
RISC OS 3
Programmer~s Reference Manual

Volume4

Acorn~

RISC OS 3
Programmer~s Reference Manual

Volume4

Acornl

4-ii

Copyright© I992 Acorn Computers Limited. All rights reserved.

Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or
stored in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
Acorn Computers Limited in good faith . However, Acorn Computers Limited
cannot accept any liability for any loss or damage arising from the use of any
information or particulars in this manual.

If you have any comments on this manual, please complete the form at the back of
the manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your
supplier is available to help resolve any queries you might have.

Within this publication. the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

ACORN, ACORNSOIT. ACORN DESKTOP PUBLISHER, ARCHIMEDES, ARTHUR,
ECONET, MASTER, MASTER COMPACT, THE TUBE, VIEW and VIEWSHEET are
trademarks of Acorn Computers Limited.

Adobe and PostScript are trademarks of Adobe Systems Inc
ARM is a trademark of Advanced RISC Machines Ltd
TEX is a trademark of the American Mathematical Society
ImageWriter, LaserWriter and Macintosh are trademarks of Apple Computer Inc
DBase is a trademark of Ashton Tate Ltd
UNIX is a trademark of AT&T
Atari is a trademark of Atari Corporation
AutoCAD is a trademark of Auto Desk Inc
Amiga is a trademark of Commodore-Amiga Inc
Commodore is a trademark of Commodore Electronics Limited
SuperCalc is a trademark of Computer Associates
Corel Draw is a trademark of Corel Corporation
VT is a trademark of Digital Equipment Corporation
Ist Word Plus is a trademark of GST Holdings Ltd

Deskjet. HP, HPGL, Laser)et and Paint)et are trademarks of Hewlett-Packard
Corporation
Colourjet is a trademark of Integrex Ltd
IBM is a trademark of International Business Machines Corporation
lTC Zapf Dingbats is a trademark of International Typeface Corporation
Helvetica and Times are trademarks of Linotype Corporation
Lotus 123 is a trademark of The Lotus Corporation
MS-DOS is a trademark of Microsoft Corporation
MultiSync and NEC are trademarks of NEC Limited
Epson, EX and FX are trademarks of Seiko Epson Corporation
Sun is a trademark of Sun Microsystems Inc
Ethernet is a trademark of Xerox Corporation

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN for complete set of five volumes: I 85250 II 0 3
ISBN for this volume: I 85250 114 6
Edition I
Part number 0470,294
Issue I, December 1992

4-iii

4-iv

Contents

About this manual 1-ix

Part 1 -Introduction 1-1
An introduction to RISC OS 1-3
ARM Hardware 1-9
An introduction to SWis 1-23
* Commands and the CLI 1-33
Generating and handling errors 1-41
OS_Byte 1-49
OS_Word 1-59
Software vectors 1-63
Hardware vectors 1-11 I
Interrupts and handling them 1-117
Events 1-145
Buffers 1-161
Communications within RISC OS 1-175

Part 2 - The kernel 1-195
Modules 1-197
Program Environment 1-283
Memory Management 1-337
Time and Date 1-399
Conversions 1-441
Extension ROMs 1-485

Part 3 - Kernel input/output 1-487
Character Output 1-489
VDU Drivers 1-527
Sprites 1-745
Character Input 1-835
The CLI 1-923
The rest of the kernel 1-935

4-v

4-vi

Part 4 - Using filing systems 2-1
Introduction to filing systems 2-3
FileSwitch 2-9
FileCore 2-195
ADFS 2-261

RamFS 2-309
DOSFS 2-317
NetFS 2-337
Net Print 2-385
PipeFS 2-405
ResourceFS 2-407
DeskFS 2-419
DeviceFS 2-421
Serial device 2-439
Parallel device 2-4 77
System devices 2-485
The Filer 2-489
Filer_Action and FilerSWis 2-503
Free 2-511

Part 5- Writing filing systems 2-519
Writing a filing system 2-521

Writing a FileCore module 2-587
Writing a device driver 2-597

Part 6 - Networking 2-607
Econet 2-609
File server protocol interface 2-693
The Broadcast Loader 2-727
BBC Econet 2-729
Hourglass 2-733
N etStatus 2-7 4 5

Part 7 - The desktop 3-1
The Window Manager 3-3
Pinboard 3-293
Drag A Sprite 3-299
The Filter Manager 3-303
The TaskManager module 3-313
TaskWindow 3-321
ShellCLI 3-329

Part 8 - Non-kernel input/output 3-333
ColourTrans 3-335
The Font Manager 3-403
SuperSample module 3-519
Draw module 3-523

Part 9- Printing 3-553
Printer Drivers 3-555
Printer Dumpers 3-663
PDumperSupport 3-679
Printer definition files 3-697

MakePSFont 3-733

Part 10 -lnternationalisation 3-735
MessageTrans 3-737
International module 3-759
The Territory Manager 3-785

Part 11 -Sound 4-1
The Sound system 4-3

WaveSynth 4-77

Part 12 - Utilities 4-81
The Buffer Manager 4-83
Squash 4-10 I
Screen Blank 4-1 07

Part 13- Hardware support 4-113
Expansion Cards and Extension ROMs 4-115
Floating point emulator 4-163
ARM3 Support 4-185
The Portable module 4-195
Joystick module 4-207

Part 14 - Programmer's support 4-211
Debugger 4-213
The shared C library 4-231
BASIC and BASICTrans 4-337
Command scripts 4-345

4-vii

4-viii

Appendixes and tables 4-353
Appendix A: ARM assembler 4-355
Appendix 8 : Warnings on the use of ARM assembler 4-377

Appendix C: ARM procedure call standard 4-393

Appendix D: Code file formats 4-4I3
Appendix E: File formats 4-453
Appendix F: System variables 4-495
Appendix G: The Acorn Terminal Interface Protocol 4-503
Appendix H: Registering names 4-545
Table A: VDU codes 4-55I
Table 8: Modes 4-553
Table C: File types 4-557
Table D: Character sets 4-56I

Indexes lndex-1
Index of * Commands Index-3
Index of OS_8ytes Index- II
Index of OS_ Words Index-I5
Numeric index of Service Calls Index-I7
Alphabetic index of Service Calls Index-2I
Numeric index of SWis Index-25
Alphabetic index of SWis Index-43
Index by subject Index-6I

Part 11 - Sound

4-1

4-2

72 The Sound system

Introduction
The Sound system provides facilities to synthesise and playback high quality
digital samples of sound. Since any sound can be stored digitally, the system can
equally well generate music, speech and sound effects. Eight fully independent
channels are provided.

The sound samples are synthesised in real time by software. A range of different
Voice Generators generate a standard set of samples. to which further ones can be
added. The software also includes the facility to build sequences of notes.

The special purpose hardware provided on ARM-based systems simply reads
samples at a programmable rate and converts them to an analogue signal. Filters
and mixing circuitry on the main board provide both a stereo output (suitable for
driving personal hi-fi stereo headphones directly, or connecting to an external hi-fi
amplifier) and a monophonic or stereophonic output to the internal speaker(s).

4-3

Overview

Overview
There are four parts to the software for the Sound system: the DMA Handler, the
Channel Handler, the Scheduler, and Voice Generators. These are briefly
summarised below, and described in depth in later sections.

The DMA Handler
The DMA Handler manages the DMA buffers used to store samples of sound , and
the associated hardware used.

The system uses two buffers of digital samples, stored as signed logarithms. The
data from one buffer is read and converted to an analogue signal, while data is
simultaneously written to the other buffer by a Voice Generator. The two buffers are
then swapped between , so that each buffer is successively written to, then read .

The DMA Handler is activated every time a new buffer of sound samples is
required . It sends a Fill Request to the Channel Handler, asking that the correct
Voice Generators fill the buffer that has just been read from.

The DMA Handler also provides interfaces to program hardware registers used by
the Sound system. The number of channels and the stereo position of each one
can be set. the built-in loudspeaker(s) can be enabled or disabled, and the entire
Sound system can also be enabled or disabled. The sample length and sampling
rate can also be set

The services of the DMA Handler are mainly provided in firmware requiring
privileged supervisor status to program the system devices. It is tightly bound to
the Channel Handler, sharing static data space. Consequently, this module must
not be replaced or amended independently of the Channel Handler.

The Channel Handler

4-4

The Channel Handler provides interfaces to control the sound produced by each
channel, and maintains internal tables necessary for the rest of the Sound system
to produce these sounds .

The interfaces can be used to set the overall volume and tuning, to attach the
channels to different Voice Generators. and to start sounds with given pitch ,
amplitude and duration.

The following internal tables are built and maintained: a mapping of voice names
to internal voice numbers; a record for each channel of its vo lume, voice, pitch and
timbre; and linear and logarithmic lookup tables for Voice Generators to scale their
amplitude to the current overall volume setting.

The Scheduler

The Sound system

Fill Requests issued by the DMA Handler are routed through the Channel Handler
to the correct Voice Generators. This allows any tables involved to be updated.

The Channel Handler is tightly bound to the DMA Handler, sharing static data
space. Consequently, this module must not be replaced or amended
independently of the DMA Handler.

The Scheduler is used to queue Sound system SW!s. Its most common use is to
play sequences of notes, and a simplified interface is provided for this purpose.

A beat counter is used which is reset every time it reaches the end of a bar. Both its
tempo and the number of beats to the bar can be programmed.

You may replace this module, although it is unlikely to be necessary.

Voice Generators

Voice Generators generate and output sound samples to the DMA buffer on
receiving a Fill Request from the Channel Handler. Typical algorithms that might
be used to synthesise a sound sample include calculation, lookup of filtered
wavetables, or frequency modulation. A Voice Generator will normally allow
multiple channels to be attached . .

An interface exists for you to add custom Voice Generators. expanding the range of
available sounds. The demands made on processor bandwidth by synthesis
algorithms are high, especially for complex sounds. so you must write them with
great care.

4-5

Technical details

Technical details

DMA Handler

4-6

The DMA Handler manages the hardware used by the Sound system . Two physical
buffers in main memory are used. These are accessed using four registers in the
sound DMA Address Generator (DAG) within the MEMC (memory controller) chip:

• The DAG sound pointer points to the byte of sound to be output

• The current end register points to the end of the DMA buffer

• The next start/end register pair point to the most recently filled buffer.

The sound pointer is incremented every time a byte is read by the video controller
for output. When it reaches the end of the current buffer the memory controller
switches buffers: the sound pointer and buffer end registers are set to the values
stored in the next start and next end registers respectively. An interrupt is then
issued by IOC (the 1/0 controller) indicating the buffers have switched, and the
DMA handler is entered.

The DMA Handler calls the Channel Handler with a Fill request . asking that the
next buffer be filled . (See page 4-10 for details of the Channel Handler.) If this fill is
completed . control returns to the DMA Handler and it makes the next start and
next end registers point to the buffer just filled. If the fill is not completed then the
next registers are not altered, and so the same buffer of sound will be repeated.
causing an audible discontinuity.

Configuring the Sound system

The rest of this section outlines the factors that you must consider if you choose to
reconfigure the Sound system.

Terminology used
• The output period is the time between each output of a byte.

• The sample period is the time between each output for a given channel.

• The buffer period is the time to output an entire buffer.

There are corresponding rates for each of the above.

• The sample length is the number of bytes in the buffer per channel.

• The buffer length is the total number of bytes in the buffer.

The Sound system

DMA Buffer period

A short buffer period is desirable to minimise the size of the buffer and to give high
resolution to the length of notes; a long buffer period is desirable to decrease the
frequency and number of interrupts issued to the processor. A period of
approximately one centisecond is chosen as a default value, although this can be
changed , for example to replay lengthy blocks of sampled speech from a disc.

Sample rate: maximum

A high sample rate will give the best sound quality. If too ·high a rate is sought then
DMA request conflicts will occur, especially when high bandwidths are also
required from VIDC (the Video Controller) by high resolution screen modes. To
avoid such contention the output period must not be less than 4J.l.s . Outputting a
byte to one of eight channels every 4J.l.s results in a sample period of 32J.l.s , which
gives a maximum sample rate of 3 I .25kHz.

Sample rate: default

The clock for the Sound system is derived from the system clock for the video
controller, which is then divided by a multiple of 24. Current ARM based computers
use a VIDC system clock of 24M Hz, 25 . I 75MHz or 36M Hz. depending on the screen
mode and monitor type selected . The default output period is 6J.l.s, which is
compatible with VIDC system clocks running at multiples of 4MHz from I 2M Hz
upwards (ie I2MHz, 16MHz, 20MHz ...). This 6J.l.s output period is obtained as
follows from the 24M Hz and 36MHz VIDC system clocks:

• 24MHz clock divided by 144 (6 x 24)

• 36MHz clock divided by 216 (9 x 24)

Unfortunately with a VIDC system clock of 25 .175MHz (used forVGA screen modes)
the same output period cannot be produced. The divider used is the same as for a
24MHz VIDC system clock (ie 144, or 6 x 24). which results in a slightly shorter
output period, and so sounds are approximately a semitone higher.

Outputting a byte to one of eight channels every 6J.l.s results in a sample period of
48J.l.S, which gives a default sample rate of 20.833kHz.

4-7

DMA Handler

4-8

Buffer length

The DMA buffer length depends on the number of channels, the sample rate, and
the buffer period. It must also be a multiple of 4 words. Using the defaults outlined
above, the lengths shown in the middle two columns of the following table are the
closest alternatives:

Buffer lengths for one centisecond sample, at sample rate of 20.833 kHz:

Buffer length Output period

1 channel 208 bytes 224 bytes 481J.S

2 channels 416 bytes 448 bytes 241J.S

4 channels 832 bytes 896 bytes 121J.S

8 channels 1664 bytes 1792 bytes 61J.S

Buffer period 0.9984cs 1.0752cs

Interrupt rate 100.16Hz 93.01Hz

Bytes per channel &DO &EO

The system default buffer period is chosen as 0.9984 centiseconds, thus the
sample length is 208 bytes, or 52 words (13 DMA quad-word cycles) . The buffer
length is a multiple of this, depending on how many channels are used.

DMA Buffer format

The sound DMA system systematically outputs bytes at the programmed sample
rate; each (16-byte) load of DMA data from memory is synchronised to the first
stereo image position . Each byte must be stored as an eight bit signed logarithm ,
ready for direct output to the VIDC chip:

Multiple channel operation is possible with two, four or eight channels; in this case
the data bytes for each channel must be interleaved throughout the DMA buffer at
two, four or eight byte intervals . When output the channels are multiplexed into
what is effectively one half, one quarter or one eighth of the sample period, so the
signal level per channel is scaled down by the same amount. Thus the signal level
per channel is scaled, depending on the number of channels; but the overall signal
level remains the same for all multi-channel modes.

The Sound system

Showing the interleaving schematically:

Single channel format:

0 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

chan 1 chan 1 chan 1 chan 1 chan 1 chan 1 chan 1 chan 1

+8 byte 8 byte 9 byte10 byte 11 byte12 byte13 etc ...

chan 1 chan 1 chan 1 chan 1 chan 1 chan 1

Output rate = 20 kHz
Image registers 0- 7 programmed identically

Two channel format:

0 byte 0 byte 0 byte 1 byte 1 byte 2 byte 2 byte 3 byte 3

chan 1 chan 2 chan 1 chan 2 chan 1 chan 2 chan 1 chan 2

+8 byte 4 byte 4 byte 5 byte 5 byte 6 byte 6 etc ...

chan 1 chan 2 chan 1 chan 2 chan 1 chan 2

Output rate = 40 kHz
Image registers 0+2+4+8 and 1+3+5+7 programmed per channel

Four channel format:

0 byte 0 byte 0 byte 0 byte 0 byte 1 byte 1 byte 1 byte 1

chan 1 chan 2 chan 3 chan 4 chan 1 chan 2 chan 3 chan 4

+8 byte 2 byte 2 byte 2 byte 2 byte 3 byte 3 etc ...

chan 1 chan 2 chan 3 chan 4 chan 1 chan 2

Output rate = 80 kHz
Image registers 0+4, I +5, 2+6 and 3+ 7 programmed per channel

4-9

Channel Handler

Eight channel format:

0 byte 0 byte 0 byte 0 byte 0 byte 0 byte 0 byte 0 byte 0

chan 1 chan 2 chan 3 chan 4 chan 5 chan 6 chan 7 chan 8

+8 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 etc ...

chan 1 chan 2 chan 3 chan 4 chan 5 chan 6

Output rate = 160 kHz
Image registers programmed individually.

The Channel Handler manages the interleaving for you by passing the correct start
address and increment to the Voice Generator attached to each channel.

Channel Handler

4-10

The Channel Handler registers itself with the DMA Handler by passing its address
using Sound_Configure. At this address there must be a standard header:

Channel Handler

Offset

0
4

8
12

Value

pointer to fill code
pointer to overrun fixup code
pointer to linear-to-log table
pointer to log-scale table

The fill code handles fill requests from the DMA Handler. The Channel Handler
translates the fill request to a series of calls to the Voice Generators, passing the
required buffer offsets so that data from all channels correctly interleaves. Any
unused channels within the buffer are set to zero by the Channel Handler so they
are silent.

The overrun fixup code deals with channels that are not successfully filled within a
single buffer period and hence repeat the same DMA buffer. This feature is no
longer supported in RISC OS and the fixup code is never called. (In the Arthur OS
the offending channel was marked as overrun, the previous Channel Handler was
aborted, and a new buffer fill initiated.)

The pointer to the linear-to-log table holds the address of the base of an 8 Kbyte
table which maps 32-bit signed integers directly to 8-bit signed volume-scaled
logarithms in a suitable format for output to the VIDC chip.

The Sound system

The pointer to the log-scale table holds the address of a 256-byte table which
scales the amplitude of VIDC-format 8-bit signed logarithms from their maximum
range down to a value scaled to the volume setting. Voice Generators should use
this table to adjust their overall volume.

Sound Channel Control Block (SCCB)

The Channel Handler maintains a 256 byte Sound Channel Control Block (SCCB)
for each channel. An SCCB contains parameters and flags used by Voice
Generators, and an extension area for programmers to pass any essential further
data. Such an extension must be well documented, and used with care, as it will
lead to Voice Generators that are no longer wholly compatible with each other.

The 9 initial words hold values that are normally stored in RO- R8 inclusive. They
are loaded from the SCCB using the instruction LDMIA R9,{RO-R8}

Offset

0

2
3
4
8
12
16
20
24
28
32
36-63
64 - 255

Value

gate bit+ channel amplitude (7-bit log)
index to voice table
instance number for attached voice
control/status bit flags
phase accumulator pitch oscillator
phase accumulator timbre oscillator
number of buffer fills left to do (counter)
(normally working R4)
(normally working R5)
(normally working R6)
(normally working R7)
(normally working R8)
reserved for use by Acorn (28 bytes)
available for users

The flag byte indicates the state of the voice attached to the channel. and may be
used for allocating voices in a polyphonic manner. Each time a Voice Generator
completes a buffer fill and returns to the Channel Handler it returns an updated
value for the Flags field in RO.

It is the responsibility of the Channel Handler to store the returned flag byte, and
to update the other fields of each SCCB as necessary.

Note -In the Arthur OS, the flag byte was also used to detect channels that had
overrun . If any were found then a call was made indirected through the fix up
pointer (see above) .

4-11

Scheduler

Voice Table

The Channel Handler uses a voice table recording the names of voices installed in
the 32 available voice slots. It is always accessed through the SWI calls provided ,
and so its format is not defined.

Scheduler

4-12

Header

Use

The Scheduler registers itself with the DMA Handler by passing its address using
Sound_ Configure. At this address there must be a pointer to the code for the
Scheduler.

Although the Scheduler is principally designed for queuing sound commands it
can be used to issue other SWis. Thus it could be used to control. for example, an
external instrument interface (such as a Musical Instrument Digital Interface
(MIDI) expansion podule). or a screen-based music editor with real-time score
replay.

Extreme care must be used with the Scheduler, as it has limitations. R2- R7 are
always cleared when the SWI is issued, and the error-returning form ('X' form) of
the SWI is forced . Return parameters are discarded. If pointers are to be passed in
RO or Rl then the data they address must be preserved until the SWI is called. If a
SWI will not work within these limitations it must not be called by the Scheduler.

The Scheduler implements the queue as a circular chain of records. A stack listing
the free slots is also kept. The number of free slots varies not only according to how
many events are queued, but also to how the events are 'clustered'.

The queue is always accessed through the SWI calls provided, and so its precise
format is not defined.

Event dispatcher

Every centisecond the beat counter is advanced according to the tempo value, and
any events that fall within the period are activated in strict queuing order. Voice
and parameter change events are processed and the SCCB for each Voice
Generator updated as necessary by the Channel Handler, before fill requests are
issued to the relevant Voice Generators.

The Sound system

Voice Generators

A Voice Generator is added to the Sound system by issuing a Sound_InstallVoice
call. which passes its address to the Channel Handler. At this address there must
be a standard header:

Header

Offset Contents

0 B Fill Code
4 B UpdateCode
8 B GateOnCode
12 B GateOffCode
16 B Instantiate
20 B Free
24 LDMFD Rl3! , {pc}
28 Offset from start of header to voice name

The Fill. Update, GateOn and GateOff entries provide services to fill the DMA buffer
at different stages of a note, as detailed in the section entitled Entry points for buffer
filling on page 4- I 5.

The Instantiate and Free entries provide facilities to attach or detach the Voice
Generator to or from a channel, as detailed in the section entitled Voice instantiation
on page 4- I 6.

The Install entry was originally to be called when a Voice Generator was initialised.
Since Voice Generators are now implemented as Relocatable Modules, which offer
exactly this service in the form of the Initialisation entry point, this field is not
supported and simply returns to the caller (LDMFD R13! , {pc} above).

The voice name is used by the Channel Handler voice table. It should be both
concise and descriptive. The offset must be positive relative- that is, the voice
name must be after the header.

Buffer filling: entry conditions

A fill request to a Voice Generator is made by the Channel Handler using one of the
four buffer fill entry points. The registers are allocated as follows:

Register

R6
R7

R8

R9
RIO
RII

Function

negative if configuration of Channel Handler changed
channel number
sample period in JlS
pointer to SCCB (Sound Channel Control Block)
pointer to end of DMA buffer
increment to use when writing to DMA buffer

4-13

Voice Generators

4-14

Rl2
Rl3
Rl4

pointer to (start of DMA buffer+ interleaf offset)
stack (Return address is on top of stack)
do not use

Further parameters are available in the SCCB for that channel, which is addressed
by R9. See the section entitled Channel Handler on page 4-10 for details. The usage
of the parameters depends on which of the four entry points is cal led .

The ARM is in IRQ mode with interrupts enabled.

Buffer filling: routine conditions

The routine must fill the buffer with 8 bit signed logarithms in the correct format
for direct output to the VIDC chip:

The ARM is in IRQ mode with interrupts enabled. They must remain enabled to
ensure that system devices do not have a lengthy wait to be serviced . The code for
a Voice Generator must therefore be re-entrant , and RI4 must not be used as a
subroutine link register, since an interrupt will corrupt it. Sufficient IRQ stack depth
must be maintained for system IRQ handling. You can enter SVC mode if you wish.

Buffer filling: exit conditions

When a Voice Generator has completed a buffer fill it sets a flag byte in RO, and
returns to the Channel Handler using LDMFD Rl3!,{PC} . The flag byte shows the
status of each channel. and is used to prioritise fill requests to the Voice
Generators .

7

Bit

Q

K

F
A
v
F2 , Fl

0

F I A I v I F21 F1 I

Meaning

Quiet (GateOff flag)
Kill pending (GateOn flag)
Initialise pending (Update flag)
Fill pending
Active (normal Fill in progress)
oVerrun flag (no longer supported)
2-bit Flush pending counter

The Sound system

Entry points for buffer filling

There are four different entry points for buffer filling, which are used at the different
stages of a note. It is the responsibility of the Channel Handler to determine which
Voice Generator to call, which entry should be used, and to update the SCCB as
necessary when these calls return.

GateOn entry

The GateOn entry is used whenever a sound command is issued that requires a
new envelope. Normally any previous synthesis is aborted and the algorithm
restarted .

On exit a the A bit (bit 3) of the flag byte is set.

Update entry

The Update entry is used whenever a sound command is issued that requires a
smooth change, without a new envelope (using extended amplitudes &180 to &IFF
in the *Sound command for example) . Normally the previous algorithm is
continued , with only the amplitude, pitch and duration parameters supplied by the
SCCB updated.

On exit the A bit (bit 3) of the flag byte is returned unless the voice is to stop
sounding; for example if the envelope has decayed to zero amplitude. In these
cases the F2 bit (bit I) is set, and the Channel Handler will automatically flush out
the next two DMA buffers, before becoming dormant.

Fill entry

The Fill entry is used when the current sound is to continue, and no new command
has been issued.

On exit it is normal to return the same flags as for the Update entry.

GateOff entry

The GateOff entry is used to finish synthesising a sound. Simple voices may stop
immediately, which is liable to cause an audible 'click'; more refined algorithms
might gradually release the note over a number of buffer periods. A GateOff entry
may be immediately followed by a GateOn entry.

On exit the F2 bit (bit I) is set if the voice is to stop sounding, or the A bit (bit 3) is
set if the voice is still being released.

4-15

Voice instantiation

Voice instantiation

4-16

Two entry points are provided to attach or detach a voice generator and a sound
channel. On entry the ARM is in Supervisor mode. and the registers are allocated
as follows :

Register

RO
Rl4

Function

physical Channel number -I (0 to 7)
usable

The return address is on top of the stack. All other registers must be preserved by
the routines. which must exit using LDMFD Rl3! ,(pc}

RO is preserved if the call was successful. else it is altered .

Instantiate entry

The Instantiate entry is called to inform the Voice Generator of a request to attach
a channel to it. Each channel attached is likely to need some private workspace. A
Voice Generator should ideally be able to support eight channels . The request can
either be accepted (RO preserved on exit). or rejected (RO altered on exit) .

The usual reason for rejection is that an algorithm is slow and is already filling as
many channels as it can within each buffer period : for example very complex
algorithms. or ones that read long samples off disc.

Free entry

The Free entry is called to inform the Voice Generator of a request to detach a
channel from it. The call must release the channel and preserve all registers .

Service Calls

Parts of the Sound system are starting or dying

On entry

RO = 0

2
3
4

5

DMA Handler starting
DMA Handler dying
Channel Handler starting
Channel Handler dying
Scheduler starting
Scheduler dying

Rl =&54 (reason code)

On exit

RO. Rl preserved

Use

The Sound system

Service_Sound
{Service Call &54)

This call is made to signal that a part of the Sound system is about to start up or
finish .

4-17

SWI calls

SWI calls

4-18

Configures the Sound system

Sound_ Configure
(SWI &40140)

On entry

RO =number of channels , rounded up to I ,2,4 or 8
Rl =sample length (in bytes per channel- default 208)
R2 =sample period (in f..LS per channel- default 48)
R3 = pointer to Channel Handler (normally 0 to preserve system Handler)
R4 =pointer to Scheduler (normally 0 to preserve system Scheduler)

On exit

RO- R4 =previous values

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This software interrupt is used to configure the number of sound channels, the
sample period and the sample length. It can also be used by specialised
applications to replace the default Channel Handler and Scheduler.

All current settings may be read by using zero input parameters.

The actual values programmed are subject to the limitations outlined earlier.

Related SWis

None

Related vectors

None

The Sound system

4-19

Sound_Enable (SWI &40141)

4-20

Enables or disables the Sound system

On entry

RO = new state:
0 for no change (read state)
I for OFF
2 for ON

On exit

RO = previous state
I for OFF
2 for ON

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Sound_Enable
{SWI &40141)

This software interrupt is used to enable or disable all Sound interrupts and DMA
activity. This guarantees to inhibit all Sound system bandwidth consumption once
a successful disable has been completed.

Related SWis

Sound_Speaker (page 4-23) . Sound_ Volume (page 4-25)

Related vectors

None

Sets the stereo position of a channel

The Sound system

Sound_ Stereo
(SWI &40142)

On entry

RO = channel (C) to program
Rl =image position:

0 is centre
127 for maximum right
-127 for maximum left
-128 for no change (read state)

On exit

RO preserved
Rl =previous image position, or -128 if RO ~ 8 on entry

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

For N physical channels enabled, this call will program stereo registers C, C+N,
C+2N ... up to stereo register 8. For example, if two channels are currently in use,
and channel I is programmed, channels 3, 5 and 7 are also programmed; if channel
3 is programmed, channels 5 and 7 are also programmed, but not channel I.

This Software call only updates RAM copies of the stereo image registers and the
new positions, in fact , take effect on the next sound buffer interrupt.

IRQ code can call this SWI directly for scheduled image movement.

4-21

Sound_ Stereo (SWI &40142)

4-22

Related SWis

None

Related vectors

None

Enables or disables the speaker(s)

On entry

RO = new state:
0 for no change (read state)
I for OFF
2 for ON

On exit

RO = previous state
I for OFF
2 for ON

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

The Sound system

Sound_ Speaker
(SWI &40143)

This software interrupt enables/disables the monophonic or stereophonic mixed
signal(s) to the internal loudspeaker amplifier(s). It has no effect on the external
stereo headphone/amplifier output.

This SWI disables the speaker(s) by muting the signal; you may still be able to hear
a very low level of sound.

Related SWis

Sound_Enable (page 4-20), Sound_ Volume (page 4-25)

4-23

Sound_ Speaker (SWI &40143)

4-24

Related vectors

None

Sets the overall volume of the Sound system

The Sound system

Sound_ Volume
(SWI &40180)

On entry

RO = sound volume (I - I 27) (0 to inspect last setting)

On exit

RO =previous volume

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call sets the maximum overall volume of the Sound system. A change of 16 in
the volume will halve or double the volume. The command scales the internal
lookup tables that Voice Generators use to set their volume; some custom Voice
Generators may ignore these tables and so will be unaffected.

A large amount of calculation is involved in this apparently trivial call. It should be
used sparingly to limit the overall volume; the volume of each channel should then
be set individually.

Related SWis

Sound_Enable (page 4-20). Sound_Speaker (page 4-23)

Related vectors

None

4-25

Sound_SoundLog (SWI &40181)

4-26

Sound_ Sound log
(SWI &40181)

Converts a signed integer to a signed logarithm, scaling it by volume

On entry

RO = 32-bit signed integer

On exit

RO = 8-bit signed volume-scaled logarithm

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call maps a 32-bit signed integer to an 8 bit signed logarithm in VIDC format .
The result is scaled according to the current volume setting. Table lookup is used
for efficiency.

Related SWis

Sound_LogScale (page 4-27)

Related vectors

None

'
'

The Sound system

Sound_LogScale
(SWI &40182)

Scales a signed logarithm by the current volume setting

On entry _

RO = 8-bit signed logarithm

On exit

RO = 8-bit signed volume-scaled logarithm

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This software interrupt maps an 8-bit signed logarithm in VIDC format to one
scaled according to the current volume setting_ Table lookup is used for efficiency_

Related SWis

Sound_SoundLog (page 4-26)

Related vectors

None

4-27

Sound_lnstai/Voice (SWI &40183)

4-28

Adds a voice to the Sound system

Sound_lnstaiiVoice
(SWI &40183)

On entry

RO = pointer to Voice Generator
Rl =voice slot (0 to install in next free slot. else I - 32)

On exit

RO =pointer to name of previous voice, or null terminated error string if Rl = 0
Rl =voice number allocated. or 0 if unable to install

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This software interrupt is used by Voice Modules or Libraries to add a Voice
Generator to the table of available voices. If an error occurs , this SWI does not set
V in the usual manner. Instead Rl is zero on exit, and RO points directly to a
null-terminated error string.

The Sound system

If RO is in the range 0- 3, this call takes other action as follows:

RO
0

2

3

Related SWis

Action
Reads the name of the voice installed in the specified slot

Page

4-28

Adds a voice to the Sound system, specifying its name in the 4-28
local language

Reads the name of the voice installed in the specified slot,
and its local name

Changes the local name of the voice installed in the
specified slot

4-28

4-28

Sound_RemoveVoice (page 4-34)

Related vectors

None

4-29

Sound_lnsta/IVoice 0 (SWI &40183)

4-30

Sound_lnstaiiVoice 0
{SWI &40183)

Reads the name of the voice installed in the specified slot

On entry

RO=O
R I = voice slot

On exit

Use

RO =pointer to name of installed voice
R I preserved

This call reads the name of the voice installed in the specified slot. If the slot is
unused RISC OS gives a null pointer. (The Arthur OS gave a pointer to the string
'***No Voice' .)

The Sound system

Sound_lnstaiiVoice 1
(SWI &40183)

Adds a voice to the Sound system, specifying its name in the local language

On entry

RO = 1
R1 =voice slot (0 to install in next free slot, else 1 - 32)
R2 = pointer to Voice Generator
R3 =pointer to voice name in local language, or 0 if no local name

On exit

Use

RO preserved
R1 =voice number allocated , or 0 if unable to install
R2 =pointer to name of previous voice. or null terminated error string if R1 = 0
R3 preserved

This software interrupt is used by Voice Modules or Libraries to add a Voice
Generator to the table of available voices. specifying its name in the local
language. If an error occurs, this SWI does not set V in the usual manner. Instead
Rl is zero on exit. and RO points directly to a null-terminated error string.

This reason code is not available in RISC OS 2.

4-31

Sound_ Instal/Voice 2 (SWI &40183)

4-32

Sound_lnstaiiVoice 2
(SWI &40183)

Reads the name of the voice installed in the specified slot, and its local name

On entry

RO = 2
Rl =voice slot

On exit

Use

RO, Rl preserved
R2 = pointer to name of installed voice
R3 =pointer to name of installed voice in local language

This call reads the name of the voice installed in the specified slot, and its local
name. If the slot is unused RISC OS gives a null pointer. (The Arthur OS gave a
pointer to the string '* * * No Voice'.) The local name is otherwise guaranteed to be
non-null and valid.

This reason code is not available in RISC OS 2.

The Sound system

Sound_lnstaiiVoice 3
(SWI &40183)

Changes the local name of the voice installed in the specified slot

On entry

RO = 3
Rl =voice slot
R2 = 0
R3 = pointer to new voice name in local language

On exit

Use

RO - R3 preserved

This call changes the local name of the voice installed in the specified slot. The
local name is set to the new name given. even if it had no local name before this
call was made.

This reason code is not available in RISC OS 2.

4-33

Sound_RemoveVoice (SWI &40184)

4-34

Removes a voice from the Sound system

Sound_RemoveVoice
(SWI &40184)

On entry

Rl =voice slot to remove (I - 32)

On exit

RO =pointer to name of previous voice (or error message)
RI is voice number de-allocated (0 for FAIL)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This software interrupt is used when Voice Modules or Libraries are to be removed
from the system. It notifies the Channel Handler that a RAM-resident Voice
Generator is being removed. If an error occurs, this SWI does not set V in the usual
manner. Instead Rl is zero on exit, and RO points directly to a null-terminated error
string.

This call must also be issued before the Relocatable Module Area is Tidied, since
the module contains absolute pointers to Voice Generators that are likely to exist
in the RMA.

Related SWis

Sound_InstaliVoice (page 4-28)

Related vectors

None

The Sound system

Sound_AttachVoice
{SWI &40185)

Attaches a voice to a channel

On entry

RO =channel number (I - 8)
Rl =voice slot to attach (0 to detach and mute channel)

On exit

RO preserved (or 0 if illegal channel number)
Rl =previous voice number (or 0 if not previously attached)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call attaches a voice with a given slot number to a channel. The previous voice
is shut down and the new voice is reset .

Different algorithms have different internal state representations so it is not
possible to swap Voice Generators in mid-sound.

Related SWis

Sound_AttachNamedVoice (page 4-41)

Related vectors

None

4-35

Sound_Contro/Packed (SWI &40186)

4-36

Makes an immediate sound

On entry

RO is MAACCCC Amp/Channel
Rl is DDDDPPPP Duration/Pitch

On exit

RO,Rl preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Sound_ Control Packed
(SWI &40186)

This call is identical to Sound_Control (page 4-39). but the parameters are packed
16-bit at a time into low RO, high RO, low Rl, high Rl respectively. It is provided for
BBC compatibility and for the use of the Scheduler. The Sound_ Control call should
be used in preference where possible.

Related SWis

Sound_Control (page 4-39)

Related vectors

None

Sets the tuning for the Sound system

On entry

RO =new tuning value (or 0 for no change)

On exit

RO =previous tuning value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

The Sound system

Sound_ Tuning
{SWI &40187)

This call sets the tuning for the Sound system in units of 1/4096 of an octave.

The command *Tuning 0 may be used to restore the default tuning.

Related SWis

None

Related vectors

None

4-37

Sound_Pitch (SWI &40188)

4-38

Sound_Pitch
{SWI &40188)

Converts a pitch to internal format (a phase accumulator value)

On entry

RO = 15-bit pitch value:
bits 14 - 12 are a 3-bit octave number
bits II - 0 are a 12-bit fraction of an octave (in units of 1/4096 octave)

On exit

RO = 32-bit phase accumulator value. or preserved if RO ~ &8000 on entry

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This software interrupt maps a 15-bit pitch to an internal format pitch value
(suitable for the standard voice phase accumulator oscillator) .

Related SWis

None

Related vectors

None

The Sound system

Sound_ Control
(SWI &40189)

Makes an immediate sound

On entry

RO =channel number (I - 8)
Rl =amplitude:

&FFFI - &FFFF and 0 for BBC emulation amplitude (0 to -15)
&000 I - &OOOF BBC envelope not emulated
&0 I 00- &0 IFF for full amplitude/gate control :

bit 7 is 0 for gate ON/OFF
I for smooth update (gate not retriggered)

bits 6- 0 are 7-bit logarithm of amplitude
R2 =pitch

&0000- &OOFF for BBC emulation pitch
&0 I 00- & 7FFF for enhanced pitch control:

bits 14 - 12 = 3-bit octave
bits II - 0 = 12-bit fractional part of octave
(&4000 is nominally Middle C)

&8000 + n ·n· (in range 0- &7FFF) is phase accumulator increment
R3 =duration

On exit

&0001 - &OOFE for BBC emulation in 5 centisecond periods
&OOFF for BBC emulation 'infinite' time (converted to &FOOOOOOO)
> &OOFF for duration in 5 centisecond periods .

RO - R3 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

4-39

Sound_Control (SWI &40189)

4-40

Use

This call allows real-time control of a specified Sound Channel. The parameters are
immediately updated and take effect on the next buffer fill.

Gate on and off correspond to the start and end of a note and of its envelope (if
implemented). 'Smooth' update occurs when note parameters are changed
without restarting the note or its envelope- for example when the pitch is changed
to achieve a glissando effect.

If any of the parameters are invalid the call does not generate an error; instead it
returns without performing any operation .

Related SWis

Sound_ControlPacked (page 4-36)

Related vectors

None

The Sound system

Sound_AttachNamedVoice
(SWI &4018A)

Attaches a named voice to a channel

On entry

RO =channel number (I - 8)
Rl =pointer to voice name (ASCII string, null terminated)

On exit

RO is preserved , or 0 for fail
R I is preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call attaches a named voice to a channel. If no exact match for the name is
found then an error is generated and the old voice (if any) remains attached. If a
match is found then the previous voice is shut down and the new voice is reset.

Different algorithms have different internal state representations so it is not
possible to swap Voice Generators in mid-sound.

Related SWis

Sound_AttachVoice (page 4-35)

Related vectors

None

4-41

Sound_ReadContro/8/ock (SWI &40188)

4-42

Sound_ReadControiBiock
(SWI &40188)

Reads a value from the Sound Channel Control Block

On entry

RO =channel number (I - 8)
Rl =offset to read from (0- 255)

On exit

RO preserved (or 0 if fail, invalid channel. or invalid read offset)
Rl preserved
R2 = 32-bit word read (if RO non-zero on exit)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call reads 32-bit data values from the Sound Channel Control Block (SCCB) for
the designated channel. This call can be used to read parameters not catered for in
the Sound_ Control calls returned by Voice Generators. using an area of the SCCB
reserved for the programmer.

Related SWis

Sound_WriteControlBlock (page 4-43)

Related vectors

None

The Sound system

Sound_ WriteControiBiock
(SWI &4018C)

Writes a value to the Sound Channel Control Block

On entry

RO =channel number (1 - 8)
Rl =offset to write to (0- 255)
R2 = 32-bit word to write

On exit

RO preserved (or 0 if fail, invalid channel , or invalid write offset)
R 1 preserved
R2 = previous 32-bit word (if RO non-zero on exit)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call writes 32-bit data values to the Sound Channel Control Block (SCCB) for
the designated channel. This call can be used to pass parameters not catered for in
the Sound_ Control calls to Voice Generators, using an area of the SCCB reserved
for the programmer.

Related SWis

Sound_ReadControlBlock (page 4-42)

Related vectors

None

4-43

Sound_Qinit (SWI &401CO)

4-44

Initialises the Scheduler's event queue

On entry

No parameters passed in registers

On exit

RO = 0, indicating success

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SYC mode

Re-entrancy

Not defined

Use

Sound_Qinit
(SWI &401 CO)

This call flushes out all events currently scheduled and re-initialises the event
queue. The tempo is set to the default. the beat counter is reset and disabled, and
the bar length set to zero.

Related SWis

None

Related vectors

None

Schedules a sound SWI on the event queue

The Sound system

Sound_QSchedule
(SWI &401 C1)

On entry

RO =schedule period
-I to synchronise with the previously scheduled event
-2 for immediate scheduling

RI = 0 to schedule a Sound_ Control Packed call, or SWI code to schedule (of the
form &xFOOOOOO + SWI number)
R2 = SWI parameter to be passed in RO
R3 = SWI parameter to be passed in R I

On exit

RO = 0 for successfully queued
RO < 0 for failure (queue full)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call schedules a sound SWI call. If the beat counter is enabled the schedule
period is measured from the last start of a bar, otherwise it is measured from the
time the call is made.

A schedule time of- I forces the new event to be queued for activation concurrently
with the previously scheduled one.

The event is typically a Sound_ Control Packed type call, although any other sound
SWI may be scheduled. There are limitations: R2 - R7 are always cleared, and any
return parameters are discarded. If pointers are to be passed in RO or R I then any

4-45

Sound_QSchedu/e (SW/ &401C1)

4-46

associated data must still remain when the SWI is called (the workspace involved
must not have been reused, the Window Manager must not have paged it out, and
so on).

Related SWis

Sound_OFree (page 4-48)

Related vectors

None

The Sound system

Sound_QRemove
(SWI &401 C2)

This SWI call is for use by the Scheduler only. You must not use it in your own
code.

4-47

Sound_QFree (SWI &401C3)

4-48

Sound QFree
{SWI &401 C3)

Returns minimum number of free slots in the event queue

On entry

No parameters passed in registers

On exit

RO = number of guaranteed slots free
RO < 0 indicates over worst case limit, but may still be free slots

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call returns the minimum number of slots guaranteed free. The calculation
assumes the worst case of data structure overheads that could occur, so it is likely
that more slots can in fact be used. If this guaranteed free slot count is exceeded
this call will return negative values, and the return status of Sound_OSchedule
must be carefully monitored to observe when overflow occurs.

Related SWis

Sound_OSchedule (page 4-45)

Related vectors

None

The Sound system

Sound_QSDispatch
{SWI &401 C4)

This SWI call is for use by the Scheduler only. You must not use it in your own
code.

4-49

Sound_QTempo (SWI &401C5)

4-50

Sets the tempo for the Scheduler

On entry

RO =new tempo (or 0 for no change)

On exit

RO =previous tempo value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Sound_QTempo
(SWI &401 C5)

This command sets the tempo for the Scheduler. The default tempo is & I 000,
which corresponds to one beat per centisecond; doubling the value doubles the
tempo (ie &2000 gives two beats per centisecond), while halving the value halves
the tempo (ie &800 gives half a beat per centisecond).

The parameter can be thought of as a hexadecimal fractional number, where the
three least significant digits are the fractional part.

Related SWis

Sound_OBeat (page 4-51)

Related vectors

None

Sets or reads the beat counter or bar length

The Sound system

Sound_QBeat
(SWI &401 C6)

On entry

RO = 0 to return current beat number
RO =-I to return current bar length
RO <-I to disable beat counter and set bar length 0
RO = +N to enable beat counter with bar length N (counts 0 to N-1)

On exit

RO =current beat number (RO = 0 on entry), otherwise the previous bar length .

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

The simplest use of this call is to read either the current value of the beat counter
or the current bar length.

When the beat counter is disabled both it and the bar length are reset to zero. All
scheduling occurs relative to the time the scheduling call is issued.

When the beat counter is enabled it is reset to zero. It then increments, resetting
every time it reaches the programmed bar length (N-1). Scheduling using
Sound_OSchedule then occurs relative to the last bar reset ; however, scheduling
using •osound is still relative to the time the command is issued.

Related SWis

Sound_OTempo (page 4-50)

4-51

Sound_QBeat (SWI &401C6)

4-52

Related vectors

None

The Sound system

Sound_Qinterface
(SWI &401 C7)

This SWI call is for use by the Scheduler only. You must not use it in your own
code.

4-53

*Commands

*Commands

4-54

*Audio

Turns the Sound system on or off

Syntax

*Audio OniOff

Parameters

Use

On or Off

*Audio turns the Sound system on or off. Turning the Sound system off silences it
completely, stopping all Sound interrupts and DMA activity. Turning the Sound
system back on restores the Sound DMA and interrupt system to the state it was in
immediately prior to being turned off.

All Channel Handler and Scheduler activity is effectively frozen during the time the
Audio system is off, but software interrupts are still permitted, even if no sound
results.

Example

*Audio On

Related commands

*Speaker, *Volume

Related SWis

Sound_Enable (page 4-20)

Related vectors

None

The Sound system

*ChanneiVoice

Assigns a voice to a channel

Syntax

*ChannelVoice channel voice_numberlvoice_name

Parameters

Use

channel

voice_number

voice_name

I to 8

I to 16, as given by *Voices; or 0 to mute the channel

name, as given by *Voices

*ChannelVoice assigns a voice (sound) to one of the eight independent channels
used for sound output. It is better to specify the voice by name rather than by
number, since the name is independent of the order in which the voices are loaded.
Note that the name is case sensitive. Alternatively, you can mute a channel by
assigning it a voice slot of 0.

By default, only the first of the eight voices will be available. To make others
available, use the SWI Sound_ Configure, or enter BASIC and type

>VOICES n

where n is 2, 4 or 8 (the number of sound channels to enable) . Do not, however,
confuse the VOICES command in BASIC with *Voices, the command described in
this manual.

Example

*ChannelVoice 1 StringLib-Pluck

Related commands

*Stereo, *Voices

Related SWis

Sound_Configure (page 4-18), Sound_AttachVoice (page 4-35).
Sound_AttachNamedVoice (page 4-41)

4-55

*Channe/Voice

4-56

Related vectors

None

The Sound system

*Configure SoundDefault

Sets the configured speaker setting, volume and voice

Syntax

*Configure SoundDefault speaker volume voice_number

Parameters

Use

speaker

volume

voice_ number

0 to disable the internalloudspeaker(s)- although the
headphones remain enabled
I to enable the internalloudspeaker(s)

0 (quietest) to 7 (loudest)

I to 16, as given by *Voices

*Configure SoundDefault sets the configured speaker setting, volume and voice .
The voice number is ass igned to channel I only (the default system Bell channel) .

Example

*Configure SoundDefau l t 1 7 1

Related commands

None

Related SWis

None

Related vectors

None

4-57

*QSound

4-58

*QSound

Generates a sound after a given delay

Syntax

*QSound channel amplitude pitch duration beats

Parameters

Use

channel

amplitude

pitch

duration

beats

I to 8

0 (silent) and &FFFF (almost silent) down to &FFFI (loud)
for a linear scale- or

&100 (silent) to &17F (loud) for a logarithmic scale,
where a change of 16 will halve or double the amplitude

0 to 255, where each unit represents a quarter of a
semitone, with a value of 53 producing middle C-or

256 (&100) to 32767 (&7FFF). where the bottom 12 bits
give the fraction of an octave, and the top three bits the
octave, with a value of 16384 (&4000) producing middle C

0 to 32767 (&7FFF), giving the duration of the note in
twentieths of a second- but a value of 255 (&FF) gives a
note of infinite duration (limited by the envelope, if
present)

beats delay before the sound is generated, occurring at
the rate set by *Tempo

*QSound generates a sound after a given delay. It is identical in effect to issuing a
*Sound command after the specified number of beats have occurred. The channel
will only sound if at least that number of channels have been selected, and the
channel has a voice attached.

Example

*QSound 1 &FFF2 &5800 10 50

Related commands

*Sound, *Tempo

The Sound system

Related SWis

Sound_OSchedule (page 4-45)

Related vectors

None

4-59

*Sound

4-60

*Sound

Generates an immediate sound

Syntax

*Sound channel amplitude pitch duration

Parameters

Use

channel

amplitude

pitch

duration

I to 8

0 (silent) and &FFFF (almost silent) down to &FFFI (loud)
for a linear scale- or

& I 00 (silent) to & I7F (loud) for a logarithmic scale,
where a change of I6 will halve or double the amplitude

0 to 255 , where each unit represents a quarter of a
semitone, with a value of 53 producing middle C-or

256 (& IOO) to 32767 (&7FFF). where the bottom I2 bits
give the fraction of an octave, and the top three bits the
octave, with a value of I6384 (&4000) producing middle C

0 to 32767 (&7FFF), giving the duration of the note in
twentieths of a second- but a value of 255 (&FF) gives a
note of infinite duration (limited by the envelope, if
present)

*Sound generates an immediate sound. The channel will only sound if at least that
number of channels have been selected, and the channel has a voice attached.

Example

*Sound 1 &FFF2 &5800 10

Related commands

*QSound

Related SWis

Sound_ControiPacked (page 4-36). Sound_Control (page 4-39)

Related vectors

None

The Sound system

4-61

*Speaker

4-62

*Speaker

Turns the internal speaker(s) on or off

Syntax

*Speaker OniOff

Parameters

On or Off

Use

*Speaker turns the internal speaker(s) on or off. It does not affect the 3.5 mm
stereo jack socket, which you can still use to play the sound through headphones
or an amplifier.

You may still be able to hear a very low level of sound, as this command mutes the
speaker(s) rather than totally disabling them.

Example

*Speaker Off

Related commands

*Audio, *Volume

Related SWis

Sound_Speaker (page 4-23)

Related vectors

None

Sets the position in the stereo image of a sound channel

Syntax

*Stereo channel posit i on

Parameters

Use

channel

position

I to 8

-127(fullleft) to + 127(full right)

The Sound system

*Stereo

*Stereo sets the position in the stereo image of a sound channel.

Example

*Stereo 2 100 set channel 2 output to come predominantly from the right

Related commands

*ChanneiVoice, *Voices

Related SWis

Sound_Stereo (page 4-21)

Related vectors

None

4-63

*Tempo

4-64

*Tempo

Sets the tempo for the Scheduler

Syntax

*Tempo tempo

Parameters

tempo 0 to &FFFF (default &1000)

Use

*Tempo sets the Sound system tempo (the rate of the beat counter) . The default
tempo is & I 000, which corresponds to one beat per centisecond; doubling the
value doubles the tempo (so &2000 gives two beats per centisecond), while halving
the value halves the tempo (so &800 gives a beat every two centiseconds) .

Example

*Tempo &1 2 0 0

Related commands

*OSound

Related SWis

Sound_OTempo (page 4-50)

Related vectors

None

The Sound system

*Tuning

Alters the overall tuning of the Sound system

Syntax

*Tuning relative_change

Parameters

relative_change -16383 to 16383 (0 resets the default tuning)

Use

*Tuning alters the. overall tuning of the Sound system. A value of zero resets the
default tuning. Otherwise, the tuning is changed relative to its current value in
units of 1/4096 of an octave.

Example

*Tuning 64

Related commands

None

Related SWis

Sound_Tuning (page 4-37)

Related vectors

None

4-65

*Voices

4-66

*Voices

Displays a list of the installed voices

Syntax

*Voices

Parameters

None

Use

•voices displays a list of the installed voices by name and number, and shows
which voice is assigned to each of the eight channels. A voice can be attached to a
channel even if that channel is not currently in use.

Example

*Voices
Voice Name

12 1 WaveSynth-Beep
34 2 StringLib-Soft

3 StringLib-Pluck
4 StringLib-Steel

56

78

5 StringLib-Hard
6 Percussion-Soft
7 Percussion-Medium
8 Percussion-Snare
9 Percussion-Noise

Channel Allocation Map

Related commands

•channelVoice. •stereo

Related SWis

Sound_InstallVoice (page 4-28)

Related vectors

None

The Sound system

*Volume

Sets the maximum overall volume of the Sound system

Syntax

* Volume vol ume

Parameters

Use

vol ume I (quietest) to 127 (loudest)

*Volume sets the maximum overall volume of the Sound system. A change of 16 in
the volume parameter will halve or double the actual volume.

The command scales the internal lookup tables that Voice Generators use to set
their volume (Some custom Voice Generators may ignore these tables and so will
be unaffected.) A large amount of calculation is involved in this. You should
therefore use this command sparingly, and only to limit the overall volume of all
channels; if a single channel is too loud or soft, you should alter just that channel 's
volume.

Example

* Volume 127

Related commands

• Audio, *Configure SoundDefault, *Speaker

Related SWis

Sound_ Volume (page 4-25)

Related vectors

None

4-67

Application notes

Application notes
The most likely change to the Sound system is to add Voice Generators, thus
providing an extra range of sounds. Each Voice Generator must conform to the
specifications given earlier in the section entitled Voice Generators on page 4-13, and
those given below. The speed and efficiency of Voice Generator algorithms is
paramount, and requires careful attention to coding; some suggested code
fragments are given to help you.

Code will not run fast enough in ROM, so ROM templates or user code templates
must be copied into the Relocatable Module Area where they will execute in fast
sequential RAM. If the RMA is to be tidied, all installed voices must be removed
using the Sound_RemoveVoice call , then reinstalled using the Sound_InstallVoice
call.

Voice libraries are an efficient way of sharing common code and data areas; these
must be built as Relocatable Modules which install sets of voices, preferably with
some form of library name prefix.

Buffer filling algorithms

The Channel Handler sets up three registers (RI2 , I I, I 0) which give the start
address, increment and end address for correct filling with interleaved sound
samples. The interleave increment has the value I, 2, 4 or 8, and is equal to the
number of channels. This code is an example of how these registers should be
used:

.loop

STRB Rs , [Rl2] , Rll
CMPS Rl2 , Rl0
BLT loop

e.g. form VIDC format 8 bit signed log in Rs
store, and bump ptr
check for end
and loop until fill complete

The DMA buffer is always a multiple of 4 words (I6 bytes) long, and word aligned.
Loop overheads can therefore be cut down by using two byte store operations. A
further improvement is possible if Rll , the increment, is one; this implies that
values are to be stored sequentially, so word stores may be used.

Example code fragments

4-68

The fundamental operations performed by nearly all voice generators involve
Oscillators, Table lookup and Amplitude modulation. In addition, some algorithms
(plucked string and drum in particular) require random bit generators. Simple
in-line code fragments are briefly outlined for each of these .

The Sound system

In all cases the aim is to produce the most efficient, and wherever possible highly
sequential, ARM machine code. In most algorithms the aim must be to get as many
working variables into registers as possible, and then adapt the synthesis
algorithms wherever possible to use the high-speed barrel shifter to effect.

Oscillator coding

The accumulator-divider is the most useful type of oscillator for most voices. A
frequency increment is added to a phase accumulator register and the high-order
bits of the resulting phase provide the index to a wavetable. Alternatively, the top
byte can be directly used as a sawtooth waveform.

The frequency of the oscillator is linearly related to the frequency increment.
Vibrato effects can be obtained by modulating the frequency increment

Sixteen-bit registers provide good audible frequency resolution, and are used in
many digital hardware synthesizer products. The 32-bit register width of the ARM is
ideally split I6/ I6 bits for phase/increment.

Schematically

frequency increment
1~ ...

/ -
8/ ...

ADD / -
1~ ... ___. phase accumulator / -

/16 /

Figure 72 . I Schematic of accumulator/divisor oscillator

Coding

Register field assignment: Rp

31

Phase Accumulator

1615

Increment

ADD Rp , Rp , Rp , LSL #16 p hase accumulate

0

Sawtooth/
Index

4-69

Wavetable access coding

Changing parameters or the voice table being used is best done at or close to
zero-crossing points, to avoid noise generation. If wavetables are arranged with
zero-crossing aligned to the start and end of the table then it is simple to add a
branch to appropriate code.

ADDS Rp,Rp ,Rp , LSL #16 phase accumulate
BCS Update ; only take branch if past zero crossing

Wavetable access coding

Normally fixed-length (256-byte or a larger power of two) wavetables are used by
most voice generator modules. The high bits of the phase accumulator are added
to a wavetable base pointer to access the sample byte within the table:

Schematically

For a 256-byte table:

phase accumulator
8/ ..

/ ~

ADD
3~ ..

/

wavetable base pointer
3~ ..

/

Figure 72.2 Schematic of wavetable access code

Coding
LDRB Rs, [Rt,Rp , LSR #24]

[Table]
(byte fetch)

where the most significant 8 bits of Rp contain the Phase index, Rt is the Table base
pointer, and Rs is the register used to store the sample.

Amplitude modulation coding

Overall volume

4-70

The amplitude of the resultant byte may be altered for three reasons: firstly to scale
for the overall volume setting, secondly to scale for the channel 's volume setting,
and lastly to provide enveloping.

If the overall volume setting changes, then your Update entry point will be called.
You can cope with the change in two ways. The first is to re-scale all the values in
the wavetable, using the SWI calls Sound_SoundLog or Sound_LogScale. This has

The Sound system

the advantage that buffer filling is faster as the values are already scaled, but has
the disadvantage that the wavetables might be stored to a lower resolution
resulting in increased noise levels.

The alternative is to re-scale the values between reading them from the wavetable
and outputting them, as in the example voice given later. The reverse then applies:
buffer filling is slower, but noise is reduced. This method is preferred, so long as
the algorithm is still able to fill the buffer within the required period.

Channel volume

The channel's volume setting should be used by all well-behaved Voice Generators
The volume is passed to the Voice Generator by the Channel Handler in the SCCB,
as a signed 8 bit logarithm, but in a different format to that used by the VIDC chip:

Amplitude Byte Data Format:

7 6 5 4 3 2 0

0 Logarithm

VIDC 8~bit sample format:

7 6 5 4 3 2 0

Logarithm

Coding

s
Sign
bit

The coding is easiest if the values are treated as fractional quantities, and is then
reduced to subtracting logarithms and checking for underflow:

Ra contains amplitude in range 0 to 127
Rs contains sample data in range -127 to+ 127 jsign bit LSBI

do this each time Voice Generator is entered
RSB Ra,Ra,#127 ; make attenuation factor

; do this inside loop, before each write to buffer
SUBS Rs , Rs,Ra,LSL #1 ; note shift to convert to VIDC format
MOVMI Rs ,#O ; correct for underflow

Note- The example voice shows how this can be combined with use of the
volume-scaled lookup table to scale for both the overall and channel volume on
each fill

4-71

Envelope coding

Envelope coding

Envelopes (if used) must be coded within the Voice Generator. A lookup table must
be defined giving the envelope shape. This is then accessed in a similar manner to
a wavetable, using the timbre phase accumulator passed in the sees. The sample
byte is then scaled using this value, as shown above.

If you continue after a gate off, you must store your own copy of the volume. as any
value in the sees will be overwritten.

Linear to logarithmic conversion
Algorithms which work with linear integer arithmetic may use the Channel Handler
linear-log table directly to fill buffers efficiently. The table is 8 Kbyte in length. to
allow the full dynamic range of the VIDC sound digital to analogue converter to be
utilised. The format is chosen to allow direct indexing using barrel-shifted 32-bit
integer values. The values in the table are scaled according to the current volume
setting.

Coding
to access the lookup tab le poin ter during initialisation:

MOV RO , #0
MOV Rl, #0
MOV R2 , #0
MOV

MOV

R3 , #0
R4, #0

; get Channel Handler base

SWI "XSound_ Conf igu re "
BVS error_ return
LDR RS , [R3 , #8] ; lin-to-log pointer

in line buffer filling code:
linear 32-bit value in RO

LDRB RO , [RS , RO , LSR #19] lin -> log
STRB RO , [Rl2] , Rll output to DMA buffer

Random bit generator code

4-72

An efficient pseudo-random bit generator can be implemented using two internal
registers. This provides noise which is necessary for some sounds, percussion in
particular. One register is used as a multi-tap shift register, loaded with a seed
value; the second is loaded with an XOR bit mask constant (&I 0872841). The
sequence produced has a length of 4294967295. The random carry bit setting by
the simple code fragment outlined below allows conditional execution on carry set
(or cleared) :

Coding
MOVS R8,R8,LSL #1 ; set random carry
EORCS R8,R8,R9
xxxCC do this .. .
yyyCS ; . .. or alternately this

The Sound system

4-73

Example program

Example program

4-74

This program shows a complete Voice Generator. It builds a wavetable containing a
sine wave at maximum amplitude. Scaling is performed when the table is read:

REM -> WaveVoice

DIM WaveTable% 255
DIM Code% 4095

SYS "Sound_Volume",l27 TO UserVolume
FOR s%=0 TO 255

SYS "Sound_SoundLog",&7FFFFFFF*SIN(2*PI*s%/256) TO WaveTable%?s%
NEXT s% : REM build samples at full volume
SYS "Sound_Volume",UserVolume TO UserVolume
REM and restore volume to value on entry

FOR C=O TO 2 STEP 2
P%=Code%
[OPT C
;**************************************
·* VOICE CO-ROUTINE CODE SEGMENT
;**************************************

On installation, point Channel Handler voice
; pointers to this voice control block

(return address always on top of stack)
. VoiceBase

B Fill
B Fill update entry
B Gat eOn
B GateOff
B Instance Instantiate entry
LDMFD Rl3!, (PC} Free entry
LDMFD Rl3!, {PC} Initialise
EQUD VoiceName - VoiceBase

.VoiceName EQUS "Wavevoice "
EQUB 0

ALIGN
;**************************************

.LogAmpPtr EQUD 0

.WaveBase EQUD WaveTable%
;**************************************
.Instance ;

STMFD
MOV
MOV
MOV
MOV
MOV
SWI
LDRVC
STRVC
STRVS

any instance must
Rl3 !, {R0-R4}
RO,#O
Rl,#O
R2,#0
R3,#0
R4,#0
"XSound_Configure "
RO,[R3,#12]
RO,LogAmpPtr
RO, [Rl3]

use volume scaled log amp table
; save registers

get address of volume scaled log amp table
and store
return error pointer

The Sound system

LDMFD R13! , {R0-R4, PC} ; restore registers and return
;** * ** *** * ************ * ** ** ************
; * VOICE BUFFER FILL ROUTINES
; *** ******* *** * ************** ** * * ******

on entry:
rO-rB available
r9 is SoundChannelControlBlock pointer
rlO DMA buffer limit (+1)
rll DMA buffer interleave increment
r12 DMA buffer base pointer
r13 Sound system Stack with return address and flags

on top (must LDMFD Rl3!,{ ... ,pc}
NO r14 - IRQs are enabled and r 14 is not usable

.GateOn
LDR
STR
LDR
STR

RO,WaveBase
RO, [R9 , #16]
RO , LogAmpPtr
RO , [R9 , #20]

wavetable base
set up in SCCB as working register 5
volume scaled log amp table
set up as working register 6

; * * *** * ************** * ** ** * ********* ** *
.Fill

LDMIA R9 , {Rl-R6} pick up working registers from SCCB
AND

Rl is amp
Rl , Rl , #&7F

(0-127) R2 is
mask Rl so only channel amplitude remains
pitch phase ace

R3 is timbre phase ace R4
R5 is wavetable base R6

LDRB
MOV
RSB

.FillLoop
ADD
LDRB
SUBS
MOVMI
STRB
ADD
LDRB
SUBS
MOVMI
STRB
ADD
LDRB
SUBS
MOVMI
STRB
ADD
LDRB
SUBS
MOVMI

Rl, [R6 , Rl,LSL #1]
Rl,Rl , LSR #1
Rl , Rl , #l27

R2,R2 , R2,LSL #16
RO, [R5 , R2 , LSR #24]

RO , RO , Rl , LSL #1
RO,#O
RO , [R12],Rll
R2,R2,R2 , LSL #16
RO , [R5 , R2 , LSR #24]
RO , RO , Rl,LSL #1
RO,#O
RO , [R12] ,Rll
R2 , R2 , R2 , LSL #16
RO , [R5 , R2 , LSR #24)
RO,RO,Rl,LSL #1
RO,#O
RO , [R12) , Rll
R2,R2 , R2 , LSL #16
RO, [R5,R2 , LSR #24]
RO , RO , Rl , LSL #1
RO , #O

STRB RO, [R12) , Rll
CMP R12, RlO
BLT FillLoop

check for end of note
SUBS R4 , R4 , #1
STMIB R9, {R2-R5}

is
is

duration
amp table base
move sign bit - > VIDC format log
and looku p amp scaled to overall volume
move sign bit back again
make attenuation factor

advance waveform phase
get wave samp le
scale amplitude for overall & channel volumes
and correct underflow
generate output sample
repeated in line four times .. .

end of repeats . ..
check for end of buffer fill
loop if not

decrement centisec count
save registers to SCCB

4-75

Example program

4-76

MOVPL
MOVMI
LDMFD

R0,#%00001000
R0,#%00000010
R13!,{PC}

voice active if still duration left
else force flush
return to level 1

;**************************************

.GateOff
MOV

.FlushLoop
RO,#O

STRB RO, [R12],R11
STRB
STRB
STRB
CMP

R0,[R12] , Rll
RO, [R12] ,Rll
RO, [R12] ,Rll
R12 , R10

BLT F1ushLoop

fill buffer with zeroes

CAUSE level 1 TO FLUSH once more
MOV R0,#%00000001 set flag to flush one more buffer
LDMFD R13!, {PC} ; return to level 1

NEXT C

DIM OldVoice%(8)
SYS "Sound_InstallVoice",VoiceBase,O TO a%,Voice%
FOR v%=1 TO 8

SYS "Sound_AttachVoice",v%,0 TO z%,0ldVoice%(v%)
VOICE v% , "WaveVoice"

NEXT

ON ERROR PROCRestoreSound END

VOICES 8
*voices
SOUND 1,&17F,53,10 :REM activate channel 1!
PRINT''"any key to make a noise, <ESCAPE> to finish"

C%=1
REPEAT

K%=INKEY(1)
IF K%>0 THEN

SOUND C%,&17F,K% , 100
C%+=1 : IF C%>8 THEN C%=1

ENDIF
UNTIL 0

DEF PROCRestoreSound
ON ERROR OFF
REPORT:PRINT ERL
SYS "Sound_RemoveVoice " ,O , Voice%
FOR v%=1 TO 8

SYS "Sound_AttachVoice " ,v%,0ldVoice%(v%)
NEXT
VOICES 1
*voices
PRINT ' '

ENDPROC

73 WaveSynth

Introduction
WaveSynth is a module that provides a voice generator which is used for the
default system bell.

In RISC OS 2 WaveSynth provided a SWI for its own internal use. This has since
been removed .

For more information about the use of sound in RISC OS, refer to the chapter
entitled The Sound system on page 4-3 .

4-77

Example programs

Example programs

4-78

You can create new wavetables for use with WaveSynth, for example:

REM > OrganVoice
OUTFILE$= "0rgan01 "
OUT=OPENOUT OUTFILE$
BPUT#OUT , "! WT : Organ "+STRING$(7 , CHR$0);
sizeptr=PTR#OUT
PROCW(O)
FORI%=1T08 : PROCW(8) :NEXT
PROCW(13) :PROCW(O) :PROCW(O)
PROCHDR
size=EXT#OUT
PTR#OUT=sizeptr:PROCW(size)
CLOSE#OUT
REM Pass local name Orgel as parameter on command line
*RMREINIT WAVESYNTH ORGAN01 Orgel
END

DEFPROCW (X%)
LOCAL I%

FORI%=1T04 : BPUT#OUT,X%:X%=X%>>8:NEXT
ENDPROC

DEFFNW
RESTORE
DATA 1 , 1, 0 . 8 , 2, 0.6,4 , 0.4 , 8 , 0.2 , 16: REM amplitude , frequency
DATA 0 , 0
M=O
REPEAT

READ A$, H$:A=EVALA$
IF A>O THEN M+=A

UNTIL A=O
M=&7FFFFFFF /M
RESTORE
B=O
REPEAT

READ A$, H$:A=EVALA$: H=EVALH$
IF A>O THEN B+=FNSIN(A *M, H)

UNTIL A=O
=B

DEFFNSIN(A , F)=A*SIN(F *2 *PI *s%/256)

DEFPROCHDR
MODEO
ORIGIN0,512
MOVEO , O
RESTORE+O
FORI%=1T014:READJ$:PROCW(EVALJ$) :NEXT
PTR#OUT=256
FOR s%=0 TO 255

B%=FNW
SYS "Sound_ SoundLog",B% TO wave%
DRAW s%*4 , 8%>>22
BPUT#OUT,wave%

NEXT
ENDPROC

REM offset 64 (index 8)
REM descriptor 8 (ATTACK)
DATA &0000007F + (1<<9)
DATA &00090001
REM descriptor 9 (DECAY)
DATA &OOOOOOFO + (31<<9)
DATA &OOOAOOOl
REM descriptor 10 (SUS a)
DATA &00000080 + (500«9)
DATA &OOOEOOOl
REM descriptor 11 (SUS b)
DATA &OOOOOODF + (25«9)
DATA &OOOAOOOl
REM descriptor 12 (SUSTAIN)
DATA &00000000 + (&FFFFF<<9)
DATA &OOOD0002
REM descriptor 13 (release)
DATA &00000080 + (1«9)
DATA &OOOEOOOl
REM descriptor 14 (Dead)
DATA 0
DATA 0.

WaveSynth

4-79

Example programs

4-80

You can then load the new wavetable into WaveSynth as a module initialisation
parameter, eg:

REM > Source
obj$= "<0bey$Dir> . !Runimage "
DIM MC%1000,L%-1
FOR I%=8 TO 10 STEP 2
P%=MC%
[OPTI%
.start

MOV RO, #14
ADR R1, instantiation
SWI "XOS_ Module "
MOV PC, R14

.instantiation
; Pass local name Orgel as parameter on command line
EQUS "WaveSynth%0rgan <0bey$Dir>.Organ01 Orgel "+CHR$0

] :NEXT
OSCLI "Save " +obj$+" " +STR$-start+ " " +STR$-P%
OSCLI "SetType "+obj$+" &FFC "
OSCLI "Stamp "+obj$

The facility shown in the above examples for specifying a local name was
introduced in RISC OS 3.

Part 12 - Utilities

4-81

4-82

74 The Buffer Manager

Introduction and Overview
The buffer manager acts as a global buffer managing system, providing a set of
calls for setting up a buffer. inserting and removing data from a buffer, and
removing a buffer. The buffer manager extends the InsV, RemV and CnpV vector
calls to provide access to these buffers and to aliow block transfers.

The buffer manager is not available in RISC OS 2.

The buffer manager is used by DeviceFS to provide buffers for the various devices
that can be accessed. A device may be linked to a buffer, and may supply routines
to be called when data enters the buffer as well as a routine to be called when a
buffer is removed (or a new device is attached).

When registering or creating a buffer you can force a specific buffer handle. or
request that the buffer manager assign a unique handle. You should note that
buffer handles are no longer stored as eight bit quantities.

Block transfers are signalled by setting bit 3 I of the buffer handle. Anything you
can do on a byte by byte basis you can also do to a block, such as examining the
buffer contents .

A number of vectors. events. service calls and UpCalls have been extended or
created to enable the buffer manager to function efficiently.

See also the chapter entitled Buffers on page I- I 6 I .

Vectors

The SWis for the buffer manager module allow you to modify the actual buffer
itself. but do not supply a way of inserting and removing data from these buffers.
Extensions have been made to the following vectors to handle the inserting and
removing of data from the buffers, and to allow block inserts. For more details of
these vector calls see the chapter entitled Software vectors on page I -63 .

• InsV

• RemV

e CnpV

inserts a byte in a buffer

removes a byte from a buffer

counts the number of entries or spaces in a buffer, or
purges the contents of a buffer

4-83

Introduction and Overview

4-84

Events

Because of the above changes to vectors, the following events have been extended
so they can indicate that a block transfer occurred. For more details of these events
see the chapter entitled Events on page 1-145.

• Event_OutputEmpty

• Event_lnputFull

Service calls

issued when the last character is removed from a
buffer

generated when a character or block is inserted and
it failed

The service call Service_BufferStarting has been added to allow modules which
wish to register buffers with the buffer manager to do so. For more details of this
service call see page 4-85.

UpCalls

UpCalls are used by the buffer manager to communicate with buffer owners. For
more details of these UpCalls see the chapter entitled Communications within
RISC OS on page 1-175.

• OS_UpCall 8 issued when data is inserted into the buffer causing
the free space to fall below the specified threshold

e OS_UpCall9 issued when the free space in the buffer becomes
greater than the current threshold.

The Buffer Manager

Service Calls
Service_BufferStarting

(Service Call &6F)

Notifies modules that the buffer manager is starting

On entry

RI = &6F (reason code)

On exit

Use

All registers preserved

This call is passed around modules after the buffer manager has been initialised or
reset. Once modules have received this service call they can then register buffers
with the buffer manager, and use the Buffer_ ... SW!s.

4-85

SWI calls

SWI calls

4-86

Buffer_ Create
(SWI &42940)

Claims an area of memory from the RMA and registers it as a buffer

On entry

RO = buffer's flags word:
bit 0: 0 ~buffer is dormant. and wake up routine should be called

bit I:
bit 2:
bit 3:

when data enters it
I ~ Event_OutputEmpty should be generated for this buffer
I ~ Event_InputFull should be generated for this buffer
I ~ UpCalls should be issued when this buffer's free space

threshold is crossed
bits 4- 31 reserved (should be set to 0 on creation)

R I = size of buffer to be created
R2 =handle to be assigned to buffer (-I ~get buffer manager to generate handle)

On exit

RO = buffer handle

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call claims an area of memory from the RMA and registers it as a buffer. If you
register a buffer n bytes long, it can hold at most n- I bytes.

If R2 =-I the buffer manager will attempt to find a unique handle; else the buffer
manager will assign the specified handle to the buffer, after checking it is unique.

The Buffer Manager

The buffer's flags word is used to indicate what should happen when data is being
inserted and removed from the buffer:

Bit 0 is set if the buffer is not dormant, and its wake up routine (see the
section entitled The wake up routine on page 4-95) has been called.

If this bit is clear then the buffer is dormant; when data is then put
into the buffer this bit is set and its wake up routine (if any) is called.

Bit I is set if Event_OutputEmpty should be generated for this buffer.

Bit 2 is set if Event_lnputFull should be generated for this buffer.

Bit 3 is set if UpCalls should be issued when this buffer's free space
thresholds are crossed.

Bit 0 should be clear when calling this SWI. Bits I - 3 may have any value. The
remaining bits are reserved , and should be clear when calling this SWI.

On exit RO contains the buffer handle being used.

Related SWis

Buffer_Remove (page 4-88). Buffer_Register (page 4-89).
Buffer_LinkDevice (page 4-94)

Related vectors

None

4-87

Buffer_Remove (SWI &42941)

4-88

Deregisters a buffer and frees its memory

Buffer _Remove
(SWI &42941)

On entry

RO = handle of buffer to be removed

On exit

RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call attempts to deregister the given buffer. If it succeeds, then any data held
by the buffer will be purged, and any future access to the buffer via InsV, RemV and
CnpV will be ignored; it will then attempt to free the memory that was claimed for
that buffer.

You should only use this call for buffers created and registered using
Buffer_Create. If you used Buffer_Register to register the buffer, you should instead
call Buffer_Deregister to deregister it.

Related SWis

Buffer_Create (page 4-86), Buffer_Deregister (page 4-89).
Buffer_LinkDevice (page 4-94)

Related vectors

None

Registers an area of memory as a buffer

The Buffer Manager

Buffer _Register
{SWI &42942)

On entry

RO = buffer's flags word:
bit 0: 0 ~ buffer is dormant, and wake up routine should be called

bit 1:
bit 2:
bit 3:

when data enters it
1 ~ Event_OutputEmpty should be generated for this buffer
I ~ Event_lnputFull should be generated for this buffer
I ~ UpCalls should be issued when this buffer's free space

threshold is crossed
bits 4- 31 reserved (should be set to 0 on registration)

R I = pointer to start of memory for buffer
R2 = pointer to byte following end of buffer
R3 =handle to be assigned to buffer (-1 ~get buffer manager to generate handle)

On exit

RO = buffer handle

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SYC mode

Re-entrancy

Use

Not defined

This call registers an area of memory as a buffer. The routine accepts similar
parameters to Buffer_ Create, but instead of the call claiming the memory for you ,
you must already have done so yourself, and merely pass the buffer's start and end.
If you register a buffer n bytes long, it can hold at most n - I bytes.

4-89

Buffer_Register (SWI &42942)

4-90

You should not put buffers in the application workspace, as this area of memory
might be switched out when someone else tries to access the buffer. However, you
can do this if your task will be the only one using the buffer, and it will only be
accessed while your task is paged in .

If R3 =-I the buffer manager will attempt to find a unique handle; else the buffer
manager will assign the specified handle to the buffer, after checking it is unique.

The buffer's flags word is used to indicate what should happen when data is being
inserted and removed from the buffer:

Bit 0 is set if the buffer is not dormant, and its wake up routine (see the
section entitled The wake up routine on page 4-95) has been called.

If this bit is clear then the buffer is dormant; when data is then put
into the buffer this bit is set and its wake up routine (if any) is called.

Bit I is set if Event_OutputEmpty should be generated for this buffer.

Bit 2 is set if Event_InputFull should be generated for this buffer.

Bit 3 is set if UpCalls should be issued when this buffer's free space
thresholds are crossed .

Bit 0 should be clear when calling this SWI. Bits I - 3 may have any value. The
remaining bits are reserved , and should be clear when calling this SWI.

On exit RO contains the buffer handle being used.

Related SWis

Buffer_Create (page 4-86). Buffer_Deregister (page 4-91).
Buffer_LinkDevice (page 4-94)

Related vectors

None

Deregisters a buffer

The Buffer Manager

Buffer _Deregister
(SWI &42943)

On entry

RO = handle of buffer to be de registered

On exit

RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This call attempts to deregister the given buffer. If it succeeds, then any data held
by the buffer will be purged, and any future access to the buffer via InsV, RemV and
CnpV will be ignored.

You should only use this call for buffers registered using Buffer_Register. If you
used Buffer_Create to create and register the buffer. you should instead call
Buffer_Remove to deregister it.

Related SWis

Buffer_Remove (page 4-88). Buffer_Register (page 4-89) ,
Buffer_LinkDevice (page 4-94)

Related vectors

None

4-91

Buffer_ModifyFlags (SWI &42944)

4-92

Modifies a buffer's flags word

On entry

RO = handle of buffer to be modified
Rl = EOR mask
R2 =AND mask

On exit

Rl =old value
R2 = new value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

Buffer _Modify Flags
(SWI &42944)

This call modifies a buffer's flags word (see page 4-87) by applying an AND mask,
followed by an EOR mask. On exit it returns the old and new values of the flags
word.

The new value is worked out as follows:

new= (old AND R2) EOR Rl

You should not modify any reserved bits in the flags word when issuing this call (ie
bits 4-31 should be set in R2 and clear in Rl).

Related SWis

BuffecLinkDevice (page 4-94)

Related vectors

None

The Buffer Manager

4-93

Buffer_LinkDevice (SWI &42945)

4-94

Links a set of routines to the specified buffer

Buffer_LinkDevice
{SWI &42945)

On entry

RO = buffer handle
Rl =pointer to routine to call when data enters the dormant buffer (0 ~none)
R2 = pointer to routine to call when owner of buffer is to change (0 ~ cannot be

changed)
R3 = private word to be passed to above routines
R4 = pointer to workspace for above routines

On exit

RO - R4 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call links a set of routines to the specified buffer.

The routines are called with the same entry conditions. The processor may be in
any mode and interrupt state. The registers are as follows:

On entry

RO = buffer handle
R8 =private word (as specified in R3)
RI2 =pointer to workspace for routine (as specified in R4)

The Buffer Manager

Such routines are typically used to wake up devices attached to a previously
dormant buffer so they can start processing data that has appeared, and to
shutdown a device when another wishes to access its buffer. In particular, DeviceFS
uses this mechanism.

