number of entries (0 for default)

On exit

Use

Registers preserved

R4 indicates a minimum suggested number of entries that the created directory
should contain without having to be extended. Zero is used to set the default
number of entries.

Note: ADFS and other FileCore-based filing systems ignore the number of entries
parameter, as this is predetermined by the disc format.

An error is returned if the object is a file which is locked against deletion. It is not
an error if it refers to a directory that already exists, in which case the operation is
ignored.

2-39

OS_File 12, 14, 16 and 255 (SWI &08)

2-40

Load a named file

OS_File 12, 14, 16 and 255
{SWI &08)

On entry
RO= 12.14.16or255
Rl =pointer to (wildcarded) object name
If bottom byte of R3 is zero

R2 = address to load file at
R3 = 0 to load file at address given in R2 . else bottom byte must be non-zero
If RO = 12

R4 =pointer to control-character terminated comma separated path string
!fRO= 14

R4 = pointer to name of a path variable that contains a control-character
terminated comma separated path string

On exit

Use

RO =object type (bit 0 always set. since object is a file)
R I preserved
R2 = load address
R3 = execution address
R4 = file length
R5 =file attributes

These calls load a named file into memory. The value of RO on entry determines
what path is used to search for the file:

RO
12
14
16
255

Path used
path string pointed to by R4
path variable. name of which is pointed to by R4
none
FileSPath system variable

For a description of the path strings that are held in path variables. see the section
entitled File$Path and Run$Path on page 2-16.

If the object name contains wildcards, only the first object matching the wildcard
specification is loaded.

FileSwitch

You must set the bottom byte of R3 to zero for a file that is date-stamped. and
supply a load address in R2 .

An error is generated if the object does not exist. or is a directory. or does not have
read access. or it is a date-stamped file for which a load address was not correctly
specified.

2-41

OS_File 19 (SWI &08)

2-42

Generates an error message

OS File 19
(SWI &08)

On entry

RO= 19
Rl =pointer to object name to report error for
R2 = object type (0, I, 2 or & I 00)

On exit

Use

RO = pointer to error block
V flag set

This call is used to generate a friendlier error message for the specified object.
such as:

"Fil e 'xyz' not found"
"'xyz' isafile"
" 'xyz' is a directory"
"Directory 'xyz' not found"

An example of its use would be:

MOV
SWI
BVS
TEQ
MOVNE
MOVNE
SWINE
BVS

rO, #OSFile_ Readinfo
XOS_ File
flurg
RO , #object_ file
r2, rO
rO, #OSFile_MakeError
XOS_File
flurg

r2 = 0
r2 = 1
r2 = 2 or 3
r2 = &100

return error if not a file

R2 may only have the values given above; for other values, the call returns with all
registers preserved and V set (ie no error is generated) . RISC OS 3.00 does not
support R2 = 3, although it can return an object type of 3 (an image file); you
should be cautious in passing results from other calls directly to this call.

FileSwitch

OS_File 20, 21, 22 and 23
(SWI &08)

Read catalogue information for a named object

On entry

RO = 20, 21 , 22 or 23
Rl =pointer to (wildcarded) object name
If RO = 21

R4 =pointer to control-character terminated comma separated path string
If RO = 22

R4 = pointer to name of a path variable that contains a control-character
terminated comma separated path string

On exit

Use

RO = object type
Rl preserved
R2 = load address, or high byte of date stamp (top three bytes of R2 are &000000)
R3 = execution address, or low word of date stamp
R4 = object length
R5 =object attributes
R6 = object filetype (bits 0 - II)

Special values:
-I untyped (R2, R3 are load and execution address), or

not found (RO is 0)
& 1000 directory
&2000 application directory (directory whose name starts with a'!')

This call reads the load and execution address (or date stamp). length, object
attributes and filetype from the named object's catalogue entry into registers
R2 - R6. The value of RO on entry determines what path is used to search for the
object:

RO
20
21
22
23

Path used

FileSPath system variable
path string pointed to by R4
path variable, name of which is pointed to by R4
none

2-43

OS_File 20, 21,22 and 23 (SWI &08)

2-44

For a description of the path strings that are held in path variables . see the section
entitled File$Path and Run$Path on page 2-16.

On exit. RO contains the object type:

RO
0
I
2
3

Type
Not found
File found
Directory found
Image file found (ie both file and directory)

If the object name contains wildcards. only the first object matching the wildcard
specification is read.

These calls are not available in RISC OS 2.

Reads the natural block size of a file

FileSwitch

OS File 24
(SWI &08)

On entry

RO = 24
Rl =pointer to file name

On exit

Use

R2 = natural block size of the file in bytes

This call reads the natural block size of a file in bytes, returning it in R2. This is the
same as the granularity of file allocation. For an example see the section entitled
Allocation bytes on page 2-203, which gives a description of the granularity of
FileCore based filing systems.

This call is not available in RISC OS 2.

2-45

OS_Args (SWI &09)

2-46

OS_Args
(SWI &09)

Reads or writes an open file's arguments, or returns the filing system type in use

On entry

RO = reason code
Rl =file handle, or 0
R2 =attribute to write, or not used

On exit

RO = filing system number (see page 2-19). or preserved
R I preserved
R2 =attribute that was read . or preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use
This call indirects through ArgsV. The particular action of OS_Args is specified by
RO as follows:

RO Action Page

0 Read pointer/FS number 2-48

Write pointer 2-49

2 Read extent 2-50

3 Write Extent 2-51

4 Read allocated size 2-52

5 Read EOF status 2-53

6 Reserve space 2-54

RO Action Page

7 Get canonicalised name 2-55

8 Inform of changed image stamp 2-56

254 Read information on file handle 2-57

255 Ensure file/files 2-59

Reason codes 7 and 8 are not available under RISC OS 2.

Related SWis

None

Related vectors

ArgsV

FileSwitch

2-47

OS_Args 0 (SWI &09)

2-48

OS_Args 0
(SWI &09)

Reads the temporary filing system number, or a file's sequential file pointer

On entry

RO =0
Rl = 0 or file handle

On exit

Use

RO =temporary filing system number (if Rl = 0 on entry) , or preserved
R I preserved
R2 =sequential file pointer (if Rl ::;: 0 on entry). or preserved

This call reads the temporary filing system number (if Rl = 0 on entry) , or a file's
sequential file pointer (if Rl::;: 0 on entry, in which case it is treated as a file
handle). For a list of filing system numbers, see page 2-19.

This call indirects through ArgsV.

Writes an open file's sequential file pointer

On entry

RO= I
Rl =file handle
R2 = new sequential file pointer

On exit

RO - R2 preserved

Use

This call writes an open file's sequential file pointer.

File Switch

OS_Args 1
(SWI &09)

If the new sequential pointer is greater than the current extent, then more space is
reserved for the file; this is filled with zeros. Writing the sequential pointer clears
the file's EOF-error-on-next-read flag.

This call indirects through ArgsV.

2-49

OS_Args 2 (SWI &09)

Reads an open file's extent

On entry

RO = 2
Rl =file handle

On exit

Use

RO, Rl preserved
R2 =extent of file

OS_Args 2
(SWI &09)

This call reads an open file's extent. It indirects through ArgsV.

2-50

Writes an open file's extent

File Switch

OS_Args 3
(SWI &09)

On entry

RO = 3
Rl =file handle
R2 = new extent

On exit

Use

RO - R2 preserved

This call writes an open file 's extent.

If the new extent is greater than the current extent, then more space is reserved for
the file; this is filled with zeros. If the new extent is less than the current sequential
pointer, then the sequential pointer is set back to the new extent. Writing the
extent clears the file's EOF-error-on-next-read flag.

This call indirects through ArgsV.

2-51

OS_Args 4 (SWI &09)

2-52

Reads an open file 's allocated size

OS_Args 4
(SWI &09)

On entry

RO = 4
Rl =file handle

On exit

Use

RO, Rl preserved
R2 = allocated size of file

This call reads an open file's allocated size.

The size allocated to a file will be at least as big as the current file extent; in many
cases it will be larger. This call determines how many more bytes can be written to
the file before the filing system has to be called to extend it. This happens
automatically.

This call indirects through ArgsV.

Reads an open file's end-of-file (EOF) status

File Switch

OS_Args 5
(SWI &09)

On entry

RO = 5
Rl =file handle

On exit

Use

RO, Rl preserved
R2 = 0 if not EOF, else at EOF

This call reads an open file's end-of-file (EOF) status.

If the sequential pointer is equal to the extent of the given file, then an end-of-file
indication is given, with R2 set to non-zero on exit. Otherwise R2 is set to zero on
exit.

This call indirects through ArgsV.

2-53

OS_Args 6 (SWI &09)

2-54

Ensures an open file's size

OS_Args 6
(SWI &09)

On entry

RO =6
Rl = file handle
R2 = size to ensure

On exit

Use

RO, Rl preserved
R2 =bytes reserved for file

This call ensures an open file's size.

The filing system is instructed to ensure that the size allocated for the given file is
at least that requested. Note that this space thus allocated is not yet part of the
file, so the extent is unaltered, and no data is written . R2 on exit indicates how
much space the filing system actually allocated.

This call indirects through ArgsV.

Converts a file handle to a canonicalised name

FileSwitch

OS_Args 7
(SWI &09)

On entry

RO = 7
Rl =file handle
R2 = pointer to buffer to contain null terminated canonicalised name
R5 = size of buffer

On exit

Use

R5 = number of spare bytes in the buffer including the null terminator. ie:

R5 ~ I ==> there are (R5 - I) completely unused bytes in the buffer; so
R5 = I ==>there are 0 unused bytes in the buffer. and therefore
the terminator just fitted

R5 ~ 0 ==> there are (I - R5) too many bytes to fit in the buffer, which
has consequently not been filled in; so R5 = 0 ==>there is I
byte too many- the terminator- to fit in the buffer

This call takes a file handle and returns its canonicalised name. This may be used
as a two-pass process :

Pass I

On entry, set Rl to the file handle, and R2 and R5 (the pointer to, and size of.
the buffer) to zero. On exit, R5 =-(length of canonicalised name)

Pass2
Claim a buffer of the right size (I-R5, not just -R5 , as a space is needed for the
terminator) . On entry, ensure that Rl still contains the file handle, that R2 is
set to point to the buffer, and R5 contains the length of the buffer. On exit the
buffer should be filled in. and R5 should be I ; but check to make sure.

This call indirects through ArgsY.

It is not available in RISC OS 2.

2-55

OS_Args 8 (SWI &09)

2-56

OS_Args 8
(SWI &09)

Used by an image filing system to inform of a change to an image stamp

On entry

RO =8
Rl =file handle
R2 = new image stamp

On exit

Use

RO - R2 preserved

This call is made by an image filing system (eg DOSFS) when it has changed a
disc's image stamp (a unique identification number) . It does so to inform a handler
of discs (eg FileCore) of the change, and to pass it the new image stamp. FileSwitch
passes the information on to the disc handler, which typically just stores the new
image stamp in that disc's record, so that the disc may be identified at a later time.

This call indirects through ArgsV.

It is not available in RISC OS 2.

Reads information on a file handle

FileSwitch

OS_Args 254
(SWI &09)

On entry

RO = 254
Rl =file handle (not necessarily allocated)

On exit

Use

RO = stream status word
R I preserved
R2 = filing system information word

This call returns information on a file handle, which need not necessarily be
allocated.

The stream status word is returned in RO, the bits of which have the following
meaning:

Bit

14
13
12
II
10
9
8
7
6
5
4
3

Meaning when set

Image file busy
Data lost on this stream
Stream is critical (see below)
Stream is unallocated (see below)
Stream is unbuffered
Already read at EOF (EOF-error-on-next-read flag)
Object written to
Have write access to object
Have read access to object
Object is a directory j
Unbuffered stream dnectly supports GBPB
Stream is interactive (ie prompting for input is appropriate)

If bit II is set then no other bits in the stream status word have any significance.
and the value of the filing system information word returned in R2 is undefined.

Any bits not in the above table are undefined. but you must not presume that they
I

are zero.

2-57

OS_Args 254 (SWI &09)

2-58

Bit 12 shows when the stream is critical- in other words , when FileSwitch has
made a call to a filing system to handle an open file, and the filing system has not
yet returned. This is used to protect against accidental recursion on the same file
handle only.

Bit I 0 shows when the stream is unbuffered; an unbuffered stream is one for which
FileSwitch provides no buffering.

Bit I tt shows when an image file is busy; that is, when it is in the process of being
opened by FileSwitch, but is not yet ready for use.

For a full definition of the filing system information word returned in R2 , see the
section entitled Filing system information word on page 2-522 .

This call indirects through ArgsV.

FileSwitct

OS_Args 255
(SWI &09)

Ensure data has been written to a file . or all files on the temporary filing system

On entry

RO = 255
Rl =file handle. or 0 to ensure all files on the temporary filing system

On exit

Use

RO - R2 preserved

This call ensures that any buffered data has been written to either all files open on
the temporary filing system (Rl = 0). or to the specified file (Rl "# 0, in which case it
is treated as a file handle).

This call indirects through ArgsV.

2-59

OS_BGet (SWI &OA)

2-60

Reads a byte from an open file

OS BGet
(SWI &OA)

On entry

Rl =file handle

On exit

RO = byte read if C clear, undefined if C set
R I preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

OS_BGet returns the byte at the current sequential file pointer position. The call
indirects through BGetV.

If the sequential pointer is equal to the file extent (ie trying to read at end-of-file)
then the EOF-error-on-next-read flag is set, and the call returns with the carry flag set,
RO being undefined. If the EOF-error-on-next-read flag is set on entry, then an End of
file error is given. Otherwise, the sequential file pointer is incremented and the
call returns with the carry flag clear.

This mechanism allows one attempt to read past the end of the file before an error
is generated. Note that various other calls (such as OS_BPut) clear the
EOF-error-on-next-read flag.

An error is generated if the file handle is invalid; also if the file does not have read
access.

FileSwitch

Related SWis

OS_BPut (page 2-62). OS_GBPB (page 2-63)

Related vectors

BGetV

2-61

OS_BPut (SWI &OB)

2-62

Writes a byte to an open file

On entry

RO = byte to be written
Rl = file handle

On exit

Registers preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

OS BPut
(SWI &08)

OS_BPut writes the byte given in RO to the specified file at the current sequential
file pointer. The sequential pointer is then incremented. and the
EOF-error-on-next-read flag is cleared. The call indirects through BPutV.

An error is generated if the file handle is invalid; also if the file is a directory, or is
locked against deletion. or does not have write access.

Related SWis

OS_BGet (page 2-60), OS_GBPB (page 2-63)

Related vectors

BPutV

File Switch

OS GBPB
(SWI &OC)

Reads or writes a group of bytes from or to an open file

On entry

RO = reason code
Other registers depend on reason code

On exit

RO preserved
Other registers depend on reason code

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call reads or writes a group of bytes from or to an open file. It in directs through
GBPBV.

The particular action of OS_GBPB is given by the reason code in RO as follows:

RO

2

3

4

5

6

7

8

Action
Writes bytes to an open file using a specified file pointer

Writes bytes to an open file using the current file pointer

Reads bytes from an open file using a specified file pointer

Reads bytes from an open file using the current file pointer

Reads name and boot (*Opt 4) option of disc

Reads current directory name and privilege byte

Reads library directory name and privilege byte

Reads entries from the current directory

Page

2-65

2-65

2-66

2-66

2-67

2-67

2-67

2-68

2-63

OS_GBPB (SWI &OC)

2-64

RO
9

10

II

12

Action

Reads entries from a specified directory

Reads entries and file information from a directory

Reads entries and full file information from a directory

Reads entries and file type information from a directory

Reason code 12 is not available under RISC OS 2.

Page

2-70

2-70

2-70

2-70

All OS_GBPB calls either complete successfully, or return an error; they do not
partially transfer the group of bytes.

Related SWis

OS_BGet (page 2-60). OS_BPut (page 2-62)

Related vectors

GBPBV

Write bytes to an open file

FileSwitch

OS GBPB 1 and 2
(SWI &OC)

On entry

RO =I or 2
Rl =file handle
R2 = start address of buffer in memory
R3 = number of bytes to write
If RO = I

R4 =sequential file pointer to use for start of block

On exit

Use

RO, R I preserved
R2 = address of byte after the last one transferred from buffer
R3 = 0 (number of bytes not transferred)
R4 = initial file pointer+ number of bytes transferred
C flag is cleared

Data is transferred from memory to the file at either the specified file pointer
(RO = I) or the current one (RO = 2). If the specified pointer is beyond the end of
the file, then the fiLe is filled with zeros between the current file extent and the
specified pointer before the bytes are transferred.

The memory pointer is incremented for each byte written, and the final value is
returned in R2. R3 is decremented for each byte written, and is returned as zero.
The sequential pointer of the file is incremented for each byte written, and the final
value is returned in R4.

The EOF-error-on-next-read flag is cleared.

An error is generated if the file handle is invalid; also if the file is a directory, or is
locked against deletion, or does not have write access.

2-65

OS_GBPB 3 and 4 (SWI &OC)

2-66

Read bytes from an open file

OS GBPB 3 and 4
(SWI &OC)

On entry

RO = 3 or 4
Rl =file handle
R2 = start address of buffer in memory
R3 = number of bytes to read
If RO = 3

R4 = sequential file pointer to use for start of block

On exit

Use

RO, Rl preserved
R2 = address of byte after the last one transferred to buffer
R3 = number of bytes not transferred
R4 = initial file pointer+ number of bytes transferred
C flag is clear if R3 = 0, else it is set

Data is transferred from the given file to memory using either the specified file
pointer (RO = 3) or the current one (RO = 4). If the specified pointer is greater than
the current file extent then no bytes are read, and the sequential file pointer is not
updated. Otherwise the sequential file pointer is set to the specified file location.

The memory pointer is incremented for each byte read, and the final value is
returned in R2 . R3 is decremented for each byte read. If it is zero on exit (all the
bytes were read), the carry flag will be clear, otherwise it is set. The sequential
pointer of the file is incremented for each byte read, and the final value is returned
in R4.

The EOF-error-otHtext-read flag is cleared.

An error is generated if the file handle is invalid; also if the file is a directory, or
does not have read access.

Read information on a filing system

FileSwitch

OS_GBPB 5, 6 and 7
(SWI &OC)

On entry

RO = 5, 6 or 7
R2 = start address of buffer in memory

On exit

Use

RO, R2 preserved
C flag corrupted

These calls read information on the temporary filing system (normally the current
one) to the buffer pointed to by R2. The value you pass in RO determines the nature
and format of the data, which is always byte-oriented:

• If RO = 5, the call reads the name of the disc which contains the current
directory, and its boot option. It is returned as:

<name length byte><disc name><boot option byte>

The boot option byte may contain values other than 0- 3; under RISC OS 3 it
always contains 0.

• If RO = 6, the call reads the name of the currently selected directory, and
privilege status in relation to that directory. It is returned as:

<zero byte><name length byte><current directory name><privilege byte>

The privilege byte is &00 if you have 'owner' status (ie can create and delete
objects in the directory) or &FF if you have 'public' status (ie are prevented
from creating and deleting objects in the directory). On ADFS and other
FileCore-based filing systems you always have owner status.

• If RO = 7, the call reads the name of the library directory, and privilege status in
relation to that directory. It is returned as:

<zero byte><name length byte><library directory name><privilege byte>

The version of NetFS supplied with RISC OS 2 (5.46) pads disc and directory names
to the right with spaces; other filing systems do not, including the version of NetFS
supplied with RISC OS 3 (5.69 or later). None of the names have terminators; so if
the disc name were Mike, the name length byte would be 4.

2-67

OS_GBPB 8 (SWI &DC)

2-68

Reads entries from the current directory

OS GBPB 8
(SWI &OC)

On entry

R0=8
R2 = start address of data in memory
R3 = number of object names to read from directory
R4 = offset of first item to read in directory (0 for start)

On exit

Use

RO, R2 preserved
R3 = number of objects asked for but not read
R4 = next offset in directory
C flag is clear if R3=0, else set

This call reads entries from the current directory on the temporary filing system
(normally the current one). You can also do this using OS_GBPB 9.

R3 contains the number of object names to read. R4 is the offset in the directory to
start reading (ie if it is zero, the first item read will be the first file). Filenames are
returned in the area of memory specified in R2 . The format of the returned data is:

length of first object name
first object name in ASCII

. .. repeated as specified by R3 ...

length of last object name
last object name in ASCII

(one byte)
(length as specified)

(one byte)
(length as specified)

If R3 is zero on exit, the carry flag will be cleared, otherwise it will be set. If R3 has
the same value on exit as on entry then no more entries can be read and you must
not call OS_GBPB 8 again.

On exit, R4 contains the value which should be used on the next call (to read more
names). or- I if there are no more names after the ones read by this call. There is
no guarantee that the ,number of objects you asked for will be read. This is because
of the external constraints some filing systems may impose. To ensure reading all
the entries you want to, this call should be repeated until R4 =-I.

FileSwitch

This call is only provided for compatibility with older programs.

2-69

OS_GBPB 9, 10, 11 and 12 (SWI &OC)

2-70

OS_GBPB 9, 10, 11 and 12
(SWI &OC)

Read entries and file information from a specified directory

On entry

RO = 9, 10, II or 12
Rl =pointer to directory name (control-character or null terminated)
R2 =pointer to buffer (word aligned if RO = I 0, II or 12)
R3 = number of object names to read from directory
R4 =offset of first item to read in directory (0 for start)
R5 = buffer length
R6 =pointer to (wildcarded) name to match

On exit

Use

RO - R2 preserved
R3 = number of objects read
R4 =offset of last item read (-1 if finished)
R5, R6 preserved
C flag is clear if R3=0, else set

These calls read entries from a specified directory. If RO = 10, II or 12 on entry the
call also reads file information. If the directory name (which may contain
wildcards) is null (ie Rl points to a zero byte). then the currently-selected directory
is read.

The names which match the wildcard name pointed to by R6 are returned in the
buffer. If R6 is zero or points to a null string then ·•· is used, and all files will be
matched. R3 indicates how many were read. R4 contains the value which should be
used on the next call (to read more names) , or -I if there are no more names after
the ones read by this call.

There is no guarantee that the number of objects you asked for will be read. This is
because of the external constraints some filing systems may impose. To ensure
reading all the entries you want to, this call should be repeated until R4 =-I .

If RO = 9 on entry, the buffer is filled with a list of null-terminated strings consisting
of the matched names.

If RO = I 0 on entry, the buffer is filled with records:

Offset

0
4

8
12
16
20

Contents

Load address
Execution address
Length
File attributes
Object type
Object name (null terminated)

Each record is word-aligned.

If RO = II on entry, the buffer is filled with records:

Offset

0
4
8
12
16
20
24
29

Contents

Load address
Execution address
Length
File attributes
Object type
System internal name- for internal use only
Time/Date (cs since 1/1/1900)- 0 if not stamped
Object name (null terminated)

Each record is word-aligned.

If RO = 12 on entry, the buffer is filled with records:

Contents

FileSwitch

Offset

0 Load address, or high byte of date stamp (top three bytes are

4
8
12
16
20
24

&000000)
Execution address, or low byte of date stamp
Length
File attributes
Object type
Object file type (as for OS_File 20-23)
Object name (null terminated)

Each record is word-aligned.

Note that even if R3 returns with 0, the buffer area may still have been overwritten:
for instance, it may contain filenames which did not match the wildcard name
pointed to by R6.

An error is generated if the directory could not be found.

OS_GBPB 12 is not available in RISC OS 2.

2-71

OS_Find (SWI &OD)

2-72

Opens and closes files

OS Find
(SWI &00)

On entry

RO = reason code
Other registers depend on reason code

On exit

Depends on reason code

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call opens and closes files .

If the low byte of RO = 0 on entry, then you can either close a single file. or all files
on the current filing system; see OS_Find 0 on page 2-74.

If the low byte of RO-:~= 0 on entry then a file is opened for byte access. You can open
files in the following ways:

• open an existing file with read access only

• create a new file with read/write access

• open an existing file with read/write access

When you open a file a unique file handle is returned to you. You need this for any
calls you make to OS_Args (page 2-46). OS_BGet (page 2-60). OS_BPut (page 2-62)
and OS_GBPB (page 2-63). and to eventually close the file using OS_Find 0. For full
details of the reason codes to open files. see OS_Find 64 to 255 on page 2-75.

Related SWis

None

Related vectors

FindV

FileSwitch

2-73

OS_Find 0 (SWI &00)

2-74

Closes files

OS Find 0
(SWI &00)

On entry

RO =0
R I = file handle, or zero to close all files on current filing system

On exit

Use

Registers preserved

This call closes files . Any modified data held in RAM buffers is first written to the
file(s).

If Rl = 0 on entry, then all files on the current filing system are closed . You should
not use this facility within a program that runs in a multi-tasking environment such
as the desktop, as it may close files being used by other programs.

Otherwise Rl must contain a file handle, that was returned by the earlier call of
OS_Find that opened the file. Regardless of any errors returned, the file will always
be closed on return from this call.

Open files

File Switch

OS Find 64 to 255
(SWI &00)

On entry

RO = reason code
Rl =pointer to object name
R2 =optional pointer to path string or path variable

On exit

Use

RO = file handle, or 0 if object doesn't exist
Rl and R2 preserved

These calls open files . The way the file is opened is determined by bits 6 and 7 of
RO:

RO
&4X
&8X
&CX

Action
open an existing file with read access only
create a new file with read/write access
open an existing file with read/write access

In fact there is no guarantee that you will get the access that you are seeking, and if
you don't no error is returned at open time. The exact details depend on the filing
system being used, but as a guide this is what any new filing system should do if
the object is an existing file:

RO
&4X

&8X

&CX

Action
Return a handle if it has read access. Generate an error if it
has not got read access.

Generate an error if it is locked, or has neither read nor write
access. Otherwise return a handle, and open the file with its
existing access, and with its extent set to zero.

Generate an error if it is locked and has no read access, or has
neither read nor write access. Otherwise return a handle, and
open the file with its existing access.

The access granted is cached with the stream, and so you cannot change the access
permission on an open file.

Bits 4 and 5 of RO currently have no effect, and should be cleared.

2-75

OS_Find 64 to 255 (SWI &OD)

2-76

Bit 3 of RO determines what happens if you try to open an existing file (ie RO = &4X
or &CX). but it doesn't exist:

Bit 3

0

Action
RO is set to zero on exit
an error is generated

Bit 2 of RO determines what happens if you try to open an existing file (ie RO = &4X
or &CX) but it is a directory:

Bit 2
0

Action
you can open the directory but cannot do any operations on it
an error is generated

If you are creating a new file (ie RO = &8X) then an error is always generated if the
object is a directory.

Bits I and 0 of RO determine what path is used to search for the file:

Bit I
0
0

Bit 0

0
I
0

Path used

FileSPath system variable
path string pointed to by R2
path variable. name of which is pointed to

by R2
none

For a description of the path strings that are held in path variables. see the section
entitled FileSPath and RunSPath on page 2-16.

In all cases the file pointer is set to zero. If you are creating a file, then the extent is
also set to zero.

Note that you need the file handle returned in RO for any calls you make to
OS_Args (page 2-46). OS_BGet (page 2-60). OS_BPut (page 2-62) and OS_GBPB
(page 2-63). and to eventually close the file using OS_Find 0 (page 2-74).

Controls the filing system manager and filing systems

On entry

RO = reason code
Other registers depend on reason code

On exit

RO preserved
Other registers depend on reason code

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FileSwitch

OS FSControl
(SWI &29)

This call controls the filing system manager and filing systems. It is indirected
through FSCV.

The particular action of OS_FSControl is given by the reason code in RO as follows:

RO Action Pa&e
0 Set the current directory 2-80

Set the library directory 2-8I
2 Inform of start of new application 2-82
3 Reserved for internal use

4 Run a file 2-84

5 Catalogue a directory 2-86

6 Examine the current directory 2-87
7 Catalogue the library directory 2-88

2-77

OS_FSControl (SWI &29)

RO Action Page

8 Examine the library directory 2-89

9 Examine objects 2-90

10 Set filing system options 2-91

II Set the temporary filing system from a named prefix 2-92

12 Add a filing system 2-93

13 Check for the presence of a filing system 2-94

14 Filing system selection 2-95

15 Boot from a filing system 2-96

16 Filing system removal 2-97

17 Add a secondary module 2-98

18 Decode file type into text 2-99

19 Restore the current filing system 2-100

20 Read location of temporary filing system 2-101

21 Return a filing system file handle 2-102

22 Close all open files 2-103

23 Shutdown filing systems 2-104

24 Set the attributes of objects 2-105

25 Rename objects 2-106

26 Copy objects 2-107

27 Wipe objects 2-110

28 Count objects 2-111

29 Reserved for internal use

30 Read location of secondary module for temporary filing system 2-112

31 Convert a string giving a file type to a number 2-113

32 Output a list of object names and information 2-114

33 Convert a file system number to a file system name 2-115

34 Reserved for future expansion

35 Add an image filing system 2-116

36 Image filing system removal 2-117

37 Convert a pathname to a canonicalised name 2-118

38 Convert file information to an object's file type 2-120

39 Set the User Root Directory (URD) 2-121

40 Exchange current and previous directories 2-122

41 Return the defect list for an image 2-123

42 Map out a defect from an image 2-124

43 Unset the current directory 2-125

2-78

FileSwitch

RO Action Page

44 Unset the User Root Directory (URD) 2-126

45 Unset the library directory (Lib) 2-127

46 Return an image file's used space map 2-128

47 Read the boot option of the disc or image file that holds a 2-129
specified object

48 Write the boot option of the disc or image file that holds a 2-130
specified object

49 Read the free space on the disc or image file that holds a 2-131
specified object

50 Name the disc or image file that holds a specified object 2-132

51 Request that an image stamp be updated 2-133

52 Find the name and type of object that uses a particular offset 2-134

53 Set a specified directory to a given path without verification 2-135

54 Read the path of a specified directory 2-137

For details of each of these reason codes (except those reserved for internal use).
see the given pages.

Reason codes 35 upwards are not available under RISC OS 2.

Related SWis

None

Related vectors

FSCV

2-79

OS_FSControl 0 (SWI &29)

2-80

OS FSControl 0
(SWI &29)

Set the current directory and (optionally) filing system

On entry
RO =0
Rl =pointer to (wildcarded) directory name

On exit

Use

Registers preserved

This call sets the current directory to the named one. If the name specifies a
different filing system, it also selects that as the current filing system. If the name
pointed to is null, the directory is set to the user root directory.

Set the library directory

FileSwitch

OS FSControl 1
(SWI &29)

On entry

RO= I
Rl =pointer to (wildcarded) directory name

On exit

Use

Registers preserved

This call sets the library directory on a filing system. If no filing system is specified,
then the temporary filing system's library is set. If the name pointed to is null, the
library directory is set to the filing system default (typically $.Library, if present) .

Whenever a reference is made to the library on a specific filing system (eg
net:%. Link), that filing system's library is used; if no filing system is specified (eg
(%.Link), the temporary filing system's library is used.

If a filing system does not have a library directory set. then it searches in order the
directories &.Library, $.Library and@. Under RISC OS 2, filing systems that are not
FileCore based search% instead.

2-81

OS_FSContro/2 (SWI &29)

2-82

OS FSControl 2
(SWI &29)

Informs RISC OS and the current application that a new application is starting

On entry

RO= 2
RI =pointer to command tail to set
R2 =currently active object pointer to write
R3 = pointer to command name to set

On exit

Use

Registers preserved - may not return

This call enables you to start up an application by hand, setting its environment
string to a particular value; and allows FileSwitch and the kernel to free resources
related to the current thread.

First of all, FileSwitch calls XOS_UpCall 256 (new application starting- see
page I- I 93), with R2 set to the currently active object pointer that may be written .

If the UpCall is claimed, this means that someone is refusing to let your new
application be started, so the error 'Unable to start application' is returned.

FileSwitch then calls XOS_ServiceCall &2A (Service_NewApplication- see
page I-262). with R2 set to the currently active object pointer that may be written .

If the Service is claimed, this means that some module is refusing to let your new
application be started; however an error cannot be returned as your calling task
has just been killed, and FileSwitch would be returning to it. So FileSwitch
generates the 'Unable to start application' error using OS_GenerateError (see
page I -45): this will be sent to the error handler of your calling task's parent, since
your calling task will have restored its parent's handlers on receiving the
UpCall 256.

Next, unless the Exit handler is below MemoryLimit, all handlers that are
still set below MemoryLimit are reset to the default handlers (see
OS_ReadDefaultHandler, page I-32 I).

The currently active object pointer is then set to the value given and the environment
string set up to be that desired. The current time is read into the environment time
variable (see OS_GetEnv, page I-298).

FileSwitch

FileSwitch frees any temporary strings and transient blocks it has allocated and
sets the temporary filing system to the current filing system.

If the call returns with V clear, all is set for your task to start up the application:

MOV RO , #FSControl_StartApplication
LDR Rl , command_tail_ptr
LDR R2, execution_ address
BIC
LDR
SWI
BVS

R2 , R2, #&FC000003
R3 , command_ name_ptr
XOS_FSControl
return_ error

Address with no flags , USR mode

if in supervisor mode here, need to flatten SVC stack
LDR Rl3, InitSVCStack

TEQP PC, #0 USR mode, interrupts enabled
MOV RO , RO No op to avoid contention
MOV Rl2, #&80000000 Ensure called appl'n doesn't
MOV Rl3, #&80000000 assume a stack or workspace
MOV Rl4, PC Form return address
MOV PC , R2 Enter appl'n: assumes CAO = exec

SWI OS_ Exit In case it returns

2-83

OS_FSContro/4 (SWI &29)

2-84

Run a file

OS FSControl 4
(SWI &29)

On entry

RO =4
Rl =pointer to (wildcarded) filename

On exit

Use

Registers preserved

This call runs a file. If a matching object is a directory then it is ignored, unless it
contains a !Run file. The first file, or directory.!Run file that matches is used:

• A file with no type is run as an absolute application, provided its load address
is not below &8000. The environment string is set to the command line, and
the current time is read into the environment time variable- see OS_GetEnv
(page 1-298).

• A file of type &FF8 (Absolute code) is run as an absolute application, loaded
and entered at &8000. The environment string is set to the command line, and
the current time is read into the environment time variable- see OS_GetEnv
(page 1-298).

• A file of type &FFC (Transient code modules) is loaded into the RMA and
executed there. The environment string is set to the command line, and the
current time is read into the environment time variable- see OS_GetEnv
(page 1-298). Transient calls are nestable; when a transient returns to the filing
system manager the RMA space is freed. The RMA space is also freed (on the
reset service or filing system manager death) if the transient execution
stopped abnormally, eg an exception occurred or RESET was pressed. See the
chapter entitled Program Environment on page 1-283 for details on writing
transient utilities.

• Otherwise, the corresponding Alias$@RunType system variable is looked up to
determine how the file is run.

This call may never return. If it is starting up a new application then the UpCall
handler is notified, so any existing application has a chance to tidy up or to forbid
the new application to start. It is only after this that the new application might be
loaded.

FileSwitch

The file is searched for using the variable Run$Path. If this does not exist, a path
string of',%. ' is used (ie the current directory is searched first, followed by the
library directory) .

You cannot kill FileSwitch while it is threaded; so if you had an Obey file with the
line:

RMKill FileSwitch

this will not work if the file is *Run, but would if you were to use *Obey.

An error is generated if the file is not matched, or does not have read access, or is
a date/time stamped file without a corresponding Alias$@RunType variable.

2-85

OS_FSContro/5 (SWI &29)

2-86

Catalogue a directory

OS FSControl 5
(SWI &29)

On entry

RO = 5
Rl =pointer to (wildcarded) directory name

On exit

Use

Registers preserved

This call outputs a catalogue of the named subdirectory, relative to the current
directory. If the name pointed to is null, the current directory is catalogued.

An error is returned if the directory does not exist, or the object is a file .

Examine a directory

File Switch

OS FSControl 6
(SWI &29)

On entry

RO =6
Rl =pointer to (wildcarded) directory name

On exit

Use

Registers preserved

This call outputs information on all the objects in the named subdirectory. relative
to the current one. If the name pointed to is null. the current directory is examined.

An error is returned if the directory does not exist. or the object is a file.

2-87

OS_FSControl 7 (SWI &29)

2-88

Catalogue the library directory

OS FSControl 7
(SWI &29)

On entry

RO = 7
Rl =pointer to (wildcarded) directory name

On exit

Use

Registers preserved

This call outputs a catalogue of the named subdirectory, relative to the current
library directory. If the name pointed to is null , the current library directory is
catalogued.

An error is returned if the directory does not exist, or the object is a file .

Examine the library directory

FileSwitch

OS FSControl 8
(SWI &29)

On entry

RO = 8
Rl =pointer to (wildcarded) directory name

On exit

Use

Registers preserved

This call outputs information on all the objects in the named subdirectory, relative
to the current library directory. If the name pointed to is null, the current library
directory is examined.

An error is returned if the directory does not exist, or the object is a file.

2-89

OS_FSContro/9 (SWI &29)

2-90

Examine objects

On entry

R0=9
Rl =pointer to (wildcarded) path name

On exit

RO preserved

Use

OS FSControl 9
(SWI &29)

This call outputs information on all objects in the specified directory matching the
wild-leaf-name given.

An error is returned if the path name pointed to is null.

Sets filing system options

FileSwitch

OS FSControl 1 0
(SWI &29)

On entry

RO= 10
Rl =option (0, I or 4)
R2 = parameter

On exit

Use

Registers preserved

This call sets filing system options on the temporary filing system (normally the
current one) . An option of 0 means reset all filing system options to their default
values. See the *Opt command (page 2-176) for full details.

2-91

OS_FSContro/11 (SWI &29)

2-92

OS FSControl 11
(SWI &29)

Set the temporary filing system from a named prefix

On entry

RO =II
Rl =pointer to string

On exit

Use

RO preserved
Rl =pointer to part of name past the filing system specifier if present
R2 =-I :=:} no filing system was specified (call has no effect)
R2 ;;::: 0 :=:} old filing system to be reselected
R3 = pointer to special field, or 0 if none present

This call sets the temporary filing system from a filing system prefix at the start of
the string, if one is present. It is used by OS_CLI (page 1-929) to set temporary
filing systems for the duration of a command.

You can restore the temporary filing system to be the current one by calling
OS_FSControl19 (page 2-100).

Add a filing system

FileSwitch

OS FSControl 12
(SWI &29)

On entry

RO = 12
Rl =module base address
R2 =offset of the filing system information block from the module base
R3 = private word pointer

On exit

Use

RO - R3 preserved

This call informs FileSwitch that a module is a new filing system, to be added to the
list of those it knows about. The module should make this call when it initialises.

Rl and R2 give the location of a filing system information block, which is used by
FileSwitch to communicate with the filing system module. It contains both
information about the filing system, and the location of entry points to the
module's code.

The private word pointer passed in R3 is stored by FileSwitch. When it makes a call
to the filing system module, the private word is passed in R12 . Normally, this
private word is the workspace pointer for the module.

For full information on writing a filing system module, see the chapter entitled
Writing a filing system on page 2-521.

2-93

OS_FSContro/13 (SWI &29)

2-94

Check for the presence of a filing system

OS FSControl 13
(SWI &29)

On entry

RO = 13
Rl =filing system number (see page 2- 19). or pointer to filing system name
R2 = Rl dependent

On exit

Use

RO preserved
Rl =filing system number (see page 2-19). or preserved if not found
R2 = pointer to filing system control block, or 0 if not found

This call checks for the presence of a filing system.

If Rl < &100 then it is the filing system number (see page 2- 19); if. however,
R I ;::: & I 00 then it points to the filing system name. The filing system name match
is case-insensitive. If R2 is 0, the filing system name is taken to be terminated with
any control character or the characters: '#' , ':' or ·- ·. If R2 is not 0, then the filing
system name is terminated by any control character.

The filing system control block that is pointed to by R2 on exit is for the internal
use of FileSwitch, and you should not use or alter it. You should only test the value
of R2 for equality (or not) with zero.

An error is returned if the filing system name contains bad characters or is badly
terminated.

Filing system selection

File Switch

OS FSControl 14
{SWI &29)

On entry

RO= 14
Rl =filing system number (see page 2- 19), or pointer to filing system name

On exit

Use

Registers preserved

This call switches the current and temporary filing systems to the one specified by
Rl .

If R I = 0 then no filing system is selected as the current or temporary one (the
settings are cleared). If Rl is< & I 00 it is assumed to be a filing system number (see
page 2-19) . Otherwise, it must be a pointer to a filing system name, terminated by
a control -character or one of the characters '#' , ':' or ·- ·. The filing system name
match is case-insensitive.

This call is issued by filing system modules when they are selected by a
• Command, such as *Net or *ADFS.

An error is returned if the filing system is specified by name and is not present.

2-95

OS_FSContro/15 (SWI &29)

2-96

Boot from a filing system

OS FSControl 15
(SWI &29)

On entry

RO = 15

On exit

Use

RO preserved

This call boots off the currently selected filing system. It is called by the RISC OS
kernel before entering the configured language module when the machine is reset
using the Break key or reset switch. depending on the state of other keys, and on
how the computer is configured.

This call may not return if boot runs an application.

For more details. see *Configure Boot (page 2-146). *Configure NoBoot
(page 2-150). and the *Opt commands (page 2-176).

Filing system~ removal

FileSwitch

OS FSControl 16
(SWI &29)

On entry

RO = 16
Rl =pointer to filing system name

On exit

Use

Registers preserved

This call removes the filing system from the list held by FileSwitch. It calls the filing
system to close open files, flush buffers, and so on (except under RISC OS 2). You
should use it in the finalise entry of a filing system module.

Filing systems must be removed on any type of finalisation call. and added
(including any relevant secondary modules) on any kind of initialisation. The
reason for this is that FileSwitch keeps pointers into the filing system module
code, which may be moved as a result of tidying the module area or other such
operations.

Rl must be a pointer to a control-character terminated name- you cannot remove
a filing system by file system number, and if you try to do so an error is returned.

Modules must not complain about errors in filing system removal. Otherwise, it
would be impossible to reinitialise the module after reinitialising the filing system
manager.

Under RISC OS 2, if the filing system is the temporary one then the temporary filing
system 'is set to the current filing system. If the filing system is the current one.
then both the current and temporary filing systems are set to 0 (none currently
selected), and the old filing system number is stored. If it is added again before a
new current filing system is selected then it will be reselected (see
OS_FSControl 12 on page 2-93).

2-97

OS_FSContro/17 (SWI &29)

2-98

Add a secondary module

OS FSControl 17
(SWI &29)

On entry

RO = 17
Rl =pointer to filing system name
R2 =pointer to secondary system name
R3 =secondary module workspace pointer

On exit

Use

Registers preserved

This call is used to add secondary modules, so that extra filing system commands
are recognised in addition to those provided by the primary filing system module.
It is mainly used by FileCore (a primary module) to add its secondary modules
such as ADFS.

Decode file type into text

FileSwitch

OS FSControl 18
(SWI &29)

On entry

RO = 18
R2 = file type (bits 0 - II)

On exit

Use

RO preserved
R2 = first four characters of textual file type
R3 = second four characters of textual file type

This call issues OS_ServiceCall &42 (see page 1-263) . If the service is unclaimed,
then it builds a default file type. For example if the file type is:

Command

the call packs the four bytes representing the characters:

Comm

and the four bytes:

and

inR2

inR3

The string is padded on the right with spaces to a maximum of 8.

This BASIC code converts the file type in filetype% to a string in filetype$,
terminated by a carriage return :

DIM str% 8
SYS "OS_ FSControl " , 18 ., filetype % TO .,r2 %,r3 %
s tr% ! 0 r2 %
str%! 4 = r3 %
str%?8 = 13
filetype$ = $st r%

OS_FSControl 31 (see page 2-113) does the opposite conversion- a textual file
type to a file type number.

2-99

OS_FSContro/19 (SWI &29)

2-100

Restore the current filing system

OS FSControl 19
{SWI &29)

On entry

RO = 19

On exit

Use

RO preserved

This call sets the temporary filing system back to the current filing system.

OS_CLI (see page 1-929) uses OS_FSControl II (see page 2-92)to set a temporary
filing system before a command; it uses this call to restore the current filing system
afterwards. This command is also called by the kernel before it calls the error
handler.

File Switch

OS FSControl 20
(SWI &29)

Read location of primary module for temporary filing system

On entry

RO = 20

On exit

Use

RO preserved
Rl =primary module base address of temporary filing system
R2 = pointer to private word of temporary filing system

This call reads the location of the primary module for the temporary filing system,
and its private word. (For example, if ADFS were the temporary filing system, this
call would return FileCore's address, whereas OS_FSControl 30 would return the
address of ADFS- the secondary module. However, if NetFS were the temporary
filing system. this call would return its address.)

If no temporary filing system is set, then this call reads the values for the current
filing system instead. If there is no current filing system then RI will be zero on
exit, and R2 undefined.

2-101

OS_FSContro/21 (SWI &29)

2-102

Return a filing system file handle

OS FSControl 21
(SWI &29)

On entry

RO= 21
Rl =file handle

On exit

Use

RO preserved
Rl =filing system file handle
R2 =filing system information word

This call takes a file handle used by FileSwitch , and returns the internal file handle
used by the filing system which it belongs to. It also returns a filing system
information word. For a full definition of this, see the section entitled Filing system
information word on page 2-522.

The call returns a filing system file handle of 0 if the FileSwitch file handle is
invalid.

You should only use this call to implement a filing system.

Close all open files

FileSwitch

OS FSControl 22
(SWI &29)

On entry

RO = 22

On exit

Use

RO preserved

This call closes all open files on all filing systems. It first ensures that any modified
buffered data remaining in RAM (either in FileSwitch or in filing system buffers) is
written to the appropriate files.

The call does not stop if an error is encountered, but goes on to close all open files.
An error is returned if any individual close failed.

2-103

OS_FSContro/23 (SWI &29)

2-104

Shutdown filing systems

OS FSControl 23
(SWI &29)

On entry

RO = 23

On exit

Use

RO preserved

This call closes all open files on all filing systems. It first ensures that any modified
buffered data remaining in RAM (either in FileSwitch or in filing system buffers) is
written to the appropriate files.

It informs all filing systems of the shutdown ; most importantly this implies that it:

• logs off from all NetFS file servers

• dismounts all discs on FileCore-based filing systems

• parks the hard disc heads.

The call does not stop if an error is encountered, but goes on to close all open files.
An error is returned if any individual close failed.

Set the attributes of objects

File Switch

OS FSControl 24
(SWI &29)

On entry

RO = 24
Rl =pointer to (wildcarded) pathname
R2 = pointer to attribute string

On exit

Use

Registers preserved

This call gives the requested access to all objects in the specified directory whose
names match the specified wild-leaf pattern.

If any of the characters in R2 are valid but inappropriate they are not faulted, but if
they are invalid an error is returned. An error is also returned if the pathname
pointed to is null, or if the path name is not matched.

2-105

OS_FSContro/25 (SWI &29)

2-106

Rename object

OS FSControl 25
(SWI &29)

On entry
RO = 25
Rl =pointer to current pathname
R2 = pointer to desired pathname

On exit

Use

Registers preserved

This call renames an object. It is a 'simple' rename, implying that the source and
destination are single objects which must reside on the same physical device, and
hence on the same filing system.

An error is returned if the two objects are on different filing systems (checked by
FileSwitch), or on different devices (checked by the filing system), or in different
image files (checked by FileSwitch).

An error is also returned if the object is locked or is open, or if an object of the
desired pathname exists, or if the directory referenced by the path name does not
already exist.

Copy objects

File Switch

OS FSControl 26
(SWI &29)

On entry

RO = 26
Rl =pointer to source (wildcarded) pathname
R2 =pointer to destination (wildcarded) pathname
R3 = mask describing the action
R4 =optional inclusive start time (low 4 bytes)
R5 =optional inclusive start time (high byte, in bits 0 - 7)
R6 =optional inclusive end time (low 4 bytes)
R7 =optional inclusive end time (high byte, in bits 0- 7)
R8 =optional pointer to extra information descriptor:

[R8] + 0 = information address
[R8] + 4 = information length

On exit

Use

Registers preserved

This call copies objects , optionally recursing.

The source leafname may be wildcarded. The only wildcarded destination leafname
allowed is ·· ·, which means to make the leafname the same as the source leafname.

The bits of the action mask have the following meaning when set:

Bit Meaning when set

14 Reads destination object information and applies tests before loading any
of the source object.

13 Uses extra buffer specified using R8.

12 Copies only if source is newer than destination.

II Copies directory structure(s) recursively, but not files .

I 0 Restamps datestamped objects- files are given the time at the start of
this SWI, directories the time of their creation.

9 Doesn't copy over file attributes.

2-107

OS_FSContro/26 (SWI &29)

2-108

8 Allows printing during copy; printing is otherwise disabled. This option
also disables any options that may cause characters to be written (bits 6, 4
and 3 are treated as cleared). and prevents FileSwitch from installing an
UpCall handler to prompt for media changes.

7 Deletes the source after a successful copy (for renaming files across
media) .

6 Prompts you every time you might have to change media during the copy
operation. In practise you are unlikely to need to use this option, as this
SWI normally intercepts the UpCall vector and prompts you every time you
do have to change media. (It only prompts if no earlier claimant of the
vector has already tried to handle the UpCall.)

5 Uses application workspace as well as the relocatable module area.

4 Prints maximum information during copy.

3 Displays a prompt of the form 'Copy <object type> <source name> as
<destination name> (Yes/No/Quiet/Abandon)?' for each object to be
copied, and uses OS_ Confirm to get a response. A separate confirm state
is held for each level of recursion: Yes means to copy the object. No means
not to copy the object, Quiet means to copy the object and to turn off
confirmation at this level and subsequent ones (although if bit I is clear
you will still be asked if you want to overwrite an existing file). and Abandon
means not to copy the object and to return to the parent level. Escape
abandons the entire copy without copying the object, and returns an error.

2 Copies only files with a time/date stamp falling between the start and end
time/date specified in R4- R7. (Unstamped files and directories will also
be copied.) This check is made before any prompts or information is
output.

Automatically unlocks, sets read and write permission , and overwrites an
existing file. (If this bit is clear then the warning message 'File
<destination name> already exists [and is locked]. Overwrite (YIN)? · is
given instead. If you answer Yes to this prompt then the file is similarly
overwritten.)

0 Allows recursive copying down directories.

Buffers are considered for use in the following order, if they exist or their use is
permitted:

I user buffer

2 wimp free memory

3 relocatable module area (RMA)

4 application memory.

If either the Wimp free memory or the RMA buffers are used, they are freed
between each object copied.

File Switch

If application memory is used then FileSwitch starts itself up as the current
application to claim application space. If on the start application service a module
forbids the start-up, then the copy is aborted and an error is generated to the Error
handler of the parent. of the task that called OS_FSControl 26. The call does not
return; it sets the environment time variable to the time read when the copy
started and issues SWI OS_Exit, setting SysSReturnCode to 0.

2-109

OS_FSContro/27 (SWI &29)

2-110

Wipe objects

OS FSControl 27
{SWI &29)

On entry

RO = 27
R I = pointer to wildcarded path name to delete
R2 =not used
R3 = mask describing the action
R4 =optional start time (low 4 bytes)
R5 =optional start time (high byte, in bits 0- 7)
R6 =optional end time (low 4 bytes)
R7 =optional end time (high byte, in bits 0- 7)

On exit

Use

Registers preserved

This call is used to delete objects. You can modify the effect of the call with the
action mask in R3. Only bits 0- 4 and 8 are relevant to this command. The function
of these bits is as for OS_FSControl 26 (see page 2-1 07).

Count objects

FileSwitch

OS FSControl 28
(SWI &29)

On entry

RO = 28
Rl =pointer to wildcarded path name to count
R2 =not used
R3 = mask describing the action
R4 = optional start time (low 4 bytes)
R5 = optional start time (high byte, in bits 0- 7)
R6 =optional end time (low 4 bytes)
R7 =optional end time (high byte, in bits 0- 7)

On exit

Use

RO, Rl preserved
R2 =total number of bytes of all files that were counted
R3 = number of files counted
R4- R7 preserved

This call returns information on the number and size of objects. You can modify the
effect of the call with the action mask in R3 . Only bits 0, 2 - 4 and 8 are relevant to
this command. The function of these bits is as for OS_FSControl 26 (see
page 2-107).

Note that the command returns the amount of data that each object is comprised
of, rather than the amount of disc space the data occupies. Since a file normally
has space allocated to it that is not used for data, and directories are not counted,
any estimates of free disc space should be used with caution .

2-111

OS_FSContro/30 (SWI &29)

2-112

OS FSControl 30
(SWI &29)

Read location of secondary module for temporary filing system

On entry

RO = 30

On exit

Use

RO preserved
Rl =secondary module base address of temporary filing system
R2 = pointer to private word of temporary filing system

This call reads the location of the secondary module for the temporary filing
system. and its private word . (For example. if ADFS were the temporary filing
system. this call would return its address. whereas OS_FSControl 20 would return
the address of FileCore- the primary module.)

If no temporary filing system is set. then this call reads the values for the current
filing system instead. If there is no current filing system. or it does not have a
secondary module. then Rl will be zero on exit . and R2 undefined.

Converts a string giving a file type to a number

File Switch

OS FSControl31
(SWI &29)

On entry

RO = 31
Rl =pointer to control-character terminated filetype string

On exit

Use

RO, Rl preserved
R2 = filetype

This call converts the string pointed to by Rl to a file type. Leading and trailing
spaces are skipped. The string may either be a file type name (spaces within which
will not be skipped):

Obey
Text

or represent a file type number (the default base of which is hexadecimal):

FEB
4 333333

Hexadecimal version of Obey file type number
Base 4 version of Text file type number

OS_FSControl 18 (see page 2-99) does the opposite conversion- a file type
number to a textual file type.

2-113

OS_FSContro/32 (SWI &29)

2-114

Outputs a list of object names and information

On entry

RO = 32
Rl =pointer to wildcarded path name

On exit

Registers preserved

Use

OS FSControl 32
(SWI &29)

This call outputs a list of object names and information on them. The format is the
same as for the *Filelnfo command (see page 2-166) .

FileSwitch

OS FSControl 33
(SWI &29)

Converts a filing system number to a filing system name

On entry

RO = 33
Rl =filing system number (see page 2-19)
R2 = pointer to buffer
R3 = length of buffer

On exit

Use

Registers preserved

This call converts the filing system number passed in Rl (see page 2-19) to a filing
system name. The name is stored in the buffer pointed to by R2 , and is
null-terminated. If FileSwitch does not know of the filing system number you pass
it, a null string is returned.

2-115

OS_FSContro/35 (SWI &29)

2-116

Add an image filing system

OS FSControl 35
(SWI &29)

On entry

RO = 35
Rl =module base address
R2 =offset of the image filing system information block from the module base
R3 = private word pointer

On exit

Use

Registers preserved

This call informs FileSwitch that a module is a new image filing system, to be
added to the list of those it knows about. The module should make this call when
it initialises.

Rl and R2 give the location of an image filing system information block, which is
used by FileSwitch to communicate with the image filing system module. It
contains both information about the image filing system, and the location of entry
points to the module's code.

The private word pointer passed in R3 is stored by FileSwitch. When it makes a call
to the image filing system module, the private word is passed in R 12. Normally,
this private word is the workspace pointer for the module.

For full information on writing an image filing system module, see the chapter
entitled Writing a filing system on page 2-521.

This call is not available in RISC OS 2.

Image filing system removal

FileSwitch

OS FSControl 36
(SWI &29)

On entry

RO = 36
Rl =image filing system's file type

On exit

Use

Registers preserved

This call removes the image filing system from the list held by FileSwitch. It calls
the image filing system to close open files , flush buffers, and so on. You should use
it in the finalise entry of an image filing system module.

Image filing systems must be removed on any type of finalisation call. and added
on any kind of initialisation. The reason for this is that FileSwitch keeps pointers
into the image filing system module code, which may be moved as a result of
tidying the module area or other such operations.

Rl must be the image filing system's file type. You cannot remove a filing system
by file system number, and if you try to do so an error is returned.

Modules must not complain about errors in filing system removal. Otherwise, it
would be impossible to reinitialise the module after reinitialising the filing system
manager.

This call is not available in RISC OS 2.

2-117

OS_FSContro/37 (SWI &29)

2-118

Converts a pathname to a canonicalised name

OS FSControl 37
(SWI &29)

On entry

RO = 37
Rl =pointer to path name
R2 =pointer to buffer to contain null terminated canonicalised name
R3 =pointer to name of a path variable that contains a control-character

terminated comma separated path string, or 0 if none
R4 =pointer to control -character terminated comma separated path string to use if

variable not specified or non-existent, or 0 if none
R5 = size of buffer

On exit
'

Use

R5 = number of spare bytes in the buffer including the null terminator, ie:

R5 ;;:::: I ~ there are (R5- I) completely unused bytes in the buffer; so
R5 = I ~there are 0 unused bytes in the buffer, and therefore
the terminator just fitted

R5 ~ 0 ~ there are (I - R5) too many bytes to fit in the buffer, which
has consequently not been filled in ; so R5 = 0 ~there is I
byte too many- the terminator- to fit in the buffer

This call takes a pathname and returns its canonicalised name. However, case may
differ, and wildcards may not be sorted out if the wildcarded object doesn't exist.

For example:

• 'a' may be resolved to 'adfs ::HardDisc4.$.current.a' if the current directory
is 'adfs::HardDisc4.$.current' .

• 'a *' may be resolved to the same thing if 'a' exists and is the first match for
'a* ', but, if there is no match for 'a*', then 'adfs:: HardDisc4.$.current.a*'
will be returned .

• '/\may be resolved to 'adfs ::HardDisc4.$.current.A' , which should be
considered the same as 'adfs::HardDisc4.$.current.a'.

FileSwitch

This may be used as a two-pass process:

Pass I

On entry. set Rl to point to the pathname. and R2 and R5 (the pointer to. and
size of. the buffer) to zero. On exit. R5 =-(length of canonicalised name)

Pass 2

Claim a buffer of the right size (l-R5. not just -R5. as a space is needed for the
terminator) . On entry, ensure that Rl still points to the pathname. that R2 is
set to point to the buffer. and R5 contains the length of the buffer. On exit the
buffer should be filled in . and R5 should be I; but check to make sure.

This call is not available in RISC OS 2.

2-119

OS_FSContro/38 (SWI &29)

2-120

Converts file information to an object's file type

OS FSControl 38
(SWI &29)

On entry

RO = 38
Rl =pointer to the object's name
R2 = load address
R3 = execution address
R4 = object length
R5 =object attributes
R6 =object type (file/directory/image file)

On exit

Use

R2 =object filetype
Special values:
-I untyped (entry R2 and R3 were load and execution address)
& 1000 directory
&2000 application directory (directory whose name starts with a ' !')

This call converts file information, as returned by various calls- for example
OS_File 5- into the object's file type.

This call is not available in RISC OS 2.

Sets the User Root Directory (URD)

On entry

RO = 39
Rl =pointer to User Root Directory

On exit

FileSwitch

OS_FSControl 3~
(SWI &29)

Use
I This call sets the User Root Directory, which is shown as an '&' in pathnames.

This call is not available in RISC OS 2.

2-121

OS_FSContro/40 (SWI &29)

2-122

Exchanges current and previous directories

On entry

RO = 40

On exit

Use

OS FSControl 40
{SWI &29)

This call swaps the current and previously selected directories.

This call is not available in RISC OS 2.

Returns the defect list for an image

On entry

RO = 41
Rl =pointer to name of image (null terminated)
R2 = pointer to buffer
R5 = buffer length

On exit

RO - R5 preserved

Use

FileSwitch

OS FSControl 41
(SWI &29)

This call fills the given buffer with a defect list. which gives the byte offset to the
start of each defect The list is terminated by the value &20000000.

This call is not available in RISC OS 2.

2-123

OS_FSContro/42 (SWI &29)

2-124

Maps out a defect from an image

On entry

RO = 42
Rl =pointer to name of image (null terminated)
R2 = byte offset to start of defect

On exit

Use

RO - R2 preserved

This call maps out a defect from the given image.

This call is not available in RISC OS 2.

OS FSControl 42
(SWI &29)

Unsets the current directory

On entry

RO = 43

On exit

Use

FileSwitch

OS FSControl 43
(SWI &29)

This call unsets the current directory on the temporary filing system.

This call is not available in RISC OS 2.

2-125

OS_FSContro/44 (SWI &29)

2-126

Unsets the User Root Directory (URD)

On entry

RO = 44

On exit

Use

OS FSControl 44
(SWI &29)

This call unsets the User Root Directory on the temporary filing system.

This call is not available in RISC OS 2.

Unsets the library directory (Lib)

On entry

RO = 45

On exit

Use

FileSwitch

OS FSControl 45
(SWI &29)

This call unsets the library directory on the temporary filing system.

This call is not available in RISC OS 2.

2-127

OS_FSContro/46 (SWI &29)

2-128

Returns an image file's used space map

OS FSControl 46
(SWI &29)

On entry

RO = 46
Rl =pointer to name of image (null terminated)
R2 = pointer to buffer
R5 = buffer length

On exit

Use

RO - R5 preserved

This call returns an image file's used space map, filling the given buffer with 0 bits
for unused blocks, and I bits for used blocks. The buffer will be filled to its limit, or
to the file's limit, whichever is less. The 'perfect' size of the buffer can be calculated
from the file's size and its block size. The correspondence of the buffer to the file is
I bit to I block. The least significant bit (bit 0) in a byte comes before the most
significant bit.

The used space is the total space excluding free space and defects.

For non-image files, the buffer will be filled with ones.

This call is not available in RISC OS 2.

FileSwitch

OS FSControl47
(SWI &29)

Reads the boot option of the disc or image file that holds a specified object

On entry

RO = 47
Rl =pointer to name of object (null terminated)

On exit

Use

RO. Rl preserved
R2 = boot option

This call reads the boot option (ie the value 11 in •opt 4,11) of the disc or image file
that holds the specified object.

This call is not available in RISC OS 2.

2-129

OS_FSContro/48 (SWI &29)

2-130

OS FSControl 48
{SWI &29)

Writes the boot option of the disc or image file that holds a specified object

On entry

RO = 48
Rl =pointer to name of object (null terminated)
R2 = new boot option

On exit

Use

RO - R2 preserved

This call writes the boot option (ie the value 11 in *Opt 4,11) of the disc or image file
that holds the specified object.

This call is not available in RISC OS 2.

FileSwitch

OS FSControl 49
(SWI &29)

Reads the free space on the disc or image file that holds a specified object

On entry

RO =49
Rl =pointer to name of object (null terminated)

On exit

Use

RO = free space
Rl =largest creatable object
R2 = disc size

This call reads the free space on the disc or image file that holds the specified
object. It also returns the size of the largest creatable object, and the size of the
disc.

This call is not available in RISC OS 2, and returns incorrect information for NetFS.

2-131

OS_FSContro/50 (SWI &29)

2-132

OS FSControl 50
(SWI &29)

Names the disc or image file that holds a specified object

On entry

RO =50
Rl =pointer to name of object (null terminated)
R2 = new name of disc

On exit

Use

RO - R2 preserved

This call names the disc or image file that holds the specified object.

This call is not available in RISC OS 2.

File Switch

OS FSControl 51
(SWI &29)

Used by a handler of discs to request that an image stamp be updated

On entry

RO =51
Rl =pointer to name of object (null terminated)
R2 = sub-reason code:

0 stamp when updated
stamp now

On exit

Use

RO - R2 preserved

This call is made by a handler of discs (eg FileCore) to inform an image filing
system (eg DOSFS) that it should update the disc's image stamp (a unique
identification number). either when the disc is next updated (R2=0). or now
(R2=1) .

See the chapter entitled Writing a filing S!JStem on page 2-521 for more details.

This call is not available in RISC OS 2.

2-133

OS_FSContro/52 (SWI &29)

2-134

OS FSControl 52
(SWI &29)

Finds the name and type of object that uses a particular offset within an image

On entry

RO =52
Rl =pointer to name of object (null terminated)
R2 =offset into disc or image
R3 =pointer to buffer to receive object name (if object found)
R4 = buffer length

On exit

Use

R2 = kind of object found at offset:
0 no object found; offset is free/a defect/beyond end of image

no object found; offset is allocated, but not {free I a defect I beyond
end of image)- eg the free space map

2 object found; cannot share the offset with other objects
3 object found; can share the offset with other objects

This call finds the name and type of object that uses a particular offset within an
image. On exit, if R2 = 2 or 3 then an object has been found, and the buffer will
contain its full pathname; otherwise the buffer may be corrupted.

The image searched is the deepest image, eg if Rl pointed to:

$.pc.amiga.atari.a.b.c

where pc is a DOS disc image, amiga is an Amiga disc image, and atari an Atari
disc image, then the image searched would be:

$.pc.amiga.atari

This call is not available in RISC OS 2.

FileSwitch

OS FSControl 53
(SWI &29)

Sets a specified directory to a given path without verification

On entry

RO =53
Rl =pointer to rest of path
R2 =directory to set
R3 =pointer to name of filing system (null-terminated)
R6 =pointer to special field (terminated by a null or'.'). or 0 if not present

On exit

Use

Registers preserved

This call explicitly tells FileSwitch to set the specified directory to the given path
without it performing any form of verification on the path provided.

The 'rest of path' is a string giving the canonical path from the disc (if present) to
the leaf which is the directory. It must not have wildcards in it. nor may it have any
GSTransable bits to it. The string must be null-terminated. It must have a root
directory of some sort (ie S. 'Yo or & must be present at the right place). For
example:

• *Mount on ADFS may set the library to ':HardDisc4.S.Library·

• *Logon on NetFS may set the URD to ':FileServer.&'.

If Rl is 0 on entry then the relevant directory will be put into the unset state.

The value in R2 tells FileSwitch which directory to set:

Value

0

2
3

Directory

@ (currently selected directory)
\ (previously selected directory)
& (user root directory)
'Yo (library)

Other values are illegal.

2-135

OS_FSControl 53 (SWI &29)

2-136

The optional special field pointed to by R6 should consist of the textual part of the
special field , after any# prefix that may have been present. It is terminated by a
null byte or a·.·. It must not contain any wildcards or GSTransable bits .

This call is not available in RISC OS 2.

Reads the path of a specified directory

File Switch

OS FSControl 54
(SWI &29)

On entry

RO =54
R I = pointer to buffer
R2 = directory to read
R3 =pointer to name of filing system (null-terminated)
R5 = size of buffer, or 0 to get required size of buffer

On exit

Use

Rl =pointer to rest of path, or 0 if directory unset
R5 =value on entry, decremented by total size of data placed in buffer
R6 =pointer to special field (terminated by a null or'.'), or 0 if not present

This call reads the path of a specified directory. It is the reverse of OS_FSControl 53
(see page 2-135) . It is expected that this call will be used twice, the first time to get
the buffer length (ie R5 = 0 on entry, on exit is decremented by required length),
and the second time to fill the buffer. The buffer will have the special field and the
rest of the path placed into it. The values in Rl and R6 are suitable for submission
to OS_FSControl 53.

This call is not available in RISC OS 2.

2-137

·commands

*Commands

2-138

*Access

Controls who can run, read from, write to and delete specific files

Syntax

*Access object_spec [attributes]

Parameters

Use

object_spec

attributes

L

w
R

I
w
R

a valid (wildcarded) pathname specifying a file or
directory

The following attributes are allowed:

Lock object against deletion by any user
Write permission for you
Read permission for you
Separator between your permissions and the public's
Write permission for the public (on NetFS)
Read permission for the public (on NetFS)

*Access changes the attributes of all objects matching the wildcard specification.
These attributes control whether you can run, read from, write to and delete a file.

NetFS uses separate attributes to control other people's read and write access to
your files: their 'public access'. By default, files are created without public read and
write permission. If you want others on the network to be able to read files that you
have created, make sure you have explicitly changed the access status to include
public read. If you are willing to have other NetFS users work on your files (ie
overwrite them). set the access status to public write permission. Other NetFS
users cannot completely delete your files though, unless they have owner access.

The public attributes can be set within any FileCore-based filing system, except
when using L-format; but they will be ignored unless the file is transferred to the
NetFS. Other filing systems may work in the same way, or may generate an error if
you try to use the public attributes.

Examples

*access myfile l

*access myfile wr/r

FileSwitch

Related commands

•Ex, •Filelnfo, •Jnfo

2-139

*Append

2-140

*Append

Adds data to an existing file

Syntax

*Append filename

Parameters

Use

filename a valid pathname specifying an existing file

• Append opens an existing file so you can add more data to the end of the file .
Each line of input is passed to OS_GSTrans before it is added to the file . Pressing
Escape finishes the input.

Example

*type thisfile
this line is already in thisfile
*append thisfile

1 some more text
Esc the Esc character terminates the file
*type thisfile
this line is already in thisfile
some more text

Related commands

•suild

Syntax

Use

File Switch

*Back

Exchanges current and previous directories

*Back

*Back swaps the current and previously selected directories on the current filing
system. The command is used for switching between two frequently used
directories.

In RISC OS 2 this command is implemented by FileCore.

Related commands

*Dir

2-141

"'Build

2-142

*Build

Opens a new file (or overwrites an existing one) and directs subsequent input to it

Syntax

*Build filename

Parameters

Use

filename a valid pathname specifying a file

*Build opens a new file (or reopens an existing one with zero extent) and directs
subsequent input to it. Each line of input is passed to OS_GSTrans before it is
added to the file. Pressing Escape finishes the input.

Note that for compatibility with earlier systems the *Build command creates files
with lines terminating in the carriage return character (ASCII &OD) . The Edit
application provides a simple way of changing this into a linefeed character, using
the CR~LF function from the Edit submenu.

Example

*Build testfile
1 This is the first line of testfile

Esc the Esc character terminates the file
*Type testfile
This is the first line of testfile

Related commands

*Append

File Switch

*Cat

Lists all the objects in a directory

Syntax

*Cat [directory]

Parameters

Use

directory a valid pathname specifying a directory

•cat (short for 'catalogue') lists all the objects in a directory, showing their access
attributes, and other information on the disc name, options set, etc. If no directory
is specified, the contents of the current directory are shown. •cat can be
abbreviated to··.· (a full stop), provided that you have not •set the system variable
AliasS. to a different value from its default.

Examples

*

*cat net#59.254:

*.ram:$.Mike

*Cat { > printer:

Related commands

catalogue of current directory

catalogue of current directory on NetFS file server
59.254

catalogue of RAM filing system directory S.Mike

catalogue of current directory redirected to printer

*Ex, *Filelnfo, *Info, *LCat and *LEx

2-143

*CDir

2-144

*CDir

Creates a directory

Syntax
*CDir directory [size_in_entries]

Parameters

Use

directory

size_in_entries

a valid pathname specifying a directory

how many entries the directory should hold before it
needs to be expanded (NetFS is the only built-in filing
system to use this)

*CDir creates a directory with the specified pathname. On the NetFS, and on some
third-party filing systems, you can also give the size of the directory.

Examples
*CDir fred

*CDir ram:fred

Related commands
•cat

creates a directory called fred on the current filing
system, as a daughter to the current directory

creates a directory called fred on the RAM filing system ,
as a daughter to the current RAMFS directory

FileSwitch

*Close

Closes all open files on the current filing system

Syntax

*Close

Parameters

Use

None

*Close closes all open files on the current filing system. and is useful when a
program crashes, leaving files open.

If preceded by the filing system name, *Close can be used to close files on systems
other than the current one. For example:

*adfs:Close

would close all files on ADFS, no matter which filing system is the current one.

You must not use this command within a program that runs in a multi-tasking
environment such as the desktop, as it may close files being used by other
programs.

Related commands

*Bye, *Shut, *Shutdown

2-145

*Configure Boot

2-146

Syntax

*Configure Boot

Sets the configured boot action so that a power on, reset or Ctrl Break runs a boot
file

*Configure Boot

Parameters

Use

None

*Configure Boot sets the configured boot action so that a power on, reset or
Ctrl Break runs a boot file, provided that the Shift key is not held down- if it is,
then no boot takes place.

When a boot does take place, the file &.!Boot is looked for, and if found is loaded
and run, as set by the *Opt 4 command. You might use a boot file to load a
program automatically when the computer is switched on. For information on
NetFS boot files, see your network manager.

You can use the *FX 255 command to override the configured boot action at any
time; a typical use is to disable booting at the end of a boot file, so that the
computer does not re-boot on a soft reset.

The Break key always operates as an Escape key after power on.

NoBoot is the default setting.

The change takes effect on the next power-on or hard reset.

Related commands

*Configure NoBoot, *FX 255

File Switch

*Configure DumpFormat

Sets the configured format used by the *Dump, *List and *Type commands

Syntax

*Configure DumpFormat n

Parameters

Use

n A number in the range 0 to 15. The parameter is treated as a four-bit
number.

The bottom two bits define how control characters are displayed, as
follows:

Value Meaning

0 GSTrans format is used (eg lA for ASCII I)
I Full stop'.' is used
2 < d> is used, where dis a decimal number
3 <&h > is used, where his a hexadecimal number

If bit 2 is set. characters which have their top bit set are treated as
printable characters; otherwise they are treated as control characters. n=5,
for example, causes ASCII character 247 to be printed as+ (Latin fonts
only).

