
OS 3

e Sa

nf

RISC OS 3
Programmer's Reference Manual

Volume Sa

Supplement for version 3.6

Acornl
- --------~

RISC OS 3
Programmer's Reference Manual

Volume Sa

Supplement for version 3.6

Acorn!

Sa-ii

Copyright © 1995 Acorn Computers Limited. All rights reserved.

Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording or otherwise, or

stored in any retrieval system of any nature, without the written permission of the

copyright holder and the publisher, application for which shall be made to the

publisher.

The product described in this manual is not intended for use as a critical

component in life support devices or any system in which failure could be expected

to result in personal injury.

The product des ribed in this manual is subject to cpntinuous development and

improvement. A
1

1 information of a technical nature ~nd particulars of the product

and its use (incl\l.lding the information and particulats in this manual) are given by

Acorn Computets Limited in good faith . However, At om Computers Limited

cannot accept any liability for any loss or damage a1sing from the use of any

information or particulars in this manual. I
If you have any comments on this manual, please cr plete the form at the back of

the manual and send it to the address given there.

Acorn supplies i s products through an intemation distribution network. Your

supplier is avai~ble to help resolve any queries you might have.

Within this pub! cation, the term 'BBC' is used as an abbreviation for 'British

Broadcasting C rporation' . .

. ACORN, ACOR SOFT, ACORN DESKTOP PUBLISHER, ARCHIMEDES, ARTHUR,

ECONET, MASTER, MASTER COMPACT, THE TUBE, VIEW and VIEWSHEET are

trademarks of A 1 om Computers Limited.

Adobe and Postscript are trademarks of Adobe Systems Inc

ARM is a trade 1 ark of Advanced RISC Machines Ltd

TEX is a trademark of the American Mathematical Society

ImageWriter, La~erWriter and Macintosh are trademarks of Apple Computer Inc

DBase is a traddmark of Ashton Tate Ltd

UNIX is a trademark of AT&T
Atari is a trade~ark of Atari Corporation

AutoCAD is a trademark of AutoDesk Inc

Amiga is a trad mark of Commodore-Amiga Inc

Commodore is a trademark of Commodore Electronics Limited

SuperCalc is a t ademark of Computer Associates

Core!Draw is a trademark of Cork! Corporation

VT is a trademark of Digital EquJpment Corporation

I st Word Plus is a trademark of GST Holdings Ltd

Deskjet, HP. HPGL. LaserJet and PaintJet are trademarks of Hewlett-Packard
Corporation
Colourjet is a trademark of Integrex Ltd
IBM is a trademark of International Business Machines Corporation
ITC Zapf Dingbats is a trademark of International Typeface Corporation
Helvetica and Times are trademarks of Linotype Corporation
Lotus 123 is a trademark of The Lotus Corporation
MS-DOS is a trademark of Microsoft Corporation
MultiSync and NEC are trademarks of NEC Limited
Epson. EX and FX are trademarks of Seiko Epson Corporation
Sun is a trademark of Sun Microsystems Inc
Ethernet is a trademark of Xerox Corporation

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN I 85250 172 3
Edition I
Part number I403.123
Issue I. August I 995

5a-iii

Sa-iv

Contents

About this manual I-ix

Part 1 - Introduction 1-1
An introduction to RISC OS I-3
ARM Hardware 1-9
An introduction to SWis 1-23
*Commands and the CL! 1-33
Generating and handling errors 1-41
OS_Byte 1-49
OS_ Word 1-59
Software vectors 1-63
Hardware vectors 1-1 11
Interrupts and handling them 1-117
Events 1-145
Buffers 1-161
Communications within RISC OS 1-175

Part 2 - The kernel 1-195
Modules 1-197
Program Environment 1-283
Memory Management 1-337
Time and Date I -399
Conversions 1-441
Extension ROMs 1-485

Part 3- Kernel input/output 1-487
Character Output 1-489
VDU Drivers 1-527
Sprites 1-745
Character Input 1-835
The CL! 1-923
The rest of the kernel 1-935

5a-v

Sa-vi

Part 4- Using filing systems 2-1
Introduction to filing systems 2- 3

FileSwitch 2-9

FileCore 2-195

ADFS 2-261
RamFS 2-309
DOSFS 2-317

NetFS 2-337
NetPrint 2-385
PipeFS 2-405
ResourceFS 2-407

DeskFS 2-419
DeviceFS 2-421
Serial device 2-439

Parallel device 2-4 77
System devices 2-485
The Filer 2-489
Filer_Action and FilerSWis 2-503

Free 2-511

Part 5 - Writing filing systems 2-519
Writing a filing system 2-521

Writing a FileCore module 2-587

Writing a device driver 2-597

Part 6- Networking 2-607
Econet 2-609
File server protocol interface 2-693

The Broadcast Loader 2-727

BBC Eco net 2-729
Hourglass 2-733
NetStatus 2-745

Part 7 - The desktop 3-1
The Window Manager 3-3
Pinboard 3-293
Drag A Sprite 3-299
The Filter Manager 3-303

The TaskManager module 3-313

TaskWindow 3-321
ShellCLI 3-329

Part 8 - Non-kernel inpuUoutput 3-333
ColourTrans 3-335
The Font Manager 3-403
SuperSample module 3-519
Draw module 3-523

Part 9 - Printing 3-553
Printer Drivers 3-555
Printer Dumpers 3-663
PDumperSupport 3-679
Printer definition files 3-697
MakePSFont 3.:733

Part 10- Internationalisation 3-735
MessageTrans 3-737
International module 3-759
The Territory Manager 3-785

Part 11 - Sound 4-1
The Sound system 4-3
WaveSynth 4-77

Part 12 - Utilities 4-81
The Buffer Manager 4-83
Squash 4-1 O I
Screen Blank 4- 107

Part 13- Hardware support 4-113
Expansion Cards and Extension ROMs 4-115
Floating point emulator 4-163
ARM3 Support 4-185
The Portable module 4-195
Joystick module 4-207

Part 14- Programmer's support 4-211
Debugger 4-213
The shared C library 4-231
BASIC and BASICTrans 4-337
Command scripts 4-345

Sa-vii

Sa-viii

Appendixes and tables 4-353
Appendix A: ARM assembler 4-3 55

Appendix B: Warnings on the use of ARM assembler 4-377

Appendix C: ARM procedure call standard 4-393

Appendix D: Code file formats 4-413

Appendix E: File formats 4-453

Appendix F: System variables 4-495
Appendix G: The Acorn Terminal Interface Protocol 4-503

Appendix H: Registering names 4-545
Table A: VDU codes 4-551
Table B: Modes 4-553
Table C: File types 4-557
Table D: Character sets 4-561

Part 15 - The kernel 5a-1
Introduction to RISC OS 3.5 and RISC OS 3.6 5a-3

ARM hardware 5a- l 3
Hardware vectors 5a- l 9
Interrupts 5a-31
Modules 5a-33
Memory management 5a-35
CMOS RAM allocation 5a-73

OMA 5a-81
Video 5a-99
JPEG images 5a- l 43
Miscellaneous kernel items 5a- l 6 l

Part 16- Filing and networking 5a-163
FileSwitch 5a-165
FileCore 5a- l 69
ADFS 5a-183
DOSFS 5a- l 89
CDs and CD-ROMs 5a- l 9 l
NetPrint 211
Parallel and serial device drivers 5a-2 l 3
Keyboard and mouse 5a-229
Filing system locking and resets 5a-245
Free 5a-257
Writing a filing system 5a-259
Writing a FileCore module 5a-263
Econet 5a-267
AUN 5a-275
The Internet module 5a-299
Acorn Access 5a-469

Part 17 - The desktop 5a-481
The desktop 5a-483
Drag An Object 5a-5 l l
Draw file renderer 5a-5 l 7
RISC OS boot applications 5a-529
The colour picker 5a-55 l
Printing 5a-573
Internationalisation 5a-583

Part 18 - Miscellaneous 5a-587
Sound 5a-589
CompressJPEG 5a-609
Expansion card support 5a-6 l 7
Joystick module 5a-629
Monitor power saving 5a-645
The Toolbox modules 5a-649

Appendixes 5a-653
Appendix A: Warnings on the use of ARM assembler 5a-655
Appendix B: File formats 5a-657
Appendix C: Errata and omissions for RISC OS 3 PRM 5a-659

Sa-ix

Sa-x

Indexes lndex-1
Index of• Commands Index-3
Index of OS_Bytes Index-13
Index of OS_ Words lndex-17
Nume,ric index of Service Calls lndex-19
Alphabetic index of Service Calls Index-25
Numeric index of SWis Index-31
Alphabetic index of SWis Index-57
Index by subject Index-83

About this manual

Summary of contents

This manual gives you detailed information on RISC OS 3.5 and RISC OS 3.6, so
that you can write programs to run on Acorn computers that use them. It must be
used in conjunction with the RISC OS 3 Programmer's Reference Manual, and is
produced as a replacement for the earlier volume 5 in the set that described
RISC OS 3.5 only. The pages are numbered '5a-n' rather than '5-n' to distinguish
references to the two different versions .

This manual only tells you about the differences between RISC OS 3.1, RISC OS 3.5
and RISC OS 3.6. Many cross references are given between this volume and the
earlier volumes so that you can always refer to the main topic to obtain further
information.

The layout of chapters

We've laid out the information in this manual as consistently as possible, to help
you find what you need. Each chapter covers a specific topic, and in general
includes:

• an Introduction, so you can tell if the chapter covers the topic you are looking for

• an Overview, to give you a broad picture of the topic and help you to learn it for
the first time

• Technical Details, to use for reference once you have read the Overview

• SW! calls, described in detail for reference

• * Commands, described in detail for reference

• Application notes, to help you write programs

• Example programs, to illustrate the points made in the chapter, and on which you
can base your own programs.

Appendix C: Errata and omissions for RISC OS 3 PRM

This appendix (on page 5a-659) contains a list of errata and omissions for the
RISC OS 3 Programmer's Reference Manual. We suggest you add to your copy either the
corrections themselves, or a reference to them.

Sa-xi

Conventions used

Indexes

The separate volume of Indexes replaces that supplied with the RISC OS 3
Programmer's Reference Manual, and references all five volumes. It contains:

• an index of * Commands

• an index of OS_Byte calls

• an index of OS_ Word calls

• a numeric index of service calls

• an alphabetic index of service calls

• a numeric index of SW! calls

• an alphabetic index of SW! calls

• an index by subject.

Conventions used

Sa-xii

Certain conventions are used in this manual:

Hexadecimal numbers

Hexadecimal numbers are extensively used. They are always preceded by an
ampersand. They are often followed by the decimal equivalent which is given
inside brackets:

&FFFF (65535)

This represents FFFF in hexadecimal, which is the same as 65535 in ordinary
decimal numbers.

Typefaces

Courier type is used for the text of example programs and commands, and any
extracts from the RISC OS source code. Since all characters are the same width in
Courier, this makes it easier for you to tell where there should be spaces.

Bold Courier type is used in some examples to show input from the user. We
only use it where we need to distinguish between user input and computer output.

About this manual

Command syntax

Special symbols are used when defining the syntax for commands:

• Italics indicate that you must substitute an actual value. For example,
filename means that you must supply an actual filename .

• Braces indicates that the item enclosed is optional. For example, [Kl shows
that you may omit the letter 'K'.

• A bar indicates an option. For example, 0 11 means that you must supply the
value 0 or I.

Programs

Many of the examples in this manual are not complete programs. In general:

• BBC BASIC examples omit any line numbering

• BBC BASIC Assembler programs do not show the structure needed to perform
the assembly

• ARM Assembler programs assume that header files have been included that
define the SW! names as manifests for the SWI numbers.

• C programs assume that similar headers are included; they also do not show
the inclusion of other headers , or the calling of main () .

Finding out more
For how to set up and maintain your computer, refer to the Welcome Guide supplied
with your computer. The Welcome Guide also contains an introduction to the desktop
which new users will find particularly helpful.

For details on the use of your computer and of its application suite, refer to the
RISC OS 3 User Guide supplied with it.

If you wish to write BASIC programs on your RISC OS computer you will find the
BBC BASIC Reference Manual useful.

Your Acorn supplier has available the Acorn CIC++ product, which you can use to
write programs in C, C++, and ARM assembler. The product runs in a desktop
environment with full supporting tools. It also provides the User Interface Toolbox,
making it much easier to design and code a desktop application's user interface;
for more details see Tfte Toolbox modules on page 5a-649.

Technical Reference Manuals are available for all but the oldest of Acorn RISC OS
computers. These describe the hardware in full, including such things as parts lists
and circuit diagrams .

Sa-xiii

Reader comments

Reader comments

Sa-xiv

If you have any comments on this Manual. please complete and return the form on
the last page of the volume of Indexes to the address given there.

Part 15 - The kernel

Sa-1

5a-2

98

Introduction

Introduction to RISC OS 3.5 and
RISC OS 3.6

RISC OS 3.5 is an operating system written by Acorn for its Rise PC computers that

use the new ARM600 I ARM700 hardware architecture. This version was only
changed where it was necessary to support the changing hardware. RISC OS 3.6 is

a further development. which adds support for machines using the similar
ARM7500 architecture, and integrates software that was previously separately

available. We have tried to make both versions as compatible as possible with the

RISC OS 3.1 operating system.

RISC OS terminology

The operating system known as RISC OS 2 in this manual consists of two variants,

RISC OS 2.00 and RISC OS 2.01.

The operating system known as RISC OS 3 in this manual consists of two variants ,
RISC OS 3.00 and RISC OS 3.10.

The operating system known as RISC OS 3.5 in this manual is RISC OS 3.50, and is

the version supplied with the first generation of Rise PC computers.

The operating system known as RISC OS 3.6 in this manual is RISC OS 3.60, and is

the version supplied with the second generation of Rise PC computers. and the
first generation of A7000 computers.

Hardware overview
The main electronic components of a Rise PC computer are:

• An ARM (Advanced RISC Machines) ARM610 or ARM700 processor, which
provides the main processing.

• A VIDC20 (Video Controller) chip, which provides the video and sound
outputs.

5a-3

Hardware overview

5a-4

• An IOMD (Input Output Memory Device) which provides the interface between
the ARM chip, the VIDC chip, the memory and other support chips.

This chip replaces the IOC and MEMC chips used in earlier RISC OS
computers.

The main component of the A7000 is the ARM7500 chip; this integrates all the
above functionality into a single chip.

Other components

The other components are:

• ROM (Read Only Memory) chips containing the operating system.

• RAM (Random Access Memory) chips.

• VRAM (Video RAM) chips used for video display (if fitted) .

• Peripheral controllers (for devices such as discs, the serial port, networks and
so on) .

Schematic

The diagram on page 5a-5 gives a schematic of an architecture which may be
viewed as typical of the Rise PC range of computers.

ARM 610 and ARM 700

The ARM is a RISC (Reduced Instruction Set Computer) processor. The initial range
of_ Rise PC computers can use two different versions of the ARM processor.

• The ARM610 delivers about 5 times the power of an ARM 2 (23 MIPs, or million
instructions per second, compared to some 4 - 5 MIPS for the ARM2) .

• The ARM700 delivers about 8 times the power of an ARM 2 (an estimated
35 MIPS). The ARM 700 also has a direct connection for a hardware floating
point chip.

From the application programmer's point of view, there is no difference between
the two processors. The ARM700 supports the same instruction set as the ARM6 l 0.

It is possible that other chips in the ARM6 I ARM7 family may also be used.

co
M

~ ~ 1
J

c: t1:I
lC

)

M

~ (.)

~

er: .9

~ -6 g
.s

V
id

e
o

 I A
u

d
io

 I R
andom

 A
cce

ss M
e

m
o

ry
C

P
U

 &
 C

ontrol
P

eripheral C
ontrol

E
xpansion Interfaces

S
A

M
 data H

!
SIMM1~

~penBusCa~

11

3
2

b
l D

IM
M

S

IM
M

O

K
)penB

us C
ard

S
A

M
 data LO

V

R
A

M

D
R

A
M

A

R
M

 C
P

U

............ }
?.~

........
.

·i
·
a
cicires

s
til

i
s
~

·· ·······
1iiiC

iieC
iai!C

ii85S
illiii" .. · ··· ···························· ·

'
j .j .

..
'

j •
32b

~· l1
28b

buffered 16b

~
-

, r
1

'
1 '

data bus
_

l>J
data bus H

I

R
o

w
&

I.~

'32b
-

L' ~ -:
16b

C
olum

n
'

j
A

ddress
buffered 16b

-
,.,

1aata D
U

S
 L

U

20
16b

11
,

3
8

-
control

32b
&b

j
ll

'sb
'

6b
,

32b

,~

A
R

M
 B

us
13

V
ID

C
20

control
O

M
A

,
' -'10

,
5

,
D

R
A

M
 &

 V
R

A
M

 211
,J

8b

•
lt

control
...

• r
1

f e
26

n
n

I
f2

•
 r , f

1
'