The wake up routine

R I contains a pointer to a routine to be called when data enters the buffer and it is
currently marked dormant. Before calling this 'wake up' routine, the buffer manager
first sets bit 0 in the buffer's flags word, marking it as no longer dormant. On exit
from the wake up routine you must preserve the entire state of the processor: ie the
register contents (including the PSR). the mode. and the state of IRQ and FlO.

If this pointer (ie R I) is zero. the buffer manager does not attempt to call a wake up
routine for the specified buffer.

The owner change routine

R2 contains a pointer to a routine to be called whenever the owner of the buffer is
about to change. This occurs:

• when an attempt is made to remove or deregister the buffer by calling
Buffer_Remove or Buffer_Deregister respectively

• when an attempt is made to link to the buffer by another call of this SWI for the
same buffer

• when an attempt is made to kill the buffer manager.

On return from this 'owner change' routine you can return an error in the usual way
(V set, RO points to an error block) and thus halt the attempt to change the buffer's
owner; you'll also- coincidentally- halt whatever caused the attempt. For
example, this SWI may sometimes fail because the given buffer may already have
an owner that is refusing to detach itself. If you don't return an error you must
preserve the entire state of the processor: ie the register contents (including the
PSR). the mode, and the state of IRQ and FlO.

If this pointer (ie R2) is zero, the buffer manager will always return an error if an
attempt is made to change the buffer's owner.

Related SWis

Buffer_Remove (page 4-88). Buffer_Deregister (page 4-91).
Buffer_ModifyFlags (page 4-92). Buffer_UnlinkDevice (page 4-96)

Related vectors

None

4-95

Buffer_UnlinkDevice (SWI &42946)

4-96

Buffer_UnlinkDevice
(SWI &42946)

Unlinks a set of routines from the specified buffer

On entry

RO = buffer handle

On exit

RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call unlinks all routines that were previously linked to the specified buffer by
calling Buffer_LinkDevice. No warning is given of this (ie the buffer's change owner
routine is not called) , and any data that is currently stored within the buffer is
purged.

You should only make this call if it was you that initially linked the routines;
anyone else calling this SWI could confuse the system.

Related SWis

Buffer_LinkDevice (page 4-94)

Related vectors

None

Returns data about the buffer

The Buffer Manager

Buffer_ Get Info
{SWI &42947)

On entry

RO = buffer handle

On exit

RO = buffer's flags word
Rl =pointer to start of buffer in memory
R2 = pointer to byte following end of buffer
R3 =offset within buffer of insertion point
R4 = offset within buffer of removal point
R5 = remaining free space in buffer
R6 = number of characters in buffer

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call returns data about the buffer: its flags word, position in memory, the
offsets within the buffer of its insertion and removal points, the amount of free
space, and the number of characters in the buffer.

The insertion and removal points wrap around from the end of the buffer to the
start , so you should not assume that the insertion point's offset will be greater
than that of the removal point. Furthermore, you should not assume that the sum
of R5 and R6 (the free space in the buffer and the number of characters in the
buffer) will be the same as the size of the buffer.

4-97

Buffer_Getlnfo (SWI &42947)

4-98

Related SWis

None

Related vectors

None

Sets or reads the warning threshold of the buffer

On entry

RO = buffer handle
Rl =threshold (0 =none, -I to read)

On exit

Rl =previous value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

The Buffer Manager

Buffer_ Threshold
(SWI &42948)

This call is used to set or read the warning threshold of the buffer. UpCalls are
issued if bit 3 of the buffer's flags word is set, and the amount of free space in the
buffer crosses this threshold value. For details of the UpCalls see the chapter
entitled Communications within RISC OS on page 1-175.

Related SWis

Buffer_Create (page 4-86), Buffer_Register (page 4-89)

Related vectors

None

4-99

4-100

75 Squash

Introduction and Overview
This module provides general compression and decompression facilities of a
loss less nature through a SWI interface. The algorithm is I 2-bit LZW, however, this
may change in future releases.

The interface is designed to be restartable, so that compression or decompression
can occur from a variety of locations. Operations involving file 1/0 can easily be
constructed from the operations provided.

This module is not available in RISC OS 2.

The module is used by the Squash application to generate files of type Squash
(&FCA) . The format of these files is documented in the section entitled Squash files
on page 4-493.

Errors

The following errors can be returned by the Squash module:

Error number

&92 1

&922

&923

&924

Error text

Bad address for module Squash

Bad input for module Squash

Bad workspace for module Squash

Bad parameters for module Squash

SWI calls

SWI calls

4-102

Squash_ Compress
{SWI &42700)

Provides general compression of a lossless nature

On entry

RO =flags:
bit 0: 0 ~start new operation . 1 ~continue existing operation (using

existing workspace contents)
0 ~ end of the input. I ~ more input after this
reserved (must be zero)

bit 1:
bit 2:
bit 3: 0 ~no effect, I ~ return the work space size required and the

maximum output size in bytes (al l other bits must be 0)
bits 4-31 reserved (must be zero)

Rl =input size (-I ::::} do not return maximum output size)- if bit 3 of RO is set;
or workspace pointer- if bit 3 of RO is clear

R2 = input pointer- if bit 3 of RO is clear
R3 =number of bytes of input available- if bit 3 of RO is clear
R4 =output pointer - if bit 3 of RO is clear
R5 =number of bytes of output space available- if bit 3 of RO is clear

On exit

RO =required work space size- if bit 3 of RO set on input; else
output status- if bit 3 of RO clear on input:

0 ~operation completed
I ~operation ran out of input data (R3 = 0)
2 ~operation ran out of output space (R5 < 12)

Rl =maximum output size (-I ::::} don't know or wasn 't asked)- if bit 3 of RO set
on input; else preserved- if bit 3 of RO clear on input

R2 updated to show first unused input byte- if bit 3 of RO clear on input
R3 updated to show number of input bytes not used- if bit 3 of RO clear on input
R4 updated to show first unused output byte- if bit 3 of RO clear on input
R5 updated to show number of output bytes not used- if bit 3 of RO clear on input

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Squash

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call provides general compression of a lossless nature. It acts as a filter on a
stream of data. The call returns if either the input or the output is exhausted.

It is recommended that you use the following facility to determine the maximum
output size rather than attempting to calculate it yourself:

Call the SWI first with bit 3 of RO set and the input size placed in R I . The
maximum output size is then calculated and returned on exit in RI . You can
use this value to allocate the required amount of space and call the SWI again
setting the registers as appropriate.

If for any reason the SWI cannot calculate the maximum output size it will
return -I in R I.

The workspace size required is returned in RO.

The algorithm used by this module is I 2-bit LZW, as used by the UNIX 'compress'
command (with -b I 2 specified) . If future versions of the module use different
algorithms. they will still be able to decompress existing compressed data.

If bits 0 and I of RO are clear. and the output is definitely big enough, a fast
algorithm will be used.

The performance of compression on an 8Mhz A420 with ARM2 is approximately as
follows:

Store to store Fast case

24 Kbytes per second 68 Kbytes per second

where Fast case is store to store, with all input present. and with an output buffer
large enough to hold all output.

Related SWis

Squash_Decompress (page 4- I 04)

Related vectors

None

4-103

Squash_Decompress (SWI &42701)

4-104

Squash_Decompress
{SWI &42701)

Provides general decompression of a lossless nature

On entry

RO =flags:
bit 0: 0 ~start new operation, I ~continue existing operation (using

existing workspace contents)
bit I: 0 ~ end of the input, I ~ more input after this
bit 2: 0 ~normal , I ~you may assume that the output will all fit in

this buffer (allows a faster algorithm to be used, if bits 0
and I are both 0)

bit 3: 0 ~ no effect, I ~ return the work space size required and the
maximum output size in bytes (all other bits must be 0)

bits 4 - 31 reserved (must be zero)
Rl =input size (-I ==> do not return maximum output size)- if bit 3 of RO is set;

or workspace pointer- if bit 3 of RO is clear
R2 = input pointer- if bit 3 of RO is clear
R3 = number of bytes of input available- if bit 3 of RO is clear
R4 =output pointer- if bit 3 of RO is clear
R5 = number of bytes of output space available- if bit 3 of RO is clear

On exit

RO = required work space size- if bit 3 of RO set on input; else
output status- if bit 3 of RO clear on input:

0 ~ operation completed
I ~operation ran out of input data (R3 < 12)
2 ~ operation ran out of output space (R5 = 0)

Rl =maximum output size (-I ==> don't know or wasn't asked)- if bit 3 of RO set
on input; else preserved- if bit 3 of RO clear on input

R2 updated to show first unused input byte- if bit 3 of RO clear on input
R3 updated to show number of input bytes not used- if bit 3 of RO clear on input
R4 updated to show first unused output byte- if bit 3 of RO clear on input
R5 updated to show number of output bytes not used- if bit 3 of RO clear on input

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Squash

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This SWI provides general decompression of a lossless nature.

Note: The current algorithm cannot predict what the size of the decompressed
output will be. This means that, currently, -I is always returned on exit in Rl .
In future releases this may change; it is therefore recommended that you call
the SWI first with bit 3 of RO set and the input size placed in RI.

If RI is not equal to -I then you can use this value to allocate the required
amount of space and call the SWI again, setting the registers as appropriate. If
Rl is equal to -I you must attempt to calculate the maximum output size
yourself.

The workspace size required is returned in RO.

In the case where R3 < 12, the unused input must be resupplied .

The performance of decompression on an 8Mhz A420 with ARM2 is approximately
as follows:

Store to store Fast case

48 Kbytes per second 280 Kbytes per second

where Fast case is store to store, with all input present, and with an output buffer
large enough to hold all output.

Related SWis

Squash_ Compress (page 4-1 02)

Related vectors

None

4-105

4-106

76 Screen Blank

Introduction and Overview
The Screen Blank module provides the facilities needed to support screen blanking.
There are two service calls so that applications can tell when the screen is blanked
and when it is restored.

There is also a * Command with which you can override the default time of
inactivity before the screen blanks. The default time itself is set using the Configure
application; there is no defined programmers' interface to do so.

The Screen Blank module also provides a SWl for internal use by the Portable
module; you must not use it in your own code.

This module is not available in RISC OS 2.

4-107

Service Calls

Service Calls

4-108

Screen blanked by screen blanker

On entry

Rl = &7A (reason code)

On exit

All registers must be preserved.

Use

Service_ Screen Blanked
(Service Call & 7 A)

This service call is issued by the screen blanker, after the screen has been blanked
This service call should not be claimed.

Screen restored by screen blanker

ScreenB/ank

Service_ScreenRestored
(Service Call &78)

On entry

RO = 0, or flags passed in R4 to ScreenBlanker_Control 2
Rl = &78 (reason code)

On exit

Use

All registers must be preserved.

This service call is issued by the screen blanker, after the screen has been restored.
This service call should not be claimed.

RO is normally zero. If however the call results from a flash cycle, then it will be set
to the value of R4 that was passed to ScreenBlanker_Control 2.

4-109

SWI calls

SWI calls

4-110

ScreenBianker_Control
(SWI &431 00)

This SWI is for internal use by the Portable module. You must not use it in your
own code.

ScreenB/ank

*Commands
*BiankTime

Sets the time of inactivity before the screen blanks

Syntax

*BlankTime [WIO) [time]

Parameters

w writing to the screen finishes screen blanking

writing to the screen does not finish screen blanking

time of inactivity before the screen blanks

Use

0

time

*BiankTime sets the time in seconds before the screen blanks. If, during this time,
there is no activity (ie no keyboard or mouse input is received , and- with thew
option- there is no writing to the screen) the screen then blanks. This saves 'burn
in' on the phosphor of your monitor, which occurs when the monitor consistently
displays a particular image, such as the desktop.

Screen blanking finishes as soon as there is activity (see above) .

If no option is specified, 0 is assumed.

The blank time is only retained until the next reset.

Example

*BlankT ime W 6 Q 0 blanks the screen if neither input nor output occur for I 0 minutes

Related commands

None

Related SWis

None

Related vectors

WrchV (claimed by w option)

4-111

4-112

Part 13 - Hardware support

4-113

4-114

77 Expansion Cards and Extension
ROMs

Introduction
Expansion Cards provide you with a way to add hardware to your RISC OS
computer. They plug into slots provided in the computer, typically in the form of a
backplane (these are an optional extra on some models).

Extension ROMs are ROMs fitted in addition to the main ROM set, which provide
software modules which are automatically loaded by RISC OS on power-on. Note
that RISC OS 2 does not support extension ROMs. Extension ROMs are provided
so that Acorn can add extra modules to RISC OS, or provide replacement modules
for those already in RISC OS. You must not use them.

This chapter gives details of the software that RISC OS provides to manage and
communicate with expansion cards. It also gives details of what software and data
needs to be provided by expansion cards for RISC OS to communicate with them;
in short, all you need to know to write their software. For completeness, it gives the
same information for extension ROMs; but- of course- this is irrelevant to you, as
you shouldn't use extension ROMs.

The two topics are covered together because both use substantially the same
layout of code and data , and the same SWis. For more details on writing modules,
see the chapter entitled Modules on page I- I 97.

One thing this chapter does not tell you is how to design expansion card hardware.
This is because:

• the range of hardware that can be added to a RISC OS computer is so large
that we can't examine them all

• we don't have the space to describe every RISC OS computer that Acorn makes

Instead, you should see the further sources of information to which we refer you.

4-115

Overview

Overview

Software

RISC OS computers can support internal slots for expansion cards. If you wish to
add more cards than can be fitted to the supplied slots, you must use one of the
slots to support an expansion card that buffers the signals on the expansion card
bus before passing them on to external expansion cards.

Some RISC OS computers can also support extension ROMs. The availability, size
and number of extension ROM sockets depends on which type of RISC OS
computer you are using. For example. the A5000 has a single socket for an 8 bit
wide ROM.

Expansion cards

4-116

Expansion cards can have some or all of the following software included:

• an Expansion Card Identity, to give RISC OS information about the card (see
page 4-I I9 and page 4-I21)

• Interrupt Status Pointers, to tell R1SC OS where to look to find out if the card is
generating interrupts (see page 4-126)

• a Chunk Directory, that defines what separate parts of the card's memory space
are used for (see page 4-127)

• a Loader. to access paged memory held outside the card's address space (see
page 4-129)

A wide range of different types of code and data is supported by the Chunk
Directories .

The use of the Loader and paged memory has been made as transparent to the end
user as possible.

Expansion Cards and Extension ROMs

Extension ROMs

Extension ROMs must include the following software:

• an Extension ROM Header, to give RISC OS information about the ROM and to
differentiate it from an expansion card (see page 4-118)

• an Extended Expansion Card Identity, to give RISC OS information about the
ROM (see page 4-121)

• null Interrupt Status Pointers, because a ROM cannot generate interrupts (see
page 4-126)

• a Chunk Directory, that defines what each part of the ROM's memory space is
used for (see page 4-127).

4-117

Technical Details

Technical Details
In general. RISC OS recognises extension ROMs or ROM sets which are 8, 16 or 32
bits wide, provided the ROM adheres to the specification below. 32 bit wide
extension ROM sets are directly executable in place, saving on user RAM. 8 or 16
bit wide sets have to be copied into RAM to execute.

An extension ROM set must end on a 64K boundary or at the start of another
extension ROM. This is normally not a problem as it is unlikely you would want to
use a ROM smaller than a 27128 (16K). and the normal way of addressing this
would mean that the ROM would be visible in I byte out of each word, ie within a
64K addressable area.

Extension ROM Headers

4-118

Extension ROMs must have a 16 byte Extension ROM Header at the end of the ROM
image, which indicates the presence of a valid extension ROM. The 'header' is at
the end because RISC OS scans the ROM area downwards from the top.

For a ROM image of size 11 bytes, the format of the header at the end is as follows:

Byte address

11-16

11-12

11-8

Extension ROM width

Contents

1-word field containing 11

1-word checksum (bottom 32 bits of the sum of all words
from addresses 0 to n-16 inclusive)

2-word id 'ExtnROMO' indicating a valid extension ROM, ie:

11-8 &45 'E'
n-7 &78 'x'
n-6 &74 't'
11-5 &6E 'n'
11-4 &52 'R'
11-3 &4F '0'
11-2 &40 'M'
I'l-l &30 '0'

Note that this header will not necessarily appear in the memory map in the last 16
bytes if the ROM set is 8 or 16 bits wide. In the 8-bit case. the header will appear in
one of the four byte positions of the last 16 words. and in the 16-bit case, in one of
the two half-word positions of the last 8 words. However. RISC OS copes with this,
and uses the mapping of the ID field into memory to automatically derive the width
of the extension ROM.

Expansion Cards and Extension ROMs

Introduction to Expansion Card Identities

Expansion cards

Each expansion card must have an Expansion Card Identity (or ECid) so that RISC OS
can tell whether an expansion card is fitted in a backplane slot, and if so, identify it.
The ECid may be:

• a simple ECid of only one byte- the low one of a word (see below)

• an extended ECid of eight bytes, which may be followed by other information
(see page 4-121).

The ECid (whether extended or not) must appear at the bottom of the expansion
card space immediately after a reset. However, it does not have to remain readable
at all times, and so it can be in a paged address space so long as the expansion
card is set to the page containing the ECid on reset.

The ECid is read by a synchronous read of address 0 of the expansion card space.
You may only assume it is valid from immediately after a reset until when the
expansion card driver is installed.

Extension ROMs

As well as the Extension ROM header at the end of the ROM image, Extension
ROMs must also have a header at the start of the ROM image. This header is
identical in format to an Extended Expansion Card Identity, and is present for the
use of the Expansion Card Manager, which handles much of the extension ROM
processing. See page 4-121 onwards, paying particular attention to the section
ent itled Mandatory values for extension ROMs.

Simple Expansion Card Identity

Expansion cards can use a simple ECid, which is one byte long. You should only
use one for the very simplest of expansion cards, or temporarily during
development.

• Most expansion cards should instead implement the extended ECid, which
eliminates the possibility of expansion card IDs clashing.

• Extension ROMs must use an extended ECid, rather than a simple ECid.

4-119

Simple Expansion Card Identity

4-120

Restrictions imposed by a Simple ECid

If you do use a simple ECid, your expansion card must be 8 bits wide. The only
operations that you may perform on its ROM are Podule_RawRead (see
page 4-147) or Podule_RawWrite (see page 4-148) .

Format of a simple ECid

A simple ECid shares many of the features of the low byte of an extended ECid, and
is as follows:

7 6 5

A 10[3] 10[2]

Bit(s) Value

A 0

10[3:0] not 0
(0

FlO 0

IRQ 0

Acorn conformance bit (A)

4

10[1]

3 2 0

10[0] FlO 0 IRQ

Meaning

Acorn conformant expansion card
non-conformant expansion card

ID field
extended ECid used)

not requesting FlO
requesting FlO

not requesting IRQ
requesting IRQ

This bit must be zero for expansion cards that conform to this Acorn specification .

ID field (ID (3:0))

If you are using a simple ECid, the four ID bits may be used for expansion card
identification. They must be non-zero, as a value of zero shows that you are instead
using an extended ECid.

Interrupt status bits (IRQ and FlO)

The interrupt status bits are discussed below in the section entitled Generating
interrupts from expansion cards on page 4-125.

Expansion card presence (bit 1)

This must be zero, as shown above. For more information, see the section entitled
Expansion card and extension ROM presence on page 4- 124.

Expansion Cards and Extension ROMs

Extended Expansion Card Identity

An expansion card's ECid is extended if the ID field of its EC!d low byte is zero. This
means that RISC OS will read the next seven bytes of the ECid. The extended EC!d
starts at the bottom of the expansion card space, and consists of the eight bytes
defined below.

Expansion card width

If an expansion card has an extended EC!d, the first I 6 bytes of its address space
are always assumed to be bytewide. These 16 bytes contain the 8 byte extended
EC!d itself, and a further 8 bytes (typically the Interrupt status pointers- see
below). If the EC!d is included in a ROM which is I 6 or 32 bits wide, then only the
lowest byte in each half-word or word must be used for the first 16 (half) words.

If you use an extended ECid, you may specify the space after this as 8, 16 or 32 bits
wide. When you access this space

• if you are using the 8 bit wide mode, you should use byte load and store
instructions

• if you are writing using the 16 bit wide mode, you should use word store
instructions, putting your half word in both the low and high half words of the
register you use

• if you are reading using the I 6 bit wide mode, you should use word load
instructions, and ignore the upper half word returned

• if you are using the 32 bit wide mode, you should use word load and store
instructions.

Synchronous cycles are used by the operating system to read and write any
locations within this space (to simplify the design of synchronous expansion
cards) .

Current restrictions

You should note however that there are urrently some restrictions on the widths
you can use. These are imposed both by current hardware and software:

• the 1/0 data bus is only 16 bits wide

• the current version of the RISC OS E' pansion Card Manager only supports the
8 bit wide mode; future versions ma support the wider modes.

4-121

Extended Expansion Card Identity

Format of an extended ECid

The format of an extended ECid is as follows:

7 6 5 4

C[7] C[6] C[5] C[4]

M[15] M[14] M[13] M[12]

M[7] M[6] M[5] M[4]

P[15] P[14] P[13] P[12]

P[7] P[6] P[5] P[4]

R R R R

R R R R

A 0 0 0

Bit(s) Value

C[7:0]

M[l5:0]

P[I 5:0]

R 0
I

W[I :O] 0

2
3

IS 0
I

CD 0

A 0

FlO 0
I

IRQ 0

4-122

3 2

C[3] C[2] C[1]

M[11] M[10] M[9]

M[3] M[2] M[1]

P[11] P[10] P[9]

P[3] P[2] P[1]

R R R

W[1] W[O] IS

0 FIQ 0

Meaning

Country (see below)

Manufacturer (see below)

Product Type (see below)

mandatory at present
reserved for future use

0

C[O]

M[8]

M[O]

P[8]

P[O]

R

CD

IRQ

&1C

&18

&14

&10

&OC

&08

&04

&00

8-bit code follows after byte 15 of Id space
I 6-bit code follows after byte 15 of Id space
32-bit code follows after byte 15 of Id space
reserved

no Interrupt Status Pointers follow ECid
Interrupt Status Pointers follow ECid

no Chunk Directory follows
Chunk Directory follows Interrupt Status
pointers

Acorn conformant expansion card
non-conformant expansion card

not requesting FlO (or FlO relocated)
requesting FlO

not requesting IRQ (or IRQ relocated)
requesting IRQ

Expansion Cards and Extension ROMs

Country code (C(7:0))

Every expansion card should have a code for the cou try of origin. These match
those used by the International module, save that the UK has a country code of 0
for expansion cards. If you do not already know the correct country code for your
country, you shou ld consult Acorn .

Manufacturer code (M(l5:0))

Every expansion card should have a code for manufacturer. If you have not already
been allocated one, you should consult Acorn.

Product type code (P(I5:0))

Every expansion card type must have a unique number allocated to it. Consult
Acorn if you need to be allocated a new product type code.

Reserved fields (R)

Reserved fields must be set to zero to cater for future expansion.

Width field (W(l :0))

This field must currently be set to zero (expansion card is 8 bits wide). For more
information, see the earlier section entitled Expansion card width on page 4-121.

Interrupt Status Pointers presence (IS)

See the sections entitled Generating interrupts from expansion cards on page 4-125, and
Interrupt Status Pointers on page 4- I 26.

Chunk directory presence (CD)

See the section entitled Chunk directory structure on page 4-127.

Acorn conformance bit (A)

This bit must be zero for expansion cards that conform to this Acorn specification.

ID field (bits 6 • 3 of low byte)

If you are using an extended ECid, these bits must be zero, as shown above. A
non-zero value shows that you are instead using a simple ECid; for more
information see page 4- I 20.

Interrupt status bits (IRQ and FlO)

The interrupt status bits are discussed below in the section entitled Generating
interrupts from expansion cards on page 4- I 25 .

4-123

Expansion card and extension ROM presence

Expansion card presence (bit I of low byte)

This must be zero, as shown above. For more information, see the section entitled
Expansion card and extension ROM presence on page 4-124.

Mandatory values for extension ROMs

An extension ROM must include an extended ECld. This starts at the bottom of the
ROM image, and consists of eight bytes as defined above.

For an extension ROM, certain fields within the extended EC!d must have
particular values:

• The product type code must be &87 (ie the product type is an extension ROM) .

• The width field must always be 0 (8 bits wide). irrespective of the ROM's actual
width, which RISC OS automatically derives (see the section entitled Extension
ROM width on page 4-118).

Because the width field does not vary, you do not need to change the image of
an extension ROM if you change the width of ROM in which it is placed.

• Both the Interrupt Status Pointer field and the Chunk Directory field must be l ,
showing the ECld is followed by Interrupt Status Pointers, then by a Chunk
Directory.

• The Acorn conformant field must be 0, to show that the extension ROM is
Acorn conformant.

• The interrupt status bits (FlO and IRQ) must both be clear, to show that the
extension ROM is not requesting an interrupt.

Expansion card and extension ROM presence

4-124

All expansion cards and extension ROMs must have bit I low in the low byte of an
ECid (whether simple or extended), so that RISC OS can tell if there are any of
them present.

Normally bit l of the l/0 data bus is pulled high by a weak pullup. Therefore:

• If no expansion card is present and R!SC OS tries to read the EC!d low byte, bit
l will be set.

• If an expansion card is present, and the EC!d is mapped into memory (which it
must be immediately after a reset), the bit will instead be clear.

Expansion Cards and Extension ROMs

Generating interrupts from expansion cards

Expansion cards must provide two status bits to show if the card is requesting IRQ
or FlO.

with a simple ECid

If an expansion card only has a simple EC!d, then the FlO and IRQ status bits are
bits 2 and 0 respectively in the ECid . If the card does not generate one or both of
these interrupts then the relevant bit(s) must be driven low.

with an extended ECid

If an expansion card has an extended ECid, you must set the IS bit of the EC!d and
provide Interrupt Status Pointers (see below) if either of the following applies:

• you are also using Chunk Directories (see below)

• you want to relocate the interrupt status bits from the low byte of the EC!d.

If neither of the above apply, then you can omit the Interrupt Status Pointers. The
interrupt status bits are located in the low byte of the ECid, and are treated in
exactly the same way as for a simple ECid (see above) .

Finding out more

To find out more about generating interrupts from expansion cards under RISC OS,
you can:

• see the chapters entitled ARM Hardware on page 1-9 and Interrupts and handling
them on page I- I I 7.

• consult the Acorn RISC Machine family Data Manual. VLSI Technology Inc. (I 990)
Prentice-Hall, Englewood Cliffs, NJ. USA: ISBN 0- I 3-781618-9.

• consult the datasheets for any components you use

• contact Customer Support and Services for further hardware-specific details.

4-125

Interrupt Status Pointers

Interrupt Status Pointers

4-126

Expansion cards

An Interrupt Status Pointer has two 4 byte numbers, each consisting of a 3 byte
address field and a I byte position mask field. These numbers give the locations of
the FlO and IRQ status bits:

.---------------------~ &40
IRQ Status Bit address (24 bits)

&34
IRQ Status Bit position mask
~--------------------~ &30

FIQ Status Bit address (24 bits)
&24

IRQ Status Bit position mask
~--------------------~ &20

The 24-bit address field must contain a signed 2's-complement number giving the
offset from &3240000 (the base of the area of memory into which podules are
mapped) . Hence the cycle speed to access the status register can be included in
the offset (encoded by bits 19 and 20) . Bits 14 and 15 (that encode the slot number)
should be zero. If the status register is in module space then the offset should be
negative: eg &DCOOOO, which is -&240000.

The 8-bit position mask should only have a single bit set. corresponding to the
position of the interrupt status bit at the location given by the address field .

Note that these eight bytes are always assumed to be bytewide. Only the lowest
byte in each word should be used.

The addresses may be the same (ie the status bits are in the same byte), so long as
the position masks differ. An example of this is if you have had to provide an
Interrupt Status Pointer, but do not want to relocate the status bits from the low
byte of the EC!d; the address fields will both point to the low byte of the ECid , the
IRQ mask will be I , and the FlO mask will be 4.

If the card does not generate FlO or IRQ

If the card does not generate one or both of these interrupts then you must set to
zero:

• the corresponding address field(s) of the Interrupt Status Pointer

• the corresponding position mask field(s) of the Interrupt Status Pointer

• the corresponding status bit(s) in the low byte of the ECid.

Expansion Cards and Extension ROMs

Extension ROMs

Extension ROMs must have a Chunk Directory, hence they must also provide
Interrupt Status Pointers. However. extension ROMs generate neither FlO nor IRO;
consequently their Interrupt Status Pointers always consist of eight zero bytes .

Chunk directory structure

If the CD bit of an extended EC!d is set, then :

• the IS bit of the ECid must also be set

• Interrupt Status Pointers must be defined

• a directory of Chu11ks follow the Interrupt Status Pointers.

The chunks of data and/or code are stored in the expansion card's ROM, or in the
extension ROM.

The lengths and types of these Chunks and the manner in which they are loaded is
variable. so after the eight bytes of Interrupt Status Pointers there follow a number
of entries in the Chunk Directory. The Chunk Directory entries are eight bytes long
and all follow the same format. There may be any number of these entries. This list
of entries is terminated by a block of four bYtes of zeros.

You should note that. from the start of the Chunk Directory onwards, the width of
the expansion card space is as set in the ECid width field. From here on the
definition is in terms of bytes:

n+8
Start address: 4 bytes (32 bits)

Size in bytes: 3 bytes (24 bits)

Operating System identity byte
n

The start address is an offset from the base of the expansion card 's address space.

4-127

Chunk directory structure

4-128

Operating System Identity Byte

The Operating System Identity Byte forms the first byte of the Chunk Directory
entry, and determines the type of data which appears in the Chunk to which the
Chunk Directory refers . It is defined as follows:

7

08[3]

OS[3]
OS[3]

OS[2:0]

6 5 4 3 2 0

08[2] 08[1] 08[0] D[3] D(2] D[1] D[O]

0 reserved
I mandatory at present

0 Acorn Operating System 0: Arthur/RISC OS
D[3:0] 0 Loader

I Relocatable Module
2 BBC ROM
3 Sprite
4- I 5 reserved

reserved
D[3 :0] 0- 15 reserved

2 Acorn Operating System 2: UNIX
D[3 :0] 0 Loader

I - 15 reserved

3 - 5 reserved
D[3:0] 0- 15 reserved

6 manufacturer defined

7

D[3:0] 0- 15 manufacturer specific

device data
D[3:0] 0 link

(for 0, the object pointed to is another
directory)
serial number

2 date of manufacture
3 modification status
4 place of manufacture
5 description
6 part number

(for I - 6, the data in the location pointed to
contains the ASCII string of the
information.)

7 Ethernet binary lD (length is always 6 bytes)

Expansion Cards and Extension ROMs

8 PCB revision (length is always 4 bytes.
treated as a word)

9 - 14 reserved
15 empty chunk

Those Chunks with OS[2:0] = 7, are operating system independent and are mostly
treated as ASCII strings terminated with a zero byte. They are not intended to be
read by programs, but rather inspected by users. It is expected that even minimum
expansion cards will have an entry for 0[3 :0] = 5 (description). and it is this string
which is printed out by the command *Podules.

Binding a ROM image

For a ROM to be read by the Expansion Card Manager it must conform to the
specification , even if only minimally. The simplest way to generate ROM images is
to use a BASIC program to combine the various parts together and to compute the
header and Chunk Directory structure .

An example program used with an expansion card is shown at the end of this
chapter. Its output is a file suitable for programming into a PROM or an EPROM.

Expansion card Code Space

The above forms the basis of storing software and data in expansion cards .
However, there is an obvious drawback in that the expansion card space is only 4
Kbytes (at word boundaries). and so its usefulness is limited as it stands. To allow
expansion cards to accommodate more than this 4 Kbytes an extension of the
addressing capability is used. This extension is called the Code Space.

The Code Space is an abstracted address space that is accessed in an expansion
card independent way via a software interface. It is a large linear address space that
is randomly addressable to a byte boundary. This will typically be used for driver
code for the expansion card, and will be downloaded into system memory by the
operating system before it is used. The manner in which this memory is accessed is
variable and so it is accessed via a Loader.

Writing a Loader for an expansion card
The purpose of the Loader is to present to the Expansion Card Manager a simple
interface that allows the reading (and writing) of the Code Space on a particular
expansion card. The usual case is a ROM paged to appear in 2 Kbyte pages at the
bottom of the expansion card space. with the page address stored in a latch. This

4-129

Writing a Loader for an expansion card

4-130

then permits the Expansion Card Manager to load software (Relocatable Modules)
or data from an expansion card without having to know how that particular
expansion card's hardware is arranged.

The Loader is a simple piece of relocatable code with four entry points and clearly
defined entry and exit conditions. The format of the Loader is optimised for ease of
implementation and small code size rather than anything else.

Registers

The register usage is the same for each of the four entry points.

Input/Output

RO Write/Read data
Rl Address
R2-R3
R4-R9
RIO
Rll Hardware

Rl2
Rl3 sp
Rl4
Rl5

Comments

Treated as a byte
Must be preserved
May be used
Must be preserved
May be used
Combined hardware address: must be
preserved
Private: must be preserved
Stack pointer (FD): must be preserved
Return address: use BICS pc, lr, #V_bit
PC

The exception to this is the Call Loader entry point where RO- R2 are the user's
entry and exit data.

Entry points

All code must be relocatable and position independent. It can be assumed that the
code will be run in RAM in SVC mode.

Origin + &00 Read a byte
Origin + &04 Write a byte
Origin + &08 Reset to initial state
Origin + &OC SWI Podule_CaiiLoader

Initialisation

The first call made to the Loader will be to Read address 0, the start of a Chunk
directory for the Code Space.

Errors

Expansion Cards and Extension ROMs

Errors are returned in the usual way; Vis set and RO points at a word-aligned word
containing the error number, which is followed by an optional error string, which in
turn must be followed by a zero byte. Read Byte and Write Byte may be able to
return errors like 'Bad address' if the device is not as big as the address given, or
'Bad write' if using read after write checks on the Write Byte call. If the Call Loader
entry is not supported then don't return an error. If Reset fails then return an error.

Since your device drivers may well be short of space, you can return an error with
RO=O. The Expansion Card Manager will then supply a default message. Note that
this is not encouraged, but is offered as a suggestion of last resort. Errors are
returned to the caller by using ORRS pc, lr, #V _bit rather than the usual SICS exit.

Example

Here is an example of a Loader (this example, like all others in this chapter, uses
the ARM assembler rather than the assembler included with BBC BASIC V- there
are subtle syntax differences) :

00 LEADR
00 00003000 PageReg
00 OOOOOOOB PageSize *
00 EAOOOOOB Origin B
04 EA000019 B

&FFFFFDOO
&3000
11
ReadByte
WriteByte

08 EA000001
OC E3DEF201

B Reset
BICS pc , 1r , #V_bit

Data

Bits

LDR r10, =2_00000011111111111111000000000000 10 E59FAOE4 Reset
14 EOOBAOOA AND r10, r11 , r10 ; Get hardware address from combined one
18 E28AAA03 ADD r10 , r10 , #PageReg
1C E3A02000 MOV r2, #0
20 E4CA2000 STRB r2, [r10
24 E3DEF201 BICS pc, 1r , #V_bit

LDR r3, =2_00000011111111111111000000000000 28 E59F40C4 ReadByte
2C E00B4004 AND r3 , r11, r3 ; Get hardware address from combined one
30 E284AA03 ADD r10 , r3 , #PageReg
34 E3510B3E CMP r1, #&FBOO ; Last page
38 228F0048 ADRHS rO, ErrorATB
3C 239EF201 ORRHSS pc, 1r , #V_bit
40 E2812B02 ADD r2, r1, #1 : SHL : PageSize
44 E1A025C2 MOV r2, r2 , ASR #PageSize
48 E4CA2000 STRB r2, [r10]
4C E3C12BFE BIC r2 , r1, #&7F :SHL: PageSize
50 E7D40102 LDRB rO , [r3, r2, ASL #2] ; Word addressing
54 E3DEF201 BICS
58 E28F0000 WriteByte ADR

pc , 1r, #V_bit
rO, ErrorNW
pc, lr, #V_bit 5C E39EF201 ORRS

60 00000580 ErrorNW DCD ErrorNumber_NotWriteable
64 DCB ErrorString_NotWriteable , O
92 00 00 ALIGN
94 00000584 ErrorATB DCD ErrorNumber_AddressTooBig
98 DCB ErrorString_AddressTooBig , O
AC END

4-131

CMOS RAM

The bit masks are used to separate the fields of a combined hardware address- see
the description of Podule_HardwareAddress (page 4-150) for details of these .

Loading the Loader

CMOS RAM

4-132

If the Expansion Card Manager is ever asked to 'EnumerateChunk' a Chunk
containing a Loader, it will automatically load the Loader. Since RISC OS
enumerates all Chunks from all expansion cards at a hard reset this is achieved by
default.

If no Loader is loaded then Podule_EnumerateChunks will terminate on the zero at
the end of the Chunk Directory in the expansion card space. If, however, when the
end of the expansion card space Chunk Directory is reached a Loader has been
loaded, then a second Chunk Directory, stored in the Code Space. will appear as a
continuation of the original Chunk Directory. This is transparent to the user.

This second Chunk Directory is in exactly the same format as the original Chunk
Directory. Addresses in the Code Space Chunk Directory refer to addresses in the
Code Space. The Chunk Directory starts at address 0 of the Code Space (rather than
address 16 as the one in expansion card Space does).

Each of the four possible internal expansion card slots has four bytes of CMOS
RAM reserved for it. These bytes can be used to store status information.
configuration. and so on .

You can find the base address of these four bytes by calling
Podule_HardwareAddress (page 4-150) or Podule_HardwareAddresses
(page 4-154).

ROM sections

'Podules'

Expansion Cards and Extension ROMs

Most of the SWis provided by the Expansion Card Manager take a ROM section as
a parameter. This identifies the expansion card or extension ROM upon which the
command acts. ROM sections used by RISC OS are:

ROM section

-I

0
I
2
3

-2
-3
-4

Meaning

System ROM

Expansion card 0
Expansion card I
Expansion card 2
Expansion card 3

Extension ROM 1
Extension ROM 2
Extension ROM 3 (etc)

(not in RISC OS 2)
(not in RISC OS 2)
(not in RISC OS 2)

None of the SWis described in this chapter will act upon the system ROM.

In the Arthur operating system. expansion cards were known as Podules. The word
'Podule' was used in all the names of SWis and * Commands.

These old names have been retained. so that software written to run under Arthur
will still run under RISC OS

4-133

Service Calls

Service Calls

4-134

Pre-reset

Service_PreReset
(Service Call &45)

On entry

Rl = &45 (reason code)

On exit

Use

Rl preserved to pass on (do not claim)

This call is made just before a software generated reset takes place, when the user
releases Break. This gives a chance for expansion card software to reset its devices,
as this type of reset does not actually cause a hardware reset signal to appear on
the expansion card bus. This call must not be claimed .

Expansion Cards and Extension ROMs

Service_ADFSPodule
(Service Call & 1 0800)

Issued by ADFS to locate an ST506 expansion card

On entry

Rl = &10800 (reason code)
R2 = address of current ST506 hard disc controller
R3 =address of IRQ status register for current hard disc controller
R4 =mask which, when ANDed with IRQ status register, gives non-zero value if

IRQs are enabled
R5 = address of IRQ mask register for current hard disc controller
R6 = mask which, when ORd with IRQ mask register, enables IRQ

On exit

Use

All registers preserved to pass on, else:

Rl = 0 to claim
R2 =address of new ST506 hard disc controller
R3 =address of IRQ status register for new hard disc controller
R4 =mask which, when ANDed with IRQ status register, gives non-zero value if

IRQs are enabled
R5 = address of IRQ mask register for new hard disc controller
R6 = mask which, when ORd with IRQ masbegister, enables IRQ

This call is issued by ADFS to enable ST506 hard disc expansion cards to intercept
ADFS and use their own hardware rather than the hardware built into the machine.
The expansion card should claim the service call, updating the passed registers to
the values for its own hardware.

4-135

Service_ADFSPodule/DE (Service Call &10801)

4-136

Service_ADFSPoduleiDE
(Service Call & 10801)

Issued by ADFS to locate an IDE expansion card

On entry

Rl = &10801 (reason code)
R2 =address of current IDE hard disc controller
R3 =address of IRQ status register for current hard disc controller
R4 = mask which, when ANDed with IRQ status register. gives non-zero value if

IRQs are enabled
R5 =address of IRQ mask register for current hard disc controller
R6 = mask which, when ORd with IRQ mask register, enables IRQ
R7= address of data read routine for current hard disc controller (0 for default)
R8 = address of data write routine for current hard disc controller (0 for default)

On exit

Use

All registers preserved to pass on, else:

Rl = 0 to claim
R2 = address of new IDE hard disc controller
R3 =address of IRQ status register for new hard disc controller
R4 = mask which, when ANDed with IRQ status register, gives non-zero value if

IRQs are enabled
R5 =address of IRQ mask register for new hard disc controller
R6 = mask which, when ORd with IRQ mask register, enables IRQ
R7= address of data read routine for new hard disc controller (0 for default)
R8 =address of data write routine for new hard disc controller (0 for default)

This call is issued by ADFS to enable IDE hard disc expansion cards to intercept
ADFS and use their own hardware rather than the hardware built into the machine.
The expansion card should claim the service call. updating the passed registers to
the values for its own hardware.

Expansion Cards and Extension ROMs

Service_ADFSPoduleiDEDying
(Service Call & 1 0802)

IDE expansion card dying

On entry

RI = &10802 (reason code)

On exit

Use

All registers preserved

This call is issued by an IDE expansion card module to warn ADFS of its imminent
demise.

4-137

SWI calls

SWI calls

4-138

Podule_ReadiD
(SWI &40280)

Reads an expansion card or extension ROM's identity byte

On entry

R3 =ROM section (see page 4-I33)

On exit

RO =expansion card identity byte (ECid)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call reads into RO a simple Expansion Card Identity. or the low byte of an
extended Expansion Card Identity. It also resets the Loader- if one is present. and
has been loaded.

Related SWis

Podule_ReadHeader (page 4-I39)

Related vectors

None

Expansion Cards and Extension ROMs

Podule_ReadHeader
(SWI &40281)

Reads an expansion card or extension ROM's header

On entry

R2 =pointer to buffer of 8 or 16 bytes
R3 =ROM section (see page 4-133)

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call reads an extended Expansion Card Identity into the buffer pointed to by
R2 . If the IS bit is set (bit I of byte I) then the expansion card also has Interrupt
Status Pointers, and these are also read into the buffer. This call also resets the
Loader- if one is present, and has been loaded.

If you do not know whether the card has Interrupt Status Pointers, you should use
a 16 byte buffer. Extension ROMs always have Interrupt Status Pointers (although
they're always zero). so you should always use a 16 byte buffer for them.

Related SWis

Podule_ReadiD (page 4-138)

Related vectors

None

4-139

Podule_EnumerateChunks (SWI &40282)

4-140

Podule_EnumerateChunks
(SWI &40282)

Reads information about a chunk from the Chunk Directory

On entry

RO =chunk number (zero to start)
R3 =ROM section (see page 4-133)

On exit

RO =next chunk number (zero if final chunk enumerated)
Rl =size (in bytes) if RO ::t= 0 on exit
R2 = operating system identity byte if RO ::t= 0 on exit
R4 = pointer to a copy of the module's name if the chunk is a relocatable module

(ie if R2 = &81), else preserved

Interrupts

Interrupt status is unaltered by the SWI , but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call reads information about a chunk from the Chunk Directory. It returns its
size and operating system identity byte. If the chunk is a module it also returns a
pointer to a copy of its name; this is held in the Expansion Card Manager's private
workspace and will not be valid after you have called the Manager again

If the chunk is a Loader, then RISC OS also loads it.

To read information on all chunks you should set RO to 0 and R3 to the correct
ROM section. You should then repeatedly call this SWI until RO is set to 0 on exit.

RISC OS 2 automatically does this on a reset for all expansion cards; if there is a
Loader it will be transparently loaded, and any chunks in the code space will also
be enumerated. Later versions of RISC OS use Podule_EnumerateChunksWithlnfo.

Expansion Cards and Extension ROMs

Related SWis

Podule_ReadChunk (page 4- 142). Podule_EnumerateChunksWithlnfo (page 4- I 52)

Related vectors

None

4-141

Podule_ReadChunk (SWI &40283)

4-142

Podule ReadChunk
(SWI &40283)

Reads a chunk from an expansion card or extension ROM

On entry

RO =chunk number
R2 =pointer to buffer (assumed large enough)
R3 =ROM section (see page 4-133)

On exit

Interrupts

Interrupt status is unaltered by the SWI , but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call reads the specified chunk from an expansion card . The buffer must be
large enough to contain the chunk; you can use Podule_EnumerateChunks (see
page 4- I 40) to find the size of the chunk.

Related SWis

Podule_EnumerateChunks (page 4- 140)

Related vectors

None

Expansion Cards and Extension ROMs

Podule_ReadBytes
(SWI &40284)

Reads bytes from within an expansion card's code space

On entry

RO = offset from start of code space
Rl =number of bytes to read
R2 = pointer to buffer
R3 =expansion card slot number

On exit

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call reads bytes from within an expansion card's code space. It does so using
repeated calls to offset 0 (read a byte) of its Loader. RISC OS must already have
loaded the Loader; note that the kernel does this automatically on a reset when it
enumerates all expansion cards' chunks.

This command returns an error for extension ROMs, because they have neither
code space nor a Loader.

Related SWis

Podule_WriteBytes (page 4-144)

Related vectors

None

4-143

Podule_ WriteBytes (SWI &40285)

4-144

Podule_ Write Bytes
(SWI &40285)

Writes bytes to within an expansion card's code space

On entry

RO = offset from start of code space
Rl =number of bytes to write
R2 = pointer to buffer
R3 =expansion card slot number

On exit

Interrupts

Interrupt status is unaltered by the SWI , but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SYC mode

Re-entrancy

Use

SWI is not re-entrant

This call writes bytes to within an expansion card's code space. It does so using
repeated calls to offset 4 (write a byte) of its Loader. RISC OS must already have
loaded the Loader; note that the kernel does this automatically on a reset when it
enumerates all expansion cards' chunks .

This command returns an error for extension ROMs, because they have neither
code space nor a Loader.

Related SWis

Podule_ReadBytes (page 4-143)

Related vectors

None

Calls an expansion card's Loader

Expansion Cards and Extension ROMs

Podule_Callloader
(SWI &40286)

On entry

RO - R2 = user data
R3 =expansion card slot number

On exit

RO - R2 = user data

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Depends on Loader

This call enters an expansion card 's Loader at offset I 2. Registers RO- R2 can be
used to pass data.

The action the Loader takes will vary from card to card, and you should consult
your card's documentation for further details.

If you are developing your own card , you can use this SWI as an entry point to add
extra features to your Loader. You may use RO- R2 to pass any data you like. For
example, RO could be used as a reason code, and RI and R2 to pass data.

In some hardware designs it may be important to share hardware between the
Loader and the driver. You can do so by using this call to call the Loader, which can
do hardware accesses for the driver and maintain its own state. For example, if your
hardware has a 7 bit page register and a I bit output port shared within a single
8 bit latch, the Loader could maintain a flag for the state of the port, and write that
bit correctly whenever it writes to the page register.

4-145

Podule_Cai/Loader (SWI &40286)

4-146

This command returns an error for extension ROMs, because they have neither
code space nor a Loader.

Related SWis

None

Related vectors

None

Expansion Cards and Extension ROMs

Podule RawRead
(SWI &40287)

Reads bytes directly within an expansion card or extension ROM's address space

On entry

RO =offset from base of a podule's address space (0 ... &FFF)
R I = number of bytes to read
R2 = pointer to buffer
R3 =ROM section (see page 4-133)

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads bytes directly within an expansion card or extension ROM's address
space. It is typically used to read from the registers of hardware devices on an
expansion card , or to read successive bytes from an extension ROM.

You should use Podule_ReadBytes (page 4-143) to read from within an expansion
card's code space.

Related SWis

Podule_RawWrite (page 4-148)

Related vectors

None

4-147

Podule_RawWrite (SWI &40288)

4-148

Podule_RawWrite
(SWI &40288)

Writes bytes directly within an expansion card's address space

On entry

RO =offset from base of a podule's address space (0 .. &FFF)
R I = number of bytes to write
R2 = pointer to buffer
R3 = expansion card slot number

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call writes bytes directly within an expansion card's address space. It is
typically used to write to the registers of hardware devices on an expansion card .

You should use Podule_ Write Bytes (see page 4-144) to write within an expansion
card's code space.

Obviously you cannot write to an extension ROM. You must not use this call to try
to write to the ROM area ; if you do so, you risk reprogramming the memory and
video controllers .

Related SWis

Podule_RawRead (page 4-14 7)

Related vectors

None

Expansion Cards and Extension ROMs

4-149

Podule_HardwareAddress (SWI &40289)

4-150

Podule_HardwareAddress
(SWI &40289)

Returns an expansion card or extension ROM's base address, and the address of an
expansion card's CMOS RAM

On entry

R3 =ROM section (see page 4-133). or base address of expansion card/extension
ROM

On exit

R3 =combined hardware address

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call returns an expansion card or extension ROM's combined hardware
address:

Bits

0- II
12 - 25
26- 31

Meaning

base address of CMOS RAM- expansion cards only (4 bytes)
bits 12 - 25 of base address of expansion card/extension ROM
reserved

You can use a mask to extract the relevant parts of the returned value. The CMOS
address in the low 12 bits is suitable for passing directly to OS_Byte 161 and 162.

In practice there is little point in finding the combined hardware address of an
extension ROM. The base address of the extension ROM is of little use, as the
width of the ROM can vary; and extension ROMs do not have CMOS RAM reserved
for them.

Expansion Cards and Extension ROMs

Related SWis

OS_Byte 161 (page 1-363). OS_Byte 162 (page 1-365),
Podule_HardwareAddresses (page 4-154)

Related vectors

None

4-1 51

Podule_EnumerateChunksWithlnfo (SWI &4028A)

4-152

Podule_EnumerateChunksWithlnfo
{SWI &4028A)

Reads information about a chunk from the Chunk Directory

On entry

RO =chunk number (zero to start)
R3 =ROM section (see page 4-I33)

On exit

RO =next chunk number (zero if final chunk enumerated)
RI = size (in bytes) if RO ::t= 0 on exit
R2 =operating system identity byte if RO::;: 0 on exit
R4 =pointer to a copy of the module's name if the chunk is a relocatable module,
else preserved
R5 =pointer to a copy of the module's help string if the chunk is a relocatable
module, else preserved
R6 =address of module if the chunk is a directly executable relocatable module, or
0 if the chunk is a non-directly-executable relocatable module, else preserved

Interrupts

Interrupt status is una ltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call reads information about a chunk from the Chunk Directory. It returns its
size and operating system identity byte . If the chunk is a module it also returns
pointers to copies of its name and its help string, and its address if it is executable.
These are held in the Expansion Card Manager's private workspace and will not be
valid after you have ca lled the Manager again .

If t he chunk is a Loader, then RISC OS also loads it

Expansion Cards and Extension ROMs

To read information on all chunks you should set RO to 0 and R3 to the correct
ROM section. You should then repeatedly call this SWI until RO is set to 0 on exit

RISC OS automatically does this on a reset for all expansion cards; if there is a
Loader it will be transparently loaded, and any chunks in the code space will also
be enumerated.

This call is not available in RISC OS 2, which uses Podule_EnumerateChunks
instead.

Related SWis

Podule_EnumerateChunks (page 4- I 40), Podule_ReadChunk (page 4- I 42)

Related vectors

None

4-153

Podule_HardwareAddresses (SWI &40288)

4-154

Podule_HardwareAddresses
(SWI &40288)

Returns an expansion card or extension ROM's base address, and the address of an
expansion card's CMOS RAM

On entry

R3 =ROM section (see page 4-133)

On exit

RO = base address of expansion card/extension ROM
Rl =combined hardware address

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call returns an expansion card or extension ROM's base address. and its
combined hardware address:

Bits

0- II
I 2- 25
26- 31

Meaning

base address of CMOS RAM- expansion cards only (4 bytes)
bits I 2 - 25 of base address of expansion card/extension ROM
reserved

You can use a mask to extract the relevant parts of the returned value. The CMOS
address in the low 12 bits is suitable for passing directly to OS_Byte I 61 and 162.

In practice there is little point in finding the combined hardware address of an
extension ROM. The base address of the extension ROM is of little use, as the
width of the ROM can vary; and extension ROMs do not have CMOS RAM reserved
for them.

Expansion Cards and Extension ROMs

This call is not available in RISC OS 2.

Related SWis

OS_Byte 161 (page 1-363), OS_Byte 162 (page 1-365),
Podule_HardwareAddress (page 4-150)

Related vectors

None

4-155

Podule_ReturnNumber (SWI &402BC)

4-156

Podule_ReturnNumber
(SWI &4028C)

Returns the number of expansion cards and extension ROMs

On entry

On exit

RO = number of expansion cards
Rl =number of extension ROMs

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call returns the number of expansion cards and extension ROMs. The number
of expansion cards returned is currently always 4. but you must be prepared to
handle any other value. including 0.

This call is used by the *Podules command.

This call is not available in RISC OS 2.

Related SWis

None

Related vectors

None

Expansion Cards and Extension ROMs

*Commands
*Poduleload

Copies a file into an expansion card's RAM

Syntax

*PoduleLoad expansion_ card_ number filename [offset]

Parameters

Use

expansion_ card_ number

filename

offset

the expansion card's number, as given by
*Podules

a valid pathname, specifying a file

offset (in hexadecimal by default) into the Code
Space

*PoduleLoad copies the contents of a file into an installed expansion card's RAM,
starting at the specified offset. If no offset is given, then a default value of 0 is used.

Example

*PoduleLoad 1 $.Midi.Data 100

Related commands

• Podules, • PoduleSave

Related SWis

Podule_WriteBytes (page 4-144)

Related vectors

None

4-157

*Podules

4-158

*Podules

Displays a list of the installed expansion cards and extension ROMs

Syntax

*Podules

Parameters

Use

None

*Podules displays a list of the installed expansion cards and extension ROMs.
using the description that each one holds internally. Some expansion cards and/or
extension ROMs- such as one that is still being designed- will not have a
description; in this case. an identification number is displayed.

This command still refers to expansion cards as podules, to maintain compatibility
with earlier operating systems. This command does not show extension ROMs
under RISC OS 2.

Example

*Podules
Podule 0: Midi and BBC I/0 podule
Podule 1: Simple podule &8
Podule 2: No installed podule
Podule 3: No installed podule

Related commands

None

Related SWis

Podule_EnumerateChunks (page 4-140)

Related vectors

None

Expansion Cards and Extension ROMs

*PoduleSave

Copies the contents of an expansion card's ROM into a file

Syntax

*Podul eSave expansion_ card_ n umber f ilen ame size [offse t]

Parameters

Use

expansion_ card_ number

filename

size

offset

the expansion card's number, as given by
*Podules

a valid pathname, specifying a file

in bytes

offset (in hexadecimal by default) into the Code
Space

*PoduleSave copies the given number of bytes of an installed expansion card's
ROM into a file . If no offset is given, then a default value of 0 is used.

Example

*PoduleSave 1 $. Mi di . Data 200 100

Related commands

* Podules, * PoduleLoad

Related SWis

Podule_ReadBytes (page 4-143)

Related vectors

None

4-159

Example program

Example program

4-160

This program is an example of how to combine the various parts of an expansion
card ROM. It also computes the header and Chunk Directory structure. The file it
outputs is suitable for programming into a PROM or EPROM:

10
20
30
40
50
70
75
80
90

100
120
130
140
150
170
180
190
200
210
230
240
250

270
280
300
310
320
330
340
350
360
370
390
400
410
420
430
440
450
460
480
490
500
530
550
570

REM > &. arm . MidiAndi/O.MidiJoiner
REM Author : RISC OS
REM Last edit : 06-Jan-87
PRINT "Joiner for expansion card ROMs"' "Version 1. 05. "
PRINT "For Midi board.": DIM Buffer% 300 , Block% 20
INPUT' "Enter name of output file : "OutName$
H%=0PENOUT(OutName$)
IF H%=0 THEN PRINT"Could not create '";OutName$;"' .":END
ONERRORONERROROFF:CLOSE#H% : REPORT:PRINT" at line "; ERL:END
Device%=0:L%=TRUE:REPEAT
Max%=&800:REM Max% is the size of the normal area
Low%=&100:REM Low% is the size of the pseudo directory
Base%=0:REM The offset for file address calculations
Rom%=&4000:REM Rom% is the size of BBC ROMs
PROCByte(O) :PROCHalf(3) :PROCHalf(19) :PROCHalf(O) :PROCByte(O)
PROCByte(O) :PROC3Byte(0) :PROCByte(O) :PROC3Byte(0)
IF PTR#H% <> 16 STOP
Bot%=PTR#H%:REM Bot% is where the directory grows from
Top%=Max%:REM Top% is where normal files decend from
INPUT"Enter filename of loader : "Loader$
IF Loader$ <> "" THEN K%=FNAddFile(&80 , Loader$)
IF K% ELSE PRINT"No room for loader. ":
PTR#H%=Bot% : PROCByte(0) :CLOSE#H% : END
INPUTLINE '" Enter product description : "Oat$
IF Oat$<> "" THEN PROCAddString(&F5 , Oat$)
PRINT:REPEAT
INPUT "Enter name of file to add : "File$
IF File$<> " " THEN T%=FNType(File$) ELSE T%=0
IF T%=0 ELSE K%=FNAddFile(T%, File$)
IF K% ELSE PRINT"No more room. "
UNTIL (File$ = "") OR (K%=FALSE)
IF K% ELSE PTR#H%=Bot%:PROCByte(O) :CLOSE#H%:END
IF L% PROCChange
INPUTLINE"Enter serial number : "Oat$
IF Oat$<> "" THEN PROCAddString(&Fl , Oat$
INPUTLINE"Enter modification status : "Oat$
IF Oat$ <> "" THEN PROCAddString(&F3 , Oat$
INPUTLINE"Enter place of manufacture : "Oat$
IF Oat$ <> "" THEN PROCAddString(&F4, Oat$)
INPUTLINE"Enter part number : "Oat$
IF Oat$ <> "" THEN PROCAddString(&F6, Oat$
Date$=TIME$
Date$=MID$(Date$,5,2)+"-"+MID$(Date$,8,3)+"-"+MID$(Date$,14,2)
PROCAddString(&F2, Date$)
REM PROCHeader(&FO, Z%+W%*Rom%-Base% , 0) :REM Link
PTR#H%=Bot%:PROCByte(O)
CLOSE#H%: END

Expansion Cards and Extension ROMs

590 DEF PROCByte(D%) :BPUT#H% ,D%:ENDPROC
610 DEF PROCHa1f(D%) : BPUT#H% , D%:BPUT#H%,D%DIV256:ENDPROC
630 DEF PROC3Byte(D%)
640 BPUT#H%,D% : BPUT#H%,D%DIV256:BPUT#H%,D%DIV65535:ENDPROC
660 DEF PROCWord(D%)
670 BPUT#H% , D%:BPUT#H%,D%DIV256:BPUT#H% , D%DIV65535
680 BPUT#H%,D%DIV16777216 : ENDPROC
700 DEF PROCAddString(T% , S$)
710 SS=SS+CHR$0
720 IF L% THEN PROCAddNormalString ELSE PROCAddPsuedoString
730 ENDPROC
750 DEF PROCAddNormalString
760 IF Top%-Bot% < 10+LEN(S$) THEN STOP
770 PROCHeader(T%, Top%-LEN(S$)-Base%, LEN(S$))
780 Top%=Top%-LEN(S$) :PTR#H%=Top%:FOR I%=1 TO LEN(S$)
790 BPUT#H% , ASC(MID$(S$, I% , 1)) :NEXTI%:ENDPROC
810 DEF PROCAddPsuedoString
820 IF Max%+Low%-Bot% < 9 THEN STOP
830 PROCHeader(T%, Top%-Base%, LEN(S$)
840 PTR#H%=Top%:FOR I%=1 TO LEN(S$)
850 BPUT#H%,ASC(MID$(S$,I%,1)) :NEXTI%
860 Top%=Top%+LEN(S$) :ENDPROC
880 DEF PROCHeader(Type%, Address% , Size%
890 PTR#H%=Bot%
900 PROCByte(Type%
910 PROC3Byte(Size%)
920 PROCWord(Address%
930 Bot%=Bot%+8:ENDPROC
950 DEF FNAddFile(T%, N$
960 F%=0PENIN(N$)
970 IF F%=0 THEN PRINT"File '';N$;"' not found.":=FALSE
980 S%=EXT#F%
990 IF L% THEN =FNAddNormalFile ELSE =FNAddPsuedoFile

1010 DEF FNAddNormalFile
1020 E%=S%+9-(Top%-Bot%)
1030 IF E%>0 THEN PRINT"Oversize by ";E%;" bytes.'':

PROCChange:=FNAddPsuedoFile
1040 PROCHeader(T%, Top%-S%-Base% , S%)
1050 Top%=Top%-S%:PTR#H%=Top%:FOR I%=1 TO S%
1060 BPUT#H% ,BGET#F%:NEXTI% :CLOSE# F%:=TRUE
1080 DEF FNAddPsuedoFile
1090 IF Max%+Low%-Bot% < 9 THEN =FALSE
1100 PROCHeader(T%, Top%-Base%, S%)
1110 PTR#H%=Top%
1120 FOR I%=1 TO S%:BPUT#H% , BGET#F%:NEXTI%
1130 Top%=Top%+S%:CLOSE#F%:=TRUE
1150 DEF PROCChange
1160 PRINT"Changing up. Wasting '; Top%-Bot%; " bytes . "
1170 PTR#H%=Bot%:PROCByte(O) :REM Terminate bottom directory

4-161

Example program

4-162

1180 Bot%=Max%:Top%=Max%+Low% : Base%=Max%:L%=FALSE
1190 REM In the pseudo area files grow upward from Top%
1200 ENDPROC
1220 DEF FNType(N$)
1230 $Buffer%=N$:X%=Block% : Y%=X%/256:A%=5:X%!0=Buffer%
1240 B%=USR&FFDD:IF (B%AND255) <> 1 THEN PRINT "Not a file " :=O
1250 V%=(Block%!3)AND&FFFFFF
1260 IFV%=&FFFFFA THEN =&81
1270 IF((Block%!2AND&FFFF)=&8000)AND((Block%!6AND&FFFF)=&8000)THEN=&82
1280 IFV%=&FFFFF9 THEN =&83
1290 =0

78 Floating point emulator

Introduction
The Acorn RISC machine has a general coprocessor interface. The first coprocessor
available is one which performs floating point calculations to the IEEE standard.
To ensure that programs using floating point arithmetic remain compatible with all
Archimedes machines, a standard ARM floating point instruction set has been
defined. This can be implemented invisibly to the customer program by one of
several systems offering various speed performances at various costs. The current
'bundled' floating point system is the software-only floating point emulator
module. Floating point instructions may be incorporated into any assembler text,
provided they are called from user mode. These instructions are recognised by the
Assembler and converted into the correct coprocessor instructions. However, these
instructions are not supported by the assembler in the BASIC interpreter.

Because this module doesn't present any SWis or other usual interface to
programs (apart from a SWI to return the version number), this chapter is
structured differently from most others. First, there is a discussion of the
programmer's model of the IEEE 754 floating point system. This is followed by the
floating point instruction set. Finally the SWI is detailed.

Generally, programs do not need to know whether a coprocessor is fitted; the only
effective difference is in the speed of execution. Note that there may be slight
variations in accuracy between hardware and software- refer to the instructions
supplied with the coprocessor for details of these variations.

4-163

Programmer's model

Programmer's model
The ARM IEEE floating point system has eight 'high precision ' floating point registers,
FO to F7. The format in which numbers are stored in these registers is not specified.
Floating point formats only become visible when a number is transferred to
memory, using one of the formats described below.

There is also a floating point status register (FPSR) which, like the ARM's combined PC
and PSR. holds all the necessary status and control information that an application
is intended to be able to access. It holds flags which indicate various error
conditions. such as overflow and division by zero. Each flag has a corresponding
trap enable bit , which can be used to enable or disable a 'trap' associated with the
error condition. Bits in the FPSR allow a client to distinguish between different
implementations of the floating point system.

There may also be a floating point control register (FPCR); this is used to hold status
and control information that an application is not intended to access. For example.
there are privileged instructions to turn the floating point system on and off. to
permit efficient context changes. Typically, hardware based systems have an FPCR.
whereas software based ones do not.

Available systems

4-164

Floating point systems may be built from software only, hardware only, or some
combination of software and hardware. The following terminology will be used to
differentiate between the various ARM floating point systems already in use or
planned:

System name

Old FPE

FPPC

FPE 400

FPA

System components

Versions of the floating point emulator up to (but not
including) 4.00

Floating Point Protocol Convertor (interface chip between
ARM and WE32206). WE32206 (AT&T Math Acceleration Unit
chip), and support code

Versions of the floating point emulator from 4.00 onwards

ARM Floating Point Accelerator chip, and support code

The results look the same to the programmer. However, if clients are aware of
which system is in use, they may be able to extract better performance.

The old FPE has two different variants. Versions up to (but not including) 3.40 do
not provide any hardware support. whereas versions 3.40 to 3.99 inclusive provide
support for the FPPC hardware- if it is fitted. All versions of the FPE 400 provide
support for the FPA hardware.

Precision

Floating point emulator

All basic floating point instructions operate as though the result were computed to
infinite precision and then rounded to the length, and in the way, specified by the
instruction. The rounding is selectable from:

• Round to nearest

• Round to +infinity (P)

• Round to -infinity (M)

• Round to zero (Z).

The default is 'round to nearest'; in the event of a tie, this rounds to 'nearest even'.
If any of the others are required they must be given in the instruction .

The working precision of the system is 80 bits, comprising a 64 bit mantissa, a 15
bit exponent and a sign bit. Specific instructions that work only with single
precision operands may provide higher performance in some implementations,
particularly the fully software based ones .

Floating point number formats

Like the ARM instructions, the floating point data processing operations refer to
registers rather than memory locations. Values may be stored into ARM memory in
one of five formats (only four of which are visible at any one time, since P and EP
are mutually exclusive):

4-165

Floating point number formats

4-166

IEEE Single Precision (S)

31 30 2322

I Sign I Exponent I msb Fraction

Figure 78.1 Single precision format

• If the exponent is 0 and the fraction is 0, the number represented is ±0.

0

• If the exponent is 0 and the fraction is non-zero, the number represented is
±O.fraction x T 126

• If the exponent is in the range I to 254, the number represented is
±!.fraction X 2 exponent - 127

• If the exponent is 255 and the fraction is 0, the number represented is ±oo.

• If the exponent is 255 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set. it is a non-trapping
NaN; otherwise it is a trapping NaN.

IEEE Double Precision (D)

31 30 2019 0

First word Sign I Exponent I msb Fraction lsb

Second word msb Fraction lsb

Figure 78.2 Double precision format

• If the exponent is 0 and the fraction is 0, the number represented is ±0.

• If the exponent is 0 and the fraction is non-zero, the number represented is
±O.fraction x 2-1022

• If the exponent is in the range I to 2046, the number represented is
±!.fraction X 2exponent-1023

• If the exponent is 2047 and the fraction is 0, the number represented is ±oo.

• If the exponent is 2047 and the fraction is non-zero, a NaN (not-a-number) is
represented. Ifthe most significant bit of the fraction is set. it is a non-trapping
NaN; otherwise it is a trapping NaN.

Double Extended Precision (E)
31 30

First word Sign

Second word J msb

Third word msb

zeros

Floating point emulator

1514 0

I Exponent

Fraction lsb

Fraction lsb

Figure 78.3 Double extended precision format

• If the exponent is 0, I is 0, and the fraction is 0, the number represented is ±0.

• If the exponent is 0, I is 0, and the fraction is non-zero, the number represented
is ±0./raction X T 16382

• If the exponent is in the range 0 to 32766, 1 is I, and the fraction is non-zero,
the number represented is ±!.fraction x 2exponent- 16383

• If the exponent is 32767, I is 0, and the fraction is 0, the number represented is
±oo.

• If the exponent is 32 767 ·and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

Other values are illegal and shall not be used (ie the exponent is in the range I to
32766 and I is 0; or the exponent is 32767, I is I, and the fraction is 0).

The FPPC system stores the sign bit in bit 15 of the first word, rather than in bit 31.

Storing a floating point register in 'E' format is guaranteed to maintain precision
when loaded back by the same floating point system in this format. Note that in
the past the layout of E format has varied between floating point systems, so
software should not have been written to depend on it being readable by other
floating point systems. For example, no software should have been written which
saves E format data to disc, to have then been potentially loaded into another
system. In particular, E format in the FPPC system varies from all other systems in
its positioning of the sign bit. However, for the FPA and the FPE 400, the E format
is now defined to be a particular form of IEEE Double Extended Precision and will
not vary in future.

4-167

Floating point number formats

4-168

Packed Decimal (P)

31 0

First word Sign e3 e2 e1 eO d18 d17 d16

Second word d15 d14 d13 d12 d11 d10 d9 dB

Third word d7 d6 d5 d4 d3 d2 d1 dO

Figure 78.4 Packed decimal format

The sign nibble contains both the significand's sign (top bit) and the exponent's
sign (next bit); the other two bits are zero.

d 18 is the most significant digit of the significand d, and e3 of the exponent e. The
significand has an assumed decimal point between d 18 and d I 7, and is normalised
so that for a normal number I:::; d 18:::; 9. The guaranteed ranges ford and e are 17
and 3 digits respectively; dO, d I and e3 may always be zero in a particular system
(By comparison, an S format number has 9 digits of significand and a maximum
exponent of 53; aD format number has 17 digits in the significand and a maximum
exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A- F. save for a
representation of ±oo or a NaN (see below).

• If the exponent's sign is 0, the exponent is 0, and the significand is 0, the
number represented is ±0.

Zero will always be output as +0, but either +0 or -0 may be input.

• If the exponent is in the range 0 to 9999 and the significand is in the range I to
9.999999999999999999, the number represented is ±d x !O±e.

• If the exponent is &FFFF (ie all the bits in e3- eO are set) and the significand is
0, the number represented is ±oo.

• If the exponent is &FFFF and dO-d 17 are non-zero, a NaN (not-a-number) is
represented. If the most significant bit of d 18 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

Floating point emulator

Expanded Packed Decimal (EP)

31

First word Sign e6

Second word d23 d22

Third word d15 d14

Fourth word d7 d6

e5 e4 e3 e2

d21 d20 d19 d18

d13 d12 d11 d10

d5 d4 d3 d2

Figure 78.5 Expanded packed decimal format

0

e1 eO

d17 d16

d9 d8

d1 dO

The sign nibble contains both the significand's sign (top bit) and the exponent's
sign (next bit); the other two bits are zero.

d23 is the most significant digit of the significand d. and e6 of the exponent e. The
significand has an assumed decimal point between d23 and d22. and is normalised
so that for a normal number I~ d23 ~ 9. The guaranteed ranges ford and e are 21
and 4 digits respectively; dO. d I, d2. e4. e5 and e6 may always be zero in a particular
system. (By comparison , an S format number has 9 digits of significand and a
maximum exponent of 53; aD format number has 17 digits in the significand and a
maximum exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A- F, save for a
representation of ±oo or a NaN (see below) .

• If the exponent's sign is 0. the exponent is 0, and the significand is 0, the
number represented is ±0.

Zero will always be output as +0, but either +0 or -0 may be input.

• If the exponent is in the range 0 to 9999999 and the significand is in the range
I to 9.99999999999999999999999. the number represented is ±d x I o±e.

• If the exponent is &FFFFFFF (ie all the bits in e6- eO are set) and the
sign ificand is 0. the number represented is ±oo.

• If the exponent is &FFFFFFF and dO- d22 are non-zero. a NaN (not-a-number)
is represented . If the most significant bit of d23 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

This format is not available in the old FPE or the FPPC. You should only use it if you
can guarantee that the floating point system you are using supports it.

4-169

Floating point status register

Floating point status register

4-170

There is a floating point status register (FPSR) which. like ARM's combined PC and
PSR. has all the necessary status for the floating point system The FPSR contains
the IEEE flags but not the result flags- these are only available after floating point
compare operations.

The FPSR consists of a system ID byte, an exception trap enable byte. a system
control byte and a cumulative exception flags byte.

31 2423 1615 87 0

FPSR System ID Trap Enable System Control Exception Flags

Figure 78.6 Floating point status register byte usage

System ID byte

The System ID byte allows a user or operating system to distinguish which floating
point system is in use. The top bit (bit 31 of the FPSR) is set for hardware (ie fast)
systems. and clear for software (ie slow) systems. Note that the System ID is
read-only.

The following System IDs are currently defined:

System

Old FPE
FPPC
FPE 400
FPA

System ID

&00
&80
&01
&8I

Exception Trap Enable Byte

Each bit of the exception trap enable byte corresponds to one type of floating point
exception , which are described in the section entitled Cumulative Exception Flags Byte
on page 4- I 72.

23 22 21 20 19 18 17 16

FPSR I Reserved INX UFL OFL DVZ IVO

Figure 78.7 Exception trap enable byte

If a bit in the cumulative exception flags byte is set as a result of executing a
floating point instruction, and the corresponding bit is also set in the exception
trap enable byte. then that exception trap will be taken .

Floating point emulator

Currently, the reserved bits shall be written as zeros and will return 0 when read .

System Control Byte

These control bits determine which features of the floating point system are in use.

15 14 13 12 11 10 9 8

FPSR ~' _____ R_e_s_e_rv_e_d ____ ~ __ A_c __ ~_E_P __ ~_s_o __ ~_N_E __ ~_N_D~
Figure 78.8 System control byte

By placing these control bits in the FPSR. their state will be preserved across
context switches, allowing different processes to use different features if necessary.
The following five control bits are defined for the FPA system and the FPE 400:

NO No Denormalised numbers
NE NaN Exception
SO Select synchronous Operation of FPA
EP Use Expanded Packed decimal format
AC Use Alternative definition for C flag on compare operations

The old FPE and the FPPC system behave as if all these bits are clear.

Currently, the reserved bits shall be written as zeros and will return 0 when read.
Note that all bits (including bits 8- 12) are reserved on FPPC and early FPE
systems.

ND - No denormalised numbers bit

If this bit is set, then the software will force all denormalised numbers to zero to
prevent lengthy execution times when dealing with denormalised numbers. (Also
known as abrupt underflow or flush to zero.) This mode is not IEEE compatible but
may be required by some programs for performance reasons.

If this bit is clear, then denormalised numbers will be handled in the normal
IEEE-con formant way.

NE - NaN exception bit

If this bit is set. then an attempt to store a signalling NaN that involves a change of
format will cause an exception (for full IEEE compatibility) .

If this bit is clear. then an attempt to store a signalling NaN that involves a change
of format will not cause an exception (for compatibility with programs designed to
work with the old FPE) .

4-171

Floating point status register

4-172

SO - Select synchronous operation of FPA

If this bit is set, then all floating point instructions will execute synchronously and
ARM will be made to busy-wait until the instruction has completed. This will allow
the precise address of an instruction causing an exception to be reported, but at
the expense of increased execution time.

If this bit is clear, then that class of floating point instructions that can execute
asynchronously to ARM will do so. Exceptions that occur as a result of these
instructions may be raised some time after the instruction has started, by which
time the ARM may have executed a number of instructions following the one that
has failed. In such cases the address of the instruction that caused the exception
will be imprecise.

The state of this bit is ignored by software-only implementations, which always
operate synchronously.

EP - Use expanded packed decimal format

If this bit is set. then the expanded (four word) format will be used for Packed
Decimal numbers. Use of this expanded format allows conversion from extended
precision to packed decimal and back again to be carried out without loss of
accuracy.

If this bit is clear, then the standard (three word) format is used for Packed Decimal
numbers.

AC - Use alternative definition for C flag on compare operations

If this bit is set, the ARM C flag, after a compare, is interpreted as 'Greater Than or
Equal or Unordered'. This interpretation allows more of the IEEE predicates to be
tested by means of single ARM conditional instructions than is possible using the
original interpretation of the C flag (as shown below)

If this bit is clear, the ARM C flag , after a compare, is interpreted as 'Greater Than or
Equal '.

Cumulative Exception Flags Byte

7 6 5 4 3 2 0

FPSR I Reserved INX UFL OFL DVZ IVO

Figure 78.9 Cumulative exception flags byte

Whenever an exception condition arises, the appropriate cumulative exception flag
in bits 0 to 4 will be set to I. If the relevant trap enable bit is set, then an exception
is also delivered to the user's program in a manner specific to the operating

Floating point emulator

system. (Note that in the case of underflow, the state of the trap enable bit
determines under which conditions the underflow flag will be set.) These flags can
only be cleared by a WFS instruction.

Currently, the reserved bits shall be written as zeros and will return 0 when read.

IVO - invalid operation

The IVO flag is set when an operand is invalid for the operation to be performed.
Invalid operations are:

• Any operation on a trapping NaN (not-a-number)

• Magnitude subtraction of infinities, eg +oo + --oo

• Multiplication of 0 by ±oo

e Division of 0/0 or oo/oo

• x REM y where x = oo or y = 0

(REM is the 'remainder after floating point division' operator.)

• Square root of any number< 0 (but -v(-0) = -Q)

• Conversion to integer or decimal when overflow, oo or a NaN operand make it
impossible

If overflow makes a conversion to integer impossible, then the largest positive
or negative integer is produced (depending on the sign of the operand) and
IVO is signalled

• Comparison with exceptions of Unordered operands

• ACS, ASN when argument's absolute value is> I

• SIN, COS, TAN when argument is ±oo

• LOG, LGN when argument is::::;; 0

• POW when first operand is < 0 and second operand is not an integer, or first
operand is 0 and second operand is ::::;; 0

• RPW when first operand is not an integer and second operand is < 0, or first
operand is::::;; 0 and second operand is 0.

DVZ - division by zero

The DVZ flag is set if the divisor is zero and the dividend a finite , non-zero number.
A correctly signed infinity is returned if the trap is disabled.

The flag is also set for LOG(O) and for LGN(O). Negative infinity is returned if the
trap is disabled.

4-173

Floating point status register

4-174

OFL- overflow

The OFL flag is set whenever the destination format's largest number is exceeded
in magnitude by what the rounded result would have been were the exponent
range unbounded. As overflow is detected after rounding a result. whether
overflow occurs or not after some operations depends on the rounding mode.

If the trap is disabled either a correctly signed infinity is returned, or the format's
largest finite number. This depends on the rounding mode and floating point
system used.

UFL - underflow

Two correlated events contribute to underflow:

• Tininess- the creation of a tiny non-zero result smaller in magnitude than the
format's smallest normalised number.

• Loss of accuracy- a loss of accuracy due to denormalisation that may be greater
than would be caused by rounding alone.

The UFL flag is set in different ways depending on the value of the UFL trap enable
bit. If the trap is enabled, then the UFL flag is set when tininess is detected
regardless of loss of accuracy. If the trap is disabled, then the UFL flag is set when
both tininess and loss of accuracy are detected (in which case the INX flag is also
set) ; otherwise a correctly signed zero is returned.

As underflow is detected after rounding a result, whether underflow occurs or not
after some operations depends on the rounding mode.

INX - inexact

The INX flag is set if the rounded result of an operation is not exact (different from
the value computable with infinite precision). or overflow has occurred while the
OFL trap was disabled, or underflow has occurred while the UFL trap was disabled.
OFL or UFL traps take precedence over INX.

The INX flag is also set when computing SIN or COS, with the exceptions of SIN(O)
and COS(I) .

The old FPE and the FPPC system may differ in their handling of the INX flag.
Because of this inconsistency we recommend that you do not enable the INX trap.

Floating point emulator

Floating Point Control Register

The Floating Point Control register (FPCR) may only be present in some
implementations: it is there to control the hardware in an implementation-specific
manner, for example to disable the floating point system . The user mode of the
ARM is not permitted to use this register (since the right is reserved to alter it
between implementations) and the WFC and RFC instructions will trap if tried in
user mode.

You are unlikely to need to access the FPCR; this information is principally given
for completeness.