If bit 3 is set. characters which have their top bit set are ANDed with &7F
before being processed so the top bit is no longer set; otherwise they are
left as they are.

•configure DumpFormat sets the configured format used by the *Dump, *List and
*Type commands, and the vdu: output device. The default value is 4 (GSTrans
format, and characters with the top bit set are printed using all 8 bits) .

*Dump ignores the setting of the bottom two bits of the parameter, and always
prints control characters as full stops.

The change takes effect immediately.

Example

*Configure DumpFormat 2

2-147

•configure DumpFormat

2-148

Related commands

*Dump, *List, *Type

File Switch

*Configure FileSystem

Sets the configured filing system to be used at power on or hard reset

Syntax

*Configure FileSystern fs_namelfs_number

Parameters

Use

fs_name

fs_number

a filing system name (ADFS, Net or Ram)

a filing system number (see page 2-19)

*Configure FileSystem sets the configured filing system to be used at power on or
hard reset. The filing system is selected just before any boot action is taken, and a
banner is displayed showing its name. (The banner is also shown on a soft reset.)

To specify the filing system by name (rather than by number). FileSwitch must have
that name registered at the time you use this command. This is because FileSwitch
needs to convert the name to the filing system number that is actually stored.

If the configured filing system is not found on a reset then FileSwitch will return an
error on every subsequent command that tries to use the currently selected filing
system, until a current filing system is successfully selected.

Example

*Configure FileSystern Net

2-149

*Configure NoBoot

2-150

Syntax

*Configure NoBoot

Sets the configured boot action so that a Shift power on. Shift reset or Shift Break
runs a boot file

*Configure NoBoot

Parameters

Use

None

*Configure NoBoot sets the configured boot action so that any kind of reset
doesn't run a boot file- except if the Shift key is held down. when a boot takes
place.

When a boot does take place, the file&. !Boot is looked for. and if found is loaded
and run. as set by the *Opt 4 command. You might use a boot file to load a
program automatically when the computer is switched on. For information on
NetFS boot files, see your network manager.

You can use the *FX 255 command to override the configured boot action at any
time; a typical use is to disable booting at the end of a boot file , so that the
computer does not re-boot on a soft reset.

The Break key always operates as an Escape key after power on.

This is the default setting.

The change takes effect on the next power-on or hard reset.

Related commands
*Configure Boot, *FX 255, *Rename

FileSwitch

*Configure Truncate

Sets the configured value for whether or not filenames are truncated when too long

Syntax
*Configure Truncate OniOff

Parameters

Use

On

Off

long filenames are truncated

long filenames are not truncated

*Configure Truncate sets the configured value for whether or not filenames are
truncated when too long for a filing system to handle.

If you are writing a filing system that is unable to handle filenames over a certain
length, you should examine the bit of CMOS that this command alters (see the
section entitled Non-volatile memory (CMOS RAM) on page 1-355). If filename
truncation is off, you should generate a 'Bad name' error if you are passed too long
a filename; otherwise, you should truncate all filenames.

This command is not available in RISC OS 2.

Example
*Configure Truncate On

Related commands
None

2-151

·copy

2-152

*Copy

Copies files and directories

Syntax
*Copy source_spec destination_spec [[-]options]

Parameters
source_spec a valid (wildcarded) pathname specifying a file or

directory

destination_spec a valid (wildcarded, but see below for restrictions)
pathname specifying a file or directory

options upper- or lower-case letters, optionally separated by
spaces

A set of default options is read from the system variable Copy$0ptions, which is
set by the system as shown below. You can change these default preferences using
the •set command. You are recommended to type:

*Set Copy$0ptions <Copy$0ptions> extra_options

so you can see what the original options were before you added your extra ones.
The default options are overruled by any given to the command.

To ensure an option is ON, include it in the list of options; to ensure it is OFF,
immediately precede the option by a·-· (eg -C-r to turn off the C and R options) .

• A(ccess) Force destination access to same as source.
Default ON.

Important when you are copying files from ADFS to NetFS, for example,
because it maintains the access rights on the files copied. You should set this
option to be OFF when you are updating a common release on the network, to
maintain the correct access rights on it.

• C(onfirm) Prompt for confirmation of each copy.
Default ON.

Useful as a check when you have used a wildcard, to ensure that you are
copying the files you want. Possible replies to the prompt for each file are
Y(es) (to copy the file or structure and then proceed to the next item). N(o) (to
go on to the next item without making a copy). Q(uiet) (to copy the item and all
subsequent items without further prompting), A(bandon) (to stop copying at
the current level- see the R option). or Esc (to stop immediately).

• D(elete)
Default OFF

Delete the source object after copy.

File Switch

This is useful for moving a file from one disc or other storage unit to another.
The source object is copied; if the copy is successful, the source object is then
deleted. If you want to move files within the same disc, the *Rename
command is quicker, as it does not have to copy the files.

• F(orce)
Default OFF

Force overwriting of existing objects.

Performs the copy, regardless of whether the destination files exist, or what
their access rights are. The files can be overwritten even if they are locked or
have no write permission.

• L(ook) Look at destination before loading source file.
Default OFF

Files are normally copied by reading a large amount of data into memory
before attempting to save it as a destination file. The L option checks the
destination medium for accessibility before reading in the data. Thus L often
saves time in copying, except for copies on the same disc.

• N(ewer)
Default OFF

Copy only if source is more recent than destination.

This is useful during backups to prevent copying the same files each time, or
for ensuring that you are copying the latest version of a file.

• P(rompt) Prompt for the disc to be changed as needed in copy.
Default OFF

This is provided for compatibility with older filing systems and you should not
need to use it. Most RISC OS filing systems will automatically prompt you to
change media.

• Q(uick) Use application workspace as a buffer
Default OFF

The 0 option uses the application workspace, so overwrites whatever is there.
It should not be used if an application is active.

Copying in the Desktop can use the Wimp's free memory, and so you should
not need to use this option. It's quicker not to use this option when you are
copying from hard disc to floppy, as these operations are interleaved so well.
However, in other circumstances this option can speed up the copying
operation considerably.

I

• R(ecurse) Copy subdirectories and contents.
Default OFF

This is useful when copying several levels of directory, since it avoids the need
to copy each of the directories one by one.

2-153

·copy

2-154

Use

• S(tamp)
Default OFF.

Restamp date-stamped files after copying.

Useful for recording when the particular copy was made.

• (s)T(ructure) Copy only the directory structure.
Default OFF.

Copies the directory structure but not the files. By using this option as a first
stage in copying a directory tree, access to the files is faster when they are
subsequently copied.

• V(erbose) Print information on each object copied.
Default ON.

This gives full textual commentary on the copy operation.

*Copy makes a copy between directories of any object(s) that match the given
wildcard specification. Objects may be files or directories. The leafname of the
destination must either be a specific filename, or the character'* ' in which case the
destination will have the same leafname as the source. For example:

Copy data Dir2.*

will copy all the files in the current directory with names beginning data to Dir2,
preserving their leafnames.

Note that it is dangerous to copy a directory into one of its subsidiary directories.
This results in an infinite loop, which only comes to an end when the disc is full or
Esc is pressed.

If the CopySOptions variable is unset then *Copy behaves as if the variable were
set to its default value.

Examples

*Copy fromfile tofile rfq-c-v

Copy :fred.data :jim.*

Related commands

Copies all files beginning 'data' from the
disc called 'fred' to the disc called 'jim'.

*Access, *Delete, *Rename, *Wipe, and the system variable Copy$0ptions.

File Switch

*Count

Adds up the size of data held in file objects. and the number of objects

Syntax

*Count object_spec [[-]options]

Parameters

Use

object_spec

options

a valid (wildcarded) pathname specifying a file or
directory

upper- or lower-case letters. optionally separated by
spaces

A set of default options is read from the system variable Count$0ptions. which is
set by the system as shown below. You can change these default preferences using
the •set command. You are recommended to type:

*Set Count$0ptions <Count$0ptions> extra_options

so you can see what the original options were before you added your extra ones.
The default options are overruled by any given to the command.

To ensure an option is ON , include it in the list of options; to ensure it is OFF.
precede the option by a·-· (eg: -C-r to turn off the C and R options) .

• C(onfirm)
Default OFF

• R(ecurse)
Default ON.

• V(erbose)
Default OFF

Prompt for confirmation of each count.

Count subdirectories and contents.

Print information on each file counted.

This gives information on each file counted. rather than just printing the
subtotal counted in directories.

•count adds up the size of data held in one or more objects that match the given
wildcard specification.

Note that the command returns the amount of data that each object is comprised
of. rather than the amount of disc space the data occupies. Since a file normally
has space allocated to it that is not used for data. and directories are not counted.
any estimates of free disc space should be used with caution.

2-155

*Count

2-156

If the CountSOptions variable is unset then •count behaves as if the variable were
set to its default value.

Example

*Count $ r - e v Counts all files on disc, giving full information on each file object

Related commands

*Ex, *Fileinfo, *Info, and the system variable Count$0ptions

File Switch

*Create

Reserves space for a new file

Syntax

*Create filename [length [exec_addr [load_addr>]]]

Parameters

Use

filename

length

exec_addr

load_addr

a valid pathname specifying a file

the number of bytes to reserve (default 0)

the address to be jumped to after loading, if a program

the address at which the file is loaded into RAM when
*Loaded (default 0)

•create reserves space for a new file, usually a data file . No data is transferred to
the file. You may assign load and execution addresses if you wish. The units of
length, load and execution addresses are in hexadecimal by default.

If both load and execution addresses are omitted, the file is created with type FFD
(Data) and is date and time stamped.

Examples

*Create mydata 1000 0 8000

*Create newfile 10 4096

*Create bigfile &10000

Related commands

*Load, •save

Creates a file & I 000 bytes long, which will be
loaded into address &8000

Creates a file & I 000 bytes long which is date
and time stamped

2-157

*Defect

2-158

Syntax

*Defect

Reports what object contains a defect, or (if none) marks the defective part of the
disc so it will no longer be used

*Defect disc_spec disc_addr

Parameters

Use

disc_spec

disc_addr

the name of the disc or number of the disc drive

the hexadecimal disc address where the defect exists,
which must be a multiple of 256- that is. it must end in
'00'

*Defect reports what object contains a defect, or (if none) marks the defective part
of the disc so it will no longer be used. *Defect is typically used after a disc error
has been reported, and the *Verify command has confirmed that the disc has a
physical defect. and given its disc address.

If the defect is in an unallocated part of the disc. *Defect will render that part of the
disc inaccessible by altering the 'map' of the disc.

If the defect is in an allocated part of the disc, *Defect tells you what object
contains the defect, and the offset of the defect within the object. This may enable
you to retrieve most of the information held within the object, using suitable
software. You must then delete the object from the defective disc. *Defect may also
tell you that some other objects must be moved: you should copy these to another
disc, and then delete them from the defective disc. Once you have removed all the
objects that the *Defect command listed, there is no longer anything allocated to
the defective part of the disc; so you can repeat the *Defect command to make it
inaccessible.

Sometimes the disc will be too badly damaged for you to successfully delete
objects listed by the *Defect command. In such cases the damage cannot be
repaired, and you must restore the objects from a recent backup.

In RISC OS 2 this command is implemented by FileCore.

Example

*Verify mydisc
Disc error 08 at :0 / 00010400
*Defect mydisc 10400
$.mydir must be moved
.myfilel has defect at offset 800
.myfile2 must be moved

Related commands

*CheckMap, *Verify

FileSwitch

2-159

•oelete

2-160

*Delete

Erases a single file or empty directory

Syntax

*Delete object_spec

Parameters

Use

object_spec a valid (wildcarded) pathname specifying a file or an
empty directory

*Delete erases the single named file or empty directory. An error message is given
if the object does not exist, or is a directory containing files.

You may not use wildcards in the last component of the pathname.

Examples

Delete $.dir.myfile

*Delete myfile

Related commands

*Remove, *Wipe

Uses wildcards

Deletes myfile from the current directory

FileSwitch

*Dir

Selects a directory

Syntax

*Dir [directory]

Parameters

Use

directory a valid pathname specifying a directory

•oir selects a directory as the currently selected directory (CSD) on a filing system.
You may set the CSD separately on each filing system, and on each server of a
multi-server filing system such as NetFS. If no directory is specified, the user root
directory (URD) is selected.

Examples

*Dir

*Dir mydir

sets the CSD to the URD

sets the CSD to mydir

A CSD may be set for each filing system, for instance, within NetFS, the command:

*Dir ADFS : ...

whereas:

*ADFS:Dir...

Related commands

•sack, •coir

sets the current filing system to ADFS and selects the CSD there;
it does not affect the CSD in NetFS

sets the CSD on ADFS only; NetFS remains the current filing
system

2-161

·oump

2-162

*Dump

Displays the contents of a file, in hexadecimal and ASCII codes

Syntax

*Dump filename [file_offset [start_addr]]

Parameters

Use

filename

file_offset

start_addr

a valid pathname specifying a file

offset, in hexadecimal by default, from the beginning of
the file from which to dump the data

display as if the file were in memory starting at this
address (in hexadecimal by default)- defaults to the
file's load address

*Dump displays the contents of a file as a hexadecimal and (on the righthand side
of the screen) as an ASCII interpretation. An address is given on the lefthand side
of:

start_addr +current offset in file

You can set the format used to display the ASCII interpretation using
*Configure DumpFormat. This gives you control over:

• whether the top bit of a byte is stripped first

• how bytes are displayed if their top bits are set.

If a file is time/date stamped, it is treated as having a load address of zero.

Example

*Dump myprog 0 8000

Related commands

Dumps the file myprog, starting from the beginning of
the file (offset is 0) but numbering the dump from
&8000, as if the file were loaded at that address

*Configure DumpFormat, *List, *Type

FileSwitch

*EnumDir

Creates a file of object leafnames

Syntax

*EnumDir directory output_file [pattern]

Parameters

Use

directory

output_file

pattern

a valid pathname specifying a directory

a valid pathname specifying a file

a wildcard specification for matching against

*EnumDir creates a file of object leafnames from a directory that match the
supplied wildcard specification.

The default pattern is *, which will match any file within a directory. The current
directory can be specified by@.

Examples

EnumDir $.dir myfile data

*EnumDir @ listall *_doc

Related commands

*Cat, *LCat

Creates a file myfile, containing a list of all
files beginning data contained in directory S.dir

Creates a file listall, containing a list of all files
in the current directory whose names end in
_doc

2-163

•Ex

2-164

Lists file information within a directory

Syntax

*Ex [direc tory]

Parameters

Use

dire c tory a valid pathname specifying a directory

*Ex lists all the objects in a directory together with their corresponding file
information. The default is the current directory.

*Ex

Most filing systems also display an informative header giving the directory's name
and other useful information.

Example
*Ex mail

Mail
DS
Dir . MHardy

Current
LogFile

WR
WR

Related commands

*Filelnfo, *Info

Owner
Option 0 (Off)
Lib . ArthurLib

Text
Text

15 : 54 : 37 04-Jan-1989 60 bytes
15:54 : 37 04-Jan-1989 314 bytes

File Switch

*Exec

Executes a command file

Syntax

*Exec [filename]

Parameters

Use

filename a valid pathname specifying a file

*Exec instructs the operating system to take its input from the specified file,
carrying out the instructions it holds. This command is mainly used for executing a
list of operating system commands contained in a command file . The file, once
open, takes priority over the keyboard or serial input streams.

If no parameter is given, the current exec file is closed.

Example

*Exec !Boot

Related commands

*Obey

Related SWis

OS_Byte 198 (page 1-877)

Related vectors

None

uses the file ! Boot as though its contents have been t1,1ped
in from the ke1,1board

2-165

*File Info

2-166

*File Info

Gives full file information about specified objects

Syntax

*Fileinfo obj ect_spec

Parameters

Use

object_spec a valid (wildcarded) pathname specifying one or more
files and/or directories

*Filelnfo gives file information for the specified object(s); this consists of the
filename, the access permission , the filetype and datestamp or the load and
execution addresses (in hexadecimal). and the length of the file in hexadecimal.

Under RISC OS 2, the information given varies between filing systems, as does the
matching (or not) of wildcards.

Example
*Fileinfo current
Current WR/ Text 15:54:37.40 04-Jan-1989 000007F

Related commands

*Ex, *Info

FileSwitch

*Info

Gives file information about specified objects

Syntax

*Info object_ spec

Parameters

Use

objec t_s pec a valid (wildcarded) pathname specifying one or more
files and/or directories

*Info gives file information for the specified object(s) ; this consists of the filename,
the access permission , the filetype and datestamp or the load and execution
addresses (in hexadecimal), and the length of the file.

If the file is dated, the date and time are displayed using the current
Sys$DateFormat. If it is not dated, the load and exec addresses are displayed in
hexadecimal.

Example
*Info myfile

my file WR Text 15:54:37 04-Jan-1989 60 bytes

Related commands

*Ex, *Filelnfo

2-167

*LCat

2-168

*LCat

Displays objects in a library

Syntax

*LCat [directory]

Parameters

Use

directory a valid path name specifying a subdirectory of the current
library

*LCat lists all the objects in the named library subdirectory. If no subdirectory is
named, the objects in the current library are listed. *LCat is equivalent to •cat %.

Related commands

*Cat, *LEx

FileSwitch

*LEx

Displays file information for a library

Syntax

*LEx [directory]

Parameters

Use

directory a valid path name specifying a subdirectory of the current
library

*LEx lists all the objects in the named library subdirectory together with their file
information. If no subdirectory is named, the objects in the current library are
listed. *LEx is the equivalent of *Ex %.

Related commands

*Ex, *LCat

2-169

*Lib

2-170

*Lib

Selects a directory as a library

Syntax
*Lib [directory]

Parameters

Use

directory a valid pathname specifying a directory

*Lib selects a directory as the current library on a filing system. You can
independently set libraries on each filing system.

If no other directory is named, the action taken will depend on which filing system
is currently open: in ADFS the default is $.Library; under NetFS there is no default.

Example
*Lib $.mylib Sets the directory S.mylib to be the current library

Related commands
*Configure Lib, *NoLib

File Switch

*List

Displays the contents of a file, numbering each line

Syntax

*List [-File] filename [-TabExpand]

Parameters

Use

-File

filename

-TabExpand

may optionally precede filename; it has no effect

a valid pathname specifying a file

causes Tab characters (ASCII 9) to be expanded to 8
spaces

*List displays the contents of the named file using the configured DumpFormat.
Control F might be displayed as 'IF', for instance.

Each line is numbered. For a similar display without line numbers added, use
*Type.

Example

*List -file rnyfile -tabexpand

Related commands

*Configure DumpFormat, *Dump, *Print. *Type

2-171

2-172

*Load

Loads the named file (usually a program file)

Syntax
*Load filename [load_addr]

Parameters

Use

filename

load_addr

a valid pathname specifying a file

load address (in hexadecimal by default); this overrides
the file's load address or any load address in the
AliasS@LoadType variable associated with this file

*Load loads the named file at a load address specified (in hexadecimal by default).

The filename which is supplied with the *Load command is searched for in the
directories listed in the system variable FileSPath. By default, FileSPath is set to · ·.
This means that only the current directory is searched.

If no address is specified, the file's type (BASIC, Text etc) is looked for:

• If the file has no file type, it is loaded at its own load address.

• If the file does have a file type. the corresponding AliasS@LoadType variable is
looked up to determine how the file is to be loaded. A BASIC file has a file type
of &FFB, so the variable Alias$@LoadType_FFB is looked up, and so on. You
are unlikely to need to change the default values of these variables.

If the corresponding AliasS@LoadType variable does not exist then a suitable
error is generated.

Example
*Load myfile 9000

Related commands
*Create, *Save

FileSwitch

*NoDir

Unsets the current directory

Syntax

*NaDir

Use

*NoDir unsets the current directory.

In RISC OS 2 this command is implemented by FileCore.

Related commands

*Dir, *NoLib, *NoURD

2-173

*No Lib

*No lib

Unsets the library directory.

Syntax

*NoLib

Use

*No Lib unsets the library directory.

In RISC OS 2 this command is implemented by FileCore.

Related commands

*Lib, *NaDir, *NoURD

2-174

Syntax

Use

FileSwitch

*NoURD

Unsets the User Root Directory (URD).

*NoURD

*NoURD unsets the User Root Directory (URD). This is shown as an'&' in
path names.

In RISC OS 2 this command is implemented by FileCore.

Related commands

*NaDir, *NoLib, *URD

2-175

*Opt1

2-176

*Opt 1

*Opt I controls filing system messages

Syntax

*Opt 1 [[, J n]

Parameters

Use

n 0 to 3

*Opt I sets the filing system message level (for operations involving loading,
saving or creating a file) for the current filing system:

*Opt 1,0

*Opt 1,1

*Opt 1,2

*Opt 1,3

No filing system messages

Filename printed

Filename, hexadecimal addresses and length printed

Filename, and either datestamp and length, or
hexadecimal load and exec addresses printed

*Opt I must be set separately for each filing system.

Under RISC OS 3 this command may not work correctly, depending on the
operation (loading is generally worse) and filing system (NetFS is poor).

FileSwitch

*Opt 4

*Opt 4 sets the filing system boot option

Syntax

*Opt 4 [[, l n]

Parameters

Use

n 0 to 3

*Opt 4 sets the boot option for the current filing system. On filing systems with
several media (eg ADFS using several discs) the boot option is only set for the
medium (disc) containing the currently selected directory.

*Opt 4,0 No boot action

*Opt 4,1 *Load boot file

*Opt 4,2 *Run boot file

*Opt 4 ,3 *Exec boot file

The boot file is usually named ! Boot. although some filing systems may use
different names; for example NetFS calls the file !ArmBoot (to avoid clashes with
existing ! Boot files that may contain code specific to BBC and Master series
computers).

Note that a *Exec boot file will override the configured language setting. If you
want such a boot file, and want to enter the desktop after executing it, the file
should end with the command *Desktop; similarly for other languages.

Example

*Opt 4,2 sets the boot option to *Run for the current filing system

Related commands

*Configure Boot, *Configure NoBoot

2-177

•print

2-178

*Print

Displays the contents of a file as raw text on the screen

Syntax

*Print filename

Parameters

Use

filename a valid path name specifying a file

• Print displays the contents of the named file by sending each byte- whether it is
a printable character or not- to the VDU. Unless the file is a simple text file, some
unwanted screen effects may occur, since control characters are not filtered out.

Example

*Print myfile

Related commands

*Dump, *List, *Type

File Switch

*Remove

Erases a single file or empty directory

Syntax

*Remov e object_spec

Parameters

Use

object_spec a valid (wildcarded) pathname specifying a file or an
empty directory

*Remove erases the single named file or empty directory. No error message is
given if the object does not exist; this allows a program to remove a file without
having to trap that error. However, an error message is given if the object is a
directory containing files.

You may not use wildcards in the last component of th.e pathname.

Related commands

*Delete, *Wipe

2-179

•Rename

2-180

*Rename

Changes the name of an object

Syntax

*Rename object new_n ame

Parameters

Use

object

new_name

a valid path name specifying a file or directory

a valid path name specifying a file or directory

*Rename changes the name of an object, within the same storage unit. It can also
be used for moving files from one directory to another. or moving directories within
the directory tree.

Locked objects cannot be renamed (unlock them first by using the *Access
command with the Lock option clear) .

To move objects between discs or filing systems, use the *Copy command with the
D(elete) option set.

Examples

*Rename fred jim

*Rename $.data. fred $. newdata. fred Moves fred into directory newdata

Related commands

*Access. *Copy

FileSwitch

*Run

Loads and executes a file

Syntax

*Run filename [parameters]

Parameters

Use

filename

parameters

a valid pathname specifying a file

a Command Line tail (see the chapter entitled Program
Environment on page 1-283 for further details)

*Run loads and executes a file, optionally passing a list of parameters to it. The
given pathname is searched for in the directories listed in the system variable
RunSPath. If a matching object is a directory then it is ignored, unless it contains a
!Run file.

The first file, or directory. ! Run file that matches is used:

• If the file has no file type, it is loaded at its own load address, and execution
commences at its execution address.

• If the file has type &FF8 (Absolute code) it is loaded and run at &8000

• Otherwise the corresponding Alias$@RunType variable is looked up to
determine how the file is to be run. A BASIC file has a file type of &FFB, so the
variable Alias$@RunType_FFB is looked up, and so on. You are unlikely to
need to change the default values of these variables.

If the corresponding Alias$@RunType variable does not exist then a suitable
error is generated.

By default, RunSPath is set to',%.'. This means that the current directory is
searched first, followed by the library. This default order is also used if RunSPath is
not set.

Examples

*Run my_prog

*Run my_prog my_data my_data is passed as a parameter to the program
my_prog. The program can then use this filename to
look up the data it needs.

2-181

*Run

2-182

Related commands

•setType

Fi/eSwitch

*Save

Copies an area of memory to a file

Syntax

*Save filename start_addr end_addr [exec_addr [load_addr]]

or

*Save filename start_addr +length [exec_addr [load_addr]]

Parameters

Use

filename

start_addr

end_addr

length

exec_addr

load_addr

a valid pathname specifying a file

the address of the first byte to be saved
the address of the byte after the last one to be saved
number of bytes to save
execution address (default is start_addr)

load address (default is start_addr)

*Save copies the given area of memory to the named file . Start_addr is the address
of the first byte to be saved; end_addr is the address of the byte after the last one
to be saved. Length is the number of bytes to be saved; exec_addr is the execution
address to be stored with the file (it defaults to start_addr). Load_addr is the
reload address (which also defaults to start_addr).

The length and addresses are in hexadecimal by default.

Examples

*Save rnyprog 8000 + 3000

*Save rnyprog 8000 BOOO 9300 9000

Related commands

*Load. *SetType

2-183

*Set Type

2-184

*Set Type

Sets the file type of a file

Syntax

*SetType filename file_type

Parameters

Use

filename
file_ type

a valid pathname specifying a file

a number (in hexadecimal by default) or text
description of the file type to be set. The command
Show File$Type displays a list of valid file types.

*SetType sets the file type of the named file. If the file does not have a date stamp,
then it is stamped with the current time and date. Examples of file types are
Palette, Font, Sprite and BASIC: for a list. see Table C: File types on page 4-557, or
type *Show File$Type* at the command line.

Textual names take preference over numbers, so the sequence:

*Set File$Type_123 DFE
* SetType filename DFE

will set the type off i lename to & I 23 , not &DFE- the string DFE is treated in the
second command as a file type name, not number. To avoid such ambiguities we
recommend you always precede a file type number by an indication of its base.

Example

Build a small file containing a one-line command, set it to be a command type
(&FFE). and run it from the Command Line; finally, view it from the desktop:

*Build X

1 *Echo Hello World
Esc
*SetType x Command
*Run x

the file is given the name x
the line number is supplied by *Build
the Escape character terminates the file
*SetType x &FFE is an alternative
the text is echoed on the screen

The file has been ascribed the 'command file' type, and can be run by
double-clicking on the file icon.

FileSwitch

*Shut

Closes all open files

Syntax

*Shut

Parameters

Use

None

*Shut closes all open files on all filing systems. The command may be useful to
programmers to ensure that all files are closed if a program crashes without
closing files.

You must not use this command within a program running in a multi-tasking
environment such as the desktop, as it may close files being used by other
programs.

Related commands

*Bye, *Close, *ShutDown

2-185

*ShutDown

2-186

*ShutDown

Closes files , logs off file servers and parks hard disc heads

Syntax

*ShutDown

Parameters

Use

None

*ShutDown closes all open files on all filing systems, and also logs off all NetFS
file servers and parks hard disc heads in a safe state for switching off the computer.

You must not use this command within a program running in a multi-tasking
environment such as the desktop, as it may close files being used by other
programs.

Related commands

*Bye, *Close, *Shut

FileSwitch

*Spool

Sends everything appearing on the screen to the specified file

Syntax

*Spool [filename]

Parameters

Use

filename a valid pathname specifying a file

*Spool opens the specified file for output; if a file of that name already exists. it is
overwritten. All subsequent characters sent to the VDU drivers will be copied to the
file. using OS_BPut. (If OS_BPut returns an error. the spool file is closed- thereby
restoring the spool handle location- and the error is then returned from
OS_ WriteC.)

This copying continues until either a *Spool or a *SpoolOn command (with or
without a file name) is issued. which then terminates the spooling.

If the pathname is omitted. the current spool file. if any, is closed. and characters
are no longer sent to it. If the pathname is given. then the existing spool file is
closed and the new one opened.

You can temporarily disable the spool file. without closing it. using OS_Byte 3.

Example

*Spool %.Showdump

*Spool

Related commands

*SpoolOn

Related SWis

OS_Byte 3 (page 1-506). OS_Byte 199 (page 1-513). OS_File (page 2-30).
OS_BPut (page 2-62)

Related vectors

BPutV. ByteV

2-187

*Spoo/On

2-188

*SpooiOn

Adds everything appearing on the screen to the end of an existing file

Syntax

*SpoolOn [filename]

Parameters

Use

filename a valid pathname specifying an existing file

*SpooiOn is similar to *Spool, except that it adds data to the end of an existing
file. All subsequent characters sent to the VDU drivers will be copied to the end of
the file, using OS_BPut. (If OS_BPut returns an error. the spool file is closed
thereby restoring the spool handle location- and the error is then returned from
OS_ WriteC.)

This copying continues until either a *SpooiOn or a *Spool command (with or
without a filename) is issued. which then terminates the spooling.

If the filename is omitted. the current spool file. if any, is closed. and characters are
no longer sent to it. If the filename is given. then the existing spool file is closed
and the new one opened.

You can temporarily disable the spool file. without closing it. using OS_Byte 3.

Example

*SpoolOn %.Showlist

*SpoolOn

Related commands

*Spool

Related SWis

OS_Byte 3 (page 1-506). OS_Byte I99 (page 1-5I3). OS_File (page 2-30).
OS_BPut (page 2-62)

Related vectors

ByteV, BPutV

FileSwitch

*Stamp

Date stamps a file

Syntax

*Stamp filename

Parameters

filename a valid pathname specifying a file

Use

*Stamp sets the date stamp on a file to the current time and date. If the file has not
previously been date stamped. it is also given file type Data (&FFD).

Example

*Stamp myfile

Related commands

*Info. *SetType

2-189

•rype

2-190

*Type

Displays the contents of a file

Syntax

*Type [-File] filename [-TabExpand]

Parameters

Use

-File

filename

-TabExpand

may optionally precede f i 1 ename; it has no effect

a valid pathname specifying a file

causes Tab characters (ASCII 9) to be expanded to 8
spaces

*Type displays the contents of the named file using the configured DumpFormat.
Control F might be displayed as 'IF'. for instance.

For a similar display with line numbers added, use *List.

Example

*Type -File myfile -TabExpand

Related commands

•configure DumpFormat, *Dump, • List , *Print

FileSwitch

*Up

Moves the current directory up the directory structure

Syntax

*Up [levels]

Parameters

Use

levels a positive number in the range 0 to 128 (in decimal by
default)

• Up moves the current directory up the directory structure by the specified number
of levels . If no number is given, the directory is moved up one level. *Up is
equivalent to • Dir "-

Note that while NetFS supports this command, some fileservers do not, so you
may get a File 'up' not found error.

Example

*Up 3 This is equivalent to • Dir " . " .", but note that the parent of S is
S. so you cannot go any further up the directory tree than this.

Related commands

*Dir

2-191

*URD

2-192

*URD

Sets the User Root Directory (URD)

Syntax

*URD [directory]

Parameters

directory a valid path name specifying a directory

Use

*URD sets the User Root Directory (URD). This is shown as an '&' in pathnames.

If no directory is specified. the URD is set to the root directory.

In RISC OS 2 this command is implemented by FileCore.

Example

*URD adfs::O.$.MyDir

Related commands

*NoURD

FileSwitch

*Wipe

Deletes one or more objects.

Syntax

*Wipe object_spec [[-]options]

Parameters

Use

object_spec

options

a valid (wildcarded) pathname specifying one or more
files ancl!or directories

upper- or lower-case letters, optionally separated by
spaces

A set of default options is read from the system variable WipeSOptions, which is
set by the system as shown below. You can change these default preferences using
the *Set command. You are recommended to type:

*Set Wipe$0ptions <Wipe$0ptions > extra_options

so you can see what the original options were before you added your extra ones.
The default options are overruled by any given to the command.

To ensure an option is ON , include it in the list of options; to ensure it is OFF.
precede the option by a·-· (eg: -C-r to turn off the C and R options) .

• C(onfirm) Prompt for confirmation of each deletion.
Default ON.

• F(orce)
Default OFF.

• R(ecurse)
Default OFF

• V(erbose)
Default ON.

Force deletion of locked objects.

Delete subdirectories and contents.

Print information on each object deleted.

*Wipe deletes one or more objects that match the given wildcard specification.

If the Wipe$0ptions variable is unset then *Wipe behaves as if the variable were
set to its default value.

2-193

·wipe

2-194

Example
Wipe Games. -R Deletes all files in the directory Games (but not any of its

subdirectories) .

28 FileCore

Introduction
FileCore is a filing system that does not itself access any hardware. Instead it
provides a core of services to implement a filing system similar to ADFS in
operation . Secondary modules are used to actually access the hardware.

ADFS and RamFS are both examples of such secondary modules. which provide a
complete filing system when combined with FileSwitch and FileCore.

The main use you may have for FileCore is to use it as the basis for writing a new
ADFS-like filing system. Because it already provides many of the functions. it will
considerably reduce the work you have to do.

See also the chapter entitled Introduction to filing systems on page 2-3.

2-195

Overview

Overview
FileCore is a filing system module. It provides all the entry points for FileSwitch
that any other filing system does. Unlike them, it does not control hardware;
instead it issues calls to secondary modules that do so.

Similarities with FileSwitch

This concept of a parent module providing many of the functions, and a secondary
module accessing the hardware, is very similar to the way that FileSwitch works.
There are further similarities:

• there is a SWI , FileCore_Create, which modules use to register themselves with
FileCore as part of the filing system

• this SWI is passed a pointer to a table giving information about the hardware,
and entry points to low-level routines in the module

• FileCore communicates with the module using these entry points.

When you register a module with FileCore it creates a fresh instantiation of itself.
and returns a pointer to its workspace. Your module then uses this to identify itself
on future calls to FileCore.

Adding a module to FileCore

2-196

When you add a new module to FileCore, there is comparatively little work to be
done. It needs:

• low-level routines to access the hardware

• a * Command that can be used to select the filing system

• any additional * Commands you feel necessary- typically very few

• a SWI interface.

The SWI interface is usually very simple. A typical FileCore-based filing system will
have SWis that functionally are a subset of those that FileCore provides. You
implement these by calling the appropriate FileCore SWis, making sure that you
identify which filing system you are. RamFS implements all its SWis like this, ADFS
most of its . So unless you need to provide a lot of extra SWis, you need do little
more than provide the low-level routines that control the hardware.

For full details, see the chapter entitled Writing a FileCore module on page 2-587.

FileCore

Technical details

Disc formats

FileCore-based filing systems are very like ADFS in operation and appearance
(since ADFS is itself one). However, there is no reason why you need use FileCore
only with discs; indeed, RamFS is also a FileCore-based filing system. The text that
follows describes FileCore in terms of discs, disc drives, and so on. We felt you
would find it easier to use than if we had used less familiar terminology- but
please remember you can use other media too.

Logical layout

This table shows the logical layout of 'perfect' ADFS formats for floppy discs:

Format

L
D
E

Map Zones Directories

Old Old
Old New
New New

Boot block

No
No
No

F New 4 New Yes

(The boot block is needed for F format floppies to specify which zone holds the
map.)

and for hard discs:

Format

D
E

Map Zones Directories

Old New
New ~I New

Boot block

Yes
Yes

For details of the various terms used above see the section entitled Old maps on
page 2-200, the section entitled New maps on page 2-201, the section entitled
Directories on page 2-209, and the section entitled Boot blocks on page 2-213.

Physical layout

This table shows the physical layout of 'perfect' ADFS formats:

Format Density Sectors/track Bytes/sector Storage Heads
L Double 16 256 640K I
D Double 5 1024 BOOK 2
E Double 5 1024 BOOK 2
F Quad 10 1024 1.6M 2
Hard :55 12M

2-197

Disc formats

2-198

A head value of I means that the sides are sequenced. whereas a head value of 2
means that they are interleaved:

• On a sequenced disc the logical order of tracks is those on one side of the disc,
followed by those on the other side. For example, with 8 tracks:

2 3 4

5 6 7 8

• On an interleaved disc the logical order of tracks alternates between sides of
the disc. For example, with 8 tracks:

3 5 7

2 4 6 8

Track layout

A track is layed out as follows:

gap4b gap4a

Index pulse Index pulse

Due to mechanical variation in speed the time between the start and end varies,
which is why there are gaps- they 'absorb' the speed variations. So. in words:

• gap4b is the gap between the mechanical index pulse and the magnetic index
mark

• ID is the magnetic index mark

• gap I is the gap between the index mark and the first sector

• sector is a sector (see below)

• gap3 is the gap between sectors

• gap4a is the gap between the last sector and the index pulse.

The magnetic index mark and the preceding gap4b are optional. Where they are
absent. gap I is therefore the gap between the mechanical pulse and the first sector.

You should never rely on the presence or absence of the magnetic mark.

Maps

File Core

The size of gap I and gap3 change between formats. whilst the other sizes remain
constant. This table shows those gap sizes that vary (in bytes) and the sector skew
(in sectors) of 'perfect' ADFS formats:

Format Gap I side 0 Gap I side I Gap 3 Sector skew

L 42 42 57 0
D 32+271 32+0 90 0
E 32+271 32+0 90 0
F 50 50 90 2

Sector layout

A sector is layed out as follows:

sector ID gap2 sector data

•• gap2 is fixed due to hardware limitations; it is there to accommodate variations
in hardware (different spin speeds etc)

•• Each of sector lD and sector data have a preamble of null bytes. a synchronisation
pattern. an identification byte (which says what sort of information follows: lD
or Data). and the data itself (JD or data)

The reason the JD is separated from the data is that during sector writing the lD is
read to determine which bit of the disc is currently going under the head, then the
drive is switched to writing- which takes some time- and then a whole section of
data is written (ie the sector data).

A disc has a section of information. called a map. which controls the allocation of
the disc to the files and directories. There are two types of maps used in RISC OS 3:
the old maps used by Land D formats. and the new maps used by later formats:

Map

Old
New

Information stored

Free space
Space allocation

Compaction required Recovery story

Yes From directories
No Two copies stored

New map discs have the following advantages over old map discs:

11 Files need not be stored contiguously, so you don't need to compact the disc.
(However. FileCore does try to create new map files in one block. and will also
try to merge file fragments back together again if it is compacting a zone of the
disc.)

• The disc map has no limit on size or number of entries. so 'Map full' errors do
not occur.

2-199

Maps

2-200

• The map keeps a record of defects when the disc is formatted, so omits
defective sectors.

• Defects are kept as objects on the disc, so they don't need to be taken into
account when calculating disc addresses, and can be mapped out without
reformatting.

Old maps

Old maps have the following format:

Name Bytes

FreeStart 82 X 3
Reserved I
OldNameO 5
OldSize 3
CheckO
Free Len 82 X 3
OldNamel 5
Oldld 2
Old Boot
Free End
Check!

Meaning

Table of free space start sectors
Reserved- must be zero
Half disc name (interleaved with OldName I)
Disc size in (256 byte) sectors
Checksum on first 256 bytes
Table of free space lengths
Half disc name (interleaved with OldNameO)
Disc id
Boot option (as in *Opt 4,n)
Pointer to end of free space list
Checksum on second 256 bytes

The 82 three byte entries in the FreeStart and FreeLen tables are in units of 256
bytes. The entries are sorted low addressed free areas first. Contiguous free areas
will have been merged together.

The full disc name is the joining together of the bytes in OldNameO and
OldName I . The name is interleaved, with OldNameO providing the first character,
OldName I the second, and so on.

Oldld is the disc's Id to identify when the disc has been modified.

If an old map does not end at a sector boundary, then it is padded with null bytes
to the end of the sector. The sector immediately following the old map always
holds the start of the root directory; see the section entitled Directories on
page 2-209.

Calculating CheckO and Check I

These are checksums of the previous bytes in the map. They are calculated using
repeated 8-bit ADCs on the bytes of the relevant map block, starting with a value 0:

If RO is the accumulated checksum, then it starts at 0, and each byte is added as
follows:

ADC rO, rO, rl rl is the byte picked up
Shifts bit 8 into the carry bit

FileCore

MOVS rO, rO, LSL #24
MOV rO, rO, LSR #24 Not MOVS here to preserve the carry bit

Note that the check byte itself isn't included in the checksum; its value equals the
checksum of the previous bytes.

New maps
A disc using a new map is divided into a number of zones, each of which is a
contiguous section of the disc. The zones are numbered 0 upwards, so if there are
nzones zones on a disc, the zone numbers are 0, I, .. . , nzones- 2 and nzones- I (ie
zone 0 contains the lowest numbered sectors on the disc. and zone nzones- I the
highest numbered sectors).

The map is located at the beginning of zone nzones/2 (rounded down). Hence, the
map will sit at the beginning of the middle zone for discs with an odd number of
zones, and the zone higher than the middle for discs with an even number of zones
(examples: if nzones = 7, the map is at the start of zone 3, which has 3 zones before
it and after it; if nzones = 8 the map is at the start of zone 4, which has 4 zones before
it and 3 after it).

The map is nzones sectors long: each sector of the map is known as a map block, and
controls the allocation of a zone of the disc. The first map block controls zone 0,
the second controls zone I, and so on.

The general format of a map block is as follows:

Header
Disc record (Zone 0 only)
Allocation bytes
Unused

Header

A map block header is as follows:

Offset

0
I
3

Name
ZoneCheck
Free Link
CrossCheck

Meaning

Check byte for this zone's map block
Link to first free fragment in this zone
Cross check byte for complete map

ZoneCheck is used to check that this zone's map block is valid; see the section
entitled Calculating ZoneCheck ... on page 2-206.

Free Link is a fragment block giving the offset to the first free space fragment block
in the allocation bytes; see page 2-204.

2-201

Maps

2-202

CrossChecks are combined to check that the whole map is self-consistent; see the
section entitled Calculating CrossCheck on page 2-206.

Disc record

The format of a disc record is as follows:

Offset Name

0 log2secsize
secspertrack

2 heads

3 density

4 idlen
5 log2bpmb
6 skew

7 bootoption
8 lowsector

9 nzones
10 wne_spare
12 root
16 disc_size
20 disc_id
22 disc_name
32 disc type
36- 59

Meaning

Log2 (sector size of disc in bytes)
Number of sectors per track
Number of disc heads if sides interleaved
Number of disc heads- I if sides sequenced

(I for old directories)
0 hard disc

single density (125Kbps FM)
2 double density (250Kbps FM)
3 double+ density (300Kbps FM)

(ie higher rotation speed double density)
4 quad density (500Kbps FM)
8 octal density (IOOOKbps FM)
Length of id field of a map fragment . in bits
Log2 (number of bytes per map bit)
Track to track sector skew for random access file

allocation
Boot option (as in *Opt 4,n)
bits 0 - 5: lowest numbered sector id on a track
bit 6: if set. treat sides as sequenced (rather

than interleaved)
bit 7: if set. disc is 40 track
Number of zones in the map
Number of non-allocation bits between zones
Disc address of root directory
Disc size. in bytes
Disc cycle id
Disc name
File type given to disc
Reserved- must be zero

Bytes 4- II inclusive must be zero for old map discs.

As an example of how to use the logarithmic values . if the sector size was I 024. this
is 210• so at offset 0 you would store I 0.

You can use a disc record to specify the size of your media -this is how RamFS is
able to be larger than an ordinary floppy disc.

FileCore

The lowsector and disctype fields are not stored in the disc record kept on the disc. but
are returned by FileCore_DescribeDisc.

Allocation bytes

The allocation bytes make up the section of the map block which controls the
allocation of a zone. Together. the allocation bytes from all map blocks control the
allocation of the whole disc. Each bit corresponds to an allocation unit on the disc.
The size of the allocation units is defined in the disc record by log2bpmb, and so
must be a power of two bytes. An allocation unit is not necessarily one sector- it
may be smaller or larger.

Not only must space be logically mapped in whole allocation units; it must also be
physically allocated in whole sectors. Consequently, the smallest unit by which
allocation may be changed is the larger of the sector size and the allocation unit.
This unit is known as the granularity.

A disc is split into a number of disc objects. each of which consists of one or more
fragments spread over the surface of the disc. Fragments need not be held in the
same zone. and their size can vary by whole units of granularity. Fragments have a
minimum size, which is explained below.

Three disc objects are special. and contain:

• the bad sectors (for a perfect disc, this disc object will not be present)

• the boot block. map and root directory

• the free space.

All other disc objects contain either a directory (optionally with small files held
within that directory), or one or more files that are held in a common disc object.
For a description of how disc objects can contain more than one object, see the
section entitled Internal disc addresses on page 2-209 and the section entitled
Directories on page 2-209.

The allocation bytes are treated as an array of bits, with the lsb of a byte coming
before the msb in the array.

2-203

Maps

2-204

The array is split into a series of fragment blocks, each representing a fragment. The
format of a fragment block is as follows:

idlen bits long 0 or more bits long 1 bit
1Jo4 1Jo4 IJJo

~ T--~~ ~LI ___ F_ra_g_m_e_n_t_id ___ _.__ ___ o_b_it_s ___ .____,l~---_-_-_-_-_-_ ~~-~~~~~-;-~~
length of fragment block

(idlen is defined in the disc record.)

Since each bit in the array corresponds with an allocation unit on the disc. the
length of the fragment block (in bits) must be the same as the size of the fragment
(in allocation units) . The stream of 0 bits are used to pad the fragment block to the
correct length, and the I bit to terminate the fragment block.

There are two fragment ids with special meanings:

• A fragment id of I represents the object which contains all bad sectors, and the
spare piece of map which hangs over the real end of the disc.

• A fragment id of 2 represents the object which contains the boot block, the
map, and the root directory.

Other fragment ids represent either free space fragments, or allocated fragments:

• A fragment id for a free space fragment is the unsigned offset, in bits, from the
beginning of its fragment block to the beginning of the next free space
fragment block in the same map block (or 0 if there are no more) .

The chain hence always runs from the beginning of the map block to the end.

The offset to the first free space fragment block is given by the FreeLink
fragment block in the map block's header. Because that fragment block is 2
bytes long, and must have a terminating I bit , idlen cannot be greater than 15.

• A fragment id for an allocated fragment is a unique identifier for the disc
object to which that space is allocated. Any other fragments allocated to the
same disc object will have the same fragment id.

The following deductions can be made:

• The smallest fragment size on a disc is:

(idlen+ I) x allocation unit rounded up to the nearest unit of granularity
because a fragment block cannot be smaller than idlen+ I bits (the fragment id,
and the terminating I bit) .

• idlen must be at least:

log2secsize + 3 ie log2 (sector size in bits)
to ensure that it is large enough to hold the maximum possible bit offset to
the next free fragment block.

FileCore

• The maximum number of fragment ids in a map block (and hence disc objects in
a zone) is:

allocation bytes x 81 (idlen + I) ie allocation bits I minimum fragment size

This value is smaller for Zone 0 than for other zones, because it has a copy of
the disc record, and hence fewer allocation bytes:

1111 ..

zone_spare
bits long

1111 ..

zone_spare
bits long

The value for zones other than Zone 0 is- for a given disc- always the same,
and is known as the ids per zone. It is easiest to calculate using fields from the
disc record:

((I << (log2secsize + 3)) -zone_spare) I (idlen +I)

• The allocation unit cannot be so small as to require more than 15 bits to
represent all the fragment ids possible, ie:

(ids per zone x nzones) ~ 215

since the fragment id cannot be more than 15 bits long.

An object may have a number of fragments allocated to it in several zones. These
fragments must be logically joined together in some way to make the object appear
as a contiguous sequence of bytes. The na"ive approach would be to have the first
fragment on the disc be the first fragment of the object. New map discs do not do
this. The first fragment in an object is the first fragment on the disc searching from
zone (fragment id I ids per zone) upwards, wrapping round from the disc's end to its
start. Any subsequent fragments belonging to the same disc object are joined in
the order they are found by this search.

Object 2, being the object which carries the map with it, is special. It is always at
the beginning of the middle zone, as opposed to being at the beginning of zone 0.

Maximum disc sizes

As observed above, there are a number of limitations placed on discs by new maps,
depending on your choice of various parameters. The table below gives some idea
of the theoretical maximum disc sizes that can be supported, depending on the
sizes of the allocation unit and of the sectors:

Allocation unit
256
5I2
1024
2048

512 byte sees

up to 124Mb
up to 249Mb
up to 503Mb
up to 1007Mb

1024 byte sees

up to 127Mb
up to 255Mb
up to 511Mb
up to 1023Mb

2-205

Maps

2-206

In fact. other l imitations in FileCore mean that discs can be no larger than
512Mbytes.

Calculating disc addresses

To translate an allocation bit in the map to a disc address. take the allocation bit's
bit offset from the beginning of the bit array (ie the concatenation of all allocation
bytes) and multiply this offset by the bytes per map bit (this multiplication is
equivalent to shifting the offset left by log2bpmb , which is why the log2 value is
stored in the disc record) .

This result is the byte offset across the disc of the beginning of the section of the
disc which corresponds to the given map bit. This quantity can be passed to
FS_DiscOp SW!s directly.

Calculating CrossCheck

These bytes provide a means to check that the set of zones match each other. To
check the set matches, these bytes are exclusive ORd (EOR) with each other: the
answer must be &FF. They are modified whenever more than one zone map is
modified. (The algorithm is not important, just so long as the bytes of the changed
maps change and that the EOR of all these bytes remains at &FF).

Calculating ZoneCheck ...

This , as described previously, is a check byte on a given zone sector. Below are
some code fragments you can use to calculate this value, using either Cor
assembler:

... using C

unsigned char map_zone_ valid_ byte
(

void const * const map ,
disc_ record const * const discrec,
unsigned int zone

unsigned char const * const map_base ; map;
unsigned int sum_ vectorO;
unsigned int sum_vectorl ;
unsigned int sum_vector2;
unsigned int sum_ ve ctor3;
unsigned int zone_ start;
unsigned int rover ;

s um_ vectorO 0 ;
sum_ vectorl 0;
s um_ v e ctor2 0 ;
sum_ vector3 0 ;

zone_ start = zone<<discrec->log2_sector_size;
for (rover= ((zone+l)<<discrec - >log2_sector_si ze)-4

rover > zone_s tart;

/*

*I

rover-=4)

sum_vectorO += map_base[rover+O] + (sum_vector3>>8);
sum_vector3 &= Oxff ;
sum_ vectorl += map_ base[rover+l] + (sum_vector0>>8);
sum_vectorO &= Oxff ;
sum_ vector2 += map_base[rover+2] + (sum_vector1>>8);

sum_ vectorl &= Oxff;
sum_ vector3 += map_ base[rover+3] + (sum_vector2>>8);
sum_vector2 &= Oxff;

Don't add the check byte when calculating its value

sum_ vectorO += (sum_ vector3>>8);
sum_ vectorl += map_base[rover+ll + (sum_vector0>>8);
sum_ vector2 += map_ base[rover+2] + (sum_vector1>>8);
sum_ vector3 += map_base[rover+3] + (sum_vector2>>8);

return (unsigned char)
((sum_vector0Asum_vector1Asum_vector2Asum_vector3)
& Oxff);

... using assembler

NewCheck

;entry
RO -> start

; Rl length must be multiple of 32)

;exit
; LR check byte, Z=O <=> good

NewCheck ROUT
Push "Rl-R9,LR"
MOV LR, #0
ADDS Rl, Rl, RO ;C=O

05 ;loop optimised as winnies may have many zones
LDMDB Rl!, {R2-R9}
ADCS LR, LR, R9
ADCS LR, LR, RB
ADCS LR, LR, R7
ADCS LR, LR, R6
ADCS LR, LR, R5
ADCS LR, LR, R4

FileCore

2-207

Disc addresses

Disc addresses

ADCS LR , LR , R3
ADCS LR, LR, R2
TEQS Rl, RO ;preserves C
BNE %BT05
AND R2 , R2, #&FF ;ignore old sum
SUB LR, LR, R2
EOR LR, LR, LR, LSR #16
EOR LR, LR, LR, LSR #8
AND LR, LR , #&FF
CMPS R2, LR
Pull "Rl-R9, PC"

In reading the following description, you should take special care over the
difference between an object (ie a single ftle or a directory) and a disc object (ie a
logical group of fragments on a new map disc. that may contain one or more
objects) .

FileCore uses two different types of disc address.

• The first is a normal physical disc address , giving the offset in bytes of data
from the start of the disc.

• The second is an internal format used with new map discs, that specifies an
object in terms of its fragment id, and its offset in sectors within that fragment.

This is how a single disc object can hold many objects. The internal address of
each object within the disc object will have the same fragment id , but a
different offset within that fragment.

Physical disc addresses

2-208

The physical disc address of a byte gives the number of bytes it is into the disc,
when it is read in its sequential order from the start. To calculate the physical disc
address of a byte you need to know:

• its head number h

• its track number t

• its sector numbers

• the number of bytes into the sector b

• the number of heads on the drive H

• the number of sectors per trackS

• the number of bytes per sector B

• the number of defective sectors earlier on the disc x (for old map hard discs
only- use zero for old map floppy discs or new map discs)

FileCore

You can use this formula for any disc- except an L-format one- to get the values
of bits 0 - 28 inclusive:

address= ((t X H +h) X S + S- X) X 8 + b

Tracks , heads and sectors are all counted from zero.

Bits 29 - 31 contain the drive number.

See also the section entitled Calculating disc addresses on page 2-206, which tells you
how to calculate a physical disc address from the position of an allocation bit in a
new map.

Internal disc addresses

Directories

Internal disc addresses are used by new map discs only. An object's internal disc
address is in the following binary form:

dddOOOOO Offfffff ffffffff ssssssss

• ddd is the disc number (not useful outside FileCore)

• fffffffffffffff is the fragment id

• ssssssss is the sector offset within the object.

If the sector offset is 0, then the object does not share its disc object, and is located
at the start of the disc object.

If the sector offset is non-zero (egis s). then the object shares its disc object, and is
located at the start of the sth sector of the disc object. So disc address:

Ox00000233

means that this object (in fact the directory$) starts at the &33th sector in object 2.
Note that the &33th sector starts &32 sectors into the disc object (ie the I st sector
is at the start of the object).

There are two types of directories used in RISC OS: the old directories used by
L format, and the new directories used by later formats :

Directories

Old
New

Size (entries) Size (bytes)

47 1280
77 2048

For both formats the directory is arranged as follows:

DirHeader
Entries!nl
DirTail

where n = 47 or 77, as above

Top bit set chars

No
Yes

2-209

Directories

2-210

The header and tail contain information about this directory, and the entries are
the directory entries.

DirHeaders

The two directory formats have the same DirHeader:

Name

StartMasSeq

Start Name

Bytes

I

4

Meaning

Update sequence number to check dir start
with dir end
'Hugo' or 'Nick'

BBC and Master series computers always use 'Hugo' for L-format discs; for
compatibility, we suggest you do the same. For other formats you can use either.

Entries

The two directory formats have mostly the same entry format:

Name

DirObName
DirLoad
DirExec
DirLen
DirlndDiscAdd
OldDirObSeq or

NewDirAtts

The NewDirAtts are as follows:

Bytes

10
4
4
4
3

Bit Meaning when set

Meaning

Name of object
Load address of object
Exec address of object
Length of object
Indirect disc address of object

0 Object has owner read access
Object has owner write access

2 Object is locked
3 Object is a directory
4 Object is executable t
5 Object has public read access
6 Object has public write access
7 Reserved (must be zero)

t Bit 4 is treated as a second owner read bit; if either this bit or bit 0 are set.
the object is treated as having owner read access.

FileCore

DirTails

Notes

The DirTail formats are, however, quite different:

Old DirTail

Name

OldDirLastMark
OldDirName
OldDirParent
OldDirTitle
Reserved
EndMasSeq
EndName
DirCheckByte

New DirTail

Name

NewDirLastMark
Reserved
NewDirParent
NewDirTitle
NewDirName
EndMasSeq
EndName
DirCheckByte

Bytes

I
10
3
19
14
I
4
I

Meaning

0 to indicate end of entries
Directory name
Indirect disc address of parent directory
Directory title
Reserved- must be zero
To match with StartMasSeq
'Hugo' or 'Nick', to match with StartName
Check byte on directory

Bytes Meaning

I 0 to indicate end of entries
2 Reserved- must be zero
3 Indirect disc address of parent directory
19 Directory title
I 0 Directory name
I To match with StartMasSeq
4 'Hugo' or 'Nick' , to match with StartName
I Check byte on directory

The last entry is indicated by there being a 0 in the first byte of the next entry's
DirObName. The xxxDirLastMark entry is there so that when the directory is full ,
and hence the last entry is not followed by a null DirObName, it is still followed by
a null byte to indicate the end of the directory.

DirObNames and DirNames are control character terminated, and may be the full
length of the fields they occupy (in which case there is no terminator) .

The indirect disc address of an object on an old map disc is the most significant 3
bytes of its physical disc address. The indirect disc address of an object on a new
map disc is the least significant 3 bytes of its internal disc address. For an
explanation , see the section entitled Disc addresses on page 2-208.

2-211

Directories

2-212

Calculating StartMasSeq and EndMasSeq

StartMasSeq and EndMasSeq are there to check whether the directory was
completely written out when it was last written out. For an unbroken directory they
are always equal, and are increased by one (wrapping at 255 back to 0) whenever
the directory is updated. This means that if the writing of the directory was stopped
halfway through then the start and end master sequence numbers will not be the
same, and so the directory will then be identified as broken. Their values should
equal each other, but. apart from that , they can be anything.

Calculating DirCheckByte

This is an accumulation of the used bytes in a directory. The used bytes are all the
bytes excluding the hole between the last directory entry and the beginning of the
structure at the tail of the directory. The generation of the check byte is best
described as an algorithm:

• Starting at 0 an accumulation process is performed on a number of values.
Whatever the sort of the value (byte or word) it is accumulated in the same
way. Assuming rO is the accumulation register and rl the value to accumulate
this is the accumulation performed:

EOR rO, rl, rO, ROR #1 3

• All the whole words at the start of the directory are accumulated. This will
leave a number of bytes (0 to 3) in the last directory entry (or at the end of the
start structure in a directory if it's empty) .

• The last few bytes at the start of the directory are accumulated individually.

• The first few bytes at the beginning of the end structure of the directory are
accumulated. This is done to leave only a whole number of words left in the
directory to be accumulated.

• The last whole words in the directory are accumulated, except the very last
word which is excluded as it contains the check byte.

• The accumulated word has its four bytes exclusive ORd (EOR) together. This
value is the check byte.

Boot blocks

FileCore

Hard discs contain a 512 byte boot block at disc address &COO, which contains
important information . (On a disc with 256-byte sectors, such as ADFS uses, this
corresponds to sectors 12 and 13 on the disc.) A boot block has the following
format:

Offset

&000 upwards
& I BF downwards
&!CO - &IFB
&I FC - &!FE
&IFF

Contents

Defect list
Hardware-dependent information
Disc record (see page 2-202)
Non-ADFS partition descriptor
Check sum byte

Note that in memory, this information would be stored in the order disc record,
then defect list/hardware parameters. This is to facilitate passing the values to
FileCore SWis.

Defect list

A defect list is a list of words. Each word contains the disc address of the first byte of
a sector which has a defect. This address is an absolute one, and does not take into
account preceding defective sectors. The list is terminated by a word whose value
is &200000xx. The byte xx is a check-byte calculated from the previous words.
Assuming th is word is initially set to &20000000, it can be correctly updated using
th is routine:

On entry

Ra = pointer to start of defect list

On exit

Ra corrupt
Rb check byte
Rc corrupt

MOV Rb,#O
loop

LDR Rc, [Ra] ,#4;
CMPS Rc,#&20000000
EORCC Rb,Rc,Rb,ROR #13
BCC loop
EOR Rb , Rb,Rb,LSR #16
EOR Rb , Rb,Rb , LSR #8
AND Rb,Rb , #&FF

;init check

get next entry
;all done ?

;compress word to byte

2-213

Boot blocks

2-214

Hardware-dependent information

There is no guarantee how many bytes the hardware-dependent information may
take up. As an example of use of this space, for the HD63463 controller the
hardware parameters have the following contents :

Offset

&lBO - &182
&183
&184
&185
&186
&187
&188 - &189
&IBA - &188
&IBC - &IBF

Contents

Unused
Step pulse low
Gap 2
Gap 3
Step pulse high
Gap I
Low current cylinder
Pre-compensation cylinder
Unadjusted parking disc address

The boot block's disc record

The purpose of the boot block's disc record is to give the necessary information to
find the disc's map. You should not rely on the information it contains for any other
purpose, unless it is unavailable in the disc's map. Consequently:

• For an old map disc, you should use the boot block's disc record to find the
map. If information you require is held in the map, you must use that in
preference to the boot block's disc record.

• For a new map disc, you should use the boot block's disc record to find the
map. Once you have found the map you should then always use its disc record,
rather than the boot block's.

For the format of a disc record , see the section entitled Disc record on page 2-202.

The non-ADFS partition descriptor

These 3 bytes are used to describe any non-ADFS partition on the disc. Such a
partition must come at the end of the disc, and is excluded from all descriptions of
the ADFS partition. Currently it is only used to describe a RISC iX partition :

Offset

&IFC

&IFD
&I FE

Contents

format identifier and flags:
bits 0 - 3 partition format identifier (I :::::> RISC iX)
bits 4 - 7 flags (reserved- must be zero)
low byte of start cylinder
high byte of start cylinder

FileCore

You can calculate the disc address of the start of the non-ADFS partition as follows:
start cylinder x heads on drive x sectors per track x bytes per sector

Calculating the boot block's checksum byte

Data format

The last byte of the boot block is a checksum byte whose value is calculated as
follows :

• Perform an 8 bit add with carry on each of the other bytes in the block, starting
with value 0.

In assembler this might be done as follows :

; entry : RO~start , R1~block length
; exit: RO,R1 preserved , R2~checksum

CheckSum ROUT
STMFD R13! , {R1, LR)

ADDS LR, RO, R1
SUB R1, LR, #1
MOV R2 , #0
B %FT20

10
LDRB LR, [R1 , #-1]
ADC R2, R2, LR
MOVS R2 , R2 , LSL #24
MOV R2 , R2, LSR #24

20
TEQS RO, R1
BNE %BT10

LDMFD R13!, {R1, LR}

; ->end+1 c~o
;->check byte

;get next byte
;add into checksum
;bit 8 ~ carry

; loop until done

Note that the checksum doesn't include the last byte.

Files stored using FileCore are sequences of bytes which always begin at the start
of a sector and extend for the number of sectors necessary to accommodate the
data contained in the file . The last sector used to accommodate the file may have a
number of unused bytes at the end of it. The last 'data' byte in the file is derived
from the file length stored in the catalogue entry for the file, or if the file is open,
from its extent.

2-215

Disc identifiers

Disc identifiers

2-216

Many of the commands described below allow discs to be specified. Generally, you
can refer to a disc by its physical drive number (eg 0 for the built-in floppy). or by
its name.

Drive numbers

FileCore supports 8 drives. Drive numbers 0- 3 are 'floppy disc drives', and drive
numbers 4 - 7 are 'hard disc drives' . You cannot implement a filing system under
FileCore that has more than four drives of the same physical type.

Disc names

The disc name is set using *NameDisc (see page 2-258). When you refer to a disc
by name it will be used if it is in a drive. Otherwise a 'Disc not present' error will be
given if the disc has been previously seen, or a 'Disc not known' error if the disc has
not been seen.

Machine code programs can trap these errors before they are issued. This allows
the user to be prompted to insert the disc into the drive. See OS_UpCall I and 2
(SWI &33) on page 1-179 for details.

In fact, disc names may be used in any pathname given to the system. When used
in a pathname, the disc name (or number) must be prefixed by a colon. Examples
of pathnames with disc specifiers are:

*Cat :MikeDisc.fonts
Info :4.LIB.*

Note that :drive really means :drive.S.

Disc names can have wildcards in them, so long as the name only matches one of
the discs that FileCore knows about for the filing system. If more than one name
matches FileCore will return an 'Ambiguous disc name' error.

You are very strongly recommended to use disc names rather than drive numbers
when you write programs.

Changing discs

FileCore keeps track of eight disc names per filing system, on a first in, first out
basis. When you eject a floppy disc from the drive, FileCore still 'knows' about it.
This means that if there are any directories set on that disc (the current directory,
user root directory, or library), they will still be associated with it. Thus any attempt
to load or run a file will result in a 'Disc not present/known' error.

•

FileCore

However, this means that you can replace the disc and still use it, as if it had never
been ejected. The same applies to open files on the disc; they remain open and
associated with that disc until they are closed.

You can cause the old directories to be overridden by *Mounting a new disc once
it has been inserted. This resets the CSD and so on. Alternatively, if you unset the
directories (using *NaDir, *NoLib and *NoURD), then FileCore will use certain
defaults when operations on these are required.

• If there is no current directory, FileCore will useS on the default drive. This is
the configured default, or the one set by the last *Drive command.

• If there is no user root directory set, then references to that directory will useS
on the default drive.

• If there is no library set, then FileCore will try &.Library, $.Library and then the
current directory, in that order.

See also Service_DiscDismounted (Service Call &7D) on page 2-496.

Current selections
The currently selected directory, user root directory and library directory are all
stored independently for each FileCore-based filing system.

2-217

Service Calls

Service Calls

2-218

Identify disc format

Service_ldentifyDisc
(Service Call &69)

On entry

Rl = &69 (reason code)
R2 = pointer to buffer
R3 = length of buffer
R5 =pointer to disc record
R6 = sector cache handle
R8 = pointer to FileCore instance private word to use

On exit

Use

If the format has been identified:

Rl = 0 to claim call
R2 = filetype number for given disc format.
R5 = pointer to disc record, which has been modified
R6 = new sector cache handle
R8 preserved

Otherwise:

R I , R5 preserved
R6 = new sector cache handle
R8 preserved

When an image filing system receives this service call it should:

Check the sector size, sectors per track, density, heads and lowest numbered
sector id on a track (held in the disc record- see the section entitled Disc record
on page 2-202) to see whether these correspond to a format it understands.
However, it should not do so if any of the sector size, sectors per track, density
or heads are 0, since this means they were not supplied by FileCore_MiscOp 0
(see page 2-238); this should only occur on hard discs.

2 If it does not recognise the sector scheme, it should pass on the service call,
unclaimed.

FileCore

3 If it does recognise the sector scheme, it should then update the disc record's
values for the disc size, sequence sides , double step and heads so they
correspond with the recognised format.

It should only adjust the heads field in line with the sequence sides value:
when clearing the sequence sides bit from being set it should increment the
heads field by one, and when setting the sequence sides bit from being clear it
should decrement the heads field by one- but if the heads field was 0 it must
remain so.

4 Check the sector contents to see whether these correspond to a format it
understands. It should read the sectors using FileCore_DiscOp 9 (see
page 2-221) with :

• the options bits in R I set to 2_0 I xO (I second timeout; ignore escape;
scatter list optional; no alternative defect list)

• the pointer to an alternative disc record in Rl addressing the one supplied
in the service call

• the disc number within the disc address in R2 matching that given in the
service call disc record's root directory address (which is set to byte 0 on
the relevant disc) .

5 If it does not recognise the sector contents, it should pass on the service
call, unclaimed, with, if necessary, the new value for R6 set up by
FileCore_DiscOp 9.

6 If it does recognise the sector contents, it should then update the disc record's
values for the disc cycle id and disc name, and claim the service call. The
returned disc record will be used in further accesses, and so must have the
heads and disc size correct. The disc cycle id should be one of:

• an id stored on the disc which changes each time the disc is updated '

• a value (eg CRC) calculated from a proportion of the disc which is likely to
change when the disc is updated, such as the map.

The buffer pointed to by R2 should be filled in with a short description of the
disc's format suitable for use in the Current format menu entry. You should
ensure this does not overflow the length of the buffer (given in R3) .

FileCore itself claims this service call to recognise those discs it knows about.

2-219

Service_ldentifyDisc (Service Call &69)

In summary:

• Check sector size, sectors per track, density, heads and low sector

• Pass on service call if no match

• Update disc size and heads fields and sequence sides and double step bits

• Check sector contents

• Pass on service call if no match

• Update disc cycle id and disc name

• Fill in buffer with description for Current format menu entry

• Claim service.

2-220

FileCore

SWI Calls
FileCore_DiscOp

(SWI &40540)

Performs various operations on a disc

On entry

Rl bits 0- 3 =reason code
bits 4 - 7 =option bits
bits 8 - 31 = bits 2 - 25 of pointer to alternative disc record, or zero

R2 =disc address
R3 = pointer to buffer
R4 =length in bytes
R6 =cache handle
R8 = pointer to FileCore instance private word

On exit

Rl preserved
R2 = disc address of next byte to be transferred
R3 = pointer to next buffer location to be transferred
R4 = number of bytes not transferred

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

2-221

FileCore_DiscOp (SWI &40540)

Use

2-222

This call performs various disc operations as specified by bits 0- 3 of Rl :

Value Meaning Uses Updates

0 Verify R2 , R4 R2, R4
Read sectors R2 , R3,R4 R2,R3,R4

2 Write sectors R2, R3, R4 R2, R3 , R4
3 Floppy dise: read track R2, R3

Hard disc: read ld R2, R3
4 Write track R2, R3
5 Seek (used only to park) R2
6 Restore R2
7 Floppy dise: step in t
8 Floppy dise: step out t
9 Read sectors via cache R2, R3 , R4, R6 R2, R3 , R4, R6
15 Hard dise: specify R2

t These reason codes are only valid with the 1772 disc controller. They are
not supported on 710/711 based machines (such as the A5000) and should
be avoided for future compatibility.

Option bits

The option bits have the following meanings:

Bit 4

This bit is set if an alternate defect list for a hard disc is to be used. This is
assumed to be in RAM 64 bytes after the start of the disc record pointed to by
bits 8- 31 of Rl shifted left 6 bits (so they form bits 2- 25 of the pointer).

This bit may only be set for old map discs.

Bit 5

If this bit is set, then the meaning of R3 is altered. It does not point to the area
of RAM to or from which the disc data is to be transferred. Instead, it points to
a word-aligned list of memory address/length pairs. All but the last of these
lengths must be a multiple of the sector size. These word-pairs are used for the
transfer until the total number of bytes given in R4 has been transferred.

On exit , R3 points to the first pair which wasn't fully used, and this pair is
updated to reflect the new start address/bytes remaining, so that a subsequent
call would continue from where this call has finished.

This bit may only be set for reason codes 0- 2.

Fi/eCore

Bit 6
If this bit is set then escape conditions are ignored during the operation .
otherwise they cause it to be aborted.

Bit 7

If this bit is set. then the usual timeout for floppy discs of I second is not used.
Instead FileCore will wait (forever if necessary) for the drive to become ready.

Disc address

The disc address must be on a sector boundary for reason codes 0- 2 and 9. and on
a track boundary for other reason codes. Note that you must make allowances for
any defects. as the disc address is not corrected for them.

For reason code 6 (restore). the disc address is only used for the drive number; the
bottom 29 bits should be set to zero.

The specify disc command (reason code 15) sets up the defective sector list. hardware
information and disc description from the disc record supplied. Note that in
memory, this information must be stored in the order disc record . then defect
list/hardware parameters.

Read Track/ID (reason code 3)

If the alternate defect list option bit (bit 4) is set in Rl on entry when reading a
track!ID . then a whole track's worth of ID fields is read. This usage is not available
under RISC OS 2.

The call reads 4 bytes of sector ID information into the buffer pointed to by R3 for
every sector on the track. The order of data is:

Cylinder
Head
Sector number
Sector size (0= 128, I= 256, etc)

The operation is terminated after 200mS (I revolution) .

The first sector ID transferred will normally be that following the index mark (it may
be the second if there is abnormal interrupt latency from the index pulse
interrupt) . The first two !D's read may also be duplicated at the buffer end due to
interrupt latency. Consequently the buffer should be at least 16 bytes longer than
the maximum number of IDs expected (512 bytes at most).

The disc record provided is updated to return the actual number of sectors per
track found (at offset I). Note to use this option you must provide a valid defect
list. which at a minimum is a word of &20000000 following on after the disc record.

2-223

FileCore_DiscOp (SWI &40540)

2-224

Write Track (reason code 4)

If R3 (the buffer pointer) is non-zero on entry, this reason code is used to write a
track. This usage is specific to the I 772 disc controller.

If R3 is zero on entry, this reason code is instead used to format a track; R4 then
points to a disc format structure. This usage is available with all controllers, but is
not available under RISC OS 2.

The disc format structure pointed to by R4 is as follows:

Offset Length Meaning

0 4 Sector size in bytes (which must be a multiple of 128)
4 4 Gapl
8 4 Reserved- must be zero
I2 4 Gap3
I 6 I Sectors per track
17 Density:

18

19
20
24
36

4
12
?