,t, r
I F

•' r ' ~

V
ID

C
20 I

I
I

I
82C

665
.... IE

.
g

'V'
~xpansion ~

IO

M
D

R

O
 M

s
U

niversal
N

etw
ork care

~~~rr~Ti~~ 1 

rr 
ards (8 m

a
x 

·~ 
: 

j 
' 

! 
• ! 

V
ideo 

, r 
t E

thernet I E
conet I etc 

2 
' 

I Floppy disc 
ID

 
ID

 
ID

E
 

H
ard disc 

-~lb 
P

arallel 
S

erial 
-

M
ouse buttons 

Q
uadra

ture M
ouse 

IB
M

 P
S

/2 C
om

oatible K
evboard 

K
ey 

[
]
 U

ni-D
irectional Latch 

~
 B

i-D
irectional B

uffe
r 

Intern
a

l to C
ase 

M
otherboard 

.... 
~
 

;::$ 
!:>. 
~
 

s u 0... 
..., V

l 

C2 <:s 
'O

' 
-~
 

<ii ~
 

"' -s: ..., rJ) 

oO 
°' ~ ;::$ 
~
 

ti: 

LO
 I 

cu 
LO

 



Hardware overview 

The VIDC20 chip 

Sa-6 

The VIDC20 chip is an updated version of the VIDC I and VIDC I a chip used in the 
previous generation of Acorn computers. The main differences are that VIDC20 
provides: 

• A wide range of resolution options including VGA, SuperVGA and XGA 
resolution. 

• I, 2, 4, 8, 16 and 32 bits per pixel. 

• 8 bit DACs giving 16 million colours . 

Video data transfer 

The VIDC20 has a 64 bit data bus allowing a high data bandwidth from memory. 
VIDC20 takes data from the memory banks under OMA control. VIDC20 takes its 
data from VRAM if it is fitted , otherwise it takes data from DRAM. 

Palette 

The VIDC 20 contains 296 write-only registers: 256 of these are used as the 28 bit 
video palette entries . Each entry uses 8 bits for Red, 8 bits for Green and 8 bits for 
Blue with 4 bits for external data . 

The video palette entries or Look up tables (LUT) allow for logical to physical 
translation and gamma correction . The Red, Green and Blue LUTs each drive their 
respective DACs. These DACs give a total of 16 million possible colours. 

Pixel clock 

VIDC20 can generate a display at any pixel rate up to at least 11 OMhz. The clock can 
be selected from one of three sources, and then divided by a factor of between I 
and 8. 

The VIDC20 also contains a phase comparator which - when used with an external 
Voltage Controlled Oscillator - forms a Phase Locked Loop. This allows a single 
reference clock to generate all the required frequencies for any display mode. You 
do not need multiple external crystals. 

Sound system 

The sound system is compatible with the VIDC I sound system with an 
independent sound clock (24MHz) . It features an 8 bit (logarithmic) system using 
an internal DAC. This gives eight channels each with its own stereo position. 

The device can work with I, 2, 4 or 8 stereo channels using time division 
multiplexing to synthesise left and right outputs. The sample rate is programmable 
through the Sound Frequency Register. 



Introduction to RISC OS 3.5 and RISC OS 3.6 

Cursor 

VIDC20 has a hardware cursor for all its modes. The cursor is 32 pixels wide and 

any number of pixels high . Each pixel can be transparent, or one of three colours 

chosen from its own 28 bit wide palette. The cursor can be any shape or colour 

within these limits. 

The IOMD chip 

The IOMD is a specialised custom chip that takes the place of several large chips 

used in the old architecture. 

IOMD includes some of the circuitry formerly in the IOC and MEMC chips, as well 

as a large amount of 'glue' logic. 

The features of the IOMD include: 

• Direct interface to ARM6xx/ARM7xx processors 

• 16 bit steered bus. for on-board peripherals 

• IOC functionality (ticker. interrupt manager. llC. 1/0 control) 

• Memory controller for DRAM and VRAM 

• DMA controller for 1/0, sound. cursor and video data 

• PC keyboard interface 

• Quadrature mouse interface. 

General architecture 

The IOMD is a memory, DMA and 1/0 controller. 

It has a CPU interface for an ARM610/ARM700 type processor which can allow an 

additional processor to be connected. The CPU interface consists of the processor 

address. data and control buses. 

There is a DRAM and VRAM control bus which has RAS. CAS, multiplexed address 

and other control lines. There are a number of DMA address generators, for sound, 

cursor, and general 1/0 DMA. There is also VRAM control logic, including logic to 
generate transfer cycles. 

Since the whole 32 bits of the main system bus connects to IOMD, it is possible for 
IOMD to transfer data using DMA (Direct Memory Access) from DRAM into itself. 
There is a 16 bit 1/0 bus on IOMD, and there is byte (and half-word) steering logic 

to allow DMA data at arbitrary byte (or half-word) memory locations to be 
transferred to/from the 1/0 system using this bus. The 16 bit 1/0 bus forms the 

lower 16 bits of the 32 bit podule interface. IOMD controls the latches forthe upper 

16 bits of the extended podule bus. which allows 32 bit transfers . 

5a-7 



RISC OS overview 
&ii'".·:·:······· 

IOMD contains a large subset of the functionality of IOC, including two general 
purpose counter/timers (timer 0 and timer I) and the interrupt control registers . 
The IOC baud rate and keyboard serial rate timers are not implemented in IOMD, 
nor are all of the general purpose 1/0 lines. The allocation of interrupt lines is 
largely similar to previous machines. 

IOMD provides a PC keyboard interface instead of the Archimedes KART interface 
supported by IOC. This consists of an 8 bit synchronous serial interface, with 
interrupt generation capability. 

The chip contains a quadrature mouse interface. This consists of X and Y counters 
that are incremented and decremented by mouse movements. The counters wrap 
when they overflow or underflow, and are read regularly under interrupt. The VSync 
interrupt is used (although the centi-second timer could be used) as it allows 
updating every frame; there is no point in updating the screen more often than 
this . The X and Y counters are each 16 bits wide. 

ARM7500 

The ARM7500 is a monolithic device that integrates an ARM7 processor, a video 
generator similar to VIDC20, and most of the functions of IOMD. The major 
differences are: 

• The ARM7500 provides two PS/2-style asynchronous serial keyboard ports 
(one for the keyboard, and one for the mouse). rather than IOMD's 
synchronous serial keyboard port and quadrature mouse interface of IOMD. 

• The ARM7500 provides a four channel PC joystick interface, not available with 
IOMD. 

RISC OS overview 

5a-8 

The chapters that follow describe the changes introduced in RISC OS 3.5 and 
RISC OS 3.6. These changes are summarised below. 

RISCOS3.5 
• Memory management has been considerably improved. Much greater 

amounts of physical memory are supported, and the address space is larger. 
Second processors can claim memory. You can now create and manipulate 
your own dynamic areas. 

• A module has been provided to support OMA (direct memory access). 

• Video and sprite capabilities have been extended to support the huge range of 
screen modes and colours now possible. There are new ways of selecting and 
specifying screen modes and monitors. and a new sprite format . Many calls 
have been extended to support these. 



Introduction to RISC OS 3.5 and RISC OS 3.6 

• The parallel and serial device drivers have been made considerably more fast 
and efficient. 

• The buffer manager now allows you to insert and remove buffered data without 
incurring the overheads of calling SWis 

• Keyboard support has been removed from the kernel. It has been replaced by a 
device driver module so a standard PC keyboard can be used, greatly 
expanding the range of available input devices. 

• The quadrature mouse driver has been removed from the kernel and placed in 
its own module. A serial mouse driver for a PC-type mouse is available as an 
alternative. 

• The CMOS RAM and hard disc can now be password protected against 
malicious or accidental changes. The CMOS RAM can also be protected in 
hardware against the effects of power-on resets . 

• The reset behaviour has been rationalised. 

• Support is provided in ROM for AUN (Acorn Universal Networking) . 

• The appearance of the desktop has been considerably improved. It now has a 
30 appearance, uses an outline font, and can tile window backgrounds with a 
texture. 

• The Filer now allows much longer filenames , and changes column widths to 
accommodate them. A new icon is used to distinguish open directories . 
Dragged objects now appear as an icon, rather than as a dashed rectangle. 

• The Wimp's error system has been extended to improve its appearance, allow 
more customisation, and provide more user friendly dialogues. 

• DragASprite now makes dragged icons semi-transparent by default , so you can 
easily see what lies under them. 

• A watchdog has been added so you can easily kill runaway programs that do 
not return control to the Wimp. 

• A new Boot application has been added. Your applications can easily add and 
remove commands to this application, making their installation and removal 
much easier. 

• A new ColourPicker module provides a facility for all applications to use when 
colours must be specified. It of course supports the full range of colours 
available under RISC OS 3.5. 

• Expansion cards now have 32 bit wide data paths, and a directly mapped area 
of l 6MB per card. 

• A new dedicated network interface is supported. 

• Screen blanking now supports monitor power saving using the new DPMS 
standard. 

Sa-9 



RISC OS overview 

RISC OS3.6 

Sa-10 

• Modules can use a message file when outputting text from the help and 
command keyword table. 

• Further minor extensions have been made to the video system: in particular, 
support has been added for palettes in the new sprite format . 

• The SpriteExtend module's SWI interface has been extended to support JPEG 
images, providing information on the images, and simple scaled plotting and 
printing. 

• The new CompressJPEG module provides SWls with which you can compress 
raw data into a )PEG image. 

• The Draw file format has been extended so you can include JPEG images . 

• FileSwitch, FileCore and the Free module have been extended to support 
larger capacity storage devices. Under FileCore, the recommended maximum 
hard disc size is 4 GB, and the maximum size of a file (and hence of an image 
filing system) is 2 GB. 

• ADFS supports IDE discs that use logical block addressing - a method of disc 
addressing which is superseding the old cylinder-head-sector method. 

• The 32 MB limit on the size of a DOSFS image file has been removed by using 
a newer type of DOS boot block. DOSFS is also less stringent in its checking of 
DOS formats ; some discs that earlier versions of DOSFS rejected are now 
accepted. 

• Support has been added for CDs and CD-ROMs. The CDFS filing system can 
access files on a CD-ROM that conforms to the widely used ISO 9660 standard. 
There are commands with which you can play audio CDs and read audio data 
directly from a CD. 

• The keyboard and mouse drivers support a PS/2 keyboard and mouse, using an 
asynchronous serial interface such as the ARM7500 provides. 

• The cut-down Internet module provided as part of RISC OS 3.5's AUN support 
has been replaced by the complete version. 

• Acorn Access - Acorn's entry level product for AUN networking - is now a part 
of RISC OS. It provides peer to peer networking using TCP/IP protocols, 
allowing sharing of resources such as discs and printers. 

• The new DragAnObject module provides SWI calls similar to those provided by 
the DragASprite module, save that you can use them to make the pointer drag 
any object that you can render. 

• The new DrawFile module renders Draw files either to the screen, or to a 
printer driver during printing. This makes it easy for you to support imported 
Draw files in your applications. 



Introduction to RISC OS 3.5 and RISC OS 3.6 

• The range of Boot applications has been extended, mainly to support network 
booting. 

• Further changes have been made to printing, largely to support JPEGs. 

• The SoundDMA module has been extended to support 16 bit sound, as well as 
the 8 bit µ-law sound used by all earlier versions of RISC OS. 

• The Joystick module has been extended both to support PC-style analogue 
joysticks, and to provide calls used with analogue input devices on older Acom 
machines. 

• The Toolbox modules from Acom CIC++ have been added to RISC OS. Toolbox 
applications therefore don 't need to load the modules into RAM, hence 
decreasing their memory usage. 

Sa-11 



5a-12 



99 ARM hardware 

Introduction and Overview 
The ARM architecture changed significantly with the introduction of the ARM6 
series . The section below describes the differences in behaviour of more recent 
ARM processors. used with RISC OS 3.5 and later. For details of earlier ARM 
processors . see the chapter entitled ARM Hardware on page I-9. 

32 bit architecture 

New features in ARM6 

The most notable change made in the ARM6 series was to extend the address bus 
and program counter to a full 32 bits. As a result: 

• The PSR had to be separated from the PC into its own register, the CPSR 
(Current Program Status Register) . 

• The PSR can no longer be saved with the PC when changing processor modes; 
instead. each privileged mode now has an extra register - the SPSR (Saved 

Program Status Register) - to hold the previous mode's PSR. 

• Instructions have been added to use these new status registers. 

A further change was the addition of extra privileged processor modes, allowed by 
the PSR now having a full 32 bits to use. These modes are used to handle 
Undefined instruction and Abort exceptions. Consequently: 

• Undefined instructions, aborts, and supervisor code no longer have to share 
the same mode. This has removed restrictions on Supervisor mode programs 
which existed on earlier ARMs. 

Sa-13 



32 bit architecture 

Sa-14 

Processor configuration 

The availability of these features in the ARM6 series (and other later compatible 
chips) is set by one of several on-chip control registers . One of three processor 
configurations can be selected: 

• 26 bit program and data space. This configuration forces ARM to operate 
with a 26 bit address space. In this configuration only the four 26 bit modes 
are available (see Processor modes below) ; it is impossible to select a 32 bit 
mode. 

This configuration is set at reset on all current ARM6 and 7 series processors. 

• 26 bit program space and 32 bit data space. This is the same as the 26 bit 
program and data space configuration. except that address exceptions are 
disabled to allow data transfer operations to access the full 32 bit address 
space. 

• 32 bit program and data space. This configuration extends the address 
space to 32 bits , and introduces major changes to the programmer's model. In 
this configuration you can select any of the 26 bit and the 32 bit processor 
modes (see Processor modes below). 

Processor modes 

When configured for a 32 bit program and data space, the ARM6 and ARM7 series 
support ten overlapping processor modes of operation: 

• User mode: the normal program execution state - or 

User26 mode: a 26 bit version of the above 

• FIQ mode: designed to support a data transfer or channel process - or 

FI026 mode: a 26 bit version of the above 

• IRO mode: used for general purpose interrupt handling - or 

IR026 mode: a 26 bit version of the above 

• SVC mode: a protected mode for the operating system - or 

SVC26 mode: a 26 bit version of the above 

• Abort mode (abbreviated to ABT mode): entered after a data or instruction 
prefetch abort 

• Undefined mode (abbreviated to UND mode) : entered when an undefined 
instruction is executed. 

The distinction between processor modes and configurations is important, and 
will be rigidly adhered to in the rest of this manual. 



ARM hardware 

The 26 bit processor modes 

When in a 26 bit processor mode, the programmer's model reverts to that of earlier 
26 bit ARM processors. The behaviour is the same as that of the ARM2aS macrocell 
with the following alterations: 

• Address exceptions are only generated by ARM when it is configured for 26 bit 
program and data space. 

In other configurations the OS may still simulate the behaviour of address 
exception, using external logic such as a memory management unit to 
generate an abort if the 64Mbyte range is exceeded, and converting that abort 
into an 'address exception trap' for the application. 

• The new instructions to transfer data between general registers and the 
program status registers remain operative. The new instructions can be used 
by the operating system to return to a 32 bit mode after calling a binary 
containing code written for a 26 bit ARM. 

• When in a 32 bit program and data space configuration , all exceptions 
(including Undefined Instruction and Software Interrupt) return the processor 
to a 32 bit mode, so the operating system must be modified to handle them. 

• If the processor attempts to write to a location between &O and & IF inclusive 
(i.e. the exception vectors). hardware prevents the write operation and 
generates a data abort . This allows the operating system to intercept all 
changes to the exception vectors and redirect the vector to some veneer code. 
The veneer code should place the processor in a 26 bit mode before calling the 
26 bit exception handler. 

In all other respects, when operating in a 26 bit mode the ARM behaves as like a 
26 bit ARM. (See the chapter entitled ARM Hardware on page I-9.) The relevant bits 
of the CPSR appear to be incorporated back into RI 5 to form the PC/PSR with the I 
and F bits in bits 27 and 26. The instruction set behaves like that of the ARM2aS 
macrocell, with the addition of the MRS and MSR instructions. 

RISC OS processor configuration and modes 

Early in its startup code, RISC OS writes to the ARM's control register to change it 
into the 32 bit program and data space configuration, where it remains. You must 
not alter the processor's configuration yourself when writing code for RISC OS. 

Although RISC OS runs under a 32 bit configuration, it remains in 26 bit modes for 
normal operation , providing a high degree of backward compatibility with code 
written to run on earlier 26 bit processors. 

However, because the processor is in a 32 bit configuration , all exceptions 
(including Undefined Instruction and Software Interrupt) force the processor to a 
privileged 32 bit mode appropriate to the exception. There are therefore some 

Sa-15 



32 bit architecture 

differences in exception handling between 26 and 32 bit architecture ARM chips, 
although RISC OS provides a considerable degree of backward compatibility by 
faking 26 bit behaviour on 32 bit architecture chips in most circumstances. For full 
details, see the chapter entitled Hardware vectors on page 5a-l 9. 

Registers 

The registers available in the ARM6 and ARM7 series are: 

User and SVC and IRQ and FIQ and 
User26 SVC26 IRQ26 ABT mode UNO mode FIQ26 
mode mode mode mode 

RO 

R1 

R2 

R3 

R4 

RS 

R6 

R7 

RS RS_fiq 

R9 R9_fiq 

R10 R10_fiq 

R11 R11 _fiq 

R12 R12_fiq 

R13 R13_svc R13_irq R13_abt R13_und R13_fiq 

R14 R14_svc R14_irq R14_abt R14_und R14_fiq 

R15 (PC) 

CPSR 

SPSR_svc SPSR_irq SPSR_abt SPSR_und SPSR_fiq 

Figure 99.1 32 bit register organisation 

5a-16 



ARM hardware 

These are similar to those available in the ARM2 and ARM3 series registers . The 

key differences are: 

• the PC is a full 32 bits wide 

• the PSR is held in its own register, the CPSR (see the section entitled The CPSR 

.and SPSR registers below) 

• each privileged mode has a private SPSR register in which to save the CPSR 

• there are two new privileged modes. each of which has private copies of RI 3 

and Rl4. 

The CPSR and SPSR registers 

The allocation of the bits within the CPSR (and the SPSR registers to which it is 

saved) is shown in the figure The Current Process Status Register (CPSR) below. 

Processor mode 
00000 ~ User26 mode 
00001 ~ FIQ26 mode 
00010 ~ IRQ26 mode 
00011 ~ SVC26 mode 
10000 ~ User mode 
10001 ~ FIQ mode 
10010 ~ IRQ mode 
10011 ~ SVC mode 
10111 ~ ABTmode 
11011 ~ UNO mode 

~------- FIQ disable 
0 ~ Enable 
1 ~ Disable 

~--------- IRQ disable 
o ~ Enable 
1 ~ Disable 

~----------------Overflow 

~------------------Carry/Not borrow/ 
Rotate extend 

~--------------------Zero 

~---------------------Negative/ 

Signed less than 

Figure 99.2 The Current Process Status Register (CPSR) 

Sa-17 



Block diagram of core 

Block diagram of core 

ABE -
ALE -

~ 
r 
c 
CJ 
c 
(/) 

5a-18 

A bus 

Address Register 

Address 
lncrementer 

Register Bank 
(32 bit Registers) 

Multiplier 

~ 
CJ 
c 
(/) 

32 bit ALU 

Write Data Register 

D bus 

BIW Rlw 

5" 
0 
(ii 
3 
(1) 
::J 
(i) .... 
CJ 
c 
(/) 

Instruction 
Decoder 

and 
Control 
Logic 

CJ 
CJ 
c 
(/) 

Instruction Pipeline 
and Read Data Register 

D bus 

Figure 99.3 ARM Core block diagram 

PH1 

PH2 

IRQ 

FIQ 

RESET 

ABORT 

OPC 

TRANS 

Mbus 

MREQ 

SEQ 

CPI 

CPA 

CPB 



100 Hardware vectors 

Introduction and Overview 

Exceptions 

This chapter describes the ways in which the 32 bit processor configuration used 

by RISC OS 3.5 and later affects exception handling. If you are writing any 

exception handler, you must read both this chapter and the chapter entitled 

Hardware vectors on page 1-111. 

Introduction 

Exceptions arise whenever there is a need for the normal flow of program 

execution to be broken, so that (for instance) the processor can be diverted to 

handle an interrupt from a peripheral. The processor state just prior to handling 

the exception must be preserved so that the original program can be resumed 

when the exception routine has completed. Many exceptions may arise at the same 

time. 

ARM handles exceptions by making use of the banked registers to save state. The 

old PC and PSR are copied, under RISC OS 3.1 or earlier (ie on a 26 bit addressing 

ARM) to the appropriate Rl4, or under RISC OS 3.5 or later (ie on a 32 bit 

configured ARM) to the appropriate Rl4 and SPSR. The PC and processor mode 

bits are forced to a value which depends on the exception. Interrupt disable flags 

are set where required to prevent otherwise unmanageable nestings of exceptions. 

In the case of a re-entrant interrupt handler, Rl4 should be saved onto a stack in 

main memory before re-enabling the interrupt. When multiple exceptions arise 

simultaneously a fixed priority determines the order in which they are handled. 

FIQ (Fast interrupt request) 

The FIO (Fast Interrupt reOuest) exception is externally generated by taking the FIO 

pin LOW. This input can accept asynchronous transitions, and is delayed by one 

clock cycle for synchronisation before it can affect the processor execution flow. It 

is designed to support a data transfer or channel process, and has sufficient private 

registers to remove the need for register saving in such applications, so that the 

overhead of context switching is minimised. 

Sa-19 



Exceptions 

5a-20 

The FIO exception may be disabled by setting the F flag in the PSR (but note that 
this is not possible from User mode) . If the F flag is clear ARM checks for a LOW 
level on the output of the FIG synchroniser at the end of each instruction. 

When ARM is successfully FIGed it will: 

Save RI 5 in Rl4_fiq, and (for RISC OS 3.5 or later) save the CPSR in SPSR_fiq. 

2 Force the mode bits to FIG mode and set the F and I bits in the PSR. 

3 Force the PC to fetch the next instruction from address & IC. 

To return normally from FIO use: 

SUBS PC,R14_fiq,#4 

This will resume execution of the interrupted code sequence, and restore the 
original mode and interrupt enable state. 

IRQ (Interrupt request) 

The IRO (Interrupt ReGuest) exception is a normal interrupt caused by a LOW level 
on the IRG pin. This input can accept asynchronous transitions, and is delayed by 
one clock cycle for synchronisation before it can affect processor execution. It has 
a lower priority than FIG, and is masked out when a FIO sequence is entered. Its 
effect may be masked out at any time by setting the I bit in the PC (but note that 
this is not possible from user mode) . If the I flag is clear ARM checks for a LOW 
level on the output of the IRG synchroniser at the end of each instruction . 

When ARM is successfully IRGed it will : 

I Save RI 5 in Rl4_irq, and (for RISC OS 3.5 or later) save the CPSR in SPSR_irq. 

2 Force the mode bits to IRG mode and set the I bit in the PSR. 

3 Force the PC to fetch the next instruction from address & 18. 

To return normally from IRO use: 

SUBS PC,Rl4_irq,#4 

This will restore the original processor state and thereby re-enable IRO. 

Address exception trap 

Under RISC OS 3.5 or later, address exceptions are never generated, and you may 
therefore ignore this section . 

Under RISC OS 3.1 or earlier, an address exception arises whenever a data transfer 
is attempted with a calculated address above &3FFFFFF. The ARM address bus is 
26 bits wide, but an address calculation has a 32 bit result. If this result has a logic 
'l' in any of the top 6 bits it is assumed that the address overflow is an error, and 
the address exception trap is taken . 



Abort 

Hardware vectors 

Note that a branch cannot cause an address exception, and a block data transfer 

instruction which starts in the legal area but increments into the illegal area will 

not trap (it wraps round to address 0 instead) . The check is performed only on the 

address of the first word to be transferred. 

When an address exception is seen ARM will : 

If the data transfer was a store, force it to load. (This protects the memory from 
spurious writing.) 

2 Complete the instruction, but prevent internal state changes where possible. 
The state changes are the same as if the instruction had aborted on the data 
transfer. 

3 Save RI 5 in Rl4_svc. 

4 Force the mode bits to SVC mode and set the I bit in the PSR. 

5 Force the PC to fetch the next instruction from address & 14. 

Normally an address exception is caused by erroneous code, and it is 
inappropriate to resume execution. If a return is required from this trap, use 

SUBS PC, R14_svc, #4 . This will return to the instruction after the one causing 
the trap. 

The Abort signal comes from an external Memory Management system, and 
indicates that the current memory access cannot be completed. ARM checks for an 

Abort at the end of the first phase of each bus cycle. When successfully Aborted 

ARM will respond in one of three ways. 

Abort during instruction prefetch 

If abort is signalled during an instruction prefetch (a Prefetch abort). the prefetched 
instruction is marked as invalid; when it comes to execution, it is reinterpreted as 
below. (If the instruction is not executed, for example as a result of a branch being 

taken while it is in the pipeline, the abort will have no effect.) 

Then ARM will: 

Save RI 5 in Rl4_svc. or (for RISC OS 3.5 or later) save RI 5 in Rl4_abt and save 
the CPSR in SPSR_abt. 

2 Force the mode bits to SVC mode or (for RISC OS 3.5 or later) ABT mode and 
set the I bit in the PSR. 

3 Force the PC to fetch the next instruction from address &OC. 

5a-21 



Exceptions 

Sa-22 

To continue after a Prefetch abort use SUBS PC, R14, #4 (where R14 is R14_svc 
or R14_abt depending on the version of RISC OS). The ARM will then re-execute 
the aborting instruction, so you should ensure that you have removed the cause of 
the original abort. 

Abort during data access 

If the abort command occurs during a data access (a Data Abort). the action 
depends on the instruction type. 

• Single data trans~er instructions (LOR and STR) are aborted as though the 
instruction had not executed. 

• Block data transf~r instructions (LDM and STM) complete, and if writeback is 
set, the base is uddated. If the instruction would normally have overwritten the 
base with data (iJ LDM with the base in the transfer list), this overwriting is 
prevented. All register overwriting is prevented after the Abort is indicated, 
which means in d

1
articular that RI 5 (which is always last to be transferred) is 

preserved in an aborted LDM instruction. 

Then ARM will : 

Save RI 5 in Rl4_~vc, or (for RISC OS 3.5 or later) save RI 5 in Rl4_abt and save 
the CPSR in SPSR abt. 

2 Force the mode bl~s to SVC mode or (for RISC OS 3.5 or later) ABT mode and 
set the I bit in thJ PSR. 

3 Force the PC to fdtch the next instruction from address &IO. 

To continue after a da~a abort, remove the cause of the abort, then reverse any 
auto-indexing that the original instruction may have done, then return to the 
original instruction wi

1

th SUBS PC, Rl 4, # 8 (where Rl 4 is Rl 4_svc or Rl 4_abt 
depending on the professor configuration) . 

Abort during an internal cycle 

The ARM ignores abors signalled during internal cycles. 

Using aborts to implement virtual memory systems 

The abort mechanism I allows a 'demand paged virtual memory system' to be 
implemented when a suitable memory management unit (such as MEMC) is 
available. The proces~or is allowed to generate arbitrary addresses, and when the 
data at an address is unavailable the memory manager signals an abort. The 
processor traps into system software which must work out the cause of the abort. 
make the requested data available, and retry the aborted instruction. The 
application program needs no knowledge of the amount of memory available to it, 
nor is its state in any way affected by the abort. 



Hardware vectors 

Software interrupt 

The software interrupt instruction is used for getting into supervisor mode, usually 
to request a particular supervisor function . ARM will : 

Save RI 5 in Rl4_svc, and (for RISC OS 3.5 or later) save the CPSR in SPSR_svc. 

2 Force the mode bits to SVC mode and set the I bit in the PSR. 

3 Force the PC to fetch the next instruction from address &8 . 

To return from a SW!, use MOVS PC, Rl4_svc . This returns to the instruction 
following the SW!. 

Undefined instruction trap 

Reset 

When ARM executes a coprocessor instruction or an undefined instruction, it 
offers it to any coprocessors which may be present. If a coprocessor can perform 
this instruction but is busy at that moment, ARM will wait until the coprocessor is 
ready. If no coprocessor can handle the instruction ARM will take the undefined 
instruction trap. 

When the undefined instruction trap is taken ARM will: 

Save RI 5 in Rl4_svc, or (for RISC OS 3.5 or later) save RI 5 in Rl4_und and 
save the CPSR in SPSR_und. 

2 Force the mode bits to SVC mode or (for RISC OS 3.5 or later) UNO mode and 
set the I bit in the PSR. 

3 Force the PC to fetch the next instruction from address &4 . 

The undefined instruction trap may be used for software emulation of a 
coprocessor in a system which does not have the coprocessor hardware; or for 
general purpose instruction set extension by software emulation (the floating 
point instruction set is implemented in software this way) . 

To return from this trap (after performing a suitable emulation of the required 
function). use MOVS PC, Rl4 (where Rl4 is Rl4_svc or Rl4_und depending on 
the processor configuration) . This will return to the instruction following the 
undefined instruction. 

ARM can be reset by pulling its RESET pin HIGH. If this happens, ARM will stop the 
currently executing instruction and start executing no-ops. When RESET goes LOW 
again, it will : 

Save RI 5 in Rl4_svc, and (for RISC OS 3.5 or later) save the CPSR in SPSR_svc. 

2 Force the mode bits to SVC mode and set the F and I bits in the PSR. 

3 Force the PC to fetch the next instruction from address &O. 

Sa-23 



Exceptions 

5a-24 

Vector summary 

The first eight words of store normally contain branch instructions pointing to the 
relevant routines . The FIO routine may reside at &OOOOOIC onwards, and thereby 
avoid the need for (and execution time of) a branch instruction. 

Address 

&0000000 
&0000004 

&0000008 
&OOOOOOC 
&0000010 

&0000014 
&0000018 
&OOOOOIC 

Exception Priorities 

Definition 
Reset 
Undefined instruction 

Software interrupt 
Abort (prefetch) 

Abort (data) 

Address exception 
!RO 
FIO 

When multiple exceptions arise at the same time, a fixed priority system 
determines the order in which they will be handled: 

Reset (highest priority) 

2 Address exception, Data abort 

3 FIO 

4 IRO 

5 Prefetch abort 

6 Undefined Instruction, Software interrupt (lowest priority) 

Note that not all exceptions can occur at once. Address exception and data abort 
are mutually exclusive, since if an address is illegal the ARM will ignore the ABORT 
input. Undefined instruction and software interrupt are also mutually exclusive 
since they each correspond to particular (non-overlapping) decodings of the 
current instruction. 

If an address exception or data abort occurs at the same time as a FIO, and F!Os 
are enabled (ie the F flag in the PSR is clear), ARM will enter the address exception 
or data abort handler and then immediately proceed to the FIO vector. A normal 
return from FIO will cause the address exception or data abort handler to resume 
execution. Placing address exception and data abort at a higher priority than FIO is 
necessary to ensure that the transfer error does not escape detection, but the time 
for this exception entry should be added to worst case FIO latency calculations. 



Hardware vectors 

The pre-veneers 
To ensure easy backward compatibility, versions of RISC OS from 3.5 onwards 

install a pre-veneer on all hardware vectors apart from FIO (see the section entitled 

Writing to the FIO vector on page 5a-26) and address exception (which is never 

generated by a 32 bit configured ARM) . Each pre-veneer first sets up RI4 to contain 

a combined PC and PSR that will return the processor to the 26 bit mode it was in 

when the exception arose. It then places the processor in the privileged 26 bit 

mode used by the earlier 26 bit chips for that exception. It thus effectively fakes the 

behaviour of earlier versions of RISC OS that run on those chips. 

The pre-veneer is called before any exception handlers that are installed with 

software interfaces such as OS_ChangeEnvironment, so you can usually use such 

exception handlers unchanged on all versions of RISC OS (hardware dependencies 

excepted). 

Entering 32 bit modes 

One consequence of this is that you may not enter a 32 bit mode with IROs 

enabled. Were you to do so, and an !RO were to occur, the !RO pre-veneer would 

be entered; then the !RO handler would return you to a 26 bit mode, rather than 

the 32 bit mode you were in at the time of the !RO. 

Note that you shouldn't use 32 bit modes except for writing exception handlers; 

see the section entitled Running 32 bit code on page 5a-35. 

Claiming the hardware vectors 

Under earlier versions of RISC OS, you could also claim the hardware vectors 

directly, by overwriting the existing instruction on the vector, and replacing it 

afterwards. It was your responsibility to do any housekeeping, in particular 

checking for subsequent claimants before restoring the original instruction . 

Under 32 bit aware versions of RISC OS, if you attempt to write to any hardware 

vector other than FIO a data abort is generated. You must instead call the new SW! 

OS_ClaimProcessorVector (page 5a-28), passing it the address of your exception 

handler. The handler is installed on the vector, and is called directly, before the 

pre-veneers. Such handlers are therefore entered in a 32 bit mode. 

Sa-25 



Writing to the FIQ vector 

For handlers installed directly on the vector to work across all versions of RISC OS, 
you must therefore change the method of claiming and releasing the vector 
depending on the version of RISC OS: 

• On versions up to RISC OS 3.1, you must write directly to the vector, doing any 
appropriate housekeeping yourself 

• On later versions you must call OS_ClaimProcessorVector. 

Your handler must also cope with running in both 26 bit and 32 bit modes. 

Writing to the FIQ vector 

5a-26 

On a 32 bit architecture ARM , the FIO vector is entered in FIO mode (i.e. the 32 bit 
form of the mode) . There are no pre-veneers to simulate 26 bit behaviour. To install 
a FIO handler, you must write directly to the FIO vector, just as always. 

The sample code below is the recommended way to write to the FIO vector on both 
26 and 32 bit configured processors -you can use the same code on all versions of 
RISC OS. Obviously the handler you install must cope with running in both 26 bit 
and 32 bit FIO modes. In practice this is unlikely to be a problem, and most 
existing handlers will run unchanged once installed. 

In the code, comments that are prefixed by '32 : ·apply to a 32 bit configured 
processor, and comments that are prefixed by '2 6 : ' apply to a 26 bit configured 
processor. 

; We assume that at this point, you are already in a privileged 26 b it mode. 

26: Does not alter processor mode . Reads as follows: 
NOP 26: Encodes a NOP (TST Ra, RO) 
Push Ra 26: Pushes entry Ra onto stack 
ORR Ra , Ra , #2 - 11000000 26: Corrupts Ra 
NOP 26: Encodes a NOP (TEQ R9,Ra) 
ORR Ra, Ra, #2 - 10000 26: Corrupts Ra 
NOP 26: Encodes a NOP (TEQ R9,Rb) 

32: Switch to _ 32 mode with IRQs and FIQs off. 
32: Mus t switch interrupts off before switching mode as there can be 
32: an interrupt after the MSR instruction but before the next one. 

MRS Ra , CPSR_all 32 : Read pri vileged 26 bit mode, 
Push 

· ORR 
MSR 
ORR 
MSR 

Ra 
Ra , Ra , #2 _ 11000000 
CPSR_ all' Ra 
Ra, Ra, #2 _ 10000 
CPSR_all, Ra 

32: and push it onto the stack 
32 : Set IRQ and FIQ disable bits 
32: Disable IRQs and FIQs 
32: Set M4 bit (for 32 bit mode) 
32: Change to 32 bit mode 

; Now do a NOP, to let thing s settle down : 
NOP ; e.g. MOV RO , RO 

Now i n a suitable mode to write FIQ handler code to FIQ vector 
(&lC-&FC incl.), whatever the processor configuration . 



40 

Hardware vectors 

Code written should be able to run in both fiq_32 and fiq_26 modes, 

and should end with a SUBS PC,Rl4 , #4 to return normally. 

For example we might write the handler code like this: 

; Assume Rb already points to location from which to copy the handler. 

MOV LR, #FIQVector Get address of FIQ vector 

LDR Ra , [Rb] , #4 Get opcode. 

TEQS Ra, #0 All done? 

STRNE Ra, [LR], #4 No, so copy to FIQ area ... 

BNE %BT40 ... and repeat for next opcode. 

; The above may not be optimal, and is for illustration only. 

Having written FIQ vector, now need to restore the original 

privileged 26 bit mode. 

26: Does not alter processor mode. Reads as follows: 

PULL Ra 26: Pull entry Ra from stack 

NOP 26: Encodes a NOP (TST Ra, RO) 

Ra 32: Pull saved CPSR, and PULL 
MSR CPSR_all, Ra 32: Restore privileged 26 bit mode 

Now back where we started, except Ra and Rb should be treated as corrupted. 

(We must assume neither is preserved, because we don't know the processor 

configuration.) 

Sa-27 



SW/ Calls 

SWI Calls 

Sa-28 

OS_ClaimProcessorVector 
(SWI &69) 

Provides a means for a module to attach itself to one of the processor's vectors 

On entry 

RO= vector and flags: 
Bit 
0 - 7 

8 
9 - 31 

Meaning 
vector number: 
0 'Branch through O' vector 

Undefined instruction 
2 SW! 
3 Prefetch abort 
4 Data abort 
5 Address exception (only on ARM 2 and 3) 
6 IRO 
(all other values reserved for future use) 
0 ~ release, I ~ claim 
reserved, must be 0 

RI =replacement address of exception handler 
R2 =address which should currently be on vector (only needed for release) 

On exit 

RO preserved 
RI =address which has been replaced (only returned on claim) 
R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 



Use 

Hardware vectors 

This SW! provides a means for a module to attach itself to one of the processor's 

vectors. This is a direct attachment; you get no environment except what the 

processor provides. 

As such, claiming and releasing the vectors is somewhat primitive - the claims and 

releases must occur in the right order (the release order being the reverse of claim 

order) . On release if the value in R2 doesn't match what is currently on the vector 

then an error will be returned. This ensures correct chaining of claims and releases. 

Related SWls 

None 

Related vectors 

None 

5a-29 



t .. 

5a-30 



101 Interrupts 

Introduction and Overview 
The new IOMD or ARM 7500 chips used under RISC OS 3.5 and 3.6 use new device 

numbers (see Device numbers on page 1-118). These are: 

0 Printer interrupt from controller 
Unused 

2 Floppy disc Index 
3 VSync Pulse 
4 Power on reset - this should never appear in normal use 

5 IOC TimerO 
6 IOC Timer 1 
7 FIO Downgrade - reserved for the use of the current owner of FIO 

8 Expansion card FIO Downgrade - this should normally be masked off 

9 IDE hard disc interrupt 
10 Serial port interrupt from controller - also mapped to FIO device 4 

11 Network card interrupt 
12 Floppy disc interrupt from controller 
13 Expansion card interrupt 
14 Keyboard serial transmit register empty 
15 Keyboard serial receive register full 
16 OMA channel 0 
17 OMA channel I 
18 OMA channel 2 
19 OMA channel 3 
20 OMA sound channel 0 
21 OMA sound channel I 
22 ARM 7500 mouse port receive register full 
23 ARM 7500 mouse port transmit register empty 

24 ARM 7500 joystick A-to-D completion 
25 ARM 7500 event I 
26 ARM 7500 event 2 

Note that device numbers 22 - 26 are available with an ARM 7500, but not with an 

IOMD. 

Sa-31 



5a-32 



102 Modules 

Introduction and Overview 

Message files for help and command keyword table 

RISC OS 3.6 introduces facilities for using a message file when outputting text 

from the help and command keyword table. This is done using a new fie ld in the 

module header to specify the pathname of the message file, and a new flag in the 
Help and command keyword table's information word, to indicate the use of the 
message file . 

This makes it easier to internationalise modules. 

Changes to existing SWls 

OS_ServiceCall (page 1-250) 

The list of service calls available in the SW! description obviously refers to 
RISC OS 3. I , and so is now out of date. For a complete current list , refer to the 

Numeric index of Service Calls on page Index-19 or the Alphabetic index of Service Calls on 
page lndex-25 . 

5a-33 



Technical details 

Technical details 
This section details changes introduced in RISC OS 3.6. 

Module header format 

The module header (see Module header format on page 1-205) has a new field added: 

Offset 

&2C 

Type 
offset to string 

Contains 
message file pathname (optional) 

The string must be word-aligned and zero-terminated. It gives the pathname of a 

message file used when outputting text from the help and command keyword 

table. 

Help and command keyword table 

The invalid syntax and help fields of the Help and command keyword table (see 

Help and command keyword table on page 1-213) still give an offset to a string; this 

string is either the actual message to output, or a token to be looked up in the 

message file 

Information word 

The meaning of the invalid syntax and help strings is set by a new flag in the 

information word. 

Bit 28 = 1 

The invalid syntax and help strings are tokens, to be looked up in the message file 

given in the module header. 

The message file 

5a-34 

The format of the message file is as follows : 

<token>:<text><null byte><linefeed> 

The <text> is output by OS_PrettyPrint (page 1-518)- but in this case, rather than 

using the kernel dictionary, it uses the dictionary in: 

Resources:Resources.Kernel.Dictionary 



103 Memory management 

Introduction 
This chapter describes changes in memory management made in RISC OS 3.5. 

These changes have been caused by the changes in the underlying hardware used 
in the new architecture. 

Memory management now incorporates the following: 

• Up to 256MB DRAM and 2MB VRAM of memory is allowed. 

• Direct memory access (OMA) control is improved. 

• Any second processor card can claim a chunk of memory. 

• Physical RAM allocation does not have to be contiguous. 

• Page table allocation is added to support the memory management unit 
(MMU) in newer ARM processc;>rs. 

• The logical memory map is expanded due to the 32 bit address space. 

Running 32 bit code 

The new generation of ARM chips used provide 26 bit processor modes (which are 
backwards compatible with the ARM2 and ARM3). and 32 bit processor modes. 

With one exception, RISC OS 3.5 only supports 26 bit processor modes. You must 
not execute code in 32 bit processor modes. If you try to do so, you may get 

unpredictable crashes, especially if you try to run the code in address space over 
64M. 

The exception mentioned above is if you are writing handlers that claim a hardware 

vector. For details , see the chapter entitled Hardware vectors on page 5a- l 9. 

Sa-35 



Overview 

Overview 

Free memory pool 

Sa-36 

In RISC OS 2 and 3 memory management was divided between the kernel and the 
Wimp. 

• The kernel ordered the memory into dynamic areas and an application space. 

• The Wimp managed a free pool and multiple applications mapped in turn into 
the same application space; it was responsible for constructing and managing 
tasks in the desktop. It grew or shrank tasks by mapping a free pool into 
application space above the task, and then moving the boundary between the 
two. 

RISC OS 3.5 supports amounts of memory so large that the free pool may now be 
too large to map into application space. 

• The kernel is therefore now responsible for managing the free pool memory, 
which it keeps in a new dynamic area, known as the free pool (area number 6) . 

• The Wimp's operation is simplified, as it no longer needs to maintain its own 
free pool. 

How the free pool operates 

When you grow or shrink dynamic areas other than the free pool, the free pool is 
used as follows : 

• If an area other than the free pool is grown, memory is taken from the free 
pool, if any exists. The current application is not notified of this . 

If having shrunk the free pool to zero size, there is still not enough memory for 
the growth, the kernel attempts to remove pages from the application space as 
it does under existing versions of RISC OS. 

• If an area other than the free pool is shrunk, the pages recovered are added to 
the free pool. The current application is not consulted. 

The Wimp grows or shrinks tasks by shrinking or growing (respectively) the free 
pool itself: 

• If the free pool is grown, pages are taken from application space to put in it. 
The current application is consulted beforehand. 

• If the free pool is shrunk. the recovered pages are added to application space. 
The current application is consulted beforehand. 

The tasks themselves must still change their memory allocation using current 
RISC OS interfaces (as before). rather than changing the size of the free pool. 



Dynamic areas 

Memory management 

In RISC OS 2 and 3 th~ main kernel interface for memory management was 
OS_ChangeDynamicArea (page 1-377). with which you could resize the predefined 
dynamic areas . This SWI then called other modules , depending on which dynamic 
area was being resized. This left no flexibility, and in particular, there were no 
facilities for creating other dynamic areas. This meant the existing areas were often 
used illicitly by applications which - once they quit - would leave the area badly 
fragmented . 

Other memory related services were not available. For example it was not possible 
to find out what memory was available on the system without knowing a great deal 
about the platform. 

From RISC OS 3. 5 onwards the new SWI OS_DynamicArea (see page 5a-5 l) is 
provided for you to create dynamic areas. get information on them. and delete 
them. This allows you to claim and release your own area of memory that is 
managed by hardware (and so does not suffer from garbage). and is persistent. 
This is far preferable to illicitly using (say) a part of the RMA or sprite area, as has 
been common practice. 

You should still use OS_ChangeDynamicArea just as before to alter the size of 
dynamic areas. 

As all operations on dynamic areas work in physical page numbers you cannot map 
anything other than RAM pages (DRAM and VRAM) into a dynamic area. In 
particular you cannot map in the extension to the existing expansion card bus 
space, known as the EASI space. 

5a-37 



Technical Details 

Technical Details 

Logical memory map 

5a-38 

2.5G 

2G 

64M 

56M 

55M 

54M 

53M 

52M 

48M 

44M 

33M 

31M+64K 

31M+32K 

31M 

30M+8K 

30M 

28M+8K 

28M 

32K 

16K 

0 

More dynamic areas 

Copy of physical space 

Dynamic areas 

ROM 

Reserved for 2nd processor control registers 

Reserved for future expansion 

VIDC20 

Reserved for VIDC1 emulation 

1/0 space 

Reserved for system use 

RMA 

Reserved for fake screen (480K) 

"Nowhere" 

Cursor I system space I sound DMA 

Soft CAM map 

Undefined stack 

System heap 

SVC stack 

Application space 

Scratch space 

System workspace 

1.5G Public5 

512M Private 

2G-64M Public5 

8M Private 

1 M Private 

1M Private 

1M Private 

1M Private 

4M Private4 

4M Private 

11M Public3 

2M-64K Private 

32K Private 

32K Private 

1 M-8K Private 

8K Public2 

2M-8K Private 

8K Public2 

28M-32K Public 

16K Public1 

16K 



Memory management 

Notes about the logical memory map: 

The public1 area may be used by any module that is not 

• used in an !RO routine 

• used if you call something else that might also use it . 

An example client would be FileCore using the scratch space to hold structures 
while working out how to allocate some free space. Another example would be 
the Filer using the scratch space to hold structures for OS_HeapSort. 

2 The public2 areas can be assumed to have their lowest address on a I MB 
boundary (being descending stacks) . An exception will occur if they are 
accessed beyond this point. The exact location of these stacks should not be 
assumed. 

3 The public3 area should not assume the location of the RMA or its maximum 
size. However it will be in the lower 64MB (ie it can execute 26 bit code) . 

4 The private4 area is private, and used for I/O except where device drivers export 
hardware addresses. 

5 The public5 areas can be used by a client to make its own dynamic area. 

Memory terminology 
There are three ways of referring to memory: 

Physical address 

This refers to the address of the memory in the physical address space, as 
presented by the ARM chip to IOMD. 

Logical address 

This refers to the logical address space that the ARM processor core presents to 
the ARM chip memory management unit . This is controlled by the operating 
system. 

Physical page number 

This is an arbitrary number assigned to each page of RAM physically present in the 
computer. 

5a-39 



NewSW/s 

Page blocks 

Several interfaces use page blocks to pass round lists of addresses and/or pages. 

These are tables of 12-byte records (so a page block is 1211 bytes long, where 11 is 

the number of records) . Each record has the following format: 

Offset 

0 

4 

8 

Meaning 

Physical page number 

Logical address 

Physical address 

NewSWls 

The following new SWls have been created. They are defined in full at the end of 
this chapter. 

• OS_DynamicArea (page 5a-5 l) is used for the control , creation and deletion of 

dynamic areas. RO provides a reason code which determines which operation 
is performed. 

• OS_Memory (page 5a-60) performs miscellaneous operations for memory 
management. Again, RO provides a reason code which determines which 
operation is performed. 

Changes to existing SWls 

OS_ChangeDynamicArea (page 1-377) 

5a-40 

You can now alter the space allocation of the free pool (see page 5a-36) by setting RO 
to 6 on entry. 

OS_SetMemMapEntries (page 1-386) 

With the new architecture you must use -1 to indicate that a page should become 

inaccessible. 

OS_ReadDynamicArea (page 1-388) 

In RISC OS 3, if bit 7 of the dynamic area number is set then R2 will be returned 
with the maximum area size. 

This has changed slightly from RISC OS 3.5 onwards. 



Memory management 

If the dynamic area number passed in is greater than or equal to 128 then R2 is 
returned as the maximum size of the dynamic area . Also, if the dynamic area 
number passed in is between 128 and 255 inclusive then the information is 
returned for the area whose number is 128 less than the passed-in value. 

The net result is that for old dynamic area numbers (0 - 5) the functionality is 
unchanged, but the number-space impact of the interface is minimised. 

Also, if RO is -I on entry, it returns the following information on application space: 

RO= base address (&8000) 
RI =current size (ie for current task) 