The FPPC system

The FPCR bit allocation in the FPPC system is as shown below:

Bit

31 -8
7
6
5
4
3
2
I
0

31

PR
SBd
SBn
SBm

AS
EX
DA

8 7 6 5 4 3 2

Figure 78.10 FPCR bit allocation in the FPPC system

Meaning

Reserved- always read as zero
Last RMF instruction Rroduced a partial remainder
Use Supervisor Register Bank 'd'
Use Supervisor Register Bank 'n'
Use Supervisor Register Bank 'm'
Reserved - always read as zero
Last WE32206 exception was asynchronous
Floating point exception has occurred
Disable

0

Reserved bits are ignored during write operations (but should be zero for future
compatibility.) The reserved bits will return zero when read.

4-175

Floating Point Control Register

4-176

The FPA system

In the FPA, the FPCR will also be used to return status information required by the
support code when an instruction is bounced. You should not alter the register
unless you really know what you're doing. Note that the register will be read
sensitive; even reading the register may change its value, with disastrous
consequences.

The FPCR bit allocation in the FPA system is provisionally as follows :

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPCRIRul liE IMoiEol OP 1-1 81

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

(cont'd) I OP I OS lssiAsiREIENIPRI RM loP I 82

Figure 78. I I FPCR bit allocation in the FPA system

Bit

31 RU
30
29
28 IE
27 MO
26 EO
25, 24
23-20 OP
19 PR
18-16 SI
I 5 OP
14- 12 OS
I I SB
10 AB
9 RE

8 EN
7 PR
6, 5 RM
4 OP
3-0 S2

Meaning

Rounded Up Bit
Reserved
Reserved
Inexact bit
Mantissa overflow
Exponent overflow
Reserved
AU operation code
AU precision
AU source register I
AU operation code
AU destination register
Synchronous bounce: decode (Rl4) to get opcode
Asynchronous bounce: opcode supplied in rest of word
Rounding Exception: Asynchronous bounce occurred during

rounding stage and destination register was written
Enable FPA (default is off)
AU precision
AU rounding mode
AU operation code
AU source register 2 (bit 3 set denotes a constant)

Note that the SB and AB bits are cleared on a read of the FPCR. Only the EN bit is
writable. All other bits shall be set to zero on a write.

Floating point emulator

The instruction set

Floating point coprocessor data transfer

op{condition}prec Fd,addr

op is LDF for load, STF for store

condition is one of the usual ARM conditions (see Appendix A: ARM assembler
on page 4-3 55)

prec

addr

Fd

is one of the usual floating point precisions (eg S for single, D for
double, P for packed decimal : see the section entitled Floating point
number formats on page 4-165)

is [Rn] {,#offset} or [Rn, #offset] {! J
({ ! J if present indicates that writeback is to take place.)

is a floating point register symbol (defined via the FN directive) .

Load (LDF) or store (STF) the high precision value from or to memory, using one of
the five memory formats . On store, the value is rounded using the 'round to
nearest' rounding method to the destination precision, or is precise if the
destination has sufficient precision. Thus other rounding methods may be used by
having previously applied some suitable floating point data operation; this does
not compromise the requirement of 'rounding once only', since the store operation
introduces no additional rounding error.

The offset is in words from the address given by the ARM base register, and is in the
range -I 020 to+ I 020. In pre-indexed mode you must explicitly specify writeback to
add the offset to the base register; but in post-indexed mode the assembler forces
writeback for you , as without write back post-indexing is meaningless.

You should not use Rl5 as the base register if writeback will take place.

Examples:

LDFS FO, [RO]

STFP Fl, [R2]

load FO from address held in RO
(single precision)
store number held in Fl at R2
as a packed decimal number

4-177

Floating point coprocessor multiple data transfer

Floating point literals

LDFS and LDFD can be given literal values instead of a register relative address.
and the Assembler will automatically place the required value in the next available
literal pool. In the case of LDFS a single precision value is placed, in the case of
LDFD a double precision value is placed. Because the allowed offset range within a
LDFS or LDFD instruction is less than that for a LOR instruction (-1 020 to+ I 020
instead of -4095 to +4095). it may be necessary to code LTORG directives more
frequently if floating point literals are being used than would otherwise be
necessary.

Syntax: LDFx Fn, = floating point number

Floating point coprocessor multiple data transfer

4-178

The LFM and SFM multiple data transfer instructions are supported by the
assemblers, but are not provided by the FPPC system, or by some versions of the
old FPE:

• versions 2.80- 2.84 do not support them

• versions 2.85- 3.39 do support them

• version 3.40- which is effectively a version of 2.80 that also provides FPPC
hardware support - does not support these instructions.

Attempting to execute these instructions on systems that do not provide them will
cause undefined instruction traps, so you should only use these instructions in
software intended for machines you are confident are using an appropriate version
of the old FPE, or the FPE 400, or the FPA system

The LFM and SFM instructions allow between I and 4 floating point registers to be
transferred from or to memory in a single operation; such a transfer otherwise
requires several LDF or STF operations. The multiple transfers are therefore useful
for efficient stacking on procedure entry/exit and context switching. These new
instructions are the preferred way to preserve exactly register contents within a
program.

The values transferred to memory by SFM occupy three words for each register, but
the data format used is not defined, and may vary between floating point systems.
The only legal operation that can be performed on this data is to load it back into
floating point registers using the LFM instruction. The data stored in memory by an
SFM instruction should not be used or modified by any user process.

The registers transferred by a LFM or SFM instruction are specified by a base
floating point register and the number of registers to be transferred. This means
that a register set transferred has to have adjacent register numbers, unlike the
unconstrained set of ARM registers that can be loaded or saved using LDM and

Floating point emulator

STM. Floating point registers are transferred in ascending order, register numbers
wrapping round from 7 to 0: eg transferring three registers with F6 as the base
register results in registers F6, F7 then FO being transferred .

The assembler supports two alternative forms of syntax, intended for general use
or just stack manipulation:

op{condition} Fd,count,addr

op{condition}stacktype Fd,count , [Rn] {!}

op

condition

Fd

count

addr

stacktype

is LFM for load, SFM for store.

is one of the usual ARM conditions.

is the base floating point register, specified as a floating point
register symbol (defined via the FN directive).

is an integer from I to 4 specifying the number of registers to be
transferred .

is [Rn] {,#offset} or [Rn , #offset] {!}

({ ! } if present indicates that writeback is to take place) .

is FD or EA. standing for Full Descending or Empty Ascending, the
meanings as for LDM and STM.

The offset (only relevant for the first, general. syntax above) is in words from the
address given by the ARM base register, and is in the range -I 020 to+ I 020. In
pre-indexed mode you must explicitly specify writeback to add the offset to the
base register; but in post-indexed mode the assembler forces writeback for you, as
without write back post-indexing is meaningless.

You should not use R 15 as the base register if writeback will take place.

Examples:

SFMNE F6,4, [RO]

LFMFD
LFM

F4,2,[R13]!
F4,2, [R13] ,#24

;if NE is true, transfer F6, F7,
;FO and Fl to the address
;contained in RO

;load F4 and F5 from FD stack -
;equivalent to same instruction
;in general syntax

4-179

Floating point coprocessor register transfer

Floating point coprocessor register transfer

FLT{condition}prec{round}
FLT{condition}prec{round}
FIX{condition}{round}
WFS{condition}
RFS{condition}
WFC{condition}
RFC{condition}

Fn,Rd
Fn, #value
Rd,Fn
Rd
Rd
Rd
Rd

{round}
Rd

is the optional rounding mode: P, M or Z; see below.
is an ARM register symbol

Fn is a floating point register symbol

The value may be of the following: 0, I, 2, 3, 4, 5, I 0, 0.5. Note that these values
must be written precisely as shown above, for instance '0. 5' is correct but '.5' is not.

FLT Integer to Floating Point
FIX Floating point to integer
WFS Write Floating Point Status
RFS Read Floating Point Status
WFC Write Floating Point Control
RFC Read Floating Point Control

The rounding modes are:

Mode

Nearest
Plus infinity
Minus infinity
Zero

Letter

(no letter required)
p

M
z

Fn := Rd
Rd := Fm
FPSR := Rd
Rd := FPSR
FPC:= R Supervisor Only
Rd :=FPC Supervisor Only

Floating point coprocessor data operations

The formats of these instructions are:

4-180

binop{condition}prec{round}

binop{condition}prec{round}

unop{condition}prec{round}

unop{condition}prec{round}

Fd, Fn, Fm

Fd, Fn, #value

Fd, Fm

Fd, #value

binop
unop
Fd

is one of the binary operations listed below
is one of the unary operations listed below
is the FPU destination register

Fn is the FPU source register (binops only)

Floating point emulator

Fm
#value

is the FPU source register
is a constant , as an alternative to Fm . It must be 0, I , 2, 3, 4, 5, I 0 or
0.5, as above.

The binops are:

ADF Add
MUF Multiply
SUF Subtract
RSF Reverse Subtract
DVF Divide
RDF Reverse Divide
POW Power
RPW Reverse Power
RMF Remainder

FML Fast Multiply
FDV Fast Divide
FRO Fast Reverse Divide
POL Polar angle

The unops are:

MVF Move
MNF Move Negated
ABS Absolute value
RND Round to integral value
SOT Square root
LOG Logarithm to base I 0
LGN Logarithm to base e
EXP Exponent
SIN Sine
cos Cosine
TAN Tangent
ASN Arc Sine
ACS Arc Cosine
ATN Arc Tangent
URD Unnormalised Round
NRM Normalise

Fd := Fn + Fm
Fd := Fn X Fm
Fd := Fn- Fm
Fd := Fm- Fn
Fd := FniFm
Fd := Fmi Fn
Fd := Fn to the power of Fm
Fd := Fm to the power of Fn
Fd := remainder of Fn I Fm
(Fd := Fn- integer value of (FniFm) x Fm)
Fd := Fn X Fm
Fd := Fn I Fm
Fd := Fm I Fn
Fd := polar angle of Fn, Fm

Fd := Fm
Fd :=-Fm
Fd := ABS (Fm)
Fd :=integer value of Fm
Fd := square root of Fm
Fd :=log Fm
Fd :=In Fm
Fd := e to the power of Fm
Fd := sine of Fm
Fd := cosine of Fm
Fd := tangent of Fm
Fd := arcsine of Fm
Fd := arccosine of Fm
Fd := arctangent of Fm
Fd :=integer value of Fm (may be abnormal)
Fd := normalised form of Fm

Note that wherever Fm is mentioned, one of the floating point constants 0, I, 2, 3,
4, 5, 10, or 0.5 can be used instead.

FML, FRO and FDV are only defined to work with single precision operands. These
'fast' instructions are likely to be faster than the equivalent MUF, DVF and RDF
instructions, but this is not necessarily so for any particular implementation.

4-181

Floating point coprocessor status transfer

Rounding is done only at the last stage of a SIN, COS etc- the calculations to
compute the value are done with 'round to nearest' using the full working
precision.

The URD and NRM operations are only supported by the FPA and the FPE 400.

Floating point coprocessor status transfer

4-182

op{condition}prec{round} Fm, Fn

op is one of the following:

CMF Compare floating
CNF Compare negated floating
CMFE Compare floating with exception
CNFE Compare negated floating with exception

{condition} an ARM condition.

prec a precision letter

{round} an optional rounding mode: P, M or Z

Fm A floating point register symbol.

Fn A floating point register symbol.

compare Fn with Fm
compare Fn with -Fm
compare Fn with Fm
compare Fn with -Fm

Compares are provided with and without the exception that could arise if the
numbers are unordered (ie one or both of them is not-a-number) . To comply with
IEEE 754, the CMF instruction should be used to test for equality (ie when a BEG
or BNE is used afterwards) or to test for unorderedness (in the V flag) . The CMFE
instruction should be used for all other tests (BGT, BGE, BLT, BLE afterwards)

When the AC bit in the FPSR is clear, the ARM flags N, Z, C, V refer to the following
after compares:

N
z
c
v

Less than
Equal
Greater than or equal
Unordered

ie Fn less than Fm (or -Fm)

ie Fn greater than or equal to Fm (or -Fm)

Note that when two numbers are not equal, Nand Care not necessarily opposites.
If the result is unordered they will both be clear.

Floating point emulator

When the AC bit in the FPSR is set. the ARM flags N, Z, C, V refer to the following
after compares:

N Less than
z Equal
C Greater than or equal or unordered
V Unordered

In this case. Nand Care necessarily opposites .

Finding out more ...
Further details of the floating point instructions (such as the format of the bitfields
within the instruction) can be found in the Acorn RISC Machine family Data Manual.
VLSI Technology Inc. (I 990) Prentice-Hall , Englewood Cliffs, NJ. USA:
ISBN 0- I 3-78I6I8-9 and in the Acorn Assembler Release 2 manual.

4-183

SWI Calls

SWI Calls

4-184

FPEmulator_ Version
{SWI &40480)

Returns the version number of the floating point emulator

On entry

On exit

RO = BCD version number

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call returns the version number of the floating point emulator as a binary
coded decimal (BCD) number in RO.

This SWI will continue to be supported by the hardware expansion.

Related SWis

None

Related vectors

None

79 ARM3 Support

Introduction and Overview
The ARM3 Support module provides commands to control the use of the ARM3
processor's cache, where one is fitted to a machine. The module will immediately
kill itself if you try to run it on a machine that only has an ARM2 processor fitted.

Summary of facilities

Notes

Two • Commands are provided: one to configure whether or not the cache is
enabled at a power-on or reset. and the other to independently turn the cache on
or off.

There is also a SWI to turn the cache on or off. A further SWI forces the cache to be
flushed . Finally, there is also a set of SWis that control how various areas of
memory interact with the cache.

The default setup is such that all RISC OS programs should run unchanged with
the ARM3's cache enabled. Consequently, you are unlikely to need to use the SWis
(beyond, possibly, turning the cache on or off).

A few poorly-written programs may not work correctly with ARM3 processors..
because they make assumptions about processor timing or clock rates.

This module is not available in RISC OS 2.00 (ie was introduced in RISC OS 2.0 I).

Finding out more

For more details of the ARM3 processor, see the Acorn RISC Machine family Data
Manual. VLSI Technology Inc. (I 990) Prentice-Hall. Englewood Cliffs, NJ. USA: ISBN
0-I 3-78I6I8-9.

4-185

SWI Calls

SWI Calls

4-186

Turns the cache on or off

On entry

RO = XOR mask
Rl =AND mask

On exit

Cache_Control
(SWI &280)

RO =old state (0 ~ cacheing was disabled, I ~ cacheing was enabled)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call turns the cache on or off. Bit 0 of the ARM3's control register 2 is altered
by being masked with Rl and then exclusive ORd with RO: ie new value= ((old
value AND Rl) XOR RO) . Bit I of the control register is also set, so the ARM 3 does
not separately cache accesses to the same address for user and non-user modes.
(To do so would degrade cache performance, and potentially cause cache
inconsistency). Other bits of the control register are set to zero.

Related SWis

None

Related vectors

None

Controls which areas of memory may be cached

ARM3 Support

Cache_Cacheable
(SWI &281)

On entry

RO =XOR mask
Rl =AND mask

On exit

RO =old value (bit 11 set~ 2MBytes starting at 11X2MBytes are cacheable)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call controls which areas of memory may be cached (ie are cacheable). The
ARM3's control register 3 is altered by being masked with R I and then exclusive
ORd with RO: ie new value= ((old value AND Rl) XOR RO) . If bit 11 of the control
register is set. the 2MBytes starting at 11X2MBytes are cacheable.

The default value stored is &FC007CFF. so ROM and logical non-screen RAM are
cacheable. but 1/0 space. physical memory. the RAM disc and logical screen
memory are not.

Related SWis

Cache_Updateable (page 4-188). Cache_Disruptive (page 4-189)

Related vectors

None

4-187

Cache_Updateable (SWI &282)

4-188

Cache_Updateable
{SWI &282)

Controls which areas of memory will be automatically updated in the cache

On entry

RO = XOR mask
Rl =AND mask

On exit

RO =old value (bit n set~ 2MBytes starting at nx2MBytes are updateable)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call controls which areas of memory will be automatically updated in the
cache when the processor writes to that area (ie are updateable). The ARM3's control
register 4 is altered by being masked with Rl and then exclusive ORd with RO: ie
new value= ((old value AND Rl) XOR RO) . If bit n of the control register is set. the
2MBytes starting at nx2MBytes are updateable.

The default value stored is &00007FFF, so logical non-screen RAM is updateable,
but ROM/CAM/DAG, 1/0 space, physical memory and logical screen memory are
not.

Related SWis

Cache_Cacheable (page 4-187). Cache_Disruptive (page 4-189)

Related vectors

None

ARM3 Support

Cache_Disruptive
(SWI &283)

Controls which areas of memory cause automatic flushing of the cache on a write

On entry

RO =XOR mask
Rl =AND mask

On exit

RO =old value (bit n set=> 2M8ytes starting at nx2M8ytes are disruptive)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call controls which areas of memory cause automatic flushing of the cache
when the processor writes to that area (ie are disruptive). The ARM3's control
register 5 is altered by being masked with Rl and then exclusive ORd with RO: ie
new value= ((old value AND Rl) XOR RO) . If bit n of the control register is set. the
2MBytes starting at nx2MBytes are disruptive.

The default value stored is &FOOOOOOO. so the CAM map is disruptive. but
ROM/DAG. 110 space. physical memory and logical memory are not. This causes
automatic flushing whenever MEMC's page mapping is altered. which allows
programs written for the ARM2 (including RISC OS itself) to run unaltered. but at
the expense of unnecessary flushing on page swaps.

Related SWis

Cache_Cacheable (page 4-187). Cache_Updateable (page 4-188)

4-189

Cache_Disruptive (SWI &283)

4-190

Related vectors

None

Flushes the cache

On entry

On exit

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

ARM3 Support

Cache_Fiush
(SWI &284)

This call flushes the cache by writing to the ARM3's control register I .

Related SWis

None

Related vectors

None

4-191

*Commands

*Commands

4-192

*Cache

Turns the cache on or off. or gives the cache's current state

Syntax

*Cache [On I Off)

Parameters

On or Off

Use

*Cache turns the cache on or off. With no parameter, it gives the cache's current
state.

Example

*Cache Off

Related commands

*Configure Cache

Related SWis

Cache_ Control (page 4- I 86)

Related vectors

None

ARM3 Support

*Configure Cache

Sets the configured cache state to be on or off

Syntax

*Configure Cache On iOff

Parameters

On or Off

Use

*Configure Cache sets the configured cache state to be on or off.

Example

*Configure Cache On

Related commands

*Cache

Related SWis

Cache_ Control (page 4- I 86)

Related vectors

None

4-193

Application Note

Application Note

4-194

Games writers may wish. to disable the ARM3 cache so that ARM3 based machines
run at a similar speed to older ARM2 based machines. You must ensure that your
code only tries to call ARM3Support SW!s and * Commands- such as *Cache Off
if the module is present. A simple way to do so is to call the error-returning form of
an ARM3Support SWI, and see if an error is returned. For example:

SYS "XCache_ Control ", 0 , -1 TO RO ; flags
IF (flags AND 1) THEN arm3=FALSE ELSE arm3=TRUE
IF arm3 THEN *Cache Off

80 The Portable module

Introduction
This module provides support for portable machines. The SWis listed are not
normally intended to be issued from user programs, they will normally be issued
by other modules in the system.

4-195

Technical details

Technical details

Colour to grey-scale mapping

4-196

The Portable module has to convert the users RGB palette settings into a
grey-scale value in the range 0 to 14 (since the LCD panel only supports 15 unique
grey levels). It does this using the following algorithm:

Luminance= (4 x Green)+ (2 x Red)+ Blue

Red, Green and Blue are in the range 0 to 255 , so the luminance is in the range 0 to
1785 (255 x 7). It is then mapped down onto the range 0 to 14 using the following
table:

Luminance Grey level Palette values for R, G and 8

0- 118 0 &00
119-237 &12
238- 356 2 &24
357-475 3 &37
476- 594 4 &49
595- 713 5 &58
714-832 6 &6D
833- 952 7 &7F
953- 1071 8 &92
1072-1190 9 &A4
1191 - 1309 10 &86
1310- 1428 II &C8
1429-1547 12 &DB
1548- 1666 13 &ED
1667- 1785 14 &FF

The mapping table above is provided for information only, and may be subject to
change in later versions of the Portable module.

In 256 colour modes the colour mapping is partly determined by the hardware,
since the top 4 bits of the pixel value go directly to particular bits of the three guns,
and the LCD ASIC only takes input from VIDC's red output. Thus the grey level will
not in general map correctly from the luminance of the RGB value which would
normally be output.

The Portable module

Service calls

Power down or up

Service_Portable
(Service Call &SA)

On entry

R I = reason code (&8A)
R2 = power up or down:

0 = power down
I= power up

R3 =bit mask of which ports are being powered down (if R2 = 0)
(bit set ~ port is being powered down)

bit mask of which ports have been powered up (if R2 = I)
(bit set~ port has been powered up)

On exit

Use

Rl = 0 if R3 = 0, else preserved to pass on
R2 preserved
R3 = bit mask of which ports may be powered down or up

(bit set~ no objection to change of state)

This call is issued before power is removed or after power is reapplied to the
following:

Econet (bit 0)
serial buffer/oscillator (bit 3)
FDC oscillator (bit 14)

If a module wishes to prevent hardware being powered down, it should clear the
appropriate bit or bits in R3 . In addition , if the resulting value in R3 is now zero, the
module should claim the service by setting Rl to zero. (This is to prevent the call
being unnecessarily passed round the rest of the modules). Otherwise the service
should be passed on by preserving Rl.

This call should never be claimed.

4-197

SW/ Calls

SWI Calls

4-198

Controls the processor speed

On entry

RO = EOR mask
Rl =AND mask

On exit

RO = old speed
Rl =new speed (0 ~fast. I ~slow)

Interrupts

Interrupt status is not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

Portable_Speed
(SWI &42FCO)

This SWI controls the processor speed. which is reduced when the system is idle in
order to save power.

The new speed is calculated as follows:

new speed = (old speed AND R I) EOR RO

Speed settings currently supported are:

0 fast
slow

Related SWis

Portable_Control (page 4-200)

Related vectors

None

The Portable module

4-199

Portable_ Control (SWI &42FC1)

4-200

Portable_Control
(SWI &42FC1)

Controls various power control and miscellaneous bits

On entry

RO = EOR mask
Rl =AND mask

On exit

RO = old control
Rl =new control

Interrupts

Interrupt status is not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This SWI controls various power control and miscellaneous bits in the portable
machine.

The new control is calculated as follows:

new control= (old control AND Rl) EOR RO

The Portable module

The bits in control are as follows:

Bit

0

2
3
4
5, 6

7
8
9

10

II - 13
14
15
16
17 - 31

Meaning

Set => power to Econet enabled
Set=> power to LCD display enabled
Set => power to external video display enabled
Set=> power to serial buffer and oscillator enabled
Set =>dual panel mode enabled
Video clock control

0 => External clock input
I => Crystal oscillator, divided by 2
2 => Crystal oscillator
3 => reserved, do not use

Set => invert video clock
Set=> back-light enabled
Clear=> I extra line on display
Set => 2 extra lines on display
Clear=> I DRAM used for dual panel
Set=> 2 DRAMs used for dual panel
Reserved
Set=> power to FDC oscillator enabled
Reserved
Set => LCD palette set up for inverse video
Reserved

Reserved bits must not be modified, nor assumed to read any particular value.

Note that the 82C711 has one oscillator which is used by the serial subunit and by
the floppy disc controller (FDC) . Power to the oscillator is removed only if bits 3
and 14 are both clear.

On some computers the power to the oscillator cannot be removed because the
same oscillator drives other parts of the system (eg lOEB) .

If this call results in bits 0, 3 or 14 changing (ie power being removed or applied to
the serial buffer/oscillator, Econet or FDC oscillator), then Service_Portable is
issued (see page 4-197) .

Related SWis

Portable_Speed (page 4-198)

Related vectors

None

4-201

Portable_ReadBMUVariable (SWI &42FC2)

4-202

Portable_ReadBMUVariable·
(SWI &42FC2)

Reads Battery Management Unit variables

On entry

RO = BMU variable number

On exit

RO preserved
Rl =value of variable

Interrupts

Interrupts enabled except if RO = 10
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI reads Battery Management Unit variables.

The Portable module

The BMU variable numbers are:

Variable Read/Write

0 R
R

2 R
3 R
4 R
5 R
6 RIW
7 R
8 R
9 R
10 R

II R

Description

version number and memory map of BMU microcode
nominal battery capacity
measured battery capacity
used battery capacity
usable battery capacity
reserved
charge estimate
instantaneous voltage
instantaneous current
instantaneous temperature
flags as follows:

Bit Meaning
Set ~ lid is open

2 Set ~ threshold 2 reached
3 Set ~ threshold I reached
4 Set~ charging system fault
5 Set ~ charge state is known
6 Set ~ battery present
7 Set ~ charger connected

charge rate (bits 4 to 7)

Reading any variable except the flags (variable 10) will enable IROs (the flags are
read from a soft copy).

Related SWis

Portable_ WriteBMUVariable (page 4-204)

Related vectors

None

4-203

Portable_ WriteBMUVariable (SWI &42FC3)

4-204

Portable_ WriteBMUVariable
(SWI &42FC3)

Writes Battery Management Unit variables

On entry

RO = BMU variable number
Rl =new value of variable

On exit

RO, Rlpreserved

Interrupts

Interrupts status is not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This SWI writes Battery Management Unit variables.

The variable numbers are as for Portable_ReadBMUVariable on page 4-203.
Variables not marked with a w· should not be written.

Related SWis

Portable_ReadBMUVariable (page 4-202)

Related vectors

None

The Portable module

Portable_CommandBMU
(SWI &42FC4)

Issues a command to the Battery Management Unit

On entry

RO = reason code
I = Remove power
2 =Reserved
3 =Reserved
4 =Set autostart (RI =delay, in minutes.- I; eg 0 ==} I minute delay)

Other registers hold reason-code-dependent parameters

On exit

All registers preserved

Interrupts

Interrupts are not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI issues a command to the Battery Management Unit. The values of
variables after a command may not change immediately this command is issued.

Related SWis

None

Related vectors

None

4-205

4-206

81 Joystick module

Introduction and Overview
The Joystick module provides a SWI interface for reading the state of a joystick.
When the module initialises it tests for the existence of built-in joystick hardware
and if it does not find any then it will not initialise. Third parties can replace this
module to provide different hardware. It is recommended that any such modules
have version numbers greater than 2.00 so that Acorn can upgrade its own module
without preventing its replacement.

4-207

SWI Calls

SWI Calls

4-208

Returns the state of a joystick

Joystick_Read
(SWI &43F40)

On entry

RO =joystick number

On exit

RO = joystick state

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This SWI is used to obtain the state of the requested joystick. The state is returned
in the following format, which supports both digital and analogue devices:

Byte Value

0 Signed Y value in the range -127 to 127. For a single switch joystick,
-64 ::::} Down, 0 ::::} Rest, and 64 ::::} Up.

Signed Y value in the range -127 to 127. For a single switch joystick,
-64 ::::} Left, 0 ::::} Rest, and 64 ::::} Right.

2 Switches (eg fire buttons) starting in bit 0; unimplemented switches
return 0.

3 Reserved.

Joystick module

Applications which are only interested in state (up, down, left, right) should not
simply test the bytes for positive, negative or zero. We recommend that the 'at rest'
state should span a middle range, say from -32 to 32, since analogue joysticks
cannot be relied upon to produce 0 when at rest.

Related SWis

None

Related vectors

None

4-209

4-210

Part 14 - Programmer's support

4-211

4-212

82 Debugger

Introduction
The debugger is a module that allows a program to be stopped at set places called
breakpoints. Whenever the instruction that a breakpoint is set on is reached, a
command line will be entered. From here, you can type debug commands and
resume the program when you want.

Other commands may be called at any time to examine or change the values
contained at particular addresses in memory and to list the contents of the
registers. You can display memory as words or bytes.

There is also a facility to disassemble instructions. This means converting the
instruction, stored as a word, into a string representation of its meaning. This
allows you to examine the code anywhere in readable memory.

4-213

Technical Details

Technical Details

4-214

The debugger provides one SWI, Debugger_Disassemble (SWI &40380), which will
disassemble one instruction. There are also the following • Commands:

Command

*BreakClr
*BreakList
*BreakSet
*Continue
*Debug
*lnitStore
*Memory
*MemoryA
*Memory!
*ShowRegs

Description

Remove breakpoint
List currently set breakpoints
Set a breakpoint at a given address
Start execution from a breakpoint saved state
Enter the debugger
Fill memory with given data
Display memory between two addresses/register
Display and alter memory
Disassemble ARM instructions
Display registers caught by traps

When an address is required , it should be given in hexadecimal A preceding & is
optional; that is, unlike most of the rest of the system, the debugger uses
hexadecimal as a default base rather than decimal

*Quit should be used to return from the debugger to the previous environment
after a breakpoint- see page 1-324.

Note that the breakpoints discussed here are separate from those caused by
OS_BreakPt. See page 1-305 for details of this SWI.

When a breakpoint is set, the previous contents of the breakpoint address are
replaced with a branch into the debugger code. This means that breakpoints may
only be set in RAM. If you try to set a breakpoint in ROM, the error 'Bad breakpoint'
will be given.

When a breakpoint instruction is reached, the debugger is entered , with the
prompt

Debug*

from which you can type any • Command. An automatic register dump is also
displayed.

From RISC OS 3 onwards this module supports ARM 3 instructions, and warns of
certain unwise or invalid code sequences (see Appendix 8: Warnings on the use of ARM
assembler on page 4-377). Some of the output when disassembling has been
changed for greater clarity than that provided by RISC OS 2.

SWI Calls

Disassemble an instruction

Debugger

Debugger _Disassemble
(SWI &40380)

On entry

RO =instruction to disassemble
Rl =address to assume the instruction came from

On exit

RO = preserved
Rl =address of buffer containing null-terminated text
R2 = length of disassembled line

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

RO contains the 32-bit instruction to disassemble. Rl contains the address from
which to assume the instruction came, which is needed for instructions such as
B, BL, LDR Rn, [PC ...], and so on. On exit, Rl points to a buffer which contains
a zero terminated string. This string consists of the instruction mnemonic, and any
operands, in the format used by the *Memory! instruction. The length in R2
excludes the zero-byte.

Related SWis

None

4-215

Debugger_Disassemble (SWI &40380)

4-216

Related vectors

None

Debugger

*Commands
*BreakCir

Removes a breakpoint

Syntax

*BreakClr [addr l r eg]

Parameters

Use

a ddr

r eg

hexadecimal address of breakpoint to clear

register containing address of breakpoint to clear

Allowed register names are rO- rl5, sp (equivalent to
rl3). lr (rl4 without the psr bits) and pc (rl5 without the
psr bits) . These are taken from the current
ExceptionDumpArea.

*BreakCir removes the breakpoint at the specified address or register value,
putting the original contents back into that location. You can unset the last hit
breakpoint with the command *BreakC l r p c

If you give no parameter then you can remove all breakpoints- you will be
prompted:

Cllear all b r eakpoints (Y/N]?

Examplf
*BreakClr 81 6C

Related commands

* BreakSet, * BreakList

Related SWis

None

Related vectors

None

4-217

*BreakList

*Breaklist

List all the breakpoints that are currently set

Syntax

*BreakList

Parameters

None

Use

*BreakList lists all the breakpoints that are currently set with *BreakSet.

Example

*BreakList
Address Old Data
0000816C EF00141C

Related commands

*BreakSet

Related SWis

None

Related vectors

None

4-218

Debugger

*BreakSet

Sets a breakpoint

Syntax

*BreakSet addrlreg

Parameters

Use

addr

reg

hexadecimal address of breakpoint to set

register containing address of breakpoint to set

Allowed register names are rO- rl5, sp (equivalent to
r 13). lr (r 14 without the psr bits) and pc (r 15 without the
psr bits). These are taken from the current
ExceptionDumpArea.

• BreakSet sets a breakpoint at the specified address or register value. so that when
the code is executed and the instruction at that address is reached. execution will
be halted.

When a breakpoint is set. the previous contents of the breakpoint address are
replaced with a branch into the debugger code. This means that you may only set
breakpoints in RAM. If you try to set a breakpoint in ROM, the error 'Bad
breakpoint' is generated.

Example

*BreakSet 81 6C

Related commands

*BreakClr. *BreakList. •continue

Related SWis

None

Related vectors

None

4-219

*Continue

4-220

*Continue

Resumes execution after a breakpoint

Syntax

*Continue

Parameters

Use

None

*Continue resumes execution after a breakpoint, using the saved state. If there is a
breakpoint at the continuation position, then this prompt is given :

Continue from breakpoint set at &0000816C
Execute out of line? [Y/N]?

Reply 'Y' if it is permissible to execute the instruction at a different address (ie it
does not refer to the PC) .

If the instruction that was replaced by the breakpoint contains a PC-relative
reference (such as LDR RO, label , a B or BL instruction, or an ADR directive). you
should not execute it out of line. Instead you should clear the breakpoint, and then
re-issue the *Continue command. The instruction will then be executed in line,
avoiding the wrong address being referenced.

Related commands

* BreakClr, * BreakList. * BreakSet

Related SWis

None

Related vectors

None

Debugger

*Debug

Enters the debugger

Syntax

*Debug

Parameters

None

Use

Debug enters the debugger. A prompt of Debug appears . Use Escape to return
to the caller, or *Quit to exit to the caller's parent.

*Quit is documented on page 1-324.

Related commands

*Quit

Related SWis

None

Related vectors

None

4-221

*lnitStore

4-222

*lnitStore

Fills user memory with a value

Syntax

*InitStore [value l reg]

Parameters

Use

val ue

r e g

word with which to fill user memory

register value with which to fill user memory

Allowed register names are rO - rl5, sp (equivalent to
rl3). lr (rl4 without the psr bits) and pc (rl5 without the
psr bits). These are taken from the current
ExceptionDumpArea.

*lnitStore fills user memory with the specified value or register value, or with the
value &E60000 I 0 (which is an illegal instruction) if no parameter is given. If you
give this command from within an application (eg BASIC) the machine will crash ,
and will have to be reset.

RISC OS 2 used the value &E I 000090 instead. This is no longer an illegal
instruction for all versions of the ARM processor.

Example

*InitStor e &381 E667 7

Related commands

None

Related SWis

None

Related vectors

None

Debugger

*Memory

Displays the values in memory

Syntax

*Memory [B] addrllregl
*Memory [B] addrllregl [+l-]addr2lreg2
*Memory [B] addrllregl +l-addr2lreg2 +addr3lreg3

Parameters

Use

B

addrllregl

addr2lreg2

addr3lreg3

optionally display as bytes

hexadecimal address, or register containing address for
start of display

hexadecimal offset, or register containing offset

hexadecimal offset. or register containing offset

Allowed register names are rO- rl5, sp (equivalent to
rl3). lr (rl4 without the psr bits) and pc (rl5 without the
psr bits). These are taken from the current
ExceptionDumpArea.

*Memory displays the values in memory, in bytes if the optional B is given, or in
words otherwise.

If only one address is given, 256 bytes are displayed starting from addrl. If two
addresses are given, addr2 specifies the end of the range to be displayed (as an
absolute address or, if'+' or·-· is present, as an offset from addrl). If three
addresses are given, addr2 specifies an offset for the start from addrl, and addr3
specifies the end of the range to be displayed (as an offset from the combined
address given by addrl and addr2).

Example

*Memory 1000 -200 +500 Display memory from &EOO to & 12FF

Related commands

*MemoryA, *Memory!

Related SWis

None

4-223

*Memory

4-224

Related vectors

None

Debugger

*Memory A

Displays and alters memory

Syntax

*MemoryA [B] addr lregl [v aluel r eg2]

Parameters

Use

B

addrl l regl

va lu e

reg2

optionally display as bytes

hexadecimal address, or register containing address for
start of display

value to write into the specified location

register containing value to write into the specified
location

Allowed register names are rO- rl 5, sp (equivalent to
rl 3), lr (rl 4 without the psr bits) and pc (rl 5 without the
psr bits). These are taken from the current
ExceptionDumpArea.

*MemoryA displays and alters memory in bytes, if the optional B is given, or in
words otherwise.

If you give no further parameters, interactive mode is entered. At each line,
something similar to the following is printed :

*MemoryA 8000
+ 000 08 000 : X• ..

Enter new value

or, for byte mode:

*MemoryA B 8001

00008F7 8 : ANDEQ R8 ,RO,R8,ROR PC

+ 00008 001 : • : 8F :
Ente r n ew value :

The first character shows the direction in which Return steps ('+' for forwards, ·-·
for backwards) . Next is the address of the worcl/byte being altered, then the
character(s) in that worcl/byte, then the current hexadecimal value of the
worcl/byte, and finally (for words only) the instruction at that address.

4-225

•Memory A

4-226

You may type any of the following at the prompt:

Return

+
hex digits Return

to go to the 'next' location
to step backwards in memory
to step forwards in memory
to alter a location and proceed
to exit.

As an alternative to using this command interactively, you can give the new data
value on the line after the address.

Example

*MemoryA 87AO 12345678

Related commands

*Memory, *Memoryl

Related SWis

None

Related vectors

None

Debugger

*Memoryl

Disassembles memory into ARM instructions

Syntax

*Mernoryi addrl lregl
*Mernory i addrllregl [+i -] a ddr2 1r eg2
*Mernoryi addrl lreg l +l-addr2 1reg2 +addr3 1reg3

Parameters

Use

addrl l regl

addr2 1reg2

addr3 1reg3

hexadecimal address, or register containing address for
start of display

hexadecimal offset. or register containing offset

hexadecimal offset. or register containing offset

Allowed register names are rO- rl5, sp (equivalent to
rl3). lr (rl4 without the psr bits) and pc (rl5 without the
psr bits) . These are taken from the current
ExceptionDumpArea.

*Memory! disassembles memory into ARM instructions.

If only one address is given, 24 instructions are disassembled starting from addrl.
If two addresses are given, addr2 specifies the end of the range to be disassembled
(as an absolute address or, if '+ ' or ·- · is present. as an offset from addrl). If three
addresses are given, addr2 specifies an offset for the start from addrl, and addr3
specifies the end of the range to be disassembled (as an offset from the combined
address given by addrl and addr2).

These options are particularly useful for d isassembling modules, which contain
offsets, not addresses .

4-227

*Memory/

Example
*modules
No. Position Workspace Name

22 0184D684 01801684 Debugger Find address of Debugger

*memoryi 1840684 +24
01840684 00000000 ANDEQ RO , RO,RO
0184D688 \ ... oooooosc ANDEQ RO , RO,R12 , ASR RO
0184D68C (.. . 00000128 ANDEQ RO,RO,R8,LSR #2
0184D690 00000104 ANDEQ RO,RO , R4,LSL #2
0184D694 (... 00000028 ANDEQ RO , RO , R8 , LSR #32
01840698 > . .. 0000003E ANDEQ RO , RO , R14,LSR RO
0184D69C h ... 00000168 ANDEQ RO,RO,R8 , ROR #2
0184D6AO 00040380 ANDEQ RO,R4,RO,LSL #7
0184D6A4 ii ... OOOOOSFC MULEQ RO,R12 , R5 f- Offset of SWI handler is &5FC

*memoryi 1840684 +SFC +20 Disassemble SWI handler
0184DC80 .B-e E92D4200 STMDB R13 ! ,{R9 , R14}
0184DC84 .At a E49CC000 LDR R12, [R12] , #0
0184DC88 .. ;a E33BOOOO TEQ Rll , #O
0184DC8C OAOOOOOS BEQ &0184DCA8
0184DC90 . .. a. E28F0004 ADR R0 , &0184DC9C
0184DC94 .. e EB00075F BL &0184FA18
0184DC98 \Oe E8BD8200 LDMIA R13 ! ,{R9 , PC}
0184DC9C 0000010F ANDEQ RO , RO , PC , LSL #2

Related commands

*Memory, *Memory A

Related SWis

Debugger_Disassemble (page 4-215)

Related vectors

None

4-228

Debugger

*ShowRegs

Displays the register contents for the saved state

Syntax

*ShowRegs

Parameters

Use

None

*Show Regs displays the register contents for the saved state, which may be caught
on one of the five following traps:

• undefined instruction

• address exception

• data abort

• prefetch abort

• break point.

It also prints the address in memory where the registers are stored, so you can alter
them (for example after a breakpoint) by using *MemoryA on these locations,
before using *Continue.

Example
*ShowRegs
Register dump (stored at &01804D2C) is:
RO 0026D2CF Rl 002483Cl R2 00000000 R3 00000000
R4 00000000 R5 52491ACE R6 42538FFD R7 263598DE
RB B278A456 R9 C2671D37 RlO A72B34DC Rll 82637D2F
R12 00004000 R13 2538DAFO R14 24368000 R15 7629D100
Mode USR flags set nzcvif

Related commands

None

Related SWis

None

4-229

*ShowRegs

4-230

Related vectors

None

83 The shared C library

Introduction
The shared C library is a RISC OS relocatable module (called SharedCLibrary)
which contains the whole of the ANSI C library. It is used by many programs written
in C. Consequently, it saves both RAM space and disc space.

The shared C library is used by the RISC OS applications Edit, Paint, Draw and
Configure .

Generally you will use the shared C library by linking your programs with the library
stubs. However, you may also call it directly from assembly language by means of
SWis provided by the shared C library (you would normally only want to do this if
you are implementing your own library stubs for your own language run-time
system).

4-231

Overview

Overview

How to use the C library kernel

4-232

C library structure

The C library is organised into three layers:

• at the centre is the language-independent library kernel providing basic
support services;

• at the next level is a C-specific layer providing compiler support functions ;

• at the outermost level is the actual C library.

A full description of all the C library functions is given in the section entitled
C library functions on page 4-278.

The library kernel

The library kernel is designed to allow run-time libraries for different languages to
co-reside harmoniously, so that inter-language calling can be smooth . It provides
the following facilities:

• a generic, status-returning, procedural interface to SWis

• a procedural interface to commonly used SWis , arithmetic functions and
miscellaneous functions

• support for manipulating the IRQ state from a relocatable module

• support for allocating and freeing memory in the RMA area

• support for stack-limit checking and stack extension

• trap handling, error handling, event handling and escape handling.

A full description of all the library kernel functions is given in the section entitled
Library kernel functions on page 4-265 .

Interfacing a language run-time system to the Acorn library kernel

You can also write your own language Run-Time System to use the shared C library.
For full details, see the section entitled Interfacing a language run-time system to the
Acorn library kernel on page 4-232.

The shared C library

How the run-time stack is managed and extended

Management

The run-time stack consists of a doubly-linked list of stack chunks . Each stack
chunk is allocated by the storage manager of the master language (in a C program
allocating and freeing stack chunks is accomplished using rna lloc () and
free ()).

Stack extension

Two types of stack extension are provided:

• Pascai/Modula-2 style

• C-style

Calling other programs from C

The C library procedure syst em () provides the means whereby a program can
pass a command to the host system's command line interpreter- in this case the
RISC OS command line interpreter. For a full description, see the section entitled
Calling other programs from Con page 4-233.

Storage management

The storage manager manages the heap in the most 'efficient' manner possible. A
rudimentary understanding of it will help you make the best use of it; see the
section entitled Storage management on page 4-233.

Handling host errors
Calls made to RISC OS via a kernel function return a specific value if an operating
system error occurs. A call is provided to then find the associated error number
and string. For full details. see the section entitled Handling host errors on
page 4-243 .

4-233

Technical details

Technical details
The shared C library module implements a single SWI which is called by code in
the library stubs when your program linked with the stubs starts running. That SWI
call tells the stubs where the library is in the machine. This allows the vector of
library entry points contained in the stubs to be patched up in order to point at the
relevant entry points in the library module.

The stubs also contain your private copy of the library's static data. When code in
the library executes on your behalf, it does so using your stack and relocates its
accesses to its static data by a value stored in your stack-chunk structure by the
stubs initialisation code and addressed via the stack-limit register. (This is why you
must preserve the stack-limit register everywhere if you use the shared C library
and call your own assembly language sub-routines.) The compiler's register
allocation strategy ensures that the real dynamic cost of the relocation is almost
always low: for example, by doing it once outside a loop that uses it many times.

Execution time costs

It costs only 4 cycles (0.5!-ls) per function call and a very small penalty on access to
the library's static data by the library (the user program's access to the same data is
unpenalised). In general. the difference in performance between using the shared
C library and linking a program stand-alone with ANSI Lib is less than l %. For the
important Dhrystone-2.1 benchmark the performance difference cannot be
measured.

How to use the C library kernel

4-234

C library structure

The C library is organised into three separate layers. At the centre is the
language-independent library kernel This is implemented in assembly language
and provides basic support services, described below, to language run-time
systems and, directly, to client applications

One level out from the library kernel is a thin , C-specific layer, also implemented in
assembly language. This provides compiler support functions such as structure
copy, interfaces to stack-limit checking and stack extension, setjmp and
longjmp support, etc. Everything above this level is written in C.

Finally, there is the C library proper. This is implemented inC and, with the
exception of one module which interfaces to the library kernel and the C-specific
veneer, is highly portable.

The shared C library

The library kernel

The library kernel provides the following facilities:

• initialisation functions

• stack management functions:

unwinding the stack
finding the current stack chunk
four kinds of stack extension-

small-frame and large-frame extension.
number of actual arguments known (eg Pascal). or unknown (eg C) by
the callee.

• program environment functions:

finding the identity of the host system (RISC OS, Arthur, etc)
determining whether the floating point instruction set is available
getting the command string with which the program was invoked
returning the id]J1tity of the last OS error
reading an environment variable
setting an environment variable
invoking a sub-application
claiming memory to be managed by a heap manager
finding the name of a function containing a given address
finding the source language associated with code at a given address
determining if IROs are enabled
enabling IROs
disabling IROs.

• general utility functions:

generic SWI interface routines
special SWI interfaces for certain commonly used SWis.

• memory allocation functions:

allocating a block of memory in the RMA
extending a block of memory in the RMA
freeing a block of memory in the RMA.

• language support functions:

unsigned integer division
unsigned integer remainder
unsigned divide by 10 (much faster than general division)
signed integer division
signed integer remainder
signed divide by I 0 (much faster than general division) .

4-235

How to use the C library kernel

4-236

Interfacing a language run-time system to the Acorn library kernel

In order to use the kernel. a language ru n-time system must provide an area named
RTSKSSDATA. with attributes READONLY. The conten ts of t his area must be a
_kernel_languagedescription as fol lows:

typ edef enurn { NotHandled , Hand led } _kernel_HandledOrNot

typedef struct
int regs [16];

} _ kern el_ registerset ;

typedef struct {
int regs [10] ;

} _kernel_ eventregi sters;

typedef void (*PROC) (void) ;
typedef _ kernel_ HandledOrNot

(*_kernel_ trapproc) (int cod e , _ kernel_ registerset *reg s);
typedef _kernel_Hand ledOrNot

(*_kernel_ eventproc) {int cod e , _ kernel_registerset *regs);

typedef struct {
int size;
int codestart, codeend;
char *name;
PROC (*InitProc) (void); / * t hat is , InitProc returns a PROC * I
PROC Fina lisePro c ;
kernel trapproc TrapProc;
kernel trapproc UncaughtTrapProc;
kernel eventproc EventProc;
_ kernel_ eventproc UnhandledEventProc ;
void (*FastEventProc) (_ kernel_ eventregisters *) ;
int (*UnwindProc) (_kernel_ unwindblock * inout, char ** language) ;
char * (*NarneProc) (int pc) ;

kernel languagedescription;

Any of the procedure values may be zero. indicating that an appropriate default
action is to be taken. Procedures whose addresses lie outside
1 code s t ar t ... codeend) also cause the default action to be taken .

codestart, codeend

These values describe the range of program counter (PC) values which may be
taken while executing code compiled from the language. The linker ensures that
this can be described with just a single base and limit pair if all code is compiled
into areas with the same unique name and same attributes (conventionally,
Language$Scode. CODE, READONLY. The values required are then accessible
through the symbols LanguageSScodeSSBase and LanguageSScodeSSLimit).

The shared C library

lnitProc

The kernel contains the entrypoint for images containing it. After initialising itself,
the kernel call s (in a random order) the InitProc for each language RTS present in
the image. They may perform any required (language-library-specific) initialisation:
their return value is a procedure to be called in order to run the main program in
the image. If there is no main program in its language, an RTS should return 0. (An
InitProc may not itself enter the main program, otherwise other language RTSs
might not be initialised. In some cases. the returned procedure may be the main
program itself. but mostly it will be a piece of language RTS which sets up
arguments first.)

It is an error for all InitProcs in a module to return 0. What this means depends on
the host operating system; if RISC OS, SWI OS_ Generate Error is called (having first
taken care to restore all OS handlers) . If the default error handlers are in place, the
difference is marginal.

FinaliseProc

On return from the entry call, or on call of the kernel's Exit procedure, the
FinaliseProc of each language RTS is called (again in a random order) . The kernel
then removes its OS handlers and exits setting any return code which has been
specified by a call of

_kernel_setreturncode.

TrapProc, UncaughtTrapProc

On occurrence of a trap, or of a fatal error, all registers are saved in an area of store
belonging to the kernel. These are the registers at the time of the instruction
causing the trap, except that the PC is wound back to address that instruction
rather than pointing a variable amount past it.

The PC at the time of the trap together with the call stack are used to find the
Trap Handler procedure of an appropriate language. If one is found, it is invoked in
user mode. It may return a value (Handled or NotHandled), or may not return at
all. If it returns Handled, execution is resumed using the dumped register set
(which should have been modified, otherwise resumption is likely just to repeat
the trap). If it returns NotHandled, then that handler is marked as failed , and a
search for an appropriate handler continues from the current stack frame.

If the search for a trap handler fails, then the same procedure is gone through to
find a 'uncaught trap' handler.

If this too fails, it is an error. It is also an error if a further trap occurs while handling
a trap. The procedure _kernel_exi t traphandler is provided for use in the
case the handler takes care of resumption itself (eg via longjmp) .

4-237

How to use the C library kernel

4-238

(A language handler is appropriate for a PC value if LanguageCodeBase ~PC and
PC< LanguageCodeLimit. and it is not marked as failed . Marking as 'failed ' is local
to a particular kernel trap handler invocation . The search for an appropriate
handler examines the current PC, then RI4, then the link field of successive stack
frames. If the stack is found to be corrupt at any time, the search fails) .

EventProc, UnhandledEventProc

The kernel always installs a handler for OS events and for Escape flag change. On
occurrence of one, all registers are saved and an appropriate EventProc, or failing
that an appropriate UnhandledEventProc is found and called. Escape
pseudo-events are processed exactly like Traps. However, for 'real' events, the
search for a handler terminates as soon as a handler is found, rather than when a
willing handler is found (this is done to limit the time taken to respond to an
event). If no handler is willing to claim the event, it is handed to the event handler
which was in force when the program started. (The call happens in CallBack, and if
it is the result of an Escape, the Escape has already been acknowledged)

In the case of escape events, all side effects (such as termination of a keyboard
read) have already happened by the time a language escape handler is called.

FastEventProc

The treatment of events by EventProc isn't too good if what the user level handler
wants to do is to buffer events (eg conceivably for the key up/down event), because
there may be many events to one event handler call. The FastEventProc allows a
call at the time of the event. but this is constrained to obey the rules for writing
interrupt code (called in IRQ mode; must be quick; may not call SWis or enable
interrupts; must not check for stack overflow). The rules for which handler gets
called in this case are rather different from those of (uncaught) trap and
(unhandled) event handlers, partly because the user PC is not available, and partly
because it is not necessarily quick enough. So the FastEventProc of each language
in the image is called in turn (in some random order).

UnwindProc

UnwindProc unwinds one stack frame (see description of _kernel_unwindproc
for details). If no procedure is provided, the default unwind procedure assumes
that the ARM Procedure Call Standard has been used; languages should provide a
procedure if some internal calls do not follow the standard.

NameProc

NameProc returns a pointer to the string naming the procedure in whose body the
argument PC lies, if a name can be found; otherwise, 0.

The shared C library

How the run-time stack is managed and extended

The run-time stack consists of a doubly- linked list of stack chunks. The initial stack
chunk is created when the run-time kernel is initialised. Currently, the size of the
initial chunk is 4Kb. Subsequent requests to extend the stack are rounded up to at
least this size, so the granularity of chunking of the stack is fairly coarse . However,
clients may not rely on this .

Each chunk implements a portion of a descending stack. Stack frames are singly
linked via their frame pointer fields within (and between) chunks . See Appendix C:
ARM procedure call standard on page 4-393 for more details.

In general. stack chunks are allocated by the storage manager of the master
language (the language in which the root procedure- that containing the language
entry point- is written) . Whatever procedures were last registered with
_kerne l _reg i s ter_allocs () will be used (each chunk 'remembers' the
identity of the procedure to be called to free it). Thus , in a C program. stack chunks
are allocated and freed using malloc () and free () .

In effect. the stack is allocated on the heap, which grows monotonically in
increasing address order.

The use of stack chunks allows multiple threading and supports languages which
have co-routine constructs (such as Modula-2) . These constructs can be added to C
fairly easily (provided you can manufacture a stack chunk and modify the fp, sp
and sl fields of a jmp_buf. you can use setjmp and longjmp to do this).

Stack chunk format

A stack chunk is described by a _kernel_stack_chunk data structure located
at its low-address end. It has the following format:

typedef struct stack_chunk {
unsigned long sc_mark; / * == Oxf60690ff * /
struct stack_chunk * sc_next, *sc_prev ;
unsigned long sc_size;
int (*sc_deallocate) ();

_kernel_stack_ chunk ;

sc_mark is a magic number; sc_next and sc_prev are forward and backward
pointers respectively, in the doubly linked list of chunks; sc_size is the size of
the chunk in bytes and includes the size of the stack chunk data structure;
sc_deallocate is a pointer to the procedure to call to free this stack chunk
often free () from the C library. Note that the chunk lists are terminated by NULL
pointers -the lists are not circular.

4-239

How to use the C library kernel

4-240

The seven words above the stack chunk structure are reserved to Acorn. The
stack-limit register points 512 bytes above this (ie 560 bytes above the base of the
stack chunk) .

Stack extension

Support for stack extension is provided in two forms:

• fp, arguments and sp get moved to the new chunk (Pascai/Modula-2-style)

• fp is left pointing at arguments in the old chunk, and sp is moved to the new
chunk (C-style).

Each form has two variants depending on whether more than 4 arguments are
passed (Pascai/Modula-2-style) or on whether the required new frame is bigger
than 256 bytes or not (C-style). See the appendix entitled Appendix C: ARM procedure
call standard on page 4-393 for more details.

_kernel_stkovf_copyargs

Pascai/Modula-2-style stack extension, with some arguments on the stack (ie stack
overflow in a procedure with more than four arguments). On entry, ip must
contain the number of argument words on the stack.

_kernel_stkovf_copyOargs

Pascai/Modula-2-style stack extension, without arguments on the stack (ie stack
overflow in a procedure with four arguments or fewer).

_kernel_stkovf_split_frame

C-style stack extension, where the procedure detecting the overflow needs more
than 256 bytes of stack frame. On entry, ip must contain the value of sp - the
required frame size (ie the desired new sp which would be below the current stack
limit) .

_kernel_stkovf_split_Oframe

C-style stack extension, where the procedure detecting the overflow needs 256 or
fewer bytes of stack frame.

Stack chunks are deallocated on returning from procedures which caused stack
extension, but with one chunk of latency. That is, one extra stack chunk is kept in
hand beyond the current one, to reduce the expense of repeated call and return
when the stack is near the end of a chunk; others are freed on return from the
procedure which caused the extension.

The shared C library

Calling other programs from C

The C library procedure system () provides the means whereby a program can
pass a command to the host system's command line interpreter. The semantics of
this are undefined by the draft ANSI standard.

RISC OS distinguishes two kinds of commands. which we term built-in commands
and applications. These have different effects. The former always return to their ·
callers. and usually make no use of application workspace; the latter return to the
previously set-up 'exit handler' . and may use the currently-available application
workspace. Because of these differences. system () exhibits three kinds of
behaviour. This is explained below.

Applications in RISC OS are loaded at a fixed address specified by the application
image. Normally, this is the base of application workspace. &8000. While
executing, applications are free to use store between the base and end of
application workspace. The end is the value returned by SWI OS_GetEnv. They
terminate with a call of SWI OS_Exit. which transfers control to the current exit
handler.

When a C program makes the call sys tern ("command") several things are done:

• The calling program and its data are copied to the top end of application
workspace and all its handlers are removed.

• The current end of application workspace is set to just below the ~opied
program and an exit handler is installed in case "command" is another
application .

• "command" is invoked using SWI OS_CLI.

When "command" returns. either directly (if it is a built-in command) or via the
exit handler (if it is an application). the caller is copied back to its original location.
its handlers are re-installed and it continues. oblivious of the interruption.

The value returned by system () indicates

• whether the command or application was successfully invoked

• if the command is an application which obeys certain conventions. whether or
not it ran successfully.

The value returned by system (with a non-NULL command string) is as follows:

< 0- couldn't invoke the command or application (eg command not found);

>=0- invoked OK and set Sys$ReturnCode to the returned value.

4-241

Storage management (malloc, calloc, free)

By convention, applications set the environmental variable SysSReturnCode to 0 to
indicate success and to something non-0 to indicate some degree of failure.
Applications written inC do this for you, using the value passed as an argument to
the exit () function or returned from the main () function .

If it is necessary to replace the current application by another. use:

system("CHAIN: command");

If the first characters of the string passed to sys tern () are "CHAIN: " or
"chain: ", the caller is not copied to the top end of application workspace, no
exit handler is installed, and there can be no return (return from a built-in
command is caught by the C library and turned into a SWI OS_Exit).

Typically, CHAIN: is used to give more memory to the called application when no
return from it is required. The C compiler invokes the linker this way if a link step is
required. On the other hand, the Acorn Make Utility (AMU) calls each command to
be executed. Such commands include the C compiler (as both use the shared
C library, the additional use of memory is minimised) Of course, a called
application can call other applications using system ().A callee can even
CHAIN: to another application and still, eventually, return to the caller. For
example, AMU might execute:

system("cc hello.c");

to call the C compiler. In turn. cc executes:

system("CHAIN:link -o hello o .hello $.CLib.o.Stubs");

to transfer control to the linker, giving link all the memory cc had.

However, when Link terminates (calls exit (),returns from main () or aborts) it
returns to AMU, which continues (providing SysSReturnCode is good).

Storage management (malloc, calloc, free)

4-242

The aim of the storage manager is to manage the heap in as 'efficient' a manner as
possible. However, 'efficient' does not mean the same to all programs and since
most programs differ in their storage requirements. certain compromises have to
be made.

You should always try to keep the peak amount of heap used to a minimum so that,
for example, a C program may invoke another C program leaving it the maximum
amount of memory. This implementation has been tuned to hold the overhead due
to fragmentation to less than 50%, with a fast turnover of small blocks.

The heap can be used in many different ways. For example it may be used to hold
data with a long life (persistent data structures) or as temporary work space; it may
be used to hold many small blocks of data or a few large ones or even a

The shared C library

combination of all of these allocated in a disorderly manner. The storage manager
attempts to address all of these problems but like any storage manager, it cannot
succeed with all storage allocation/deallocation patterns. If your program is
unexpectedly running out of storage, see the section entitled Guidelines on using
memory efficiently on page 1-340. This gives you information on the storage
manager's strategy for rr.anaging the heap, and may help you to remedy the
problem .

Note the following:

• The word heap refers to the section of memory currently under the control of
the storage manager.

• All block sizes are in bytes and are rounded up to a multiple of four bytes.

• All blocks returned to the user are word-aligned.

• All blocks have an overhead of eight bytes (two words). One word is used to
hold the block's length and status, the other contains a guard constant which
is used to detect heap corruptions. The guard word may not be present in
future releases of the ANSI C library.

Handling host errors

Calls to RISC OS can be made via one of the kernel functions, (such as
_kernel_osf ind (64, " ... ")). If the call causes an operating system error,
the function will return the value -2 . To find out what the error was, a call to
_kernel_last_oserror should be made. This will return a pointer to a
_kernel_oserror block containing the error number and any associated error
string. If there has been no error since _kernel_las t_oserror was last called,
the function returns the NULL pointer. Some functions in the C library call
_kernel functions, so if an C library function (such as fopen (" .. . ", "r"))
fails, try calling _kernel_last_oserror to find out what the error was.

4-243

SWI Calls

SWI Calls

4-244

SharedCLibrary_LiblnitAPCS_A
(SWI &80680)

This SWI interfaces an application which uses the old 'P\ variant (SP=R 12) of the
Procedure Call Standard to the shared C library. Its use is deprecated and it should
not be called in any programs. Use SharedCLibrary_LiblnitAPCS_R instead.

The shared C library

SharedCLibrary _Lib I nitAPCS_R
(SWI &80681)

Interfaces an application with the shared C library

On entry

RO = pointer to list of stub descriptions each having the following format:
+00: library chunk id (I or 2)
+04: entry vector base
+08: entry vector limit
+ 12: static data base
+ 16: static data limit

The list is terminated by an entry with a library chunk id of -I

Rl =pointer to workspace start
R2 = pointer to workspace limit
R3 =-1
R4= 0
R5 =-1
R6 = Bits 0 - 15 = 0

Bits 16 - 31 = Root stack size in Kilobytes

On exit

Entry vectors specified by the stubs descriptions are patched to contain branches
to routines in the library.

If R5 > R4 on entry the users statics are copied to the bottom of the workspace
specified in Rl and the Client static data offset (at byte offset +24 from the stack
base) is initialised.

For each library chunk the library statics are copied either into the workspace
specified in Rl if R5 > R4 on entry or to the static data area specified in the chunks
stub description if R5 ::; R4.

The Library static data offset (at byte offset +20 from the stack base) is initialised.

Space for the root stack chunk is claimed from the workspace specified in Rl.

RO =value of R2 on entry
Rl =stack base
R2 =limit of space claimed from workspace passed in Rl. This value should be

used as the SP for the root stack chunk
R6 =library version number (currently= 5)

4-245

SharedCLibrary _LiblnitAPCS_R (SW/ &80681)

4-246

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This SWI allows you to interface an application with the shared C library without
using the shared C library stubs .

LibinitAPCS_R is used by applications which use APCS_R (see Appendix C: ARM
procedure call standard on page 4-393 for more details).

Two library chunks are currently defined.

Chunk Id I - The Kernel module

The Kernel module defines 48 entries, these are described in the section entitled
Library kernel functions on page 4-265. You must reserve 48 words in your branch
vector table. The words at offsets +04 and +08 of the Kernel stub description must
be initialised to the start and limit (end+ I) of your vector table.

The Kernel module requires &3 I C bytes of static data space. You must reserve this
amount of storage. The words at offsets+ I 2 and+ I 6 must be initialised to the start
and limit (end+ I) of this storage

Chunk Id 2 - The C library module

If you wish to use the C library module you must include the Kernel stub
description before the C library stub description in the list of stubs descriptions.

The C library module defines I83 entries, these are described in the section
entitled C library functions on page 4-278. You must reserve I83 words in your branch
vector table.

The words at offsets +04 and +08 of the Kernel stub description must be initialised
to the start and limit (end + I) of your vector table.

The shared C library

The C library module requires &B48 bytes of static data space. You must reserve
this amount of storage. The words at offsets+ 12 and+ 16 must be initialised to the
start and limit (end + I) of this storage. This storage must be contiguous with that
for the Kernel module.

Calling library functions

Before calling any library functions you must call the kernel function _kernel_init
(entry no. 0). For details on how to call these functions refer to their entries in the
section entitled Library kernel functions on page 4-265.

SP, SL and FP must be set up before calling any library function . _kernel_init
initialises these for the root stack chunk passed to it.

If you wish to call C library functions you must pass a suitable kernel language
description block to _kernel_init. For details on the format of a kernel language
description block refer to the section entitled Interfacing a language run-time system to
the Acorn library kernel on page 4-232 .

To call C library functions the fields of the kernel language description block must
be as follows:

size

codestart,
codelimit

name

lnitProc

FinaliseProc

The size of this structure in bytes (24 - 52 depending on the
number of entries in this block) .

These two words should be set to the start and limit of an area
which is to be treated as C code with respect to trap and event
handling. Both these values may be set to 0 in which case no traps
or events will be passed to the trap or event handler described in
this language description block.

This must contain a pointer to the 0 terminated string "C".

Pointer to your initialisation procedure. Your initialisation
procedure must call_clib_initialise (entry no. 20). For details on
how to call _clib_initialise refer to its entry in the section entitled
C library functions on page 4-278. It should then load RO with the
address at which execution is to continue at the end of
initialisation.

Pointer to your finalisation procedure. This may contain 0.

The remainder of the entries are optional and may omitted. You must set the size
field correctly if omitting entries. If all optional entries are omitted the size field
should be set to 24.

4-247

SharedCLibrary_LiblnitAPCS_R (SWI &80681)

Related SWis

SharedCLibrary_LiblnitAPCS_A (SWI &80680)

Related vectors

None

4-248

The shared C library

SharedCLibrary _Lib I nitModule
(SWI &80682)

Interfaces a module with the shared C library

On entry

RO =pointer to list of stub descriptions each having the following format:
+00: library chunk id (I or 2)
+04: entry vector base
+08: entry vector limit
+ 12: static data base
+ 16: static data limit

The list is terminated by an entry with a library chunk id of -I

Rl =pointer to workspace start
R2 =pointer to workspace limit
R3 = base of area to be zero-initialised
R4 = pointer to start of static data
R5 =pointer to limit of static data
R6 = Bits 0 - 15 = 0

Bits 16 - 31 = Root stack size in Kilobytes

On exit

Entry vectors specified by the stubs descriptions are patched to contain branches
to routines in the library.

If R5 > R4 on entry the users statics are copied to the bottom of the workspace
specified in RI and the Client static data offset (at byte offset +24 from the stack
base) is initialised.

For each library chunk the library statics are copied either into the workspace
specified in Rl if R5 > R4 on entry or to the static data area specified in the chunks
stub description if R5 ~ R4.

The Library static data offset (at byte offset +20 from the stack base) is initialised.

Space for the root stack chunk is claimed from the SVC stack.

RO =value of R2 on entry
R I = stack base
R2 =limit of space claimed from workspace passed in RI
R6 =library version number (currently= 5)

4-249

SharedCLibrary_LiblnitModule (SWI &80682)

4-250

Note: You must save the words at offsets +20 and +24 from the returned stack
base. You must do this before exiting your module initialisation code. These
words contain the shared libraries static data offset and the client static data
offset (the offset you must use when accessing your static data). These must be
restored in the static data offset locations at offsets +00 and +04 from the base
of the SVC stack when you are re-entering the module in SVC mode (e.g. in a
SWI handler). When restoring the static data offsets you must save the
previous static data offsets around the module entry.

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This SWI allows you to interface a module with the shared C library without using
the shared C library stubs.

SharedCLibrary_LiblnitModule is used by modules, which must use APCS_R. and
must be called in the module Initialisation code.

Two library chunks are currently defined.

Chunk ld I - The Kernel module

The Kernel module defines 48 entries, these are described in the section entitled
Library kernel functions on page 4-265 . You must reserve 48 words in your branch
vector table. The words at offsets +04 and +08 of the Kernel stub description must
be initialised to the start and limit (end+ I) of your vector table.

The Kernel module requires &31 C bytes of static data space. You must reserve this
amount of storage. The words at offsets+ 12 and+ 16 must be initialised to the start
and limit (end + I) of this storage.

Chunk ld 2 - The C library module

If you wish to use the C library module you must include the Kernel stub
description before the C library stub description in the list of stubs descriptions

The shared C library

The C library module defines I83 entries, these are described in the section
entitled C libral1j function s on page 4-278. You must reserve I83 words in your branch
vector table.

The words at offsets +04 and +08 of the Kernel stub description must be initialised
to the start and limit (end + I) of your vector table .

The C library module requires &B48 bytes of static data space. You must reserve
this amount of storage. The words at offsets+ I2 and+ I6 must be initialised to the
start and limit (end+ I) of this storage This storage must be contiguous with that
for the Kernel module.

Calling library functions

Before calling any library functions you must call the kernel function
_kernel_moduleinit (entry no. 38). For details on how to call these functions refer
to their entries in the section entitled Librai1J kernel functions on page 4-265.

SP, SL and FP must be set up before calling any library function. _kernel_init
initialises these for the root stack chunk passed to it.

If you wish to call C library functions you must pass a suitable kernel language
description block to _kernel_init. For details on the format of a kernel language
description block refer to the section entitled Interfacing a language run-time system to
the Acorn libral1j kernel on page 4-232.

To call C library functions the fields of the kernel language description block must
be as follows:

size

codestart,
codelimit

name

InitProc

FinaliseProc

The size of this structure in bytes (24- 52 depending on the
number of entries in this block) .

These two words should be set to the start and limit of an area
which is to be treated as C code with respect to trap and event
handling. Both these values may be set to 0 in which case no traps
or events will be passed to the trap or event handler described in
this language description block.

This must contain a pointer to the 0 terminated string "C".

Pointer to your initialisation procedure. Your initialisation
procedure must call_clib_initialise (entry no. 20) . For details on
how to call_clib_initialise refer to its entry in the section entitled
C librai1J functions on page 4-278. It should then load RO with the
address at which execution is to continue at the end of
initialisation.

Pointer to your finalisation procedure. This may contain 0.

4-251

SharedCLibrary_LiblnitModu/e (SWI &80682)

4-252

The remainder of the entries are optional and may omitted. You must set the size
field correctly if omitting entries. If all optional entries are omitted the size field
should be set to 24.

Accessing shared library data

The following items of data are exported from the shared library data and may be
used in your programs.

Name Offset Notes

errno &0000 The variable errno is set whenever certain error conditions arise in
the C library.

These error conditions are described in the section 'errno' on
page 4-297.

stdin &0004 These three variables contain the standard C library FILE
stdout &002C structures stdin, stdout and stderr. The address of these variables
stderr &0054 may be passed to any C library function which accept a FILE *

argument. For an example of their use see the call to 'fputs' in the
module example.

ctype &0290 This is a 256 byte array containing an 8 bit mask for each character
in the range 0 to 255. Each bit defines some aspect of the
character as follows:

bit 0 character is a whitespace character
bit I character is a punctuation character
bit 2 character is a blank('')
bit 3 character is a lowercase letter
bit 4 character is an uppercase letter
bit 5 character is a decimal digit
bit 6 character is a control character
bit 7 character is one of the characters A, B, C, D, E, For

a. b. c, d. e. f

This table is initialised for the C locale; it may be changed by calls
to the 'setlocale' function .

Note: The offsets given above are offsets into the C library statics. These must be
preceded immediately by the kernel statics, which are 800 (&31 C) bytes long. To
convert offsets in the C library statics to offsets in the library statics add 800
(&31C).

If you are accessing static data within a program (i.e. code which uses
SharedCLibrary_LibinitAPCS_R) you can access the static data directly in your own
static data area definition. If, however, however you are accessing static data from
within a module (using SharedCLibrary_LibinitModule) you must use the add the

The shared C library

client static data relocation to the address in your own static data area definition
to obtain the true address of the static data. If you wish your module to be multiply
instantiable or rommable you must add this relocation when accessing your own
static data, not just when accessing the libraries static data.

The client static data relocation is stored at offset -536 (-&218) from the SL register
(RIO) .

For an example of how to use the static data relocation see the call to 'fputs' in the
module example.

Related SWis

None

Related vectors

None

4-253

Example programs

Example programs

Calling the shared C library

4-254

This example demonstates how to call the shared C library.
It is written for the ObjAsm assembler supplied with the Software
Developers Toolkit (SDT) and the Desktop Development Environment (DDE) .

rO RN 0
r1 RN 1
r2 RN 2
r3 RN 3
r4 RN 4
r5 RN 5
r6 RN 6
sp RN 13
lr RN 14
pc RN 15

l_ kernel_initl EQU 0 * 4

l_ clib_initialisel EQU 20 * 4
fopen EQU 87 * 4
fprintf EQU 92 * 4
fclose EQU 85 * 4

OS_ GenerateError EQU &2b
OS_ Exit EQU &11

SharedCLibrary_LibinitAPCS_ R EQU &80681

IMPORT

AREA

ENTRY

ADR
ADRL
ADD
MOV
MOV
MOV
MOV

1Image$$RO$$Basel

printf , CODE, READONLY

rO, stubs
r1, workspace
r2, r1, #32 * 1024
r3, #-1
r4, #0
r5, #-1
r6, #&00080000

Offsets in kernel vector table

Offsets in C vector table

Linker defined symbol giving
start of image.

32K workspace. A real program
would use OS_ChangeEnvironment
to find the memorylimit.

SWI SharedCLibrary_LibinitAPCS_R
MOV r4, rO
ADR rO, kernel_init_block
MOV r3, #0
B kernel_ vectors + l_kernel_initl Continues at c_init below

stubs
DCD 1
DCD kernel_vectors
DCD
DCD
DCD
DCD
DCD
DCD
DCD

DCD

ke r nel init_ block
DCD
DCD
DCD

r t s _ block

kernel_vectors end
kernel statics
kernel statics_ end DCD
clib_vectors
clib_vectors end
clib_statics
clib_ statics_ end

-1

1Image$$RO$$Basel
rts_ block
rts_ block_ end

The shared C library

2

DCD rts_ block_ end - rts_ block

rts_block_end

c _ s t r

c _ init

c run

DCD 0
DCD 0
DCD c str
DCD c _ init
DCD 0

DCB
ALIGN

MOV
MOV
MOV
STMDB

" C " , 0

rO , sp
rl , #0
r2 , #0
sp !, {lr}

Must be "C" for CLib to finalise
properly.

BL clib_vectors + l_ c l ib_ initialisel
ADR
LDMIA

ADR

rO , c_run
sp!, {pc}A

rO , outfile
ADR rl , access
BL
CMP
ADREQ
SWIEQ
MOV

clib_ vectors + fopen
rO, #0
rO , Err_Open
OS_GenerateError
r4, rO

ADR rl, format

; Continue at c_run below

Will actually say
Uncaught trap : Error opening

BL clib_vectors + fprintf
MOV rO, r4
BL clib_vectors + fclose
CMP rO , #0
ADRNE
SWINE

rO, Err_Close
OS_ GenerateError

SWI OS Exit
Uncaught trap : Error writing . . .

4-255

Calling the shared C library from a module

outfile
access
format

Err_ Open

DCB
DCB
DCB
ALIGN

DCD

"OutFile ", 0
"w", 0
"Sample string printed from asm using fprintf! ", 10 , 0

&1000
DCB "Error opening OutFile ", 0

Err_ Close

ALIGN

DCD
DCB
ALIGN

kernel_vectors %
kernel_vectors end

clib_vectors %

clib_vectors end

kernel statics %
kernel statics_end

clib_ statics %
clib statics_ end

workspace

END

&1001
"Error writing OutFile ", 0

48 * 4

183 * 4

&31c

&b48

Start of workspace at end of app.

Calling the shared C library from a module

4-256

This example demonstates how to call the shared C library from a module .
; It is written for the ObjAsm assembler supplied with the Software
; Developers Toolkit (SDT) and the Desktop Development Environment (DDE)
rO RN 0
r1 RN 1
r2 RN 2
r3 RN 3
r4 RN 4
r5 RN 5
r6 RN
r7 RN 7
r8 RN 8
r9 RN 9
r10 RN 10
r11 RN 11
r12 RN 12

sl RN 10
fp RN 11
sp RN 13
lr RN 14
pc RN 15

swibase EQU &88000

V_ Bit EQU 1:SHL:28

The shared C library

Module_ Claim EQU 6

Service_ Error EQU &06
Service_Help EQU &09

XOS_Module EQU &2001e
XSharedCLibrary_ LibinitModule EQU &80682

os_writes EQU
OS_Exit EQU

size #
libreloc #
clientreloc #
ws size #

Lib_ Offset EQU

SL_ Lib_ Offset EQU

Client_Offset EQU
SL_ Client_Offset EQU

1
&11

0
4
4
4
0

20

540

24
536

Offsets in module workspace
Size of this block
Offset for accessing librarys statics
Offset for accessing our statics

Offset of library relocation offset
from base of stack.
Negative offset of library relocation
offset from SL register
Offset of client relocation offset
Negative offset of client relocation
offset from SL register

I_ kernel _ command_ stringl EQU 7 * 4
38 * 4
42 * 4

I kernel moduleinitl - - EQU
I_ kernel _ entermodul el EQU

l_mainl EQU 18 * 4
l_ clib_ initialisel EQU 20 * 4
at exit EQU 71 * 4
printf EQU 91 * 4
fputs EQU 104 * 4
put char EQU 111 * 4
l_ clib_ finalisemodulel EQU 179 * 4

IMPORT
IMPORT
IMPORT
IMPORT
IMPORT

AREA

modu le_base
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD

I RelocCodel
1Image$$RO$$Basel
1Image$$RW$$Basel
1Image$$RW$$Limitl
1Image$$ZI$$Base l

Linker supplied relocation routine
Linker defined base I limit symbols

module_cod e , CODE , READONLY

start - module_base
init - modu le_base
terminate - modu l e_ base
servi ce - module_ base
title - module_base
help - module_base
cmdtbl - module_ base
swibase
swicode - modu le_base
swi tbl - module_ base

4-257

Calling the shared C library from a module

title DCB
help DCB

ALIGN

base DCD
limit DCD
zi_base DCD

cmdtbl DCB
ALIGN
DCD
DCB
DCB
DCB
DCB
DCD

, DCD

switbl DCB
DCB
DCB
ALIGN

in it STMDB
MOV
MOV
LDMIA
STMDB
BL
MOV
LDR
LDR
SUB
ADD
SWI
MOV
STR
MOV
STR
ADR
ADD
ADD
LDR
MOV
SWI
ADD
LDMIA
STMIB
ADR
BL
STMDB
BL
LDMIA

4-258

"SLClient ", 0
"SLClient " , 9 , "1.00 (11-Dec-91) ", 0

1Image$$RW$$Basel
1Image$$RW$$Limitl
1Image$$ZI$$Basel

"SLClient_ Comman d ", 0

cmdcode - module_base
0

&ff
255
0
0
0

"SLClient ", 0
"SWI ", 0
0

sp !, {r7-rll , lr}
sl , sp , LSR #20
sl, sl, LSL #20
sl , {r4 , r5}
sp! , {r4 , r5}
I_ RelocCodel
rO , #Modu l e_Claim
r4 , base
r5, l imit
r3 , r5 , r4
r3 , r3 , #ws_ size
XOS_ Module
r9 , r12
r2 , [r12]
r12, r2
r3 , [r12]
rO , stubs
r1 , r12 , #ws - size
r2 , r12 , r3
r3, zi - base
r6 , #4 :SHL : 16

No syntax message
No help message

SLClient SWI

Save only regs that need saving
Get base of SVC stack in sl.

Save old relocation modifiers
from base of SVC stack
Relocate module

Set private word

First word of block is size of block

XSharedCLibrary_ Libin i tModule
r8 , r1 , #Lib_ Offset
r8 , {r7 , r8} ; Get Lib and Client reloc . offset
r12 , {r7 , r8} ; Save in work area
rO , kernel_ init_ block
call_moduleinit
sp !, {r9} ; Save workspace po i nter
clib_vectors + l_ clib_ initialisel
sp !, {r2}

The shared C library

ADD rO , sp , #(10-7+2) *4 Point to R10 on stack
LDMIA rO , {rO , r1)
BL user init -
MOV sl, sp, LSR #20 Get base of SVC stack in sl.
MOV sl , sl , LSL #20
LDMIA sp !' {r4 , r5}
STMIA sl , {r4 , r5}
LDMIA sp ! ' {r7-rll , lr}
CMPS rO , #0
BICEQS pc , lr, #V_ Bit
ORRS pc , lr, #V_ Bit

_ kernel_moduleinit expects the return address to be in the first word on the
stack rather than in LR. This function sets up the return address correctly .

call_moduleinit
STMDB sp! , {lr}
B kernel_vectors + l_kernel_moduleinitl

terminate
STMDB
MOV
MOV
LDMIA
MOV

LOR
LDMIB
STMIA
ADD

sp! , {r7-rll , l r}
sl, sp , LSR #20
sl, sl, LSL #20
sl. {r4 , r5}
rO, r12

Save onl y regs that need saving
Get base of SVC stack in sl.