I single density (125Kbps FM)
2 double density (250Kbps FM)
3 double+ density (300Kbps FM)

(ie higher rotation speed double density)
4 quad density (500Kbps FM)
8 octal density (I OOOKbps FM)
Options:
bit 0 I
bit I
bits 2-3 0

I - 3
bits 4-7
Sector fill value

index mark required
double step
interleave sides
sequence sides
reserved- must be 0

Cylinders per drive (normally 80)
Reserved- must be 0
Sector ID buffer, I word per sector:
bits 0- 7 Cylinder number mod 256
bits 8- 15 Head (0 for side I, I for side 2)
bits 16- 23 Sector number
bits 24- 31 Log2 (sector size) -7, eg I for 256 byte sector

An error is generated if the specified format is not possible to generate, or if the
track requested is outside the valid range. The tracks are numbered from 0 to
(number of tracks)- I. The mapping of the address is controlled by the disc
structure record.

FileCore

Read sectors via cache (reason code 9)

This reason code reads sectors via a cache held in the RMA. It is not available
under RISC OS 2.

To start a sequence of these operations, set R6 (the cache handle) to zero on entry.
Its value will be updated on exit, and subsequent calls should use this new value.

Bits 4- 7 of Rl should be zero, and are ignored if set.

To discard the cache once finished, call FileCore_DiscardReadSectorsCache (see
page 2-233).

Related SWis

None

Related vectors

None

2-225

FileCore_Create (SWI &40541)

2-226

FileCore Create
(SWI &40541)

Creates a new instantiation of an ADFS-Iike filing system

On entry

RO = pointer to descriptor block
Rl =pointer to calling module's base
R2 = pointer to calling module's private word
R3 bits 0 - 7 = number of floppies

bits 8- 15 = number of hard discs
bits 16 - 24 = default drive
bits 25 - 31 = start up options

R4 = suggested size for directory cache
R5 = suggested number of I 072 byte buffers for file cache
R6 = hard disc map sizes

On exit

RO = pointer to FileCore instance private word
Rl =address to call after completing background floppy op
R2 =address to call after completing background hard disc op
R3 = address to call to release FlO after low level op

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call creates a new instantiation of an ADFS-Iike filing system. It must be called
on initialisation by any filing system module that is adding itself to FileCore.

The descriptor block is described in the chapter entitled Writing a FileCore module on
page 2-587.

FileCore

The only start-up option (passed in bits 25- 31 of R3) currently supported is No
directory state which is indicated by setting bit 30. All other bits representing start-up
options must be clear.

If the filing system does not support background transfers of data, R5 must be zero.

The hard disc map sizes are given using I byte for each disc. with drive 4 in the low
byte, and drive 7 in the high byte. The byte should contain map size/256 (ie 2 for the
old map) . This is just a good guess and should not involve starting up the drives to
read from them. You might store this in the CMOS RAM.

You must store the FileCore instance private word returned by this SWI in your
module workspace; it is your module's means of identifying itself to FileCore.

When your module calls the addresses returned in Rl - R3 , it must be in SVC mode
with Rl2 holding the value of RO that this SWI returned . Interrupts need not be
disabled. RO, Rl, R3- Rll and Rl3 will be preserved by FileCore over these calls.

Related SWis

None

Related vectors

None

2-227

FileCore_Drives (SW/ &40542)

Returns information on the filing system's drives

On entry

R8 = pointer to FileCore instance private word

On exit

RO = default drive
Rl =number of floppy drives
R2 = number of hard disc drives

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

FileCore Drives
(SWI &40542)

This call returns information on the filing system's drives.

Related SWis

None

Related vectors

None

2-228

FileCore

FileCore_FreeSpace
(SWI &40543)

Returns informatio on a disc's free space

On entry

RO =pointer to disc specifier (null terminated)
R8 = pointer to FiiJcore instance private word

I
On exit I

RO =total free spa2e on disc
Rl =size of largest object that can be created

Interrupts

Interrupt status is mndefined
Fast interrupts are knabled

Processor mode

Processor is in SV~ mode

Re-entrancy

Not defined

Use

This call returns thl total free space on the given disc, and the largest object that
can be created on i .

Related SWis

None

Related vectors

None

2-229

FileCore_FioppyStructure (SWI &40544)

2-230

Fi IeGore _FioppyStructu re
(SWI &40544)

Creates a RAM image of a floppy disc map and root directory entry

On entry

RO =pointer to buffer (must be~ 4K long)
Rl =pointer to disc record describing shape and format
R2 bit 7 set for old directory structure

bit 6 set for old map
R3 = pointer to list of defects

On exit

R3 = total size of structure created

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call creates a RAM image of a floppy disc map and root directory entry

The pointer to a list of defects is only needed for new map discs. They must be byte
addresses giving the start of defective sectors, and terminated with &20000000.

You do not need to know a FileCore instantiation private word to use this call;
instead the disc record tells FileCore which filing system is involved.

Related SWis

None

Related vectors

None

FileCore

2-231

FileCore_DescribeDisc (SWI &40545)

2-232

FileCore DescribeDisc
(SWI &40545)

Returns a disc record describing a disc's shape and format

On entry

RO =pointer to disc specifier (null terminated)
Rl =pointer to 64 byte block
R8 = pointer to FileCore instance private word

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call returns a disc record in the 64 byte block passed to it. The record describes
the disc's shape and format. For a definition of the format of a disc record, see the
section entitled Disc record on page 2-202.

Related SWis

None

Related vectors

None

FileCore

FileCore DiscardReadSectorsCache
(SWI &40546)

Discards the cache of read sectors created by FileCore_DiscOp 9

On entry

R6 = Cache handle

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call discards the cache of read sectors created by FileCore_DiscOp 9 (see
page 2-225) .

This call is not available under RISC OS 2.

Related SWis

None

Related vectors

None

2-233

FileCore_DiscFormat (SWI &40547)

2-234

FileCore DiscFormat
(SWI &40547)

Fills in a disc format structure with parameters for the specified format

On entry

RO = pointer to disc format structure to be filled in
Rl = SWI number to call to vet disc format (eg ADFS_YetFormat)
R2 =parameter in Rl to use when calling vetting SWI
R3 = format specifier

On exit

RO - R3 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call fills in the disc format structure pointed to by RO with the 'perfect'
parameters for the specified format. taking no account of the abilities of the
available hardware that will have to perform the format. Once filled in, this SWI
calls the vetting SWI to check the format structure for achievability on the available
hardware. The vetting SWI may generate an error if the format differs widely from
what can be achieved; alternatively it may alter the format structure to the closest
match that can be achieved. The vetting SWI then returns to this SWI. which checks
whether the format block- as updated by the vetting SWI- is still an adequate
match for the desired format. If it is. this SWI returns to its caller; otherwise it
generates an error.

File Core

The following format specifiers are recognised:

Value Meaning

&80 L format floppy
&81 D format floppy
&82 E format floppy
&83 F format floppy

The returned disc format structure contains the followin~ information:

Offset Length Meaning

0 4 Sector size in bytes (which will be a multiple of 128)
4 4 Gap! side 0
8 4 Gap! side I
12 4 Gap3
16 I Sectors per track
17 I Density:

I single density (125Kbps FM)
2 double density (250Kbps FM)
3 double+ density (300Kbps FM)

(ie higher rotation speed double density)
4 quad density (500Kbps FM)
8 octal density (I OOOKbps FM)

18 Options:
bit 0 I index mark required
bit I double step
bits 2-3 0 interleave sides

I format side I only
2 format side 2 only
3 sequence sides

bits 4-7 reserved- must be 0
19 Start sector number on a track
20 Sector interleave
21 Side/side sector skew (signed)
22 Track/track sector skew (signed)
23 Sector fill value
24 4 Number of tracks to format (ie cylinders/drive: normally 80)
28 36 Reserved- must be zero

This structure tells you how to format a disc. Note that it differs from that used in
FileCore_DiscOp to actually format a track (see page 2-224) . The differences are
because the DiscOp structure only specifies the format of a single track.

This call is not available under RISC OS 2.

2-235

FileCore_DiscFormat (SWI &40547)

Related SWis

ADFS_VetFormat (page 2-287). DOSFS_DiscFormat (page 2-329)

Related vectors

None

2-236

FileCore

FileCore_LayoutStructure
(SWI &40548)

Lays out into the specified file a set of structures for its format

On entry

RO = identifier of particular format to lay out
Rl =pointer to bad block list (terminated by -I)
R2 =pointer to null-terminated disc name
R3 = image file handle

On exit

RO - R3 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call lays out into the specified file a set of structures corresponding to the
identified format . The format identifier is a pointer to a disc record . An error is
returned if the specified format can not map out defects, and there were defects in
the defect list.

This call is not available under RISC OS 2.

Related SWis

None

Related vectors

None

2-237

Fi/eCore_MiscOp (SWI &40549)

2-238

FileCore_MiscOp
(SWI &40549)

Perform miscellaneous functions for accessing drives

On entry

RO = reason code
Rl =drive
R2 - R5 depend on reason code
R8 =pointer to FileCore instance private word

On exit

RO - R6 depend on reason code

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use
This call performs miscellaneous functions for accessing drives, depending on the
reason code in RO. Valid reason codes are:

Value Meaning Page

0 Mount 2-238
Poll changed 2-238

2 Lock drive 2-238
3 Unlock drive 2-238
4 Poll period 2-238
5 Eject disc 2-238

This call is not available under RISC OS 2.

Related SWis

None

Related vectors

None

FileCore

2-239

FileCore_MiscOp 0 (SWI &40549)

2-240

Mounts a disc, reading in the data asked for

FileCore_MiscOp 0
(SWI &40549)

On entry

RO =0
Rl =drive
R2 = disc address to read from
R3 = pointer to buffer
R4 = length to read into buffer
R5 = pointer to disc record to fill in (floppies and floppy-like hard discs only)
R8 = pointer to FileCore instance private word

On exit

Use

Rl - R5 preserved

This call mounts a disc, reading in the data asked for.

Floppy discs, and hard discs that may be mounted like floppies

For a floppy disc, and for hard discs where bit 4 of the descriptor block flags is set,
this call asks the given filing system to first identify the disc's format. The
suggested density to try first is given in the disc record; if this is not successful, the
filing system should then try other densities. The following order is suggested:

I Quad density

2 Double density

3 Octal density

4 Single density

5 Double+ density

Once the filing system has identified the disc's format, it fills in the log2secsize,
secspertrack, heads, derrsitlj, lowsector and root values in the disc record (see the section
entitled Disc record on page 2-202).

• If log2secsize::; 8, then it gives heads the value (actual number of heads- I). and
sets bit 6 of lowsector, so sides are treated as sequenced. Otherwise (ie when
log2secsize > 8) it gives heads the value (actual number of heads), and clears bit 6
of lowsector, so sides are treated as interleaved.

FileCore

• The filing system clears bit 7 of lowsector; this is used as an initial value. which
FileCore subsequently corrects if necessary.

Having filled in the disc record. the filing system then reads in the data asked for.

Other hard discs

For hard discs where bit 4 of the descriptor block flags is clear (see the section
entitled Descriptor block on page 2-587). this merely asks the given filing systems to
read in the data asked for. This typically necessitates it reading the boot block off
the disc; if the disc doesn't have one. the filing system generates one itself.

2-241

Fi/eCore_MiscOp 1 (SWI &40549)

2-242

Poll changed

FileCore_MiscOp 1
(SWI &40549)

On entry

RO =I
Rl =drive
R2 = sequence number
R8 = pointer to FileCore instance private word

On exit

Use

R2 = sequence number
R3 = result flags

The sequence number is to ensure no changes are lost due to reset being pressed.
Both the given filing system and the FileCore incarnation should start with a
sequence number of 0 for each drive. The filing system increments the sequence
number with each change of state. If the filing system finds the entry sequence
number does not match its copy it should return changed/maybe changed,
depending on whether the disc changed line works/doesn't work.

The bits in the result flags have the following meanings:

Bit

0

2
3
4
5
6
7
8
9
10
II - 31

Meaning when set

not changed
maybe changed
changed
empty
ready
drive is 40 track
empty works
changed works
disc in drive is high density
density sensing works
ready works
reserved- must be zero

Exactly one of bits 0- 3 must be set. Once bit 6 or 7 is returned set for a given drive,
they must always be so.

Locks a disc in a floppy drive

FileCore

FileCore_MiscOp 2
(SWI &40549)

On entry

RO = 2
Rl =floppy drive
R8 = pointer to FileCore instance private word

On exit

Use
This call locks a disc in a drive; you can only use it for a floppy drive. It should at
least ensure that the drive light stays on until unlocked. Note that locks are
counted, so each 'Lock drive' must be matched by an 'Unlock drive'.

2-243

FileCore_MiscOp 3 (SWI &40549)

2-244

Unlocks a disc in a floppy drive

FileCore_MiscOp 3
(SWI &40549)

On entry

RO = 3
Rl =drive
R8 =pointer to FileCore instance private word

On exit

Use
This call can only be called for a floppy drive. It reverses a single 'Lock drive'
MiscOp. Note that locks are counted, so 'Unlock drive' must be called for each
'Lock drive'.

FileCore

FileCore_MiscOp 4
(SWI &40549)

Informs FileCore of the minimum period between polling for disc insertion

On entry

R0=4
Rl =pointer to disc name (may not be terminated if maximum length)
R8 = pointer to FileCore instance private word

On exit

Use

R5 =minimum polling period (in centiseconds), or -1 if disc changed doesn't work
R6 = pointer to media type string: eg 'disc' for ADFS

This call informs FileCore of the minimum period between polling for disc
insertion under the given filing system. This is so that drive lights do not remain
continuously illuminated. ·

The values are re-exported by FileCore in the UpCalls MediaNotPresent and
MediaNotKnown. The value applies to all drives rather than a particular drive.

2-245

FileCore_MiscOp 5 (SWI &40549)

2-246

Power-ejects the disc in the specified drive

FileCore_MiscOp 5
(SWI &40549)

On entry

RO == 5
Rl ==drive
R8 == pointer to FileCore instance private word

On exit

Use
This call power-ejects the disc in the specified drive, provided that the hardware is
capable of it.

This reason code was introduced in RISC OS 3 (version 3.1 0)

FileCore

*Commands
*Backup

Copies the used part of a floppy disc.

Syntax

*Backup source_drive dest_drive [QJ

Parameters

Use

source_drive

dest_drive

Q

the number of the source floppy drive (0 to 3)

the number of the destination floppy drive (0 to 3)

speeds up the operation, by using the application work
area as a buffer if extra room is needed to perform the
backup, so fewer disc accesses are done. You must save
any work you have done and quit any applications you
are using before using this option.

*Backup copies the used part of one floppy disc to another; free space is not
copied. If the source drive is the same as the destination (as it is on a single floppy
drive system), you will be prompted to swap the disc, as necessary.

The command only applies to floppy, not hard discs.

Example

*Backup 0 1

Related commands

*Copy

2-247

*Bye

2-248

Syntax

Use

*Bye

Ends a filing system session.

*Bye

*Bye ends a filing system session by closing all files . unsetting all directories and
libraries, forgetting all floppy disc names and parking the heads of hard discs to
their 'transit position ' so that the hard disc unit can be moved without risking
damage to the read/write head.

You should check that the correct filing system is the current one before you use
this command, or alternatively precede the command by the filing system name.
For example you could end an ADFS session when another filing system is your
current one by typing:

*adfs:Bye

Related commands

*Close, *Dismount, *Shut. *Shutdown

FileCore

*CheckMap

Checks a disc map for consistency.

Syntax

*CheckMap [disc_spec]

Parameters

Use

disc_spec the name of the disc or number of the disc drive

*CheckMap checks that the map of an E- or F-format disc (whether floppy or hard)
has the correct checksums and is consistent with the directory tree. If only one
copy of the map is good, it allows you to rewrite the bad one with the information
in the good one.

In doing so, it closes all files on the disc.

Example

*CheckMap :Mydisc

Related commands

*Defect, *Verify

2-249

•compact

2-250

*Compact

Collects together free space on a disc

Syntax

*Compact [disc_spec]

Parameters

Use

disc_spec the name of the disc or number of the disc drive

•compact collects together free space on a disc by moving files . If no argument is
given, the •compact command is carried out on the current disc. •compact works
on either hard or floppy discs.

You cannot add a file to an old map disc (ie an LorD format disc. or an old map
hard disc) that is larger than the biggest single free space. Because •compact
gathers together free space, the maximum size of file you can fit on the disc will be
as high as is possible after you use this command.

The maximum size of file you can add to an E or F format disc does not depend on
how fragmented the free space is, so there is not the same need to compact them.
This command is still useful, as it will attempt to gather together any fragmented
files . and generally tidy the disc up.

Example

*Compact :0

Related commands

*CheckMap, *Filelnfo, *Map

Syntax

Use

File Core

*Configure Dir

Sets the configured disc mounting so that discs are mounted at power on

*Configure Dir

•configure Dir sets the configured disc mounting so that , for each FileCore-based
filing systems that support mounting:

• a disc gets mounted at power on

• the current directory is set to the root directory of the actual mounted disc (eg
adfs: :System Disc.$).

NaDir is the default setting.

This command is in fact provided by the kernel; however, since it is FileCore that
looks at the configured value, it is included in this chapter for clarity.

Related commands

*Configure Drive, •configure NaDir, *Mount

2-251

*Configure NoDir

Syntax

Use

*Configure NaDir

Sets the configured disc mounting so that discs are not mounted at power on.

*Configure NoDir

*Configure NoDir sets the configured disc mounting so that for each
FileCore-based filing system that supports mounting:

• nothing gets mounted at power on.

• the current directory is set to the root directory of the configured drive (eg
adfs::O.S).

This is the default setting.

This command is in fact provided by the kernel; however, since it is FileCore that
looks at the configured value, it is included in this chapter for clarity.

Related commands

*Configure NoDir, *Configure Drive, *Mount

2-252

FileCore

*Dismount

Ensures that it is safe to finish using a disc

Syntax

*Dismount [disc_spec]

Parameters

Use

disc_spec the name of the disc or number of the disc drive

*Dismount ensures that it is safe to finish using a disc by closing all its files,
unsetting all its directories and libraries. forgetting its disc name (if a floppy disc)
and parking its read/write head. If no disc is specified, the current disc is used as
the default. *Dismount is useful before removing a particular floppy disc. and is
essential if the disc is to taken away and modified on another computer. However,
the *Shutdown command is usually to be preferred, especially when switching off
the computer.

Example

*Dismount

Related commands

*Mount, *Shutdown

2-253

*Drive

2-254

*Drive

Sets the current drive

Syntax

*Drive drive

Parameters

drive the number of the disc drive. from 0 to 7

Use

*Drive sets the current drive if NaDir is set. Otherwise. *Drive has no meaning. The
command is provided for compatibility with early versions of ADFS.

Example

*Drive 3

Related commands

*Dir. *NaDir

FileCore

*Free

Displays the total free space remaining on a disc

Syntax

*Free [disc_ spec]

Parameters

d i sc_ spec the name of the disc or number of the disc drive

Use

*Free displays the total free space remaining on a disc. If no disc is specified, the
total free space on the current disc is displayed.

Example

*Free 0
Bytes free &OOOC 1C00=
Bytes used &00006 4 00=

Related commands

*Map

793600
25600

2-255

*Map

2-256

*Map

Displays a disc's free space map

Syntax

*Map [disc_spec]

Parameters

disc_spec the name of the disc or number of the disc drive

Use

*Map displays a disc's free space map. If no disc is specified, the map of the current
disc is displayed.

Example

*Map :Mydisc

Related commands

*Compact, *Free

FileCore

*Mount

Prepares a disc for general use

Syntax

*Mount [disc_spec]

Parameters

Use

disc_spec the name of the disc or number of the disc drive

*Mount prepares a disc for general use by setting the current directory to its root
directory, setting the library directory (if it is currently unset) to S.Library, and
unsetting the User Root Directory (URD). If no disc spec is given, the default drive
is used. The command is preserved for the sake of compatibility with earlier Acorn
operating systems, and ideally you should not use it.

Example

*Mount :mydisc

Related commands

*Dismount

2-257

*NameDisc

2-258

*Name Disc

Changes a disc's name

Syntax

*NameDisc disc_spec new_name

Parameters

Use

disc_spec

new_name

the present name of the disc or number of the disc drive

the new name of the disc, which may be up to I 0
characters long

*NameDisc (or alternatively, *NameDisk) changes a disc's name.

Example

*NameDisc :0 DataDisc

Related commands

None

FileCore

*Title

Sets the title of the current directory

Syntax

*Title [text]

Parameters

Use

text a text string of up to 19 characters

*Title sets the title of the current directory. Titles take no place in pathnames. and
should not be confused with disc names. Spaces are permitted in *Title names.

Titles are output by some * Commands that print headers before the rest of the
information they provide: for example *Ex.

This command is not available after RISC OS 2, and you should no longer use it.

Related commands

*Cat, *Ex

2-259

*Verify

2-260

*Verify

Checks a disc for readability

Syntax

*Verify [disc_spec]

Parameters

Use

disc_spec the name of the disc or number of the disc drive

*Verify checks that the whole disc is readable, except for sectors that are already
known to be defective. The default is the current disc.

Use *Verify to check discs which give errors during writing or reading operations. It
can check both floppy discs and hard discs.

*Verify uses a hard disc controller 'primitive' routine which does not attempt
retries if a read error occurs. Occasional misreads are not abnormal in hard disc
systems, and in normal operation FileCore corrects these by retrying. *Verify may
therefore occasionally indicate an error which under normal use would not be
encountered. Only if an error is reported consistently at the same sector address
should further action be taken.

Example

*Verify 4

*Verify :Mydisc

Related commands

*Defect

29 ADFS

Introduction
ADFS is the Advanced Disc Filing System. It is a module that. together with
FileSwitch and FileCore. provides a disc-based filing system.

Most of the facilities that you will use with ADFS are in fact provided by FileCore
and FileSwitch. and you should read the chapters on those modules (on page 2-9
and page 2- I 95 respectively) in conjunction with this one.

2-261

Overview

Overview

2-262

ADFS is a module that provides the hardware-dependent part of a disc-based filing
system. It uses FileCore, and so conforms to the standards for a module that does
so; see the chapter entitled FileCore on page 2-195 for details .

It provides:

• a* Command to select itself (*ADFS)

• a* Command to format discs (*Format)

• various configure options , accessed using *Configure

• SWis that give access to corresponding FileCore SWis

• further SWis to set the address of an alternative hard disc controller, and to set
the number of retries used for various operations

• the entry points and low-level routines that FileCore needs to access the disc
controllers and associated hardware.

Except for the low-level entry points and routines (which are for the use of FileCore
only) all of these are described below.

ADFS

Technical details

Formats

For a full summary of 'perfect' ADFS formats. see from page 2-197 onwards of the
chapter entitled FileCore.

Formatting discs
If you are running a site with a mixture of 1772-equipped 'old' machines and
71 0/711-equipped 'newer' machines, we recommend that you format all discs on
the latter.

On old machines, D and E format discs have the sectors offset between sides for
speed optimisation. The 710/711 cannot format discs in this manner, and may run
slow when accessing such discs. By formatting discs on newer machines, they will
run at the same speed on every machine, albeit some 5"/o slower than discs with
offset sectors can run on older machines.

Likewise, we recommend that any software you ship uses discs that do not offset
sectors between sides (ie the discs are formatted on a newer machine) .

Software protection schemes

If you wish to vary the format of a disc to provide software protection. you should
follow the guidelines below. This will ensure that your discs are reliably readable
and quick to load on all RISC OS machines, current or planned.

Disc formats should conform to the specifications in the chapter entitled FileCore
on page 2-195. with some exceptions. You may:

• use different size sectors within any one track

• arbitrarily vary the ID held in the sector ID, within the limits imposed by the
I 772 disc controller (but you must then use the altered ID to access that
sector- see below) .

2-263

Disc Drives

Disc Drives

You may not:

• directly access hardware

• vary the data rate or encoding method within a single track

• rely on the contents or operation of system data areas (eg 0- &8000) or FlO
routines

• access sectors specifying a different lD to that physically held in the sector !D.

The last point prohibits such common practices as reading a I k sector with a 2k
read (to recover inter-sector data). or reading a track with a different head number
to that in the sector lD (which works with a 1772, but fails with the 710/711 used on
machines such as the A5000).

For the purposes of formatting, the speed stability of disc drives will be assumed to
be 1.5%.

Drives which fit into the following specification will never have a data overrunning:

Variation in speed:

Min. Write to read changeover time:

Track length (nominal)

Assuming the drive is always running fast

±1.5%

696J..LS (2Meg mode) (43 bytes)
1300 J..LS (!Meg mode) (40 bytes)
(values for one particular drive)

12500 bytes (2Meg mode)
62 50 bytes (I Meg mode)

gives an actual workable track length of: 12312 bytes (2Meg mode)
6156 bytes (!Meg mode)

Fit within track lengths

2-264

If evaluating the total byte usage of the given formats gives a number less than the
minimum track length, then that format fits and will be reliable.

Here are the parameters of the parts of a track:

(soft) Index mark

Minimum gap 4

Sector overhead

96 bytes

30 bytes (2Meg mode)
40 bytes (I Meg mode)

62 bytes (includes gap 2 and pre-ambles):

Bytes Use
I 2 00-bytes (preamble)
3 AI-bytes

FE-ID of address field
Track
Side
Sector
Length
CRC I
CRC 2

22 4e-gap 2
I 2 00-bytes (preamble)
3 AI-bytes

FB-ID of data field
n (data- not included in sector overhead)
I CRC I

CRC 2

62 Total

ADFS

2-265

Disc Drives

2-266

Plugging the numbers in gives:

Lformat

96+42+(62+256+57)xl6-57+40 = 6121 (min. track length= 6156)

lLL minimum gap 4

remove one duplicate gap 3

number of sectors

gap 3

data bytes in a sector

sector overhead

gap I

soft index mark (not generated on 1772-based systems)

Figure 29.1 Byte usage for a track: L format

D and E formats

1772-based system without index mark:

0 +303+(62+1024+90)x5-90+40 = 6133 (minimum track length= 6156)

l LL minimum gap 4

remove one duplicate gap 3

number of sectors

gap 3

data bytes in a sector

sector overhead

biggest gap I

soft index mark (not generated on 1772-based systems)

Figure 29.2 Byte usage for a track: D and E formats (no index mark)

ADFS

71 0/711 -based system with index mark (gap I forced to 50 bytes by the 710/711):

96+50+(62+ I 024+90)x5-90+40 = 5976 (minimum track length= 6156)

llL minimum gap 4

remove one duplicate gap 3

number of sectors

gap 3

data bytes in a sector

sector overhead

biggest gap I

soft index mark (not generated on 1772-based systems)

Figure 29.3 Byte usage for a track: D and E formats (index mark)

F format

96+50+(62+1024+90)xl0-90+30 = 11846 (min . track length= 12312)

llL minimum gap 4

remove one duplicate gap 3

number of sectors

gap 3

data bytes in a sector

sector overhead

biggest gap I

soft index mark (not generated on 1772-based systems)

Figure 29.4 Byte usage for a track: F format

2-267

Disc Drives

2-268

Minimum Gap3 size

In checking the gap 3 value assuming worst case drive speed variation :

• The drive speed variation gives 3% variation total (assuming the drive used for
formatting was I .5% fast and for writing is I .5% slow) .

• The write-to-read times give the further slack needed which gives the
minimum value for gap3.

• The total variation in bytes is in the section of a sector from gap2 to the end of
CRC2 after the data.

This gives an overhead over the data of 40 bytes.

Lformat

Min. gap 3 = 9 + 40 = 49 (actually 57)

LLwrite-to-read time

data size (256+40) x 3%

Figure 29.5 Minimum Gap3 size: L format

D and E formats

Min. gap 3 = 32 + 40 = 72 (actually 90)

F format

l Lwrite-to-read time

data size (I024+40) x 3%

Figure 29.6 Minimum Gap3 size: D and E formats

Min. gap 3 = 32 + 43 = 75 (actually 90)

l Lwrite-to-read time

data size (1024+40) x 3%

Figure 29.7 Minimum Gap3 size: F format

ADFS

Worst write to read time

Working the calculations the other way round gives the worst case values for the
write-to-read time for a drive whose speed variation is 1.5%:

Lformat

Worst write-read-time= (57-9)x32 = 1536 JlS

D and E formats

lLL 11~ per byte

data size

gap 3

Figure 29.8 Worst write to read time: L format

Worst write-read-time= (90-32)x32 = 1856 JlS

F format

l L L JlS per byte

data size

gap 3

Figure 29.9 Worst write to read time: D and E formats

Worst write-read-time= (90-32)xl6 = 928 JlS

l L L JlS per byte

data size

gap 3

Figure 29.10 Worst write to read time: F format

2-269

Hardware Limits

Hardware Limits

Controllers

These are the limit parameters for the two floppy controllers ADFS supports:

Controller 1772 710/711

Sectors per track, low I 0
Sectors per track, high 240 255
Track, low 0 0
Track, high 240 255
Log2 (sector length), low 7 7
Log2 sector length, high 10 14
Sector number, low (formatting) 0 0
Sector number, high (formatting) 255 255
Format fill values always allowed OO-&F4, &FF 00-&FF
Formatting with lD mark optional forced
Gap3 maximum length (formatting) track length 255

Recommended formats

2-270

(These values are extracted from the 1772 data sheet)

Dens gapl gap3 -gap4
FM ~16 ~10 ~16

MFM ~32 ~24 ~16

Evaluation of 'does it fit' is:

Low track length- gap! + gap3- (secsize + SecOvrhead + gap3)xsecs ~min. gap4

If 'no' , does it fit using minimum gap! and minimum gap3?

• If so, divide slack amongst gaps (including gap4); else return error

Does the side/side skew invalidate gap4?

• If so, shorten it to minimum gap4

ADFS

Floppy drive types supported by 71 0/711 driver
The range of floppy drives supported by the 82C71 0/82C711 driver is considerably
wider than that supported by older drivers. In general any PC/XT/AT compatible
3112"/5 1/4" 40/80 track drive can be used. The following minimal requirements will
ensure optimal performance:

• Disc changed support should be available on pin 34, and should be resettable
with a step pulse.

• The drive should mask index pulses when selected but without a disc present.

• The drive should not mask index pulses whilst step pulses are being issued.

• The drive should support a 'density in ' signal (from FDC) that is active high for
high density (~500Kbps) .

• The drive should supply media lD signals that indicate the greatest density
supported by the current drive/media.

• Drives 0/ 1 should be ready to use within 500mS of motor startup.

• Drives 2/3 should be ready to use within IOOOmS of motor startup.

Motor on and drive select signals

The following table illustrates the combination of motor on and drive select
signals supplied for various drive selections:

Drive Selected /DSO IDS I /MEO /MEl
0 L H L H

H L H L
2 H H H L
3 H H L L

None H H H H

Drives 2 and 3 do not result in any drive select line being asserted, but can be
decoded by an external decoder.

2-271

Drive interface signal description

Drive interface signal description

2-272

To help you understand the floppy disc drive interface, this section discusses
further the function and use of each of the interface signals.

General

All interface signals are open-collector, and therefore require a pull-up resistor of
nominally Jill for 3'12" systems or 150!1 in older 51/4'' systems. The pull-up should
be present in one place only- either on the drive furthest from the controller (for
outputs), or on the controller (for inputs) .

Due to the nature of open collector signals no damage will occur if several outputs
drive one signal ; thus it is safe, for instance, to connect 'motor on' to 'Sel2 ' and
force motor on true whenever Sel2 is asserted .

All signals are active (asserted) low, ie active when at 0 Volts. Inputs are only valid
when a drive is selected .

Drive Select 0, 1, 2 and 3 - Output

Used to select the drive; only one should be active at any given time. Most 'AT'
compatible drives assume only drive select I will ever be asserted, since there is a
physical twist in the cable to determine the actual drive number.

Motor On - Output

Asserted to turn the drive motor on (and load the head on 51/4'' drives) . A period of
0.5 seconds (I second for drives 2 and 3) is allowed before any data transfer occurs
to allow the drive motor to come up to speed.

Side1 - Output

Asserted to select the under surface of a disc

Step - Output

Asserted to step the head in the direction given by Dirln . Also used to reset
DiscChanged. A period of 15-20 ms is required to allow for head settling after any
movement.

Dirln- Output

Asserted to move the head inwards (to the centre) during head movements.

WriteData - Output

Data from the controller to be written to disc.

WriteGate - Output

Qualifies Write Data. Asserted prior to and after Write Data is true to enable
recording of the data.

Density - Output

ADFS

Informs the drive of the current data rate. Asserted for 500Kbps and I Mbps
operations (I .6 and 3.2 Mbyte formats) . Normally on pin2. some drives may requtre
an inverted signal if intended for use with PS/2 systems.

TrackOO - Input

Asserted by the drive when the head is on track 0.

WriteProtect - Input

Asserted by the drive when the disc is write protected.

ReadData - Input

Data stream read from the disc.

Index - Input

Index pulses are produced every disc revolution (200mS). The 82C710/82C711
driver uses the presence of index pulses to detect a disc in. If a drive does not
support 'DiscChanged' then in order to function with the 82C71 0 /82C711 driver it
must inhibit index pulses with the drive empty; this is the normal situation.
Performance is improved if index pulses are not masked during seek or motor
startup. Index pulses must be present within 900mS (1400mS for drives 2 and 3) of
asserting drive select/motor on. otherwise the drive will be deemed to be empty.

DiscChanged - Input

This signal is normally available on pin34 or pin2 and when asserted indicates that
the disc in the selected drive has been changed. Neither the 1772 nor the
82C71 0/82C7 I I driver require DiscChanged in order to function. but give better
performance if available. The signal must never be asserted if non-functional.

Dependent upon drive type the disc changed signal may either be reset by issuing
a step pulse (82C71 0/82C71 I driver) and/or by asserting the disc changed reset
signal (I 772 driver) . If DiscChanged is reset by 'step'. the wimp polling period is set
to I per second; otherwise it is set to I 0 times per second.

2-273

Disc errors

Ready - Input

Often available on 51/4" drives. and available from drives for A440/540 series
machines on pin34. Asserted when the drive is ready for read/write operations. This
feature is required by the 1772 driver. If not present. Ready must be tied low for
the driver to function .

Disc errors

2-274

Disc errors are errors returned by the controller. The following sections list the disc
error codes returned for all controllers currently used in RISC OS computers.

1n2 (floppy disc) error codes

1772 disc error codes are basically the error codes returned in the status byte of the
1772. These are the status bits in that status byte:

Bit Name Meaning

7 FdcMotorOnBit
6 WProtBit Write protect (translated to disc write protected error)
5 WFaultBit Write fault
4 RnfBit Record not found
3 CrcBit CRC error
2 Lost Bit Lost data
I TrackOBit
0 BusyBit

So. disc error 8 is a CRC error

A OFt

ST506 (hard disc) error codes

ST506 disc error codes are the error codes returned by the HD63463 (ST506)
controller shifted right by 2 bits, which gives:

Value Name Meaning

&OJ ABT Command abort has been accepted

&02 JVC Invalid command

&03 PER Command parameter error

&04 NIN Head positioning, disc access, or drive check command before
SPC has been issued

&05 RTS TST command after SPC command

&06 NUS USELD for a selected drive has not been returned

&07 WFL Write fault (WFLT) has been detected on the ST506 interface

&08 NRY Ready signal has been negated

&09 NSC Seek complete (SCP) wasn't returned before timeout

&OA JSE SEK, or disc access command issued during a seek

&08 INC Next cylinder address greater than number of cylinders

&OC ISR Invalid step rate: highest-speed seek specified in normal seek
mode.

&OD SKE SEK or disc access command issued to drive with seek error

&OE OVR Data overrun (memory slower than drive)

&OF !PH Head address greater than number of heads

&10 DEE Error Correction Code (ECC) detected an error

&II DCE CRC error in data area

&12 ECR ECC corrected an error

&13 DFE Fatal ECC error in data area

&14 NHT In CMPD command data mismatched from host and disc

&15 ICE CRC error in ID field (not generated for ST506)

&16 TOV ID not found within timeout

&17 NIA ID area started with an improper address mark

&18 NDA Missing address mark

&19 NWR Drive write protected

2-275

Disc errors

2-276

IDE error codes

IDE disc errors are, where possible, mapped onto a similar error from an ST506- in
which case the name of the ST506 error is shown below. Other IDE disc errors are
given error codes outside the range used by the ST506:

Value Name Meaning

&02 IVC command aborted by controller

&07 WFL write fault

&08 NRY drive not ready

&09 NSC track 0 not found

&13 DFE uncorrected data error

&16 TOY sector id field not found

&17 NIA bad block mark detected

&18 NDA no data address mark

&20 no DRO when expected

&21 drive busy when commanded

&22 drive busy on command completion

&23 controller did not respond within timeout

&24 unknown code in error register

710/711 (floppy disc) error codes

710/711 disc error codes are the error codes returned by the (functionally
equivalent) 82C71 0 and 82C711 controllers, which are:

Value

&01

&02

&03

&10

&20

&21

&22

&23

&24

Meaning

Fatal - controller hardware error

Fatal- command timed out, drive problem

Fatal -Track 0 not found, drive problem

Critical- seek fault

Recoverable- non specific command error

Data overrun

Data CRC error

Sector or ID not found

Missing address mark

ADFS

Service Calls

Identify disc format name

Service_ldentifyFormat
(Service Call & 6 8)

On entry

RO = pointer to format specification string (null terminated)
Rl = &68 (reason code)

On exit

Use

All registers preserved (if not claimed)

If claimed :
RO preserved
Rl =0
R2 = SWI number to call to obtain raw disc format information
R3 = parameter in R3 to use when calling disc format SWI
R4 = SWI number to call to lay down a disc structure
R5 = parameter in RO to use when calling disc structure SWI

This call is issued by a handler of discs (such as ADFS) to find how to initialise a
disc to a specified format. The format specification string is the same as the
format parameter specified in the *Format command (see page 2-307) .

You should claim this call if your module recognises the format specification string
as one that you support. If you do not recognise the format- or if you don't support
disc formats at all- you should pass the call on with all registers preserved.

For an example of a call used to obtain raw disc format information. see
DOSFS_DiscFormat (SWI &44800) on page 2-329. Similarly, for an example of a call
used to lay down a disc structure. see DOSFS_LayoutStructure (SWI &4480 I) on
page 2-332.

2-277

Service_DisplayFormatHelp (Service Call &6C)

2-278

Service_DisplayFormatHelp
(Service Call &6C)

Display list of available formats

On entry

RO = 0
Rl = &6C (reason code)

On exit

Use

If no error occurred whilst displaying the help:
RO. Rl preserved to pass on

If an error occurred whilst displaying the help:
RO = pointer to error block
Rl = 0 to claim

This service call is issued when the user requests help on the available formats (eg
types *Help Format) . Your module should list the formats it will recognise in
response to Service_IdentifyFormat. The list should be displayed one format per
line in this format:

format- description

Where format is the text as recognised by Service_IdentifyFormat. and description is a
description of the format. For example:

F - 1600K , 77 entry directories , new map , Archimedes ADFS 2.50 and above .

DOS/Q- 1.44M , MS- DOS 3 . 20 , 3 . 5 " high density disc

You should display the list using OS_WriteC or a derivative of that (eg OS_WriteO.
OS_ WriteS etc).

SWI calls

Calls FileCore_DiscOp

On entry

See FileCore_DiscOp (page 2-221)

On exit

See FileCore_DiscOp (page 2-221)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

ADFS

ADFS_DiscOp
(SWI &40240)

This SWI calls FileCore_DiscOp (page 2-221). after first setting R8 to point to the
FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_DiscOp.

Related SWis

FileCore_DiscOp (page 2-221)

Related vectors

None

2-279

ADFS_HOC (SWI &40241)

2-280

ADFS HOC
(SWI &40241)

Sets the address of an alternative ST506 hard disc controller

On entry

R2 = address of alternative hard disc controller
R3 = address of poll location for IRO/DRO
R4 =bits for IRO/DRO
R5 =address to enable IRO/DRO
R6 =bits to enable IRO/DRO

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call sets up the address of the ST5056 hard disc controller to be used by the
ADFS. For instance. an expansion card can supply an alternative controller to the
one normally used. The controller must be an HD63463 (or compatible).

The polling and interrupt sense is done using:

LDRB Rn, [poll location]
TST Rn, [poll bits]

The IRO/DRO must be I when active.

Related SWis

None

Related vectors

None

ADFS

2-281

ADFS_Drives (SWI &40242)

2-282

Calls FileCore_Drives

On entry

See FileCore_Drives (page 2-228)

On exit

See FileCore_Drives (page 2-228)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

ADFS Drives
(SWI &40242)

This SWI calls FileCore_Drives (page 2-228). after first setting R8 to point to the
FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_Drives.

Related SWis

FileCore_Drives (page 2-228)

Related vectors

None

Calls FileCore_FreeSpace

On entry

See FileCore_FreeSpace (page 2-229)

On exit

See FileCore_FreeSpace (page 2-229)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

ADFS

ADFS_FreeSpace
(SWI &40243)

This SWI calls FileCore_FreeSpace (page 2-229). after first setting R8 to point to the
FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_FreeSpace.

Related SWis

FileCore_FreeSpace (page 2-229)

Related vectors

None

2-283

ADFS_Retries (SWI &40244)

2-284

Sets the number of retries used for various operations

On entry

RO = mask of bits to change
Rl =new values of bits to change

On exit

RO preserved
Rl = RO AND entry value of Rl
R2 =old value of retry word
R3 = new value of retry word

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

ADFS Retries
(SWI &40244)

This call sets the number of retries used by writing to the retry word . The format of
this word is:

Byte

0
I
2
3

Number of retries for

hard disc read/write sector
floppy disc read/write sector
floppy disc mount (per copy of the disc map)
verify after *Format. before sector is considered a defect

The new value is calculated as follows:

(old value AND NOT RO) EOR (RI AND RO)

Related SWis

None

Related vectors

None

ADFS

2-285

ADFS_DescribeDisc (SWI &40245)

2-286

Calls FileCore_DescribeDisc

On entry

See FileCore_DescribeDisc (page 2-232)

On exit

See FileCore_DescribeDisc (page 2-232)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

ADFS DescribeDisc
(SWI &40245)

This SWI calls FileCore_DescribeDisc (page 2-232). after first setting R8 to point to
the FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_DescribeDisc.

Related SWis

FileCore_DescribeDisc (page ·2-232)

Related vectors

None

ADFS

ADFS VetFormat
(SWI &40246)

Vets a disc format structure for achievability with the available hardware

On entry

RO = pointer to disc format structure to be vetted
Rl =parameter previously passed by ADFS in R2 to imageFS_DiscFormat

(ie drive number)

On exit

RO, R I preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call vets the given disc format structure for achievability with the available
hardware. ADFS updates the disc format structure with values that it can actually
achieve with the hardware available. For example the only fill byte value available
when formatting might be 0, but the requested value may be &4E, hence 0 would
be filled in as the fill byte value.

If ADFS cannot sensibly downgrade the parameters given in the disc format
structure, it will generate an error.

This call is typically made by FileCore or by the image filing system lmageFS,
in response to ADFS calling FileCore_DiscFormat (page 2-234) or
lmageFS_DiscFormat (eg DOSFS_DiscFormat (SWI &44800) on page 2-329)
respectively.

This call is not available under RISC OS 2.

2-287

ADFS_ VetFormat (SWI &40246)

2-288

The value in Rl is used to pass enough information on the hardware on which the
format is to take place for the disc format structure to be vetted. ADFS uses the
drive number for this; other handlers of discs may pass different information if they
implement a VetFormat SWI.

Related SWis

None

Related vectors

None

Use

For internal use only

ADFS

ADFS_FipProcessDCB
(SWI &40247)

This call is for internal use only. It is not available under RISC OS 2.

2-289

ADFS_ControllerType (SWI &40248)

2-290

Returns the controller type of a drive

On entry

RO =drive number (0- 7)

On exit

RO = controller type

0 ==> disc not present
I==> 1772
2 ==> 710/711
3 ==> ST506
4 ==>IDE

Flags corrupted

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

AD FS _ ControllerType
(SWI &40248)

This call returns the controller type of the given drive.

This call is not available under RISC OS 2.

Related SWis

None

Related vectors

None

ADFS

ADFS PowerControl
(SWI &40249)

Controls the power-saving features of the ADFS system

On entry

RO = reason code:
0 :=:} read drive spin status
I :=:}set drive autospindown
2 :=:}control drive spin directly without affecting autospindown

Rl =drive
R2 =drive autospindown. if RO = I:

= 0 :=:}disable autospindown and spin up drive
:t:- 0 :=:}set autospindown to (R2 x 5) seconds

or action to take. if RO = 2:
= 0 :=:}spin down immediately
:t:- 0 :=:} spin up immediately

On exit

R2 =drive spin status. if RO = 0 on entry:
= 0 :=:}drive is not spinning
"# 0 :=:}drive is spinning

R3 =previous value for drive autospindown. if RO = I on entry

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call controls the power-saving features of the ADFS system.

2-291

ADFS_PowerControl (SWI &40249)

2-292

It can be dangerous to use this call on drives that do not fully support drive spin
control. The controllers on at least two drives tested hang up when autospindown
is enabled; a reset does not recover the situation, although a power-on reset does.

This call is not available under RISC OS 2.

Related SWis

None

Related vectors

None

ADFS

ADFS SetiDEController
(SWI &4024A)

Gives the IDE driver the details of an alternative controller

On entry

R2 = pointer to IDE controller
R3 = pointer to interrupt status of controller
R4 =AND with status, NE ==} IRQ
R5 = pointer to interrupt mask
R6 = OR into mask enables IRQ
R7 = pointer to data read routine (0 for default)
R8 = pointer to data write routine (0 for default)
R 12 = pointer to static workspace

On exit

All registers preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call gives the IDE driver the details of an alternative controller.

This call is not available under RISC OS 2.

Related SWis

None

Related vectors

None

2-293

ADFS_/DEUserOp (SW/ &40248)

2-294

ADFS_IDEUserOp
(SWI &40248)

Direct user interface for low-level IDE commands

On entry

RO bit 0 set ::::} reset controller, clear ::::} process command
bits 24- 25 =transfer direction:

00 ::::} no transfer
01 ::::} read (ie bit 24 set)
I 0 ::::} write (ie bit 25 set)
II reserved

R2 = pointer to parameter block for command and results
R3 = pointer to buffer
R4 = length to transfer
R5 =timeout in centiseconds (0 ::::} use default)
Rl2 =pointer to static workspace

On exit

RO = command status (0 or a disc error number)
R2, R3 preserved
R4 updated
R5 corrupted

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call provides the direct user interface for low-level IDE commands. It must not
be called in background.

This call is not available under RISC OS 2.

Related SWis

None

Related vectors

None

ADFS

2-295

ADFS_MiscOp (SWI &4024C)

2-296

Calls FileCore_MiscOp

On entry

See FileCore_MiscOp (page 2-238)

On exit

See FileCore_MiscOp (page 2-238)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

ADFS_MiscOp
(SWI &4024C)

This SWI calls FileCore_MiscOp (page 2-238), after first setting R8 to point to the
FileCore instantiation private word for ADFS.

This call is functionally identical to FileCore_MiscOp.

Related SWis

FileCore_MiscOp (page 2-238)

Related vectors

None

Use

For internal use only

ADFS

ADFS ECCSAndRetries
(SWI &40250)

This call is for internal use only. It is not available under RISC OS 2.

2-297

"Commands

*Commands

2-298

*ADFS

Selects the Advanced Disc Filing System as the current filing system

Syntax

*ADFS

Parameters

Use

None

* ADFS selects the Advanced Disc Filing System as the filing system for subsequent
operations. Remember that it is not necessary to switch filing systems if you use
the full path names of objects. For example, you can refer to NetFS objects (on a file
server, say) when ADFS is the current filing system.

Example

*ADFS

Related commands

*Net, *RAM, *ResourceFS

ADFS

*Configure ADFSbuffers

Sets the configured number of ADFS file buffers

Syntax

*Configure ADFSbuffers n

Parameters

Use

n number of buffers

•configure ADFSbuffers sets the configured number of I Kbyte file buffers reserved
for ADFS in order to speed up operations on open files. A value of I sets a default
value appropriate to the computer's RAM size; a value of 0 disables fast buffering
on open files.

Example

*Configure ADFSbuffers 8

2-299

*Configure ADFSDirCache

2-300

*Configure ADFSDirCache

Sets the configured amount of memory reserved for the directory cache

Syntax

*Configure ADFSDirCache size[K]

Parameters

Use

size kilobytes of memory reserved

*Configure ADFSDirCache sets the configured amount of memory reserved for the
directory cache. Directories are stored in the cache to save reading them from the
disc; this speeds up disc operations, and reduces disc wear. A value of 0 sets a
default value appropriate to the computer's RAM size.

Example

*Configure ADFSDirCache 16K

ADFS

*Configure Drive

Sets the configured number of the drive that is selected at power on

Syntax

*Configure Drive n

Parameters

Use

n drive number

•configure Drive sets the configured number of the drive that is selected at power
on. Q-3 correspond to floppy disc drives; 4-7 correspond to hard disc drives. Since
most Acorn computers have only one floppy disc drive and no more than one hard
disc drive, the most common values are 0 or 4.

Example

*Configure Drive 0

Related commands

•configure Floppies , •configure HardDiscs, •configure FileSystem

2-301

•configure Floppies

2-302

*Configure Floppies

Sets the configured number of floppy disc drives recognised at power on

Syntax

*Configure Floppies n

Parameters

Use

n 0 to 4

*Configure Floppies sets the configured number of floppy disc drives recognised at
power on. The default value is I.

Example

*Configure Floppies 0

Related commands

*Configure HardDiscs

ADFS

*Configure HardDiscs

Sets the configured number of ST506 hard disc drives recognised at power on

Syntax

*Configure HardDiscs n

Parameters

Use

n 0 to 2

*Configure HardDiscs sets the configured number of ST506 hard disc drives
recognised at power on. These disc drives are the standard ones fitted to early
models of RISC OS computers (eg the Archimedes 300,400 and 500 series, and the
A3000). More recent models (eg the A5000) use IDE discs; for such models, you
should set the configured number of ST506 drives to zero, and use the *Configure
IDEDiscs command to set the number of hard discs.

The default value depends on the model of computer (for example, an Archimedes
305 is not supplied with a hard disc, so the value is 0). Note however that a delete
power-on will not preserve this default value, but will set it to zero.

Example

*Configure HardDiscs 2

Related commands

*Configure Floppies. *Configure IDEDiscs

2-303

*Configure IDEDiscs

2-304

*Configure IDEDiscs

Sets the configured number of IDE hard disc drives recognised at power on

Syntax
*Configure IDEDiscs n

Parameters

Use

n 0 to 2

•configure IDEDiscs sets the configured number of IDE hard disc drives
recognised at power on . These disc drives are the standard ones fitted to more
recent models of RISC OS computers (eg the A5000). Early models (eg the
Archimedes 300. 400 and 500 series. and the A3000) use ST506 discs; for such
models, you should set the configured number of IDE drives to zero, and use the
*Configure HardDiscs command to set the number of hard discs.

The default value depends on the model of computer. Note however that a delete
power-on will not preserve this default value. but will set it to zero.

Example
*Configure IDEDiscs 2

Related commands
•configure Floppies , •configure HardDiscs

ADFS

*Configure Step

Sets the configured step rate of one or all floppy disc drives.

Syntax

*Configure Step n [drive]

Parameters

Use

n

drive

step time in milliseconds

drive number (0 to 3)

*Configure Step sets the configured step rate of one or all floppy disc drives ton,
the step time in milliseconds. If the drive parameter is omitted, the step rate is set
for all floppy disc drives. This command should only be used with non-Acorn disc
drives.

The setting of this value affects disc performance. The optimum setting will vary,
and is not necessarily the shortest step time. The default value is 3 milliseconds. It
is possible to set values of 2, 3, 6 and 12 milliseconds: if other numbers are
supplied, the request will be rounded up to the nearest step available.

Limitations of 710/711 controllers

Due to limitations in the 710/711 controllers it is not always possible to set exactly
the step rate configured . The following table shows the configured and actual rates
used for various densities:

Actual 710/711 step rate (ms)
Configured step rate Single Double Double+ Quad Octal

2 2 2 1.7 2 2
3 4 4 3.3 3 3
6 6 6 6.7 6 6

I2 26 26 25 .0 I2 8

In single and double density modes, selection of the 12mS step rate actually
results in a 26mS rate being used; this is intentional to support older 40/80 track
51/4" discs. At octal density it is not possible to step at 12mS: this is a limitation of
the hardware, but should not cause problems since drives capable of supporting
octal density can normally be stepped at 2 or 3 ms rates.

2-305

*Configure Step

The limitations are because the step rates provided by the 710/711 controllers
depend on the data clock rate selected. Before every command ADFS calls a
routine to check the selected clock rate against the selected data rate and the
configured step rate , and hence to determine whether the step rate needs first to
be altered.

Example

*Configure Step 3

2-306

ADFS

*Format

Prepares a new floppy disc for use, or erases a used disc for re-use

Syntax
*Format drive [format [disc_name]] [Y]

Parameters

Use

drive

format

disc_name
y

the number of the disc drive, from 0 to 3

the type of format required, selected from:

F 1.6M RISC OS 3
E BOOK RISC OS
D BOOK Arthur 1.2
L 640K all ADFS

DOS/0 1.44M MS-DOS 3.20
DOS/M 720K MS-DOS 3.20
DOS/H !.2M MS-DOS 3
DOS/N 360K MS-DOS 2, 3
DOS/P IBOK MS-DOS 2, 3
oosrr 320K MS-DOS I, 2, 3
DOS/U 160K MS-DOS I, 2, 3

Atari!M 720K Atari ST
Atari!N 360K Atari ST

the name to be given to the disc

no prompt for confirmation

77-entry directories, new map
77-entry directories, new map
77-entry directories, old map
47-entry directories, old map

double sided HD 3 lf2" disc
double sided 3 lf2" disc
double sided HD 51f4" disc
double sided 3 lf2 ", 51f4'' disc
single sided 5 l/4" disc
double sided 51f4" disc
single sided 5 l/4" disc

double sided 3 lf2" disc
single sided 3 lf2" disc

*Format prepares a new floppy disc for use, or erases a used disc for re-use.

Early models of RISC OS computers (eg the Archimedes 300, 400 and 500 series,
and the A3000) do not have the disc drives and controllers necessary to use
DOS/H, DOS/0 and F formats . RISC OS 2 only supports L, D and E formats. Newer
models of RISC OS 3 computers (eg the A5000) can use all the above formats .

The default is to use F format if possible; otherwise E format is used. These formats
offer improved handling of file fragmentation on the disc and therefore do not
need to be periodically compacted (see the •compact command) .

2-307

*Format

Examples

*Format 0

*Format 0 L

Related commands

•compact

2-308

.,

Formats to default format

Formats the disc in drive 0 for use with ADFS on the
BBC Master range of computers

30 RamFS

Introduction
RamFS is the RAM Filing System. It is a module that, together with FileSwitch and
FileCore, provides a RAM-based filing system.

Most of the facilities that you will use with RamFS are in fact provided by FileCore
and FileSwitch, and you should read the chapters on those modules (on page 2-9
and page 2- I 95 respectively) in conjunction with this one.

2-309

Overview

Overview

2-310

RamFS is a module that provides the hardware-dependent part of a RAM-based
filing system. It uses FileCore, and so conforms to the standards for a module that
does so; see the chapter entitled FileCore on page 2- I 95 for details.

It provides:

• a* Command to select itself (*RamFS)

• SWis that give access to corresponding FileCore SWis

• the entry points and low-level routines that FileCore needs to access the
RAM-based filing system.

Except for the low-level entry points and routines (which are for the use of FileCore
only) all of these are described below.

SWI calls

Calls FileCore_DiscOp

On entry

See FileCore_DiscOp (page 2-221)

On exit

See FileCore_DiscOp (page 2-221)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

RamFS

RamFS_DiscOp
(SWI &40780)

This SWI calls FileCore_DiscOp (page 2-221), after first setting R8 to point to the
FileCore instantiation private word for RamFS.

This call is functionally identical to FileCore_DiscOp.

Related SWis

FileCore_DiscOp (page 2-221)

Related vectors

None

2-311

RamFS_Drives (SWI &40782)

2-312

Calls FileCore_Drives

On entry

See FileCore_Drives (page 2-228)

On exit

See FileCore_Drives (page 2-228)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

RamFS Drives
(SWI &40782)

This SWI calls FileCore_Drives (page 2-228). after first setting R8 to point to the
FileCore instantiation private word for RamFS.

This call is functionally identical to FileCore_Drives.

Related SWis

FileCore_Drives (page 2-228)

Related vectors

None

Calls FileCore_FreeSpace

On entry

See FileCore_FreeSpace (page 2-229)

On exit

See FileCore_FreeSpace (page 2-229)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

I

Re-entrancy

Not defined

Use

I

RamFS

RamFS_FreeSpace
(SWI &40783)

This SWI calls FileCore_FreeSpace (page 2-229), after first setting R8 to point to the
FileCore instantiation private word for RamFS.

This call is functionally identical to FileCore_FreeSpace.

Related SWis

FileCore_FreeSpace (page 2-229)

Related vectors

None

2-313

RamFS_DescribeDisc (SW/ &40785)

2-314

Calls FileCore_DescribeDisc

On entry

See FileCore_DescribeDisc (page 2-232)

On exit

See FileCore_DescribeDisc (page 2-229)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

RamFS DescribeDisc
(SWI &40785)

This SWI calls FileCore_DescribeDisc (page 2-229). after first setting R8 to point to
the FileCore instantiation private word for RamFS.

This call is functionally identical to FileCore_DescribeDisc.

Related SWis

FileCore_DescribeDisc (page 2-229)

Related vectors

None

RamFS

*Commands
*Configure RamFsSize

Sets the configured amount of memory reserved for the RAM filing system

Syntax

*Configure RamFSSize mKin

Parameters

mK

n

Use

number of kilobytes of memory reserved

number of pages of memory reserved; n ~ 127

*Configure RamFsSize sets the configured amount of memory reserved for the
RAM Filing System to use (when the RAMFS module is present) after the next hard
reset. The default value is 0, which disables the RAM filing system.

Example

*Configure RamFSSize 128K

Related commands

None

Related SWis

OS_ChangeDynamicArea (page 1-377). OS_ReadRAMFsLimits (page 1-382)

Related vectors

None

2-315

•Ram

2-316

*Ram

Selects the RAM Filing System as the current filing system

Syntax

*Ram

Parameters

Use

None

*Ram selects the RAM Filing System as the filing system for subsequent
operations. Remember that it is not necessary to switch filing systems if you use
the full path names of objects. For example, you can refer to NetFS objects (on a file
server, say) when RamFS is the current filing system.

Memory must have previously been reserved for the RAM filing system; the
simplest ways to do so are to use the command *Configure RamFSSize, or to use
the Task Manager from the desktop.

Example

*Ram

Related commands

*ADFS, *Configure RamFSSize, *Net, *ResourceFS

31 DOSFS

Introduction
DOSFS is an image filing system used to provide DOS disc access from RISC OS.

The description that follows both describes how image filing systems work, and
how DOSFS itself works.

DOSFS is not available in RISC OS 2.

2-317

Overview

Overview
The diagram below shows how DOSFS communicates with other modules in
RISC OS 3 to provide the full functionality of an image filing system:

FileSwitch

/~
d

FileCore ------ DOSFS (an image filing system)

ADFS (a handler of discs)

Figure 31 .1 Interactions of DOSFS with other filing systems

The names identify the component parts . The lines identify links between them:

• Link a is the standard link from FileSwitch to FileCore.

• Link b is the standard link between FileCore and ADFS.

• Link cis a link from FileSwitch to an image filing system- in this case DOSFS.

• Link d is a link between a host filing system- in this case FileCore- and an
image filing system- in this case DOSFS.

• Linke is a link between an image filing system- in this case DOSFS- and a
handler of discs- in this case ADFS.

Components of an image filing system

2-318

There are three links to DOSFS shown in the diagram above. An image filing system
can be considered as having three parts , each of which handles one of the links:

• the Image Handler (uses link c)

• the Identifier (uses link d)

• the Formatter (uses link e)

In practice it is best to have these parts in one module as this ensures a complete,
working, system is loaded, rather than a partial system. Also, having the parts in
one module saves a small quantity of space, due to the sharing of the module
overhead, and, possibly, of code.

The Image Handler

This is the most complex component of an image filing system. Its job is to
manage files held within an image file (or partition).

DOSFS

The image filing system's image handler communicates only with FileSwitch,
accessing images as files. FileSwitch tells the image handler when it has found an
image file which is relevant to the image handler. FileSwitch makes requests to the
image handler for it to access files and directories held within the image file. The
image handler then translates these requests into file access requests which it
makes to FileSwitch, which then passes these requests on to the relevant filing
system using standard calls. Thus a filing system need not provide any special
support for image filing systems to be able to hold image files.

Any image handler must identify itself to FileSwitch as such. This process is similar
to that done by a native filing system, but the number of calls the image handler
needs to support is fewer, the rest of the work being handled by FileSwitch.

The Identifier

This part of an image filing system is used to identify the format of a disc. It does
so by checking an image's format and contents against all the formats of which it
knows.

The request to check an image is made by issuing a service call. If the image filing
system's identifier recognises the image, it claims the service call; if not it passes it
on. The issuer of the service call waits for its return. An unclaimed service call
indicates the image wasn't recognised, and so the issuer can complain about the
disc being unreadable.

The Formatter

This part of an image filing system is used to help format a disc, which is done by
other sections of the system.

Before a disc can be formatted, the user has to specify a format. The image filing
system's formatter responds to service calls to help this process. The service calls
one for desktop menu format selection, and one for* Command format selection
are used to identify parameters defining a format. These parameters are in the form
of two SWI numbers- both provided by the formatter- with parameters to be
passed to them.

The first of these SWis is called by the disc handler to negotiate a physical format
that is both achievable by the disc handler, and acceptable to the image filing
system. Once the disc handler has formatted the disc it then calls the second SWI,
with which the formatter lays out the structure of an empty disc.

2-319

Points to note

Points to note

Each module involved in the system only needs to know how to handle a small part
of the whole system. For example, the DOSFS image handler doesn't need to know
how to identify or format a disc for itself, nor does it need to know how to drive the
ADFS disc driver- all it needs to know is how to access a file. Similarly, FileSwitch
need make no distinction between discs in a foreign format and image files- they
are both presented to FileSwitch as files of a given type.

Once one image filing system is in place, other image filing systems may easily be
added to the system by soft loading them.

There is no reason why a single filing system cannot host image filing systems by
providing the combined functionality that FileCore and ADFS provide to image
filing systems. In such a case, the structure would appear:

FileSwitch

/~
filing system d, e image filing system

Figure 31 .2 Interactions of complete image filing system with other filing systems

Writing image filing systems and host filing systems

2-320

If you are writing either an image filing system or a host filing system, you may use
this chapter as an example of how an image filing system must behave, and the
interfaces it must support; and as pointers to how a host filing system should
interact with an image filing system. You should also see the chapter entitled
Writing a filing system on page 2-521.

DOSFS

Technical Details

The Image Handler

The Identifier

Because DOSFS's image handler only communicates with FileSwitch, it does not
offer any direct interfaces to programmers.

For details of the entry points that an image handler must make available, see the
chapter entitled Writing a filing S!Jstem on page 2-521.

Perhaps the best way to see how the identifier works is an example. This follows
through what happens when a user clicks on ADFS's floppy disc icon with a DOS
disc in the drive.

I The user clicks on the floppy disc icon.

2 ADFSFiler (the module running the floppy disc icon) sends the Filer (the
module running directory viewers) a Filer_OpenDir message for directory
adfs::O.S

3 The Filer first checks to see whether it has already got adfs::O.S open, and, if it
hasn't, it creates an internal structure for it and then calls OS_GBPB I 0 (read
directory entries and information).

4 FileSwitch receives the OS_GBPB 10 with the name 'adfs: :O.S' and does an
FSEntry_File 5 on ':0.$' to adfs:

5 adfs: uses the FileCore module to process requests from FileSwitch. FileCore,
which knows about which discs are in which drives, does not yet know what
sort of disc is in drive :0 and so makes a request to the ADFS module to mount
the disc.

6 ADFS identifies what physical format the disc has (density, sectors per track,
sector numbering etc) and returns to FileCore.

7 FileCore, having had the physical format identified by ADFS, makes a
Service_IdentifyDisc quoting the disc record as filled in by ADFS.

8 DOSFS receives the Service_IdentifyDisc, updates the disc record and makes
various reads and tries to match the answers with valid DOS disc formats. If a
valid format is found it claims the service, if no valid format is found it passes
the service on. In this example the service will be claimed and DOSFS will pass
back the disc record (which includes the disc name and disc cycle id) and a file
type to associate with the disc's contents.

2-321

Disc cycle ids

9 FileCore receives the claimed service and records in its own internal drive
record that the disc in that drive has the given name and file type. FileCore
then returns back to FileSwitch that :0.$ is a file of the type returned to
FileCore by DOSFS.

10 FileSwitch notices that :0.$ is a file of a given type and looks up that type in its
table of registered image filing systems. FileSwitch opens adfs::O.$ as a file and
notifies DOSFS that it has a new image to handle.

(If the file type isn't found because DOSFS hasn't registered itself with
FileSwitch. FileSwitch returns a 'Disc not understood- has it been formatted?'
error.)

II DOSFS receives the notification of an image it has to handle. records internally
the FileSwitch handle it was quoted and returns its own handle back at
FileSwitch.

12 FileSwitch records against adfs::O.$ the DOSFS handle DOSFS gave it.

13 FileSwitch calls the DOSFS entry point ImageEntry_Func 15 (read directory
entries and information). quoting the DOSFS handle for adfs::O.$ and the name
of the directory of ".

14 DOSFS enumerates " (the root directory of the image) and returns to
FileSwitch.

15 FileSwitch filters out any unwanted entries and returns to ADFSFiler.

16 ADFSFiler displays the directory viewer.

Points to note

Disc cycle ids

2-322

• The host filing system (ie FileCore) issues the service call Service_IdentifyDisc
(see page 2-218) to request that image filing systems identify a disc.

• When an image filing system (eg DOSFS) identifies the disc. it fills in the disc
name. disc cycle id and other details in the disc record. and then claims the
service call. returning to the host filing system.

• Each image filing system has one (or more) filetypes allocated to it which
identifies how the contents of a file of that type should be interpreted as a
directory tree with files as leaves.

The host filing system (eg FileCore) keeps two pieces of information about a disc
which it uses to identify the same disc at a later time. These are the disc's name
and its disc cycle id. The name is the public bit of the identification and is what the
user sees; the disc cycle id is used to distinguish between different discs with the
same name. Clearly the host filing system needs to be kept abreast of any changes
made to the disc's name or disc cycle id.

DOSFS

The only way the disc name can be changed is the FileSwitch call OS_FSControl 50
(see page 2-132), in which case FileSwitch calls an entry point in the host filing
system to inform it of the change.

The host filing system can request image filing systems. where appropriate. to
update a disc cycle id when the disc is next altered. It does so by calling
OS_FSControl 51 (see page 2-133). This is so that another machine isn't misled
into believing that an altered disc is unchanged. and- for instance- using invalid
cached data. It is the responsibility of all image filing systems to flush new disc
cycle ids to media by calling OS_Args 255 (see page 2-59). and to inform their host
filing system whenever a disc cycle id has changed for whatever reason using
OS_Args 8 (see page 2-56) .

If there is a change to the disc cycle id and the host filing system is not informed.
then it will refuse to match that disc with its internal record. resulting in
continuous 'Please insert disc disc name' messages whenever the user tries to access
files on the disc. This is clearly undesirable. So, to summarise:

For a host filing system

• Store away the disc name and disc cycle id to rematch 'new' discs against old
ones.

• Respond to the FSEntry_Func 31 and FSEntry_Args I 0 entry points to keep the
disc name and disc cycle id up to date.

• Call OS_FSControl 51 when a disc might have been removed from the drive
since it was last accessed.

For an image filing system

• Call OS_Args 8 whenever you update a disc cycle id.

• Respond to the ImageEntry_Func 32 entry point to keep the disc cycle id up to
date.

Storing disc cycle ids

Depending on an image filing system's disc format. there may or may not be room
to fit in an explicit disc cycle id somewhere on the disc. For discs where there is
room the disc cycle id should simply be incremented with each update. For discs
where there isn't room. a disc cycle id may be some derivative of the structures on
the disc. such as a checksum of the free space map. Clearly there's not much that
can be done in this situation to update the disc cycle id when requested to. but
since it is likely to change anyway with each update. this should not be a problem.

2-323

The formatter

The formatter
The formatter is best explained by following through the process. In this example,
the host filing system is FileCore/ADFS; other host filing systems should use
exactly the same method.

Selecting a format

2-324

There are two ways of selecting a format in RISC OS:

I Specifying the format from the command line.

2 Choosing it from an icon bar menu.

Specifying the format from the command line

Clearly it would be useful for the user to know which formats are available. If the
user types *Help Format, ADFS displays help on its own formats, and then
issues the service call Service_DisplayFormatHelp (see page 2-278). This is passed
round all image filing systems, each of which adds its own help text to that already
displayed.

To format a disc from the command line, the user calls ADFS's *Format command:

*Format drive [format [disc_name]] [Y)

ADFS then issues the service call Service_IdentifyFormat (see page 2-277). which
passes the format around image filing systems. If an ~mage filing system
recognises the format , it claims the call. It also returns four values:

• The number of a SWI it provides that will specify the physical format of the
disc. For DOSFS, this SWI is DOSFS_DiscFormat; other image filing systems
should use the same naming scheme.

• A parameter to pass to that SWI, used to specify the format.

• The number of a SWI it provides that will layout the logical structure of an
empty disc onto an image file (which may be an entire disc) . For DOSFS, this
SWI is DOSFS_LayoutStructure; other image filing systems should use the
same naming scheme.

• A parameter to pass to that SWI , used to specify the structure.

Choosing the format from an leon bar menu

To format a disc from the desktop, the user chooses a format from the Format
submenu of the ADFSFiler's floppy disc icon bar menu. The ADFSFiler issues the
service call Service_EnumerateFormats (see page 2-494). This is passed round all
image filing systems, each of which adds its available formats to a linked list of
blocks. Each block specifies a single format. and contains its menu text. its help
text, and some flags. These entries are used to display the menu, and to provide

DOSFS

help on it. But each block also contains the same four values as are returned by
Service_IdentifyFormat, thus once a format has been chosen, ADFSFiler can then
make them available to ADFS for the next stage of the process.

Whichever way the format has been selected, the rest of the process is identical.
We shall assume that a DOSFS format has been selected, but the process ought
to be identical for other image filing systems.

Negotiating a physical format

Once a DOSFS format has been selected, ADFS calls DOSFS_DiscFormat (see
page 2-329). the number of which was obtained from Service_IdentifyFormat, or
from Service_EnumerateFormats. In doing so, it passes DOSFS two values:

• The number of a SWI it provides that will vet the disc format for achievability
with the available hardware. For ADFS, this SWI is ADFS_ VetFormat; other
handlers of discs should use the same naming scheme.

• A parameter to pass to that SWI, typically used to identify the drive.

DOSFS fills in a disc format structure with the 'perfect' parameters for the specified
format, taking no account of the abilities of the available hardware that will have to
perform the format. Once filled in, DOSFS calls ADFS_VetFormat (see page 2-287)
to check the format structure for achievability on the available hardware. ADFS may
generate an error if the format differs widely from what can be achieved;
alternatively it may alter the format structure to the closest match that can be
achieved. ADFS_VetFormat then returns to DOSFS, which checks whether the
format block- as updated - is still an adequate match for the desired format. If it
is, DOSFS_DiscFormat finally returns to ADFS; otherwise it generates an error.

We recommend that image filing systems and handlers of discs only go through
one cycle of vetting, as otherwise an infinite loop may ensue.

Formatting the disc

ADFS now has a disc format structure that contains parameters that are both
achievable, and satisfactory to DOSFS.

ADFS physically formats and verifies the disc, either by using the *Format
command, or by the desktop formatter. Both methods use ADFS_DiscOp (see
page 2-279) to write and verify tracks. A bad block list is constructed.

The disc then gets opened as a FileSwitch file by whatever is organising the format
(*Format or the desktop formatter).

2-325

Summary of responsibilities

Laying out the logical structure

Notes

Finally, ADFS calls DOSFS_LayoutStructure to layout the logical structure of an
empty disc onto the image file opened by FileSwitch- which is, in fact, the whole
disc.

You can also use DOSFS_LayoutStructure to layout a partition in an image file that
is only part of a disc.

Much of the information supplied and managed by one module and used by
another is quite long. Because of this, an RMTidy operation is very likely to break
the formatting subsystem.

SWI numbers in the formatting subsystem may be passed in either X or non-X
form , and the receiver should make no assumption about which form it has been
given.

Summary of responsibilities

2-326

FileSwitch is responsible for:
• noticing when an image file needs to be opened

• opening it and redirecting the user's request to the relevant image filing
system.

FileCore is responsible for:
• organising the identification of a disc whose logical structure is, as yet.

unidentified

• faking the entire contents of that disc to be a file of the required type- if an
image filing system recognises it- and storing the name of that disc against it

• identifying its own discs and managing the logical structure of them.