R2 =maximum size (:5: 28MB-32kB in current implementation) 

OS_Heap O (page 1-370) 

RISC OS 2 and 3 place strong restrictions on the heap: the base of the heap as 
specified in RI must be word-aligned and less than 32Mbytes, and the size of the 
heap must be a multiple of 4 and less than 16Mbytes. 

From RISC OS 3.5 onwards the only restrictions are that the base of the heap must 
be word-aligned, and the size must be a multiple of 4 bytes. 

Wimp_ TransferBlock (page 3-216) 

In earlier operating systems Wimp_ TransferBlock put all used task memory into the 
application space, and then copied the relevant parts over. It cannot do this any 
more, as the total used task memory may not fit into application space. 

The algorithm used by this call has accordingly been changed, and the opportunity 
taken to improve its performance. The call still has the same entry and exit 
conditions. 

Wimp_ClaimFreeMemory (page 3-210) 

Because the Wimp no longer maintains control of the free pool, the call 
Wimp_ClaimFreeMemory has had to be modified; it simulates its previous 
behaviour as well as possible. In general, applications written for older versions of 
RISC OS will work unmodified; but you should be aware that the call may now 
return addresses that use more than 26 bits. This will be a problem if your old 
applications use any of the top 6 bits for their own purposes. 

Using this call in new applications is deprecated. You should instead use 
OS_DynamicArea (page 5a-5 I) to create your own dynamic area. 

Cache_ ... SWls (page 4-186 onwards) 

These ARM3-specific SWis are not implemented from RISC OS 3.5 onwards. 

5a-41 



Changes to existing * Commands 

Changes to existing* Commands 

*Cache (page 4-192) 

•cache now switches both cacheing and write buffering on and off. 

Dynamic area handler routines 

5a-42 

When you create a dynamic area with the new SW! OS_DynamicArea 0 (see 
page 5a-53) you can also specify the address of a dynamic area handler routine, 

which is called when the size of the area is being changed. The routine is called in 

SVC mode; the reason for calling it is given in a reason code held in RO. The section 

below gives the entry and exit conditions of the routine for each valid reason code. 

When called, OS_ChangeDynamicArea is working. It rejects requests to resize 
dynamic areas. You should not use SW!s which resize dynamic areas , for example 
using OS_Module to claim some workspace. File operations should be normally 
avoided, although 1/0 on an existing file is usually safe. 

PreGrow (0) 

Issued just before pages are moved to grow an area 

On entry 

RO= 0 (reason code) 
RI =pointer to a page block, the physical page numbers of which are set to -I ; 

or undefined if bit 8 of the areas flags was clear on creation (see 
page 5a-53) 

R2 =number of entries in page block (i.e. number of pages area is growing by) 

R3 =amount area is growing by, in bytes (i.e. R2 x R5) 
R4 ::: current size of area, in bytes 
R5 =page size, in bytes 
R 12 = pointer to workspace 

On exit 

All registers preserved 



-. 

Memory management 

Use 

This reason code is issued when a call to OS_ChangeDynamicArea results in an 
area growing, before any pages are actually moved. 

You can request that specific pages be used for growing the area by filling in their 
page numbers in the page block. If you do so, you must specify all the pages. The 
first entry in the page block corresponds to the lowest memory address of the 
extension, and the last entry in the page block the highest memory address . 

You can prevent the area changing size by returning an error. RO should point to a 
standard RISC OS error block, or be set to zero for a generic error message to be 
used. You should then return with the V flag set. 

PostGrow (1) 

Issued just after pages are moved to grow an area 

On entry 

RO= I (reason code) 
RI =pointer to a page block, only the physical page numbers of which are defined; 

or undefined if bit 8 of the areas flags was clear on creation (see 
page Sa-S3) 

R2 =number of entries in page block (i.e. number of pages area grew by) 
R3 =amount area grew by, in bytes (i.e. R2 x RS) 
R4 = new size of area, in bytes 
RS =page size, in bytes 
RI 2 =pointer to workspace 

On exit 

All registers preserved 

Use 

This reason code is issued when a call to OS_ChangeDynamicArea results in an 
area growing. It is called after the PreGrow reason code has been issued 
successfully and the memory pages have been moved. It provides the handler with 
a list of which physical pages have been moved into the area. 

Sa-43 



Dynamic area handler routines 

Sa-44 

Preshrink (2) 

Issued just before pages are moved to shrink an area 

On entry 

RO= 2 (reason code) 
R3 = amount area is shrinking by, in bytes 
R4 = current size of area, in bytes 
R5 =page size, in bytes 
R 12 = pointer to workspace 

On exit 

R3 =amount area can shrink by, in bytes (must be~ R3 on entry) 
All other registers preserved 

Use 

This reason code is issued when a call to OS_ChangeDynamicArea results in an 

area shrinking, before any pages are moved. You can limit the amount of memory 

moved out of the area. If the permitted shrinkage you return is a non-page 

multiple, it will be rounded down to a page multiple. 

You can prevent the area changing size by returning an error. RO should point to a 

null terminated error message, or be set to zero for a generic error message to be 

used. R3 should be zero, to show that no shrinkage is possible. You should then 

return with the V flag set. 

PostShrink (3) 

Issued just after pages are moved to shrink an area 

On entry 

RO= 3 (reason code) 
R3 = amount area shrunk by 
R4 = new size of area, in bytes 
R5 =page size, in bytes 
R 12 = pointer to workspace 

On exit 

All registers preserved 



Memory management 

Use 

This reason code is issued when a call to OS_ChangeOynamicArea results in an 
area shrinking. It is called after the Preshrink reason code has been issued 
successfully even if the memory pages cannot be moved. 

Sequence of actions when SWI OS_ChangeDynamicArea is called 

The system stack is used for the page block passed to the PreGrow routine, where 
required. As a consequence there is a limit to the amount that an area can be 
grown by at one time. To get round this problem an area grow request of a large 
amount will be performed in several steps. If one of these steps fails then the grow 
will terminate early with the area grown by however much was achieved, but not by 
the full amount requested. 

Two new service calls are used; Service_PagesUnsafe (page 5a-46) and 
Service_PagesSafe (page 5a-4 7) . These are issued around page swapping to inform 
any OMA subsystems (eg !OMO OMA or second processor) that some pages are 
being swapped around. 

Sa-45 



Service calls 

Service calls 

5a-46 

Service_PagesUnsafe 
(Service Call &SE) 

Pages specified are about to be swapped for different pages 

On entry 

RI = &8E (reason code) 
R2 = page block filled in by the PreGrow routine, with the two address fields also 

filled in 
R3 = number of pages in page block 

On exit 

Use 

All registers preserved 

This service call informs recipients that the pages specified are about to be 

swapped for different pages. Direct memory access activities involving the 

specified pages should be suspended until Service_PagesSafe (page 5a-47) has 

been received indicating the pages are safe. 

You must not claim this service call. 

This service call is only issued from RISC OS 3.5 onwards. 



Memory management 

Service_PagesSafe 
{Service Call &8 F) 

Pages specified have been swapped for different pages 

On entry 

RI = &8F (reason code) 
R2 = number of entries in each page block 
R3 = pointer to page block before move 
R4 = pointer to page block after move 

On exit 

Use 

All registers preserved 

This service call informs recipients that the pages specified have been swapped for 
different pages and what those different pages are. 

The logical addresses in both page blocks will match . The 'before' page block will 
contain the physical page numbers and physical addresses of the pages which 
were swapped, and the 'after' block the page numbers and physical addresses of 
the different pages which replaced them. 

You must not claim this service call. 

This service call is only issued from RISC OS 3.5 onwards. 

5a-47 



Service_DynamicAreaCreate (Service Call &90) 

5a-48 

Service_DynamicAreaCreate 
(Service Call &90) 

Dynamic area has just been successfully created 

On entry 

RI = &90 (reason code) 
R2 =area number of dynamic area just created 

On exit 

Use 

All registers preserved 

This service call is issued just after the successful creation of a dynamic area . 

This service call keeps the rest of the system informed about changes to the 
dynamic areas. It is used by the Task Manager, although other modules could make 

use of it . 

You must not claim this service call. 

This service call is only issued from RISC OS 3.5 onwards. 



Memory management 

Service_DynamicAreaRemove 
(Service Call &91 ) 

Dynamic area is about to be removed 

On entry 

RI = &91 (reason code) 
R2 =area number of dynamic area about to be removed 

On exit 

Use 

All registers preserved 

This service call is issued just before the removal of a dynamic area, after the area 
has been successfully reduced to zero size, but before it has been removed 
completely. 

This service call keeps the rest of the system informed about changes to the 
dynamic areas. It is used by the Task Manager, although other modules could make 
use of it. 

You must not claim this service call. 

This service call is only issued from RISC OS 3.5 onwards. 

Sa-49 



Service_DynamicAreaRenumber (Service Call &92) 

5a-50 

Service_DynamicAreaRenumber 
{Service Call &92) 

Dynamic area is being renumbered 

On entry 

RI = &92 (reason code) 
R2 = old area number 
R3 = new area number 

On exit 

Use 

All registers preserved 

This service call is issued when a dynamic area is being renumbered. 

This service call keeps the rest of the system informed about changes to the 

dynamic areas . It is used by the Task Manager, although other modules could make 

use of it. 

You must not claim this service call. 

This service call is only issued from RISC OS 3.5 onwards. 



Memory management 

SWI calls 
OS_DynamicArea 

(SWI &66) 

Performs operations on dynamic areas 

On entry 

RO = reason code 
Other registers depend upon the reason code 

On exit 

RO preserved 
Other registers depend upon the reason code 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This SWI provides a number of calls to perform operations on dynamic areas. 

The particular action of OS_DynamicArea is given by the reason code in RO as 
follows : 

RO Action 

0 Creates a new dynamic area 

I Removes a previously created dynamic area 

2 Returns information on a dynamic area 

3 Enumerates dynamic areas 

4 Renumbers dynamic areas 

This call is only available from RISC OS 3.5 onwards. 

Page 

5a-53 
5a-56 
5a-57 

5a-58 

5a-59 

5a-51 



OS_DynamicArea (SW/ &66) 

Related SWls 

OS_ChangeDynamicArea (page 1-377) 

Related vectors 

None 

5a-52 



Creates a new dynamic area 

Memory management 

OS_DynamicArea 0 
{SWI &66) 

On entry 

RO= 0 (reason code) 
RI= -I (or new area number not in range 128 - 255; this is reserved for Acorn use) 
R2 = initial size of area, in bytes 
R3 =-I (or base logical address of area; this is reserved for Acorn use) 
R4 =area flags (see below) 
R5 =maximum size of area, in bytes (-I:::::} total RAM size of the machine) 
R6 =pointer to dynamic area handler routine (see page 5a-42). or 0 if no routine 
R7 =pointer to workspace, passed in RI 2 on entry to dynamic area handler routine; 

or - I for RISC OS to instead pass base address of area; or 0 if R6 = 0 
R8 =pointer to null terminated string describing dynamic area (e.g. 'Font cache') 

On exit 

Use 

RO preserved 
RI =allocated area number 
R2 preserved 
R3 = specified or allocated base address of area 
R4 preserved 
R5 = specified or allocated maximum size of area 
R6 - RB preserved 

This call creates a new dynamic area. 

The area is created initially with size zero (no pages assigned to it). and is then 
grown to the size specified in R2 , which involves calling the area handler (if any) 
pointed to by R6. The area's maximum size is set to the lesser of the amount given 
in R5 on entry and the total RAM size of the machine; or to the total RAM size if R5 
was - I on entry. 

RISC OS allocates a free area of logical address space which is big enough for the 
dynamic area's maximum size. The base logical address is the lowest logical 
address used by that area . The area grows by adding pages at the high address end. 

Sa-53 



OS_DynamicArea 0 (SW/ &66) 

5a-54 

RISC OS allocates an area number itself, which is greater than or equal to 256. This 
means that a call to OS_ReadDynamicArea will always return the maximum area 
size in R2 for these areas. 

The area flags passed in R4 are as follows : 

Bit(s) Meaning 

0 - 3 access privileges to be given to each page in the area 
(same format as for OS_Read/SetMemMapEntries) 

4 0 => area is bufferable 
I => area is not bufferable 

5 0 => area is cacheable 
I =>area is not cacheable 

6 0 => area is singly mapped 
I =>area is doubly mapped (reserved for Acorn use) 

7 0 => area size may be dragged by the user in Task Manager window 
(has red bar) 

I => area size may not be dragged by the user in Task Manager 
window (has green bar) 

8 O => area does not require specific physical pages 
(ie RI is undefined on entry to the PreGrow and PostGrow 
handlers) 

I => area may require specific physical pages 
(ie RI points at a page block on entry to the PreGrow and 
PostGrow handlers) 

9 - 31 reserved (must be zero) 

The description string passed in R8 is used by the TaskManager in its display. 

Once the area has been created, Service_DynamicAreaCreate is issued to inform 
the rest of the system about this change. 

If the create dynamic area call returns an error for any reason, it may be assumed 
that the new area has not been created. 

Notes for application writers 

Applications should create only singly-mapped areas, and request that RISC OS 
allocate area numbers and logical addresses. This will prevent clashes of area 
numbers or addresses. For details of other usage, which has been provided largely 
for internal backwards compatibility, see the section entitled System use below. 



Memory management 

Dynamic area handler routine 

On entry, R6 points to the area handler routine which gets called with various 

reason codes when an area is grown or shrunk, and R7 specifies the workspace 

pointer that is passed to it in RI 2. If zero is passed in R6, then no routine will be 

call~d. and any shrink or grow will be allowed. 

Details of the entry and exit conditions for this routine are given in the section 

entitled Dynamic area handler routines on page 5a-42 

Errors 

An error will be returned if: 

• the given area number clashes with an existing area. 

• the given base address is not on a memory page boundary. 

• the logical address space occupied by the area at maximum size would 

intersect with any other area at maximum size. 

• there is not enough contiguous logical address space to create the area. 

• there is not enough memory in the free pool to allocate level 2 page tables to 

cover the area at maximum size. 

• there is not enough memory to grow the area to the initial size requested. 

System use 

The following facilities are intended for internal system use only: 

• The ability to create areas with specific area numbers. 

• The ability to create areas at specific logical addresses. 

On entry, R3 holds the base address of the area, which must be aligned on a 

memory page boundary (to read the page size use OS_ReadMemMaplnfo). 

With this usage, RISC OS does not allocate an area of logical address space for 

the dynamic area. 

• The ability to create doubly-mapped areas . 

For doubly mapped areas the base logical address is the (fixed) boundary 

between the two mappings: the first mapping ends at R3 -1 , and the second 

starts at R3 . When one of these areas grows the pages in the first copy move 

down to accommodate the new pages at the end, and the second copy simply 

grows at the end. 

5a-55 



OS_DynamicArea 1 (SW/ &66) 

Sa-56 

Removes a previously created dynamic area 

OS_DynamicArea 1 
{SWI &66) 

On entry 

RO= I (reason code) 
RI =area number 

On exit 

Use 

All registers preserved 

This call removes a previously created dynamic area. 

Before the area is removed, RISC OS attempts to shrink it to zero size. This is done 
using OS_ChangeDynamicArea. If OS_ChangeDynamicArea returns an error, then 
the area will be grown back to its original size using OS_ChangeDynamicArea, and 
this call will return with an error. If OS_ChangeDynamicArea successfully reduced 
the area to zero size, then it will be removed. 

Once the area has been removed Service_DynamicAreaRemove (page 5a-49) is 
issued to inform the rest of the system about this change. 

An error is returned if the area was not removed for any reason. 



·:i. 

Returns information on a dynamic area 

Memory management 

OS_DynamicArea 2 
{SWI &66) 

On entry 

RO= 2 (reason code) 
RI =area number 

On exit 

Use 

RO. RI preserved 
R2 = current size of area. in bytes 
R3 = base logical address of area 
R4 = area flags 
R5 = maximum size of area, in bytes 
R6 =pointer to dynamic area handler routine (see page 5a-42). or 0 if no routine 
R7 =pointer to workspace, passed in RI 2 on entry to dynamic area handler routine 
R8 =pointer to null terminated string describing dynamic area (e.g. 'Font cache') 

This call returns information on a dynamic area. 

For doubly-mapped areas. R3 on exit from this call returns the address of the 
boundary between the first and second copies of the area, whereas 
OS_ReadDynamicArea returns the start address of the first copy (for backwards 
compatibility) . 

Sa-57 



OS_DynamicArea 3 (SW/ &66) 

5a-58 

Enumerates dynamic areas 

OS_DynamicArea 3 
(SWI &66) 

On entry 

RO= 3 (reason code) 
RI = - I to start enumeration , or area number 

On exit 

Use 

RI =next area number, or-I if no further areas 

This call enumerates dynamic areas. 

This allows an application to find out what dynamic areas are defined. -I is passed 
on entry to start the enumeration; the call is then repeated until -I is returned on 
exit , which indicates that the enumeration has finished. 



Renumbers dynamic areas 

Memory management 

OS_DynamicArea 4 
(SWI &66) 

On entry 

RO= 4 (reason code) 
RI =old area number 
R2 = new area number 

On exit 

Use 

RO - R2 preserved 

This call renumbers dynamic areas , and is intended for system use only. 

Once the area has been renumbered Service_DynamicAreaRenumber (page 5a-50) 
is issued to inform the rest of the system about this change. 

An error is returned if the area specified by the old area number does not exist , or 
if the new number clashes with an existing area. 

Sa-59 



OS_Memory (SW/ &68) 

5a-60 

OS_Memory 
(SWI &68) 

Performs miscellaneous operations for memory management 

On entry 

RO = reason code (bits 0 - 7) and flags (bits 8 - 31 , reason code specific) 
Other registers depend upon the reason code 

On exit 

RO preserved 
Other registers depend upon the reason code 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This SW! performs miscellaneous operations for memory management. 

The particular action of OS_Memory is given by the reason code in bits 0 - 7 of RO 
as follows : 

RO Action page 

0 General page block operations 5a-62 

I - 5 Reserved for system use 5a-64 

6 Reads the size of the physical memory arrangement table 5a-65 

7 Reads the physical memory arrangement table 5a-66 

8 Reads the amount of a specified sort of memory available 5a-68 
in the computer 

9 Reads controller presence and base address 5a-69 



This call is only available from RISC OS 3.5 onwards. 

Related SWls 

None 

Related vectors 

None 

Memory management 

Sa-61 



OS_Memory 0 (SW/ &68) 

Sa-62 

General page block operations 

OS_Memory 0 
(SWI &68) 

On entry 

RO = reason code and flags: 
Bits Meaning 
0 - 7 0 (reason code) 
8 physical page number provided when set 
9 logical address provided when set 
I 0 physical address provided when set 
11 physical page number will be filled in when set (if bit 8 also clear) 
12 logical address will be filled in when set (if bit 9 also clear) 
13 physical address will be filled in when set (if bit I 0 also clear) 
14 - 15 cacheability control: 

0 ==> no change 
I ==> no change 
2 ==> disable cacheing on all specified pages 
3 ==> enable cacheing on all specified pages 

16- 31 reserved (must be clear) 
RI =pointer to page block (see page 5a-40) 
R2 =number of entries in page block 

On exit 

Use 

RO - R2 preserved 

This call converts between the different memory spaces used to specify addresses 
in a page block: i.e. logical address. physical address. and physical page number. It 
can also alter the cacheability of pages. The addresses must be in RAM. but need 
not be page-aligned. You can do address conversions and control the cacheability 
on a per-page basis. You need not do any conversion when changing cacheability 
(i.e. bits 11 - 13 may be clear) . 

The page block is scanned and the specified operations applied to it. If any page is 
made physically uncacheable, then the cache will be flushed before the SW! exits. 
If any page cannot be converted or is non-existent then an error will be returned 
and the cacheability unaffected. 



Memory management 

Cacheability is accumulated for each page. For example, if there are five clients 
which need cacheing turned off on a page, then each of them must turn cacheing 
back on individually for that page actually to become cached again. 

Where an ambiguity may occur, for example in doubly-mapped areas such as the 
screen , one of the possible results will be chosen and filled in. 

Sa-63 



OS_Memory 1 - 5 (SW/ &68) 

5a-64 

OS_Memory 1 - 5 
(SWI &68) 

These reason codes are for system use only; you must not use them in your own 

code. 



Memory management 

OS_Memory 6 
(SWI &68) 

Reads the size of the physical memory arrangement table 

On entry 

RO= 6 (reason code); all flags are reserved, so bits 8 - 31 must be clear 

On exit 

Use 

RO preserved 
RI =table size (in bytes) 
R2 =page size (in bytes) 

This call reads the size of the physical memory arrangement table, as returned by 
OS_Memory 7. 

Sa-65 



OS_Memory 7 (SW/ &68) 

5a-66 

Reads the physical memory arrangement table 

OS_Memory 7 
(SWI &68) 

On entry 

RO= 7 (reason code); all flags are reserved, so bits 8- 31 must be clear 

RI =pointer to table to be filled in 

On exit 

Use 

RO, RI preserved 

This call reads the physical memory arrangement table into the block of memory 

pointed to by RI . (You can find the required size of the block by calling 

OS_Memory 6.) 

Each page of physical memory space has one entry in the table. Due to the large 

number of pages the table is packed down to only 4 bits per page. In each byte of 

the table the low order 4 bits correspond to the page before the high order 4 bits, 

i.e. the table is little-endian . This is the meaning of a nibble in the table: 

Bit Meaning 
O - 2 type of memory: 

0 not present 
DRAM 

2 VRAM 
3 ROM 
4 1/0 

5 - 7 undefined 
3 0 ~page available for allocation 

I ~ page not available for allocation 

The page availability is based on whether it is RAM, and whether it has already 

been allocated in such a way that it can't be replaced with a different RAM page eg 

the OS's page tables or screen memory. 

If an area has particular requirements on the physical addresses used by it ( eg if it 

needs contiguous physical memory for its area) we recommend that you issue this 

call inside the area's PreGrow handler, and then choose which pages to ask for on 



Memory management 

the basis of this information. This is preferable to issuing the call before you create 
the area, because the page availability may change during the process of creating 
the area. 

Sa-67 



OS_Memory 8 (SW/ &68) . 

5a-68 

OS_Memory 8 
{SWI &68) 

Reads the amount of a specified sort of memory available in the computer 

On entry 

RO = reason code and flags : 
Bits Meaning 
0 - 7 8 (reason code) 
8 - 11 type of memory: 

I::::::> DRAM 
2::::::>VRAM 
3::::::>ROM 
4==>1/0 

12 - 31 reserved (must be clear) 

On exit 

Use 

RO preserved 
RI = number of pages of specified sort of memory 

R2 =page size (in bytes) 

This call reads the amount of a specified sort of memory available in the computer. 

For 1/0 memory, all 1/0 memory is included: ie 1/0 space, VIDC space, and EASI 

space. 



Reads controller presence and base address 

Memory management 

OS_Memory 9 
(SWI &68) 

On entry 

RO= 9 (reason code); all flags are reserved, so bits 8- 31 must be clear 
RI =controller ID: 

Bit Meaning 
0 - 7 controller sequence number 
8 - 31 controller type: 

0 ==> EASI card access speed control (for internal use only) 
I ==> EASI space (for internal use only) 
2 =>VIDCI 
3 ==> VIDC20 

On exit 

Use 

RO preserved 
RI = controller base address, or 0 if not present. 

This call checks for the presence of a given controller, and returns its base address 
if it is fitted . Controllers are identified by type and sequence number so that a 
machine could be constructed with, say, more than one IDE controller in it. 

For EASI space this call gives the base address of expansion card n, where n is the 
sequence number given. This reason code is provided for internal use only and is 
documented here for completeness' sake. In particular you must use the 
Expansion Card Manager to read this information and to control your expansion 
card's EASI space access speed. 

5a-69 



OS_MMUControl (SW/ &68) 

Sa-70 

Modifies t:he ARM MMU control register 

OS_MMUControl 
(SWI &68) 

On entry 

RO= reason code and flags (must be zero) 

RI= XOR mask 
R2 =AND mask 

On exit 

RI =old value of control register 
R2 = new value of control register 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call modifies the ARM MMU control register. The new value of the register is: 

((old value AND R2) XOR RI) 

The old value of the register is returned in RI . and the new value in R2. If the call 

results in the C (Cache enable) bit being changed, the cache is flushed. 

This call is intended for internal system use only. Users wishing to enable or 

disable the cache should use the *Cache command instead. 

This call is only available from RISC OS 3.5 onwards. 



Related SWls 

None 

Related vectors 

None 

Memory management 

Sa-71 



Sa-72 



104 CMOS RAM allocation 

Non-volatile memory 

240 bytes of non-volatile memory are provided. The majority of these bytes are 
reserved for, or used by Acorn. Some bytes are reserved for each expansion card; 
before using these, see the section entitled CMOS RAM on page 4-132. There are 
also bytes reserved for the user; you must not use these in any distributed product. 
Finally, there are bytes reserved for applications; for an allocation, contact Acorn in 
writing, but see first the section entitled CMOS RAM bytes on page 4-547. 

CMOS usage is subject to change in different versions of RISC OS, and your 
application should not assume the location of any particular information. 

OS_Byte 161 (page 1-363) allows you to read the CMOS memory directly, while 
OS_Byte 162 (page 1-365) can write to it. 

RISC OS 3.6 allocation 
The full usage of CMOS RAM in RISC OS 3.6 is given below. Locations marked 'f' 
were reserved for Acorn use in RISC OS 3.5, unless noted otherwise. Locations 
marked 'f were not used, or were used for a different purpose under RISC OS 3. I . 
For details of CMOS RAM usage in RISC OS 3.1 and RISC OS 2, see page 1-355. 

Location 

0 

2 

3 
4 

5 
6-7 
8 

9f 
10 

Function 

Econet station number (not directly configurable) 
Econet file server station id (0 ~name configured) 
Econet file server net number (or first character of name - rest in 
bytes 158 - 172) 
Econet printer server station id (0 ~ name configured) 
Econ et printer server net number (or first character of name - rest 
in bytes 153 - 157) 
Default filing system number 
*Unplug for ROM modules: 16 bits for up to 16 modules 
Reserved for Acorn use 
*Unplug for ROM modules: 8 bits for up to 8 modules 
Screen info: 

reserved for Acorn use 
TV interlace (first *TV parameter) 

Bits 0 - 3 
Bit 4 
Bits 5 - 7 TV vertical adjust (signed three-bit number) 

Sa-73 



RISC OS 3.6 a/location 

Sa-74 

11 Misc configuration: 

Bits 0 - 2 * ADFS drive 
Bits 3 - 5 I ~ ShCaps, 2 ~ NoCaps, 4 ~Caps 

Bit 6 0 ~ Dir, I ~ NoDir 

Bit 7 reserved for Acorn use 

12 Keyboard auto-repeat delay 

13 Keyboard auto-repeat rate 

14 Printer ignore character 

15 Printer information: 
Bit 0 reserved for Acorn use 

Bit I 0 ~ Ignore, I ~ Nolgnore 

Bits 2 - 4 serial baud rate (0 ~ 75,. .. ,7 ~ 19200) 

Bits 5 - 7 printer type 

16 Miscellaneous flags : 

17 

18 - 19 
20 - 21 

22 
23 
24 

25 
26 
27 

NetFiler: 

Bit 0 reserved for Acorn use 

Bit I O ~ Quiet, I ~ Loud 

Bit 2 
Bit 3 
Bit 4 
Bits 5 - 7 

Bit 0 

Bit I 

Bits 2 - 3 

reserved for Acorn use 

0 ~Scroll , I ~ NoScroll 

0 ~ NoBoot, I ~Boot 

serial data format (0 . .. 7) 

FS list sorting mode: 0 ~ by name, I ~ by 

number 
library type: 0 ~ default library returned by 

file server, I ~ $.ArthurLib 

FS list display mode: 0 ~ large icons, 

I ~ small icons, 2 ~ full info, 3 reserved 

Bits 4 - 7 reserved for Acorn use 

*Unplug for ROM modules: 16 bits for up to 16 modules 

*Unplug for extension ROM modules: 16 bits for up to 16 

modules 
WimpDoubleClickMove limit 

WimpAutoMenuDelay time 

Territory 
Printer buffer size 

IDE disc auto-spindown delay 

Wimp menu drag delay 



CMOS RAM allocation 

28 FileSwitch options: 
Bit 0 truncate names: 0 => give error, 

Bit I 

Bit 2 
Bit 3 

Bit4 U 

Bit 5 
Bits 6 - 7 

I =>truncate no error 
DragASprite and DragAnObject: 
0 =>don't use, I =>use 
interactive file copy: 0 => use, I =>don't use 
Wimp's use of dither patterns on desktop: 

0 => don't use, I => use 
type of click on toggle size icon that doesn't 
obscure icon bar: 0 => click, I => Shift-dick 
reserved for Acorn use 
state of last shutdown: 0 =>don't care, 
I =>failed, 2 =>due to power loss, 
3 => undefined 

29 * Mouse type: 

30. 45 
46. 59 
60 - 79 t 
80 
81 
82 - 105 
106 

0 => standard quadrature mouse, 
I => Microsoft compatible serial mouse, 
2 => Mouse Systems Corporation 
compatible serial mouse, 
3 => PS/2 compatible serial mouse t . 
4 - 255 reserved for Acorn use 

Reserved for the user 
Reserved for applications 
Reserved for expansion card use 
Freeway net number in Acorn Access, or reserved for RISC iX 

&OF for Access to prevent RISC iX booting, or reserved for RISC iX 

ShareFS disc names in Acorn Access. or reserved for RISC iX 

ADFSFiler disc sharing for Acorn Access: 
Bit 0 share drive 4 if set 
Bit I protect drive 4 if set 
Bit 2 share drive 5 if set 
Bit 3 protect drive 5 if set 
Bit 4 share drive 6 if set 
Bit 5 protect drive 6 if set 
Bit 6 share drive 7 if set 
Bit 7 protect drive 7 if set 

Or reserved for RISC iX 
I 07 - I 11 Reserved for RISC iX 
112 - 127 Reserved for expansion card use 
128 - 129 Current year 
130 - 131 t *Unplug for ROM modules: 16 bits for up to 16 modules 

5a·75 



RISC OS 3.6 allocation 

5a-76 

132 DumpFormat, 16 bit sound control and quality: 
Bits 0 - 1 control character print control : 

0 :=:} print in GSTrans format , 
1 :=:} print as a dot, 
2 :=:}print decimal inside angle brackets, 

3 :=:} print hex inside angle brackets 

Bit 2 treat top-bit-set characters as valid if set 

Bit 3 AND character with &7F in *Dump 

Bit 4 treat TAB as print 8 spaces 
Bits 5 - 6 16 bit sound control: 

0 :=:}standard µ-law sound (ie no 16 bit 

sound output) 
1 :=:} DAC clock is slave, l l .2896MHz external 

clock, standard VIDC20 or 44. lkHzx4/(4 . . . 45) 

rates (as on ESP card) 
2 :=:} DAC clock is slave, no external clock, 

standard VIDC20 rates only 
3 :=:} DAC clock is master, external clock, 
suitable sound clock driver installed 

Bit 7 16 bit sound quality: 
0 :=:} use specified sample rate 
1 :=:} perform sample interpolation to keep 

sample rate over 25kHz 

133 Sync, monitor type , some mode information: 
Bits 0, 7 0 :=:}vertical sync, 1 :=:} composite sync, 

3 :=:} auto sync) 
Bit I t 0 :=:} enable LoadModeFile in ! Boot, 

1 :=:}disable LoadModeFile in !Boot 

Bits 2 - 6 monitor type: 0 :=:} 0, 1 :=:} 1, . . . , 31 :=:} auto 

134 FontSize in units of 4K 
135 Number of ADFS drives: 

Bits 0 - 2 floppy disc drives 
Bits 3 - 5 ~ no longer used (was ST506) - reserved for 

Acorn use 
Bits 6 - 7 IDE disc drives 

136 ADFS floppy d isc drive step rates: 
Bits 0 - 1 floppy disc drive 0 
Bits 2 - 3 floppy disc drive 1 
Bits 4 - 5 floppy disc drive 2 
Bits 6 - 7 floppy disc drive 3 

137 ADFSbuffers 



CMOS RAM allocation 

138 CDFS number of discs and buffer size: 
Bits 0 - 4 number of CD-ROM drives 
Bits 5 - 7 buffer size: 0 => OK, I => 8K, 2 => I 6K, 

3 => 32K, 4 => 64K, 5 => l 28K, 6 => 256K, 
7=>512K 

139 Timezone in l 5min offsets from UTC, stored as signed 2's 
complement number (RISC OS 3 version 3.10 onwards) 

I 40 Desktop features: 
Bit 0 3D: 0 => 2D look, I => 3D look 
Bits I - 4 * desktop font setting: 

0 => use Wimp$Font . .. variables, 
I => use System font 
2 - 15 => use font from ResourceFS 
reserved for Acorn use Bits 5 - 6 

Bit 7 * window background tiling: 0 => use tile_!, 
I => not tiled (i.e. grey I) 

141 - 142 f* *Unplug for ROM modules: 16 bits for up to 16 modules 
143 Screen size, in pages 
144 RAM disc size, in pages 
145 System heap size to add after initialisation, in pages 
146 RMA size to add after initialisation, in pages 
147 Sprite size, in pages 
148 SoundDefault parameters: 

Bits 0 - 3 channel 0 default voice 
Bits 4- 6 loudness (0- 7 => &01 , &13, &25, &37, &49, 

&5B, &6D, &7F) 
Bit 7 loudspeaker enable, if hardware supports it 

149 - 152 Allocated to BASIC Editor 
153 - 157 Printer server name characters 2 - 6 (character I at location 4) 
158 - I 72 File server name characters 2 - 16 (character I at location 2) 
173 - 176 *Unplug for ROM modules: 32 bits for up to 32 modules 
177 - 184 *Unplug for expansion card modules: 8 x 8 bits for up to 8 

modules per card 
185 Configured language 
186 Configured country 
187 *Unplug for network card modules: 8 bits for up to 8 modules 

Sa-77 



RISC OS 3.6 allocation 

... 

188 Miscellaneous: 
Bits 0 • 1 ROMFS Opt 4 state 
Bit 2 cache icon enable state: 0 => no cache icon 

state, 1 =>caches icon 

Bits 3 - 5 screen blanker time: 0 =>off, 1 => 30s, 

2 => 1 min, 3 => 2mins, 4 => 5mins , 

5 => 1 Omins, 6 => l 5mins, 7 => 30mins 

Bit 6 screen blanker/Wrch interaction: 0 => ignore 

Wrch, 1 => Wrch unblanks screen 

Bit 7 hardware test disable: 0 => full tests, 

1 => disable long tests at power-up 

189- 192 Winchester size 
193 Protection state for immediate Econet commands: 

Bit 0 Peek 
Bit 1 Poke 
Bit 2 JSR 
Bit 3 User RPC 
Bit 4 OS RPC 
Bit 5 Halt 
Bit 6 GetRegs 
Bit 7 reserved for Acom use 

194 Mouse multiplier 

195 Miscellaneous: 
Bit 0 AUN BootNet: 0 =>disabled, 1 => enabled 

Bit 1 AUN dynamic station numbering: 

0 => disabled, 1 =>enabled 

Bit 2 type of last reset: 0 => ordinary, 
1 => CMOS reset 

Bit 3 power saving: 0 => disabled, 1 =>enabled 

Bit 4 mode and wimp mode: 0 => use byte 196, 

1 =>auto 
Bit 5 cache enable for ARM: 0 => enabled, 

1 => disabled 
Bit 6 broadcast loader enable: 0 => enabled, 

I => disabled 
Bit 7 colour hourglass enable: 0 =>disabled, 

1 =>enabled 

196 Mode and Wimp mode 
197 WimpFlags 

Sa-78 



198 

199 
200 - 205 
206 - 207 
208 

209 
210 
211 - 214 
215-216 
217-219 
220 

Desktop state: 
Bits 0, 1 

Bits 2, 3 

CMOS RAM allocation 

Filer display mode: 0 =:} large icons , 
1 =:} small icons, 2 =:}full info, 3 reserved 
Filer sorting mode: 0 =:}sort by name, 
I =:}sort by type, 2 =:} sort by size, 
3 =:} sort by date 

Bit 4 force option ( 1 =:}force) 
Bit 5 confirm option ( 1 =:}confirm) 
Bit 6 verbose option ( 1 =:}verbose) 
Bit 7 newer option ( 1 =:} newer) 

ADFS directory cache size 
FontMax, FontMax 1 - FontMax5 
Reserved for Acorn use 
SCSIFS flags 

Bits 0 - 2 
Bits 3 - 5 

number of discs (0 - 4) 
default drive - 4 

Bits 6 - 7 reserved 
SCSlFS file cache buffers (must be 0) 
SCSIFS directory cache size 
SCSIFS disc sizes (their maps' sizes I 256) 
Reserved for Acorn use 
*Unplug for ROM modules: 24 bits for up to 24 modules 
Alarm and time byte 

Bits 0 - 2 format state: 
0 =:} illegal (!Alarm checks for first run). 
1 =:}analogue with seconds, · 
2 =:}analogue without seconds, 
3 =:} HH:MM, 
4 =:} format is '%24:%mi:%se', 
5 =:} format is 

'%zl2:%mi:%se %am %zd %zmn %yr', 
6 & 7 reserved 

Bit 3 deletion: 0 =:} do not confirm , 1 =:} confirm 
Bit 4 auto save: 0 =:} no auto save, 1 =:} auto save 
Bit 5 5 day weeks: 0 =:} disabled, 1 =:} enabled 
Bit 6 alarm noise: 0 =:} not silent, 1 =:} silent 
Bit 7 Daylight Saving Time: 0 =:} normal time, 

1 =:} Daylight Saving Time (DST) 
221 WimpDragDelay time 
222 WimpDragMove limit 
223 WimpDoubleClickDelay time 
224 - 229 Local print server's name, stored by printer server software, 

or reserved for RISC iX 

5a-79 



RISC OS 3.6 a/location 

Sa-80 

230 t 

231 f* 
232 * 
233 - 238 * 
239 

LCD panel brightness and contrast , or reserved for RISC iX 

(was solely reserved for RISC iX under RISC OS 3.5) 

*Unplug for ROM modules: 8 bits for up to 8 modules 

Reserved for Acorn use 

FSLock 
CMOS RAM checksum 

The checksum must be correct for some of the above locations to have effect. See 

the documentation of OS_Byte 162 on page 1-365 for more details. 



105 OMA 

Introduction and Overview 

OMA manager 

From RISC OS 3.5 onwards, support for OMA (direct memory access) is provided by 
the new DMAManager module. However, some computers' hardware will not 
support OMA, in which case the OMA manager becomes dormant. 

The OMA (Direct Memory Access) is controlled by four OMA channels ; these 
service a potentially large number of devices. 

The OMA manager: 

• Performs the arbitration and switching between devices (with help from the 
device drivers). 

• Provides a general purpose software interface to the OMA channels' available 
hardware interface. 

• Isolates software from hardware so that changes to the hardware do not affect 
OMA clients - just the DMA manager. 

• Handles memory mapping and memory management, so that any OMA clients 
are not concerned with logical to physical addresses or if a page is remapped 
during a OMA operation. 

A OMA client registers itself with the OMA manager as the owner of a logical 
device. It then requests OMA transfers as and when necessary. 

The OMA manager processes the requests on a first-come-first-served basis; it 
does not impose any priority on logical devices. It attempts to start the transfer as 
soon as possible. If the required OMA channel is not free, the request is stored in a 
FIFO queue. The request then starts when it is at the head of the queue and the 
required OMA channel is free . 

The OMA manager provides a set of callback routines to keep the client up-to-date 
on the state of its operations ; this is because of the possible time-lag between 
requesting and starting an operation. 

DMA requests can be suspended and resumed, examined and terminated. 

Sa-81 



Technical details 

Technical details 

Logical and physical OMA channels 

5a-82 

The DMA manager controls the following physical DMA channels provided by 

IOMD: 

0 General purpose channel 0 
I General purpose channel I 
2 General purpose channel 2 
3 General purpose channel 3 

The four general purpose physical channels must be shared by several devices via 

logical channels. The following logical channels are supported: 

Logical channel 

&000 
&001 
&010 
&Oil 
&020 
&021 
&030 
&031 
&040 
&041 
&050 
&051 
&060 
&061 
&070 
&071 
&100 
&IOI 
&102 
&103 
&104 
&105 

Use 

Expansion card 0, DMA line 0 

Expansion card 0, DMA line I 
Expansion card I, DMA line 0 

Expansion card I , DMA line I 
Expansion card 2, DMA line 0 

Expansion card 2, DMA line I 
Expansion card 3, DMA line 0 

Expansion card 3, DMA line I 

Expansion card 4, DMA line 0 

Expansion card 4, DMA line I 

Expansion card 5, DMA line 0 

Expansion card 5, DMA line I 
Expansion card 6, DMA line 0 

Expansion card 6, DMA line I 

Expansion card 7, DMA line 0 
Expansion card 7, DMA line I 
On-board SCSI 
On-board Floppy 
Parallel 
Sound out 
Sound in 
Network card 

Physical channel 

2 

3 

0 



OMA 

Mapping between logical and physical channels 

The mapping between logical and physical channels is fixed . Logical channels with 
no mapping shown above do not have OMA connected or are not controlled by the 
DMA Manager, and the numbers they have been assigned are for future use only. 

The four general purpose physical OMA channels can be connected to devices on 
either side of the expansion card buffer. To avoid confusion, the expansion card 
buffer is not output enabled during DMA operations to internal peripherals, but is 
enabled for DMA operations to external devices. The DMA manager uses four bits 
in the IOMD register DMAEXT to specify whether the corresponding general 
purpose physical channel is mapped to an internal or external device. 

Memory manager interfaces 
The DMA manager and the memory manager interface in the following ways: 

The DMA manager maps logical addresses to physical addresses so that the 
IOMO OMA registers can be programmed. It does so by creating a page table 
containing the logical addresses of all pages used in the transfer, and then 
calling OS_Memory (see page 5a-60) to get the memory manager to fill in the 
corresponding physical addresses. 

2 On a DMA transfer from device to memory the DMA manager calls OS_Memory 
to ask the memory manager to mark the pages being OMAed into as 
uncacheable. This is so that reads from these pages return the transferred data 
rather than cached data . The DMA manager flushes the cache after making this 
call , but before starting the transfer. It makes the pages cacheable again once 
the transfer has completed. 

3 The memory manager broadcasts Service_PagesUnsafe when it is about to 
remap some physical pages (i.e . when the physical addresses which 
correspond to a range of logical addresses are about to change). This service 
call provides a page table of the same form as that used in the OS_Memory 
interface which contains the physical addresses of the unsafe pages. The DMA 
manager then scans its page tables for all active transfers and temporarily 
halts any transfer which is transferring to or from an unsafe page. After the 
pages have been remapped the memory manager broadcasts 
Service_PagesSafe which provides the new physical addresses for the unsafe 
pages. The DMA manager then continues any halted transfers using the new 
physical addresses . 

See the chapter entitled Memory management on page 5a-35 for more details. 

Sa-83 



Device drivers 

Device drivers 
Device drivers call DMA_RegisterChannel (page 5a-88) to register with the OMA 

manager which logical channels (devices) they control. The device drivers then call 

DMA_ OueueTransfer (page 5a-9 l) to place DMA requests on a queue which the 

DMA manager processes in order. There are calls to terminate a transfer 

(DMA_TerminateTransfer - page 5a-93), suspend a transfer 

(DMA_SuspendTransfer - page 5a-95) and resume it (DMA_ResumeTransfer -

page 5a-97) , and to examine the state of a transfer (DMA_ExamineTransfer -

page 5a-98) . If a device wishes to relinquish control of a logical channel, it should 

do so by calling DMA_DeregisterChannel (page 5a-90) . 

Control routines 

Sa-84 

When a device driver calls DMA_RegisterChannel it passes a pointer to a word 

aligned table of control routine addresses. These control routines are called by the 

DMA manager during OMA; for a normal transfer the sequence is: 

Start 
Enable OMA 

transfer 

transfer 
Disable OMA 
Completed 

The control routines will be called in !RO or SVC mode with interrupts enabled or 

disabled. 

A control routine may alter processor mode as necessary. If interrupts are disabled 

on entry a control routine must neither enable interrupts , nor should it call OMA 

manager SWis , as either may cause undesirable side effects. If interrupts are 

enabled on entry a control routine may change interrupt state and call OMA 

manager SWis. On exit a control routine must restore the processor mode, 

interrupt status and processor flags (ie by using the instruction MOVS RI 5, Rl4 or 

an equivalent LDM), so that the DMA manager may continue where it left off. The 

only exception to this is that the Start control routine may alter the status of the V 

flag to indicate an error. 



The control routines must conform to the following interfaces: 

Enable OMA 

On entry 

RI I = R2 from DMA_OueueTransfer call 
RI 2 = R5 from DMA_RegisterChannel call 

On exit 

All registers preserved 

Use 

DMA 

The DMA manager calls this control routine to enable device DMA before starting 
the DMA transfers . It is assumed that the default state is for device DMA to be 
disabled. 

Disable OMA 

On entry 

RI I = R2 from DMA_OueueTransfer call 
Rl2 = R5 from DMA_RegisterChannel call 

On exit 

All registers preserved 

Use 

The DMA manager calls this control routine to disable device DMA. This may be 
called in mid transfer (for example, if DMA_TerminateTransfer or 
DMA_SuspendTransfer is called). or when a DMA request has completed. 

Sa-85 



Control routines 

Start 

On entry 

RI I = R2 from DMA_OueueTransfer call 
RI 2 =RS from DMA_RegisterChannel call 

On exit 

V set ~ RO = pointer to error block 
All other registers preserved 

Use 

The OMA manager calls this control routine before starting a new OMA request. 

This call is only made once for each OMA request ; suspending and then resuming 

a transfer does not call this routine again . If the device driver no longer wants this 

operation to start then it should retu n with V set and RO pointing to an error block; 

the Completed control routine is th n called with the same error. Otherwise, the 

OMA manager then calls the Enable OMA control routine. 

Completed 

5a-86 

On entry 

RO= 0 (if Vis clear) or pointer to err r block (if Vis set) 

RI I = R2 from DMA_OueueTransfer all 
RI 2 =RS from DMA_RegisterChann 1 call 

On exit 

All registers preserved 

Use 

The OMA manager calls this control routine when a OMA request has completed. 

The Disable OMA control routine wil have been called and the scatter list brought 

fully up to date before this routine i called. If the V flag is clear then the OMA 

request has completed successfully. Otherwise, the OMA request has terminated 

prematurely due to an error. 

As soon as this control routine is ca led the OMA tag for the completed operation 

is no longer valid. 

Possible errors include: 

Error supplied to DMA_Termina eTransfer 
Error returned from 'Start' control routine 
'OMA channel deregistered' 



DMASync 

On entry 

RI I = R2 from OMA_OueueTransfer call 

Rl2 = R5 from OMA_RegisterChannel call 

On exit 

RO = 0 to continue, or n to stop after n bytes 

All other registers preserved 

Use 

OMA 

The OMA manager optionally calls this control routine after a fixed number of 

bytes have been transferred. The calling of this routine is configured when your 

device driver calls OMA_OueueTransfer (see page 5a-91) to queue a request for 

OMA transfer. 

This routine allows for real-time synchronisation with OMA transfers , which is 

essential for time critical device drivers where the driver has to know how far a 

transfer has progressed. 

If the device driver wants the transfer to stop then a non-zero value can be returned 

in RO which specifies how many more bytes to transfer. Note that the OMA 

manager will attempt to stop after the specified number of bytes, but that this may 

not be possible because the next two sections of the transfer may have been 

initiated already. This means that the transfer might continue for at most 

(2 x gap between OMASync calls+ transfer unit size) bytes 

If a number greater than or equal to this is returned by OMASync then the transfer 

is guaranteed to stop after the specified number of bytes. 

Sa-87 



SW/ calls 

SWI calls 

Sa-88 

DMA_RegisterChannel 
{SWI &46140) 

Registers a client device as the controller of a logical channel 

On entry 

RO= flags : 
bits 0 - 31 reserved (must be set to 0) 

RI =logical channel · 
R2 =OMA cycle speed (0 - 3) 
R3 = transfer unit size ( I , 2, 4 or 16 bytes) 
R4 = pointer to table of control routine addresses 
R5 =workspace pointer to be passed to control routines in RI 2 

On exit 

RO = channel registration handle 
RI - R5 preserved 

Interrupts 

Interrupt status is not altered 
Fast interrupts are not altered 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SW! is not re-entrant 

This call registers a client device as the controller of a logical channel; it is typically 
called by a device driver. The value passed in R4 is a pointer to a word aligned table 
of control routine addresses: 



., 

Routine 

R4+0 
R4+4 
R4+8 
R4+12 
R4+16 

Use 

Enable device DMA 
Disable device DMA 
Start 
Completed 
DMASync 

OMA 

These routines are called by the DMA manager to control the specified logical 

channel. They are called with RI 2 set to the value supplied in RS , which is usually 

the device driver's workspace pointer. For a full description of their use, see the 

section entitled Control routines on page Sa-84. 

An error is returned if the logical channel is invalid or has already been claimed, an 

invalid cycle speed or transfer size is specified, or the control routine table is not 

word aligned. 

This call is only available from RISC OS 3.5 onwards. 

Related SWls 

DMA_DeregisterChannel (page Sa-90) 

Related vectors 

None 

Sa-89 



DMA_DeregisterChannel (SW/ &46141) 

Sa-90 

DMA_DeregisterChannel 
{SWI &46141) 

Oeregisters a client device previously registered by OMA_RegisterChannel 

On entry 

RO = channel registration handle 

On exit 

RO preserved 

Interrupts 

Interrupts may be disabled 
Fast interrupts are not altered 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call deregisters a client device previously registered with the OMA manager by 
OMA_RegisterChannel. Before the device is deregistered all OMA transfers will be 
terminated on the logical channel it is controlling. 

An error is returned if the channel registration handle passed in RO is invalid. 

This call is only available from RISC OS 3.5 onwards. 

Related SWls 

OMA_RegisterChannel (page 5a-88) 

Related vectors 

None 



OMA 

OMA_ Queue Transfer 
(SWI &46142) 

Queues a OMA transfer request for a logical channel 

On entry 

RO= flags : 
bit 0 set=> write (i.e. from memory to device), 

clear=> read (i .e. from device to memory) 

bit I set => scatter list is a circular buffer, clear => not circular 

bit 2 set=> call OMASync control routine, clear=> don't call 

bits 3 - 31 reserved (must be set to 0) 

RI =channel registration handle 
R2 =value of RI I to be passed to control routines 

R3 = pointer to word-aligned scatter list 

R4 = number of bytes to transfer, or 0 for infinite length transfer (if bit I of RO set) 

R5 =size of circular buffer (if bit I of RO set) 

R6 = number of bytes between calls to OMASync control routine (if bit 2 of RO set) 

On exit 

RO= OMA tag 
All other registers preserved 

Interrupts 

Interrupts may be disabled 
Fast interrupts are not altered 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SW! is re-entrant 

Use 

This call queues a OMA transfer request for a logical channel. The value in R2 is 

quoted in RI I when the OMA manager calls any of the control routines , and it 

describes the particular device/controller/transfer. 

Sa-91 



DMA_ Queue Transfer (SW/ &46142) 

5a-92 

The scatter list is a word aligned table of (address, length) pairs, in that order: 

• Both address and length are 32-bit values and are word aligned. 

• The addresses are logical addresses which the client should not remap before 
the transfer is complete. 

• The lengths are in bytes and are assumed to be a multiple of the transfer unit 
size specified when the logical device was registered. 

When the transfer specified by a scatter list entry pair has completed the address is 
incremented and the length decremented to reflect how much data was 