Save old relocation modifiers
Set up private word pointer for
clib finalisemodule

rl2 , [r12] Pointer to static data
r12 , { rll , r12}
sl , {r11 , r12} Set up relocation modifiers
sl , sl , #SL Lib_Offset

MOV fp, #0 ; FP = 0 => end of linked stack frames

BL
MOV
MOV
STMIA
LDMIA

start ADR
MOV
MOV
MOV
B

c in it STMDB -
BL
ADR
LDMIA

c run BL
ADR
B

; so backtrace stops here
clib_ vectors + l_clib_ fina li semodulel
sl , sp , LSR #20
sl, sl , LSL #20
sl. {r4 , r5) Restore old relocation modifiers
sp !, {r7-rll , pc}A

rO , kernel_ init_ block
r8 , rl2
r12 , #-1
r6 , #4 * 1024
kernel_vectors + l_kernel_ entermodulel

sp! , {lr}
clib_vectors + I clib_initialisel
rO , c _ run ; Continue at c _ run below
sp !, {pc}

kernel_vectors + l_ kernel_ command_ stringl
rl , user_ run ; Continue at user_ run below
clib_ vectors + l_mainl

4-259

--·····::;, ... "" """"'- •• ..., J '' ""'' ' ' ' ' """"'~'

cmdcode STMDB
MOV
MOV
LDMIA
LDR
LDMIB
STMIA
ADD
MOV
BL
MOV
MOV
STMIA
LDMIA
CMP
BICEQS
ORRS

swicode STMDB
MOV
MOV
LDMIA
MOV
MOV
MOV
LDR
LDMIB
STMIA
ADD
MOV
BL
MOV
MOV
STMIA
CMP
STRNE
LDMIA
BICEQS
ORRS

service TEQ
TEQNE
MOVNES
STMDB
MOV
MOV
MOV
BIC
TEQP
MOV
MOV
MOV
MOV
MOV
LDMIA

4-260

sp !, {rlO, rll , lr}
sl , sp , LSR #20 Get base of SVC stack
sl , sl , ASL #20
sl , {r4, rS} Save old relocation modifiers in R4 , RS
r12 , [r12]
r12 , {rll, r12} Set up our relocation modifiers
sl, {rll, r12}
sl, sl, #SL_Lib_Offset ; Set up stack limit for SVC stack
fp, #0 Stop backtrace here
user_ cmd Call APCS user_cmd routine
sl , sp , LSR #20
sl, sl, ASL #20 Get base of SVC stack again
sl, {r4, rS} Restore old relocation modifiers
sp!, {rlO, rll, lr}
rO, #0 Set V bit on RO and return
pc, lr, #V_Bit
pc, lr, #V_Bit

Set up regset on SVC stack
Get base of svc stack

sp! , {r0-r9 , lr}
sl , sp , LSR #20
sl, sl, ASL #20
sl, {r8, r9} Save old relocation modifiers in RS, R9
rO , rll
rl , sp Pointer to regs on stack
r2, rl2
rl2, [rl2]
rl2, {rll , rl2} ; Set up relocation modifiers
sl, {rll, r12}
sl, sl, #SL_ Lib_Offset ; Set up stack limit for SVC stack
fp, #0 Stop backtrace here
user swi
sl, sp, LSR #20
sl, sl, ASL #20
sl. {r8, r9}
rO, #0
rO, [sp]
sp!, {r0-r9, lr}
pc, lr, #V_Bit
pc, lr, #V_Bit

rl , #Service_Help
rl , #Service_ Error
pc , lr

Call APCS user_swi routine
Get base of SVC stack again

Restore old relocation modifiers
Set RO on stack to error pointer
if error on return.

Set V bit on RO and return.

Check service nos. first for speed

sp!, {r0-r9, sl , fp , lr} ; Set up regset on SVC/IRQ stack
rO , rl
rl , sp Pointer to regs on stack
r6, pc Save old mode
lr , r6 , #3 To SVC mode from SVC!IRQ mode
lr, #3
rO , rO NOP after mode change
fp, #0 Stop backtrace
r7, lr Save SVC lr if entered in IRQ mode
sl, sp, LSR #20 Get base of SVC stack
sl, sl, ASL #20
sl , {r8, r9} Save old relocation modifiers in RS, R9

The shared C library

MOV r2 , rl2
LDR rl2 , [rl2]

rl2 , {rll , rl2 }
sl, {rll , rl2}

; Set up relocation modifiers LDMIB
STMIA
ADD
BL
MOV
TEQP
MOV
MOV
MOV
STMIA
LDMIA

sl , sl , #SL_ Lib_ Offset ; Set up stack limit for SVC st a ck
user_ servi ce
lr , r7
r6 , #0
rO , rO
sl , sp , LSR #20
s l, sl, ASL #20
sl , {r8, r9}

Call APCS user_ service routine
Restore SVC lr
Back to entry mode
NOP after mode change
Get base of SVC stack

Restore old relocation modifiers
sp ! , {r0-r9 , sl , fp, pc}A

_ kernel_ oserror *user_ init(char *cmd_ tail , int base , void *pw) ;
user_ ini t

STMDB
LDR
MOV
ADR
ADR
BL
ADR
LDR
ADD
BL

10 LDRB
CMP
MOVCC
BL
BCS
ADR
BL
MOV
LDMIA

stdout DCD

sp !, {r4 , r9 , lr}
r9 , [sl , #-SL_ Client_Offset]
r 4, rO
rO , format
rl , init str
clib_ vectors + printf
rO , cmd_ format

Get Client relocation

rl, stdout
rl , rl , r9

; Address stdout in library statics
; Add client re l o"cat i on

clib_ vectors + fputs
rO , [r4] , #1
rO , #32
rO , #10
clib_ vectors + putchar
%Bl0
rO , user_ exi t ; Set up a tex it handler
clib_vectors + atexit
rO , #0
sp ! , { r4 , r9 , p c} A

clib_ statics + &2c

; void user_ exit(void) ;
user_ exit

STMDB
ADR
ADR
BL
LDMIA

sp !, {lr}
rO , format
rl , exit_ str
clib_ vectors + printf
s p!, {pc}A

4-261

Calling the shared C library from a module

4-262

; int user_run(int argc , char **argv);
user_ run

STMDB sp!' {r4, r5, r6, lr}
MOV r4, rO
MOV r5, r1
ADR rO , format
ADR r1, run - str
BL clib_ vectors + printf
ADR rO, argc_ format
MOV r1 , r4
BL clib_vectors + printf
MOV r6, #0

10 CMP r6, r4
ADRCC rO, argv_format
MOVCC rl, r6
LDRCC r2, [r5, r6, LSL #2]
BLCC clib_vectors + printf
AD DCC r6, r6, #1
BCC %B10
MOV rO, #0
LDMIA sp !' {r4, r5, r6, pc}A

_ kernel_oserror *user_cmd(char *args, int argc);
user_ cmd

STMDB sp !, {r4, r5, lr}
MOV r4 , rO
MOV r5 , rl
ADR rO, format
ADR rl, cmd - str
BL clib_ vectors + printf
ADR rO, args_ format
MOV r 1, r5
BL clib_ vectors + printf

10 LDRB rO , [r4], #1
CMP rO, #32
MOVCC rO, #10
BL clib_vectors + putchar
BCS %Bl0
MOV rO , #0
LDMIA sp!, {r4, r5, pc}A

kernel oserror *user _ swi(int swi_no, _ kernel_swi_regs *r, void *pw);
user swi

STMDB sp!, {lr}
ADR rO, format
ADR rl , swi - str
BL clib_vectors + printf
MOV rO, #0
LDMIA sp !' {pc}A

The shared C library

; void user_service(int service_ no , _kernel_ swi_ regs *r , void *pw);
user_ service

format

STMDB
CMP
ADR
ADREQ
ADRNE
BL
LDMIA

argc_ format

sp !, {lr}
rO, #Service_ Help
rO , format
r1 , help_ str
r1 , error_ str
c l ib_ vectors + printf
sp!, {pc}A

DCB " In %s code ",
ALIGN
DCB "argc = %d"'
ALIGN

10 ,

10 ,

argv_ format DCB "argv[%d] = %s "'
ALIGN

args_ format DCB uargc = %d , args
ALIGN

cmd_ format DCB "Command tail =
ALIGN

init str DCB '' initialisation" ,
ALIGN

exit str DCB "exit 11
, 0

ALIGN
run str DCB "run ", 0

ALIGN
cmd_ str DCB "command ", 0

ALIGN
swi str DCB "swi n, 0

ALIGN
help_ str DCB "help ", 0

ALIGN
error_ str DCB "e r ror ", 0

ALIGN

stubs
DCD 1
DCD kernel _vectors
DCD kernel _ vectors end -
DCD kernel_statics
DCD kernel st a tics_ end

DCD 2
DCD clib_ vectors
DCD clib_ vectors_ end
DCD clib_ stat i cs
DCD clib_ sta tics_ end

DCD -1

kernel init_block
DCD IImage$$RO$$Base l
DCD rts_ block
DCD rts_ block_ end

0

0

10 , 0

0

0

0

4-263

Calling the shared C library from a module

4-264

rts_block
DCD
DCD
DCD
DCD
DCD
DCD

rts_ block_end - rts_ block
0

rts_ block_end

c str DCB
ALIGN

0
c_ str
c init
0

" C ", 0

kernel_vectors %
kernel_vectors end

clib_ vectors %
clib_vectors end

48 * 4

183 * 4

; Unlike the application example the kernel statics and clib statics must be
in

a data area otherwise the data size calculation above (using Image$$RW$$Base
& Image$$RW$$Limit does not work.

Ideally this would be a zero init area of appropriate size but the assembler
doesn ' t support zero init areas.

AREA module_data

kernel statics %
kernel statics_ end

clib_ statics %
clib_ statics end

END

&31c

&b48

The shared C library

Library kernel functions
The library kernel functions are grouped under the following headings:

• initialisation functions

• stack management functions

• program environment functions

• general utility functions

• memory allocation functions

• language support functions.

Index of library kernel functions by entry number

entry no. Name on page

0 kernel_init page 4-268

- kernel_exit page 4-272
2 - kernel_setreturncode page 4-272
3 _kernel_exittraphandler page 4-272
4 - kernel_ unwind page 4-271
5 _kernel_procname page 4-271
6 _kernel_language page 4-271
7 _kernel_command_string page 4-272
8 kernel_hostos page 4-272
9 - kernel_swi page 4-274

10 _kernel_osbyte page 4-274
II - kernel_osrdch page 4-274
12 kernel_oswrch page 4-274
13 _kernel_osbget page 4-274
14 _kernel_osbput page 4-274
15 _kernel_osgbpb page 4-275
16 - kernel_osword page 4-275
17 - kernel_osfind page 4-275
18 - kernel_osfile page 4-275
19 _kernel_osargs page 4-275
20 - kernel_oscli page 4-276
21 - kernel_last_oserror page 4-272
22 _kernel_system page 4-276
23 _kernel_getenv page 4-272
24 - kernel_setenv page 4-273
25 _kernel_register_allocs page 4-276
26 - kernel_alloc page 4-276
27 _kerne l_stkovf_spl it_Oframe page 4-270

4-265

Library kernel functions

entry no. Name on page

28 _kernel_stkovf_split page 4-270
29 _kernel_stkovf_copyargs page 4-270
30 _kernel_stkovf_copyOargs page 4-270
3I - kernel_udiv page 4-277
32 kernel_urem page 4-277
33 - kernel_udiv I 0 page 4-277
34 - kernel_sdiv page 4-277
35 - kernel_srem page 4-277
36 - kernel_sdiv I 0 page 4-277
37 _kernel_fpavailable page 4-272
38 kernel_moduleinit page 4-269
39 _kernel_irqs_on page 4-273
40 _kernel_irqs_off page 4-273
4I _kernel_irqs_disabled page 4-273
42 - kernel_entermodule page 4-270
43 _kernel_escape_seen page 4-273
44 _kernel_current_stack_chunk page 4-27I
45 - kernel_swi_c page 4-274
46 _kernel_register_slotextend page 4-277
47 - kernel_raise_error page 4-272

Index of library kernel functions by function name

Name entry no. on page

kernel_alloc 26 page 4-276
_kernel_command_string 7 page 4-272

- kernel_current_stack_chunk 44 page 4-27I

- kernel_entermodule 42 page 4-270
_kernel_escape_seen 43 page 4-273

- kernel_exit I page 4-272
_kernel_exittraphandler 3 page 4-272
_kernel_fpavailable 37 page 4-272
_kernel_getenv 23 page 4-272

- kernel_hostos 8 page 4-272

- kernel_init 0 page 4-268
_kernel_irqs_disabled 4I page 4-273
_kernel_irqs_off 40 page 4-273
_kernel_irqs_on 39 page 4-273
_kernel_language 6 page 4-27I

- kernel_last_oserror 2I page 4-272

- kernel_moduleinit 38 page 4-269

_kernel_osargs I9 page 4-275

4-266

The shared C library

Name entry no. on page

_kernel_osbget 13 page 4-274
_kernel_osbput 14 page 4-274
_kernel_osbyte 10 page 4-274

- kernel_oscli 20 page 4-276
_kernel_osfi le 18 page 4-275

kernel_osfind 17 page 4-275
_kernel_osgbpb 15 page 4-275

- kernel_osrdch 11 page 4-274

- kernel_osword 16 page 4-275
kernel_oswrch 12 page 4-274

_kernel_procname 5 page 4-271
_kernel_raise_error 47 page 4-272
_kernel_register_allocs 25 page 4-276
_kernel_register_slotextend 46 page 4-277

- kernel_sdiv 34 page 4-277
kernel_sdiv I 0 36 page 4-277
kernel_setenv 24 page 4-273
kernel_setreturncode 2 page 4-272
kernel_srem 35 page 4-277

_kernel_stkovf_copyOargs 30 page 4-270
_kernel_stkovf_copyargs 29 page 4-270
_kernel_stkovf_split 28 page 4-270
_kernel_stkovf_split_Oframe 27 page 4-270

- kernel_swi 9 page 4-274
kernel_swi_c 45 page 4-274

_kernel_system 22 page 4-276

- kernel_udiv 31 page 4-277

- kernel_udiv!O 33 page 4-277
_kerne l_unwind 4 page 4-271

kernel_urem 32 page 4-277

The following structure is common to all library kernel functions:

typedef struct {
int errnum; /* error number */
char errmess[252]; /* error message (zero terminated) */
_kernel_oserror;

4-267

Initialisation functions

Initialisation functions

4-268

Entry no. 0: _kernel_init

On entry

RO = Pointer to kernel in it block having the following format
+00: Image base (e.g. the value of the linker symbollmageSSROSSBase)
+04: pointer to start of language description blocks
+08: pointer to end of language description blocks

RI =base of root stack chunk (value returned in Rl from LiblnitAPCS_A or
LiblnitAPCS_R)

R2 =top of root stack chunk (value returned in R2 from LiblnitAPCS_A or
LiblnitAPCS_R)

R3 = 0 for application
I for module

R4 = end of workspace

On exit

Does not return. Control is regained through the procedure pointer returned in RO
by one of the language initialisation procedures (ie. control is passed to the run
code of the language) .

This call does not obey the APCS. All registers are altered. The APCS_R SL, FP and
SP (RIO, Rll and R 13) are set up. LR does not contain a valid return address when
control is passed to the run entry.

This function must be called by any client which calls LiblnitAPCS_A or
LiblnitAPCS_R. Modules should call this entry in their run entry.

The words at offsets +04 and +08 from RO describe an area containing at least one
language description block. Any number of language description blocks may be
present. The size field of each block must be the offset to the next language
description block.

The command line is copied to an internal buffer at the top of the root stack chunk.
To set a command line call SWI OS_ WriteEnv. RISC OS sets up a command line
before running your application or entering your module.

Exit, Error, CallBack, Escape, Event, UpCall, Illegal Instruction, Prefetch Abort,
Data Abort and Address Exception handlers are set up.

Initial default alloc and free procs for use during stack extension are set up. These
should be replaced with your own alloc and free procs as soon as possible.

The shared C library

The kernel's workspace pointers are initialised to the values contained in Rl and
R4. Note that it is assumed the root stack chunk resides at the base of the
workspace area.

A small stack (!59 words) for use during stack extension is claimed from the
workspace following R2 (i.e. !59 words are claimed from R2 upwards).

Note: _kernel_init does not check that there is sufficient space in the
workspace to claim this area. You must ensure there is sufficient space before
calling _kernel_init.

The availability of floating point is determined (by calling SWI FPE_ Version).

If executing under the desktop the initial wimpslot size is determined by reading
the Application Space handler.

The initialisation for each language is called, then the run code if any is called. If no
run code is present the error No main program is generated.

Entry no. 38: _kernel_moduleinit

On entry

RO =pointer to kernel in it block as described in _kernel_init on page 4-268
RI =pointer to base of SVC stack (as returned by SWI LiblnitModule)

On exit

This call does not obey the APCS.
It assumes ~hat LR has already been pushed on the stack, and so returns to the
address on top of the stack (ie the address pointed to by SP). rather than to the
address contained in LR on entry. The stack pointer is incremented by 4. See the
section entitled Calling the shared C library from a module on page 4-256 for an
example.
On exit SL points to R I on entry+ 560.
RO, R I, R2 and R 12 are indeterminate.

The kernel init block is copied for later use. The Image base is ignored.

The functions _kernei_RMAalloc and _kernei_RMAfree are established as the
default alloc and free procs for use during stack extension .

You should call this function after calling SWI LiblnitModule.

4-269

Stack management functions

Entry no. 42: _kernel_entermodule

On entry

RO =pointer to kernel in it block as described in _kernel_init on page 4-268
R6 =requested root stack size
R8 = modules private word pointer
Rl2 =-1

On exit

Does not return.
Control is regained through the procedure pointer returned in RO by one of the
language initialisation procedures.

The private word must point to the module workspace word which must contain
the application base, the shared library static offset, and the client static offset in
words 0, I and 2 (the application base is ignored for modules) .

After claiming workspace from the application space and claiming a root stack from
this _kernel_entermodule calls _kernel_init

Stack management functions

4-270

Entry no. 27: _kernel_stkovf_split_Oframe

This function is described in the section entitled How tlie run-time stack is managed and
extended on page 4-233.

Entry no. 28: _kernel_stkovf_split

This function is described in the section entitled How tlie run-time stack is managed and
extended on page 4-233.

Entry no. 29: _kernel_stkovf_copyargs

This function is described in the section entitled How tlie run-time stack is managed and
extended on page 4-233.

Entry no. 30: _kernel_stkovf_copyOargs

This function is described in the section entitled How tlie run-time stack is managed and
extended on page 4-233.

The shared C library

typedef struct stack_ chunk {
unsigned l ong sc_mark ; I* == Oxf60690ff * /
struct stack_chunk *sc_next , *sc_prev;
unsigned long sc_ size ;
int (*sc_ deallocate) ()

_kernel_stack_chunk;

Entry no. 44: _kernel_stack_chunk * _kernel_current_stack_chunk(void)

Returns a pointer to the current stack chunk.

typedef struct
int r4, rS, r6 , r7, r8 , r9 ;
int fp, sp, pc, sl ;
int f4(3], f5[3] , f6[3) , f7[3) ;

_kernel_unwindblock ;

Entry no. 4: int _kernel_unwind(_kernel_unwindblock *inout,
char **language)

Unwinds the call stack one level. Returns :
>0 if it succeeds

0 if it fails because it has reached the stack end or
<0 if it fail s for any other reason (e.g. stack corrupt)

Input va lues for fp, sl and pc must be correct. r4-r9 and f4-f7 are updated if the
frame addressed by the input value of fp contains saved values for the
corresponding registers.

fp, sp, sl and pc are always updated, the word pointed to by language is updated
to point to a stri ng naming the language corresponding to the returned value of pc.

Program environment functions

Entry no. 5: char * _kernel_procname(int pc)

Returns a string naming the procedure containing the address pc (or 0 if no name
for it can be found).

Entry no. 6: char * _kernel_language(int pc)

Returns a stri ng naming the language in whose code the address pc lies (or 0 if it
is in no known language) .

4-271

Program environment functions

4-272

Entry no. 7: char * _kernel_command_string(void)

Returns a pointer to a copy of the command string used to run the program .

Entry no. 2: void _kernel_setreturncode(unsigned code)

Sets the return code to be used by _kernel_exit.

Entry no. 1: void _kernel_ exit(void)

Calls OS_Exit with the return code specified by a previous call to
_kernel_setreturncode.

Entry no. 47: void _kernel_raise_error{_kernel_oserror *)

Generates an external error.

Entry no. 3: void _kernel_exittraphandler(void)

Resets the InTrapHandler flag which prevents recursive traps. Used in trap
handlers which do not return directly but continue execution. For example, the
longjmp function in the C library calls _kernel_exittraphandler if called from within
a signal handler.

Entry no. 8: int _kernel_hostos(void)

Returns 6 for RISC OS.
(Returns the result of calling OS_Byte with RO = 0 and Rl = 1.)

Entry no. 37: int _kernel_fpavailable{void)

Returns non-zero if floating point is available.

Entry no. 21: _kernel_oserror * _kernel_last_oserror(void)

Returns a pointer to an error block describing the last OS error since
_kernel_last_oserror was last called (or since the program started if there has been
no such call) . If there has been no OS error it returns 0. Note that occurrence of a
further error may overwrite the contents of the block. This can be used, for
example, to determine the error which caused fopen to fail. If _kernel_swi caused
the last OS error, the error already returned by that call gets returned by this too.

Entry no. 23: _kernel_oserror *_kernel_getenv(const char *name, char
*buffer, unsigned size)

Reads the value of a system variable, placing the value string in the buffer (of size
size).

The shared C library

Entry no. 24: _kernel_oserror *_kernel_setenv(const char *name,const
char *value)

Updates the value of a system variable to be string valued, with the given value
(value= 0 deletes the variable) .

Entry no. 43: int _kernel_escape_seen(void)

Returns I if there has been an escape since the previous call of
_kernel_escape_seen (or since the program start if there has been no previous
call) . Escapes are never ignored with this mechanism, whereas they may be with
the language EventProc mechanism since there may be no stack to call the
EventProc on.

Entry no. 39: void _kernel_irqs_on(void)

Enable interrupts. You should not disable interrupts unless absolutely necessary. If
you disable interrupts you should re-enable them as soon as possible (preferably
within IOuS).

This function can only be used from code running in SVC mode.

Entry no. 40: void _kernel_irqs_off(void)

Disable IRQ interrupts. You should not disable interrupts unless absolutely
necessary. If you disable interrupts you should re-enable them as soon as possible
(preferably within I OuS) .

This function can only be used from code running in SVC mode.

Entry no. 41 : int _kernel_irqs_disabled(void)

Returns non-zero if IRQ interrupts are disabled.

4-273

General utility functions

General utility functions

4-274

typedef struct
int r[lO] ; / * only rO - r9 matter for swi' s * /

} _kernel_ swi_regs;

Entry no. 9: _kernel_oserror *_kernel_swi(int no, _kernel_swi_regs *in,
_kernel_swi_regs *out)

Call the SWI specified by no. The X bit is set by _kernel_swi unless bit 3 I of the SWI
no (in no) is set. in and out are pointers to blocks for RO- R9 on entry to and exit
from the SWI.

Returns a pointer to an error block if an error occurred. otherwise 0.

Entry no. 45: _kernel_oserror *_kernel_swi_c(int no, _kernel_swi_regs *in,
_kernel_swi_regs *out, int *carry)

Similar to _kernel_swi but returns the status of the carry flag on exit from the SWI
in the word pointed to by carry.

Entry no. 10: int _kernel_osbyte(int op, int x, int y)

Performs an OS_Byte operation. If there is no error. the result contains:
the return value of RI (x) in its bottom byte
the return value of R2 (y) in its second byte
I in the third byte if carry is set on return. otherwise 0
0 in its top byte

Note that some OS_Byte calls return values too great too fit in a single byte.

Entry no. 11: int _kernel_osrdch(void)

Returns a character read from the currently selected OS input stream.

Entry no. 12: int _kernel_oswrch(int ch)

Writes a byte to all current ly selected OS output streams. The return value just
indicates success or failure .

Entry no. 13: int _kernel_osbget(unsigned handle);

Returns the next byte from the file identified by handle. (-I ~EOF)

Entry no. 14: int _kernel_osbput(int ch, unsigned handle)

Writes a byte to the file identified by handle. The return value just indicates
success or failure .

typedef stru ct {
void * dataptr ; / * memory add ress of data * /
int nbytes , fi l eptr ;

The shared C library

int buf_ len ; / * these fields for RISC OS gpbp extensions * /
char * wild_ fld ; / * points to wildcarded f ilename to match * /

_ kernel_osgbpb_ b l ock ;

Entry no. 15: int _kernel_osgbpb(int op, unsigned handle,
_kernel_osgbpb_block *inout);

Reads or writes a number of bytes from a filing system. The return value just
indicates success or failure. Note that for some operations. the return value of Cis
significant. and for others it isn 't. In all cases. therefore, a return value of- I is
possible, but for some operations it should be ignored.

Entry no. 16: int _kernel_osword(int op, int *data)

Performs an OS_ Word operation . The size and format of the block pointed to by
data depends on the particular OS_ Word being used; it may be updated.

Entry no. 17: int _kernel_osfind(int op, char *name)

Opens or closes a file . Open returns a file handle (0 ~open failed without error) .
For close the return value just indicates success or failure.

typedef struct {
int load, exec ; / * load, exec addresses * /
int start, end ; / * start address / l eng th , end address/attributes * /
_kernel_osfile_block;

Entry no. 18: int _kernel_osfile(int op, const char *name,
_kernel_osfile_block *inout)

Performs an OS_File operation , with values of R2- R5 taken from the osfile block.
The block is updated with the return values of these registers , and the result is the
return value of RO (or an error indication) .

Entry no. 19: int _kernel_osargs(int op, unsigned handle, int arg)

Performs an OS_Args operation. The result is the current filing system number (if
op = 0) otherwise the value returned in R2 by the OS_Args operation.

4-275

Memory allocation functions

Entry no. 20: int _kernel_oscli(char *s)

Calls OS_CLI with the specified string. If used to run another application the
current application will be closed down. If you wish to return to the current
application use _kernel_system. Any return value indicates an error in
_kernel_oscli itself.

Entry no. 22: int _kernel_system(char *string, int chain)

Calls OS_CLI with the specified string. If chain is 0, the current application is
copied to the top of memory first. then handlers are installed so that if the
command string causes an application to be invoked, control returns to
_kernel_system, which then copies the calling application back into its proper
place. Hence the command is executed as a sub-program. If chain is I, all handlers
are removed before calling the CLI, and if it returns (the command is built-in)
_kernel_system exits. Any return value indicates an error in _kernel_system itself.

Memory allocation functions

4-276

Entry no. 26: unsigned _kernel_alloc(unsigned words, void **block)

Tries to allocate a block of size= wor d s words. Failing that , it allocates the largest
possible block (may be size zero). If wor d s is< 2048 it is rounded up to 2048.
Returns a pointer to the allocated block in the word pointed to by bloc k. The
return value gives the size of the allocated block.

t ype d e f void freeproc(v oid *);
typedef v o id* allocproc(uns igned);

Entry no. 25: void _kernel_register_allocs(allocproc *malloc, freeproc
*free)

Registers procedures to be used by the kernel when it requires to free or allocate
storage. Currently this is only used to allocate and free stack chunks. Since
allocproc and freeproc are called during stack extension, they must not check for
stack overflow themselves or call any procedure which does stack checking and
must guarantee to require no more than 4 I words of stack.

The kernel provides default alloc and free procedures, however you should replace
these with your own procedures since the default procedures are rather naive.

typ e d e f int _ke rne l_Ex t e ndProc (int / *n* / , v oid** / *p* /) ;

The shared C library

Entry no. 46: _kernei_ExtendProc * _kernel_register _slotextend
(_kernei_ExtendProc *proc)

When the initial heap (supplied to _kernel_init) is full, the kernel is normally
capable of extending it by extending the wimpslot. However, if the heap limit is not
the same as the application limit. it is assumed that someone else has acquired
the space between, and the procedure registered here is called to request n bytes
from it.

Its return value is expected to be~ n , or 0 to indicate failure . If successful the word
pointed to by p should be set to point to the space allocated .

Language support functions

Entry no. 31: unsigned _kernel_udiv(unsigned divisor, unsigned dividend);

Divide and remainder function, returns the remainder in Rl .

Entry no. 32: unsigned _kernel_urem(unsigned divisor, unsigned
dividend);

Remainder function .

Entry no. 33: unsigned _kernel_udiv1 O(unsigned dividend);

Divide and remainder function , returns the remainder in R I.

Entry no. 34: int _kernel_sdiv(int divisor, int dividend);

Signed divide and remainder function, returns the remainder in Rl .

Entry no. 35: int _kernel_srem(int divisor, int dividend);

Signed remainder function .

Entry no. 36: int _kernel_sdiv1 O(int dividend);

Signed divide and remainder function, returns the remainder in RI.

4-277

C library functions

C library functions

4-278

The C library functions are grouped under the following headings:

• Language support functions
Provides functions for trap and event handling, initialisation and finalisation.
and mathematical routines such as number conversion and multiplication.

• assert
The assert module provides one function which is useful during program
testing.

• ctype
The c t y pe module provides several functions useful for testing and mapping
characters.

• errno
The word variable _errno at offset 800 in the library statics is set whenever
certain error conditions arises.

• locale
This module handles national characteristics. such as the different orderings
month-day-year (USA) and day-month-year (UK).

• math
This module contains the prototypes for 22 mathematical functions. All return
the type double.

• setjmp
This module provides two functions for bypassing the normal function call and
return discipline.

• signal
Signal provides two functions.

• stdio
s tdio provides many functions for performing input and output.

• stdlib
s tdl ib provides several general purpose functions.

• string
string provides several functions useful for manipulating character arrays
and other objects treated as character arrays.

• time
time provides several functions for manipulating time.

The shared C library

Index of C library functions by entry number

entry no. name on page

0 trapHandler page 4-288
uncaughtTrapHandler page 4-288

2 eventHandler page 4-289
3 unhandledEventHandler page 4-289
4 x$stack_overflow page 4-290
5 x$stack_overflow_l page 4-290
6 x$udivide page 4-290
7 x$uremainder page 4-290
8 x$divide page 4-290
9 x$divtest page 4-290

10 x$remainder page 4-290
II x$multiply page 4-290
12 - rdlchk page 4-291
13 - rd2chk page 4-291
14 _rd4chk page 4-291
15 _wrlchk page 4-291
16 _wr2chk page 4-291
17 _wr4chk page 4-291
18 - main page 4-291
19 - exit page 4-292
20 - clib_initialise page 4-292
21 backtrace page 4-293
22 - count page 4-293
23 count I page 4-293
24 _stfp page 4-293
25 _ldfp page 4-293
26 _printf page 4-310
27 _fprintf page 4-310
28 _sprintf page 4-310
29 clock page 4-333
30 difftime page 4-333
31 mktime page 4-334
32 time page 4-334
33 asctime page 4-334
34 ctime page 4-334
35 gmtime page 4-334
36 localtime page 4-335
37 strftime page 4-335
38 memcpy page 4-328
39 memmove page 4-328

4-279

C library functions

entry no. name on page

40 strcpy page 4-328
41 strncpy page 4-328
42 strcat page 4-329
43 strncat page 4-329
44 memcmp page 4-329
45 strcmp page 4-329
46 strncmp page 4-329
47 memchr page 4-330
48 strchr page 4-330
49 strcspn page 4-331
50 strpbrk page 4-331
51 strrchr page 4-331
52 strspn page 4-331
53 strstr page 4-331
54 strtok page 4-331
55 memset page 4-332
56 strerror page 4-332
57 strlen page 4-332
58 at of page 4-319
59 atoi page 4-319
60 atol page 4-319
61 strtod page 4-319
62 strtol page 4-320
63 strtoul page 4-320
64 rand page 4-321
65 srand page 4-321
66 calloc page 4-321
67 free page 4-321
68 malloc page 4-321
69 realloc page 4-322
70 abort page 4-322
71 at exit page 4-322
72 exit page 4-322
73 getenv page 4-323
74 system page 4-323
75 bsearch page 4-324
76 qsort page 4-324
77 abs page 4-324
78 div page 4-324
79 labs page 4-325

4-280

The shared C library

entry no. name on page

80 ldiv page 4-325
81 remove page 4-304
82 rename page 4-305
83 tmpfile page 4-305
84 _old_tmpnam page 4-305
85 fclose page 4-306
86 fflush page 4-306
87 fopen page 4-306
88 freopen page 4-307
89 setbuf page 4-307
90 setvbuf page 4-308
91 printf page 4-309
92 fprintf page 4-308
93 sprintf page 4-310
94 scanf page 4-312
95 fscanf page 4-311
96 sscanf page 4-312
97 vprintf page 4-312
98 vfprintf page 4-312
99 vsprintf page 4-312

100 _vprintf page 4-311
101 fgetc page 4-313
102 fgets page 4-313
103 fputc page 4-313
104 fputs page 4-313
105 - filbuf page 4-318
106 getc page 4-314
107 getchar page 4-314
108 gets page 4-314
109 - flsbuf page 4-318
110 putc page 4-314
Ill putchar page 4-314
112 puts page 4-315
113 ungetc page 4-315
114 fread page 4-315
115 fwrite page 4-316
116 fgetpos page 4-316
117 fseek page 4-316
118 fsetpos page 4-316
119 ftell page 4-317
120 rewind page 4-317
121 clearerr page 4-317

4-281

C library functions

entry no. name on page

122 feof page 4-317
123 ferror page 4-318
124 perror page 4-318
125 _ignore_signal_handler page 4-303
126 _error_signal_marker page 4-303
127 _default_signal_handler page 4-303
128 signal page 4-302
129 raise page 4-303
130 setjmp page 4-301
131 longjmp page 4-301
132 a cos page 4-299
133 a sin page 4-299
134 a tan page 4-299
135 atan2 page 4-299
136 cos page 4-299
137 sin page 4-299
138 tan page 4-299
139 cosh page 4-299
140 sinh page 4-299
141 tanh page 4-299
142 exp page 4-299
143 frexp page 4-300
144 ldexp page 4-300
145 log page 4-300
146 logiO page 4-300
147 modf page 4-300
148 pow page 4-300
149 sqrt page 4-300
150 ceil page 4-300
151 fabs page 4-300
152 floor page 4-300
153 fmod page 4-300
154 setlocale page 4-298
155 isalnum page 4-295
156 isalpha page 4-295
157 iscntrl page 4-295
158 isdigit page 4-295
159 isgraph page 4-295
160 islower page 4-295
161 isprint page 4-296

162 ispunct page 4-296
163 iss pace page 4-296

4-282

The shared C library

entry no. name on page

164 isupper page 4-296
165 isxdigit page 4-296
166 to lower page 4-296
167 to upper page 4-296
168 - assert page 4-295
169 _memcpy page 4-294
170 memset page 4-294
171 localeconv page 4-298
172 mblen page 4-325
173 mbtowc page 4-326
174 wctomb page 4-326
175 mbstowcs page 4-327
176 wcstombs page 4-327
177 strxfrm page 4-330
178 strcoll page 4-330
179 - clib_finalisemodule page 4-294
180 - clib_version page 4-294
181 finalise page 4-294
182 tmpnam page 4-305

error condition EDOM page 4-297
error condition ERANGE page 4-297
error condition ESIGNUM page 4-297

Index of C library functions by function name

name entry no. on page

abort 70 page 4-322
abs 77 page 4-324
a cos 132 page 4-299
asctime 33 page 4-334
a sin 133 page 4-299

- assert 168 page 4-295
a tan 134 page 4-299
atan2 135 page 4-299
at exit 71 page 4-322
at of 58 page 4-319
atoi 59 page 4-319
atol 60 page 4-319

- backtrace 21 page 4-293
bsearch 75 page 4-324
calloc 66 page 4-321
ceil !50 page 4-300

4-283

C library functions

name entry no. on page

clearerr 121 page 4-317

- clib_finalisemodule 179 page 4-294

- clib_initialise 20 page 4-292

- clib_version 180 page 4-294
clock 29 page 4-333
cos 136 page 4-299
cosh 139 page 4-299

- count 22 page 4-293

- count! 23 page 4-293
ctime 34 page 4-334
_default_signal_handler 127 page 4-303
difftime 30 page 4-333
div 78 page 4-324
_error_signal_marker 126 page 4-303
eventHandler 2 page 4-289
exit 72 page 4-322

- exit 19 page 4-292
exp 142 page 4-299
fabs !51 page 4-300
fclose 85 page 4-306
feof 122 page 4-317
ferror 123 page 4-318
fflush 86 page 4-306
fgetc 101 page 4-313
fgetpos 116 page 4-316
fgets 102 page 4-313

- filbuf 105 page 4-318
finalise 181 page 4-294
floor !52 page 4-300

- flsbuf 109 page 4-318
fmod !53 page 4-300
fopen 87 page 4-306
fprintf 92 page 4-308
_fprintf 27 page 4-310
fputc 103 page 4-313
fputs 104 page 4-313
fread 114 page 4-3 r5
free 67 page 4-321
freopen 88 page 4-307
frexp 143 page 4-300
fscanf 95 page 4-311
fseek 117 page 4-316

4-284

The shared C library

name entry no. on page

fsetpos 118 page 4-316
ftell 119 page 4-317
fwrite 115 page 4-316
getc 106 page 4-314
getchar 107 page 4-31 4
getenv 73 page 4-323
gets 108 page 4-314
gmtime 35 page 4-334
_ignore_signal_handler 125 page 4-303
isalnum 155 page 4-295
isalpha 156 page 4-295
iscntrl 157 page 4-295
isdigit 158 page 4-295
isgraph 159 page 4-295
islower 160 page 4-295
isprint 161 page 4-296

ispunct 162 page 4-296
isspace 163 page 4-296
isupper 164 page 4-296
isxdigit 165 page 4-296
labs 79 page 4-325
localeconv 171 page 4-298
ldexp 144 page 4-300
_ldfp 25 page 4-293
ldiv 80 page 4-325
localtime 36 page 4-335
log 145 page 4-300
logiO 146 page 4-300
longjmp 131 page 4-301

main 18 page 4-291
malloc 68 page 4-321
mblen 172 page 4-325
mbstowcs 175 page 4-327
mbtowc 173 page 4-326
memchr 47 page 4-330
memcmp 44 page 4-329
memcpy 38 page 4-328
_memcpy 169 page 4-294
memmove 39 page 4-328
memset 55 page 4-332

- memset 170 page 4-294
mktime 31 page 4-334

4-285

C library functions

name entry no. on page

modf 147 page 4-300
_old_tmpnam 84 page 4-305
perror 124 page 4-318
pow 148 page 4-300
printf 91 page 4-309
_printf 26 page 4-310
putc 110 page 4-314
putchar Ill page 4-314
puts 112 page 4-315
qsort 76 page 4-324
raise 129 page 4-303
rand 64 page 4-321
rdlchk 12 page 4-291
rd2chk 13 page 4-291
rd4chk 14 page 4-291

realloc 69 page 4-322
remove 81 page 4-304
rename 82 page 4-305
rewind 120 page 4-317
scanf 94 page 4-312
setbuf 89 page 4-307
setjmp 130 page 4-301
setlocale 154 page 4-298
setvbuf 90 page 4-308
signal 128 page 4-302
sin 137 page 4-299
sinh 140 page 4-299
sprintf 93 page 4-310
_sprintf 28 page 4-310
sqrt 149 page 4-300
srand 65 page 4-321
sscanf 96 page 4-312
_stfp 24 page 4-293
strcat 42 page 4-329
strchr 48 page 4-330
strcmp 45 page 4-329
strcoll 178 page 4-330
strcpy 40 page 4-328
strcspn 4 page 4-331
strerror 56 page 4-332
strftime 37 page 4-335
strlen 57 page 4-332

4-286

The shared C library

name entry no. on page

strncat 43 page 4-329
strncmp 46 page 4-329
strncpy 41 page 4-328
strpbrk 50 page 4-331
strrchr 51 page 4-331
strspn 52 page 4-331
strstr 53 page 4-331
strtod 61 page 4-319
strtok 54 page 4-331
strtol 62 page 4-320
strtoul 63 page 4-320
strxfrm 177 page 4-330
system 74 page 4-323
tan 138 page 4-299
tanh 141 page 4-299
time 32 page 4-334
tmpfile 83 page 4-305
tmpnam 182 page 4-305
to lower 166 page 4-296
to upper 167 page 4-296
trapHandler 0 page 4-288
uncaughtTrapHandler page 4-288
ungetc 113 page 4-315
unhandledEventHandler 3 page 4-289
vfprintf 98 page 4-312
vprintf 97 page 4-312
_vprintf 100 page 4-311
vsprintf 99 page 4-312
wcstombs 176 page 4-327
wctomb 174 page 4-326
_wrlchk 15 page 4-291
_wr2chk 16 page 4-291
_wr4chk 17 page 4-291
x$divide 8 page 4-290
x$divtest 9 page 4-290
x$multiply II page 4-290
x$remainder 10 page 4-290
x$stack_overf1ow 4 page 4-290
x$stack_overf1ow _I 5 page 4-290
x$udivide 6 page 4-290
x$uremainder 7 page 4-290

4-287

Language support functions

Language support functions

Entry no. 0: TrapHandler

4-288

Entry no. 1: UncaughtTrapHandler

On entry:

RO = error code
R I = pointer to register dump

On exit:

Only exits if the trap was not handled

RO = 0 (indicating that the trap was not handled) .

These are the default TrapProc and UncaughtTrapProc handlers used by the
C library in its kernel language description (see the section entitled Interfacing a
language run-time system to the Acorn library kernel on page 4-232) .

You may use these entries in your own kernel language description if you wish to
have trap handling similar to that provided by the C library, or you may call these
entries directly from your own trap handler if you wish to perform some
pre-processing before passing the trap on .

The error code on entry is converted to a signal number as follows:

Signal no.
2 (SIGFPE)

3 (SIGILL)

5 (SIGSEGV)

7 (SJGSTAK)
10 (SIGOSERROR)

Error codes

&80000020 (Error_DivideByZero).
&80000200 (Error_FPBase)- &800002FF (Error_FPLimit- I)
&80000000 (Error_lllegallnstruction).
&8000000 I (Error_PrefetchAbort).
&80000005 (Error_BranchThroughZero)
&80000002 (Error_DataAbort).
&80000003 (Error_AddressException),
&80800EAO (Error_ReadFail).
&80800EAI (Error_WriteFail)
&80000021 (Error_StackOverflow)
All other errors

It then determines whether a signal handler has been set up for the converted
signal handler; if no such handler has been set up (ie the signal handler is set to
_SIG_DFL) it returns with RO = 0.

Otherwise it calls the C library function raise with the derived signal number. If
the raise function returns (ie the signal handler returns) a postmortem stack
backtrace is generated.

The shared C library

Entry no. 2: EventHandler

Entry no. 3: UnhandledEventHandler

On entry:

RO = event code
Rl =pointer to register dump

On exit:

RO = I if the event was handled, else 0

These are the default EventProc and UnhandledEventProc handlers used by the
C library in its kernel language description (see the section entitled interfacing a
language run-time system to the Acorn library kernel on page 4-232)

You may use these entries in your own kernel language description if you wish to
have event handling similar to that provided by the C library or you may call these
entries directly from your own event handler if you wish to perform some
pre-processing before passing the event on .

The event code on entry is either a RISC OS event number as described in the
chapter entitled Events on page 1-145, or -I to indicate an escape event.

All events codes except -I are currently ignored. The handler simply returns with
RO = 0 if RO ::1- -I on entry.

EventHandler then determines whether a SIGINT signal handler has been set up. If
no handler is set up (ie the signal handler is set to _SIG_DFL) EventHandler
returns with RO = 0.

The C library function raise is then called with the signal number SIGINT Note:
raise is always called by UnhandledEventHandler even if the signal handler is set
to _SIG_DFL.

If the signal handler returns the event handler returns with RO = I .

Certain sections of the C library are non-reentrant. When these sections are
entered they set the variable _interrupts_off at offset 964 in the library statics to I.

EventHandler and UnhandledEventHandler check this variable and, if it is set. they
set the variable _saved_interrupt at offset 968 in the library statics to SIGINT and
return immediately with RO = I and without calling raise .

When the non-reentrant sections of code finish they reset the variable
_interrupts_off and check the variable _saved_interrupts. If _saved_interrupts is
non-zero it is reset to zero and the signal number stored in _saved_interrupts
(before it was reset to 0) is raised.

4-289

Language support functions

4-290

Entry no. 4: x$stack_overflow

This entry branches directly to _kernel_stkovf_split_Oframe which is described in
the section entitled How the run-time stack is managed and extended on page 4-233.

Entry no. 5: x$stack_overflow_1

This entry branches directly to _kernel_stkovf_split which is described in the
section entit led How the run-time stack is managed and extended on page 4-233 .

Entry no. 6: x$udivide

This entry branches directly to _kernel_udiv described on page 4-277.

Entry no. 7: x$uremainder

This entry branches directly to _kernel_urem described on page 4-277.

Entry no. 8: x$divide

This entry branches directly to _kernel_sdiv described on page 4-277.

Entry no. 9: x$divtest

This function is used by the C compiler to test for division by zero when the result
of the division is discarded.

If RO is non-zero the function simply returns. Otherwise it generates a Divide by
zero error.

Entry no. 10: x$remainder

This entry branches directly to _kernel_srem described on page 4-277.

Entry no. 11: x$multiply

On entry:

RO =multiplicand
RI =multiplier

On exit:

RO = RO x Rl
Rl, R2 scrambled .

Entry no. 12: _rd1 chk

Entry no. 13: _rd2chk

Entry no. 14: _rd4chk

The shared C library

The functions _rdl chk, _ rd2chk and _rd4chk check that the value of RO
passed to them is a valid address in the application space (&8000 ~ RO <
& I 000000). _rd2chk and _rd4chk also check that the value is properly aligned for a
half-word I word access respectively.

If the value of RO is a valid address the function just returns, otherwise it generates
an Illegal read error.

These calls are used by the C compiler when compiling with memory checking
enabled.

Entry no. 15: _wr1chk

Entry no. 16: _wr2chk

Entry no. 17: _wr4chk

The functions _ wrlchk, _wr2chk and _ wr4chk check that the value of RO
passed to them is a va lid address in the application space (&8000 ~ RO <
& I 000000). _rd2chk and _rd4chk also check that the value is properly aligned for a
half-word I word access respectively.

If the va lue of RO is a valid address the function just returns, otherwise it generates
an Illegal write error.

These ca lls are used by the C compiler when compiling with memory checking
enabled.

Entry no. 18: _main

On entry:

RO =pointer to copy of command line (the command line pointed to by RO on
return from OS_GetEnv should be copied to another buffer before calling
_main; this can be done using _kernel_command_string, detailed on
page 4-272).

Rl =address of routine at which execution will continue when _main has finished .

4-291

Language support functions

4-292

The following entry and exit conditions apply for this routine:

On entry:

RO =count of argument words.
R I = pointer to block containing RO + n words, each word of which

points to a zero terminated string which is the nth word in the
command line passed to _main. The last word in the block
contains 0.

On exit:

RO =exit condition (0 =success, else failure)

For C programs this argument will generally point at main.

On exit:

Does not return. Control is regained through the Rl argument on entry.

This function parses the command line pointed to by RO and then calls the
function pointed to by R I.

For C programs this function is called by the C library as a precursor to calling
main to provide the C entry I exit requirements.

Entry no. 19: void _exit(void)

This function is identical in behaviour to the C library function exit described on
page 4-322.

Entry no. 20: void _clib_initialise(void)

Performs initialisation required by the C library before other C library functions can
be called. You may call kernel library functions without first making this call. You
should call this function in your initialisation entry for a module and in your
lnitProc procedure for applications or modules that have a run entry. For a
description of InitProc procedures, see page 4-247. The two programming
examples on page 4-254 and page 4-256 show how _clib_initialise should be called
for an application and a module respectively.

The shared C library

Entry no. 21: void _backtrace(int why, int *address, _kernel_unwindblock
*uwb)

Displays a stack backtrace and exits with the exit code I .

The _kernel_unwindblock structure is described with the kernel_unwind function
on page 4-271 . The argument why is an error code, if why is Error_ReadFail
(&80800ea0) or Error_ WriteFail (&80800ea I) the address given by the address
argument is displayed at the top of the backtrace, otherwise the message
postmortem requested is displayed.

Entry no. 22: _count

Entry no. 23: _count1

These entries are used by the C compiler when generating profile code.

Both _count and _count I increment the word pointed to by R I 4 (after stripping the
status bits); this will generally be the word immediately following a BL instruction
to the relevant routine . _count then returns to the word immediately following the
incremented word , _count I returns to the word after that (the second word is used
by the C compiler to record the position in a source file that this count-point refers
to) .

BL _count
DCD

BL
DCD
DCD

0

_countl
0
filepos

This word incremented each time _count is called
, Control returns here

This word incremented each time _count I is called
Offset into source file
Control returns here

Entry no. 24: void _stfp(double d, void *x)

This function converts the double FP no. d to packed decimal and stores it at
address x. Note that the doubled is passed in RO, Rl (RO containing the first word
when a double is stored in memory, RI containing the second word). the argument
x is passed in R2 . Three words should be reserved at x for the packed decimal
number.

Entry no. 25: double _ldfp(void *x)

This function converts the packed decimal number stored at x to a double FP no.
and returns this in FO.

4-293

Language support functions

4-294

Entry no. 169: void _memcpy(int *dest, int *source, int n)

This function performs a similar function to memcpy except that dest and
source must be word aligned and the byte count n must be a multiple of 4.

It is used by the C compiler when copying structures.

Entry no. 170: void _memset(int *dest, int w, int n)

This function performs a similar function to memset except that dest must be
word aligned, the byte value to be set must be copied into each of the four bytes of
w (i.e. to initialise memory to &01 you must use &01010101 in w) and the byte
count n must be a multiple of 4.

It is used by the C compiler when initialising structures.

Entry no. 179: _clib_finalisemodule

On entry:

RO = private word pointer

On exit:

Block pointed to by private word is freed

This entry must be called in the finalisation code of a module which uses the
shared C library. Before calling it you must set up the static data relocation
pointers on the base of the SVC stack and initialise the SL register to point to the
base of the SVC stack+ 512 . The old static data relocation pointers on the base of
the SVC stack must be saved around this call

Entry no. 180: char *_clib_version(void)

This function returns a string giving version information on the shared C library.

Entry no. 181: Finalise

This function calls all the registered atexit functions and then performs some
internal finalisation of the alloc and io subsystems.

This entry is called automatically by the C library on finalisation; you should not
call it in your code.

assert

ctype

The shared C library

The assert module provides one function which is useful during program testing.

Entry no. 168: void _assert(char *reason, char *file, int line)

Displays the message:

*** assertion failed : 'reason', file ' file ', line 'line'

and raises SIGABRT.

This function is generally used within a macro which calls _assert if a specified
condition is fa lse.

The ctype module provides severa l functions useful for testing and mapping
characters. In all cases the argument is an int, the value of which is representable
as an unsigned char or equa l to the va lue -I . If the argument has any other value,
the behaviour is undefined.

Entry no. 155: int isalnum(int c)

Returns true if c is alphabetic or numeric

Entry no. 156: int isalpha(int c)

Returns true if c is alphabetic

Entry no. 157: int iscntrl(int c)

Returns true if cis a control character (in the ASCII locale)

Entry no. 158: int isdigit(int c)

Returns true if c is a decimal digit

Entry no. 159: int isgraph(int c)

Returns true if c is any printable character other than space

Entry no. 160: int islower(int c)

Returns true if c is a lower-case letter

4-295

ctype

4-296

Entry no. 161: int isprint(int c)

Returns true if cis a printable character (in the ASCII loca le this means &20 (space)
~ &7E (tilde) inclusive) .

Entry no. 162: int ispunct(int c)

Returns true if cis a printable character other than a space or alphanumeric
character

Entry no. 163: int isspace(int c)

Returns true if cis a white space character viz: space, newline, return , linefeed, tab
or vertical tab

Entry no. 164: int isupper(int c)

Returns true if c is an upper-case letter

Entry no. 165: int isxdigit(int c)

Returns true if cis a hexadecimal digit, ie in 0 ... 9, a . .f. or A ... F

Entry no. 166: int tolower(int c)

Forces c to lower case if it is an upper-case letter, otherwise returns the original
value

Entry no. 167: int toupper(int c)

Forces c to upper case if it is a lower-case letter, otherwise returns the original
value

errno

The shared C library

The word variable errno at offset 800 in the library statics is set whenever one of the
error conditions listed below arises.

EDOM (errno=1)

If a domain error occurs (an input argument is outside the domain over which the
mathematical function is defined) the integer expression errno acquires the
value of the macro EDOM, and HUGE_ VAL is returned. EDOM may be used by
non-mathematical functions.

ERANGE (errno=2)

A range error occurs if the result of a function cannot be represented as a double
value. If the result overflows (the magnitude of the result is so large that it cannot
be represented in an object of the specified type). the function returns the value of
the macro HUGE_ VAL, with the same sign as the correct value of the function; the
integer expression errno acquires the value of the macro ERANGE. If the result
underflows (the magnitude of the result is so small that it cannot be represented in
an object of the specified type). the function returns zero; the integer expression
errno acquires the value of the macro ERANGE. ERANGE may be used by
non-mathematical functions.

ESIGNUM (errno=3)

If an unrecognised signal is caught by the default signal handler, errno is set to
ESIGNUM.

4-297

locale

locale

4-298

This module handles national characteristics, such as the different orderings
month-day-year (USA) and day-month-year (UK) .

Entry no. 154: char *setlocale(int category, const char *locale)

Selects the appropriate part of the program's locale as specified by the category
and locale arguments . The set locale function may be used to change or
query the program's entire current locale or portions thereof. Locale information is
divided into the following types:

Type Value Description

LC_COLLATE (1) string collation
LC_CTYPE (2) character type
LC_MONETARY (4) monetary formatting
LC_NUMERIC (8) numeric string formatting
LC_TIME (16) time formatting
LC_ALL (31) entire locale

The locale string specifies which locale set of information is to be used. For
example,

setlocale (LC_MONETARY, "uk")

would insert monetary information into the lconv structure. To query the current
locale information, set the locale string to null and read the string returned .

Entry no. 171 : struct lconv *localeconv(void)

Sets the components of an object with type struct lconv with values appropriate
for the formatting of numeric quantities (monetary and otherwise) according to the
rules of the current locale. The members of the structure with type char * are
strings, any of which (except decimal_point) can point to "" , to indicate that
the value is not available in the current locale or is of zero length. The members
with type char are non-negative numbers, any of which can be CHAR_MAX to
indicate that the value is not available in the current locale. The members included
are described above.

localeconv returns a pointer to the filled in object. The structure pointed to by
the return value will not be modified by the program, but may be overwritten by a
subsequent call to the localeconv function . In addition, calls to the
set locale function with categories LC_ALL, LC_MONETARY, or LC_NUMERIC

may overwrite the contents of the structure.

math

The shared C library

This module contains 22 mathematical functions. All return the type double.

Entry no. 132: double acos(double x)

Returns arc cosine of x. A domain error occurs for arguments not in the range -I
to I

Entry no. 133: double asin(double x)

Returns arc sine of x. A domain error occurs for arguments not in the range -I to I

Entry no. 134: double atan(double x)

Returns arc tangent of x

Entry no. 135: double atan2(double x, double y)

Returns arc tangent of x/y

Entry no. 136: double cos(double x)

Returns cosine of x (measured in radians)

Entry no. 137: double sin(double x)

Returns sine of x (measured in radians)

Entry no. 138: double tan(double x)

Returns tangent of x (measured in radians)

Entry no. 139: double cosh(double x)

Returns hyperbolic cosine of x

Entry no. 140: double sinh(double x)

Returns hyperbolic sine of x

Entry no. 141: double tanh(double x)

Returns hyperbolic tangent of x

Entry no. 142: double exp(double x)

Returns exponential function of x

4-299

math

4-300

Entry no. 143: double frexp(double x, int *exp)

Returns the value x. such that xis a double with magnitude in the interval 0.5 to I 0
or zero, and value equals x times 2 raised to the power *exp

Entry no. 144: double ldexp(double x, int exp)

Returns x times 2 raised to the power of exp

Entry no. 145: double log(double x)

Returns natural logarithm of x

Entry no. 146: double log10(double x)

Returns log to the base I 0 of x

Entry no. 147: double modf(double x, double *iptr)

Returns signed fractional part of x. Stores integer part of x in object pointed to by
iptr

Entry no. 148: double pow(double x, double y)

Returns x raised to the power of y

Entry no. 149: double sqrt(double x)

Returns positive square root of x

Entry no. 150: double ceil(double x)

Returns smallest integer not less than x (ie rounding up)

Entry no.151: double fabs(double x)

Returns absolute value of x

Entry no. 152: double floor(double x)

Returns largest integer not greater than x (ie rounding down)

Entry no. 153: double fmod(double x, double y)

Returns floating-point remainder of x/y

setjmp

The shared C library

This module provides two functions for bypassing the normal function call and
return discipline (useful for dealing with unusual conditions encountered in a
low-level function of a program).

Entry no. 130: int setjmp(jmp_buf env)

The calling environment is saved in env, for later use by the longjrnp function . If
the return is from a direct invocation, the setjrnp function returns the value zero.
If the return is from a call to the longjrnp function , the set jrnp function returns a
non-zero value .

Entry no. 131: void longjmp(jmp_buf env, int val)

The environment saved in e nv by the most recent call to setjrnp is restored. If
there has been no such call, or if the function containing the call to setjrnp has
terminated execution (eg with a return statement) in the interim, the behaviour is
undefined. All accessible objects have values as at the time longjrnp was called,
except that the values of objects of automatic storage duration that do not have
volatile type and that have been changed between the setjrnp and longjrnp calls
are indeterminate.

As it bypasses the usual function call and return mechanism, the longjrnp
function executes correctly in contexts of interrupts, signals and any of their
associated functions. However, if the longjrnp function is invoked from a nested
signal handler (that is. from a function invoked as a result of a signal raised during
the handling of another signal), the behaviour is undefined.

After longjrnp is completed. program execution continues as ifthe corresponding
call to setjrnp had just returned the value specified by val. The longjrnp
function cannot cause setjrnp to return the value 0; if val is 0, setjrnp returns
the value I.

4-301

signal

signal

4-302

Si gnal provides two function s.

typedef void Handler(int) ;

Entry no. 128: Handler *signal(int, Handler *);

The foll owing signal handlers are defined:

Type

SIG_DFL
SIG_ IGN
SIG_ ERR

value

(Handler*) - 1
(Handler *) - 2
(Handler *) - 3

The following signals are defined:

Signal value

SI GABRT 1
SIGFPE 2
SIGILL 3
SIGINT 4
SIGSEGV 5
SIGTERM 6
SIGSTAK 7
SI GUSR1 8
SI GUSR2 9
SIGOSERROR 10

description

default routine
ignore signal routine
dummy routine to flag error return from signal

description

abort (ie call to abort())
arithmetic exception
illegal instruction
attention request from user
bad memory access
termination request
stack overflow
user definable
user definable
operating system error

The 'signal ' function chooses one of three ways in which receipt of the signal
number s ig is to be subsequently handled. If the value of func is SIG_DFL.
default handling for that signal will occur. If the value of func is SIG_IGN, the
signal will be ignored. Otherwise func points to a function to be called when that
signal occurs.

When a signal occurs, if func points to a function , first the equivalent of
s ignal(s ig, SIG_DFL) is executed. (If the value of sig is SIGILL, whether
the reset to SIG_DFL occurs is implementation-defined (under RISC OS the reset
does occur)) . Next. the equivalent of (* func) (sig) ; is executed. The function
may terminate by calling the abort , exit or longjmp function . If func executes
a return statement and the value of sig was SIGFPE or any other
implementation-defined value corresponding to a computational exception, the
behaviour is undefined. Otherwise. the program will resume execution at the point
it was interrupted.

The shared C library

If the signa l occurs other than as a result of calling the abort or raise function,
the behaviour is undefined if the signal handler calls any function in the standard
library other than the signal function itself or refers to any object with static
storage duration other than by assigning a value to a volatile static variable of type
sig_ atomic_t. At program start-up, the equivalent of signal (sig,
SIG_IGN) may be executed for some signals selected in an implementation
defined manner (under RISC OS this does not occur); the equivalent of
signal (sig, SIG_DFL) is executed for all other signals defined by the
implementation .

If the request can be honoured, the s ignal function returns the value of func for
most recent call to signal for the specified signal sig Otherwise, a value of
SIG_ERR is returned and the integer expression errno is set to indicate the error.

Entry no. 129: int raise(int sig)

Sends the signal sig to the executing program. Returns zero if successful, non-zero
if unsuccessful.

Entry no. 125: void _ignore_signal_handler(int sig)

This function is for compatibility with older versions of the shared C library stubs
and should not be called in your code.

Entry no. 126: void _error_signal_marker(int sig)

This function is for compatibility with older versions of the shared C library stubs
and should not be called in your code.

Entry no. 127: void _default_signal_handler(int sig)

This function is for compatibility with older versions of the shared C library stubs
and should not be called in your code.

4-303

stdio

stdio

4-304

stdio provides many functions for performing input and output. For a discussion
on Streams and Fi les refer to sections 4.9.2 and 4.9.3 in the ANSI standard .

The following two types are used by the stdio module:

typedef int fpos_ t;

fpos_ t is an object capable of recording all information needed to specify
uniquely every position within a file .

typedef struct FILE{
unsigned c har *_ptr ;
int _icnt;

/ * pointer to IO buffer * /
/* character count for input * /
/* character count for output */
/ * flags , see below */

int _ocnt;
int _flag;
int internal[6] ;

}FILE ;

The following flags are defined in the flags field above:

Flag Bit mask Description

IOEOF &040 end-of-file reached
IOERR &080 error occurred on stream
IOFBF &100 fully buffered IO
I OLBF &200 line buffered IO
IONBF &400 unbuffered IO

FILE is an object capable of recording all information needed to control a stream ,
such as its file position indicator, a pointer to its associated buffer, an error
indicator that records whether a read/write error has occurred and an end-of-file
indicator that records whether the end-of-file has been reached .

Entry no. 81: int remove(const char *filename)

Causes the file whose name is the string pointed to by fi 1 ename to be removed .
Subsequent attempts to open the file will fail, unless it is created anew. If the file is
open, the behaviour of the remove function is implementation-defined (under
RISC OS the operation fails)

Returns: zero if the operation succeeds, non-zero if it fails .

The shared C library

Entry no. 82: int rename(const char *old, const char *new)

Causes the file whose name is the string pointed to by old to be henceforth known
by the name given by the string pointed to by new. The file named old is
effectively removed. If a file named by the string pointed to by new exists prior to
the call of the rename f'lnction . the behaviour is implementation-defined (under
RISC OS, the operation fails) .

Returns: zero if the operation succeeds. non-zero if it fails. in which case if the file
existed previously it is still known by its original name.

Entry no. 83: FILE *tmpfile(void)

Creates a temporary binary file that will be automatically removed when it is closed
or at program termination . The file is opened for update.

Returns: a pointer to the stream of the file that it created. If the file cannot be
created. a null pointer is returned .

Entry no. 182: char *tmpnam(char *s)

Generates a string that is not the same as the name of an existing file . The trnpnarn

function generates a different string each time it is called. up to TMP _MAX times. If
it is called more than TMP _MAX times. the behaviour is implementation-defined
(under RISC OS the algorithm for the name generation works just as well after
trnpnarn has been called more than TMP _MAX times as before; a name clash is
impossible in any single half year period)

Returns : If the argument is a null pointer. the trnpnarn function leaves its result in
an internal static object and returns a pointer to that object. Subsequent calls to
the trnpnarn function may modify the same object. If the argument is not a null
pointer. it is assumed to point to an array of at least L_trnpnarn characters; the
trnpnarn function writes its result in that array and returns the argument as its
value.

Entry no. 84: char *_old_tmpnam(char *s)

This function is included for backwards compatibility for binaries linked with older
library stubs. You should not call this function in your code, call tmpnam (Entry no.
182) instead.

4-305

stdio

4-306

Entry no. 85: int fclose(FILE *stream)

Causes the stream pointed to by stream to be flushed and the associated file to
be closed . Any unwritten buffered data for the stream are delivered to the host
environment to be written to the file ; any unread buffered data are discarded. The
stream is disassociated from the file. If the associated buffer was automatically
allocated . it is deallocated.

Returns: zero if the stream was successfully closed. or EOF if any errors were
detected or if the stream was already closed.

Entry no. 86: int fflush(FILE *stream)

If the stream points to an output or update stream in which the most recent
operation was output. the ff lush function causes any unwritten data for that
stream to be delivered to the host environment to be written to the file . If the
stream points to an input or update stream. the f flush function undoes the
effect of any preceding ungetc operation on the stream .

Returns : EOF if a write error occurs.

Entry no. 87: FILE *fopen(const char *filename, const char *mode)

Opens the file whose name is the string pointed to by filename, and associates
a stream with it. The argument mode points to a string beginning with one of the
following sequences:

r
w

a
rb
wb
ab
r+
W+

a+
r+b or rb+
w+b orwb+
a+b or ab+

open text file for reading
create text file for writing, or truncate to zero length
append; open text file or create for writing at eof
open binary file for reading
create binary file for writing, or truncate to zero length
append; open binary file or create for writing at eof
open text file for update (reading and writing)
create text file for update. or truncate to zero length
append; open text file or create for update. writing at eof
open binary file for update (reading and writing)
create binary file for update. or truncate to zero length
append; open binary file or create for update. writing at
eof

• Opening a file with read mode (r as the first character in the mode argument)
fails if the file does not exist or cannot be read .

• Opening a file with append mode (a as the first character in the mode
argument) causes all subsequent writes to be forced to the current end of file .
regardless of intervening calls to the fseek function.

The shared C library

• In some implementations. opening a binary file with append mode (bas the
second or third character in the mode argument) may initially position the file
position indicator beyond the last data written, because of null padding (but
not under RISC OS)

• When a file is opened with update mode (+as the second or third character in
the mode argument). both input and output may be performed on the
associated stream. However, output may not be directly followed by input
without an intervening call to the f flush function or to a file positioning
function (f seek, fsetpos, or rewind). nor may input be directly followed
by output without an intervening call to the fflush function or to a file
positioning function. unless the input operation encounters end-of-file.

• Opening a file with update mode may open or create a binary stream in some
implementations (but not under RISC OS). When opened, a stream is fully
buffered if and only if it does not refer to an interactive device. The error and
end-of-file indicators for the stream are cleared.

Returns : a pointer to the object controlling the stream. If the open operation fails,
fopen returns a null pointer.

Entry no. 88: FILE *freopen(const char *filename, const char *mode,
FILE *stream)

Opens the file whose name is the string pointed to by filename and associates
the stream pointed to by stream with it. The mode argument is used just as in the
fopen function. The freopen function first attempts to close any file that is
associated with the specified stream. Failure to close the file successfully is
ignored. The error and end-of-file indicators for the stream are cleared .

Returns: a null pointer if the operation fails. Otherwise. freopen returns the value
of the stream .

Entry no. 89: void setbuf(FILE *stream, char *but)

Except that it returns no value. the setbuf function is equivalent to the setvbuf
function invoked with the values _IOFBF for mode and BUFSIZ for size, or if buf
is a null pointer, with the value _IONBF for mode.

Returns: no value.

4-307

stdio

4-308

Entry no. 90: int setvbuf(FILE *stream, char *but, int mode, size_t size)

This may be used after the stream pointed to by stream has been associated with
an open file but before it is read or written. The argument mode determines how
stream will be buffered, as follows:

• _IOFBF causes input/output to be fully buffered.

• _IOLBF causes output to be line buffered (the buffer will be flushed when a
newline character is written , when the buffer is full , or when interactive input is
requested) .

• _IONBF causes input/output to be completely unbuffered.

If but is not the null pointer, the array it points to may be used instead of an
automatically allocated buffer (the buffer must have a lifetime at least as great as
the open stream , so the stream should be closed before a buffer that has
automatic storage duration is deallocated upon block exit) . The argument size
specifies the size of the array. The contents of the array at any time are
indeterminate.

Returns: zero on success, or non-zero if an invalid value is given for mode or size,
or if the request cannot be honoured.

Entry no. 92: int fprintf(FILE *stream, const char *format, ...)

Writes output to the stream pointed to by stream, under control of the string
pointed to by format that specifies how subsequent arguments are converted for
output. If there are insufficient arguments for the format, the behaviour is
undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated but otherwise ignored. The fpr int f function returns
when the end of the format string is reached . The format must be a multibyte
character sequence, beginning and ending in its initial shift state. The format is
composed of zero or more directives: ordinary multi byte characters (not%). which
are copied unchanged to the output stream; and conversion specifiers. each of
which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the character%. For a complete description of the
available conversion specifiers refer to section 4.9.6.1 in the ANSI standard . 1jhe
minimum value for the maximum number of characters that can be produced by
any single conversion is at least 509.

The shared C library

A brief and incomplete description of conversion specifications is:

[flags] [field width] [.precision]specifier-char

flags is most commonly-, indicating left justification of the output
item within the field . If omitted , the item will be right justified.

field width is the minimum width of field to use. If the formatted item is

precision

longer, a bigger field will be used; otherwise, the item will be right
(left) justified in the field .

is the minimum number of digits to print for ad, i , o, u, x or X
conversion, the number of digits to appear after the decimal digit
fore , E and f conversions, the maximum number of significant
digits for g and G conversions, or the maximum number of
characters to be written from strings in an s conversion .

Eitherofbothof field widthandprecisionmaybe *,indicating that the
value is an argument to print f .

The specifier chars are:

d , i int printed as signed decimal
o , u, X , X unsigned int value printed as unsigned octal, decimal or

hexadecimal
f
e,
g ,

c
s
p

%

E

G

double value printed in the style [- J ddd. ddd
double value printed in the style [- J d. ddd ... e dd
double printed in for e format, whichever is more
appropriate
int value printed as unsigned char
char *value printed as a string of characters
void *argument printed as a hexadecimal address
write a literal %

Returns: the number of characters transmitted, or a negative value if an output
error occurred .

Entry no. 91: int printf(const char *format, ...)

Equivalent to fprintf with the argument stdout interposed before the
arguments to print f .

Returns : the number of characters transmitted, or a negative value if an output
error occurred.

4-309

stdio

4-310

Entry no. 93: int sprintf(char *s, const char *format, ...)

Equivalent to fprintf, except that the arguments specifies an array into which
the generated output is to be written. rather than to a stream. A null character is
written at the end of the characters written; it is not counted as part of the returned
sum.

Returns : the number of characters written to the array, not counting the
terminating null character.

Entry no. 26: int _printf(const char *format, ...)

This function is identical in function to printf except that it does not handle
floating point arguments.

It is used for space optimisation by the C compiler when using the non shared
library and when a literal format string does not contain any floating point
conversions.

It is included in the shared library for compatibility with the non shared library.

Entry no. 27: int _fprintf(FILE *stream, const char *format, ...)

This function is identical in function to fprintf except that it does not handle
floating point arguments.

It is used for space optimisation by the C compiler when using the non shared
library and when a literal format string does not contain any floating point
conversions.

It is included in the shared library for compatibility with the non shared library.

Entry no. 28: int _sprintf(char *s, const char *format, ...)

This function is identical in function to sprintf except that it does not handle
floating point arguments.

It is used for space optimisation by the C compiler when using the non shared
library and when a literal format string does not contain any floating point
conversions.

It is included in the shared library for compatibility with the non shared library.

The shared C library

Entry no. 100: int _vfprintf(FILE *stream, const char *format, va_list arg)

This function is identical in function to vfprintf except that it does not handle
floating point arguments. I
It is used for space optimisation by the C compiler when using the non shared
library and when a literal format string does not contain any floating point
conversions.

It is included in the shar~d library for compatibility with the non shared library

Entry no. 95: int fscanf(FILE *stream, const char *format, ...)

Reads input from the stream pointed to by stream, under control of the string
pointed to by format that specifies th~ admissible input sequences and how they
are to be converted for assignment, using subsequent arguments as pointers to the
objects to receive the converted input. If there are insufficient arguments for the
format , the behaviour is undefined. If the format is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored. The format is
composed of zero or more directives, one or more white-space characters, an
ordinary character (not%), or a conversion specification. Each conversion
specification is introduced by the character%. For a description of the available
conversion specifiers refer to section 4.9.6.2 in the ANSI standard, or to any of the
references listed in the chapter entitled Introduction on page I of the Acorn
Desktop C Manual. A brief list is given above, under the entry for fprint f.

If end-of-file is encountered during input, conversion is terminated. If end-of-file
occurs before any characters matching the current directive have been read (other
than leading white space, where permitted), execution of the current directive
terminates with an input failure; otherwise, unless execution of the current
directive is terminated with a matching failure, execution of the following directive
(if any) is terminated with an input failure.

If conversions terminate on a conflicting input character, the offending input
character is left unread in the input stream. Trailing white space (including newline
characters) is left unread unless matched by a directive. The success of literal
matches and suppressed assignments is not directly determinable other than via
the %n directive.

Returns: the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the f scanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an
early conflict between an input character and the format.

4-311

stdio

4-312

Entry no. 94: int scanf(const char *format, ...)

Equivalent to fscanf with the argument s tdin interposed before the arguments
to scanf .

Returns: the value of the macro EOF if an input failure occurs before any
conversion . Otherwise, the scanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure .

Entry no. 96: int sscanf(const char *s, const char *format, ...)

Equivalent to f scanf except that the argument s specifies a string from which the
input is to be obtained, rather than from a stream. Reaching the end of the string is
equivalent to encountering end-of-file for the fs canf function .

Returns: the value of the macro EOF if an input failure occurs before any
conversion . Otherwise, the scanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure .

Entry no. 97: int vprintf(const ~har *format, va_list arg)

Equivalent to p r int f, with the variable argument l ist replaced by a rg, which has
been initialised by the v a_s da rt macro (and possibly subsequent va_arg calls) .
The vprintf function does not invoke the va_end function .

Returns: the number of char~cters transmitted, or a negative value if an output
error occurred.

Entry no. 98: int vfprintf(FILE *stream, const char *format, va_list arg)

Equivalent to fprintf, with the variable argument list replaced by arg, which
has been initialised by the va_start macro (and possibly subsequent v a_arg
calls) . The vfprint f function does not invoke the va_end function.

Returns: the number of characters transmitted, or a negative value if an output
error occurred.

Entry no. 99: int vsprintf(char *s, const char *format, va_list arg)

Equivalent to sprint f. with the variable argument list replaced by arg, which
has been initialised by the va_start macro (and possibly subsequent va_arg
calls) . The vsprintf function does not invoke the va_end function .

Returns: the number of characters written in the array, not counting the
terminating null character.

The shared C library

Entry no. 1 01: int fgetc(FILE *stream)

Obtains the next character (if present) as an unsigned char converted to an int.
from the input str-eam pointed to by stream. and advances the associated file
position indicator (if defined).

Returns: the next character from the input stream pointed to by stream. If the
stream is at end-of-file. the end-of-file indicator is set and fgetc returns EOF. If a
read error occurs. the error indicator is set and fgetc returns EOF.

Entry no. 102: char *fgets(char *s, int n, FILE *stream)

Reads at most one less than the number of characters specified by n from the
stream pointed to by stream into the array pointed to by s. No additional
characters are read after a newline character (which is retained) or after end-of-file.
A null character is written immediately after the last character read into the array.

Returns: s if successful. If end-of-file is encountered and no characters have been
read into the array. the contents of the array remain unchanged and a null pointer
is returned. If a read error occurs during the operation. the array contents are
indeterminate and a null pointer is returned .

Entry no. 103: int fputc(int c, FILE *stream)

Writes the character specified by c (converted to an unsigned char) to the output
stream pointed to by stream. at the position indicated by the associated file
position indicator (if defined). and advances the indicator appropriately. If the file
cannot support positioning requests. or if the stream was opened with append
mode. the character is appended to the output stream.

Returns: the character written. If a write error occurs. the error indicator is set and
fputc returns EOF.

Entry no. 104: int fputs(const char *s, FILE *stream)

Writes the string pointed to by s to the stream pointed to by stream. The
terminating null character is not written.

Returns: EOF if a write error occurs; otherwise it returns a non-negative value.

4-313

stdio

4-314

Entry no. 106: int getc(FILE *stream)

Equivalent to fgetc except that it may be (and is under RISC OS) implemented as
a macro. stream may be evaluated more than once, so the argument should never
be an expression with side effects.

Returns: the next character from the input stream pointed to by stream. If the
stream is at end-of-file, the end-of-file indicator is set and getc returns EOF. If a
read error occurs, the error indicator is set and getc returns EOF.

Entry no. 107: int getchar(void)

Equivalent to getc with the argument stdin.

Returns: the next character from the input stream pointed to by stdin. If the
stream is at end-of-file, the end-of-file indicator is set and get char returns EOF.
If a read error occurs, the error indicator is set and get char returns EOF.

Entry no. 108: char *gets(char *s)

Reads characters from the input stream pointed to by stdin into the array
pointed to by s, until end-of-file is encountered or a newline character is read. Any
newline character is discarded, and a null character is written immediately after the
last character read into the array.

Returns: s if successful. If end-of-file is encountered and no characters have been
read into the array, the contents of the array remain unchanged and a null pointer
is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

Entry no. 110: int putc(int c, FILE *stream)

Equivalent to fputc except that it may be (and is under RISC OS) implemented as
a macro. stream may be evaluated more than once, so the argument should never
be an expression with side effects.

Returns: the character written . If a write error occurs, the error indicator is set and
putc returns EOF.

Entry no. 111: int putchar(int c)

Equivalent to putc with the second argument stdout.

Returns: the character written. If a write error occurs, the error indicator is set and
putc returns EOF.

The shared C library

Entry no. 112: int puts(const char *s)

Writes the string pointed to by s to the stream pointed to by stdout, and
appends a newline character to the output. The terminating null character is not
written.

Returns: EOF if a write error occurs; otherwise it returns a non-negative value.

Entry no. 113: int ungetc(int c, FILE *stream)

Pushes the character specified by c (converted to an unsigned char) back onto the
input stream pointed to by stream. The character will be returned by the next
read on that stream. An intervening call to the f flush function or to a file
positioning function (fseek, fsetpos, rewind) discards any pushed-back
characters. The external storage corresponding to the stream is unchanged. One
character push back is guaranteed. If the unget function is called too many times
on the same stream without an intervening read or file positioning operation on
that stream, the operation may fail. If the value of c equals that of the macro EOF,

the operation fails and the input stream is unchanged.

A successful call to the ungetc function clears the end-of-file indicator. The value
of the file position indicator after reading or discarding all pushed-back characters
will be the same as it was before the characters were pushed back. For a text
stream, the value of the file position indicator after a successful call to the ungetc
function is unspecified until all pushed-back characters are read or discarded. For
a binary stream, the file position indicator is decremented by each successful call
to the ungetc function; if its value was zero before a call. it is indeterminate after
the call.

Returns: the character pushed back after conversion, or EOF if the operation fails .

Entry no. 114: size_t fread(void *ptr, size_t size, size_t nmemb, FILE
*stream)

Reads into the array pointed to by ptr, up to nmemb members whose size is
specified by size, from the stream pointed to by stream. The file position
indicator (if defined) is advanced by the number of characters successfully read . If
an error occurs. the resulting value of the file position indicator is indeterminate. If
a partial member is read, its value is indeterminate. The ferror or feof function
shall be used to distinguish between a read error and end-of-file .

Returns : the number of members successfully read , which may be less than nmemb
if a read error or end-of-file is encountered. If size or nmemb is zero, fread
returns zero and the contents of the array and the state of the stream remain
unchanged .

4-315

stdio

4-316

Entry no. 115: size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE
*stream)

Writes, from the array pointed to by ptr up to nmemb members whose size is
specified by size, to the stream pointed to by stream. The file position indicator
(if defined) is advanced by the number of characters successfully written. If an error
occurs, the resulting value of the file position indicator is indeterminate.

Returns: the number of members successfully written, which will be less than
nmernb only if a write error is encountered.

Entry no. 116: int fgetpos(FILE *stream, fpos_t *pos)

Stores the current value of the file position indicator for the stream pointed to by
stream in the object pointed to by pos. The value stored contains unspecified
information usable by the f setpos function for repositioning the stream to its
position at the time of the call to the fgetpos function.

Returns: zero, if successful. Otherwise non-zero is returned and the integer
expression errno is set to an implementation-defined non-zero value (under
RlSC OS fgetpos cannot fail).