ADFS Is responsible for:
• identifying the physical format of a disc

• laying down a physical format on a disc

• reading and writing to a disc

• verifying a disc

• organising the formatting and verifying of a disc from the command line.

DOSFS

An image filing system {eg DOSFS) is responsible for:
• managing the logical structure of an image file given its file handle

• identifying a particular disc as being one of its own when requested to do so

• specifying lists of its own formats for the ADFSFiler menu

• identifying a command line format identifier as one of its own

• constructing a physical format description record for one of its own formats

• laying down a logical structure into a file for one of its own formats.

ADFSFiler is responsible for:
• organising the menu selection of a disc format and organising a format to that

specification

• organising the verification of a disc to a given specification.

Filename mapping

Filenames are mapped between RISC OS and DOS filenames as follows:

From RISC OS to DOS

The RISC OS filename is truncated to 8 characters. Some characters having special
meaning are changed:

RISC OS DOS

?
? #

+ &
@

%

< s
> I\

Note that the first mapping shown above is unlikely to occur in practice. since '#' is
a wild card in RISC OS, and '?' a wildcard in DOS. In practice. we recommend that
you use alphanumeric filenames where possible.

Filename extensions

DOSFS provides the *DOSMap command (page 2-336) with which you can set up
mappings between RISC OS filetypes and DOS filename extensions.

When transferring a file to DOS. the RISC OS filetype is checked against any that
have been registered using • DOSMap; if there is a match the DOS file is given the
corresponding filename extension.

2-327

SWI numbering

From DOS to RISC OS

SWI numbering

If the DOS filename has an extension, the separator is changed from'.' to'/'.
Characters having special meaning are changed, as above. RISC OS is then passed
the filename, concatenated with the (changed) separator and extension. This may
be up to I 2 characters in total; the *Configure Truncate command (page 2- I 5 I)
controls how RISC OS copes with this. By default, filing systems will typically
handle this from the command line or in program interfaces. but their desktop
filers will truncate the names.

Setting file types

When transferring a file to RISC OS, the DOS filename extension is checked against
any that have been registered using • DOSMap; if there is a match the RISC OS file
is given the corresponding file type. Otherwise the file type is set to 'DOS' (&FE4) .

Under RISC OS 3 (version 3.00) DOSFS had a SWI chunk base number of &41ACO;
all subsequent versions have a SWI chunk base number of &44800. If you are
writing software that calls DOSFS_DiscFormat or DOSFS_LayoutStructure (the
only two SW!s present in 3.00). and wish it to work under RISC OS 3 (version 3.00).
you must either call the SW!s by name, using OS_SWINumberFromString
(page 1-461) to convert the name at run time; or you must call the SWis by different
numbers depending on which version of RISC OS you are running under.

An alternative is to refuse to run under RISC OS 3 (version 3.00), giving a suitable
error.

Warning: possible data corruption

2-328

There is a bug in DOSFS which can cause data corruption under the following
circumstances:

• You write < 256 bytes to the start of a cluster.
(A cluster is a technical term used in MS-DOS for a group of sectors. the number
of which is format dependent. Note that files always start at the start of a
cluster.)

• The last write before closing a file is later in the same cluster.

There are two possible workrounds:

If writing< 256 bytes that may be at the start of a cluster, use OS_Args 255
(page 2-59) to flush the data to disc before any subsequent writes.

2 Always build data in structures of> 256 bytes before writing it.

SWI Calls

DOSFS

DOSFS DiscFormat
(SWI &44800)

Fills in a disc format structure with parameters for the specified format

On entry

RO = pointer to disc format structure to be filled in
Rl = SWI number to call to vet disc format (eg ADFS_VetFormat)
R2 =parameter in Rl to use when calling vetting SWI
R3 = format specifier

On exit

RO - R3 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call fills in the disc format structure pointed to by RO with the 'perfect'
parameters for the specified format, taking no account of the abilities of the
available hardware that will have to perform the format. Once filled in, this SWI
calls the vetting SWI to check the format structure for achievability on the available
hardware. The vetting SWI may generate an error if the format differs widely from
what can be achieved; alternatively it may alter the format structure to the closest
match that can be achieved. The vetting SWI then returns to this SWI, which checks
whether the format block- as updated by the vetting SWI - is still an adequate
match for the desired format. If it is, this SWI returns to its caller; otherwise it
generates an error.

2-329

DOSFS_DiscFormat (SWI &44800)

The following format specifiers are recognised:

Value Meaning

0 DOS/0 1.44M MS-DOS 3.20 double sided
I DOS/M 720K MS-DOS 3.20 double sided

2 DOS/H !.2M MS-DOS 3 double sided
3 DOS/N 360K MS-DOS 2, 3 double sided
4 DOS/P 180K MS-DOS 2, 3 single sided
5 DOS!r 320K MS-DOS I, 2, 3 double sided
6 DOS/U 160K MS-DOS I, 2, 3 single sided

7 Atari/M 720K Atari double sided
8 Atari/N 360K Atari single sided

The returned disc format structure contains the following information:

Offset Length Meaning

0 4 Sector size in bytes (which will be a multiple of 128)
4 4 Gap! side 0
8 4 Gap! side I
12 4 Gap3
16 I Sectors per track
17 Density:

I single density (125Kbps FM)
2 double density (250Kbps FM)
3 double+ density (300Kbps FM)

(ie higher rotation speed double density)
4 quad density (500Kbps FM)
8 octal density (IOOOKbps FM)

18 Options:
bit 0 I index mark required
bit I double step
bits 2-3 0 interleave sides

I format side I only
2 format side 2 only
3 sequence sides

bits 4-7 reserved- must be 0
19 Start sector number on a track
20 Sector interleave
21 Side/side sector skew (signed)
22 Track/track sector skew (signed)
23 Sector fill value
24 4 Number of tracks to format (ie cylinders/drive: normally 80)
28 36 Reserved- must be zero

2-330

DOSFS

This structure tells you how to format a disc. Note that it differs from that used in
FileCore_DiscOp to actually format a track (see page 2-224) . The differences are
because the DiscOp structure only specifies the format of a single track.

Under RISC OS 3 (version 3.00) this SWI had the number &41ACO.

Related SWis

ADFS_VetFormat (page 2-287) , FileCore_DiscFormat (page 2-234)

Related vectors

None

2-331

DOSFS_LayoutStructure (SWI &44801)

2-332

DOSFS _LayoutStructu re
(SWI &44801)

Lays out into the specified image a set of structures for its format

On entry

RO = structure specifier
Rl =pointer to list of bad blocks (terminated by -I)
R2 =pointer to disc name (null terminated)
R3 =file handle of image

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call lays out in the specified image all necessary structures to have a valid,
empty, disc. It can be used:

• to layout a structure on a blank, formatted disc (in which case the specified
image should be the whole disc image)

• to layout a partition in a file on a disc that has already been formatted (for
example for the PC emulator).

DOSFS

The following structure specifiers are recognised:

Value Meaning

0 DOS/0 1.44M MS-DOS 3.20 double sided
DOS/M 720K MS-DOS 3.20 double sided

2 DOS/H 1.2M MS-DOS 3 double sided
3 DOS/N 360K MS-DOS 2, 3 double sided
4 DOS/P 180K MS-DOS 2, 3 single sided
5 DO SIT 320K MS-DOS I , 2, 3 double sided
6 DOS/U 160K MS-DOS I, 2, 3 single sided

7 Atari/M 720K Atari double sided
8 Atari/N 360K Atari single sided

If the given image format has no option to store a disc name then this parameter
should be ignored.

The bad block list should be presented as an array of bad block addresses. Each
address is four bytes long. The array is terminated by a -I entry.

It is assumed that RO gives enough information for the format- it may be that RO
contains many bit fields or points to a block of information- the choice is up to the
image filing system module.

The value in RO is used to pass enough information to specify the disc structure.
DOSFS uses a simple table index for this; other image filing systems may pass
different information (using a pointer if necessary) for their LayoutStructure SWI.

Under RISC OS 3 (version 3.00) this SWI had the number &41ACI .

Related SWis

None

Related vectors

None

2-333

*Commands

*Commands

2-334

*Copy Boot

Copies the boot block from one MS-DOS floppy disc over the boot block of another

Syntax

*CopyBoot source_drive dest_drive

Parameters

Use

source_drive

dest_drive

the number of the source floppy drive (0 to 3)

the number of the destination floppy drive (0 to 3)

•copy Boot copies the boot block from one MS-DOS floppy disc over the boot block
of another.

DOSFS currently writes an MS-DOS 3.30 boot-block onto discs that it formats. If
you wish to use a different boot block you need a floppy disc containing that boot
block (from another system). You can then use this command to overwrite the
MS-DOS 3.30 boot-block with your other boot block.

DOSFS does not place the system files on a disc, so it cannot be used to boot-strap
an MS-DOS system or the PC-Emulator. To make a DOSFS disc boatable you need
to use this command to copy a boatable boot block to the disc, and also need to
copy a suitable set of system files to the disc.

Example

*CopyBoot 0 0

Related commands

None

Related SWis

None

Copies the boot block from one MS-DOS floppy disc to another,
using only drive 0. You will be prompted to change discs when
necessary.

Related vectors

None

DOSFS

2-335

*DOS Map

2-336

*DOS Map

Specifies a mapping between an MS-DOS extension and a RISC OS file type

Syntax

*DOSMap [MS-DOS_extension [file_type]]

Parameters

Use

MS-DOS_extension An MS-DOS file extension of up to three characters

file_type a number (in hexadecimal by default) or text description
of the file type to be mapped. The command *Show
File$Type* displays a list of valid file types.

*DOSMap specifies a mapping between an MS-DOS extension and a RISC OS file
type. Any MS-DOS file with the given extension will be treated by RISC OS as
having the given file type, rather than being of type 'DOS'.

If the only parameter given is an MS-DOS extension, then the mapping (if any) for
that extension is cancelled. If no parameter is given, then all current mappings are
listed.

The mappings are only retained until the next reset.

Example

*DOSMap TXT Text Treat all files witft an MS-DOS 'TXT' extension as RISC OS Text
files. For example, tftey will ftave Text file icons, and load into a text
editor wften double-clicked on.

Related commands

None

Related SWis

None

Related vectors

None

32 NetFS

Introduction
The NetFS is a filing system that allows you to access and use remote file server
machines, using Acorn 's Econet network. In common with other filing systems it
uses the FileSwitch module, and so when you are using the NetFS you can use any
of the commands that FileSwitch provides.

The NetFS module takes the commands that you give to it. either directly or via
FileSwitch, and converts them to file server commands. These commands are then
sent to the file server using the standard protocol of Econet. The file server then
acts on the files or directories that it stores.

Much of the above is transparent to the user, and in general to use file servers you
do not need to know file server protocols. or how data is sent over the Econet. For
advanced work, you can communicate directly with file servers. If you do need to
know more about Econet and file server protocols , you should see:

• the chapter entitled Econet on page 2-609

• the chapter entitled File server protocol interface on page 2-693.

2-337

Overview

Overview

2-338

The NetFS software provides a filing system for RISC OS. To do this it
communicates via the Econet with a file server; the file server stores the files and
keeps track of them in its directories, as well as providing authenticated access.
The NetFS software translates the user's requests that emerge from FileSwitch into
one or more file server commands. These commands are then sent to the file server
where they act on the files or directories stored there.

The NetFS software is designed to hold information about each file server that it is
logged on to and to use this information when communicating with the file server.
There are also some extra commands provided by the NetFS software that
communicate directly with the file server.

All communication with the file server is done using the interfaces provided by
Econet. Basic communication with a file server involves you transmitting a
command to it, and then receiving a reply. Either or both of these may contain your
data: for instance when you create a directory the name you supply is sent to the
file server, where as when you read the name of the current disc that name is sent
back to you . Most commands however send things in both directions. The NetFS
software knows all the formats and requirements of the file server and presents
these to the user, via FileSwitch.

The other commands (those that do not involve files or directories directly) are
accessed via star commands. These commands are only available when NetFS is
the current filing system.

There are three commands related to access control: *Logon, *Pass, and *Bye.
Three commands are to do with selecting file servers: • AddFS, • FS, and • ListFS.
The • Free command provides information about the amount of free space
remaining on each of the discs of a file server. The two commands *Mount and
*SDisc are identical ; the former is provided for compatibility with ADFS, the latter
for compatibility with existing network software (ANFS and NFS) .

NetFS

Technical Details

Naming
As well as supplying a filing system name as part of a file name (such as
'Net:&. Fred'), you can supply as part of the filing system name the name or number
of a file server: for example 'Net#253:&.Fred' or 'Net#Maths:Program'. This will
cause the file to be found (or saved, or whatever) on the given file server. If a name
is quoted, you must currently be logged on to that file server. If a number is given
then you must be logged on to the resulting file server; if only part of the number is
given then it will be defaulted against the current file server number.

File server name binding

Timeouts

NetFS allows you to refer to file servers by name(s); these are the names of the
discs on that particular file server. Inside NetFS a name is always reduced to a
station and net number pair (since this is what the Econet interfaces require). To
help NetFS make this translation (or binding) between names and numbers it
keeps a list (or cache) of the names of the discs on various file servers.

NetFS uses this list when the file server argument for a *Logon command is a
name rather than a number. It is also the list you see when you type *ListFS.

The list is generated by broadcasting a request to all file servers to send back the
names of all their discs. When a name is looked up (or bound) the list is searched;
if the name is present the number is returned, if not a broadcast is issued and the
list is searched again. NetFS expects that every disc on every file server will have a
different name; this is important, because NetFS needs a one-to-one mapping
from names to station and net numbers.

The dynamics of communication are controlled by several timeouts.

The values used by NetFS for the TransmitCount, TransmitDelay, and ReceiveDelay
are more fully explained in the chapter entitled Econet. These are the values used
for all normal communication with the file server.

Before attempting to log on to a file server, NetFS tries the immediate operation
MachinePeek to the file server. This operation uses a second set of values: the
MachinePeekCount and the MachinePeekDelay. If this operation fails, the error

2-339

Direct access to file servers

'Station not present' is generated. The reason for this is that stations must respond
to MachinePeek. You can therefore determine quite quickly if the destination
machine is actually present on the network. without having to wait the long time
required for a normal transmission to timeout and report 'Station not listening'.

The last value used is called the BroadcastDelay; this is the amount of time for
which NetFS will wait for a file server to respond to the broadcast for names of filt
servers. If the named file server has not responded within that time the error
'Station name not found' will be returned.

Direct access to file servers
To provide access to those functions not provided as part of the FileSwitch
interface. or as one of the command interfaces provided directly by NetFS, there
are a pair of SWI calls.

The first of these (SWI NetFS_DoFSOp) provides communication with the current
file server. and the second (SWI NetFS_DoFSOpToGivenFS) to any file server to
which the NetFS software is logged on.

• The function (in RO) is an indication to the file server what it should do. You
will find documentation of the file server functions in the chapter entitled File
server protocol interface on page 2-693.

• The buffer contains the data to be sent to the file server. Econet's five byte
header (Reply port. Function, URD, CSD, CSL) is prepended to the buffer
during transmission. When a reception occurs Econet's two byte header is
stripped off before the returned data is placed in the buffer.

Differences from FileCore based filing systems

2-340

Because NetFS does not use FileCore, there are a number of subtle differences
between it and FileCore based filing systems. For example, because of the file
server protocols it uses (see the chapter entitled File server protocol interface on
page 2-693) NetFS can only update a file's datestamp if it is passed a filename
rather than a file handle.

You must not assume that the behaviour of all filing systems will be identical to
ones that use FileCore.

NetFS

File attributes

NetFS uses the top 24 bits of to store a file's creation/modification date in the
following format:

Bits Meaning

8 - 12 Day of month (I - 31)
13 - 15 High bits of year (offset from 1980, 0- 127)
16- 19 Month of year (I- 12)
20-23 Low bits of year (offset from 1980, 0- 127)

With the addition of three zero bytes, these are in the correct format to use as input
to the SWI NetFS_ConvertDate (page 2-358).

2-341

Service Calls

Service Calls

2-342

Service NetFS
(Service Call &55)

Either a *Logon, a *Bye or a •soisd*Mount has occurred

On entry

Rl =&55 (reason code)

On exit

Use

Rl preserved to pass on (do not claim)

This call is issued by NetFS to indicate to the NetFiler that things may have
changed. For example, a user may have logged on to a server. while temporarily
outside the Wimp.

NetFS is dying

On entry

Rl= &5F (reason code)

On exit

R I preserved

Use

NetFS

Service_NetFSDying
(Service Call &5 F)

Issued by NetFS before closedown to allow Broadcast Loader to unhook.

2-343

SWI calls \
SWI calls

2-344

NetFS ReadFSNumber
{SWI &40040)

Returns the full station number of your current file server

On entry

On exit

RO =station number
Rl =net number

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call returns the full station number of your current file server. If your current
file server is not set then this call returns zero for both the net and station number.

Related SWis

NetFS_SetFSNumber (page 2-345) , NetFS_ReadFSName (page 2-346)

Related vectors

None

NetFS

NetFS SetFSNumber
(SWI &40041)

Sets the full station number used as the current file server

On entry

RO =station number
Rl =net number

On exit

RO, Rl corrupted

Interrupts

Interrupts may be enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call sets the full station number used by NetFS as the current file server,
restoring any context (for example its current directory).

This is the same as *FS net.station

Related SWis

NetFS_ReadFSNumber (page 2-344). NetFS_SetFSName (page 2-347)

Related vectors

None

2-345

NetFS_ReadFSName (SWI &40042)

2-346

NetFS ReadFSName
(SWI &40042)

Reads the name of the your current file server

On entry

Rl =pointer to buffer
R2 =size of buffer in bytes

On exit

RO = pointer to buffer
Rl =pointer to the terminating null of the string in the buffer
R2 = amount of buffer left, in bytes

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call reads the name of your current file server if you are logged on, and
otherwise returns a null string.

Related SWis

NetFS_ReadFSNumber (page 2-344). NetFS_SetFSName (page 2-347)

Related vectors

None

NetFS

NetFS SetFSName
(SWI &40043)

Sets by name the file server used as your current one

On entry

RO = pointer to buffer

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call sets by name the file server used as your current one, restoring any
context such as your current directory. You must be logged on to the file server; if
you are not. an error is generated.

Related SWis

NetFS_SetFSNumber (page 2-345). NetFS_ReadFSName (page 2-346)

Related vectors

None

2-347

NetFS_ReadCurrentContext (SWI &40044)

2-348

Unimplemented

On entry

On exit

RO- R2 corrupted

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

NetFS ReadCurrentContext
(SWI &40044)

This call is unimplemented, and returns immediately to the caller. It will be
removed from future versions of NetFS, and you must not use it.

Related SWis

NetFS_SetCurrentContext (page 2-349)

Related vectors

None

Unimplemented

On entry

On exit

All registers preserved

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

NetFS

NetFS SetCurrentContext
(SWI &40045)

This call is unimplemented, and returns immediately to the caller, with all registers
preserved. It will be removed from future versions of NetFS, and you must not use
it.

Related SWis

NetFS_ReadCurrentContext (page 2-348)

Related vectors

None

2-349

NetFS_ReadFSTimeouts (SWI &40046)

2-350

NetFS ReadFSTimeouts
(SWI &40046)

Reads the current values for timeouts used by NetFS

On entry

On exit

RO = transmit count
Rl =transmit delay in centiseconds
R2 = machine peek count
R3 = machine peek delay in centiseconds
R4 = receive delay in centiseconds
R5 = broadcast delay in centiseconds

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call reads the current values for timeouts used by NetFS when communicating
with the file server.

Related SWis

NetFS_SetFSTimeouts (page 2-351)

Related vectors

None

NefFS

NetFS SetFSTimeouts
{SWI &40047)

Sets the current values for timeouts used by NetFS

On entry

RO =transmit count
Rl =transmit delay in centiseconds
R2 = machine peek count
R3 = machine peek delay in centiseconds
R4 = receive delay in centiseconds
R5 = broadcast delay in centiseconds

On exit

All registers preserved

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call sets the current values for timeouts used by NetFS when communicating
with the file server.

Related SWis

NetFS_ReadFSTimeouts (page 2-350)

Related vectors

None

2-351

NetFS_DoFSOp (SWI &40048)

2-352

NetFS_DoFSOp
(SWI &40048)

Commands the current file server to perform an operation

On entry

RO = file server function
Rl =pointer to buffer
R2 = number of bytes to send to file server from buffer
R3 = size of buffer in bytes

On exit

RO = return condition given by file server
R3 = number of bytes placed in buffer by file server

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call commands the file server to perform an operation, as specified by the file
server function passed in RO. For further details of these functions, the data they
need to be passed in the buffer, and the data they return in the buffer, you should
see the chapter entitled File server protocol interface on page 2-693, or the
documentation for your file server.

The buffer must be large enough to hold the data that the file server returns.

Errors returned by the file server are copied into NetFS's workspace and adjusted
to be Hke a normal RISC OS error- RO points to the error, and the V bit is set. Any
further use of NetFS may overwrite this error, so you should copy it into your own

NefFS

workspace before you call NetFS again, either directly or indirectly. (For example,
character input or output may call NetFS, as you may be using an exec or spool
file.)

Related SWis j

NetFS_DoFSOpToGivenFS (page 2-360)

Related vectors

None

2-353

NetFS_EnumerateFSList (SWI &40049)

2-354

NetFS EnumerateFSList
(SWI &40049)

Lists all file servers of which the NetFS software currently knows

On entry

RO = offset of first item to read in file server list
Rl =pointer to buffer
R2 = size of buffer in bytes
R3 = number of file server names to read from list

On exit

RO =offset of next item to read (-I if finished)
R3 = number of file server names read

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call lists all the entries in a list of file servers which the NetFS software holds
internally. This list is used by the NetFS software to resolve file server names. and
is the same as the list you would get by using the *ListFS command.

The entries are returned as 20 byte blocks in the buffer:

Offset

0

2
3
19

Contents

Station number
Net number
Drive number
Disc name, padded with spaces
Zero

NetFS

They are returned in alphabetical order.

This call disables the event process that updates the list. so that it does not change
during enumeration . After you have completed the enumeration you must restart
the event process by calling NetFS_EnableCache (page 2-369) .

Related SWis

NetFS_EnumerateFS (page 2-356). NetFS_EnableCache (page 2-369)

Related vectors

None

2-355

NetFS_EnumerateFS (SWI &4004A)

2-356

NetFS EnumerateFS
(SWI &4004A)

Lists all file servers to which the NetFS software is currently logged on

On entry
RO =offset of first item to read in file server list
Rl =pointer to buffer
R2 = size of buffer in bytes
R3 = number of file server names to read from list

On exit
RO =offset of next item to read (-1 if finished)
R3 = number of file server names read

Interrupts
Interrupts are enabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call lists all the entries in the list of file servers to which the NetFS software is
currently logged on. This is essentially the same as the list you would get by using
the *FS command with no parameters, except that the user IDs are not returned.

The entries are returned as 20 byte blocks in the buffer:

Offset

0
I
2
3
19

Contents

Station number
Net number
Zero
Disc name, padded with spaces
Zero

NefFS

The order of the list is not significant , save that if you are logged on to your current
file server it will be returned last.

Related SWis

NetFS_EnumerateFSList (page 2-354). NetFS_EnumerateFSContexts (page 2-364)

Related vectors

t-Jone

2-357

NetFS_ConvertDate (SWI &40048)

2-358

NetFS ConvertDate
(SWI &40048)

Converts a file server time and date to a RISC OS time and date

On entry

RO =pointer to file server format Ume and date (5 bytes)
Rl =pointer to 5 byte buffer

On exit

R I is preserved

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call converts a file server format time and date to a time and date in the
internal format used by RISC OS (centiseconds since 00:00:00 on 1/111900).

The file server format is:

Byte

0

2

3

4

Bits Meaning

0 - 4 Day of month (I - 31)
5 - 7 High bits of year (offset from 1980, 0- 127)
0-3 Month of year (I- 12)
4-7 Low bits of year (offset from 1980,0 - 127)
0- 4 Hours (0- 23)
5-7 Unused
0- 5 Minutes (0- 59)
6, 7 Unused
0- 5 Seconds (0- 59)
6, 7 Unused

Related SWis

OS_ConvertStandardDateAndTime (page 1-435).
OS_ConvertDateAndTime (page 1-437)

Related vectors

None

NetFS

2-359

NetFS_DoFSOpToGivenFS (SWI &4004C)

2-360

NetFS_DoFSOpToGivenFS
(SWI &4004C)

Commands a given file server to perform an operation

On entry

RO = file server function
R I = pointer to buffer
R2 = number of bytes to send to file server from buffer
R3 =size of buffer in bytes
R4 = station number
R5 = net number

On exit

RO = return condition given by file server
R3 = number of bytes placed in buffer by file server

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call commands the given file server to perform an operation, as specified by
the file server function passed in RO. For further details of these functions, the data
they need to be passed in the buffer, and the data they return in the buffer, you
should see the chapter entitled File server protocol interface on page 2-693, or the
documentation for your file server.

The buffer must be large enough to hold the data that the file server returns .

Errors returned by the file server are copied into NetFS's workspace and adjusted
to be like a normal RISC OS error- RO points to the error, and the V bit is set. Any
further use of NetFS may overwrite this error, so you should copy it into your own

NetFS

workspace before you call NetFS again, either directly or indirectly. (For example,
character input or output may call NetFS, as you may be using an exec or spool
file .)

Related SWis

NetFS_DoFSOp (page 2-352)

Related vectors

None

2-361

NetFS_UpdateFSList (SWI &40040)

2-362

NetFS_UpdateFSList
(SWI &40040)

Adds names of discs to the list of names held by NetFS

On entry

RO =station number
Rl =net number

On exit

RO is corrupted
Rl is corrupted

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call will fetch the names of the discs of the given file server, and add these
names to the list of names held internally to NetFS. This call allows software that
uses the NetFS_EnumerateFS call to be sure that information on a particular file
server is up-to-date (as the NetFiler does when it offers a menu of disc names to
choose when opening'$').

If both RO and Rl are zero then the entire list will be updated.

This call is not available in RISC OS 2.

Related SWis

NetFS_EnumerateFS (page 2-356), NetFS_EnableCache (page 2-369)

Related vectors

None

NetFS

2-363

NetFS_EnumerateFSContexts (SWI &4004E)

2-364

NetFS EnumerateFSContexts
(SWI &4004E)

Lists all the entries in the list of file servers to which NetFS is currently logged on

On entry

RO = entry point to enumerate from
Rl =pointer to buffer
R2 =number of bytes in the buffer
R3 = number of entries to enumerate

On exit

RO =entry point to use next time (-I indicates no more left)
R2 = space remaining in buffer
R3 = number of entries enumerated

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call lists all the entries in the list of file servers to which NetFS is currently
logged on, and includes the user lD that NetFS logged on with. This is the same as
the list you would get by using the *FS command with no parameters.

NetFS

Entries are returned as 44 byte blocks in the buffer:

Offset Contents

0 Station number
Net number

2 Reserved
3 Disc name padded to 16 characters with spaces
19 Zero
20 User name padded to 21 characters with spaces
41 Zero
42 Reserved
43 Reserved

This call is not available in RISC OS 2.

Related SWis

NetFS_EnumerateFSList (page 2-354). NetFS_EnumerateFS (page 2-356)

Related vectors

None

2-365

NetFS_ReadUserld (SW/ &4004F)

2-366

NetFS ReadUserld
(SWI &4004F)

Returns the current user lD if logged on to the current file server

On entry

Rl =pointer to buffer
R2 = number of bytes in the buffer

On exit

RO corrupted
Rl =pointer to terminating zero
R2 =space remaining in buffer (including terminating zero)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call returns the current user lD if logged on to the current file server. If not
logged on, a null name is written to the buffer (ie a single zero).

This call is not available in RISC OS 2.

Related SWis

NetFS_ReadFSNumber (page 2-344). NetFS_ReadFSName (page 2-346)

Related vectors

None

Gets a unique identifier for an object

NetFS

NetFS _ GetObjectU I D
(SWI &40050)

On entry

Rl =pointer to a canonical object name
R6 = pointer to a canonical special field

On exit

RO =object type
R I preserved
R2 = object's load address
R3 = object's exec address
R4 = object's length
R5 = object's attributes
R6 = least significant word of UID
R7 = most significant word of UID

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call is very similar to FSEntry_File 5 (Read catalogue information: see
page 2-549) except that R6 and R7 form a 64 bit unique identifier (UID) for the
object. This UID is guaranteed to be unique across all file servers on all networks.
The UID is composed of information like the file server's network address. the file
server's disc on which the object is held, and the location of the object on that disc.
By using this call, stations on an Econet can compare U!Ds to see if they are
accessing the same object.

For information on canonical; file names, see FSEntry_Func 23 (page 2-568).

2-367

NetFS_GetObjectUID (SWI &40050)

This call is not available in RISC OS 2.

Related SWis

OS_File (page 2-30)

Related vectors

None

2-368

Enables a suspended event task

NetFS

NetFS EnableCache
(SWI &40051)

On entry

On exit

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

The list of names and numbers of file servers that NetFS keeps internally to resolve
file server names is added to by an event process. These events are caused by
reception packets from file servers of the names of discs. During the enumeration
of the list this event task is effectively suspended so that the list does not change
during the enumeration . Any call to NetFS_EnumerateFS will cause this
suspension to take place. To ensure that the list is being updated it is essential
that after a complete enumeration this call is made to re-enable the suspended
event task.

This call is not available in RISC OS 2.

Related SWis

NetFS_EnumerateFS (page 2-356), NetFS_UpdateFSList (page 2-362)

Related vectors

None

2-369

•commands

*Commands

2-370

*AddFS

Adds a remote file server's disc to the list of known file servers' discs

Syntax

*AddFS file_server_number [disc_number [:]disc_name]

Parameters

Use

file_server_number

disc_number

disc_name

the file server number of the file server to add,
which must be a full address including both a
net number and a station number

the disc number of the disc to add

the disc name of the disc to add

* AddFS adds a remote file server's disc to the list of file servers' discs that are
known to NetFS. If only the file server is specified, then all its discs will be removed
from the list.

NetFS updates the list as necessary for file servers to which it can broadcast. This
command is useful for you to add file servers to which NetFS cannot normally
broadcast: for example ones located over a wide area network link.

This command is not available in RISC OS 2, nor is it in RISC OS 3 (version 3.00) .

Example

*AddFS 201.254 4 :Server

*AddFS 202.254

Related commands

None

Add disc 'Server' on drive 4 of file server
20 I .254 to list

Remove all entries for file server 202 .254
from list

NetFS

*Bye

Logs the user off a file server

Syntax

*Bye [[:] file_server]

Parameters

Use

file_server the file server name or number- defaults to the current
file server

*Bye terminates the use of a file server. closing all open files and directories. If no
file server is given. you are logged off the current file server.

Example

*Bye 49.254

*Bye :fs

Related commands

*Logon. *Shut. *Shutdown

2-371

•configure FS

2-372

*Configure FS

Sets the configured default file server for NetFS

Syntax

*Configure FS file_server

Parameters

Use

file_server the file server name or number

•configure FS sets the configured default file server for NetFS. used where none is
specified. It is preferable to use the station name, as this is less likely to change.
The default value is 0.254.

Example

*Configure FS Serverl

Related commands

•configure FileSystem, •configure PS, "I Am. "Logon

NetFS

*Configure Lib

Sets the configured library selected by NetFS after logon

Syntax

*Configure Lib [0 I 1]

Parameters

Use

0 or 1

•configure Lib sets the configured library selected by NetFS after logon.

When NetFS logs on to a file server, the file server searches for $.Library on drives
0 - maxdrive of the file server, in that order. It passes the first match back to NetFS as
the library to be used. If it does not match this directory then it instead passes back
Son the lowest numbered physical disc.

• If 0 is used as the parameter, then NetFS uses the library directory returned by
the file server.

• If I is used as the parameter, then NetFS searches for S.ArthurLib on drives
0 - maxdrive of the file server, in that order. The first match is used by NetFS as
the library. If it does not find a match, then it uses the library directory
returned by the file server.

Example

*Configure Lib 0

Related commands

None

2-373

*Free

2-374

*Free

Displays file server free space

Syntax

*Free [:file_server] [user_name]

Parameters

Use

file_server

user_name

the file server name or number- defaults to the current
file server

as issued by the network manager

• Free displays a user's total free space. as well as the total free space for the disc.

If no file server is given, the current file server is used.

If a user name is given, the free space belonging to that user is displayed. If no user
is given, then the current user's free space is displayed.

Example

*Free :Business William
Disc name Drive Bytes free

Business

User free space

Related commands

None

0

Bytes used

3 438 592
30 967 808

185 007

NefFS

*FS

Restores the file server's previous context

Syntax

*FS [[:] file_server]

Parameters

Use

file_ server the file server name or number

* FS selects the current file server, restoring that file server's context (for example,
its current directory) . If no argument is supplied, your current file server number,
file server name and user name are printed out, followed by the same information
for any non-current servers.

Example

*FS 49.254

*FS :myFS

*FS
13.224 :Serv erl guest

254 :Server2 mhardy

Related commands

*ListFS

2-375

•t am

2-376

*I am

Selects NetFS and logs you on to a file server

Syntax
*I am [[:]file_ server_number l :file_server_name] user_ name [[:Return]password]

Parameters

Use

file_server_number

file_server_name

user_name

password

the file server number to log on to

the file server name to log on to

as issued by the network manager

as set by the user

*1 am selects NetFS and logs you on to a file server. Your user name and password
are checked by the file server against the password file before allowing you access .
If you give neither a file server number nor name, then this command logs you on
to the current file server.

The file server first searches drives 0- maxdrive for a password file containing a
password/user name pair that match those given; if none is found , access to the file
server is denied.

The file server then searches for a directory matching the given user name. It starts
with the drive where the password match was found , followed by drives 0- maxdrive.
It passes the first matching directory back to NetFS. If it does not match the user
name then it instead passes backS on the lowest numbered physical disc. NetFS
sets the User Root Directory to the returned directory, and sets the current
directory to the User Root Directory.

NetFS also sets the library directory, as described in •configure Lib.

This command is implemented as an alias using the system variable Alias$!. It is
identical to a *Net command (which selects NetFS as the current filing system)
followed by *Logon (see below) .

Example

*I am :fs guest

Related commands

*Logon, *Net

NetFS

*ListFS

Lists available file servers

Syntax

*ListFS [-force]

Parameters

-force force the list to be updated before it is displayed

Use

• ListFS displays a list of the file servers which NetFS is able to recognise. The
optional argument forces the list to be updated before it is displayed.

Example

*ListFS
1.254 :0
1.254 :1
6.246 :0

Related commands

*FS

Financel
Finance2
Production

2-377

*Logon

2-378

*Logon

Logs you on to a file server

Syntax
*Logon [[:] file_server_number l :file_server_name] user_name [[:Return]password]

Parameters

Use

file_server_number

file_server_name

user_name

password

the file server number to log on to

the file server name to log on to

as issued by the network manager

as set by the user

*Logon logs you on to a file server. Your user name and password are checked by
the file server against the password file before allowing you access. If you give
neither a file server number nor name, then this command logs you on to the
current file server.

The file server first searches drives 0- maxdrive for a password file containing a
password/user name pair that match those given; if none is found. access to the file
server is denied.

The file server then searches for a directory matching the given user name. It starts
with the drive where the password match was found, followed by drives 0- maxdrive.
It passes the first matching directory back to NetFS. If it does not match the user
name then it instead passes backS on the lowest numbered physical disc. NetFS
sets the User Root Directory to the returned directory, and sets the current
directory to the User Root Directory.

NetFS also sets the library directory, as described in *Configure Lib.

You must select NetFS before typing *Logon (this is not necessary with the *I am
command).

Example

*Logon :fs guest

Related commands

*I am

NefFS

*Mount

Selects a disc from the file server

Syntax

*Mount [:]disc_spec

Parameters

Use

disc_spec the name of the disc to be mounted

*Mount selects a disc from the file server by setting the current directory, the
library directory and the User Root Directory.

The file server searches the drive for a directory matching the given user name. It
passes the first matching directory back to NetFS. If it does not match the user
name then it instead passes backS. NetFS then sets the User Root Directory to the
returned directory of the selected disc, and sets the current directory to the User
Root Directory.

NetFS also sets the library directory, as described in *Configure Lib.

You cannot dismount a file server's disc.

*SDisc is a synonym for *Mount.

Example

*Mount fs

Related commands

*SDisc

2-379

*Net

2-380

*Net

Selects the Network Filing System as the current filing system

Syntax

*Net

Parameters

Use

None

*Net selects the Network Filing System as the filing system for subsequent
operations . Remember that it is not necessary to switch filing systems if you use
the full path names of objects. For example , you can refer to ADFS objects when
NetFS is the current filing system .

Example

*Net

Related commands

*ADFS, *RAM, *ResourceFS

NetFS

*Pass

Changes your password on your current file server

Syntax

*Pass [old_password [new_password]]

Parameters

Use

old_password

new_password

your existing password (if any)

the new password (if any) that you wish to assign

*Pass changes your password on your current file server, knowledge of which
allows unrestricted access to your network files on that server. If you enter the
command without parameters, the computer will prompt you to enter your old and
new passwords, reflecting each character you type as a hyphen. If you do not have
one, or wish to remove the one you have without substituting a new one, press
Return at the relevant prompt. The maximum password length is file server
dependent: on Level 4 file servers it is 22 characters, whereas on earlier file servers
it is only 6 characters.

Examples

*Pass

Old password:

New password:

*Pass bucket

New password:

User types pail (existing password)

User types bucket

User enters command again, this time giving existing
password as parameter

User presses Return, leaving themself with no
password

2-381

-::;uJSC

2-382

*SDisc

Selects a disc from the file server

Syntax

*SDisc [:]disc_spec

Parameters

Use

disc_spec the name of the disc to be mounted

*SDisc selects a disc from the current file server by setting the current directory,
the library directory and the User Root Directory.

The file server searches the drive for a directory matching the given user name. It
passes the first matching directory back to NetFS. If it does not match the user
name then it instead passes back$. NetFS then sets the User Root Directory to the
returned directory of the selected disc, and sets the current directory to the User
Root Directory.

NetFS also sets the library directory, as described in •configure Lib.

You cannot dismount a file server's disc.

*Mount is a synonym for *SDisc.

Example

*SDisc fs

Related commands

*Mount

NetFS

Example program
The following program fragments are examples of how you might use file server
operations by calling NetFS_DoFSOp:

ReadFileServerVersion
MOV rO, #25
ADR rl, Buffer
MOV r2, #0
MOV r3, #(?Buffer - 1)
SWI XNetFS_ DoFSOp
BVS Error
MOV rO , #0
STRB rO, [rl, r3
MOV rO , rl
SWI xos_writeO
BVS Error

PrintStationNumberOfUser
ADR r1, Buffer
MOV r2, #0

Loop LDRB r3, [rO]. #1
CMP r3 , # " "
MOVLT r3 , #13
STRB r3 , [rl, r2
ADD r2, r2 , #1
BGT Loop
MOV rO , #24
MOV r3, #?Buffer
SWI XNetFS_DoFSOp
BVS Error
LDRB r3 , [rl, #1 l
LDRB r4, [rl, #2 l
STMFD r13 ! , { r3, r4}
MOV rO, r13
MOV r2, #?Buffer
SWI xos_convertNetStation
ADD r13 , r13 , #8
SWIVC XOS_WriteO
SWIVC XOS_ NewLine
BVS Error

Command

Nothing to send
Lots to receive

Terminate string returned
One byte past the return size

Print it

User name pointed to by RO

Initial value o f index

Check for termination
Translate to what the FS wants
Copy into transmit buffer
Update index , and size to send

Command

Pickup station number
Pickup net number
Deposit in stack frame
Pointer to value for conversion
Destinat i on size

Dispose stac k frame
Display output

2-383

2-384

33 NetPrint

Introduction and Overview
NetPrint is a filing system that allows you to access and use remote printer server
machines, using Acorn's Econet network. In common with other filing systems it
uses the FileSwitch module. When you are using NetPrint you can use many of the
commands that FileSwitch provides. Obviously there are some operations (such as
those that read stored data) that are not applicable to network printer servers.

The NetPrint module takes the commands that you give to it. either directly or via
FileSwitch, and converts them to printer server commands . These commands are
then sent to the printer server using the standard protocol of Econet. The printer
server then acts on the commands and files that it is sent. It handles their
spooling, and manages its (locally) connected printer.

Much of the above is transparent to the user, and in general to use printer servers
you do not need to know printer server protocols , or how data is sent over the
Econet. If you do need to know more about Econet protocols, you should see the
chapter entitled Econet on page 2-609.

2-385

Technical Details

Technical Details

Naming

2-386

The network printing system is actually a filing system, and as such you can use it
by giving its name as part of a file name. For example:

*Save NetPrint:Fred AOOO +14C3

However, with current implementations the file name is ignored, and the
'NetPrint:' part is used to send the data to the network printer. As well as save
operations, the NetPrint filing system can also open files and take data. This
means that the operating system can spool to Net Print:. This is discussed in
more detail in the chapter entitled System devices .

Selecting a printer server

Whenever you open or save a file with NetPrint the software needs to know which
printer server to send your data to. When you have only a single printer server on
the network you should use •configure PS to set its station number as the default.
Then when you use the filename Net Print: your printout will be sent to the
correct station .

Some printer servers and spoolers support a naming protocol which allows you to
refer to a particular printer by name rather than by number. Names can be up to six
characters in length and are usually alphanumeric: for example Epson, Art, COT,
Laser!. Gerald, Draft, and PScrpt. It is sensible to choose a consistent set of
names. based on either location, type, brand or class. Before NetPrint can use a
named printer server, it must resolve the name to a station number; this process is
called name binding. Put simply, the name binder broadcasts the name, and
returns the number of the first server that says it is ready to accept a connection . If
no suitable reply occurs within a specified time an error is returned.

NetPrint has the notion of the 'current printer server'. This is usually set by the
•configure PS printer _server command, or with the • PS printer _server command. If the
printer_server is given by name, then name binding occurs; it is the returned number
that is retained as the current setting. Using •ps printer_serverwill cause the binding
to occur immediately and the result to be known. Once the number is selected, it
will be used whenever you open or save a file with the name Net Print: .

When your network has more than one printer server (or a spooler that is more
than one server) you may wish to choose which server to use. The easiest is to set
the name of the server as the configured default using •configure PS printer_server.

NetPrint

It is always possible to override the current setting by supplying the name or
number of the server you wish to use as part of the filename. For example you
might specify a server by number thus:

NetPrint#233:
NetPrint#2.253:

station number only (on current net)
full net.station address

or you might specify it by name (which would then be bound) thus:

NetPrint#Daisy:
NetPrint#Epson:

When selecting a particular printer server by this method the 'current printer
server' remains unaffected.

Operations supported

'

The NetPrint filing system supports the OS_File Save operation and the OS_Find
OpenOut operation. as well as OS_BPut and OS_GBPB writes (but not backwards).

Linking NetPrint to *FX 5 4 and VDU 2

Timeouts

There are system variables that connect the VDU print streams to files; an example
of this is the default value set up by NetPrint upon its initialisation. This is
PrinterType$4, and its value is Net Print:. You could change this value to
indicate a particular printer:

NetPrint#Epson:

and set up another variable to contain a different value:

PrinterType$3 = NetPrint#2.235:

so that you can swap between printers with a *FX command. For example:

*FX 5 4
*FX 5 3

The dynamics of communication are controlled by several timeouts.

The values used by NetPrint for the TransmitCount. TransmitDelay, and
Receive Delay are more fully explained in the chapter entitled Econet. These are the
values used for all normal communication with the printer server.

Before attempting to connect to a printer server. NetPrint tries the immediate
operation MachinePeek to the printer server. This operation uses a second set of
values: the MachinePeekCount and the MachinePeekDelay. If this operation fails,
the error 'Station not present' is generated. The reason for this is that stations

2-387

Timeouts

2-388

must respond to MachinePeek. You can therefore determine quite quickly if the
destination machine is actually present on the network. without having to wait the
long time required for a normal transmission to timeout and report 'Station not
listening'.

The last value used is called the BroadcastDelay; this is the amount of time for
which NetPrint will wait for a printer server to respond to the broadcast with the
name of the printer server. If within that time no printer server with that name has
responded. or all those that did were busy, the error 'No free printer server of this
type' will be returned.

SWI calls

NetPrint

NetPrint ReadPSNumber
(SWI &40200)

Returns the full station number of your current printer server

On entry

On exit

RO = station number
Rl =net number

Interrupts

Interrupts status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns the full station number of your current printer server. If the current
printer server is only stored as a name (eg after *SetPS printer_server_name) then
zero is returned for both the net and station numbers.

Related SWis

NetPrint_SetPSNumber (page 2-390), NetPrint_ReadPSName (page 2-391)

Related vectors

None

2-389

NetPrint_SetPSNumber (SWI &40201)

2-390

NetPrint SetPSNumber
(SWI &40201)

Sets the full station number used as the current printer server

On entry

RO = station number
Rl =net number

On exit

RO, Rl preserved

Interrupts

Interrupts may be enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call sets the full station number used by NetPrint as your current printer
server.

Related SWis

NetPrint_ReadPSNumber (page 2-389) , NetPrint_SetPSName (page 2-392)

Related vectors

None

NetPrint

NetPrint ReadPSName
(SWI &40202)

Reads the name of your current printer server

On entry

Rl =pointer to buffer
R2 = size of buffer in bytes

On exit
RO = pointer to buffer
R I = pointer to the terminating null of the string in the buffer
R2 = amount of buffer left, in bytes

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use
This call reads the name of your current printer server. If the current printer server
is only stored as a number (eg after •setPS printer_server_number) then a null name
is returned .

Versions of the NetPrint module before 5.26 return Rl one greater than it should
be, and hence R2 one less than it should be.

Related SWis

NetPrint_ReadPSNumber (page 2-389). NetPrint_SetPSName (page 2-392)

R_elated vectors

None

2-391

NetPrint_SetPSName (SWI &40203)

2-392

NetPrint SetPSName
(SWI &40203)

Sets by name the printer server used as your current one

On entry

RO = pointer to buffer containing null-terminated printer server name

On exit

RO preserved

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use
This call sets by name the printer server used as your current one.

Related SWis

NetPrint_SetPSNumber (page 2-390). NetPrint_ReadPSName (page 2-391)

Related vectors

None

NetPrint

NetPrint ReadPSTimeouts
(SWI &40204)

Reads the current values for timeouts used by NetPrint

On entry

On exit

RO = transmit count
Rl =transmit delay in centiseconds
R2 = machine peek count
R3 = machine peek delay in centiseconds
R4 = receive delay in centiseconds
R5 = broadcast delay in centiseconds

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call reads the current values for timeouts used by NetPrint when
communicating with the printer server.

Related SWis

NetPrint_SetPSTimeouts (page 2-394)

Related vectors

None

2-393

NetPrinLSetPSTimeouts (SWI &40205)

2-394

NetPrint SetPSTimeouts
{SWI &40205)

Sets the current values for timeouts used by NetPrint

On entry

RO = transmit count
Rl =transmit delay in centiseconds
R2 = machine peek count
R3 = machine peek delay in centiseconds
R4 = receive delay in centiseconds
R5 = broadcast delay in centiseconds

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call sets the current values for timeouts used by NetPrint when
communicating with the printer server.

Related SWis

NetPrint_ReadPSTimeouts (page 2-393)

Related vectors

None

NetPrint

NetPrint BindPSName
(SWI &40206)

Converts a printer server's name to its address, providing it is free

On entry

RO = pointer to buffer containing null-terminated printer server name

On exit

RO = station number
Rl =net number

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call attempts to find a printer server with the specified name that is not busy.
If one is found its address is returned in RO and Rl; otherwise an error is returned.

This call is not available in RISC OS 2.

Related SWis

None

Related vectors

None

2-395

NetPrinLListServers (SWI &40207)

2-396

Returns the names of all printer servers

On entry
RO = format code:

0 names and numbers

NetPrint ListServers
(SWI &40207)

names only, sorted, no duplicates
2 names, numbers and status

Rl =pointer to buffer
R2 = length of buffer in bytes
R3 =time to take before returning, in centiseconds

On exit
RO = number of entries returned
R I , R2 preserved
R3 = return code:

0 timed out
buffer full

Interrupts
Interrupt status is unaltered
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call returns the names of all printer servers. The format and contents of the
returned buffer are determined by the format code passed in RO:

RO = 0: Names and numbers

Offset Contents
0 station number

net number
2 server name, zero terminated

RO = I: Names only, sorted by name (case insensitive), no duplicates.

Offset Contents
0 server name. zero terminated

RO = 2: Names, numbers and status

Offset Contents
0 station number

net number
2 status
3 station number for status (optional)
4 net number for status (optional)
5 server name, zero terminated

Status values are as follows :

Value Name
0 Status_Ready

Status_Busy

2 Status_lammed
6 Status_Offline
7 Status_AlreadyOpen

English message(s)

'ready'
'busy with nnn.sss'
'busy'
'jammed'
'offline'
'already open'

NetPrint

For Status_Busy, the former message is used when the printer server is busy with a
single known station : its number follows. The latter message is used when the
printer server is busy with an unknown station, or with more than one: in this case
the optional station and net numbers (at offsets 3 and 4) are set to zero.

This call is not available in RISC OS 2.

Related SWis

NetPrint_ConvertStatusToString (SWI &40208)

Related vectors

None

2-397

NetPrint_ConvertStatusToString (SWI &40208)

2-398

NetPrint_ConvertStatusToString
(SWI &40208)

Translates a status value returned from NetPrint_ListServers into the local
language

On entry

RO =pointer to a status value byte, followed by two optional bytes containing the
station and net number associated with the status

Rl =pointer to buffer to hold message
R2 = length of the buffer in bytes

On exit

RO =value of Rl on entry
Rl =pointer to the terminating zero
R2 =bytes remaining in the buffer after the terminating zero

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call translates a status value returned from NetPrint_ListServers into the local
language, copying the resultant message into the specified buffer and terminating
it with a zero.

This call is not available in RISC OS 2.

Related SWis

NetPrint_ListServers (SWI &40207)

Related vectors

None

NetPrint

2-399

*Commands

*Commands

2-400

*Configure PS

Sets the configured default network printer server

Syntax

*Configure PS printer_server

Parameters

Use

printer_server the name or station number of the printer server

•configure PS sets the configured default network printer server.

You do not need to be logged on to a file server to use a printer server.

The stored name or station number is only bound when the default printer is first
used (ie when NetPrint: is first used, without any special fields to specify a server
other than the default) .

Example

*Configure PS Laserl

Related commands

*ListPS, *PS, *SetPS

Lists all the currently available printer servers

Syntax

*ListPS [-full]

Parameters

-full

Use

show status of each printer server

NetPrint

*ListPS

* ListPS lists all the currently available printer servers, optionally showing their
status as well. The order in which they are given depends on the order in which the
printer servers reply.

This command is identical to the command:

*Cat NetPrint:

or, with the -full parameter, to the command:

*Ex NetPrint:

Example

*ListPS -full
Umber 46.235 ready
Jade 44.235 ready
Mauve 93.235 ready
White 59.235 ready
Coral 32.235 jammed
Lime 2.235 ready

Related commands

*Configure PS, *PS, *SetPS

2-401

*PS

2-402

*PS

Changes the current printer server

Syntax
*PS [printer_server]

Parameters

Use

printer_server the name or station number of the printer server

*PS changes the current printer server. The new printer server will be used next
time you print to the default net printer. If the server is specified by name. it is
immediately bound, and the current server set to the returned number; if the server
is specified by number, the current server is set to that number.

If you don't specify a printer server. then this command returns the current printer
server and its status.

Example
*PS 49.254

*PS myPS

*PS
Printer server myPS (9.235) is ready

Related commands
*Configure PS, *ListPS, *SetPS

NetPrint

*SetPS

Changes the current printer server

Syntax

*SetPS [printer_server]

Parameters

Use

printer_server the name or station number of the printer server.

*SetPS changes the current printer server. This command only changes the stored
name or number of the default printer server. No check is made that the printer
server exists, or is available, until the next time you print to the default network
printer. It is only then that an error might be generated.

If you don't specify a printer server, then this command sets the current printer
server to be the default printer server (as set by *Configure PS) .

Example

*SetPS 49.254

*SetPS myPS

*SetPS

Related commands

*Configure PS, *ListPS, *PS

2-403

2-404

34 PipeFS

Introduction and Overview
PipeFS provides a mechanism for implementing named pipes between tasks, using
the *PipeCopy command to move bytes from one pipe to another.

It calls OS_UpCall 6 (see page 1-187) if a pipe being read becomes empty, or if one
being written to gets full, and thus cooperates with the Task Window.

It calls OS_UpCall 7 (see page 1- 188) if an open pipe is closed or deleted. The Task
Window module then traps this and objects (by returning an error) if any of its
tasks are currently waiting for the poll word related to that pipe to become
non-zero.

This prevents a *Shut command from deleting the workspace which is being
accessed by the Task Window, which could potentially cause address exceptions. If
the task which called PipeFS is killed by the user, the pipe can be released in a safe
manner.

Before attempting to read data from a pipe you must first ensure that it contains
data. The recommended way to do this is to call OS_GBPB 10 (page 2-70) .

2-405

•commands

*Commands

2-406

*PipeCopy

Copies a file one byte at a time to one or two output files

Syntax

*PipeCopy source_file destination_filel [destination_file2]

Parameters

Use

source_£ i 1 e a valid path name specifying a source file

destination_filel a valid pathname specifying a first destination file

destination_file2 a valid pathname specifying a second (optional)
destination file

*PipeCopy copies a file one byte at a time to one or two output files.

Example

*PipeCopy Pipe:Input Pipe:Outputl Pipe:Output2

Related commands

*Copy

Related SWis

None

Related vectors

None

35 ResourceFS

Introduction and Overview
This chapter describes the interface to the ResourceFS module, which provides the
hooks necessary for modules to include files in the Resources: filing system.

This facility is useful because it allows the resource files associated with a
particular module to be included in the same file as the binary image, which helps
with release control.

It also has an important application for expansion card modules, since it allows
them to *IconSprites a sprite file which they put into Resources :. This is
important as there is no other way to introduce a sprite into the Wimp's sprite pool
other than from a file.

Another application is for certain resource files to be replaced on a selective basis ,
which is an additional technique to the path mechanism already in use (e.g.
WimpSPath can be set up to reference a resource directory).

ResourceFS is not available in RISC OS 2.

2-407

Technical Details

Technical Details

Directory structure

Path variables

2-408

In order to avoid possible name clashes, it is important that a well-defined
directory structure is adhered to by all concerned. This is:

$.Apps.! appname
$.Fonts
$.Resources.modulename
$.Resources.appname

; the ROM-resident applications
; the ROM-resident fonts
; resources for system modules
; resources for applications

where appname is the name of the application concerned, without the'!' on the
front (e.g. Draw, Paint, Edit) .

The above all indicate directories, which normally contain files called ! Sprites,
Templates, Messages and so on.

Where third party software is involved, the actual appname used must be
registered with Acorn, to avoid clashes. See Appendix H: Registering names on
page 4-545.

The Fonts directory contains the ROM-based fonts , and are accessed by the
ROMFonts module setting up FontSPath as follows:

*SetMacro Font$Path <Font$Prefix>. ,Resources: $.Fonts.

(It only does this if FontSPath was previously set to '<FontSPrefix>.'.)

All the Desktop Filer modules (ADFSFiler, NetFiler etc) access their resource files
(Messages and Templates) via path variables, eg: 'NetFiler:Messages' . On
initialisation, they check for the existence of the relevant path variable and set up
the appropriate default if it is not defined, eg:

*Set NetFiler$Path Resources:$.Resources.NetFiler.

You can set up any or all of these path variables to point to your own message files .

ResourceFS

Note that the Wimp uses 'WindowManagerSPath' rather than 'Wimp$Path', to
allow WimpSPath to remain separate. Its resources are:

Resources:$.Resources.Wimp.Messages
Resources:$.Resources.Wimp.Sprites
Resources:$.Resources.Wimp.Templates
Resources:$.Resources.Wimp.Tools

The Sprites files contain the Wimp's ROM sprite pool, and cannot be redirected
(since the Wimp needs direct access to their ROM addresses).

Auto-starting applications
The Apps directory contains the ROM applications. which each have a ! App
directory, and can be started up by '/Resources:S.Apps.!App'. The Desktop module
will automatically start the applications using such commands, if the
corresponding bits in CMOS RAM are set (see the section entitled Non-volatile
memory (CMOS RAM) on page I-355), by issuing *Filer_Run commands as
appropriate. It does this on *Desktop after the normal modules have been started,
and before any parameters to the *Desktop command have been decoded.

By default, no applications are auto-started.

Note that !Chars is not auto-started. since it has no icon bar icon of its own; instead
it is put onto the iconbar using the * AddTinyDir command.

Note that this auto-starting procedure does not occur if the *Desktop command
has a filename parameter, since in this case it is assumed that the Desktop Boot
file will start any applications that are required. The configuration options are
provided to allow discless operation of the machine.

lnternationalisation
The ROM applications do not contain the entire application, but simply the !Boot,
! Help and ! Run files. The !Run file then sets up a path variable, consisting of the
current value of <0bey$Dir> (ie the application directory itself) and another
directory in Resources:$ (eg Resources:S.Resources.Alarm).

Because each application uses a path variable to access its resource files, you can
copy it to disc and add an updated copy of the 'Messages' file to the application
directory. This will take precedence over the version in the ROM directory, which is
accessed via the second path element.

2-409

Software interface

Software interface

2-410

In order to register a group of files with ResourceFS, a module must have the files
included in their image, with appropriate header information, and then call the
SWis ResourceFS_RegisterFiles and ResourceFS_DeregisterFiles to register and
deregister this area as appropriate.

Resource file data

The format of the (word-aligned) resource file data is as follows:

Offset Size
0 4

4 4
8 4
12 4
16 4
20 n
20+n 0 - 3

4
s
0 - 3

Meaning

offset from here to the next file (contiguous),
or 0 for end of list (no data follows)

load address of file J
exec address of file as returned by OS_File 5
size of file
attributes of file
full filename, excluding'$.' , null terminated
padded with Os until word-aligned
size of file + 4
file data
padded with Os until word-aligned, followed by more data in

the same format

The resource file data is terminated by a single 0 word.

The resource file data should be contiguous. If this is not possible, then
ResourceFS_RegisterFiles must be called once for each of the areas of resource file
data to be used (and an equivalent set of ResourceFS_DeRegisterFiles's later on) .
Note that each area of resource file data must be terminated by a single word
containing 0.

There are no directory objects, since the directory structure can be determined
from the full filenames supplied.

Note that where name clashes occur, the first occurrence of the filename in the
most recently registered area will be used.

ResourceFS

Service Calls
Service ResourceFSStarted

(Service Call &59)

The file structure inside ResourceFS has changed

On entry

Rl =&59 (Reason code)

On exit

Use

All registers preserved (do not claim the service)

This service call is issued by ResourceFS to tell any programs relying on
ResourceFS files that the structure has changed .

Applications making use of ResourceFS should note that they have to look again to
see if things have changed. For example, the Wimp responds to this service call by
looking for its default sprite pool again .

2-411

Service_ResourceFSDying (Service Call &SA)

2-412

ResourceFS is killed

Service_ResourceFSDying
{Service Call &5A)

On entry

Rl = &5A (reason code)

On exit

Use

All registers preserved (do not claim the service)

This call is issued by ResourceFS just before it removes itself as a filing system. The
expected uses are similar to Service_ResourceFSStarted.

ResourceFS

Service_ResourceFSStarting
(Service Call &60)

ResourceFS module is reloaded or reinitialised

On entry

Rl = &60 (reason code)
R2 = code address to call
R3 = workspace pointer for ResourceFS module

On exit

Use

All registers preserved (do not claim the service)

When the ResourceFS module is reloaded or reinitialised, it issues this service call
so that modules that provide ResourceFS files can put them back into the
structure.

Unfortunately the ResourceFS module is not linked into the module chain at this
point, so it is not possible to call ResourceFS_RegisterFiles. Instead, the
application should execute the following code:

STMFD SP! , {RO , LR}
ADR RO, ResourceFSfiles
MOV LR, PC
MOV PC, R2
LDMFD SP!, {RO , PC}A

RO -> ResourceFS file structure(page 2-410)
LR -> return address
call ResourceFS routine

Note that the value of R3 passed in the service call must be given to the
ResourceFS routine intact, so it can find its workspace.

This call is subtly different from SWI ResourceFS_RegisterFiles,in that it will not
cause a Service_ResourceFSStarted to be issued. This is because the ResourceFS
module waits until all modules have received the Service_ResourceFSStarting
before issuing a Service_ResourceFSStarted to let the 'clients' ofResourceFS know
about it.

2-413

SWI Calls

SWI Calls

2-414

ResourceFS_RegisterFiles
(SWI &41 840)

Add file(s) to the ResourceFS structure

On entry

RO = pointer to resource file data (see page 2-410 for format)

On exit

RO corrupted

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call should be made by a module adding files to the ResourceFS structure
when the module is initialised.

ResourceFS will link the file(s) into its structure. and issue
Service_ResourceFSStarted (not to be confused with Service_ResourceFSStarting).
which tells any programs relying on ResourceFS files that the structure has
changed.

Related SWis

ResourceFS_DeregisterFiles (page 2-415)

Related vectors

None

ResourceFS

ResourceFS_DeregisterFiles
(SWI &41 841)

Remove file(s) from the ResourceFS structure

On entry

RO =pointer to resource file data (see page 2-410 for format)

On exit

RO corrupted

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call should be made when the area of memory containing the files is about to
be deallocated (e.g. when the module containing them is killed).

ResourceFS will unlink the file(s) from its structure. and issue
Service_ResourceFSStarted (not to be confused with Service_ResourceFSStarting).
which tells any programs relying on ResourceFS files that the structure has
changed.

Note that it is not necessary to call this SWI on receipt of a
Service_ResourceFSDying, since the ResourceFS module 'loses' all
references to ResourceFS files when it dies anyway.

Related SWis

ResourceFS_RegisterFiles (page 2-414)

2-415

ResourceFS_DeregisterFiles (SWI &41 841)

2-416

Related vectors

None

ResourceFS

*Commands
*ResourceFS

Selects the Resource Filing System as the current filing system

Syntax

*Re sourceFS

Parameters

None

Use

*ResourceFS selects the Resource Filing System as the filing system for
subsequent operations . Remember that it is not necessary to switch filing systems
if you use the full path names of objects. For example, you can refer to ADFS
objects when ResourceFS is the current filing system.

Example

*Re s ou rceFS

Related commands

*ADFS, *Net, *RAM

Related SWis

None

Related vectors

None

2-417

2-418

36 DeskFS

Introduction
DeskFS is a ROM based filing system that provided system resources for the
Desktop in RISC OS 2. It is not available in later versions of RISC OS, and you
should not use it.

The Desktop used the system variable WimpSPath to find these system resources;
by default its value was DeskFS: . You could change where the Desktop looked for
these system resources by changing the value of WimpSPath.

DeskFS provided a single • Command to select the filing system, described
overleaf for reference.

2-419

wcommands

*Commands

2-420

*DeskFS

Selects the Desktop Filing System as the current filing system

Syntax

*DeskFS

Parameters

Use

None

*DeskFS selects the Desktop Filing System as the filing system for subsequent
operations. This is a ROM based filing system used to store system resources for
the Desktop module. including some useful window template files used by system
utilities.

DeskFS files can be catalogued. loaded and opened for input. They are usually
accessed through the DeskFS: file system prefix. The system variable
Wimp$Path defaults to DeskFS:

This command is not available after RISC OS 2, and you should no longer use it.

Example

*DeskFS

Related commands

*Ram. *ADFS. *Net

Related SWis

Wimp_OpenTemplate. Wimp_LoadTemplate. Wimp_CioseTemplate

Related vectors

None

37 DeviceFS

Introduction and Overview
DeviceFS provides a standardised interface to device drivers within the RISC OS
environment. Devices are declared within the system, and are seen as objects
within the 'devices:' filing system.

Streams can be opened for input or output (as supported) onto these objects
within the directory structure. A device is given the device file type of &FCC. A
device adopts the access rights relevant to its input or output capabilities.

A device driver is simply a set of routines that handle the input or output of data.
The device can specify if it would like to be buffered, but it will never know if this is
the case. Devices have access to the special field passed on opening a stream, this
can be used to pass extra information about opening streams and configuration
required , for instance a serial device may contain its setup within the special field
string.

DeviceFS provides a way of calling devices (DeviceFS_CaliDevice) with a reason
code and control registers. All devices have to support a set of system specific
calls , but have a range of reason codes available for their own use. This could, for
example, be used for controlling a scanner.

DeviceFS currently only supports character devices; block devices have yet to be
implemented.

Most filing system operations can be performed on objects: for example data
transfer operations. However, it is not possible to create objects within the
directory structure which are not devices, nor is it possible to delete objects.

DeviceFS is not available in RISC OS 2.

2-421

Technical Details

Technical Details

Special fields

2-422

Special fields within DeviceFS are commonly used to specify parameters to the
device, ie what buffers to be used, if the device should be flushing when a stream is
closed and so on.

The device can specify a validation string which is used to parse the special field
when the stream is being opened. If this is present then DeviceFS will parse the
string and return a block of data relating to the strings contents. This data will
remain intact until the stream is closed. If no validation string is specified then it is
up to the device to take and manage a copy, also to filter out any unwanted
information.

The syntax for validation strings is very simple:

keyword [,keyword] I escape_seq[I escape_seq] ...

Keywords are used to associate each command with an escape sequence, there can
be more than one keyword associated with a particular escape field , this is
provided for two reasons, the first is when a different word has the same meaning,
eg. Colour or Color. And secondly when defining the various states for a switch .

The escape sequence describes how the preceding data should be treated and also
that to do with the rest of the special field string (up to the next separator).

The following characters are valid in escape sequences:

IN number

IS switch

Within the special field string each parameter is separated by a comma or a
character which is out of place, ie a non-numeric in a numerical field. Each keyword
within the special field string is separated by a semi-colon.

The buffer passed to the device contains I word per escape character, set to
&DEADDEAD if the corresponding keyword is not present in the special field
string.

Numbers are simply stored into the word; they are decoded using
OS_ReadUnsigned and stored away. Switches store the state of the keywords
placed, ie:

mike,dennisiS

This yields 0 if 'mike' is present within the string, I if 'dennis' is present within the
string.

DeviceFS

The order of commands within the validation string and the special field string
need not match ; the commands within the validation string control how the values
are returned back to the caller.

2-423

Service Calls

Service Calls

2-424

DeviceFS is starting

Service_DeviceFSStarting
(Service Call &70)

On entry

Rl = &70 (reason code)

On exit

Use

All registers preserved

This call is issued when the module wants the device drivers to re-register with
DeviceFS; it is issued during the module initialisation. In this case it is actually
issued on a callback to ensure that the module has been correctly linked into the
module chain.

DeviceFS is dying

DeviceFS

Service_DeviceFSDying
(Service Call & 71)

On entry

RO =0
Rl = &71 (reason code)

On exit

Use

All registers preserved

This is issued when DeviceFS is about to be killed, the device driver will already
have had all of its streams closed and will have received the DeviceFS_DeviceDead
service.

2-425

Service_DeviceDead (Service Call &79)

2-426

Device has been killed by DeviceFS

Service DeviceDead
(Service Call & 79)

On entry

RO =0
Rl = &79 (reason code)
R2 = handle of device driver
R3 =pointer to device name (if an individual device is being deregistered).

or 0 (if the device driver as a whole is being deregistered)

On exit

Use

All registers must be preserved

This is issued to inform a device driver that a specified device has been killed. This
is usually caused by another device of the same name being registered, when the
original one is therefore killed to stop duplicates.

If a device driver is being deregistered, this service call is issued once for each
device using that driver (with R3 pointing to the device name), and is then issued a
last time with R3 set to 0.

DeviceFS

Service_DeviceFSCioseRequest
(Service Call &81)

Opening a device which already has the maximum number of streams open

On entry

Rl = &81 (reason code)
R2 =file handle of an open stream on that device

On exit

Use

Rl = 0 if the file was closed; otherwise all registers preserved

This service call is issued whenever an attempt is made to open a device for input
or output and one of the following applies:

• the device already has the maximum number of streams open for input or
output respectively; one such stream must be closed before the new one can
be opened

• the device is not full duplex, and already has one or more streams open for
output or input respectively; all such streams must be closed before the new
one can be opened.

The service call is offered in the hope that one or more 'blocking' streams need no
longer be kept open and can be closed, allowing the new stream to be opened.

If your application opened the stream specified by R2, and you no longer need to
keep it open, you should close it and then claim the service call to inform DeviceFS
that you have done so. Otherwise you should pass on the service call with all
registers preserved.

The kernel responds to this service call, because it implicitly opens streams such
as the printer and the serial device, which need only be open when actually
sending data.

DeviceFS issues this service call for each blocking stream, stopping if sufficient
blocking streams have been closed for it to open the new stream, or if this is clearly
impossible (eg the service call is not claimed for an output stream that is blocking
input to a half-duplex device).

2-427

SWI Calls

SWI Calls

2-428

DeviceFS_Register
(SWI &42740)

Registers a device driver and its associated devices with DeviceFS

On entry

RO = global flags for devices:
bit 0 clear=> character device, set =>block device
bit I clear=> device is not full duplex, set=> device is full duplex
all other bits reserved (must be zero)

Rl =pointer to list of devices to be installed
R2 = pointer to device driver entry point
R3 = private word
R4 =workspace pointer
R5 =pointer to validation string for special fields (0 =>none)
R6 =maximum number of RX devices (0 =>none, -I =>unlimited)
R7 = maximum number of TX devices (0 => none, -I => unlimited)

On exit

Use

RO = device driver's handle

This call registers a device driver and its associated devices with DeviceFS. The
device driver is the actual interfacing code with the hardware, and the device acts
as a port into the driver. A device driver may have many devices within it; for
instance you may have devices to support both buffered and unbuffered transfer.

Flags word

RO contains a global flags word which describes all the driver's devices. It contains
the following bit fields:

• Bit 0 is used to indicate if the devices are character or block devices.

An example of a block device is a floppy disc drive, where data is transferred in
blocks (sectors) to the caller. Examples of character devices are a parallel port
or serial port.

Block devices are not supported under the RISC OS 3 Implementation of
DeviceFS.

DeviceFS

• Bit I is used to indicate if the device is full duplex or not

A full duplex device can handle both input and output streams at the same
time.

List of devices

Rl contains a pointer to a list of devices to be associated with this device driver.
The list is terminated by a null word, and can be empty as you can use the SWI
DeviceFS_RegisterObjects to register devices later. The format of each entry in the
list is as follows:

Offset Meaning
0 offset to device name
4 flags:

bit 0 set ~ device is buffered
bit I set ~ create path variable for use as pseudo filing system

8 default flags for the device's RX buffer
12 default size of RX buffers
16 default flags for the device's TX buffer
20 default size of TX buffers
24 reserved (must be zero)

Device names should be registered with Acorn; see Appendix H: Registering names on
page 4-545 . They are used for several things:

• The device name is used in the DeviceFS directory structure.

• The device name is used to create an option variable (initially null) named
DeviceFS$Device$Options, so long as one does not already exist.

This is used for storing device setup options, and is concatenated with the
special field strings when streams are opened.

If the options variable already exists, it is preserved, thus preserving the last
setup used for the same device.

• The device name is used to create- if specified in the flags word- a path
variable named Device$ Path which points to the driver's entry point. The
device can then be accessed via the pseudo filing system device: .

The device's buffers are not created until a stream is opened onto it. The flags are
passed to the buffer manager; see page 4-86.

If for any reason a device in the list should fail to register than all devices specified
will be removed.

2-429

DeviceFS_Register (SWI &42740)

2-430

Device driver entry point

R2 contains the pointer to the device driver entry point, which is called with
various reason codes to access the routines available in the driver. See the chapter
entitled Writing a device driver on page 2-597.

Parameters passed to driver: private word, and workspace pointer

R3 and R4 contain parameters which are passed to the device driver whenever its
entry point is called. The parameter in R3 is passed to the device driver in R8, and
might be used as a private word to indicate which hardware platform is being used;
the parameter in R4 is used as a workspace pointer and is passed to the device in
Rl2.

Validation string

On entry R5 contains the pointer to a validation string used to decode special
fields within the device. For a full explanation, see the section entitled Special fields
on page 2-422.

This value can be 0 which means that the string will be passed to the device
unparsed; in these cases any unknown keywords should be ignored, as some
keywords used by DeviceFS will still be present.

Number of output streams

R6 and R7 contain the maximum number of input and output streams on a device.
If a register is zero then the device does not support that operation ; if a register is
-I then the device has unlimited support for that type of transfer, and will be called
to open streams.

DeviceFS uses these values to range check the number of streams being opened,
so the device driver need not worry about this.

Device driver's handle

You will need to use the returned handle of the device driver to refer to it in any
further SWI calls you make to DeviceFS.

Related SWis

DeviceFS_Deregister (page 2-431). DeviceFS_RegisterObjects (page 2-432)

Related vectors

None

DeviceFS

DeviceFS_Deregister
(SWI &42741)

Deregisters all devices and their device driver from DeviceFS

On entry

RO = device driver's handle

On exit

Use

RO preserved

This call deregisters all devices and their device driver from DeviceFS. This causes
all streams to be closed and any system variables set up for the device to be unset.
The exception to this is the DeviceFS$Device$0ptions variable, which is left
intact so that when the device is reloaded it can assume its original setup.