transferred. The OMA manager then starts a transfer for the next pair and repeats 
until the total number of bytes specified in R4 have been transferred. 

If bit I of RO is set then the scatter list is treated as a circular buffer. This means 
that the scatter list will not be updated as described above, and will instead wrap 
at the end to start again at the beginning. In this case the transfer may be of infinite 
length, so R5 contains the size of the buffer. Transfers using circular buffers can be 
suspended and resumed, and can be terminated explicitly by calling 
DMA_TerminateTransfer (page 5a-93) or by the DMASync control routine 
(page 5a-87) . 

The value passed in R4 determines the number of bytes to be transferred, which 
must be a multiple of the transfer unit size. If the transfer uses a circular buffer then 
this value can be 0 to indicate an infinite length transfer. If the transfer doesn't use 
a circular buffer then this value must be less than or equal to the sum of the 
lengths of all scatter list entries. 

If bit 2 of RO is set then R6 contains the number of bytes which are to be transferred 
between successive calls to the device driver's DMASync control routine; again this 
value must be a multiple of the transfer unit size. This transfer method allows 
real-time synchronisation. 

An error is returned if the channel registration handle is invalid, the scatter list is 
not word aligned, the length or the value in R5 or R6 (if either is used) is not a 
multiple of the transfer unit size, or the transfer is activated and the Start control 
routine returns an error. 

This call is only available from RISC OS 3.5 onwards. 

Related SWls 

DMA_TerminateTransfer (page 5a-93) 

Related vectors 
None 



Terminates a OMA transfer 

DMA 

OMA_ Terminate Transfer 
(SWI &46143) 

On entry 

RO = pointer to an error block 

RI= OMA tag 

On exit 

All registers preserved 

Interrupts 

Interrupts may be disabled 
Fast interrupts are not altered 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call terminates a OMA transfer originally queued by DMA_OueueTransfer. 

If the OMA transfer is active then it is stopped, and the OMA manager calls the 

Disable OMA control routine (page 5a-85); otherwise, the request is simply 

removed from its queue. The OMA manager then calls the Completed control 

routine (on page 5a-86) with V set and RO pointing to the supplied error block. 

If the terminated OMA transfer request was blocking a logical channel (i.e . had 

been suspended by a call to DMA_SuspendTransfer with bit 0 of RO clear), then the 

logical channel is unblocked and its queued transfers are started again. 

An error is returned if the OMA tag is invalid. 

This call is only available from RISC OS 3.5 onwards. 

Sa-93 



OMA_ Terminate Transfer (SW/ &46143) 

Related SWls 

DMA_OueueTransfer (page 5a-91) 

Related vectors 

None 

5a-94 



OMA 

DMA_SuspendTransfer 
(SWI &46144) 

Suspends the given active OMA transfer 

On entry 

RO= flags : 
bit 0 clear~ don't start queued transfers , 

set ~ start next queued transfer 

bits I - 31 reserved (must be set to 0) 

RI= OMA tag 

On exit 

All registers preserved 

Interrupts 

Interrupts may be disabled 
Fast interrupts are not altered 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call suspends the given active DMA transfer. The OMA manager calls the 

Disable OMA control routine (page 5a-85). suspends the active DMA request, 

updates the scatter list and returns the request to a queue. If bit 0 of RO is clear 

then no DMA requests for the same logical channel will be started until the 

suspended transfer is resumed or terminated. 

An error is returned if the OMA tag is invalid , or the specified OMA transfer is not in 

progress. 

This call is only available from RISC OS 3.5 onwards. 

Sa-95 



DMA_SuspendTransfer (SW/ &46144) 

Sa-96 

Related SWls 

DMA_ResumeTransfer (page 5a-97) 

Related vectors 

None 



OMA 

DMA_ResumeTransfer 
(SWI &46145) 

Resume a previously suspended OMA transfer 

On entry 

RO= flags: 
bits O - 31 reserved (must be set to 0) 

RI= OMA tag 

On exit 

All registers preserved 

Interrupts 

Interrupts may be disabled 
Fast interrupts are not altered 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SW! is re-entrant 

This call resumes a previously suspended OMA transfer. A suspended transfer 

maintains its positions in the queue, so a resumed transfer has priority over 

requests queued after it was suspended. The OMA manager calls the Enable OMA 

control routine (page 5a-85) when the suspended transfer is restarted. 

An error is returned if the OMA tag is invalid. or the buffer is not suspended. 

This call is only available from RISC OS 3.5 onwards. 

Related SWls 

OMA_SuspendTransfer (page 5a-95) 

Related vectors 

None 

Sa-97 



DMA_ExamineTransfer (SW/ &46146) 

5a-98 

Returns the progress of a DMA transfer 

DMA_ExamineTransfer 
(SWI &46146) 

On entry 

RO= flags : 
bits 0 - 31 reserved (must be set to 0) 

RI= DMA tag 

On exit 

RO= number of bytes transferred so far 
All other registers preserved 

Interrupts 

Interrupt status may be disabled 
Fast interrupts are not altered 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call returns progress of a OMA transfer, giving the total number of bytes 

transferred. 

An error is returned if the OMA tag is invalid. 

This call is only available from RISC OS 3.5 onwards. 

Related SWls 

None 

Related vectors 

None 



106 Video 

Introduction 
The new architecture uses a new video controller - VIDC20. Using this gives a much 

improved video capability over the previous generation of computers that used 

VIDCI or VIDC!a chips. In particular, it supports pixel depths of up to 32bpp (bits 

per pixel) on a much wider range of monitor types. 

The video system was substantially changed in RISC OS 3.5, so that VIDC20 can be 

used to its full capabilities . There are new ways of selecting and specifying screen 

modes and monitor types. The sprite format has been extended to allow sprites 

that use the new screen modes. Many calls have been extended to support these 

new features, particularly in the kernel (including OS_SpriteOp calls) and in 

ColourTrans. 

In RISC OS 3.6, further minor extensions have been made to the video system: in 

particular, support has been added for palettes in the new sprite format . 

Full details are in the rest of this chapter. The information in this chapter applies 

from RISC OS 3.5 onwards, unless otherwise stated. 

Furthermore, support for JPEG files has been added in RISC OS 3.6. This is 

described separately, in the chapter JPEG images on page 5a~I43 . 

Sa-99 



Overview 

Overview 

New ways of selecting modes 

There are new ways of specifying and selecting screen modes, to take account of 

the much wider range of screen modes potentially available. See Mode selection on 
page 5a- l 02 . 

Many calls have been extended to use these new methods; see their individual 

entries in the section entitled Technical details on page 5a- l 02 . A few calls have been 

added where existing calls could not be extended, or to provide functionality not 
present in RISC OS 3. 

Monitor configuration stored in files 

The new architecture can support a much wider range of monitors than in the past. 

At start-up the monitor type, screen mode and sync are set from configured values, 

as in RISC OS 3. However, the new architecture only detects bit 0 of the monitor 
lead ID, so auto-configuration of monitor type, screen mode and sync is no longer 

so flexible (see Service_MonitorLeadTranslation on page 5a- l l 2) . 

These defaults are then overridden by information read from a monitor-specific 

file, each of which stores the full range of modes available for a specific monitor. 

For full details, see Modelnfo files on page 5a- l 04, and The ScreenModes module on 
page 5a- l 06. 

New sprite format 
The RISC OS 3 sprite format has been extended to support the new pixel depths 

that are available. The new format is defined on page 5a- l 09. 

OS_SpriteOp calls have also been extended to work with the new sprite format; see 

Changes to OS_SpriteOp on page 5a- I I 6. Calls that create sprites will - where 
possible - create an old format sprite. This is to ease exchange of files with 
machines running older versions of RISC OS. 

ColourTrans extended to support new modes and sprites 

5a-100 

ColourTrans calls have been extended to support the changes to other parts of the 
video software. For full details see Changes to existing Colour'I'rans SWls on 
page 5a-1 l 9. 



Video 

New PaletteV reason codes 

The PaletteV software vector has been enhanced by the addition of extra reason 

codes. These are for block reading and writing of the palette, and setting up gamma 

correction tables for RGB values being programmed into the palette. See 

page 5a- l l l, and the description of the new reason codes on page Sa-122. 

All 8 bits of colour numbers are significant 

All 8 bits of a colour component are now significant. Do not work in four bit 

quantities and fill in the lower nibble either by setting it to zero or by copying the 

upper nibble. This technique still works, but only allows access to sixteen of the 

possible 256 intensities. 

Sa-101 



Technical details 

Technical details 

Mode selection 

Because of the increased number of colours and the range of resolutions available. 

using a mode number to define screen modes has become limiting. (There was a 

maximum of only 128 modes. with just 64 available to Acorn.) To bypass this 
limitation a number of different methods are now used to define modes. These 
methods and their terminology are summarised below. 

Mode numbers 

The mode numbers used in earlier versions of RISC OS are still supported. 

Mode selectors 

os _ v.eA:J Ue. v ~1 d:U. 
\\ 
12 
~ 

5a-102 

A mode selector is a word-aligned structure that defines a particular mode. This 
includes its resolution, numbers of colours, frame rate and other variables. 

A mode selector has the following format : 

Offset Value 
0 mode selector flags : 

bit 0 = I (see Distinguishing mode selectors from sprite areas on 
page Sa- I 06) 
bits I to 7 =format specifier (zero for this format) 
bits 8 to 31 =other flags (reserved - must be zero) 

4 x-resolution (in pixels) 
8 y-resolution (in pixels) 
12 pixel depth : 

0 ==> I bpp, I ::::> 2bpp, 2 ::::> 4bpp , 
3 => 8bpp, 4 => 16bpp, 5 => 32bpp 

16 frame rate (in Hz); -I ::::>use highest rate available 
20 pairs of [mode variable index. value] words; 

there may be any number of these, including zero 
n - I (terminator) 

The mode variable indexes mentioned here are the same numbers which specify 
mode variables in the SWI OS_ReadModeVariable. See page 1-709 for more 
information. 



Video 

Mode specifiers 

A mode specifier is a word passed to a SWI to specify a mode. A mode specifier may be 

either a mode number (0 - 255). or a pointer to a mode selector (greater than 255) . 

The range of the value determines which it is. 

Mode strings 

Mode strings are a textual form of mode selection, used by several Wimp calls and 

the command *WimpMode, as well as the Display manager utility. 

A mode string has the following syntax: 

Syntax 

Xnnnn 
Ynnnn 
Cece 
Gggg 
EXn 
EYn 
Ffff 

For example: 

Meaning 

X resolution (nnnn is three or four digits) 
Y resolution (nnnn is three or four digits) 
Colours (CCC= 2, 4, 16, 64, 256, 32T, 32K, 16M) 
Greys (ggg = 4, 16, 256) 
X EIG factor (n = 0 to 3, smaller values make text larger) 
Y EIG factor (n = 0 to 3, smaller values make text larger) 
Frame rate (Hz) (!ff is two or three digits) 

X640 Y512 Cl6 
X640 Y 480 C 16 EXO EYO 
X320,Y 480,C64 

Mode 20 (nb not supported by all monitors) 
Mode 27 with extra-large text 
VIDC I style 8bpp, VGA with rectangular pixels 

• The parameters G and C cannot be specified together. 

• Parameters EX and EY are optional and the default size is used if they are not 

given. 

• Parameter Fis optional; if it is omitted a value of -I is used, which uses the 
highest frame rate available. 

The Display manager utility only changes modes using *WimpMode. A mode 

selection string is constructed when the user clicks on OK in the window. If you 

want to use a mode number, you can enter it instead of a mode string. For example 

you can enter 15 to select the old mode 15. 

Sa-103 



Mode selection 

Modelnfo files 

Sa-104 

Modeinfo files contain definitions of all the screen modes available on a particular 

monitor. The mode definitions are written in plain text, so the files can be edited. 

• Spaces and tab characters ( &09) are allowed anywhere in the file except in the 

middle of keywords or numbers. 

• Lines starting with any number of spaces or tabs followed by the hash 

character '# ' are treated as comments and ignored. 

Header 

The file always starts with the following two lines: 

file_fonnat: format 

monitor_ title : title 

where: 

format 

title 

must be I for this format file 

is a textual description of this type of monitor 

This may be followed by an optional line to control DPMS power saving (see 

Monitor power saving on page 5a-645) : 

DPMS_ state: state 

where: 

state must be 0, I, 2 or 3 

Under RISC OS 3.6 or later, the first two lines may instead be followed by an 

optional line to indicate the file is for an LCD panel: 

lcd_support: value 

where: 

value must be I (single panel) or 2 (dual panel) 

Mode definitions 

The header is followed by any number of mode definitions, as follows : 

startmode 

endmode 

mode_ name: mode_name 

x_ res : x-resolution 

y _ res: y-r esolution 

h_ timings: hsync , hbpch, hlbdr, hdisp , hrbdr, hfpch 

v_ timings : vsync , vbpch , vtbdr, vdisp , vbbdr , vfpch 

p ixel_ rate : pixel_rate 

sync_pol: sync_polarities 



where: 

mode_name 

x-resolution 

y-resolution 

hsync 
hbpch 

hlbdr 
hdisp 

hrbdr 
hfpch 
vsync 
vbpch 

vtbdr 
vdisp 

vbbdr 
vfpch 
pixel_rate 

sync_polarities 

Video 

is a textual name for the mode for use in menus and such. 
The mode name field must be present; however, the mode 
name itself may be blank. which prevents the mode appearing 
on menus (eg the Display Manager's Resolution menu.) 

is the number of pixels displayed across the screen 

is the number of displayed rasters 

is the width of the hsync pulse 

is the width of the horizontal back porch 

is the width of the left hand border 

is the number of displayed pixels horizontally, which is 
normally the same as x-resolution) 

is the width of the right hand border 

is the width of the horizontal front porch 

is the width of the vsync pulse 

is the width of the vertical back porch 

is the width of the top border 

is the number of displayed rasters vertically (normally the 
same as y-resolution) 

is the width of the bottom border 

is the width of the vertical front porch 

is the pixel rate in kHz 

is a number indicating what kind of sync signals are required, 
as follows : 

0 hsync normal. vsync normal 

hsync inverted, vsync normal 

2 hsync normal, vsync inverted 

3 hsyncinverted,vsyncinverted 

All values on the h_timings line are in units of pixels. and all values on the 
v_timings line are in units of raster lines. 

Note: VIDC20 imposes restrictions on these parameters. In particular, all the 
horizontal timing values must be multiples of 2, and the horizontal total (hsync + 
hbpch + hlbdr + hdisp + hrbdr + hfpch) must be a multiple of 4. See the VIDC20 
data sheet for details of further restrictions. 

Modelnfo files are used by the new ScreenModes module; see The ScreenModes 
module on page 5a- l 06. 

Sa-105 



The ScreenModes module 

Distinguishing mode selectors from sprite areas 

In earlier versions of RISC OS, certain SWI calls (e.g. Colour'frans ones) were 

passed screen modes either as mode numbers , or as pointers to sprite areas from 

which the sprite's screen mode was read. The two were differentiated by their 

values. 

These calls now also accept a pointer to a mode selector, which must be 

distinguished from a pointer to a sprite area. This is done by examining the first 

word of the area pointed to. The first word of a sprite area is the size of the area ; 

since the area must be word aligned , bit 0 of this word will always be O.For this 

reason a mode selector always has bit 0 of its first word set, thus ensuring it can be 

distinguished from a sprite area. 

The ScreenModes module 

Sa-106 

VIDC20 supports a much wider range of monitors than did VIDC I, with a wide 

range of available line frequencies. Supporting these requires a new mechanism, 

without which RISC OS would have had to define many new monitor type numbers. 

Monitors are now supported using Modelnfo files (page 5a- l 04) held on hard disc. 

Each file holds the timings for a full set of screen modes on a particular monitor. A 

new ScreenModes module provides a* Command- *LoadModeFile (page 5a-141) 

- to load one of these files . If the file contains valid information. the ScreenModes 

module then calls OS_ScreenMode 3 (page 5a- l 34) to set the current MonitorType 

to 7 (file) . 

This makes available all the screen modes defined in the file , while removing all 

modes defined in any previously loaded file . 



Video 

Desktop screen modes 

Colours 

The following colour options are supported on the desktop: 

• I bpp (monochrome) 

• 2 bpp (grey) 

• 4 bpp (grey) 

• 4bpp (colour) 

• 8 bpp (palette set to correspond with default VIDCI operation - using tints) 

• 8 bpp (palette set to provide 256 grey levels) 

• 16 bpp (palette fixed, can only be used for Gamma correction) 

• 32 bpp (palette fixed , can only be used for Gamma correction) . 

This table shows how the bits per pixel value corresponds to the number of colours 
available: 

Bits per pixel Number of colours 

2 
2 
4 
8 
16 
32 

Screen memory 

4 
16 
256 (or 64) 
32 thousand 
16 million 

The limits of the capabilities of the VIDC20 depend upon the amount of screen 
memory available. The new architecture can use either DRAM or VRAM based 
screen memory. 

• VRAM based screen memory can be I MB or 2MB in size. 

• DRAM based screen memory is limited to I MB. There is the same trade-off as 
in RISC OS 3 between the bandwidth used for video and that used for other 
purposes, such as running applications. 

Sa-107 



Desktop screen modes 

5a-108 

Screen resolutions 

The following are the maximum screen resolutions that the desktop supports. 

These figures are maximum limits. and are for guidance only; some monitors will 

not be able to display all these resolutions. Your software should not assume that 

any partic1,1lar combination is possible. 

Using DRAM as screen memory 

1024 x 768 
800 x 600 
768 x 288, or 480 x 352 
384 x 288 

4 bpp 
8 bpp 
16 bpp 
32 bpp 

Using I MB of VRAM as screen memory 

1280 x 1024 
1024 x 768 
800 x 600 
768 x 288, or 480 x 352 

4 bpp 
8 bpp 
16 bpp 
32 bpp 

Using 2MB of VRAM as screen memory 

1280 x 1024 
1280 x 1024 
1024 x 768 
800 x 600 

4 bpp 
8 bpp 
16 bpp 
32 bpp 

The Display manager utility allows a selection of pre-defined modes to be chosen; 

custom modes can also be used and defined. 

Grey level modes and the Wimp 

The Window Manager now allows the selection of 16 and 256 level grey scale 

modes in the desktop. 

In 16 grey-level modes the first eight desktop 'colours' are the same shades of grey 

as in normal 16 colour modes, and the next eight 'colours ' provide interpolated 

greys. This means that the logical colours do not decrease in brightness 

monotonically. 

In 256 grey-level modes the palette is set up so that a pixel value of 0 is black, 255 

is white , and the values between form a linear grey scale. 



Video 

New format of a sprite 

The sprite format has been extended to incorporate the new modes . The new 
format avoids the problems that could be caused in previous versions of RISC OS 
by binding sprite files to a mode number not available on the viewing computer. 
The new format uses different sprite types for different pixel depths. 

The old sprite format (page 1-749) is still fully supported. RISC OS distinguishes 
between new and old format sprites by examining the top bits of the word that 
specified the sprite mode in the old format. These bits were always zero for the old 
format ; in the new format these are used to store the (non-zero) sprite type. 

Sprite Control Block 

The Sprite Control Block has this format for new sprite types: 

Bytes 

0-3 

4 - 15 
16 - 19 

20 - 23 
24 - 27 • 

28 - 31 

32 - 35 

36 - 39 
40 - 43 • 

Meaning 

Offset to next sprite 

Sprite name, up to 12 characters with trailing zeroes 

Width in words - I 

Height in scan lines - I 

0 (reserved for future use) 
- no left hand wastage is allowed on new format sprites 

Last bit used (right end of row) 

Offset to sprite image 

Offset to transparency mask, or offset to sprite image if no mask 

New sprite mode word: 

Bits Meaning 

27 - 31 Sprite type: 
0 ~old type; see page 1-749 for format 
I - 31 ~ new type; these are defined below 

14 - 26 Vertical dpi ; should be 180, 90, 45 or 22 

I - 13 Horizontal dpi ; should be 180, 90, 45 or 22 

0 I ; see Distinguishing sprite modes and mode selectors on 
page 5a-11 I 

44 ... Palette data (optional) 

• These words have changed from the old format of sprite control block. 

Sa-109 



New format of a sprite 

5a-110 

Sprite types 

Sprite types are as follows . 

Type Meaning 

0 Backward compatible mode- see page 1-749 

I bpp image; I bpp mask; palette not supported by RISC OS 3.5 

2 2bpp image; I bpp mask; palette not supported by RISC OS 3.5 

3 4bpp image; I bpp mask; palette not supported by RISC OS 3.5 

4 8bpp image; I bpp mask; palette not supported by RISC OS 3.5 

5 l 6bpp image; I bpp mask; palette not supported by RISC OS 

6 32bpp image; I bpp mask; palette not supported by RISC OS 

7 Allocated for CMYK, but not supported within RISC OS 

8 Allocated for 24bpp, but not supported within RISC OS 

9 - 31 Reserved for future expansion 

Pixel formats for 16 and 32bpp sprites 

The formats of pixels in 16 and 32bpp sprites is as follows : 

16bpp sprites 

Bit 

0-4 

5-9 

10 - 14 

I5 

32bpp sprites 

Bit 

0-7 

8 - I 5 

I6 - 23 

24 - 31 

Mask data structure 

Use 

Red 

Green 

Blue 

Reserved (set to 0) 

Use 

Red 

Green 

Blue 

Reserved (set to 0) 

Whatever the depth of image, the mask for new type sprites is I bit per pixel. Each 

row of mask bits begins word aligned. The layout of mask bits is identical to the 

layout of a I bpp sprite's image data . 



Video 

Sprite palettes 

RISC OS 3.5 does not support palettes for new type sprites, and will generate an 
error if it finds one. 

RISC OS 3.6 adds support for palettes in new type sprites that have up to 8bpp. It 
does not support palettes in 16 or 32bpp sprites. The format of the palette data is 
the same as for old type sprites. 

Distinguishing sprite modes and mode selectors 

You can now specify modes in some calls using either a mode specifier (i.e. a mode 
number, as before, or a pointer to a mode selector) , or a new sprite mode word. The 
passed value is treated as a mode number if it is less than 256. The other two cases 
must be distinguished somehow. It is for this reason that bit 0 is set for a new 
sprite mode word; this bit is always clear in a pointer to a mode selector, since they 
must be word-aligned. 

New software vectors 

PaletteV has been enhanced by the addition of extra reason codes. For a full 
description see page 5a- l 22 . 

Block read and write 

There are new reason codes for block reading and writing of the palette. A number 
of other calls have been extended to use these reason codes in preference, before 
falling back to older methods of reading the palette should this fail. 

Gamma correction 

A further reason code can be used to set up gamma correction tables for RGB 
values being programmed into the palette. 

Claiming PaletteV 

Not all PaletteV claimants support this code, so care must be take in the use of 
these calls. The correct behaviour for a claimant is to return all calls , but only set 
R4 to 0 for those it knows. This avoids problems with different PaletteV claimants 
processing some reason codes and passing on others it does not understand. 

Sa-111 



New Service Call 

New Service Call 

A new service call has been added: 

• Service_EnumerateScreenModes (page 5a-l 28) enumerates the available 

screen modes . Applications should not issue this service call themselves. but 

should instead use the front-end provided by the new SWI OS_ScreenMode 2 

(page 5a- I 34) . 

Changes to existing Service Calls 

Sa-112 

Service_ModeExtension (page 1-620) 

Service_ModeExtension now uses a new format of VIDC list that is independent of 

the video controller used. There is no support for the old formats of VIDC list used 

in earlier versions of RISC OS, which included values corresponding directly to 

VIDCI register formats . In particular. this means that old mode extend modules 

will not work under RISC OS 3.5 or later. For more information see page 5a-l 24. 

Service_ModeTranslation (page 1-624) 

This service call has been extended to allow the substitute mode passed back in R2 

to be an arbitrary mode specifier. However. the input mode will only ever be a 

mode number, as a mode change controlled by a pointer to a mode selector never 

uses a substitute mode. 

Service_MonitorleadTranslation (page 1-625) 

The new architecture can only detect the state of the IDO pin, and so the defaults 

set by this service call have been changed. New defaults are: 

100 

H 

I 

0 

Monitor type 

0 (TV standard) 

0 (TV standard) 

3 (VGA) 

Sync type Default mode 

I (composite) 12 

I (composite) 12 

0 (separate) 27 

Mono VGA monitors are interpreted as TV standard monitors , so this class of 

monitor requires manual configuration before use. Other monitor types are 

detected and an appropriate mode is selected. 



Video 

Changes to existing VDU calls 

VDU 17 (page 1-565) and VDU 18 (page 1-566) 

These calls have not been extended to work in 16bpp or 32bpp modes; in such 

cases they will behave as if in an 8bpp mode. This makes the calls no longer useful , 

and you should instead use OS_SetColour (page 1-726 and page 5a-1I5) . The 
colour number to be used can be found by using 
ColourTrans_ReturnColourNumber. 

VDU 19 (page 1-568) 

In 16bpp and 32bpp modes, the palette is altered for gamma matching only. VDU 

19 should not be used in these modes. It is no longer necessary to duplicate 
nibbles - all 8 bits of the colour component are significant. 

VDU 22(page1-574) 

This call has not been altered, and so no longer allows all display modes to be 

chosen. You should no longer use VDU 22 ; for full access to the screen modes 

available on the computer you should instead use OS_ScreenMode (page 5a- I 32). 

VDU 23,17,0-3 (page 1-596) 

This call works for all 8bpp screen modes , but is of little use for modes having a full 
256 colour palette. 

VDU 25, 144-167 (page 1-607) 

These calls to plot circles do not work properly with 180 x 45 or 45 x 180 screen 

modes. 

Sa-113 



New kernel SW/ 

New kernel SWI 
The following new kernel SW! has been created. It is defined in full at the end of 

this chapter: 

• OS_ScreenMode (page 5a-l 32) performs miscellaneous operations for screen 

mode handling. RO provides a reason code which determines which operation 

is performed. 

Changes to existing kernel SWls 

Sa-114 

OS_Byte 135 (page 1-649) 

The returned mode may now be a mode specifier. 

OS_Word 9 (page 1-673) 

You should no longer use OS_ Word 9 to read the pixel logical colour. 

OS_Word 11(page1-677) 

Use ColourTrans_ReadPalette (page 3-387) in preference to this call. 

OS_Word 12(page1-679) 

Use ColourTrans_WritePalette (page 3-389) in preference to this call . 

OS_ReadModeVariable (page 1-709) 

You can now specify the mode using a mode specifier or a new sprite mode word. 

A new ModeFlag has been assigned; bit 7 is set to show that an 8bpp mode uses a 

full palette. Such modes also return 255 for NColour, whereas old-style 8bpp 

modes still return 63 . 



Video 

If you are using a new sprite mode word, the values returned for certain VDU 

variables depends on its sprite type ('T' below). and its horizontal and vertical dpi 

('hdpi' and 'vdpi' respectively): 

Name No. Returned value 

NColour 3 T=l =>I, T=2 => 3, T=3 => 15, T=4 => 63 or 255, 
T=5 => 65535, T=6 => &FFFFFFFF 

XEigFactor 4 hdpi=22/23 => 3, hdpi=45 => 2, hdpi=90 => I, 
hdpi= 180 => 0 

YEigFactor 5 vdpi=22/23 => 3, vdpi=45 => 2, vdpi=90 =>I, 
vdpi=l80 => 0 

Log2BPP 9 T=l => 0, T=2 =>I, T=3 => 2, T=4 => 3, T=5 => 4, 
T=6 => 5 

Log2BPC 10 T=l => 0, T=2 =>I, T=3 => 2, T=4 => 3, T=5 => 4, 
T=6 => 5 

OS_CheckModeValid (page 1-715) 

This call now accepts a mode specifier in RO, not just a mode number. In addition, 

the returned substitute mode may be a mode specifier. 

OS_Plot (page 1-717) 

See VDU 25,144-167 (page 5a-l 13). 

OS_SetColour (page 1-726) 

This call now has two extra flag bits defined in RO. You can now read or write the 

text and graphics foreground/background colours. The new flags are: 

bit 6 set=> RI =text colour, clear=> RI =graphics colour 

bit 7 set => read colour, clear=> set colour 

When setting the colour all the flags are used. As before, you can specify graphics 

colours using a pattern block or a colour number; text colours must be specified as 

colour numbers. 

When reading the colour only the foreground/background flag and the 
text/graphics flag are used. For graphics colours you must supply a pattern block. 

whereas text colours are returned in RI as colour numbers. 

The values returned can be passed straight back to OS_SetColour to restore the 

colour. 

Sa-115 



New OS_SpriteOp reason code 

New OS_SpriteOp reason code 

The following new reason code has been added to OS_SpriteOp. It is defined in full 

at the end of this chapter: 

• OS_SpriteOp 17 (page 5a- I 30) checks the validity of a sprite area. 

Changes to OS_SpriteOp 

Sa-116 

OS_SpriteOp calls support new type sprites wherever appropriate. This is 

assumed, and not stated below for each call. 

Support for particular features has only been added as they have become legal in 

RISC OS. In particular: 

• Since RISC OS 3.5 did not allow new type sprites with a palette, you cannot 

use its OS_SpriteOp calls to create them. RISC OS 3.6 allows new type sprites 

with up to 8bpp to have a palette, and so you can use the relevant calls to 

create such sprites. 

• However, even though new type sprites with a mask were legal under 

RISC OS 3.5, a few of its calls did not accept such sprites . These calls are 

specifically noted below. 

Forcing a mode number when creating sprites 

Calls that create sprites will - where possible - create an old format sprite. This is 

to ease exchange of files with machines running older versions of RISC OS. In 

doing so, they may have to force the current mode from one specified by a mode 

selector back to a mode number. The following modes are used: 

90 x 45 dpi 

45 x 45 dpi 
90 x 90 dpi 

lbpp 

0 

25 

2bpp 

8 

26 

4bpp 

12 

9 

27 

8bpp 
15 

13 
28 

Combinations not shown in the above table (including 45X45dpi at I bpp) cannot 

be forced back to a mode number, and must always use the new sprite types . 

Use of translation tables and palette entries 

In general you must supply a translation table when plotting a sprite with 8bpp or 

less to a 16 or 32 bpp mode. However, a few calls (noted in their descriptions 

below) provide a new flag to force sprites to be plotted using their palette entries 

rather than translation tables. The sprites must have full palette entries for you to 

do this . 



Video 

Under RISC OS 3.5 only, when plotting an 8bpp sprite with a full palette to a 16 or 

32bpp mode, it is plotted from its palette entries. However, for compatibility we 

suggest that you do not rely on this, but instead use the new flag where relevant . 

OS_SpriteOp 15 - Create sprite (page 1-773) 

On entry R6 can now be a mode number (as before). or a sprite mode word, or a 

pointer to a mode selector. 

OS_SpriteOp 31 - Insert row (page 1-782) 
OS_SpriteOp 32- Delete row (page 1-783) 
OS_SpriteOp 33 - Flip about x axis (page 1-784) 
OS_SpriteOp 35-Append sprite (page 1-786) 

Under RISC OS 3.5 these calls do not accept new type sprites that have a mask. 

This restriction has been removed from RISC OS 3.6 onwards. 

Note that OS_SpriteOp 35 will generate an error if you attempt to append a sprite 

with a I bpp mask to one with a non- I bpp mask. 

OS_SpriteOp 36- Set pointer shape (page 1-788) 

This call accepts type 0 - 4 sprites. It does not accept types 5 and 6. 

_. OS_SpriteOp 37- Create/remove palette (page 1-790) 

Under RISC OS 3.5 this call accepts new type sprites. It generates an error if you try 

to create a palette, but does nothing if you try to remove one; this is because 
RISC OS 3.5 does not support new type sprite palettes. 

RISC OS 3.6 allows new type sprites with up to 8bpp to have a palette. This call 
therefore can create or remove palettes from such sprites. New type sprites of a 

greater depth (ie > 8bpp) are still accepted, but treated just as in RISC OS 3.5, 
since such sprites are still not allowed to have a palette. 

OS_SpriteOp 45 - Insert column (page 1-796) 
OS_SpriteOp 46 - Delete column (page 1-797) 
OS_SpriteOp 47 - Flip about y axis (page 1-798) 

Under RISC OS 3.5 these calls do not accept new type sprites that have a mask. 
This restriction has been removed from RISC OS 3.6 onwards. 

OS_SpriteOp 52 - Put sprite scaled (page 1-803) 

Bit 4 of R5 , if set, forces a I, 2 or 4bpp sprite to be plotted into 16 or 32bpp using 

its palette entries rather than a translat~on table. The sprite must have a full 
palette. 

Sa-117 



Changes to existing Wimp SW/s 

From RISC OS 3.6 onwards two further flags have been added: 

• Bit 5 of R5 , when set , indicates that a wide translation table is being used. The 

table is I byte wide when plotting into less than 8bpp, 2 bytes wide for l 6bpp, 

and 4 bytes wide for 32bpp. This is similar to the action of bit 4 of R5 in 

ColourTrans_SelectTable (page 3-346). 

• Bit 6 of R5, when set, makes RISC OS use dithering when plotting a 16 or 

32bpp sprite to a reduced depth. This bit is otherwise ignored. 

OS_SpriteOp 53- Put sprite greyscaled (page 1-804) 

From RISC OS 3.6 onwards this call is no longer available. If you attempt to call it, 

the Sprite Extend module generates an appropriate error. 

OS_SpriteOp 54- Remove lefthand wastage (page 1-805) 

This call will not accept new type sprites that have a mask. However, you should 

never need to call it for new type sprites, since they are not allowed to have any 

lefthand wastage. 

OS_SpriteOp 56- Put sprite transformed (page 1-806) 

Bit 4 of R5, if set, forces a I , 2 or 4bpp sprite to be plotted into 16 or 32bpp using 

its palette entries rather than a translation table. The sprite must have a full 

palette. 

From RISC OS 3.6 onwards, bit 5 of R5, when set, indicates that a wide translation 

table is being used. The table is I byte wide when plotting into less than 8bpp, 

2 bytes wide for 16bpp, and 4 bytes wide for 32bpp. This is similar to the action of 

bit 4 of R5 in ColourTrans_SelectTable (page 3-346) . 

OS_SpriteOp 57 and 58 - Insert/delete rows/columns (page 1-809) 

Under RISC OS 3.5 these calls do not accept new type sprites that have a mask. 

This restriction has been removed from RISC OS 3.6 onwards . 

Changes to existing Wimp SWls 

Wimp_SetMode (page 3-188) 

Sa-118 

This call now accepts a mode specifier in RO. If this is a pointer to a mode selector, 

the Wimp copies the mode selector, so you can then re-use the memory. 



Video 

Changes to existing ColourTrans SWls 

ColourTrans has been extended to support the new 16bpp and 32bpp modes. 
Facilities have been provided to allow behaviour in these depths to be backwards 
compatible. 

All ColourTrans calls will now accept a mode specifier rather than a mode number, 
where appropriate. Most ColourTrans calls that use GCOLs will use 16 or 32 bit 
values for 16 or 32bpp modes. Only the exceptions are noted below. 

ColourTrans_SelectTable (page 3-346) 
ColourTrans_GenerateTable (page 3-397) 

The table size generated by an application attempting to map down from a 16 or 
32bpp to a 1 ~8bpp mode would be excessively large, so ColourTrans does not 
return full translation tables in these cases. There is no longer a relationship 
between the size of the table returned by ColourTrans and the number of colours in 
the source mode. You must determine the size of the table before requesting it. 

The revised translation table functionality is: 

Source Mode 

1, 2, 4, 8 16,32 
bpp bpp 

1, 2, 4, 8, See note 1 See note 2 

Destination bpp below below2 

Mode See note 3 See note 4 
16, 32 bpp 

below below 

This is the existing RISC OS 3.1 algorithm unchanged. 

2 This returns a structure including a pointer to a 32 KB table mapping from 
5 bits per primary colour to a colour number in the destination screen mode. 

The structure of the table is: 

0 Word= &2E4B3233 ('32K.' ) 
4 Pointer to table 
8 Word= &2E4B3233 ('32K.') 

The guard words each side of the pointer allow SpriteExtend to check whether 
the translation table passed to it is of this form. or is a direct look up table. 

The most commonly used tables are precalculated. In other cases the table 
must be calculated when it is first requested, which may take a few seconds. 
The table remains valid until the next palette change, mode change or switch 
output to screen/sprite. ColourTrans tracks this, and will not recalculate a valid 

Sa-119 



Changes to existing ColourTrans SWls 

Sa-120 

table. Therefore if an application is in any doubt whether the current table is 

correct, it should request it again; the overheads will be the minimum 

possible. 

3 This returns a byte, representing a colour. This behaviour has been chosen to 

provide a safe route for those applications which assume that the size of the 

table in bytes will always be the same as the number of colours in the source 

mode. In I6bpp, two bytes per colour are returned. In 32bpp a word per colour 

is returned. 

From RISC OS 3.5 onwards a new flag , bit 4 of R5 , instructs the call to return 

>8 bits per colour in a pixel translation table if the destination mode is >8bpp, 

rather than to return bytes (indicating that the caller is aware that the 

colours/bytes relationship no longer holds true) . 

R5 =flags: 
bit 4 set ~ return > 8 bits per colour rather than bytes 

If bit 4 is not set, a table will be returned as if the target mode is 8bpp. 

4 This does not generate a look up table. When plotting between these bpp 

modes only bit stretching/packing is performed. 

ColourTrans_SelectTable (page 3-346) 
ColourTrans_SelectGCOLTable (page 3-348) 
Col<?urTrans_GenerateTable (page 3-397) 

From RISC OS 3.5 onwards, if R2 specifies a mode and RI is -I , the table uses the 

default palette for the given mode. This is because the current palette may be 

unsuitable for the given mode. You can usually get back the old behaviour by using 

bit I of R5 . 

ColourTrans_SelectGCOLTable (page 3-348) 
ColourTrans_GCOLToColourNumber (page 3-363) 
ColourTrans_ColourNumberToGCOL (page 3-364) 

These calls have not been extended to use 16 or 32 bit GCOL numbers. 

ColourTrans_ReadPalette (page 3-387) 
ColourTrans_ WritePalette (page 3-389) 

These calls process palette entries as words which contain 24 bit colour 

descriptions. The whole palette must be read, modified and written back. 

The bottom byte of the palette entry contains the supremacy bits; all 8 bits are 

reserved. In 32bpp modes bits 7 - 4 are used; in other modes only bit 7 is used. 

ColourTrans and the kernel now support this . (The kernel only expects one bit of 

supremacy and ignores the rest.) 



Video 

The palette entry passed through these calls is in the form &BBGGRRSO, where Sis 
the supremacy mask nibble. 

For ColourTrans_ReadPalette, you may set RI to 0 on entry to make the call use the 
default palette. 

ColourTrans_GenerateTable (page 3-346) 

See page 5a- l l 9 and page 5a- l 20. 

New* Command 
A new * Command is provided by the new ScreenModes module: 

• * LoadModeFile (page 5a- l 4 l) loads a Modelnfo file into memory. 

For more information see Modelnfo files on page 5a- l 04 and The ScreenModes module on 
page 5a- l 06. 

Changes to existing * Commands 

*Screenload (page 1-819) 
*ScreenSave (page 1-820) 

These calls are now far more likely to cause a mode change, and so reset the 
graphics window and other state. You should only use these calls to load and save 
an entire screen , rather than a part of the screen defined by the graphics window. 

*WimpMode (page 3-286) 

This command now allows the mode to be specified either as a number or as a 
mode string (see Mode strings on page 5a-103) . This is reflected in the Display 
manager application, which also allows this form . 

*WimpMode is no longer supported when issued from a task window. 

Sa-121 



Software vectors 

Software vectors 

Sa-122 

Called whenever the palette is to be read or written . 

PaletteV 
{Vector &23) 

The reason codes below have been added in RISC OS 3.5. For information on other 

reason codes see page 1-104. 

On entry 

Register usage is dependent on a reason code held in R4: 

Read palette entries 

RO= pointer to word aligned list of logical colours (words). or 0 
RI =type and number of colours: 

bits 0 - 23 =number of palette entries to read 
bits 24 - 31 =type of colour ( 16, 17, 18,24 or 25) 

R2 =pointer to word aligned buffer to receive !st flash colour (&BBGGRR:xx) -
device colours 

R3 =pointer to word aligned buffer to receive 2nd flash colour (&BBGGRR:xx) -
device colours 

R4 = 7 (reason code) 

Write palette entries 

RO= pointer to word aligned list of logical colours (words). or 0 
RI =type and number of colours: 

bits 0 - 23 = number of palette entries to write 
bits 24 - 31 =type of colour ( 16.17.18,24 or 25) 

R2 =pointer to word aligned list of device colours (&BBGGRR:xx) 
R4 = 8 (reason code) 

Gamma correction tables 

RO = pointer to word aligned gamma correction table for red 
RI = pointer to word aligned gamma correction table for green 
R2 = pointer to word aligned gamma correction table for blue 
R4 = 9 (reason code) 



Video 

On exit 

Use 

Gamma correction tables 

R4 = 0 =>the video drivers support gamma correction , and the tables have been 

copied into system workspace 
R4 -:I- 0 => the video drivers do not support gamma correction 

Other reason codes 

R4 = 0 => operation complete 

Reason code 7 

The memory pointed at by R2 and R3 is filled with words giving the device colour 

for each flash state. Where only one specific flash state was requested, the 
information for the other flash state is not filled in . 

If no list of logical colours is given (RO is 0 on entry) and the colour type is I 6, 17 or 
I 8, then the call returns the number of palette entries requested starting from the 

first logical colour - this allows a number of consecutive colours to be read without 

needing to set up a list . 

If the colour type is 16 (read both flash states) and R3 is 0, the area pointed at by 
R2 is used for both flash states (in the order first state, second state, first state, 

etc) . 

Reason code 8 

If no list of logical colours is given (RO is 0 on entry) and the colour type is 16, 17 or 

I8 on entry then the number of palette entries specified by RI is written 
consecutively starting from the first logical colour. 

When the colour type is 16 the device colour entries pointed at by R2 should be in 

the order first state, second state. first state etc. 

Reason code 9 

This call sets up tables to perform gamma correction on RGB values being 
programmed into the palette. There are three 256-byte tables, one for each of red, 

green and blue. Before being output to VIDC, the red component of the physical 
colour (in the range 0 to 255) is used as an index into the red gamma correction 
table - the value obtained is the gamma corrected red value to be programmed into 

VIDC. Likewise, the green and blue components are looked up in their respective 

tables before being output. 

Sa-123 



SeNice calls 

Service calls 

5a-124 

Allow soft modes 

Service_ModeExtension 
{Service Call &50} 

On entry 

RI = &50 (reason code) 
R2 = mode specifier that information is requested for 
R3 =monitor type (or -I for don't care) 
R4 = memory bandwidth available (in bytes/second) 
R5 =total amount of video RAM in system (in bytes) 

On exit 

Use 

All registers preserved (if not claimed) 

If claimed: 
RI =0 
R2 preserved 
R3 =pointer to VIDC list (type 3) 
R4 =pointer to workspace list if mode specifier was a mode number, 

or 0 if mode specifier was a pointer to a mode selector 

This service call is issued when information is needed on a particular mode: for 

example on a mode change, or when mode variables are read. The description 

below is for RISC OS 3.5 and later only; for details of this service call under 
earlier versions of RISC OS, see page 1-620. 

In RISC OS it is possible to load modules which provide additional screen modes 
and additional monitor types. Such modules must claim this call and return the 

requested information if they recognise the passed mode and monitor type, and if 

the mode being selected would use no more than the specified video bandwidth 
and video memory. Otherwise they should pass on the call. 

A module that is checking if it recognises a mode selector must examine its format 
specifier, held in bits 0 - 7 of the flags word (at offset 0) . If the module does not 

recognise the format, it must pass on the service call. 

The mode selector could contain -I as the frame rate , in which case the matching 

mode with the highest frame rate should be returned. 



Video 

If R3 holds -1 then RISC OS is making a general enquiry about that mode (eg to 

determine the attributes of a sprite defined in that mode) so the module should 

only check R2 

The returned VIDC list consists of a series of words. The first word specifies the 

format of the list . so this can be altered to cope with new hardware such as new 

versions of VIDC. RISC OS 3 supports VIDC lists in formats 0 and I; these include 

values that directly correspond to VIDCI register formats. These formats are not 
supported on RISC OS 3.5 and later; mode extend modules for RISC OS 2 and 3 

will not work. 

VIDC list: format 3 

A new format list (type 3) is used from RISC OS 3.5 onwards. which is independent 
of the video controller used: 

Offset 
0 

4 

8 

12 
16 

20 

24 

28 

32 

36 

Value 
3 (format of list) 

pixel depth: 0 ~ lbpp, I~ 2bpp, 2~ 4bpp 

horizontal: 

vertical: 

3 ~ 8bpp, 4 ~ 16bpp, 5~ 32bpp 

sync width (in pixels) 

back porch (in pixels) 

left border (in pixels) 

display size (in pixels) 

right border (in pixels) 

front porch (in pixels) 

sync width (in rasters) 

back porch (in rasters) 

40 top border (in rasters) 

44 display size (in rasters) 

48 bottom border (in rasters) 

52 front porch (in rasters) 

56 pixel rate (in kHz) 

60 sync polarities when composite sync not configured: 

bit 0 set ~ Hsync inverted 
bit I set ~ Vsync inverted 
bits 2 to 31 reserved (must be zero) 

64 video control parameters list 

n - I (terminator) 

Sa-125 



Service_ModeExtension (Service Call &50) 

5a-126 

The video control parameters list (at offset 64) does not normally contain entries 

for normal video operation . These are only needed for special video operation . The 

list contains pairs of words (control parameter index, value) terminated by a -I 

word. These control additional VIDC registers. bits in registers . and monitor power 

savings. These are described in the following table. Refer to the VIDC20 data sheet 

for detailed explanations. 

Control 
index 

2 

3 

4 

5 

6 
7 

8 

9 

JO 

11 

Parameter 
description 

LCD mode 

LCD dual-panel mode 

LCD offset register 0 

LCD offset register I 

Hi-res mode 

DAC control 

RGB pedestal enables 

External register 17:0] 

Reserved 

Reserved 

DPMS power saving 

Values 

0 ~disable . I ~ enable 

O ~disable. I ~enable 

0 - 255 

0 - 255 
0 ~disable . I ~enable 

0 ~disable , I ~enable (default) 

bit 0 = R. bit I = G. bit 2 = B 

0 - 255 

0 - 3; see Monitor power saving on 
page 5a-645 

Workspace list 

Returning a workspace list is relevant only if a mode number is passed in. If a 

pointer to a mode selector is passed in. RISC OS works out what the mode 

variables should be. there is no need to return a workspace list. and R4 is set to 

zero on exit . 

All values are words in the workspace list; its format is: 

Offset Value 

0 0 (indicates format of list) 
4 Workspace base mode 
8 Mode variable index 
12 Mode variable value 
16 Mode variable index 
20 Mode variable value 

n -I 



Video 

The workspace base mode is the number of an existing operating system screen 
mode which is used to determine the values of mode variables not explicitly 
mentioned in the list . The mode variable indices are the same as for the SW! 
OS_ReadModeVariable. 

General notes 

Modules can provide their own palette programming routines, including setting of 
the default palette, by claiming PaletteV. For more details see PaletteV on 
page 1- I 04 and page Sa-122 , and Service_ModeCfranging on page 1-627. 

The new computers fitted with VIDC20 vary in their video capabilities . The monitor 
type, video bandwidth and video RAM parameters allow a mode provider to supply 
screen modes with identical resolutions but different frame rates, tuned to the 
particular monitor and computer combination being used . However, any 
workspace parameters returned must be the same, as the mode number is used as 
an identifier in sprites and in calls such as OS_ReadModeVariable. 

This service call is not issued for combinations that RISC OS itself already 
supports. 

Monitor types are allocated by Acorn. There are no monitor types pre-reserved for 
general use by users . 

Sa-127 



Service_EnumerateScreenModes (Service Call &BD) 

Sa-128 

Service_EnumerateScreenModes 
(Service Call &80) 

Enumerates the available screen modes 

On entry 

RI = &80 (reason code) 
R2 = number of modes to skip 
R3 = monitor type 
R4 = memory bandwidth available (in bytes/sec) 
R5 =total amount of video RAM in system (in bytes) 
R6 = pointer to block to return data, or 0 to just count entries 
R7 =size of block (in bytes) if R6 -:I 0, or 0 if R6 = 0 

On exit 

Use 

RI = 0 if claimed (further valid modes are available, but would not fit in block); 
else preserved 

R2 = - (number of modes filled in) 
R3 - R5 preserved 
R6 = pointer to byte after last one filled in , or preserved if 0 on entry 
R7 =amount of unused space in block, 

or - (amount of space needed in block) if R6 = 0 on entry 

This service call enumerates the available screen modes. Modules return 
information on all modes they provide that work on the specified monitor type and 

which require no more than the specified memory bandwidth and video memory. 

OS_ScreenMode 2 provides a front-end for applications (see page 5a-134); you 

should use it rather than issuing this service call yourself. 

By setting R6 and R7 to zero, clients can find the amount of space required to hold 

all returned modes; they can then issue the call again to actually read the 
information . Alternatively, clients can use a fixed size buffer, and repeatedly issue 
the call until it is no longer claimed. When using this method, R2 on entry - the 
number of modes to skip this iteration - should be set to: 

(previous R2 on entry) - (R2 on exit) 

This is the same as: 

(number of modes skipped last time)+ (number of modes filled in this time) 



Each mode returned in the block is of the following format :-

Offset 

0 

4 

Value 

size of entry in bytes (24 for this format) 

mode provider flags : 
bit 0 =I 
bits I - 7 = mode info format specifier (zero for this format) 

bits 8 - 31 =additional mode info flags (must be zero) 

8 x-resolution (in pixels) 

12 y-resolution (in pixels) 

16 pixel depth (as for mode selector) 

20 frame rate (in Hz, to the nearest integer) 

Video 

24 mode name, null terminated, and then padded with nulls until it 
is word aligned. 
(For unnamed modes this will simply be a single word whose 
value is 0.) 

Future modules may use different mode info formats , therefore callers should 
check bits 0 - 7 of the mode provider flags before extracting the other information 