Entry no. 117: int fseek(FILE *stream, long int offset, int whence)

Sets the file position indicator for the stream pointed to by stream. For a binary
stream, the new position is at the signed number of characters specified by
offset away from the point specified by whence. The specified point is the
beginning of the file for SEEK_SET, the current position in the file for SEEK_ CUR,

or end-of-file for SEEK_END. A binary stream need not meaningfully support
fseek calls with a whence value of SEEK_END, though the Acorn
implementation does. For a text stream, offset is either zero or a value returned
by an earlier call to the ftell function on the same stream; whence is then
SEEK_ SET. The Acorn implementation also allows a text stream to be positioned
in exactly the same manner as a binary stream, but this is not portable. The fseek
function clears the end-of-file indicator and undoes any effects of the ungetc
function on the same stream. After an fseek call, the next operation on an update
stream may be either input or output.

Returns: non-zero only for a request that cannot be satisfied.

Entry no. 118: int fsetpos{FILE *stream, const fpos_t *pos)

Sets the file position indicator for the stream pointed to by stream according to
the value of the object pointed to by pos, which is a value returned by an earlier
call to the fgetpos function on the same stream. The fsetpos function clears

The shared C library

the end-of-file indicator and undoes any effects of the unge t c function on the
same stream . After an fsetpos call. the next operation on an update stream may
be either input or output.

Returns: zero, if successful. Otherwise non-zero is returned and the integer
expression errno is set to an implementation-defined non-zero value (under
RISC OS the value is that of EDOM in math. h) .

Entry no. 119: long int fteii(FILE *stream)

Obtains the current value of the file position indicator for the stream pointed to by
stream. For a binary stream , the value is the number of characters from the
beginning of the file . For a text stream, the file position indicator contains
unspecified information, usable by the f seek function for returning the file
position indicator to its position at the time of the ft ell call ; the difference
between two such return values is not necessarily a meaningful measure of the
number of characters written or read . However, for the Acorn implementation, the
value returned is merely the byte offset into the file, whether the stream is text or
binary.

Returns: if successful. the current value of the file position indicator. On failure, the
ftell function returns -I Land sets the integer expression errn o to an
implementation-defined non-zero value (under RISC OS ftell cannot fail).

Entry no. 120: void rewind(FILE *stream)

Sets the file position indicator for the stream pointed to by stream to the
beginning of the file. It is equiva lentto (void) f seek (stream, OL,
SEEK_SET) except that the error indicator for the stream is also cleared.

Returns: no value.

Entry no. 121: void clearerr(FILE *stream)

Clears the end-of-file and error indicators for the stream pointed to by stream.
These indicators are cleared only when the file is opened or by an explicit call to
the clearerr function or to the rewind function.

Returns: no va lue.

Entry no. 122: int feof(FILE *stream)

Tests the end-of-file indicator for the stream pointed to by stream.

Returns: non-zero if the end-of-file indicator is set for stream.

4-317

stdio

4-318

Entry no. 123: int ferror(FILE *stream)

Tests the error indicator for the stream pointed to by stream.

Returns: non-zero if the error indicator is set for stream.

Entry no. 124: void perror(const char *s)

Maps the error number in the integer expression errno to an error message. It
writes a sequence of characters to the standard error stream thus: first (if s is not a
null pointer and the character pointed to by sis not the null character). the string
pointed to by s followed by a colon and a space; then an appropriate error
message string followed by a newline character. The contents of the error message
strings are the same as those returned by the strerror function with argument
errno, which are implementation-defined.

Returns: no value.

Entry no. 105: int _filbuf(FILE *stream)

This function is used by the C library to implement the 'getc' macro. The definition
of the ·getc' macro is as follows:

#define getc(p) \
(--((p)-> __ icnt) >= 0? *((p)->__ptr)++ __ filbuf(p))

where p is a pointer to a FILE structure .

_f ilbuf fills the buffer associated with p from a file stream and returns the first
character of the buffer incrementing the buffer pointer and decrementing the input
character count.

Entry no. 109: int _flsbuf(int ch, FILE *stream)

This function is used by the C library to implement the putc macro. The definition
of the putc macro is as follows:

#define putc(ch, p) \
(--((p)-> __ ocnt) >= 0? (*((p)->__ptr)++ (ch)) __ flsbuf(ch,p))

where p is a pointer to a FILE structure.

_flsbuf flushes the buffer associated with p to a file stream and writes the
character ch to the file stream. The buffer pointer and output character count are
reset.

stdlib

The shared C library

stdl ib provides several general purpose functions

Entry no. 58: double atof(const char *npt"

Converts the initial part of the string pointed to by nptr to double •
representation.

Returns: the converted value.

Entry no. 59: int atoi(const char *npt"

Converts the initial part of the string pointed to by nptr to int representation.

Returns: the converted val ue.

Entry no. 60: long int atol(const char *nptr)

Converts the initial part of the string pointed to by nptr to long int
representation.

Returns: the converted value.

Entry no. 61: double strtod(const char *nptr, char **endptr)

Converts the initial part of the string pointed to by nptr to double representation .
First it decomposes the input string into three parts: an initial. possibly empty,
sequence of white-space characters (as specified by the is space function). a
subject sequence resembling a floating paint constant , and a final string of one or
more unrecognised characters, including the terminating null character of the
input string. It then attempts to convert the subject sequence to a floating point
number, and returns the result. A pointer to the final string is stored in the object
pointed to by endptr, provided that endptr is not a null pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned . If the correct value is outside the range of representable values, plus or
minus HUGE_ VAL is returned (according to the sign of the value). and the value of
the macro ERANGE is stored in errno. If the correct value would cause underflow,
zero is returned and the value of the macro ERANGE is stored in errno.

4-319

stdlib

4-320

Entry no. 62: long int strtol(const char *nptr, char **endptr, int base)

Converts the initial part of the string pointed to by nptr to long int
representation . First it decomposes the input string into three parts: an initial,
possibly empty, sequence of white-space characters (as specified by the is space
function), a subject sequence resembling an integer represented in some radix
determined by the value of base, and a final string of one or more unrecognised
characters, including the terminating null character of the input string.

It then attempts to convert the subject sequence to an integer, and returns the
result. If the value of base is 0, the expected form of the subject sequence is that of
an integer constant (described precisely in the ANSI standard, section 3.I.3 2),
optionally preceded by a+ or- sign, but not including an integer suffix. If the value
of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign, but not including an integer
suffix. The letters from a (or A) through z (or Z) are ascribed the values 10 to 35;
only letters whose ascribed values are less than that of the base are permitted. If
the value of base is 16, the characters Ox or OX may optionally precede the
sequence of letters and digits following the sign if present. A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a
null pointer

Returns : the converted value if any. If no conversion could be performed, zero is
returned . If the correct value is outside the range of representable values,
LONG_MAX or LONG_MIN is returned (according to the sign of the value) , and the
value of the macro ERANGE is stored in errno.

Entry no. 63: unsigned long int strtoul(const char *nptr, char **endptr,
int base)

Converts the initial part of the string pointed to by nptr to unsigned long int
representation. First it decomposes the input string into three parts: an initial ,
possibly empty, sequence of white space characters (as determined by the
isspace function), a subject sequence resembling an unsigned integer
represented in some radix determined by the value of base, and a final string of
one or more unrecognised characters, including the terminating null character of
the input string.

It then attempts to convert the subject sequence to an unsigned integer, and
returns the result. If the value of base is zero, the expected form of the subject
sequence is that of an integer constant (described precisely in the ANSI Standard ,
section 3.1 .3 .2), optionally preceded by a+ or - sign , but not including an integer
suffix. If the value of base is between 2 and 36, the expected form of the subject
sequence is a sequence of letters and digits representing an integer with the radix
specified by base, optionally preceded by a +or - sign, but not including an

The shared C library

integer suffix. The letters from a (or A) through z (or Z) stand for the values I 0 to 35;
only letters whose ascribed values are less than that of the base are permitted . If
the value of base is 16, the characters Ox or OX may optionally precede the
sequence of letters and digits following the sign, if present. A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a
null pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values,
ULONG_MAX is returned, and the value of the • macro ERANGE is stored in errno.

Entry no. 64: int rand(void)

Computes a sequence of pseudo-random integers in the range 0 to RAND_MAX,

where RAND_MAX = Ox7fffffff.

Returns: a pseudo-random integer.

Entry no. 65: void srand(unsigned int seed)

Uses its argument as a seed for a new sequence of pseudo-random numbers to be
returned by subsequent calls to rand. If srand is then called with the same seed
value, the sequence of pseudo-random numbers will be repeated. If rand is called
before any calls to srand have been made, the same sequence is generated as
when srand is first called with a seed value of I.

Entry no. 66: void *calloc(size_t nmemb, size_t size)

Allocates space for an array of nmemb objects, each of whose size is size. The
space is initialised to all bits zero.

Returns: either a null pointer or a pointer to the allocated space.

Entry no. 67: void free(void *ptt1
Causes the space pointed to by ptr to be deallocated (made available for further
allocation). If ptr is a null pointer, no action occurs. Otherwise, if ptr does not
match a pointer earlier returned by calloc, malloc or realloc or if the space
has been deallocated by a call to free or realloc, the behaviour is undefined.

Entry no. 68: void *malloc(size_t size)

Allocates space for an object whose size is specified by size and whose value is
indeterminate.

Returns: either a null pointer or a pointer to the allocated space.

4-321

stdlib

4-322

Entry no. 69: void *realloc(void *ptr, size_t size)

Changes the size of the object pointed to by ptr to the size specified by size. The
contents of the object is unchanged up to the lesser of the new and old sizes . If the
new size is larger, the value of the newly allocated portion of the object is
indeterminate. If ptr is a null pointer, the r ealloc function behaves like a call to
mall oc for the specified size. Otherwise, if p tr does not match a pointer earlier
returned by calloc, malloc or real l oc, or if the space has been deallocated by
a call to free or realloc , the behaviour is undefined. If the space cannot be
allocated , the object pointed to by ptr is unchanged If size is zero and ptr is not
a null pointer, the object it points to is freed.

Returns: either a null pointer or a pointer to the possibly moved allocated space.

Entry no. 70: void abort(void)

Causes abnormal program termination to occur, unless the signal S IGABRT is
being caught and the signal handler does not return . Whether open output streams
are flushed or open streams are closed or temporary files removed is
implementation-defined (under RISC OS all these occur) . An
implementation-defined form of the status 'unsuccessful termination ' (I under
RISC OS) is returned to the host environment by means of a call to
raise (SIGABRT).

Entry no. 71 : int atexit(void (*func)(void))

Registers the function pointed to by func , to be called without its arguments at
normal program termination. It is possible to register at least 32 functions.

Returns: zero if the registration succeeds, non-zero if it fails.

Entry no. 72: void exit(int status)

Causes normal program termination to occur. If more than one call to the exit
function is executed by a program (for example, by a function registered with
atexi t), the behaviour is undefineg. First, all functions registered by the atexi t
function are called, in the reverse order of their registration. Next, all open output
streams are flushed. all open streams are closed, and all files created by the
tmpfile function are removed. Finally, control is returned to the host
environment. If the value of status is zero or EXIT_SUCCESS, an
implementation-defined form of the status 'successful termination' (0 under
RISC OS) is returned . If the value of status is EXIT_FAILURE, an
implementation-defined form of the status 'unsuccessful termination' (I under
RISC OS) is returned. Otherwise the status returned is implementation-defined
(the value of status is returned under RISC OS) .

The shared C library

Entry no. 73: char *getenv(const char *name)

Searches the environment list. provided by the host environment. for a string that
matches the string pointed to by name. The set of environment names and the
method for altering the environment list are implementation-defined.

Returns: a pointer to a string associated with the matched list member. The array
pointed to is not modified by the program, but may be overwritten by a subsequent
call to the getenv function. If the specified name cannot be found, a null pointer
is returned.

Entry no. 74: int system(const char *string)

Passes the string pointed to by string to the host environment to be executed by
a command processor in an implementation-defined manner. A null pointer may
be used for string, to inquire whether a command processor exists. Under
RISC OS, care must be taken, when executing a command, that the command does
not overwrite the calling program. To control this, the string chain: or call:
may immediately precede the actual command. The effect of call : is the same as
if call : were not present. When a command is called, the caller is first moved to
a safe place in application workspace. When the callee terminates, the caller is
restored . This requires enough memory to hold caller and callee simultaneously.
When a command is chained, the caller may be overwritten. If the caller is not
overwritten, the caller exits when the callee terminates. Thus a transfer of control is
effected and memory requirements are minimised.

Returns: If the argument is a null pointer, the system function returns non-zero
only if a command processor is available. If the argument is not a null pointer, it
returns an implementation-defined value (under RISC OS 0 is returned for success
and -2 for failure to invoke the command; any other value is the return code from
the executed command).

4-323

stdlib

4-324

Entry no. 75: void *bsearch(const void *key, const void *base, size_t
nmemb, size_t size, int (*compaf? (const void*, const void*))

Searches an array of nmemb objects, the initial member of which is pointed to by
base, for a member that matches the object pointed to by key. The size of each
member of the array is specified by size. The contents of the array must be in
ascending sorted order according to a comparison function pointed to by compar,
which is called with two arguments that point to the key object and to an array
member, in that order. The function returns an integer less than , equal to, or
greater than zero if the key object is considered, respectively, to be less than, to
match, or to be greater than the array member.

Returns: a pointer to a matching member of the array, or a null pointer if no match
is found. If two members compare as equal, which member is matched is
unspecified.

Entry no. 76: void qsort(void *base, size_t nmemb, size_t size,
int (*compaf?(const void*, const void*))

Sorts an array of nmemb objects, the initial member of which is pointed to by
base. The size of each object is specified by size. The contents of the array are
sorted in ascending order according to a comparison function pointed to by
compar, which is called with two arguments that point to the objects being
compared. The function returns an integer less than, equal to, or greater than zero
if the first argument is considered to be respectively less than, equal to, or greater
than the second. If two members compare as equal, their order in the sorted array
is unspecified.

Entry no. 77: int abs(int J)

Computes the absolute value of an integer j. If the result cannot be represented,
the behaviour is undefined.

Returns: the absolute value.

Entry no. 78: div_t div(int numer, int denom)

Computes the quotient and remainder of the division of the numerator numer by
the denominator denom. If the division is inexact, the resulting quotient is the
integer of lesser magnitude that is the nearest to the algebraic quotient. If the
result cannot be represented, the behaviour is undefined; otherwise, quat *
denom + rem equals numer.

Returns: a structure of type di v _t, comprising both the quotient and the
remainder. The structure contains the following members: int quat; int rem.
You may not rely on their order.

The shared C library

Entry no. 79: long int labs(long int J)

Computes the absolute value of an long integer j If the result cannot be
represented, the behaviour is undefined.

Returns: the absolute value.

Entry no. 80: ldiv _t ldiv(long int numer, long int denom)

Computes the quotient and remainder of the division of the numerator numer by
the denominator den om. If the division is inexact, the sign of the resulting ·
quotient is that of the algebraic quotient, and the magnitude of the resulting
quotient is the largest integer less than the magnitude of the algebraic quotient. If
the result cannot be represented, the behaviour is undefined; otherwise, quat *
denom + rem equals numer.

Returns: a structure of type ldi v_t, comprising both the quotient and the
remainder. The structure contains the following members: long int quat;
long int rem. You may not rely on their order.

Multibyte character functions

The behaviour of the multi byte character functions is affected by the LC_CTYPE

category of the current locale. For a state-dependent encoding, each function is
placed into its initial state by a call for which its character pointer argument, s, is a
null pointer. Subsequent calls with s as other than a null pointer cause the internal
state of the function to be altered as necessary. A call with s as a null pointer
causes these functions to return a non-zero value if encoding have state
dependency, and a zero otherwise. After the LC_CTYPE category is changed, the
shift state of these functions is indeterminate.

Entry no. 172: int mblen(const char *s, size_t n)

If sis not a null pointer, the rnblen function determines the number of bytes
comprising the multibyte character pointed to by s. Except that the shift state of
the mbtowc function is not affected, it is equivalent to mbtowc ((wchar_t *) 0,
s, n).

Returns: If sis a null pointer, the mblen function returns a non-zero or zero value,
if multibyte character encodings, respectively do or do not have state-dependent
encodings. If sis not a null pointer, the mblen function either returns a 0 (if s
points to a null character), or returns the number of bytes that comprise the
multibyte character (if the next nor fewer bytes form a valid multibyte character),
or returns -I (if they do not form a valid multibyte character).

4-325

stdlib

4-326

Entry no. 173: int mbtowc(wchar_t *pwc, const char *s, size_t n)

If s is not a null pointer, the rnbtowc function determines the number of bytes that
comprise the multi byte character pointed to by s. It then determines the code for
value of type wchar_t that corresponds to that multibyte character. (The value of
the code corresponding to the null character is zero). If the multibyte character is
valid and pwc is not a null pointer, the rnbtowc function stores the code in the
object pointed to by pwc. At most n bytes of the array pointed to by swi ll be
examined.

Returns: If s is a null pointer, the rnbtowc function returns a non-zero or zero
value, if multibyte character encodings, respectively do or do not have
state-dependent encodings. If s is not a null pointer, the rnbtowc function either
returns a 0 (if s points to a null character). or returns the number of bytes that
comprise the converted multi byte character (if the next n of fewer bytes form a
valid multibyte character). or returns -I (if they do not form a valid multibyte
character).

Entry no. 174: int wctomb{char *s, wchar_t wchat)

Determines the number of bytes need to represent the multi byte character
corresponding to the code whose value is wchar (including any change in shift
state). It stores the multibyte character representation in the array object pointed
to by s (if sis not a null pointer) . At most MB_CUR_MAX characters are stored. If
the value of wchar is zero, the wctornb function is left in the initial shift state).

Returns: If s is a null pointer, the we tomb function returns a non-zero or zero
value, if multi byte character encodings, respectively do or do not have
state-dependent encodings. If s is not a null pointer, the we tomb function returns
a -I if the value of wchar does not correspond to a valid multi byte character, or
returns the number of bytes that comprise the multibyte character corresponding
to the value of wchar.

(""

Multibyte string functions

The behaviour of the multi byte string functions is affected by the LC_CTYPE

category of the current locale.

The shared C library

Entry no. 175: size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n)

Converts a sequence of multibyte characters that begins in the initial shift state
from the array pointed to by s into a sequence of corresponding codes and stores
not more than n codes into the array pointed to by pwcs. No multibyte character
that follows a null character (which is converted into a code with value zero) will be
examined or converted. Each multi byte character is converted as if by a call to the
mbtowc function . If an invalid multibyte character is found, mbstowcs returns
(s i ze_t) -1. Otherwise, the mbs towcs function returns the number of array
elements modified, not including a terminating zero code, if any.

Entry no. 176: size_t wcstombs(char *s, const wchar_t *pwcs, size_t n)

Converts a sequence of codes that correspond to multibyte characters from the
array pointed to by pwcs into a sequence of multi byte characters that begins in the
initial shift state and stores these multi byte characters into the array pointed to by
s, stopping if a multi byte character would exceed the limit of n total bytes or if a
null character is stored. Each code is converted as if by a call to the we tomb
function, except that the shift state of the we tomb function is not affected. If a
code is encountered which does not correspond to any valid multi byte character,
the wcstombs function returns (size_t) -1. Otherwise, the wcstombs function
returns the number of bytes modified, not including a terminating null character, if
any.

4-327

string

string

4-328

s t r ing provides several functions useful for manipulating character arrays and
other objects treated as character arrays. Various methods are used for
determining the lengths of the arrays, but in all cases a c ha r * or vo i d *
argument points to the initial (lowest addresses) character of the array. If an array
is written beyond the end of an object. the behaviour is undefined.

Entry no. 38: void *memcpy(void *s1, const void *s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed to by
sl . If copying takes place between objects that overlap, the behaviour is
undefined.

Returns : the value of sl.

Entry no. 39: void *memmove(void *s1, const void *s2, size_t n)

Copies n characters from the object pointed to by s 2 into the object pointed to by
s l . Copying takes place as if then characters from the object pointed to by s2 are
first copied into a temporary array of n characters that does not overlap the objects
pointed to by s l and s2, and then then characters from the temporary array are
copied into the object pointed to by sl .

Returns: the value of sl.

Entry no. 40: char *strcpy(char *s1, const char *s2)

Copies the string pointed to by s 2 (including the terminating null character) into
the array pointed to by sl . If copying takes place between objects that overlap, the
behaviour is undefined.

Returns: the value of sl.

Entry no. 41: char *strncpy(char *s1, const char *s2, size_t n)

Copies not more than n characters (characters that follow a null character are not
copied) from the array pointed to by s2 into the array pointed to by sl. If copying
takes place between objects that overlap, the behaviour is undefined. If ·
terminating nul has not been copied in chars, no term nul is placed in s 2.

Returns: the value of sl .

The shared C library

Entry no. 42: char *strcat(char *s1, const char *s2)

Appends a copy of the string pointed to by s2 (including the terminating null
character) to the end of the string pointed to by sl . The initial character of s2
overwrites the null character at the end of sl.

Returns: the value of sl.

Entry no. 43: char *strncat(char *s1, const char *s2, size_t n)

Appends not more than n characters (a null character and characters that follow it
are not appended) from the array pointed to by s2 to the end of the string pointed
to by sl . The initial character of s2 overwrites the null character at the end of sl.
A terminating null character is always appended to the result.

Returns: the value of sl .

The sign of a non-zero value returned by the comparison functions is determined
by the sign of the difference between the values of the first pair of characters (both
interpreted as unsigned char) that differ in the objects being compared.

Entry no. 44: int memcmp(const void *s1, const void *s2, size_t n)

Compares the first n characters of the object pointed to by sl to the first n
characters of the object pointed to by s2.

Returns: an integer greater than , equal to, or less than zero, depending on whether
the object pointed to by sl is greater than, equal to, or less than the object
pointed to by s2.

Entry no. 45: int strcmp(const char *s1, const char *s2)

Compares the string pointed to by sl to the string pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether
the string pointed to by sl is greater than , equal to, or less than the string pointed
to by s2.

Entry no. 46: int strncmp(const char *s1, const char *s2, size_t n)

Compares not more than n characters (characters that follow a null character are
not compared) from the array pointed to by sl to the array pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending o~ whether
the string pointed to by sl is greater than , equal to, or less than the string pointed
to by s2.

4-329

string

4-330

Entry no. 178: int strcoll(const char *s1, const char *s2)

Compares the string pointed to by sl to the string pointed to by s2, both
interpreted as appropriate to the LC_COLLATE category of the current locale.

Returns: an integer greater than, equal to, or less than zero, depending on whether
the string pointed to by sl is greater than, equal to, or less than the string pointed
to by s2 when both are interpreted as appropriate to the current locale.

Entry no. 177: size_t strxfrm(char *s1, const char *s2, size_t n)

Transforms the string pointed to by s2 and places the resulting string into the
array pointed to by sl. The transformation function is such that if the strcmp
function is applied to two transformed strings, it returns a value greater than,
equal to or less than zero, corresponding to the result of the strcoll function
applied to the same two original strings . No more than n characters are placed into
the resulting array pointed to by sl, including the terminating null character. If n is
zero, sl is 'permitted to be a null pointer. If copying takes place between objects
that overlap, the behaviour is undefined.

Under RISC OS 3 (version 3.1 0) this function only works for the default ANSI locale,
but not for other locales (ie not after a setlocale call).

Returns: The length of the transformed string is returned (not including the
terminating null character). If the value returned is nor more, the contents of the
array pointed to by sl are indeterminate.

Entry no. 47: void *memchr(const void *s, int c, size_t n)

Locates the first occurrence of c (converted to an unsigned char) in the initial n
characters (each interpreted as unsigned char) of the object pointed to by s.

Returns: a pointer to the located character, or a null pointer if the character does
not occur in the object.

Entry no. 48: char *strchr(const char *s, int c)

Locates the first occurrence of c (converted to a char) in the string pointed to by s
(including the terminating null character). The BSD UNIX name for this function is
index ().

Returns: a pointer to the located character, or a null pointer if the character does
not occur in the string.

The shared C library

Entry no. 49: size_t strcspn(const char *s1, const char *s2)

Computes the length of the initial segment of the string pointed to by sl which
consists entirely of characters not from the string pointed to by s2. The
terminating null character is not considered part of s2.

Returns: the length of the segment.

Entry no. 50: char *strpbrk(const char *s1, const char *s2)

Locates the first occurrence in the string pointed to by sl of any character from the
string pointed to by s2.

Returns: returns a pointer to the character, or a null pointer if no character form s2
occurs in sl.

Entry no. 51: char *strrchr(const char *s, int c)

Locates the last occurrence of c (converted to a char) in the string pointed to by s.
The terminating null character is considered part of the string. The BSD UNIX name
for this function is rindex ().

Returns: a pointer to the character, or a null pointer if c does not occur in the
string.

Entry no. 52: size_t strspn(const char *s1, const char *s2)

Computes the length of the initial segment of the string pointed to by sl which
consists entirely of characters from the string pointed to by s2.

Returns: the length of the segment.

Entry no. 53: char *strstr(const char *s1, const char *s2)

Locates the first occurrence in the string pointed to by sl of the sequence of
characters (excluding the terminating null character) in the string pointed to by s2.

Returns: a pointer to the located string, or a null pointer if the string is not found .

Entry no. 54: char *strtok(char *s1, const char *s2)

A sequence of calls to the s trtok function breaks the string pointed to by sl into
a sequence of tokens, each of which is delimited by a character from the string
pointed to by s2. The first call in the sequence has sl as its first argument, and is
followed by calls with a null pointer as their first argument. The separator string
pointed to by s2 may be different from call to call . The first call in the sequence
searches for the first character that is not contained in the current separator string
s2. If no such character is found , then there are no tokens in sl and the strtok

4-331

string

4-332

function returns a null pointer. If such a character is found, it is the start of the first
token . The strtok function then searches from there for a character that is
contained in the current separator string. If no such character is found, the current
token extends to the end of the string pointed to by sl , and subsequent searches
for a token will fail. If such a character is found, it is overwritten by a null character,
which terminates the current token. The strtok function saves a pointer to the
following character, from which the next search for a token will start Each
subsequent call, with a null pointer as the value for the first argument. starts
searching from the saved pointer and behaves as described above.

Returns: pointer to the first character of a token , or a null pointer if there is no
token.

Entry no. 55: void *memset(void *s, int c, size_t n)

Copies the value of c (converted to an unsigned char) into each of the first n
characters of the object pointed to by s .

Returns: the value of s.

Entry no. 56: char *strerror(int errnum)

Maps the error number in errnum to an error message string.

Returns: a pointer to the string, the contents of which are implementation-defined.
Under RISC OS and Arthur the strings for the given er rnums are as follows:

• 0 No error (errno = 0)

• EDOM EDOM- function argument out of range

• ERANGE ERANGE- function result not representable

• ESIGNUM ESIGNUM- illegal signal number to signal () or
raise ()

• others Error code (errno) has no associated message.

The array pointed to may not be modified by the program, but may be overwritten
by a subsequent call to the strerror function.

Entry no. 57: size_t strlen(const char *s)

Computes the length of the string pointed to by s.

Returns: the number of characters that precede the terminating null character.

time

The shared C library

time provides several functions for manipulating time. Many functions deal with a
calendar time that represents the current date (according to the Gregorian
calendar) and time. Some functions deal with local time, which is the calendar
time expressed for some specific time zone, and with Daylight Saving Time, which
is a temporary change in the algorithm for determining local time.

struct tm holds the components of a calendar time called the broken-down
time. The value of tm_isdst is positive if Daylight Saving Time is in effect, zero if
Daylight Saving Time is not in effect, and negative if the information is not
available.

struct tm {
int tm_sec; I* seconds after the minute, 0 to 60

(0-60 allows for the occasional leap
second) *I

int tm_min I* minutes after the hour, 0
int tm_hour I* hours since midnight, 0 to
int tm_mday I* day of the month, 0 to 31
int tm_mon I* months since January, 0 to
int tm_year I* years since 1900 *I
int tm_wday I* days since Sunday, 0 to 6
int tm_yday I* days since January 1, 0 to
int tm_ isdst I* Daylight Saving Time flag

} i

Entry no. 29: clock_t clock(void)

Determines the processor time used.

to 59 *I
23 *I

*I
11 *I

*I
365 *I

*I

Returns: the implementation's best approximation to the processor time used by
the program since program invocation. The time in seconds is the value returned,
divided by the value of the macro CLOCKS_PER_ SEC. The value (clock_t) -1
is returned if the processor time used is not available. In the desktop, clock ()
returns all processor time, not just thai: of the program.

Entry no. 30: double difftime(time_t time1, time_t timeO)

Computes the difference between two calendar times: timel - timeD. Returns:
the difference expressed in seconds as a double.

4-333

time

4-334

Entry no. 31: time_t mktime(struct tm *timeptr)

Converts the broken-down time, expressed as local time, in the structure pointed
to by t imeptr into a calendar time value with the same encoding as that of the
values returned by the t ime function. The original values of the t m_wday and
tm_yday components of the structure are ignored, and the original values of the
other components are not restricted to the ranges indicated above. On successful
completion , the values of the t m_wday and tm_yday structure components are
set appropriately, and the other components are set to represent the specified
calendar time, but with their values forced to the ranges indicated above; the final
value of t m_mday is not set until t m_mon and tm_year are determined.

Returns : the specified calendar time encoded as a value of type t ime_ t . If the
calendar time cannot be represented , the function returns the value (t i me_ t) -1.

Entry no. 32: time_t time(time_t *timer)

Determines the current calendar time. The encoding of the value is unspecified .

Returns : the implementation's best approximation to the current calendar time .
The value (time_t) -1 is returned if the calendar time is not available. If timer
is not a null pointer, the return value is also assigned to the object it points to.

Entry no. 33: char *asctime(const struct tm *timeptr)

Converts the broken-down time in the structure pointed to by timept r into a
stringinthestyle sun Sep 16 01:03 :52 1973\n \ 0.

Returns: a pointer to the string containing the date and time.

Entry no. 34: char *ctime(const time_t *timer)

Converts the calendar time pointed to by timer to local time in the form of a
string. It is equivalent to a set ime (local time (timer)) .

Returns : the pointer returned by the a se t ime function with that broken-down
time as argument.

Entry no. 35: struct tm *gmtime(const time_t *timer)

Converts the calendar time pointed to by timer into a broken-down time,
expressed as Greenwich Mean Time (GMT).

Returns : a pointer to that object or a null pointer if GMT is not available.

The shared C library

Entry no. 36: struct tm *localtime(const time_t *timet)

Converts the calendar time pointed to by timer into a broken-down time,
expressed a local t ime.

Returns: a pointer to that object.

Entry no. 37: size_t strftime(char *s, size_t maxsize, const char *format,
const struct tm *timeptr')

Places characters into the array pointed to by s as controlled by the string pointed
to by format . The format string consists of zero or more directives and ordinary
characters. A directive consists of a % character followed by a character that
determines the directive's behaviour. All ordinary characters (including the
terminating null character) are copied unchanged into the array. No more than
maxsize characters are placed into the array. Each directive is replaced by
appropriate characters as described in the following list. The appropriate
characters are determined by the LC_TIME category of the current locale and by
the va lues contained in the structure pointed to by timeptr.

Directive

%a
%A
%b
%B
%c
%d
%H
%I
%j
%m
%M
%p

%S
%U

%w
%W

%x
%X
%y
%Y

Replaced by
the locale's abbreviated weekday name
the locale's full weekday name
the locale's abbreviated month name
the locale's full month name
the locale's appropriate date and time representation
the day of the month as a decimal number (0 I - 31)
the hour (24-hour clock) as a decimal number (00- 23)
the hour (12-hour clock) as a decimal number (0 I - 12)
the day of the year as a decimal number (001 - 366)
the month as a decimal number (01- 12)
the minute as a decimal number (00- 61)
the locale's equivalent of either AM or PM designation

associated with a 12-hour clock
the second as a decimal number (00- 61)
the week number of the year (Sunday as the first day of

week I) as a decimal number (00- 53)
the weekday as a decimal number (0 (Sunday)- 6)
the week number of the year (Monday as the first day of

week I) as a decimal number (00- 53)
the locale's appropriate date representation
the locale's appropriate time representation
the year without century as a decimal number (00- 99)
the year with century as a decimal number

4-335

time

4-336

%Z

%%

the time zone name or abbreviation, or by no character
if no time zone is determinable

%

If a directive is not one of the above, the behaviour is undefined.

Returns: If the total number of resulting characters including the terminating null
character is not more than maxsize, the strftime function returns the number
of characters placed into the array pointed to by s not including the terminating
null character. Otherwise. zero is returned and the contents of the array are
indeterminate.

84 BASIC and BASICTrans

Introduction and Overview
Facilities were added to BASIC (and to BASIC64) in RISC OS 3 so that its messages
can be translated for use in another territory. The BASIC interpreter issues calls to
the BASICTrans module, which is responsible for providing messages appropriate
to a particular territory. By replacing one BASICTrans module with another, you can
change the language used by BASIC for its messages.

Both BASIC and BASIC64 issue the same calls to the same BASICTrans module,
thus code and messages are shared between the two modules.

If you write a BASICTrans module, you can allocate memory for the translation
from the RMA:

• Memory inside the SWI call is invulnerable to the task swapping problem
found when BASIC itself attempts to use RMA memory. 'Task manager'
swapping between two BASIC programs does not occur when in SWI mode.

Using BBC BASIC

For the sake of completeness. this chapter documents the *BASIC and *BASIC64
commands used to enter BBC BASIC. For full details of using BBC BASIC, see the
BBC BASIC Reference Manual. available from your Acorn supplier.

4-337

SWI Calls

SWI Calls

4-338

BASICTrans_HELP
(SWI &42C80)

Interpret, translate if required, and print HELP messages

On entry .

RO =pointer to lexically analysed HELP text (terminated by &OD)
RI =pointer to program's name (BASIC or BASIC64)
R2 = pointer to the lexical analyser's tables

On exit

Use

RO - R2 corrupted

This call is made by BASIC to request that a BASICTrans module print a help
message. BASIC lexically analyses the HELP text. converting keywords to tokens,
before making this call. The currently loaded BASICTrans module then prints
appropriate help text.

On entry Rl points to the program's name, and so is non-zero; if it is still non-zero
on exit BASIC will print its own (short , English) Help text. Consequently, a
BASICTrans module will normally set R I to zero on exit- but the English version of
BASICTrans sometimes preserves R I so that its own help is followed by the default
help.

In order to share the entirety of the HELP text between BASIC and BASIC64, this
call is implemented for English, and both BASIC and BASIC64 are assembled
without their own HELP text. About I 5Kbytes are shared like this.

Copy translated error string to buffer

BASIC and BASICTrans

BASICTrans_Error
{SWI &42C81)

On entry

RO =unique error number (0- 112)
Rl =pointer to buffer in which to place the error

On exit

Use

RO - R3 corrupted

This call is made by BASIC to request that a BASICTrans module provide an error
message. The currently loaded BASICTrans module places a null terminated error
string for the given error number in the buffer pointed to by R I. The error string is
null terminated. BASIC then prints the error message, and performs other actions
necessary to smoothly integrate the error message with BASIC's normal provisions
for error handling.

An error is generated if the BASICTrans module is not present (ie the SWI is not
found). or if BASICTrans does not perform the translation. BASIC then prints a
default (English) message explaining this.

In order to share the entirety of the error string text between BASIC and BASIC64,
this call is implemented for English, and both BASIC and BASIC64 are assembled
without their error messages. About 6Kbytes are shared like this. Correct error
numbers are vital to the functioning of the interpreter, and so - rather than being
shared- these are held in BASIC or BASIC64.

4-339

BASICTrans_Message (SWI &42C82)

4-340

BASICTrans_Message
(SWI &42C82)

Translate and print miscellaneous message

On entry

RO =unique message number (0 - 25)
Rl - R3 =message dependent values

On exit

Use

RO, R I corrupted

This call is made by BASIC to request that the BASICTrans module print a
'miscellaneous' message. Further parameters are passed that depend on the
message you require to be printed .

An error is generated if the BASICTrans module is not present (ie the SWI is not
found) , or if BASICTrans does not perform the translation . BASIC then prints the
full (English) version of the message that it holds internally.

The English BASlCTrans module behaves as if this call does not exist. so that the
default messages get printed . There are not many 'miscellaneous' messages, so no
great saving is to be had in providing RlSC OS 3 with a shared implementation.

The classic problem of the error handler's ·at line ' can now be handled as follows:

TRACE OFF
IF QUIT=TRUE THEN

ERROR EXT , ERR , REPORT$
ELSE

RESTORE :! (HIMEM-4)=@%
SYS "BASICTrans_ Message " ,2l , ERL , REPORT$ TO ; @%
IF (@% AND 1)<>0 THEN

REPORT : @%=&900 : I F ERL<>O THEN PRINT " at line "ERL ELSE PRINT
END IF

@%= ! (HI MEM-4)
END IF
END

This allows the BASICTrans_Message code to print the string and optional · at line '
ERL information in any order it likes.

BASIC and BASICTrans

*Commands

Starts the ARM BBC BASIC interpreter

*BASIC
*BASIC64

Syntax

*BAS I C [options]

Parameters

Use

options see below

*BASIC starts the ARM BBC BASIC V interpreter.

*BASIC64 starts the ARM BBC BASIC VI interpreter- provided its module has
already been loaded, or is in the library or some other directory on the run path .

For full details of BBC BASIC, see the BBC BASIC Reference Manual , available from
your Acorn supplier.

The options control how the interpreter will behave when it starts, and when any
program that it executes terminates. If no option is given, BASIC simply starts with
a message of the form:

ARM BBC BAS I C V version 1 . 05 (C) Acorn 1989

St arting wi t h 643324 bytes free

The number of bytes free in the above message will depend on the amount of free
RAM on your computer. The first line is also used for the default REPORT message,
before any errors occur.

One of three options may follow the *BASIC command to cause a program to be
loaded, and , optionally, executed automatically. Alternatively, you can use a
program that is already loaded into memory by passing its address to the
interpreter. Each of these possibilities is described in turn below.

In all cases where a program is specified , this may be a tokenised BASIC program,
as created by a SAVE command, or a textual program. which will be tokenised (and
possibly renumbered) automatically.

4-341

*BASIC *BASIC64

4-342

*BAS IC -help

This command causes BASIC to print some help information describing the
options documented here. Then BASIC starts as usual.

*BASIC [- c hain] filename

If you give a f i 1 ename after the • BASIC command, optionally preceded by the
keyword - c hain, then the named file is loaded and executed. When the program
stops, BASIC enters immediate mode, as usual.

*BAS I C - quit fi lename

This behaves in a similar way to the previous option. However, when the program
terminates, BASIC quits automatically, returning to the environment from which
the interpreter was originally called. It also performs a CRUNCH %1111 on the
program (for further details see the description of the CRUNCH command in the
BBC BASIC Reference Manual) . This is the default action used by BASIC programs
that are executed as • commands . In addition, the function QUIT returns TRUE if
BASIC is called in this fashion.

*BASIC -loa d f il ename

This option causes the file to be loaded automatically, but not executed. BASIC
remains in immediate mode, from where the program can be edited or executed as
required.

*BAS IC @start , e n d

This acts in a similar way to the - l oad form of the command. However, the
program that is 'loaded' automatically is not in a file, but already in memory.
Following the @ are two addresses. These give, in hexadecimal, the address of the
start of the in-core program, and the address of the byte after the last one. The
program is copied to PAGE and tokenised if necessary. This form of the command
is used by Twin when returning to BASIC.

Note that the in-core address description is fixed format. It should be in the form:

@xxxxxxxx, xxxxxxxx

where x means a hexadecimal digit. Leading zeros must be supplied. The
command line terminator character must come immediately after the last digit. No
spaces are allowed.

*BASIC - chain @start , end

This behaves like the previous option , but the program is executed as well. When
the program terminates, BASIC enters immediate mode.

BASIC and BASICTrans

*BASIC -quit @start,end

This option behaves as the previous one, but when the BASIC program terminates.
BASIC automatically quits . The function QUIT will return TRUE during the
execution of the program .

Examples

*BASIC
*BASIC -quit shellProg
*BASIC @000ADFOC , OOOAE345
*BASIC -chain fred

Related commands

None

Related SWis

None

Related vectors

None

4-343

4-344

85 Command scripts

Introduction
Command scripts are files of commands that you would normally type in at the
Command Line prompt. There are two common reasons for using such a file :

• To set up the computer to the state you want, either when you switch on or
when you start an application .

• To save typing in a set of commands you find yourself frequently using.

In the first case the file of commands is commonly known as a boot file .

You may find using an Alias$... variable to be better in some cases. The main
advantage of these variables is that they are held in memory and so are quicker in
execution ; however, they are only really suitable for short commands. Even if you
use these variables you are still likely to need to use a command file to set them up
initially.

There are two types of file available for writing command scripts: Command fi les,
and Obey files . The di fferences between these two file types are :

• An Obey file is read directly, whereas a Command file is treated as if it were
typed at the keyboard (and hence usually appears on the screen) .

• An Obey file sets the system variable Obey$Dir to the directory it is in.

• An Obey file can be passed parameters

• An Obey file stops when an error is returned to the Obey module (or when an
error is generated and the exit handler is the Obey module- an untrapped
error, not in an application) .

4-345

Overview and Technical Details

Overview and Technical Details

Creating a command script

A command script can be created using any text or word processor With Edit you
can set the type of the file to Command or Obey, except under RISC OS 2, where
you then have to use the command *SetType .

You should save it in one of the following:

• the directory from which the command script will be run (typically your root
directory, or an application directory)

• the library (typically $.Library, but may be S.ArthurLib on a network; see
*Configure Lib on page 2-373).

Running the script

4-346

Provided that you have set the file to have a filetype of Command or Obey it can
then be run in the same ways as any other file :

• Type its name at the * prompt.

• Type its name preceded by a * at any other prompt (some applications may not
support this).

• Double-d ick on its icon from the desktop.

The same restrictions apply as with any other file . If the file is not in either your
current directory or the library, it will not be found if you just give the filename; you
must give its full pathname. (This assumes you have not changed the value of the
system variable RunSPath.)

You can force any text file to be treated as an obey file by using the command
*Obey. This overrides the current file type, such as Text or Command. Obviously,
this will only have meaning if the text in the file is valid to treat as an obey file.

Similarly, any file can be forced to be a command file by using *Exec. This is
described on page 2-165.

Obey$Dir

When an obey file is run , by using any of the above techniques, the system variable
ObeySDir is set to the parent directory part of the pathname used. For example, if
you were to type *Obey a. b. c, then a. b is the parent directory of the pathname.

Note that it is not set to the full parent name, only the part of the string passed to
the command as the pathname. So if you change the current directory or filing
system during the obey file, then it would not be valid any more.

Command scripts

Ideally, you should invoke Obey files (and applications. which are started by an
Obey file named !Run) by using their full pathname. and preceding that by either a
forward slash 1 or the word Run . for example:

I adfs: :MikeWinnie. $.0dds'nSods .MyConfig

Run adfs: :MikeWinnie. $.0dds 'nSods.MyConfig

This ensures that Obey$Dir is set to the full path name of the Obey file .

Run$ Path

The variable Run$Path also influences how this parent name is decoded . If you
were to type:

*Set Run$Path adfs: :Winnie.Flagstaff.
*obeyfile parl par2

Then it would be interpreted as:

*Run adfs::Winnie.Flagstaff.obeyfile parl par2

If the filetype of obeyfile was &FEB. an obey file. then the command would be
interpreted as:

*Obey adfs : :Winnie.Flagstaff .obeyf ile parl par2

This can also apply to application directories. as follows :

*Set Alias$@RunType_FEB Obey %*0
*Set File$Type_FEB Obey
*Set Run$Path adfs: :Winnie.Flagstaff.
*!AppDir parl par2

In this case. RISC OS would look for the !Run file within the application directory
and run it. Note that in most cases. the first two lines above are already defined in
your system. If !Run is an obey file . then it would be interpreted as:

*Obey adfs: :Winnie.Flagstaff . !AppDir. !Run parl par2

Note that Obey files can also be nested . calling other files to Obey; however.
Command files cannot be nested. This is one of the reasons why it is better to set
up your file as an Obey file rather than a Command file.

4-347

Making a script run automaticauy

Making a script run automatically

You can make scripts run automatically:

• From the network when you first log on .

The file must be called !Arm Boot. (This is to distinguish a boot file for a
machine running Arthur or RISC OS from an existing ! Boot file already on the
network for the use of BBC model A, model B or Master series computers.)

• From a disc when you first switch the computer on .

The file must be called !Boot.

• From an application directory when you first display the directory's icon under
the desktop.

The file must be called !Boot. It is run if RISC OS does not already know of a
sprite having the same name as the directory, and is intended to load sprites
for applications when they first need to be displayed. For further details see
the section entitled Application resource files on page 3-58.

• From an application directory when the application is run .

The file must be called !Run . For further details see the section entitled
Application resource files on page 3-58.

In the first two cases you will need to use the *Opt command as well (see
page 2-177) .

For an example of the latter two cases, you can look in any of the application
directories in the Applications Suite . If you are using the desktop, you will need to
hold down the Shift key while you open the application directory, otherwise the
application will run .

Using parameters

4-348

An Obey file can have parameters passed to it, which can then be used by the
command script. A Command file cannot have parameters passed to it. The first
parameter is referred to as %0, the second as % I, and so on . You can refer to all the
parameters after a particular one by putting a • after the %, so %*1 would refer to
the all parameters from the second one onwards .

These parameters are substituted before the line is passed to the Command Line
interpreter. Thus if an Obey file called Display contained:

Fi le i nfo %0
Type %0

Abbreviations

then the command *Di sp l ay My Fil e would do this :

Fi le i nfo MyFil e
Type MyFile

Command scripts

Sometimes you do not want parameter substitution . For example, suppose you
wish to include a *Set Alias$... command in your file, such as:

Se t Alias$Mode echo 1<22> 1<%0> Desired command

The effect of this is to create a new command 'Mode'. If you include the *Set Alias
command in an Obey file, when you run the file the 'YoO will be replaced by the first
parameter passed to the file . To prevent the substitution you need to change the 'Yo
to 'Yo 'Yo:

Set Alias$Mod e echo 1< 22> 1<%%0> Command needed in file

Now when the file is run, the ''Yo'YoO' is changed to ''YoO'. No other substitution occurs
at this stage, and the desired command is issued. See *Set on page 1-325.

You must not use abbreviations for* Commands in scripts and programs, as these
may vary between releases of RISC OS. For example, in RISC OS 2 '*Te.' was the
min imum abbreviation for *Tempo, whereas in RISC OS 3 this abbreviation instead
runs the *Territories command.

4-349

*Commands

*Commands

4-350

*Obey

Executes a file of * commands

Syntax

*Obey [[-v] [-c] [fil ename [parameters]]]

Parameters

Use

-v
-c

filename

parameters

echo each line before execution

cache filename, and execute it from memory

a valid pathname, specifying a file

strings separated by spaces

Obey executes a file of commands. Argument substitution is performed on each
line, using parameters passed in the command .

With the -v option , each line is displayed before execution . With the -c option ,
the file is cached and executed from memory. These options are not available in
RISC OS 2.

Example

*Obey !commands myfilel 12

Related commands

*Exec, *Run

Related SWis

None

Related vectors

None

Command scripts

Application Notes
These example files illustrate several of the important differences between
Command and Obey files:

*BASIC
AUTO
FOR I = 1 TO 10

PRINT "Hello"
NEXT I
END

If this were a command file . it would enter the BASIC interpreter. and input the file
shown. The command script will end with the BASIC interpreter waiting for another
line of input. You can then press Esc to get a prompt. type RUN to run the program .
and then type QUIT to leave BASIC. This script shows how a command file is
passed to the input. and can change what is accepting its input (in this case to the
BASIC interpreter)

In contrast . if this were an Obey file it would be passed to the Command Line
interpreter. and an attempt would be made to run these commands:

*BASIC
*AUTO
*FOR I = 1 TO 10
* PRINT "Hello"
*NEXT I
*END

Only the first command is valid . and so as an Obey file all this does is to leave you
in the BASIC interpreter. Type QUIT to leave BASIC; you will then get an error
message saying File 'AUTO' not found. generated by the second line in the file .

The next example illustrates how control characters are handled in both Command
and Obey files:

echo <7>
echo 1<7>

The control characters are represented in GSTrans format (see the chapter entitled
Conversions on page I -441). These are not interpreted until the echo command is
run . and are only interpreted then because echo expects GSTrans format.

The first line sends an ASCII 7 to the VDU drivers. sounding a beep; see VDU 7 on
page I -555 for more information. In the second line. the I preceding the< changes
it from the start of a GSTrans sequence to just representing the character<. so the
overall effect is :

echo <7> Send ASCII 7 to VDU drivers - beeps

ech o 1<7> Send <7> to VDU drivers -displays < 7 > on the screen

4-351

Application Notes

4-352

The last examples are a Command file:

*Set Alias$rnore %echo 1<14>1rn %type -tabexpand %*01rn %echo 1<15>

and an Obey file that has the same effect:

Set Alias$rnore %echo 1<14>1rn %type -tabexpand %%*01rn %echo 1<15>

The only differences between the two examples are that the Command file has a
preceding • added, to ensure that the command is passed to the Command Line
interpreter; and that the Obey file has the "'o*O changed to "'o"'o*O to delay the
substitution of parameters.

The file creates a new command called 'more' -taking its name from the UNIX
'more' command- by setting the variable Alias$more:

• The % characters that precede echo and type ensure that the actual
commands are used, rather than an aliased version of them .

• The sequence I m represents a carriage return in GSTrans format and is used to
separate the commands, just as Return would if you were typing the
commands.

• The two echo commands turn paged mode on, then off, by sending the control
characters ASCII 14 and 15 respectively to the VDU drivers (see page 1-562
onwards of the chapter entitled VDU Drivers for more information) .

• The I before each < prevents the control characters from being interpreted
until the aliased command 'more' is run.

The command turns paged mode on, types a file to the screen expanding tabs as it
does so, and then turns paged mode off.

Appendixes and tables

4-353

4-354

86 Appendix A: ARM assembler

Introduction
Assembly language is a programming language in which each statement translates
directly into a single machine code instruction or piece of data. An assembler is a
piece of software which converts these statements into their machine code
counterparts.

Writing in assembly language has its disadvantages. The code is more verbose
than the equivalent high-level language statements, more difficult to understand
and therefore harder to debug. High-level languages were invented so that
programs could be written to look more like English so we could talk to computers
in our language rather than directly in their own.

There are two reasons why, in certain circumstances, assembly language is used in
preference to high-level languages. The first reason is that the machine code
program produced by it executes more quickly than its high-level counterparts,
particularly those in languages such as BASIC which are interpreted. The second
reason is that assembly language offers greater flexibility. It allows certain
operating system routines to be called or replaced by new pieces of code, and it
allows greater access to the hardware devices and controllers.

Available assemblers

The BASIC assembler

The BBC BASIC interpreter, supplied as a standard part of RISC OS, includes an
ARM assembler. This supports the full instruction set of the ARM 2 processor. At
present it neither supports extra instructions that were first implemented by the
ARM 3 processor, nor does it support coprocessor instructions.

It is the BASIC assembler that is described below, serving as an introduction to
ARM assembler.

4-355

Available assemblers

The Acorn Desktop Assembler

4-356

The Acorn Desktop Assembler is a separate product that provides much more
powerful facilities than the BASIC assembler. With it you can develop assembler
programs under the desktop, in an environment common to all Acorn desktop
languages. It contains two different assemblers:

• AAsm is an assembler that produces binary image files which can be executed
immediately

• ObjAsm is an assembler that creates object files that cannot be executed
directly, but must first be linked to other object files. Object files linked with
those produced by ObjAsm may be produced from some programming
language other than assembler, for example C.

These assemblers are not described in this appendix, but use a broadly similar
syntax to the BASIC assembler described below. For full details, see the Acorn
Assembler Release 2 manual. which is supplied with Acorn Desktop Assembler, or is
separately available.

Appendix A: ARM assembler

The BASIC assembler

Using the BASIC assembler

The assembler is part of the BBC BASIC language. Square brackets T and ']' are
used to enclose all the assembly language instructions and directives and hence to
inform BASIC that the enclosed instructions are intended for its assembler.
However, there are several operations which must be performed from BASIC itself
to ensure that a subsequent assembly language routine is assembled correctly.

Initialising external variables

The assembler allows the use of BASIC variables as addresses or data in
instructions and assembler directives. For example variables can be set up in
BASIC giving the numbers of any SWI routines which will be called:

OS_Writei = &100

SWI OS_Writei+ASC">"

Reserving memory space for the machine code

The machine code generated by the assembler is stored in memory. However, the
assembler does not automatically set memory aside for this purpose. You must
reserve sufficient memory to hold your assembled machine code by using the DIM
statement. For example:

1000 DIM code% 100

The start address of the memory area reserved is assigned to the variable code%.
The address of the last memory location is code%+100. Hence, this example
reserves a total of I 0 I bytes of memory. In future examples, the size of memory
reserved is shown as required_size, to emphasise that you must substitute a value
appropriate to the size of your code.

4-357

Using the BASIC assembler

4-358

Memory pointers

You need to tell the assembler the start address of the area of memory you have
reserved. The simplest way to do this is to assign P% to point to the start of this
area . For example:

DIM code% required_size

P% = code%

P% is then used as the program counter. The assembler places the first assembler
instruction at the address P% and automatically increments the value of P% by four
so that it points to the next free location. When the assembler has finished
assembling the code, P% points to the byte following the final location used.
Therefore, the number of bytes of machine code generated is given by:

P% - code%

This method assumes that you wish subsequently to execute the code at the same
location.

The position in memory at which you load a machine code program may be
significant. For example. it might refer directly to data embedded within itself. or
expect to find routines at fixed addresses. Such a program only works if it is loaded
in the correct place in memory. However, it is often inconvenient to assemble the
program directly into the place where it will eventually be executed. This memory
may well be used for something else whilst you are assembling the program. The
solution to this problem is to use a technique called 'offset assembly' where code
is assembled as if it is to run at a certain address but is actually placed at another.

To do this. set 0% to point to the place where the first machine code instruction is
to be placed and P% to point to the address where the code is to be run.

To notify the assembler that this method of generating code is to be used. the
directive OPT. which is described in more detail below. must have bit 2 set.

It is usually easy, and always preferable. to write ARM code that is position
independent.

Appendix A: ARM assembler

Implementing passes

Normally, when the processor is executing a machine code program , it executes
one instruction and then moves on automatically to the one following it in
memory. You can, however, make the processor move to a different location and
start processing from there instead by using one of the 'branch' instructions. For
example:

.resul t_was 0

BEQ result_was_O

The full stop in front of the name result_was_O identifies this string as the name of
a 'label'. This is a directive to the assembler which tells it to assign the current
value of the program counter (P%) to the variable whose name follows the fullstop.

SEQ means 'branch if the result of the last calculation that updated the PSR was
zero'. The location to be branched to is given by the value previously assigned to
the label result_was_O.

The label can. however, occur after the branch instruction. This causes a slight
problem for the assembler since when it reaches the branch instruction. it hasn't
yet assigned a value to the variable, so it doesn't know which value to replace it
with.

You can get around this problem by assembling the source code twice. This is
known as two-pass assembly. During the first pass the assembler assigns values to
all the label variables. In the second pass it is able to replace references to these
variables by their values.

It is only when the text contains no forward references of labels that just a single
pass is sufficient.

These two passes may be performed by a FOR ... NEXT loop as follows:

DIM code% required_size
FOR pass% = 0 TO 3 STEP 3

P% = code%
[

OPT pass%
further assembly language statements and assembler directives

NEXT pass%

Note that the pointer(s). in this case just P%, must be set at the start of both
passes.

4-359

Saving machine code to file

The OPT directive

The OPT is an assembler directive whose bits have the following meaning:

Bit Meaning

0 Assembly listing enabled if set
Assembler errors enabled

2 Assembled code placed in memory at 0% instead of P%
3 Check that assembled code does not exceed memory limit L%

Bit 0 controls whether a listing is produced. It is up to you whether or not you wish
to have one or not.

Bit I determines whether or not assembler errors are to be flagged or suppressed .
For the first pass, bit I should be zero since otherwise any forward-referenced
labels will cause the error 'Unknown or missing variable' and hence stop the
assembly. During the second pass, this bit should be set to one, since by this stage
all the labels defined are known , so the only errors it catches are 'real ones' - such
as labels which have been used but not defined.

Bit 2 allows 'offset assembly' , ie the program may be assembled into one area of
memory, pointed to by 0%, whilst being set up to run at the address pointed to by
P%.

Bit 3 checks that the assembled code does not exceed the area of memory that has
been reserved (ie none of it is held in an address greater than the value held in L %).
When reserving space, L% might be set as follows:

DIM code% required_si ze
L % = code% + required_size

Saving machine code to file

4-360

Once an assembly language routine has been successfully assembled, you can
then save it to file. To do so. you can use the *Save command. In our above
examples, code% points to the start of the code; after assembly, P% points to the
byte after the code. So we could use this BASIC command :

OSCLI "Sav e "+outfil e$ +" "+STR$-(code%)+" "+STR$-(P%)

after the above example to save the code in the file named by outfileS.

Appendix A: ARM assembler

Executing a machine code program

From memory

From memory, the resulting machine code can be executed in a variety of ways:

CALL address
USR address

These may be used from inside BASIC to run the machine code at a given address.
See the BBC BASIC Guide for more details on these statements.

From file

The commands below will load and run the named file. using either its filetype
(such as &FF8 for absolute code) and the associated AliasS@LoadType_xxx and
AliasS@RunType_xxx system variables. or the load and execution addresses
defined when it was saved.

*name
*RUN name
* / name

We strongly advise you to use file types in preference to load and execution
addresses.

Format of assembly language statements

The assembly language statements and assembler directives should be between
the square brackets.

There are very few rules about the format of assembly language statements; those
which exist are given below:

• Each assembly language statement comprises an assembler mnemonic of one
or more letters followed by a varying number of operands.

• Instructions should be separated from each other by colons or newlines.

• Any text following a full stop '.' is treated as a label name.

• Any text following a semicolon ';', or backs lash \', or 'REM' is treated as a
comment and so ignored (until the next end of line or':').

• Spaces between the mnemonic and the first operand, and between the
operands themselves are ignored.

4-361

Registers

Registers

4-362

The BASIC assembler contains the following directives:

EQUB int
EQUW int
EQUD int
EQUS str

ALIGN
ADR reg,addr

Define I byte of memory from LSB of int (DCB, =)
Define 2 bytes of memory from int (DCW)
Define 4 bytes of memory from int (DCD)
Define 0 - 255 bytes as required by string expression
str (DCS)
Align P'Yo (and O'Yo) to the next word (4 byte) boundary
Assemble instruction to load addr into reg

• The first four operations initialise the reserved memory to the values specified
by the operand. In the case of EOUS the operand field must be a string
expression. In all other cases it must be a numeric expression. DCB (and=),
DCW, DCD and DCS are synonyms for these directives.

• The ALIGN directive ensures that the next P'Yo (and O'Yo) that is used lies on a
word boundary. It is used after, for example, an EOUS to ensure that the next
instruction is word-aligned.

• ADR assembles a single instruction- typically but not necessarily an ADD or
SUB- with reg as the destination register. It obtains addr in that register. It
does so in a PC-relative (ie position independent) manner where possible.

At any particular time there are sixteen 32-bit registers available for use, RO to R I 5.
However, Rl 5 is special since it contains the program counter and the processor
status register.

RI 5 is split up with 24 bits used as the program counter (PC) to hold the word
address of the next instruction. 8 bits are used as the processor status register
(PSR) to hold information about the current values of flags and the current
mode/register bank. These bits are arranged as follows:

The top six bits hold the following information:

Bit Flag Meaning

31 N Negative flag
30 z Zero flag
29 c Carry flag
28 v Overflow flag
27 Interrupt request disable
26 F Fast interrupt request disable

Appendix A: ARM assembler

The bottom two bits can hold one of four different values:

M Meaning

0 User mode
Fast interrupt processing mode (FlO mode)

2 Interrupt processing mode (IRQ mode)
3 Supervisor mode (SVC mode)

User mode is the normal program execution state. SVC mode is a special mode
which is entered when calls to the supervisor are made using software interrupts
(SW!s) or when an exception occurs. From within SVC mode certain operations can
be performed which are not permitted in user mode, such as writing to hardware
devices and peripherals. SVC mode has its own private registers R I 3 and R 14. So
after changing to SVC mode, the registers RO- R 12 are the same, but new versions
of Rl3 and R 14 are available. The values contained by these registers in user mode
are not overwritten or corrupted.

Similarly, IRQ and FlO modes have their own private registers (RI3- Rl4 and
R8 - Rl4 respectively).

Although only 16 registers are available at any one time, the processor actually
contains a total of 27 registers.

For a more complete description of the registers, see the chapter entitled ARM
Hardware on page 1-9.

4-363

Condition codes

Condition codes

4-364

All the machine code instructions can be performed conditionally according to the
status of one or more of the following flags: N, Z, C, V. The sixteen available
condition codes are:

AL Always
CC Carry clear
CS Carry set
EO Equal
GE Greater than or equal

GT

HI
LE

LS
LT

Ml
NE
NV
PL
vc
vs

Greater than

Higher (unsigned)
Less than or equal

Lower or same (unsigned)
Less than

Negative
Not equal
Never
Positive
Overflow clear
Overflow set

This is the default
C clear
C set
Z set
(N set and V set) or
(N clear and V clear)
((N set and V set) or
(N clear and V clear)) and Z clear
C set and Z clear
(N set and V clear) or
(N clear and V set) or Z set
C clear or Z set
(N set and V clear) or
(N clear and V set)
N set
Z clear

N clear
V clear
V set

Two of these may be given alternative names as follows:

LO Lower unsigned is equivalent to CC
HS Higher I same unsigned is equivalent to CS

You should not use the NV (never) condition code- see page 4-383 .

Appendix A: ARM assembler

The instruction set

The available instructions are introduced below in categories indicating the type of
action they perform and their syntax. The description of the syntax obeys the
following standards:

(())

(xly)

#exp

Rn

shift

indicates that the contents of the brackets are optional
(unlike all other chapters, where we have been using []
instead)

indicates that either x or y but not both may be given

indicates that a BASIC expression is to be used which
evaluates to an immediate constant. An error is given if the
value cannot be stored in the instruction.

indicates that an expression evaluating to a register number
(in the range 0- 15) should be used, or just a register name.
eg RO. PC may be used for Rl5 .

indicates that one of the following shift options should be
used:

ASL (Rnl#exp) Arithmetic shift left by contents of
Rn or expression

LSL (Rnl#exp) Logical shift left

ASR (Rnl#exp) Arithmetic shift right

LSR (Rnl#exp) Logical shift right

ROR (Rnl#exp) Rotate right

RRX Rotate right one bit with extend

In fact ASL and LSL are the same (because the ARM does not
handle overflow for signed arithmetic shifts). and synonyms.
LSL is the preferred form, as it indicates the functionality.

4-365

The instruction set

Move instructions

4-366

Syntax:

opcode«cond»«S>> Rd. (#expiRm)«.shift»

There are two move instructions. 'Op2' means '(#expiRm)«,shift» ':

Instruction

MOV
MOVN

Move
Move NOT

Calculation performed

Rd = Op2
Rd = NOTOp2

Each of these instructions produces a result which it places in a destination
register (Rd) . The instructions do not affect bytes in memory directly.

Again. all of these instructions can be performed conditionally. In addition, if the
·s· is present, they can cause the condition codes to be set or cleared. These
instructions set Nand Z from the ALU , C from the shifter (but only if it is used), and
do not affect V.

Examples:

MOV RO , #10 ; Load RO with the value 10.

Special actions are taken if the source register is RI 5; the action is as follows:

• If Rm=RI 5 all 32 bits of Rl5 are used in the operation ie the PC+ PSR.

If the destination register is Rl5 , then the action depends on whether the optional
·s· has been used:

• If S is not present only the 24 bits of the PC are set.

• If S is present the whole result is written to R 15, the flags are updated from the
result. (However the mode, I and F bits can only be changed when in non-user
modes.)

Appendix A: ARM assembler

Arithmetic and logical instructions

Syntax:

opcode«cond>)(<S» Rd, Rn , (#expiRm)« ,shift»

The instructions available are given below; again , 'Op2' means '(#expiRm)«,shift»' :

Instruction Calculation performed

ADC Add with carry Rd = Rn + Op2 + C
ADD Add without carry Rd = Rn + Op2
SBC Subtract with carry Rd = Rn - Op2 - (I - C)
SUB Subtract without carry Rd = Rn- Op2
RSC Reverse subtract with carry Rd = Op2 - Rn - (I - C)
RSB Reverse subtract without carry Rd = Op2- Rn

AND Bitwise AND Rd = Rn AND Op2
BIC Bitwise AND NOT Rd = Rn AND NOT (Op2)
ORR Bitwise OR Rd = Rn OR Op2
EOR Bitwise EOR Rd = Rn EOR Op2

Each of these instructions produces a result which it places in a destination
register (Rd) . The instructions do not affect bytes in memory directly

As was seen above, all of these instructions can be performed conditionally. In
addition , if the ·s· is present, they can cause the condition codes to be set or
cleared. The condition codes N, Z, C and V are set by the arithmetic logic unit
(ALU) in the arithmetic operations. The logical (bitwise) operations set Nand Z
from the ALU, C from the shifter (but only if it is used), and do not affect V.

Examples:

ADDEQ Rl, Rl , #7

SBCS R2, R3, R4

AND R3 , Rl , R2 , LSR #2

If the zero flag is set then add 7
to the contents of register Rl .

Subtract with carry the contents of register R4 from
the contents of register R3 and place the result in
register R2. The f l ags will be updated.

Perform a logical AND on the contents of register Rl
and the contents of register R2 I 4, and place the
result in register R3 .

Special .actions are taken if any of the source registers are RI 5; the action is as
follows :

• If Rm=RI 5 all 32 bits of Rl 5 are used in the operation ie the PC+ PSR.

• If Rn=Rl 5 only the 24 bits of the PC are used in the operation.

If the destination register is RI 5, then the action depends on whether the optional
·s· has been used:

4-367

The instruction set

4-368

• If S is not present only the 24 bits of the PC are set.

• If Sis present the whole result is written toRI 5, the flags are updated from t h.c
result. (However the mode, I and F bits can only be changed when in non-user
modes.)

Comparison instructions

Syntax:

opcode«cond»«SIP» Rn , (#expiRm) «,shift»

There are four comparison instructions; again , 'Op2' means '(#expiRm)«,shift»':

Instruction

CMN
CMP
TEO
TST

Compare negated
Compare
Test equal
Test

Calculation performed

Rn + Op2
Rn- Op2
Rn EOR0p2
Rn AND Op2

These are similar to the arithmetic and logical instructions listed above except that
they do not take a destination register since they do not return a result. Also, they
automatically set the condition flags (since they would perform no useful purpose
if they didn't). Hence, the ·s· of the arithmetic instructions is implied. You can put
an 'S' after the instruction to make this clearer.

These routines have an additional function which is to set the whole of the PSR to
a given value. This is done by using a ·p· after the opcode, for example TEOP.

Normally the flags are set depending on the value of the comparison . The I and F
bits and the mode and register bits are unaltered. The 'P' option allows the
corresponding eight bits of the result of the calculation performed by the
comparison to overwrite those in the PSR (or just the flag bits in user mode) .

Example

TEQP PC , #&80000000 ; Set N flag, clear all others. Also enable
; IRQs, FIQs, select User mode if privileged

The above example (as well as setting theN flag and clearing the others) will alter
the IRQ, FlO and mode bits of the PSR- but only if you are in a privileged mode.

Appendix A: ARM assembler

The 'P' option is also useful in user mode. for example to co llect errors:

STMFD sp !' {rO , rl , r14}

BL routinel
STRVS rO, [sp, #0]

MOV rl, pc
BL routine2
STRVS rO , [sp, #0]
TEQVCP rl , #0
LDMFD sp !' {rO , rl , pc}

Multiply instructions

Syntax:

MUL«cond))«S)) Rd,Rm,Rs
MLA«cond))«S)) Rd ,Rm.Rs.Rn

There are two multiply instructions:

Instruction

MUL
MLA

Multiply
Multiply-accumulate

save error block ptr in return rO
in stack frame if error
save psr flags in rl
called even if error from routinel
to do some tidy up action etc .
if routine2 didn ' t give error ,
restore error indication from rl

Calculation performed

Rd = Rm X Rs
Rd = Rm x Rs + Rn

The multiply instructions perform integer multiplication, giving the least
significant 32 bits of the product of two 32-bit operands.

The destination register must not be R 15 or the same as Rm. Any other register
combinations can be used.

If the ·s· is given in the instruction. theN and Z flags are set on the result, and the
C and V flags are undefined.

Examples:

MUL Rl,R2,R3

MLAEQS Rl,R2 , R3 , R4

4-369

The instruction set

4-370

Branching instructions

Syntax:

B«cond» expression
BL«cond» expression

There are essentially only two branch instructions but in each case the branch can
take place as a result of any of the 15 usable condition codes:

Instruction

B
BL

Branch
Branch and link

The branch instruction causes the execution of the code to jump to the instruction
given at the address to be branched to. This address is held relative to the current
location.

Example:

BEQ labell branch if zero flag set

BMI minus branch if negative flag set

The branch and link instruction performs the additional action of copying the
address of the instruction following the branch, and the current flags, into register
R 14. R 14 is known as the 'link register'. This means that the routine branched to
can be returned from by transferring the contents of Rl4 into the program counter
and can restore the flags from this register on return . Hence instead of being a
simple branch the instruction acts like a subroutine call.

Example:

BLEQ equal

.equal

MOVS Rl5 , R14

address of this instruction
moved to R14 automatically

start of subroutine

end of subroutine

Appendix A: ARM assembler

Single register load/save instructions

Syntax:

opcode«cond»«B»«T» Rd. address

The single register loacl!save instructions are as follows:

Instruction

LOR
STR

Load register
Store register

These instructions allow a single register to load a value from memory or save a
value to memory at a given address.

The instruction has two possible forms:

• the address is specified by register(s). whose names are enclosed in square
brackets

• the address is specified by an expression

Address given by registers

The simplest form of address is a register number, in which case the contents of the
register are used as the address to load from or save to. There are two other
alternatives:

• pre-indexed addressing (with optional write back)

• post-indexed addressing (always with write back)

With pre-indexed addressing the contents of another register. or an immediate
value. are added to the contents of the first register. This sum is then used as the
address. It is known as pre-indexed addressing because the address being used is
calculated before the loacl!save takes place. The first register (Rn below) can be
optionally updated to contain the address which was actually used by adding a '!'
after the closing squa re bracket.

Address syntax

[Rn]
[Rn.#m]«! >>

[Rn,«-»Rm]«!»
[Rn,«-»Rm.shift #s]«!»

Address

Contents of Rn
Contents of Rn + m
Contents of Rn ± contents of Rm
Contents of Rn ±(contents of Rm shifted by s places)

4-371

The instruction set

4-372

With post-indexed addressing the address being used is given solely by the
contents of the register Rn. The rest of the instruction determines what value is
written back into Rn . This write back is performed automatically; no '!' is needed.
Post-indexing gets its name from the fact that the address that is written back to
Rn is calculated after the load/save takes place .

Address syntax

[Rn].#m
[Rn] ,«-))Rm
[Rn],«-))Rm ,shift #s

Value written back

Contents of Rn + m
Contents of Rn ± contents of Rm
Contents of Rn ±(contents of Rm shifted by s places)

Address given as an expression

If the address is given as a simple expression , the assembler will generate a
pre-indexed instruction using RI 5 (the PC) as the base register. If the address is
out of the range of the instruction (4095 bytes). an error is given.

Options

If the 'B' option is specified after the condition, only a single byte is transferred,
instead of a whole word. The top 3 bytes of the destination register are cleared by
an LDRB instruction .

If the 'T' option is specified after the condition. then the TRANs pin on the ARM
processor will be active during the transfer. forcing an address translation . This
allows you to access User mode memory from a privileged mode. This option is
invalid for pre-indexed addressing.

Using the program counter

If you use the program counter (PC, or RI 5) as one of the registers, a number of
special cases apply:

• the PSR is never modified, even when Rd or Rn is the PC

• the PSR flags are not used when the PC is used as Rn , and (because of
pipelining) it will be advanced by eight bytes from the current instruction

• the PSR flags are used when the PC is used as Rm, the offset register.

Appendix A: ARM assembler

Multiple register load/save instructions

Syntax:

opcode«cond»type Rn«!» , {Rlist}«/\»

These instructions allow the loading or saving of several registers:

Instruction

LDM
STM

Load multiple registers
Store multiple registers

The contents of register Rn give the base address from/to which the value(s) are
loaded or saved. This base address is effectively updated during the transfer. but is
only written back to if you follow it with a '!' .

Rlist provides a list of registers which are to be loaded or saved. The order the
registers are given. in the list. is irrelevant since the lowest numbered register is
loaded/saved first. and the highest numbered one last For example, a list
comprising {R5,R3,Rl.R8} is loaded/saved in the order Rl. R3. R5. R8. with Rl
occupying the lowest address in memory. You can specify consecutive registers as
a range; so {RO-R3} and {RO.Rl,R2,R3} are equivalent

The type is a two-character mnemonic specifying either how Rn is updated. or what
sort of a stack results:

Mnemonic

DA
DB
!A
18

EA
ED
FA
FD

Meaning

Decrement Rn After each store/load
Decrement Rn Before each store/load
Increment Rn After each store/load
Increment Rn Before each store/load

Empty Ascending stack is used
Empty Descending stack is used
Full Ascending stack is used
Full Descending stack is used

• an empty stack is one in which the stack pointer points to the first free slot in it

• a full stack is one in which the stack pointer points to the last data item written
to it

• an ascending stack is one which grows from low memory addresses to high
ones

• a descending stack is one which grows from high memory addresses to low
ones

4-373

The instruction set

4-374

In fact these are just different ways of looking at the situation- the way Rn is
updated governs what sort of stack results . and vice versa . So, for each type of
instruction in the first group there is an equivalent in the second:

LDMEA is the same as LDMDB
LDMED is the same as LDMIB
LDMFA is the same as LDMDA
LDMFD is the same as LDMIA

STMEA is the same as STMIA
STMED is the same as STMDA
STMFA is the same as STMIB
STMFD is the same as STMDB

All Acorn software uses an FD (full, descending) stack. If you are writing code for
SVC mode you should try to use a full descending stack as well- although you can
use any type you like.

A '" ' at the end of the register list has two possible meanings:

• For a load with RI5 in the list, the '"' forces update of the PSR.

• Otherwise the '" ' forces the load/store to access the User mode registers . The
base is still taken from the current bank though , and if you try to write back the
base it will be put in the User bank- probably not what you would have
intended.

Examples:

LDMIA RS , {RO , R1 , R2} where R5 contains the value
&1484
This will load RO from &1484

R1 from &1488
R2 from &148C

LDMDB RS , {R0-R2} where RS contains the value
&1484
This will load RO from &1478

R1 from &147C
R2 from &1480

If there were a '!'after R5 , so that it were written back to, then this would leave R5
containing & I490 and & I4 78 after the first and second examples respectively.

The examples below show directly equivalent ways of implementing a full
descending stack. The first uses mnemonics describing how the stack pointer is
handled:

STMDB Stackpointer !, {R0-R3} push onto stack

LDMIA Stackpointer !, {R0-R3} pull from stack

Appendix A: ARM assembler

and the second uses mnemonics describing how the stack behaves:

STMFD Stackpointer!, {RO,Rl,R2 , R3} push onto stack

LDMFD Stackpointer!, {R0,Rl,R2 , R3}

Using the base register

A
pull from stack

• You can always load the base register without any side effects on the rest of
the LDM operation , because the ARM uses an internal copy of the base, and so
will not be aware that it has been loaded with a new value.

However, you should see Appendix 8: Warnings on the use of ARM assembler on
page 4-377 for notes on using write back when doing so.

• You can store the base register as well. If you are not using write back then no
problem will occur. If you are, then this is the order in which the ARM does the
STM:

I write the lowest numbered register to memory

2 do the write back

3 write the other registers to memory in ascending order.

So, if the base register is the lowest-numbered one in the list, its original value
is stored :

STMIA R2!, {R2 - R6} ; R2 stored is value before write back

Otherwise its written back value is stored :
STMIA R2!, {Rl-R5} ; R2 stored is value after write back

Using the program counter

If you use the program counter (PC, or RI 5) in the list of registers:

• the PSR is saved with the PC; and (because of pipelining) it will be advanced by
twelve bytes from the current position

• the PSR is only loaded if you follow the register list with a ' A'; and even then,
only the bits you can modify in the ARM's current mode are loaded.

It is generally not sensible to use the PC as the base register. If you do:

• the PSR bits are used as part of the address, which will give an address
exception unless all the flags are clear and all interrupts are enabled .

4-375

The instruction set

SWI instruction

4-376

Syntax:

SWI«cond» expression

SWI«cond» "SWiname" (BBC BASIC assembler)

The SWI mnemonic stands for SoftWare Interrupt. On encountering a SWI , the
ARM processor changes into SVC mode and stores the address of the next location
in R I 4_svc- so the User mode value of R I 4 is not corrupted . The ARM then goes to
the SWI routine handler via the hardware SWI vector containing its address .

The first thing that this routine does is to discover which SWI was requested . It
finds this out by using the location addressed by (R I 4_svc- 4) to read the current
SWI instruction. The opcode for a SWI is 32 bits long; 4 bits identify the opcode as
being for a SWI, 4 bits hold all the condition codes and the bottom 24 bits identify
which SWI it is. Hence 224 different SWI routines can be distinguished.

When it has found which particular SWI it is, the routine executes the appropriate
code to deal with it and then returns by placing the contents of R l4_svc back into
the PC, which restores the mode the caller was in .

This means that RI4_svc will be corrupted if you execute a SWI in SVC mode
which can have disastrous consequences unless you take precautions .

The most common way to call this instruction is by using the SWI name, and
letting the assembler translate this to a SWI number. The BBC BASIC assembler
can do this translation directly:

SWINE "OS_WriteC "

See the chapter entitled An. introduction. to SWis on page l-23 for a full description of
how RISC OS handles SWis , and the index of SW!s for a full list of the operating
system SWis.

87

Introduction

Appendix 8: Warnings on the use
of ARM assembler

The ARM processor family uses Reduced Instruction Set (RISC) techniques to
maximise performance; as such , the instruction set allows some instructions and
code sequences to be constructed that will give rise to unexpected (and potentially
erroneous) results. These cases must be avoided by all machine code writers and
generators if correct program operation across the whole range of ARM processors
is to be obtained.

In order to be upwards compatible with future versions of the ARM processor
family never use any of the undefined instruction formats :

• those shown in the Acorn RISC Machine family Data Manual as 'Undefined' which
the processor traps;

• those which are not shown in the manual and which don 't trap (for example, a
Multiply instruction where bit 5 or 6 of the instruction is set) .

In addition the 'NV' (never executed) instruction class should not be used (it is
recommended that the instruction 'MOV RO,RO' be used as a general purpose
no-op) .

This chapter lists the instructions and code sequences to be avoided. It is strongly
recommended that you take the time to familiarise yourself with these cases
because some will only fail under particular circumstances which may not arise
during testing.

For more details on the ARM chip see the Acorn RISC Machine family Data Manual.
VLSI Technology Inc. (I990) Prentice-Hall , Englewood Cliffs. NJ. USA: ISBN
0-I 3-78I6I8-9.

4-377

Restrictions to the ARM instruction set

Restrictions to the ARM instruction set

4-378

There are three main reasons for restricting the use of certain parts of the
instruction set:

• Dangerous instructions

Such instructions can cause a program to fail unexpectedly, for example:

LDM Rl5,Rlist

uses PC+PSR as the base and so can cause an unexpected address exception.

• Useless instructions

It is better to reserve the instruction space occupied by existing 'useless'
instructions for instruction expansion in future processors. For example:

MUL R15,Rm,Rs

only serves to scramble the PSR.

This category also includes ineffective instructions. such as a PC relative
LDC/STC with writeback; the PC cannot be written back in these instructions.
so the writeback bit is ineffective (and an attempt to use it should be flagged
as an error).

Note: LDC/STC are instructions to load/store a coprocessor register
from/to memory; since they are not supported by the BASIC assembler.
they were not described in Appendix A: ARM assembler.

• Instructions with undesirable side~effects

It is hard to guarantee the side-effects of instructions across different
processors. If. for example. the following is used:

LDR Rd, [R15,#expression]!

the PC writeback will produce different results on different types of processor.