Related SWis

DeviceFS_Register (page 2-428). DeviceFS_DeregisterObjects (page 2-433)

Related vectors

None

2-431

DeviceFS_RegisterObjects (SWI &42742)

2-432

DeviceFS_RegisterObjects
(SWI &42742)

Registers a list of additional devices with a device driver

On entry

RO = device driver's handle
Rl =pointer to list of devices to be registered with device driver

On exit

Use
This call registers a list of additional devices with a device driver. This is an
extension to the DeviceFS_Register SWI which itself allows devices to be registered
at the same time as their device driver.

The list of devices pointed to by Rl has the same format as that used in
DeviceFS_Register (see page 2-428) .

Related SWis

DeviceFS_DeregisterObjects (page 2-433)

Related vectors

None

DeviceFS

DeviceFS_DeregisterObjects
(SWI &42743)

De registers a device related to a particular device driver

On entry

RO = device driver's handle
Rl =pointer to device name of the device to remove

On exit

Use

This call deregisters a device related to a particular device driver. tidying up as
required.

Related SWis

DeviceFS_RegisterObjects (page 2-432)

Related vectors

None

2-433

DeviceFS_Cai/Device (SWI &42744)

2-434

DeviceFS CaiiDevice
(SWI &42744)

Makes a call to a device with a specified register set

On entry

RO = reason code
Rl =device driver's handle, or pointer to path , or 0 to broadcast to all devices
R2 - R7 = parameters passed to device driver
R 12 = pointer to workspace

On exit

Use

Register values returned by device (ie device/call-dependent)

This call is used to make a call to a device with the specified register set. You can
direct the call at a specific device or at all devices. When directing a call at a
specific device you can specify this either by its device driver's handle, or by its
filename within the directory structure (which can include'S').

Related SWis

None

Related vectors

None

DeviceFS

DeviceFS Threshold
(SWI &42745)

Informs DeviceFS of the threshold value to use on buffered devices

On entry

Rl = DeviceFS stream handle, as passed to device driver on initialisation
R2 = threshold value to be used, or -I to read

On exit

Use

R l , R2 preserved

This call is made by a device driver to set the threshold value used on buffered
devices. DeviceFS will call the device drivers 'Halt' and 'Resume' entry points
appropriately when the buffer levels cross the specified threshold.

An error is generated if the device is not buffered.

Related SWis

None

Related vectors

None

2-435

DeviceFS_ReceivedCharacter (SWI &42746)

2-436

DeviceFS ReceivedCharacter
(SWI &42746)

Informs DeviceFS that a device driver has received a character

On entry
RO = byte received
Rl = DeviceFS stream handle, as passed to device driver on initialisation

On exit

Use

C set ~ byte not transferred, else C clear

This call is made by a device driver when it receives a character. DeviceFS then
attempts to process the character as required , unblocking any streams that may be
waiting for the character or simply inserting it into a buffer.

For speed, DeviceFS_TransmitCharacter and DeviceFS_ReceivedCharacter do not
validate the external handle passed; be warned that some strange effects can occur
by passing in bad handles.

The C flag is cleared if the transfer was successful.

Related SWis
DeviceFS_TransmitCharacter (page 2-437)

Related vectors
None

DeviceFS

DeviceFS TransmitCharacter
{SWI &42747)

Informs DeviceFS that a device driver wants to transmit a character

On entry

Rl = DeviceFS stream handle. as passed to device driver on initialisation

On exit

Use

RO =character to transmit (8 bits) if C clear

C set ~ unable to read character to be transmitted

This call is made by a device driver when it wants to transmit a character. DeviceFS
then attempts to obtain the character to be sent. either by extracting from a buffer
or reading it from a waiting stream.

For speed, DeviceFS_TransmitCharacter and DeviceFS_ReceivedCharacter do not
validate the external handle passed; be warned that some strange effects can occur
by passing in bad handles.

The C flag is cleared if the transfer was successful.

Related SWis

DeviceFS_ReceivedCharacter (page 2-436)

Related vectors

None

2-437

2-438

38 Serial device

The serial device is provided as a DeviceFS (Device Filing System) device. For full
details, see the chapter entitled DeviceFS on page 2-421.

OS_SeriaiOp

For your convenience, we've also documented the kernel 's OS_SerialOp SWI here,
even though it properly belongs in Part 2- The kernel. This SWI provides routines to
access the serial device driver directly. It is like OS_Byte in that it contains a
number of operations, determined by the reason code passed in RO. The
advantages of using this approach are the speed of not going through several
routines in the stream system, and no possibility of confusion about where the
data is going.

OS_Byte calls

There are also a number of OS_Byte commands for controlling the serial port, that
are in RISC OS mainly for compatibility with earlier Acorn operating systems.
Again, we've documented them here rather than with the kernel documentation.
We strongly recommended that you use the OS_SerlaiOp commands in
preference to the OS_Bytes because they are more complete and consistent.

Note that the serial device's input and output sides may be controlled
independently. For example, you can transmit at a different baud rate from the one
which is being used to receive- although hardware restrictions mean that this is
not possible on machines fitted with the 82C71 0 or 82C711 controller, such as the
A5000.

2-439

Technical details

Technical details

Serial Device

The serial device driver provides facilities to send and receive a byte, control the
handshake lines and alter the protocol of the data. RISC OS provides a number of
SWis that allow access to these facilities.

Summary of commands

2-440

OS_SeriaiOp

Here is a summary of the OS_SerialOp commands:

• OS_SerialOp 0 reads and writes the handshaking status.

• OS_SerialOp I reads and writes the data format.

• OS_SerialOp 2 sends a break.

• OS_SerialOp 3 sends a byte.

• OS_SeriaiOp 4 gets a byte.

• OS_SeriaiOp 5 reads and writes the receive baud rate.

• OS_SerialOp 6 reads and writes the transmit baud rate.

OS_Byte

Below is a summary of the OS_Byte commands in this chapter:

• OS_Byte 7 sets the receive baud rate.

• OS_Byte 8 sets the transmit baud rate.

• OS_Byte !56 reads/writes various state information from/to a control byte.

• OS_Byte 181 makes the data that comes in from a serial port appear to
RISC OS as if it had been typed at the keyboard.

• OS_Byte 191 reads and writes the busy flag (an obsolete BBC usage)

• OS_Byte 192 reads from the above control byte.

• OS_Byte 203 reads/writes the serial input buffer threshold .

• OS_Byte 204 stops any incoming data being buffered by the serial driver. The
port is still active, and serial errors can still occur, but the data is discarded.

• OS_Byte 242 reads both baud rates .

Remember, where possible you should use OS_SerialOp calls in preference to
OS_Byte calls.

Serial device

Streams

RISC OS uses streams for character input, character output. and printer output.
There are OS_Byte calls to set the source and destination(s) of these streams. As
an innate part of the character input/output system. they are described in full in
the chapters entitled Character Input and Character Output. but we summarise them
below.

Of course. you can also use OS_SerialOp calls to independently send and receive
characters via the serial port; generally this is preferable.

OS_Byte 2

This call selects the device from which all subsequent input is taken by OS_ReadC.
This is determined by the value of Rl passed as follows :

Value of Rl

0

2

Source of input

Keyboard. with serial input buffer disabled
Serial port
Keyboard. with serial input buffer enabled

The difference between the 0 and 2 values is that the latter allows characters to be
received into the serial input buffer under interrupts at the same time as the
keyboard is being used as the primary input. If the input stream is subsequently
switched to the serial device. then those characters can then be read .

For full details of OS_Byte 2. see page 1-854.

OS_Byte 3

This call selects which output stream(s) are active. and will hence receive all
subsequent outptJt from OS_WriteC and its derivatives. A bit mask in Rl
determines this:

Bit Effect if set

0 Enables serial driver
Disables VDU drivers

2 Disables VDU printer stream
3 Enables printer (independently of the VDU)
4 Disables spooled output
5 Calls VDUXV instead of VDU drivers (see the chapter on VDU)
6 Disables printer. apart from VDU l ,n
7 Not used

Thus to start sending characters to the serial output stream. call OS_Byte 3 with bit
0 of Rl set. Such characters sent are insr rted into the serial output buffer (buffer
number 2). where they remain until removed by the interrupt routine dealing with
serial transmission.

2-441

Serial buffers

For full details of OS_Byte 3, see page 1-506.

OS_Byte 5

This call sets which printer driver type (and hence printer port) is used for
subsequent printer output. The value of Rl on entry determines this. For
RISC OS 2, this works as follows:

Value of RI

0

2
3- 255

Printer driver type

Printer sink
Parallel (Centronics) printer driver
Serial output
Files in system variables PrinterTypeSrr (eg the NetPrint
module sets up PrinterType$4 to NetPrint:)

Whereas for later versions of RISC OS:

Value of RI

0- 255

Printer driver type

Files in system variables PrinterTypeSrr

Note that appropriate values are set up for backwards
compatibility: eg the serial device driver sets PrinterType$2 to
use the serial device.

Thus to send printer output to the serial port, call OS_Byte 5 with Rl = 2.

For full details of OS_Byte 5, see page 1-508.

Serial buffers

2-442

Input buffer
The serial driver will attempt to stop the sender transmitting when the amount of
free space in the serial input buffer falls below a set threshold. The idea is that this
space gives enough time for the sender to recognise the command and stop
without overflowing the buffer. OS_Byte 203 can change the setting of this level.

Output buffer
If the output buffer is already full and there is nothing communicating with the
serial port, when you insert another character the machine temporarily halts while
it waits for a character to be removed to make space for the new character. An
escape condition abandons this wait.

Serial device

Handshaking and protocol

When trying to get communications working with an external device using the
serial device, there are several important factors to remember:

• The receiver must be electrically compatible with RS423 or RS232.

• The handshaking lines must be connected between the sender and receiver in
exactly the right way.

• The sender must match baud rates with the receiver.

• They must also match the transmission protocol. Each byte sent is packaged
up in some variation of the following sequence:

I A start bit synchronises the receiver with the sender.

2 The number of bits of actual data sent is variable from 5 to 8.

3 There can be an optional parity bit , which is used to check that no errors
have taken place during transmission .

4 It ends with a stop bit, either I, I. 5 or 2 bits long.

Note that the default setup of the serial protocol (configured in CMOS RAM) is
different from some earlier Acorn machines. For example, the setup for RISC OS
machines is the same as the Master series (8 data bits, no parity, 2 stop bits), but
different from the original BBC series (8 data bits. no parity, I stop bit).

Serial line names
Coming out of the serial connector are many lines. This is a list of their names and
common abbreviations:

• data receive. (RxD)

• data transmit (TxD)

• ground (OV)

• request to send (RTS)

• clear to send (CTS)

• data carrier detect (DCD)

• data terminal ready (DTR)

• data set ready (DSR)

• ring indicator (RI)

Refer to the documentation accompanying your particular communications device
for information on how to wire these lines correctly with the serial port. For further
information, contact Acorn Customer Support.

2-443

SWI Calls

SWI Calls

2-444

Sets the receive baud rate for the serial port

On entry

RO = 8
Rl =baud rate code

On exit

RO preserved
Rl , R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

OS_Byte 7
(SWI &06)

This call sets the receive baud rate for the serial port. It is provided for
compatibility with older operating systems, and you should use OS_SerialOp 5
instead; see page 2-469.

(This call uses the same baud rate codes as OS_SerialOp 5.)

Related SWis

OS_Byte 8 (page 2-445). OS_SerialOp 5 (page 2-469). OS_SerialOp 6 (page 2-471)

Related vectors

ByteV

Sets the transmit baud rate for the serial port

On entry

RO = 8
Rl =baud rate code

On exit

RO preserved
R I , R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Serial device

OS_Byte 8
(SWI &06)

This call sets the transmit baud rate for the serial port. It is provided for
compatibility with older operating systems, and you should use OS_SeriaiOp 6
instead; see page 2-4 71 .

(This call uses the same baud rate codes as OS_SerialOp 6.)

Related SWis

OS_Byte 7 (page 2-444). OS_SeriaiOp 5 (page 2-469), OS_SeriaiOp 6 (page 2-471)

Related vectors

ByteV

2-445

OS_Byte 156 (SWI &06)

2-446

Reads/writes serial port state

OS_Byte 156
(SWI &06)

On entry

RO =!56
Rl = 0 or new value
R2 = 255 or 0

On exit

RO preserved
Rl =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The value stored is changed by being masked with R2 and then exclusive ORd with
Rl: ie ((value AND R2) EOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

This call accesses the control byte of the serial port. In addition to updating the
status byte in RAM, it also updates the hardware register which controls the serial
port characteristics.

The call enables the current settings of the transmitter, receiver, interrupts and the
serial handshake line Request To Send (RTS) to be read or altered.

Serial device

When writing, the effect depends on the bits in R I:

Bit I Bit 0 Effect

0 0 No effect
0 I No effect
I 0 No effect

Reset transmit, receive and control registers

Bit 4 Bit 3 Bit 2 Word length Parity Stop bits

0 0 0 7 even L

0 0 I 7 odd L
0 0 7 even I
0 7 odd

0 0 8 none 2
0 8 none I

0 8 even
8 odd

Bit 6 Bit 5 Transmission control

0 0 RTS low, transmit interrupt disabled
0 RTS low, transmit interrupt enabled

0 RTS high, transmit interrupt disabled
RTS low, transmit break level on transmit data, transmit
interrupt disabled

The above bits should not be modified as they are controlled by the OS. Use the
OS_SeriaiOp SWis instead to control transmission.

Bit 7 Receive interrupt
0 Disabled

Enabled

The default setting for bits 2 - 4 comes from the *Configure Data value, shifted left
by two bits. The current value of this byte may be read (but not set) using
OS_Byte 192 (page 2-452).

OS_SeriaiOps 0 and I provide all of these facilities and more, with the exception of
the interrupt control bit. The receive interrupt/control bit can be set/cleared via
OS_Byte 2 (page 1-854). You should not change the RTS/transmit IRQ bits;
RISC OS handles this function.

This call is provided for compatibility only and should not be used. In all cases you
should use OS_SeriaiOp (page 2-459) to provide these functions.

Related SWis
OS_Byte 192 (page 2-452), OS_SeriaiOp (page 2-459)

2-447

OS_Byte 156 (SWI &06)

2-448

Related vectors
ByteV

Read/write serial input interpretation status

Serial device

OS_Byte 181
(SWI &06)

On entry

RO = 181
R1 = 0 to read or new state to write
R2 = 255 to read or 0 to write

On exit

RO preserved
R1 =state before being overwritten
R2 = No1gnore state (see OS_Byte 182 on page 1-511)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The state stored is changed by being masked with R2 and then exclusive ORd with
R1: ie ((state AND R2) EOR R1). This means that R2 controls which bits are
changed and R1 supplies the new bits.

Usually, top-bit-set characters read from the serial input buffer are not treateu
specially. For example, if the remote device sends the code &85, when this is read,
using OS_ReadC for example, that ASCII code will be returned to the caller
immediately. It is sometimes useful to be able to treat serial input characters in
exactly the same way as keyboard characters. OS_Byte 181 allows this.

2-449

OS_Byte 181 (SWI &06)

2-450

The state value passed to this call has two values:

0 In this state the keyboard interpretation is placed on characters read
from the serial input buffer.

Related SWis

None

Related vectors

ByteV

This is the default state in which no keyboard interpretation is done
This means that:

• the current escape character is ignored

• the function key codes are not expanded

• 'Escape' events and 'character entering input buffer' events are
not generated.

?
\
I

\

Read/write serial busy flag

On entry

RO = 191
Rl = 0 or new value
R2 = 255 or 0

On exit

RO preserved
R I = state before being overwritten

Serial device

OS_Byte 191
(SWI &06)

R2 =value of serial port control byte (see OS_Byte 192 on page 2-452)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call is provided for compatibility reasons only; the cassette interface and
RS423 serial port shared the same hardware on the BBC/Master 128 machines. It
performs no useful function under RISC OS.

Related SWis

None

Related vectors

ByteV

2-451

OS_Byte 192 (SWI &06)

2-452

Reads the serial port state

On entry

RO = 192 (reason code)
Rl = 0
R2 = 255

On exit

RO preserved
Rl =value of communications state

OS_Byte 192
(SWI &06)

R2 =value of flash counter (see OS_Byte 193 on page 1-657)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call reads the control byte of the serial port. It is equivalent to a read
operation with OS_Byte 156.

This call should not be used to write the value back, as to do so would make the
RISC OS copy of the register inconsistent with the actual register in the serial
hardware.

Related SWis

OS_Byte !56 (page 2-446). OS_SerialOp (page 2-459)

Related vectors

ByteV

Read/write serial input buffer threshold value

Serial device

OS_Byte 203
(SWI &06)

On entry

RO = 203
Rl = 0 to read or new value to write
R2 = 255 to read or 0 to write

On exit

RO preserved
Rl =value before being overwritten
R2 =serial ignore flag (see OS_Byte 204 on page 2-455)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The value stored is changed by being masked with R2 and then exclusive ORd with
Rl: ie ((value AND R2) EOR Rl). This means that R2 controls which bits are
changed and Rl supplies the new bits.

The serial input routine attempts to halt input when the amount of free space left
in the input buffer falls below a certain level This call allows the value at which
input is halted to be read or changed

OS_SeriaiOp 0 can be used to examine or change the handshaking method.

The default value is 9 characters.

2-453

OS_Byte 203 (SW/ &06)

2-454

Related SWis

None

Related vectors

ByteV

Read/write serial ignore flag

Serial device

OS_Byte 204
(SWI &06)

On entry

RO = 204
R I = 0 to read or new flag to write
R2 = 255 to read or 0 to write

On exit

RO preserved
Rl =value before being overwritten
R2 corrupted

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The flag stored is changed by being masked with R2 and then exclusive ORd with
Rl: ie ((flag AND R2) EOR Rl). This means that R2 controls which bits are changed
and Rl supplies the new bits.

This call is used to read or change the flag which indicates whether serial input is
to be buffered or not. Although this call can stop data being placed in the serial
input buffer, data is still received by the serial driver. Errors will still generate
events unless they have been disabled by OS_Byte 13.

If the flag is zero, then serial input buffering is enabled. Any non-zero value
disables it.

2-455

OS_Byte 204 (SWI &06)

Related SWis

OS_Byte 13 (page 1-148)

Related vectors

ByteV

2-456

Read serial baud rates

On entry

RO = 242 (&F2) (reason code)
Rl =0
R2 = 255

On exit

RO preserved
R I = baud rates
R2 =timer switch state (see OS_Byte 243 on page 1-407)

Interrupts

Interrupt status is not altered
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Serial device

OS_Byte 242
(SWI &06)

Rl returns an encoded value which gives the baud rate for serial receive and
transmit. Originally, in the BBC/Master operating systems, only eight baud rates
were available. These could be encoded in three bits each for receive and transmit.
Under RISC OS, 15 are available, which require four bits to encode. For
compatibility with this earlier format, the layout of this byte looks unusual :

Bit Meaning

0 Transmit bit 0
I Transmit bit I
2 Transmit bit 2
3 Receive bit 0
4 Receive bit I

2-457

OS_Byte 242 (SWI &06)

2-458

5
6
7

Receive bit 2
Receive bit 3
Transmit bit 3

These four bit groups are encoded with baud rates. Note that this order is not the
same as the order used by any other baud rate setting SWL This order is based on
the original hardware:

Value Baud Rate

0 19200
1200

2 4800
3 150
4 9600
5 300
6 2400
7 75
8 7200
9 134.5
10 1800
11 50
12 3600
13 110
14 600
15 undefined

The value stored must not be changed by making R1 and R2 other than the values
stated above.

This call is provided for backwards compatibility with the BBC and Master
operating systems. You should in preference use OS_SeriaiOps 5 and 6 to read and
write baud rates.

Related SWis

OS_Byte 7 (page 2-444), OS_Byte 8 (page 2-445). OS_SeriaiOp (page 2-459)

Related vectors

ByteV

Low level serial operations

On entry

RO = reason code
other input registers as determined by reason code

On exit

RO preserved

Serial device

OS_SeriaiOp
(SWI &57)

other registers may return values, as determined by the reason code passed.

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call is like OS_Byte in that it is a single call with many operations within it. The
operation required, or reason code, is passed in RO. It can have the following
meanings:

RO Meaning Page

0 Read/write serial states 2-461

Read/write data format 2-464

2 Send break 2-466

3 Send byte 2-467

4 Get byte 2-468

5 Read/write receive baud rate 2-469

6 Read/write transmit baud rate 2-471

For a detailed explanation of each reason code, see the relevant page.

2-459

OS_Seria/Op (SWI &57)

2-460

Related SWis

None

Related vectors

SerialV

Reacl!write serial status

On entry

RO = 0 (reason code)
Rl = EOR mask
R2 =AND mask

On exit

RO preserved
Rl =old value of state
R2 = new value of state

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SYC mode

Re-entrancy

SWl is not re-entrant

Use

Serial device

OS_SeriaiOp 0
(SWI &57)

The structure of this call is very similar to that of OS_Bytes between SW! &A6 and
SW! &FF. The new state is determined by:

New state= (Old state AND R2) EOR Rl

This call is used to read and write various states of the serial system. These states
are presented as a 32-bit word. The bits in this word represent the following states:

2-461

OS_Seria/Op 0 (SWI &57)

Read/Write or
Bit Read Only Value Meaning

0 RIW 0 No software control. Use RTS handshaking if
bit 5 is clear.

Use XON/XOFF protocol. Bit 5 is ignored. The
hardware will still do CTS handshaking (ie if CTS
goes low, then transmission will stop). but RTS
is not forced to go low.

RIW 0 Use the -DCD bit. If the -DCD bit in the status
register goes high, then cause a serial event.
Also. if a character is received when -DCD is
high, then cause a serial event, and do not enter
the character into the buffer.
Ignore the -DCD bit. Note that some serial chips
(GTE and CMD) have reception and transmission
problems when this bit is high.

2 RIW 0 Use the -DSR bit. If the -DSR bit in the status
register is high, then do not transmit characters.

I Ignore the state of the -DSR bit.

3 RIW 0 DTR on (normal operation) .
DTR off (on 6551 serial chips , cannot use serial
port in this state) .

4 RIW 0 Use the -CTS bit. If the -CTS bit in the status
register is high, then do not transmit characters.
Ignore the -CTS bit (not supported by 6551
serial chips) .

5 RIW This bit is ignored if bit 0 is set. If bit 0 is clear:
0 Use RTS handshaking.

Do not use RTS handshaking.

6 RIW 0 Input is not suppressed.
Input is suppressed.

7 RIW Users should only modify this bit if RTS
handshaking is not in use:

0 RTS controlled by handshaking system (low if no
RTS handshaking).
RTS high.

8- 15 RO These bits are reserved for future expansion ; do
not modify them.

16 RO 0 XOFF not received.

XOFF has been received. Transmission is
stopped by this occurrence.

2-462

Serial device

I7 RO 0 The other end is intended to be in XON state.
The other end is intended to be in XOFF state.
When this bit is set, then it means that an XOFF
character has been sent and it will be cleared
when an XON is sent by the buffering software.
Note that the fact that this bit is set does not
imply that the other end has received an XOFF
yet.

I8 RO 0 The - DCD bit is low, ie carrier present.

I The -DCD bit is high, ie no carrier.

I9 RO 0 The - DSR bit is low. ie 'ready' state.

I The -DSR bit is high, ie 'not-ready' state.

20 RO 0 The ring indicator bit is low.
I The ring indicator bit is high.

2I RO 0 CTS low (clear to send)
I CTS high (not clear to send)

22 RO 0 User has not manually sent an XOFF.
User has manually sent an XOFF.

23 RO 0 Space in receive buffer above threshold.

Space in receive buffer below threshold.

24- 31 RO These bits are reserved for future expansion; do
not modify them.

Note that if XON/XOFF handshaking is used, then OS_Byte 2, I or 2,2 must be
called beforehand.

RISC OS 2 does not support bits 4-7 and 21-23 inclusive.

Related SWis

OS_Byte 156 (page 2-446)

Related vectors

SerialV

2-463

OS_Seria/Op 1 (SWI &57)

2-464

Read/write data format

On entry

RO = I (reason code)
Rl =-I to read, or new format value

On exit

RO preserved
Rl =old format value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

OS_SeriaiOp 1
(SWI &57)

This call sets the encoding of characters when sent and received on the serial line.
The bits in this word represent the following formats:

Bit

0,1

2

3

4,5

6- 31

Related SWis

Read/Write or
Read Only

RIW

RIW

RIW

RIW

Value

0

I

2

3

0

0
I

0

2
3

OS_Byte 156 (page 2-446)

Related vectors

SerialV

Serial device

Meaning

8 bit word.
7 bit word.
6 bit word.

5 bit word.

I stop bit.
2 stop bits in most cases. I stop bit if 8 bit word
with parity. I. 5 stop bits if 5 bit word without
parity.

parity disabled.
parity enabled.

odd parity.
even parity.
parity always I on TX and ignored on RX.
parity always 0 on TX and ignored on RX.

reserved- must be set to zero.

2-465

OS_Seria/Op 2 (SWI &57)

2-466

Send break

On entry

RO = 2 (reason code)
Rl =length of break in centiseconds

On exit

RO, Rl preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

OS_SeriaiOp 2
{SWI &57)

This call sets the ACIA to transmit a break, then waits Rl centiseconds before
resetting it to normal. Any character being transmitted at the time the call is made
may be garbled. After sending the break the transmit process is either awakened if
the buffer is not empty, or made dormant if the buffer is empty.

Related SWis

None

Related vectors

SerialV

Send byte

On entry

RO = 3 (reason code)
R I = character to be sent

On exit

RO. Rl preserved

Serial device

OS_SeriaiOp 3
(SWI &57)

C flag clear if character was sent. or set if character was not sent (ie the buffer
was full)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call puts a character in the serial output buffer. and re-enables the transmit
interrupt if it had been disabled by RISC OS.

\

If the serial output buffer is full. the call returns immediately with the C flag set.

Related SWis

None

Related vectors

SerialV

2-467

OS_Seria/Op 4 (SWI &57)

2-468

Get a byte from the serial buffer

On entry

R0=4

On exit

RO preserved

OS_SeriaiOp 4
(SWI &57)

RI =character received (if C flag clear). or preserved (if C flag set- ie no character
available in buffer to read)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call removes a character from the serial input buffer if one is present. If
removing a character leaves the input buffer with more free spaces than are
specified by OS_Byte 203, then the transmitting device is re-enabled in the way
specified by the serial port state (as set by OS_SerialOp 0) .

Note that reception must have been enabled using OS_Byte 2 before this call wi ll
have any effect.

Related SWis

OS_Byte 2 (SWI &06), OS_Byte 203 (SWI &06)

Related vectors

SerialV

Read/write RX baud rate

On entry

RO = 5 (reason code)
Rl =-I to read. or 0- 15 to set to a value

On exit

RO preserved
Rl =old receive baud rate

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

The baud rate codes are as follows:

Value of Rl Baud rate
0 9600
I 75
2 150
3 300
4 1200
5 2400
6 4800
7 9600
8 19200
9 50
10 110

Serial device

OS_SeriaiOp 5
(SWI &57)

2-469

OS_Seria/Op 5 (SWI &57)

2-470

II
12
13
14
15

134.5
600
1800
3600
7200

The settings from 0 to 8 are in an order compatible with earlier operating systems.
The other speeds from 9 to 15 provide all the other standard baud rates.

The default rate is set by *Configure Baud.

This call has the same effect as an OS_Byte 7 for writing.

Related SWis

OS_Byte 7 (SWI &06)

Related vectors

SerialV

Read/write TX baud rate

On entry

RO = 6 (reason code)
Rl =-I to read, or 0- 15 to set to a value

On exit

RO preserved
Rl =old transmit baud rate

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

The baud rate codes are as follows:

Value of Rl Baud rate

0 9600
75

2 !50
3 300
4 1200
5 2400
6 4800
7 9600
8 19200
9 50
10 110

Serial device

OS_SeriaiOp 6
(SWI &57)

2-471

OS_Seria/Op 6 (SWI &57)

2-472

II
12
13
14
15

134.5
600
1800
3600
7200

The settings from 0 to 8 are in an order compatible with earlier operating systems.
The other speeds from 9 to 15 provide all the other standard baud rates.

The default rate is set by *Configure Baud.

This call has the same effect as an OS_Byte 8 for writing.

Related SWis

OS_Byte 8 (page 2~445)

Related vectors

SeriaiV

Serial device

*Commands
*Configure Baud

Sets the configured baud rate for the serial port

Syntax

*Configure Baud n

Parameters

n Oto 8

Use

*Configure Baud sets the configured receive and transmit baud rates for the serial
port. The values of n correspond to the following baud rates:

n Baud rate

0 9600
75

2 150
3 300
4 1200
5 2400
6 4800
7 9600
8 19200

The default value is 4 (1200 baud).

The change takes effect on the next reset.

Example

*Configure Baud 7 sets the configured baud rate to 9600

Related commands

None

Related SWis

OS_Byte 7 (page 2-444). OS_Byte 8 (page 2-445). OS_SerialOp 5 (page 2-469).
OS_SerialOp 6 (page 2-471)

2-473

"Configure Baud

2-474

Related vectors

None

Serial device

*Configure Data

Sets the configured data word format for the serial port.

Syntax

*Configure Data n

Parameters

n 0 to 7

Use

*Configure Data sets the configured data word format for the serial port. The
values of n correspond to the following formats:

n Word length Parity Stop bits

0 7 even 2
7 odd 2

2 7 even I
3 7 odd
4 8 none 2
5 8 none
6 8 even
7 8 odd

The default value is 4 (8 bits, no parity, 2 stop bits).

The change takes effect on the next reset.

Example

*Configure Data 0 (7 bits, even parity, 2 stop bits)

Related commands

None

Related SWis

OS_Byte I 56 (page 2-446), OS_SeriaiOp I (page 2-464)

Related vectors

None

2-475

2-476

39 Parallel device

Introduction and Overview
This module provides parallel device support. It is not available in RISC OS 2. The
module is a client of DeviceFS and can be accessed via that system .

It will setup PrinterTypeS I to point at its DeviceFS object. ie:

PrinterTypeS I ~ devices#buffer3:S.Parallel

The module supports SWis to allow the 82C71 0 or 82C711 chip driving the parallel
port to be directly accessed (if present- some machines use other chips) .

The 'parallel: ' device can be opened for output (eg to a printer) or input but not for
both . The input stream is only available on machines which use an 710/711
controller.

The output stream uses standard parallel printer handshaking, and can send data
to many types of printer. In the absence of any standard parallel input protocol the
input stream has been provided mainly as a means of passing data between one
machine and another (eg downloading data from a portable to a master machine) .
The input device driver behaves like a printer, and can therefore accept data from
another machine which is 'printing' from its parallel port. To enable such data
transfer a twisted cable must be made with the following connections :

Pin Signal Direction Pin Signal Direction

I /STROBE 0 10 lACK
2 DATAO 1/0 2 DATA 0 1/0
3 DATA 1 1/0 3 DATA 1/0
4 DATA2 1/0 4 DATA 2 1/0
5 DATA3 1/0 5 DATA 3 1/0
6 DATA4 1/0 6 DATA 4 1/0
7 DATA5 1/0 7 DATA 5 1/0
8 DATA6 1/0 8 DATA 6 1/0
9 DATA 7 1/0 9 DATA 7 1/0
10 lACK /STROBE 0
11 BUSY I 17 /SLCTIN 0
17 /SLCTIN 0 11 BUSY

2-477

Introduction and Overview

2-478

Either end of such a cable can be connected to a sending or receiving machine.
Note that sending (ie 'printing') machines do not need to be Acorn products. so
you can use the parallel input device to transfer data from. for example. a PC.

To send data. the 'parallel:' device should be opened for output as if it were a file.
Data can then be written to the open device which should be closed when no more
data is to be sent (*Copy file printer#parallel: does this) . At the
receiving end the 'parallel:' device should be opened for input. the bytes should be
read. and then the device should be closed.

SWI calls

Parallel device

Parallel HardwareAddress
(SWI &42ECO)

This call is for internal use only. Do not use it; use the SWI Parallel_Op instead.

2-479

Para/lei_Op (SWI &42EC1)

2-480

Provides low level parallel operations

Parallel_ Op
(SWI &42EC1)

On entry

RO = reason code
other registers are reason code dependent

On exit

RO preserved
other registers are reason code dependent

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call provides low level parallel operations, which are only available with newer
hardware that uses the 710/711 family of controllers (such as the A5000). The SWI
returns an error for (older) machines on which a 710/711 is not present.

The action of the call depends on the reason code passed in RO:

RO
0

2

Action
read data and status registers

write data register

read/write control register

Page

2-482

2-483

2-484

This call is not available in RISC OS 2, or in RISC OS 3.00 .

Parallel device

The call is provided to allow you to drive the 82C71 0/82C711 for yourself. If you
intend to drive the hardware directly then you should open the parallel:
device. For example:

lock =OPENOUT("parallel:")
... plaw around with hardware ...
CLOSE#lock

This stops any other application altering the values that you have setup,
preventing any possible confusion.

Related SWis

OS_ClaimDeviceVector (page 1-121). OS_ReleaseDeviceVector (page 1-123)

Related vectors

None

2-481

Paralle/_Op 0 (SWI &42EC1)

2-482

Reads the parallel data and status registers

Parallei_Op 0
(SWI &42EC1)

On entry

RO =0

On exit

Use

RO preserved
Rl =contents of the parallel data register
R2 = contents of the parallel status register

This call is used to obtain the current state of the parallel data lines and status
register. The bits in the read only parallel status register correspond to the
following inputs:

7 6 5 4 3 2

BUSY ACK PE SLCT I ERROR I rsvd rsvd

Figure 39.1 Parallel status register

Bits 8 to 31 of R2 are undefined. See the 82C71 0/82C711 data sheet for a
description of these bits. If the DIR bit in the parallel control register (see

0

rsvd

page 2-484) is 0 (ie output) then the contents of the data register will be the same
as the last data value written. The data register is read after the status register.

Writes the parallel data register

On entry

RO= I
Rl =data

On exit

RO, R I preserved

Use

Parallel device

Parallel_ Op 1
(SWI &42EC1)

This call is used to write a byte to the parallel data lines. This will only have an
effect if the DIR bit in the parallel control register (see page 2-484) is 0 (ie output).

2-483

Parallei_Op 2 (SWI &42EC1)

2-484

Reads/writes the parallel control register

Parallei_Op 2
(SWI &42EC1)

On entry

RO = 2
Rl = EOR mask
R2 =AND mask

On exit

Use

RO preserved
Rl =old contents of the parallel control register
R2 = new contents of the parallel control register

This call is used to read or write the current state of the parallel control register.
The new state is determined by:

new state= (old state AND R2) EOR Rl

The bits in this value correspond to the following outputs:

7 6 5 4 3 2 1 0

rsvd rsvd DIR IIROEN I SLCTIN I INIT IAuroFolsrRosEI

Figure 39.2 Parallel control register

Bits 8 to 31 are undefined and must not be modified. See the 82C71 0/82C711 data
sheet for a description of these bits. These lines are output only, but their current
state can be read without changing them by setting Rl = 0 and R2 = &FFFFFFFF
The interrupt enable bit , IROEN, should normally be I and interrupt disabling
should be done in IOC.

40

System devices

System devices

The SystemDevices module provides a number of system devices, which behave
like files in some ways. You can use them anywhere you would normally use a file
name as a source of input, or as a destination for output. They include:

System devices suitable for input

kbd:

rawkbd:

null:

the keyboard, reading a line at a time using OS_ReadLine (this
allows editing using Delete, Ctrl-U, and other keys)

the keyboard, reading a character at a time using OS_ReadC

the 'null device', which effectively gives no input

System devices suitable for output

Other devices

vdu: the screen, using GSRead format passed to bs_ WriteC

rawvdu: the screen, via the VDU drivers and OS_WriteC

printer:

netprint:

null:

the currently configured printer

the currently configured network printer driver (provided by the
NetPrint module)

the 'null device', which swallows all output

An error is given if the specified system device is not present; for example, if the
SystemDevices module is not present.

There are also two devices provided as a part of the DeviceFS system:

serial:

parallel:

serial port; see the chapter entitled Serial device on page 2-439

parallel port; see the chapter entitled Parallel device on page 2-4 77

2-485

Redirection

Redirection
These system devices can be useful with commands such as *Copy, and the
redirection operators(> and<):

*Copy myfile printer:

*Cat { > printer: }

Send myfile to the printer

List the files in the current directory to the
printer

Suppressing output using null:

Input devices

netprint:

2-486

You can use the system device null : to suppress unwanted output from a
command script or program:

*myprogram { > null : } Run myprogram with no output

You can only open one file for input on kbd: at once as it has buffered input;
normal line editing facilities are available. If you try to open kbd: a second time
whilst the first file is open, you will get returned a handle of 0, or an error if the
appropriate bit is set in the open mode passed to FileSwitch. Ctrl-D in the input
line will yield EOF when it is read from the buffer.

You can open rawkbd: as many times as you like, even if a file is open on kbd: .
It uses XOS_ReadC (without echoing to the screen) to read characters. No EOF
condition exists on rawkbd:; the program reading it must detect an input
value/pattern and stop on that.

No files exist on any of these devices. If you call OS_File 5 on the devices it will
always return object type 0, so you cannot use them for input to programs that
need to load an entire file at once for processing.

The net print: system device is more sophisticated than other ones. As well as
using it in place of file names, you can also use it with certain commands that
normally use the name of a filing system.

printer:

System devices

The printer: device allows various special fields, to refer to the different types
of printers. These are:

• printer#sink: and printer#null:, which are synonyms

• printer#parallel: and printer#centronics:, which are synonyms

• printer# serial: and printer#rs423:, which are synonyms

• printer#user:, which refers to printer type 3

• printer#n:, which refers to printer type n, where nisin the range 0- 255.

You can open multiple files on printer:, provided they are on different devices
and using different buffers.

Other output devices
You can open as many files as you wish on the other output devices, which are:

null:, vdu:, and rawvdu:

For example:

H% = OPENOUT "rawvdu:"
SYS"OS_Byte",l99,H%,0
type here ...
*Spool

When you type everything is sent to the vdu, which outputs it and then uses
XOS_BPut to send it to the spool file handle. This in turn sends it (through another
mechanism, OS_PrintChar) to the screen again! The *Spool at the end clears up.

In addition to byte-oriented operations, you are allowed to perform file save
operations on the output devices.

The difference between vdu: and rawvdu: is that the former is filtered using the
configured DumpFormat, whereas the latter sends its characters straight to the
VDU drivers.

The RISC OS 2 serial device
RISC OS 2 provided its serial port device as a part of the System Devices module. It
has since been reimplemented as a device; see the chapter entitled Serial device on
page 2-439.

The RISC OS 2 serial device (serial:) is bidirectional, has no EOF condition, and
allows multiple files to be opened.

2-487

2-488

41 The Filer

Introduction and Overview
The Filer is responsible for providing a graphical representation of the filing system
structure. It uses standard filing system calls to do its work. and so will work with
any filing system.

The filing-system-specific desktop filers- such as ADFSFiler- cooperate with the
Filer by issuing the command *Filer_OpenDir when their icon is clicked on. so that
the Filer can open the appropriate directory display. They also provide other
operations which are not sufficiently generic to be provided by the Filer: for
example the Format and Verify operations provided by the ADFSFiler.

See the section entitled Filer messages on page 3-233 for full details on messages
used by the Filer.

2-489

Service Calls

Service Calls

2-490

Service StartFiler
(Service Call &48)

Request to filing-system-specific desktop filers to start up

On entry

RO = Filer's task handle
Rl = &48 (reason code)

On exit

Use

R I = 0 to claim call
RO = pointer to * Command to start module

In order to ensure that filing-system-specific desktop filers are not started up
without the Filer module, they are started by a different mechanism. Rather than
responding to the Service_StartWimp service call , they wait for the Filer module to
start them up, using Service_StartFiler. The Filer behaves in a similar way to the
Desktop, issuing the Service_StartFiler service call , followed by Wimp_StartTask, if
the service call is claimed.

The Filer will try to start up any resident filing-system-specific desktop filer tasks
when it is started (by responding to Service_StartWimp). It does this by issuing a
service call Service_StartFiler (&48).

If this call is claimed, the Filer starts the task by passing to Wimp_StartTask the
* Command returned by the module. It then issues the service again , and repeats
this until no-one claims it.

The Filer

A module's service call handler should deal with this reason code as follows:

serviceCode
LDR R12 , [R12] ;Load workspace pointer
STMFD SP !, {LR} ; Save link and make R14 available
TEQ R1 , #Service_StartFiler ; Is it service &4B?
BEQ startFi1er ; Yes

LDMFD SP! , {PC}

startFiler
LDR R14, taskHandle
TEQ R14, #0
MOVEQ R14, #-1
STREQ R14, taskHandle
ADREQ RO, myCornrnand
MOVEQ R1, #0
LDMFD SP ! , {PC}

; Otherwise try other services
;Return

; Get task handle from workspace
;Am I already active?
;No , so init handle to -1
;R12 relative
;Point RO at command to start task
; (see earlier) and claim the service
;Return

Note that the t askHa ndl e word of the module's workspace must be zero before
the task has been started. This word should therefore be cleared in the module's
initialisation code. If the task is not already running, the Start Filer code should set
the handle to -I , load the address of a command that can be used to start the
module, and claim the call. Otherwise (if tas kHandl e is non-zero) it should
ignore the call.

The automatic start-up process is made slightly more complex by the necessity to
deal elegantly with errors that occur while a module is trying to start up. If the
appropriate code is not executed, the Desktop can get into an infinite loop of trying
to initialise unsuccessful modules .

This is avoided by the task setting its handle to -1 when it claims the StartFiler
service. If the task fails to start , this will still be -1 the next time the Filer issues a
Service_StartFiler, and so it will not claim the service.

Note that the Filer passes its own taskHandle to the module in RO in the service
call , to make it easier for the task to send it Message_FilerOpenDir messages later.

2-491

Service_StartedFiler (Service Call &4C)

2-492

Service StartedFiler
(Service Call &4C)

Service Reset
(Service Call &27)

Request to filing-system-specific desktop filers to set t askHa n dle variable to
zero

On entry

Rl = &4C or &27 (reason code)

On exit

Use

Module's t askHandl e variable set to zero

A task which failed to initialise would have its taskHandle variable stuck at the
value -I , which would prevent it from ever starting again (as Service_StartFiler
would never be claimed) . In order to avoid this, the two service calls should be
recognised by the filing-system-specific desktop filers. On either of them, the task
handle should be set to zero:

serviceCode

TEQ R1, #Service_StartedFiler
BNE tryServiceReset
LDR R14 , taskHandle
CMN R14 , #1
MOVEQ Rl4, #0
STREQ R14 , taskHandle
LDMFD SP ! , {PC}

tryServiceReset
TEQ R1 , #Service_Reset
MOVEQ R14, #0
STREQ R14, taskHandle
LDMFD SP ! , {PC}

;Service &4C?
;No
; taskHandle = -1?

; Yes , so zero it

;Return

; Reset reason code?
; Yes, so zero handle

;Return

Service_StartedFiler is issued when the last of the resident filing system task
modules has been started, and Service_Reset is issued whenever the computer is
soft reset.

The Filer

Service_FilerDying
(Service Call &4F)

Notification that the Filer module is about to close down

On entry

Rl = &4F (reason code)

On exit

Use

Module's taskHandl e variable set to zero

If the Filer module task is closed down (e.g. if the module is *RMKilled, or the Filer
task is quitted from the TaskManager window) the Filer module tries to ensure that
all the other filing-system-specific desktop filers are also closed down, by issuing
this service call.

On receipt of this service call, a filing-system-specific desktop filers should check
to see if it is active and if it is, it should close itself down by calling
Wimp_CloseDown as follows:

serviceCode

TEQ Rl, #Service_FilerDying
BNE try next
STMFD SP !, {RO-Rl, Rl4}
LDR RO, taskHandle ;in workspace
CMP RO, #0
MOVNE Rl4, #0
STRNE Rl4, taskHandle
LDRGT Rl, taskid
SWIGT XWimp_ CloseDown
LDMFD SP!, {RO-Rl, PC}A ;can ' t return errors from s ervice call

trynext

taskid DCB " TASK" ; word- aligned

2-493

Service_EnumerateFormats (Service Call &6A)

2-494

Service EnumerateFormats
(Service Call &6A)

Enumerate available disc formats

On entry

R I = &6A (reason code)
R2 =pointer to list of format specifications suitable for a menu (initially 0)

On exit

Use

Rl preserved to pass on (do not claim)
R2 =pointer to extended list of format specifications suitable for a menu

This service call is issued to get information about the available formats, and to
support !Help for those formats.

• This service call should be issued when the information is required, as formats
can be dynamically added and removed by soft-loading or removing modules.
If this service call is only issued once, it is likely many formats would not be
available (they may finish initialising later, or be soft-loaded later);
consequently it is not recommended.

Each image filing system responds by adding entries to a linked list of blocks held
in the RMA, each of which describes a format :

Offset Meaning

0 Pointer to next of these blocks, or 0 to indicate end of list
4 Pointer to RMA block containing text suitable for inclusion in the

Format submenu
8 Pointer to RMA block containing text which is a suitable response for

!Help for this entry in the Format submenu
12 SWI number to call to obtain raw disc format information
16 Parameter in R3 to use when calling disc format SWI
20 SWI number to call to lay down disc structure
24 Parameter in RO to use when calling disc structure SWI
28 Flags:

Bit Meaning when set
0 'This is a native (ADFS) format'
1-31 Reserved - must be zero

The image filing system must fill in each block in this order:

Allocate a data block in the RMA to link into the linked list

2 Fill in 0 in the fields of the data block holding pointers to text

3 Link the data block to the list by filling in the pointer at offset 0

4 Allocate the RMA block to hold the text for the submenu entry

The Filer

5 Attach that RMA block to the data block by filling in the pointer at offset 4

6 Allocate the RMA block to hold the help text for the submenu entry

7 Attach that RMA block to the data block by filling in the pointer at offset 8

8 Copy the text for the submenu entry into its RMA block

9 Copy the help text for the submenu entry into its RMA block

I 0 Fill in the rest of the data block

The image filing system must not set the pointers at offsets 4 and 8 to point at text
embedded inside its code, but must instead copy the text into individually
allocated RMA blocks.

Once it has filled in each block, it must pass on the service call for other image
filing systems to attach their own formats.

This sequence of actions has been carefully constructed such that any error can be
returned by claiming the service and returning both the error and an intact list. It is
then the responsibility of the issuer of the service call to free the list.

The client must also free the list when the user has chosen a format, and must then
initiate the format using the given parameters.

2-495

Service_DiscDismounted (Service Call &70)

2-496

Disc dismounted

Service DiscDismounted
(Service Call & 70)

On entry

Rl = &70 (reason code)
R2 =pointer to description of disc which has been dismounted

On exit

Use

All registers are preserved

This call informs modules that a disc has just been dismounted so they can take
appropriate action. For example the Filer might close any open directory displays
for that disc.

The value in R2 should be a pointer to a null-terminated string of the following
form:

filing_system::disc

where filing_sljstem is the name of the filing system. and disc is the name of the disc.
If the disc has no name then the drive number should be filled in instead. For
example. ADFS would issue the service call with these parameters:

Rl = &70, R2 = 'ADFS::MyFloppy'

or. for an unnamed dise:

Rl = &70. R2 = 'ADFS::O'.

This service call should not be claimed.

The Filer

*Commands
*Filer Boot

Boots a desktop application

Syntax

*Filer_Boot application

Parameters

application a valid path name specifying an application, the !Boot file
of which is to be run

Use

*Filer_Boot boots the specified desktop application by running its !Boot file. This
command is most useful in Desktop boot files .

You can only use this command from within the desktop environment. or within a
Desktop boot file.

Example

*Filer_Boot adfs: :mhardy.$.Apps. !PrinterPS

Related commands

*Filer_Run

Related SWis

None

Related vectors

None

2-497

*Filer_ C/oseDir

2-498

*Filer CloseDir

Closes a directory display on the Desktop

Syntax

*Filer_CloseDir directory

Parameter

Use

directory the path name of a directory whose directory display is to
be closed

*Filer_CloseDir closes a directory display on the Desktop, and any of its
sub-directories. The directory display will typically have been opened by an earlier
*Filer_OpenDir command , but it could equally well have been opened some other
way.

Under RISC OS 2 the directory pathname must exactly match a leading sub-string
of the title of a directory display for it to be closed. To avoid problems, your
directory pathname should always include the filing system, the drive name and a
full path from S. The case of letters is not significant, but the Filer uses lower case
for filing system names.

This call will close all directory displays that match the specified sub-string. Under
RISC OS 2 the minimum substring you can pass is the filing system only, whereas
under RISC OS 3 you must also specify the drive name.

You can only use this command from within the desktop environment, or within a
Desktop boot file.

Example

*Filer_CloseDir adfs::app1Disc.$.progs.basic

Related commands

*Filer_OpenDir

Related SWis

None

Related vectors

None

The Filer

2-499

*Filer_ OpenDir

*Filer_OpenDir

Opens a directory display on the Desktop

Syntax

*Filer_OpenDir directory [x y [width height]] [switches]

Parameters

Use

2-500

directory

X

y

width

height

switches

the pathname of a directory whose directory display is to
be opened

the x-coordinate of the top left of the directory display, in
OS units

they-coordinate of the top left of the directory display, in
OS units

the width of the directory display, in OS units

the height of the directory display, in OS units

switches to control the display type of the directory
display; there are alternatives ; the case of the letters is
not significant:

-Small Icons -si display small icons
-Large Icons -li display large icons
-Full Info -fi display full information
-SortByName -sn display sorted by name
-SortByType -st display sorted by type
-SortByDate -sd display sorted by date
-SortBySize -ss display sorted by size

*Filer_OpenDir opens a directory display on the Desktop.

Under RISC OS 2, if the directory path name exactly matches the title of a directory
display that is already open, it simply stays open; no new display appears.
However, if the path name is even slightly different from a display's title (eg you
omit the S. after the drive name). it will be treated as a different directory. This can
result in two displays looking at the same directory.

The Filer

To avoid such problems, your directory pathname should always include the filing
system, the drive name and a full path from$. The case of letters is not significant,
but the Filer uses lower case for filing system names. This also ensures that
applications run correctly, since they use their pathnames to reference files within
themselves.

RISC OS always ensures that the opened directory display is entirely visible on the
desktop, and that its size is within the normal limits imposed by the Filer. Invalid
parameters are rounded up/down until valid.

Each parameter- except for the switches -can be preceded by a keyword for the
sake of clarity. This is especially useful when writing scripts. There are variants on
the keywords; again, the case of the letters is not significant. Valid keywords are:

Keyword Alternative Precedes parameter

-dir -directory directory
-xO -topleftx X

-yl -toplefty y

-width -w width
-height -h height

You can only use this command from within the desktop environment, or within a
Desktop boot file.

Example

*Filer_OpenDir adfs: :applDisc.$.progs.basic

Related command~
*Filer_CloseDir

Related SWis

None

Related vectors

None

2-501

•Fifer_Run

2-502

*Filer Run

Performs the equivalent of double-clicking on an object in a directory display

Syntax

*Filer_Run object

Parameters

Use

object a valid path name specifying an object to be treated as if
double-clicked on

*Filer_Run performs the equivalent of double-clicking on an object in a directory
display. For example an application would be run, a directory would be opened,
and a file might be loaded into the relevant application. This command is most
useful in Desktop boot files.

You can only use this command from within the desktop environment, or within a
Desktop boot file.

Example

*Filer_Run adfs::mhardy.$.Apps. !PrinterPS

Related commands

* Filer_Boot

Related SWis

None

Related vectors

None

(

42 Filer Action and FilerSWis

Introduction and Overview
The Filer_Action module performs fi le manipulation operations for the Filer
without the desktop hanging whilst they are under way. See the section entitled
Filer Action Window on page 3-235 for details of how the Filer Action window
operates.

The FilerSWis module provides SWis to help make starting Filer_Action easier.

2-503

SWI calls

SWI calls

2-504

FilerAction_SendSelectedDirectory
(SWI &40F80)

Sends message specifying the selected directory

On entry

RO = task handle to which to send the message
Rl =pointer to null terminated directory name

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call sends the Wimp message Message_FilerSelectionDirectory (see
page 3-235) .

For a description of how messages within the Wimp environment are generated
see Wimp_SendMessage (SWI &400E7) on page 3-196.

Related SWis

FilerAction_SendSelectedFile (page 2-505),
FilerAction_SendStartOperation (page 2-506)

Related vectors

None

Filer_Action and FilerSW/s

FilerAction SendSelectedFile
(SWI &40F81)

Sends message specifying the selected files within a directory

On entry

RO =task handle to which to send the message
Rl =pointer to null terminated selection name

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

SWJ is not re-entrant

This call accumulates the names of selected files that you pass to it. When it has
received sufficient filenames to fill a Wimp message block it sends those names
using the Wimp message Message_FilerAddSelection (see page 3-236). The same
message is use.d to send any unsent filenames if you subsequently call
FilerAction_SendStartOperation.

For a description of how messages within the Wimp environment are generated
see Wimp_SendMessage (SWI &400E7) on page 3-196.

Related SWis

FilerAction_SendSelectedDirectory (page 2-504).
FilerAction_SendStartOperation (page 2-506)

Related vectors

None

2-505

FilerAction_SendStartOperation (SWI &40F82)

2-506

FilerAction_SendStartOperation
(SWI &40F82)

Sends message containing information to start operation

On entry

RO = task handle to which to send the message
Rl = reason code:

0 Copy
I Move (rename)
2 Delete
3 Set access
4 Set type
5 Count
6 Move (by copying and deleting afterwards)
7 Copy local (within directory)
8 Stamp files
9 Find file

R2 = option bits:
bit meaning when set
0 Verbose

Confirm
2 Force
3 Newer (as opposed to just Look)
4 Recurse (only applies to access)

R3 = pointer to operation specific data
R4 = length of operation specific data:

Copy:

Move:

R3 pointer to name of destination directory (null terminated)
R4 length of name of destination directory (including null

R3
R4

terminator)

pointer to name of destination directory (null terminated)
length of name of destination directory (including null

terminator)
Delete:

R3
R4

unused
0

Filer_Action and FilerSW/s

Set access:
R3

R4
Set type:

R3
R4

Count:
R3
R4

Copy Move:

pointer to word containing required new access:
bottom two bytes indicate the values to set
top two bytes flag which bits are to be left alone

4

pointer to word containing new type in bits 0-11
4

unused
0

R3 pointer to name of destination directory (null terminated)
R4 length of name of destination directory (including null

terminator)
Copy Local:

R3 pointer to destination name (null terminated)
R4 length of name of destination name (including null terminator)

Stamp:
R3
R4

Find:

unused
0

pointer to name of object to find (null terminated) R3
R4 length of name of object to find (including null terminator)

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

2-507

FilerAction_SendStartOperation (SWI &40F82)

2-508

Use

This call sends the Wimp message Message_FilerAction (see page 3-236) . Before
doing so, it uses Message_FilerAddSelection to send any filenames passed to
Filer_Action using FilerAction_SendSelectedFile that have not already been sent.

For a description of how messages within the Wimp environment are generated
see Wimp_SendMessage (SWI &400E7) on page 3-196.

Related SWis

FilerAction_SendSelectedDirectory (page 2-504).
FilerAction_SendSelectedFile (page 2-505)

Related vectors

None

Filer_Action and FilerSW/s

*Commands
*Filer Action

Used to start a Filer_Action task running under the desktop

Syntax

*Fi ler_Action

Parameters

Use

None

*Filer_Action is used to start a Filer_Action task running under the desktop. The
task automatically sets its own slot size to an appropriate value. If it does not
receive a 'start operation' message before the next null event. it kills itself.

This command is only useful to programmers writing applications to run under the
desktop. To issue the command, you should call Wimp_StartTask (page 3- I 77) with
RO pointing to the string 'Filer_Action'. The reason why this command has to be
provided is that it is only possible to start a new Wimp task using a * Command.

If you do try to use this command outside the desktop, the error 'Wimp is currently
active' is generated.

Related commands

None

Related SWis

Wimp_StartTask (page 3- I 77)

Related vectors

None

2-509

2-510

43 Free

Introduction and Overview
This module enables an interactive free space display from the desktop.

Any filing system that wishes to display an interactive free space display should
register with this module. In doing so. the filing system provides the address of a
routine that accepts a variety of reason codes, each of which provides support for
this module.

When the Free entry is selected from the filing system's menu, its desktop filer
should issue the command:

*ShowFree -fs fs_name device

This module will then display the free space left.

The Free module is not available in RISC OS 2.

2-511

SWI calls

SWI calls

2-512

Free_Register
(SWI &444CO)

Provides an interactive free space display for a filing system

On entry

RO = filing system number
Rl =address of routine to call to get free space info
R2 = R 12 on entry to the above routine

On exit

Registers preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call adds the filing system to the list of filing systems known by the Free
module. The Free module automatically deals with the following filing systems
ADFS, RamFS. NetFS. NFS. SCSIFS.

Rl contains the address of the entry point for a set of support routines. which the
Free module uses to help it to provide an interactive free space display for the
filing system. The entry point is called in User mode, with the Free module's private
stack, the top of which contains the return address. You cannot assume the depth
of this stack. and should not use it save to pull the return address. Alternatives are :

• Construct a new stack.

• Call the SWI OS_EnterOS to get the SVC mode stack. do the work and then
return to User mode before returning.

Free

• Use a SWI to do all the work: for example, you might use OS_FSControl 49 (get
free space) for reason code 2.

The routine should exit using the instruction:

LDMIA R1 3 , { PC}

The entry point may be called with the following reason codes:

Reason code 0 - NoOp

On entry

On exit

Details

This entry point is a No Op, and you should just return with all registers preserved .

Reason code 1 - Get device name

On entry

RO =I
Rl =filing system number
R2 = pointer to buffer
R3 = pointer to device name I ID

On exit

RO = length of name
RI-R3 preserved

Details

This entry point is called to get the name of a device. You should place the device
name in the buffer pointed to by R2, and the length of the name in RO.

2-513

Free_Register (SWI &444CO)

2-514

Reason code 2 - Get free space for device

On entry

RO = 2
Rl =filing system number
R2 = pointer to 3 word buffer
R3 = pointer to device name I ID

On exit

RO - R3 preserved

Details

This entry point is called to get the free space for a device. You should fill in the
buffer pointed to by R2 with the following information:

Offset Meaning

0 total size of device (0 if unchanged from last time read)
4 free space on device
8 used space on device

Reason code 3 - Compare device

On entry

RO = 3
Rl =filing system number
R2 = pointer to filename
R3 = pointer to device ID
R6 = pointer to special field

On exit

RO - R3 , R6 preserved
Z set if R2 & R6 result in a file on the device pointed to by R3

Details

This entry point is called to compare a device ID with a filename and special field .
This call can simply return with Z set if the filing system is a fast filing system (eg
RAMFS).

Related SWis
Free_DeRegister (page 2-516)

Related vectors

None

Free

Free_DeRegister (SWI &444C1)

2-516

Free_DeRegister
(SWI &444C1}

Removes the filing system from the list of filing systems known by the Free module

On entry

RO =filing system number
Rl =address of routine (as passed to Free_Register)
R2 = Rl2 value (as passed to Free_Register)

On exit

RO preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWl is not re-entrant

This call removes the filing system from the list of filing systems known by the Free
module.

Related SWis

Free_Register (page 2-512)

Related vectors

None

Free

*Commands
*ShowFree

Shows within a desktop window the amount of free space on a device

Syntax

*ShowFree -fs fs_name device

Parameters

fs_name

device

name of the filing system used to access the device

name of the device for which to show free space

Use

*ShowFree shows within a desktop window the amount of free space on a device. It
is used by desktop filers such as ADFSFiler

This command will only work on filing systems registered using the SWI
Free_Register.

Example

*ShowFree -fs adfs HardDisc4

Related commands

None

Related SWis

Free_Register (page 2-512). Free_DeRegister (page 2-516)

Related vectors

None

2-517

2-518

Part 5 -Writing filing systems

2-519

2-520

44 Writing a filing system

Writing your own filing system
You can add filing systems to RISC OS. You must write them as relocatable
modules. There are two ways of doing so:

• by adding a module that FileSwitch communicates with directly

• by adding a secondary module to FileCore; FileSwitch communicates with
FileCore, which then communicates with your module.

In both cases, the amount of work you have to do is considerably less than if you
were to write a filing system from scratch, as the FileSwitch and FileCore modules
already provide a core of the functions your filing system must offer. Obviously if
you use FileCore as well as FileSwitch, more is already provided for you , and so you
have even less work to do. The structure of FileCore is then imposed on your filing
system; to the user, it will appear very similar to ADFS, leading to a consistency of
design.

Obviously there is no way that FileSwitch can know how to communicate directly
with the entire range of hardware that any filing system might use. Your filing
system must provide these facilities, and declare the entry points to FileSwitch.
When FileSwitch receives a SWI call or * Command, it does its share of the work,
and uses these entry points to get the relevant filing system to do the work that is
hardware dependent.

What to read next

The relevance of the rest of this chapter depends on how you intend to write your
own filing system:

• if you are not using FileCore, then you should read this chapter, which tells you
how to add a filing system to FileSwitch

• if you are using FileCore, then you should ignore this chapter and instead read
the chapter entitled Writing a FileCore module on page 2-587.

In both cases you should also see the chapter entitled Modules on page 1-197, for
more information on how to write a module.

2-521

Filing systems

Filing systems

Declaring a filing system

2-522

When your module initialises, it must declare itself to be a filing system, so that
FileSwitch knows of its existence. You must call OS_FSControl 12 to do this- see
page 2-93 for details . Rl and R2 tell FileSwitch where to find a filing system
information block. This in turn tells FileSwitch the locations of all the entry points to
the filing system's low level routines that interface with the hardware.

Filing system information block

This table shows the offsets from the start of the filing system information block,
and the meaning of each word in the block:

Offset Contains
&00 Offset of filing system name (null terminated)
&04 Offset of filing system startup text (null terminated)
&08 Offset of routine to open files (FSEntry_Open)
&OC Offset of routine to get bytes from media (FSEntry_GetBytes)
& I 0 Offset of routine to put bytes to media (FSEntry _PutBytes)
&14 Offset of routine to control open files (FSEntry_Args)
&18 Offset of routine to close open files (FSEntry_Close)
& I C Offset of routine to do whole file operations (FSEntry_File)
&20 Filing system information word
&24 Offset of routine to do various FS operations (FSEntry_Func)
&28 Offset of routine to do multi-byte aperations (FSEntry_GBPB)
&2C Extra filing system information word (optional)

The offsets held in each word are from the base of the filing system module. The
GBPB entry (at offset &28 from the start of the information block) is optional if the
filing system supports non buffered 1/0, and not required otherwise.

The block need not exist for long, as FileSwitch takes a copy of it and converts the
entry points to absolute addresses. So you could set up the block as an area in a
stack frame, for example.

Filing system information word

The filing system information word (at offset &20) tells FileSwitch various things
about the filing system:

Bit Meaning if set

31 Special fields are supported
30 Streams are interactive (ie prompting for input is appropriate)
29 Filing system supports null length filenames
28 Filing system should be called to open a file whether or not it exists

Writing a filing system

27 Tell the filing system when flushing by calling FSEntry_Args 255
26 Filing system supports FSEntry_File 9
25 Filing system supports FSEntry_Func 20
24 Reserved- must be zero
23 Filing system supports image filing system extensions
22 Pass & and% in paths when appropriate
21 Need not store directories for this filing system
20 Use Open/GetBytes/Close entry points rather than File 255
19 Use Open/GetBytes/Close entry points·rather than File 0
18 Use FSEntry_Func 9 in preference to FSEntry_File entry points
17 Extra filing system information word is present
16 Filing system is read-only
15- 8 Maximum number of files that may be open (see below)
7 - 0 Filing system number (see below)

Bits 16- 23 are ignored by RISC OS 2. File systems that were written for RISC OS 2
should have these bits clear, which may cause problems: for example, RISC OS 2
read-only filing systems will incorrectly have bit 16 clear.

Bits 8- 15 tell FileSwitch the maximum number of files that can be easily opened
on the filing system (per server, if appropriate) . A value of 0 means that there is no
definite limiting factor- DMA failure does not count as such a factor. These bits
may be used by system extension modules such as the Font Manager to decide
whether a file may be left open or should be opened and closed as needed, to
avoid the main application running out of file handles.

Bits 0- 7 contain the filing system identification number. Currently allocated ones
are listed in the chapter entitled Filing system numbers on page 2-19. For your own
allocation, contact Acorn Computers in writing: see Appendix H: Registering names on
page 4-545.

Extra filing system Information word

The extra fi!ing system information word is present if bit 17 of the filing system
information word is set. If absent, it is assumed by FileSwitch to have value zero.
The meaning of the bits in the word is as follows:

Bit Meaning If set

0 Filing system supports FSEntry_Func 34
Filing system should be called to do Cat

2 Filing system should be called to do Ex
3- 31 Reserved- must be zero

You should only set bits I and 2 if your filing system provides a non-standard
format for Cat and Ex respectively.

2-523

Filing systems

2-524

Service Call handler

Your filing system must have a Service Call handler. It must respond to
Service_FSRedeclare (see page 2-23) by redeclaring the filing system. For some
filing systems, it may be appropriate to respond to Service_CloseFile (page 2-24) .
Disc based filing systerrls should also support Service_IdentifyDisc (page 2-218).
Service_EnumerateForrhats (page 2-494) , Service_IdentifyFormat (page 2-277),
and Service_DisplayFormatHelp (page 2-278).

Selecting your filing system

If your filing system has associated file storage, it must provide a * Command to
select itself. such as *ADFS or *Net. This must call OS_FSControl 14 to direct
FileSwitch to make the named filing system current. thus:

StarFilingSysternCommand
STMFD R13!, {R14) ; In a* Command so RO-R6 may be corrupted
MOV RO, #FSControl_ SelectFS ; 14
ADR R1, FilingSysternNarne
SWI XOS_ FSControl
LDMFD R13!, {PC)

For full details of OS_FSControl 14, see page 2-95.

Other * Commands

There are no other * Commands that your filing system must provide, but it
obviously should provide more than just a way to select itself. Look through the
previous chapters in this part of the manual to see what other filing systems offer.

If the list of* Commands you want to provide closely matches those in the chapter
entitled FileCore on page 2-195, you ought to investigate adding your filing system
to FileCore rather than to FileSwitch; this will be less work for you.

Removing your filing system

The finalise entry of your module must call OS_FSControl 16 (for both soft and
hard deaths), so that Fileswitch knows that your filing system is being removed:

MOV RO, #FSControl_ RernoveFS ; 16
ADR
SWI
CMP

R1 , FilingSysternNarne
XOS_FSControl
PC, #0 ; Clears V (a lso clears N, Z, sets C)

For full details of OS_FSControl 16, see page 2-97.

Writing a filing system

Image filing systems
For a description of image filing systems, and their relationship to other filing
systems, see the chapter entitled DOSFS on page 2-317. Image filing systems are
not supported by RISC OS 2.

Declaring an image filing system

When your module initialises, it must declare itself to be an image filing system , so
that FileSwitch knows of its existence. You must call OS_FSControl 35 to do this
see page 2-116 for details. R I and R2 tell FileSwitch where to find an image filing
system information block. This in turn tells FileSwitch the locations of all the entry
points to the image filing system's low level routines that interface with the
hardware.

Image filing system information block

This table shows the offsets from the start of the image filing system information
block, and the meaning of each word in the block:

Offset Contains

&00 Image filing system information word
&04 Image filing system file type
&08 Offset of routine to open files
&OC Offset of routine to get bytes from media
& I 0 Offset of routine to put bytes to media
& 14 Offset of routine to control open files
& 18 Offset of routine to close open files
& I C Offset of routine to do whole file operations
&24 Offset of routine to do various FS operations

(lmageEntry_Open)
(lmageEntry_GetBytes)
(Image Entry _PutBytes)
(lmageEntry_Args)
(lmageEntry_Close)
(lmageEntry_File)
(lmageEntry_Func)

The offsets held in each word are from the base of the image filing system module.

The block need not exist for long, as FileSwitch takes a copy of it and converts the
entry points to absolute addresses. So you could set up the block as an area in a
stack frame, for example.

The image filing system file type gives the numerical file type of files which contain
images understood by the image filing system.

2-525

Image filing systems

2-526

Image filing system information word

The image filing system information word (at offset 0) tells FileSwitch various
th ings about the image filing system:

Bit Meaning if set
27 Tell the image filing system when flushing by calling

ImageEntry_Args 255

All other bits are reserved and should be set to zero.

Service Call handler

Your image filing system must have a Service Call handler. It must respond to the
same service calls as any other filing system; see the section entitled Service Call
handler on page 2-524.

*Commands

There are no • Commands that your image filing system must provide, but most
should provide some. See the chapter entitled DOSFS on page 2-317 for an
example of what other image filing systems offer.

Removing your image filing system

The finalise entry of your module must call OS_FSControl 36 (for both soft and
hard deaths). so that FileSwitch knows that your image filing system is being
removed:

MOV RO , #FSControl_ DeRegis t erimageFS ; 36
ADR Rl , Ima geFileType
SWI
CMP

XOS_ FSControl
PC, #0 ; Clears V (also clears N, Z, sets C)

For full details of OS_FSControl 36, see page 2- I 17.

Writing a filing system

Filing system interfaces: introduction

Calling conventions

The principal part of a filing system (or of an image filing system) is the set of
low-level routines that control the filing system's hardware. There are certain
conventions that apply to them.

Processor mode

Routines called by FileSwitch are always entered in SVC mode, with both IROs and
FIOs enabled. This means you do not have to change mode to access hardware
devices directly, and are able to change to FlO mode to set up FlO registers if
necessary.

Using the stack

RI 3 in supervisor mode is used as the system stack pointer. The filing system (or
image filing system) may use this full descending stack. When the filing system (or
image filing system) is entered you should take care not to push too much onto the
stack, as it is only guaranteed to be I 024 bytes deep; however most of the time it is
substantially greater. The stack base is on a I Mbyte boundary. Hence, to determine
how much stack space there is left for your use, use the following code:

MOV
SUB

RO , Rl3 , LSR #20
RO, Rl3, RO , LSL #20

; Get Mbyte value of S P
; Sub it from actual value

You may move the stack pointer downwards by a given amount and use that
amount of memory as temporary workspace. However, interrupt processes are
allowed to use the supervisor stack so you must leave enough room for these to
operate. Similarly, if you call any operating system routines, you must give them
enough stack space.

2-527

Calling conventions

2-528

Using file buffers

If a read or write operation occurs that requires a file buffer to be claimed for a file ,
and this memory claim fails . then FileSwitch will look to steal a file buffer from
some other file . Victims are looked for in the order:

an unmodified buffer of the same size

2 an unmodified buffer of a larger size

3 a modified buffer of the same size

4 a modified buffer of a larger size.

In the last two cases, FileSwitch obviously calls the filing system (or image filing
system) to write out the buffer first. before giving it to the new owner. If an error
occurs in writing out the buffer under RISC OS 2, the stream that owned the data in
the buffer (not the stream that needed to get the buffer) is marked as having 'data
lost'; any further operations will -return the 'Data lost' error. FileSwitch is always
capable of having one file buffered at any time , although it won't work very well
under such conditions.

Workspace

RI2 on entry to the filing system (or image filing system) is set to the value of R3 it
passed to FileSwitch when initialising by calling OS_FSControl I2 or 35 .
Conventionally, this is used as a pointer to your private word. In this case, module
entries should contain the following:

LDR Rl2, [R12]

to load the actual private word into the register.

Returning errors

The error numbers your filing system returns should take this format:

&OOO!nnee

where nn is the filing system number. as passed in the information word (see the
section entitled Filing SrJStem information word on page 2-522); and ee is one of the
error numbers used by FileCore based filing systems (see the table on page 2-590).
or- if none is relevant- a number that does not appear in that table.

Supporting unbuffered streams

Filing systems may support both buffered and unbuffered streams. Unbuffered
streams must maintain their own sequential pointers, file extents and allocated
sizes. File Switch will maintain the EOF-error-on-next-read flag for them.

Writing a filing system

Image filing system streams are always buffered ; consequently they should not
support unbuffered streams.

Dealing with access

Generally FileSwitch does not make calls to filing systems (or to image filing
systems) unless the access on objects is correct for the requested operation .

Note that if a file is opened for buffered output and has only write access,
FileSwitch may still attempt to read from it to perform its file buffering. You must
not fault this.

Other conventions

Filing system (or image filing system) routines do not need to preserve any
registers other than R 13.

If a routine wishes to return an error, it should return to FileSwitch with V set and
RO pointing to a standard format error block.

You may assume that:

• all names are null terminated

• all pathnames are non-null, unless the filing system allows them (for example
printer:)

• all pathnames have correct syntax.

All path names should be treated as read-only If you do need to make changes to a
pathname, you must copy it to your local workspace and modify that copy.