in this block. If the caller doesn't recognise the mode info format for an entry, then 
it can skip the entry by using the size field at offset 0. For format checking 
purposes, bits 8 - 31 should be ignored. 

Mode-providing modules that wish to respond to this service call should use this 
algorithm: 

For each mode that they want to return 
If R2 > 0 Then 

Next 

Else 

Endif 
R2 -= 1 

do nothing , ie skip it 

If R6<>0 Then 
(enumeration case - filling in block) 
If R7 >= entrysize Then 

Else 

End If 
Endif 
R7 entrysize 

store entry at R6 
R6 += entrysize 

(not enough space for next mode) 
Rl = 0 (Service_ Serviced) 
Return (ser vi c e cal l claimed) 

Return (service call passed on) 

This service call is only issued under RISC OS 3.5 and later. 

5a-129 



SW/ calls 

SWI calls 

5a-130 

Checks the validity of a sprite area 

OS_SpriteOp 17 
(SWI &65) 

On entry 

RO= 17 
RI = pointer to control block of sprite area 

On exit 

Use 

RO, RI preserved 

This checks the validity of a sprite area. Other OS_SpriteOp calls do not make such 
checks, since it would slow them down too much. Instead it is your application's 
responsibility to make this call. You would typically call it once after loading a 
sprite file, to satisfy yourself of the data's integrity. For efficiency, you should not 
make this call within a redraw loop. 

The validation treats offsets as unsigned numbers, and is as follows : 

The offset to the first sprite is word aligned, and lies within the 'used' part of 
the sprite area 

The offset to the free area is word aligned, and lies within the sprite area 
FOR each sprite 
DO The offset to the next sprite is word aligned, and lies within the 'used' 

OD 

part of the sprite area 
The first bit used is 0 for a new type sprite, or is in the range 0 - 31 for 

an old type sprite 
The last bit used is in the range 0 - 31 
The offset to the image is word aligned, and lies within the sprite 
The offset to the mask is word aligned, and lies within the sprite 
The space allowed for the sprite image is sufficient to hold an image 

of the given width, height, and bpp (assumed to be I bpp if 
the sprite's mode number is unknown) 

The space allowed for the sprite mask is sufficient to hold one of the 
given width, height, and bpp (I bpp for a new type sprite, or 
assumed to be I bpp if the sprite's mode number is unknown) 



Video 

If the sprite area is invalid in some way, an error is generated in the usual way for a 
SWI; the V flag is set on exit, and RO points to an error block. 

Sprites with an unknown mode number are still allowed, because such sprites can 
usefully occur in sprite files . 

These checks do not exclude sprites that conform to the definition of sprite areas , 
but include unusual features such as an extension area, or an unconventional 
palette size. 

This call is only available from RISC OS 3.6 onwards. 

Related SWls 

OS_SpriteOp 10 (page 1-768) , OS_SpriteOp 11 (page 1-769) 

Related vectors 

SpriteV 

Sa-131 



OS_ScreenMode (SW/ &65) 

Sa-132 

OS_ScreenMode 
(SWI &65) 

Performs miscellaneous operations for screen mode handling 

On entry 

RO = reason code 
Other registers depend upon the reason code 

On exit 

RO preserved 
Other registers depend upon the reason code 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This SWI performs miscellaneous operations for screen mode handling. 

The particular action of OS_ScreenMode is given by the reason code in RO as 
follows : 

RO 

0 

2 

3 

Action 

Selects a screen mode 

Returns the mode specifier for the current mode 

Enumerates the available screen modes 

Reserved for system use 

This call is only available from RISC OS 3.5 onwards. 

page 

5a-134 

5a- 137 

5a- 138 
5a-139 



Related SWls 

None 

Related vectors 

None 

Video 

5a-133 



OS_ScreenMode 0 (SW/ &65) 

5a-134 

Selects a screen mode 

OS_ScreenMode O 
(SWI &65) 

On entry 

RO= 0 (reason code) 
RI =mode specifier 

On exit 

Use 

All registers preserved 

This call selects the given screen mode. 

Mode number used 

If a mode number n is given, then the existing mechanisms are used to select this 
mode, exactly as if VDU 22 ,n were issued: 

• If the mode number is recognised by RISC OS then the mode variables for that 
mode are loaded from its internal tables. If it is not recognised then 
Service_ModeExtension is issued; the module which responds to this passes 
back a workspace list. which contains a base mode (that must be known to 
RISC OS) and a list of changes to mode variables. 

• In certain circumstances a substitute mode can be used 

Mode selector used 

If a pointer to a mode selector is given, then a new mechanism is used: 

• The mode variables are set from the values given in the mode selector block. 
Any mode variables which are not specified are given sensible defaults . based 
on the specified x and y resolutions and the pixel depth (see below). Note that 
RISC OS copies away the relevant information. so mode selector structures 
need not remain valid after the call has returned. 

• If the specified mode cannot be selected for any reason, then an error is always 
returned. 



Video 

The default values for any unspecified mode variables are as follows : 

Variable Default value 

Mode Flags 0 

ScrRCol (xres » 3) -1 

ScrBRow (yres » 3) -1 

NColour 
1, 3, 15, 63, &FFFF, &FFFFFFFF for 

pixdepth = 0 to 5 respectively 

XEigFactor 1 

YEigFactor 
1 if yres ~ xres/2, or 

2 if yres < xres/2 

Linelength (xres « pixdepth) » 3 

ScreenSize ((xres x yres) « pixdepth) » 3 

YShftFactor 0 

Log2BPP pixdepth 

Log2BPC pixdepth 

XWindlimit xres-1 

YWindlimit I yres-1 

I 
Service_ModeExtension still gets issued, but only if RISC OS does not know the 

video timings for the resolutions/pixel depth/frame rate asked for. The module 

responding provides only timing and other hardware control information, and not 

any mode variable values. 

In the case where pixdepth=3. the default value of NColour is 63 . This means that 

by default , the palette in 256-colour modes behaves as it does on VIDCI-based 

machines. i.e . palette entries get modified in groups of 16. This is so that programs 
which expect the old behaviour work in these modes without modification. 

To gain access to fully-pa lette-programmable 256 colour modes. you should 
explicitly set these variables: 

Variable 

Mode Flags 
NColour 

Value 
128 
255 

All 256 palette entries then become programmable, although they are initially 
identical to those on a VIDC I-based machine. 

5a-135 



OS_ScreenMode 0 (SW/ &65) 

Sa-136 

You might notice that there is no explicit way of selecting a shadow screen mode. 
In order to get this effect the program should ensure there is sufficient memory in 
the screen dynamic area and then switch screen banks. 



Video 

OS_ScreenMode 1 
(SWI &65) 

Returns the mode specifier for the current mode 

On entry 

RO= I (reason code) 

On exit 

Use 

RI =mode specifier 

This call returns the mode specifier for the current screen mode. 

If the current screen mode was selected by a mode number then that mode number 
is returned; otherwise a pointer to a mode selector is returned. 

Sa-137 



OS_ScreenMode 2 (SW/ &65) 

Sa-138 

Enumerates the available screen modes 

OS_ScreenMode 2 
(SWI &65) 

On entry 

RO= 2 (reason code) 
R2 =value of R2 to pass to Service_EnumerateScreenModes 
R6 =value of R6 to pass to Service_EnumerateScreenModes 
R7 =value of R7 to pass to Service_EnumerateScreenModes 

On exit 

Use 

RI =value of RI returned by Service_EnumerateScreenModes 
R2 =value of R2 returned by Service_EnumerateScreenModes 
R6 =value of R6 returned by Service_EnumerateScreenModes 
R7 =value of R7 returned by Service_EnumerateScreenModes 

This call provides a front-end to Service_EnumerateScreenModes (see 
page 5a- I 28) . It fills in R3 (the current monitor type). R4 (the memory bandwidth 
available) and R5 (the total amount of video RAM). and then issues the service call. 



Video 

OS_ScreenMode 3 
(SWI &65) 

This reason code is for system use only; you must not use it in your own code. 

Sa-139 



ScreenModes_Readlnfo (SW/ &487CO) 

Sa-140 

Reads the current monitor title 

On entry 

Screen Modes_Read Info 
(SWI &487CO) 

RO= 0 (reason code~ read current monitor title) 

On exit 

RO = pointer to current monitor title 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call reads the current monitor title, as loaded from the c rrent Modelnfo file . 
It is used by the Display Manager to show the monitor title i its title bar. 

Future versions of RISC OS may add other reason codes to t 

This call is only available from RISC OS 3.5 onwards. 

Related SWls 

None 

Related vectors 

None 



Video 

*Commands 
*LoadModeFile 

Loads a Modeinfo file into memory 

Syntax 

*LoadModeFile filename 

Parameters 

Use 

filename a valid pathname specifying a file 

This command loads a Modeinfo file into memory. If the file contains valid 
information , it sets the current monitor type to 7 (file). This then makes available 
all the screen modes defined in the file. while removing all modes defined in any 
previously loaded file . 

This command is only available from RISC OS 3.5 onwards. 

-. Example 

*LoadModeFile adfs::MHardy.$.Modes.AKF50 

Related commands 

None 

Sa-141 



*VIDCBandwidthLimit 

5a-142 

*VI DCBandwidthlimit 

This command is for internal use only; you must not use it in your own code. 

This command is only available from RISC OS 3.5 onwards. 



107 JPEG images 

Introduction and Overview 
The SpriteExtend module has been extended in RISC OS 3.6 to support JPEG 

images through a SWI interface. 

JPEG is an international standard data format for the lossy compression of 

photographic data , capable of encoding colour images at screen resolutions using 

about I Yi - 2 l/2 bits per pixel. 

Because of the compression used, many of the operations you can perform on 
uncompressed bitmaps - such as sprites - are difficult or impossible to perform on 

JPEG images. This includes operations such as adding or deleting rows or columns, 
and arbitrary transformations. The support provided for JPEG images is therefore 

restricted in RISC O_S 3.6 to providing information on them, and simple scaled 

plotting and printing. 

The CompressJPEG module 

A separate Compress JPEG module provides SWis with which you can compress raw 

data into a JPEG image. See the chapter Compress JPEG on page 5a-609 for details 
both of the compression and decompression algorithms used with JPEGs, and of 

the SW!s it provides. 

Sa-143 



Technical details 

Technical details 

SWI naming and numbering 

Although the SpriteExtend module provides the JPEG SWis. they use their own SW! 

chunk (base number &49980) and SW! name prefix ('JPEG_') . The SW!s are 

described below. from page 5a-146 onwards. 

The JPEG standard 

JFIF files 

5a-144 

The JPEG standard is split into two parts: 

• ISO DIS I 0918-1, Digital Compression and Coding of Continuous-tone Still 

Images. Part I: Requirements and guidelines. 

• ISO DIS 10918-2, Digital Compression and Coding of Continuous-tone Still 
Images. Part 2: Compliance testing. 

At the time of going to press. Part 2 was still in draft stage. 

You may also find these references useful : 

• The JPEG Still Picture Compression Standard I Gregory K Wallace 
in 
IEEE Transactions on Consumer Electronics. December 1991 . 

• JPEG Still Image Data Compression Standard I William B. Pennebaker; Joan L. 

Mitchell. - New York. USA: Van Nostrand Reinhold, 1993. 

The JPEG standard is wide-ranging in its scope, and allows many bizarre 
parameters and combinations. To limit these to more reasonable proportions 
various subsets of the standard have been defined. By far the most popular of 
these is the JFIF (JPEG File Interchange Format) standard, defined by C-Cube. This 

is widely used for the simple interchange of JPEG data; indeed. when people talk 

about 'JPEG files '. they usually mean JFIF files . 

The code in RISC OS modules only supports images that conform to version 1.02 

or earlier of the JFIF standard. JFIF files are allocated the file type &C85; the textual 

equivalent is 'JPEG'. The sprite for this file type is included in the Wimp sprite pool. 

Documentation of the JFIF standard is available as follows: 

• JPEG File Interchange Format (JFIF) I Eric Hamilton - version 1.02 - C-Cube 

Microsystems. 1778 McCarthy Blvd, Miltipas. CA 95035. 



JPEG images 

ChangeFSI and JPEG files 

ChangeFSI can output JPEG files ; these all conform to the JFIF standard. 

ChangeFSI also accepts JPEG files as input. If a file only uses the JFIF subset of the 
JPEG standard, ChangeFSI fully understands it, and so correctly processes it. If a 
file uses features that are excluded from the )FIF subset, about which ChangeFSI 
does not know, it will make assumptions. Sometimes these will be correct, and so 
the file will be correctly processed; otherwise the file will be incorrectly processed. 

Hence you cannot use ChangeFSI to test for JFIF-conformance. Some images 
that ChangeFSI correctly processes may be faulted by the SpriteExtend JPEG SWls 
as not conforming to the JFIF standard. 

Dithering of JPEGs 

When you call the JPEG plotting SWis you can set bit flags to request that when 
plotting to a shallow screen mode the output is dithered, with or without error 
diffusion. Three types of dithering are used: 

Ordered dither 

This is the simplest form of dithering available; it displays colours that are 
unavailable by using small patterns made up of the closest available colours. This 
is the default form of dithering, used in most cases when the dithering bit is set. 

YUV error diffused dither 

However, when decompressing a JPEG image into an 8bpp mode with the standard 
palette. an optimised mode is used. This uses a limited error diffusion technique 
directly on the YUV data in the JPEG, which vastly improves the appearance of the 
image. This technique will only work on JPEG images which have been compressed 
using an X and Y sample size of 2, as created both by the official Independent 
Group's software and by versions 1.03 onwards of ChangeFSI. 

It is thus possible that two apparently similar JPEG images can give quite different 
display qualities because they are compressed differently, and so RISC OS can only 
apply YUV error diffusion to one of them. 

Full error diffused dither 

If you set both the dithering and error diffusion bits , then this slower but more 
accurate form of dithering is used. Speed and space considerations mean that the 
output image will still not be quite so high a quality as ChangeFSI can produce. 

Under RISC OS 3.6 full error diffused dithering can only be used when plotting to 
an 8bpp screen mode. I 

Sa-145 



SW/ Calls 
-:,.;., 

SWI Calls 

5a-146 

Gives information on a JPEG image held in a buffer 

On entry 

RO= flags for desired operation: 

JPEG Info 
(SWI &49980) 

bit 0 set => return dimensions , clear=> don't return dimensions 

all other bits reserved (must be zero) 
RI =pointer to buffer holding JPEG image 
R2 = length of JPEG image, in bytes 

On exit 

RO= returned information flags: 
bit 0 set => greyscale image, clear=> colour image 
bit I set =>transformed plots not supported, clear=> supported 

bit 2 set => pixel density is a simple ratio, clear => pixel density is in dpi 

RI preserved 
R2 =width, in pixels (if RO bit 0 set on entry) 
R3 =height, in pixels (if RO bit 0 set on entry) 
R4 = x pixel density 
R5 = y pixel density 
R6 = SpriteExtend's additional extra workspace requirements to plot JPEG 

(0 =>no additional extra workspace required) 

Interrupts 

Interrupt status is undefined 
FIOs are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 



Use 

JPEG images 

This call gives information on a JPEG image held in a buffer in memory. 

It checks the header enough to return the width and height , and does a partial 
validation of the data. It returns an error if the image appears to be invalid; if no 
error is returned you may assume that the data is a JPEG image. 

This call is only available from RISC OS 3.6 onwards. 

Related SWls 

JPEG_Filelnfo (page Sa- 148) 

Related vectors 

None 

Sa-147 



JPEG_File/nfo (SW/ &49981) 

5a-148 

Gives information on a JPEG image held in a file 

JPEG_Filelnfo 
(SWI &49981) 

On entry 

RO= flags for desired operation: 
bit 0 set~ return dimensions, clear~ don't return dimensions 
all other bits reserved (must be zero) 

RI =pointer to pathname of JPEG file, control character terminated 

On exit 

RO = returned information flags: 
bit 0 set~ greyscale image, clear~ colour image 
bit I set ~ transformed plots not supported, clear~ supported 
bit 2 set ~ pixel density is a simple ratio, clear ~ pixel density is in dpi 

RI preserved 
R2 = width, in pixels 
R3 = height, in pixels 
R4 = x pixel density 
R5 = y pixel density 
R6 = SpriteExtend's additional extra workspace requirements to plot JPEG 

(0 ~ no additional extra workspace required) 

Interrupts 

Interrupt status is undefined 
FIOs are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call gives information on a JPEG image held in a file . 



JPEG images 

This call checks the header enough to return the width and height, and does a 
partial validation of the data. It returns an error if the image appears to be invalid; 
if no error is returned you may assume that the data is a JPEG image. 

This call is only available from RISC OS 3.6 onwards. 

Related SWls 

JPEG_Info (page 5a-146) 

Related vectors 

None 

Sa-149 



JPEG_PlotScaled (SW/ &49982) 

Sa-150 

JPEG PlotScaled 
{SWI &49982) 

Decompresses, scales , and plots on the screen a JPEG image held in a buffer 

On entry 

RO = pointer to buffer holding JPEG image 
RI = x coordinate at which to plot 
R2 = y coordinate at which to plot 
R3 =pointer to scale factors (see page l -7S2) : 0 ~no scaling 

R4 = length of JPEG image, in bytes 
RS= flags: 

bit 0 set ~ dither output when plotting 24 bit JPEG at l 6bpp or below 

bit I set~ dithering (if any) is full error diffused when plotting at 8bpp 

all other bits reserved (must be zero) 

On exit 

RO - RS preserved 

Interrupts 

Interrupt status is undefined 
F!Os are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This SW! decompresses, scales, and plots on the screen a JPEG image held in a 

buffer in memory. 

The functionality of this call for JPEGs is similar to that of OS_SpriteOp S2 (Put 

sprite scaled - see page 1-803) for sprites. The scale factors and the coordinates 

have exactly the same meaning, and the scaling algorithms used are the same in 

both calls. However, this call only supports a direct plot (ie plot action 0 of 

OS_SpriteOp S2) . 



JPEG images 

In plotting the JPEG, the SpriteExtend module may claim extra workspace in a 
dynamic area to store tables etc. It keeps these cached until either it is asked to 
plot a different JPEG, or the user decreases the dynamic area's size. This speeds up 
successive replots of the same JPEG . You can find how much extra workspace 
Sprite Extend will require - if any - by first calling JPEG_Info (page 5a- I 46) or 
JPEG_Filelnfo (page 5a-148) . You can hence ensure there is sufficient free memory 
before making this call. 

This call returns an error if it cannot claim sufficient memory to plot the JPEG 
image, or if the image appears incomplete or corrupt in some way. 

This call is only available from RISC OS 3.6 onwards. 

Related SWls 

JPEG_Info (page 5a- l 46), JPEG_Filelnfo (page 5a- l 48) 

Related vectors 

None 

Sa-151 



JPEG_PlotFileSca/ed (SW/ &49983) 

Sa-152 

JPEG_PlotFileScaled 
(SWI &49983) 

Decompresses, scales , and plots on the screen a JPEG image held in a file 

On entry 

RO= pointer to pathname of JPEG file , control character terminated 

RI = x coordinate at which to plot 
R2 = y coordinate at which to plot 
R3 =pointer to scale factors (see page 1-752): 0 ~no scaling 

R4 =flags: 
bit 0 set~ dither output when plotting 24 bit JPEG at 16bpp or below 

bit I set~ dithering (if any) is full error diffused when plotting at 8bpp 

all other bits reserved (must be zero) 

On exit 

RO - R4 preserved 

Interrupts 

Interrupt status is undefined 
FIOs are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This SWI decompresses, scales, and plots on the screen a JPEG image held in a file . 

The functionality of this call for JPEGs is similar to that of OS_SpriteOp 52 (Put 

sprite scaled - see page 1-803) for sprites. The scale factors and the coordinates 

have exactly the same meaning, and the scaling algorithms used are the same in 

both calls. However. this call only supports a direct plot (ie plot action 0 of 

OS_SpriteOp 52) . 



JPEG images 

The file is loaded into memory for the duration of the call, but is not cached. This 
call therefore uses as much memory as loading the file into a buffer yourself and 
then calling JPEG_PlotScaled (page 5a- I 50) , and gives you no control over whether 
the image remains cached. Furthermore, although the mechanism exists to pass 
this call on to the printer drivers, they do not support it. We therefore strongly 
recommend that you use JPEG_PlotScaled in preference to this call. 

As well as the memory to hold the file, the SpriteExtend module may claim extra 
workspace in a dynamic area to store tables etc. It keeps these cached until either 
it is asked to plot a different JPEG. or the user decreases the dynamic area's size. 
This speeds up successive replots of the same JPEG. You can find how much extra 
workspace SpriteExtend will require - if any - by first calling JPEG_Info 
(page 5a-146) or JPEG_Filelnfo (page 5a-148) . You can hence ensure there is 
sufficient free memory before making this call : enough both to hold the file , and to 
provide any extra workspace required. 

This call returns an error if it cannot claim sufficient memory to plot the JPEG 
image, or if the image appears incomplete or corrupt in some way. 

This call is only available from RISC OS 3.6 onwards. 

Related SWls 

JPEG_PlotScaled (page 5a- I 50) 

Related vectors 

None 

5a-153 



JPEG_PlotTransformed (SW/ &49984) 

5a-154 

JPEG_PlotTransformed 
(SWI &49984) 

Decompresses, transforms, and plots on the screen a JPEG image held in a buffer 

On entry 

RO = pointer to buffer holding JPEG image 
RI =flags: 

bit 0 set ~ R2 = pointer to destination coordinate block, else to matrix 
bit I set~ dither output when plotting 24 bit JPEG at 16bpp or below 
bit 2 set~ dithering (if any) is full error diffused when plotting at 8bpp 
all other bits reserved (must be zero) 

R2 =pointer to destination coordinate block (if R2 bit 0 set), or 
pointer to Draw-style transformation matrix (if R2 bit 0 clear) 

R3 = length of JPEG image, in bytes 

On exit 

RO - R3 preserved 

Interrupts 

Interrupt status is undefined 
FIOs are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This SWI decompresses, transforms, and plots on the screen a JPEG image held in 

a buffer in memory. 

The functionality of this call for JPEGs is similar to that of OS_SpriteOp 56 (Put 

sprite transformed - see page 1-806) for sprites. The destination coordinate block 
and the transformation matrix have exactly the same meaning. However, this call 

only supports a direct plot (ie plot action O of OS_SpriteOp 56) . 



JPEG images 

Under RISC OS 3.6 this call only supports simple scaling, with no rotation or other 
transformation involved. Any unsupported transformation gives an appropriate 
error. 

In plotting the JPEG, the SpriteExtend module may claim extra workspace in a 
dyn_amic area to store tables etc. It keeps these cached until either it is asked to 
plot a different JPEG, or the user decreases the dynamic area's size. This speeds up 
successive replots of the same JPEG. You can find how much extra workspace 
SpriteExtend will require - if any - by first calling JPEG_Info (page 5a-146) or 
JPEG_Filelnfo (page 5a- l 48). You can hence ensure there is sufficient free memory 
before making this call. 

This call returns an error if it cannot claim sufficient memory to plot the JPEG 
image, or if the image appears incomplete or corrupt in some way. 

This call is only available from RISC OS 3.6 onwards. 

Related SWls 

JPEG_Info (page 5a-146). JPEG_Filelnfo (page 5a-148), 
JPEG_PlotScaled (page 5a- I 50) 

Related vectors 

None 

5a-155 



JPEG_PlotFileTransformed (SW/ &49985) 

5a-156 

JPEG PlotFileTransformed 
(SWI &49985) 

Decompresses, transforms, and plots on the screen a JPEG image held in a file 

On entry 

RO =pointer to pathname of JPEG file, control character terminated 
RI =flags: 

bit 0 set ~ R2 = pointer to destination coordinate block, else to matrix 
bit I set~ dither output when plotting 24 bit JPEG at 16bpp or below 
bit 2 set~ dithering (if any) is full error diffused when plotting at 8bpp 
all other bits reserved (must be zero) 

R2 =pointer to destination coordinate block (if R2 bit 0 set). or 
pointer to Draw-style transformation matrix (if R2 bit 0 clear) 

On exit 

RO - R2 preserved 

Interrupts 

Interrupt status is undefined 
FIOs are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This SWI decompresses , transforms, and plots on the screen a JPEG image held in 

a file . 

The functionality of this call for JPEGs is similar to that of OS_SpriteOp 56 (Put 
sprite transformed - see page 1-806) for sprites. The destination coordinate block 
and the transformation matrix have exactly the same meaning. However, this call 

only supports a direct plot (ie plot action 0 of OS_SpriteOp 56) . 



JPEG images 

Under RISC OS 3.6 this call only supports simple scaling, with no rotation or other 
transformation involved. Any unsupported transformation gives an appropriate 
error. 

The file is loaded into memory for the duration of the call , but is not cached. This 
call therefore uses as much memory as loading the file into a buffer yourself and 
then calling JPEG_PlotTransformed (page 5a- l 54), and gives you no control over 
whether the image remains cached. Furthermore, although the mechanism exists 
to pass this call on to the printer drivers, they do not support it . We therefore 
strongly recommend that you use JPEG_PlotTransformed in preference to this call. 

As well as the memory to hold the file, the SpriteExtend module may claim extra 
workspace in a dynamic area to store tables etc. It keeps these cached until either 
it is asked to plot a different JPEG, or the user decreases the dynamic area's size. 
This speeds up successive replots of the same JPEG. You can find how much extra 
workspace SpriteExtend will require - if any - by first calling JPEG_Info 
(page 5a- I 46) or JPEG_Filelnfo (page 5a- I 48) . You can hence ensure there is 
sufficient free memory before making this call : enough both to hold the file, and to 
provide any extra workspace required. 

This call returns an error if it cannot claim sufficient memory to plot the JPEG 
image, or if the image appears incomplete or corrupt in some way. 

This call is only available from RISC OS 3.6 onwards. 

Related SWls 

JPEG_PlotTransformed (page 5a-l 54) 

Related vectors 

None 

5a-157 



JPEG_PDriverlntercept (SW/ &49986) 

5a-158 

JPEG_PDriverlntercept 
{SWI &49986) 

Requests that SpriteExtend passes on all calls to JPEG plotting SWis 

On entry 

RO= flags: 
bit 0 set~ pass on plotting calls. clear~ don't pass on plotting calls 
bit I set~ use translation tables, clear~ don't use translation tables 
all other bits reserved (must be zero) 

On exit 

RO = previous intercept state 

Interrupts 

Interrupt status is undefined 
F!Os are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This SWI is used by the printer drivers to request that SpriteExtend passes on all 
calls to JPEG plotting SWls by itself calling PDriver_JPEGSWI (see page 5a-58 J) . 

When SpriteExtend passes on these calls, it ignores them itself. 

You must not make this call from your own applications. 

The JPEG plotting SWls (ie those that are passed on) are listed in Related SWls 
below. 



JPEG images 

Related SWls 

JPEG_PlotScaled (page 5a-l 50), JPEG_PlotFileScaled (page 5a-l 52) 
JPEG_PlotTransformed (page 5a-l 54). JPEG_PlotFileTransformed (page 5a-l 56) 

Related vectors 

None 

Sa-159 



5a-160 



108 Miscellaneous kernel items 

Introduction and Overview 
This chapter describes some minor changes that do not belong in any of the 
previous chapters about the kernel. 

Changes to existing SWls 

OS_Byte 129 (page 1-870) 

NewSWI 

When reading the OS version identifier, RI returns on exit the value: 

• &A5 for RISC OS 3.5 

• &A6 for RISC OS 3.6. 

A SWI has been added in RISC OS 3.5 to reset the computer. It is described 
overleaf. 

Sa-161 



SW/ Calls 

SWI Calls 

Sa-162 

Performs a hard reset 

On entry 

On exit 

Does not exit! 

Interrupts 

Interrupt state is not defined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Irrelevant 

Use 

This call performs a hard reset. 

It is only available from RISC OS 3.5 onwards. 

Related SWls 

None 

Related vectors 

None 

OS_Reset 
(SWI &6A) 



Part 16 - Filing and networking 

Sa-163 



5a-164 



109 FileSwitch 

Introduction and Overview 
Under RISC OS 3.6 FileSwitch has been extended to support larger capacity 
storage devices , such as those now supported by FileCore-based filing systems. 

The only change made has been to provide three new reason codes for 
OS_FSControl (page 2-77). each of which duplicates previously available 
functionality, but allows 64 bit values to be passed or returned instead of 32 bit 
values. 

New OS_FSControl reason codes (page 2-77) 

The three new reason codes are: 

RO Action 

55 Read the free space on the disc or image file that holds a 
specified object 

56 Return the defect list for an image 
57 Map out a defect from an image 

New filing system entry points 

Page 

5a-166 

5a-167 
5a-168 

For each of the new OS_FSControl reason codes, a corresponding new reason code 
has been added to those that may be passed to a filing system's FSEntry_Func 
entry point and to an image filing system's lmageEntry_Func entry point. 

If you are writing a filing system, and hence need to know the details of these new 
reason codes. you should see Writing a filing system on page 5a-259. 

Sa-165 



SW/ Calls 

SWI Calls 

5a-166 

OS_FSControl 55 
(SWI &29) 

Reads the free space on the disc or image file that holds a specified object 

On entry 

RO= 55 (reason code) 
RI =pointer to name of object (null terminated) 

On exit 

Use 

RO = bits O - 31 of free space 
RI =bits 32 - 63 of free space 
R2 = largest creatable object 
R3 = bits 0 - 31 of disc size 
R4 =bits 32 - 63 of disc size 

This call reads the free space on the disc or image file that holds the specified 

object. It also returns the size of the largest creatable object, and the size of the 

disc. 

This call is similar to OS_FSControl 49 (page 2-131) , except the values for disc size 

and free space returned are 64 bit values. If an error occurs , this may mean the 
filing system does not support this call, in which case you should then try 
OS_FSControl 49. 

This call is only available from RISC OS 3.6 onwards. and returns incorrect 
information for NetFS. 



Returns the defect list for an image 

FileSwitch 

OS_FSControl 56 
{SWI &29) 

On entry 

RO= S6 (reason code) 
RI =pointer to name of image (null terminated) 
R2 = pointer to buffer 
RS = buffer length 

On exit 

Use 

RO preserved 
RI =number of defects placed in buffer 
R2 , RS preserved 

This call fills the given buffer with a defect list, which gives the byte offset to the 
start of each defect . Each entry in the list is a pair of words - with the least 
significant one first - giving the address of the defect as a 64 bit value. 

This call is similar to OS_FSControl 41 (page 2-123). If an error occurs, this may 
mean the filing system does not support this call . in which case you should then 
try OS_FSControl 41 . 

This call is only available from RISC OS 3.6 onwards, and returns incorrect 
information for NetFS. 

Sa-167 



OS_FSControl 57 (SW/ &29) 

5a-168 

Maps out a defect from an image 

OS_FSControl 57 
{SWI &29) 

On entry 

RO= 57 (reason code) 
RI =pointer to name of image (null terminated) 
R2 = bits 0 - 3 I of offset to start of defect 
R3 =bits 32 - 63 of offset to start of defect 

On exit 

Use 

RO - R2 preserved 

This call maps out a defect from the given image. 

This call is similar to OS_FSControl 42 (page 2- I 24), except the offset to the defect 

is passed as a 64 bit value. If an error occurs, this may mean the filing system does 

not support this call, in which case you should then try OS_FSControl 42. 

This call is only available from RISC OS 3.6 onwards, and returns incorrect 
information for NetFS. 



110 FileCore 

Introduction and Overview 
Under RISC OS 3.5 and earlier, FileCore-based filing systems can support 4 hard 
discs , each with a maximum size of 512 MB, giving a maximum storage capacity per 
filing system of 2 GB. 

This limitation means that using hard discs larger than 512 MB would involve 
mounting separate partitions as 'discs'; and using discs larger than 2 GB would 
require multiple filing systems per disc. 

With the continuing push by hard disc manufacturers to reduce the cost per 
megabyte of their devices , drives with less than 512 MB capacity will cease to be 
the most cost-effective ones. Furthermore, higher capacity drives are now 
becoming readily available at affordable prices. 

Clearly the limitations of FileCore-based filing systems are becoming increasingly 
restrictive. RISC OS 3.6 introduces extensions to the logical format of 
FileCore-based filing systems that remove many of these restrictions, as a result of 
which: 

• the recommended maximum hard disc size is 4 GB 

• the maximum size of a file (and hence of an image filing system) is 231 -I bytes 
(2GB) 

• the maximum number of disc objects remains 215-2 (32766) . 

FileSwitch based systems remain as before: 

• the maximum hard disc size is dependent on the underlying file system 

• the maximum size of a file (and hence of an image filing system) is 232-1 bytes 
(4GB) 

• the maximum number of disc objects is dependent on the underlying file 
system. 

Sa-169 



Technical details 

Technical details 

Disc record 

The disc record (page 2-202) has been extended to support large discs. This uses 

some of the reserved bytes at the end of the record, the tail end of which now is as 

follows: 

Offset Name Meaning 

36 disc_size_ 2 Most significant word of disc size, in bytes 

40 share_size bits 0 - 3: log2 (sharing granularity in sectors) 
bits 4 - 7: reserved - must be zero 

41 big_flag bit 0: set ~ RISC OS partition is > 512 MB 
bits I - 7: reserved - must be zero 

42 - 59 Reserved- must be zero 

The disc_size_2 field gives the most significant word of the disc size, and so is used 

for discs of over 4 GB. (The least significant word is held in the disc_size field .) 

The big_flag bit is so FileCore can tell at mount time whether or not the RISC OS 

filing system on the disc is big (ie > 512 MB in size). and hence whether or not it 

uses the new logical format . It cannot use the disc_size fields for this, since a disc of 

over 512 MB may only have a small RISC OS partition, and use the rest of the disc 

- . for RISC iX. 

Disc addresses 

The share_size field controls the granularity of sharing. See internal disc addresses on 

page 5a- I 7 I. 

Physical disc addresses 

5a-170 

FileCore performs all low-level disc access through two entry points - DiscOp and 

MiscOp - provided by FileCore modules such as ADFS. Disc addresses are passed 

to these entry points as a 32 bit quantity. 

Under RISC OS 3.5 and earlier, the physical disc address (page 2-208) combines 

both the drive number (0 - 7, held in bits 29 - 31 ), and the byte offset into the disc 

(0 - 512 MB, held in bits 0 - 28) . It is this offset field that restricts FileCore discs to 

a maximum size of 512 MB. 

However, some bits in the offset are redundant , since all programmer interfaces 

use sector aligned addresses. In RISC OS 3.6 FileCore has been enhanced to make 

use of these bits; it now also supports disc addresses where the offset is given in 



FileCore 

sectors, rather than in bytes. So with the resulting 29 bit sector number, and a 
sector size of 512 bytes (as typically used on !DE hard discs). this gives a maximum 
theoretical disc size of 229 x 512 bytes , or 256 GB. 

Internal disc addresses 

Defect list 

FileCore can share the use of a disc object on a new map disc (ie a logical group of 
fragments) between many objects (ie files or directories). The objects must either 
be a directory and files within that directory, or files that have the same parent 
directory. There may not be more than one directory in any disc object, since the 
directory must always be at the start of the disc object. 

New map discs use an internal disc address (see page 2-209) to refer to shared 
objects, specifying them in terms of their fragment id (0 - & 7FFF). and their offset 
within the disc object (0 - 254, stored as 1 - 255) . Under RISC OS 3.5 and earlier, 
the offset is in units of sectors, which with a 512 byte sector size corresponds to 
0 - 127 KB. Thus FileCore can only share the first 254 sectors ( 127 KB for our 
example) of a shared disc object, and if the smallest fragment size is larger than 
this FileCore cannot share all the space in shared disc objects. 

From RISC OS 3.6 onwards, you can increase the granularity of the offset within the 
disc object. It now gives the offset in units of 2share_size sectors, where share_size 
comes from the disc record. You should ensure that if you format a disc, share_size is 
sufficiently large for the following to be true: 

smallest fragment sizes; (254 X 2log2secsize X 2share_size) 

FileCore can then share all the space within a shared disc object. 

The defect list (page 2-213) has been extended by appending a second defect list 
containing all defects more than 512 MB from the start of the disc. The list works 
similarly to the first one, but all disc addresses are stored as absolute sector 
numbers, and the final marker word is &400000yy. The byte yy is a check-byte 
calculated from the previous words in the second defect list only. It is calculated in 
the same way as the check-byte for the first defect list . Thus a new defect list would 
look like: 

defect byte a ddress(es) 
&200000.xx 
defect sector addres s (es) 
&400000yy 

An empty defect list would now be: 

&20000000 
&40000000 

Sa-171 



Maximum practical disc size 

To determine whether the second defect list is present, you should examine the 
bigJlag byte (see Disc record on page 5a-l 70). If bit 0 is set then the second defect 
list must be present. 

Maximum practical disc size 

As discs get larger, so does the smallest fragment size required to format them. For 
example on a 4 GB disc the smallest fragment size rises to l 28K, for two reasons: 

• The maximum length of a new map is 64 KB, because the FreeLink field in the 
map block header (see Header on page 2-20 I) must be able to point to the end 
of the map, and is only two bytes long. There are hence 5 l 2K (64K x 8) 
allocation bits in the map. 

The allocation size is disc size I allocation bits, which is 4GB I 5 I 2K, or 8 KB. 

From page 2-204, the smallest fragment size is (idlen + I) x allocation unit, 
which is (15 +I) x 8 KB, or 128 KB. 

• The number of possible fragment ids is 2idlen_ Since idlen cannot exceed 15, 
this is a maximum of 215. 

Each fragment must have available its own fragment id. The smallest fragment 
size is therefore (disc size I maximum fragment id). which is 4 GB I 215 , or 
128 KB. 

You can use larger discs, but with smallest fragment sizes of 256 KB or more, you 
are likely to waste high proportions of disc space in normal use. For this reason we 
don't recommend you do so. 

Disc formats 
D format hard discs are not supported from RISC OS 3.5 onwards. 

The RISC OS 3.6 version of FileCore supports all current E and F format discs . 

Changes to existing SWls 

Sa-172 

FileCore_DiscOp (page 2-221) 

With previous versions of FileCore, on exit from the call, R2 contains the disc 
address of the next byte to be transferred. From RISC OS 3.6 onwards the address 
returned is rounded down to be sector aligned. 

FileCore_ Create (page 2-226) 

The descriptor block pointed to by RO has had a new flag bit added to indicate 
support for sector addressing. See Descriptor block (page 2-587) on page 5a-263. 



FileCore 

FileCore_FreeSpace (page 2-229) 

NewSWls 

The values this call returns may now be too large to represent in a single register. 
To avoid such problems, the values returned are limited to a maximum of 
&7FFFFFFF, which you may take to mean 'at least 2 GB'. 

See also FileCore_FreeSpace64 (page 5a- l 8 l) , a new SWI which provides facilities 
for returning 64 bit values. 

The following new SWls have been added to FileCore: 

• FileCore_MiscOp has had two reason codes added: 
Reason code 6 (page 5a-l 74) reads the information passed in a descriptor 
block when creating a new instantiation of a FileCore based filing system. The 
main use of this is to determine whether a filing system supports sector 
addressing, or only byte addressing. 
Reason code 7 (page 5a-l 75) returns the status of a drive; under RISC OS 3.6, 
this information is restricted to whether or not a drive is locked. 

• FileCore_SectorOp (page 5a- l 76) provides the same functionality as 
FileCore_DiscOp, save that it uses sector addresses rather than byte 
addresses. 

• FileCore_FreeSpace64 (page 5a- l 8 l) provides the same functionality as 
FileCore_FreeSpace, but uses 64 bit values rather than 32 bit ones. 

Sa-173 



SW/ Calls 

SWI Calls 

Entry 

Exit 

Use 

5a-174 

FileCore_MiscOp 6 
{SWI &40549) 

Reads information from a FileCore module's descriptor block 

RO= 6 (reason code) 
R8 = pointer to FileCore instance private word. 

RO = pointer to block: 

Offset 

0 
3 
4 

8 
12 
18 

Contains 
bit flags from FileCore module's descriptor block 
filing system number 
address of filing system title 
address of boot text 
address of low-level disc op entry 
address of low-level miscellaneous entry 

This call reads information from a FileCore module's descriptor block (page 2-587 
and page 5a-263). as passed to FileCore_Create (page 2-226) . However this call 
returns addresses, rather than the offsets into the module that you pass to 
FileCore_ Create. 

The main use of this call is to determine whether a filing system supports sector 
addressing (bit 2 of the bit flags is set), or only byte addressing (bit 2 of the bit 
flags is clear). 

This call is only available from RISC OS 3.6 onwards . 



Entry 

Exit 

Use 

Returns the status of the given drive 

RO= 7 (reason code) 
RI =drive number 
R8 = pointer to FileCore instance private word. 

R2 =flag word : 
bit 0 set ~ drive is locked 
all other bits reserved 

FileCore 

FileCore_MiscOp 7 
{SWI &40549) 

This call returns the status of the given drive. It can be called in the background 

The main use of this call is so that FileCore can cleanly check whether or not a drive 
is locked before restarting a background read or write operation. 

This call is only available from RISC OS 3.6 onwards. 

5a-175 



FileCore_SectorOp (SW/ &4054A) 

Sa-176 

FileCore_SectorOp 
(SWI &4054A) 

Performs various operations on a disc using sector addressing 

On entry 

RI bits 0 - 3 = reason code 
bits 4 - 7 = option bits 
bits 8 - 31 = bits 2 - 25 of pointer to alternative disc record, or zero 

R2 = disc address 
R3 = pointer to buffer 
R4 = length in bytes 
R6 = cache handle 
R8 = pointer to FileCore instance private word 

On exit 

RI preserved 
R2 = disc address of next sector to which to transfer 
R3 = pointer to next buffer location to be transferred 
R4 =number of bytes not transferred 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 



Use 

FileCore 

This call performs various disc operations as specified by bits 0 - 3 of RI: 

Value Meaning Uses Updates 

0 Verify R2 , R4 R2,R4 
Read sectors R2,R3,R4 R2, R3, R4 

2 Write sectors R2 , R3, R4 R2, R3 , R4 
3 Floppy disc: read track R2 , R3 

Hard disc: read Id R2, R3 
4 Write track R2 , R3 
5 Seek (used only to park) R2 
6 Restore R2 
7 Floppy disc: step in t 
8 Floppy disc: step out t 
9 Read sectors via cache R2,R3 , R4, R6 R2 , R3 , R4, R6 
15 Hard disc: specify R2 

t These reason codes are only valid with the I 772 disc controller. They are 
not supported on 710/711 based machines (such as the A5000) and should 
be avoided for future compatibility. 

This call provides the same functionality as FileCore_DiscOp (page 2-221). save 
that it uses sector addresses rather than byte addresses. It is only available from 
RISC OS 3.6 onwards. 

Option bits 

The option bits have the following meanings: 

Bit 4 
This bit is set if an alternate defect list for a hard disc is to be used. This is 
assumed to be in RAM 64 bytes after the start of the disc record pointed to by 
bits 8 - 31 of RI shifted left 6 bits (so they form bits 2 - 25 of the pointer) . 

This bit may only be set for old map discs . 

Bit 5 
If this bit is set, then the meaning of R3 is altered . It does not point to the area 
of RAM to or from which the disc data is to be transferred. Instead, it points to 
a word-aligned list of memory address/length pairs. All but the last of these 
lengths must be a multiple of the sector size. These word-pairs are used for the 
transfer until the total number of bytes given in R4 has been transferred. 

On exit, R3 points to the first pair which wasn't fully used, and this pair is 
updated to reflect the new start address/bytes remaining, so that a subsequent 
call would continue from where this call has finished. 

This bit may only be set for reason codes 0 - 2. 

Sa-177 



FileCore_SectorOp (SW/ &4054A) 

5a-178 

Bit 6 

If this bit is set then escape conditions are ignored during the operation, 

otherwise they cause it to be aborted. 

Bit 7 

If this bit is set, then the usual timeout for floppy discs of 1 second is not used. 

Instead FileCore will wait (forever if necessary) for the drive to become ready. 

Disc address 

The disc address is a sector offset from the start of the disc. It must be on a track 

boundary for reason codes other than 0-2 and 9. Note that you must make 

allowances for any defects , as the disc address is not corrected for them. 

For reason code 6 (restore) , the disc address is only used for the drive number; the 

bottom 29 bits should be set to zero. 

Where the transfer length is not a multiple of the sector size, the end disc address 

specifies the sector holding the byte after the last one that was transferred. 

The specify disc command (reason code 15) sets up the defective sector list, hardware 

information and disc description from the disc record supplied. Note that in 

memory, this information must be stored in the order disc record, then defect 

list/hardware parameters. 

Read Track/ID (reason code 3) 

If the alternate defect list option bit (bit 4) is set in RI on entry when reading a 

track/ID, then a whole track's worth of ID fields is read. This usage is not available 

under RISC OS 2. 

The call reads 4 bytes of sector ID information into the buffer pointed to by R3 for 

every sector on the track. The order of data is: 

Cylinder 
Head 
Sector number 
Sector size (0= 128, 1 = 256, etc) 

For floppy discs , the operation is terminated after 200mS (I revolution) . 

The first sector ID transferred will normally be that following the index mark (it may 

be the second if there is abnormal interrupt latency from the index pulse 

interrupt) . The first two !D's read may also be duplicated at the buffer end due to 

interrupt latency. Consequently the buffer should be at least 16 bytes longer than 

the maximum number of IDs expected (512 bytes at most). 



FileCore 

The disc record provided is updated to return the actual number of sectors per 
track found (at offset 1 ). Note to use this option you must provide a valid defect list 
following on after the disc record. The minimal defect list is a word of &20000000 
for small discs (ie byte addressed), or two words of &20000000 followed by 
&40000000 for large discs (ie sector addressed) . 

Write Track (reason code 4) 

If R3 (the buffer pointer) is non-zero on entry, this reason code is used to write a 
track. This usage is specific to the 1772 disc controller. 

If R3 is zero on entry, this reason code is instead used to format a track; R4 then 
points to a disc format structure. This usage is available with all controllers, but is 
not available under RISC OS 2. 

The disc format structure pointed to by R4 is as follows : 

Offset Length Meaning 

0 4 Sector size in bytes (which must be a multiple of 128) 
4 4 Gap! 
8 4 Reserved- must be zero 
12 4 Gap3 
16 Sectors per track 
17 Density: 

1 single density ( l 25Kbps FM) 
2 double density (250Kbps FM) 
3 double+ density (300Kbps FM) 

(ie higher rotation speed double density) 

18 

19 
20 
24 
36 

4 
12 
? 

4 quad density (500Kbps FM) 
8 octal density ( 1 OOOKbps FM) 
Options: 
bit 0 1 
bit 1 
bits 2-3 O 

1 - 3 
bits 4-7 
Sector fill value 

index mark required 
double step 
interleave sides 
sequence sides 
reserved - must be 0 

Cylinders per drive (normally 80) 
Reserved - must be 0 
Sector ID buffer, 1 word per sector: 
bits 0 - 7 Cylinder number mod 256 
bits 8 - 15 Head (0 for side 1, 1 for side 2) 
bits 16 - 23 Sector number 
bits 24 - 31 Log2 (sector size) - 7, eg 1 for 256 byte sector 

Sa-179 



FileCore_SectorOp (SW/ &4054A) 

Sa-180 

An error is generated if the specified format is not possible to generate, or if the 

track requested is outside the valid range. The tracks are numbered from 0 to 

(number of tracks) - I. The mapping of the address is controlled by the disc 

structure record. 

Read sectors via cache (reason code 9) 

This reason code reads sectors via a cache held in the RMA. It is not available 

under RISC OS 2. 

To start a sequence of these operations , set R6 (the cache handle) to zero on entry. 

Its value will be updated on exit , and subsequent calls should use this new value. 

Bits 4 - 7 of RI should be zero, and are igrored if set. 

To discard the cache once finished , call FileCore_DiscardReadSectorsCache (see 

page 2-233) . 

Related SWls 

None 

Related vectors 

None 



FileCore 

FileCore_FreeSpace64 
(SWI &40548) 

Returns 64 bit information on a disc's free space 

On entry 

RO = pointer to disc specifier (null terminated) 
R8 = pointer to FileCore instance private word 

On exit 

RO = bits 0 - 31 of total free space on disc 
RI =bits 32 - 63 of total free space on disc 
R2 =size of largest object that can be created, or &7FFFFFFF if 2 GB or more 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call returns the total free space on the given disc, and the largest object that 
can be created on it. As with FileCore_FreeSpace (see page 5a-l 73), the returned 
size of largest object is restricted to a maximum of &7FFFFFFF. meaning 'at least 2 GB' . 

This call is only available from RISC OS 3.6 onwards. 

Related SWls 

None 

Related vectors 

None 

Sa-181 



5a-182 



111 ADFS 

Introduction and Overview 

Logical block addressing (LBA) 
Logical block addressing (or LBA) is a method of disc addressing for IDE discs , which is 
superseding the old Cylinder-head-sector (or CHS) method of disc addressing. The 
LBA method has been introduced by hard drive manufacturers because the CHS 
method would not work under MS-DOS for drives greater than 528 MB; so LBA is 
typically only used with these larger discs. and smaller discs continue to use CHS. 

From RISC OS 3.6 onwards. ADFS supports IDE discs that use LBA. It recognises an 
LBA disc by a flag in the hardware dependant parameters of the boot block, which 
is set appropriately by formatting software such as HForm. The flag is at offset 
& I BA in the boot block; if bit 0 is set, the disc uses LBA. 

The main advantage gained from the use of LBA is faster conversion of disc 
addresses. The disc address that FileCore passes to the low-level entry points of 
ADFS is a sector offset into the disc (which is the same as the LBA). with a drive 
number in the top bits. Converting to LBA just involves masking out the drive 
number. whereas converting to CHS requires two divisions by numbers which are 
only known at run-time. Since ADFS converts disc addresses during IRO handling, 
using LBA improves IRO latency. 

Changes to existing SWls 

ADFS_DiscOp (page 2-279) 

ADFS does not support reason code 3 for all hard discs . It also does not support 