Appendix 8: Warnings on the use of ARM assembler

Instructions and code sequences to avoid

The instructions and code sequences are split into a number of categories. Each
category starts with an indication of which of the two main ARM variants (ARM2,
ARM3) it applies to, and is followed by a recommendation or warning. The text
then goes on to explain the conditions in more detail and to supply examples
where appropriate.

Unless a program is being targeted specifically for a single version of the ARM
processor family, all of these recommendations should be adhered to.

TSTPITEQP/CMPP/CMNP: Changing mode

Applicability : ARM2

When the processor's mode is changed by altering the mode bits in the PSR
using a data processing operation, care must be taken not to access a banked
register (R8-Rl4) in the following instruction. Accesses to the unbanked
registers (RO-R7, Rl5) are safe.

The following instructions are affected, but note that mode changes can only be
made when the processor is in a non-user mode:

TSTP Rn,Op2
TEQP Rn,Op2
MPP Rn,Op2
CMNP Rn,Op2

These are the only operations that change all the bits in the PSR (including the
mode bits) without affecting the PC (thereby forcing a pipeline refill during which
time the register bank select logic settles) .

The following examples assume the processor starts in Supervisor mode:

a) TEQP PC,#O
MOV RO,RO Safe: NOP added between mode change and
ADD RO,Rl,Rl3_usr access to a banked register (Rl3_usr)

b) TEQP PC,#O
ADD RO,Rl , R2 Safe: No access made to a banked register

c) TEQP PC,#O
ADD RO, Rl, Rl3_usr Falls: Data not read from Register R 13_usr!

The safest default is always to add a NOP (e.g. MOV RO,RO) after a mode changing
instruction; this will guarantee correct operation regardless of the code sequence
following it.

4-379

Instructions and code sequences to avoid

4-380

LDM/STM: Forcing transfer of the user bank (Part 1)

Applicability: ARM2, ARM3

Do not use writeback when forcing user bank transfer in LDM/STM.

For STM instructions the S bit is redundant as the PSR is always stored witht the PC
whenever R 15 is in the transfer list. In user mode programs the S bit is ignored, but
in other modes it has a second interpretation; S= I is used to force transfers to take
values from the user register bank instead of from the current register bank. This is
useful for saving the user state on process switches.

Similarly, in LDM instructions the S bit is redundant if R 15 is not in the transfer list.
In user mode programs, the S bit is ignored, but in non-usermode programs where
R 15 is not in the transfer list. S= I is used to force loaded values to go to the user
registers instead of the current register bank.

In both cases where the processor is in a non-user mode and transfer to or from the
user bank is forced by setting the S bit. writeback of he base will also be to the
user bank though the base will be fetched from the urrent bank. Therefore don't
use writeback when forcing user bank transfer in LD /STM.

The following examples assume the processor to be in a non-user mode and
Rlist notto include Rl5 :

STMxx Rn! ,Rlist

LDMxx Rn!, Rlist

STMxx Rn,Rlist"

STMxx Rn! , Rlist"

LDMxx Rn!, Rlist"

Safe: Storing n n-user registers with write
back to th non-user base register

Safe: Loading n n-user registers with write
back to th non-user base register

Safe: Storing u er registers, but no base
write-bac

Fails: Base fete ed from non-user register,
but writte back into user register

Fails: Base fete ed from non-user register,
but writte back into user register

Appendix B: Warnings on the use of ARM assembler

LDM: Forcing transfer of the user bank (Part 2)

Applicability : ARM2, ARM3

When loading user bank registers with an LDM in a non-user mode, care must
be taken not to access a banked register (R8-Rl4) in the following instruction.
Accesses to the unbanked registers (RO-R7,Rl5) are safe.

Because the register bank switches from user mode to non-user mode during the
first cycle of the instruction following an LDM Rn, Rl is t", an attempt to access a
banked register in that cycle may cause the wrong register to be accessed.

The following examples assume the processor to be in ·a non-user mode and
Rlist not to include Rl5:

LDM
ADD

LDM
MOV

Rn Rlist"'
RO,Rl,R2

Rn,Rlist"'
RO,RO

Safe: Access to unbanked registers after
LDM"

ADD RO, Rl, R13_svc
Safe: NOP inserted before banked register

used following an LDM"

LDM Rn , Rlist"'
ADD RO,Rl,R13_svc Falls: Accessing a banked register

immediately after an LDM" returns the
wrong data

ADR R14 _svc,
LDMIA R14 _ svc,
LOR R14 _svc,
MOVS PC, R14 -

ADR R14 _svc,
LDMIA R14 _ svc,
MOV RO ,RO
LDR R14 _svc,
MOVS PC , R14 -

saveblock
{RO - R14_usr}"'
[R14_svc,#15*4)

svc (Rl4_svc)

saveblock
{RO - R14_usr}"'

[R14_svc,#15*4)
SVC

Fails: Banked base register
used immediately
after the LDM"

Safe: NOP inserted before
banked register
(Rl4_svc) used

Note: The ARM2 and ARM3 processors usually give the expected result. but cannot
be guaranteed to do so under all circumstances, therefore this code sequence
should be avoided in future .

4-381

Instructions and code sequences to avoid

4-382

SWI/Undefined Instruction trap interaction

Applicability: ARM2

Care must be taken when writing an undefined instruction handler to allow for
an unexpected call from a SWI instruction. The erroneous SWI call should be
intercepted and redirected to the software interrupt handler.

The implementation of the COP instruction on ARM2 may cause- under certain
circumstances- a Software Interrupt (SWI) to take the Undefined Instruction trap if
the SWI was the next instruction after the COP For example:

SIN FO
SWI &11 Fails: ARM2 may take the undefined instruction

trap instead of software interrupt trap.

All Undefined Instruction handler code should check the failed instruction to see if
it is a SWI, and if so pass it over to the software interrupt handler by branching to
the SWI hardware vector at address 8.

Note: COP is a Coprocessor Data Operation instruction; since it is not
supported by the BASIC assembler, it was not described in Appendix
A: ARM assembler.

Undefined instruction/Prefetch abort trap interaction

Applicability: ARM2, ARM3

Care must be taken when writing the Prefetch abort trap handler to allow for an
unexpected call due to an undefined instruction.

When an undefined instruction is fetched from the last word of a page, where the
next page is absent from memory, the undefined instruction will cause the
undefined instruction trap to be taken, and the following (aborted) instructions
will cause a prefetch abort trap. One might expect the undefined instruction trap to
be taken first. then the return to the succeeding code will cause the abort trap. In
fact the prefetch abort has a higher priority than the undefined instruction trap, so
the prefetch abort handler is entered before the undefined instruction trap,
indicating a fault at the address of the undefined instruction (which is in a page
which is actually present). A normal return from the prefetch abort handler (after
loading the absent page) will cause the undefined instruction to execute and take
the trap correctly. However the indicated page is already present, so the prefetch
abort handler may simply return control. causing an infinite loop to be entered.

Therefore, the prefetch abort handler should check whether the indicated fault is in
a page which is actually present, and if so it should suspect the above condition
and pass control to the undefined instruction handler. This will restore the
expected sequential nature of the execution sequence. A normal return from the

Appendix 8: Warnings on the use of ARM assembler

undefined instruction handler will cause the next instruction to be fetched (which
will abort). the prefetch abort handler will be re-entered (with an address pointing
to the absent page). and execution can proceed normally.

Single instructions to avoid

Applicability: ARM2, ARM3

The following single instructions and code sequences should be avoided in
writing any ARM code.

Any instruction that uses the 'NV' condition flag

Avoid using the NV (execute never) condition code:

opcodeNV . ..

i.e. any operation where { cond}= NV

By avoiding the use of the 'NV' condition code, 228 instructions become free for
future expansion.

Note: It is recommended that the instruction MOV RO, RO be used as a general
purpose NOP.

Data processing

Avoid using RI 5 in the Rs position of a data processing instruction:

MOVIMVN{cond}{S} Rd,Rm,shiftname R15

CMPICMNITEQITST{cond}{P} Rn,Rm,shiftname R15

ADCIADDISBC ... IEOR{cond}{S} Rd,Rn,shiftname R15

Shifting a register by an amount dependent upon the code position should be
avoided.

Multiply and multiply-accumulate

Do not specify R I 5 as the destination register as only the PSR will be affected by
the result of the operation :

MUL{cond}{S} Rl5 , Rm,Rs
MLA{cond}{S} Rl5,Rm,Rs,Rn

Do not use the same register in the Rd and Rm positions, as the result of the
operation will be incorrect:

MUL{cond}{S} Rd,Rd,Rs
MLA{cond}{S} Rd,Rd,Rs

4-383

Instructions and code sequences to avoid

4-384

Single data transfer

Do not use a PC relative load or store with base write back as the effects may vary in
future processors:

LDRISTR{cond}{B}{T} Rd, [Rl5,#expression]!
LDRISTR{cond}{B}{T} Rd, [Rl5, {-}Rm{ , shift}] !

LDRISTR{cond}{B}{T} Rd, [R15] ,#expression
LDRISTR{cond}{B}{T} Rd, [R15], {-}Rm{,shift}

Note: It is safe to use pre-indexed PC relative loads and stores without base
writeback.

Avoid using Rl5 as the register offset (Rm) in single data transfers as the value
used will be PC+PSR which can lead to address exceptions:

LDRISTR{cond}{B}{T} Rd, [Rn , {- }R15{,shift}] { ! }
LDRISTR{cond}{B}{T} Rd, [Rn], {-}R15{,shift}

A byte load or store operation on Rl5 must not be specified, as R I 5 contains the
PC, and should always be treated as a 32 bit quantity:

LDRISTR{cond}B{T} Rl5,Address

A post-indexed LDRISTR where Rm=Rn must not be used (this instruction is very
difficult for the abort handler to unwind when late aborts are configured- which
do not prevent base writeback):

LDRISTR{cond}{B}{T} Rd, [Rn] , {-}Rn{,shift}

Do not use the same register in the Rd and Rm positions of an LDR which specifies
(or implies) base writeback; such an instruction is ambiguous, as it is not clear
whether the end value in the register should be the loaded data or the updated
base:

LDR{cond}{B}{T} Rn, [Rn,#expression]!
LDR{cond}{B}{T} Rn, [Rn, {-}Rm{,shift }]!

LDR{cond}{B}{T} Rn, [Rn] ,#expression
LDR {cond}{B){T} Rn, [Rn], {-)Rm{,shift}

Appendix B: Warnings on the use of ARM assembler

Block data transfer

Do not specify base writeback when forcing user mode block data transfer as the
writeback may target the wrong register:

STM {c ond}<FDIEDo oo IDE> Rn!,RlistA
LDM {con d}< FDIEDooo IDE> Rn!,Rlist A

where Rlist does not include Rl5 .

Note: The instruction:

LDM {c ond}<FDIEDo o o IDE> Rn!, <Rli s t,R15 >A

does not force user mode data transfer, and can be used safely.

Do not perform a PC relative block data transfer, as the PC+PSR is used to form the
base address which can lead to address exceptions:

LDMI STM {cond}<FDIEDo o o IDE> R15 { !},Rlist {A)

Single data swap

Do not perform a PC relative swap as its behaviour may change in the future :

SW P {con d}{E} Rd,Rm, [R15]

Avoid specifying R 15 as the source or destination register:

SWP{cond}{E} Rl 5 ,Rm, [Rn]
SWP{cond}{E } Rd ,Rl5, [Rn]

Note: SWP is a Single Data Swap instruction, typically used to implement
semaphores, and introduced in the ARM3 ; since it is not supported by the
BASIC assembler, it was not described in Appendix A: ARM assembler.

Coprocessor data transfers

When performing a PC relative coprocessor data transfer, writeback to Rl5 is
prevented so theW bit should not be set:

LDCISTC{cond}{L } CP #, CRd, [R1 5] !

LDC ISTC {cond}{L } CP#, CRd, [R15,# expressi on]!

LDC ISTC {cond} {L} CP#,CRd, [R15]# expressi on!

4-385

Instructions and code sequences to avoid

4-386

Undefined instructions

ARM2 has two undefined instructions. and ARM3 has only one (the other ARM2
undefined instruction has been defined as the Single data swap operation) .

Undefined instructions should not be used in programs. as they may be defined as
a new operation in future ARM variants.

Register access after an in-line mode change

Care must be taken not to access a banked register (R8-Rl4) in the cycle following
an in-line mode change. Thus the following code sequences should be avoided:

TSTP ITEQPI CMPPI CMNP {cond} Rn, Op 2

2 any instruction that uses R8-Rl4 in its first cycle.

Register access after an LDM that forces user mode data transfer

The banked registers (R8-Rl4) should not be accessed in the cycle immediately
after an LDM that forces user mode data transfer. Thus the following code
sequence should be avoided:

LDM {cond}<FDIED ... IDB> Rn, Rl i s t A
where Rlist does not include Rl5

2 any instruction that uses R8-R 14 in its first cycle.

Other points to note

This section highlights some obscure cases of ARM operation which should be
borne in mind when writing code.

Use of RI5

Applicability: ARM2, ARM3

Warning: When the PC is used as a destination, operand, base or shift register,
different results will be obtained depending on the instruction and the exact
usage of Rl5 .

Full details of the value derived from or written into Rl5+PSR for each instruct ion
class is given in the Acorn RISC Machine family Data Manual. Care must be taken when
using Rl5 because small changes in the instruction can yield significantly different
results. For example, consider data operations of the type:-

op code{cond}{S} Rd,Rn,Rm
or op code{cond}{S} Rd ,Rn,Rm, shift name Rs

Appendix 8: Warnings on the use of ARM assembler

• When Rl5 is used in the Rm position, it will give the value of the PC together
with the PSR flags.

• When R 15 is used in the Rn or Rs positions, it will give the value of the PC
without the PSR flags (PSR bits replaced by zeros).

MOV RO,#O
ORR Rl,RO,R15
ORR R2,R15,RO

; Rl :=PC+PSR
; R2:=PC

(bits 31:26, I :0 reflect PSR flags)
(bits 31:26,1:0 set to zero)

Note: The relevant instruction description in the ARM Acorn RISC Machine family
Data Manual should be consulted for full details of the behaviour of Rl5.

STM: Inclusion of the base in the register list

Applicability: ARM2, ARM3

Warning: In the case of a STM with writeback that includes the base register in
the register list, the value of the base register stored depends upon its position
in the register list.

During an STM, the first register is written out at the start of the second cycle of the
instruction. When write back is specified, the base is written back at the end of the
second cycle. An STM which includes storing the base, with the base as the first
register to be stored, will therefore store the unchanged value, whereas with the
base second or later in the transfer order, it will store the modified value.

For example:

MOV R5,#&1000
STMIA R5!,{R5-R6}

MOV R5,#&1000
STMIA R5! , {R4-R5}

MUUMLA: Register restrictions

Applicability: ARM2, ARM3

; Stores value of R5=& I 000

; Stores value of R5=& I 008

Given
or

MUL Rd,Rm,Rs
MLA Rd,Rm,Rs,Rn

Then Rd & Rm must be different registers
Rd must not be Rl5

Due to the way the Booth's algorithm has been implemented, certain
combinations of operand registers should be avoided. (The assembler will issue a
warning if these restrictions are overlooked.)

4-387

Instructions and code sequences to avoid

4-388

The destination register (Rd) should not be the same as the Rm operand register.
as Rd is used to hold intermediate values and Rm is used repeatedly during the
multiply. A MUL will give a zero result if Rm=Rd, and a MLA will give a meaningless
result.

The destination register (Rd) should also not be Rl5. Rl5 is protected from
modification by these instructions, so the instruction will have no effect. except
that it will put meaningless values in the PSR flags if the S bit is set.

All other register combinations will give correct results, and Rd, Rn and Rs may use
the same register when required.

LDM/STM: Address Exceptions

Applicability: ARM2, ARM3

Warning: Illegal addresses formed during a LDM or STM operation will not
cause an address exception.

Only the address of the first transfer of a LDM or STM is checked for an address
exception; if subsequent addresses over-flow or under-flow into illegal address
space they will be truncated to 26 bits but will not cause an address exception trap.

The following examples assume the processor is in a non-user mode and MEMC is
being accessed:

MOV R0,#&04000000 ;R0=&04000000
STMIA RO, { Rl- R2} ; Address exception reported

MOV R0,#&04000000
SUB RO,R0,#4
STMIA RO, {Rl-R2}

(base address illegal)

; R0=&03FFFFFC
; No address exception reported

(base address legal)
; code will overwrite data at address &00000000

Note: The exact behaviour of the system depends upon the memory manager to
which the processor is attached; in some cases, the wraparound may be detected
and the instruction aborted.

LDC/STC: Address Exceptions

Applicability: ARM2, ARM3

Appendix 8: Warnings on the use of ARM assembler

Warning: Illegal addresses formed during a LDC or STC operation will not
cause an address exception (affects LDF/STF) .

The coprocessor data transfer operations act like STM and LDM with the processor
generating the addresses and the coprocessor supplying/reading the data. As with
LDM/STM, only the address of the first transfer of a LDC or STC is checked for an
address exception; if subsequent addresses over-flow or under-flow into illegal
address space they will be truncated to 26 bits but will not cause an address
exception trap.

Note that the floating point LDF/STF instructions are forms of LDC and STC.

The following examples assume the processor is in a non-user mode and MEMC is
being accessed:

MOV
STC

R0 ,#&04000000
CPl,CRO , [RO]

MOV R0 ,#&04000000
SUB RO , R0,#4
STFD FO, [RO]

; R0=&04000000
; Address exception reported

(base address illegal)

; R0=&03FFFFFC
; No address exception reported

(base address legal)
; code will overwrite data at address &00000000

Note: The exact behaviour of the system depends upon the memory manager to
which the processor is attached; in some cases, the wraparound may be detected
and the instruction aborted.

LDC: Data transfers to a coprocessor fetch more data than expected

Applicability: ARM3

Data to be transferred to a coprocessor with the LDC instruction should never
be placed in the last word of an addressable chunk of memory, nor in the word
of memory immediately preceding a read-sensitive memory location.

Due to the pipelining introduced into the ARM3 coprocessor interface, an LDC
operation will cause one extra word of data to be fetched from the internal cache or
external memory by ARM3 and then discarded; if the extra data is fetched from an
area of external memory marked as cacheable, a whole line of data will be fetched
and placed in the cache.

4-389

Static ARM problems

A particular case in point is that an LDC whose data ends at the last word of a
memory page will load and then discard the first word (and hence the first cache
line) of the next page. A minor effect of this is that it may occasionally cause an
unnecessary page swap in a virtual memory system. The major effect of it is that
(whether in a virtual memory system or not). the data for an LDC should never be
placed in the last word of an addressable chunk of memory: the LDC will attempt
to read the immediately following non-existent location and thus produce a
memory fault.

The following example assumes the processor is in a non-user mode, FPU
hardware is attached and MEMC is being accessed:

MOV Rl3,#&03000000
STFD F0,[Rl3,#-8]!

LDFD Fl, [R13], #8

; Rl3=Address of 1/0 space
; Store F.P. register 0 at top of physical memory

(two words of data transferred)
; Load F.P. register I from top of physical

memory, but three words of data are
transferred, and the third access will read
from 1/0 space which may be read sensitive

Static ARM problems

4-390

The static ARM is a variant of the ARM processor designed for low power
consumption, that is built using static CMOS technology. (The difference between
it and the standard ARM is similar to that between SRAM and DRAM.)

The static ARM exhibits different behaviour to ARM2 and ARM3 when executing a
PC relative LOR with base writeback. This class of instruction has very limited
application, so the discrepancy should not be a problem, but if you wish to use any
of the following instructions in your code you are advised to contact Acorn
Computers.

LDR Rd, [PC,#expression]!
LDR Rd, [PC] ,#expression
LDR Rd, [PC, {-}Rm{,shift}]!

LDR Rd, [PC], {- }Rm{ , shift}

Note: A PC relative LOR without writeback works exactly as expected.

Provided that this instruction class is unused, it is likely that writeback to the PC
on LOR and STR will be disabled completely in the future. The fewer incidental
ways there are to modify the PC the better.

Appendix 8: Warnings on the use of ARM assembler

Unexpected Static ARM2 behaviour when executing a PC relative LOR with
writeback

The instructions affected are:-

• LDR Rd , [PC ,#expression]!

• LDR Rd, [PC] ,#expression

Case I: LOR Rd,(PC,#expression)!

Expected result: Rd f- (PC+8+expression)
PC f- PC+8+expression

... so execution continues from PC+8+expression

Actual ARM2 result: Rd f- Rd {no change}
PC f- PC+8+expression+4

... so execution continues from PC+ 12+expression

Case 2: LOR Rd,(PC),#expression

Expected result: Rd f- (PC+8)
PC f- PC+8+expression

... so execution continues from PC+8+expression

Actual ARM2 result: Rd f- Rd {no change}
PC f- PC+8+expression+4

... so execution continues from PC+ 12+expression

4-391

4-392

88 Appendix C: ARM procedure call
standard

This appendix relates to the implementation of compiler code-generators and
language run-time library kernels for the Acorn RISC Machine (ARM) but is also a
useful reference when interworking assembly language with high level language
code.

The reader should be familiar with the ARM's instruction set. floating-point
instruction set and assembler syntax before attempting to use this information to
implement a code-generator. In order to write a run-time kernel for a language
implementation. additional information specific to the relevant ARM operating
system will be needed (some information is given in the sections describing the
standard register bindings for this procedure-call standard).

The main topics covered in this appendix are the procedure call and stack
disciplines. These disciplines are observed by Acorn's C language implementation
for the ARM and. eventually, will be observed by other high level language
compilers too. Because C is the first-choice implementation language for RISC OS
applications and the implementation language of Acorn's UNIX product RISC iX.
the utility of a new language implementation for the ARM will be related to its
compatibility with Acorn's implementation of C.

At the end of this appendix are several examples of the usage of this standard.
together with suggestions for generating effective code for the ARM .

The purpose of APCS
The ARM Procedure Call Standard is a set of rules. designed:

• to facilitate calls between program fragments compiled from different source
languages (eg to make subroutine libraries accessible to all compiled
languages)

• to give compilers a chance to optimise procedure call . procedure entry and
procedure exit (following the reduced instruction set philosophy of the ARM) .
This standard defines the use of registers. the passing of arguments at an
external procedure call . and the format of a data structure that can be used by
stack backtracing programs to reconstruct a sequence of outstanding calls . It
does so in terms of abstract register names. The binding of some register names to

4-393

Design criteria

Design criteria

4-394

register numbers and the precise meaning of some aspects of the standard are
somewhat dependent on the host operating system and are described in
separate sections.

Formally, this standard only defines what happens when an external procedure call
occurs. Language implementors may choose to use other mechanisms for internal
calls and are not required to follow the register conventions described in this
appendix except at the instant of an external call or return. However, other
system-specific invariants may have to be maintained if it is required, for example,
to deliver reliably an asynchronous interrupt (ega SIGINT) or give a stack
backtrace upon an abort (eg when dereferencing an invalid pointer) . More is said
on this subject in later sections.

This procedure call standard was defined after a great deal of experimentation,
measurement. and study of other architectures. It is believed to be the best
compromise between the following important requirements :

• Procedure call must be extremely fast.

• The call sequence must be as compact as possible. (In typical compiled code,
calls outnumber entries by a factor in the range 2: I to 5: I .)

• Extensible stacks and multiple stacks must be accommodated. (The standard
permits a stack to be extended in a non-contiguous manner, in stack chunks.
The size of the stack does not have to be fixed when it is created, avoiding a
fixed partition of the available data space between stack and heap. The same
mechanism supports multiple stacks for multiple threads of control.)

• The standard should encourage the production of re-entrant programs, with
writable data separated from code.

• The standard must support variation of the procedure call sequence, other
than by conventional return from procedure (eg in support of C's longjrnp,
Pascal's goto-out-of-block, Modula-2+'s exceptions, UNIX's signals, etc)
and tracing of the stack by debuggers and run-time error handlers. Enough is
defined about the stack's structure to ensure that implementations of these
are possible (within limits discussed later).

Appendix C: ARM procedure call standard

The Procedure Call Standard

This section defines the standard.

Register names

The ARM has 16 visible general registers and 8 floating-point registers . In interrupt
modes some general registers are shadowed and not all floating-point operations
are available. depending on how the floating-point operations are implemented.

This standard is written in terms of the register names defined in this section. The
binding of certain register names (the call frame registers) to register numbers is
discussed separately. We do this so that:

• Diverse needs can be more easily accommodated. as can conflicting historical
usage of register numbers. yet the underlying structure of the procedure call
standard- on which compilers depend critically- remains fixed.

• Run-time support code written in assembly language can be made portable
between different register bindings, if it obeys the rules given in the section
entitled De{i11ed bi11di11gs of the procedure call sta11dard on page 4-403.

The register names and fixed bindings are given immediately below.

General Registers

First. the four argument registers :

a1 RN 0 argument 1/integer result
a2 RN 1 argument 2
a3 RN 2 argument 3
a4 RN 3 argument 4

Then the six 'variable' registers:

v1 RN 4 register variable
v2 RN 5 register variable
v3 RN 6 register variable
v4 RN 7 register variable
v5 RN 8 register variable
v6 RN 9 register variable

Then the call-frame registers. the bindings of which vary (see the section entitled
De{i11ed bi11di11gs of the procedure call sta11dard on page 4-403 for details):

sl stack limit I s tack chunk handle
fp frame pointer
ip temporary workspace, used in

procedure entry
sp RN 13 lower end of current stack frame

4-395

The Procedure Call Standard

4-396

Finally, lr and pc, which are determined by the ARM's hardware:

lr RN 14
pc RN 15

; link address on calls / temporary workspace
; program counter and processor status

In the obsolete APCS-A register bindings described below, sp is bound to r12; in
all other APCS bindings, sp is bound to r13.

Notes

Literal register names are given in lower case. eg v1, sp, lr. In the text that
follows, symbolic values denoting 'some register' or 'some offset' are given in
upper case. eg R. R+N.

References to 'the stack' denoted by sp assume a stack that grows from high
memory to low memory, with sp pointing at the top or front (ie lowest addressed
word) of the stack.

At the instant of an external procedure call there must be nothing of value to the
caller stored below the current stack pointer, between sp and the (possibly
implicit. possibly explicit) stack (chunk) limit. Whether there is a single stack chunk
or multiple chunks, an explicit stack limit (in sl) or an implicit stack limit. is
determined by the register bindings and conventions of the target operating
system.

Here and in the text that follows, for any register R. the phrase 'in R' refers to the
contents of R; the phrase 'at [R] ·or 'at [R, #N]' refers to the word pointed at by
R or R+N, in line with ARM assembly language notation.

Floatlng~polnt Registers

The floating-point registers are divided into two sets, analogous to the subsets
a1-a4 and v 1-v6 of the general registers . Registers f0-f3 need not be
preserved by a called procedure; fO is used as the floating-point result register. In
certain restricted circumstances (noted below), f0-f3 may be used to hold the
first four floating-point arguments. Registers f4-f7, the so called 'variable'
registers, must be preserved by callees.

The floating-point registers are:

fO FN 0 floating point result (or 1st FP argument)
fl FN 1 floating point scratch register (or 2nd FP arg)
f2 FN 2 floating point scratch register (or 3rd FP arg)
f3 FN 3 floating point scratch register (or 4th FP arg)
f4 FN 4 floating point preserved register
f5 FN 5 floating point preserved register
f6 FN 6 floating point preserved register
f7 FN 7 floating point preserved register

Appendix C: ARM procedure call standard

Data representation and argument passing

The APCS is defined in terms of N (;:=: 0) word-sized arguments being passed from
the caller to the callee, and a single word or floating-point result passed back by
the callee. The standard does not describe the layout in store of records, arrays and
so forth, used by ARM-targeted compilers for C, Pascal. Fortran-77, and so on. In
other words, the mapping from language-level objects to APCS words is defined by
each language's implementation, not by APCS, and, indeed, there is no formal
reason why two implementations of. say, Pascal for the ARM should not use
different mappings and, hence, not be cross-callable.

Obviously, it would be very unhelpful for a language implementor to stand by this
formal position and implementors are strongly encouraged to adopt not just the
letter of APCS but also the obviously natural mappings of source language objects
into argument words. Strong hints are given about this in later sections which
discuss (some) language specifics.

Register usage and argument passing to external procedures

Control Arrival

We consider the passing of N (;:=: 0) actual argument words to a procedure which
expects to receive either exactly N argument words or a variable number V (;:=: I) of
argument words (it is assumed that there is at least one argument word which
indicates in a language-implementation-dependent manner how many actual
argument words there are: for example, by using a format string argument, a count
argument. or an argument-list terminator) .

At the instant when control arrives at the target procedure, the following shall be
true (for any M, if a statement is made about argM, and M > N, the statement can
be ignored) :

argl is in al
arg2 is in a2
arg3 is in a3
arg4 is in a4
for all I >= 5 ' argi is at [sp , #4*(I-5)]

fp contains 0 or points to a stack backtrace structure (as described in the next
section).

The values in sp, s l, fp are all multiples of four.

lr' contains the pc+psw value that should be restored into rlS on exit from the
procedure. This is known as the return link value for thi$ procedure ca'll.

pc contains the entry address of the target procedure.

4-397

The Procedure Call Standard

4-398

Now, let us call the lower limit to which sp may point in this stack chunk SP _LWM

(Stack-Pointer Low Water Mark). Remember, it is unspecified whether there is one
stack chunk or many, and whether SP _LWM is implicit, or explicitly derived from
sl; these are binding-specific details. Then:

Space between sp and SP _LWM shall be (or shall be on demand) readable,
writable memory which can be used by the called procedure as temporary
workspace and overwritten with any values before the procedure returns.

sp >= SP_LWM + 256.

This condition guarantees that a stack extension procedure, if used, will have a
reasonable amount- 256 bytes- of work space available to it, probably sufficient
to call two or three procedure invocations further.

Control Return

At the instant when the return link value for a procedure call is placed in the
pc+psw, the following statements shall be true:

fp, sp, s 1, vl-v6, and f 4- f7 shall contain the same values as they did at the
instant of the call. If the procedure returns a word-sized result, R. which is not a
floating-point value, then R shall be in al. If the procedure returns a floating-point
result. FPR. then FPR shall be infO.

Notes

The definition of control return means that this is a 'callee saves' standard.

The requirement to pass a variable number of arguments to a procedure (as in K&R
C) precludes the passing of floating-point arguments in floating-point registers (as
the ARM's fixed point registers are disjoint from its floating-point registers).
However, if a callee is defined to accept a fixed number K of arguments and its
interface description declares it to accept exactly K arguments of matching types.
then it is permissible to pass the first four floating-point arguments in
floating-point registers f 0- f3 . However, Acorn's C compiler for the ARM does not
yet exploit this latitude.

The values of a2 -a4, ip, lr and fl- f3 are not defined at the instant of return.

The Z, N, c and v flags are set from the corresponding bits in the return link value
on procedure return. For procedures called using a BL instruction, these flag
values will be preserved across the call.

The flag values from lr at the instant of entry must be restored; it is not sufficient
merely to preserve the flag values across the call.

Appendix C: ARM procedure call standard

(Consider a procedure ProcA which has been 'tail-call optimised' and does:

CMPS al, #0
MOVLT
MOVGE

a2, #255
a2, #0

B ProcB

If ProcB merely preserves the flags it sees on entry, rather than restoring
those from lr, the wrong flags may be set when ProcB returns direct to
ProcA's caller).

This standard does not define the values of fp, sp and slat arbitrary moments
during a procedure's execution, but only at the instants of (external) call and
return. Further standards and restrictions may apply under particular operating
systems, to aid event handling or debugging. In general. you are strongly
encouraged to preserve fp, sp and sl, at all times.

The minimum amount of stack defined to be available is not particularly large, and
as a general rule a language implementation should not expect much more, unless
the conventions of the target operating system indicate otherwise. For example,
code generated by the Arthur/RISC OS C compiler is able, if there is inadequate
local workspace, to allocate more stack space from the C heap before continuing.
Any language unable to do this may have its interaction with C impaired. That sl
contains a stack chunk handle is important in achieving this. (See the section
entitled Defined bindings of the procedure call standard on page 4-403 for further details).

The statements about sp and SP _LWM are designed to optimise the testing of the
one against the other. For example, in the RISC OS user-mode binding of APCS, s 1
contains SL_LWM+ 512, allowing a procedure's entry sequence to include
something like:

CMP sp, sl
BLLT lx$stack_overflowl

where x$stack_overflow is a part of the run-time system for the relevant
language. If this test fails, and x$stack_overflow is not called, there are at
least 512 bytes free on the stack.

This procedure should only call other procedures when sp has been dropped by
256 bytes or less, guaranteeing that there is enough space for the called
procedure's entry sequence (and, if needed, the stack extender) to work in.

If 256 bytes are not enough, the entry sequence has to drop sp before comparing it
with sl in order to force stack extension (see later sections on implementation
specifics for details of how the RISC OS C compiler handles this problem).

4-399

The Procedure Call Standard

4-400

The stack backtrace data structure

At the instant of an external procedure call. the value in fp is zero or it points to a
data structure that gives information about the sequence of outstanding procedure
calls. This structure is in the format shown below:

fp points to here:

Optional
values

save mask pointer

return link value

return sp value

fp value

saved v6 value

saved v5 value

saved v4 value

saved v3 value

saved v2 value

saved vl value

saved a4 value

saved a3 value

saved a2 value

saved al value

saved f7 value

saved f6 value

saved f5 value

saved f4 value

Figure 88.1 Stack backtrace data structure

[fp)

[fp, #-4]

[fp, #-8]

[fp, #-12]

three words

three words

three words

three words

This picture shows between four and 26 words of store, with those words higher on
the page being at higher addresses in memory. The presence of any of the optional
values does not imply the presence of any other. The floating-point values are in
extended format and occupy three words each.

Appendix C: ARM procedure call standard

At the instant of procedure call , all of the following statements about this structure
shall be true:

• The return fp value is either 0 or contains a pointer to another stack backtrace
data structure of the same form. Each of these corresponds to an active,
outstanding procedure invocation . The statements listed here are also true of
this next stack backtrace data structure and , indeed, hold true for each
structure in the chain.

• The save mask pointer value, when bits 0, I , 26, 27, 28 , 29, 30, 31 have been
cleared, points twelve bytes beyond a word known as the return data save
instruction.

• The return data save instruction is a word that corresponds to an ARM
instruction of the following form :

STMDB s p!, {[a ll, [a2], [a3] , [a 4],
[vl], [v2], [v3], [v 4], [v5], [v6],
fp, i p , l r , p c}

Note the square brackets in the above denote optional parts: thus, there are 12
x I 024 possible values for the return data save instruction, corresponding to
the following bit patterns:

1110 1001 0010 1101 1101 lOxx xxxx xxxx APCS-R , APCS-U

o r

1110 1001 0010 1100 1100 llxx xxxx xxxx APCS - A (obsolete)

The least significant 10 bits represent argument and variable registers: if bit N
is set, then register N will be transferred .

The optional parts al , a 2, a3, a4, vl , v2, v3, v 4 , v 5 and v6 in this
instruction correspond to those optional parts of the stack backtrace data
structure that are present such that: for all M, if v M or aM is present then so is
s a ved vM value or s a v ed aM v alue, and if vM or aM is absent then so is
saved v M value or s aved aM v alue . This is as if the stack backtrace data
structure were formed by the execution of this instruction, following the
loading of ip from sp (as is very probably the case).

4-401

The Procedure Call Standard

4-402

• The sequence of up to four instructions following the return data save
instruction determines whether saved floating-point registers are present in
the backtrace structure. The four optional instructions allowed in this
sequence are:

STFE f7, [sp, #- 1 2] ! 1110 1101 011 0 1101 01 11 0001 0000 0011
STFE f6, [sp , #-12] ! 1110 1101 0110 1101 0110 0001 0000 0011
STFE f5, [sp, #-12] ! 1110 1101 0110 1101 0101 0001 0000 0011
STFE f4 , [sp, #-12] ! 1110 1101 0110 1101 0100 0001 0000 0011

Any or all of these instructions may be missing, and any deviation from this
order or any other instruction terminates the sequence.

(A historical bug in the C compiler (now fixed) inserted a single arithmetic
instruction between the return data save instruction and the first STFE. Some
Acorn software allows for this.)

The bit patterns given are for APCS-R/APCS-U register bindings. In the
obsolete APCS-A bindings, the bit indicated by ! is 0.

The optional instructions saving f 4, f 5. f 6 and f7 correspond to those
optional parts of the stack backtrace data structure that are present such that:
for all M. if STFE fM is present then so is saved fM value; if STFE fM is
absent then so is saved fM value.

• At the instant when procedure A calls procedure B. the stack backtrace data
structure pointed at by fp contains exactly those elements vl . v2. v3. v4 . v5.
v6. f 4. f 5. f 6. f7. fp. sp and pc which must be restored into the
corresponding ARM registers in order to cause a correct exit from procedure A.
albeit with an incorrect result.

Notes

The following example suggests what the entry and exit sequences for a procedure
are likely to look like (though entry and exit are not defined in terms of these
instruction sequences because that would be too restrictive; a good compiler can
often do better than is suggested here) :

entry MOV ip, sp
STMDB sp!, {argRegs, workRegs, fp, ip, lr, pc}
SUB fp , ip, #4

exit LDMDB fp , {workRegs , fp, sp, pc} "

Many apparent idiosyncrasies in the standard may be explained by efforts to make
the entry sequence work smoothly. The example above is neither complete (no
stack limit checking) nor mandatory (making arguments contiguous for C, for
instance, requires a slightly different entry sequence; and storing argRegs on the
~tack may be unnecessary) .

Appendix C: ARM procedure call standard

The workRegs registers mentioned above correspond to as many of v1 to v6 as
this procedure needs in order to work smoothly. At the instant when procedure A

calls any other, those workspace registers not mentioned in J>:s return data save
instruction will contain the values they contained at the instant A was entered.
Additionally, the registers f 4- f7 not mentioned in the floating-point save
sequence following the return data save instruction will also contain the values
they contained at the instant A was entered.

This standard does not require anything of the values found in the optional parts
a1, a2 , a 3 , a4 of a stack backtrace data structure. They are likely, if present, to
contain the saved arguments to this procedure call ; but this is not required and
should not be relied upon.

Defined bindings of the procedure call standard

APCS-R and APCS-U: The RISC OS and RISC iX PCSs

These bindings of the APCS are used by:

• RISC OS applications running in ARM user-mode

• compiled code for RISC OS modules and handlers running in ARM SVC-mode

• RISC iX applications (which make no use of sl) running in ARM user mode

• RISC iX kernels running in ARM SVC mode.

The call-frame register bindings are:

s l RN 10 s tack limit I stack chunk handle
unused by RISC iX applications

fp RN 11 frame pointer
i p RN 12 used as temporary workspace
s p RN 13 lower end of current stack frame

Although not formally required by this standard, it is considered good taste for
compiled code to preserve the value of sl everywhere.

The invariants s p > ip > fp have been preserved, in common with the obsolete
APCS-A (described below), allowing symbolic assembly code (and compiler
code-generators) written in terms of register names to be ported between APCS-R,
APCS-U and APCS-A merely by relabelling the call-frame registers provided:

• When call -frame registers appear in LDM, LDR, STM and STR instructions they
are named symbolically, never by register numbers or register ranges.

• No use is made of the ordering of the four call-frame registers (eg in order to
load/save fp or sp from a full register save) .

4-403

Defined bindings of the procedure call standard

4-404

APCS-R: Constraints on sl (For RISC OS applications and modules)

In SVC and IRQ modes (collectively called module mode) SL_ LWM is implicit in sp:
it is the next megabyte boundary below sp. Even though the SVC-mode and
fRO-mode stacks are not extensible, s l still points 512 bytes above a skeleton
stack-chunk descriptor (stored just above the megabyte boundary). This is done for
compatibility with use by applications running in ARM user-mode and to facilitate
module-mode stack-overflow detection. In other words:

sl = SL_LWM + 512.

When used in user-mode, the stack is segmented and is extended on demand.
Acorn's language-independent run-time kernel allows language run-time systems
to implement stack extension in a manner which is compatible with other Acorn
languages. s l points 512 bytes above a full stack-chunk structure and, again:

sl = SL_LWM + 512.

Mode-dependent stack-overflow handling code in the language-independent
run-time kernel faults an overflow in module mode and extends the stack in
application mode. This allows library code, including the run-time kernel, to be
shared between all applications and modules written in C.

In both modes, the value of sl must be valid immediately before each external call
and each return from an external call.

Deallocation of a stack chunk may be performed by intercepting returns from the
procedure that caused it to be allocated. Tail-call optimisation complicates the
relationship, so, in general. sl is required to be valid immediately before every
return from external calL

APCS-U: Constraints on sl (For RISC iX applications and RISC iX kernels)

In this binding of the APCS the user-mode stack auto-extends on demand so s l is
unused and there is no stack-limit checking.

In kernel mode, sl is reserved by Acorn .

APCS-A: The obsolete Arthur application PCS

This obsolete binding of the procedure-call standard is used by Arthur applications
running in ARM user-mode. The applicable call-frame register bindings are as
follows:

sl RN 13 stack limit/stack chunk handle
fp RN 10 frame pointer
ip RN 11 used as temporary workspace
sp RN 12 lower end of current stack frame

Appendix C: ARM procedure call standard

(Use of r 12 as sp, rather than the architecturally more natural r13 , is historical
and predates both Arthur and RISC OS.)

In this binding of the APCS, the stack is segmented and is extended on demand.
Acorn 's language-independent run-time kernel allows language run-time systems
to implement stack extension in a manner which is compatible with other Acorn
languages.

The stack limit register, s l , points 5I2 bytes above a stack-chunk descriptor, itself
located at the low-address end of a stack chunk. In other words:

sl = SL_ LWM + 512 .

The value of sl must be valid immediately before each external call and each
return from an external call .

Although not formally required by this standard, it is considered good taste for
compiled code to preserve the value of sl everywhere .

Notes on APCS bindings

Invariants and APCS-M

In all future supported bindings of APCS sp shall be bound to r13 . In all
supported bindings of APCS the invariant sp > ip > fp shall hold. This means
that the only other possible binding of APCS is APCS-M :

s l
fp
ip
sp

RN

RN

RN

RN

12
10
11

13

stack limit / stac k chunk handle
f r ame pointer
used as temporary workspace
l ower end of current stac k frame

This binding of APCS is unlikely to be used (by Acorn) .

Further Restrictions In SVC Mode and IRQ Mode

There are some consequences of the ARM's architecture which , while not formally
acknowledged by the ARM Procedure Call Standard, need to be understood by
implementors of code intended to run in the ARM's SVC and IRQ modes.

An IRQ corrupts r14_i r q, so IRQ-mode code must run with IRQs off until
r 14_irq has been saved. Acorn 's preferred solution to this problem is to enter
and exit IRQ handlers written in high-level languages via hand-crafted 'wrappers'
which on entry save r14_irq, change mode to SVC, and enable IRQs and on exit
return to the saved r14_irq (which also restores IRQ mode and the IRQ-enable
state) . Thus the handlers themselves run in SVC mode, avoiding this problem in
compiled code.

4-405

Defined bindings of the procedure call standard

4-406

Both SWis and aborts corrupt r14_svc. This means that care has to be taken
when calling SWis or causing aborts in SVC mode. ·

In high-level languages, SWJs are usually called out of line so it suffices to save and
restore r14 in the calling veneer around the SWI. If a compiler can generate in-line
SWis, then it should, of course, also generate code to save and restore r14 in-line,
around the SWI, unless it is known that the code will not be executed in SVC mode.

An abort in SVC mode may be symptomatic of a fatal error or it may be caused by
page faulting in SVC mode. Acorn expects SVC-mode code to be correct , so these
are the only options. Page faulting can occur because an instruction needs to be
fetched from a missing page (causing a prefetch abort) or because of an attempted
data access to a missing page (causing a data abort). The latter may occur even if
the SVC-mode code is not itself paged (consider an unpaged kernel accessing a
paged user-space) .

A data abort is completely recoverable provided r14 contains nothing of value at
the instant of the abort. This can be ensured by:

• saving RI 4 on entry to every procedure and restoring it on exit

• not using Rl4 as a temporary register in any procedure

• avoiding page faults (stack faults) in procedure entry sequences.

A prefetch abort is harder to recover from and an aborting BL instruction cannot be
recovered, so special action has to be taken to protect page faulting procedure
calls.

For Acorn C, RI4 is saved in the second or third instruction of an entry sequence.
Aligning all procedures at addresses which are 0 or 4 modulo I6 ensures that the
critical part of the entry sequence cannot prefetch-abort. A compiler can do this by
padding all code sections to a multiple of 16 bytes in length and being careful
about the alignment of procedures within code sections .

Data-aborts early in procedure entry sequences can be avoided by using a software
stack-limit check like that used in APCS-R.

Finally, the recommended way to protect BL instructions from prefetch-abort
corruption is to precede each BL by a MOV ip, pc instruction. If the BL faults , the
prefetch abort handler can safely overwrite r14 with ip before resuming execution
at the target of the BL. If the prefetch abort is not caused by a BL then this action
is harmless, as RI4 has been corrupted anyway (and, by design, contained nothing
of value at any instant a prefetch abort could occur) .

Appendix C: ARM procedure call standard

Examples from Acorn language implementations

Example procedure calls in C

Here is some sample assembly code as it might be produced by the C compiler:

; gggg is a function of 2 args that needs one reg i ster variable (vl)
gggg MOV ip, sp

STMFD sp !, {al , a2 , vl , fp , ip, lr, pc}
SUB fp , ip , #4 points at saved PC
CMPS
BLLT

MOV

sp , sl
lx$stack_ overflowl

vl, .. .

BL ffff

handl e r procedure

use a register variable

MOV . .. , vl ; rely on its value after ffff()

Within the body of the procedure, arguments are used from registers , if possible;
otherwise they must be addressed relative to fp. In the two argument case shown
above, ar g l is at [fp, #- 2 4] and arg2 is at [fp, # - 2 0 J . But as discussed
below, arguments are sometimes stacked with positive offsets relative to fp.

Local variables are never addressed offset from fp; they always have positive
offsets relative to sp . In code that changes sp this means that the offsets used may
vary from place to place in the code. The reason for this is that it permits the
procedure x$s t ack_overflow to recover by setting sp (and s l) to some new
stack segment. As part of this mechanism, x $s tack_overfl ow may alter
memory offset from fp by negative amounts, eg [fp, #- 6 4 J and downwards,
provided that it adjusts sp to provide workspace for the called routine.

If the function is going to use more than 256 bytes of stack it must do:

SUB
CMPS
BLLT

ip, sp, #<my stack size>
ip, sl
lx$stack_overflow_ll

instead of the two-instruction test shown above.

If a function expects no more than four arguments it can push all of them onto the
stack at the same time as saving its old fp and its return address (see the example
above) ; arguments are then saved contiguously in memory with argl having the
lowest address. A function that expects more than four arguments has code at its
head as follows:

4-407

Examples from Acorn language implementations

4-408

MOV ip , sp
STMFD sp !, {al , a2 , a3 , a 4 } ; put argl - 4 below stacked args
STMFD sp !, {vl , v2 , fp , ip , lr , pc} ; vl-v6 saved as necessary
SUB fp , ip , #20 ; poin t at newly created 'Call-frame
CMPS s p, sl
BLLT lx$stack_ over fl ow l

LDMEA fp , {vl , v2 , fp, sp, pc}A ; restore register vars & return

The store of the argument registers shown here is not mandated by APCS and can
often be omitted. It is useful in support of debuggers and run-time trace-back code
and required if the address of an argument is taken .

The entry sequence arranges that arguments (however many there are) lie in
consecutive words of memory and that on return sp is always the lowest address
on the stack that still contains useful data.

The time taken for a call, enter and return, with no arguments and no registers
saved, is about 22 S-cycles.

Although not required by this standard, the values in fp, sp and s l are
maintained while executing code produced by the C compiler. This makes it much
easier to debug compiled code.

Multi-word results other than double precision reals in C programs are
represented as an implicit first argument to the call, which points to where the
caller would like the result placed. It is the first. rather than the last. so that it works
with a C function that is not given enough arguments.

Procedure calls in other language implementations

Assembler

The procedure call standard is reasonably easy and natural for assembler
programmers to use. The following rules should be followed :

• Call-frame registers should always be referred to explicitly by symbolic name,
never by register number or implicitly as part of a register range.

• The offsets of the call-frame registers within a register dump should not be
wired into code. Always use a symbolic offset so that you can easily change the
register bindings.

Fortran

The AcorntropExpress Arthur/RISC OS Fortran-77 compiler violates the APCS in a
number of ways that preclude inter-working with C, except via assembler veneers.
Thts may be changed in future releases of the Fortran-77 product

Appendix C: ARM procedure call standard

Pascal

The Acorn/3L Arthur/RISC OS !SO-Pascal compiler violates the APCS in a number
of ways that preclude inter-working with C, except via assembler veneers. This may
be changed in future releases of the !SO-Pascal product

Lisp, BCPL and BASIC

These languages have their own special requirements which make i~ inappropriate
to use a procedure call of the form described here. Naturally, all are capable of
making external calls of the given form, through a small amount of assembler 'glue'
code.

General

Note that there is no requirement specified by the standard concerning the
production of re-entrant code, as this would place an intolerable strain on the
conventional programming practices used inC and Fortran. The behaviour of a
procedure in the face of multiple overlapping invocations is part of the
specification of that procedure.

Various lessons

This appendix is not intended as a general guide to the writing of code-generators,
but it is worth highlighting various optimisations that appear particularly relevant
to the ARM and to this standard.

The use of a callee-saving standard, inste9d of a caller-saving one, reduces the size
of large code images by about IO'Yo (with aompilers that do little or no
interprocedural optimisation).

In order to make effective use of the APCS, compilers must compile code a
procedure at a time. Line-at-a-time compilation is insufficient

The preservation of condition codes over a procedure call is often useful because
any short sequence of instructions (including calls) that forms the body of a short
IF statement can be executed without a branch instruction. For example:

if (a < 0) b = foo();

can compile into:

CMP
BLLT
MOVLT

a, #0

foo
b, al

4-409

Examples from Acom language implementations

4-410

In the case of a leaf or fast procedure- one that calls no other procedures- much
of the standard entry sequence can be omitted. In very small procedures. such as
are frequently used in data abstraction modules, the cost of the procedure can be
very small indeed. For instance, consider:

t ypedef struct { ... ; int a ; ... } foo ;
int get_ a (foo * f) {return (f->a); }

The procedure get_ a can compile to just:

LDR
MOVS

a1 , [a1, #aO f fset]
pc , l r

This is also useful in procedures with a conditional as the top level statement,
where one or other arm of the conditional is fast (ie calls no procedures). In this
case there is no need to form a stack frame there. For example, using this. the C
program:

int sum (int i)
{

i f (i < = 1)
return (i) ;

e l se
return(i + s um(i-1));

could be compiled into:

sum CMP a1, #1 ; try fast case
MOVSLE pc, 1r ; and if appropriate, handle quickly!
; else, form a stack frame and handle the rest as normal code.
MOV ip , sp
STMDB sp! , {v1, fp , ip , lr , pc}
CMP sp, sl
BLLT overflow
MOV v1 , a1
SUB a1, a1, #1
BL sum
ADD a1, a1 , v1
LDMEA fp , {v1, fp, sp , pc)A

register to hold i
set up argument for call
do the call
perform the addition
and return

This is only worthwhile if t he test can be compiled using only i p, and any spare of
a1-a4. as scratch registers. This technique can significantly speed up certain
speed-critical routines. such as read and write character. At the present time. this
optimisation is not performed by the C compiler.

Appendix C: ARM procedure call standard

Finally, it is often worth applying the tail call optimisation, especially to
procedures which need to save no registers. For example, the code fragment:

extern void *malloc(size_ t n)
{

return primitive_ alloc(NOTGCABLEBIT , BYTESTOWORDS (n)) ;

is compiled by the C compiler into:

ma l loc ADD
MOV
MOV
B

a 1, a 1, # 3
a2 , a1, LSR #2
a 1, #107 3 741 82 4
primi t ive_ a lloc

1S
1 S
1 S
1N+2S = 4S

This avoids saving and restoring the call-frame registers and minimises the cost of
interface 'sugaring' procedures. This saves five instructions and, on a 4/8MHz ARM,
reduces the cost of the malloc sugar from 24S to 7S.

4-411

4-412

89

Terminology

Appendix D: Code file formats

This appendix defines three file formats used to store processed code and the
format of debugging data used by debuggers:

• AOF- Arm Object Format

• ALF- Acorn Library Format

e AIF- RISC OS Application Image Format

• ASD- ARM Symbolic Debugging Format.

Language processors such as CC and ObjAsm generate processed code output as
AOF files . An ALF file is a collection of AOF files constructed from a set of AOF files
by the LibFile tool. The Link tool accepts a set of AOF and ALF files as input, and by
default produces an executable program file as output in AI F.

Throughout this appendix the terms byte, half word, word, and string are used to mean
the following:

Byte: 8 bits, considered unsigned unless otherwise stated , usually used to store flag
bits or characters.

Half word: I 6 bits, or 2 bytes, usually unsigned. The least significant byte has the
lowest address (DEC/ Intel byte sex, sometimes called little endian) . The address of a
half word (ie of its least significant byte) must be divisible by 2.

Word: 32 bits , or 4 bytes, usually used to store a non-negative value. The least
significant byte has the lowest address (DEC/Intel byte sex, sometimes called little
endian) . The address of a word (ie of its least significant byte) must be divisible
by4.

String: A sequence of bytes terminated by a NUL (OXOO) byte. The NUL is part ofthe
string but is not counted in the string's length. Strings may be aligned on any byte
boundary.

For emphasis: a word consists of 32 bits, 4-byte aligned; within a word , the least
significant byte has the lowest address. This is DEC/Intel. or little endian , byte sex,
not IBM/Motorola byte sex.

4-413

Undefined Fields

Undefined Fields
Fields not explicitly defined by this appendix are implicitly reserved to Acorn . It is
required that all such fields be zeroed . Acorn may ascribe meaning to such fields at
any time. but will usually do so in a manner which gives no new meaning to zeroes.

Overall structure of AOF and ALF files

An object or library file contains a number of separate but related pieces of data. In
order to simplify access to these data , and to provide for a degree of extensibility,
the object and library file formats are themselves layered on another format called
Chunk File Format, which provides a simple and efficient means of accessing and
updating distinct chunks of data within a single file . The object file format defines
five chunks :

• header

• areas

• identification

• symbol table

• string table.

The library file format defines four chunks:

• directory

• time-stamp

• version

• data.

There may be many data chunks in a library.

The minimum size of a piece of data in both formats is four bytes or one word . Each
word is stored in a file in little-endian format ; that is the least significant byte of
the word is stored first .

Chunk file format

4-414

A chunk is accessed via a header at the start of the file . The header contains the
number, size, location and identity of each chunk in the file The size of the header
may vary between different chunk files but is fixed for each file . Not all entries in a
header need be used. thus limited expansion of the number of chunks is permitted
without a wholesale copy. A chunk file can be copied without knowledge of the
contents of the individual chunks.

Appendix D: Code file formats

Graphically, the layout of a chunk file is as follows:

ChunkFileld

maxChunks

numChunks

entry1

entry2

entry "maxChunks"

chunk 1

chunk "numChunks"

3 words

4 words per entry

End of header (3 + 4*MaxChunks) words
Start of data chunks

ChunkFileid marks the file as a chunk file. Its value is C3CBC6C5 hex. The
rnaxChunks field defines the number of the entries in the header, fixed when the
file is created. The nurnChunks field defines how many chunks are currently used
in the file, which can vary from 0 to rnaxChunks. The value of nurnChunks is
redundant as it can be found by scanning the entries .

Each entry in the header comprises four words in the following order:

chunkid

Offset

size

a two word field identifying what data the chunk file contains

a one word field defining the byte offset within the file of the
chunk (which must be divisible by four); an entry of zero indicates
that the corresponding chunk is unused

a one word field defining the exact byte size of the chunk (which
need not be a multiple of four).

The c hunkid field provides a conventional way of identifying what type of data a
chunk contains. It is split into two parts. The first four characters (in the first word)
contain a universally unique name allocated by a central authority (Acorn). The

4-415

Chunk file format

4-416

remaining four characters (in the second word) can be used to identify component
chunks within this universal domain. In each part, the first character of the name is
stored first in the file, and so on.

For AOF files, the first part of each chunk's name is OBJ_; the second components
are defined later. For ALF files, the first part is LIB_.

AOF

Appendix 0: Code file formats

ARM object format files are output by language processors such as CC and
ObjAsm

Object file format

Each piece of an object file is stored in a separate, identifiable, chunk. AOF defines
five chunks as follows :

Chunk

Header
Areas
Identification
Symbol Table
String Table

Chunk Name

OBI_HEAD
OBI_AREA
OBI_IDFN
OBI_SYMT
OBI_STRT

Only the header and a r eas chunks must be present. but a typical object file will
contain all five of the above chunks.

A feature of chunk file format is that chunks may appear in any order in the file .
However, language processors which must also generate other object formats
such as UNIX's a. out format- should use this flexibility cautiously.

A language translator or other system utility may add additional chunks to an
object file, for example a language-specific symbol table or language-specific
debugging data, so it is conventional to allow space in the chunk header for
additional chunks; space for eight chunks is conventional when the AOF file is
produced by a language processor which generates all five chunks described here.

The header chunk should not be confused with the chunk file's header.

Format of the AOF header chunk

The AOF header is logically in two parts, though these appear contiguously in the
header chunk. The first part is of fixed size and describes the contents and nature
of the object file . The second part is variable in length (specified in the fixed part)
and is a sequence of a r e a declarations defining the code and data areas within
the OBI_AREA chunk.

4-417

Object file format

4-418

The AOF header chunk has the following format:

Object file type

Version ld

Number of areas

Number of Symbols

Entry Address area

Entry Address Offset

1st Area Header

2nd Area Header

nth Area Header

Object file type

6 words in the fixed part

5 words per area header

(6 + 5*Number of Areas) words in
the AOF header

C5E20080 (hex) marks an object file as being in relocatable object format

Version 10

This word encodes the version of AOF to which the object file complies: AOF l .xx is
denoted by 150 decimal; AOF 2.xx by 200 decimal.

Number of areas

The code and data of the object file is presented as a number of separate areas, in
the OBI_AREA chunk, each with a name and some attributes (see below). Each
area is declared in the (variable-length) part of the header which immediately
follows the fixed part. The value of the Number of Areas field defines the
number of areas in the file and consequently the number of area declarations
which follow the fixed part of the header.

Number of symbols

If the object file contains a symbol table chunk OBI_SYMT, then this field defines
the number of symbols in the symbol table.

Appendix 0: Code file formats

Entry address area/ entry address offset

One of the areas in an object file may be designated as containing the start address
for any program which is linked to include this file . If so, the entry address is
specified as an <area-index , offset> pair, where area-index is in the
range I to Number of Areas, specifying the nth area declared in the area
declarations part of the header. The entry address is defined to be the base address
of this area plus offset.

A value of 0 for area- index signifies that no program entry address is defined by
this AOF file .

Format of area headers

The area headers follow the fixed part of the AOF header. Each area header has the
following form:

Area name (offset into string variable)

zeros I AT I AL

Area size

Number of relocations

Unused - must be zero 5 words in total

Area name

AL

Each name in an object file is encoded as an offset into the string table, which
stored in the OBI_STRT chunk. This allows the variable-length characteristics of
names to be factored out from primary data formats. Each area within an object file
must be given a name which is unique amongst all the areas in that object file.

This byte must be set to 2; all other values are reserved to Acorn .

AT (Area attributes)

Each area has a set of attributes encoded in the AT byte. The least-significant bit of
AT is numbered 0.

Link orders areas in a generated image first by attributes. then by the
(case-significant) lexicographic order of area names, then by position of the
containing object module in the link-list. The position in the link-list of an object
module loaded from a library is not predictable.

4-419

Object file format

4-420

When ordered by attributes, Read-Only areas precede Read-Write areas which
precede Debug areas; within Read-Only and Read-Write Areas, Code precedes Data
which precedes Zero-Initialised data. Zero-Initialised data may not have the
Read-Only attribute.

Bit 0

Thi s bit must be set to 0.

Bit I

If this bit is set, the area contains code, otherwise it contains data.

Bit 2

Bit 2 specifies that the area is a common block definition.

Bit 3

Bit 3 defines the area to be a (reference to a) common block and precludes the area
having initialising data (see Bit 4, below) . In effect, the setting of Bit 3 implies the
setting of Bit 4.

Common areas with the same name are overlaid on each other by Link. The Si ze
field of a common definition defines the size of a common block. All other
references to this common block must specify a size which is smaller or equal to
the definition size. In a link step there may be at most one area of the given name
with bit 2 set. If none of these have bit 2 set, the actual size of the common area will
be size of the largest common block reference (see also the section entitled Linker
defined symbols on page 4-427) .

Bit 4

This bit specifies that the area has no initialising data in this object file and that
the area contents are missing from the OBLAREA chunk. This bit is typically used
to denote large uninitialised data areas. When an uninitialised area is included in
an image, Link either includes a read-write area of binary zeroes of appropriate size
or maps a read-write area of appropriate size that will be zeroed at image start-up
time. This attribute is incompatible with the read-only attribute (see the section on
Bit 5, below) .

Note: Whether or not a zero-initialised area is re-zeroed if the image is re-entered
is a property of Link and the relevant image format. The definition of AOF neither
requires nor precludes re-zeroing.

Appendix 0: Code file formats

Bit 5

This bit specifies that the area is read-only. Link groups read-only areas together so
that they may be write protected at run-time, hardware permitting. Code areas and
debugging tables should have this bit set. The setting of this bit is incompatible
with the setting of bit 4.

Bit 6

This bit must be set to 0.

Bit 7

This bit specifies that the area contains symbolic debugging tables. Link groups
these areas together so they can be accessed as a single contiguous chunk at
run-time. It is usual for debugging tables to be read-only and, therefore, to have bit
5 set too. If bit 7 is set. bit I is ignored.

Area size

This field specifies the size of the area in bytes, which must be a multiple of 4.
Unless the Not Initialised bit (bit 4) is set in the area attributes, there must
be this number of bytes for this area in the OBI_AREA chunk.

Number of relocations

This specifies the number of relocation directives which apply to this area.

Format of the areas chunk

The areas chunk (OBI_AREA) contains the actual areas (code, data, zero- initialised
data, debugging data, etc.) plus any associated relocation information. Its chunkid
is OBI_AREA. Both an area's contents and its relocation data must be
word-aligned. Graphically, the layout of the areas chunk is:

Area 1

Area 1 relocation

Area n

Area n relocation

An area is simply a sequence of byte values , the order following that of the
addressing rules of the ARM, that is the least significant byte of a word is first. An
area is followed by its associated relocation table (if any) . An area is either

4-421

Object file format

completely initialised by the values from the file or not initialised at all (ie it is
initialised to zero in any loaded program image, as specified by bit 4 of the area
attributes)

Relocation directives

4-422

If no relocation is specified, the value of a byte/half word/word in the preceding
area is exactly the value that will appear in the final image.

Bytes and half words may only be relocated by constant values of suitably small
size. They may not be relocated by an area 's base address.

A field may be subject to more than one relocation .

There are 2 types of relocation directive, termed here type- I and type-2. Type-2
relocation directives occur only in AOF versions I .50 and later.

Relocation can take two basic forms: Additive and PCRelative.

Additive relocation specifies the modification of a byte/half word/word, typically
containing a data value (ie constant or address) .

PCRelative relocation always specifies the modification of a branch (or branch with
link) instruction and involves the generation of a program- counter-relative,
signed, 24-bit word-displacement.

Additive relocation directives and type-2 PC-relative relocation directives have two
variants: Internal and Symbol.

Additive internal relocation involves adding the allocated base address of an area
to the field to be relocated. With Type- I internal relocation directives, the value by
which a location is relocated is always the base of the area with which the
relocation directive is associated (the Symbol IDentification field (SID) is ignored)
In a type-2 relocation directive, the SID field specifies the index of the area relative
to which relocation is to be performed. These relocation directives are analogous
to the TEXT-, DATA- and BSS-relative relocation directives found in the a.out object
format.

Symbol relocation involves adding the value of the symbol quoted.

A type- I PC Relative relocation directive always references a symbol. The relocation
offset added to any pre-existing in the instruction is the offset of the target symbol
from the PC current at the instruction making the PCRelative reference. Link takes
into account the fact that the PC is eight bytes beyond that instruction .

In a type-2 PC-relative relocation directive (only in AOF version 1.50 and later) the
offset bits of the instruction are initialised to the offset from the base of the area of
the PC value current at the instruction making the reference- thus the language

Appendix 0: Code file formats

translator, not Link, compensates for the difference between the address of the
instruction and the PC value current at it. This variant is introduced in direct
support of compilers that must also generate UNIX's a. out format.

For a type-2 PC-relative symbol-type relocation directive, the offset added into the
instruction making the PC-relative reference is the offset of the target symbol from
the base of the area containing the instruction . For a type-2, PC-relative, internal
relocation directive, the offset added into the instruction is the offset of the base of
the area identified by the SID field from the base of the area containing the
instruction .

Link itself may generate type-2, PC-relative , internal relocation directives during
the process of partially linking a set of object modules.

Format of Type 1 relocation directives

Diagrammatically:

Offset

0 I A I R I FT SID

Offset

Offset is the byte offset in the preceding area of the field to be relocated.

SID

If a symbol is invo·lved in the relocation, this 16-bit field specifies the index within
the symbol table (see below) of the symbol in question .

FT (Field Type)

This 2-bit field (bits 16- 17) specifies the size of the field to be relocated:

00 byte
01 halfword
10 word
II illegal value

R (relocation type)

This field (bit 18) has the following interpretation:

0 Additive relocation
PC-Relative relocation

4-423

Object file format

4-424

A (Additive type)

In a type-! relocation directive. this !-bit field (bit 19) is only interpreted if bit 18 is
a zero.

A=O specifies Internal relocation. meaning that the base address of the area (with
which this relocation directive is associated) is added into the field to be relocated .
A= I specifies Symbol relocation. meaning that the value of the given symbol is
added to the field being relocated .

Bits 20- 31

Bits 20-31 are reserved by Acorn and should be written as zeroes.

Format of Type 2 relocation directives

These are available from AOF 1.50 onwards.

I Offset
24-bit SID

The interpretation of Offset. FT and SID is exactly the same as for type-! relocation
directives except that SID is increased from 16 to 24 bits and has a different
meaning- described below- if A=O) .

The second word of a type-2 relocation directive contains I in its most significant
bit; bits 28- 30 must be written as 0. as shown.

The different interpretation of the R bit in type-2 directives has already been
described in the section entitled Relocation directives on page 4-422.

If A=O (internal relocation type) then SID is the index of the area . in the OBI_AREA
chunk. relative to which the value at Offset in the current area is to be relocated .
Areas are indexed from 0.

Format of the symbol table chunk

The Number of Symbols field in the header defines how many entries there are
in the symbol table. Each symbol table entry has the following format:

Name

Value

Area name

Appendix 0: Code file formats

Name

This value is an index into the string table (in chunk OBI_STRT) and thus locates
the character string representing the symbol.

AT

This is a 7 bit field specifying the attributes of a symbol as follows:

Bits I and 0

(I 0 means bit I set. bit 0 unset) .

01 The symbol is defined in this object file and has scope limited to this
object file (when resolving symbol references. Link will only match this
symbol to references from other areas within the same object file) .

I 0 The symbol is a reference to a symbol defined in another area or another
object file. If no defining instance of the symbol is found then Link
attempts to match the name of the symbol to the names of common
blocks . If a match is found it is as if there were defined an
identically-named symbol of global scope. having as value the base
address of the common area.

II The symbol is defined in this object file and has global scope (ie when
attempting to resolve unresolved references . Link will match this symbol
to references from other object files) .

00 Reserved by Acorn.

Bit 2

This attribute is only meaningful if the symbol is a defining occurrence (bit 0 set) .
It specifies that the symbol has an absolute value. for example. a constant.
Otherwise its value is relative to the base address of the area defined by the Area

Name field of the symbol table entry.

Bit 3

This bit is only meaningful if bit 0 is unset (that is . the symbol is an external
reference) . Bit 3 denotes that the reference is case-insensitive. When attempting to
resolve such an external reference. Link will ignore character case when performing
the match.

Bit 4

This bit is only meaningful if the symbol is an external reference (bits 1.0 = 10) . It
denotes that the reference is weak. that is that it is acceptable for the reference to
remain unsatisfied and for any fields relocated via it to remain unrelocated.

4-425

Object file format

4-426

Note: A weak reference still causes a library module satisfying that reference to be
auto-loaded.

Bit 5

This bit is only meaningful if the symbol is a defining, external occurrence (ie if bits
I ,0 = II). It denotes that the definition is strong and, in turn, this is only
meaningful if there is a non-strong, external definition of the same symbol in
another object file . In this scenario, all references to the symbol from outside of
the file containing the strong definition are resolved to the strong definition.
Within the file containing the strong definition, references to the symbol resolve to
the non-strong definition.

This attribute allows a kind of link-time indirection to be enforced. Usually, strong
definitions will be absolute and will be used to implement an operating system 's
entry vector which must have the forever binary property.

Bit 6

This bit is only meaningful if bits I ,0 = I 0. Bit 6 denotes that the symbol is a
common symbol- in effect, a reference to a common area with the symbol 's name.
The length of the common area is given by the symbol's value field (see below).
Link treats common symbols much as it treats areas having the common reference
bit set- all symbols with the same name are assigned the same base address and
the length allocated is the maximum of all specified lengths.

If the name of a common symbol matches the name of a common area then these
are merged and symbol identifies the base of the area.

All common symbols for which there is no matching common area (reference or
definition) are collected into an anonymous linker pseudo-area.

Value

This field is only meaningful if the symbol is a defining occurrence (ie bit 0 of AT
set) or a common symbol (ie bit 6 of AT set). If the symbol is absolute (bit 2 of AT
set). this field contains the value of the symbol. Otherwise, it is interpreted as an
offset from the base address of the area defined by Area Name, which must be an
area defined in this object file.

Area name

This field is only meaningful if the symbol is not absolute (ie if bit 2 of AT is unset)
and the symbol is a defining occurrence (ie bit 0 of AT is set). In this case it gives
the index into the string table of the character string name of the (logical) area
relative to which the symbol is defined.

Appendix 0: Code file formats

String table chunk (OBJ_STRT)

The string table chunk contains all the print names referred to within the areas and
symbol table chunks. The separation is made to factor out the variable length
characteristic of print names. A print name is stored in the string table as a
sequence of IS08859 non-control characters terminated by a NUL (0) byte and is
identified by an offset from the table's beginning. The first 4 bytes of the string
table contain its length (including the length word- so no valid offset into the
table is less than 4 and no table has length less than 4). The length stored at the
start of the string table itself is identically the length stored in the OBI_STRT chunk
header.

Identification chunk (OBJ_IDFN)

This chunk should contain a printable character string (characters in the range
!32- 1261), terminated by a NUL (0) byte. giving information about the name and
version of the language translator which generated the object file .

Linker defined symbols
Though not part of the definition of AOF, the definitions of symbols which the AOF
linker defines during the generation of an image file are collected here. These may
be referenced from AOF object files, but must not be redefined .

Linker pre-defined symbols

The pre-defined symbols occur in Base/Limit pairs. A Base value gives the address
of the first byte in a region and the corresponding Limit value gives the address of
the first byte beyond the end of the region All pre-defined symbols begin
Image$$ and the space of all such names is reserved by Acorn.

None of these symbols may be redefined. The pre-defined symbols are:

Image$$RO$$Base
Image$$RO$$Limit

Image$$RW$$Base
Image$$RW$$Limit

Image$$ZI$$Base
Image$$ZI$$Limit

Address and limit of the Read-Only section
of the image.

Address and limit of the Read-Write section
of the image.

Address and limit of the Zero-initialised data
section of the image (created from areas having
bit 4 of their area attributes set and from
common symbols which match no area name).

If a section is absent, the Base and Limit values are equal but unpredictable.

4-427

Obsolescent and obsolete features

Image$$RO$$Base

Image$$RW$$Limit

includes any image header prepended by Link.

includes (at the end of the RW section) any
zero-initialised data created at run-time.

The Image$ xx $ {Base, Limit} values are intended to be used by language
run-time systems. Other values which are needed by a debugger or by part of the
pre-run-time code associated with a particular image format are deposited into the
relevant image header by Link.

Common area symbols

For each common area , Link defines a global symbol having the same name as the
area, except where this would clash with the name of an existing global symbol
definition (thus a symbol reference may match a common area) .

Obsolescent and obsolete features

4-428

The following subsections describe features that were part of revision l.xx of AOF
and/or that were supported by the 59x releases of the AOF linker. which are no
longer supported . In each case. a brief rationale for the change is given.

Object file type

AOF used to define three image types as well as a relocatable object file type .
Image types 2 and 3 were never used under Arthur/RISC OS and are now obsolete .
Image type I is used only by the obsolete Dbug (DDT has Dbug's functionality and
uses Application Image Format).

AOF Image type I
AOF Image type 2
AOF Image type 3

AL (Area alignment)

C5E2D081 hex
C5E2D083 hex
C5E2D087 hex

(obsolescent)
(obsolete)
(obsolete)

AOF used to allow the alignment of an area to be any specified power of 2 between
2 and 16. By convention, relocatable object code areas always used minimal
alignment (AL=2) and only the obsolete image formats, types 2 and 3, specified
values other than 2. From now on. all values other than 2 are reserved by Acorn.

AT (Area attributes)

Two attributes have been withdrawn: the Absolute attribute (bit 0 of AT) and the
Position Independent attribute (bit 6 of AT).

Appendix 0: Code file formats

The Absolute attribute was not supported by the RISC OS linker and therefore had
no utility. Link in any case allows the effect of the Absolute attribute to be
simulated.

The Position Independent bit used to specify that a code area was position
independent. meaning that its base address could change at run-time without any
change being required to its contents. Such an area could only contain internal,
PC-relative relocations and must make all external references through registers.
Thus only code and pure data (containing no address values) could be
position-independent.

Few language processors generated the PI bit which was only significant to the
generation of the obsolete image types 2 and 3 (in which it affected AREA
placement) . Accordingly, its definition has been withdrawn.

Fragmented areas

The concept of fragmented areas was introduced in release 0.04 of AOF, tentatively
in support of Fortran compilers. To the best of our knowledge, fragmented areas
were never used. (Two warnings against use were given with the original definition
on the grounds of: structural incompatibility with UNIX's a. out format ; and likely
inefficient handling by Link. And use was hedged around with curious restrictions).
Accordingly, the definition of fragmented areas is withdrawn.

4-429

ALF

ALF
ALF is the format of linkable libraries (such as the C RISC OS library RISC_OSLib) .

Library file format types

There are two library file formats described here, termed new-st!Jle and old-st!Jle. Link
can read both formats. though no tool will actually generate an old-style library.

Currently, only the Acorntropexpress Fortran-77 compiler generates old-style
libraries (which it does instead of generating AOF object files). Link handles these
libraries specially, including every member in the output image unless explicitly
instructed otherwise.

Old-style libraries are obsolescent and should no longer be generated.

Library file chunks

LIB_DIRY

4-430

Each piece of a library file is stored in a separate. identifiable. chunk, named as
follows:

Chunk Chunk Name

Directory LIB_ DIRY
Time-stamp LIB_TIME
Version LIB_VSRN -new-style libraries only
Data LIB_DATA

Symbol table OFL - SYMT -object code libraries only
Time-stamp OFL_ TIME -object code libraries only

There may be many LIB_DATA chunks in a library, one for each library member.

The LIB_DIRY chunk contains a directory of all modules in the library each of which
is stored in a LIB_DATA chunk. The directory size is fixed when the library is
created. The directory consists of a sequence of variable length entries. each an
integral number of words long. The number of directory entries is determined by
the size of the LIB_DIRY chunk.

This is shown pictorially in the following diagram:

Integral
number
of words

Chunklndex

EntryLength

DataLength

Data

Padding

Appendix D: Code file formats

In old-style library,
may be an odd
number of bytes

Chunklndex

The Chunklndex is a 0 origin index within the chunk file header of the
corresponding LIB_DATA chunk. The LIB_DATA chunk entry gives the offset and
size of the library module in the library file. A Chunklndex of 0 means the directory
entry is not in use.

Entrylength

The number of bytes in this LIB_DIRY entry, always a multiple of 4.

Data length

Data

The number of bytes used in the Data section of this LIB_DIRY entry. This need not
be a multiple of 4, though it always is in new-style libraries.

The data section consists of a 0 terminated string followed by any other
information relevant to the library module. Strings should contain only IS0-8859
non-control characters (ie codes [0-31 I. 127 and 128+[0-311 are excluded). The
string is the name used by the library management tools to identify this library
module. Typically this is the name of the file from which the library member was
created .

In new-style libraries, an 8-byte, word-aligned time-stamp follows the member
name. The format of this time-stamp is described in the section entitled LIB_ TIME
on page 4-432. Its value is (an encoded version of) the time-stamp (ie the last
modified time) of the file from which the library member was created .

4-431

LIB_ TIME

LIB_ TIME

LIB_VSRN

LIB_DATA

4-432

Applications which create libraries or library members should ensure that the
LIB_DIRY entries they create contain valid time-stamps. Applications which read
LIB_DIRY entries should not rely on any data beyond the end of the name-string
being present unless the difference between the DataLength field and the
name-string length allows for it. Even then , the contents of a time-stamp should be
treated cautiously and not assumed to be sensible.

Applications which write LIB_DIRY or OFL_SYMT entries should ensure that
padding is done with NUL (0) bytes; applications which read LIB_DIRY or
OFL_SYMT entries should make no assumptions about the values of padding bytes
beyond the first. string-terminating NUL byte.

The LIB_ TIME chunk contains a 64 bit time-stamp recording when the library was
last modified, in the following format :

High-address byte

TimeStamp

Low-address byte

L 2 byte microsecond count, usually 0

6 bytes of centi-seconds since
1/1/1900 00:00 GMT

In new-style libraries, this chunk contains a 4-byte version number. The current
version number is I . Old-style libraries do not contain this chunk.

A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY
chunk. No interpretation is placed on the contents of a member by the library
management tools . A member could itself be a file in chunk file format or even
another library.

Appendix 0: Code file formats

Object code libraries
An object code library is a library file whose members are files in AOF. All libraries
you are likely to use with the DOE are object code libraries.

Additional information is stored in two extra chunks, OFL_SYMT and OFL_TIME.

OFL_SYMT contains an entry for each external symbol defined by members of the
library, together with the index of the chunk containing the member defining that
symbol.

The OFL_SYMT chunk has exactly the same format as the LIB_DIRY chunk except
that the Data section of each entry contains only a string, the name of an external
symbol (and between I and 4 bytes of NUL padding). OFL_SYMT entries do not
contain time-stamps.

The OFL_TIME chunk records when the OFL_SYMT chunk was last modified and
has the same format as the LIB_ TIME chunk (see above).

4-433

AIF

AIF
AIF is the format of executable program files produced by linking AOF files.
Example AIF files are !Runimage files of applications coded inC or assembler.

Properties of AIF

4-434

• An AIF image is loaded into memory at its load address and entered at its first
word (compatible with old-style Arthur/Brazil ADFS images) .

• An AIF image may be compressed and can be self-decompressing (to support
faster loading from floppy discs. and better use of floppy-disc space).

• If created with suitable linker options, an AIF image may relocate itself at load
time. Self-relocation is supported in two. distinct senses:

• One-time Position-Independence: A relocatable image can be loaded at
any address (not just its load address) and will execute there (compatible
with version 0.03 of AIF).

• Specified Working Space Relocation: A suitably created relocatable image
will copy itself from where it is loaded to the high address end of
applications memory, leaving space above the copied image as noted in
the AIF header (see below).

In addition, similar relocation code and similar linker options support
many-time position independence of RISC OS Relocatable Modules.

• AIF images support being debugged by the Desktop Debugging Tool (DDT). for
C. assembler and other languages. Version 0.04 of AIF (and later) supports
debugging at the symbolic assembler level (hitherto done by Dbug). Low-level
and source-level debugging support are orthogonal (capabilities of debuggers
notwithstanding, both . either, or neither kind of debugging support may be
present in an AIF image) .

Debugging tables have the property that all references from them to code and
data (if any) are in the form of relocatable addresses. After loading an image at
its load address these values are effectively absolute. All references between
debugger table entries are in the form of offsets from the beginning of the
debugging data area . Thus, following relocation of a whole image, the
debugging data area itself is position independent and can be copied by the
debugger.