Using canonical names

All filing system interfaces, with the exception of FSEntry_Func 23, are always
passed names in the canonical form. This canonical form is defined by the designer
of a particular filing system and is fixed. Canonical form is used to ensure that
dissimilar references to the same object reduce to identical strings, and thus the
filing system can easily determine that two object references are to the same
object. For example after:

*Mount 0 *Dir A.z

references to $. a. b. c and to A.b. c will reduce to the same canonical form:

adfs: :MyDisc.$.a.b.c

2-529

Using canonical names

2-530

The use of canonical form also helps the filing system to run faster. Because all
filing system interfaces only receive canonical names, the parsing can be fast and
efficient. Remember that canonicalisation happens once for several calls to the
filing system itself.

The chosen canonical form should be a subset of the acceptable name styles, and
hence the canonical name should be acceptable to the canonicaliser as input. For
example the input syntax for the NetFS canonicaliser is:

Net[#(namelnumber]: [:discname.]$1&

The output format is:

Net: :name. $ I &

It is also worthwhile optimising the canonicalisation code so that an already
canonical name is processed very fast.

Canonical names are not used by RISC OS 2.

lmageEntry entry points

In the following descriptions a pathname will always be relative to the root
directory of the image, and will never have any '11 ' , '$' , '@', '%','\'or'&' characters in
it. When a wildcarded pathname is specified, the operation should be applied to all
matching leafnames; but earlier wildcarded elements in the path should use the
first match. A null path name indicates the root directory of the image.

Interfaces

Writing a filing system

These are the interfaces that your filing system (or image filing system) must
provide. Their entry points must be declared to FileSwitch by calling OS_FSControl
12 when your filing system module is initialised, or by calling OS_FSControl 35
when your image filing system module is initialised.

FSEntry _Open and Image Entry_ Open

Open a ftle

On entry (FSEntry_Open)

RO = reason code
RI =pointer to filename
R3 = FileSwitch handle for the file
R6 = pointer to special field if present. otherwise 0

On exit (FSEntry_Open)

RO = file information word (not the same as the filing system information word)
Rl =your filing system's handle for the file (0 if not found)
R2 =buffer size for FileSwitch to use (0 if file unbuffered, else must be a power of 2

between 64 and I 024)
R3 = file extent (buffered files only)
R4 = space currently allocated to file (buffered files only: must be a multiple of

buffer size)

On entry (lmageEntry_Open)

Rl =pointer to filename
R3 = FileSwitch handle for the file
R6 = image filing system's handle for image that contains file

On exit (lmageEntry_Open)

RO = image file information word (not the same as the image filing system
information word)

Rl =your image filing system's handle for the file (0 if not found)
R2 =buffer size for FileSwitch to use (must be a power of 2 between 64 and 1024)
R3 = file extent
R4 =space allocated to file (must be a multiple of buffer size)

2-531

FSEntry_Open and lmageEntry_Open

Use

2-532

FileSwitch calls this entry point to open a file for read or write, and to create it if
necessary.

General details

On entry, R3 contains the handle that FileSwitch will use for the file if your filing
system successfully opens it This is a small integer (typically going downwards
from 255), but must be treated as a 32-bit word for future compatibility. Your filing
system may want to make a note of it when the file is opened, in case it needs to
refer to files by their FileSwitch handles (for example, it must close all open files on
a *Dismount) . It is the FileSwitch handle that the user sees.

On exit , your filing system must return a 32-bit file handle that it uses internally to
FileSwitch. FileSwitch will then use this file handle for any further calls to your
filing system . You may use any value, apart from a handle of 0 which means that no
file is open

The value returned in R2 is the natural block size of the file; for disc oriented filing
systems, this should be the same as the natural sector size. FileSwitch- when
calling the filing system- will tend to use multiple of this value, aligned on a
boundary which is also a multiple of this value.

If your memory allocation fails, this is not an error, and you should indicate it to
FileSwitch by setting RI to 0 on exit

Details specific to FSEntry_Open

The reason code given in RO has the following meaning:

Value

0

2

Meaning

Open for read
Create and open for update (only used by RISC OS 2)
Open for update

For both reason codes 0 and 2 FileSwitch will already have checked that the object
exists (unless you have overridden this by setting bit 28 of the filing system
information word) and, for reason code 2 only, that it is not a directory. These
reason codes must not alter a file's datestamp.

If a directory is opened for reading, then bytes will not be requested from it. The
use of this is for compatibility with existing programs which use this as a method
of testing the existence of an object

For reason code I FileSwitch will already have checked that the leafname is not
wildcarded, and that the object is not an existing directory. Your filing system
should return an extent of zero. If the file already exists you should return an

Writing a filing system

allocated space the same as that of the file ; otherwise you should return a sensible
default that allows space for the file to grow. Your filing system should also give a
new file a filetype of &FFD (Data). datestamp it. and give it sensible access
attributes (WR/ is recommended) .

The file information word returned in RO uses the following bits :

Bit Meaning if set

31 Write permitted to this file
30 Read permitted from this file
29 Object is a directory
28 Unbuffered OS_GBPB supported (stream-type devices only)
27 Stream is interactive

All other bits are reserved and should be set to 0.

An interactive stream is one on which prompting for input is appropriate, such as
kbd: .

Details specific to lmageEntry_Open

FileSwitch will already have checked that the object exists and that it is not a
directory. You must not alter a file's datestamp.

The image file information word returned in RO uses the following bits:

Bit Meaning if set

31 Write permitted to this file
30 Read permitted from this file

All other bits are reserved and should be set to 0.

2-533

FSEntry_GetBytes (from a buffered file), and lmageEntry_GetBytes (all cases)

FSEntry_GetBytes (from a buffered file), and lmageEntry_GetBytes (all cases)

2-534

Get bytes from a buffered rue

On entry

Rl =file handle used by your filing system/image filing system
R2 = pointer to buffer
R3 = number of bytes to read into buffer
R4 = file offset from which to get data

On exit

Details

This entry point is used by FileSwitch to request that you read a number of bytes
from an open file, and place them in memory.

The file handle is guaranteed by FileSwitch not to be a directory, but not
necessarily to have had read access granted at the time of the open- see the last
case given below.

The memory address is not guaranteed to be of any particular alignment. You
should if possible optimise your filing system's transfers to word-aligned locations
in particular, as FileSwitch's and most clients do tend to be word-aligned . The
speed of your transfer routine is vital to filing system performance. An optimised
example (similar to that used in RISC OS) is given in the section entitled Example
program on page 2-581.

The number of bytes to read, and the file offset from which to read data are
guaranteed to be a multiple of the buffer size for this file. The file offset will be
within the file's extent.

This call is made by FileSwitch for several purposes:

• A client has called OS_BGet at a file offset where FileSwitch has no buffered
data, and so FileSwitch needs to read the appropriate block of data into one of
its buffers, from where data is returned to the client.

• A client has called OS_GBPB to read a whole number of the buffer size at a file
offset that is a multiple of the buffer size. FileSwitch requests that the filing
system transfer this data directly to the client's memory. This is often the case
where language libraries are being used for file access. If FileSwitch has any
buffered data in the transfer range that has been modified but not yet flushed
out to the filing system, then this data is copied to the client's memory after
the GetBytes call to the filing system.

•

•

Writing a filing system

A client has called OS_GBPB to perform a more geJeral read. FileSwitch will
work out an appropriate set of data transfers. You may be called to fill
FileSwitch's buffers as needed and/or to transfer data directly to the client's
memory. You should make no assumptions about the exact number and
sequence of such calls; as far as possible RISC OS tries to keep the calls in
ascending order of file address, to increase efficiency by reducing seek times,
and so on.

A client has called OS_GBPB to perform a more general write. FileSwitch will
work out an appropriate set of data transfers. You may be called to fill
FileSwitch's buffers as needed, so that the data at the start and/or end of the
requested transfer can be put in the right place in FileSwitch's buffers, ready
for whole buffer transfer to the filing system as necessary.

Note that FileSwitch holds no buffered data immediately after a file has been
opened.

FSEntry_GetBytes (from an unbuffered file)

Get a byte from an unbuffered file

On entry

Rl =file handle used by your filing system

On exit

Details

RO = byte read, C clear
RO = undefined, C set if attempting to read at end of file

This entry point is called by FileSwitch to get a single byte from an unbuffered file
from the ppsition given by the file's sequential pointer. The sequential pointer
must be incremented by one, unless the end of the file has been reached.

The file handle is guaranteed by FileSwitch not to be a directory and to have had
read access granted at the time of the open.

Your filing system must not try to keep its own EOF-error-on-next-read flag- instead
it must return with C set whenever the file's sequential pointer is equal to its extent
before a byte is read. It is FileSwitch's responsibility to keep the
EOF-error-on-next-read flag.

If your filing system does not support unbuffered GBPB directly, then FileSwitch
will call this entry the necessary number of times to complete its client's request,
stopping if you return with the C flag set (EOF) .

2-535

FSEntry_PutBytes (to a buffered file), and lmageEntry_PutBytes (all cases)

FSEntry_PutBytes (to a buffered file), and lmageEntry_PutBytes (all cases)

2-536

Put bytes to a buffered file

On entry
Rl =file handle used by your filing system/image filing system
R2 = pointer to buffer from which to read data
R3 = number of bytes of data to read from buffer and put to file
R4 = file offset at which to put data

On exit

Details
This entry point is called by FileSwitch to request that you take a number of bytes,
and place them in the file at the specified file offset.

The file handle is guaranteed by FileSwitch not to be a directory, and to have had
write access granted at the time of the open.

The memory address is not guaranteed to be of any particular alignment. You
should if possible optimise your filing system's transfers to word-aligned locations
in particular, as FileSwitch's and most clients do tend to be word-aligned The
speed of your transfer routine is vital to filing system performance. An optimised
example (similar to that used in FileSwitch) is given in the section entitled Example
program on page 2-581.

The number of bytes to write, and the file offset at which to write data are
guaranteed to be a multiple of the buffer size for this file. The final write will be
within the file's extent, so it will not need extending.

This call is made by FileSwitch for several purposes:

• A client has called OS_GBPB to write a whole number of the buffer size at a file
offset that is a multiple of the buffer size. FileSwitch requests that the filing
system transfer this data directly from the client's memory. This is often the
case where language libraries are being used for file access. If FileSwitch has
any buffered data in the transfer range that has been modified but not yet
flushed out to the filing system, then this data is discarded (as it has obviously
been invalidated by this operation).

• A client has called OS_BGet/BPut/GBPB at a file offset where FileSwitch has no
buffered data, and the current buffer held by FileSwitch has been modified and
so must be written to the filing system. (The current FileSwitch
implementation does not maintain multiple buffers on each file. It is likely that

Writing a filing system

this will remain the case, as individual filing systems have better knowledge
about how to dJ disc-caching, and intelligent readahead and writebehind for
given devices.)

• A client has called OS_GBPB to perform a more general write. FileSwitch will
work out an appropriate set of data transfers. You may be called to empty
FileSwitch's buffers as needed and/or to transfer data directly from the client's
memory. You should make no assumptions about the exact number and
sequence of such calls; as far as possible RISC OS tries to keep the calls in
ascending order of file address, to increase efficiency by reducing seek times,
and so on.

Note that FileSwitch holds no buffered data immediately after a file has been
opened.

FSEntry_PutBytes (to an unbuffered file)

Put a byte to an unbuffered ftle

On entry

RO = byte to put to file (top 24 bits zero)
R I =file handle used by your filing system

On exit

Details

This entry point is called by FileSwitch to request that you put a single byte to an
unbuffered file at the position given by the file's sequential file pointer. You must
advance the sequential pointer by one. If the sequential pointer is equal to the file
extent when this call is made, you must increase the allocated space of the file by
at least one byte to accommodate the data- although it will be more efficient to
increase the allocated space in larger chunks (256 bytes/! k is common) .

The file handle is guaranteed by FileSwitch not to be a directory, and to have had
write access granted at the time of the open.

If your filing system does not support unbuffered GBPB directly, then FileSwitch
will call this entry the necessary number of times to complete its client 's request.

2-537

FSEntry_Args and lmageEntry_Args

FSEntry_Args and lmageEntry_Args
Various calls are made by FileSwitch through these entry points to deal with
controlling open files. The actions are specified by RO as follows:

FSEntry_Args 0

Read sequential file pointer

On entry

RO =0
Rl =file handle used by your filing system

On exit

Details

R2 =sequential file pointer

This entry point is called by FileSwitch to read the sequential file pointer for the
given file. You should only support this call if your filing system uses unbuffered
files.

If your filing system does not support a pointer as the concept is meaningless (kbd:
for example) then it must return a pointer of 0, and not return an error.

FSEntry_Args 1

2-538

Write sequential IDe pointer

On entry

RO =I
Rl = file handle used by your filing system
R2 = new sequential file pointer

On exit

Details

This entry point is called by FileSwitch to request that you alter the sequential file
pointer for a given file . You should only support this call if your filing system uses
unbuffered files.

FSEntry_Args 2

Writing a filing system

If the new pointer is greater than the current file extent then:

• if the file was opened only for reading, or only read permission was granted,
then return the error 'Outside file'

• otherwise extend the file with zeros and set the new extent to the new
sequential pointer.

If you cannot extend the file you should return an error as soon as possible. and in
any case before you update the extent.

If your filing system does not support a pointer as the concept is meaningless (kbd:
for example) then it must ignore the call, and not return an error.

Read file extent

On entry

RO =2
RI =file handle used by your filing system

On exit

Details

R2 = file extent

This entry point is called by FileSwitch to read the extent of a given file. You should
only support this call if your filing system uses unbuffered files.

If your filing system does not support file extents as the concept is meaningless
(kbd: for example) then it must return an extent of 0, and not return an error.

2-539

FSEntry_Args 3 and lmageEntry_Args 3

FSEntry_Args 3 and lmageEntry_Args 3

2-540

Write file extent

On entry

RO = 3
Rl =file handle used by your filing system/image filing system
R2 = new file extent

On exit

Details

This entry point is called by FileSwitch to request that you change the extent of a
file.

The file handle is guaranteed by FileSwitch not to be a directory, and to have had
write access granted at the time of the open.

If the filing system does not support file extents as the concept is meaningless
(kbd: for example) then it must ignore the call, and not return an error.

Buffered files

For buffered files, FileSwitch only calls this entry point to set the real file extent
just prior to closing an open file. Your filing system should store the value of R2 in
the file's catalogue information as its new length.

Unbuffered files

For unbuffered files, FileSwitch calls this entry point whenever requested to by its
client.

If the new extent is less than the current sequential pointer (the file is shrinking
and the pointer would lie outside the file)', then you must set the pointer to the
new extent.

If the new extent is greater than the current one then you must extend the file with
zeros. If you cannot extend the file you should return an error as soon as possible,
and in any case before you update the extent.

Writing a filing system
•

FSEntry_Args 4 and lmageEntry_Args 4

Read size allocated to file

On entry

RO = 4
Rl =file handle used by your filing system/image filing system

On exit

Details

FSEntry_Args 5

R2 = size allocated to file by filing system

This entry point is called by FileSwitch to read the size allocated to a given file . All
filing systems must support this call.

EOF check

On entry

RO = 5
Rl =file handle used by your filing system/image filing system

On exit

Details

R2 =-I if (sequential pointer is equal to current extent). otherwise R2 = 0

This entry point is called by FileSwitch to determine whether the sequential
pointer for a given file is at the end of the file or not. You should only support this
call if your filing system uses unbuffered files.

If a filing system does not support a pointer and/or a file extent as the concept(s)
are meaningless (kbd: for example) then the treatment of the C bit is dependent on
that filing system. For example, kbd: gives EOF when Ctrl-D is read from the
keyboard; null: always gives EOF; and vdu: never gives EO F.

2-541

FSEntry_Args 6 and lmageEntry_Args 6

FSEntry_Args 6 and lmageEntry_Args 6

2-542

Notify of a flush

On entry

RO =6
Rl =file handle used by your filing system/image filing system

On exit

Details

R2 =load address of file (or 0)
R3 =execution address of file (or 0)

General details

This entry point is called by FileSwitch to request that your filing system flushes
any modified data that it is holding in buffers. You should only support this call if
your filing system does its own buffering in addition to that done by FileSwitch. For
example, ADFS does its own buffering when doing readahead/writebehind, and so
needs to use this call.

Details specific to FSEntry_Args 6

The modified data should be flushed to its storage media.

This entry point is only called if your filing system is buffered, and you set bit 27 of
your filing system information word when you initialised your filing system.

Details specific to ImageEntry_Args 6

The modified data should be flushed to its image. The image should subsequently
be flushed to its storage media to ensure the data's integrity.

This entry point is only called if you set bit 27 of your image filing system
information word when you initialised your image filing system.

Writing a filing system

FSEntry_Args 7 and lmageEntry_Args 7

Ensure file size

On entry

RO = 7
Rl =file handle used by your filing system/image filing system
R2 = size of file to ensure

On exit

Details

R2 = size of file actually ensured

This entry point is called by FileSwitch to ensure that a file is of at least the given
size. Your file system should do just this . but need not ensure that any extra space
is zeroed . All filing systems must support this call.

FSEntry_Args 8 and lmageEntry_Args 8

Write zeros to file

On entry

RO = 8
Rl =file handle used by your filing system
R2 =file offset at which to write
R3 =number of zero bytes to write

On exit

Details

This entry point is called by FileSwitch to request that your filing system writes a
given number of zero bytes to a given offset within a file. You should only support
this call if your filing system uses buffered files.

The file handle is guaranteed by FileSwitch not to be a directory. and to have had
write access granted at the time of the open.

The number of bytes to write, and the file offset at which to write data are
guaranteed to be a multiple of the buffer size for this file.

2-543

FSEntry_Args 9 and lmageEntry_Args 9

FSEntry_Args 9 and lmageEntry_Args 9

Read file datestamp

On entry

RO =9
Rl =file handle used by your filing system/image filing system

On exit

Details

R2 =load address of file (or 0)
R3 =execution address of file (or 0)

This entry point is called by FileSwitch to read the date/time stamp for a given file.
The bottom four bytes of the date/time stamp are stored in the execution address
of the file. The most significant byte is stored in the least significant byte of the
load address. All filing systems must support this calL If your filing system cannot
stamp an open file given its handle, then it should return R2 and R3 set to zero.

FSEntry_Args 10

2-544

Inform of new image stamp

On entry

RO= 10
Rl =file handle used by your filing system/image filing system
R2 = new image stamp of image

On exit

Details

All registers preserved

This entry point is called by FileSwitch when an image filing system has changed
an image's image stamp (a unique identification number). The purpose of the call is
to inform your filing system of the change, and to pass it the new image stamp. If
your filing system does not support the root object being an image, then it should
ignore this calL Otherwise- as for example in the case of FileCore- you should
update your filing system's internal note of the image stamp, as you may need to
use it to identify the disc at a later time.

Writing a filing system

This call is for information only, and should not require any further action. It is not
called by RISC OS 2, which does not support image filing systems.

FSEntry _Close and Image Entry_ Close

Close an open file

On entry

RI =file handle used by your filing system/image filing system
R2 =new load address to associate with file
R3 = new execution address to associate with file

On exit

Details

This entry point is called by FileSwitch to request that your filing system close an
open file, and put a new date/time stamp on it. For ImageEntry_Ciose, you should
then call OS_Args 255 (page 2-59) on the image after updating the structure for the
closed file; this ensures that all data is flushed to the disc.

If your filing system returned from the FSEntry_Args 9 (or ImageEntry_Args 9) call
with R2 and R3 both zero, then they will also have that value here, and you should
not try to restamp the file. Restamping takes place if the file has been modified and
FSEntry_Args 9 (or ImageEntry_Args 9) returned a non-zero value in R2.

Note that *Close and *Shut (ie close all open files) are performed by FileSwitch
which passes the handles, one at a time, to the relevant filing system for closing.
Filing systems should not try to support this themselves.

2-545

FSEntry_File and lmageEntry_File

FSEntry_File and lmageEntry_File
Various calls are made by FileSwitch through these entry points to perform
operations on whole files . The actions are specified by RO as follows:

FSEntry_File 0 and lmageEntry_File 0

2-546

Save ftle

On entry

RO =0
Rl =pointer to filename
R2 = load address to associate with file
R3 =execution address to associate with file
R4 = pointer to start of buffer
R5 = pointer to byte after end of buffer
R6 = pointer to special field if present, otherwise 0 (FSEntry_File 0); or image filing

system's handle for image that contains file (lmageEntry_File 0)

On exit

Details

R6 = pointer to a leafname for printing *OPT I info

This entry point is called by FileSwitch to request that your filing system saves data
from a buffer held in memory to a file . FileSwitch has already validated the buffer,
and ensured that the leafname is not wildcarded. If the file currently exists and is
not locked, the old file is first discarded. The new file should have the same access
attributes as the one it is replacing, or some default access if the file doesn't
already exist. You should return an error such as File locked if you could not
save the specified file.

FileSwitch immediately copies the leafname returned in R6, so it need not have a
long lifetime. You could hold it in a small static buffer, for example.

Writing a filing system

FSEntry_File 1 and lmageEntry_File 1

Write catalogue information

On entry

RO= I
Rl =pointer to wildcarded filename
R2 = new load address to associate with file
R3 = new execution address to associate with file
R5 = new attributes for file
R6 =pointer to special field if present, otherwise 0 (FSEntry_File I); or image filing

system's handle for image that contains file (lmageEntry_File I)

On exit

Details

FSEntry _File 2

This entry point is called by FileSwitch to request that your filing system updates
the catalogue information for an object. If the object is a directory you must either
write the information (FileCore-based filing systems do) or return an error. You
must not return an error if the object does not exist.

Write load address

On entry

RO = 2
Rl =pointer to wildcarded filename
R2 = new load address to associate with file
R6 = pointer to special field if present. otherwise 0

On exit

Details

This entry point is called by FileSwitch to request that your filing system alters the
load address for a file. If the object is a directory jyou must either write the
information (FileCore-based filing systems do) or return an error. You must not
return an error if the object does not exist.

2-547

FSEntry_File 3

FSEntry _File 3

Write execution address

On entry

RO = 3
Rl =pointer to wildcarded filename
R3 = execution address to associate with file
R6 = pointer to special field if present, otherwise 0

On exit

Details

This entry point is called by FileSwitch to request that your filing system alters the
execution address for a file. If the object is a directory you must either write the
information (FileCore-based filing systems do) or return an error. You must not
return an error if the object does not exist.

FSEntry_File 4

2-548

Write attributes

On entry

RO = 4
R I = pointer to wildcarded path name
R5 = new attributes to associate with file
R6 = pointer to special field if present. otherwise 0

On exit

Details

This entry point is called by FileSwitch to request that your filing system alters the
attributes of an object. You must not return an error if the object does not exist.

Writing a filing system

FSEntry_File 5 and lmageEntry_File 5

Read catalogue information

On entry

RO = 5
Rl =pointer to path name
R6 =pointer to special field if present, otherwise 0 (FSEntry_File 5); or image filing

system's handle for image that contains file (lmageEntry_File 5)

On exit

Details

RO = object type:
0 not found

file
2 directory

R2 = load address
R3 = execution address
R4 = file length
R5 = file attributes
R6 preserved (lmageEntry_File 5)

This entry point is called by FileSwitch to request that your filing system returns
the catalogue information for an object. You should return an error if:

• the pathname specifies a drive that is unknown

• the path name specifies a media name that is unknown and not made available
after any UpCall

• the special field specifies an unknown server or subsystem.

You should return type 0 if:

• the place specified by the pathname exists. but the leafname does not match
any object there

• the place specified by the pathname does not exist.

2-549

FSEntry_File 6 and lmageEntry_File 6

FSEntry_File 6 and lmageEntry_File 6

Delete object

On entry

RO =6
Rl =pointer to filename
R6 =pointer to special field if present, otherwise 0 (FSEntry_File 6); or image filing

system's handle for image that contains file (lmageEntry_File 6)

On exit

Details

RO = object type
R2 = load address
R3 = execution address
R4 = file length
R5 = file attributes

This entry point is called by FileSwitch to request that your filing system deletes an
object. FileSwitch will already have ensured that the leafname is not wildcarded.
No data need be transferred to the file . You should return an error if the object is
locked against deletion , but not if the object does not exist. The results refer to the
object that was deleted.

FSEntry_File 7 and lmageEntry_File 7

2-550

Create file

On entry

RO= 7
Rl =pointer to filename
R2 = load address to associate with file
R3 = execution address to associate with file
R4 = start address in memory of data
R5 =end address in memory plus one
R6 =pointer to special field if present, otherwise 0 (FSEntry_File 7); or image filing

system's handle for image that contains file (ImageEntry_File 7)

On exit

R6 = pointer to a filename for printing •opt I info (FSEntry_File 7 only)

Writing a filing system

Details

This entry point is called by FileSwitch to request that your filing system creates a
file with a given name. R4 and R5 are used only to calculate the length of the file to
be created. If the file currently exists and is not locked, the old file is first discarded.
The new file should have the same access attributes as the one it is replacing, or
some default access if the file doesn't already exist. You should return an error if
you couldn't create the file.

FSEntry_File 8 and lmageEntry_File 8

Create directory

On entry

RO = 8
RI =pointer to directory name
R2 = load address (ignored by RISC OS 2)
R3 = execute address (ignored by RISC OS 2)
R4 = number of entries (0 for default)
R6 =pointer to special field if present, otherwise 0 (FSEntry_File 8); or image filing

system's handle for image that contains file (ImageEntry_File 8)

On exit

Details

This entry point is called by FileSwitch to request that your filing system creates a
directory. If the directory already exists then your filing system can do one of these:

• return without any modification to the existing directory

• attempt to rename the directory- you must not return an error if this fails.

If directories don't support load and execute addresses (which will only be of the
directory type/datestamp form) then no error should be returned. Note that
RISC OS 2 will ignore the load and execute addresses in R2 and R3 .

FileSwitch will already have ensured that the leafname is not wildcarded. You
should return an error if you couldn't create the directory.

2-551

FSEntry_File 9

FSEntry_File 9

Read catalogue information (no length)

On entry
RO =9
R I = pointer to filename
R6 = pointer to special field if present, otherwise 0

On exit

Details

RO = object type
R2 = load address
R3 = execution address
R5 = file attributes

This entry point is called by FileSwitch to read the catalogue information for an
object, save for the object length. It is useful for NetFS with fileservers, as the
length is not stored in a directory. You must not return an error if the object does
not exist.

It is only ever called by *Copy under RISC OS 2; bit 26 of your filing system
information word must have been set when the filing system was initialised.
Otherwise FileSwitch calls FSEntry_File 5, and the length returned in R4 is ignored.

FSEntry_File 10 and lmageEntry_File 10

2-552

Read block size

On entry

RO = 10
Rl =pointer to filename
R6 =pointer to special field if present, otherwise 0 (FSEntry_File I 0); or image

filing system's handle for image that contains file (ImageEntry_File 10)

On exit
R2 =natural block size of the file (in bytes)

Details

Writing a filing system

This entry point is called by FileSwitch to read the natural block size for a file (see
FSEntry_Open and ImageEntry_Open on page 2-53 I). It is not called by RISC OS 2.

FSEntry _File 255

Load file

On entry

RO = 255
RI =pointer to wildcarded filename
R2 = address to load file
R6 = pointer to special file if present; otherwise 0

On exit

Details

RO corrupted
R2 = load address
R3 = execution address
R4 = file length
R5 = file attributes
R6 = pointer to a filename for printing *OPT I info

This entry point is called by FileSwitch to request that your filing system loads a
file.

FileSwitch will already have called FSEntry_File 5 and validated the client's load
request. If FSEntry_File 5 returned with object type 0 then the user will have been
returned the 'File 'xyz' not found' error; type 2 will have returned the "xyz' is a
directory' error; types I with corresponding load actions will have had them
executed (which may recurse back down to load again), those with no read access
will have returned 'Access violation ', and those being partially or wholly loaded
into invalid memory will have returned 'No writeable memory at this address'.

Therefore unless the filing system is accessing data stored on a multi-user server
such as NetFS/FileStore, the object will still be the one whose info was read earlier.

The filename pointed to by R6 on exit should be the non-wildcarded 'leaf' name of
the file. That is, if the filename given on entry was$. ! b*, and the file accessed was
the boot file, R6 should point to the string !Boot.

2-553

FSEntry_Func and lmageEntry_Func

FSEntry_Func and lmageEntry_Func

Various calls are made through these entry points to deal with assorted filing
system (or image filing system) control. Many of these output information. You
should do this in two stages:

• amass the information into a dynamic buffer

• print from the buffer and dispose of it.

This avoids problems caused by the write character process being in the middle of
spooling, or by an active task swapper.

If you add a header to output (cf *Info, *Cat and *Ex on ADFS) you must follow
it with a blank line. You should always try to format your output to the printable
width of the current window. You can read this using XOS_ReadVduVariables
(page 1-703) to read the WindowWidth variable (&100), which copes with most
eventualities. Don't cache the value, but read it before each output.

The actions are specified by RO as given below.

FSEntry _Func 0

2-554

Set current directory

On entry

RO= 0
R1 =pointer to wildcarded directory name
R6 = pointer to special field if present, otherwise 0

On exit

Details

This entry point is called by FileSwitch to set the current directory to the one
specified by the directory name and context given. If the directory name is null. you
should assume it to be the user root directory.

You should not also make the context current, but instead provide an independent
means of doing so, such as *FS on the NetFS.

This entry point is called by R1SC OS 2; otherwise it is only called to perform a
•opt I command when bit 23 of the filing system information word is clear.

Writing a filing system

FSEntry _Func 1

Set library directory

On entry

RO= I
Rl =pointer to wildcarded directory name
R6 = pointer to special field if present. otherwise 0

On exit

Details

This entry point is called by FileSwitch to set the current library directory to the one
identified by the directory name and context given. If the directory name is null.
you should assume it to be the filing system default (which is dependent on your
implementation) .

You should not also make the context current. but instead provide an independent
means of doing so. such as *FS on the NetFS.

This entry point is only called by RISC OS 2.

FSEntry _Func 2

Catalogue directory

On entry

RO = 2
Rl =pointer to wildcarded directory name
R6 = pointer to special field if present. otherwise 0

On exit

Details

This entry point is called by FileSwitch to catalogue the directory identified by the
directory name and context given. If the directory name is null . you should assume
it to be the current directory. (This corresponds to the •cat command.)

2-555

FSEntry_Func 3

This entry point is called by RISC OS 2; otherwise it is only called if bit I of the
extra filing system information word is set.

FSEntry _Func 3

Examine directory

On entry

RO = 3
R I = pointer to wildcarded directory name
R6 = pointer to special field if present, otherwise 0

On exit

Details

This entry point is called by FileSwitch to print information on all the objects in the
directory identified by the directory name and context given. If the directory name
is null, you should assume it to be the current directory. (This corresponds to the
*Ex command.)

This entry point is called by RISC OS 2; otherwise it is only called if bit2 of the extra
filing system information word is set.

FSEntry _Func 4

2-556

Catalogue library directory

On entry

R0=4
Rl =pointer to wildcarded directory name
R6 = pointer to special field if present. otherwise 0

On exit

Details

Writing a filing system

This entry point is called by FileSwitch to catalogue the specified subdirectory
relative to the current library directory. If the directory name is null. you should
assume it to be the current library directory. (This corresponds to the *LCat
command.)

This entry point is called by RISC OS 2; otherwise it is only called if bit I of the
extra filing system information word is set.

FSEntry _Func 5

Examine library directory

On entry

RO = 5
R I = pointer to wildcarded directory name
R6 =pointer to special field if present. otherwise 0

On exit

Details

This entry point is called by FileSwitch to print information on all the objects in the
specified subdirectory relative to the current library directory. If the directory name
is null. you should assume it to be the current library directory. (This corresponds
to the *LEx command.)

This entry point is called by RISC OS 2; otherwise it is only called if bit 2 of the
extra filing system information word is set.

2-557

FSEntry_Func 6

FSEntry _Func 6

Examine object(s)

On entry

R0=6
Rl =pointer to wildcarded path name
R6 =pointer to special field if present. otherwise 0.

On exit

Details

This entry point is called by FileSwitch to print information on all the objects
matching the wildcarded pathname and context given. in the same format as for
FSEntry_Func 3. (This corresponds to the *Info command.)

This entry point is called by RISC OS 2; otherwise it is only called if bit 2 of the
extra filing system information word is set.

FSEntry _Func 7

2-558

Set ftllng system options

On entry

RO = 7
Rl =new option (or 0)
R2 = new parameter
R6 = 0 (cannot specify a context)

On exit

Details

This entry point is called by FileSwitch to set filing system options.

An option of 0 means reset all filing system options to their default values. An
option of 1 is never passed to you. as FileSwitch maintains these settings. An
option of 4 is used to set the boot file action. You may use other option numbers
for your own purposes; please contact Acorn for an allocation.

Writing a filing system

(This corresponds to the *Opt command.)

You should return an error for bad combinations of options and parameters.

FSEntry_Func 8 and lmageEntry_Func 8

Rename object

On entry

R0=8
Rl =pointer to pathname of object to be renamed
R2 = pointer to new path name for object
R6 = pointer to first special field if present. otherwise 0 (FSEntry_Func 8); or image

filing system's handle for image that contains file (lmageEntry_Func 8)
R7 = pointer to second special field if present. else 0 (FSEntry_Func 8 only)

On exit

Rl = 0 if rename performed (:;t:O otherwise)

Details

This entry point is called by FileSwitch to attempt to rename an object. If the
rename is not 'simple' - ie just changing the file's catalogue entry- Rl should be
returned with a value other than zero. (For example. the files may be on different
images.) In such cases. FileSwitch will return a 'Bad rename' error.

FSEntry _Func 9

Access object(s)

On entry

RO =9
Rl =pointer to wildcarded pathname
R2 =pointer to access string (null. space or control-character terminated)
R6 = pointer to special field if present, otherwise 0.

On exit

2-559

FSEntry_Func 10

Details

This entry point is called by FileSwitch to give the requested access to all objects
matching the wildcarded name given. (This corresponds to the • Access command.)

You should ignore inappropriate owner access bits. and try to store public access
bits .

This entry point is called by RISC OS 2; otherwise it is only called if bit I8 of the
filing system information word is set.

FSEntry _Func 1 0

Boot filing system

On entry

RO= IO

On exit

Details

This entry point is called by FileSwitch to request that your filing system performs
its boot action .

For example, ADFS examines the boot option- as set by *Opt 4- of the disc in the
configured drive and acts accordingly (so, if boot option 2 is set. it will *Run

& • ! Boot); whereas NetFS attempts to logon as the boot user to the configured
file server.

This call may not return if it runs an application .

FSEntry _Func 11

2-560

Read name and boot (*OPT 4) option of disc

On entry

RO= II
R2 = pointer to buffer in which to put data
R6 = 0 (cannot specify a context)

Writing a filing system

On exit

Details

This entry point is called by FileSwitch to obtain the name of the disc that the CSD
is on in the temporary filing system, and its boot option. This data should be
returned in the area of memory pointed to by R2, in the following format :

<name length byte><disc name><boot option byte>

If there is no CSD, this call should return the string 'Unset' for the disc name, and
the boot action should be set to zero.

The buffer pointed to by R2 will not have been validated with OS_ValidateAddress.
because FileSwitch doesn't know how big the buffer has to be. It is the filing
system's responsibility to validate any buffer that it uses, and to return an error if
the memory required is not valid. Under RISC OS 2 it should use the error text 'No
writable memory at this address'; under later versions it should instead look up the
token BadWrt.

The buffer pointed to by R2 will not have been validated and so you should be
prepared for faulting when you write to the memory. You must not put an interlock
on when you are doing so.

FSEntry _Func 12

Read current directory name and privilege byte

On entry

RO = 12
R2 = pointer to buffer in which to put data
R6 = 0 (cannot specify a context)

On exit

Details

This entry point is called by FileSwitch to obtain the name of the CSD on the
temporary filing system, and privilege status in relation to that directory. This data
should be returned in the area of memory pointed to by R2, in the following format:

<zero byte><name length byte><current directory name><privilege byte>

2-561

FSEntry_Func 13

If there is no CSD, this call should return the string 'Unset' for the directory name.

The privilege byte is &00 if you have 'owner' status (ie you can create and delete
objects in the directory) or &FF if you have 'public' status (ie are prevented from
creating and deleting objects in the directory) . On FileCore-based filing systems,
you always have owner status.

The buffer pointed to by R2 will not have been validated with OS_ ValidateAddress.
because FileSwitch doesn't know how big the buffer has to be. It is the filing
system's responsibility to validate any buffer that it uses, and to return the error
'No writable memory at this address' if the memory required is not valid .

This entry point is only called by RISC OS 2.

FSEntry _Func 13

2-562

Read library directory name and privilege byte

On entry

RO = 13
R2 = pointer to buffer in which to put data
R6 = 0 (cannot specify a context)

On exit

Details

This entry point is called by FileSwitch to obtain the name of the library directory
on the temporary filing system, and privilege status in relation to that directory.
This data should be returned in the area of memory pointed to by R2, in the
following format:

<zero byte><name length byte><library directory name><privilege byte>

If no library is selected, this call should return the string 'Unset' for the library
directory name.

The buffer pointed to by R2 will not have been validated with OS_ ValidateAddress,
because FileSwitch doesn't know how big the buffer has to be. It is the filing
system's responsibility to validate any buffer that it uses, and to return the error
'No writable memory at this address' if the memory required is not valid.

This entry point is only called by RISC OS 2.

Writing a filing system

FSEntry_Func 14 and lmageEntry_Func 14

Read directory entries

On entry

RO = 14
R I = pointer to wildcarded directory name
R2 = pointer to buffer in which to put data
R3 = number of object names to read
R4 =offset of first item to read in directory (0 for start of dir1ctory)
R5 = length of buffer
R6 =pointer to special field if present. otherwise 0 (FSEntry Func 14) ; or image

filing system's handle for image that contains file (l~ageEntry_Func 14)

On exit

Details

R3 = number of names read
R4 =offset of next item to read in directory (-1 if end)

This entry point is called by FileSwitch to read the leaf name
1

s of entries in a
directory into an area of memory pointed to by R2. If the dir~ctory name is nulL
then for filing systems the currently-selected directory shoul~ be read; for image
filing systems the root directory should be read. The names ~ue returned in the
buffer as a list of null terminated strings . You must not over~ ow the end of the
buffer, and you must only count names that you have completely inserted.

The length of buffer that FileSwitch will have validated depehds on the call that
was made to it: I

• if it was OS_GBPB 8, then enough space will have been yalidated to hold [R3]
10-character long directory entries (plus their terminators)

I

e if it was OS_GBPB 9, then the entire buffer specified by r 2 and R5 will have
been validated .

Unfortunately there is no way you can tell which was used. ~ISC OS programmers
are encouraged to use the latter. I

You should return an error if the object being catalogued is r ot found or is a file .
The following are, however, all valid return values:

• R3 = 0, R4 -T- -I (the buffer overflowed)

• R3 -T- 0, R4 -T- -I (there are more names to read)

2-563

FSEntry_Func 15 and lmageEntry_Func 15

• R3 = 0, R4 =-I (the previous read filled the buffer with the last name, but
didn't detect the end; now there no more names to read).

FSEntry _Func 15 and lmageEntry _Func 15

2-564

Read directory entries and Information

On entry

RO = 15
Rl =pointer to wildcarded directory name
R2 = pointer to buffer in which to put data
R3 = number of object names to read
R4 =offset of first item to read in directory (0 for start of directory)
R5 = length of buffer
R6 =pointer to special field if present. otherwise 0 (FSEntry_Func 15); or image

filing system's handle for image that contains file (ImageEntry_Func I 5)

On exit

Details

R3 = number of records read
R4 =offset of next item to read in directory (-1 if end)

This entry point is called by FileSwitch to read the leaf names of entries (and their
file information) in the given directory into a buffer pointed to by R2 . If the
directory name is null , then the currently-selected directory should be read. The
names and information are returned in records, with the following format :

Offset
&00
&04
&08
&OC
&10
&14

Contents

Load address
Execution address
Length
Attributes
Object type
Object name

FileSwitch will have validated the buffer. You must not overflow the end of the
buffer, and you must only count names that you have completely inserted. You
should assume that the buffer is word-aligned, and your records should be so too.
You may find this code fragment useful to do so:

ADD R2, R2, #p2-1 ; p2 is a power-of-two , in this case 4
BIC R2 , R2, #p2-l

Writing a filing system

You should return an error if the object being catalogued is not found or is a file.

FSEntry _Func 16

Shut down

On entry

RO = 16

On exit

Details

This entry point is called by FileSwitch to request that your filing system go into as
dormant a state as possible. For example, it should place hard drives in their
transit positions, etc. All files will have been closed by FileSwitch before this call is
issued.

FSEntry _Func 17

Print start up banner

On entry

RO = 17
R6 = 0 (cannot specify a context)

On exit

Details

This entry point is called by FileSwitch to print out a filing system banner that
shows which filing system is selected. FileSwitch calls it if it receives a reset service
call and the text offset value (in the filing system information block) is -I. This is to
allow filing systems to print a message that may vary, such as Acorn Econet or
Acorn Econet no clock.

You should print the string using XOS_ ... SWls, and if there is an error return with
V set and RO pointing to an error block. This is not likely to happen.

2-565

FSEntry_Func 18

FSEntry _Func 18

Set directory contexts

Details

This entry point is never called by FileSwitch.

FSEntry _Func 19

2-566

Read directory entries and Information

On entry

RO= 19
Rl =pointer to wildcarded directory name
R2 = pointer to buffer in which to put data
R3 = number of object names to read
R4 = offset of first item to read in directory
R5 = length of buffer
R6 = pointer to special field if present. otherwise 0

On exit

Details

R3 = number of records read
R4 =offset of next item to read in directory (-I if end)

This entry point is called by FileSwitch to read the names of entries (and their file
information) in the given directory into a buffer pointed to by R2. If the directory
name is null, then the currently-selected directory should be read . The names and
information are returned in records, with the following format:

Offset

0
4
8
12
16
20
24
29

Contents

Load address
Execution address
Length
File attributes
Object type
System internal name- for internal use only
Time/Date (cs since 1/1/1900)- 0 if not stamped
Object name

Each record is word-aligned.

Writing a filing system

FSEntry _Func 20

Output full information on object(s)

On entry
RO = 20
Rl =pointer to pathname (may be wildcarded under RISC OS 2 only)
R6 = pointer to special field if present, otherwise 0

On exit

Details

This entry point is called by FileSwitch to request that your filing system outputs
full information on the given object (or, under RISC OS 2, on all the objects
match ing the wildcarded pathname) . The format must be the same as for the
*Filelnfo command.

It is only called by FileSwitch if bit 25 of the filing system information word was set
when the filing system was initialised. Otherwise FileSwitch will use calls to
FSEntry_Func 6 to implement *Filelnfo.

lmageEntry_Func 21

Notification of new image

On entry

RO= 21
Rl = FileSwitch handle to the file
R2 = buffer size for file if known, otherwise 0

On exit

Details

Rl =image filing system's handle for image

This entry point is called by FileSwitch to notify your image filing system that
FileSwitch would like it to handle a new image. This entry gives the image filing
system a chance to set up internal structures so that data could be cached or

2-567

lmageEntry_Func 22

buffered from the image. All future requests FileSwitch makes of the image filing
system will quote the returned image filing system's handle for the image when
appropriate.

The image should be flagged internally as 'stamp image on next update', and when
it is updated its unique identification number should be updated. Whenever this
number is updated the host filing system should be informed of its new value
using OS_Args 8- this is important. because otherwise the host filing system will
lose track of which disc is which.

The buffer size (if given) should be treated as a hint to the sector size.

This entry point is not called by RISC OS 2.

lmageEntry _Func 22

Notification that Image Is about to be closed

On entry

RO = 22
Rl =image filing system's handle for image

On exit

Details

This entry point is called by FileSwitch to notify your image filing system that an
image is about to be closed . All files will have been closed for you before this call
is made. You should save any buffered data for this image before returning, and
discard any cached data.

This entry point is not called by RISC OS 2.

FSEntry _Func 23

2-568

Canonlcallse special field and disc name

On entry

RO = 23
Rl =pointer to special field if present, otherwise 0
R2 = pointer to disc name if present, otherwise 0
R3 = pointer to buffer to hold canonical special field, or 0 to return required length

Writing a filing system

R4 =pointer to buffer to hold canonical disc name, or 0 to return required length
R5 = length of buffer to hold canonical special field
R6 = length of buffer to hold canonical disc name

On exit

Details

Rl =pointer to canonical special field if present, otherwise 0
R2 = pointer to canonical disc name if present. otherwise 0
R3 = bytes overflow from special field buffer (ie required length if R3 = 0 on entry)
R4 = bytes overflow from special field buffer (ie required length if R4 = 0 on entry)
R5, R6 preserved

This entry point is called by FileSwitch to convert the given special field and disc
name to canonical (unique) forms. If no buffers are passed to hold the results. this
call instead returns their required lengths, which gives FileSwitch a means of
finding out this information.

FileSwitch uses this call to convert user-specified special field and disc names into
a canonical (unique) form. Typically this call is used in two stages: the first to find
out how much space is required in the buffers, and the second to do the
conversion . For example, if a user specifies a file as NetFS#Arf:&.thing.whatsit,
FileSwitch uses this call as follows :

Rl =pointer to the string 'Arf'
R2 = 0
R3 = 0
R4 = 0
R5 = any value (since R3 = 0)
R6 =any value (since R4 = 0)

NetFS returns these values:

Rl =any non-zero value
R2 =any non-zero value
R3 =required length of buffer to hold canonical special field (excluding any

terminating null) I
R4 =required length of buffer to hold canonical disc name (excluding any

terminating null)
R5, R6 preserved

2-569

FSEntry_Func 24

FileSwitch now allocates memory for two buffers of the lengths specified by NetFS
in the R3 and R4 return values. then call NetFS again as follows:

Rl =pointer to the string 'Arf'
R2 = 0
R3 = pointer to a buffer of length R5 bytes
R4 = pointer to a buffer of length R6 bytes
R5 = length of buffer pointed to by R3
R6 = length of buffer pointed to by R4

NetFS now fills in the buffers: (R3,R5) with the special field, and (R4,R6) with the
disc name. It returns:

Rl = R3 on entry (and the buffer is filled with '49.254')
R2 = R4 on entry (and the buffer is filled in with 'Arf')
R3, R4 = 0 (no overflows over the end of the buffers)
R5, R6 preserved

This entry point is not called by RISC OS 2. and is only otherwise called if bit 23 of
the filing system information word is set.

FSEntry _Func 24

2-570

Resolve wildcard

On entry

Rl =pointer to directory pathname
R2 = pointer to buffer to hold resolved name. or 0 if none
R3 = pointer to wildcarded object name
R5 = length of buffer
R6 = pointer to special field if present, otherwise 0

On exit

R I preserved
R2 =-I if not found, else preserved
R3 preserved
R4 =-I if FileSwitch should resolve this wildcard itself. else bytes overflow from

buffer
R5 preserved

Details

Writing a filing system

This entry point is called by FileSwitch to find which object in the given directory
matches the name given. If the filing system can not do a more efficient job than
FileSwitch would if it were to use FSEntry_Func I 4 and then to find which was the
first match, then the filing system should just return with R4 = -1.

This entry point is not called by RISC OS 2, and is only otherwise called if bit 23 of
the filing system information word is set.

FSEntry_Func 25 and lmageEntry_Func 25

Read defect list

On entry

RO = 25
RI =pointer to name of image (FSEntry_Func 25 only)
R2 = pointer to buffer
R5 = length of buffer
R6 =pointer to special field if present. otherwise 0 (FSEntry_Func 25); or image

filing system's handle for image (ImageEntry_Func 25)

On exit

Details

RO- R6 preserved

This entry point is called by FileSwitch to request that your filing system fills the
given buffer with the byte offsets to the start of any defects in the specified image.
The list must be terminated by the value &20000000.

It is an error if the specified image is not the root object in an image (eg it is an
error to map out a defect from adfs: :HardDisc4.$.fred, but not an error to map it out
from adfs::HardDisc4.$).

This entry point is not called by RISC OS 2.

2-571

FSEntry_Func 26 and lmageEntry_Func 26

FSEntry _Func 26 and lmageEntry _Func 26

Add a defect

On entry

RO = 26
RI =pointer to name of image (FSEntry_Func 26 only)
R2 = byte offset to start of defect
R6 =pointer to special field if present. otherwise 0 (FSEntry_Func 26); or image

filing system's handle for image (lmageEntry_Func 26)

On exit

Details

RO- R2 . R6 preserved

This entry point is called by FileSwitch to request that your filing system maps out
the given defect from the specified image.

It is an error if the specified image is not the root object in an image (eg it is an
error to map out a defect from adfs::HardDisc4.$.fred. but not an error to map it out
from adfs: :HardDisc4.$) . If the defect cannot be mapped out because it is not free.
then you should return an error.

This entry point is not called by RISC OS 2.

FSEntry _Func 27 and Image Entry _Func 27

2-572

Read boot option

On entry

RO = 27
Rl =pointer to pathname of any object on image (FSEntry_Func 27 only)
R6 = pointer to special field if present. otherwise 0 (FSEntry_Func 27) ; or image

filing system's handle for image (lmageEntry_Func 27)

On exit

RO. RI . R6 preserved
R2 =boot option (as in *Opt 4,n)

Writing a filing system

Details

This entry point is called by FileSwitch to read the boot option (ie the value n in
*Opt 4.n) of the image that holds the object specified by Rl (FSEntry_Func 27). or
that is specified by the handle in R6 (lmageEntry_Func 27).

This entry point is not called by RISC OS 2.

FSEntry _Func 28 and lmageEntry _Func 28

Write boot option

On entry

RO = 28
Rl =pointer to pathname of any object on image (FSEntry_Func 28 only)
R2 = new boot option
R6 = pointer to special field if present. otherwise 0 (FSEntry_Func 28); or image

filing system's handle for image (lmageEntry_Func 28)

On exit

Details

RO- R2, R6 preserved

This entry point is called by FileSwitch to request that your filing system writes the
boot option (ie the value n in *Opt 4.n) of the image that holds the object specified
by Rl (FSEntry_Func 28). or that is specified by the handle in R6 (lmageEntry_Func
28).

This entry point is not called by RISC OS 2.

2-573

FSEntry_Func 29 and lmageEntry_Func 29

FSEntry _Func 29 and lmageEntry _Func 29

Read used space map

On entry

RO = 29
Rl =pointer to pathname of any object on image (FSEntry_Func 29 only)
R2 =pointer to buffer for map (pre-filled with Os)
R5 = size of buffer
R6 =pointer to special field if present, otherwise 0 (FSEntry_Func 29) ; or image

filing system's handle for image (lmageEntry_Func 29)

On exit

RO- R2, R5 , R6 preserved

Details

This entry point is called by FileSwitch to read the used space map for the image
that holds the object specified by R I (FSEntry_Func 29). or that is specified by the
handle in R6 (lmageEntry_Func 29) . It is used by the *Backup command to decide
which sectors to copy.

Your filing system should fill the given buffer with 0 bits for unused blocks, and I
bits for used blocks . The buffer must be filled to its limit. or to the image's limit ,
whichever is less. The 'perfect' size of the buffer can be calculated from the image's
size and its block size (as returned from FSEntry_Open or lmageEntry_Open : see
page 2-531). The correspondence of the buffer to the file is I bit to I block. The
least significant bit (bit 0) in a byte comes before the most significant bit .

This entry point is not called by RISC OS 2.

FSEntry_Func 30 and lmageEntry_Func 30

2-574

Read free space

On entry

RO = 30
Rl =pointer to pathname of any object on image (FSEntry_Func 30 only)
R6 =pointer to special field if present. otherwise 0 (FSEntry_Func 30); or image

filing system's handle for image (lmageEntry_Func 30)

Writing a filing system

On exit

Details

RO = free space
Rl =biggest object creatable
R2 =disc size

This entry point is called by FileSwitch to read the free space for the image that
holds the object specified by Rl (FSEntry_Func 30). or that is specified by the
handle in R6 (lmageEntry_Func 30).

This entry point is not called by RISC OS 2.

FSEntry _Func 31 and Image Entry _Func 31

Name image

On entry

RO = 31
Rl =pointer to pathname of any object on image (FSEntry_Func 31 only)
R2 = pointer to new name of image
R6 =pointer to special field if present, otherwise 0 (FSEntry_Func 31); or image

filing system's handle for image (lmageEntry_Func 31)

On exit

Details

Registers preserved

This entry point is called by FileSwitch to request that your filing system name the
image that holds the object specified by R I (FSEntry_Func 31). or that is specified
by the handle in R6 (lmageEntry_Func 31).

This refers to the image's name (ega disc name), rather than the name of the file
containing that image.

This entry point is not called by RISC OS 2.

2-575

FSEntry_Func 32 and lmageEntry_Func 32

FSEntry _Func 32 and lmageEntry _Func 32

2-576

Stamp Image

On entry

RO = 32
Rl =pointer to pathname of any object on image (FSEntry_Func 32 only)
R2 = reason code
R6 =pointer to special field if present, otherwise 0 (FSEntry_Func 32); or image

filing system's handle for image (lmageEntry_Func 32)

On exit

Details

Registers preserved

This entry point is called by FileSwitch to request that your filing system stamp the
image that holds the object specified by RI (FSEntry_Func 32). or that is specified
by the handle in R6 (ImageEntry_Func 32). It is used for FileCore to communicate
with an image filing system for the control and management of the disc Id of a
given image. Valid values for R2 on entry are:

Value Meaning

0 stamp image on next update
stamp image now

To stamp an image the image's unique identification number should be updated to
a different value. This value is used to distinguish between different images with
the same name, and to determine when a given image has been updated. It should
be filled in the disc record disc id field when the disc is originally identified. The
kind of uses expected for these calls are:

• When a Backup program wishes to cause a backup of the original to be
distinguishable from the original it may use the 'stamp image now' form .

and, for lmageEntry_Func 32 only, the following two uses:

• When FileCore notices that a given disc may have been removed from the drive
it will call the image filing system (via FileSwitch) with the 'stamp image on
next update' call. This informs the image filing system that when it next
changes something in that image that it should also explicitly change the
unique Id number (if possible) . This so that if another machine saw the disc
whilst it was removed. then the changed that other machine will be given a
clue that the disc has since been changed by the Id number changing- the
other machine will probably discard any cached data it has as none of it could

Writing a filing system

be trusted to still be accurate. Once the Id has been updated once there is no
further need to update it on an update unless, of course, a further 'stamp
image on next update' occurs.

• When FileCore is explicitly requested to stamp a disc it will use the 'stamp
image now' call to get the message through to the relevant image filing
system.

This entry point is not called by RISC OS 2.

FSEntry _Func 33

Get usage of offset

On entry

RO = 33
RI =pointer to pathname of any object on image (FSEntry_Func 33 only)
R2 = byte offset into image
R3 =pointer to buffer to receive object name (if object found)
R4 = length of buffer
R6 =pointer to special field if present, otherwise 0 (FSEntry_Func 33); or image

filing system's handle for image (lmageEntry_Func 33)

On exit

Details

R2 = kind of object found at offset:
0 no object found; offset is free/a defect/beyond end of image

no object found; offset is allocated, but not free/a defect/beyond end
of image

2 object found; cannot share the offset with other objects
3 object found ; can share the offset with other objects

This entry point is called by FileSwitch to find the usage of the given offset within
the image that holds the object specified by Rl (FSEntry_Func 33), or that is
specified by the handle in R6 (lmageEntry_Func 33) . If the offset is free, a defect or
outside the image then you should return with R2 = 0 If the offset is used, but has
no object name which corresponds to it (for example the free space map, FAT
tables, boot block and the such), then return with R2 = I . If the given offset is
associated with only one object (such that deleting that object would definitely
free the given offset). then you should return with R2 = 2. If the offset is associated

2-577

FSEntry_Func 34

with several objects (files/directories). but cannot be said to be associated with
one only (for example, the disc may have one large section allocated which is used
by several files within one directory). then return with R2 = 3.

You may corrupt the buffer during the search and, if you find an object (ie R2 = 2 or
3), you should return its pathname in the buffer. The pathname should not have a
'$' prefix, but the first path element should have a ·.· prefix, eg:

.a.b. c .d

rather than:

a.b.c.d

This entry point is not called by RISC OS 2.

FSEntry _Func 34

2-578

Notification of changed directory

On entry

Rl =pointer to null-terminated directory name
R2 =changed directory (0 ~ CSD, I~ PSD, 2 ~ URD, 3 ~Lib)
R6 = pointer to special field if present, otherwise 0

On exit

Details

Rl, R2, R6 preserved

This entry point is provided so that filing systems can optimise their handling of
directory caches. It is called when FileSwitch has successfully changed a directory,
as indicated by R2 .There is no reason for a filing system to have these directories
stored, but even if it does it should not change its record of the directory; instead it
should use this information to help it decide which directories to cache, and which
not to.

FSEntry_GBPB

Writing a filing system

Get/put bytes from/to an unbuffered file

This entry point is used to implement multiple get byte and put byte operations on
unbuffered files . It is only ever called if you set bit 28 of the file information word
on return from FSEntry_Open, and you need not otherwise provide it. FileSwitch
will instead use multiple calls to FSEntry_PutBytes and FSEntry_GetBytes to
implement these operations.

FSEntry_GBPB 1 and 2

Put multiple bytes to an unbuffered file

On entry

RO =I or 2
Rl =file handle used by your filing system
R2 = pointer to buffer
R3 =number of bytes to put to file
If RO =I

R4 = sequential file pointer to use for start of block

On exit

Details

RO, Rl preserved
R2 = address of byte after the last one transferred from buffer
R3 =number of bytes not transferred
R4 = initial file pointer+ number of bytes transferred

This entry point is called by FileSwitch to request that your filing system transfer
data from memory to the file at either the specified file pointer (RO = I). or the
current one (RO = 2) . If the specified pointer is beyond the end of the file, then you
must fill the file with zeros between the current file extent and the specified pointer
before the bytes are transferred.

The file handle is guaranteed by FileSwitch not to be a directory, and to have had
write access granted at the time of the open.

2-579

FSEntry_GBPB 3 and 4

FSEntry_GBPB 3 and 4

2-580

Read bytes from an open file

On entry

RO = 3 or 4
Rl =file handle used by your filing system
R2 = pointer to buffer
R3 =number of bytes to get from file
If RO = 3

R4 = sequential file pointer to use for start of block

On exit

RO, Rl preserved

Details

R2 = address of byte after the last one transferred to buffer
R3 =number of bytes not transferred
R4 =initial file pointer+ number of bytes transferred

This entry point is called by FileSwitch to request that your filing system transfer
data from a file to memory, either from the specified file pointer (RO = 3). or from
the current one (RO = 4).

If the specified pointer is greater than or equal to the current file extent then you
must not update the sequential file pointer, nor must you return an error.

The file handle is guaranteed by FileSwitch not to be a directory and to have had
read access granted at the time of the open.

Your filing system must not try to keep its own EOF-error-on-next-read flag- instead
it is FileSwitch's responsibility to keep the EOF-error-on-next-read flag . Unlike
FSEntry_GetBytes. FileSwitch will set the C bit before it returns to its caller if your
filing system returns a non-zero value in R3- so your filing system need not handle
this either.

Writing a filing system

Example program
This code fragment is an optimised routine for moving blocks of memory. It could
be further enhanced to take advantage of the higher speed of memory access given
by the MEMC chip if LDM and STM instructions are quad-word aligned. You should
find this useful when writing your own filing systems, as efficient transfer code is
crucial to the performance of a filing system.

+++ +++++++++++++++++++++

MoveBytes(source, dest , size in bytes) - fast data copier from RCM

SKS Reordered registers and order of copying to suit FileSwitch

**Not yet optimised to do transfers to make most of 1N , 3S feature of MEMC **

extern void MoveBytes(void *source, void *destination , size_ t count) ;

In:

Out:

mbsrc1
mbsrcptr
mbdstptr
mbcnt
mbsrc2
mbsrc3
mbsrc4
mbsrc5
mbsrc6
mbsrc7
mbsrc8
mbsrc9
mbshftL
mbshftR
sp
lr
pc

r1
r2

srcA (byte address)
dstA (byte address)

r3 count (byte count- never zero!)

r0-r3, lr corrupt.

RN 0
RN 1
RN 2
RN 3
RN 14
RN 4
RN 5
RN 6
RN 7
RN 8
RN 9
RN 10
RN 11
RN 12
RN 13
RN 14
RN 15

Flags preserved

Note deviancy, so care in LDM/STM

These two go at end to save a word
and an extra Pull lr!

MoveBytes ROUT

STMDB sp! , {lr}

TST mbdstptr,
BNE MovBytlOO

MovByt20

#3
[dstA not word aligned]

dstA now word aligned.
branched back to from below

2-581

Example program

2-582

TST
BNE

mbsrcptr, #3
MovByt200

srcA & dstA are now both word aligned

[srcA not word aligned]

count is a byte value (may not be a whole number of words)

Quick sort out of what we ' ve got left to do

SUBS
BLT

mbcnt, mbcnt, #4*4
MovByt40

Four whole words to do (or more)
[no]

SUBS
BLT

mbcnt, mbcnt, #8*4-4*4
MovByt30

Eight whole words to do (or more)
[no]

STMDB

MovByt25
LDMIA
STMIA

SUBS
BGE

sp!, {mbsrc3-mbsrc8) Push some more registers

mbsrcptr!, {mbsrcl, mbsrc3-mbsrc8, mbsrc2)
mbdstptr!, {mbsrcl, mbsrc3-mbsrc8, mbsrc2}

mbcnt, mbcnt, #8*4
MovByt25; [do another 8 words]

NB. Order!

CMP mbcnt, #-8*4
LDMEQDB sp!, {mbsrc3-mbsrc8, pc}A
LDMDB sp!, {mbsrc3-mbsrc8}

Quick test rather than chaining down
[finished]

MovByt30
ADDS
BLT

mbcnt, mbcnt, #8*4-4*4 Four whole words to do ?

MovByt40

MovByt40

STMDB sp!, {mbsrc3 -mbsrc4} ; Push some more registers

LDMIA
STMIA

mbsrcptr!, {mbsrcl, mbsrc3-mbsrc4, mbsrc2}
mbdstptr!, {mbsrcl, mbsrc3-mbsrc4, mbsrc2}

LDMEQDB sp!, {mbsrc3-mbsrc4, pc}A [finished]
LDMDB sp!, {mbsrc3-mbsrc4}

SUB mbcnt, mbcnt, #4*4

; NB. Order!

ADDS
BLT

mbcnt, mbcnt, #4*4-2*4
MovByt50

Two whole words to do ?

LDMIA
STMIA

mbsrcptr!, {mbsrcl, mbsrc2}
mbdstptr!, {mbsrcl, mbsrc2}

LDMEQDB sp!, {pc}A [finished]

SUB mbcnt, mbcnt, #2*4

MovBytSO
ADDS
BLT

mbcnt, mbcnt, #2*4-1*4
MovByt60

LDR mbsrc1, [mbsrcptr] , #4
STR mbsrc1, [mbdstptr], #4

LDMEQDB sp!, {pc}A

SUB mbcnt, mbcnt, #1*4

MovByt60
ADDS mbcnt, mbcnt, #1*4-0*4
LDMEQDB sp!, {pc}A

LDR mbsrc1, [mbsrcptr]
MovByt70

STRB mbsrc1, [mbdstptr] , #1
MOV mbsrc1, mbsrc1, LSR #8
SUBS mbcnt , mbcnt, #1
BGT MovByt70

LDMDB sp!, {pc}A

Writing a filing system

One whole word to do

[finished]

No more to do
[finished]

Store remaining

[finished]

1, 2 or 3 bytes

; Initial destA not word aligned. Loop doing bytes (1 , 2 or 3) until it is

MovBytlOO
LDRB
STRB
SUBS
LDMEQDB

mbsrc1, [mbsrcptr] , #1
mbsrc1, [mbdstptr], #1
mbcnt, mbcnt, #1
sp!, {pc}A

TST mbdstptr , #3
BNE MovByt100

B MovByt20

[finished after 1 .. 3 bytes]

Back to mainline code

MovByt200 ; dstA now word aligned , but srcA isn't. just lr stacked here

STMDB

AND
BIC

MOV
RSB

LDR
MOV

sp!' {mbshftL, mbshftR}; Need more registers this section

mbshftR, mbsrcptr, #3 Offset
mbsrcptr, mbsrcptr, #3 Align srcA

mbshftR, mbshftR, LSL #3 rshft 0 ' 8 , 16 or 24 only
mbshftL , mbshftR , #32 lshft 32, 24 , 16 or 8 only

mbsrc1 , [mbsrcptr] , #4
mbsrc1 , mbsrc1 , LSR mbshftR Always have mbsrc1 prepared

2-583

Example program

2-584

Quick sort out of what we've got left to do

SUBS
BLT

SUBS
BLT

STMDB

MovByt225
LDMIA
ORR

MOV
ORR

MOV
ORR

MOV
ORR

MOV
ORR

MOV
ORR

MOV
ORR

MOV
ORR

STMIA

MOV

SUBS
BGE

mbcnt, mbcnt, #4 *4
MovByt240

Four whole words to do (or more) ?

[no]

mbcnt, mbcnt , #8*4-4*4
MovByt230

Eight whole words to do (or more) ?

[no]

sp!, {mbsrc3-mbsrc9} Push some more registers

mbsrcptr! , {mbsrc3-mbsrc9, mbsrc2}
mbsrcl , mbsrcl, mbsrc3, LSL mbshftL

mbsrc3, mbsrc3, LSR mbshftR
mbsrc3, mbsrc3, mbsrc4, LSL mbshftL

mbsrc4, mbsrc4, LSR mbshftR
mbsrc4, mbsrc4, mbsrc5, LSL mbshftL

mbsrc5, mbsrc5, LSR mbshftR
mbsrc5, mbsrc5, mbsrc6 , LSL mbshftL

mbsrc6, mbsrc6, LSR mbshftR
mbsrc6, mbsrc6, mbsrc7, LSL mbshftL

mbsrc7, mbsrc7, LSR mbshftR
mbsrc7 , mbsrc7, mbsrc8 , LSL mbshftL

mbsrc8 , mbsrc8 , LSR mbshftR
mbsrc8, mbsrc8, mbsrc9, LSL mbshftL

mbsrc9, mbsrc9 , LSR mbshftR
mbsrc9, mbsrc9, mbsrc2, LSL mbshftL

mbdstptr!, {mbsrcl, mbsrc3-mbsrc9}

NB. Order!

mbsrcl , mbsrc2, LSR mbshftR ; Keep mbsrcl prepared

mbcnt , mbcnt, #8*4
MovByt225 [do another 8 words]

CMP mbcnt , #-8*4 Quick test rather than chaining down
LDMEQDB sp!, {mbsrc3-mbsrc9, mbshftL , mbshftR, pc}A ; [finished]
LDMDB sp! , {mbsrc3-mbsrc9}

MovByt230
ADDS
BLT

STMDB

LDMIA
ORR

mbcnt, mbcnt, #8*4-4*4
MovByt240

Four whole words to do ?

sp!, {mbsrc3-mbsrc5}; Push some more registers

mbsrcptr!, {mbsrc3-mbsrc5, mbsrc2}
mbsrcl, mbsrcl, mbsrc3 , LSL mbshftL

NB. Order!

Writing a filing system

MOV mbsrc3 , mbsrc3 , LSR mbshftR
ORR mbsrc3, mbsrc3, mbsrc4, LSL mbshftL

MOV mbsrc4 , mbsrc4 , LSR mbshftR
ORR mbsrc4 , mbsrc4 , mbsrc5 , LSL mbshftL

MOV mbsrc5 , mbsrc5 , LSR mbshftR
ORR mbsrc5 , mbsrc5 , mbsrc2 , LSL mbshftL

STMIA mbdstptr! , {mbsrc1 , mbsrc3-mbsrc5}

LDMEQDB sp! ' {mbsrc3-mbsrc5 , mbshftL , mbshftR , pc}A [finished]
LDMDB sp! ' {mbsrc3-mbsrc5}

SUB mbcnt, mbcnt, #4 *4
MOV mbsrc1 , mbsrc2, LSR mbshftR Keep mbsrc1 prepared

MovByt240
ADDS
BLT

STMDB

LDMIA
ORR

MOV
ORR

STMIA

mbcnt , mbcnt , #2*4
MovByt250

Two whole words to do

sp!, {mbsrc3} ; Push another register

mbsrcptr! , {mbsrc3 , mbsrc2}
mbsrc1 , mbsrc1, mbsrc3, LSL mbshftL

mbsrc3 , mbsrc3, LSR mbshftR
mbsrc3 , mbsrc3, mbsrc2 , LSL mbshftL

mbdstptr!, {mbsrc1 , mbsrc3}

LDMEQDB sp!, {mbsrc3, mbshftL , mbshftR , pc}A
LDMDB sp ! , {mbsrc3}

mbcnt, mbcnt , #2*4

NB. Order !

[finished]

SUB
MOV mbsrc1 , mbsrc2, LSR mbshftR Keep mbsrc1 prepared

MovByt250
ADDS
BLT

mbcnt , mbcnt , #2 *4-1 *4 ; One whole word to do ?

MovByt260

LDR mbsrc2, [mbsrcptr], #4
ORR mbsrc1, mbsrc1, mbsrc2, LSL mbshftL
STR mbsrc1, [mbdstptr] , #4

LDMEQDB sp !, {mbshftL, mbshftR, pc}A

SUB mbcnt, mbcnt , #1 *4

[finished]

MOV mbsrc1 , mbsrc2 , LSR mbshftR Keep mbsrc1 prepared

MovByt260

2-585

Example program

2-586

ADDS mbcnt, mbcnt, #1*4-0*4
LDMEQDB sp !, {mbshftL, mbshftR , pc} A [finished]

LDR mbsrc2, [mbsrcptr] ; Store remaining 1 , 2 or 3 bytes
ORR mbsrc1, mbsrc1 , mbsrc2, LSL mbshftL

MovByt270
STRB
MOV
SUBS
BGT

LDMDB

mbsrc1 , [mbdstptr] , #1
mbsrc1, mbsrc1, LSR #8
mbcnt, mbcnt, #1
MovByt270

sp! , {mbshftL, mbshftR, pc}A

++

END

45 Writing a FileCore module

Adding your own module to FileCore
FileCore does not know how to communicate directly with the hardware that your
filing system uses. Your module must provide these facilities, and declare the entry
points to FileCore.

This chapter describes how to add a filing system to FileCore. You should also see
the chapter entitled Modules on page 1-197 for more information on how to write a
module.

Declaring your module
When your module initialises, it must inform FileCore of its existence. You must
call FileCore_Create to do this- see page 2-226 for details. RO tells FileCore where
to find a descriptor block. This in turn tells FileCore the locations of all the entry
points to your module's low level routines that interface with the hardware:

Descriptor block

This table shows the offsets from the start of the descriptor block, and the meaning
of each word in the block:

Offset

0
3
4
8
12
16

Contains

Bit flags
Filing system number (see the chapter entitled FileSwitch)
Offset of filing system title from module base
Offset of boot text from module base
Offset of low-level disc op entry from module base
Offset of low-level miscellaneous entry from module base

2-587

Declaring your module

2-588

The flag bits in the descriptor block have the following meanings:

Bit Meaning when set

0 Hard discs need FlO
Floppy discs need FlO

2 Reserved- must be zero
3 Use only scratch space when a temporary buffer is needed
4 Hard discs support mount like floppies do

(ie they fill in sector size, heads, sectors per track and density)
5 Hard discs support poll change

(ie the poll change call works for hard discs and returns a sensible
value; also locking them gives a sensible result)

6 Floppy discs support power-eject
7 Hard discs support power-eject

RlSC OS 2 only uses bits 0- 3; it ignores other bits.

FileCore_Create starts a new instantiation of FileCore, and, on return to your
module, RO points to the workspace that has been reserved for that new
instantiation of FileCore. You must store this pointer in your module's workspace
for future calls to FileCore; it is this value that tells FileCore which filing system
you are (as well as enabling it to find its workspace!)

Unlike filing systems that are added under FileSwitch, the boot text offset cannot
be -1 to call a routine.

Temporary buffers
The table below shows areas which may be used for temporary buffers when bit 3
of the flag word is not set:

Scratch Spare Wimp RMA System Applic~ Directory
space screen free heap heap ation cache

area pool area

FSEntry_Func 8 .I .I .I .I .I X X
FSEntry_Close .I .I .I .I .I X X
FSEntry_Args 7 .I .I .I .I .I X X
AllocCompact .I .I .I .I .I X X
Compact .I .I .I .I .I X X
*Backup X X X X .I .I .I X .I
*Backup X Y .I .I .I .I .I X X
*Backup X X q X X .I .I .I .I .I
*Backup X Y q .I .I ./ ./ ./ .I X
*Compact .I .I .I .I .I X X
where AllocCompact is the auto-compact triggered when allocating space for a file,
and Compact is a normal auto-compact

Writing a FileCore module

Selecting your filing system

Your filing system should provide a • Command to select itself, such as • ADFS or
*Net. This must call OS_FSControl 14 to inform FileSwitch that the module has
been selected, thus:

StarFilingSysternCommand
STMFD R13 !, {R14}
MOV RO, #FSControl_ SelectFS
ADR Rl , FilingSysternNarne
SWI XOS_ FSControl
LDMFD Rl3!, {R15}

For full details of OS_FSControl 14, see page 2-95.