bit 4 of the option bits (ie the 'use alternate defect list' bit) . 

Sa-183 



NewSW/s 

NewSWls 

Sa-184 

Three new SW!s have been introduced in RISC OS 3.6: 

• ADFS_Lock!DE (page 5a-186) locks/unlocks the IDE bus. 

• ADFS_SectorDiscOp (page 5a- l 85) calls FileCore_SectorOp; it hence provides 

the same functionality as ADFS_DiscOp, save that it uses sector addresses 

rather than byte addresses. 

• ADFS_FreeSpace64 (page 5a-187) calls FileCore_FreeSpace64; it hence 

provides the same functionality as ADFS_FreeSpace, but uses 64 bit values 

rather than 32 bit ones. 



SWI Calls 

Calls FileCore_SectorOp 

On entry 

See FileCore_SectorOp (page 5a-l 76) 

On exit 

See FileCore_SectorOp (page 5a-l 76) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

ADFS 

ADFS_SectorDiscOp 
{SWI &40240) 

This SW! calls FileCore_SectorOp (page 5a-l 76). after first setting R8 to point to 
the FileCore instantiation private word for ADFS. 

ADFS does not support reason code 3 for all hard discs . It also does not support 
bit 4 of the option bits (ie the 'use alternate defect list' bit) . 

This call is functionally identical to FileCore_SectorOp. 

Related SWls 

FileCore_SectorOp (page 5a-I 76). ADFS_DiscOp (page 2-279) 

Related vectors 
None 

Sa-185 



ADFS_Lock/DE (SW/ &40251) 

Sa-186 

Locks/unlocks the IDE bus 

ADFS_LocklDE 
(SWI &40251) 

On entry 

RO= flags : 
bit 0 clear==} unlock IDE bus, set =} lock IDE bus 

all other bits reserved (must be zero) 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call locks/unlocks the IDE bus. An error is generated ( & I 080A, 'Driver in use') 

if the bus is already locked when you attempt to lock it . 

When attempting to lock in the background, you should not attempt to loop, 

repeatedly locking, since the process in control of the lock could be a foreground 

process. Instead, you should be schedule a retry for a later time. 

Related SWls 

None 

Related vectors 

None 



Calls FileCore_FreeSpace64 

On entry 

See FileCore_FreeSpace64 (page 5a- l 8 l) 

On exit 

See FileCore_FreeSpace64 (page 5a- l 8 l) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

ADFS_FreeSpace64 
(SWI &40252) 

This SWI calls FileCore_FreeSpace64 (page 5a-181 ). after first setting R8 to point to 
the FileCore instantiation private word for ADFS. 

This call is functionally identical to FileCore_FreeSpace64. 

Related SWls 

FileCore_FreeSpace64 (page 5a-181). ADFS_FreeSpace (page 2-283) 

Related vectors 

None 

Sa-187 



Sa-188 



112 DOSFS 

Introduction and Overview 

Support for larger DOSFS image files 

Under RISC OS 3.5 and earlier a DOSFS image file had a maximum size of 32 MB. 
This limit was imposed by the DOS boot block used in laying out the image file . 

RISC OS 3.6 uses a newer type of DOS boot block which removes this restriction. 

Less stringent checking of DOS formats 

Under RISC OS 3.6 and later, DOSFS is less stringent in its checking of DOS 
formats . Some discs that earlier versions of DOSFS rejected are now accepted. In 
particular DOSFS no longer checks for two FATs, and will accept discs that have just 
one FAT. 

Sa-189 



Sa-190 



113 CDs and CD-ROMs 

Introduction 
Support has been added to RISC OS 3.6 for CDs and CD-ROMs. This software was 
previously separately available, and was typically supplied in a ROM on the SCSI 
card used to interface to a SCSI-based CD-ROM drive. 

The software provides a filing system with which you can access files on a CD-ROM 
that conforms to the widely used ISO 9660 standard. It also provides commands 
with which you can play audio CDs , starting, stopping and pausing wherever you 
like. You can read audio data directly from a CD, provided the CD-ROM drive you 
are using supports this facility. 

CDs can store about 75 minutes of audio data. As CD-ROMs, they can be used to 
store about 660 MB of data, making CDs suitable for mass data applications and as 
an affordable publishing medium. 

The future of CD-related modules 

Acom intend replacing all CD-related components of RISC OS in the next 
release. Because of this, the SWI interface provided by the CDFS and 
CDFSDriver modules will become obsolete, and so we do not document it 

here. If you wish to write applications that use these SWis, you should: 

• Contact Acorn Computers for details of the SWis. 

• Write your application so that code that calls the SWis is separate from the 
rest of your application, and can be easily replaced in the future. 

We do document the * Commands provided by the CDFS module, solely so that 
you can use them from the command line. These may also become obsolete in 
the future, and you should treat them in the same way as SWls when writing 
applications. 

You will also need details of these SW!s if you wish to write a soft-loadable driver 
to support a new type of CD-ROM drive und~r the current CD system. Again, you 
should contact Acorn Computers for further details . 

Sa-191 



CDFS 

CDFS 

5a-192 

The CDFS module is responsible for interpreting the data on a CD-ROM that uses 

the ISO 9660 standard, and ensuring the RISC OS filing system is properly 

supported. 

CDFS is implemented as a FileSwitch-based filing system rather than as a FileCore 

module, because some aspects of CD-ROMs such as directory size, disc size and 

filename length can exceed limitations imposed by FileCore. Consequently you 

can use the standard FileSwitch SWis - such as OS_Byte, OS_File, OS_Find and 

OS_GBPB - and • Commands to read files and data. Obviously you cannot write to 

disc, as CDs are not a writable medium; CDFS is a read-only filing system, and 

gives an error if you make a call that attempts to write data. 

Because CDFS supports standard FileSwitch calls, correctly written applications 

will be able to use the CDFS filing system without modification. 

This 'standard FileSwitch interface' will remain supported in the next release 

of RISC OS. 



CDs and CD-ROMs 

*Commands 
*Bye 

Ends a CDFS session 

Syntax 

*Bye 

Parameters 

Use 

None 

*Bye ends a CDFS session by closing all files , unsetting all directories and 
libraries, forgetting all CD-ROM names and parking the heads of CD-ROM drives to 
their 'transit position' so that they can be moved without risking damage to the 
read head. 

You should check that CDFS is the current filing system before you use this 
command, or alternatively if another filing system is your current one, you can 
type: 

*CDFS:Bye 

Example 

*Bye 

Related commands 

*Close (page 2- 145). *Dismount (page 5a-199). *Shut (page 2-185). 
*Shutdown (page 2-186) 

Sa-193 



"CDDevices 

5a-194 

*CD Devices 

*CD Devices displays all the CD devices connected, and information about them 

Syntax 

*CDDev ices 

Parameters 

Use 

None 

*CDDevices displays all the CD devices connected, their product name, capacity, 

firmware revision , and their SCSI ID (displayed as device. LUN, and card; or as 

zeroes for non-SCSI devices) . In more detail: 

Drive 

Dev, Lun and Card 

Product 

Capacity 

Firmware 

is the logical drive number assigned by CDFS 

are the device ID, logical unit and card numbers that 
together make up the drive's SCSI address 

is a brief identification of the CD-ROM drive provided by 
its manufacturer 

is the total amount of information (both data and audio) 
on the CD currently in the drive. or 'Unknown' if there is 
no readable CD in the drive 

is the version of the manufacturer's firmware fitted to the 
drive. 

Unrecognised drive types are omitted from the list. 

The information returned is liable to change in future versions; you should not rely 

on its content or format. 

Example 
*CDDevices 
Drive Dev LUN Card Product 
00 0 0 0 CD-ROM CR-571 

Related commands 

None 

Capacity 
413 Mbytes 

Firmware 
1. De 



CDs and CD-ROMs 

*CDFS 

Selects the CD-ROM Filing System as the current filing system 

Syntax 

*CDFS 

Parameters 

None 

Use 

*CDFS selects the CD-ROM Filing System as the filing system for subsequent 

operations . Remember that it is not necessary to switch filing systems if you use 

the full pathnames of objects. For example, you can refer to NetFS objects (on a file 

server. say) when CDFS is the current filing system. 

Example 

*CDFS 

Related commands 

*ADFS (page 2-298). *Net (page 2-380). *RAM (page 2-316). 
• ResourceFS (page 2-41 7) 

5a-195 



*CD Speed 

Sa-196 

*CDSpeed 

Displays or sets the read speed of a CD-ROM drive 

Syntax 

*CDSpeed [drive [speed]] 

Parameters 

Use 

drive 

speed 

a valid CD-ROM drive number 

the new read speed for that drive: 
1 standard speed 
2 double speed 
255 maximum speed 

*CDSpeed displays or sets the read speed of the given CD-ROM drive, or of the 

current drive if none is specified. To set the speed, you must specify both the drive 

number and the new speed. 

Note that many drives only support a single read speed; if you attempt to set their 

read speed, you will get an 'Invalid parameter' error. 

Example 

*CDSpeed 
Current speed setting is 2 

Related commands 

None 



CDs and CD-ROMs 

*Configure CDROMBuffers 

Sets the configured amount of memory reserved for CD-ROM buffering 

Syntax 

*Configure CDROMBuffers size[K] 

Parameters 

Use 

size the size of memory to reserve, in kilobytes: can be 0, 8, 
16, 32, 64, 128, 256 or 512 

*Configure CDROMBuffers sets the configured amount of memory reserved for 

CD-ROM buffering, in kilobytes. This can be OK, BK, 16K, 32K, 64K, 128K, 256K, or 

5 l 2K. If you specify any other size, then the next lowest value will be set. 

The buffer space is used for a number of tasks such as cacheing blocks of data (ie 

2048 bytes) and disc specific information - but it is mostly used to cache directory 

information. This saves accessing a directory and all its parent directories each 

time a request is made from it. With the slow seek time of CD-ROMs, this saving 

gives a significant performance increase, especially for deeply nested directories. 

The performance of CDFS very much depends on it having adequate buffer space 

available. The desirable amount depends on various things: in particular, CDFS 

caches information for each disc in use, so using multiple CDs requires extra buffer 

space. Also, discs holding more objects have more directory information to cache. 

As a rough guide, a buffer size of 16 Kbytes is normally adequate for a single 

average CD. 

To save memory usage, CDFS does not load at boot time if the computer is 

configured to have zero CD-ROM drives, and so this command will not be 
available. However, you can always use the Configure application to change all 

CDFS configuration settings, even if CDFS itself is not loaded. 

Example 

*Configure CDROMBuf fers 64K 

Related commands 

None 

Sa-197 



*Configure CDROMDrives 

5a-198 

*Configure CDROMDrives 

Sets the configured number of CD-ROM drives recognised at power on 

Syntax 

*Configure CDROMDrives n 

Parameters 

Use 

n the number of CD-ROM drives, in the range O - 27 

*Configure CDROMDrives sets the configured number of CD-ROM drives 

recognised at power on. 

To save memory usage, CDFS does not load at boot time if the computer is 

configured to have zero CD-ROM drives, and so this command will not be 

available. However, you can always use the Configure application to change all 

CDFS configuration settings, even if CDFS itself is not loaded. 

Example 

*Configure CDROMDrives 1 

Related commands 

*Configure Floppies (page 2-302), *Configure HardDiscs (page 2-303), 

*Configure IDEDiscs (page 2-303) 



CDs and CD-ROMs 

*Dismount 

Ensures that it is safe to finish using a CD-ROM 

Syntax 

*Dismount [disc_spec] 

Parameters 

Use 

disc_spec the name of the CD-ROM or number of the CD-ROM drive 

*Dismount ensures that it is safe to finish using a CD-ROM by closing all its files , 

unsetting all its directories and libraries, forgetting its disc name, and parking its 

read head. If no CD-ROM is specified, the current CD-ROM is used as the default. 

*Dismount is useful before removing a particular CD-ROM; however, the 

*Shutdown command is usually to be preferred, especially when switching off the 

computer. 

Example 

*Dismount 

Related commands 

*Mount (page Sa-203). *Shutdown (page 2-186) 

Sa-199 



"Drive 

5a-200 

*Drive 

Sets the current CD-ROM drive 

Syntax 

*Drive drive 

Parameters 

drive the number of the CD-ROM drive, from 0 - 27 

Use 

*Drive sets the current CD-ROM drive if NoDir is set. Otherwise, *Drive has no 

meaning. 

Example 

*Drive 3 

Related commands 

*Dir (page 2-161). *NoDir (page 2-173) 



CDs and CD-ROMS 

*Eject 

Ejects the disc from a CD-ROM drive 

Syntax 

*Eject [drive] 

Parameters 

drive a valid CD-ROM drive number 

Use 

*Eject ejects the disc from the given CD-ROM drive, or from the current drive if 

none is specified. This command will only work if the drawer has not been locked 

by the *Lock command (see page 5a-202). and is electronically operated. 

Example 

*Eject 0 

Related commands 

*Lock (page 5a-202) , *Unlock (page 5a-209) 

Sa-201 



*Lock 

5a-202 

*Lock 

Locks the disc in a CD-ROM drive, disabling the Eject button 

Syntax 

*Lock [drive] 

Parameters 

drive a valid CD-ROM drive number 

Use 

*Lock locks the disc in the given CD-ROM drive, disabling the Eject button. If no 

drive is specified, the current drive is locked. You must call the *Unlock command 

(page 5a-209) before the disc can again be ejected. 

Example 

*Lock 0 

Related commands 

*Unlock (page 5a-209) 



CDs and CD-ROMs 

*Mount 

Prepares a CD-ROM for general use 

Syntax 

*Mount [disc_spec] 

Parameters 

Use 

disc_spec the name of the CD-ROM or number of the CD-ROM drive 

*Mount prepares a CD-ROM for general use by setting the current directory to its 

root directory, setting the library directory (if it is currently unset) to $.Library, and 

unsetting the User Root Directory (URD) . If no disc spec is given, the default 

CD-ROM drive is used. The command is preserved for the sake of compatibility 

with earlier Acorn operating systems, and ideally you should not use it. 

Example 

*Mount :VIDEOCLIP2 

Related commands 

*Dismount (page 5a- l 99) 

Sa-203 



*Play 

5a-204 

*Play 

Plays from the specified audio track to the end of the disc in a CD_ROM drive 

Syntax 

* Play track [drive ] 

Parameters 

Use 

t rack 

dri v e 

track from which to start playing, in the range 0 - 99 

a valid CD-ROM drive number 

*Play plays from the specified audio track to the end of the disc in the given 

CD_ROM drive, or in the current drive if none is specified. No data is transferred to 

the computer; playback uses the drive's digital to analogue circuits and audio 

output - which is typically via a jack socket, phono sockets or other in-line 

adaptors. 

If the track number does not exist on the CD in the drive, you will get the error 

'Number too small' or 'Number too big'. If you try to play a data track, you will get 

the error 'Cannot play that data' . 

Example 

*Play 9 0 

Related commands 

*PlayMSF (page 5a-206) , *Stop (page 5a-207) 



CDs and CD-ROMS 

*Playlist 

Lists the tracks - whether audio or data - on the disc in a CD-ROM drive 

Syntax 

*Pl ayList [dri v e ] 

Parameters 

Use 

drive a valid CD-ROM drive number 

*PlayList lists the tracks -whether audio or data - on the disc in the given 
CD-ROM drive, together with their start time and the total CD time. If no drive is 
specified, the current disc's tracks are listed. 

The start time is given as a 'Red Book address', in minutes, seconds, and frames 
(each of which is h 5 of a second) from the start of the disc. 

Example 
*PlayList O 

Track number, contains , starts from MM:SS:FF 

Track 01 is data 00:00:00 
Track 02 
Track 03 
Total 03 

is audio 23:24:65 
is audio 27:59:05 
track(s) 34 : 21:74 

Related commands 

None 

Sa-205 



*PlayMSF 

Sa-206 

*PlayMSF 

Plays a piece of audio from the disc in a CD-ROM drive 

Syntax 

*PlayMSF mins:secs:frames mins:secs:frames [drive] 

Parameters 

Use 

mins 

secs 

frames 

drive 

number of minutes from the start of the disc at which to 

start/stop playing 

number of seconds from the start of the disc at which to 

start/stop playing 

number of frames from the start of the disc at which to 
start/stop playing 

a valid CD-ROM drive number 

*PlayMSF plays a piece of audio from the disc in the given CD-ROM drive, or in the 

current drive if none is specified. The start and stop times time are specified as a 

'Red Book address', in minutes, seconds, and frames (each of which is Y.,5 of a 

second) from the start of the disc. The start time is the first of the two parameters. 

Playing stops immediately a data track is encountered, so if the start time is in a 

data track this command will appear to do nothing. You will get an error if the start 

and/or end times lie outside the range of the CD. 

Example 

*PlayMSF 02:05:38 23:59 : 74 

Related commands 

*Play (page 5a-204) , •stop (page 5a-207) 



CDs and CD-ROMs 

*Stop 

Stops playing the disc in a CD-ROM drive 

Syntax 

*Stop [drive] 

Parameters 

drive a valid CD-ROM drive number 

Use 

*Stop stops playing the disc in the given CD-ROM drive, or in the current drive if 

none is specified. If the drive is not currently playing, this command is ignored. 

Example 

*Stop 0 

Related commands 

*Play (page 5a-204). *PlayMSF (page 5a-206) 

Sa-207 



*Supported 

Sa-208 

*Supported 

Lists the drive types recognised by CDFS 

Syntax 

*Supported 

Parameters 

Use 

None 

*Supported lists the drive types recognised by CDFS, and hence that are usable. 

The list only gives manufacturers' names, not model numbers . 

RISC OS 3.6 nominally supports the following drives: 

ATAPI Conformant drives 
Chinon CDS-431 
Hitachi CDR-3650/l 650S and CDR- l 750S 
Philips CM2 l 2 and CDD52 I 
Sony CDU-6111, CDU-6211, CDU-541 and CDU-561 

Toshiba XM-3301 and XM-3401 

However, since drives' firmware can change, you should not treat the above list as 

definitive. In particular, because the ATAPI standard is still in a state of flux , and 

not all drives conform to the standard anyway, you may find that not all so-called 

'ATAPI' drives work with RISC OS 3.6. However, you may find some other drives 

made by the above manufacturers are sufficiently compatible to also work. 

This call may not be supported in the future , or the information returned may 

change in content and/or format. You should therefore not use this call in 

applications or scripts. 

Example 

*Supported 
SONY, LMS, TOSHIBA, HITACHI, CHINON 

Related commands 

None 

(LMS - Laser Magnetic 
Systems - is actually Philips) 



CDs and CD-ROMs 

*Unlock 

Re-enables the Eject button on a CD-ROM drive 

Syntax 

*Unlock [drive] 

Parameters 

drive a valid CD-ROM drive number 

Use 

*Unlock re-enables the Eject button on the given CD-ROM drive, reversing the 

effect of any earlier *Lock command. If no drive is specified, the current drive is 

unlocked. 

Example 

*Unlock 0 

Related commands 

*Eject (page 5a-201). *Lock (page 5a-202) 

Sa-209 



*Which Disc 

Sa-210 

*Which Disc 

Displays the unique ID number for the disc in the current CD-ROM drive 

Syntax 

*WhichDisc 

Parameters 

Use 

None 

*WhichDisc displays the unique ID number for the disc in the current CD-ROM 

drive. The number is calculated from the information in the disc's TOC (as defined 

in the Red Book). therefore it is unlikely that two discs will have the same value. 

Example 

*WhichDisc 
3 2 2 2 79 

Related commands 

None 



114 NetPrint 

Introduction and Overview 
For details of the NetPrint printing protocol , see Printer server protocol interface on 

page Sa-674. 

A service call has been added to avoid potential clashes between Econet port 

numbers. It is described overleaf: 

Sa-211 



SeNice_NetPrintCheckD1 (SeNice Call &40200) 

Sa-212 

Service NetPrintCheckD1 
{Service Call &40200) 

Issued by NetPrint to determine if there is a local printer server running 

On entry 

RI = &40200 (reason code) 

On exit 

Use 

RI = 0 to claim the command, or preserved to pass on 

This service call is issued by NetPrint to determine if there is a local printer server 

running. 

If NetPrint is trying to print to a remote server, it should listen for replies on Econet 

ports &DO and &DI, since old and new versions (respectively) of the printer server 

protocol use those ports. (See Printer server protocol interface on page 5a-674.) 

However, if a printer server is running on the local machine. it uses port &DI to 

listen for data. Hence if both NetPrint and a local printer server are in use. packets 

can arrive at port &DI for two different programs. with no way of telling the owner 

of a given packet. 

To avoid any potential confusion, NetPrint issues this service call. If it is claimed 

there is a local printer server running, and so NetPrint can only listen on port &DO; 

it cannot communicate with printer servers that reply on port &DI using the old 

protocol. If it is not claimed, NetPrint can listen on ports &DO and &DI, and can 

communicate with older printer servers. 



115 Parallel and serial device drivers 

Introduction and Overview 

Buffer Manager 

This chapter outlines changes made in RISC OS 3.5 to the Buffer Manager, 
DeviceFS, and the serial and parallel device drivers in order to improve the 
performance of these ports . 

The buffer manager has been extended to provide facilities for insertion and 
removal of buffered data without using SW! calls, hence avoiding all the related 

overheads. This is done by directly calling the buffer manager service routine, which 

uses a reason code to specify its action. The service routine provides all of the 
functionality of vectors InsV, RemV and CnpV, and has been based on the existing 

handlers in the buffer manager but optimised as much as possible. For full details 

of the various reason codes, see The buffer manager service routine on page 5a-2 l 5. 

Device drivers wishing to use this service routine first have to call a new SW! -
Buffer_Internallnfo, described on page 5a-226. This provides the information that 
is required to use the service routine with a particular buffer. 

The existing vector interface is still supported, but takes the form of an extra layer 

on top of the new code. 

DeviceFS module 
The DeviceFS module has been modified to call the buffer manager service routine 
in all situations where InsV, RemV or CnpV were previously used; for example the 

calls DeviceFS_ReceivedCharacter and DeviceFS_TransmitCharacter in the filing 
system interface. 

5a-213 



Parallel device driver 

Parallel device driver 

The parallel device driver has been modified to use the buffer manager service 

routine, hence greatly improving performance. 

The parallel device can be opened either for input or output but not for both. When 

an input or output stream is created, the parallel device driver calls 

Buffer_lnternallnfo (page 5a-226) to obtain the internal buffer ID for the relevant 

buffer and the address of the buffer manager serVice routine. All calls to InsV, RemV 

or CnpV have been replaced with calls to the buffer manager service routine. 

Fast Centronics mode 

The new VO chips provide a fast Centronics mode where bytes written to the FIFO 

are automatically sent by the hardware at a very high transfer rate using STROBE 

and BUSY signals as the handshake. The parallel device driver accesses this mode 

using a new device called 'fastparallel: '. To work with this device driver, technically 

speaking the printer must assert BUSY within 500ns of receiving STROBE; in 

practice, it should explicitly state it supports fast Centronics 

The 'parallel:' device is still available as the default, since some printers cannot 

cope with the fast transfer rate of the new device. 

Serial device driver 

Sa-214 

The serial device driver does not use the new buffer manager interface; this is to 

retain maximum compatibility with existing applications that use the serial 

interface. 

However, its performance has been considerably improved, and it can now support 

a maximum serial port rate of 115200 baud. Other improvements have resulted in 

the elimination of most interrupt problems affecting serial input. At the maximum 

serial port rate of 115200 baud, the input FIFO will allow !ms of interrupt latency 

before overrun occurs . This should be ample under most circumstances. The 

allowed latency increases as the baud rate is lowered. 

OS_SerialOp has been extended with the addition of new baud rate codes and 

reason codes; see page 5a-222. 



Parallel and serial device drivers 

Technical Details 

The buffer manager service routine 

The buffer manager service routine provides direct access to buffers without the 
overheads of calling SWis . 

A device driver wishing to use the service routine should first create or register its 
buffers with the buffer manager. It must then call the SW! Buffer_Internalinfo 
(page 5a-226) for each buffer. This returns the address of the service routine and a 
pointer to its workspace (which are the same for all buffers). and an internal buffer 
ID specific to that buffer. 

Calling the buffer manager service routine 

The service routine provides various functions, specified by a reason code. It can be 
called in !RO or SVC mode, interrupts may be enabled or disabled. Entry 
conditions are: 

RO= reason code (see below) 
RI = internal buffer ID 
RI 2 = R2 value from Buffer_lnternalinfo call 
Other registers depend on reason code 

Current reason codes are as follows : 

RO Action 

0 Insert byte 

I Insert block 

2 Remove byte 

3 Remove block 

4 Examine byte 

5 Examine block 

6 Return used space 

7 Return free space 

8 Purge buffer 

9 Next filled block 

Page 

5a-216 
5a-216 

5a-217 

5a-217 

5a-218 

5a-218 

5a-219 

5a-219 
5a-219 
5a-220 

The service routine can use the internal buffer ID to go straight to the appropriate 
buffer record in the buffer manager's workspace, rather than having to perform a 
linear search on a buffer handle. 

On exit from the service routine, registers are normally preserved, save for those 
used to return results . 

Sa-215 



The buffer manager service routine 

5a-216 

If the device driver removes or deregisters a buffer, it must ensure it no longer 

quotes that buffer's internal ID when calling the buffer manager service routine. 

Insert byte 

On entry 

RO= 0 (reason code) 
RI =internal buffer ID 
R2 = byte to insert 
RI 2 = R2 value from Buffer_Internallnfo call 

On exit 

All registers preserved 

C = I ==> failed to insert 

Use 

This reason code inserts a byte into the specified buffer. 

Insert block 

On entry 

RO= I (reason code) 
RI =internal buffer ID 
R2 = pointer to data to insert 
R3 = number of bytes to insert 
RI 2 = R2 value from Buffer_Internallnfo call 

On exit 

R2 = pointer to first byte not inserted 
R3 =number of bytes not inserted 
All other registers preserved 

C = I ==> unable to transfer all data (ie. RJ:;CO) 

Use 

This reason code inserts a block of data into the specified buffer. The pointer and 

length are adjusted to reflect how much data was actually inserted. If the data has 

already been written directly into the buffer (ie. R2 =pointer to buffer insertion 

point) , then no data is copied and the buffer indices are simply updated. 



Remove byte 

On entry 

RO= 2 (reason code) 
RI = internal buffer ID 
RI 2· = R2 value from Buffer_Internallnfo call 

On exit 

R2 = byte removed 
All other registers preserved 

C = I ==> unable to remove byte 

Use 

Parallel and serial device drivers 

This reason code removes a byte from the specified buffer. 

Remove block 

On entry 

RO= 3 (reason code) 
RI =internal buffer ID 
R2 = pointer to destination area 
R3 = number of bytes to remove 
RI 2 = R2 value from Buffer_Internallnfo call 

On exit 

R2 = pointer to first free byte in destination area 
R3 = number of bytes not removed 
All other registers preserved 

C = I ==> unable to remove all data (ie. R3:;a!:O) 

Use 

This reason code removes a block from the specified buffer. The pointer and length 

are adjusted to reflect how much data was actually removed. 

5a-217 



The buffer manager service routine 

Sa-218 

Examine byte 

On entry 

RO= 4 (reason code) 
RI =internal buffer ID 
RI 2 = R2 value from Buffer_lnternalinfo call 

On exit 

R2 = next byte to be removed 
All other registers preserved 

C = I =:::} unable to get byte 

Use 

This reason code reads the next byte to be removed from the specified buffer, 

without actually removing it . 

Examine block 

On entry 

RO= 5 (reason code) 
RI =internal buffer ID 
R2 = pointer to destination area 
R3 =number of bytes to examine 
RI 2 = R2 value from Buffer_lnternalinfo call 

On exit 

R2 = pointer to first free byte in destination area 

R3 =number of bytes not transferred 
All other registers preserved 

C = I =:::} unable to transfer all data (ie. R3:i::O) 

Use 

This reason code reads a block of data from the specified buffer, without actually 

removing it . The pointer and length are adjusted to reflect the data transferred. 



Parallel and serial device drivers 

Return used space 

On entry 

RO= 6 (reason code) 
RI =internal buffer ID 
RI 2 = R2 value from Buffer_Internallnfo call 

On exit 

R2 = number of used bytes in buffer 
All other registers preserved 

Use 

This reason code returns the number of bytes in the specified buffer. 

Return free space 

On entry 

RO= 7 (reason code) 
RI =internal buffer ID 
RI 2 = R2 value from Buffer_lnternallnfo call 

On exit 

R2 =number of free bytes in buffer 
All other registers preserved 

Use 

This reason code returns the number of free bytes in the specified buffer. 

Purge buffer 

On entry 

RO= 8 (reason code) 
RI =internal buffer ID 
RI 2 = R2 value from Buffer_Internallnfo call 

On exit 

All registers preserved 

Use 

This reason code purges all data from the specified buffer. 

Sa-219 



Changes to existing SW/s 

Next filled block 

On entry 

RO= 9 (reason code) 
RI =internal buffer ID 
R3 = number of bytes read since last call 

RI 2 = R2 value from Buffer_Internallnfo call 

On exit 

R2 = pointer to first byte in next block to be removed 

R3 = number of bytes in next block 
All other registers preserved 

C = I =:::} buffer empty 

Use 

This reason code can be used to remove buffered data directly, rather than copying 

it from the buffer using reason code 3. Initially, the call should be made with R3 = 0 

so that no bytes are purged. The call returns a pointer to the next byte to be 

removed from the buffer, and the number of bytes which can be removed from that 

address onwards. In the next call R3 should equal the number of bytes read since 

the last call. at which point the buffer indices will be updated to purge the data. 

and the next filled block will be returned. 

A device driver which uses this call must be the only application which removes 

data from the buffer. 

Changes to existing SWls 

OS_ReadSyslnfo (page 1-719) 

5a-220 

This call has been extended to provide information on the new hardware 

supported by RISC OS 3.5. 

• Extra values are now returned by reason code 2 (read presence of chips and 

unique machine ID) to allow support of new hardware features. This is 

described below. 

• The values returned by reason code 3 (read features mask) differ for the new 

hardware, although the call itself has not changed, Again, this is described 

below. 

Furthermore, two new reason codes (4 and 5) have been added. However, these are 

for internal use only, and you must not use them in your own code. 



Parallel and serial device drivers 

OS_ReadSyslnfo 2 (page 1-722) 

This reason code has been extended in a backward-compatible manner to return 
information on the new hardware supported by RISC OS 3.5. This has been done by 
splitting into fields the values returned in RO - R2 on exit: 

RO = hardware configuration word 0: 
bits 0 - 7 = special functions chip type: 

0 ~ none, I ~ IOEB ASIC 
bits 8 - 15 = 110 control chip type: 

O~IOC, I ~IOMD 
bits 16 - 23 =memory control chip: 

O~MEMCl/MEMCla , I ~IOMD 
bits 24 - 3 I =video control chip type: 

0 ~ VIDC I a , I ~ VIDC20 

RI = hardware configuration word I : 
bits 0 - 7 = I/O chip type: 

0 ~absent , I ~ 82C710/71 I or SMC '665 or similar 
bits 8 - 31 reserved (set to 0) 

R2 = hardware configuration word 2: 
bits 0 - 7 = LCD controller type: 

0 ~ absent, I ~ present (type I) 
bits 8 - 31 reserved (set to 0) 

The unique machine ID is still returned in R3 and R4 , if available. 

OS_ReadSyslnfo3 (page 1-723) 

This reason code has not been altered in functionality. However the values 
returned in RO and RI have altered, because RISC OS 3.5 machines do not use the 
710/711 family of chips , but instead use the broadly compatible SMC '665 family. 
Values returned in RO are: 

RO bits 
0 - 3 
4-7 

8 - 11 
12 - 15 
16 - 19 

20 - 23 
24- 31 

sub-unit 
IDE hard disc interface 

floppy disc interface 

parallel port 

I st serial port 

2nd serial port 

chip configuration 

reserved 

SMC '665 

1 

3 

0 

Sa-221 



Changes to existing SW/s 

Sa-222 

The only difference is the chip configuration, since the sub-units described still 

have the same basic functionality. The SMC '665 has extra functionality: you can 

use a fast parallel mode (with FIFO and hardware handshake), and use the serial 

FIFOs provided. Hence the extra features mask returned in RI differs to reflect this: 

RI bits sub-unit 

0-3 IDE hard disc interface 

4-7 floppy disc interface 

8 - 11 parallel port 

12 - 15 I st serial port 

16 - 19 2nd serial port 

20 - 23 chip configuration 

24- 31 reserved 

OS_SerialOp (page 2-459) 

New flag bit 

SMC '665 

0 

0 

I 

0 

0 

OS_SerialOp 0 (page 2-461) accepts a new flag bit to enable or disable the serial 

FIFOs (if present) : 

Read/Write or 
Bit 

8 

Read Only 

R/W 

New baud rates 

Value Meaning 

0 Disable the serial FIFOs, if present 

Enable the serial FIFOs, if present 

OS_SerialOp 5 and 6 (page 2-469 and page 2-471) accept new baud rate codes to 

support the higher baud rates possible under RISC OS 3.5. These are: 

Value of RI 

16 

17 

18 

New reason code 

Baud rate 

38400 

57600 

115200 

This call has also been extended by the addition of a new reason code, described 

later in this chapter: 

• OS_SerialOp 9 (page 5a-224) enumerates the available serial port speeds. 



Parallel and serial device drivers 

OS_Byte 7 (page 2-444) and 8 (page 2-445) 

These calls have been updated to support the new reason codes used by 
OS_Seria!Op 5 and 6 (see above) . However, as in RISC OS 3, you should use the 
OS_Seria!Op calls in preference. 

Sa-223 



SW/ calls 

SWI calls 

Sa-224 

Enumerates the available serial port speeds 

On entry 

RO= 9 (reason code) 

On exit 

RO preserved 
RI =pointer to table of supported baud rates 
R2 = number of entries in table 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

OS_SerialOp 9 
(SWI &57) 

This call enumerates the available serial port speeds, returning them as a table. 

The table is word aligned; each word in the table specifies a baud rate in units of 

0.5 bit/sec. (This is to support rates such as 134.5 baud.) 

The index into the table (starting at I) can be used in OS_SerialOp 5 and 6 calls to 

set the corresponding baud rate . 

This call is available from RISC OS 3.5 onwards. 



Related SWls 

None 

Related vectors 

SerialV 

Parallel and serial device drivers 

Sa-225 



Buffer_lnternallnfo (SW/ &42949) 

5a-226 

Buffer _Internal Info 
(SWI &42949) 

Converts a buffer handle to a buffer manager internal buffer ID 

On entry 

RO = buffer handle 

On exit 

RO = internal buffer ID 
RI =address of buffer manager service routine 

R2 =value to pass to service routine in Rl2 

Interrupts 

Interrupt status is not altered 
Fast interrupts are not altered 

Processor mode 

Processor is in SVC mode. 

Re-entrancy 

Use 

SW! is not re-entrant 

This call converts the buffer handle passed in RO to a buffer manager internal buffer 

ID, which is specific to that buffer. It also returns the address of the buffer manager 

service routine (see page 5a-2 l 5). and the value to quote in RI 2 when calling the 

service routine; these are the same for all buffers. 

If the buffer handle is invalid an error is returned, but can be ignored; the service 

routine address and RI 2 value will still be returned. 

This call is available from RISC OS 3.5 onwards. 



Related SWls 

None 

Related vectors 

None 

Parallel and serial device drivers 

5a-227 



Sa-228 



116 Keyboard and mouse 

Introduction and Overview 
One of the main changes in RISC OS 3. 5 was the removal of the Acorn keyboard 
interface from the kernel and its replacement with a standard IBM PS/2 compatible 
keyboard device driver, held in the separate 'Keyboard' module. For a description, 
see The keyboard interface on page 5a-230. 

The standard quadrature mouse driver was also removed form the kernel and is 
now a separate driver, held in the 'Mouse' module. There is also a serial mouse 
driver that can be used if you connect a standard PC-type (Microsoft or Mouse 
Systems) mouse to the serial port; this is held in the 'SerialMouse' module. 

In RISC OS 3.6 the PS/2 keyboard module was renamed 'PS2Driver', and extended 
to support an IBM PS/2 compatible mouse. 

For more details of mouse drivers see The pointer interface on page 5a-232. 

5a-229 



Technical details 

Technical details 

The keyboard interface 

Sa-230 

The keyboard interface has been changed to remove hardware dependent code 

from the kernel to separate keyboard device driver modules. This makes it easier to 

support different keyboard devices, and hence open up the choice of keyboards 

that can be connected. RISC OS 3.5 and 3.6 both supply one keyboard device 

driver, suitable for IBM PS/2 compatible keyboards. 

The interface allows more than one keyboard device to provide input at any one 

time. Input from multiple devices is merged into one stream as if coming from one 

device. 

The keyboard device driver and kernel communicate with each other through the 

KeyV software vector (page 5a-238) . The communication is two-way, so both the 

driver and the kernel need to claim the vector using OS_Claim (page 1-66). and 

install a routine to handle the calls that the other may make. 

(KeyV is a software vector that was used in 8 bit Acorn machines, but has not been 

used since, and has now been redefined.) 

The IOMD chip 

The keyboard is connected to the new IOMD chip, or to the 1/0 circuitry integrated 

into an ARM 7500 or similar, rather than to the IOC chip used in earlier versions of 

RISC OS. The PS/2 compatible interface provided is similar to that provided by IOC, 

and includes: 

• interrupts on receiver full 

• interrupts on transmitter empty 

• independent transmit and receive data registers 

• automatic parity generation on transmitted data 

• status and control line registers , capable of driving the keyboard Clock and 

Data lines. 

The keyboard device driver 

The keyboard device driver claims the keyboard device interrupts that IOMD 

generates by calling OS_ClaimDeviceVector (page 1-121 ). It assumes that the 

keyboard sends scan codes from IBM-MF compatible code set 2 (standard PS/2 

code set) ; if the keyboard does not, then you may get unexpected results . 



Keyboard and mouse 

The keyboard device driver converts the scan codes to the low level key numbers 
expected by the RISC OS kernel. It then passes these to the kernel by calling the 
KeyV software vector whenever a key is pressed or released; a reason code 
indicates which has occurred. The keyboard device driver keeps a table of flags for 
key states, and only calls KeyV when the state changes. 

The keyboard firmware's own auto-repeat capability is not used. Keys are instead 
repeated by the kernel - just as in earlier versions of RISC OS - hence keeping the 
same scheme for configuring auto-repeat delay and repeat rate. 

The supplied keyboard device driver(s) can be replaced by a custom version if 
required (eg for a special needs input device) . If you wish to use some other device 
with this vector, contact Acorn Technical Support for a keyboard ID allocation. 

The keyboard handler 

The keyboard handler is similar to that in earlier versions of RISC OS. It consists of 
a look up table and a small amount of code. It converts low-level key numbers 
provided by the keyboard device driver into an ASCII form , with extensions for 
special characters. 

The keyboard handler can be replaced by a custom version if required ( eg to 
support a foreign keyboard) . 

The kernel keyboard driver 

The kernel keyboard driver is a part of the RISC OS kernel, and binds together the 
keyboard device driver and keyboard handler. The kernel keyboard driver uses the 
keyboard handler to convert the low-level key numbers into a recognisable form . 
The kernel keyboard driver also debounces key presses, keeps track of keys down, 
and generates auto-repeats of keys at the configured rate . 

The kernel keyboard driver also tracks the state of the keyboard's LEDs, and calls 
KeyV to inform the keyboard device driver when it needs to change the state of an 
LED. 

Supporting different keyboards 

Now that different versions of RISC OS support different keyboards, you will find 
that the labels on key tops differ for certain key codes sent to applications. The 
RISC OS 3 Style Guide specifies applications' behaviour in terms of these labels, 
rather than key codes . Consequently, your application's behaviour (and possibly its 
help text and keyboard shortcuts) will have to change depending on which 
keyboard is in use. You can find this out by calling OS_InstallKeyHandler 
(page 1-914) with RO= I. 

Sa-231 



The pointer interface 

The pointer interface 

Sa-232 

-. 

Just as for the keyboard interface, all hardware dependent code has been removed 

from the kernel and placed in separate pointer device driver modules. Multiple 

pointing devices can exist on the computer, but only one can be active at any one 

time. 

RISC OS 3.5 supplies two pointer device drivers: 

• The first is suitable for a quadrature mouse (such as has been used on all 

previous versions of RISC OS) . The IOMD chip provides a quadrature interface, 

and so machines fitted with IOMD normally use this driver. 

• The second drives a PC serial mouse that uses either Microsoft or Mouse 

Systems data formats . It is provided so that users can choose an alternative 

pointer device from the large range available that uses these data formats . 

These two drivers are held in separate modules. 

RISC OS 3.6 adds a further pointer device driver: 

• This driver is for a serial mouse that uses PS/2 data formats . The ARM 7500 

provides two PS/2 interfaces (one for the keyboard, one for the mouse), but 

does not provide a quadrature interface, and so machines fitted with an 

ARM 7500 or similar normally use this driver. 

This driver is held in the same module as the PS/2 keyboard device driver 

Again a vector is used to communicate between the kernel and the device driver; 

both need to claim the vector and install a routine to handle the calls the other 

may make. The vector is a new one, named PointerV (page 5a-240). The interface it 

provides is common to all pointer device drivers . However, the drivers obviously 

differ in the way that they access the pointer device's hardware. 

Passing the pointer position to the kernel 

The kernel requests pointer device movements every VSync by calling PointerV 

with reason code O; the pointer device driver returns the movements. The kernel 

then scales the pointer device movements depending on the configured mouse 

step, and updates the pointer position on the display. 

The kernel is also responsible for: 

• registering the pointer device buffer with the buffer manager 

• all pointer device bounding 

• responding to OS_Mouse calls. 



Keyboard and mouse 

Passing button presses to the kernel 

When any buttons on the pointer device change state, the pointer device driver 
passes this to the kernel by calling KeyV, just as for a keyboard. The kernel treats 
these in the same way as any other key, including debouncing them. 

Pointer device types 

Most calls use a pointer device type to differentiate between the supported pointer 
devices. Currently defined devices are: 

Type Device 

0 Quadrature mouse 
Microsoft mouse 

2 Mouse Systems mouse 
3 PS/2 mouse (RISC OS 3.6 onwards) 

If you wish to use some other device with this vector, contact Acorn Technical 
Support for a pointer device type allocation. 

Configuring and selecting the pointer device type 

The new command *Configure MouseType (page 5a-243) configures the pointer 
device type to use thereafter. A new SWI, OS_Pointer (page 5a-242), sets or gets the 
currently selected pointer device type. If a new type is selected, the kernel calls 
PointerV with reason code 2 so that pointer device drivers can enable or disable. 

A further PointerV reason code of I can be used to enumerate the available pointer 
devices as text. This has been incorporated in the Configure application, so users 
can configure pointing devices from a menu. 

Initialising a pointer device driver 

When a pointer device driver initialises it must check the current pointer device 
type using OS_Pointer; should the driver understand the type, it must enable itself. 

The quadrature mouse driver 

A quadrature mouse is connected to IOMD, which does not provide interrupt 
support for mouse input. Instead it provides two 16-bit registers (for x and y 
directions) which increment, decrement and wrap when the mouse is moved. The 
state of the mouse buttons is stored in a specific memory location. 

The quadrature mouse driver responds to requests for pointer device type 0. It 
polls the mouse position registers in IOMD, and calculates the mouse movements 
to return to the kernel by comparing the previous values of these registers with the 
new ones. Like wise, it regularly reads the state of the buttons. 

Sa-233 



The pointer interface 

Sa-234 

The Microsoft I Mouse Systems serial mouse driver 

The Microsoft I Mouse Systems serial mouse driver responds to requests for 

pointer device type I (Microsoft) or 2 (Mouse Systems). When it is selected (see 

Configuring and selecting the pointer device type on page 5a-233 and PointerV on 

page 5a-240). it configures the serial device using OS_SerialOp (page 2-459) and 

opens the serial: device for input. 

The driver also claims TickerV (page 1-98), and processes any data received by the 

serial device on centisecond clock ticks. The code re-enables interrupts to avoid 

any adverse effects on interrupt latency, and sets a flag to prevent re-entrancy while 

it is being executed. All mouse movements are amalgamated until the kernel calls 

PointerV to request they be sent. 

The driver does not prevent the reconfiguration of the serial port while it is active 

itself; however it ensures that the serial: device is reopened if it is closed by an 

external source. If another pointer device becomes selected, the driver releases 

TickerV and closes the serial: device. 

The PS/2 serial mouse driver 

The PS/2 serial mouse driver calls PointerV in a similar way to the Microsoft I 

Mouse Systems serial mouse driver; see The Microsoft I Mouse Systems serial mouse 

driver above. 

However, since it uses its own dedicated interface, it does not claim TickerV, nor 

does it configure and use the serial device. 



Keyboard and mouse 

Data formats for serial mice 

The various serial mouse drivers communicate with serial mice which transmit 

data in one of these formats : 

Microsoft 

The first class of mice are Microsoft compatible, and are supported from 

RISC OS 3.5 onwards . They send data reports in the following format: 

Bit 6 

Byte 1 

2 

3 

4 

L, R,M 
X7-XO 
Y7 -YO 

DT4 - OTO 

1 

0 

0 

0 

5 4 3 2 1 0 

L A Y7 Y6 X7 X6 

XS X4 X3 X2 X1 XO 

vs Y4 Y3 Y2 Y1 YO 

M DT4 DT3 DT2 DT1 OTO 

bit flags for left , right and middle buttons: 1 => button down 

signed x distance, in range -128 (left) to +127 (right) 
signed y distance, in range-128 (up) to +127 (down) 
device type: 0 => mouse, all others reserved 

Some three button mice omit the 4th byte in the report, and set both the L and R 

bits when the middle button is pressed. The driver can cope with this, and still 

detects the state of the middle button . This feature is not intended to support 2 

button mice. 

Sa-235 



The pointer interface 

5a-236 

Mouse Systems 

The second class of mice are Mouse Systems Corporation compatible, and are 

supported from RISC OS 3.5 onwards. They send their data reports in this format. 

Byte 1 

2 

3 

4 

5 

L, R, M 
X7-XO 

Y7 - YO 

Bit7 

1 

X7 

Y7 

X7 

Y7 

6 5 4 3 2 1 0 

0 0 0 0 L M R 

X6 XS X4 X3 X2 X1 XO 

Y6 YS Y4 Y3 Y2 Y1 YO 

X6 XS X4 X3 X2 X1 XO 

Y6 YS Y4 Y3 Y2 Y2 YO 

bit flags for left , right and middle buttons: 0 ~ button down 

signed x distance, in range -128 (left) to + 127 (right) 

signed y distance, in range-128 (down) to +127 (up) 

The second set of X, Y data (bytes 4 and 5) is not a duplicate of the first, but the 

movement of the mouse during transmission of the first report . It cannot be 

discarded. 

PS/2 

The third class of mice are PS/2 compatible, and are supported from RISC OS 3.6 

onwards. They send their data reports in this format . 

Byte 1 

2 

3 

L,R,M 
X8 - XO 

Y8 - YO 

Xv 
Yv 

Bit7 

Yv 

X7 

Y7 

6 5 4 3 2 1 0 

Xv Y8 XS 1 M R L 

X6 XS X4 X3 X2 X1 XO 

Y6 YS Y4 Y3 Y2 Y1 YO 

bit flags for left, right and middle buttons: I ~ button down 

signed x distance, in range -256 (left) to +255 (right) 

signed y distance, in range -256 (down) to +255 (up) 

x data overflow: I ~ overflow 
y data overflow: I ~ overflow 



Keyboard and mouse 

Protocols for serial mice 

The Microsoft I Mouse Systems serial mouse driver 

This driver only accepts data from mice communicating in a stream mode 
operating at 1200 baud. It does not support the higher baud rates that some mice 
allow you to select by sending them a command. 

In Microsoft compatible format data is transferred in 7-bit bytes framed with I start 
bit and 2 stop bits with no parity. 

In Mouse Systems Corporation compatible format data is transferred in 8-bit bytes 
framed with I start bit and 2 stop bits with no parity. 

The PS/2 serial mouse driver 

The PS/2 serial device driver uses an asynchronous serial port. 

In PS/2 compatible format data is transferred in 8-bit bytes, preceded by I start bit, 
and followed by an odd parity bit and a stop bit. 

Sa-237 



Software vectors 

Software vectors 

Sa-238 

KeyV 
(vector & 13) 

Used to communicate between the kernel and & keyboard device driver 

On entry 

Register usage is dependent on a reason code held in RO: 

Keyboard present 

RO= 0 (reason code) 

RI = keyboard ID: I ~Archimedes keyboard, 2 ~ PC-AT keyboard 

Key released 

RO= I (reason code) 

RI = low-level internal key number (see Low-level internal key numbers on page 1-156) 

Key pressed 

RO= 2 (reason code) 

RI =low-level internal key number (see Low-level internal key numbers on page 1- 156) 

Notify driver of LED state 

RO= 3 (reason code) 

RI =LED status flags : 
Bit Meaning when set 
0 Scroll Lock on 

I Num Lock on 
2 Caps Lock on 

3 - 31 reserved (should be ignored) 

Enable keyboard device drivers 

RO= 4 (reason code) 

Reserved for Acom use 

RO= 5 - 10 (reason codes) 



Keyboard and mouse 

On exit 

Use 

All registers preserved 

All of these calls should be passed on; none of them should normally be 
intercepted. 

Keyboard present 

When a keyboard device driver has successfully initialised, it must notify the kernel 
that the keyboard is present by calling KeyV with this reason code. 

Key released and Key pressed 

When a key is released or pressed, a keyboard device driver must inform the kernel 
by calling KeyV with these reason codes. It must not do so until it is enabled by the 
kernel; see Enable keyboard device drivers below. 

The key numbers are the same as those used by the key up/down event; see 
Low-level internal key numbers on page 1-156. 

Notify driver of LED state 

When the state of the keyboard LEDs changes, the kernel calls KeyV with this 
reason code. A keyboard device driver must claim KeyV, and install a routine to 
handle such calls by setting the keyboard's LEDs as requested. 

Enable keyboard device drivers 

The kernel calls KeyV with this reason code to enable keyboard device drivers . A 