Appendix D: Code file formats

Layout of an AIF image

The layout of an AIF image is as follows:

Header

Compressed image

Decompression data This data is position-independent

Decompression code This code is position-independent

The header is small, fixed in size, and described below. In a compressed AIF image,
the header is NOT compressed.

Once an image has been decompressed- or if it is uncompressed in the first place
-it has the following layout:

Header

Read-only area

Read-write area

Debugging data (optional)

Self-relocation code Must be position-independent

Relocation list List of words to relocate, terminated by -1

Debugging data are absent unless the image has been linked appropriately and, in
the case of source-level debugging, unless the constituent components of the
image have been compiled appropriately.

The relocation list is a list of byte offsets from the beginning of the AIF header, of
words to be relocated, followed by a word containing -I . The relocation of
non-word values is not supported.

4-435

AIF header layout

After the execution of the self-relocation code- or if the image is not
self-relocating- the image has the following layout:

Header

Read-only area

Read-write area

Debugging data (optional)

At th is stage a debugger is expected to copy the debugging data (if present)
somewhere safe, otherwise they will be overwritten by the zero-initialised data
and/or the heap/stack data of the program. A debugger can seize control at the
appropriate moment by copying, then modifying, the third word of the AIF header
(see below) .

AIF header layout

BL DecompressedCode

BL SelfRelocCode

BL ZerolnitCode

BL lmageEntryPoint

SWI OS_Exit

Image ReadOnly size

Image ReadWrite size

Image Debug size

Image zero-init size

Image debug type

Image base

Work space

Four reserved words (0)

Zero-init code (16 words)

4-436

BLNV 0 if the image is not compressed

BLNV 0 if the image is not self-relocating

BLNV 0 if the image has none

BL to make header addressable via R14

Just in case silly enough to return

Includes header size and any padding
Exact size - a multiple of 4 bytes

Exact size- a multiple of 4 bytes

Exact size - a multiple of 4 bytes

Exact size - a multiple of 4 bytes

0,1 ,2 or 3 (see below)

Address of the AIF header- set by link

Min work space - in bytes - to be reserved by
a self-moving relocatable image

Header is 32 words long

Appendix 0: Code file formats

BL is used everywhere to make the header addressable via Rl4 (but beware the
PSR bits) in a position-independent manner and to ensure that the header will be
position-independent.

It is required that an image be re-enterable at its first instruction. Therefore, after
decompression, the decompression code must reset the first word of the header to
BLNV 0. Similarly, following self-relocation, the second word of the header must be
reset to BLNV 0. This causes no additional problems with the read-only nature of
the code segment- both decompression and relocation code must write to it
anyway. So, on systems with memory protection , both the decompression code
and the self-relocation code must be bracketed by system calls to change the
access status of the read-only section (first to writable, then back to read-only) .

The image debug type has the following meaning:

0: No debugging data are present.

I : Low-level debugging data are present.

2: Source level (ASD) debugging data are present.

3: I and 2 are present together.

All other values are reserved by Acorn .

Zero-initialisation code

The Zero-initialisation code is as follows:

BIC Rl l, LR , #&FC000003 c l ear status b it s -> header + &C
ADD Rll, Rll , #8 -> I mage ReadOnly size
LDMIA Rll , {RO,Rl , R2 , R3} various sizes
CMPS R3 , #0
MOVLES PC , LR nothing to do
SUB Rll , Rll , #&14 image base
ADD Rll , Rll , RO + RO size
ADD Rll , Rll, Rl + RW size = base of 0-init area
MOV RO, #0
MOV Rl , #0
MOV R2 , #0
MOV R4, #0

ZeroLoop
STMIA Rll !, {RO , Rl , R2 ,R4 }
SUBS R3, R3 , #16
BGT ZeroLoop
MOVS PC , LR 16 words in total .

4-437

Self relocation

Relationship between header sizes and linker pre-defined symbols

Self relocation

4-438

AIFHeader.ImageBase

AIFHeader.ImageBase +

AIFHeader . ROSize

AIFHeader.ImageBase +

AIFHeader.ROSize +
AIFHeader.RWSize

AIFHeader.ImageBase +

AIFHeader.ROSize +

AIFHeader.RWSize +
AIFHeader.ZeroinitSize

Image$$RO$$Base

Image$$RW$$Base

Image$$ZI$$Base

Image$$RW$$Limit

Two kinds of self-relocation are supported by AIF and one by AMF; for
completeness. all three are described here.

One-time position independence is supported by relocatable AIF images.
Many-time position independence is required for AMF Relocatable Modules. And
only AIF images can self-move to a location which leaves a requested amount of
workspace.

Why are there three different kinds of self-relocation?

• The rules for constructing RISC OS applications do not forbid acquired
position-dependence. Once an application has begun to run, it is not, in
general, possible to move it. as it isn't possible to find all the data locations
which are being used as position-dependent pointers. So, AIF images can be
relocated only once. Afterwards, the relocation table is over-written by the
application's zero-initialised data, heap, or stack.

• In contrast, the rules for constructing a RISC OS Relocatable Modules (RM)
require that it be prepared to shut itself down, be moved in memory, and start
itself up again. Shut-down and start-up are notified to a RM by special service
calls to it. Clearly, a RM must be relocatable many times so its relocation table
is not overwritten after first use.

• Relocatable Modules are loaded under the control of a Relocatable Module
Area (RMA) manager which decides where to load a module initially and where
to move each module to whenever the RMA is reorganised. In contrast, an
application is loaded at its load address and is then on its own until it exits or
faults. An application can only be moved by itself (and then only once, before
it begins execution proper).

Appendix 0: Code file formats

Self-relocation code for relocatable modules

In this case there is no AIF header, the code must be executable many times, and it
must be symbolically addressable from the Relocatable Module header. The code
below must be the last area of the RMF image, following the relocation list. Note
that it is best thought of as an additional area.

When the following code is executed , the module image has already been loaded
at/moved to its target address. It only remains to relocate location-dependent
addresses . The list of offsets to be relocated, terminated by (-1), immediately
follows End. Note that the address values here (eg I_RelocCode I) will appear
in the list of places to be relocated, allowing the code to be re-executed .

IMPORT 1Image$$RO$$Base l
EXPORT I_ RelocCodel

I RelocCodel

where the image is linked at .. .
referenced from the RM header

LDR R1, RelocCode value of _ RelocCode (before relocation)
SUB Rll,
SUBS R1,
MOVEQS PC,
LDR Rll,
ADD Rll,
ADR R2 ,

RelocLoop
LDR RO ,
CMNS RO,
MOVLES PC,
LDR R3, [Rll,
ADD R3 ,
STR R3 ,

PC , #12
Rll , R1
LR
ImageBase
Rll, R1
End

[R2] , #4
#1
LR

RO]
R3 , R1
[Rll, RO]

value of _ RelocCode now
relocation offset
relocate by 0 so nothing to do
image base prior to relocation . ..
... where the image rea lly is

got list terminator?
yes => return
word to relocate
relocate it
store it back

B RelocLoop and do the next one
RelocCode DCD I_RelocCodel
ImageBase DCD 1Image$$RO$$Basel
End the list of locations to relocate

starts here (each is an offset from t h e
base of the module) and is terminated
by -1.

Note that this code, and the associated list of locations to relocate , is added
automatically to a relocatable module image by Link (as a consequence of using
Link with the SetUp option Module enabled) .

Self-move and self-relocation code for AIF

This code is added to the end of an AIF image by Link, immediately before the list
of relocations (terminated by -1) . Note that the code is entered via a BL from the
second word of the AIF header so, on entry, R 14 points to AIFHeader + 8.

4-439

Self relocation

4-440

RelocCode ROUT
BIC Rll ,
SUB Rll ,
MOV RO ,
STR RO ,

code
R9,
R9,

LR , #&FC000003 ;clear flag bits ; -> AIF header + &08
R11 , #8 -> header address
#&FBOOOOOO BLNV #0
[R11 , #4] won ' t be called again on image re-entry

need to be moved?
[Rll , #&2C]
#0

min free space requirement
0 => no move, just relocate

;does the
LDR
CMPS
BEQ RelocateOnly

;calculate the amount to
LDR RO , [Rll ,
ADD R9 , R9,
SWI GetEnv
ADR R2 , End

01 LDR RO , [R2] ,
CMNS RO , #1
BNE %B01
SUB R3, R1 ,
SUBS RO , R3 ,
BLE RelocateOnly
BIC RO , RO,
ADD R3 , R2 ,
ADR R8 , %F01

move by .. .
#&20]
RO

#4

R9
R2

#15
RO

image zero-init size
space to leave = min free + zero init
MemLimit -> R1
-> End
load relocation offset, increment R2
terminator?
No , so loop again
MemLimit - freeSpace
amount to move by
not enough space to move . ..
a multiple of 16 .. .
End + shift
intermediate limit for copy-up

copy everything up memory, in descending address order , branch ing
to the copied copy loop as soon as it has been copied.

02 LDMDB R2 ! , {R4-R7}
STMDB R3! , {R4-R7}
CMP R2, R8 copied the copy loop?
BGT %B02 not yet
ADD R4 , ~c . RO
MOV PC , R4 jump to copied copy code

03 LDMDB R2 ! , {R4 -R7}
STMDB R3 !, {R4-R7}
CMP R2 , Rll copied everything?
BGT %B03 not yet
ADD Rll , Rll, RO load address of code
ADD LR , LR , RO relocated return address

RelocateOnly
LDR R1, [Rll , #&28] header + &28 = code base set by Link
SUBS R1 , Rll , R1 relocation offset
MOVEQ PC , LR relocate by 0 so noth ing to do
STR Rll , [Rll , #&28] new image b ase = actual load address
ADR R2 , End start of re l oc list

RelocLoop
LDR RO, R2].
CMNS RO, #1
MOVEQS PC, LR
LDR R3, [Rll ,
ADD R3, R3 ,
STR R3, [Rll ,
B RelocLoop
End

relocate

#4

RO]
R1
RO]

Appendix 0: Code file formats

offset of word to relocate
terminator?
yes => return
word to relocate
relocate it
store it back
and do the next one
The list of offsets of locations to

starts here; terminated by -1.

4-441

ASD

ASD
Acknowledgement: This design is based on work originally done for Acorn
Computers by Topexpress Ltd .

This section describes the format of symbolic debugging data generated by ARM
compilers and assemblers running under RISC OS and used by the desktop
debugger DDT.

For each separate compilation unit (called a section) the compiler produces
debugging data in a special AREA of the object code (see the section entitled AOF
on page 4-417 for an explanation of AREAs and their attributes) . Debugging data
are position independent, containing only relative references to other debugging
data within the same section and relocatable references to other
compiler-generated AREAs .

Debugging data AREAs are combined by the linker into a single contiguous section
of a program image (see the section entitled AIF on page 4-434 for a description of
Application Image Format) . Because the debugging section is
position-independent, the debugger can move it to a safe location before the
image starts executing. If the image is not executed under debugger control the
debugging data is simply overwritten.

The format of debugging data allows for a variable amount of detail. This
potentially allows the user to trade off among memory used, disc space used,
execution time, and debugging detail.

Assembly-language level debugging is also supported, though in this case the
debugging tables are generated by the linker, not by language processors. These
low-level debugging tables appear in an extra section item, as if generated by an
independent compilation. Low-level and high-level debugging are orthogonal
facilities, though DDT allows the user to move smoothly between levels if both sets
of debugging data are present in an image.

Order of Debugging Data

4-442

A debug data AREA consists of a series of items. The arrangement of these items
mimics the structure of the high-level language program itself.

For each debug AREA, the first item is a section item, giving global information
about the compilation , including a code identifying the language and flags
indicating the amount of detail included in the debugging tables.

Each data, function , procedure, etc., definition in the source program has a
corresponding debug data item and these items appear in an order corresponding
to the order of definitions in the source. This means that any nested structure in

Appendix D: Code file formats

the source program is preserved in the debugging data and the debugger can use
this structure to make deductions about the scope of various source-level objects.
Of course, for procedure definitions, two debug items are needed: a procedure
item to mark the definition itself and an endproc item to mark the end of the
procedure's body and the end of any nested definitions. If procedure definitions
are nested then the procedure - endproc brackets are also nested. Variable and
type definitions made at the outermost level. of course, appear outside of all
procedure/endproc items.

Information about the relationship between the executable code and source files is
collected together and appears as a fllelnfo item, which is always the final item in
a debugging AREA. Because of the C language's #include facility, the executable
code produced from an outer-level source file may be separated into disjoint
pieces interspersed with that produced from the included files. Therefore, source
files are considered to be collections of 'fragments', each corresponding to a
contiguous area of executable code and the fileinfo item is a list with an entry for
each file, each in turn containing a list with an entry for each fragment. The fileinfo
field in the section item addresses the fileinfo item itself. In each procedure item
there is a 'file entry' field which refers to the file-list entry for the source file
containing the procedure's start ; there is a separate one in the endproc item
because it may possibly not be in the same source file.

Representation of Data Types

Several of the debugging data items (eg procedure and variable) have a type word
field to identify their data type. This field contains, in the most significant 3 bytes.
a code to identify a base type and, in the least sign ificant byte, a pointer count: 0 to
denote the type itself; I to denote a pointer to the type; 2 to denote a pointer to a
pointer to ... ; etc.

For simple types the code is a positive integer as follows:

void 0 (all codes are decimal)

signed integers
single byte 10
half-word II
word 12

unsigned integers
single byte 20
half-word 21
word 22

4-443

Representation of Source File Positions

floating point
float 30
double 31
long double 32

complex
single complex 41
double complex 42

functions
function 100

For compound types (arrays, structures, etc.) there is a special kind of debug data
item (array, struct. etc.) to give details of the type such as array bounds and field
types . The type code for such types is negative being the negation of the (byte)
offset of the special item from the start of the debugging AREA

If a type has been given a name in a source program, it will give rise to a type
debugging data item which contains the name and a type word as defined above. If
necessary, there will also be a debugging data item such as an array or struct to
define the type itself. In that case, the type word will refer to this item.

Enumerated types inC and scalars in Pascal are treated simply as integer
sub-ranges of an appropriate size. the name information is not available in the this
version of the debugging format. Set types in Pascal are not treated in detail: the
only information recorded for them is the total size occupied by the object in bytes .

Fortran character types are supported by a special kind of debugging data item the
format of which is yet to be defined.

Representation of Source File Positions
Several of the debugging data items have a sourcepos field to identify a position in
the source file. This field contains a line number and character position within the
line packed into a single word. The most significant I 0 bits encode the character
offset (0-based) from the start of the line and the least- significant 22 bits give the
line number.

Debugging Data Items in Detail

4-444

The first word of each debugging data item contains the byte length of the item
(encoded in the most significant 16 bits) and a code identifying the kind of item (in
the least significant 16 bits). The following codes are defined:

Appendix D: Code file formats

section
2 procedure
3 endproc
4 variable
5 type
6 struct
7 array
8 subrange
9 set
IO fileinfo

The meaning of the second and subsequent words of each item is defined below.

Where items include a string field, the string is packed into successive bytes
beginning with a length byte, and padded at the end to a word boundary (the
padding value is immaterial , but NUL or'' is preferred). The length of a string is in
the range [0- 255[bytes.

Where an item contains a field giving an offset in the debugging data area (usually
to address another item), this means a byte offset from the start of the debugging
data for the whole section (in other words, from the start of the section item).

Section

A section item is the first item of each section of the debugging data. The first five
fields are held in a single word:

language
debuglines
debugvars
spare
debugversion
codeaddr
dataaddr
codesize
datasize
fileinfo

debugsize
name or nsyms

one byte code identifying the source language
I bit : set~ tables contain line numbers
I bit : set ~tables contain data about local variables
I4 reserved bits (must be zero)
one byte version number of the debugging data
pointer to start of executable code in this section
pointer to start of static data for this section
byte size of executable code in this section
byte size of the static data in this section
offset in the debugging data of the file information for
this section (or 0 if no fileinfo is present)
total byte length of debugging data for this section
string or integer

The name field contains the program name for Pascal and Fortran programs. For C
programs it contains a name derived by the compiler from the main file name
(notionally a module name) . Its syntax is similar to that for a variable name in the
source language. For a low-level debugging section (language= 0) the field is
treated as a 4 byte integer giving the number of symbols following.

4-445

Debugging Data Items in Detail

4-446

The following language byte codes are defined:

0
I
2
3
other

Low-level debugging data (notionally, assembler)
c
Pascal
Fortran77
reserved to Acorn.

The fileinfo field is 0 if no source file information is present.

The debugversion field was defined to be I; the new debugversion for the extended
debugging data format (encompassing low-level debugging data) is 2. For low-level
debugging data, other fields have the following values:

language
codeaddr
dataaddr
codesize
datasize
fileinfo
nsyms
debugsize

0
ImageSSROSSBase
ImageSSRWSSBase
ImageSSROSSLimit - ImageSSROSSBase
ImageSSRWSSLimit - ImageSSRWSSBase
0
number of symbols within the following debugging data
total size of the low-level debugging data including the
size of the section item

The section item is immediately followed by nsyms symbols, each having the
following format:

stridx:24
flags:8
value

byte offset in string table of symbol name
(see below)
the value of the symbol

The flags field has the following values :

0/I
+
0/2/4/6

the symbol is a local/global symbol
(there may be many local symbols with the same name)
symbol names an absolute/code/data/zero-init value

Note that the linker reduces all symbol values to absolute values. The flags field
records the history, or origin , of the symbol in the image.

The string table is in standard AOF format. It consists of a length word followed by
the strings themselves, each terminated by a NUL (0) . The length word includes the
length of the length word, so no offset into the string table is less than 4. The end
of the string table is padded to the next word boundary.

Appendix D: Code file formats

Procedure

A procedure item appears once for each procedure or function definition in the
source program. Any definitions with the procedure have their related debugging
data items between the procedure item and the matching endproc item. The
format of procedure items is as follows:

type
args
sourcepos

startaddr
bodyaddr

endproc
fileentry
name

the return type if this is a function, else 0
the number of arguments
a word encoding the source position of the start of the
procedure
pointer to the first instruction of the procedure
pointer to the first instruction of the procedure body (see
below)
offset of the related endproc item
offset of the file list entry for the source file
string

The bodyaddr field points to the first instruction after the procedure entry
sequence, that is the first address at which a high-level breakpoint could sensibly
be set. The startaddr field points to the beginning of the entry sequence, that is the
address at which control actually arrives when the procedure is called.

A label in a source program is represented by a special procedure item with no
matching endproc (the endproc field is 0 to denote this) . Pascal and Fortran
numerical labels are converted by the compiler into strings prefixed by '$n '.

For Fortran77, multiple entry points to the same procedure each give rise to a
separate procedure item but they all have the same endproc offset referring to a
single endproc item.

Endproc

This item marks the end of the debugging data items belonging to a particular
procedure. It also contains information relating to the procedure's return. Its
format is as follows:

sourcepos

endaddr

filentry
nreturns
retaddrs ...

a word encoding the position in the source file of the end
of the procedure
a pointer to the code byte AFTER the compiled code for
the procedure
offset of the file list entry for the procedure's end
number of procedure return points (may be 0)
pointers to the procedure-return code

4-447

Debugging Data Items in Detail

4-448

If the procedure body is an infinite loop, there will be no return point so nreturns
will be 0. Otherwise the retaddrs should each point to a suitable location at which
a breakpoint may be set 'at the exit of the procedure' When execution reaches this
point, the current stack frame should still be in this procedure.

Variable

Type

This item contains debugging data relating to a source program variable or a
formal argument to a procedure (the first variable items in a procedure always
describe its arguments). Its format is as follows:

type
sourcepos
class
location
name

a type word
a word encoding the source position of the variable
a word encoding the variable's storage class
see explanation below
string

The following codes define the storage classes of variables:

2
3
4
5
6
7

external variables (or Fortran common)
static variables private to one section
automatic variables
register variables
Pascal var arguments
Fortran arguments
Fortran character arguments

The meaning of the location field of a variable item depends on the storage class:
it contains an absolute address for static and external variables (relocated by the
linker); a stack offset (ie an offset from the frame- pointer) for automatic and
var-type arguments; an offset into the argument list for Fortran arguments; and a
register number for register variables (the 8 floating point registers are numbered
16- 23).

No account is taken of variables which ought to be addressed by +ve offsets from
the stack-pointer rather than -ve offsets from the frame-pointer.

The sourcepos field is used by the debugger to distinguish between different
definitions having the same name (eg identically named variables in disjoint
source-level naming scopes such as nested block in C).

This item is used to describe a named type in the source language (ega typedef in
C). The format is as follows:

type
name

a type word (described earlier)
string

Struct

Array

Appendix D: Code file formats

This item is used to describe a structured data type (ega struct inC or a record in
Pascal) . Its format is as follows:

fields
size
fieldtable ...

offset
type
name

the number of fields in the structure
total byte size of the structure
a table of fields entries in the following format:

byte offset of this field within the structure
a type word (interpretation as described earlier)
string

Union types are described by struct items in which all fields have 0 offsets.

C bit fields are not treated in full detail: a bit field is simply represented by an
integer starting on the appropriate word boundary (so that the word contains the
whole field).

This item is used to describe a one-dimensional array. Multi-dimensional arrays
are described as arrays of arrays . Which dimension comes first is dependent on the
source language (different for C and Fortran) . The format is as follows:

size
arrayflags
base type
lowerbound
upperbound

total byte size of each element
(see below)
a type word
constant value or stack offset of variable
constant value or stack offset of variable

If the size field is zero, debugger operations affecting the whole array, rather than
individual elements of it, are forbidden .

The following bit numbers in the arrayflags field are defined:

0
I
2
3

lower bound is undefined
lower bound is a constant
upperboundisundefined
upper bound is a constant

If a bound is defined and not constant then it is an integer variable on the stack
and the boundvalue field contains the stack offset of the variable (from the
frame-pointer) .

4-449

Debugging Data Items in Detail

4-450

Subrange

Set

This item is used to describe subrange typed in Pascal. It also serves to describe
enumerated types inC and scalars in Pascal (in which case the base type is
understood to be an unsigned integer of appropriate size) . Its format is as follows :

size
typecode
lwb
upb

half-word: I, 2, or 4 to indicate byte size of object
half-word: simple type code
lower bound of subrange
upper bound of subrange

This item is used to describe a Pascal set type. Currently, the description is only
partial. The format is :

size byte size of the object

Fileinfo

This item appears once per section after all other debugging data items. The half of
the header word which would usually give the item length is not required and
should be set to 0.

Each source file is described by a sequence of 'fragments' , each of which describes
a contiguous region of the file within which the addresses of compiled code
increase monotonically with source-file position . The order in which fragments
appear in the sequence is not necessarily related to the source file positions to
which they refer.

Note that for compilations that make no use of the #include facility, the list of
fragments will have only one entry and all line-number information will be
contiguous.

The item is a list of entries each with the following format:

length
date
filename
n
fragments . . .

fragmentsize
firstline
lastline
codeaddr
codesize
lineinfo ...

length of this entry in bytes (0 marks the final entry)
date and time when the file was last modified
string (or null if the name is not known)
number of fragments following
n fragments with the following structure ...

length of this entry in bytes
linen umber
linenumber
pointer to the start of the fragment's executable code
byte size of the code in the fragment
a variable number of line number data

Appendix 0: Code file formats

There is one lineinfo half-word for each statement of the source file fragment which
gives rise to executable code. Exactly what constitutes an executable statement
may be defined by the language implementation; the definition may for instance
include some declarations. The half-word can be regarded as 2 bytes: the first
contains the number of bytes of code generated from the statement and cannot be
zero; the second contains the number of source lines occupied by the statement (ie
the difference between the line number of the start of the statement and the line
number of the next statement). This may be zero if there are multiple statements
on the same source line.

If the whole half-word is zero, this indicates that one of the quantities is too large
to fit into a byte and that the following 2 half-words contain (in order) the number
of lines followed by the number of bytes of code generated from the statement.

4-451

4-452

90 Appendix E: File formats

Introduction
The file formats described in this appendix are those generated by RISC OS itself
and various applications. Each is shown as a chart giving the size and description
of each element. The elements are sequential and the sizes are in bytes.

This appendix contains information about the following file formats :

• Sprite files

• Template files

• Draw files

• Font files , including lntMetrics, Outlines and bitmap files

• Music files

• Squash files

4-453

Sprite files

Sprite files

4-454

A sprite file is saved in the same format as a sprite area is saved in memory, except
that the first word of the sprite area is not saved.

For a full description of sprite area formats, refer to the section entitled Format of a
sprite area on page 1-749.

Appendix E: File formats

Template files

Header

Index entries

Terminator

Data

The following section describes the Wimp template file format:

The file starts with a header:

Size

4

4

4

4

Description

file offset of font data (-I if none)

reserved (must be zero)

reserved (must be zero)

reserved (must be zero)

The header is followed by a series of index entries to data later in the file:

Size

4

4

4

12

Description

file offset of data for this entry

size of data for this entry

entry type (I =window)

identifier (control character terminated)

The index entries are terminated by a null word:

Size

4

Description

0

Each set of entries referred to earlier in the index contains the following:

Size

88

Description

window definition (as in Wimp_CreateWindow- see
page 3-89)

ni x 32

?

icon definitions (as in Wimp_Createlcon- see page 3-96)

indirected icon data

Any pointers to indirected icon data are offsets from the start of the current entry.
Any references to anti-aliased fonts use internal handles.

4-455

Font data

Font data

4-456

The file ends with an optional set of font data (the presence of which is indicated
by the first word of the header) :

Size

4

4

40

Description

x-point-size x 16

y-point-size x 16

font name (control character terminated)

The first font entry is that referred to by internal handle I , the second font entry is
that referred to by internal handle 2, etc

Draw files

Coordinates

Colours

Appendix E: File formats

The Draw file format provides an object-oriented description of a graphic image. It
represents an object in its editable form . unlike a page-description language such
as PostScript which simply describes an image.

Programmers wishing to define their own object types should contact Acorn; see
Appendix H: Registering names on page 4-545.

All coordinates within a Draw file are signed 32-bit integers that give absolute
positions on a large image plane. The units are II(180 x 256) inches. or 1/640 of a
printer's point. When plotting on a standard RISC OS screen. an assumption is
made that one OS-unit on the screen is 1/180 of an inch. This gives an image
reaching over half a mile in each direction from the origin. The actual image size
(eg the page format) is not defined by the file. though the maximum extent of the
objects defined is quite easy to calculate. Positive-xis to the right . positive-y is up.
The printed page conventionally has the origin at its bottom left hand corner.
When rendering the image on a raster device. the origin is at the bottom left hand
corner of a device pixel.

Colours are specified in Draw files as absolute RGB values in a 32-bit word. The
format is:

Byte

0

2
3

Description

reserved (must be zero)
unsigned red value
unsigned green value
unsigned blue value

For colour values. 0 means none of that colour and 255 means fully saturated in
that colour.

You must always write byte 0 (the reserved one) as 0, but don't assume that it
always will be 0 when reading.

The bytes in a word of an Draw file are in little-endian order. eg the least significant
byte appears first in the file .

The special value &FFFFFFFF is used in the filling of areas and outlines to mean
'transparent'.

4-457

File headers

File headers

4-458

The file consists of a header, followed by a sequence of objects.

The file header is of the following form .

Size

4

4

4

12

4

4

4

4

Description
'Draw'

major format version stamp- currently 20 I (decimal)

minor format version stamp- currently 0

identity of the program that produced this file- typically
8 ASCII characters, padded with spaces

x-low l bounding box
y-low bottom-left (x-low, y-low) is inclusive

x-high top-right (x-high, y-high) is exclusive

y-high

When rendering a Draw file, check the major version number. If this is greater than
the latest version you recognise then refuse to render the file (eg generate an error
message for the user), as an incompatible change in the format has occurred.

The entire file is rendered by rendering the objects one by one, as they appear in
the file.

The bounding box indicates the intended image size for this drawing.

A Draw file containing a file header but no objects is legal; however, the bounding
box is undefined. In particular the 'x-low' value may be greater than the ·x-high'
value (and similarly for they values).

Objects

Appendix E: File formats

Each object consists of an object header. followed by a variable amount of data
depending on the object type.

Object header

The object header is of the following form:

Size

4

Description

object type field

4 object size: number of bytes in the object- always a multiple
of4

4

4

4

4

x-low l object bounding box
y-low bottom-left (x-low, y-low) is inclusive

x-high top-right (x-high , y-high) is exclusive

y-high

The bounding box describes the maximum extent of the rendition of the object: the
object cannot affect the appearance of the display outside this rectangle. The
upper coordinates are an outer bound. in that the device pixel at (x-low, y-low) may
be affected by the object. but the one at (x-high, y-high) may not be. The rendition
procedure may use clipping on these rectangles to abandon obviously invisible
objects .

Objects with no direct effect on the rendition of the file have no bounding box
(hence the header is only two words long). Such objects will be identified explicitly
in the object descriptions that follow. If an unidentified object type field is
encountered when rendering a file. ignore the object and continue.

The rest of t he data for an object depends on the object type.

Font table object

Object type number 0

A font table object has no bounding box in its object header, which is followed by
a sequence of font number definitions:

Size

I

n

0-3

Description

font number (non-zero)

n character textual font name, null terminated

up to 3 zero characters, to pad to a word boundary

4-459

Objects

4-460

This object type is somewhat special in that only one instance of it ever appears in
a Draw file . It has no direct effect on the appearance of the image, but maps font
numbers (used in text objects) to textual names of fonts . It must precede all text
objects. Comparison of font names is case-insensitive.

Text object

Object type number I

Size

4

4

4

4

4

8

11

0-3

Description

text colour

text background colour hint

text style

unsigned nominal x size of the font (in 1/640 point)

unsigned nominal y size of the font (in 1/640 point)

x, y coordinates of the start of the text base line

11 characters in the string, null terminated

up to 3 zero characters, to pad to a word boundary

The character string consists of printing ANSI characters with codes within the
ranges 32- 126 and 128- 255. This need not be checked during rendering, but
other codes may produce undefined or system-dependent results .

The text style word consists of the following:

Bit(s)

0-7
8- 31

Description

one byte font number
reserved (must be zero)

Italic, bold variants etc are assumed to be distinct fonts .

The font number is related to the textual name of a font by a preceding font table
object within the file (see above). The exception to this is font number 0, which is a
system font that is sure to be present. When rendering a Draw file , if a font is not
recognised, the system font should be used instead. The system font is
monospaced, with the gap between letters equal to the nominal x size of the font.

The background colour hint can be used by font rendition code when performing
anti-aliasing. It is referred to as a hint because it has no effect on the rendition of
the object on a 'perfect' printer; nevertheless for screen rendition it can improve
the appearance of text on coloured backgrounds . The font rendition code can
assume that the text appears on a background that matches the background colour
hint.

Appendix E: File formats

Path object

Object type number 2

Size

4

4

4

4

?

?

Description

fill colour (-I~ do not fill)

outline colour (-I ~no outline)

outline width (unsigned)

path style description

optional dash pattern definition

~equence of path components

An outline width of 0 means draw the thinnest possible outline that the device can
represent. A path component consists of:

Size

4

n x 8

Description

!-word tag identifier:
bits 0 - 7 =tag identifier byte:

0 ~end of path : no arguments
2 ~ move to absolute position: followed by

one x, y pair
5 ~ close current sub-path : no arguments
8 ~ draw to absolute position: followed by

one x, y pair
6 ~ Bezier curve through two control points,

to absolute position : followed by
three x, y pairs

bits 8 - 31 reserved (must be zero)

sequence of n 2-word (x, y) coordinate pairs (where n is zero,
one or three, as determined by the value of the tag identifier)

The tag values match the arguments required by the Draw module. This block of
memory can be passed directly to the Draw module for rendition; see the chapter
entitled Draw module on page 3-523 for precise rules concerning the appearance of
paths . See also manuals on PostScript. (Reference: PostScript Language Reference
Manual. Adobe Systems Incorporated (1990) 2nd ed. Addison-Wesley, Reading,
Mass, USA) .

The possible set of legal path components in a path object is described as follows .
A path consists of a sequence of (at least one) subpaths, followed by an 'end of
path ' path component. A subpath consists of a 'move to' path component,
followed by a sequence of (at least one) 'draw to' and/or 'Bezier to' path
components, followed (optionally) by a 'close sub-path ' path component.

4-461

Objects

4-462

The path style description word is as follows:

Bit(s)

0- I

2- 3

4-5

6

7

8- 15

16- 23

24- 31

Description

join style:
0 = mitred joins
I = round joins
2 = bevelled joins

end cap style:
0 =butt caps
I = round caps
2 = projecting square caps
3 = triangular caps

start cap style (same possible values as end cap style)

winding rule :
0 =non-zero
I= even-odd

dash pattern :
0 = dash pattern missing
I = dash pattern present

reserved (must be zero)

triangle cap width :
a value within 0- 255 , measured in sixteenths of the
line width

triangle cap length:
a value within 0 - 255, measured in sixteenths of the
line width

The mitre cut-off value is the PostScript default (eg I 0) . If the dash pattern is
present then it is in the following format:

Size

4

4

Description

offset distance into the dash pattern to start

number of elements in the dash pattern

followed by, for each element of the dash pattern :

Size

4

Description

length of the dash pattern element

The dash pattern is reused cyclically along the length of the path , with the first
element being filled, the next a gap, and so on .

Appendix E: File formats

Sprite object

Oblect type number 5

This is followed by a sprite. See the section entitled Format of a sprite on page 1-749
for details.

This contains a pixel map image. The image is scaled to entirely fill the bounding
box.

If the sprite has a palette then this gives absolute values for the various possible
pixels. If the sprite has no palette then colours are defined locally. Within RISC OS
the available 'Wimp colours· are used- for further details see the chapter entitled
Sprites on page 1-745 and the chapter entitled The Window Manager on page 3-3.

Group object

Oblect type number 6

Size

12

Description

group object name. padded with spaces

This is followed by a sequence of other objects.

The objects contained within the group will have rectangles contained entirely
within the rectangle of the group. Nested grouped objects are allowed.

The object name has no effect on the rendition of the object. It should consist
entirely of printing characters. It may have meaning to specific editors or programs.
It should be preserved when copying objects. If no name is intended. twelve space
characters should be used.

Tagged object

Oblect type number 7

Size

4

Description

tag identifier

This is followed by an object and optional word-aligned data.

To render a Tagged object. simply render the enclosed object. The identifier and
additional data have no effect on the rendition of the object. This allows specific
programs to attach meaning to certain objects. while keeping the image
renderable.

Programmers wishing to define their own object tags should contact Acorn ; see
Appendix H: Registering names on page 4-545.

4-4n::\

Objects

4-464

Text area object

ObJect type number 9

Size

?

4

4

4

4

4

?

0-3

Description

I or more text column objects (object type 10, no data- see
below)

zero, to mark the end of the text columns

reserved (must be zero)

reserved (must be zero)

initial text foreground colour

initial text background colour hint

the body of the text column (ASCII characters, terminated by
a null character)

up to 3 zero characters, to pad to a word boundary

A text area contains a number of text columns . The text area has a body of text
associated with it, which is partitioned between the columns. If there is just one
text column object then its bounding box must be exact ly coincident with that of
the text area.

The body of the text is paginated in the columns. Effects such as font settings and
colour changes are controlled by escape sequences within the body of the text . All
escape sequences start with a backslash character(\); the escape code is case
sensitive, though any arguments it has are not.

Arguments of variable length are terminated by a '/' or <newline>. Arguments of
fixed length are terminated by an optional'/'.

Values with range limits mean that if a value falls outside the range, then the value
is truncated to this limit.

Escape sequence Description

• \ ! <version><newline or I>

• \A<code><optional I>

Must appear at the start of the text. and only there .
<version> must be I .

Set alignment. <code> is one of L (left = default).
R (right), C (centre), D (double) . A change in
alignment forces a line break.

• \B<R><spaces><G><spaces><newline or I>
Set text background colour hint to the given RGB
intensity (or the best available approximation) . Each
value is limited to 0- 255 .

Appendix E: File formats

• \C<R><spaces><G><spaces><newline or I>
Set text foreground colour to the given RGB intensity
(or the best available approximation). Each value is
limited to 0- 255 .

• \D<number><newline or I>
Indicates that the text area is to contain <number>
columns. Must appear before any printing text.

• \F<digit*><name><spaces><size>[<spaces><width>]<newline or I>

• \<digit*><optional I>

Defines a font reference number. <name> is the
name of the font, and <size> its height. <width> may
be omitted , in which case the font width and height
are the same. Font reference numbers may be
reassigned. <digit*> is one or two digits. <size> and
<width> are in points.

Selects a font, using the font reference number

• \L<leading><newline or I>
Define the leading in points from the end of the
(output) line in which the \L appears- ie the vertical
separation between the bases of characters on
separate lines. Default. I 0 points.

• \M<leftmargin><spaces><rightmargin><newline or I>
Defines margins that will be left on either size of the
text. from the start of the output line in which the
sequence appears. The margins are given in points,
and are limited to values> 0. If the sum of the
margins is greater than the width of the column, the
effects are undefined. Both values default to I point.

• \P<leading><newline or I>
Define the paragraph leading in points , ie the vertical
separation between the end of one paragraph and
the beginning of a new paragraph. Default, 10 points.

• \U<position><spaces><thickness><newline or I>

• \V[-]<digit><optional I>

Switch on underlining, at <position> units relative to
the character base, and of <thickness> units, where a
unit is 1/256 of the current font size. <position> is
limited to -128 ... + 127, and <thickness> to 0 ... 255 .
To turn the underlining off. either give a thickness of
0, or use the command '\U.'

Vertical move by the specified number of points.

4-465

Objects

4-466

. \-
• \<newline> . \\
• \;<text><newline>

Soft hyphen: if a line cannot be split at a space, a
hyphen may be inserted at this point instead;
otherwise, it has no printing effect.

Force line break.

appears as\ on the screen

Comment ignored.

Other escape sequences are flagged as errors during verification .

Lines within a paragraph are split either at a space, or at a soft hyphen, or (if a
single word is longer than a line) at any character.

A few other characters have a special interpretation:

• Control characters are ignored, except for tab, which is replaced by a space.

• Newlines (that are not part of an escape sequence) are interpreted as follows:

Occurring before any printing text: a paragraph leading is inserted for each
newline.

In the body of the text: a single newline is replaced by a space, except when it
is already followed or preceded by a space or tab. A sequence of n newlines
inserts a space of (n-I) times the paragraph leading, except that paragraph
leading at the top of a new text column is ignored.

Lines which protrude beyond the limits of the box vertically, eg because the
leading is too small , are not displayed; however, any font changes, colour changes,
etc. in the text are applied . Characters should not protrude horizontally beyond the
limits of the text column, eg owing to italic overhang for this font being greater
than the margin setting.

Restrictions

If a chunk of text contains more than I 6 colour change sequences, only the last I 6
will be rendered correctly. This is a consequence of the size of the colour cache
used within the font manager. A chunk in this case means a block of text up to
anything that forces a line break, eg the end of a paragraph or a change on the
alignment.

Text column object

Object type number I 0

No further data, ie just an object header.

A text column object may only occur within a text area object. Its use is described
in the section on text area objects.

Appendix E: File formats

Options object

Object type number I I

The object header for an options object has space allocated for a bounding box,
but since one would be meaningless, the space is unused. You must treat the
4 words normally used for the bounding box as reserved, and set them to zero.

Size

4

4

8
4

4

4

4

4

4

4

4

4

4

4

4

Description

(paper size+ I) x &100 (ie &500 for A4)

paper limits options:
bit 0 set ~ paper limits shown
bits I - 3 reserved (must be zero)
bit 4 set~ landscape orientation (else portrait)
bits 5-7 reserved (must be zero)
bit 8 set ~ printer limits are default
bits 9 - 31 reserved (must be zero)

grid spacing (floating point)

grid division

grid type (zero~ rectangular, non-zero~ isometric)

grid auto-adjustment (zero~ off. non-zero~ on)

grid shown (zero~ no, non-zero~ yes)

grid locking (zero~ off, non-zero~ on)

grid units (zero~ inches, non-zero~ centimetres)

zoom multiplier (I - 8)

zoom divider (I - 8)

zoom locking (zero~ none, non-zero~ locked to powers of
two)

toolbox presence (zero~ no, non-zero~ yes)

initial entry mode: one of
bit 0 set ~ line
bit I set ~closed line
bit 2 set~ curve
bit 3 set ~ closed curve
bit 4 set ~ rectangle
bit 5 set ~ellipse
bit 6 set ~ text line
bit 7 set ~ select

undo buffer size, in bytes

4-467

Objects

4-468

When Draw reads a draw file , only the first options object is taken into account
any others are discarded. When it saves a diagram to file , the options in force for
that diagram are saved with it.

The Draw application supplied with RISC OS 2 does not use this object type.

Transformed text object

ObJect type number 12

Size

24

4

4

4

4

4

4

8

11

0-3

Description

transformation matrix

font flags :
bit 0 set=> text should be kerned
bit I set => text written from right to left
bits 2 - 31 reserved (must be zero)

text colour

text background colour hint

text style

unsigned nominal x size of the font (in 1/640 point)

unsigned nominal y size of the font (in 1/640 point)

x, y coordinates of the start of the text base line

11 characters in the string, null terminated

up to 3 zero characters, to pad to a word boundary

The transformation matrix is as described in Font_Paint (see page 3-429), in the
same format used elsewhere in the Draw module.

The remaining fields are exactly as specified for Text objects (see page 4-460) .

The Draw application supplied with RISC OS 2 does not use this object type.

Transformed sprite object

Object type number 13

Size

24

Description

Transformation matrix

Appendix E: File formats

This is followed by a sprite . See the section entitled Format of a sprite on page I -749
for details.

This contains a pixelmap image. The image is transformed from its own
coordinates (ie the bottom-left at (0, 0) and the top-right at (w x x_eig, h x y_eig).
where (w, h) are the width and height of the sprite in pixels, and (x_eig, y_eig) are
the eigen factors for the mode in which it was defined) by the transformation held
in the matrix.

If the sprite has a palette then this gives absolute values for the various possible
pixels If the sprite has no palette then colours are defined locally. Within RISC OS
the available 'Wimp colours' are used- for further details see the chapter entitled
Sprites on page 1-745 and the chapter entitled The Window Manager on page 3-3 .

The Draw application supplied with RISC OS 2 does not use this object type.

4-469

Font files

Font files
In all the formats described below. 2-byte quantities are little-endian : that is. the
least significant byte comes first, followed by the most-significant. The values are
unsigned unless otherwise stated .

Fonts are described in :

• IntMetrics and IntMetn files

• x90y45 files (old style 4-bpp bitmaps)

• New font file formats .

lntMetrics /lntMetn files

4-470

Header

Size

40

4

4

I

If flags bit 5 is set:

2

Description

name of font. padded with Return characters

I6

I6

nlo =low byte of number of characters that may be defined

version number of file format :

flags :

0 flags and nhi must be zero
not supported

2 flags supported; n can be > 255

bit 0 set~ there is no bbox data (use Outlines)
bit I set ~ there is no x-offset data
bit 2 set ~ there is no y-offset data
bit 3 set ~ there is more data after the metrics
bit 4 reserved (must be zero)
bit 5 set ~ character map size precedes map
bit 6 set ~ kern characters are I 6-bit . else 8-bit
bit 7 reserved (must be zero)

nhi = high byte of number of characters that may be defined:
n = nhi x 256 + nlo

m = character map size
0~ no map

Some of the n character definitions can be blank; the number defines the number
of slots available- though not necessarily used- in the character definition tables.

Character mapping

Size

m

Appendix E: File formats

Description

character mapping (ie indices into following tables)

For example, if the 40th byte in this mapping has the
value 4, then the fourth entry in each of the following
arrays refers to character 40. A zero entry means that
character is not defined in this font.

If flags bit 5 is clear, 256 characters are mapped (ie
m = 256) .

If there is no map (see above). the character code is used to index into the tables.

Note that since the mapping table is 8-bit, there cannot be one if 11 > 256.

Table of bounding boxes

If flags bit 0 is clear:

Description Size

211

211

211

211

xO l bounding box for each character (16-bit signed)
yO bottom-left (xO, yO) is inclusive

xi top-right (xi , yl) is exclusive

yl coordinates are in 1/IOOOth em

Coordinates are relative to the 'origin point'.

Tables of character widths

If flags bit I is clear:

Size

211

If flags bit 2 is clear:

Size

211

Description

x-offset after printing each character, in 1/IOOOth em
(I 6-bit signed)

Description

y-offset after printing each character, in 1/1 OOOth em
(16-bit signed)

4-471

lntMetrics I lntMetn files

4-472

To calculate the offset to this point in the file , let:

nlo = byte at offset 48 in file
version number= byte at offset 49 in file
flags = byte at offset 50 in file
nhi = byte at offset 51 in file
If version number< 2 then flags= 0 (which it should be anyway!)
n = nhi x 256 + nlo

Then :

offset= 52
if (flags bit 5 clear) then offset+= 256
else offset+= 2 +byte(52) + 256 x byte(53)
if (flags bit 0 clear) then offset += 8n
if (flags bit I clear) then offset+= 2n
if (flags bit 2 clear) then offset+= 2n

Offsets to extra data areas

If flags bit 3 is set:

Size

2

2

2

2

Description

offset to 'miscellaneous' data area

offset to kern pair data area

offset to reserved data area #I

offset to reserved data area #2

The offsets are relative to the start of the table. The entries must be consecutive in
the file , so the end of one area coincides with the beginning of the next. The areas
are not necessarily word-aligned , and the space at the end of each area is reserved
(ie there must not be any 'dead' space at the end of an area) .

Appendix E: File formats

Miscellaneous data area

Size
2

2

2

2

2

2

2

I

I

2

2

2

2

4

Kern pair data

Description

xO l maximum bounding box for font (I6-bit signed)

yO bottom-left (xO, yO) is inclusive

xI top-right (xI , y I) is exclusive

yi all coordinates are in I/IOOOths em

default x-offset per char (if flags bit I is set). in 1/I OOOth em
(I6-bit signed)

default y-offset per char (if flags bit 2 is set). in III OOOth em
(I 6-bit signed)

italic h-offset per em (-1000 x TAN (italic angle))
(I 6-bit signed)

underline position, in I/256th em (signed)

underline thickness, in I/256th em (unsigned)

Cap Height in III OOOth em (I 6-bit signed)

XHeight in II I OOOth em (I 6-bit signed)

Descender in III OOOth em (I 6-bit signed)

Ascender in I / IOOOth em (I6-bit signed)

reserved (must be zero)

If flags bit 6 is clear. character codes are 8-bit; if flags bit 6 is set. character codes are
I6-bit (lo, hi) .

Size Description
I or 2 left-hand character code

I or 2 right-hand character code

2 x-kern amount (if flags bit I is clear)
in III OOOths em (I 6-bit signed)

2 y-kern amount (if flags bit 2 is clear)
in III OOOths em (I 6-bit signed)

I or 2 0 ~ end of list for this letter

I or 2 0 ~ end of kern pair data

Reserved data areas #1 and #2

These must be null.

repeat repeat

4-473

x90y45 font files

x90y45 font files

4-474

If the length of a x90y45 file is less than 256 bytes, then the contents are the name
of the f9999x9999 file to use as master bit maps.

Index entries

Each font file starts with a series of 4-word (ie 16 byte) index entries,
corresponding to the sizes defined:

Size

4

4

4

Description

point size, not multiplied by 16

bits per pixel (4)

pixels per inch in the x-direction

pixels per inch in they-direction

reserved (must be zero)

offset of pixel data in file

size o f pixel data

The list is terminated by:

I 0

Pixel data

Pixel data is limited to 64KBytes per block. Each block starts word-aligned relative
to the start of the file:

Size

4

4

4

4

I

512

Description

x-size, in l/16ths point x x pixels per inch

y-size, in l / 16ths point x y pixels per inch

pixels per inch in the x-direction

pixels per inch in they-direction

xO l maximum bounding box for font
yO bottom-left (xO, yO) is inclusive

xI top-right (xI, y I) is exclusive

yl all coordinates are in pixels

2-byte offsets from table start of character data.
A zero value means the character is not defined.

Character data

Size

XxY 12

0 - 3.5

Other font file formats

Description

xO

yO

xi -xO =X

yl-:-yO=Y

Appendix E: File formats

l
bounding box for character

bottom-left (xO, yO) is Inclusive

top-right (xI , y I) is exclusive

all coordinates are in pixels

4-bits per pixel (bpp), consecutive rows bottom to top: not
aligned until the end

alignment

The new font file formats includes definitions for the following types of font files :

• f9999x9999 (new style 4-bpp anti-aliased fonts)

• b9999x9999 (1-bpp bitmaps)

• Outlines (outline font format, for all sizes)

'9999' =pixel size (ie point size x 16 x dpi I 72) zero-suppressed decimal number.

If the length of an outlines file is less than 256 bytes, then the contents are the
name of another font whose glyphs are to be used instead (with this font 's
metrics).

4-475

Other font file formats

File header

4-476

The file header is of the following form:

Size

4

2

2

2

2

2

Description

'FONT'- identification word

bpp (bits per pixel):
0 =>outlines
I=> I bpp
4 => 4 bpp

version number of file format (changes are cumulative) :
4 no 'don't draw skeleton lines unless smaller

than this' byte present
5 byte at [table+512] =maximum pixel size for

skeleton lines (see below)
6 byte at [chunk+ indexsize] =dependency

mask (see below)
7 flag word precedes index in chunk (offsets

are relative to index, not chunk)
8 file offset array is in a different place

If bpp = 0: design size of font

If bpp > 0: flags

xO

yO

x l-xO

yl-yO

bit 0 set => horizontal subpixel placement
bit I set =>vertical subpixel placement
bits 2-5 reserved (must be zero)
bit 6 set=> flag word precedes index in chunk (must

be set if version number':?: 7, else clear) .
bit 7 reserved (must be zero)

Outline files derive the value of bit 6 from
version number.

l
maximum bounding box for font (16-bit signed)

bottom-left (xO, yO) is inclusive

top-right (xI, y I) is exclusive

all coordinates are in pixels or design units

If version number< 8, the number of chunks nchunks = 8, and these bytes end the
header:

Size

4

4

20

4

Description

file offset of0 .. . 31 chunk (word-aligned)

file offset of 32 . . . 63 chunk (word-aligned)

file offsets of further chunks, in order (word-aligned)

file offset of 224 . .. 255 chunk (word-aligned)

Appendix E: File formats

4 file offset of end (ie size of file)

If offset(n+ I)=offset(n), then chunk n is null.

If version number~ 8, these bytes end the header:

Size

4

4

4

4

4x5

Table start

Table data

Size

2

Bitmaps

Description

file offset of area containing file offsets of chunks

ncfJunks =number of defined chunks

ns =number of scaffold index entries (including
entryiOI =size)

scaffold flags
bit 0 set~ all scaffold base chars are 16-bit
bit I set~ these outlines should not be anti-aliased

(eg System.Fixed)
bits 2 - 31 reserved (must be zero)

all reserved (must be zero)

Description

n = size of table/scaffold data

If bpp > 0, the file defines a bitmap, and only the following 8 bytes of table data are
used. For such a file, n= I 0- other values are reserved.

Size Description

2 x-size (I/ 16th point)

2 x-resolution (dpi)

2 y-size (!/16th point)

2 y-resolution (dpi)

4-477

Other font file formats

4-478

Outlines

If bpp = 0, the file defines outlines, and the following table data is used. (Files with
version number< 8 behave as if ns = 256 and scaffold flags= 0.)

Size

ns X 2-2

?

Scaffold data

Size

I

Scaffold lines

Size

2

Description

offsets to scaffold data (I 6-bit):

If scaffold flags bit 0 is clear:
bits 0 - 14 =offset of scaffold data from table start
bit 15 set==> base character code is 2 bytes, else I

byte

If scaffold flags bit 0 is set:
bits 0- 15 =offset of scaffold data from table start

base character code is always 2 bytes

0 ==> no scaffold data for char

skeleton threshold pixel size (if version number~ 5)

When rastering the outlines, skeleton lines will only
be drawn if either the x- or they- pixel size is less
than this value (except if value= 0, which means
'a lways draw skeleton lines') .

. . . sets of scaffold data follow, each set of which can include
many scaffold lines (see descriptions below)

Description

character code of 'base' scaffold entry (0 ==> none)

bit n set==> x-scaffold line n is defined in base character

bit n set==> y-scaffold linen is defined in base character

bit n set==> x-scaffold linen is defined locally

bit n set==> y-scaffold linen is defined locally

... local scaffold lines follow (see description below)

Description

bits 0- II= coordinate in 1/IOOOths em (signed)
bits 12- 14 =scaffold link index (0 ==>none)
bit 15 set==> 'linear' scaffold line

width (254 ==> L-tangent. 255 ==> R-tangent)

Table end

Size

?

If version number :2: 8:

Size

4

4

Appendix E: File formats

Description

description of contents of file:
Font name. 0, 'Outlines', 0,
'999x999 point at 999x999 dpi', 0

. .. word-aligned chunk data follows (see description below)

Description

file offset of chunk 0 (word-aligned)

file offset of chunk I (word-aligned)

4 x (ncftunks-3) file offset of further chunks in order (word-aligned)

4 file offset of chunk (ncftunks- I) (word-aligned)

4 file offset of end (ie size of file)

Chunk data

If version number :2: 7:

Size

4

Description

f1ag word:
bit 0 set ~ horizontal subpixel placement
bit I set ~vertical subpixel placement
bits 2- 6 reserved (must be zero)
bit 7 set~ dependency byte(s) present (see below)
bits 8- 30 reserved (must be zero)
bit 31 reserved (must be one)

4-479

Other font file formats

4-480

For all versions there follow nchunks of chunk data in this format:

Size

32

?

Description

offset within chunk to character data
0 ~character is not defined

Size is x 4 if vertical placement is used, and x 4 if horizontal
placement is used (because the character data is repeated for
each of four possible sub-placements). Character index is
more tightly bound than vertical placement, which is more
tightly bound than horizontal placement.

dependency bytes (if outline file , and version number;::: 6)
One bit required for each chunk in file.
Bit n set~ chunk n must be loaded in order to
rasterise this chunk. This is required for composite
characters which include characters from other
chunks (see below) .

. . . character data follows, word-aligned at end of chunk (see
description below)

Note: All character definitions must follow the index in the order in which they are
specified in the index. This is to allow the font editor to easily determine the size of
each character.

Character data

Size

I

Description

character flags:
bit 0 set ~ coordinates are 12-bit. else 8-bit
bit I set ~ data is 1-bpp, else 4-bpp
bit 2 set~ initial pixel is black, else white
bit 3 set~ data is outline, else bitmap

If character flags bit 3 is clear:
bits 4- 7 = 'f' value for char (0 ~ not encoded)

If character flags bit 3 is set:
bit 4 set ~ composite character
bit 5 set ~ with an accent as well
bit 6 set ~ character codes within this character are

16-bit, else 8-bit (not yet implemented
must be zero)

bit 7 reserved (must be zero)

Appendix E: File formats

if character flags bits 3 and 4 are set:

Size Description
I or 2 character code of base character

if character flags bits 3 and 5 are set:

Size
I or 2

2or3

Description
character code of accent

x, y offset of accent character

if character flags bits 3 or 4 are clear:

Size Description

xO l bounding box for character (8- or 12-bit signed)
yO bottom-left (xO, yO) is inclusive

xl-xO top-right (xi, yl) is exclusive

yl -yO all coordinates are in pixels or design units

I or I. 5

I or 1.5

I or 1.5

I or I. 5

? data: (depends on type of file)

1-bpp uncrunched: rows from bottom to top
4-bpp uncrunched: rows from bottom to top
1-bpp crunched: list of (packed) run-lengths
outlines: list of move/line/curve segments

Word-aligned at the end of the character data.

Outline character format

Here the 'pixel bounding box' is actually the bounding box of the outline in terms
of the design size of the font (in the file header) . The data following the bounding
box consists of a series of move/line/curve segments followed by a terminator and
an optional extra set of line segments followed by another terminator. When
constructing the bitmap from the outlines, the font manager will fill the first set of
line segments to half-way through the boundary using an even-odd fill. and will
thin-stroke the second set of line segments (if present) . For further details see the
chapter entitled Draw module on page 3-523.

4-481

Other font file formats

Each line segment consists of:

Size

I

?

Terminator:

Size

Description

bits 0- I = segment type :
0 terminator (see description below)

move to x, y
2 line to x, y
3 curve to xi, yl, x2, y2, x3, y3

bits 2 - 4 = x-scaffold link
bits 5 - 7 = y-scaffold link

coordinates in design units

Description

bit 2 set~ stroke paths follow (same format, but paths are
not closed)

bit 3 set~ composite character inclusions follow:

Composite character inclusions:

I or 2 character code of character to include (0 ~finished)

2/3 x, y offset of this inclusion (design units)

The coordinates are either 8- or 12-bit sign-extended, depending on bit 0 of the
character flags (see above), including the composite character inclusions.

The scaffold links associated with each line segment relate to the last point
specified in the definition of that move/line/curve, and the contro l points of a
Bezier curve have the same links as their nearest endpoint.

Note that if a character includes another, the appropriate bit in the parent
character's chunk dependency flags must be set. This byte tells the Font Manager
which extra chunk(s) must be loaded in order to rasterise the parent character's
chunk.

1-bpp uncompacted format

4-482

I bit per pixel, bit set~ paint in foreground colour, in rows from bottom-left to
top-right , not aligned until word-aligned at the end of the character.

Appendix E: File formats

1-bpp compacted format

The whole character is initially treated as a stream of bits, as for the uncompacted
form . The bit stream is then scanned row by row: consecutive duplicate rows are
replaced by a 'repeat count', and alternate runs of black and white pixels are noted.
The repeat counts and run counts are then themselves encoded in a set of 4-bit
entries.

Bit 2 of the character flags determines whether the initial pixel is black or white (black
=foreground). and bits 4- 7 are the value of 'f (see below) . The character is then
represented as a series of packed numbers, which represent the length of the next
run of pixels . These runs can span more than one row, and after each run the pixel
colour is changed over. Special values are used to denote row repeats .

File

n nibbles, value 0

I nibble. value I .. .f

Meaning

run length=
next_n+ !_nibbles+ (13-f) x 16 + f+ I - 16

run length = this_nibble
I nibble. value f+ 1 ... 13 run length=

I nibble, value 14

I nibble. value 15

where:

next_nibble + (this_nibble-f-1) x 16 + f+l

row repeat count = next_packed_number
row repeat count= I

• this_nibble is the actual value (I .. .f. or f+ I ... 13) of the nibble

• next_nibble is the actual value (0 . .. 15) of the nibble following this_nibble

• next_n+l_nibbles is the actual value (0 .. 24(n+ll- I) of the next n+l nibbles
after the n zero nibbles

• next_packed_number is the value of the packed number following the nibble
of value 14.

The optimal value off lies between I and 12, and must be computed individually
for each character, by scanning the data and calculating the length of the output for
each possible value. The value yielding the shortest result is then used. unless that
is larger than the bitmap itself. in which case the bitmap is used.

Repeat counts operate on the current row, as understood by the unpacking
algorithm, ie at the end of the row the repeat count is used to duplicate the row as
many times as necessary. This effectively means that the repeat count applies to
the row containing the first pixel of the next run to start up.

Note that rows consisting of entirely white or entirely black pixels cannot always be
represented by using repeat counts, since the run may span more than one row, so
a long run count is used instead.

4-483

Encoding files

Encoding files

4-484

An encoding file is a text file which contains a set of identifiers which indicate
which characters appear in which positions in a font. Each identifier is preceded by
a '/', and the characters are numbered from 0, increasing by I with each identifier
found .

Comments are introduced by'%', and continue until the next control character.

The following special comment lines are understood by the font manager:

%%RISCOS_Based0n base_ encoding
%%RISCOS_Alphabet alphabet

where base_encoding and alphabet denote positive decimal integers.

Both lines are optional, and they indicate respectively the number of the base
encoding and the alphabet number of this encoding.

If the %%RISCOS_Based0n line is not present, then the Font Manager assumes
that the target encoding describes the actual positions of the glyphs in an existing
file , the data for which is in

font_directory .IntMetricsalphabet
font_directory.Outlinesalphabet

where alphabet is null if the %%RISCOS_Alphabet line is omitted.

(In fact the leafnames are shortened to fit in I 0 characters, by removing characters
from just before the alphabet suffix).

In this case the lntMetrics and Outlines files are used directly, since there is a
one-to-one correspondence between the positions of the characters in the
datafiles and the positions required in the font.

If the %%RISCOS_Based0n line is present, then the Font Manager accesses the
following datafiles:

font_directoryintMetricsbase_encoding
font_directory. Outlinesbase_encoding

and assumes that the positions of the glyphs in the datafiles are as given by the
contents of the base encoding file .

The base encoding is called '/Basen', and lives in the Encodings directory under
Font$Path , along with all the other encodings. Because it is preceded by a'/' , the
Font Manager does not return it in the list of encodings returned by
Font_ListFonts.

Appendix E: File formats

Note that only one encoding file with a given name can apply to all the fonts known
to the system . Because of this, a given encoding can only be either a direct
encoding, where the alphabet number is used to reference the datafiles, or an
indirect encoding, where the base encoding number specifies the datafile names.

Here is the start of a sample base encoding ('/BaseO'):

% /BaseO encoding

%%RISCOS_Alphabet 0

/.notdef /.NotDef / .NotDef /.NotDef
/zero /one /two /three /four /five /six /seven /eight

Here is the start of a sample encoding file ('Latin I '):

% Latin 1 encoding

%%RISCOS_ Based0n 0
%%RISCOS_Alphabet 101

/ .notdef /.notdef / . notdef
/ . notdef /.notdef / .notdef
/ .notdef /.notdef /.notdef
/.notdef / . notdef / . notdef

/ . notdef / .notdef
/ . notdef /.notdef
/ . notdef /.notdef
/ .notdef / .notdef

/space /exclam /quotedbl /numbersign
/dollar /percent /ampersand /quotesingle

/ . notdef
/.notdef
/.notdef
/.notdef

/ . notdef / . notdef
/ . notdef / .notdef
/.notdef /.notdef
/ .notdef /.notdef

(Note that the sample /BaseO file is not the same as the released one) .

These illustrate several points:

• The %% lines must appear before the first identifier.

• Character 0 in any encoding must be called '.notdef', and represent a null
character.

• Other null characters in the base encoding must be called '.NotDef', to
distinguish them from character 0.

• Non-base encoding files wanting to refer to the null character should use
'.notdef' in all cases.

• The other character names should follow the Adobe PostScript names
wherever possible. (See PostScript Language Reference Manual. Adobe Systems
Incorporated (1990) 2nd ed. Addison-Wesley, Reading, Mass, USA.) This is to
enable the encoding to refer to Adobe character names when included as part
of a print job by the PostScript printer driver.

• The number of characters described by the base encoding can be anything
from 0 to 768, and should refer to distinct characters (apart from the
'.NotDef's) . Other encodings, however, must contain exactly 256 characters,
which need not be distinct.

4-485

Font Messages files

Font Messages files

4-486

The format of font Messages files is the same as that of ordinary message files, as
documented in the chapter entitled MessageTrans on page 3-737, with those
exceptions detailed below.

The valid tokens are:

Encoding_
BEncoding_
Font_
LFont_

encoding (based on a base encoding)
base encoding (eg BaseO)
font which doesn't vary with alphabet (eg Symbol font)
font which does vary with alphabet (a 'language' font)

The tokens are of the form 'Font_' followed by the identifier of the font in the font
directory, and their values are the names of those fonts . If the value is null, then the
font name is taken to be the same as the identifier.

The values of the encoding tokens should normally be null, but you must define
them for all encodings within the directory holding the Messages file if you want to
use a font that references them. Also, you must not prefix the base encoding id
with'/' even though its filename is '/Basen'. This is because the'/' in the filename is
only used by Font_ListFonts when it is scanning a font directory to determine base
encodings from encodings.

Identifiers should use characters in the range &20- &7E, to aid in international
portability. However, the font names should use the alphabet of the relevant
territory, as determined by the country number on the end of the message file
name.

Within a font name, the following characters are special:

The first dot encountered causes the font to be split over two menu levels.
Subsequent dots do not cause further submenu splitting

An asterisk as the last character of a font name is not treated as part of the
name, but marks this font as being the default for that family. Clicking on
the menu entry for the font family will select the default weight ancl!or
style for the family, even though the font weights and styles are in a
subdirectory. This is normally fontfamily.Medium, but there are other
examples (eg Selwyn).

Note that if a font name is given as ·•· alone, then the name is the same as the
identifier and it is also made the default for that family

Appendix E: File formats

For example, a 'Messages I· file for the ROM fonts might be:

BEncoding_BaseO:
Encoding_Latinl:
Encoding_Latin2:
Encoding_Latin3:
Encoding_Latin4:
LFont_Corpus.Bold:
LFont_Corpus.Bold.Oblique:
LFont_Corpus.Medium:*
LFont_Corpus.Medium.Oblique:
LFont_Homerton.Bold:Helvetica bold
LFont_Homerton.Bold.Oblique:Helvetica bold oblique
LFont_Homerton.Medium:Helvetica*
LFont_Homerton.Medium.Oblique:Helvetica oblique
LFont_Trinity.Bold:
LFont_Trinity.Bold.Italic:
LFont_Trinity.Medium:*
LFont_Trinity.Medium.Italic:

This aliases the Homerton font family so that users see it named 'Helvetica', and
sets the default font in each family to the one of 'Medium' weight.

4-487

Music files

Music files

4-488

Header

Size Description

8 'Maestro' followed by linefeed (&OA)

2 (type 2 music file)

This is followed by zero or more of the following blocks in any order. It is
terminated by the end of the file . Note that types 7 to 9 are not implemented in
Maestro, but are described for any extensions or other music programs that may be
written.

Music data

Size

5

5x8

n

l:ql .. q8

Stave data

Size

I

Description

I indicates Music data follows

n =number of bytes in the 'Gates' array (stored as a BASIC
integer- ie &40 followed by four bytes of data, most
significant first).

q I ... q8 =number of bytes in queue of notes and rests for each
of the 8 channels I ... 8 (stored as BASIC integers- ie &40
followed by four bytes of data , most significant first).

gate data (see Gates on page 4-490)

For c = I to 8 (ie for each channel in turn)

Next c

data for all notes or rests in channel c (see Notes and
rests on page 4-492)

Description

2 indicates Stave data follows

number of music staves- I (0- 3)

number of percussion staves (0 - I)

Appendix E: File formats

Which channels are used by which staves depends on the number of music staves
and the number of percussion staves as follows :

Music Percussion
staves staves Stave I Stave 2 Stave 3 Stave 4 Percussion

0 I -8

I I - 7 8

2 0 I - 4 5-8

2 I - 4 5-7 8

3 0 I 2- 5 6-8

3 I 2-5 6, 7 8

4 0 I , 2 3,4 5,6 7, 8

4 I , 2 3, 4 5, 6 7 8

Instrument data

Instrument names are not recorded; only channel numbers.

Size

I

Description

3 indicates Instrument data follows

This is followed by 8 blocks of 2 bytes each:

Size

I

Volume data

Size

I

lx8

Stereo position data
Size

I

Ix8

Description

channel number (always consecutive I - 8)
voice number: 0 ~ no voice attached

Description

4 indicates Volume data follows

volume on each channel (0- 7 = ppp- fff); one byte for each
channel

Description

5 indicates Stereo data follows

stereo position of channel (0- 6 =full left- full right); one
byte for each channel

4-489

Gates

Gates

4-490

Tempo data
Size Description

6 indicates Tempo data follows

0- 14, which corresponds to one of: 40, 50, 60, 65, 70, 80, 90,
100,115,130, 145, 160, 175, 190, or210beatsperminute

To convert to values to program into SWI Sound_OTempo, use the formula:

Sound_OTempo value= beats per minute x 128 x 4096 I 6000

Title string
Size

11

Instrument names
Size

I

I:nl . .. n8

MIDI channels
Size

I

l x 8

Description

7 indicates title string follows

null terminated string of n characters total length

Description

8 indicates Instrument names follow

8 null terminated strings for each voice number used in
ascending order in command 3 above.

Description

9 indicates MIDI channel numbers follow

MIDI channel number on this stave (0::::} not transmitted over
MIDI, else I - 16); one byte for each channel

A Gate is a point in the music where something is interpreted: ega note, time
signature, key signature, bar line or clef can each occupy a gate. The gate data is
one byte for a note or rest, or 2 bytes for an attribute such as a time signature, key
signature, bar line, clef, etc.

Note or rest

A note or rest is represented by a single non-zero byte.

Bit(s)

0-7

Description

Gate mask: bit n set ::::} gate I note or rest from queue n.

Appendix E: File formats

Attribute

An attribute is represented by a null byte (so that it can be distinguished from a
note or rest). followed by a byte describing the attribute.

Byte Description

0 0

Time signature

Bit(s)

0
I - 4
5-7

Key signature

Bit(s)

0- I
2
3- 5
6-7

Clef

Bit(s)

0-2
3-4
5
6-7

Slur

Bit(s)

0-3
4
5
6-7

Octave shift

Bit(s)

0-4
5
6-7

one of the following forms :

Description

I
number of beats per bar- I (0- 15)
beat type (0 = breve, to 7 = hemidemisemiquaver)

Description

10 binary (ie bit I set)
type of accidental (0 = sharp, I = flat)
number of accidentals in key signature (0 - 7)
reserved (must be zero)

Description

I 00 binary (ie bit 2 set)
0 =treble, I = alto, 2 =tenor, 3 = bass
reserved (must be zero)
stave-! (0- 3)

Description

I 000 binary (ie bit 3 set)
I= on, 0 =off
reserved (must be zero)
stave- I (0- 3)

Description

10000 binary (ie bit 4 set)
0 = up, I = down
stave- I (0- 3)

4-491

Notes and rests

Bar

Bit(s)

0-5
6-7

Description

I 00000 binary (ie bit 5 set)
reserved (must be zero)

Reserved for future expansion

Bit(s)

0 - 6
0-7

Description

1000000 binary (ie bit 6 set)
10000000 binary (ie bit 7 set)

Notes and rests

Notes

Rests

4-492

Notes and rests are each stored in a 2 byte block that has some common elements.

Bit(s)

0

2

3-7

8- 10

II - 12

13- 15

Bits

0 - 10

II - 12

13- 15

Description

stem orientation (0 = up, I =down)

I ~join beams (barbs) to next note

I ~ tie with next note

stave line position (I- 31 , 16 =centre line)

accidental:
0 = no accidental
I =natural
2 =sharp
3 =flat
4 =double-sharp
5 = double-flat
6 = natural sharp
7 = natural flat

number of dots (0- 3)

type (0 = breve, to 7 = hemidemisemiquaver)

Description

reserved (set to zero)

number of dots (0- 3)

type (0 = breve, to 7 = hemidemisemiquaver)

If a rest coincides with a note, its position is determined by the following note on
the same channel.

Appendix E: File formats

Squash files
Squash files are generated by the !Squash application. which in turn uses the
Squash module. as documented in the chapter entitled Squash on page 4-10 I .

I

Squash files consist of a small fixed size header put in by !Squash. followed by
compressed data produced by the Squash module. The header has the following
format:

typedef struct
{

char id [4] ;
unsigned int length ;
uns igned int load ;
unsigned int exec ;
int reserved ;

s qua sh_ header ;

I * Should be " SQSH " * I

I * Should be zero * I

The length . load and exec are the file length. load address and execution address of
the original file before it was compressed (although the load and exec typically
hold the filetype and date/time stamp) . If the id is not SOSH. then the rest of the
file is not in the same format.

4-493

4-494

91 Appendix F: System variables

This appendix details standard variables used in RISC OS, and gives important
guidelines on the names you should use for any system variables you create for
your applications to use.

Application variables

The following section gives standard names used for variables that are bound to a
particular application . An application should not need to set all these variables,
but where one of the variables below matches your needs, you should use it and
follow the given guidelines. Where you need a system variable and can 't find a
relevant one below, you should use your own, naming it App$...

In the descriptions below you should replace App with your application 's name.
You must first register this name with Acorn, to avoid any possibility of your
system variables clashing with those used by other programmers' applications; see
Appendix H: Registering names on page 4-545.

App$Dir

An AppSDir variable gives the full path name of the directory that holds the
application App. This is typically set in the application's !Run file by the line:

Set App$Dir <0bey$Dir>

App$Path and App$Path_Message

An AppSPath variable gives the full pathname of the directory that holds the
application App. An AppSPath variable differs from an App$Dir variable in two
important respects :

• The pathname includes a trailing ·.·

• The variable may hold a set of path names. separated by commas.

An AppSPath_Message variable gives an alternative error message to be used if the
path App: cannot be found. This message is then used instead of the default one
provided by RISC OS.

It's common to use an App$Dir variable rather than an App$Path variable, but there
may be times when you need the latter.

4-495

Application variables

4-496

An App$Path variable might, for example, be set in the application's ! Run file by the
line:

Set App$Path <Obey$Dir>.,%.App .

if the application held further resources in the subdirectory App of the library.

App$0ptions

An App$0ptions variable holds the start-up options of the application App:

• An option that can be either on or off should cons ist of a single character,
followed by the character '+' or·-· (eg M+ or s-).

• Other options should consist of a single character, followed by a number (eg
P4 or F54).

• Options should be separated by spaces; so a complete string might be
F54 M+ P4 S-.

This variable is typically used to save the state of an application to a desktop boot
file, upon receipt of a desktop save message. A typical line output to the boot file
might be:

Set App$0ptions F54 M+ P4 S-

You should only save those options that differ from the default. and hence not
output a line at all if the application is in its default state. You should however be
prepared to read options that set the default val ues, in case users explicitly add
such options.

App$Printfile

An App$PrintFile variable holds the name of the file or system device to which the
application App prints. Typically this will be printer :, and would be set in your
application's !Run file as follows:

Set App$PrintFile printer:

App$Resources

An App$Resources variable gives the full path name of the directory that holds the
application App's resources. This might be set in the application 's !Run file by the
line:

Set App$Resources App:Resources

Note the use of App: to make use of App$Path

Appendix F: System variables

App$Running

An AppSRunning variable shows that the application App is running. It should have
the value 'Yes' if the application is running. This might be used in the application 's
!Run file as follows:

If "App$Running" <> "" then Error App is already running
Set App$Running Yes

When the application stops running, you should use •unset to delete the variable.

Changing and adding commands

Alias$ Command

An A1ias$Command variable is used to define a new command named Command. For
example:

Set Alias$Mode echo 1<22>1<%0>

By using the name of an existing command, you can change how it works.

FileSwitch variables

FileSwitch$...

FileSwitchSCurrentFilingSystem contains the name of the current filing system,
and FileSwitchSTemporaryFilingSystem contains the name of the temporary filing
system. FileSwitchSSpecialField contains the last special field to have been
evaluated as a path was processed. See also the section entitled Using
FileSwitch$SpecialField with path variables on page 2-18.

FileSwitch$FilingSystem$...

Most filing systems provide system variables used to store their currently selected
directory, previously selected directory, library directory, and user root directory
For a filing system fs, these are respectively FileSwitchS/sSCSD, FileSwitchS/sSPSD,
FileSwitchS/sSLib and FileSwitchS/sSURD.

4-497

Using file types

Using file types

File$Type_XXX

A File$Type_XXX variable holds the textual name for a file having the hexadecimal
file type XXX. It is typically set in the !Boot file of an application that provides and
edits that file type. For example:

Set File$Type_XXX TypeName

The reason the ! Boot file is used rather than the ! Run file is so that the file type can
be converted to text from the moment its 'parent' application is first seen. rather
than only from when it is run.

Alias$@ LoadType_XXX, Alias$@ PrintType_XXX and
Alias$@ RunType_XXX

These variables set the commands used to respectively load. print and run a file of
hexadecimal type XXX. They are typically set in the !Boot file of an application that
provides and edits that file type. For example:

Set Alias$@PrintType_XXX /<0bey$Dir> -Print
Set Alias$@RunType_XXX /<0bey$Dir>

Note that the above lines both have a trailing space (invisible in print!)

The reason the ! Boot file is used rather than the ! Run file is so that files of the
given type can be loaded. printed and run from the moment their 'parent'
application is first seen, rather than only from when it is run.

For more information see the section entitled Load-time and run-time system variables
on page 2-15.

Absent filing systems

4-498

Fi/ingSystem$Path_Message

A FilingSystemSPath_Message variable gives an alternative error message to be
used if the FilingSystem cannot be found. This message is then used instead of the
default one provided by RISC OS.

Appendix F: System variables

Setting the command line prompt

Cli$Prompt

The CLISPrompt variable sets the command line interpreter prompt. By default this
is '* ' .One common way to change this is so that the system time is displayed as a
prompt. For example:

SetMacro CLI$Prompt <Sys$Time> *

This is set as a macro so that the system time is evaluated each time the prG>mpt is
displayed.

Configuring RISC OS commands

Copy$0ptions, Count$0ptions and Wipe$0ptions

These variables set the behaviour of the *Copy, *Count and *Wipe commands. For
a full description, see page 2-152, page 2-155 and page 2-193 respectively.

System path variables

File$Path and Run$Path

These variables control where files are searched for during, respectively, read
operations or execute operations. They are both path variables, which means
that- in common with other path variables- they consist of a comma separated
list of full path names. each of which has a trailing ·. ·.

If you wish to add a path name to one of these variables. you must ensure that you
append it once, and once only. For example, to add the 'bin' subdirectory of an
application to RunSPath, you could use the following lines in the application's
!Boot file :

I f "<App$Path> " = "" then Set Ru n$Path <Run$Path> , <0bey$ Di r > .bin.
Set App$Path <0bey$Dir> .

For more information see the section entitled FileSPath and RunSPath on page 2-16.

4-499

Obey files

Obey files

Obey$Dir

The Obey$Dir variable is set to the directory from which an Obey file is being run,
and may be used by commands within that Obey file. For examples, see various
other sections of this chapter. For more detailed information, see the section
entitled Obey$Dir on page 4-346.

Time and date

Sys$Time, Sys$Date and Sys$Year

These variables are code variables that are evaluated at the time of their use to
give, respectively, the current system time, date and year.

For an example of the use of Sys$Time, see the section entitled CLI$Prompt on
page 4-499.

Sys$Dateformat

The Sys$DateFormat variable sets the format in which the date is presented by the
SWI OS_ConvertStandardDateAndTime (see page 1-435). For details of the format
used by this variable, see the section entitled Format field names on page 1-402.

Return codes

Sys$ReturnCode, Sys$RCLimit

The Sys$ReturnCode variable contains the last return value given by the SWI
OS_Exit. and the Sys$RCLimit variable sets the maximum return va lue that will not
generate an error. For more details, see page 1-300.

!System and !Scrap

4-500

System$Dir and System$Path

These variables give the full pathname of the System application. They have the
same value, save that SystemSPath has a trailing ·.·, whereas System$Dir does not.
You must not change their values.

(There are two versions of this pathname for reasons of backward compatibility.)

Appendix F: System variables

Wimp$Scrap

The WimpSScrap variable gives the full path name of the Wimp scrap file used by
the file transfer protocol. You must not use this variable for any other purpose, nor
change its value.

Wimp$ScrapDir

The desktop

The WimpSScrapDir variable gives the full pathname of a scrap directory within the
Scrap application, which you may use to store temporary files. You must not use
this variable for any other purpose, nor change its value.

Desktop$ File

The DesktopSFile variable shows the desktop boot file that was used to start the
desktop.

Wimp$State

The WimpSState variable shows the current state of the Wimp. If the desktop is
running, it has the value 'desktop'; otherwise it has the value 'commands'.

The Task Window

TaskWindow$Server

The TaskWindowSServer variable gives the pathname of the application used to
start up task windows.

Setting default options for devices

DeviceFS$Device$0ptions

The DeviceFSSDeviceSOptions variable holds default options for a DeviceFS device.
For more details see the chapter entitled DeviceFS on page 2-42 I.

4-501

Setting paths for printing

Setting paths for printing

4-502

PrinterType$n

A PrinterType$n variable contains the path used to print to printer type n. For
example:

*Show PrinterType$0
PrinterType$0 : null :

92 Appendix G: The Acorn Terminal
Interface Protocol

Introduction
This appendix describes version I .00 of the Acorn Terminal Interface Protocol (or
Acorn TIP) used to communicate between a terminal emulator and a protocol
module. By using this protocol you can integrate your own terminal emulators and
protocol modules with those provided by the TCP/IP Protocol Suite.