Other * Commands
There are no other • Commands that your filing system must provide. For many
FileCore-based systems the range it provides will be enough, and your module
need add no more.

Implementing SWI calls

SW1 calls in a FileCore module are usually implemented by simply:

• loading R8 with the pointer to the FileCore instance private word for your
module

• calling the corresponding FileCore SWI.

For example, here is how a module might implement a DiscOp SW1:

STMFD Rl3 !, {R8, R14} R12 points to module workspace
LDR R8, [Rl2 , #offset] ; R8 <- pointer to FileCore private word
SWI XFileCore_DiscOp
LDMFD R13 ! , { R8, RlS}

Usually DiscOp, Drives, FreeSpace and Describe Disc are implemented like this. Of
course you can add any extra SW1 calls that are necessary.

Removing your filing system

The finalise entry of your module must remove its instantiation of FileCore. For full
details of how to do so, see the section entitled Finalisation Code on page 1-209.

2-589

Returning errors

Returning errors

2-590

Your module has to return errors through FileCore as follows :

The V flag must be set, and RO is used to indicate the error:

• If bit 30 of RO is set then , after clearing bit 30 of RO, it is a pointer to an error
block.

• If bit 31 of RO is set and bit 30 is clear, then RO is a disc error:

bits 0 - 20 are the disc byte address I 256
bits 21 - 23 are the drive number
bits 24- 29 are the disc error number

• Else bits 30- 3 I are clear, and RO is an error number:

bits 0- 7 are an error number (see list below)
bits 8- 29 are clear

In the latter two cases FileCore will generate a suitable error block.

The error numbers that may be returned are:

Error Token Default text

II Ext Escape Escape
94 Defect Can 't map defect out
95 TooManyDefects Too many defects
96 CantDeiCsd Can't delete current directory
97 CantDelLib Can't delete library
98 CompactReq Compaction required
99 Map Full Free space map full
9A Bad Disc Disc not formatted (not ADFS format)
9B Too Many Discs Too many discs
9D Bad Up Illegal use of A

9E AmbigDisc Ambiguous disc name
9F NotRefDisc Not same disc
AO In Use FileCore in use
AI BadParms Bad parameters
A2 CantDeiUrd Can't delete user root directory
A5 Buffer No room for buffer
A6 Workspace FileCore Workspace corrupt
A7 MultipleCiose Multiple file closing errors
A8 BrokenDir Broken directory
A9 BadFsMap Bad free space map
AA OneBadFsMap One copy of map corrupt (use *CheckMap)
AB BadDefectList Bad defect list
AC Bad Drive Bad drive
AD Size Sizes don't match (backups)

Writing a Fi/eCore module

AF DestDefects Destination disc has defects (backups)
BO BadRename Bad RENAME
B3 DirFull Directory full
B4 DirNotEmpty Directory not empty
BD Access Access violation
co TooManyOpen Too many open files
C2 Open File open
C3 Locked Locked
C4 Exists Already exists
C5 Types Types don't match
C6 DiscFull Disc full
C7 Disc Disc error
C9 Write Prot Protected disc
CA Data Lost Data lost
cc Bad Name Bad name
CF BadAtt Bad attribute
D3 DriveEmpty Drive empty
D4 DiscNotFound Disc not found
D5 DiscNotPresent Disc not present
D6 NotFound Not found
D7 DiscNotFileCore FileCore does not understand this disc
D8 NotToAnlmageYouDont Operation inapplicable to disc images
DE Channel Channel
FD WildCards Wild cards
FE Bad Com Bad command

Module interfaces

The next section describes the interfaces to FileCore that your module must
provide

2-591

Module interfaces

Module interfaces

DiscOp entry

2-592

Your module must provide two interfaces to FileCore: one for DiscOps, and one for
other miscellaneous functions.

The entry for DiscOps does much of the work for a DiscOp SWI. It is passed the
same values as FileCore_DiscOp (see page 2-22 I). except:

• an extra reason code is added to Rl allow background processing

• consequently Rl is no longer used to point to an alternative disc record
instead R5 always points to a disc record

• R6 points to a boot block (for hard disc operations only). with the special value
&80000000 indicating that none is available.

These are the reason codes that may be passed in R I :

Value Meaning Uses Updates

0 Verify R2, R4 R2 , R4
Read sectors R2, R3 , R4 R2 , R3 , R4

2 Write sectors R2, R3, R4 R2, R3, R4
3 Floppy disc: read track R2, R3

Hard dise: read Id R2 , R3
4 Write track R2, R3
5 Seek (used only to park) R2
6 Restore R2
7 Floppy disc: step in
8 Floppy disc: step out
15 Hard dise: specify R2

The reason codes you must support are 0, I , 2, 5 and 6. You must complete the
entire operation requested, or give an error if you are unable to do so.

Your routine must preserve Rl - R I 3 inclusive, except where noted otherwise
above, ie:

• R2 must be incremented by the amount transferred for Ops 0, I and 2

• R3 must be incremented appropriately for Ops I and 2

• R4 must be decremented by the amount transferred for Ops 0, I and 2

You must also preserve theN , Z and C flags .

Writing a FileCore module

Returning errors

If there is no error then RO must be zero on exit and the V flag clear. If there is an
error then V must be set and RO must be one of the following:

Value

RO < &100
&100 $: RO < 231

RO:?: 231

Meaning
internal FileCore error number
pointer to error block
disc error bits:

bits 0- 20 = disc byte address I 256
bits 2 I - 23 = drive
bits 24 - 29 =disc error number
bit 30 = 0

For a list of internal FileCore error numbers, see the section entitled Disc errors on
page 2-274.

Background transfer

If bit 8 of RI is set. then transfer may be wholly or partially in the background. This
is an optional extension to improve performance. To reduce rotational latency the
protocol also provides for transfers of indeterminate length.

R3 points to a list of address/length word pairs, specifying an exact number of
sectors . The length given in R4 is treated as the length of the foreground part of the
transfer. R5 is a pointer to the disc record.

Your module should return to the caller when the foreground part is complete,
leaving a background process scheduled by interrupts from the controller. This
process should terminate when it finds an address/length pair with a zero length
field.

The foreground process can add pairs to the list at any time. To get the maximum
decoupling between the processes your module should update the list after each
sector. This updating must be atomic (use the STMIA instruction) . Your module
must be able to retry in the background.

2-593

DiscOp entry

2-594

The list is extended as below:

Offset

-8
-4
0
4
8
12
16
20

etc

n
n+4

Contents

Process error
Process status
1st address
1st length
2nd address
2nd length
3rd address
3rd length

Loop back marker -n (where n is a multiple of 8)
Length of zero

Process error is set by the caller to 0; on an error your module should set this to
describe the error in the format described above.

The bits in process status are:

Bit

31
30
0 - 29

Meaning when set

process active
process can be extended
pointer to block giving position of any error

Bits 31 and 30 are set by the caller and cleared by your module. Your module must
have 1ROs disabled from updating the final pair in the list to clearing the active bit

A negative address of -n indicates that your module has reached the end of the
table, and should get the next address/length pair from the start of the scatter list
n bytes earlier.

Your module may be called with the scatter pointer (R3) not pointing to the first
(address/length) pair. So, to find the addresses of Process error and Process status,
you must search for the end of list From this you may then calculate the start of
the scatter block.

MiscOp entry

Writing a FileCore module

The entry for MiscOps does much of the work for a MiscOp SWI. It is passed the
same values as FileCore_MiscOp (see page 2-238)- save for one reason code,
noted below, which can be passed extra parameters .

• Although FileCore_MiscOp is not available in RISC OS 2, you must still
provide this entry point, as other SWis also use it. (The MiscOp SWI merely
provides a convenient way of directly calling this entry point.)

These are the reason codes that may be passed in RO:

Value Meaning

0 Mount
Poll changed

2 Lock drive
3 Unlock drive
4 Poll period
5 Eject disc

The reason codes you must support are 0, 2 and 3; for floppy drives, you must also
support reason codes I and 4.

Your routine must preserve registers , and theN, Z and C flags- except where
specifically stated otherwise.

You may only return an error from reason code 0 (Mount) . This must be done in the
same way as for the DiscOp entry; see the section entitled Returning errors on
page 2-593.

2-595

MiscOp entry

2-596

For drives with disc sensing, reason code I (Poll changed) must always return
changed in the spun-down state. If the drive is spun-up, you must return maybe
changed if the drive has been permanently spun-up since the last 'Poll changed';
other wise you must return changed:

spun-up

DiscOp spins
up drive

~

spun-down-------------'

i i
Changed Changed

(Disc is
spun down)

i
Changed
(Disc has
become
spun up)

i
Maybe

changed
(Disc remains

spun up)

Figure 45.1 'Poll changed' returns for drives with disc sensing

Under RISC OS 2, the values returned from MiscOp I (Poll changed) in bits 4, 5,
and 8- I 0 of R3 are ignored by FileCore .

Reason codes 2 and 3 (Lock/Unlock drive) must always perform that action . You
must not try to track the state of the drive locking; FileCore does this for you .

Reason code 5 (Eject disc) will never be called if bits 6 and 7 of the descriptor block
are clear, since this indicates that no drives support power-ejection . Otherwise it
may get called in a variety of situations: for example, after dismounting all discs as
part of shutting down all filing systems.

Reason code 5 is also called whenever FileCore issues an UpCall I (medium not
present). or an UpCall 2 (medium not known). In this case, the top bit of the drive
number is set. indicating that a disc should be ejected from the drive considered to
be most appropriate. The values passed to the UpCall in R4 (the iteration count)
and in R5 (the minimum timeout period) are also passed on in the same registers
to the MiscOp entry point. The filing system may treat these as appropriate; for
example, it may choose to eject only on iteration 0 for an auto-insert detect drive,
as doing further ejects may make it hard to get a new disc into the drive.

For more details of OS_UpCall I and 2, see page 1-179.

46 Writing a device driver

Adding your own device driver to DeviceFS

DeviceFS does not know how to communicate directly with the hardware that your
device driver uses. Your module must provide these facilities, and declare the entry
points to DeviceFS.

This section describes how to add a device driver to DeviceFS. You should also see
the chapter entitled Modules on page I- I 97 for more information on how to write a
module.

Registering your device driver

When your module initialises, it must register itself and its devices with DeviceFS.
You must call DeviceFS_Register (see page 2-428) to register your device driver and
any associated devices. Note that modules can hold more than one driver; in such
cases you must call QeviceFS_Register for each one.

When you register your device driver with DeviceFS you pass it the location of an
entry point to your driver's low level routines that interface with the hardware. A
reason code is used to determine which of your driver's routines has been called.

• Reason codes with. bit 3 I clear are reserved for use by Acorn .

• Reason codes with bit 3 I set are reserved for specific drivers. You do not need
to register these with Acorn , although we suggest that you maintain some
consistency between devices.

Registering and deregistering additional devices

You may later register additional devices by calling DeviceFS_RegisterObject (see
page 2-432) . This is most commonly needed for devices on a network.

You may deregister devices by calling DeviceFS_DeregisterObject (see page 2-433) .

Deregistering your device driver

The finalise entry of your module must deregister all registered drivers and devices
by calling DeviceFS_Deregister (see page 2-43 I). It must make this call for each
device driver it registered.

2-597

Device driver interfaces

Device driver interfaces

Calling conventions

2-598

The principal part of a device driver is the set of low-level routines that control the
device's hardware. There are certain conventions that apply to them.

Private word

R8 on entry to the device driver is set to the value of R3 it passed to DeviceFS when
registering by calling DeviceFS_Register Conventionally, this is used as a private
word to indicate which hardware platform is being used.

Workspace

R 12 on entry to the device driver is set to the value of R4 it passed to DeviceFS
when registering by calling DeviceFS_Register. Conventionally, this is used as a
pointer to its workspace.

Returning errors

If a routine wishes to return an error, it should return to DeviceFS with V set and RO
pointing to a standard format error block

Other conventions

Device driver routines must preserve RO, Rl, and all other undocumented registers.

Interfaces

Writing a device driver

These are the interfaces that your device driver must provide. The entry point must
be declared to DeviceFS by calling DeviceFS_Register when your device driver
module is initialised.

DeviceDriver _Entry

Various calls are made by DeviceFS through this entry point when files are being
opened and closed, streams halted etc. The actions are specified by RO as follows:

Device Driver _Entry 0

Initialise

On entry

RO = 0
R2 = DeviceFS stream handle
R3 = flags for opening the stream:

bit 0 clear~ stream opened for RX, set~ stream opened for TX
all others bits reserved, and should be ignored

R6 = pointer to special field control block

On exit

R2 = device driver stream handle

Details

This entry point is called as a stream is being opened onto the device driver by
DeviceFS. The stream handle passed in must be stored, as you need to quote it
when calling DeviceFS SWis such as DeviceFS_Threshold,
DeviceFS_ReceivedCharacter, and DeviceFS_TransmitCharacter.

The stream handle returned will be passed by DeviceFS when calling the device
driver's other entry routines. It must not be zero, which is a reserved value.

The device driver is also passed a pointer to the special field string: see the section
entitled Special fields on page 2-422.

You can be assumed that the special field block will remain intact until the stream
has been closed.

2-599

DeviceDriver_Entry 1

Device Driver _Entry 1

Finalise

On entry

RO= I
R2 = device driver stream handle , or 0 for all streams

On exit

Details

This entry point is called when a stream is being closed. Your device driver must
tidy up and ensure that all vectors have been released. This entry point is also
called when a device driver is being removed, although in this case R2 is set to
contain 0 indicating that all streams should be closed.

Device Driver _Entry 2

2-600

Wake up for TX

On entry

RO = 2
R2 = device driver stream handle

On exit

Details

RO = 0 if the device driver wishes to remain dormant , else preserved

This entry point is called when data is ready to be transmitted. Your device driver
should set RO to 0 if it wishes to remain dormant , or else start passing data to the
physical device, calling DeviceFS_TransmitCharacter to obtain the data to be
transmitted.

Writing a device driver

DeviceDriver _Entry 3

Wake up for RX

On entry

RO = 3
R2 = device driver stream handle

On exit

Details

This entry point is called when data is being requested from the device driver. It is
really issued to wake up any dormant device drivers, although you will always
receive it when data is going to be read.

The device driver should return any data it receives from the physical device by
calling DeviceFS_ReceivedCharacter. This will unblock any task waiting on data
being returned.

This call is not applicable to all device drivers; most interrupt-driven buffered
device drivers would be ready to receive data at any time.

DeviceDriver _Entry 4

Sleep RX

On entry

RO = 4
R2 = device driver stream handle

On exit

Details

This entry point is called when data is no longer being requested from the device
driver. If appropriate, the device driver can then wait to be woken up again using
the 'Wake up for RX' entry point.

This call is not applicable to all device drivers; most interrupt-driven buffered
device drivers would continue to receive and buffer data even after this call.

2-601

DeviceDriver_Entry 5

DeviceDriver _Entry 5

EnumDir

On entry

RO = 5
R2 = pointer to path being enumerated

On exit

Details

This entry point is called as a broadcast to all device drivers when the directory
structure for DeviceFS is about to be read. This allows them to add and remove
non-permanent devices (such as net connections) as required.

The path supplied will be full (eg S.foo.poo) and null terminated.

DeviceDriver _Entry 6 and 7

2-602

Create buffer for TX (6), and Create buffer for RX (7)

On entry

RO = 6 or 7
R2 = device driver stream handle
R3 = suggested flags for buffer being created
R4 = suggested size for buffer
R5 =suggested buffer handle (-I for unique generated one)
R6 = suggested threshold for buffer

On exit

Details

R3 - R6 modified as the device driver requires

This entry point is called just before the buffer for a stream is going to be created ;
it allows the device driver to modify the parameters as required.

• R3 contains the buffer flags as specified when the device was registered : see
the chapter entitled The Buffer Manager on page 4-83.

• R4 contains the suggested buffer size; this should be non-zero.

Writing a device driver

• R5 contains a suggested buffer handle. This is by default set to - I, which
indicates that the buffer manager must attempt to generate a free hand le.

If you specify the handle of an existing buffer, then it will be used and not
removed when finished with . For compatibility, the kernel devices use this
feature to link up to buffers I ,2 or 3.

• R6 contains the threshold at which a halt event is received. This usually only
applies to receive streams which want to halt the receive process. although it
can be supplied on either. You may change this value by calling
DeviceFS_ Threshold.

DeviceDriver _Entry 8

Halt

On entry

RO = 8
R2 = device driver stream handle

On exit

Details

This entry point is called when the free space has dropped below the specified
threshold (set on creation , or by DeviceFS_Threshold). It is called so the. device
driver can- if necessary- try to stop its device from receiving more data (ega serial
device driver might perform handshaking by sending an X Off character, or asserting
the RTS line) until the Resume entry point is called .

2-603

DeviceDriver_Entry 9

DeviceDriver _Entry 9

Resume

On entry

RO = 9
R2 = device driver stream handle

On exit

Details

This entry point is called when the free space has risen above the specified
threshold (set on creation , or by DeviceFS_Threshold) It is called so the device
driver can- if necessary- try to resume its device receiving more data (ega serial
device driver might perform handshaking by sending an XOn character, or
de-asserting the RTS line) until the Halt entry point is again called .

DeviceDriver _Entry 1 0

2-604

End of data

On entry

RO = 10
R2 = device driver stream handle
R3 =-I

On exit

Details

R3 = 0 if more data coming eventually, else -I (ie no more data coming)

This entry point is called as a result of FiieSwitch calling DeviceFS to check on EO F.
and DeviceFS believing that there is no more data to come. In more detail:

DeviceFS informs FileSwitch that more data is coming eventually- without calling
this entry point - if:

• the stream is buffered , and its buffer still holds data

• the stream is unbuffered, and its RX!fX word is not empty

Writing a device driver

Otherwise it calls this entry point. In most cases a device driver should ignore this,
and return with all registers preserved (so R3 =-I, thus there is no more data
coming) . In some cases. such as a scanner, you may be able to give an accurate
return .

DeviceDriver _Entry 11

Stream created

On entry

RO =II
R2 =device driver stream handle
R3 =buffer handle (-1 if none)

On exit

Details

This entry point is called after a stream has finally been generated. Your device
driver can then perform any important interrupt handling, set itself up and sta
receiving or transmitting.

2-605

2-606

Part 6 - Networking

2-607

2-608

47 Econet

Introduction
The Econet module provides the software needed to use Acorn's own Econet
networking system. The software allows you to send and receive data over the
network.

It is used by RISC OS modules such as NetFS and NetPrint, which provide network
filing and printing facilities respectively. It is also used by various other Acorn
products that use Econet, such as FileStores. Econet bridges, and so on.

Note that to use the Econet you must have an Econet expansion module fitted to
your RISC OS computer. If you do not already have one, they are available from
your Acorn supplier.

2-609

Overview

Overview

2-610

Econet is Acorn's own networking system. and the Econet module provides the
necessary software to use it.

The main purpose of any networking system is to transfer data from one machine
to another. Econet breaks up the data it sends into small parts which are sent using
a well defined protocol.

Econet does not use buffers in the same way as most other input and output
facilities that RISC OS provides. Instead the data is moved directly between the
Econet hardware and memory. This means that each time data is transmitted or
received , there has to be a block of memory available for the Econet software to
use immediately, either to read data from or place data in.

These blocks of memory are administered by the Econet software, which uses
control blocks to do so. Many of the SWis interact with these control blocks, so you
can set them up, read the status of an Econet transmission or reception , and
release the control blocks memory when you have finished using them.

In the same way as files under the filing system use file handles. these control
blocks also use handles. just like file handles, your software must keep a record of
them while you need to use them.

The Econet also provides a range of immediate operations, which allow you to
exercise some control over the hardware of remote machines, assuming you get
their co-operation . Some of these will work across the entire range of Acorn
computers , whereas others are more hardware-dependent and so may only be
possible on RISC OS machines.

Econet

Technical Details

Packets and frames

A single transmission of data on an Econet is called a packet. Packets travel across
the network from the transmitting station to the receiving station. The most
common form of packet is called a 'four way handshake'. A 'four way handshake'
consists of four frames. Each of these four frames starts with the following four
bytes:

• the station number of the destination station

• the net number of the destination station

• the station number of the source station

• the net number of the source station .

These four bytes are sent in this order to facilitate decoding by the software in the
receiving station .

The first frame is sent by the transmitting station; it contains the usual first four
bytes, the port byte (described later), and the flag byte (also described later). This
first frame is called the scout. The receiving station then replies with the scout
acknowledge, which consists of just the usual first four bytes. The third frame is the
data frame; this frame has the usual first four bytes, followed by all the data to be
transferred. Lastly there is a final acknowledge frame which is identical to the scout
acknowledge frame.

This exchange of frames can be seen with the NetMonitor and is displayed
something like this .

FE0012008099 1200FE00 FE00120048454C500D 1200FE00

• the transmitting station is & 12 (18 in decimal)

• the receiving station is &FE (254 in decimal)

• both stations are on net zero

• the flag byte is &80

• the port byte is &99

• the data that is transmitted is &48, &45, &4C, &50, &OD.

2-611

Receiving data and using RxCBs

Receiving data and using RxCBs

2-612

Successful transmission of data requires co-operation from the receiving station. A
station shows that it is ready to receive by setting up a receive control block (or RxCB).
All RxCBs are kept by the Econet software and don't need to concern you. To create
an RxCB all you need to do is call a single SWI (Econet_CreateReceive: see
page 2-647). telling the Econet software all the required information. The Econet
software will return to you a handle which you then use to refer to this particular
RxCB in any further dealings with the Econet software.

The information required by the Econet software is:

• which station(s) to accept data from

• which port number(s) to accept data on

• where to put the data when it arrives .

It is important you note that when the data arrives from the transmitting station it
is not buffered at all- it is taken directly from the hardware and placed in memory
at the address you specify. This area of memory is referred to as a buffer (in this
case a receive buffer) . A consequence of this is that memory used for receiving Econet
packets must be available at all times whilst the relevant RxCB is open. You must
not use memory in application space if your program is to run within the Desktop
environment.

The Econet software keeps a list of all the open RxCBs. When a scout frame comes
in it is checked to see if it matches any of the currently open RxCBs:

• if it doesn't then the receiving software indicates this to the transmitting
software by not sending a scout acknowledge frame

• if it does then the receiving software sends out a scout acknowledge, and then
copies the data frame into the corresponding buffer

• if the data frame overruns the buffer then the receiving software does not send
the final acknowledge frame.

Status of RxCB's

All RxCBs have a status value. These values are tabulated below.

7 Status_RxReady
8 Status_Receiving
9 Status_Received

The status of a particular RxCB can be read using the Econet_ExamineReceive call
(page 2-649); this takes the receive handle of an RxCB and returns its status.

Econet

When an RxCB has been received into, its status will change from RxReady to
Received; usually, you will then call Econet_ReadReceive (page 2-651). This returns
information about the reception; most importantly it tells you how much data was
received- which can be anything from zero to the size of the buffer. It also returns
the value of the flag byte.

The port. station, and net are also returned; these are useful because you can open
an RxCB that allows reception on any port or from any station.

Abandoning RxCB's

It is very important that when RxCBs are no longer required, either because they
have been received into, or because they have not been received into within a
certain time, that they are removed from the system . You do so by calling the SWI
Econet_AbandonReceive (page 2-653) . The major function of this call is to return
to the RMA the memory that the Econet software used to hold the RxCB; obviously
if RxCBs are not abandoned, they will consume memory which will not
automatically be recovered by the system .

Receiving data using a single SWI

The usual sequence of operations required for software to receive data is as
follows: First call SWI Econet_CreateReceive, then make numerous calls to SWI
Econet_ExamineReceive until either a reception occurs. a time out occurs , or the
user interferes (by pressing Escape for instance) . Then read the RxCB
(Econet_ReadReceive) if it has been received into. Finally, abandon the RxCB
(Econet_AbandonReceive).

To make this task easier the Econet software provides a single SWI
(Econet_ WaitForReception: see page 2-654) which does the polling, the reading,
and the abandoning for you. To call SWI Econet_ WaitForReception you must pass
in :

• the receive handle

• the amount of time you are prepared to wait

• a flag which indicates whether you wish the call to return if the user presses
the Escape key.

Econet_WaitForReception returns one of four status values:

8 Status_Receiving
9 Status_Received
I 0 Status_NoReply
II Status_Escape

2-613

Transmitting data and using TxCB's

The call will return as soon as a reception occurs; when this happens the status is
Received. If the time limit expires then the status is usually NoReply, but if reception
had started just after the timeout, and so was then abandoned, the status will be
Receiving. This is not a very likely case. If the escapable flag is set then pressing the
Escape key causes the call to return with the Escape status.

Transmitting data and using TxCB's

2-614

Transmission is roughly similar to reception; a single SWI (Econet_StartTransmit
page 2-657) is all that is required to get things started. This call requires the
following information:

• the destination station (and net)

• the port number to transmit on

• the flag byte to send

• the address and length of the data to send.

SWI Econet_StartTransmit returns a handle. These handles are distinct from the
handles used by the receive SWis.

Various transport types may impose a limit on the amount of data you can send in
a single packet. You can find out the limit for the transport you are using by calling
Econet_PacketSize (page 2-687).

Status of TxCB's

To check the progress of your transmission you can call Econet_PoiiTransmit
(page 2-659). This returns the status of the particular TxCB, which will be one of
seven possible values:

0 Status_Transmitted
Status_LineJammed

2 Status_NetError
3 Status_NotListening
4 Status_NoCiock
5 Status_TxReady
6 Status_Transmitting

Status_ Transmitted means that your transmission has completed OK and that the
data has been received by the destination machine. Status_TxReady means that your
transmission is waiting to start, either because the Econet is busy receiving or
transmitting something else, or your transmission is queued (see later for more
details of this). Status_ Transmitting is obvious; so too is Status_NoClock , which means
that the Econet is not being clocked, or more likely your station is not plugged into
the Econet. Status_Linejammed means that the Econet software was unable to gain
access to the Econet; this may be because other stations were transmitting, but it

Econet

is more likely that there is a fault in the Econet cabling somewhere.
Status_NatListening is returned when the destination station doesn't send back a
scout acknowledge frame; this is usually because the destination station doesn't
have a suitable open receive block. Status_NetError will be returned if some part of
the four way handshake is missing or damaged; the usual cause of this status is the
sender sending more data than the receiver has buffer space for. so the receiver
doesn't send back the final acknowledge frame.

Retrying transmissions

Status returns like Not Listening and NetErrar can also be caused by transient
problems with the Econet such as electrical noise. or by the receiving station using
its floppy disc or being otherwise too busy to accept data. Because of this it is
usual to try more than once to send a packet if these status returns occur. To make
this easier for you the Econet software can automatically perform these extra
attempts for you . These retries are controlled by passing two further values in to
the Econet_StartTransmit SWI:

• the number of times to try, referred to as the Count

• the amount of time to wait between tries. referred to as the Delay.

If the Count is either zero or one then only one attempt to transmit will take place.
If the Count is two or more then retries will occur. at the specified interval (given in
centiseconds). To give an example as it would be written in BASIC V:

10 DIM Buf% 20
20 Port%=99: Station%=7: Net%=0
50 SYS "Econet_ StartTransmit ", 0 , Port% , Station% , Net% , Buf% , 20 , 3 , 100 TO Tx%
60 END

When this partial program was RUN it would try to transmit immediately, probably
before the program reached the END statement. If this transmission failed with
either Status_NatListening or Status_NetErrar. then the Econet software would wait for
one second (I 00 centiseconds) and try again . If this also failed then the software
would wait a further second and try for a third time. The status of the final (in this
case third) transmission would be the status finally stored in the TxCB; this could
be read using SWI Econet_PollTransmit. To see this we could add some extra lines
to the example program :

30 TxReady%=5
40 Transmitting%=6
60 REPEAT
70 SYS "Econet_ Po11Transmit", Tx% TO Status%
80 PRINT Status%
90 UNTIL NOT ((Status%=TxReady%) OR (Status%=Transmitting%))

100 END

2-615

Transmitting data using a single SWI

Now the program will show us the status of the TxCB. We would be very unlikely to
see the status value ever be Status_ Transmitting since it will only have this value for
about 90Jls during the two seconds it is retrying for. But it is most important that
your software should be able to handle such a situation without error.

For retries to be effective you must try for at least 5 seconds. Recommended values
for the Count and Delay are:

Broadcasts:
Machine peeks:
All other transmissions:

Abandoning TxCB's

Count= 5, Delay= 5
Count= 40, Delay= 5
Delay x (Count- I) ~ 500

As with receptions it is most important that memory used for transmitting Econet
packets must be available at all times whilst the relevant TxCB is open. You must
not use memory in application space if your program is to run within the Desktop
environment. This is because like receptions , transmissions move data directly
from memory at the address you specify to the hardware. Also, as with receptions ,
it is important to inform the Econet software that you have finished with your
transmission and that memory required for the internal TxCB may be returned to
the RMA. You do this by calling Econet_AbandonTransmit (page 2-660) with the
appropriate TxHandle:

100 SYS "Econet_ AbandonTransmit " , Tx% TO FinalStatus%
110 PRINT "The final status was "; FinalStatus%

Transmitting data using a single SWI

To make this start, poll, and abandon sequence easier for you the Econet software
provides it all as a single call (Econet_DoTransmit: see page 2-661). This call has
the same inputs as SWI Econet_StartTransmit, but instead of returning a handle it
returns the final status . Using this call our program would look like this:

10 DIM Buf% 20
20 Port%=99 : Station%=7: Net%=0
40 SYS"Econet_ DoTransmit ", O, Port%,Station%,Net%,Buf% , 20,6 , 100 TO Status%
50 PRINT "The final status was ";Status%

Converting a status to an error

2-616

As you can see this makes things a lot easier. As an aid to presenting these status
values to the user there are two SWI calls to convert status values to a textual form,
the most frequently used of which is the call Econet_ConvertStatusToError
(page 2-666) . This call takes the status and returns an error with the appropriate
error number and an appropriate string describing the error.

Econet

For instance we could add an extra line to our final program :

80 SYS "Econet_ConvertStatusToError", Status%

Note that the SYS command sets unused registers to zero.

Copying the error to RAM

Our program will now RUN and always have an error, in this case the error 'Network
station not listening at line 80'. This error message is actually held in the RMA. in
one of a number of error blocks used by the MessageTrans module, and so you
cannot directly add to it. Furthermore, the error message will have a 'limited
lifetime' before MessageTrans reuses the error block. Consequently, if you wish to
process the error message or to preserve it you should copy it into a buffer. To do
so you can specify the location and size of such a buffer when calling
Econet_ ConvertStatusToError:

70 DIM Error% 50
80 SYS "Econet_ConvertStatusToError ", Status% , Error%, 50

This new program will function in the same manner as the previous program except
that the error block will have been copied from the Econet messages file (in the
ROM) into RAM (at the address given in Rl). The main reason for this is to allow
the Econet software to customise the error for you.

Adding station and net numbers

If the station and net numbers are added as inputs to the calL the Econet software
will add them to the output string:

80 SYS "Econet_ ConvertStatusToError ", Status% , Error%,50 , Station% , Net%

Now the error reported will be of the form 'Network station 7 not listening at line
80'. It is important to stress that this is a general purpose conversion . It will convert
Status_ Transmitted just as well as Status_NotListening, so usually you would test
the returned status from Econet_DoTransmit and only convert status values other
than Status_ Transmitted into errors:

30 Transmitted%=0
60 IF Status%=Transmitted% THEN PRINT "OK": END

2-617

Converting a status to an error

2-618

The same program fragment could be written in assembler (this example, like all
others in this chapter, uses the ARM assembler rather than the assembler included
with BBC BASIC V- there are subtle syntax differences):

Tx MOV rO, #0 Flag
MOV rl , #99 Port
MOV r2 , #7 Station
MOV r3 , #0 Net
ADR r4, Buffer
MOV r5 , #20 Buffer length
MOV r6, #6 Count
MOV r7 , #100 Delay (in cen tiseconds)
SWI Econet_ DoTransmit
BEQ rO , #Status_Transmitted
LDRNE rl , Er rorBuffer
MOVNE r2, #50
SWINE Econet_ConvertStatusToError
MOV pc , lr

Notice here in the assembler version how the return values from
Econet_DoTransmit fall naturally into the input values required for
Econet_ConvertStatusToError. This code fragment is not really satisfactory since
no code written as either a module or a transient command should ever call the
non-X form of SWis. If the routine Tx is treated as a subroutine then it should look
more like this:

Tx STMFD sp !' {lr}
rO, #0 Flag
rl , #99 Port

MOV
MOV
MOV
MOV
ADR
MOV
MOV
MOV

r2, #7 Station
r3, #0 Net
r4 , Buffer
r5 , #20 Buffer
r6 , #6 Count
r7, #100 Delay

SWI XEconet_ DoTransmit
BVS TxExit
TEQ rO , #Status_Transmitted
ADRNE rl , ErrorBuffer
MOVNE r2 , #50
SWINE XEconet_ConvertStatusToError

TxExit LDMFD sp!, {pc}

length

(in centiseconds)

This routine returns with V clear if all went well; if V is set, then on return RO will
contain the address of a standard error block.

Econet

RISC OS 2

RISC OS 2 differs from later versions in that it doesn't use the MessageTrans
module, but instead has the full text of the English error messages in ROM. When
converting messages with added station numbers you must convert into your own
buffer. If you give no buffer. or its length is insufficient. then the station and net
numbers are ignored and RISC OS 2 returns a pointer to the normal ROM copy of
the message.

Converting a status to a string

The second error conversion call is Econet_ConvertStatusToString (page 2-664),
which does exactly what its name suggests. The input requirements are very similar
to the string conversion SWis supported by RISC OS. In this case you pass the
status value, a buffer address. and the length of the buffer. As with
Econet_ConvertStatusToError you can also pass the station and net numbers,
which will be included in the output string. To illustrate this the assembler routine
shown above is changed to print the status on the screen:

sp !, {lr}
rO , #0
rl, #99
r2, #7
r3 , #0
r4, Buffer
r5, #20
r6 , #6
r7, #100

SWIVC XOS_WriteO
TxExit LDMFD sp !, {pc}

Message Trans tokens

; Print the resultant string

Both Econet_ConvertStatusToError and Econet_ConvertErrorToString use
MessageTrans to produce the error message or string. The message tokens for each
of the status values are tabulated below. Where two tokens are listed, as for
Status_NotListening, the first is for the error message- or string- without a
station number inserted, and the second is for the version with the station number
inserted. The files supplied with RISC OS that the Econet software

2-619

Flag bytes

Flag bytes

Port bytes

2-620

uses are 'Resources:S.Resources.Econet.Messages' and
'Resources:S.Resources.Giobal.Messages' (used solely
for the status message for Escape).

Error Status Token(s)

0 Status_ Transmitted TxOK
Status_Line)ammed Line)am

2 Status_NetError Net Err
3 Status_NotListening NotLstn
4 Status_NoCiock NoCik
5 Status_ TxReady TxReady
6 Status_ Transmitting Txing
7 Status_RxReady RxReady
8 Status_Receiving Rxing
9 Status_Received Rxd
10 Status_NoReply NoReply
II Status_Escape Escape
12 Status_NotPresent Not Pres

StnNLsn

StnNRpy

StnNPrs

The flag byte is sent from the transmitting station to the receiving station and can
be treated as an extra seven bits of data. By convention, it is used as a simple way
of distinguishing different types of packet sent to the same port, and it is worth you
doing the same.

This is most useful in server type applications where it is often the case that similar
data can be sent for different purposes, or some sorts of data are outside the
normal scope. An example is a server that takes requests for teletext pages, but can
also return the time. A different value for the flag byte allows the server to
differentiate time requests from normal traffic. Another example is the printer
server protocol. which uses the flag byte to indicate the packet that is the last in
the print job. without having to change the data part of the packet.

The port byte is used in the receiving station to distinguish traffic destined for
particular applications or services.

For instance the printer server protocol uses port &DI for all its connect. data
transfer, and termination traffic, whereas the file server uses port &99 for all its
incoming commands. This use of separate ports for separate tasks is also exploited
further by the file server protocol in that every single request for service by the user
can use a different port for its reply. This prevents traffic getting confused.

Econet

The Econet software provides some support for you to use ports by providing an
allocation service for port numbers. Port numbers should, if possible, be allocated
for all incoming data.

Software that requires the use of fixed port numbers, like NetFS and NetPrint. can
claim these fixed ports by calling Econet_CiaimPort (page 2-678). This call takes a
port number as its only argument. When these claimed ports are no longer
required (when the module dies for instance) it can be 'returned' by calling SWI
Econet_ReleasePort (page 2-675) .

Other software that would like a port number allocated to it can call
Econet_AIIocatePort (page 2-676). which will return a port number. While this port
number is allocated no other calls to Econet_AIIocatePort will return that number,
until it is 'released' by calling Econet_DeAIIocatePort (page 2-677) with the port
number as an input. The NetFS software uses this method of allocation and
deallocation to get ports to use as reply ports in the file server protocol. The
Econet software keeps a table in which it records the state of each port number:
this can be either free. claimed or allocated.

Freeing ports

Ports that have been claimed will not be allocated , and can only be freed by calling
SWI Econet_ReleasePort . Calling SWI Econet_DeAIIocatePort will return an error if
the port is claimed rather than allocated. Ports that have been allocated can not be
claimed, and in fact an attempt to claim an allocated port will return an error. You
should be careful with software that uses allocated ports to make sure that all
ports are deallocated when they are no longer required , especially after an error.
The claiming and releasing of ports should likewise be carefully checked.

An example of use of the port allocator

A typical example of the use of the port allocator would be a multi-player
adventure game server. The server would claim one port (eg port & I F). This port
number would then be the only fixed port number in the entire protocol. When a
player wished to join the game she should ask for a port to be allocated in her
machine and send this port, along with all the information required to enter the
game, to the game server on port & IF If the server can 't be contacted or doesn't
reply within the required time the port should be deallocated and an error
returned . When the server receives this packet it should check the user's entry data;
if this is OK it should then allocate a port for that user and return it, along with any
other information required to start the game off. When the user wants to quit the
game the server should deallocate its user's port, then send the last reply to the
user. The user should deallocate the port when the reply arrives or if the server
doesn't reply soon enough.

2-621

Port bytes

2-622

To illustrate this example the user entry routine is shown below; note that this
routine is coded for clarity rather than size or efficiency.

Entry STMFD
SWI
BVS

STRB
LDR
LDR
ADR
MOV
SWI
BVS
MOV

LDR
ADR
MOV
LDRB
STRB

sp!, {r0-r8 , lr}
XEconet_AllocatePort
Exit

rO , Server_ ReplyPort
rl, Server_ Station
r2, Server_Net
r3 , Buffer
r4, #?Buffer
XEconet_CreateReceive
DeAllocateExit
rB, rO

rl , [sp, #0]
r4, Buffer
r5, #0
rO, Server_ ReplyPort
rO, [r4, r5]

Copy Loop
ADD
CMP
BHS
LDRB
CMP
MOVLT
STRB
BGE
ADD

MOV
MOV
LDR
LDR
LDR
LDR
SWI
BVS
TEQ
BEQ

r5, r5, #1
r5, #?Buffer
BufferOverflow
rO, [rl], #1
rO, #" "
rO, #CR
rO, [r4, r5]
Copy Loop
r5, r5, #1

rO , #0
rl, #EntryPort
r2, Server_ Station
r3 , Server _Net
r6 , Server_ TxDelay
r7, Server _TxCount
XEconet_DoTransmit
DeAllocateExit
rO , #Status_Transmitted
WaitForReply

ConvertEconetError
ADR rl , Buffer
MOV r2, #?Buffer

; RO points to the text string

Length of buffer

Preserve the RxHandle

Address of text string to copy
Get buffer to copy into
Index into Tx Buffer

Send the port for the server

Have we run out of buffer?

Pick up byte and move to next one
Is this a control character?
Terminate as the server expects

Loop back for the next byte
Set entry conditions for Tx

A constant

; Convert status and exit

SWI XEconet_ConvertStatusToError
B DeAllocateExit

WaitForReply
MOV
LDR
MOV

rO, rB
rl , Server_ RxDelay
r2, #0

SWI XEconet_WaitForReception
BVS DeAllocateExit
TEQ rO, #Status_ Received
BNE ConvertEconetError

Receive handle

Don't allow ESCape

Econet events

Exit

LDR rO , Buffer
CMP rO , #0
ADR rO , Buffer
BNE DeAllocateExit
LDRB rl, [rO , #4]
STRB rl , Server_ CommandPort

STRVS rO, [sp , #0]
LDMFD sp !, {r0-r8,pc}

BufferOverflowError
DCD ErrorNumber_ BufferOverflow

Get server return code
Has t h ere been an error?
Ge t address of reply
Yes , process error
Load server ' s port

Poke error into return regs
Return to caller

DCB Command too long for buffer " , 0
ALIGN

BufferOverflow
ADR rO, BufferOverflowError

DeAllocateExit
MOV rl, rO
LDRB rO , Server_ ReplyPort
SWI
MOV
CMP
B

XEconet_ DeAllocatePort
rO, rl
pc, #&80000000
Exit

Points to notice in the example are:

• the careful use of a single exit point

Preserve the original error

Ignore deallocation errors
Set V
Exit through common point

• the consistent return of errors (no matter what type)

• the opening of the receive block before doing the transmit

• the use of the 'X' form of SWis .

Econet

It should be noted that the routine uses and manipulates global state as well as
taking specific input and returning specific output.

To allow Econet based programs to be kinder to other applications within the
machine, it is possible for your program to be 'notified' when either a reception
occurs or a transmission completes. This means that other applications can be
using the time t hat your program would have spent polling, either inside
Econet_DoTransmit or inside Econet_WaitForReception. This 'notification ' is
carried by an event. There are separate events for reception and for completion of
transmission. These two events are:

I 4 Event_Econet_Rx
I 5 Event_Econet_Tx

2-623

Econet events

2-624

On entry to the event vector:

• RO will contain the event number. either Event_Econet_Rx or Event_Econet_Tx

• Rl will contain the receive or transmit handle as appropriate

• R2 will contain the status of the completed operation

• R3 will contain the port of the completed operation. except under RISC OS 2.

The status for receive will always be Status_Received, but for transmit it will indicate
how the transmission completed:

0 Status_Transmitted
I Status_Line)ammed
2 Status_NetError
3 Status_NotListening
4 Status_NoCiock
9 Status_Received

These events can be enabled and disabled in the normal way using OS_Byte calls.

Using events from the Wimp

If your program is a client of the Wimp then all your event routine need do is set
the Wimp poll word non-zero when the event happens; see the section entitled
PollWord_NonZero 13 on page 3-126.

Event TEQ rO, #Event_ Econet_ Rx
TEQNE rO , #Event_ Econet_ Tx
MOVNE pc , lr

STMFD sp !, {lr}
ADR rl4 , WimpPollWord
STR pc , [r14]
LDMFD sp ! ' {pc}

Setting up background tasks

If not , exit as fast as possible

Must preserve all regs for others

Set flag with non-zero value
Return , without claiming vector

Since the interfaces required for reception and transmission can be called from
within event routines, you can set up background tasks that make full use of the
facilities offered by Econet. Note that it is important to check that the handle
offered in the event belongs to your program, since there may well be many
programs using this facility. The example given below is of a simple background
server for sending out the time. Not all of the code needed is shown, just the event
routine:

Start

Event

STMFD
MOV
ADR
MOV
SWI

MOVVC
MOV
SWIVC
MOVVC
MOV
SWIVC

MOVVC
MOV
MOV
ADR
MOV
SWIVC
STRVC
STRVS
LDMFD

TEQ
BNE
LDR
TEQ
MOVNE
MOVNE
STMFD
MOV
SWI
BVS

MOV
MOV
MOV
SWI

sp!, {r0-r4,lr}
rO, #EventV
r1, Event
r2, #0
XOS_Claim

rO , #14
r1, #Event_ Econet_ Rx
XOS_Byte
rO, #14
r1, #Event_Econet_Tx
XOS_ Byte

rO, #CommandPort
r1, #0
r2, #0
r3, Buffer
r4, #?Buffer
XEconet_CreateReceive
rO, RxHandle
rO, [sp]
sp!, {r0-r4,pc}

rO, #Event_Econet_Rx
LookForTx
rO, RxHandle
rO, r1
rO, #Event_ Econet_Rx
pc, lr
sp!, {r3-r7}
rO, r1
XEconet_ReadReceive
Exit

r6, r3
rO, #Module_ Claim
r3, #8 + 5
XOS_ Module

BVS Exit

ADD
MOV
STRB
MOV
SWI

r1, r2, #8
rO, #3
rO, [r1]
rO, #14
XOS_Word

BVS Exit

MOV
MOV
MOV
LDRB
MOV
MOV
MOV
MOV

rO,
r3 ,
r4,
r1,
r2,
r5 ,
r6 ,
r7 ,

#0
r4
r1
[r5]
r6
#5
#ReplyCount
#ReplyDelay

SWI XEconet_ StartTransmit
BVS Exit

Econet

The vector we want is EventV
Where to goto when it happens
Required so that we can release

Enable event

Enable event

First open the reception
From any station
From any net

Get our global state
Is it for us?

If not, exit as fast as possible
Only RO , R1 and R2 are free for use
Receive handle
R4.R3 is the reply address

Save the station number for later

Two words and five bytes required
Memory MUST come from RMA

Get the address of the 5 bytes
Set OS_ Word reason code
Read as a five byte time
Read from the real time clock

Flag byte
Net number
Get the address of the 5 bytes
The reply port the client sent
Station number
Number of bytes to send

2-625

Econet events

2-626

Exit

SUB
STR
ADR
LDR
STR
STR

MOV
MOV
MOV
ADR
MOV

r4 ,
rO ,
rl,
r2,
r2 ,
r4 ,

rO ,
rl,
r2,
r3 ,
r4 ,

r2 , #8
[r4 , #4]
TxList
[rl , #0]
[r4, #0]
[rl, #0]

#CommandPort
#0
#0
Buffer
#?Buffer

SWI XEconet_ CreateReceive
STRVC rO , RxHandle

LDMFD sp!, {r3-r7, pc}

LookForTx
TEQ rO, #Event_ Econet_ Tx
MOVNE pc, lr
STMFD sp!, {r3, lr}
ADR r3 , TxList
LDR rl4, [r3]
B StartLooking

NextTx
MOV
LDR

Start Looking
CMP

r3, rl4
rl4 , [r3]

rl4, #0
MOVLE rO, #Event_ Econet_ Tx
LDMLEFD sp !, {r3, pc}
LDR rO, [rl4, #4]
TEQ rO , rl
BNE NextTx

LDR
STR
MOV
SWI
MOV
SWI
LDMFD

r2, [rl4]
r2 , [r3]
r2 , rl4
XEconet_AbandonTransmit
rO, #Module_ Free
XOS_Module
sp ! , {r3 , lr , pc}

R4 now in R2
Save TxHandle in record
Address of the head of the list
Head of the list
Add the list to new record
Make this record the list head

Now re-open the reception
From any station
From any net

Return claiming vector

Get two extra registers
The address of the head of list
The first record in the list

Search the next list entry
Get the link address

Is this the end of the list?
Restore entry conditions
Return, continuing to next owner
Get the handle for this record
Is this event one of ours?
No , try next record in list

Get the remainder of the list
Remove this record from list
The record address for later

; Return memory to RMA , i gnore error
; Return , c l aiming vector

This program also illustrates some of the more advanced features of Econet. In
particular; it shows the ability to specify reception control blocks that can accept
messages from more than one machine, or on more than one port. Receive control
blocks like this are referred to as wild, as in wild card matching used in file name look
up. Specifying either the station or net number (usually both) as zero means
'match any' . The same is true ofthe port number, although this facility is much less
useful! This wild facility does not mean that more than one packet can be received ,
but rather that more than one particular packet will be acceptable. Once a packet
has been received, the RxCB has Status_Received and is no longer open.

Econet

It is worth noting an implementation detail here. Receive control blocks are kept by
the Econet software in a list. when an incoming scout has been received the list is
scanned to find the first RxCB that matches it. To ensure that things go as one
would expect the Econet software that implements the SWI Econet_CreateReceive
always adds wild RxCBs to the tail of the list, and normal RxCBs to the middle of
the list (between the normal and the wild ones) This ensures that when packets
arrive they will be checked for exact matches before wild matches, and that if there
is more than one acceptable RxCB then the one used will be the one that was
opened first , ie first in first served.

Broadcast transmissions
As a complement to this concept of wild receive control blocks there are broadcast
transmissions. A broadcast has both its destination station and net set to &FF, it
can then be received by more than one machine. To achieve this it does not use the
normal four way handshake, it is in fact a single packet. On the NetMonitor it
would look something like this:

FFFF12 00809F5052494E54200100

The broadcast address at the beginning (&FF, &FF). the source station and net
(&12, &00), the control byte (&80). and the port (&9F) are the same as a normal
scout frame, but then the data follows, in this case eight bytes.

Although the Econet software within RISC OS can transmit and receive broadcast
messages of up to 1020 bytes (RISC OS 2) or 1024 bytes (later versions) , other
machines on Econet can't cope with messages of more than eight bytes without
getting confused; this confusion causes them to corrupt such broadcasts. These
other machines include things like FileStores and bridges, so beware! It is possible
to transmit and/or receive zero to eight bytes without them being corrupted, but
only broadcasts of exactly eight bytes can be received by BBC or Master computers,
as well as being transported from net to net by bridges.

Transmitting a broadcast is exactly the same as transmitting a normal packet. all
you need to do is set the destination station and net to &FF (not to -1).

2-627

Localloopback

Local loopback

2-628

Versions of RISC OS after 2.00 support a wider range of broadcasts, allowing local
broadcasts (which are only seen on the local net) and long broadcasts (broadcasts
of more than eight bytes, which new bridges will recognise and correctly
propagate). To use these, set the station number to &FF, and the net number as
follows:

Net Range Size

&FF Global Small (8 bytes maximum)
&FE Global Long (I 020/I 024 bytes maximum)
&FD Local Long (I020/I024 bytes maximum)
&FC reserved reserved

Note that local long broadcasts (ie net= &FD) are ignored by existing machines
and bridges, and will always work.

Broadcasts don't return the status Status_NotListening, since there is no way for the
transmitting station to determine whether or not its broadcast was received.
Broadcasts are basically designed for locating resources, ie to transmit your desire
to know about a particular class of thing. Anything recognising the broadcast will
reply, so you know what's what and where it is. NetFS uses broadcast to find file
servers by name, and NetPrint uses broadcast to find printer servers. The example
broadcast packet shown above contains the ASCII text 'PRINT ' and is, not
surprisingly, a request for all printer servers to respond.

When transmissions take place, the destination address is checked to see if it is
the local machine (ie a transmission to your own machine). If this is the case then
no access to the Econet network will take place, and if a suitable receive control
block exists the data is transferred directly from the transmit buffer to the receive
buffer. Localloopback is most important for Wimp-based server programs, as it
allows them to offer their services to the local station as easily as to all other
stations on the Econet.

Broadcasts are also subject to localloopback, but differ slightly in that even if local
loopback takes place access to the Econet network will still occur. This is to ensure
the semantics of broadcasts. This does however cause a slight problem, in that a
broadcast can be initiated to the local station via localloopback and succeed, but
still fail externally with- for example- Status_NoCiock. This is a slight semantic
deviation that you must bear in mind when writing software that may
communicate with itself or other software running on your machine by using
broadcasts.

Econet

The other problem that can occur with localloopback is premature reception ,
caused by transmission and reception using the same port (whether by accident, or
as a feature of the protocol 's design), and the length of the transmission being less
than or equal to the length of the receive buffer. For example to communicate with
an Econet Bridge to find out if a particular net exists code like this will generally
work:

10 SYS "Econet_AllocatePort " TO port%
20 SYS "Econet_CreateReceive " , port% , 0 , 0 , RxBuffer%, 10 TO handle%
30 $TxBu ffer% = "Bridge "
40 TxBuffer%?6 = port%
50 TxBuffer%?7 = NetToTestFor%
60 SYS "Econet_DoTransmit " , &83, &9C , &FF , &FF, TxBuffer% , 8, 5 , 5
80 SYS "Econet_WaitForReception " , handle%, 10, 0 TO status%
90 IF status% = 9 THEN

100 PRINT "Net number "; STR$(NetToTestFor%); " exists . "
110 ENDIF
120 SYS "Econet_ DeAllocatePort " ,port%

However, when the port allocator returns port &9C the program will be subject to
unexpected localloopback, and the broadcast will be received internally as well as
t ransmitted externally. This will cause the program to incorrectly report a reception
from the bridge , and to interpret it as a reply indicating the existence of the desired
net. The most effective way to prevent this is to only create the receive control
block after the transmission has completed. In the case above you could simply
change line 20 to be line 70. In general it is not acceptable to transmit a request
before opening the receive control block for the reply; however, some pre-existing
protocols force the issue.

It is worth noting that the use of localloopback in the Wimp environment does
require that the polling of receptions and transmissions be interleaved with calls
to Wimp_Poll. If this is not done, although the data will be transferred, no notice
will be taken because control will not be transferred to the receiving program.

Localloopback with zero length packets will cause the machine to lock up.

Immediate operations are not subject to localloopback.

Localloopback is not supported by RISC OS 2.

Immediate operations I

There is a second class of network operations called immediate operations. These
operations don't require the explicit co-operation of the destination machine;
instead the co-operat ion is provided by the Econet software in that machine.
Immediate operations are similar semantically to normal transmissions but,
because they have no need for a port number, have a type instead of a flag ; and

2-629

Immediate operations

most also require an extra input value. They have a separate pair of SWI calls to
cause them to happen: Econet_Startimmediate (page 2-679) and
Econet_Doimmediate (page 2-68I).

The call Econet_Startimmediate returns a transmit handle in exactly the same way
as Econet_StartTransmit and that handle should be polled and abandoned in the
same way. The call Econet_Doimmediate returns a status just as
Econet_DoTransmit does.

There are nine types of immediate operations:

I Econet_Peek Copy memory from the destination machine

2 Econet_Poke Copy memory to the destination machine

3 Econet_ISR Cause JSR/BL on the destination machine

4 Econet_UserProcedureCall Execute User remote procedure call

5 Econet_OSProcedureCall Execute OS remote procedure call

6 Econet_Halt Halt the destination machine

7 Econet_ Continue Continue the destination machine

8 Econet_MachinePeek Machine peek of the destination machine

9 Econet_GetRegisters Return registers from the destination
machine

The last one , Econet_GetRegisters, can only be transmitted by or received on
RISC OS based machines, whereas all the others can be transmitted or received by
BBC or Master series computers. The reason for this is that Econet_GetRegisters is
specific to the ARM processor.

As noted earlier, Immediate operations are not subject to localloopback.

Econet_Peek and Poke

2-630

The poke operation is very similar to a transmit, in that data is moved from the
transmitting station to the receiving station. The difference is that the address at
which the data is received is supplied by the transmitting station. Peek is the
inverse of poke; data is moved from the receiving station into the transmitting
station.

Before the receiving station allows the data to be transferred (in or out). it
validates the address range supplied by the transmitting station . This validation
done using the SWI XOS_ ValidateAddress- takes place in an IRQ process, so
having IROs disabled will affect a machine's ability to be peeked or poked.

This validation does not take place under RISC OS 2.

Econet

Econet_JSR, UserProcedureCall and OSProcedureCall

JSR. UserProcedureCall, and OSProcedureCall are all very similar. They send a
small quantity of data, referred to as the argument buffer or arguments, to the
destination machine; they then force it to execute a particular section of code.
When received a JSR actually does a BL to the address given in Rl , whereas
UserProcedureCall and OSProcedureCall cause events to occur. These events are :

8 Event_Econet_UserRPC
16 Event_Econet_OSProc

After reception the arguments are buffered so that they may be used by the code
that is called, either directly by a BL or indirectly via an event. The format of the
arguments buffer is as follows: word 0 is the length (in bytes) of the arguments,
then the arguments follow this first word and may be null (ie the length may be
zero) .

Conditions on entry to event code

The conditions on entry to the event code are:

RO =Event number (either Event_Econet_UserRPC or Event_Econet_OSProc)
R I = Address of the argument buffer
R2 = RPC number (passed in Rl on the transmitting station)
R3 = Station that sent the RPC
R4 = Net that sent the RPC

Conditions on entry to JSR code

The conditions on entry to code that is BL'd to for a JSR are:

Rl =Address of the argument buffer
R2 =Address of the code being executed
R3 = Station that sent the JSR
R4 = Net that sent the JSR

Format of the argument buffer

The format of the argument buffer is exactly the same in all cases. If. in the case of
a JSR. the call address transmitted from the remote station is -I (&FFFFFFFF) then
the execution address will be the argument buffer itself; this means that
relocatable ARM code can be sent as a JSR. Registers RO to R4 can be used as they
are preserved by the Econet software, and Rl3 can also be used as a full
descending stack.

2-631

Immediate operations

The transmission of Econet_OSProcedureCall is intended for use solely by system
software, and is only documented here for completeness. The transmission of
Econet_ISR is only provided as a compatibility feature to allow interworking with
BBC and Master computers.

Econet_UserProcedure calls

2-632

The Econet_UserProcedureCall is the best method for this style of
communications. It does however have some restrictions . The first of these is the
most important- it is executed in the destination machine as an event caused by
an interrupt, and so it has all the normal restrictions applied to interrupt code. This
means that code directly executed as a result of Event_Econet_UserRPC must be
fast and clean, and must not call any of the normal input or output SWI routines
nor call the filing system, either directly or indirectly. This is paramount if the
integrity of the destination machine is to be ensured. However, you can copy away
the arguments passed and signal to a foreground task (by altering a flag) that the
procedure call has arrived. It is most important that you copy the arguments away,
because the buffer that they are in is only valid for the duration of the event cail.
This means that R I will point to the arguments whilst you are processing the event,
but afterwards the argument buffer may be overwritten . If the requirements for the
processing of the call are small then it is possible to do it all within the event. An
example of this is a modification of the program presented earlier that returned the
time. This new program sends the time in response to a User RPC, rather than a
normal packet:

Start MOV
ADR
MOV
SWI

rO, #EventV
rl, Event
r2, #0
XOS_Clairn

The vector we want is EventV
Where to goto when it happens
Required so that we can release

MOVVC rO, #14 Enable event
STRVC rO , ClairnedFlag Set it to a non-zero value
MOV rl, #Event_ Econet_ UserRPC
SWIVC XOS_Byte
MOVVC rO, #14 Enable event
MOV r1, #Event_Econet_ Tx
SWIVC XOS_Byte
MOV pc , lr

Event TEQ rO, #Event_Econet_ UserRPC
BNE LookForTx
TEQ r2, #RPC_ SendTirne
MOVNE pc, lr
LDR rO, [rl , #0]
TEQ rO, #1

Is it for us?
If not, exit as fast as possible
Get size of arguments
Check that it is right

MOVNE rO , #Event_Econet_UserRPC; Restore exit registers
MOVNE pc , lr ; If not, exit as fast as possible

STMFD sp!' {r5-r7}

MOV r6, r3
MOV r5, rl
MOV rO, #Module_Claim
MOV r3, #8 + 5
SWI XOS _Module
BVS Exit

ADD rl, r2 , #8
MOV rO, #3
STRB rO, [rl]
MOV rO, #14
SWI xos_word
BVS Exit

MOV rO, #0
MOV r3, r4
MOV r4, rl
LDRB rl, [r5, #4]
MOV r2, r6
MOV r5, #5
MOV r6, #ReplyCount
MOV r7, #ReplyDelay
SWI XEconet Start Transmit
BVS Exit

SUB r4, r2, #8
STR rO, [r4, #4]
ADR rl, TxList
LDR r2, [rl , #0]
STR r2, [r4, #0]
STR r4, [rl , #0]

Exit
LDMFD sp!, {r5-r7, pc}

LookForTx
TEQ rO, #Event_Econet_Tx
MOVNE pc, lr
STMFD sp!, {r3 , lr}
ADR r3, TxList
LDR rl4, [r3]
B Start Looking

NextTx
MOV r3, r14
LDR rl4, [r3]

Start Looking
CMP r14, #0
MOVLE rO, #Event_Econet_Tx
LDMLEFD sp!' {r3, pc}
LDR rO, [rl4, #4]
TEQ rO, rl
BNE NextTx

Only Rl to R4 are free for use
R4.R3 is the reply address

Econet

Save the station number for later
Preserve arguments pointer

Two words and five bytes required
Memory MUST come from RMA

Get the address of the 5 bytes
Set OS_Word reason code
Read as a five byte time
Read from the real time clock

Flag byte
Net number
Get the address of the 5 bytes
The reply port the client sent
Station number
Number of bytes to send

R4 now in R2
Save TxHandle in record
Address of the head of the list
Head of the list
Add the list to new record
Make this record the list head

Return claiming vector

This event has only RO to R2
Get two extra registers
The address of the head of list
The first record in the list

Search the next list entry
Get the link address

Is this the end of the list?
Restore entry conditions
Return, continuing to next owner
Get the handle for this record
Is this event one of ours?
No, try next record in list

2-633

Immediate operations

LDR r2 , [r14] Get the remainder of the list
STR r2, [r3] Remove this record from list
SWI XEconet_AbandonTransmit
MOV rO , #Module_Free
MOV r2, r14 The record address
SWI XOS_Module Return memory to RMA , ignore error
LDMFD sp!, {r3 , lr , pc} Return , claiming vector

You will notice how much simpler this program is when compared to the program
shown earlier.

Econet_OSProcedure calls

2-634

There are five defined OS procedure calls for which only two have implementations
under RISC OS. The five are:

0 Econet_OSCharacterFromNotify
I Econet_OSinitialiseRemote
2 Econet_OSGetViewParameters
3 Econet_OSCauseFatalError
4 Econet_OSCharacterFromRemote

OSCharacterFromNotlfy

Econet_OSCharacterFromNotify causes the character received to be inserted into
the keyboard buffer; the code that does so looks like this :

InsertCharacter
MOV rO, #138
LDRB r2, [rl, #4]
MOV rl, #0
SWI XOS_Byte

Rl points at the argument buffer
Insert into buffer OS_Byte
Get character from buffer
Buffer is keyboard

Whilst the desktop is running the NetFiler module provides a different handler for
characters from notify. It bundles them up by station. and when none have been
received for a while sends them as a Wimp message, displaying them using
Wimp_ReportError. For more information see the documentation of
Message_Notify on page 3-238.

OSCauseFataiError

Econet_OSCauseFatalError does exactly what its name implies. In fact it calls SWI
OS_GenerateError directly from the event routine; normally this would be illegal,
but since this is what the RPC is for, that is what it does. It should be observed that
this can have a disastrous effect on the integrity of the machine and is not a
recommended action ; it is provided only for compatibility reasons.

Econet

Econet_Halt and Continue

Halt and continue are only acted upon by BBC and Master series machines; there
is no implementation for receiving halt or continue on RISC OS machines or
RISC iX machines.

Econet_MachinePeek

Machine peek is similar to peek, except that it is not possible to specify the
address to be peeked, but rather four bytes are returned that identify the machine
that is being machine peeked. Machine peek is used by some of the system
software in RISC OS to quickly decide if a particular machine is present or not. The
four bytes returned by machine peek are as follows:

Byte(s)

I and 2
3
4

Value

Machine type number
Software version number
Software release number

Machine type numbers

Machine type numbers are as follows:

&0000 Reserved
&0001 Acorn BBC Micro Computer (OS I or OS 2)
&0002
&0003
&0004
&0005
&0006
&0007
&0008
&0009
&OOOA
&OOOB
&OOOC
&0000
&OOOE
&OOOF to &FFF9
&FFFA
&FFFB
&FFFC
&FFFD
&FFFE
&FFFF

Acorn Atom
Acorn System 3 or System 4
Acorn System 5
Acorn Master 128 (OS 3)
Acorn Electron (OS 0)
Acorn Archimedes (OS 6)
Reserved for Acorn
Acorn Communicator
Acorn Master 128 Econet Terminal
Acorn FileStore
Acorn Master 128 Compact (OS 5)
Acorn Ecolink card for Personal Computers
Acorn UNIX workstation
Reserved
SCSI Interface
SJ Research IBM PC Econet interface
Nascom 2
Research Machines 48pZ
SJ Research File Server
Z80 CP/M

2-635

Immediate operations

Software version and release number

The software version and release numbers are stored in two bytes. These two bytes
are encoded in packed BCD (Binary Coded Decimal) and represent a number
between 0 and 99. The easiest way to ,display packed BCD is to print it as if it was
hexadecimal data:

ReportStationVersion
MOV r2 , rO
MOV r3, rl
MOV
ADR
MOV
MOV
MOV

rO, #Econet_MachinePeek
r4, Buffer
r5 , #?Buffer
r6, #40
r7, #5

SWI XEconet_Doimmediate
MOWS pc, lr
TEQ rO, #Status_Transmitted
BEQ PrintVersion

Station number in RO
Net number in Rl

Count
Delay

TEQ rO, #Status_NotListening ; from Machine peek
MOVEQ rO , #Status_NotPresent ; return as "Not present"
ADR rl , Buffer
MOV r2 , #?Buffer
SWI XEconet_ConvertStatusToError
MOV pc, lr

Printversion
LDR
MOV

r3, [r2]
rO, r3, ASR #24

ADR rl, Buffer
MOV r2, #?Buffer
SWI XOS_ConvertHex2
swrvc xos_writeO
SWIVC XOS_Writel+". "
MOWC rO, r3, ASR #16
ANDVC rO , rO , #&FF
ADRVC rl, Buffer
MOWC r2, #?Buffer
swrvc xos_convertHex2
swrvc xos_writ eO
MOV pc, lr

Buffer address on exit from SWI
Get top byte

Print BCD as hex
Display output
Divide release from version number
Get version number in place
Only the version number

Print BCD as hex
Display output

We recommend that when using Econet_MachinePeek you use a Count of 40 and a
Delay of 5.

Econet_ GetRegisters

2-636

Econet_GetRegisters is similar to machine peek. in that a fixed amount of
information is returned from the destination machine; in this case it is 80 bytes (20
words). The registers are returned in the following order: RO to Rl4, PC plus PSR,
Rl3_irq, Rl4_irq, ~13_svc. and Rl4_svc. The FlO registers are not returned because
they are used by the Econet software, and so would always be the same, and of no

Econet

interest since they would reflect the state of the part of the Econet software that
transmits data. It is worthwhile aligning the receive buffer for a machine peek so
that each of the 20 words is on a word boundary; this makes loading them easier.

Protection against immediate operations
Because these immediate operations can be quite intrusive it is possible to
prevent their reception by manipulating an internal variable of the Econet
software. There is one bit in this internal variable for each operation, and you can
set or clear each bit. There is also a default value for each bit which is held in
CMOS RAM. The SWI that allows you to manipulate this internal variable is
Econet_SetProtection (page 2-670) . These bits are held in a single word; the bit
assignments are as follows:

Bit

0

2
3
4
5
6
7
8
9 - 30
31

Immediate operation protected against

Peek
Poke
Remote JSR
User procedure call
OS procedure call
Halt
Continue- must be zero on RISC OS computers
Machine peek- must be zero on RISC OS computers
Get registers
Reserved- must be zero.
Write new value to the CMOS RAM

To protect against or disable the reception of a particular immediate operation, the
appropriate bit should be set in the internal variable. The SWI
Econet_SetProtection call replaces the OldValue with the NewValue, The
NewValue is calculated like this:

NewValue = (OidValue AND Rl) EOR RO.

Altering the protection held in CMOS RAM

When the Econet software is started up (as a result of Ctrl-Break, or •RMRelnit)
then the value held in CMOS RAM will be used to initialise the internal variable. To
alter the value held in CMOS RAM the entry value of RO to SWI
Econet_SetProtection should have bit 31 set, which causes the resultant value to
be written not only to the internal variable, but also to the CMOS RAM. To read the
current value you should use SWI Econet_SetProtection with RO=O, and
R I =&FFFFFFFF.

2-637 ·

Heaamg your station and net numbers

Reading your station and net numbers

To establish what your station number is and which net you are connected to (if
you have more than one) , the Econet software provides a call to return these two
values: Econet_ReadLocalStationAndNet (page 2-663). If you don't have more
than one net then the net number (returned in R1) will be zero.

The local net number is in fact obtained from a bridge whenever the Econet
module is initialised (eg when the machine is turned on) . If this fails , say because
there is no clock or the bridge is not switched on , then the local net number is
reported as zero.

These values are the same as those reported by *Help Station (in fact *Help
Station calls SWI Econet_ReadLocalStationAndNet to get the values) .

Extracting station numbers from a string

2-638

To ensure that all Econet oriented software presents a consistent user interface
there is a SWI call to read a station and/or net number from a supplied string. This
call , Econet_ReadStationNumber (page 2-672), is used by both NetFS and
NetPrint for all their command line processing. In the case of software that has a
concept of a current station (and net) number the return value of -1 should mean
'use the existing value' - this is how *FS works, for example. Where there isn't a
current value, as would be expected in a transient command such as *Notify, the
return of -1 for the station number should be treated as an error and the return of
-1 as a net number should imply the use of zero as a net number. The following is
the beginning (and some of the end) of a transient command:

Comma ndS tart
LDRB rO, [r1] Check the first argument exists
TEQ rO, #0 Zero means no arguments
BEQ SyntaxError Exit with error

SWI XEconet_ReadStationNumber
MOVVS pc , 1r Must be able to cope
CMP r2 , #-1 No station number given
BEQ NoStationNumberError
CMP r3, #-1 No net number given
MOVEQ r3, #0 Means use zero

MOV

SyntaxError
ADR
ORRS

pc, lr

rO , ErrorGetRegsSyntax
pc , lr , #VFlag

Econet

ErrorGetRegsSyntax
DCD ErrorNumber_Syntax
DCB "Syntax: *Command <Station number>"
DCB 0
ALIGN

NoStationNumberError
ADR rO, ErrorUnableToDefault
ORRS pc, lr, #VFlag

ErrorUnableToDefault
DCD ErrorNumber_UnableToDefault
DCB "Either a station number or a full"
DCB • network address is required"
DCB 0
ALIGN

Converting station and net to a string
The kernel provides two inverse functions that convert a station and net number
pair into a string. See OS_ConvertFixedNetStation (SWI &E9) on page 1-473 and
OS_ConvertNetStation (SWI &EA) on page 1-475 for exact details.

Conventions and values
The following conventions apply to the various values that the Econet uses:

Station numbers

Station numbers are normally in the range I to 254. The station number zero is
used in SWI Econet_CreateReceive to indicate that reception may occur from any
station. The station number 255 is used in SWI Econet_StartTransmit and in SWI
Econet_DoTransmit to indicate that a broadcast is to take place. Station number
255 is also used in SWI Econet_CreateReceive to indicate that reception may occur
from any station; you may also use station number zero for this purpose, but its
use is deprecated, and may be withdrawn in the future.

Net numbers

Net numbers are normally in the range I to 25 I. The value zero means the local
Econet net; in a SWI Econet_CreateReceive it is taken to indicate that reception
may occur from any net. The net numbers 255, 254 and 253 are used in SWI
Econet_StartTransmit and in SWI Econet_DoTransmit to indicate that a broadcast
is to take place. Net number 255 is also used in SWI Econet_CreateReceive to
indicate that reception may occur from any station; the use of zero to indicate wild
reception is deprecated.

2-639

vonvenrtons ana vatues

2-640

Although RISC OS fully supports top-bit-set net numbers (ie 128- 251). certain
Econet devices- such as bridges- will not propagate them, leading to problems.
You should beware of this.

Port numbers
Port numbers are normally in the range I to 254, although some values are
reserved -as shown in the table below:

Port Allocation
&54 DigitaiServicesTapeStore

&99 FileServerCommand
&9C Bridge
&9E PrinterServerlnquiryReply
&9F PrinterServerlnquiry

&BO FindServer
&B1 FindServerReply
&B2 TeletextServerCommand
&B3 TeletextServerPage

&DO OldPrinterServerData
&DI PrinterServerData
&D2 TCPIPProtocoiSuite
&D3 SIDFrameSiave
&D4 Scrollarama
&D5 Phone
&D6 BroadcastControl
&D7 BroadcastData
&D8 ImpressionLicenceChecker
&D9 DigitaiServicesSquirrel
&DA SIDSecondary
&DB DigitaiServicesSquirrel2
&DC DataDistributionControl
&DD DataDistributionData
&DE ClassROM
&DF PrinterSpoolerCommand

Port numbers zero and 255 currently have a special meaning: they may be used as
arguments to SWI Econet_CreateReceive to indicate that reception may occur
regardless of the port number on the incoming packet. This use of zero to indicate
wild reception is deprecated, and will be withdrawn in the future.

For an allocation of a port number you must contac;:t Acorn.

Econet

Flag bytes

Flag byte values are in the range 0 to 127 (&7F). When passed in a word to a SWI,
bits 8- 31 inclusive must be zero. Bit 7 is ignored by RISC OS, to maintain
compatibility with some older software that used this bit. To clarify, flag bytes &87
and &07 are acceptable as input to a transmission SWI (and both represent the
value &07). but & I 07 is not acceptable. Reception SW!s all return values with bit 7
clear (ie &00 to &7F).