keyboard device driver must not use the Key released and key pressed reason 
codes until it has received this call; any attempt to do so will be ignored. 

This is not a reset call , and keyboard device drivers may see this call many times 
while they are active. However. it does mean that the kernel has flushed its table of 
keys that are held down. so the device driver should do the same if appropriate. 

Reserved for Acom use 

Reason codes 5 - 10 are reserved for Acorn use. 

Related SWls 

OS_Claim (page 1-66) 

Sa-239 



PointerV (Vector &26) 

Sa-240 

PointerV 
{Vector &26) 

Used to communicate between the kernel and a pointer device driver 

On entry 

Register usage is dependent on a reason code held in RO: 

Request status of pointer device 

RO= 0 (reason code) 
RI =device type - see page 5a-233 

Enumerate pointer device types 

RO= I (reason code) 
RI =pointer to previously found driver's device type record list, or 0 if none 

Pointer device type selected 

RO= 2 (reason code) 
RI = device type 

On exit 

Use 

All registers preserved except: 

Request status of pointer device 

R2 = signed 32-bit x movement since last call 

R3 = signed 32-bit y movement since last call 

Enumerate pointer device types 

RI =pointer to driver's device type record list 

Request status of pointer device 

The kernel calls PointerV with this reason code every VSync, to obtain the latest 

movement of the pointer device. A pointer device driver that supports the specified 

device type should intercept the call, returning the movement of the pointing 

device since the last time this reason code was called. Otherwise it should pass the 

call on. 



Keyboard and mouse 

The kernel uses the returned values to update the pointer position . 

Enumerate pointer devices 

The kernel calls PointerV with this reason code to enumerate the available pointer 

device types. A pointer device driver must claim PointerV, and install a routine that 
adds to a linked list of pointer devices. It must add one record for each device type 
it supports: 

Offset Meaning 

0 next pointer, giving address of next record 
4 flags : bits 0 to 31 reserved (must be 0) 
8 device type - see page Sa-233 
9 name of pointer device, no more than 30 characters, null terminated 

(for use in menus) 

The pointer device driver must claim the space for the records from RMA. It must 
set the next pointer field of the last record it added to the value that RI had on entry, 
and pass on the call with RI pointing to the first record it added. 

The caller must later free the memory claimed from RMA, usually as it reads the 
returned list. 

This call must not be intercepted. 

Pointer device type selected 

The kernel calls PointerV with this reason code when a device type is selected by 
OS_Pointer (see page Sa-242) . A pointer device driver should enable itself if it 
supports the specified device type; otherwise it should disable itself. 

This call must not be intercepted. 

Sa-241 



SW/ calls 

SWI calls 

5a-242 

Gets or sets the currently selected pointer device type 

On entry 

OS_Pointer 
(SWI &64) 

RO = reason code: 0 => get pointer type, I => set pointer type 

RI =pointer device type (if RI = I on entry) - see page 5a-233 

On exit 

RO= pointer device type (if RI = 0 on entry) - see page 5a-233 

Interrupts 

Interrupt status is not altered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call gets or sets the currently selected pointer device type. This is used to 

ensure that the correct pointer device driver responds to certain PointerV calls. 

Selecting a new device type causes PointerV (page 5a-240) to be called with reason 

code 2 (Pointer device type selected), so that drivers can enable or disable. 

Related SWls 

None 

Related vectors 

PointerV (page 5a-240) 



Keyboard and mouse 

*Commands 
*Configure MouseType 

Sets the configured pointer device to be used thereafter 

Syntax 

*Configure MouseType device_type 

Parameters 

device_ type 

Use 

a number giving the pointer device type (see 
page 5a-233) 

*Configure MouseType sets the configured pointer device to be used thereafter. 

Example 

*Configure MouseType 0 Select Quadrature mouse 

Sa-243 



5a-244 



117 Filing system locking and resets 

Introduction and Overview 
The FSLock module (added in RISC OS 3.5) provides protection against 
inadvertent or malicious changing of the CMOS RAM and hard disc contents. To do 
this it intercepts the calls that update the contents of the hard disc and CMOS 
RAM, and returns an error instead. 

The Reset behaviour has been further changed in two ways. Firstly, it has been 
simplified both to reduce the confusing range of options that were available in 
earlier versions of RISC OS and to ensure a reset always really starts the machine 
afresh. Secondly, a link can be set on the machine's circuit board to prevent 
resetting the CMOS RAM by a Delete power-on or similar combination. 

Sa-245 



Technical Details 

Technical Details 

Changes to power-on and reset 

Sa-246 

Hardware CMOS protection 

Earlier versions of RISC OS allowed users to reset some or all of CMOS RAM by 

holding down various keys whilst the machine was powered on. However, any 

resultant accidental or deliberate alteration of CMOS RAM could be a nuisance in 

some environments. To counteract this, RISC OS 3.5 has added support for a 

CMOS protection connector inside the machine. 

With the connector in the protected position, the CMOS RAM cannot be cleared as 

a part of a power-on or reset sequence, no matter what keys are held down . With it 

in the unprotected position , CMOS RAM clearing works just as in earlier versions 

of RISC OS. 

New reset behaviour 

The power-on and reset combinations for RISC OS 3.5 have been changed to 

rationalise a previously confusing set of options. 

Under earlier versions of RISC OS a reset had many variations depending on 

whether it was a power-on reset, ordinary reset or break style reset, whether 

*FX200,2 had been done before the reset, and so on. To most users this degree of 

flexibility was never useful simply because it was so complex. 

Under RISC OS 3.5 the hardware generates the same type of reset at power-on and 

when the reset button is pressed. Both are now effectively hard resets; the previous 

concept of hard and soft resets is no more. In both cases RISC OS 3.5 goes through 

the full sequence of reset operations. It: 

• Performs a self test 

• Clears RAM 

• Checks the keyboard for CMOS RAM clearing 

• Initialises the OS. 

You can still use the Break key as part of a reset combination (see below) . This 

performs a partial reset that omits the self test and CMOS RAM clearing. 



Filing system locking and resets 

The following scheme is now used. 

Key combination 
Power-on 
Ctrl-break 

Reset 

Function 
Normal reset, use boot options 
Partial reset (no self-test or CMOS RAM reset). 
use boot options 
Normal reset, use boot options 

The following modifiers can be used in conjunction with the above resets to 

change the boot behaviour: 

Modifier 

Shift 
*(on keypad) 

Function 
Reverse action of configured boot option 
Use boot options, but boot to command line 
instead of the configured language 

For backward compatibility, pressing Shift-Break causes the same action as 

Shift-Ctrl-Break. 

The following modifiers can be used to reset some or all of CMOS RAM, provided 

the CMOS protection connector is in the unprotected position: 

Modifier 

Delete 
R 
Copy 
T 
0 to 9 (on keypad) 
. (on keypad) 

The FSLock Module 

Function 
Reset CMOS RAM 
Partially reset CMOS RAM 
As Delete, but configures separate sync 
As R, but configures separate sync 
Configures monitor type 
Configure auto monitor type, sync and mode 

The FSLock module protects the CMOS RAM and hard disc against unwanted 

modification. It does so by intercepting any SW!s that alter the hard disc contents 

or CMOS RAM , and returning an error instead. 

FSLock cannot protect all discs on all filing systems; it can only protect drives 4 - 7 

on any one filing system. By default , the Configure application sets FSLock to 

protect the ADFS hard discs 4-7. 

Of course, a machine which allows no hard disc updates is not very useful, so two 

areas of a protected disc have been left unprotected: 

• $.Public can be used for general file storage; it cannot be created while the 

computer is in a locked state. 

• $.!Boot.Resources.!Scrap.ScrapDir is writable to allow Scrap transfers of files 

between applications . 

5a-247 



Changes to existing SW/s 

Lock states 

FSLock operates in three states: 

Fully unlocked 

A fully unlocked machine has no password allocated to it, and can have its hard 

discs or configuration modified. This state persists over any sort of reset, and is the 

default selected after the CMOS RAM has been successfully cleared. 

Partially unlocked 

A partially unlocked machine has a password allocated to it, but can still have its 

hard discs and configuration modified. If reset the machine reverts to being locked. 

Locked 

A locked machine has a password allocated to it, and cannot have its hard discs or 

configuration modified. The machine stays in this state if it is reset . 

Lock status 

The lock states are passed to commands using a lock status: 

Status Meaning 

0 Fully unlocked 
Partially unlocked 

2 Locked 

Permitted passwords 

The password is case sensitive. The Configure application restricts the password to 

at least five non-space characters that are acceptable in a writable icon. Although 

the SWis will accept any null terminated string, we strongly recommend you stay 

within the restrictions imposed by the Configure application's interface, otherwise 

users may find the machine locked with an untypable password. 

Changes to existing SWls 

OS_Byte 253 (page 1-904) 

Sa-248 

Under RISC OS 3.5 and later this call will always read the last type of reset as a 

power-on reset (RI = I on exit) . 



SWI calls 

Returns information describing the FSLQck module 

On entry 

On exit 

RO= version number x 100 
RI =pointer to module's workspace 

Interrupts 

Interrupt status is not altered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SWI is re-ent rant 

Use 

Filing system locking and resets 

FSLock_ Version 
{SWI &44780) 

This call returns information describing the FSLock module. RO gives the module's 
version number, and RI gives a pointer to the module's workspace. 

This call is available from RISC OS 3.5 onwards. 

Related SWls 

None 

Related vectors 

None 

Sa-249 



FSLock_Status (SW/ &44781) 

Sa-250 

FSLock_Status 
(SWI &44781) 

Returns the current lock status, and the locked filing system's number 

On entry 

On exit 

RO= lock status (page 5a-248) 
RI =locked filing system number (undefined if lock status= 0) 

Interrupts 

Interrupt status is not altered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call returns the current lock status, and the locked filing system's number. 

This SWI can only be called by number; not by name. 

This call is available from RISC OS 3.5 onwards. 

Related SWls 

None 

Related vectors 

None 



Filing system locking and resets 

FSLock_ ChangeStatus 
(SWI &44782) 

Changes one or more of the lock status, the password and the locked filing system 

On entry 

RO= new lock status (page 5a-248) 
RI =pointer to current file locking password 
R2 = pointer to new file locking password 
R3 = new locked filing system number 

On exit 

RO - R3 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SW! is not re-entrant 

This call changes one or more of the lock status, the password and the locked filing 

system. The new lock status must always be passed in RO; other parameters may be 

required depending on its value, and the current lock status: 

Current lock status 

0 2 

New 0 RI RI 
lock R2 , R3 Rl , R2 , R3 RI 
status 2 R2,R3 RI , R2, R3 

If the old password is needed and not given correctly an error will be returned. If a 

filing system number is needed then a check will be made for that filing system's 
existence, 

Sa-251 



FSLock_ChangeStatus (SW/ &44782) 

5a-252 

This SWI can only be called by number; not by name. 

This call is available from RISC OS 3.5 onwards. 

Related SWls 

None 

Related vectors 

None 



Filing system locking and resets 

*Commands 
*FSLock_ ChangePassword 

Changes the locked filing system and password 

Syntax 
*FSLock_ChangePassword fs_name [new_password [new_password [old_password]]] 

Parameters 

Use 

fs_name 

new_password 

old_password 

a filing system name 

new file locking password 

current file locking password 

*FSLock_ChangePassword changes the locked filing system and password. If the 
machine was fully unlocked then the old password need not be given . If any of the 
passwords aren't given then a prompt appears where the password can be entered 
without it being seen, since each character typed is displayed on the screen as a 
hyphen( '-' ). 

This command is available from RISC OS 3.5 onwards . 

Example 
*FSLock_ ChangePassword scsif s 

New password : ------
New password again: -----
Old password : --------

Related commands 

None 

Sa-253 



~FSLock_Lock 

Sa-254 

*FSLock_Lock 

Locks the computer from the partially unlocked state 

Syntax 

*FSLock_Lock 

Use 

* FSLock_Lock locks the machine from the partially unlocked state. 

If the machine is fully unlocked or locked then an error message is given. 

This command is available from RISC OS 3.5 onwards. 

Related commands 

None 



Filing system locking and resets 

*FSLock_Status 

Displays the machine's current lock state 

Syntax 

FSLock_Status 

Use 

*FSLock_Status displays the machine's current lock state. 

This command is available from RISC OS 3.5 onwards. 

Example 

*FSLock_Status 
No filing system is currently locked 

Related commands 

None 

5a-255 



*FSLock_ Unlock 

Sa-256 

*FSLock_Unlock 

Unlocks the computer 

Syntax 

*FSLock_Unlock [-full] [password] 

Parameters 

Use 

password current file locking password 

*FSLock_Unlock unlocks the computer. 

If the - ful 1 switch is given then the machine will be fully unlocked, otherwise a 

partial unlock will be done. If the password isn 't given then a prompt appears 
where the password can be entered without it being seen, since each character 
typed is displayed on the screen as a hyphen ('-' ). 

If the machine is already in the required state (partially or fully unlocked) then an 

appropriate error will be given . 

This command is available from RISC OS 3.5 onwards. 

Example 

*FSLock_Unlock -full gOL9pGbH 

Related commands 

None 



118 Free 

Introduction and Overview 
The Free module has been updated in RISC OS 3.6 to support displaying free space 

in the desktop for filing systems with discs of more than 4 GB capacity. 

Sa-257 



Technical details 

Technical details 

Changes to existing SWls 

5a-258 

Free_Register (page 2-512) 

If a filing system's free space routine does not recognise a reason code passed to it , 
it should return with all registers preserved . 

A new reason code has been defined in RISC OS 3.6 for the filing system's free 
space routine (as registered using this call) . The new reason code (4) returns the 
free space on the disc in 64 bits. rather than the 32 bits allowed by reason code 2: 

Reason code 4- Get 64 bit free space for device 

On entry 

RO =4 
RI =filing system number 
R2 = pointer to 6 word buffer 
R3 = pointer to device name I ID 

On exit 

RO= 0 
RI - R3 preserved 

Details 

This entry point is called to get the free space for a device. You should fill in the 
buffer pointed to by R2 with the following information: 

Offset Meaning 

O bits 0 - 3 I of total size of device (0 if unchanged from last time read) 
4 bits 32 - 63 of total size of device (0 if unchanged from last time read) 
8 bits 0 - 3 I of free space on device 
I 2 bits 32 - 63 of free space on device 
16 bits 0 - 31 of used space on device 
20 bits 32 - 63 of used space on device 

From RISC OS 3.6 onwards. the Free module calls this reason code to find the free 
space, rather than calling reason code 2. If RO is non-zero on exit (ie unaltered). or 
if an error is generated, the Free module then calls reason code 2. Thus when 
returning an error from this reason code. your free space routine must also return 
the same error for reason code 2 before the Free module believes it to be an error. 



119 Writing a filing system 

Introduction and Overview 

New FSEntry_Func and lmageEntry_Func reason codes 

In RISC OS 3.6 OS_FSControl has three new reason codes (see FileSwitch on 

page 5a- l 65). each of which duplicates previously available functionality, but 
allows 64 bit values to be passed or returned instead of 32 bit values. For each of 

the new OS_FSControl reason codes, a corresponding new reason code has 

therefore been added to those that may be passed to a filing system's 
FSEntry_Func entry point and to an image filing system's ImageEntry_Func entry 

point: 

OS_FSControl 

55 

56 
57 

FS/lmageEntry_Func 

35 

36 

37 

Name 

ReadFreeSpace64 

DefectList64 

AddDefect64 

These new reason codes are detailed in the next section. 

Although ImageEntry_Func entry points have been defined, there is little point in 

an image filing system supporting them under RISC OS 3.6. Since an image filing 

system is restricted in size to the maximum file size of 4 GB, all quantities can be 

represented in 32 bits, and the old reason codes are therefore adequate. All 
programs calling the new 64 bit SWis (and hence the new entry points) should 
revert to calling the old 32 bit SWis (and hence the old entry points) if they get an 
error; so you shouldn't get problems with new software failing to work because you 

don't provide the new entry points. 

5a-259 



Interfaces 

Interfaces 

FSEntry_Func 35 and lmageEntry_Func 35 

Read free space 

On entry 

RO= 35 
RI =pointer to pathname of any object on image (FSEntry_Func 35 only) 

R6 =pointer to special field if present, otherwise 0 (FSEntry_Func 35); or image 

filing system's handle for image (lmageEntry_Func 35) 

On exit 

Details 

RO = bits 0 - 31 of free space 
RI =bits 32 - 63 of free space 
R2 = biggest object creatable 
R3 = bits 0 - 31 of disc size 
R4 = bits 32 - 63 of disc size 

This entry point is called by FileSwitch to read the free space for the image that 

holds the object specified by RI (FSEntry_Func 35). or that is specified by the 

handle in R6 (lmageEntry_Func 35). 

This entry point is not called by RISC OS 3.5 or earlier. 

FSEntry_Func 36 and lmageEntry_Func 36 

5a-260 

Read defect list 

On entry 

RO= 36 
RI =pointer to name of image (FSEntry_Func 36 only) 
R2 = pointer to buffer 
R5 = length of buffer 
R6 =pointer to special field if present, otherwise 0 (FSEntry_Func 36); or image 

filing system's handle for image (ImageEntry_Func 36) 



On exit 

Details 

RO preserved 
RI =number of defects placed in buffer 
R2, R5 , R6 preserved 

Writing a filing system 

This entry point is called by FileSwitch to request that your filing system fills the 

given buffer with a defect list giving the byte offsets to the start of any defects in 

the specified image. Each entry in the list is a pair of words - with the least 
significant one first - giving the address of the defect as a 64 bit value. 

It is an error if the specified image is not the root object in an image ( eg it is an 

error to map out a defect from adfs :: HardDisc4.$.fred, but not an error to map it out 

from adfs: :HardDisc4.$) . 

This entry point is not called by RISC OS 3.5 or earlier. 

FSEntry_Func 37 and lmageEntry_Func 37 

Add a defect 

On entry 

RO= 37 
RI =pointer to name of image (FSEntry_Func 37 only) 
R2 = bits 0 - 31 of offset to start of defect 
R3 = bits 32 - 63 of offset to start of defect 
R6 = pointer to special field if present, otherwise 0 (FSEntry_Func 37); or image 

filing system's handle for image (lmageEntry_Func 37) 

On exit 

RO - R2 , R6 preserved 

Details 

This entry point is called by FileSwitch to request that your filing system maps out 

the given defect from the specified image. 

It is an error if the specified image is not the root object in an image ( eg it is an 

error to map out a defect from adfs::HardDisc4.$.fred, but not an error to map it out 

from adfs::HardDisc4.$). If the defect cannot be mapped out because it is not free , 

then you should return an error. 

This entry point is not called by RISC OS 3.5 or earlier. 

Sa-261 



Sa-262 



120 Writing a FileCore module 

Under RISC OS 3.6 FileCore has been extended to support larger discs than the 
versions previously supplied with RISC OS. This has been done by using sector 
addresses in the interface to FileCore modules, rather than the byte addresses 
previously used. 

Obviously you cannot use these larger discs without both the new version of 
FileCore, and a new-style FileCore module that supports sector addressing. We 
therefore recommend that you write all new-style FileCore modules to use sector 
addressing internally. Existing old-style FileCore modules must be rewritten to use 
sector addressing before you can use them with large discs. 

Declaring your module (page 2-587) 

The process for registering a FileCore module has been extended so that each of 
FileCore and the registering FileCore module can determine whether the other 
supports sector addressing. You must use this process whenever you register a 
new-style FileCore module, including on module reinitialisation. 

Descriptor block (page 2-587) 

The first stage in registering a new-style FileCore module is the same as before; 
your module must call FileCore_Create (page 2-226) . Two new flag bits have been 
defined in the descriptor block it passes: 

Bit Meaning when set 

8 FileCore module supports MiscOp 7 
9 FileCore module uses sector offsets (ie uses the new FileCore format) 

All versions of FileCore that do not support MiscOp 7 or sector addressing simply 
ignore these flag bits. 

Sa-263 



Running new-style FileCore modules under the new FileCore 

Ensuring the new FileCore is present 

Immediately you have a registered a new-style FileCore module using 
FileCore_Create, you must then check it is running under the new FileCore. To do 

so, you should call FileCore_MiscOp 6 (page 5a-I 74) using the module's newly 

issued private word. 

If no error is returned, you may then assume you are running under a FileCore that 

understands sector addressing, and can take ftrll advantage of the new larger disc 

sizes available. See Running new-style FileCore modules under the new FileCore on 
page Sa-264. 

If an error is returned, the FileCore module is running under an old version of 
FileCore. You must then either: 

• Generate an error stating your module cannot run, and deregister the module; 
or: 

• Set an internal flag to force a backwards compatible mode, and run within the 
limitations of the old FileCore. See Running new-style FileCore modules under an old 
FileCore on page Sa-266. 

Running new-style FileCore modules under the new FileCore 

5a-264 

DiscOp entry (page 2-592) 

All disc addresses FileCore passes to the DiscOp entry point are sector addresses, 

rather than the byte addresses used by older versions of FileCore. Since your 
new-style module should be using sector addresses internally, you shouldn't need 

to translate these. 

MiscOp entry (page 2-595) 

The only MiscOp entry point which takes a disc address is MiscOp 0 (Mount) . 
FileCore can't know the sector size until after it has mounted the disc, so it can't 
pass a sector address to MiscOp 0. Thus the parameters passed to your module's 

MiscOp entry point are unchanged from earlier versions of RISC OS. The disc 
address of the boot block (&COO) is still passed as a byte address. and it is your 
module's responsibility to deal with this. 



Writing a FileCore module 

Returning errors (page 2-590) 

The meaning of RO when returning an error has been extended so that sector 
addresses can be returned. From RISC OS 3.6 onwards, if bits 30 and 31 of RO are 

set, then bits 0 - 29 point to a two-word block: 

Offset Meaning 

0 bits 0 - 7 are error number, bits 8 - 29 are clear 

4 bits 0 - 28 are the sector number of the disc address , 
bits 29 - 31 are the drive number 

Calling FileCore DiscOp SWls 

Your module is responsible for ensuring that any calls it makes to FileCore's 
DiscOp SWis use the correct form of addressing: 

• FileCore_SectorOp uses sector addressing; your module doesn't need to 
translate its own internal sector addresses. 

• FileCore_DiscOp continues to use byte addressing; your module must 
translate between its own internal sector addresses and FileCore_DiscOp's 
byte addresses, both on entry and on exit. 

Since FileCore has to do a similar translation back to sector addresses before 
calling your module's low-level entry points, calling FileCore_DiscOp is 
inefficient, and your module should always use FileCore_SectorOp in 
preference. 

Providing a SWI handler 

Your module should provide a full SW! interface, including equivalents to all 
relevant FileCore SWI calls - both new and old. Any calls others make to your 
module's SWI handler will already use the correct form of addressing for the SWI 
being called, so typically your handler just needs to set R8 to point to your 
module's FileCore instance private word, and then call the equivalent FileCore 
SW!. It does not need to perform any address translation. 

Sa-265 



Running new-style FileCore modules under an old FileCore 

Running new-style FileCore modules under an old FileCore 

Sa-266 

Low-level entry points 

If you are running your new-style FileCore module under a version of FileCore that 
does not understand sector addressing, FileCore will call your low-level entry 
points using the only form of addressing it knows about: byte addressing. See 
Module interfaces on page 2-592. 

Calling FileCore SWls 

Your module must ensure that it only uses calls available under the old FileCore it 
is using. In particular this means that you must not call FileCore_SectorOp, but 
must instead use FileCore_DiscOp, translating between your module's own 
internal sector addresses and FileCore_DiscOp's byte addresses , both on entry and 
on exit. 

Providing a SWI handler 

Your module should still provide a full SW! interface, including equivalents to all 
relevant FileCore SW! calls - both new and old. Your SWI handler should 
downgrade any call to an unavailable 64 bit I sector-addressing SW! to instead call 
the corresponding 32 bit I byte-addressing FileCore SWI, and then fake the return 
values for the original 64 bit I sector-addressing call. Thus: 

• Calls to FileCore_SectorOp (page 5a- l 76) should be downgraded to use 
FileCore_DiscOp (page 2-221) 

• Calls to FileCore_FreeSpace64 (page 5a- l 8 l) should be downgraded to use 
FileCore_FreeSpace (page 2-229) . 

Your module's handler must not attempt to validate reason codes passed to its 
own DiscOp and MiscOp SW!s; you must - as usual - just set R8 to point to your 
module's FileCore instance private word, and then call the equivalent FileCore 
SW!. FileCore is responsible for faulting any unavailable reason codes, such as an 
attempt to call FileCore_MiscOp 6. 



121 Econ et 

Introduction and Overview 

NewSWls 

The Econet module was removed from RISC OS 3.5 , and is now supplied in a ROM 

on the Econet network card . (This ROM may also contain updated versions of other 

RISC OS networking modules.) The first issue of the Econet card uses the 

Econet 5.70 module, which is the version described below. 

The Econet module has had new SWls added to it. These are documented on the 

following pages. 

Machine type numbers 

Port numbers 

A machine type number has been defined for machines using the Rise PC 

architecture, and two further types have been allocated to a third party. In the 

section Machine type numbers on page 2-635, the line: 

&OOOF to &FFF9 Reserved 

should now read: 

&OOOF 
&0010 to &FFF7 
&FFF8 
&FFF9 

Rise PC architecture 
Reserved 
SJ Research GP server 
SJ Research 80386 UNIX 

From RISC OS 3.5 onwards, Econet uses its port numbers as follows : 

Port 

&00 

Allocation 

Reserved 
Fixed reply ports, for bac;kward compatibility 
Dynamic ports, allocated by Econet_AllocatePort 
Fixed ports, allocated by Acorn Computers 

&01 - &OF 
&I0-&8F 
&90- &FE 
&FF Argument to Econet_CreateReceive for wild reception 

Sa-267 



Changes to existing SW/s 

The section Port numbers on page 2-640 is no longer accurate for RISC OS 3.5 
onwards: 

• Allocation &54 for Digital Services Tape Store is no longer used. 

• The port number &DO has been reallocated in RISC OS 3.5 as 
PrinterServerDataReply. 

• Further fixed port numbers have been allocated to third parties, but for 
reasons of confidentiality we do not list them here. 

Changes to existing SWls 

Econet_AllocatePort (page 2-676) 

5a-268 

The port numbers returned by this call now always lie in the range &O I - &8F, rather 
than the range &O I - &FE used by RISC OS 3. I I and earlier. 



SWI Calls 

Econet 

Econ et_ I netRxDi rect 
(SWI &4001 D) 

This call is for internal use only. You must not use it in your own code. 

Sa-269 



Econet_EnumerateMap (SW/ &4001 E) 

5a-270 

Econet_EnumerateMap 
(SWI &4001 E) 

Enumerates subnetwork addresses within an AUN site network 

On entry 

RO= flags: 
all bits reserved (must be 0) 

R4 =enumeration reference (0 to start) 

On exit 

RO preserved 
RI =net number 
R2 = pointer to net name, or 0 
R3 = IP subnetwork address 
R4 = next enumeration reference, or -I if no more 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call enumerates subnetwork addresses within an AUN site network. It returns 

the AUN net names, net numbers and IP addresses of the subnetworks active 

within an AUN site network, as derived from the Map file located within an AUN 

gateway. 

If R4 is -I on exit then all subnetworks have been enumerated, and RI - R3 are 

undefined. If R4 is -I on exit from the first call then the calling application is 

running over a network containing no AUN gateways. 

Under native Econet R4 is always returned as -1 . 

This call is available from RISC OS 3.5 onwards. 



Related SWls 

None 

Related vectors 

None 

Econet 

5a-271 



Econet_EnumerateTransmit (SW/ &4001F) 

5a-272 

Econet_EnumerateTransmit 
(SWI &4001 F) 

Returns the handles of open TxCBs 

On entry 

RO = index (I to start with first transmit block) 

On exit 

RO = handle, or 0 if no more transmit blocks 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns the handles of open TxCBs. On entry RO is the index of the TxCB 

being asked for (I, 2. 3, etc) . If the value of RO is greater than the number of open 

TxCBs, then the value returned as the handle will be 0, which is an invalid handle. 

You should not make this call from an !RO or event routine as , although it will not 

fail, the returned information may be inaccurate. 

This call is available from RISC OS 3.5 onwards. 

Related SWls 

Econet_StartTransmit (page 2-657). Econet_PollTransmit (page 2-659). 

Econet_AbandonTransmit (page 2-660) 

Related vectors 

None 



Econet 

Econet_HardwareAddresses 
(SWI &40020) 

Returns the addresses of the Econet hardware and interrupt control registers 

On entry 

On exit 

RO = address of MC68854 ADLC 
RI =address of FIO mask register 
R2 = bit mask value to use on the FIO mask register 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SW! is re-entrant 

Use 

This call returns the addresses of the Econet hardware and interrupt control 
registers . It is provided for the internal working of Econet diagnostic software, and 

is not intended for any other use. The call returns an error if there is no native 
Econ et. 

This call is available from RISC OS 3.5 onwards . 

Related SWls 

None 

Related vectors 

None 

Sa-273 



Econet_NetworkParameters (SW/ &40021) 

Sa-274 

On entry 

On exit 

Econet_NetworkParameters 
(SWI &40021) 

RO= Econet clock period in V4µs (eg 20 for a 5µs period). or 0 if no clock 

RI = Econet clock frequency in kHz (eg 200 for a 200kHz frequency), or 0 if no clock 

R2, R3 corrupted 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call returns the Econet clock period and frequency. The call returns an error if 

there is no native Econet. 

This call is available from RISC OS 3.5 onwards. 

Related SWls 

None 

Related vectors 

None 



122 AUN 

Introduction 
The AUN software that this chapter describes forms the core component of Acorn's 

new networking strategy, called Acorn Universal Networking (AUN) . AUN uses an 
industry standard method of passing data over a network: a family of protocols 

called TCP/IP. 

AUN uses the TCP/IP standard in such a way as to retain Econet's existing program 

interfaces, so your existing network programs should continue to work. 
Furthermore, AU N's use of the TCP/IP standard supports the concept of Open 
Systems. Acorn machines - such as Level 4 FileServers - can now co-exist on the 

same network as other machines that use TCP/IP - such as UNIX workstations and 

NFS file servers. You can follow this path by using AUN in conjunction with its 
sister product, the TCP/IP Protocol Suite; this is described in an application note, 

available from Acorn Customer Services. 

AUN has been designed with an eye to the future , to preserve users' investment as 
long as possible. In particular, it has been designed so that as new and faster 
networking technologies become available, developers can easily add support for 
them by replacing a single hardware-specific module. 

For details on using existing Econet networks and AUN networks, refer to the 

guides supplied with your computer, such as the RISC OS User Guide. For details on 
installing and managing an AUN network, see the AUN Manager's Guide. 

You should note that networking modules are only loaded if the computer has a 

network interface fitted . 

The rest of this chapter will refer to an example network; this is shown overleaf. 

Sa-275 



Introduction 

Net 129 

5a-276 



0 
u 

Net3 

D 
II·· 
D--

compsciA 

Network 

backbone Network 

Net4 

art 
Network 

II 
D-

Net 128 

Net 130 

.compsciB 

t.Network 

}business ······· 

Network 

AUN 

Sa-277 



Overview 

Overview 

AUN concepts 
The basic structure of an AUN site network is one of physically distinct networks, 

typically associated by location and function with a particular room, department or 

curriculum area. Adjacent networks are interlinked via gateway stations (described 

below). which pass messages between the two networks. 

Networks 

Nets 

5a-278 

A network is a physical network of a single type (e.g. Ethernet, Econ et). A network is 

delimited by any gateway stations used to connect it to other networks. For more 

information on gateway stations , see the section below entitled Stations. 

Network names 

Each network must have a unique name. Network names are not seen or handled 

by users; they are only used to configure the AUN software for a site. 

A net is a part of a network that appears to the user as a single entity. 

In both Econet and Ethernet, individual segments of a physical network can be 

linked together by a bridge. However, there is a difference between the two: 

• Two bridged Econets remain distinct from each other, and so constitute two 

distinct nets. Hence in an Econet based network there may be several nets: the 

initial net, and an extra net for every bridge added. 

For an example see the diagram on page 5a-276. The compsciA network is 

made up from nets I, 2 and 3, which are three Econet segments connected by 

a bridge. 

• Two bridged Ethernets appears to users to be a single Ethernet, and so 

constitute a single net. Hence in an Ethernet based network there will always 

be one net; in other words, the net and the network are one and the same 

thing. 

For an example see the same diagram on page 5a-276. The science network 

and net I 29 are identical, and consist of the same two bridged Ethernet 

segments. 

It is important that you grasp the distinction between a net and a network; this 

chapter will rigorously distinguish between the two. 



AUN 

Net numbers 

Each net must have a unique number. 

For an Econet the net number must be between I and 127. 

• If the net is a part of a larger Econet network linked together by bridges. its net 

'number will already be set in the bridge, and the network manager should use 
the same net number for AUN. 

• If the net is not connected to any other Econets (i.e. there aren't any bridges 
on the net) it will not have a net number assigned to it; under native Econet it 
will just use the default net number of 0. However. for AUN the network 
manager must assign it an otherwise unused AUN net number in the 
permitted range I - 127. 

For types of net other than Econet (e.g. Ethernet) the net number must be in the 

range 128 - 252. If such a net is the only net on the site (i.e. the whole AUN network 

consists of a single non-Econet net , such as Ethernet). the network administrator 

need not set up a net number. It will use net number 128 by default. but - since it 

is the local net for all stations - users can also refer to it as net 0, in line with 
Econet convention. 

Net numbers 0, 253 , 254 and 255 are reserved. 

Stations 

A station is a computer connected to a net. There are two types of AUN stations. 

Client stations 

A client station has a single AUN-configured network interface with which it is 
connected to a net. 

Client stations will form the vast majority of stations in each net, and are typically 
used as personal workstations. 

Gateway stations 

A gateway station has two AUN-configured network interfaces with which it is 
connected to a net in each adjacent AUN network. It relays messages between 

these two networks via the interfaces. The networks may be of different physical 
types (e.g. Ethernet and Econet). There may only be a single gateway between any 

two networks. 

5a-279 



AUN concepts 

Sa-280 

Station numbers 

Each station must have a number, which must be between 2 and 254. Station 
numbers 0, I and 255 are reserved. 

A station number must be unique on the net(s) to which the station is connected. 

A gateway will have the same station number on both connected nets: 

Net 1 

Gateway connects 
nets 1 and 128. 

Station number is 2. 

Net 128 

Gateway is known to stations 
on this net as station 1.2 
(Net 1 , station 2) 

Gateway is known to stations 
on this net as station 128.2 
(Net 128, station 2) 

A gateway station's number must therefore be unused by any other station on 
either net . 



AUN 

Technical details 

Protocols 

Software 

AUN uses the UDP, IP, ARP, RevARP and RIP protocols from the TCP/IP family: 

• The transport protocol is User Datagram Protocol (UDP). enhanced by a 
proprietary handshake mechanism designed to support the semantics of 
Econ et SWI calls. This is not a straightforward port of the four-way handshake 
mechanism used by native Econet, but is rather a two-way handshake protocol 
overlaid with a timeout and retransmission mechanism better suited to the 
characteristics of IP traffic. 

TCP itself is not used, as it is a stream oriented protocol unsuited to 
supporting an Econet-like data delivery service. 

• The network protocol is Internet Protocol (IP). 

• Address Resolution Protocol (ARP) is used to map IP addresses into physical 
network addresses. 

• Reverse Address Resolution Protocol (Rev ARP) is used by client stations to 
request their own IP addresses from gateway stations. 

• Routing Information Protocol (RIP) is used to pass routing table information 
between stations. 

The AUN software consists of several closely related modules: 

• The Net module implements the two-way acknowledgement handshake, and 
presents an Econet-like service to applications via Econet SWI calls. It also 

implements the RIP function . 

• The Internet module implements UDP, IP, ARP and RevARP protocols, and 
exports an industry standard (Berkeley socket) interface to other RISC OS 
software such as the TCP/IP Protocol Suite. 

• The device driver module provides a Driver Control Interface (or DCI) that 
enables the AUN software to communicate with a particular network interface. 
Each type of network interface needs its own device driver. There are no device 
drivers supplied in RISC OS 3.5; they are instead normally supplied with 
network interfaces, either in ROM or on disc. 

• The MbufManager module provides memory management facilities for 
version 4 onwards of the DCI , and is used by protocol stacks and device 
drivers . (It was previously an internal part of the Internet module, and so was 
not potentially accessible to other protocol modules.) 

Sa-281 



Software 

5a-282 

The software in detail 

The following diagram illustrates the relationship between the modules in AUN: 

Application 
e.g. NetFS 

·································r ..................•...... .; 

I Econet 
ISWI 
I interface 

TCP/IP 
Protocol 

Suite 

Net 

et ! : Econ 
! (in RISC 0 S ROM) . 

Econ et 

Internet 
socket 

interface ! 

Internet 

Driver 
Control 
interface 

Network driver 
e.g. Ethernet, 

SLIP, Token Ring 

Network 

NFSFiler 

NFS 

I 

MbufManager 

There is a particularly close connection between the Net module and the Econet 
module. The Net module learns which nets may be accessed via a directly 
connected Econet, and which nets need to be accessed via IP (ie nets that do not 
use Econet. or nets using Econet that can only be reached via a gateway) . The Net 
module intercepts SW! calls to Econet from higher-level applications such as 
NetFS, NetPrint and Broadcast Loader, and - by examining the destination net 
number - determines whether to route the calls to the Econet module for traffic 
over native Econet, or to the Internet module for traffic over IP. 

If the AUN station does not have an Econet interface fitted then the Econet 
software module will not be present, and so all traffic will be via the Internet 
module and IP protocol. 



AUN 

The Internet socket interface - used by the Net module in AUN - remains exposed 

for parallel use by other applications. Hence other protocols running over IP, such 

as NFS, can run at the same time as AUN. For more details of the Internet socket 

interface. see The Internet module on page 5a-299. 

Since device drivers are not a part of RISC OS itself. we don 't document the DC! in 

this manual. (This also applies to the MbufManager module. which is anyway a 

conceptual part of the DC!). Both the DC! and the MbufManager module are 
subject to change as the range of Acorn networking products is expanded and 
updated. Should you wish to program using the DC! (say to implement a new 
network interface). you should contact Acorn Customer Services. 

Addresses in Econet and AUN 

Under native Econet, users and programs uniquely identify each station with two 

one-byte numbers. thus: 

net.station 

Under AUN, users and programs use exactly the same scheme. to preserve 
compatibility with native Econet. However. the underlying Internet protocols used 

by AUN use four-byte numbers to identify stations. The AUN software therefore 

needs to translate each two-byte address passed by a user or program into a 
four-byte IP address. The AUN interpretation of each of the four bytes is: 

site. network. net.station 

The bottom two bytes (net .station) are the same two bytes as are seen by users and 

programs. The network byte is used to provide additional routing information to the 

underlying IP software only, so that it can route data to the correct destination 
network. The site byte is currently unused and always has a value of one. 

Technically speaking, an AUN IP address is a Class A IP address. with a netmask of 

&FFFFOOOO. 

For example, the AUN interpretation of a command - in the normal IP emphasis -

to: 
'send data to host 1.3.129.16' 

is actually: 
'send data to station 129 .16 ... (which is located in network number 3)' 

or, more meaningfully: 

'send data to station 129 .16 ... (which is located in the science network)' . 

5a-283 



AUN IP address configuration 

The difference between the addressing used by native Econet and the IP address 

used by AUN is summarised by the table below: 

Network Bytes Form Examples 

3.2 
Native Econet address 2 net.station 8.103 

129.12 

1.1.3.2 

AUN IP address 4 1.network.net.station 1.4.8.103 
1.3.129.12 

AUN IP address configuration 

5a-284 

How a gateway station finds its full IP address 

When a gateway station starts up, it reads its station number from CMOS RAM. 

(This number is set by the SetStation command supplied with the AUN software.) 

To find the site, network and net numbers of both its interfaces, the gateway 
station looks at its AUN Map file and Configure file . 

The Map file 

The Map file tells the gateway station the IP address of each net on the site. As an 
example, let's look at the Map file for the site illustrated on page 5a-276: 

I Example : Large site network containing 5 dept networks linked via backbone 

compsciA 1 2 3 old compblock econet 

compsciB 128 compblock Ethernet 

science 129 science Ethernet 

art 4 art room econet 

business 130 business studies ethernet 

backbone 131 backbone ethernet 

The gateway station converts each network name to a network number in the order 
they're read; the first network has the number I, the second is number 2, and so 

on . Adding in the net numbers to the example above, the following full IP 



AUN 

addresses apply to the example network. (The site number defaults to I, and the 
station field is read by each individual station from its configured value in CMOS 
RAM) : 

Network Network Net Returned 
name number number IP address 

1 1.1.1.station 
compsciA 1 2 1 .1 .2.station 

3 1.1.3.station 

compsciB 2 128 1.2.128.station 

science 3 129 1.3.129.station 

art 4 4 1 .4.4.station 

business 5 130 1.5.130.station 

backbone 6 131 1.6.131 .station 

The Configure file 

The Configure file tells the gateway station its own position in the site: specifically, 
which network is connected to which interface. For example: 

Examplel: 

Econet 
Slot 0 

network compsciA is Econet ; 
network backbone is Ethernet. 

i s compsciA 
is backbone 

This tells the gateway that its Econet interface is connected to the compsciA 
network, and its Ethernet interface (in slot 0) is connected to the backbone 
network. What it does not tell the gateway is whether the Econet interface is 
connected to net I, 2 or 3. The gateway station resolves this by reading the correct 
net number (in this case 2) from an Econet bridge on its own net. Thus, if the 
station number were 7, the two interfaces' IP addresses would be: 

1.1.2 .7 
1.6.131.7 

fo r the Econet interface 
for the Ethernet interface 

Note that an Ethernet network must always consist of a single net, and so the 
gateway does not have to resolve the same ambiguities as for Econet. 

Sa-285 



AUN IP address configuration 

5a-286 

How a client station finds its full IP address 

Like a gateway station, an AUN client station reads its station number from CMOS 

RAM at start-up time. 

However, at this stage it does not know its site, network and net numbers; instead, 

it finds these out from a gateway station connected to its local network. 

To do so the client station broadcasts a RevARP message requesting its IP address . 
The gateway receives this broadcast on the interface that is connected to the 
client's network, and returns that interface's IP address, first setting the station 

number to zero: 

site. network . net.O 

Because the gateway station's interface and the client station are on the same 
network, the returned site and network numbers are therefore the same as those of 
the client station. The net numbers will also be the same, unless the client station 
and the gateway station are on different nets within the same network (which can 
only be the case if they are separated by Econet bridges). 

The client station takes the returned address and substitutes its own station 
number. It also determines if it is connected to a bridged Econet; if so, it replaces 
the returned net number - which may be incorrect - with the correct net number, 
read from an Econet bridge on its own net. 

Default addresses 

If a client station does not get a response to its request for its full IP address, this 

means that no gateway computer is present and so the local network is isolated. 
This being the case, then: 

• If the station is connected to an Econet it will use native Econet rather than 
the Internet protocols used by AUN. 

• If the station is connected to any other network it adopts a default IP address 
of 1.0.128.station, giving a user address of 128.station . 

When/if a gateway computer subsequently comes 'on-line' it will immediately send 
a message to the other stations on the previously isolated network, so they may 
then complete their address and routing configuration, and get access to all other 
networks in the AUN system. 

Consequently while a network is isolated all its stations may communicate 
between themselves; stations don't 'hang' awaiting a response from a gateway. You 
may later start up a gateway station to bring the isolated network into your site's 

AUN network. However, since this is likely to change 'on the fly' all the addresses of 
that network's stations, you must take care only to do this when there are no users 
active on the network. 



AUN 

Application program interface 

The application program interface, or API, is the same as the RISC OS 3 (version 
3.10) Eco net SWI interface, with certain usage qualifications described below. For 
full details , refer to the RISC OS 3 Programmer's Reference Manual. 

Existing user applications which access Econet do not require functional 
modification at the network interface in order to run over an AUN network. 

The AUN module intercepts SWI calls to Econet from user software. It treats the 
calls differently according to how it can access the destination station: 

• If the destination station can be accessed directly via Econet, AUN passes the 
SWI calls to the resident Econet handler. This avoids unnecessary IP protocol 
overheads for a localised Econet-only transaction. 

• Otherwise the destination station must be accessed via IP. AUN maps the SWI 
calls into calls to the Internet module, having first expanded the two-byte 
net.station destination address into a four-byte site.network.net.station IP address. 

The maximum amount of data which can be passed in a single transmission SWI 
via IP is 8192 bytes. 

When transmitting to a station via IP, transmission SWI calls will return only the 
error values Status_NetError and Status_NotListening in the event of failure . Over 
raw Econet other Econet-specific error values may be returned. 

Constraints on the use of Econet SWI calls over AUN 

Immediate operations 

In general the Immediate mechanism is considered to be Econet specific. The only 
Immediate operation supported by AUN over IP is Econet_MachinePeek. All other 
Immediate SWI calls return Status_NotListening, unless the destination station is 
accessible via a directly connected Econet. 

Transmission strategy 

An application's choice of values for the Count and Delay parameters it passes to 
transmission SWls may make assumptions about the actual physical 
characteristics of Econet. For example some Econet utility programs set the Count 
to O in Immediate operations, relying on the fact that the return of a scout 
acknowledge frame in response to a valid scout frame will always be effectively 
instantaneous. However, over an AUN IP network this assumption is invalid; the 
functional equivalent of the scout acknowledge may arrive 'sometime', or even 
'never' . 

Sa-287 



Application program interface 

Sa-288 

Consequently AUN uses a retransmission strategy more suitable to the nature of IP 
traffic, whilst retaining the existing retransmission strategy for transmissions to a 
directly connected Econet. The retransmission strategy for AUN over IP is as 
follows : 

For ordinary data, AUN employs a two-way handshake. A receiving station will 
return a positive acknowledgement if it has successfully received a data frame into 
an open receive block, or else a reject message if there is currently no open receive 
block, or some other detectable reception error has occurred. 

If Count> t 

The maximum elapsed timeout period in seconds (T) requested by the 
application is computed as: 

T = (Count x Delay) I I 00. 