Although this chapter only talks about the Acorn TIP in the context of terminal
emulators and protocol modules, there's no reason why you shouldn't use it for
other applications that involve input and output.

Protocol modules

1 protocol module converts one of the many different protocols computers use for
input and output to the Acorn TIP. For example in the case of the VT220 application

nd the protocol modules supplied as part of the TCP/IP Protocol Suite, we have:

Serial I/O Serial - ... protocol --(serial cable) module

Telnet 1/0 Telnet Acorn VT220 - protocol terminal - p

module - TIP emulator (Internet)

Ftp 1/0 Ftp protocol --(Internet) module

Figure 92. I Structure of the VT220 module and protocol modules

• Data passing between a terminal emulator and a protocol module uses the
Acorn TIP, and passes over a logical link . These are grey in the drawing above.

4-503

· Writing a protocol module

• Data passing between a protocol module and a remote machine or process
uses whatever protocol the module is designed to support, and passes over a
connection. These are black in the drawing above.

Using the Acorn TIP

If you decide to write other protocol modules and/or terminal emulators, you
should use the Acorn TIP Since this provides a standard interface between
protocol modules and terminal emulators, users will be able to use your modules
and emulators with the TCP/IP ones , and with ones that other programmers write
too. If your software is compatible, we think it's more likely users will buy it

Writing a protocol module

4-504

If you're writing a protocol module, you must first familiarise yourself with how a
RISC OS relocatable module works . You'll find full details of this in the chapter
entitled Modules on page I- I 97. Your protocol module must conform to the
standards laid out in that chapter

Service calls

SWis

You must support the service calls detailed in this chapter

You must also support various SWis from the set detailed in this chapter. These
must be at the defined offsets from your module's SWI base number, which is
allocated by Acorn. To support many of these SWis you will need to send suitable
commands over the physical connection to the remote host

• You must support:

Offset SWI name

0 Protocoi_OpenLogicaiLink
Protocol_ Close Logical Link

2 Protocoi_GetProtocoiMenu
3 Protocoi_OpenConnection
4 Protocoi_CioseConnection
7 Protocoi_MenultemSelected
8 Protocoi_UnknownEvent
9 Protocoi_GetLinkState
10 Protocoi_Break

Appendix G: The Acorn Terminal Interface Protocol

• If your protocol module supports the sending of data over a connection to a
remote machine (or process) you must also support:

Offset SWI Name

5 Protocol_TransmitData

If you have chosen to support file transfer SWis you must furthermore support:

Offset SWI Name

I I Protocol_SendFile
I 2 Protocol_SendFileData
I3 Protocol_AbortTansfer

• If your protocol module supports the receipt of data over a connection from a
remote machine (or process) you must also support:

Offset SWI Name

6 Protocol_DataRequest

If you have chosen to support file transfer SWis you must furthermore support :

Offset SWI Name

I 3 Protocol_AbortTransfer
I4
I5
I 7

Protocol_GetFileinfo
Protocol_ GetFi le Data
Protocol_GetFile

• You may also .choose to support:

Offset SWI Name

I 8 Protocol_DirOp

Data structures

Your protocol module must keep two different types of data structure constantly
updated, as terminal emulators may directly access these any time they need to.
These are:

• A single protocol information block which contains the following information:

Offset Information

0 pointer to protocol name string
4 pointer to protocol version string
8 pointer to protocol copyright string
I 2 maximum number of connections allowed by module
I6 current number of open connections

The three strings are all null-terminated, and have a maximum length of 30
characters. For more details see Protocoi_OpenLogicaiLink (Offset 0) on
page 4-5 I4.

4-505

Writing a terminal emulator

• A poll word for each logical link that shows the status of that link by the state of
various bit flags:

Bit Meaning when set

0 data is pending
file is pending

2 paused operation is to continue

For more details see Protocol_OpenConnection (Offset 3) on page 4-518.

Multiple links and connections

All protocol modules must (if physically possible) support multiple logical links,
and multiple connections.

Writing a terminal emulator

4-506

If you're writing a terminal emulator there are various functions that it's likely you'll
want it to support. This section tells you which SW!s you'll need to use for many
such functions , and outlines how to use them. The later section that details each
SWI will give you the detailed information you need.

Finding available and compatible protocols

To find what protocols are available and compatible with the needs of your
emulator, you must repeatedly issue Service_FindProtocols (page 4-51 0) until it is
not claimed. Then you must issue Service_FindProtocolsEnd (page 4-512)

Choosing a protocol and opening a link

For your user to choose a protocol. you'll probably want to give them a menu of the
ones you found to be available. Once they've made the choice, you can then issue
Service_ProtocolNameToNumber (page 4-513) to find the base SWI number of
their chosen protocol module. You can then use this base number to call the SWI
Protocol_OpenLogicalLink (page 4-514), since its offset from the base number you
just found is zero.

You can also use the facilities outlined in the section entitled Protocol modules and the
Wimp on page 4-508 to provide menus so that your user can set up the way the
protocol and connection will work.

Opening a connection

To open a connection, call Protocol_OpenConnection (page 4-518) . Sometimes the
protocol module won 't immediately be able to open the connection; you 'll need to
use Protocol_GetLinkState (page 4-529) to find out whether the connection
eventually makes or fails .

Appendix G: The Acorn Terminal Interface Protocol

Closing a connection and a link

To close a connection, call Protocoi_CioseConnection (page 4-521). To close a
logical link, call Protocoi_CioseLogicaiLink (page 4-516); this also closes any
associated connections.

Examining the poll word

When you open a connection, you set the address of a poll word. The protocol
module sets bits in this word when it needs attention. It's vital that your emulator
regularly examines this word so that the protocol module gets adequate service.
We suggest you do so each time you get a null event from Wimp_Poll.

Sending data

To send data , call Protocoi_TransmitData (page 4-522).

Receiving data

When the protocol module receives data over a connection, it will notify your
emulator by setting a bit in the poll word. To get the data forwarded to your
emulator, call Protocoi_DataRequest (page 4-524).

Sending files

To send a file , call Protocoi_SendFile (page 4-533) to give details of the file to the
protocol module. When the protocol module shows it is ready for you to send the
file (by using the poll word). send the file in one or more data packets by repeatedly
calling Protocoi_SendFileData (page 4-535). Finally, call Protocoi_SendFileData
(page 4-535) a last time to mark the end of the file transfer.

You can use this call to send multiple files .

Wherever possible you should make sure that the data packets are small enough
that they can be quickly sent. so your emulator doesn't hog the computer for long
periods.

Receiving files

When the protocol module receives a file over a connection , it will notify your
emulator by setting a bit in the poll word. To get the file forwarded to your
emulator, call Protocoi_GetFilelnfo (page 4-538) to get details of the file. When the
protocol module shows it is ready to forward the file (again by using the poll word).
call Protocoi_GetFileData (page 4-539) until you've received all the data packets
making up the file .

4-507

Writing a terminal emulator

4-508

Explicitly getting a file

To explicitly get a file, call Protocoi_GetFile (page 4-542). You'll actually receive it
just as we outlined above.

Aborting file operations

To abort any file operation, call Protocoi_AbortTransfer (page 4-537).

Directory operations

There are no SWis specified in the Acorn TIP to send, receive or get entire
directories in one call. Instead we provide a single SWI call- Protocoi_DirOp
(page 4-543)- with which you can create a directory, move into a directory, and
move one level up a directory tree. You can combine this SWI with the ones
outlined above to move around a remote file system, creating directories, and
sending and getting files at will (subject, of course. to your having access rights).

Protocol modules and the Wimp

The Acorn TIP provides several calls which help interaction between the Wimp and
protocol menus. These are necessary because the 'pick and mix' nature of protocol
modules and terminal emulators means you'll have to combine menus from each;
and because protocol modules are not foreground tasks, and so don't receive
notice of menu selections and Wimp events.

To get a protocol's menu tree, call Protocoi_GetProtocoiMenu (page 4-517); you
can then combine it with your emulator's menu tree. If a user clicks on the protocol
module's part of the menu tree. call Protocoi_MenultemSelected (page 4-526) to
pass this on. To pass on a Wimp event to a protocol module, call
Protocoi_UnknownEvent (page 4-528); you should do this for every event your
emulator can't deal with, as the protocol module may be able to.

Generating a break

Finally, you can generate a Break over the connection by calling Protocoi_Break
(page 4-531).

Appendix G: The Acorn Terminal Interface Protocol

Documentation of Service Calls and SWis
The rest of this chapter details in turn each Service Call and SWI used to
communicate between a protocol module and a terminal emulator. It looks at each
in three stages:

What your terminal emulator should do before calling the Service Call or SWI.

2 What a protocol module should do when it receives the Service Call or SWI.

3 What your terminal emulator should do when the call returns to it.

We've followed the same viewpoint throughout as we have above: we assume that
you're writing a terminal emulator to work with someone else's protocol module.
So we talk about your terminal emulator, but the protocol module. If, in fact, you're
writing a protocol module, you should find it easy enough to make the necessary
shift of viewpoint.

4-509

Service Calls

Service Calls

4-510

Finds all available compatible protocols

Service_FindProtocols
(Service Call &41580)

On entry

R I = &41580 (reason code)
R2 = lowest TIP version supported x I 00
R3 = last TIP version known x I 00
R4 =emulator flags

(first public version was 1.00)
(current version is 1.00)

On exit

Use

Rl = 0 to claim , else registers preserved to pass on
R2 =pointer to protocol name string (null terminated)
R3 = base SWI number of protocol module
R4 = pointer to protocol information block
R5 = protocol flags

Use this service call in your terminal emulator to find all available compatible
protocol modules. (For full details of OS_ServiceCall see page 1-250.) You should:

Repeatedly issue this service call until it is not claimed- without polling the
Wimp in the meantime.

2 Issue Service_FindProtocolsEnd (see page 4-512) .

The emulator flags have the following meanings:

Bits
0

1-2

3

Value

0

00
01
10
II

0

Meaning

emulator doesn't support file transfer calls
emulator supports file transfer calls

direction of link immaterial
one-way link wanted- protocol to emulator
one-way link wanted- emulator to protocol
two-way link needed

bits 1-2 are minimum requirement
bits 1-2 are exact requirement

All other bits are reserved and must be zero.

Appendix G: The Acorn Terminal Interface Protocol

The protocol module checks to see if:

• it uses a version of the Acorn TIP in the range supported by the terminal
emulator

• it supports links in the direction required by the terminal emulator.

If one of the above isn't true, the protocol module must not claim the call- that is,
it must return with registers preserved.

If both the above are true it must claim the call- that is, it must return with the
values shown above in the section entitled On exit. It must then set an internal flag
so it doesn't claim this call again until it receives a Service_FindProtocolsEnd.

The protocol information block it returns contains the following information :

Offset

0
4
8
12
16

Information

pointer to protocol name string
pointer to protocol version string
pointer to protocol copyright string
maximum number of connections allowed by module
current number of open connections

The three strings are all null -terminated, and have a maximum length of 30
characters. The protocol module must always keep this block updated so terminal
emulators can directly access it.

The protocol flags it returns have the following meanings:

Bits

0

2

Value

0

0
I

0

Meaning

can open new link
can't open new link, or not useful (see
below)

protocol doesn 't support file transfer SW!s
protocol supports file transfer SW!s

protocol doesn't support Protocol_DirOp
protocol supports Protocol_DirOp

If the protocol is mainly for file transfer (such as Ftp) and the terminal emulator
doesn 't support file transfer calls (bit 0 of R3 was clear on entry) the protocol
module should set bit 0 to show it's 'not useful'.

All other bits are reserved and must be zero.

Related Service Calls

Service_FindProtocolsEnd (page 4-512),
Service_ProtocoiNameToNumber (page 4-513)

4-511

Service_FindProtocolsEnd (Service Call &41581)

4-512

Service_FindProtocolsEnd
(Service Call &41581}

Indicates that protocol modules must again respond to Service_FindProtocols

On entry

RI = &4I 58 I (reason code)

On exit

Use

RI = 0 to claim, else preserved to pass on

Use this service call in your terminal emulator to indicate the end of your search
for available protocols.

Protocol modules must change their internal flag so they respond again to
Service_FindProtocols calls- from whatever terminal emulator the calls originate.
They must not claim this call.

Related Service Calls

Service_FindProtocols (page 4-5IO),
Service_ProtocolNameToNumber (page 4-5 I 3)

Appendix G: The Acorn Terminal Interface Protocol

Service_ProtocoiNameToNumber
(Service Call &41582)

Requests the conversion of a protocol name to a base SWI number

On entry

RI = &4I 582
R2 =pointer to protocol name (null-terminated)

On exit

Use

RI = 0 to claim, else registers preserved to pass on
R2 =base SWI number for protocol

Use this service call in your terminal emulator to request the conversion of a
protocol name to a base SWI number.

If a protocol module recognises the protocol name it must claim the call and
return the base SWI number of the protocol. Otherwise it must pass the call on.

Related Service Calls

Service_FindProtocols (page 4-5 I 0),
Service_FindProtocolsEnd (page 4-5 I 2)

4-513

SWI calls

SWI calls

4-514

Protocoi_Openlogicallink
(Offset 0)

Opens a logical link to a protocol module

On entry

RO =terminal emulator's link handle
Rl = pointer to terminal identifier string (null terminated)

On exit

Use

RO = protocol module's link handle
Rl =protocol module's Wimp_Poll mask
R2 = pointer to protocol information block
R3 = protocol information flags

Use this ca ll in your terminal emulator to open a logical link to a protocol module.
The handle you pass on entry will be returned to you by future SWI calls you make
to the protocol module - we suggest you use a pointer to your data structures that
are specific to this link.

You may use the terminal identifier string for such things as setting the 'type' of
your terminal emulator on the remote machine.

The protocol module returns its own handle for the link- again this is typically a
pointer to its own data that is specific to the link. The Wimp_Poll mask it returns
specifies those Wimp events that it doesn't need.

The protocol information block contains the following information:

Offset

0
4
8
12
16

Information

pointer to protocol name string
pointer to protocol version string
pointer to protocol copyright string
maximum number of connections allowed by module
current number of open connections

The three strings are all null-terminated, and have a maximum length of 30
characters. The protocol module must always keep this block updated so terminal
emulators can directly access it.

Appendix G: The Acorn Terminal Interface Protocol

The protocol information flags have the following meanings:

Bit

0

2

Meaning when set

protocol needs more information to open a connection
protocol supports file transfer SWis
protocol supports Protocol_DirOp

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you should examine bit 0 of the
protocol information flags If it is clear then you should immediately call
Protocol_OpenConnection; if it is set you will have to wait until the user shows
they are ready to supply the information the protocol module needs (by, for
instance, moving the pointer over the arrow that shows an 'open connection ' menu
item to have a submenu).

Also, you should AND the protocol module's Wimp_Poll mask with your terminal
emulator's own one. Use the resultant mask whenever you call Wimp_Poll.

Related SWis

Protocol_CloseLogicalLink (page 4-516), Protocol_OpenConnection (page 4-518),
Protocol_CloseConnection (page 4-521), Protocol_GetLinkState (page 4-529)

4-515

Protocot_CioseLogica/Link (Offset 1)

4-516

Protocoi_Cioselogicallink
{Offset 1)

Closes a logical link to a protocol module

On entry

RO = protocol module's link handle

On exit

Use

RO preserved

Use this call in your terminal emulator to close a logical link to a protocol module.

The protocol module closes any connections that are associated with the logical
link.

Related SWis

Protocol_OpenLogicalLink (page 4-514), Protocol_ Open Connection (page 4-518),
Protocol_CloseConnection (page 4-521). Protocol_GetLinkState (page 4-529)

Gets a protocol's menu tree

Appendix G: The Acorn Terminal Interface Protocol

Protocoi_GetProtocoiMenu
{Offset 2)

On entry

RO = protocol module's link handle

On exit

Use

RO =terminal emulator's link handle
Rl =pointer to protocol and link specific Wimp menu block

(as used by Wimp_CreateMenu)

Use this call in your terminal emulator to get a protocol's menu tree. You must use
this call each time you want to open the protocol's menu, as it may change
depending on the state of the logical link. For example items may become
unavailable and so be greyed out, or the user may change the contents of a
writable entry.

The protocol module returns a pointer to a menu block that is the same as that
used by Wimp_CreateMenu . (See page 3-156 for details of this call.) This menu
block must accurately reflect the current state of the logical link between the
terminal emulator and the protocol module.

Related SWis

Protocoi_MenultemSelected (page 4-526), Protocoi_UnknownEvent (page 4-528)

4-517

Protocoi_OpenConnection (Offset 3)

4-518

Protocoi_OpenConnection
(Offset 3)

Opens a connection from a protocol module

On entry

RO =protocol module's link handle
Rl =pointer to poll word for this connection
R3 =pointer to protocol specific string (null-terminated). or 0
R4 = x coordinate of top-left corner of dialogue box
R5 = y coordinate of top-left corner of dialogue box

On exit

Use

RO =terminal emulator's link handle
Rl =pointer to connection name (null-terminated)
R2 = pointer to protocol specific information. or 0
R3 = protocol status flags

Use this call in your terminal emulator to open a connection from a protocol
module. At the same time you pass the protocol module the address of a poll word
in your workspace, which your terminal emulator must regularly check to review
the state of the logical link to the protocol module. We suggest you do so each
time you get a null event from Wimp_Poll.

When a bit is set in the poll word, something needs attention. The table below
shows the meaning of each bit. and the initial SWI call you have to make to handle
the situation . See the relevant pages for details of what to do, and of any further
calls you may need to make.

Bit

0

2

Meaning when set

data is pending
file is pending
paused operation is to continue

Call needed

Protocol_DataRequest
Protocol_GetFilelnfo
Protocol_GetFileData or
Protocol_SendFileData or
Protocol_DirOp

The poll word must be in RMA space, so the protocol module can update it
whether or not your terminal emulator is the foreground task.

Appendix G: The Acorn Terminal Interface Protocol

The values you need to pass in R3, R4 and R5 depend on circumstances:

• If the protocol module needs no further information to open the connection
these values are ignored.

• If the user has shown they are ready to supply the information the protocol
module needs (typically by moving the pointer over the arrow that shows an
'open connection' menu item to have a submenu). you must set R3 to zero,
and R4 and R5 to the coordinates where you want the protocol module to open
a dialogue box. You can get these coordinates by making your terminal
emulator's menu issue Message_MenuWarning when the submenu is to be
activated (see Wimp_CreateMenu on page 3-156 and Wimp_SendMessage on
page 3-I96).

• If the user has already supplied you with the information that the protocol
module needs (say in a script) you shou ld pass that in R3. The values of R4 and
R5 are ignored.

The protocol module opens the connection after first (if necessary) using a
dialogue box to get any information it needs.

The documentation of a protocol module must state the format of information it
expects to find in R3 (if it needs any) . Wherever possible, this format should
consist of the same fields that the protocol module provides in its dialogue box, in
the same order, and comma-separated.

The protocol module returns a connection name suitable for the terminal emulator
to use as a window title (if the connection is open or pending). The protocol
specific information it returns may be used for error messages. The protocol status
flags it returns have the following meanings:

Bits

0-1

2

Value

00
01
10
II

0

Meaning

no connection opened
connection pending
connection open
connection failed

no data pending
data pending

All other bits are reserved and must be zero. The protocol module should select
'connection failed' in preference to 'no connection opened'.

When this call returns to your terminal emulator you must examine the state of
these flags:

• If the connection failed (bits 0 and I are set) and no data is pending (bit 2 is
clear) you must attempt to close the connection by calling
Protocol_CloseConnection .

4-519

Protocoi_OpenConnection (Offset 3)

4-520

• If the connection is pending you must wait until bit 0 of the logical link's poll
word is set. Then you should call Protocol_GetLinkState to find if the
connection was opened, or if it failed.

• Bit 2 ('data pending') has exactly the same meaning as bit 0 of a logical link's
poll word, and is provided to reduce the amount of polling that needs to be
done. If it is set you should initiate the data transfer by calling
Protocol_DataRequest.

Related SWis

Protocol_OpenLogicalLink (page 4-5 I 4). Protocol_CloseLogicalLink (page 4-5 I 6).
Protocol_CloseConnection (page 4-52 I). Protocol_GetLinkState (page 4-529)

Appendix G: The Acorn Terminal Interface Protocol

Protocoi_CioseConnection
{Offset 4)

Closes a link's connection from a protocol module

On entry

RO = protocol module's link handle

On exit

Use

RO = pointer to protocol specific information. or 0

Use this call in your terminal emulator to close a link's connection from a protocol
module.

The protocol module closes the connection associated with the given link.

Related SWis

Protocol_OpenLogicalLink (page 4-514). Protocol_CloseLogicalLink (page 4-516).
Protocol_OpenConnection (page 4-518). Protocol_GetLinkState (page 4-529)

4-521

Protocol_ TransmitData (Offset 5)

4-522

Protocol_ TransmitData
(Offset 5)

Transmits data over a connection via a protocol module

On entry

RO = protocol module's link handle
Rl =pointer to receive buffer
R2 =length of receive buffer (in bytes)
R3 = pointer to transmit buffer
R4 =length of transmit buffer (in bytes)
R5 = emulator transmit flags

On exit

Use

RO =terminal emulator's link handle
R2 = number of bytes of data placed in receive buffer
R3 = protocol status flags
R4 = pointer to protocol specific information

Use this call in your terminal emulator to transmit data over a connection via a
protocol module. You'll also receive any pending data that the protocol module
has been holding for you.

The emulator transmit flags have the following meanings:

Bit

3

Value

0

Meaning

transmitted data is in bytes
transmitted data is in words

All other bits are reserved and must be zero. If the transmitted data is in words,
each word contains one character in the least significant byte.

The protocol module transmits the data over the connection . Also, if it has any
pending data for the terminal emulator it forwards as much as it is able to place in
the emulator's receive buffer.

The protocol specific information it returns may be used for error messages.

Appendix G: The Acorn Terminal Interface Protocol

The protocol status flags it returns have the following meanings:

Bits

0-1

2

3

Value

00
01
10
II

0

0

Meaning

no connection opened
connection pending
connection open
connection failed

no data pending
more data pending

data is in bytes
data is in words

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you must check R2 to see if you
have received any data, and process it if necessary. You must also examine the
protocol status flags in R3:

• If the connection failed (bits 0 and I are set) and no data is pending (bit 2 is
clear) you must attempt to close the connection by calling
Protocol_CloseConnection .

• If the connection is pending you have made an error in your programming by
trying to use the connection before it has been properly opened.

• Bit 2 ('more data pending') has exactly the same meaning as bit 0 of a logical
link's poll word, and is provided to reduce the amount of polling that needs to
be done. If it is set you should initiate the data transfer by calling
Protocol_DataRequest.

• If the data you've received is in words, each word contains one character in the
least significant byte

Related SWis

Protocol_SendFile (page 4-533). Protocol_SendFileData (page 4-535)

4-523

Protocoi_DataRequest (Offset 6)

4-524

Protocoi_DataRequest
(Offset 6)

Requests that a protocol module forwards any pending data

On entry

RO = protocol module's link handle
RI =pointer to receive buffer
R2 =length of receive buffer (in bytes)

On exit

Use

RO =terminal emulator's link handle
R I preserved
R2 = number of bytes of data placed in receive buffer
R3 = protocol status flags
R4 = pointer to protocol specific information

Use this call in your terminal emulator to request that a protocol module forwards
any pending data. You should do so in either of these cases:

• if bit 0 ('data pending') of the link's poll word is set

• if the 'data pending' bit (commonly bit 2) of the protocol status flags
(commonly in R3) is set on return from a Protocol. .. SWI call.

The protocol module forwards as much of the pending data as it is able to place in
the emulator's receive buffer.

The protocol specific information it returns may be used for error messages. The
protocol status flags it returns have the following meanings:

Bits

0- I

2

3

Value

00
OI
IO
II

0
I

0

Meaning

no connection opened
connection pending
connection open
connection failed

no data pending
more data pending

data is in bytes
data is in words

All other bits are reserved and must be zero.

Appendix G: The Acorn Terminal Interface Protocol

When this call returns to your terminal emulator you must examine the state of
these flags:

• If the connection failed (bits 0 and I are set) and no data is pending (bit 2 is
clear) you must attempt to close the connection by calling
Protocol_CloseConnection.

• If the connection is pending you have made an error in your programming by
trying to use the connection before it has been properly opened.

• Bit 2 ('data pending') has exactly the same meaning as bit 0 of a logical link's
poll word, and is provided to reduce the amount of polling that needs to be
done. If it is set you should continue the data transfer by calling
Protocol_DataRequest .

• If the data is in words, each word contains one character in the least significant
byte.

Related SWis

Protocol_GetFileinfo (page 4-538). Protocol_GetFileData (page 4-539).
Protocol_GetFile (page 4-542)

4-525

Protocoi_MenultemSelected (Offset 7)

4-526

Protocoi_MenultemSelected
(Offset 7)

Requests that a protocol module services a menu selection

On entry

RO = protocol module's link handle
Rl =pointer to menu selection block
R2 = x coordinate of mouse
R3 = y coordinate of mouse
R4 =emulator menu flags

On exit

Use

RO - R4 preserved

Use this call in your terminal emulator to request that a protocol module services
a selection made within its own menu. You should call this if you :

• get notice of a mouse click within the protocol 's menu, via a Menu_Selection
reason code from Wimp_Poll

• get notice of the pointer moving over a right arrow to activate one of the
protocol's submenus, via a MenuWarning message

(See the descriptions of Wimp_Poll on page 3-115 and Wimp_SendMessage on
page 3-196 for more details.)

The menu selection block contains:

Rl item in protocol menu that was selected (starting with I)
R I+ I item in first protocol submenu that was selected
R I +2 item in second protocol submenu that was selected

terminated by 0 byte

Appendix G: The Acorn Terminal Interlace Protocol

Note: There are several important differences between this menu selection block
and that returned by Wimp_Poll with a Menu_Selection reason code:

Wimp menu selection block

Menu items start from 0
Each number is a word
List is terminated by -I
Rl gives item in main menu
menu

Protocol menu selection block

Menu items start from I
Each number is a byte
List is terminated by 0
Rl gives item at root of protocol

The emulator menu flags show why you have made this call:

Bit

0

Value

0

Meaning

called because of a mouse click
called because of a MenuWarning message

All other bits are reserved and must be zero .

The protocol module services the menu selection, either doing what the user
clicked over, or displaying the necessary submenu.

Related SWis

Protocol_GetProtocolMenu (page 4-517). Protocol_UnknownEvent (page 4-528)

4-527

Protocoi_UnknownEvent (Offset 8)

4-528

Protocol_ Unknown Event
(Offset 8)

Passes on Wimp events to a protocol module

On entry

RO =pointer to Wimp event block (as returned by Wimp_Poll)

On exit

Use

RO preserved

Use this call in your terminal emulator to pass on Wimp events you can't deal with
to the protocol module you're using. You should also pass on idle events if the
protocol module's Wimp_Poll mask (see Protocoi_OpenLogicaiLink) doesn 't mask
them out- even if your terminal emulator uses them .

The protocol module processes the Wimp event if it is one in which it is
interested.

Related SWis

Protocoi_GetProtocoiMenu (page 4-517),
Protocoi_MenultemSelected (page 4-526)

Gets the state of a logical link

Appendix G: The Acorn Terminal Interface Protocol

Protocol_ G etli n kState
(Offset 9)

On entry

RO = protocol module's link handle

On exit

Use

RO =terminal emulator's link handle
Rl =pointer to connection name (null-terminated)
R2 = pointer to protocol specific information, or 0
R3 = protocol status flags

Use this call in your terminal emulator to get the state of a logical link.

One time you should do so is if an attempt you've made to open a connection has
resulted in a pending connection . You should then wait for bit 0 of the logical link's
poll word ('data pending') to be set before making this call to find ifthe connection
was opened, or if it failed.

The protocol module returns a connection name suitable for the terminal
emulator to use as a window title (if the connection is open or pending). The
protocol specific information it returns may be used for error messages. The
protocol status flags it returns have the following meanings:

Bits

0-1

2

Value

00
01
10
II

0

Meaning

no connection opened
connection pending
connection open
connection failed

no data pending
data pending

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you must examine the state of
these flags:

• If the connection failed (bits 0 and I are set) and no data is pending (bit 2 is
clear) you must attempt to close the connection by calling
Protocol_CloseConnection.

4-529

Protocoi_GetLinkState (Offset 9)

4-530

• If the connection is pending you must wait until bit 0 of the logical link's poll
word is set. Then you should call either Protocoi_DataRequest or
Protocoi_GetLinkState to find if the connection was opened. or if it failed .

• Bit 2 ('data pending') has exactly the same meaning as bit 0 of a logical link's
poll word. and is provided to reduce the amount of polling that needs to be
done. If it is set you should initiate the data transfer by calling
Protocoi_DataRequest.

Related SWis

Protocoi_OpenLogicalLink (page 4-5 I 4). Protocoi_CioseLogicaiLink (page 4-516).
Protocoi_OpenConnection (page 4-5 I8) . Protocoi_CioseConnection (page 4-52 I)

Appendix G: The Acorn Terminal Interface Protocol

Forces a protocol module to generate a Break

Protocoi_Break
(Offset 1 0)

On entry

RO = protocol module's link handle

On exit

Use

RO =terminal emulator's link handle
R3 = protocol status flags

Use this call in your terminal emulator to force a protocol module to generate a
Break.

The protocol module generates a Break. The precise interpretation of this varies
from module to module.

The documentation of a protocol module must state how it interprets this call.

The protocol status flags it returns have the following meanings:

Bits

0-1

2

Value

00
01
10
II

0

Meaning

no connection opened
connection pending
connection open
connection failed

no data pending
data pending

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you must examine the state of
these flags:

• If the connection failed (bits 0 and I are set) and no data is pending (bit 2 is
clear) you must attempt to close the connection by calling
Protocoi_CioseConnection.

• If the connection is pending you have made an error in your programming by
trying to use the connection before it has been properly opened.

4-531

Protocoi_Break (Offset 10)

4-532

• Bit 2 ('data pending') has exactly the same meaning as bit 0 of a logical link's
poll word, and is provided to reduce the amount of polling that needs to be
done. If it is set you should initiate the data transfer by calling
Protocol_DataRequest.

Related SWis

None

Appendix G: The Acorn Terminal Interface Protocol

Protocol_ Send File
(Offset 11)

Initiates sending a file over a protocol module's connection

On entry

RO = protocol module's link handle
RI = RISC OS file type
R2 =pointer to file name (null terminated)
R3 =estimated size of file (in bytes)
R4 =emulator send flags

On exit

Use

RO =terminal emulator's link handle
R I = protocol status flags

Use this call in your terminal emulator to initiate sending a file over a protocol
module's connection .

The emulator send flags have the following meanings:

Bit

0

Meaning when set

transfer cannot be safely paused (ie is a RAM transfer)
transfer is part of a multiple file transfer

All other bits are reserved and must be zero.

The protocol module must ready itself to accept the file over the terminal
emulator's logical link, and to send it over the connection that is associated with
the link. When it is ready it must show this by setting bit 2 of the link's poll word .

If bit I of the emulator send flags is set (a multiple file transfer) and the protocol
module uses dialogue box(es) to show the state of the transfer, it must use the
same box(es) for each file in turn, rather than using a new one for each file.

4-533

Protocoi_SendFile (Offset 11)_

4-534

The protocol status flags it returns have the following meanings:

Bits Value Meaning

0-1 00 no connection opened
01 connection pending
10 connection open
II connection failed

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you must examine the state of
these flags:

• If the connection failed (bits 0 and I are set) and no data is pending (bit 2 of
the link's poll word is clear) you must attempt to close the connection by
calling Protocol_CloseConnection.

• If the connection is pending you have made an error in your programming by
trying to use the connection before it has been properly opened_

When you start a file transfer with this call the link is in a paused state. You should
wait for bit 2 of the link's poll word to be set before you try to resume the transfer
by calling Protocol_SendFileData (see the next page).

Related SWis

Protocol_TransmitData (page 4-522). Protocol_SendFileData (page 4-535).
Protocol_AbortTransfer (page 4-537). Protocol_DirOp (page 4-543)

Appendix G: The Acorn Terminal Interface Protocol

Protocoi_SendFileData
(Offset 12)

Sends the data in a fi le over a protocol module's connection

On entry

RO = protocol module's link handle
Rl =pointer to transmit buffer
R2 =length of transmit buffer (in bytes)
R3 = emulator send data flags

On exit

Use

RO =terminal emulator's link handle
Rl =protocol status flags

Use this call in your terminal emulator to send the. data in a file over a protocol
module's connection . You can (if necessary) split the file into separate data packets
and repeatedly use this call to transmit each packet

The emulator send data flags have the following meanings:

Bit

0

Meaning when set

last data packet of a file (ie EOF)
no data is included- end of file transfer

All other bits are reserved and must be zero.

You must not set both these bits at once, so a file transfer must end with two calls
of this SWI: the first with bit 0 set (EOF), the second with bit I set (end of file
transfer).

The protocol module sends the file over the connection that is associated with the
link. If it has to pause the transfer it must show when it is ready to resume by
setting bit 2 of the link's poll word.

4-535

Protocot_SendFileData (Offset 12)

4-536

The protocol status flags it returns have the following meanings:

Bits
0-I

2-3

Value

00
OI
10
I I

00
OI
IO
I I

Meaning

no connection opened
connection pending
connection open
connection failed

transfer not started
transfer paused
transfer completed
transfer failed or aborted

All other bits are reserved and must be zero.

When this call returns to your terminal emulator you must examine the state of
these flags:

• If the connection failed (bits 0 and I are set) and the transfer is not paused
(bits 2-3 do not have the value 0 I) you must attempt to close the connection
by calling Protocol_CloseConnection.

• If the connection is pending you have made an error in your programming by
trying to use the connection before it has been properly opened.

• If the transfer is paused (bits 2-3 have the value 0 I) you must wait for bit 2 of
the link's poll word to be set before making th is call again to continue the
transfer.

Related SWis

Protocol_TransmitData (page 4-522). Protocol_SendFile (page 4-533).
Protocol_AbortTransfer (page 4-537), Protocol_DirOp (page 4-543)

Aborts a file transfer

Appendix G: The Acorn Terminal Interface Protocol

Protocoi_AbortTransfer
(Offset 13)

On entry

RO = protocol module's link handle

On exit

Use

RO preserved

Use this call in your terminal emulator to abort a file transfer.

The protocol module aborts the transfer and makes sure that the connection
associated with the link is ready for other use.

Related SWis

Protocol_SendFile (page 4-533). Protocol_SendFileData (page 4-535).
Protocol_GetFilelnfo (page 4-538). Protocol_GetFileData (page 4-539) ,
Protocol_GetFile (page 4-542)

4-537

Protocoi_GetFilelnfo (Offset 14)

4-538

Protocoi_GetFilelnfo
(Offset 14)

Requests that a protocol module initiates forwarding a pending file

On entry

RO =protocol module's link handle

On exit

Use

RO =terminal emulator's link handle
R I = RISC OS file type
R2 =pointer to file name (null terminated)
R3 = 0, or estimated size of file if available (in bytes)

Use this call in your terminal emulator to request that a protocol module initiates
forwarding a pending file . You should do so:

• if bit I ('file pending') of the link's poll word is set.

This will usually be as a result of your calling Prot col_GetFile to request that
the file be sent.

The protocol module returns details of the file to the erminal emulator.

When this call returns to your terminal emulator you must use these details to get
ready to receive the file, before calling Protocol_GetFileData to actually get the
data.

Related SWis

Protocol_DataRequest (page 4-524). Protocol_AbortTransfer (page 4-537).
Protocol_GetFileData (page 4-539). Protocol_GetFile (page 4-542),
Protocol_DirOp (page 4-543)

Appendix G: The Acorn Terminal Interface Protocol

Protocoi_GetFileData
(Offset 15)

Requests that a protocol module forwards t he data in a file

On entry

RO = protocol module's link handle
Rl =pointer to receive buffer
R2 =length of receive buffer (in bytes)

On exit

Use

RO =terminal emulator's link handle
R I preserved
R2 =number of bytes of data placed in receive buffer
R3 = protocol status flags

Use this call in your terminal emulator to request that a protocol module forwards
the data in a file .

The protocol module must forward the file data to the terminal emulator. It can (if
necessary) split the file into separate data packets . pausing the transfer after each
packet. If so. it must show when it is ready to forward the next packet by setting bit
2 of the link's poll word .

The protocol status flags it returns have the following meanings:

Bits

0-1

2-3

Value

00
OJ
10
II

00
OJ
10
II

Meaning

no connection opened
connection pending
connection open
connection failed

transfer not started
transfer paused
transfer completed
transfer failed or aborted

All other bits are reserved and must be zero.

4-539

Protocoi_GetFileData (Offset 15)

4-540

When this call returns to your terminal emulator you must examine the state of
these flags:

• If the connection failed (bits 0 and I are set) and the transfer is not paused
(bits 2-3 do not have the value 0 I) you must attempt to close the connection
by calling Protocol_CloseConnection.

• If the connection is pending you have made an error in your programming by
trying to use the connection before it has been properly opened.

• If the transfer is paused (bits 2-3 have the value 01) you must wait for bit 2 of
the link's poll word to be set before making this call again to continue the
transfer.

Related SWis

Protocol_DataRequest (page 4-524), Protocol_AbortTransfer (page 4-537),
Protocol_GetFilelnfo (page 4-538), Protocol_GetFile (page 4-542),
Protocol_DirOp (page 4-543)

Appendix G: The Acorn Terminal Interface Protocol

Protocoi_MenuHelp
(Offset 16)

Requests that a protocol module sends its interactive help message for a menu
entry

On entry

RO =protocol module's link handle
Rl =pointer to menu selection array, relative to protocol-specific menu tree

On exit

Use

RO, Rl preserved

Use this call in your terminal emulator to request that a protocol module sends its
interactive help message for the menu entry. The menu selection array you send
must be terminated by a null.

The protocol module must send the appropriate help message.

Related SWis

Protocol_GetProtocolMenu (page 4-517),
Protocol_MenultemSelected (page 4-526)

4-541

Protocol_ GetFile (Offset 17)

4-542

Protocoi_GetFile
(Offset 17)

Requests that a protocol module gets a file over a connection

On entry

RO = protocol module's link handle
RI =pointer to file name (null terminated)

On exit

Use

RO. RI preserved

Use this call in your terminal emulator to request that a protocol module gets a
file over a connection .

The protocol module gets the necessary information to respond to a
Protocol_GetFilelnfo call, and the first packet of the file to respond to a
Protocol_GetFileData call. before showing that it is ready by setting bit I ('file
pending') of the link's poll word .

Related SWis

Protocol_DataRequest (page 4-524). Protocol_AbortTransfer (page 4-537).
Protocol_GetFilelnfo (page 4-538). Protocol_GetFileData (page 4-539).
Protocol_DirOp (page 4-543)

Appendix G: The Acorn Terminal Interface Protocol

Protocoi_DirOp
{Offset 18)

Performs various directory operations over a connection

On entry

RO = protocol module's link handle
RI =reason code
R2 =pointer to directory name- reason codes I & 2 only (null terminated)

On exit

Use

RO =terminal emulator's link handle
R I . R2 preserved
R3 = protocol status flags

Use this call in your terminal emulator to perform various directory operations
over a connection . The type of operation is set by a reason code in RI:

Reason code

0
I
2
3

Type of operation

null- see below
create directory
move into directory
move up one level in directory tree

The protocol module performs the specified operation . The protocol status flags it
returns have the following meanings:

Bits
0-I

2-3

Value

00
OI
IO
I I

00
OI
IO
I I

Meaning

no connection opened
connection pending
connection open
connection failed

invalid context
operation in progress- paused
operation completed
operation failed or aborted

All other bits are reserved and must be zero.

4-543

Protocoi_DirOp (Offset 18)

4-544

When this call returns to your terminal emulator you must examine the state of
these flags:

• If the connection failed (bits 0 and I are set) and there is no operation in
progress (bits 2-3 do not have the value 0 I) you must attempt to close the
connection by calling Protocol_CloseConnection.

• If the connection is pending you have made an error in your programming by
trying to use the connection before it has been properly opened.

• If the operation is still in progress (bits 2-3 have the value 0 I) you must wait for
bit 2 of the link's poll word to be set. You can then make this call again with a
null reason code to read the flags for the completed operation.

Related SWis

Protocol_SendFile (page 4-533). Protocol_SendFileData (page 4-535).
Protocol_AbortTransfer (page 4-537). Protocol_GetFileinfo (page 4-538).
Protocol_GetFileData (page 4-539). Protocol_GetFile (page 4-542)

93

Introduction

Appendix H: Registering names

Various names and numbers that appear in RISC OS must be registered with Acorn
to ensure that they don't clash with those used by other programmers. This
appendix tells you what those names and numbers are, and how to register them
with Acorn.

Generally, you can propose the name(s) that you would like to use, and will be
allocated them if they are previously unused. However, numbers are normally
allocated consecutively, so you are unlikely to have any choice as to which ones
you are allocated.

Acorn keeps a single central set of header files that record all such names and
numbers. Your request will be checked against the relevant file . Finally, your
allocation will be recorded in the file. and you will be informed of it.

Things requiring registration

Filetypes

If you need to use a new filetype, you must register it with Acorn.

You should give a proposed textual equivalent for the filetype (8 characters
maximum, as used by the 'Full info' Filer displays), and a more complete
description of the filetype's functionality and/or conformance to any standards.
Acorn will then inform you whether your name is unique, and- if it is unique
which filetype number you have been allocated.

For a list of currently defined filetypes, see Table C: File t~:~pes on page 4-557.

Associated sprites

Registering filetypes is necessary to prevent any clashes in the Wimp's sprite pool
between different 'file_xx.x· and 'small_XXX' sprites (where XXX is a hexadecimal
filetype) used by the Filer to display the filetype. Once you have registered a
filetype, you may consider such sprites as also registered.

4-545

Things requiring registration

4-546

Associated system variables

Registering filetypes is also necessary to prevent any clashes between
File$Type_XXX, Alias$@LoadType_XXX, Alias$@PrintType_XXX and
Alias$@RunType_XXX system variables (where XXX is a hexadecimal filetype).
Once you have registered a filetype, you may consider such variables as also
registered.

SWI chunk numbers and names

If you need to supply your own SWis, you must ask Acorn for an allocation of a SWI
chunk number, the use of the SWis within which you can then determine yourself.

You should give a proposed name for the SWI chunk. Acorn will then inform you
whether your name is unique, and- if it is unique- which SWI chunk number you
have been allocated.

SWis are named as ChunkName_FunctionName (so in Wimp_Initialise, Wimp is the
chunk name, and Initialise is the function name). The chunk name is normally the
name of the application or module providing the SWI, which will itself need
registration - see below.

For more information on SWI numbers and names, see the chapter entitled An
introduction to SWis on page I -23.

Wimp message numbers

Wimp message numbers are allocated by Acorn from the same number space as
SWI numbers. If you need to use a new Wimp message and have a SWI chunk
allocated, you may use as Wimp message numbers the same 64 numbers that are
held in that SWI chunk. Otherwise you must ask Acorn for an allocation of a range
of Wimp message numbers, the use of which you can then determine yourself.

For more information on Wimp messages, see Wimp_SendMessage (SWI &400E7) on
page 3-196.

Error numbers

If you need to generate your own errors, you must ask Acorn for an allocation of a
range of error numbers, the use of which you can then determine yourself.

For more information on error numbers, see the section entitled Error numbers on
page 1-42.

Appendix H: Registering names

Filing system numbers and names

If you create your own filing system, you must register it with Acorn.

You should give a proposed name for the filing system, and a more complete
description of its functionality and/or conformance to any standards. Acorn will
then inform you whether your name is unique. and- if it is unique- which filing
system number you have been allocated.

For a list of currently defined filing system numbers, see the section entitled Filing
system information word on page 2-522.

Expansion cards: manufacturer codes and product type codes

If you create an expansion card , you must ask Acorn for an allocation of a
manufacturer code and a product type code.

You should give a brief description of its functionality and/or conformance to any
standards. Acorn will then inform you which codes you have been allocated.

For more information on these codes, see the section entitled Extended Expansion
Card Identity on page 4-121 .

CMOS RAM bytes

There are 4 bytes of CMOS RAM reserved for each expansion card slot. which your
expansion cards may freely use; see the section entitled Non-volatile memory (CMOS
RAM) on page 1-355. For all other purposes you should remember state in some
other manner (for example using an AppSOptions system variable in a desktop
boot file , or using a Choices file within your application) . It is only in very
exceptional circumstances that Acorn may allocate CMOS RAM bytes to other
parties.

Territory, country and alphabet numbers and names

If you need to use a new territory, country, or alphabet, you must register it with
Acorn.

You should give a proposed name for the territory, country, or alphabet, and (for
alphabets) a more complete description of its functionality and/or conformance to
any standards. Acorn will then inform you whether your name is unique, and- if it
is unique- which territory, country, or alphabet number you have been allocated.

For a list of currently defined country and alphabet numbers, see the section
entitled Names and numbers on page 3-760.

4-547

Things requiring registration

4-548

DrawFile object types and tagged object types

If you need to use a new object type or tagged object type in a Draw file, you must
register it with Acorn.

For an object type you should give full details of its file format. For a tagged object
type you should give a brief description of the purpose of the tag. Acorn will then
inform you which type numbers you have been allocated.

For a list of currently defined object types and tagged object types, see the section
entitled Draw files on page 4-457.

Module names

If you create a new module, you must register it with Acorn , since only one module
of a given name can be loaded at once.

You should give a proposed name for the module and a brief description of its
functionality. Acorn will then inform you whether your name is unique, and hence
if you may use it.

Associated system variables

Registering module names is also necessary to prevent any clashes between
system variables used by modules, such as Modu1eSOptions. Once you have
registered the module name 'Module' , you may consider all variables beginning with
'ModuleS' as also registered.

To ensure there are no clashes with 'AppS' or 'ResourceS' system variables, Acorn will
also check that your module name does not match any other programmers'
registered application or shared resource names. However, you may register
identical module, application and /or shared resource names; it is then your
responsibility to prevent any clashes between your own system variables.

Application names

If you create a new application, you must register it with Acorn.

You should give a proposed name for the application and a brief description of its
functionality. Acorn will then inform you whether your name is unique, and hence
if you may use it.

Associated sprites

Registering application names is necessary to prevent any clashes in the Wimp's
sprite pool between different application's '! app' and 'sm!app' sprites, used by the
Filer to display the application directory's icon. Once you have registered an
application name, you may consider such sprites as also registered.

Appendix H: Registering names

Associated system variables

Registering application names is also necessary to prevent any clashes between
system variables used by applications, such as App$Dir or App$0ptions. Once you
have registered the application name 'App', you may consider all variables
beginning with 'App$' as also registered.

To ensure there are no clashes with 'Module$' or 'Resource$' system variables, Acorn
will also check that your application name does not match any other programmers'
registered module or shared resource names. However, you may register identical
module, application and /or shared resource names; it is then your responsibility
to prevent any clashes between your own system variables.

Shared resources

If you create a new shared resource directory, you must register it with Acorn.

You should give a proposed name for the shared resource and a brief description of
its functionality. Acorn will then inform you whether your name is unique, and
hence if you may use it.

Associated sprites

Registering shared resource names is necessary to prevent any clashes in the
Wimp's sprite pool between different shared resource's '!resource' and 'sm!resource'
sprites (used by the Filer to display the shared resource directory's icon). Once you
have registered an shared resource name, you may consider such sprites as also
registered.

Associated system variables

Registering shared resource names is also necessary to prevent any clashes
between system variables used by shared resources, such as Resource$Dir. Once you
have registered the shared resource name 'Resource', you may consider all variables
beginning with 'Resource$' as also registered .

To ensure there are no clashes with 'Module$' or 'App$' system variables, Acorn will
also check that your shared resource name does not match any other
programmers' registered module or application names. However, you may register
identical module, application and /or shared resource names; it is then your
responsibility to prevent any clashes between your own system variables.

4-54~

Things requiring registration

4-550

*Commands

If you create a new • Command, you must register it with Acorn.

You should give a proposed name for the command , and a brief description of its
functionality. Acorn will then inform you whether your name is unique, and hence
if you may use it.

Sprite names

If you add a sprite to the Wimp sprite pool- for example using *lconSprites- you
must register it with Acorn.

You should give a proposed name for the sprite. Acorn will then inform you
whether your name is unique. and hence if you may use it.

Provided you have registered a filetype, application or shared resource, you need
not register the associated sprites that the Filer uses to display them . See
page 4-545, page 4-548 and page 4-549 respectively.

You should not register the names of sprites that are held in your applications'
own sprite areas. Desktop applications must not use the system sprite pool.

Font names

If you create a new font, you must register it with Acorn.

You should give a proposed name for the font. Acorn will then inform you whether
your name is unique, and hence if you may use it.

Device numbers

If you need to add a new device. you must ask Acorn for an allocation of a major
and a minor device number.

You should give a brief description of the device's functionality. Acorn will then
inform you which device numbers you have been allocated.

Printer driver and printer dumper numbers

If you create a new printer driver or dumper module, you must ask Acorn for an
allocation of a printer driver or dumper number.

You should give a brief description of the printer driver or dumper's functionality.
Acorn will then inform you which ID number you have been allocated.

94 Table A: VDU codes

List of VDU codes

A list of the VDU codes is given in the table below. Some VDU codes require extra
bytes to be sent as parameters; for example, VDU 22 (select screen mode) needs
one extra byte to specify the mode. The number of extra bytes needed is also given
in the table:

VDU Ctrl Extra Meaning Page
code plus bytes

0 @ 0 Does nothing 1-548

A Sends next character to printer 1-549
only

2 B 0 Enables printer 1-550

3 c 0 Disables printer 1-551

4 D 0 Writes text at text cursor 1-552

5 E 0 Writes text at graphics cursor 1-553

6 F 0 Enables VDU driver 1-554

7 G 0 Generates bell sound 1-555

8 H 0 Moves cursor back one character 1-556

9 I 0 Moves cursor on one space 1-557

10 I 0 Moves cursor down one line 1-558

II K 0 Moves cursor up one line 1-559

12 L 0 Clears text window 1-560

13 M 0 Moves cursor to start of current 1-561
line

14 N 0 Turns on paged mode 1-562

15 0 0 Turns off paged mode 1-563

16 p 0 Clears graphics window 1-564

17 0 Defines text colour 1-565

18 R 2 Defines graphics colour 1-566

19 s 5 Defines logical colour 1-568

20 T 0 Restores default logical colours 1-572

21 u 0 Disables VDU drivers 1-573

22 v Selects screen mode 1-574

4-551

List of VDU codes

VDU Ctrl Extra Meaning Page
code plus bytes

23 w 9 Multi-purpose command: 1-579

23,0 Sets the interlace and controls 1-580
cursor appearance

23,1 Controls text cursor appearance 1-581

23,2-5 Defines ECF pattern and colours 1-582

23 ,6 Sets dot-dash line style 1-583

23,7 Scrolls text window or screen 1-584

23.8 Clears a block of the text window 1-586

23,9 Sets first flash time 1-588

23,10 Sets second flash time 1-589

23,11 Sets default patterns 1-590

23,12-15 Defines simple ECF patterns and 1-592
colours

23 ,16 Controls cursor movement after 1-594
printing

23 ,17,0-3 Sets the tint for a colour 1-596

23 ,17.4 Chooses ECF patterns 1-597

23 ,17,5 Exchanges text foreground and 1-598
background colours

23,17,6 Sets ECF origin 1-599

23 ,17,7 Sets character size/spacing 1-600

23.18-24 Reserved for future expansion 1-601

23 ,25-26 Private Font Manager calls 1-602

23,27 Private Sprite Manager calls 1-603

23,28-31 Reserved for use by application 1-604
programs

23.32-255 Redefines printable characters 1-605

24 X 8 Defines graphics window 1-606

25 y 5 PLOT command 1-607

26 z 0 Restores default windows 1-610

27 [0 Does nothing 1-611

28 \ 4 Defines text window 1-612

29] 4 Defines graphics origin 1-613

30 1\ 0 Homes text cursor 1-614

31 2 Moves text cursor 1-615

127 0 Delete 1-616

4-552

95 Table 8: Modes

The modes available in RISC OS depend on the configured monitor type (see
*Configure MonitorType on page 1-731) and the model of computer. Below is a
table of all modes provided by RISC OS, which shows:

• the mode number

• the text resolution in columns x rows

• the graphics resolution in pixels, which corresponds to the clarity of the
mode's display

• the resolution in OS units, which corresponds to the area of workspace shown
by the mode

• the number of logical colours available

• the memory used to display the screen (to the nearest 0.1 Kbyte)

• the vertical refresh rate to the nearest Hz (invalid for monitor type 5), which
indicates the degree of flickering that you may perceive

• the bandwidth used to display the screen (to the nearest 0.1 Mbyte/second).
which corresponds to the load the mode places on the computer

• the monitor types that support that mode:

Type Monitor

0 50Hz TV standard colour or monochrome monitor
Multi-frequency monitor

2 64Hz high-resolution monochrome monitor
3 60Hz VGA-type monitor
4 Super-VGA-type monitor (not available in RISC OS 2)
5 LCD (liquid crystal display) (not available in RISC OS 2)

• the notes on the following page that are relevant to the mode.

4-553

Mode Text Pixel OS units Logical Mem Refresh Band~ Monitor Notes
resolution resolution resolution colours used rate width types

0 80 X 32 640 X 256 1280x 1024 2 20K 50Hz IM/s 0, 1,3,4,5 @
40 X 32 320 X 256 1280x 1024 4 20K 50Hz IM/s 0, 1.3.4.5 @

2 20 X 32 160 X 256 1280 X 1024 16 40K 50Hz 2M/s 0, 1.3.4.5 @
3 80 X 25 Text only Text only 2 40K 50Hz 2M/s 0, 1.3.4.5 @@(£)
4 40 X 32 320 X 256 1280 X 1024 2 20K 50Hz IM/s 0, 1,3,4,5 @
5 20 X 32 160 X 256 1280 X 1024 4 20K 50Hz IM/s 0, 1,3,4,5 @
6 40 X 25 Text only Text only 2 20K 50Hz IM/s 0, 1,3,4,5 @@(£)
7 40 X 25 Teletext Teletext 16 80K 50Hz 4M/s 0, 1,3,4,5 @@
8 80 X 32 640 X 256 1280x 1024 4 40K 50Hz 2M/s 0, 1.3.4.5 @
9 40 X 32 320 X 256 1280 X 1024 16 40K 50Hz 2M/s 0, 1,3,4,5 @
10 20 X 32 160 X 256 1280 X 1024 256 80K 50Hz 4M/s 0,1,3,4,5 @
II 80 X 25 640 X 250 1280 X 1000 4 40K 50Hz 2M/s 0, 1,3,4,5 @@
12 BOx 32 640 X 256 1280 X 1024 16 80K 50Hz 4M/s 0, 1,3,4,5 @
13 40 X 32 320 X 256 1280 X 1024 256 80K 50Hz 4M/s 0, 1.3.4.5 @
14 80 X 25 640 X 250 1280 X 1000 16 80K 50Hz 3.9Mis 0, 1.3.4.5 @@
15 80 X 32 640 X 256 1280x 1024 256 160K 50Hz 8M/s 0, 1.3.4.5 @
16 132 X 32 1056 X 256 2112 X 1024 16 132K 50Hz 6.6Mis 0,1 ®
17 132 X 25 1056 X 250 2112 X 1000 16 132K 50Hz 6.5Mis 0,1 ®®
18 80x64 640 X 512 1280 X 1024 2 40K 50Hz 2M/s I

19 80x64 640 X 512 1280 X 1024 4 80K 50Hz 4M/s

20 80 X 64 640 X 512 1280 X 1024 16 160K 50Hz 8M/s

21 80x64 640 X 512 1280x 1024 256 320K 50Hz 16Mis

22 96x 36 768 X 288 768 X 576 16 108K 50Hz 5.4M/s 0,1 CD®
23 144 X 56 1152 X 896 2304 X 1792 2 126K 64Hz 8.1M/s 2

24 132 X 32 1056 X 256 2112 X 1024 256 264K 50Hz 13.2Mis 0,1 ®
25 80 X 60 640 X 480 1280 X 960 2 37.5K 60Hz 2.3M/s 1,3,4,5

26 80 X 60 640 X 480 1280 X 960 4 75K 60Hz 4.5M/s 1.3.4.5

27 80 X 60 640 X 480 1280 X 960 16 150K 60Hz 9M/s 1,3,4,5

28 80x60 640 X 480 1280 X 960 256 300K 60Hz 18Mis 1,3,4,5

29 100 X 75 800 X 600 1600 X 1200 2 58.6K 56Hz 3.3M/s 1.4 CD@
30 100 X 75 800 X 600 1600 X 1200 4 117.2K 56Hz 6.6M/s 1.4 CD@
31 100 X 75 800 X 600 1600 X 1200 16 234.4K 56Hz 13.2M/s 1.4 CD@
33 96x 36 768 X 288 1536 X 1152 2 27K 50Hz 1.4M/s 0,1 CD
34 96x 36 768 X 288 1536x 1152 4 54K 50Hz 2.7M/s 0,1 CD
35 96 X 36 768 X 288 1536x 1152 16 108K 50Hz 5.4Mis 0,1 CD
36 96 X 36 768 X 288 1536x 1152 256 216K 50Hz 10.8M/s 0,1 CD
37 112 X 44 896 X 352 1792 X 1408 2 38.5K 60Hz 2.3M/s I CD
38 112 X 44 896 X 352 1792 X 1408 4 77K 60Hz 4.6M/s CD
39 112 X 44 896 X 352 1792 X 1408 16 154K 60Hz 9.2M/s CD
40 112 X 44 896 X 352 1792 X 1408 256 308K 60Hz 18.5Mis CD
41 80 X 44 640 X 352 1280 X 1408 2 27.5K 60Hz 1.7M/s I ,3,4,5 CD@®
42 80 X 44 640 X 352 1280 X 1408 4 55K 60Hz 3.3M/s I ,3,4,5 CD@®
43 80 X 44 640 X 352 1280 X 1408 16 IIOK 60Hz 6.6Mis 1,3,4,5 CD@®
44 80 X 25 640 X 200 1280 X 800 2 15.7K 60Hz 0.9M/s 1.3.4.5 CD@
45 80 X 25 640 X 200 1280 X 800 4 31.3K 60Hz 1.9M/s 1,3,4,5 CD@
46 80 X 25 640 X 200 1280 X 800 16 62.5K 60Hz 3.8M/s I ,3,4,5 CD@

4-554

Table B: Modes

Notes on display modes

These modes are not available in RISC OS 2.00, nor (except for mode 31) are
they available in RISC OS 2.01.

2 These modes are not available on early models of RISC OS computers (ie the
Archimedes 300, 400 and 400/1 series, and the A3000). because they are unable
to clock VIDC at the necessary rate.

3 These modes are handled differently with a VGA or Super-VGA-type monitor. If
you are using such a monitor:

• RISC OS 2.00 does not implement these modes.

• These modes are all displayed on a screen having 352 raster lines. Where a
mode has fewer than 352 vertical pixels, it is centred on the screen with
blank rasters at the top and bottom. Because of their appearance these
modes are known as letterbox modes .

• The refresh rate is 70Hz.

• The bandwidths shown in the table for these modes are lower than these
monitor types consume, because no allowance has been made for the
blank rasters.

• Early models of RISC OS computers (ie the Archimedes 300, 400 and 40011
series, and the A3000) scan these modes some 4.7% slow. Again this is
because they are unable to clock VIDC at the necessary rate. Most VGA and
Super-VGA-type monitors can still successfully lock onto this signal , but
some may not. Furthermor~. these models do not provide a Sync Polarity
signal. This makes the effect of letterbox modes (see above) more severe.

4 Early models of RISC OS computers (ie the Archimedes 300, 400 and 400/1
series, and the A3000) also scan these modes some 4.7% slow with
multi-frequency monitors. Again this is because they are unable to clock VIDC
at the necessary rate.

5 These modes do not display graphics, and are provided for compatibility with
BBC/Master series computers.

6 In these modes circles, arcs, sectors and segments do not look circular. This is
because the aspect ratio of the pixels is not in a I :2 , I : I or 2: I ratio .

7 These are gap modes, where the colour of the gaps is not necessarily the same as
the text background.

8 These modes are not a multiple of eight pixels high. By default. in these modes
the bottom of the screen corresponds to the bottom line of ECF patterns, but
the top line will not correspond to the top line of ECF patterns.

4-555

4-556

9 This mode is not available in RISC OS 3 (version 3.00). It provides a
double-sized display suitable for use by visually impaired people.
Unfortunately some applications may not provide correct displays when used
with this mode.

Other notes

Mode 32 has not been defined.

If an attempt is made to select a mode which is not appropriate to the current
monitor type (or OS version). a suitable mode for that monitor is used. For
example, an attempt to select mode 23 on a type 0 monitor will result in mode 0
being used.

In 256 colour modes, there are some restrictions on the control of the colours. Only
64 base colours may be selected; 4 levels of tinting turn the base colours into 256
shades. Also, the selection from the colour palette of 4096 shades is only possible
in groups of 16.

96 Table C: File types

List of file types

File types are three-digit hexadecimal numbers. They are divided into ranges:

EOO- FFF
BOO- OFF
AOO- AFF
400- 9FF
100- 3FF
000- OFF

allocated by Acorn for generic data types
allocated by Acorn to software houses for applications
reserved for use by Acorn applications
allocated by Acorn to software houses for applications
allocated by Acorn to public domain applications
free for users

For information about the allocation of file types. see Appendix H: Registering names
on page 4-545.

For each ~ype. there may be a default action on loading and running the file. These
actions may change, depending on whether the desktop is in use. and which
applications have been seen. The system variables AliasS@LoadType_XXX and
AliasS@RunType_XXX give the actions (XXX= file type) .

Some types have a textual equivalent set at start-up, which may be used in most
commands (but not in the above system variables) instead of the hexadecimal
code. These are indicated in the table below by a double dagger ·;-. or by a single
dagger 't' if not available in RISC OS 2. For example. file type &FFF is set at start-up
to have the textual equivalent Text. Other textual equivalents may be set as an
application is first 'seen· by the Filer. or as it starts- for example. Acorn Desktop
Publisher sets up file type &AF9 to be DtpDoc. and file type &AFA to be DtpStyle.
These textual equivalents are set using the system variables FileSType_XXX, where
XXX is the hexadecimal file type.

You should use the hexadecimal file type in command scripts and in programs.
otherwise you will find that your files will give an error if you try to run them on a
machine that uses a territory with different textual equivalents.

The following types are currently used or reserved by Acorn . Most file types used by
other software houses are not shown. This list may be extended from time to time:

4-557

List of file types

Acorn file types

Type Description Textual equivalent

FFF Plain ASCII text Text * FFE Command (Exec) file Command * FFD Data Data * FFC Position independent code Utility * FFB Tokenised BASIC program BASIC * FFA Relocatable module Module * FF9 Sprite or saved screen Sprite * FF8 Absolute application loaded at &8000 Absolute * FF7 BBC font file (sequence of VDU operations) BBC font * FF6 Font (4 bpp bitmap only) Font * FF5 PostScript PoScript * FF4 Dot Matrix data file Printout t
FF3 LaserJet data file LaserJet
FF2 Configuration (CMOS RAM) Con fig t
FFI Raw unprocessed data (eg terminal streams) Raw Data
FFO Tagged Image File Format TIFF
FED Palette data Palette * FEC Template file Template * FEB Obey file Obey * FEA Desktop Desktop t
FE9 ViewWord ViewWord
FE8 ViewPS ViewPS
FE7 ViewSheet ViewSht
FE6 UNIX executable UNIX Ex
FE4 DOS file DOS t
FE3 Atari file Atari
FE2 Commodore Amiga file Amiga
FEI Make data Make
FDF TCP/IP suite: VT220 script VTScript
FOE TCP/IP suite: VT220 setup VTSetup
FDD Master utilities MasterUtl
FDC TCP/IP suite: unresolvable UNIX soft link Soft Link
FOB Text using CR and LF for line ends TextCRLF
FDA PC Emulator: DOS batch file MSDOSbat
FD9 PC Emulator: DOS executable file MSDOSexe
FD8 PC Emulator: DOS command file MSDOScom
FD7 Obey file in a task window TaskObey t
FD6 Exec file in a task window TaskExec t
FD5 DOS Pict Pict
FD4 International MIDI Assoc. MIDifiles standard MIDI

4-558

FD3 Acorn DDE: debuggable image
FDI BASIC stored as text
FDO PC Emulator: configuration
FCF Font cache
FCE FileCore floppy disc image
FCD FileCore hard disc image
FCC Device object within DeviceFS
FCA Single compressed file
FC9 Sun raster file
FC8 DOS MultiFS disc image
FC7 Macintosh format Type I font
FC6 ! Printers printer definition file
FC3 ! Patch patch definition file
FC2 Audio Interchange file format

Industry standard file types

Type Description

DFE Comma separated variables
DEA Data exchange format (AutoCAD etc)
DB4 SuperCalc Ill file
DB3 DBase Ill file
DB2 DBase II
DB! DBase index file
DBO Lotus 123 WKI format
CE5 'JEX file
CB6 Amiga Sound Tracker
CAF !GIS graphics
CAE Hewlett-Packard graphics language
C85 JPEG (Joint Photographic Experts Group) file
C35 Corel Draw file

BBC ROM file type

Type Description

BBC BBC ROM file (ROMFS)

Acornsoft file types

Type Description

AFF
AFE
AFA

Draw file
Mouse event record
DTP style file

Table C: File types

Deb! mage
BASICTxt
PCEmConf
FontCache t
FileCoreFioppyDisc
FileCoreHardDisc
Device t
Squash
SunRastr
DOS Disc
MacTypel
PrintDfn
Patch
AIFF

Textual equivalent

csv
DXF
SuperCalc
DBase Ill
DBase II
DBase Index
Lotusl23
TeX
AmigaSTM
I GIS
HPGLPlot
JPEG
CoriDraw

Textual equivalent

BBC ROM

Textual equivalent

Draw File
Mouse
DtpStyle

t

4-559

List of file types

AF9 DTP documents DtpDoc
AF8 First Word Plus file lstWord+
AF7 Help file Helplnfo
AFI Maestro file Music
AFO ArcWriter file ARCWriter
AE9 Alarm file Alarms
ADB Outline font New Font

4-560

97

Introduction

Table D: Character sets

This chapter includes tables of all the alphabet sets available on your Acorn
computer. Most are based on the International Standards Organisation ISO 8859
document.

Loading alphabets

When you load an alphabet it overlays the previous alphabet. Most alphabets have
a number of undefined characters, shown in the tables below by a light grey
square. In such cases , the previous character definition for that code remains in
effect.

The character codes 0- 31 and 127 are not printable characters; they have special
meaning to the VDU drivers, as described in the chapter entitled VDU Drivers on
page 1-527. They are represented in the tables below by a dark grey square.

You can load alphabets using OS_Byte 71 (page 3-772) or *Alphabet (page 3-775) .

How alphabets are initially set up

The default alphabet

When the kernel is booted it sets up a default alphabet.

The kernel 's default alphabet always contains all characters that are defined in the
Latin I alphabet for the release of RISC OS in use (see page 4-563). Note that this
definition has been gradually extended by the addition of extra characters in the
range &80- &9F (128- 159).

The kernel 's representation of characters that are neither defined in the Latin I
alphabet nor used by the VDU drivers varies. In RISC OS 2 they are represented by
the underlined string 'These·characters·are·not·defined' , and in RISC OS 3 by the
hexadecimal value of their character code. In the future some of these undefined
characters may be used to further extend the Latin I alphabet, or their
representation may change. Furthermore. it is these characters that users are most
likely to redefine if necessary. Consequently, you must not rely upon their initial
representation .

4-561

Keyboard shortcuts

The configured alphabet

The default alphabet is then overlaid by the alphabet that is correct for the
computer's configured territory, as set by •configure Territory (page 3-846). Under
RISC OS 2, the alphabet used is instead determined by the computer's configured
country; see •configure Country on page 3-778.

The window manager

When the window manager starts, it redefines some characters. In RISC OS 2 these
were used to draw windows' borders, and so have to be present for the desktop to
have the correct appearance. Later versions of RISC OS still redefine some of these
characters for backwards compatibility, but do not themselves use them. You must
not rely on the presence of these characters unless your program is running under
the desktop in RISC OS 2.

Keyboard shortcuts

4-562

The description of the •country command on page 3-781 explains the relationship
between country, alphabet and keyboard . There are some useful keyboard shortcuts
which you can use to access various characters and alphabets while you are
working. You can use these wherever you can use the keyboard : for example, in the
Command Line, in Edit, or when entering a filename to save a file. The first two
keystroke combinations allow you to switch easily between keyboard layouts:

Alt Ctrl Fl Selects the keyboard layout appropriate to the country UK.

Alt Ctrl F2 Selects the keyboard layout appropriate to the country for
which the computer is configured (if available) .

and the other allows you to access top bit set characters without using the Chars
application:

Alt <decimal character code typed on numeric keypad>
Enters the character corresponding to the character code
typed.

The following sequence also switches the keyboard layout:

Press and hold Alt and Ctrl together.

2 Press Fl2.

3 Release Ctrl.

4 Still holding Alt. type on the numeric keypad the international telephone
dialling code for the country you want (eg 49 for Germany, 39 for Italy, 33 for
France).

5 Release Alt.

Table D: Character sets

Latin1 alphabet (ISO 8859/1)

This is the default alphabet used by Acorn computers.

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0 @ p ' 0 A £) a 0 0

1 A Q A N a n
II 2 B R 2 A 6 a 0 2

3 c s c s 3 A. 6 a 6 3

4 D T d t " 6 a 6 4

5 E u e u a 6 5

6 F 6 6

7 G 7

8 H

9 u e u 9

+1 J CE i! Q E u e u A

{ 03 ((» E 0 e 0 B

+1 ..., % 1 0 0 c
+1 = M m D

+1 N - n E >

+1 ? 0 0 F

0 2 3 4 5 6 7 8 9 A B c D E F

In RISC OS 2 characters &80- &9F (I 28 - I 59) are undefined.

In RISC OS 3 (version 3.00) characters &80- &88 (I 28 - I 39) are undefined.

4-563

Latin2 alphabet (ISO 8859/2)

Latin2 alphabet (ISO 8859/2)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0 @ p ' 0 R f) f d 0

1 A Q a A N a n 1
II 2 B R b r A N a n 2

3 c s c s l t A 6 a 6 3

4 D T d t " a
, A 6 a 6 4

5 E u e u " L. T L. 6 6 5

6 F v f v
"

s s c 6 c 6 6

G w
H X

I y

J z
K [k {

+1 < L \ I I t i. E
+1 M] m } TM + ,

f y D = -
N

A

n - %o fi z z I T I t E +1 >

+1 ? 0 0 • fl z z 6 B d F

0 1 2 3 4 5 6 7 8 9 A B c D E F

In RISC OS 2 characters &80 - &9F (I 28 - I 59) are undefined.

4-564

Table 0 : Character sets

Latin3 alphabet (ISO 8859/3)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0 @ p 0 A a 0

1 A Q a ,
li l1 A N a ii 1

II 2 B R b r 2 A 6 a 0 2

3 c s c s) £ 3 6 6 3

4 D T d t " D
, A 6

5 E u e u
,

IJ c G 5

6 F v f v , H
G w g w §

H X 8

u e u A

0 e 0 B

0 0 c
- Y2 f 0 0 D

fi I s i s E

+1 ? fl z z 'j B 'j F

0 1 2 3 4 5 6 7 8 9 A B c D E F

In RISC OS 2 characters &80- &9F (I 28 - I 59) are undefined.

,

4-565

Latin4 alphabet (ISO 8859/4)

Latin4 alphabet (ISO 8859/4)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0 @ p p 0 A f) a d 0

1 A Q a q
II 2 B R b r

3 c s c s 3

4 D T d t

5 E u e u a 6 5

6 F v f v b ce 6 6

7 G w g w X i 7

8 H X

9 I y 9

+1 J

K

+1 < L e 0 c
+1 = M + - 0 0 D

+1 N
A

fi z z I 0 I 0 E >

+1 ? 0 fl -
I') T B T F

0 2 3 4 5 6 7 8 9 A B c D E F

In RISC OS 2 characters &80- &9F (128 - 159) are undefined.

4-566

Table 0: Character sets

Cyrillic alphabet (ISO 8859/5)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

+0 0 @ p A p a 0

+1 1 A Q a E 6 c 6
+2 II 2 B R b r 8 2

+3 3 c s c s r y r 3

+4 4 D T d t ll <D ll <I> 4

+5 5 E u e u E X e X 5

+6 6 F)I(u)I(u 6

+7 G 3 q 3 lf 7

+8 H ill H IJJ 8

+9 H w H w 9

+10 K b K b A

+11 Jl bl J1 bl B

+12 M b M b c
+13 = M - H 3 H 3 D

+14 N
~ 0 10 E > 0 10

+15 ? 0 n R fl H F

0 1 2 3 4 5 6 7 8 9 A B c D E F

4-567

Greek alphabet (ISO 885917)

Greek alphabet (ISO 8859n)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

@
I I

+0 0 p 0 t 11 i) 1t 0

+1 1 A Q a
+2 II 2 B R b r 2

+3 3 c s c s £

+4 4 D T d t

+5 5 E u e u

+6 6 F v f v 6

+7 7 G w § 7

+8 8 H X
.. E e 8 \jl

+9 9 y © ii I Q t (l) 9

+10 J z 'I K I 1(t A

+11 K [k { «)) A y 'A i) B

L \ I b M I c +12 < ..., 0

+13 = M] m } - Y2 N

N
A y I

E +14 > n (l) ~

+15 ? 0 0 n 0 I

t 0 F

0 1 2 3 4 5 6 7 8 9 A B c D E F

4-568

Table D: Character sets

Hebrew alphabet (ISO 8859/8)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

I'(J 0

J 0

.). y 2 , '1 3

;"1 !) 4 , l' 5

:l 6

n i' 7

0 , 8

l n A

:::l B

' c
c D

l':l E

F

0 2 3 4 5 6 7 8 9 A B c D E F

4-569

Cyrillic2 alphabet (DOS code page 866)

Cyrillic2 alphabet (DOS code page 866)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

0 @ p p A p a p 0

1 A Q a q E c 6 c
II 2 B R b r B T B T 2

3 c s c s r y r y 3

4 D T d t Ll (J) l l <I> 4

5 u e u E X e X 5

6 v)I(u)K u 6

3 q 3 4 7

X I;J ill H LU 8

ill i1 IU 9

+1 b K 1) A

II bl J1 bl B

M b M b c
H 3 ~I J D

- 0 IO 0 10 E

n R II H F

0 2 3 4 5 6 7 8 9 A B c D E F

4-570

TableD: Character sets

Bfont characters

0

2

3

4

5

6

7

8

9

A

B

c

D

E

F

0

Nothing

This character set is used in the BBC Master microcomputer. It is retained for the
sake of compatibility, but should not be used for new applications.

• : • I : I

Next to printer

9@P£pfia 0 r011~n
I! l.At.!aqa~ APap

... 2 B R b r 18a!- .._BE Sa Start printer

Stop printer

Separate
cursors

Join cursors

Enable VDU

Bell

Back

Forward

Down

Up

Clear screen

Start of line

Paged mode

Scroll mode

-ti3CScsCc r ... rTy"T
··· .. · $ 4 D T d t ~ ~- .t, l1 V S. u colours

%5EUeutJo, i E~:e9
.. ... & 6 F U f v u U - ti Z X .Z: X
...... ~ 7 G w g w@ iT n H ~ ~

Disable VDU

characters

· < SHXhx+-1 1 -renew
>9IYiy-+.Oil:lfJta

••:.JZjz-1-oL•KIK~
.. +; K[k{ -tu t-"" A+)..=
·· · · _. < L ' 1 : ~ u .J 'U M + JJ ~

· ~ -=MlM}~iJ-1 • Nllv'#
.>N...._n e~_._.J:=:ue~

area

Plot

Nothing

area

origin

Move text
cursor to (0,0)

/? O_oll@ §+?:iOn oil Move text
cursor

4-571

Teletext characters (used only in mode 7)

Teletext characters (used only in mode 7)

Teletext alphanumeric

0 1 2 3 4 5 6 7

0 Nothing Nothing

Next to
printer Nothing

2
Start

Nothing printer

3
Stop

printer Nothing

4 Nothing Nothing

5 Nothing
Disable

VDU

6
Enable Select
VDU mode

7 Bell

8 Back Nothing

9 Forward Nothing

A Down Nothing

B Up Nothing

c Clear
Nothing Screen

D
Start of

line

E
Paged
mode

F
Scroll
mode

4-572

0

1

2

3

4

5

6

7

8

9

A

8

c

D

E

F

8

Nothing

Alpha
red

Alpha
green

Al~ha
yelow

Al~ha
bue

Alpha
magenta

Alpha
cyan

Alpha
white*

Flash

Steady*

Nothing

Nothing

Normal
height*

Double
height

Nothing

Nothing

9

Nothing

Graphic
red

Graphic
green

Grafchic
yelow

Graphic
blue

Graphic
magenta

Graphic
cyan

Graphic
white

Conceal
display

...
Separated
graphics

A 8 c D E F

• ... • •- Fl - t=•
~ 1 A c:! -:t ·=1
II 2 E: ~~ t:· t

r· 7 1-- ~-- - -
L ·-• -· ·=• •- ::.
~1=41:)T•j t
~-~ 5 E 1_1 e 1_1

1.1.::: F·· t• II ·::-: ·-· ... •.•
I 7 I~ 1_._1 •;I I.IJ
.· ~-~ H ~- -~ .__ .. 1-. •=• •. ·.• I I .:·:.

-.. ~::. I ~- -~ . . · _. I 11d

:t: · ._IZ j z
. . + .i ~::: ..;- ~:: 1.:1

- I -::: L 1-:. 1 II -- -.. - = t·1 "'* r.-. ===.

.. . :::- t-~ ·-t· r• -:
Release

graphics* .. -·· · (1:1 # •=• II
* every line starts with these options set

Table 0: Character sets

4-573

Teletext characters (used only in mode 7)

Teletext graphics

0

0 Nothing

1
Next to
printer

2
Start

printer

3
Stop

printer

4 Nothing

5 Nothing

6
Enable
VDU

7 Bell

8 Back

9 Forward

A Down

B Up

c Clear
screen

D
Start of

line

E
Paged
mode

F
Scroll
mode

4-574

1

Nothing

Nothing

Nothing

Nothing

Nothing

Disable
VDU

Select
mode

2 3 4 5 6 7 -IU •• . - -• • ... f=-• • •
• H -·· •-

• • E: r::;· • •
• r: . • -

- ~-- ·=·--. -· ·-· . -
II [)T•.L
• I E I_II.L
•• {' F • ... • -: -=

.. r r 1::;; I.•J -= 1:'
Nothing

Nothing

Nothing

Nothing

• _. H :=·=: 1.1
•• :- I -_ =-·
I_I._IZ I.J
, =- ~::: ..:- , :I

Nothing

-· L I===••
. . Ill 1- t·1 -* -- •

Move
cursor

---- ~ t·~ -~·
··1=1 •••

0

1

2

3

4

5

6

7

8

9

A

B

c

D

E

F

8

Nothing

Alpha
red

Alpha
green

Al~ha
yelow

Al~ha
b ue

Alpha
magenta

Alpha
cyan

Alpha
white*

Flash

Steady*

Nothing

Nothing

Normal
height*

Double
height

Nothing

Nothing

9

Nothing

Graphic
red

Graphic
green

Grarchic
yelow

Graphic
blue

Graphic
magenta

Graphic
cyan

GraJ)hic
white

Conceal
display

Contl~uous
grap ics *

St~parated
graphics

Nothing

Black*
background

New
background

Hold
graphics

Release
graphics*

A B c D E F

Iii F· . - ·. . .·. ~-·. .
• H .:·. •-

• • E: ~· • •
• r--;. • --- ~-- ·=·-. -· ·-· . -

• I l]T._L
I I E I_II.L
.-I• F • ... •-:-::
r r 1:::;; I.•J -= I:
• _. H :=·=: 1.1

-.:• I ·•1::-
1.1._1 z 1.1
, =- ~::: ..:- , ~
- Ill L I ;:: IIIII
---- t·1 -* -- •
·~ t·~_.
-·1:1#.11

• every line starts with these options set

Table D: Character sets

4-575

4-576

RISC C

'
00

Volun

Acornl AKJ03 Acor