Transmission semantics

The transmission semantics are simple. When a transmission is started the client's
control information (passed in registers) is stored in a record in a linked list within
Econet workspace. At regular intervals the list is scanned, and those records that
should be actually transmitted at that moment are passed to the FlO software.
When that particular transmission attempt completes the status of the record is
changed accordingly. This means that if two transmissions are started at the same
time, they will interleave their transmission retries.

When a transmission has completed but failed:

• if the count is non-zero the delay is added to the predicted start time to give
the next start time

• otherwise the status is set to Status_NotListening (or Status_NetError).

This means that as far as possible the time out time will be the Delay multiplied by
the (Count- I).

Local loopback

Versions of RISC OS after RISC OS 2 have added support for localloopback.
Transmissions directed at your own station number will be 'received' if there is an
acceptable receive block open by directly copying the data. This applies to
broadcast transmissions and wild receptions as well as to calls that explicitly
address your machine.

2-641

Service Calls

Service Calls

2-642

Econet restarting

Service_ReAIIocatePorts
(Service Call &48)

On entry

Rl = &48 (reason code)

On exit

Use

Rl preserved to pass on (do not claim)

This call is made whenever Econet restarts. It is then up to the Econet software to
allocate ports, set up TxCBs and RxCBs, etc.

Econet is about to leave

On entry

Rl =&56 (reason code)

On exit

Rl preserved to pass on (do not claim)

Use

Econet

Service_EconetDying
(Service Call &56)

This call is made whenever Econet is about to leave. It is then up to the Econet
software to release ports, delete RxCBs and TxCBs etc.

2-643

Service_Protoco/Dying (Service Call &83)

Use

2-644

Part of the AUN Driver Control Interface

Service_ProtocoiDying
{Service Call &83)

This service call is part of the AUN Driver Control Interface. used to interface a
network interface's driver module to a protocol module. Third parties wishing to
develop network interfaces for use with AUN may obtain further details on request
from Acorn .

Use

Econet

Service_FindNetworkDriver
(Service Call &84)

Part of the AUN Driver Control Interface

This service call is part of the AUN Driver Control Interface, used to interface a
network interface's driver module to a protocol module. Third parties wishing to
develop network interfaces for use with AUN may obtain further details on request
from Acorn.

2-645

Service_NetworkDriverStatus (Service Call &BB)

Use

2-646

Service_NetworkDriverStatus
(Service Call &88)

Part of the AUN Driver Control Interface

This service call is part of the AUN Driver Control Interface, used to interface a
network interface's driver module to a protocol module. Third parties wishing to
develop network interfaces for use with AUN may obtain further details on request
from Acorn.

SWI Calls

Creates a Receive Control Block

Econet

Econet_ Create Receive
(SWI &40000)

On entry

RO =port number
RI =station number
R2 =net number
R3 = buffer address
R4 = buffer size in bytes

On exit

RO =handle
R2 = 0 if R2 on entry is the local net number

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SYC mode

Re-entrancy

Use

SWI is re-entrant

This call creates a Receive Control Block (RxCB) to control the reception of an
Econet packet. It returns a handle to the RxCB.

The buffer must remain available all the time that the RxCB is open, as data
received over the Econet is read directly from hardware to the buffer. You must not
use memory in application space if your program is to run under the Desktop.
Instead, you should use memory from the RMA. To do so. claim the memory using
OS_Module 6 (see page I -233). and- after abandoning the receive control block
return the space to the RMA using OS_Module 7 (see page I-234).

2-647

Econet_CreateReceive (SWI &40000)

2-648

Related SWis

Econet_ExamineReceive (page 2-649). Econet_ WaitForReception (page 2-654).
Econet_AbandonAndReadReceive (page 2-683)

Related vectors

None

Reads the status of an RxCB

On entry

RO =handle

On exit

RO =status

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

Econet

Econet_ExamineReceive
(SWI &40001)

This call reads the status of an RxCB, which may be one of the following:

7 Status_RxReady
8 Status_Receiving
9 Status_Received

It returns less information than Econet_ReadReceive , so is faster and corrupts
fewer registers. You should use it to poll a reception when not using
Econet_ WaitForReception .

Related SWis

Econet_CreateReceive (page 2-647), Econet_ WaitForReception (page 2-654) ,
Econet_ConvertStatusToString (page 2-664) ,
Econet_ConvertStatusToError (page 2-666)

2-649

Econet_ExamineReceive (SWI &40001)

2-650

Related vectors

None

Econet

Econet_ReadReceive
(SWI &40002)

Returns information about a reception, including the size of data

On entry

RO =handle

On exit

RO =status
RI = 0, or flag byte if RO = 9 (Status_Received) on exit
R2 = port number
R3 =station number
R4 =net number
R5 = buffer address
R6 = buffer size in bytes, or amount of data received if RO = 9 on exit

(Status_Received)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns information about a reception ; most importantly, it tells you how
much data was received. if any, and the address of the buffer in which it was placed.
The buffer address is the same as that passed to Econet_CreateReceive
(page 2-647). You can call this SWI before a reception has occurred .

The status of the RxCB may be one of the following:

7 Status_RxReady
8 Status_Receiving
9 Status_Received

2-651

Econet_ReadReceive (SWI &40002)

2-652

The returned values in R3 and R4 (the net and station numbers) are those of the
transmitting station if the status is Status_Received; otherwise they are the same
values that were passed in to Econet_CreateReceive.

Related SWis

Econet_CreateReceive (page 2-64 7). Econet_ WaitForReception (page 2-654).
Econet_AbandonAndReadReceive (page 2-683)

Related vectors

None

Abandons an RxCB

Econet

Econet_Abandon Receive
{SWI &40003)

On entry

RO =handle

On exit

RO =status

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call abandons an RxCB, returning its memory to the RMA. The reception may
have completed (RO = 9- Status_Received- on exit). in which case the
information in the RxCB (such as the sending station number, and the amount of
data sent) will be lost. The data in the receive buffer remains unaffected. If the
reception is in progress when this SWI is called, then information in the RxCB is
lost, as above.

Related SWis

Econet_CreateReceive (page 2-64 7). Econet_ WaitForReception (page 2-654),
Econet_AbandonAndReadReceive (page 2-683)

Related vectors

None

2-653

Econet_ WaitForReception (SWI &40004)

2-654

Econet_ WaitForReception
{SWI &40004)

Polls an RxCB, reads its status, and abandons it

On entry

RO =handle
Rl =delay in centiseconds
R2 = 0 to ignore Escape; else Escape ends waiting

On exit

RO =status
Rl = 0, or flag byte if RO = 9 (Status_Received) on exit
R2 = port number
R3 = station number
R4 = net number
R5 = buffer address
R6 = buffer size in bytes, or amount of data received if RO = 9 on exit

(Status_Received)

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SYC mode and in USR mode

Re-entrancy

Use

SWI is not re-entrant

This call repeatedly polls an RxCB (that you have already set up with
Econet_CreateReceive) until a reception occurs, or a timeout occurs, or the user
interferes (say by pressing Escape). It then reads the status of the RxCB before
abandoning it.

Econet

The status of the RxCB may be one of the following:

8 Status_Receiving
9 Status_Received
I 0 Status_NoReply
II Status_Escape

The returned values in R3 and R4 (the net and station numbers) are those of the
transmitting station if the status is Status_Received; otherwise they are the same
values that were passed in to SWI Econet_CreateReceive.

Note that because this interface enables interrupts it should not be called from
within either interrupt service code or event routines .

During the loop when the polling of the RxCB and of Escape takes place, the
processor is put in USR mode with IROs enabled; this allows callbacks to occur.

Related SWis

Econet_ExamineReceive (page 2-649), Econet_ReadReceive (page 2-651),
Econet_AbandonReceive (page 2-653),
Econet_AbandonAndReadReceive (page 2-683)

Related vectors

None

2-655

Econet_EnumerateReceive (SWI &40005)

2-656

Econet_EnumerateReceive
{SWI &40005)

Returns the handles of open RxCBs

On entry

RO = index (I to start with first receive block)

On exit

RO =handle (0 if no more receive blocks)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call returns the handles of open RxCBs. On entry RO is the number of the RxCB
being asked for (I , 2, 3 ...). If the value of RO is greater than the number of open
RxCBs, then the value returned as the handle will be 0, which is an invalid handle.

This call should not be made from an IRQ or event routine as, although it will not
faiL errors and omissions are likely to occur in the returned information.

Related SWis

Econet_ Create Receive (page 2-64 7).

Econet_ReadReceive (page 2-65 I), Econet_AbandonReceive (page 2-653)

Related vectors

None

Econet

Econet_StartTransmit
(SWI &40006)

Creates a Transmit Control Block and starts a transmission

On entry

RO = flag byte
Rl =port number
R2 = station number
R3 = net number
R4 = buffer address
R5 = buffer size in bytes
R6 =count
R7 =delay in centiseconds

On exit

RO =handle
Rl corrupted
R2 = buffer address
R3 = station number
R4 = net number

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call creates a Transmit Control Block (TxCB) to control the transmission of an
Econet packet. It then starts the transmission.

The buffer must remain available all the time that the TxCB is open. as data
transmitted over the Econet is read directly from the buffer to hardware. You must
not use memory in application space if your program is to run under the Desktop.

2-657

Econet_StartTransmit (SWI &40006)

2-658

Instead, you should use memory from the RMA. To do so, claim the memory using
OS_Module 6 (see page 1-233), and- after abandoning the transmit control
block- return the space to the RMA using OS_Module 7 (see page 1-234).

The value returned in R4 (the net number) will be the same as that passed in R3
unless that number is equal to the local net number; in that case the net number
will be returned as zero.

Related SWis

Econet_PoiiTransmit (page 2-659). Econet_AbandonTransmit (page 2-660).
Econet_DoTransmit (page 2-661)

Related vectors

None

Reads the status of a TxCB

On entry

RO =handle

On exit

RO =status

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

Econet

Econet_PoiiTransmit
(SWI &40007)

This call reads the status of a TxCB, which may be one of the following:

0 Status_Transmitted
Status_Linejammed

2 Status_NetError
3 Status_NotListening
4 Status_NoClock
5 Status_ TxReady
6 Status_Transmitting

Related SWis

Econet_StartTransmit (page 2-657). Econet_AbandonTransmit (page 2-660)

Related vectors

None

2-659

Econet_AbandonTransmit (SWI &40008)

2-660

Abandons a TxCB

On entry

RO =handle

On exit

RO =status

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

Econet_AbandonTransmit
(SWI &40008)

This call abandons a TxCB, returning its memory to the RMA. The returned status is
the same as for Econet_PollTransmit.

Related SWis

Econet_StartTransmit (page 2-657). Econet_PollTransmit (page 2-659)

Related vectors

None

Econet

Econet_DoTransmit
(SWI &40009)

Creates a TxCB, polls it. reads its status, and abandons it

On entry

RO = flag byte
RI =port number
R2 = station number
R3 =net number
R4 = buffer address
R5 = buffer size in bytes
R6 =count
R7 = delay in centiseconds

On exit

RO =status
Rl corrupted
R2 = buffer address
R3 = station number
R4 = net number

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode and in USR mode

Re-entrancy

SWI is not re-entrant

Use

This call creates a TxCB and repeatedly polls it until it finishes transmission, or it
exceeds the count of retries. It then reads the final status of the TxCB before
abandoning it.

2-661

Econet_DoTransmit (SWI &40009)

2-662

The status of the TxCB may be one of the following:

0 Status_Transmitted
Status_LineJammed

2 Status_NetError
3 Status_NotListening
4 Status_NoClock

The value returned in R4 (the net number) will be the same as that passed in R3
unless that number is equal to the local net number; in that case the net number
will be returned as zero.

Note that because this interface enables interrupts it should not be called from
within either interrupt service code or event routines.

During the loop when the polling of the TxCB and of Escape takes place, the
processor is put in USR mode with IROs enabled; this allows callbacks to occur.

Related SWis

Econet_StartTransmit (page 2-657), Econet_PollTransmit (page 2-659).
and Econet_AbandonTransmit (page 2-660)

Related vectors

None

Econet

Econet_ReadlocaiStationAndNet
{SWI &4000A)

Returns a computer's station number and net number

On entry

No parameters passed in registers

On exit

RO = station number
Rl =net number

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call returns a computer's station number and Econet net number. The net
number will be zero if there are no Econet bridges present on the network.

For more information, see the section entitled Reading your station and net numbers on
page 2-638.

Related SWis

None

Related vectors

None

2-663

Econet_ConvertStatusToString (SWI &40008)

2-664

Econet_ ConvertStatus ToString
(SWI &40008)

Converts a status to a string

On entry

RO =status
Rl =pointer to buffer
R2 = buffer size in bytes
R3 =station number
R4 = net number

On exit

RO =buffer
Rl =updated buffer address
R2 = updated buffer size in bytes

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call converts a status to a string found in the messages file . This is then copied
into RAM. including the station and net numbers. giving a string such as:

Network station 59.254 not listening

If the status given in RO is invalid (ie not in the range 0- 14), this will cause a data
abort or an address exception. If the station/net number given in R3/R4 is invalid,
no station information is given.

Under RISC OS 2 the string is not read from the messages file. but is instead read
direct from the ROM.

Econet

Related SWis

Econet_ConvertStatusToError (page 2-666)

Related vectors

None

2-665

Econet_ConvertStatusToError (SWI &4000C)

2-666

Econet_ConvertStatusToError
(SWI &4000C)

Converts a status to a string, and then generates an error

On entry

RO =status
Rl =pointer to error buffer
R2 =error buffer size in bytes
R3 = station number
R4 = net number

On exit

RO = pointer to error block
V flag is set

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call converts a status to a string found in the messages file. This is then copied
into RAM, including the station and net numbers. giving a string such as:

Network station 59.254 not listening

If the station/net number given in R3/R4 is invalid, no station information is given.

Finally this call returns an error by setting the V flag, with RO pointing to the error
block.

If you use a buffer address of zero, then the string is left in a buffer in the
MessageTrans workspace.

Econet

Under RISC OS 2 the string is not read from the messages file . but is instead read
direct from the ROM.

Related SWis

Econet_ConvertStatusToString (page 2-664)

Related vectors

None

2-667

Econet_ReadProtection (SWI &40000)

2-668

Econet_ReadProtection
{SWI &40000)

Reads the current protection word for immediate operations

On entry

No parameters passed in registers

On exit

RO =current protection value

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call reads the current protection word for immediate operations. Various bits
in the word, when set, disable corresponding immediate operations:

Bit

0
I
2
3
4
5
6
7
8
9- 31

Immediate operation

Peek
Poke
Remote JSR
User procedure call
OS procedure call
Halt
Continue- always zero on RISC OS computers
Machine peek- always zero on RISC OS computers
Get registers
Reserved- must be zero

Note- This call is deprecated. You should preferably use the call
Econet_SetProtection (page 2-670) to read the protection word instead of this call.

Related SWis

Econet_SetProtection (page 2-670)

Related vectors

None

Econet

2-669

Econet_SetProtection (SW/ &4000E)

2-670

Econet_ Set Protection
(SWI &4000E)

Sets or reads the protection word for immediate operations

On entry

RO = EOR mask word
Rl =AND mask word

On exit

RO =old value

Interrupts

Interrupts are enabled on write-through to CMOS, preserved otherwise
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call sets the protection word for immediate operations as follows:

New value= (old value AND Rl) EOR RO

Various bits in the word, when set, disable corresponding immediate operations :

Bit

0

2
3
4
5
6
7

Immediate operation

Peek
Poke
Remote JSR
User procedure call
OS procedure call
Halt
Continue- must be zero on RISC OS computers
Machine peek- must be zero on RISC OS computers

8
9- 30
3!

Econet

Get registers
Reserved- must be zero
Write new value to the CMOS RAM

Normally this call sets or reads the current value of the word . A default value for
this word is held in CMOS RAM.

The most useful values of RO and Rl are:

Action

Set current value
Read current value
Set new default value

RO
new value (0 - & IFF)
0
&80000000 +new value

Rl

0
&FFFFFFFF
0

You should use this call to read the value of the protection word, rather than
Econet_ReadProtection (page 2-668) .

Using this call to read is also the preferred method for detecting the presence of
the Econet drivers , since doing so can never return an unexpected error. Detecting
the error 'No such SWI' allows software dependent upon Econet to report its
absence. Example code is given in the section entitled Application notes on
page 2-691 .

Related SWis

None

Related vectors

None

2-671

2-672

Econet_ReadStationNumber
(SWI &4000F)

Extracts a station and!or net number from a supplied string

On entry

Rl =address of string to read

On exit

Rl =address of terminating space or control character
R2 =station number (-I for not found)
R3 =net number (-I for not found)

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call extracts a station and!or net number from a supplied string. For an
example of its use, see the section entitled Extracting station numbers from a string on
page 2-638.

Related SWis

None

Related vectors

None

Econet

Econet_PrintBanner
(SWI &4001 0)

Prints the string 'Acorn Econet' followed by a newline

On entry

On exit

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call prints the string 'Acorn Econet' followed by a newline. The string is
fetched from a message file with the token 'AcrnEco'. If the Econet network data
clock is not present then this call instead prints the string 'Acorn Econet, no clock'
followed by a newline. In this case, the token used is 'EcoNClk'.

This call uses OS_ WriteO and OS_NewLine, and so cannot be called from within
either interrupt service code or event routines.

Related SWis

None

Related vectors

None

2-673

Econet_ReadTransportType (SWI &40011)

2-674

Econet_ReadTransportType
{SWI &40011)

Returns the underlying transport type to a given station

On entry

RO = station number
Rl =net number
R2 = 2

On exit

RO. Rl preserved
R2 =transport type (0 ~not known. I ~Internet. 2 ~ Econet, 3 ~Nexus)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call is used by clients to determine the underlying transport type to a given
station. They can then use this information to determine the optimum
transmission strategy to use. based on prior empirical knowledge of the different
transport types.

This call is unnamed- but still available by number- in both RISC OS 2 and
RISC OS 3 (version 3.00) .

Related SWis

None

Related vectors

None

Econet

Econet_ReleasePort
(SWI &40012)

Releases a port number that was previously claimed

On entry

RO =port number

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call releases a port number that was previously claimed by calling
Econet_ClaimPort (page 2-678) .

You must not use this call for port numbers that have been previously claimed
using Econet_AllocatePort (page 2-676); instead, you must call
Econet_DeAllocatePort (page 2-677) .

Related SWis

Econet_ClaimPort (page 2-678)

Related vectors

None

2-675

Econet_AI/ocatePort (SWI &40013)

2-676

Allocates a unique port number

On entry

No parameters passed in registers

On exit

RO = port number

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SYC mode

Re-entrancy

SWI is re-entrant

Use

Econet . .,AIIocatePort
(SWI &40013)

This call allocates a unique port number that has not already been claimed or
allocated .

When you have finished using the port number, you should call
Econet_DeAIIocatePort (page 2-677) to make it available for use again.

Related SWis

Econet_DeAIIocatePort (page 2-677)

Related vectors

None

Econet

Econet_DeAIIocatePort
(SWI &40014)

Deallocates a port number that was previously allocated

On entry

RO =port number

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call deallocates a port number that was previously allocated by calling
Econet_AllocatePort (page 2-676) .

You must not use this call for port numbers that have been previously claimed
using Econet_ClaimPort (page 2-678); instead, you must call Econet_ReleasePort
(page 2-675) .

Related SWis

Econet_AllocatePort (page 2-676)

Related vectors

None

2-677

Econet_C/aimPort (SWI &40015)

2-678

Claims a specific port number

On entry

RO = port number

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

Econet_CiaimPort
(SWI &40015)

This call claims a specific port number. If it has already been claimed or allocated,
an error is generated.

When you have finished using the port number, you should call
Econet_ReleasePort (page 2-675) to make it available for use again.

Related SWis

Econet_ReleasePort (page 2-675)

Related vectors

None

Econet

Econet_Startlmmediate
(SWI &40016)

Creates a TxCB and starts an immediate operation

On entry

RO = operation type
Rl =remote address or Procedure number
R2 =station number
R3 = net number
R4 = buffer address
R5 =buffer size in bytes
R6 =count
R7 =delay in centiseconds

On exit

RO =handle
RI corrupted
R2 = buffer address
R3 =station number
R4 = net number

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call creates a TxCB and starts an immediate operation . For full details see the
section entitled Immediate operations on page 2-629.

The buffer must remain available all the time that the TxCB is open , as data
transmitted over the Econet is read directly from the buffer to hardware. You must
not use memory in application space if your program is to run under the Desktop.

2-679

Econet_Startlmmediate (SWI &40016)

2-680

Instead. you should use memory from the RMA. To do so. claim the memory using
OS_Module 6 (see page 1-233). and- after abandoning the transmit control
block- return the space to the RMA using OS_Module 7 (see page 1-234).

The value returned in R4 (the net number) will be the same as that passed in R3
unless that number is equal to the local net number; in that case the net number
will be returned as zero.

Related SWis

Econet_Dolmmediate (page 2-681)

Related vectors

None

Econet

Econet_Dolmmediate
{SWI &40017)

Creates a TxCB for an immediate operation, polls it, reads its status, and abandons
it

On entry

RO = operation type
Rl =remote address or procedure number
R2 =station number
R3 = net number
R4 = buffer address
R5 = buffer size in bytes
R6 =count
R7 =delay in centiseconds

On exit

RO =status
Rl corrupted
R2 = buffer address
R3 = station number
R4 = net number

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode and in USR mode

Re-entrancy

SWI is re-entrant

Use

This call creates a TxCB for an immediate operation, and repeatedly polls it until it
finishes transmission or it exceeds the count of retries. It then reads the final
status of the TxCB before abandoning it. For full details see the section entitled
immediate operations on page 2-629.

2-681

Econet_Dolmmediate (SWI &40017)

2-682

The value returned in R4 (the net number) will be the same as that passed in R3
unless that number is equal to the local net number; in that case the net number
will be returned as zero.

Note that because this interface enables interrupts it should not be called from
within either interrupt service code or event routines.

During the loop when the polling of the TxCB and of Escape takes place, the
processor is put in USR mode with IROs enabled; this allows callbacks to occur.

Related SWis

Econet_Startlmmediate (page 2-679)

Related vectors

None

Econet

Econet_AbandonAndReadReceive
{SWI &40018)

Abandons a reception and returns information about it, including the size of data

On entry

RO =handle

On exit

RO =status
Rl = 0, or flag byte if RO = 9 (Status_Received) on exit
R2 =port number
R3 = station number
R4 = net number
R5 = buffer address
R6 = buffer size in bytes, or amount of data received if RO = 9 on exit

(Status_Received)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call abandons an RxCB, returning its memory to the RMA. It also returns
information about the reception; most importantly, it tells you how much data was
received, if any, and the address of the buffer in which it was placed. The buffer
address is the same as that passed to Econet_CreateReceive (page 2-647) . You can
call this SWI before a reception has occurred.

The status of the RxCB may be one of the following:

7 Status_RxReady
9 Status_Received

2-683

Econet_AbandonAndReadReceive (SWI &40018)

2-684

The returned values in R3 and R4 (the net and station numbers) are those of the
transmitting station if the status is Status_Received; otherwise they are the same
values that were passed in to Econet_CreateReceive.

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00) .

Related SWis

Econet_CreateReceive (page 2-64 7), Econet_ReadReceive (page 2-65 I),
Econet_AbandonReceive (page 2-653)

Related vectors

None

Econet

Econet_ Version
(SWI &40019)

Returns the version of software for the underlying transport to a given station

On entry

RO = station number
Rl =net number

On exit

RO, Rl preserved
R2 =version number x I 00 (eg 54 7 for version 5.4 7)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is used by clients to determine the version of software that handles the
underlying transport to a given station . If both RO and Rl are set to zero on entry,
this call instead returns the version number of the top-level software to which
RISC OS passes the Econet SW!s.

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00) .

Related SWis

None

Related vectors

None

2-685

Econet_NetworkState (SW/ &4001A)

2-686

Econet_NetworkState
(SWI &4001A)

Returns the state of the underlying transport to a given station

On entry

RO = station number
Rl =net number

On exit

RO, Rl preserved
R2 =transport state (0 ==::}fully functional. I ==::}no clock signal)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call returns the state of the underlying transport to a given station . The state
returned is transport type dependent, but you may always assume that a value of
zero means that the transport is fully functional.

You should only use the returned value as a hint to the exact state; in other words ,
it is suitable for display but not for decision making. Using this call is no substitute
for proper error handling; to determine if a particular transmit will fail. you must do
the transmit and be prepared for it to fail.

Related SWis

Econet_PrintBanner (page 2-673)

Related vectors

None

Econet

Econet PacketSize
{SWI &4001 B)

Returns the maximum packet size recommended on the underlying transport to a
given station

On entry

RO = station number
Rl =net number

On exit

RO, Rl preserved
R2 =maximum permitted packet size, in bytes

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call returns the maximum recommended packet size on the underlying
transport to a given station . Larger packets will not necessarily be rejected, but
their use is not recommended . The size returned is transport type dependent.

This call is intended for use by modules supplying protocols ; you do not need to
use it in application software . For maximum efficiency the protocol module should
negotiate the packet size once. Since the recommended packet size may differ
between the stations at either end of a transmission, the protocol module should
interrogate both stations and take the lower value returned.

Related SWis

None

2-687

Econet_PacketSize (SWI &40018)

2-688

Related vectors

None

Econet

Econet_ReadTransportName
{SWI &4001 C)

Returns the name of the underlying transport to a given station

On entry

RO =station number
Rl =net number

On exit

RO, Rl preserved
R2 = pointer to null terminated name of transport

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call returns the name of the underlying transport to a given station. You can
use this to insert the transport name into (for example) a status conversion.

Related SWis

None

Related vectors

None

2-689

•commands

*Commands

2-690

The only • Command the Econet module responds to is *Help Station , which
displays the current net and station numbers of the machine. It also displays a 'No
clock' message if applicable. For more details of the *Help command, see
page I -947.

Econet

Application notes
The following code is the preferred way of testing for the presence of the Econet
drivers. It calls the SWI Econet_SetProtection with RO and R I set such that the call
attempts to read the Econet protection word; doing so can never return an
unexpected error. Detecting the error 'No such SWI' allows software dependent
upon Econet to report its absence by generating an error; note the use of
MessageTrans to do so:

MOV
MOV
MOV
MOV

rl ,
r2,
r3,
r4 ,
r5,
r6,
r7 ,

#0
#0
#0
#0
#0
#0
#0

SWI XMessageTrans_ErrorLookup
ExitFindEconet

STRVS rO , [sp, #0]
LDMFD sp! , {r0-r7 , pc}

ErrorNumber_NoSuchSWI
DCD &000001E6

Error_ NoEconet
DCD &00000312
DCB "NoEco ", 0

No parameters

2-691

2-692

48 File server protocol interface

The user environment

Handles

A client is identified and authenticated to the file server by its station number and
three handles . When a user logs on the file server creates these handles by opening
directories; the handles identify to the file server the environment in which to
interpret commands and to look up filenames presented by the client. The file
server closes the handles when the user logs off again. The three handles which
comprise the user environment are the currently selected directory or CSD (see
page 2- I 0 and page 2- I 6 I), the user root directory or URD (see page 2-10 and
page 2- I 92). and the library directory or Lib (see page 2-10 and page 2-170) .
Incidentally, the handles passed to the client are only used for the client/server
communication, and are not the file server's own file handles for the directories.

Usually the client machine's software deals with the manipulation of these
handles, but you can define your own environment by opening several directories
and declaring a set ofthese handles as representing the current environment. Thus
you can execute commands in a number of different environments .

Protocol Block Formats

Standard Tx Header

The initial protocol blocks that the client sends to the file server take a standard
form . This form is known as the standard Tx header:

Byte Meaning

I reply port
2 function code
3 handle for user root directory (URD)
4 handle for currently selected directory (CSD)
5 handle for library directory (Lib)

The reply port is the Econet port on which the client station is prepared to receive a
response from the file server. The function code indicates to the file server which
operation to perform; for a list of available function codes, see the section entitled

2-693

The user environment

File Server Function Codes on page 2-696. The three handles define the environment
for the command, as described above. The command is sent to the file server on
port &99, which is known as the command port.

Standard Rx Header

The responses that the file server returns to the client also take a standard form,
known as the standard Rx header:

Byte Meaning

I command code
2 return code

The command code indicates to the client what action (if any) the client should take
upon receiving this response. The command code is principally used when
responding to a 'Decode command line' function (see page 2-698). The return code
gives the status of the command passed to the file server:

• Zero indicates that the command step completed successfully

• Non-zero values are an error number indicating what error has occurred; the
remainder of the message contains an ASCII string describing the error, which
is terminated by a carriage return .

Standard Data Types

2-694

The file server protocols use standard data types for most operations.

Multi-byte values

In all cases multi-byte values are stored low byte first.

Object and user names

All specifications of object and user names may be 8-bit values. save that &80 is
reserved since it is used to indicate the end of data in some file server protocols.

File size

File servers only support files up to 16 Megabytes, so all pointer operations and file
length indications use 24 bit quantities (stored low byte first. of course). Econet
protocols do not support larger files.

File server protocol interface

Attributes

The attributes for an object are stored in a single byte with the bit set to ·I·
meaning as follows:

Bit Meaning if set

0 object has public read access
I object has public write access
2 object has owner read access
3 object has owner write access
4 object is locked against owner deletion
5 object is a directory
6 object is a protected directory

Note that public lock is always implicitly set.

Date

The date is stored in two bytes thus:

Bit
7 6 5 4 3 2 0

0 Year (bits 4- 6) Day of month (in range 1 - 31)

Byte

Year (bits 0 - 3) I Month (in range 1 - 12)

Figure 48.1 File server protocol date format

As you can see. the year is encoded as a seven bit number (ie 0- 127); this is used
to specify the offset from 1981 .

Access rights

The access rights to a directory are encoded in a single byte:

Value Meaning

0 owner access
&FF public access

Object type

The object type is encoded in a single byte:

Value Meaning

0 object not found
object is a file

2 object is a directory
3 object is an image file (ie both file and directory)

2-695

The user environment

Privilege

A client may have different levels of privilege. The values for each privilege level are
as follows:

Value Meaning Character equivalent

&00 locked L
&40 fixed F
&80 normal
&FF system manager s

The character equivalents are used by some command line interfaces.

Object names

Object names are currently limited by the filing system, usually 10 characters. They
may contain 8 bit values and are not case sensitive.

User identifiers

User identifiers are normally I 0 characters with a provision for group identifiers ie:
group.rrame, each of I 0 characters.

Disc titles

The disc title is the name that the server exports to network clients. The length is
determined by the host file system however·it must start with a letter and consists
of alphanumeric characters (ie: A-Z, a-z, 0-9). "-"and"_".

Passwords

The password file associated with the server holds encrypted passwords, privilege
levels, boot options and space allocation information for each user.

File Server Function Codes

2-696

A summary of the file server function codes is given below. Function is the function
code number, Privilege shows whether the client has to have privilege, and Logged-orr
shows whether the client has to be logged-on:

File server protocol interface

Function Privilege Logged~on Description

0 no yes t Decode command line
I no yes Save file
2 no yes Load file
3 no yes Examine
4 no yes Catalogue header
5 no yes Load as
6 no yes Open object
7 no yes Close object
8 no yes Get byte
9 no yes Put byte
IO no yes Get bytes
I I no yes Put bytes
I2 no yes Read random access arguments
I3 no yes Set random access arguments
I4 no no Read disc information
I5 no yes Read current users' information
I6 no no Read file server date and time
I7 no yes Read 'End-of-file' status
I8 no yes Read object information
I9 no yes Set object attributes
20 no yes Delete object
2I no yes Read user environment
22 no yes Set user boot option
23 no yes Log off
24 no yes Read user's information
25 no no Read file server version number
26 no yes Read disc free space information
27 no yes Create directory, specifying size
28 yes yes Set file server date and time
29 no yes Create file
30 no yes Read user free space
3I yes yes Set user free space
32 no yes Read client Userid
33 no yes Read current users' info (extended)
34 no yes Read user's information (extended)
35 reserved
36 yes yes Manager interface
37 reserved

t There is no need to be logged-on to decode the *I Am command.

2-697

Interfaces

Interfaces

This section deals individually with each of the commands and functions available
to client software. The exchange of packets is detailed and the format of requests
and responses is given.

Decode command line

2-698

A number of the operations performed by the file server are initiated by the
sending of a command line.

The command line syntaxes which the Acorn File Server will accept are as follows
(commands in bold are new Level 4 commands):

*Access object_spec [attributes]
*Bye
*CDir directory
*Delete object
*Dir [directory]
*I am user_name [password]
*Info object_spec
*Lib [directory]
*Logon user_name [password]
*Pass old_password new_password
*Rename object new_name
*SDisc [:]disc_spec

Management specific commands:

*FSShutdown
*Logoff user_nameluser_number
*NewUser user_name
*Priv user_ name [new_privilege]
*RemUser user_name

The syntax of some of the above commands differ from the equivalent RISC OS
commands, because the command line will already have been processed before
the command is issued to the file server.

File server protocol interface

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 0)
6 ... command line, terminated by CR

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

I - 2 standard Rx header
3.. command dependent results

The possible command codes in the standard Rx header that the file server may
return are:

Code

0
I
2
3
4
5
6
7
8
9
10
II

Meaning

no further action needed (ie command complete)
reserved
reserved
reserved
*Info
*lAm
*SDisc
*Dir
unrecognised command
*Lib
disc information, function code 14 called
users information, function code 15 called

Some commands require further action by the client, in which case the file server
will also return (in byte 3 onwards) any decoded parameters or data which the
client will need to complete the command:

2-'699

Interfaces

2-700

Return from *Info

The file server's reply is sent to the client's reply port , as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

I - 2 standard Rx header (command code= 4)
3 - 12 object name, padded with spaces
13 space
14 - 21 load address, padded with zeros
22 space
23 - 30 execution address, padded with zeros
31 - 33 spaces
34 - 39 length padded with zeros
40 - 42 spaces
43- 48 access details (eg LWRIWR). padded with spaces
49- 53 spaces
54-61 date (DD:MM:YY)
62 space
63- 68 System Internal Name (SIN) , padded with zeros
69 terminating negative byte (&80)

'Spaces' are ASCII spaces (&20) 'Zeros' are ASCII zeros (&30), not null bytes (&00) .

Return from *I Am

The file server's reply is sent to the client 's reply port, as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

I - 2 standard Rx header (command code= 5)
3 new URD handle
4 new CSD handle
5 new Lib handle
6 boot option (bits 0- 3 significant)

Return from *SDisc

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

I - 2 standard Rx header (command code= 6)
3 new URD handle
4 new CSD handle
5 new Lib handle

File server protocol interface

Return from *Dir

The file server's reply is sent to the client's reply port, as specified by the client in
it s standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header (command code = 7)
3 new CSD handle

Return from unrecognised command

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

I - 2 standard Rx header (command code = 8)
3.. command string, terminated by CR

Return from *Lib

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header (command code= 9)
3 new Lib handle

Save file

This is the actual save operation. This protocol is used after the command line has
been decoded, either by the file server or the local operating system.

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I reply port
2 I (function code)
3 acknowledge port
4 CSD handle
5 Lib handle
6-9 file load address
IO- I3 file execute address
I4- I6 file size
I7 ... file name, terminated by CR

2-701

Interfaces

2-702

The file server's reply is sent to the client 's reply port , as specified in the client 's
initial packet (see above) :

Byte Meaning

I - 2 standard Rx header (command code= 3 if leaf name is returned ,
otherwise = 0)

3 data port
4 - 5 maximum data block size
6... leaf name, terminated by CR (if returned)

The client and file server now enter the 'data transfer' phase of the protocol where
the file server acknowledges the receipt of each data packet. If there is no data to
be sent (ega zero length file) then this phase is omitted. If the fil e server detects an
error during the data transfer phase (ega disc error) then the phase is allowed to
complete. but the Save file operation is aborted, and the error status is given in the
return code of the 'final acknowledge' (see below) .

The client sends each block of data to the file server's data port, as specified in the
file server's initial reply (see above) :

Byte Meaning

I . .. a block of data. up to the maximum data block size

The file server acknowledges the receipt of each block by sending to the client 's
acknowledge port, as specified by the client in its initial transmission (see above):

Byte Meaning

I a single byte of undefined value

When the file server receives the final data block it instead acknowledges it with
the 'final acknowledge' , which is the terminating packet of the protocol It sends
this to the client's reply port, which- again- was specified in the client's initial
packet:

Byte Meaning

I - 2 standard Rx header
3 attributes
4- 5 date

File server protocol interface

Load file

This is the actual load operation. This protocol is used after the command line has
been decoded, either by the file server or the local operating system.

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I reply port
2 2 (function code)
3 data port
4 CSD handle
5 Lib handle
6.. file name, terminated by CR- may be wildcarded

The file server's reply is sent to the client 's reply port, as specified in the client's
initial packet (see above):

Byte Meaning

I - 2 standard Rx header (command code= 14 if leaf name is resolved ,
otherwise = 0)

3 - 6 file load address
7 - I 0 file execute address
II - 13 file size
14 fileaccess
15 - 16 file creation date
17... leaf name, terminated by CR. with wild-cards resolved (if returned)

The client and file server now enter the 'data transfer' phase of the protocol. If the
file is of zero length then this phase is omitted. If the file server detects an error (eg
a disc error) then the required amount of data will be sent, but its data content is
undefined.

The file server sends each block of data to the client's data port, as specified in the
client's initial packet:

Byte Meaning

I... data blocks of undefined size repeated until 'file size' data has been
sent (maximum data block size is currently 4k)

The client does not acknowledge these packets.

When the file server has sent the final data block it then sends the terminating
packet of the protocol to the client 's reply port, which- again- was specified in the
client's initial packet:

Byte Meaning

I - 2 standard Rx header

2-703

Interfaces

2-704

Examine

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

l - 5 standard Tx header (function code= 3)
6 argument to examine function:

0 ==> return all information, in machine readable format
l ==> return all information, in character string format
2 ==> return file title only, in machine readable format
3 ==>return file title and access, in character string format

7 directory entry point (0- 255)
8 number of entries to examine (l - 255, or 0 for all)
9... name of directory to be examined, terminated by CR

The argument passed in byte 6 specifies the format and amount of information to
be returned by the file server.

The directory entry point gives the entry number within the directory from which to
examine. Conventionally the first entry in a directory is entry number zero .

The number of entries to examine specifies how many entries are to be examined,
so is usually determined by the buffer space available to the client. A parameter of
zero in this case conventionally demands that all entries in the directory from the
entry point to the end of the directory be examined.

Information may be returned in two ways: as a character string, or in a machine
readable format:

• Information that is returned in character string format is in a fixed format
including separators- that is suitable for direct output. Carriage returns may
occur within such strings. Individual directory entries are delimited by zero
bytes (&00). the final entry being terminated by a negative byte (&80) .

• Information that is returned in machine readable format consists of a defined
number of bytes , and so there are no delimiters between entries, although the
final entry is still terminated by a negative byte (&80) .

The file server's reply is sent to the client's reply port, as specified in the client's
initial packet (see above) :

Byte Meaning

I - 2 standard Rx header
3 number of entries actually examined
4 number of entries in directory
5... argument dependent information

The different formats of byte 5 onwards are given below.

File server protocol interface

Return for all information in machine readable format (argument = 0)

Byte Meaning

5- 14 object name padded to 10 characters with spaces
15 - 18 load address
19 - 22 execute address
23 attributes
24- 25 date
26- 28 System Internal Name (SIN)
29 - 31 object length

Return for all information in character string format (argument = I)

Byte Meaning

5. . . character string of all information data (see above for character string
format/separators)

Return for file title only, in machine readable format (argument = 2)

Byte Meaning

5 10 (object name length for BBC MOS)
6.. object name padded with spaces

Return for file title and access, in character string format (argument= 3)

Byte Meaning

5.. character string giving object name and formatted access string (see
above for character string format/separators)

Catalogue Header

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 4)
6.. directory name, terminated by CR (null name~ catalogue CSD)

The file server's reply is sent to the client's reply port, as specified in the client's
initial packet (see above) :

Byte

I - 2
3 - 13
14
15- 17
I8- 33

Meaning

standard Rx header
last component of directory name padded with spaces
character indicating ownership of directory ('0' or 'P')
three space characters (&20)
current disc name padded with spaces, terminated by CR. negative

byte (&80)

2-705

Interfaces

2-706

Load as

This is exactly the same as Load file (Function code= 2). except that the file name
is looked up in the CSD and then in the Lib. The error returned if the file name is
not found in either directory is 'Bad command '.

The protocol is identical. save that the client's initial packet has a function code of
5 (for 'Load as') rather than 2 (for 'Load file') .

Open object

This function code creates a handle for the object specified with the access type
requested. Such handles are used for performing random access operations, and
also for manipulating the user's environment. An object will be opened only if the
client has the necessary access rights to the object. When opening directories
these must be specified as already existing. A file can be opened several times for
reading, but only once for update. A file will be created with default size of &400
bytes if it does not already exist. and is opened for update, and the client specifies
a new file (byte 6 = 0) . Machine-dependent limits are imposed on the number of
handles a client is allowed to have open at any one time. BBC machines support 8,
Master series and Archimedes clients are allowed 16. These values include 3
handles which are automatically allocated when the client logs on, therefore a BBC
machine will be able to open a further 5 objects.

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 6)
6 zero ~create a new file, deleting existing data

non-zero~ object must already exist
7 zero ~ open object for update

non-zero ~ open object for reading only
8.. . object name, terminated by CR

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

I - 2 standard Rx header (command code= I if leafname is returned,
otherwise= 0)

3 object's handle
4... leaf name, terminated by CR (if returned)

File server protocol interface

Close object

This function indicates to the file server that the handle passed as argument is no
longer needed and that all of the updated data in the file should be written out to
the disc. A handle of zero indicates to the fi le server that all handles to open files
are to be closed. This call does not close handles to directories if t he handle given
is zero.

The client initiates the exchange by sending to the file server's command port:

Byte M eaning

I - 5 standard Tx header (function code = 7)
6 handle

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

I - 2 standard Rx header

Get byte

The next four function codes deal with the facilities that the file server provides to
enable the user to perform random access operations on open files.

These operations have an additional protocol to ensure the integrity of the data
exchanged, provided by a sequence number. The sequence number is a single bit held
in both client and file server which differentiates between:

• successive reads of a file using the pointer held in the file server

• repeated reads of the same byte. because the operation failed at the previous
attempt.

The client sends the sequence number in the least significant bit of the flag byte of
the Econet control block. The file server returns its copy of the sequence number
with the data to allow the client to detect data sequencing errors. The client should
invert its copy of the sequence number after every successful transaction with the
file server. If the client detects a data packet with the incorrect sequence number.
then the client should be prepared to repeat the request.

The Get byte function code reads a single byte from the file at the position specified
by the file server's internal file pointer. The client initiates the exchange by sending
to the file server's command port:

Byte Meaning

I reply port
2 8 (function code)
3 fi le handle

2-707

Interfaces

2-708

The file server's reply is sent to the client's reply port , as specified in the client's
initial packet (see above):

Put byte

Byte Meaning

I - 2 standard Rx header
3 byte read (&FE if reading first byte after file end)
4 &00 ~ normal read operation

&80 ~ last byte in the file
&CO ~ first byte after file end

This function code writes a single byte to the file at the position specified by the
file server's internal file pointer. The client initiates the exchange by sending to the
file server's command port:

Byte Meaning

I reply port
2 9 (function code)
3 file handle
4 byte to be written

The file server's reply is sent to the client's reply port, as specified in the client's
initial packet (see above):

Byte Meaning

I - 2 standard Rx header

Get bytes

This operation allows the client to read blocks of data. The client may supply an
offset within the file at which to start the operation, or may use the sequential file
pointer maintained by the file server. The protocol includes a sequence number as
described for Get byte and Put byte. The client initiates the exchange by sending to
the file server's command port:

File server protocol interface

Byte Meaning

I reply port
2 10 (function code)
3 data port
4 CSD handle
5 Lib handle
6 file handle
7 zero ~ use supplied offset

non-zero ~ use file server sequential pointer
8-10 number ofbytes totransfer
II - 13 file offset (ignored if byte 7 non-zero)

The file server's reply is sent to the client's reply port, as specified in the client's
initial packet (see above):

Byte Meaning

I - 2 standard Rx header

The client and file server now enter the 'data transfer' phase of the protocol. If the
transfer is of zero length then this phase is omitted. If the file server detects an
error (ega disc error) then the required amount of data will be sent. but its data
content is undefined . If a read extends over the end of the file then the requested
amount of data will be returned, but the data content of the bytes beyond the end
of the file is undefined.

The file server sends each block of data to the client's data port, as specified in the
client's initial packet:

Byte Meaning

I ... data blocks of undefined size repeated until 'transfer size' data has
been sent (maximum data block size is currently 4k)

The client does not acknowledge these packets.

When the file server has sent the final data block it then sends the terminating
packet of the protocol to the client's reply port, which- again- was specified in the
client's initial packet:

Byte Meaning

I - 2 standard Rx header
3 &00 ~all OK

&80 ~read includes last byte in file
4 - 6 number of valid data bytes transferred

2-709

Interfaces

2-710

Put bytes

This operation allows the client to write blocks of data. The client may supply an
offset within the file at which to start the operation, or may use the sequential file
pointer maintained by the file server. The protocol includes a sequence number as
described for Get byte and Put byte. The client initiates the exchange by sending to
the file server's command port:

Byte

I
2
3
4
5
6
7

8- IO
I I - I 3

Meaning

reply port
I I (function code)
acknowledge port
CSD handle
Lib handle
file handle
zero ~ use supplied offset
non-zero~ use file server sequential pointer
number of bytes to transfer
file offset (if supplied)

The file server's reply is sent to the client's reply port, as specified in the client 's
initial packet (see above):

Byte Meaning

I - 2 standard Rx header
3 data port
4- 5 maximum data block size

The client and file server now enter the 'data transfer' phase of the protocol where
the file server acknowledges the receipt of each data packet. If there is no data to
be sent then this phase is omitted . If the file server detects an error during the data
transfer phase (ega disc error) then the phase is allowed to complete, but the
operation is aborted, and the error status is returned in the return code of the 'final
acknowledge' (see below).

The client sends each block of data to the file server's data port, as specified in the
file server's initial reply (see above):

Byte Meaning

I.. . a block of data, up to the maximum data block size

The file server acknowledges the receipt of each block by sending to the client's
acknowledge port, as specified by the client in its initial transmission (see above):

Byte Meaning

I a single byte of undefined value

File server protocol interface

When the file server receives the final data block it instead acknowledges it with
the 'final acknowledge', which is the terminating packet of the protocol. It sends
this to the client's reply port, which- again- was specified in the client's initial
packet:

Byte Meaning

I - 2 standard Rx header
3 undefined
4 - 6 number of valid data bytes transferred

Read random access information

This function code allows the client to discover information about files for which
he currently has handles. The client initiates the exchange by sending to the file
server's command port:

Byte Meaning

I - 5 standard Tx header (function code = 12)
6 file handle
7 0 ~read sequential file pointer

I ~read file extent (the amount of valid data)
2 ~read file size (the space allocated for the file)

The file server's reply is sent to the client's reply port. as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header
3 - 5 information requested

Set random access information

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 13)
6 file handle
7 0 ~ set sequential file pointer

I ~ set file extent
8-10 valuetoset

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header

2-711

Interfaces

2-712

Read disc information

This function returns the disc configuration of the file server. Conventionally the
file server's drives are logically numbered from zero upwards. However, this
number is not the same as the drive number returned , which is the physical drive
number. The client initiates the exchange by sending to the file server's command
port:

Byte Meaning

I - 5 standard Tx header (function code= 14)
6 first logical drive number to interrogate
7 number of drives to interrogate (0 for all drives)

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header
3 number of drives found
4 physical drive number of first drive requested
5 - 20 disc name of first drive requested, padded with spaces
21. .. further 17-byte entries in same format

Read current users' information

This function returns the currently logged on users of the file server, their station
numbers and associated privileges . Conventionally the logged on user entries are
numbered from zero. The client initiates the exchange by sending to the file
server's command port :

Byte Meaning

I - 5 standard Tx header (function code= 15)
6 first entry for which to get information
7 number of entries for which to get information (0 for all)

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

I - 2 standard Rx header
3 number of entries returned
4
5
6 ...
11

station number of first user
network number of first user
name of first user, terminated by CR
privilege of first user

repeated for each
entry returned

File server protocol interface

Read file server date and time

It is not necessary to be logged on to the file server to use this function code. The
client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= I6)

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header
3-4 date
5 hours (0- 23)
6 minutes (0 - 59)
7 seconds (0- 59)

Read 'End-of-file' status

This function is valid for file handles only. The client initiates the exchange by
sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= I 7)
6 file handle

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header
3 zero ~ pointer within file

non-zero ~ pointer outside file

2-713

Interfaces

2-714

Read object information

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 18)
6 I ::::} read object creation date

2 ::::} read load and execute address
3 ::::} read object length
4 ::::} read object attributes and access rights
5 ::::} read all object information
6::::} read access rights and cycle number of directory
7::::} read unique identifier

7... object name, terminated by CR

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693) . The reply's contents depend on the
argument passed with the call:

Reply to arguments I - 5

Byte Meaning

I - 2 standard Rx header
3 object type
4.. requested results only, returned in the following order:

load address (4 bytes). execute address (4 bytes),
length (3 bytes). attributes (I byte). date (2 bytes),
access rights (I byte)

Reply to argument 6

Byte Meaning

I - 2 standard Rx header
3 undefined
4 0
5 I 0 (length of directory name)
6- 15 directory name padded with spaces
16 access rights
17 number of entries in directory

File server protocol interface

Reply to argument 7

Byte Meaning

I - 2 standard Rx header
3 object type
4- 9 unique identifier for that object on that server (SIN+ disc number):

bits 0- 23 file system System Identification Number (SIN)
bits 24- 31 file server disc number
bits 32- 47 filing system number

Set object attributes

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 19)
6 I ~ set load address. execute address. and attributes

2 ~ set load address
3 ~ set execute address
4 ~set attributes
5 ~ set creation date

7.. parameters to set (depend on byte 6)
n.. file name, terminated by CR

The lengths of the parameters to set are the same as the lengths of the
parameters returned by Read object information: see page 2-714.

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header

2-715

Interfaces

2-716

Delete object

The client initiates the exchange by sending to the file server's command port

Byte Meaning

I - 5 standard Tx header (function code = 20)
6... object name, terminated by CR

The file server's reply is sent to the client's reply port. as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

I - 2 standard Rx header
3-6 load address
7- 10 execute address
II - 13 file length
14 file attributes

Read user environment

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code = 21)

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte

I - 2
3
4- 19
20- 29
30- 39

Meaning

standard Rx header
16 (length of disc name)
name of currently selected disc, padded with spaces
name of CSD, padded with spaces
name of Lib, padded with spaces

Set user boot option

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 22)
6 new boot option (bits 0- 3 significant)

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header

File server protocol interface

Log off

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 23)

The file server's reply is sent to the client's reply port. as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

I - 2 standard Rx header

Read single user's information

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 24)
6. .. user name, terminated by CR

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header
3 user's privilege
4 user's station number
5 user's network number

Read file server version number

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 25)

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693): !

Byte Meaning

I - 2 standard Rx header
3 - I I a text string describing the file server type
I 2 a space character (ASC!l &20)
I 3- I6 a text string of the form n.xy which is the version

2-717

Interfaces

2-718

Read disc free space

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 26)
6... disc name, terminated by CR

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header
3- 5 free space on disc (in sectors of &100 bytes)
6-8 disc size (in sectors of &100 bytes)

Create directory, specifying size

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 27)
6 maximum number of sectors to allocate
7... name of directory, terminated by CR

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header

Set file server date and time

It is necessary to be logged on to the file server, with privilege, to set the date and
time parameters.

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 28)
6- 7 date
8 hours (0- 23)
9 minutes (0 - 59)
I 0 seconds (0- 59)

File server protocol interface

The file server's reply is sent to the client's reply port. as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header

Create file

This function creates a file of the size and type specified. The contents will
automatically be set to zeros for security reasons.

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 29)
6- 9 new file's load address
I 0 - 13 new file's execute address
14- 16 new file's length
17... new file's name, terminated by CR

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header
3 new file's attributes
4 - 5 new file's creation date

Read user free space

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 30)
6.. Userld for free space reading, terminated by CR;

CR alone means return the free space of the client

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header
3 - 6 available space for Userld, in bytes

2-719

Interfaces

2-720

Set user free space

This function code is only legal for privileged users. The Userid specified is that of
the client whose space allocation is to be amended.

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code = 3 I)
6- 9 new value for available space, in bytes
IO... Userid, terminated byCR

The file server's reply is sent to the client's reply port. as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header

Read client Userld

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code = 32)

The file server's reply is sent to the client 's reply port , as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header
3... Userid of client , terminated by CR

Read current users' information (extended)

This function returns the currently logged on users of the file server, their station
numbers and associated privileges. Conventionally the logged on user entries are
numbered from zero. The client initiates the exchange by sending to the file
server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 33)
6 first entry for which to get information
7 number of entries for which to get information (0 for all)

File server protocol interface

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte

I - 2
3
4
5
6
7 ...
n

Meaning

standard Rx header
number of entries returned
station number of first user
network number of first user
task number of first user
name of first user, terminated by CR
privilege of first user

Read single user's information (extended)

} repeated for each
entry returned

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header (function code= 34)
6... user name, terminated by CR

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header
3 user's privilege
4 user's station number
5 user's network number
6 user's task number

2-721

Interfaces

2-722

Manager Interface

This function allows the system manager to manipulate all the details concerning
the users of the system . The password file will then be updated accordingly.

You must be a privileged user to use this function .

The client initiates the exchange by sending to the file server's command port:

Byte Meaning

I - 5 standard Tx header, Function code= 36 (&24)
6 argument:

0 ~read number of entries in password file
I ~ read entry from password file
2 ~write user profile in password file
3 ~ add new user
4 ~ remove user
5 ~ set privilege
6 ~ logoff user
7 ~shutdown server

7... argument dependent parameters (see below)

The argument passed in byte 6 specifies the function to be performed by the file
server. Some of these functions require further parameters, which are given in
byte 7 onwards of this initial protocol block. These are detailed below.

Read number of entries in password file (argument = 0)

No argument dependent parameters are passed with the initial protocol block.

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

I - 2 standard Rx header
3 - 6 number of users

Read entry from password file (argument = I)

The argument dependent parameters passed with the initial protocol block are:

Byte Meaning

7 - 8 user number for which to get information

File server protocol interface

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

I - 2 standard Rx header
3 - 6 user profile index
7 privilege
8 boot option (bits 0 - 3 significant)
9- I2 spaces
I 3 station (if client logged on)
I4 net (if client logged on)
I 5 allowed to log on flag (bit I significant)
I 6- 37 user name, terminated by CR
38- 60 password, terminated by CR
6I .. URD name, terminated by CR

Write user profile in password file (argument = 2)

The argument dependent parameters passed with the initial protocol block are:

Byte

7- IO
I I
I2
I 3- I8
I9
20- 4I
42-64
65 ..

Meaning

reserved (must be zero)
privilege
boot option (bits 0 - 3 significant)
spaces
allowed to log on flag (bit I significant)
user name, terminated by CR
password, terminated by CR
URD name, terminated by CR

The file server's reply is sent to the client 's reply port. as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

I - 2 standard Rx header

Add new user (argument= 3)

The argument dependent parameters passed with the initial protocol block are:

Byte Meaning

7 user name, terminated by CR

2-723

Interfaces

2-724

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

1 - 2 standard Rx header

Remove user (argument= 4)

The argument dependent parameters passed with the initial protocol block are:

Byte Meaning

7 user name, terminated by CR

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

1 - 2 standard Rx header

Set privilege (argument= 5)

The argument dependent parameters passed with the initial protocol block are:

Byte Meaning

7 user name, terminated by CR
n... new privilege ('S', 'L' or 'F'; or null for normal), terminated by CR

The file server's reply is sent to the client's reply port , as specified by the client in
its standard Tx header (see page 2-693) :

Byte Meaning

1 - 2 standard Rx header

Logoff user (argument= 6)

The argument dependent parameters passed with the initial protocol block are:

Byte Meaning

7 user name, terminated by CR

The file server's reply is sent to the client's reply port, as specified by the client in
its standard Tx header (see page 2-693):

Byte Meaning

1 - 2 standard Rx header

Shutdown server (argument = 7)

No argument dependent parameters are passed with the initial protocol block.

File server protocol interface

Error messages

The server responds with errors under certain circumstances . The errors generated
are as follows:

Network reported errors

Error string

Insufficient space
Too much data
Bad privilege letter
Bad user name
Bad rename
Already a user
Directory full
Is a directory
Too many users
Password must be between 6 and 22 characters
Insufficient privilege
Wrong password
User not known
Access violation
Insufficient access
Is a file
Who are you?
Too many open files
Already open
Disc full
Bad name
Bad directory name
Bad drive
Invalid access string
Not found
File not found
Channel
Sorcy,notsupported
Bad command
Server not available
Server has shut down
No more receive buffers
Failed to create user profile
Server internal error, please report to system manager

Errors in bold are new Level 4 errors.

Error Number

&5C
&83
&8C
&AC
&BO
&BI
&B3
&B5
&B8
&89
&BA
&BB
&BC
&BD
&BD
&BD
&BF
&CO
&C2
&C6
&CC
&CC
&CD
&CF
&D6
&D6
&DE
&FD
&FE
&FF
&FF
&FF
&FF
&FF

2-725

Error messages

2-726

Internal errors

Password file not found
Unable to open password file
No devices found, unable to start .
Unable to open/find choices file
Unable to find floppy disc
Unable to mount ...
Unable to execute .
Error in exports file, unable to start
Unable to find exports file

49 The Broadcast Loader

Introduction and Overview
The Broadcast Loader enables files to be effectively broadcast to multiple clients.
effectively increasing Econet transport throughput. It works in the following way:

When a client requests a file from a file server, it first broadcasts a request onto the
network to ask if any other clients are loading the same file . If no other client is
loading it, then it proceeds to load the file itself from the file server as normal. If
during the loading process other clients ask for the same file , then they are
acknowledged by the first client. and they wait for the first client to finish loading
the file after which it then broadcasts the file to all the waiting clients.

This module is not supplied as a standard part of RISC OS 2, but will run under it.
and is available as a separate product.

Performance

The Broadcast Loader greatly reduces the time taken to load the same file or
application to a number of users. To a first approximation, the performance of a
system using the Broadcast Loader to load a long file to 11 Clients will be 2 x (time
to load single copy) as opposed to 11 x (time to load single copy).

FileSwitch call interception

The Broadcast Loader works by intercepting some FileSwitch calls to
NetFSEntry_File and dealing with them as appropriate . This is done using the SWI
OS_FSControl (13) to return a pointer to the FileSwitch copy of the NetFS filing
system control block, that has been modified to be non-relocatable. The Broadcast
Loader then modifies the data pointed to so that when FileSwitch despatches calls
to NetFSEntry_File they are in fact despatched to the Broadcast Loader first.

File servers supported

All of the Acorn file servers- Level 2, Level 3, FileStore and Level 4- as well as the
SJ Research MDFS products, are compatible with the Broadcast Loader.

2-727

Introduction and Overview

2-728

Retransmission and errors

Files are transmitted from the broadcast server to clients in chunks of
approximately one thousand bytes with sequence numbers. If a client enters the
transaction during the file transfer, or misses a packet due to transmission errors
or other reasons, then requests for missing blocks are made and retransmissions
made to complete the transaction. A system of timeouts and error messages is
provided to ensure no lock-up or erroneous condition can occur.

50 BBC Econet

Introduction and Overview
The BBC Econet module provides emulation of certain obsolete OSBYTE and
OSWORD calls used by old 6502-based BBC computers, thus making it easier for
you to port code that uses these calls .

This module is provided solely to support old programs. You should not use these
calls in any new programs you write.

2-729

Technical details

Technical details

Summary of calls

2-730

The following calls are provided, which emulate the corresponding obsolete
OSBYTE and OSWORD calls :

Call
OS_Byte 50

OS_Byte 51

OS_Byte 52

OS_Word 16

OS_Word 17

OS_Word 19

OS_Word 20

Notes

All 8 sub-reason codes are emulated (Transmit , Peek, Poke,
JSR, User Procedure Call , Machine type, Halt and Continue)

Both sub-reason codes are emulated (OpenRx and ReadRx)

Only these function codes are supported:
0 read file server number
I write file server number
2 read printer server number
3 write printer server number
4 read protection mask
5 write protection mask
8 read local station number
12 read printer server name
13 set printer server name
15 read file server retry delay
16 set file server retry delay
17 translate net number

All 3 sub-reason codes are supported (Do File Server
Operation, Notify, and Cause Remote Error)

Correspondence between old and new calls

All the above calls use exactly the same parameters as the corresponding obsolete
OSBYTE and OSWORD calls. The table below shows the correspondence between
the register used on the 6502 to pass a parameter, and the register used on the
ARM to pass the same parameter:

6502 register

A
X
y

ARM register

RO (bits 0-7)
Rl (bits0-7)
R2 (bits 0-7)

Bits 8-31J of the ARM registers are ignored.

Implementation

BBC Econet

For more information on any of the obsolete OS BYTE and OSWORD calls, see the
Econet Advanced User Guide.

The BBC Econet module claims the ByteV and WordY vectors. If it recognises an
OS_Byte or OS_ Word as one that it supports, it first checks the presence of the
module(s) that it needs to emulate the call . (These are Econet, NetFS and/or
NetPrint.) It then translates the OS_Byte or OS_ Word call to appropriate SWI
call(s) to these modules.

Restrictions

OS_Byte 50 (poll transmission) and OS_Byte 5 I (poll receive block) may enable
interrupts and hence should not be called from within interrupt handlers, service
code or event routines. During these calls the processor may be put in USR mode
with interrupts enabled; this allows CallBacks to occur.

2-731

2-732

51 Hourglass

I

Introduction and Overview
The Hourglass module will change the pointer shape to that of an hourglass. You
can optionally also display:

• a percentage figure

• two 'LED' indicators for status information (one above the hourglass. and one
below) .

Note that cursor shapes 3 and 4 are used (and hence corrupted) by the hourglass.
You should not use these shapes in your programs.

Normally the Hourglass module is used to display an hourglass on the screen
whenever there is prolonged activity on the Econet. The calls to do so are made by
the NetStatus module, which claims the EconetY vector. See the chapter entitled
Software vectors on page 1-63 and the chapter entitled NetStatus on page 2-745 for
further details.

The hourglass should also be used by any software that may take some time to do
a particular job, especially when:

• there is no other indication of activity

• the processing.time is file size dependent (some users may have files much
bigger than you expect)

• the processing time is processor speed dependent (some users may be in a
screen mode that is hungry for memory bandwidth).

Software using the hourglass should, whenever possible, use the percentage
feature; see the section entitled Example programs on page 2-743 for an example of
this.

The rest of this chapter details the SW!s used to control the hourglass.

2-733

SWI Calls

SWI Calls

2-734

Turns on the hourglass

Hourglass_ On
(SWI &406CO)

On entry

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This turns on the hourglass. Although control returns immediately there is a delay
of 1/3 of a second before the hourglass becomes visible. Thus you can bracket an
operation by Hourglass_ On/Hourglass_ Off so that the hourglass will only be
displayed if the operation takes longer than 1;3 of a second.

You can set a different delay using Hourglass_Start (page 2-738) .

Hourglass_ On's are nestable. If the hourglass is already visible then a count is
incremented and the hourglass will remain visible until an equivalent number of
Hourglass_Off's are done. The LEOs and percentage indicators remain unchanged.

Hourglass

The example below illustrates the use of bracketing calls to Hourglass_ On I
Hourglass_ Off:

DoLoadAndProcess
STMFD
MOV
ADR
MOV
SWI
BVS
CMP
BEQ
SWI
BVS
ADR

Process Loop
LDRB

sp! , { r0-r5, lr
rO, #OSFile_ Load
r2, Buffer
r3, #0
XOS_ File
ExitLoadAndProcess
r4, #0
ExitLoadAndProcess
XHourglass_ On
ExitLoadAndProcess
r1, Buffer

rO, [r1], #1
BL ProcessByte
BVS FinishProcess
SUBS r4 , r4, #1
BNE ProcessLoop

FinishProcess
SWI XHourglass_Off

ExitLoadAndProcess

Related SWis

STRVS rO, [sp , #0)
LDMFD sp!, { r0-r5, pc

Hourglass_Off (page 2-736), Hourglass_Start (page 2-738)

Related vectors

None

2-735

Hourglass_ Off (SWI &406C1}

2-736

Turns off the hourglass

Hourglass_ Off
(SWI &406C1)

On entry

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SYC mode

Re-entrancy

Use

Not defined

This call decreases the count of the number of times that the hourglass has been
turned on . If this makes the count zero, it turns off the hourglass.

When the hourglass is removed the pointer number and colours are restored to
those in use at the first Hourglass_On.

From RISC OS 3 onwards, the system also turns the percentage display off if
leaving the level that turned it on, even if the hourglass itself is not turned off. See
page 2-740 for an example of this.

Related SWis

Hourglass_On (page 2-734), Hourglass_Smash (page 2-737)

Related vectors
None

Turns off the hourglass immediately

On entry

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Hourglass

Hourglass_ Smash
(SWI &406C2)

This call turns off the hourglass immediately, taking no notice of the count of
nested Hourglass_ On's. If you use this call you must be sure neither you. nor
anyone else, should be displaying an hourglass.

When the hourglass is removed the pointer number and colours are restored to
those in use at the first Hourglass_ On, except under RISC OS 2.

Related SWis

Hourglass_Off (page 2-736)

Related vectors

None

2-737

Hourglass_ Start (SWI &406C3)

2-738

Turns on the hourglass after a given delay

On entry

Hourglass...L.Start
(SWI &406C3)

RO =delay before start-up (in centiseconds). or 0 to suppress the hourglass

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call works in the same way as Hourglass_ On, except you can specify your own
start-up delay.

If you specify a delay of zero and the hourglass is currently off. then future
Hourglass_ On and Hourglass_Start calls have no effect. The condition is
terminated by the matching Hourglass_ Off, or by an Hourglass_Smash.

Related SWis

Hourglass_On (page 2-734). Hourglass_Off (page 2-736)

Related vectors

None

Hourglass

Hourglass_Percentage
(SWI &406C4)

Displays a percentage below the hourglass

On entry

RO =percentage to display (if in range 0- 99). else turns off percentage

On exit

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call controls the display of a percentage below the hourglass. If RO is in the
range 0- 99 the value is displayed; if it is outside this range. the percentage display
is turned off.

The default condition of an hourglass is not to display percentages.

For a full example of the use of Hourglass_Percentage. see the section entitled
Example programs on page 2-743.

From RISC OS 3 onwards. lower levels of calls cannot alter the hourglass
percentage once a higher level call is using it. Furthermore. Hourglass_Off
automatically turns the percentage display off when leaving the level that turned it
on. even if the hourglass itself is not turned off. For example:

2-739

Hourglass_Percentage (SWI &406C4)

2-740

SYS "Hourglass_On"
SYS "Hourglass_On"
SYS "Hourglass_Percentage",lO
SYS "Hourglass_Percentage",20

SYS "Hourglass_On"
SYS "Hourglass_Percentage",50
SYS "Hourglass_Off"

SYS "Hourglass_Percentage",30
SYS "Hourglass_Off"

SYS "Hourglass_Off"

Related SWis

None

Related vectors

None

: REM
:REM

:REM

:REM
:REM
:REM

sets to 10%
sets to 20%

DOESN'T set to 50%

sets to 30%
turns off percentages
turns off hourglass

Hourglass

Hourglass_LEDs
(SWI &406C5)

Controls the display indicators above and below the hourglass

On entry

RO, Rl =values used to set LEDs' word

On exit

RO =old value of LEDs' word

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SYC mode

Re-entrancy

Not defined

Use

This call controls the two display indicators above and below the hourglass, which
can be used to display status information. These are controlled by bits 0 and I
respectively of the LEDs' word. The indicator is on if the bit is set, and off if the bit
is clear. The new value of the word is set as follows:

New value = (Old value AND R I) EOR RO

The default condition is all indicators off.

Related SWis

None

Related vectors

None

2-741

Hourglass_ Colours (SWI &406C6)

2-742

Sets the colours used to display the hourglass

On entry

Hourglass_ Colours
(SWI &406C6)

RO =new colour to use as colour I (&OOBBGGRR, or -I for no change)
Rl =new colour to use as colour 3 (&OOBBGGRR. or -I for no change)

On exit

RO = old colour being used as colour I
R I = old colour being used as colour 3

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call sets the colours used to display the hourglass. Alternatively you can use
this call to read the current hourglass colours by passing parameters of -I .

The default colours are:

Colour I cyan
Colour 3 blue

This call is not available in RISC OS 2.

Related SWis

None

Related vectors

None

Example programs
The examples below illustrate the use of Hourglass_Percentage.

DoLoadAndProcess
STMFD
MOV
ADR
MOV
SWI
BVS
CMP
BEQ
SWI
BVS
ADR
MOV

MOV
MOV
CMP

DivisionLoop1
MOVLS
CMPLS
BLS
MOV

DivisionLoop2
CMP
SUBCS
ADC
MOV
CMP
BCS

ProcessLoop
MUL
MOV
SWI
LDRVCB
BLVC
BVS
ADD

sp!, { r0-r5, l r
rO , #OSFile Load
r2, Buffer
r3, #0
XOS_File
ExitLoadAndProcess
r4 , #0
ExitLoadAndProcess
XHourglass_On
ExitLoadAndProcess
r1 , Buffer
r2, #0
Compute a constant , in R3, such that as the index
in R2 goes from 0 to the maximum value, in R4 , the
result of (R2 * R3) DIV 2A24 goes from 0 to 100 .
R3 = (100 * 2A24) DIV R4.
rS , #100 :SHL: 24
r14, r4
r14, rS , LSR #1

r14, r14 , LSL #1
r14, rS , LSR #1
DivisionLoop1
r3, #0

rS, r14
rS, rS, r14
r3, r3, r3
r14 , r14 , LSR #1
r14, r4
DivisionLoop2

So we get a percentage
R3 . - RS DIV R4

R3 is now a simple constant

rO, r2, r3
rO , rO, ASR #24
XHourglass_ Percentage
rO , [r1], #1
ProcessByte
Internal Error
r2, r2 , #1

Call with result

May also return V set

Move the i ndex
TEQ r2, r4
BNE ProcessLoop

FinishProcess

Hourglass

2-743

Example programs

2-744

SWI XHourglass_Off
ExitLoadAndProcess

STRVS rO, [sp, #0]
LDMFD

Internal Error
MOV
SWI
MOV
CMP

sp !, { r0-r5 , pc

rl, rO
XHourglass_Off
rO, rl
pc, #&80000000

B ExitLoadAndProcess

Or in BBC BASIC V:

DEF PROCLoadAndProcess{ Name$)
LOCAL Length%, Index%: LOCAL ERROR

Preserve the actual error
Ignore possible error
Retore real error
Set V, to indicate an error

SYS "OS_File", 255, Name$, Buffer%, 0 TO, ,,, Length%
IF Length%<>0 THEN

SYS "Hourglass_On"
ON ERROR LOCAL: RESTORE ERROR: SYS "Hourglass_Off": ERROR ERR , REPORT$
FOR Index% = 0 TO Length%

SYS "Hourglass_ Percentage ", {100 *Index%) DIV Length%
PROCProcessByte(Buffer%?Index%)

NEXT Index%
SYS "Hourglass_Off"

END IF
ENDPROC

52 NetStatus

Introduction and Overview
The NetStatus module controls the display of an hourglass on the screen whenever
there is prolonged activity on the Econet.

It claims EconetV, and examines the reason for each call that is made to the vector.
It in turn makes an appropriate call to the Hourglass module, so that the
appearance of the Hourglass indicates the status of the net. The Hourglass has two
'LEDs' , one on top and one on the bottom:

• if only the top LED is on, then your station is trying to receive

• if only the bottom LED is on, then your station is trying to transmit

• if both LEDs are on, then your station is waiting for a broadcast reply.

It also displays percentage figures (when it is able to do so meaningfully) which
show the percentage of a transfer that has completed .

2-745

Technical Details

Technical Details

2-746

This table shows how NetStatus converts the reason codes for calls to EconetV
(listed in the chapter entitled Software vectors) into the SWI calls that it makes to the
Hourglass module:

Reason code

NetFS_Start ..
NetFS_Part ...
NetFS_Finish . .
NetFS_StartWait
Econet_StartTransmission
Econet_StartReception
NetFS_FinishWait
Econet_FinishTransmission
Econet_FinishReception

SWI call

Hourglass_ On
Hourglass_Percentage
Hourglass_ Off
Hourglass_LEDs (both on)
Hourglass_LEDs (only top one on)
Hourglass_LEDs (only bottom one on)
Hourglass_LEDs (both off)
Hourglass_LEDs (both off)
Hourglass_LEDs (both off)

Versions of RISC OS after 2.0 also change the colour of the hourglass for Broadcast
Load and Save calls (as made by the Broadcast Loader) . The colours used are:

Type of call

Broadcast Load
Broadcast Save

Colours

Green/blue
Red/blue

AKJ03