On receipt of reject messages, the sender will retransmit the data frame I 0 
times after 1 centisecond timeouts, then : 

IfT<5 
T x I 0 retransmissions will occur, each after 10 centisecond timeouts; 

Else 
If the destination station is not on the same network as the sender 

exactly 50 retransmissions will occur, each after (T x I 00) I 50 
centisecond timeouts; 

Else 
If the retry delay< 25 centiseconds 

exactly 50 retransmissions will occur; 

Else 
(T x 4) retransmissions will occur, each after a 25 centisecond 
timeout. 

(This provides some optimisation for simultaneous loading of software 
from a local file server, whilst protecting against excessive overload at 
gateway stations caused by rapid retransmission.) 

If no response is received at all then: 

Else 

IfT<5 
1 retransmission will occur, after a 5 second timeout; 

Else 
TI 5 retransmissions will occur, each after 5 second timeouts. 

The sender will transmit exactly once. The transmission status will not change 
until a positive acknowledgement or a reject message has been received , or a 5 
second timeout has elapsed. 



AUN 

For an Immediate operation (i.e. Econet_MachinePeek). a SW! call with 
Count= 0 or Count= I always results in a Status_NotListening return; no actual 
network transmission is made. In other cases the sender transmits an Immediate 
message exactly once, changing transmission status only when a response has 
been received or a 5 second timeout has elapsed. 

Bridge protocol 

Use of the Econet Bridge protocol by a RISC OS net utility program to identify valid 
net numbers does not work over non-Econet networks within an AUN system, as 
no actual Econet bridges are present to respond. However. cycling through the 
range of net numbers in a sequence of calls to Econet_ReadTransportType can 
provide this information without involving any network transactions; the call 
returns R2 = 0 if the given net number is not currently accessible from the local 
station. 

Note that this constraint does not affect use of the Bridge protocol onto a directly 
connected Econet system. 

Meaning of net 0 

In AUN. a station may be connected to both an Econet and an Ethernet at the same 
time. This means that the assumption that Net 0 means the local network is no 
longer safe, as the AUN software could not, in this case. distinguish the two 
connected networks with certainty. Hence applications running over AUN should 
strive to supply an actual net number with every transmission SW! call. 

You should note that the actual net number of a connected Econet may in fact 
be 0, if there are no bridges present; however the net number of an Ethernet in a 
correctly configured AUN network can never be 0, so no clash will occur. If a net 
number of 0 is supplied to a transmission SW!, AUN maps it to the net number of 
a directly connected net , with Econet taking priority over Ethernet if both are 
connected. 

Local broadcasts 

If a station is connected to both Econet and Ethernet, transmit SW! requests for a 
local broadcast - as issued by Broadcast Loader- are directed to the Econet only. 

Data delivery 

As with Econet, AUN over IP cannot guarantee that a message apparently correctly 
received and acknowledged by a receiving station will not be retransmitted if the 
acknowledgement is lost in transit . Applications using AUN should therefore 

ensure that they can detect whether a transmission has been repeated. This is 
usually done by adding a sequence number or bit to transmissions. 

Sa-289 



*Commands 

*Commands 

Sa-290 

*Configure BootNet 

Sets the configured state for whether or not the AUN software is loaded 

Syntax 

Use 

*Configure BootNet OnlOff 

*Configure BootNet sets the configured state for whether or not the AUN software 

is to be loaded from RISC OS 3.5. Drivers are always loaded from a network 

interface, irrespective of this configured setting. 

You should configure this value to 'On' if the station is to be a client station using 

an AUN-configured network, and to 'Off' otherwise (i.e. if the station is to be a 

gateway station, or to be connected to a TCP/IP-configured network) . 

The default state is 'Off'. 

Example 

*Configure BootNet On 

Related commands 

None 



AUN 

*Device! nfo 

Displays driver module internal statistics 

Syntax 

Use 

*EBinfo 

A *Deviceinfo command displays detailed information about driver module activity. 
Note that this command is supplied by the driver that comes with a network 
interface, rather than by RISC OS. Each of the standard Acorn drivers provides 
such a command: 

Command 

*Eclnfo 
*Ebinfo 

driver for: 

Acorn Econet 
Acorn Ethernet 

We expect third party drivers to provide a corresponding command; you should see 
the documentation supplied for the command name. 

It is presented mainly as an aid to trouble-shooting, should you require it. 

Example 
*EBinf o 

Eth erB interface statistics 

ebO: 80C04 Network slot, enabled, hardware address OO:OO:A4:10: 1 7:00 

packets received = 27735 
bytes received = 2040394 
receive interrupts = 27279 

Standard clients: 

packets transmitted = 2391 
bytes transmitted = 392460 
transmit interrupts = 2390 

Frame &0800 , ErrLvl=OO , AddrLvl=O l, FrmLvl=OO 
Frame &0806, ErrLvl=OO, AddrLvl=Ol , FrmLvl=OO 
Frame &0835, ErrLvl=OO, AddrLvl=Ol, FrmLvl=OO 

Log:EtherB messages can appear here 

Related commands 

None 

5a-291 



WetMap 

5a-292 

*NetMap 

Displays the current AUN map table 

Syntax 

Use 

*NetMap [net_number] 

*NetMap displays the current AUN map table either for the specified net, or for all 

nets if no parameter is specified. The map table shows the net number of each net, 

its name, and its Internet address. 

Each station obtains the information held in the map table from a gateway's Map 

file . Since this file is identical for all gateways on a correctly set up network, the 

output from this command is the same for all stations, and only varies when the 

network's layout is altered . 

Examples 

*NetMap 129 
129 science 

*NetMap 
1 cornpsciA 
2 cornpsciA 
3 cornpsciA 
128 cornpsciB 
129 science 
4 art 
130 business 
131 backbone 

Related commands 

*Networks 

1.3.129.x 

1.1.1.x 
1.1.2.x 
1.1.3.x 
1.2.128.x 
1.3.129.x 
1.4.4.x 
1.5.130.x 
1.6.131.x 



Reports if a remote station is accessible and active 

Syntax 

*NetProbe net_number.station_number 

Parameters 

Use 

net_number 

station_number 

remote station's net number 

remote station's station number 

AUN 

*NetProbe 

*NetProbe reports if a remote station is accessible and active, and hence can be 
reached from the local station and network. This command does so by sending a 
control message to the specified station and awaiting a reply. 

Examples 

*NetProbe 128.135 
Station present 

*NetProbe 128.201 
Station not present 

Related commands 

None 

Sa-293 



*Net Stat 

Sa-294 

*NetStat 

Displays the current status of any network interface(s) configured for AUN 

Syntax 

*NetStat [-a] 

Parameters 

Use 

- a give all information, rather than simplified version 

*NetStat displays the current status of any network interface(s) configured for 

AUN. The optional parameter -a gives extra information, including traffic counters 

and full IP addresses. Known network numbers which are marked with an asterisk 

('* ' )represent nets in a directly connected Econet network. 

Example 
*NetStat -a 
Native Econet 

Interface 
AUN Station 
Full address 

Interface 
AUN Station 

Full address 

Known nets 

TX stats 

RX stats 

Module s tatus 

Related commands 

None 

0.5 

Econet? 
4.5 
1.4.4.5 

EtherB 
131.5 
1.6.131.5 

1 
131 

2 3 

information for native Econet 

information for first AUN interface 

information for second AUN interface 

*4 128 129 130 

information below only given if optional parameter a supplied 

Data=O, Immediate=2, Imm_Reply=O , Retry=O 

Error=20, Data_Ack=5 , Data_Rej=O , Broadcast=lO 

(local =O , global=5) 

Data=5, Immediate=O , Broadcast=O, Discard=O 

Retry=O , Error=O, Data_ Ack=O, Data_Rej=O 

Imm_Reply=2, Reply_Rej=O 

0140 



AUN 

*NetTraceOff 

Turns off a gateway's tracing of routing protocol messages 

Syntax 

Use 

*NetTraceOf f 

*NetTraceOff turns off a gateway's generation of trace information about its 
transmission and reception of routing protocol messages . For more details , see 
the description of the *NetTraceOn command. 

This command is provided by the gateway variant of the AUN module, and is hence 
only available on gateway stations. It is anyway irrelevant to client stations. 

Example 

*NetTraceOf f 

Related commands 

• NetTraceOn 

Sa-295 



"NetTraceOn 

5a-296 

*NetTraceOn 

Turns on a gateway's tracing of routing protocol messages 

Syntax 

*NetTraceOn [filename] 

Parameters 

Use 

filename name of file to which to direct output 

*NetTraceOn turns on a gateway's generation of trace information about its 

transmission and reception of routing protocol messages. This information is 

stored in the given file , or - if none is specified - in the file !Gateway.Trace. You can 

load the trace file into a text editor such as Edit in the usual way. 

To view the default file you will need to open the Gateway application directory; 

hold down the Shift key while you double-dick on its icon. 

This command is provided by the gateway variant of the AUN module, and is hence 

only available on gateway stations. It is anyway irrelevant to client stations. 

Example 

*NetTraceOn 

Example output 

Fri Mar 27 16:26:06: == > 131.123 

Fri 

Fri 

cornpsciB 
backbone 
Mar 27 16:26:17: 
cornpsciB 
backbone 
Mar 27 16:27:31: 
cornpsciB 
art 
backbone 

Related commands 

*NetTraceOff 

local 
local 

== > 131. 5 
local 
local 

== > 131.150 
local 
gateway=l 
local 



AUN 

*Networks 

Displays the current AUN routing table 

Syntax 

Use 

*Networks 

*Networks displays the current AUN routing table. This shows the names of any 
local networks (i.e. those to which the station is directly connected) . It also shows 
the names of those remote networks that the station knows how to reach, and the 
gateway that it will use to do so. 

The AUN routing table alters as gateways start up and shut down, and so the 
information returned by this command varies as the state of the network alters. 

Examples 

*Networks 
art 
backbone 

*Networks 
art 
backbone 

Related commands 

*NetMap 

gateway=l31.5 
local 

local 
local 

a client on the 'backbone' net 
connected to the 'art' net by 
gateway 131 .5 

a gateway between the 'art' 
net and the 'backbone' net 
(i .e. station 131. 5 above) 

5a-297 



*SetStation 

Sa-298 

*SetStation 

Sets a station's number 

Syntax 

*SetStation [station_number] 

Parameters 

Use 

station_number a station number in the range 2 - 254 

*SetStation sets a station's number. storing it in CMOS RAM so it is not lost when 

the computer is switched off. If no number is specified then one is prompted for. If 

the new station number given is invalid, then the current station number is 

preserved. 

This command is not a part of the standard AUN software, to prevent users from 

altering station numbers. It is instead supplied as a separate program on the 

Support disc of the AUN/Level 4 FileServer distribution , in the ArthurLib directory. 

You can run this program from the desktop by double-clicking on its icon; a 

window shows the prompt for the station number. 

The number is stored in the same location as is used by Econet to store station 

numbers. If the station is connected to both an AUN network and a native Econet. 

it will accordingly use the same station number for both types of network. Altering 

the station number for one network will alter it for the other. 

You can find out a station's current station number by typing at a command line: 

*Help Station if Econet is fitted 

or: 

*Net Stat if AUN is installed 

Examples 

*SetStation 20 

*SetStation 
New station number: 20 

Related commands 

*Help Station 



123 The Internet module 

Introduction 
This chapter gives you the guidance and reference material you need to use the 
socket level programming interfaces provided by the Internet module. We strongly 
recommend that you only do so once you have a good understanding of Internet 
protocols and the use of sockets. You should also note that our support services 
would prefer not to support the Internet module at a tutorial level, since this does 
not make the most effective use of their resources. 

The Internet module · 
The Internet module has been derived from the Berkeley networking software that 
was incorporated into the 4.3 BSD 'Reno' release of UNIX (also known as 'net-I ' ). 
and into subsequent variations - including Acorn RISC iX. Consequently, the 
concepts and (to a large extent) the specifics of the programming interface to the 
Internet module are identical to those provided under BSD UNIX. Most of the 
differences between the two are caused by differences between the programming 
environments provided by RISC OS and by UNIX: for example the mechanisms for 
asynchronous event notification, the assumptions about task scheduling 
conventions , and so on. 

The version of the Internet module in the RISC OS 3.5 ROM is only a partial 
implementation of the Internet stack, supporting only those protocols needed by 
then-existent Acorn products. It uses version 2 of the DCI (Driver Control interface) . 
The Internet module in the RISC OS 3.6 ROM (and later) uses DCI 4, and provides a 
full implementation of the protocol stack. If you wish to program using the Internet 
socket interface, you should use the full version of the module; see Getting the 
libraries and full internet module on page 5a-300. 

The Internet C libraries 
Acorn has C libraries available to help you program the Internet module, which 
provide the same calls as are used in BSD Unix networking software. Although the 
Internet module provides a SW! interface, we strongly recommend that you use the 
libraries, as they provide many extra facilities . They will make it easier to program, 
especially when porting software; and will enable you to get help from a wealth of 
supporting books and materials. 

5a-299 



Getting the libraries and full Internet module 

Getting the libraries and full Internet module 

The libraries - Inetlib, Socklib and Unixlib - are available from Acorn's FTP site 

(ftp.acorn.co.uk). or on request from Acorn. There are two versions of each library: 

• The filenames ending in zm are versions intended for use with modules. They 

are compiled using the zps I, ff and zM switches in the C compiler, so there is no 

stack limit checking, function names are not embedded, and they are suitable 

for linking into relocatable modules . 

• The other versions are versions intended for use with standard applications. 

They are compiled using the zpsO and fn switches in the C compiler (but not the 

zM switch). so there is stack limit checking, function names are embedded, and 

they are not suitable for linking into relocatable modules. 

The Internet application is also available from Acorn's FTP site. This includes the 

current version of the Internet module, which provides a full implementation of the 

socket interface. 

Contents of this chapter 

Sa-300 

This chapter describes the library calls we recommend you use, rather than 

describing the more limited range of SWis . Its organisation is therefore a little 

different from other chapters in this manual: 

• Introductory tutorial on page 5a-302 gives an introductory tutorial to 

programming with the Internet module using the libraries . 

• Advanced tutorial on page 5a-318 contains a more advanced tutorial. 

• Protocols on page 5a-356 describes the protocols used by the Internet module. 

• Library calls on page 5a-363 details the calls in the Socklib library, the Inetlib 

library, and the Unixlib library. The section starts with an index of the calls. 

• Service calls on page 5a-456 describes the service calls used by the Internet 

module and network device drivers . 

• SWI calls on page 5a-463 describes how to call the Internet module's Socket_ .. . 

SWI calls; it refers to the earlier documentation. 

• * Commands on page 5a-465 describes the * commands provided by the 

Internet module. 



The Internet module 

About the tutorial sections 

The tutorial sections are derived from sections 7 and 8 of the 4.3 BSD Unix 
Programmer's Manual Supplementary Documents I (or PS I) . By comparing the two, 
experienced Internet programmers will be able to see the changes that have been 
necessary to port the software to RISC OS. 

You should also note that the examples in the tutorials assume a pre-emptive 
multitasking environment such as UNIX, where even if a call does not return for an 
indefinite period , other programs continue to run . This is not the case for RISC OS. 
The example programs do not necessarily multitask correctly under RISC OS. 
Before adapting any of the example code for use in RISC OS, you should be aware 
of which calls might not return promptly, and why; and you should read Multitasking 

on page Sa-352 to find out how to avoid any problems with such calls. 

About the protocol and library call sections 

We've deliberately kept the documentation of protocols and library calls as similar 
as possible to normal 4.3 BSD UNIX documentation , so you can easily see what 
changes we've had to make to cater for RISC OS. (You'll find the equivalent BSD 
manual pages in sections 2, 3 and 4 of a 4.3 BSD UNIX online manual.) Note that 
some section headings have been changed for consistency. The function 
prototypes have also been made consistent in style. Each prototype includes those 
header files needed to call the functions; the functions' Description may mention 
other useful header files, such as constants that may be passed to/from functions . 

Finding out more ... 

As well as the tutorials in this chapter, you may also find the following book 
helpful: 

• UNIX Network Programming I W. Richard Stevens. - Englewood Cliffs, NJ. USA: 
Prentice Hall , 1990. 

Sa-301 



Introductory tutorial 

Introductory tutorial 

Introduction 

Overview 

RISC OS offers several choices for interprocess communication. To aid the 

programmer in developing applications which are comprised of cooperating 

programs. the different choices are discussed and a series of example programs are 

presented. These programs demonstrate in a simple way the use of sockets and the 

use of datagram and stream communication. The intent of this tutorial is to 

present a few simple example programs. not to describe the networking system in 

full. 

At the core of interprocess communication are sockets. from which one reads, and to 

which one writes. The use of a socket has three phases: its creation, its use for 

reading and writing, and its destruction. One can write to a socket without full 

assurance of delivery, since one can check later to catch occasional failures . 

Messages between sockets can be kept as discrete units, or merged into a stream. 

One can ask to read. but insist on not waiting if nothing is immediately available. 

This tutorial presents simple examples that illustrate some of the ways of doing 

interprocess communication in RISC OS. We presume you are familiar with the 

C programming language, but not necessarily with system calls or with 

interprocess communication. The tutorial reviews the types of communication that 

are supported by RISC OS. A series of examples are presented that illustrate 

programs communicating with each other; they show different ways of establishing 

channels of communication. Finally, the calls that actually transfer data are 

reviewed. To clearly present how communication can take place, the example 

programs have been cleared of anything that might be construed as useful work. 

Domains and protocols 

Sa-302 

If we want to communicate between two independent programs. we would like to 

have them separately create sockets, and then have messages sent between the 

sockets. This is often the case when providing or using a service in the system. This 

is also the case when the communicating programs are on separate machines. In 

RISC OS one can create individual sockets, give them names and send messages 

between them. 

Sockets created by different programs use names to refer to one another; names 

generally must be translated into addresses for use. The space from which an 

address is drawn is referred to as a domain . RISC OS supports a single domain for 



sockets, that will be used in the examples here. This is the Internet domain (or 
AF _IN ET, for Address Format InterNET) . The Internet domain is an implementation 
of the DARPA Internet standard protocols IP!fCP/UDP. Addresses in the Internet 
domain consist of a machine network address and an identifying number, called a 
port. Internet domain names allow communication between machines. 

Communication follows some particular 'style.' Currently, communication is either 
through a stream or by datagram . Stream communication implies several things. 
Communication takes place across a connection between two sockets. The 
communication is reliable, error-free, and no message boundaries are kept . 
Reading from a stream may result in reading the data sent from one or several calls 
to socketwrite() or only part of the data from a single call , if there is not enough room 
for the entire message, or if not all the data from a large message has been 
transferred. The protocol implementing such a style will retransmit messages 
received with errors . It will also return error messages if one tries to send a 
message after the connection has been broken . Datagram communication does 
not use connections. Each message is addressed individually. If the address is 
correct, it will generally be received, although this is not guaranteed. Often 
datagrams are used for requests that require a response from the recipient. If no 
response arrives in a reasonable amount of time, the request is repeated. The 
individual datagrams will be kept separate when they are read, that is, message 
boundaries are preserved. 

The difference in performance between the two styles of communication is 
generally less important than the difference in semantics. The performance gain 
that one might find in using datagrams must be weighed against the increased 
complexity of the program, which must now concern itself with lost or out of order 
messages. If lost messages may simply be ignored, the quantity of traffic may be a 
consideration. The expense of setting up a connection is best justified by frequent 
use of the connection. Since the performance of a protocol changes as it is tuned 
for different situations, it is best to seek the most up-to-date information when 
making choices for a program in which performance is crucial. 

A protocol is a set of rules , data formats and conventions that regulate the transfer 
of data between participants in the communication. In general, there is one 
protocol for each socket type (stream, datagram, etc.) within each domain. The 
code that implements a protocol keeps track of the names that are bound to 
sockets , sets up connections and transfers data between sockets. perhaps sending 
the data across a network. This code also keeps track of the names that are bound 
to sockets. It is possible for several protocols, differing only in low level details, to 
implement the same style of communication within a particular domain. Although 
it is possible to select which protocol should be used, for nearly all uses it is 
sufficient to request the default protocol. This has been done in all of the example 
programs. 

Sa-303 



Closing sockets 

One specifies the domain, style and protocol of a socket when it is created. For 

example, in Figure 123.1 on page 5a-305 the call to socket() causes the creation of a 

datagram socket with the default protocol in the Internet domain. 

Closing sockets 
It is particularly important that you ensure your applications close all sockets 

before quitting, say in an atexit() routine. This g only shown in the first example 

program (Figure 123.1 on page 5a-305); other examples omit this for reasons of 

space and clarity. 

If an application terminates under RISC OS without closing an open socket, then 

that socket will remain open indefinitely. This needlessly consumes resources; and 

it leaves fewer sockets available for other programs to use, since socket descriptors 

are kept in a single fixed-size table. 

Datagrams in the Internet domain 

Sa-304 

Let us now look at two programs that create sockets separately. The programs in 

Figure 123.1 on page 5a-305 and Figure 123.2 on page 5a-307 use datagram 

communication rather than a stream. The structure used to name Internet domain 

sockets is defined in the file "netineUin .h" . The definition has also been included in 

the example for clarity. 

Each program creates a socket with a call to socket(). These sockets are in the 

Internet domain . Once a name has been created it is attached to a socket by the 

system call bind(). The routine in Figure 123.2 uses its socket only for sending 

messages . It does not create a name for the socket because no other program has 

to refer to it . 

Internet addresses specify a host address (a 32-bit number) and a delivery slot, or 

port, on that machine. These ports are managed by the system routines that 

implement a particular protocol. When a message must be sent between machines 

it is sent to the protocol routine on the destination machine, which interprets the 

address to determine to which socket the message should be delivered. Several 

different protocols may be active on the same machine, but, in general, they will 

not communicate with one another. As a result , different protocols are allowed to 

use the same port numbers. Thus, implicitly, an Internet address is a triple 

including a protocol as well as the port and machine address. An association is a 

temporary or permanent specification of a pair of communicating sockets. An 

association is thus identified by the tuple <protocol, local machine address, local port, 

remote machine address , remote port>. An association may be transient when using 

datagram sockets; the association actually exists during a send operation . 



I I I(; II ll(;;I I 1c;& I I IVUll.ll(;; 

#include <stdio . h> 
#include "sys / types.h " 
#include "sys / socket . h " 
#include "netinet / in . h " 

/* 
* In the included file "netinet/in.h" a sockaddr_ in is defined as follows: 
* struct sockaddr_ in { 

short sin_family ; 
u_short sin_port; 

* struct in_ addr sin_addr; 
char sin_ zero[B]; 

* } ; 

* This program creates a datagram socket , binds a name to it , then reads 
* from the socket. 
* / 

char buf[l024]; /*global rather than auto, so doesn ' t go on SVC stack*/ 
int sock = -1; /* mark socket as initially closed * / 

finalise () 
{ 

/* exit handler to close socket, registered with atexit * / 

main() 
{ 

i f (sock != -1) 
socketclose(sock); 
sock = -1; 

/* if socket not already closed */ 
/ * close it * / 
/ * and mark it as closed * / 

int length; 
struct sockaddr_ in name; 

/* Register finalisation code to close socket at exit */ 
if (atexit (final ise) ! = 0) { 

fprintf(stderr, "Unable to register exit handler\n"); 
exit (1); 

/ * Create socket from which to read. * / 
sock= socket(AF_INET , SOCK_DGRAM, 0) ; 
if (sock < 0) { 

xperror ("opening datagram socket•) ; 
exit(l); 

Figure 123.1 Reading Internet domain datagrams 

Sa-305 



Datagrams in the Internet domain 

Sa-306 

/* Create name with wildcards. */ 

name.s i n_ family = AF_ INET ; 

name . sin_ addr.s_addr = INADDR_ ANY ; 

name.sin_port = O; 

if (bind(sock, &name, sizeof( n ame))) 

xperror ( "binding dat agram soc ket " ) ; 

exit(l) ; 

/* Find a s signed port value and print it out. * / 

length = sizeof(name); 

if (getsockname(sock, &name , &length)) { 

x perro r (" getting soc ket name ") ; 

exit (1) ; 

printf("Socket has port #%d\n ", ntohs(name.sin_port)); 

/* Read from the socket */ 

if (socketread(sock , buf, 1 024) < 0) 

xperror ("receiving datagram packet " ); 

printf( " - - >%s\n", buf) ; 

/* Cl o se the socket */ 

socketclose(sock) ; 

sock = -1 ; /* mark it as close d * / 

Figure 123.1 Reading Internet domain datagrams (continued) 

The protocol for a socket is chosen when the socket is created. The local machine 

address for a socket can be any valid network address of the machine. if it has more 

than one, or it can be the wildcard value INADDR_ANY. The wildcard value is used 

in the program in Figure 123.1. If a machine has several network addresses , it is 

likely that messages sent to any of the addresses should be deliverable to a socket. 

This will be the case if the wildcard value has been chosen . Note that even if the 

wildtard value is chosen, a program sending messages to the named socket must 

specify a valid network address. One can be willing to receive from 'anywhere', but 

one cannot send a message 'anywhere'. The program in Figure 123.2 is given the 

destination host name as a command line argument. To determine a network 

address to which it can send the message, it looks up the host address by the call 

to getftostfn,Jname(). The returned structure includes the host's network address. 

which is copied into the structure specifying the destination of the message. 

The port number can be thought of as the number of a mailbox. into which the 

protocol places one's messages. Certain daemons, offering certain advertised 

services , have reserved or 'well-known' port numbers. These fall in the range from 1 

to 1023. Higher numbers are available to general users . Only servers need to ask 

for a particular number. The system will assign an unused port number when an 

address is bound to a socket. This may happen when an explicit bind call is made 

with a port number of 0, or when a connect or send is performed on an unbound 



The Internet module 

#include <stdio.h> 
#include "sys/types.h " 
#include "sys/socket.h" 
#include "netinet/in.h " 
#include "netdb.h " 

#define DATA "The sea is calm tonight, the tide is full . . 

/* 
* Here I send a datagram to a receiver whose name I get from the command 
* line arguments. The form of the command line is dgrarnsend hostname 
* portnumber 
*/ 

main(argc , argv) 
int argc; 
char *argv []; 

int sock; 
struct sockaddr_in name; 
struct hostent *hp, *gethostbyname(); 

/* Create socket on which to send . */ 
sock= socket(AF_ INET, SOCK_DGRAM, 0); 
if (sock < 0) { 

/* 

xperror ( "opening datagram socket"); 
exit (1) ; 

* Construct name, with no wildcards, of the socket to send to. 
* Gethostbyname() returns a structure including the network 
* address of the specified host. The port number is t aken from 
* the command line. 
*/ 

hp= gethostbyname(argv [ l]); 
if (hp == 0) { 

fprintf (stderr, "%s: unknown host\n ", argv [ l]); 
exit (2); 

bcopy(hp->h_ addr, &narne.sin_ addr , hp - >h_length); 
narne.sin_ farnily AF_ INET; 
narne.sin_port = htons(atoi(argv[2])); 

/* Send message. */ 
if (sendto(sock, DATA, sizeof(DATA), 0, &name, sizeof(name)) < 0) 

xperror( "sending datagram message " ) ; 

socketclose(sock); 

Figure 123.2 Sending an In ternet domain datagram 

5a-307 



Connections 

Connections 

5a-308 

socket. Note that port numbers are not automatically reported back to the user. 

After calling bind(), asking for port 0, one may call getsockname() to discover what 

port was actually assigned. 

The format of the socket address is specified in part by standards within the 

Internet domain. The specification includes the order of the bytes in the address. 

Because machines differ in the internal representation they ordinarily use to 

represent integers, printing out the port number as returned by getsockname() may 

result in a misinterpretation . To print out the number, it is necessary to use the 

routine ntohs() (for network to host: short) to convert the number from the network 

representation to the host's representation . On some machines, such as 

68000-based machines, this is a null operation . On others, such as ARMs and 

VAXes, this results in a swapping of bytes. Another routine exists to convert a short 

integer from the host format to the network format, called htons() ; similar routines 

exist for long integers. 

To send data between stream sockets (having communication style 

SOCK_STREAM). the sockets must be connected. Figure 123.3 on page Sa-309 and 

Figure 123.5 on page Sa-311 show two programs that create such a connection. The 

program in Figure 123.3 is relatively simple. To initiate a connection, this program 

simply creates a stream socket, then calls connect(), specifying the address of the 

socket to which it wishes its socket connected. Provided that the target socket 

exists and is prepared to handle a connection, connection will be complete, and 

the program can begin to send messages. Messages will be delivered in order 

without message boundaries. The connection is destroyed when either socket is 

closed (or soon thereafter) . If a program tries to send messages after the 

connection is closed, the call will fail , and the errno variable is set to 'EPIPE'. 

Forming a connection is asymmetrical; one program, such as the program in 

Figure 123.3, requests a connection with a particular socket, the other program 

accepts connection requests . Before a connection can be accepted a socket must 

be created and an address bound to it. This situation is illustrated in the top half of 

Figure 123.4 on page Sa-310. Program 2 has created a socket and bound a port 

number to it . Program I has created an unnamed socket. The address bound to 

Program 2's socket is then made known to Program I and, perhaps to several other 

potential communicants as well. If there are several possible communicants , this 

one socket might receive several requests for connections. As a result, a new 

socket is created for each connection. This new socket is the endpoint for 

communication within this program for this connection. A connection may be 

destroyed by closing the corresponding socket. 



The Internet module 

#include <stdio.h> 
#include "sys/types.h" 
#include "sys/socket.h" 
#include "netinet/in.h" 
#include "netdb.h" 

#define DATA "Half a league, half a league . . 

/* 
* This program creates a socket and initiates a connection with the socket 
* given in the command line. One message is sent over the connection and 
* then the socket is closed, ending the connection. The form of the 
* command line is streamwrite hostname portnumber 
*/ 

char buf[l024]; / *global rather than auto, so doesn't go on SVC stack*/ 

main(argc, argv) 
int argc; 
char *argv[ ] ; 

int sock; 
struct sockaddr_in server; 
struct hostent *hp, *gethostbyname(); 

/* Create socket */ 
sock= socket(AF_INET, SOCK_STREAM, 0); 
if (sock < 0) { 

xperror("opening stream socket'); 
exit(l); 

/* Connect socket using name specified by command line. */ 
server.sin_family = AF_INET; 
hp= gethostbyname(argv[l]); 
if (hp == 0) { 

fprintf(stderr, "%s: unknown host\n" , argv[l]); 
exit (2); 

bcopy(hp->h_addr, &server.sin_addr, hp->h_length); 
server.sin_port = htons(atoi(argv[2])); 

if (connect(sock, &server, sizeof(server)) < 0) { 
xperror("connecting stream socket"); 
exit(l); 

if (socketwrite(sock, DATA, sizeof(DATA)) < 0) 
xperror("writing on stream socket"); 

close(sock); 

Figure 123.3 Initiating an Internet domain stream connection 

5a-309 



Connections 

Sa-310 

Program 1 Program2 

0 
Program 1 Program 2 

Figure 123.4 Establishing a stream connection 

The program in Figure 123.5 is a rather trivial example of a server. It creates a socket 

to which it binds a name, which it then advertises. (In this case it prints out the 

socket number.) The program then calls listen() for this socket. Since several clients 

may attempt to connect more or less simultaneously, a queue of pending 

connections is maintained in the system address space. Listen() marks the socket 

as willing to accept connections and initializes the queue. When a connection is 

requested, it is listed in the queue. If the queue is full, an error status may be 

returned to the requester. The maximum length of this queue is specified by the 

second argument of listen() ; the maximum length is limited by the system. Once the 

listen call has been completed, the program enters an infinite loop. On each pass 



The Internet module 

#include <stdio.h> 
#include •sys/types.h" 
#include "sys/socket .h " 
#include "netinet/in.h" 
#include "netdb.h" 
#define TRUE 1 

/* 

* This program creates a socket and then begins an infinite loop. Each 
* time through the loop it accepts a connection and prints out messages 
* from it. When the connection breaks, or a termination message comes 
* through, the program accepts a new connection. 
*/ 

char buf[1024]; /*global rather than auto, so doesn't go on SVC stack*/ 

main() 
{ 

int sock, length; 
struct sockaddr_in server; 
int msgsock; 
int rval; 
int i; 

/ * Create socket */ 
sock = socket(AF_INET, SOCK_STREAM, 0); 
if (sock < 0) { 

xperror ("opening stream socket") ; 
exit (1); 

/* Name socket using wildcards */ 
server.sin_family = AF_INET; 
server.sin_ addr.s_addr = INADDR_ANY; 
server.sin_port = O; 
if (bind(sock, &server, sizeof(server))) 

xperror ("binding stream socket") ; 
exit (1); 

/* Find out assigned port number and print it out */ 
length= sizeof(server); 
if (getsockname(sock, &server, &length)) 

xperror ( "getting socket name" ) ; 
exit(l); 

printf("Socket has port #%d\n", ntohs(server.sin_port)); 

Figure 123.5 Accepting an Internet domain stream connection 

Sa-311 



Connections 

Sa-312 

/* Start accepting connections */ 

listen(sock, 5); 

do { 
msgsock = accept(sock, 0, 0); 

if (msgsock == -1) 
xperror ("accept") ; 

else do { 
bzero(buf, sizeof(buf)); 

if ((rval = socketread(msgsock, buf, 1024)) < 0) 

xperror( "reading stream message"); 

i = O; 

if (rval == 0) 
printf("Ending connection\n"); 

else 
printf("-->%s\n", buf); 

} while (rval ! = 0); 

close (msgsock) ; 

} while (TRUE) ; 

/* 

Figure 123. 5 Accepting an Internet domain stream connection (continued) 

through the loop, a new connection is accepted and removed from the queue, and, 

hence, a new socket for the connection is created. The bottom half of Figure 123.4 

shows the result of Program I connecting with the named socket of Program 2, and 

Program 2 accepting the connection. After the connection is created, the service, in 

this case printing out the messages, is performed and the connection socket 

closed. The accept() call will take a pending connection request from the queue if 

one is available, or block waiting for a request . Messages are read from the 

connection socket. Reads from an active connection will normally block until data 

is available. The number of bytes read is returned. When a connection is destroyed, 

the read call returns immediately. The number of bytes returned will be zero. 

The program in Figure 123.6 on page Sa-313 is a slight variation on the server in 

Figure 123.5. It avoids blocking when there are no pending connection requests by 

calling select() to check for pending requests before calling accept() . This strategy is 

useful when connections may be received on more than one socket, or when data 

may arrive on other connected sockets before another connection request . 



The Internet module 

#include <stdio.h> 
#include "sys/types.h" 
#include "sys/socket.h" 
#include "sys/time.h" 
#include •netinet/in.h" 
#include "netdb.h" 

#define TRUE 1 

/* 
* This program uses select() to check that someone is trying to connect 
*before calling accept(). 
*/ 

char buf[1024]; /*global rather than auto, so doesn't go on SVC stack*/ 

main () 
{ 

int sock, length; 
struct sockaddr_in server; 
int msgsock; 
int rval; 
fd_set ready; 
struct timeval to; 

/* Create socket */ 
sock = socket(AF_INET, SOCK_STREAM, 0); 
if (sock < 0) { 

xperror ("opening stream socket•) ; 
exit(l); 

/* Name socket using wildcards */ 
server.sin_family = AF_INET; 
server.sin_addr.s_addr = INADDR_ANY; 
server.sin_port = O; 
if (bind(sock, &server, sizeof(server))) 

xperror ("binding stream socket"); 
exit(l); 

/* Find out assigned port number and print it out */ 
length= sizeof(server); 
if (getsockname(sock, &server, &length)) 

xperror ("getting socket name"); 
exit(l); 

printf("Socket has port #%d\n", ntohs(server.sin_port)); 

Figure 123.6 Using select() to check for pending connections 

Sa-313 



Connections 

5a-314 

/* Start accepting connections */ 

listen(sock, 5); 

do { 
FD_ZERO(&ready); 

FD_ SET(sock, &ready); 

to . tv_ sec = 5; 

if (select(sock + l, &ready, 0, 0, &to) < 0) { 

xperror ( "select " ) ; 

continue ; 

if (FD_ ISSET(sock , &ready)) { 

J else 

msgsock=accept(sock, (struct sockaddr *)0, (int *)0); 

if (msgsock == -1) 
xperror ( "accept" ) ; 

else do { 
bzero(buf, sizeof(buf)) ; 

if ((rval=socketread(msgsock , buf,1024) ) <0) 

xperror ("reading stream message " ) ; 

else if (rval == 0) 
print f ( "Ending connection\n") ; 

else 
printf( " -->%s\n " , buf); 

} while (rval > 0); 

close(msgsock) ; 

printf( "Do something else\n " ); 

} while (TRUE) ; 

Figure 123.6 Using select() to check for pending connections (continued) 



The Internet module 

Reads, writes, recvs, etc 

Socklib has several system calls for reading and writing information. The simplest 
calls are socketread() and socketwrite() . Socketwrite() takes as arguments the index of a 
descriptor, a pointer to a buffer containing the data and the size of the data. The 
descriptor indicates a connected socket. 'Connected' can mean either a connected 
stream socket (as described in Connections on page 5a-308) or a datagram socket for 
which a connect() call has provided a defavlt destination (see page 5a-378) . 
Socketread() also takes a descriptor that indicates a socket. Socketwrite() requires a 
connected socket since no destination is specified in the parameters of the system 
call. Socketread() can be used for either a connected or an unconnected socket. 
These calls are, therefore, quite flexible and may be used to write applications that 
require no assumptions about the source of their input or the destination of their 
output. There are variations on socket read() and socketwrite() that allow the source and 
destination of the input and output to use several separate buffers. These are 
socketreadv() and socketwritev(), for read and write vector. 

It is sometimes necessary to send high priority data over a connection that may 
have unread low priority data at the other end. For example, a user interface 
program may be interpreting commands and sending them on to another program 
through a stream connection. The user interface may have filled the stream with as 
yet unprocessed requests when the user types a command to cancel all 
outstanding requests . Rather than have the high priority data wait to be processed 
after the low priority data, it is possible to send it as out-of-band (OOB) data. The 
notification of pending OOB data results in the generation of an Internet event 
(see The Internet event on page 5a-34 l ). There are a pair of calls similar to socketread 
and socketwrite that allow options, including sending and receiving OOB 
information; these are send() and recv() . These calls also allow peeking at data in a 
stream. That is, they allow a program to read data without removing the data from 
the stream. One use of this facility is to read ahead in a stream to determine the 
size of the next item to be read. When not using these options, these calls have the 
same functions as socketread() and socketwrite() . 

To send datagrams, one must be allowed to specify the destination. The call 
sendto() takes a destination address as an argument and is therefore used for 
sending datagrams. The call recvfrom() is often used to read datagrams, since this 
call returns the. address of the sender, if it is available, along with the data. If the 
identity of the sender does not matter, one may use socketread() or recv() . 

Finally, there are a pair of calls that allow the sending and receiving of messages 
from multiple buffers, when the address of the recipient must be specified. These 
are sendmsg() and recvmsg() . 

Sa-315 



Reads, writes, recvs, etc 

5a-316 

The various options for reading and writing are shown in Figure 123. 7 on 

page 5a-316, together with their parameters. The parameters for each system call 

reflect the differences in function of the different calls. In the examples given in 

this tutorial , the calls socketread() and socketwrite() have been used whenever 

possible. 

/* 
* The variable "sock" must be the descriptor of a socket . 

* / 

cc = socketread(sock, buf, nbytes) 

int cc , sock; char *buf; int nbytes; 

/* 

* An iovec can include several source buffers. 

*/ 

cc = socketreadv(sock , iov , iovcnt) 

int cc, sock; struct iovec *iov; int iovcnt; 

cc = socketwrite(sock, buf, nbytes) 

int cc, sock; char *bu f ; int nbytes; 

cc = socketwritev(sock , iovec , ioveclen) 

int cc, sock; struct iovec *iovec; int ioveclen; 

/* 
* Flags may include MSG_OOB and MSG_PEEK. 

*/ 
cc = send(sock, msg, len, flags) 

int cc, sock; char ! *msg; int len , flags; 

cc = sendto(sock, msg, len, flags, to, tolen) 

int cc , sock; char *msg; int len, flags; 

. struct sockaddr *to; int tolen; 

cc = sendmsg(sock, msg, flags) 

int cc, sock; struct msghdr msg[]; int flags ; 

cc = recv(sock, buf, len, flags) 

int cc, sock; char *buf; int len, flags; 

cc = recvfrom(sock, buf , len , flags, from , fromlen) 

int cc , sock; char *buf; int len, flags; 

struct sockaddr *from; int *fromlen ; 

cc = recvmsg(sock, msg, flags) 

int cc, sock; struct msghdr msg[]; int flags; 

Figure 123. 7 Varieties of socketread and socketwrite commands 



Choices 

The Internet module 

This introductory tutorial has presented examples of some of the forms of 
communication supported by RISC OS. These have been presented in an order 
chosen for ease of presentation. It is useful to review these options emphasizing 
the factors that make each attractive. 

The Internet domain allows communication between machines. This makes the 
Internet domain a necessary choice for programs running on separate machines. 

The choice between datagrams and stream communication is best made by 
carefully considering the semantic and performance requirements of the 
application. Streams can be both advantageous and disadvantageous. One 
disadvantage is that a program is only allowed a limited number of open streams, 
as there are usually only 96 entries available in the system-wide open descriptor 
table. This can cause problems if a single server must talk with a large number of 
clients. Another is that for delivering a short message the stream setup and 
teardown time can be unnecessarily long. Weighed against this is the reliability 
built into the streams. This will often be the deciding factor in favour of streams. 

What to do next 
Many of the examples presented here can serve as models for multiprocess 
programs and for programs distributed across several machines. In developing a 
new multiprocess program, it is often easiest to first write the code to create the 
programs and communication paths . After this code is debugged, the code specific 
to the application can be added. 

Sa-317 



Advanced tutorial 

Advanced tutorial 

Introduction 

5a-318 

This section gives you a more advanced tutorial on the communications 

programming facilities provided by the Internet module. It looks at the overall 

model for communication , outlines the communications primitives we've 

provided, and (in particular) looks at how to use these primitives in developing 

applications. 

This tutorial provides a high-level description of the communications facilities and 

their use. It is complements the descriptions of the library calls later in this chapter 

by examples of their use. The remainder of this section is organized in parts: 

• Basics on page 5a-3 J 9 introduces the communication-related calls and the 

basic model of communication. 

• Network library routines on page 5a-329 describes some of the supporting library 

routines users may find useful in constructing distributed applications . 

• Client/server model on page 5a-334 is concerned with the client/server model 

used in developing applications, and includes examples of the two major 

types of servers. 

• Tfte Internet event on page 5a-341 describes the Internet event which is used by a 

number of important features. such as asynchronous 1/0, and out-of-band 

data. 

• Advanced topics on page 5a-343 delves into advanced topics which sophisticated 

users are likely to encounter when using the communications facilities . 

• Multitasking on page 5a-352 outlines how to ensure that programs using the 

Internet module multitask correctly under RISC OS. It is essential that you 
read this section and follow its recommendations. 

You should be familiar with the C programming language, as all examples are 

written in C. 



Basics 
The basic building block for communication is the socket. A socket is an endpoint of 
communication to which you can bind a name. Each socket in use has a type. 

Sockets exist within communication domains . A communication domain is an 
abstraction introduced to bundle common properties of programs communicating 
through sockets. One such property is the scheme used to name sockets. Sockets 
normally exchange data only with sockets in the same domain. (It may be possible 
to cross domain boundaries, but only if some translation process is performed.) 

The RISC OS socket subsystem currently only supports a single communication 
domain: the Internet domain, which is used by programs which communicate using 
the DARPA standard communication protocols. 

Socket types 

Sockets are typed according to the communication properties visible to a user. 
Programs are presumed to communicate only between sockets of the same type, 
although there is nothing that prevents communication between sockets of 
different types should the underlying communication protocols support this . 

Three types of sockets currently are available to a user. 

• .A stream socket provides for the bidirectional , reliable, sequenced, and 
unduplicated flow of data without record boundaries. (Aside from the 
bidirectionality of data flow, a pair of connected stream sockets provides an 
interface nearly identical to that of BSD UNIX pipes.) 

• A datagram socket supports bidirectional flow of data which is not promised to 
be sequenced. reliable, or unduplicated. That is, a program receiving 
messages on a datagram socket may find messages duplicated, and , possibly, 
in an order different from the order in which it was sent. An important 
characteristic of a datagram socket is that record boundaries in data are 
preserved. Datagram sockets closely model the facilities found in many 
contemporary packet switched networks such as the Ethernet. 

• A raw socket provides users access to the underlying communication protocols 
which support socket abstractions. These sockets are normally datagram 
oriented, though their exact characteristics are dependent on the interface 
provided by the protocol. Raw sockets are not intended for the general user; 
they have been provided mainly for those interested in developing new 
communication protocols. or for gaining access to some of the more esoteric 
facilities of an existing protocol. The use of raw sockets is considered in 
Selecting specific protocols on page 5a-345. 

Sa-319 



Basics 

Sa-320 

Socket creation 

To create a socket the socket system call is used: 

s = socket(domain, type, protocol); 

This call requests that the system create a socket in the specified domain and of the 

specified type. A particular protocol may also be requested. 

• The domain is specified as one of the manifest constants defined in the file 

"syslsocket.h". The manifest constants are named AF_ ... as they indicate the 

'address format' to use in interpreting names; for the Internet domain 

supported by RISC OS the constant is AF _IN ET. 

• The socket types are also defined in this file and one of SOCK_STREAM, 

SOCK_DGRAM, or SOCK_RAW must be specified. 

• If the protocol is left unspecified (a value of 0) , the system will select an 

appropriate protocol from those protocols which comprise the 

communication domain and which may be used to support the requested 

socket type. 

The user is returned a descriptor (a small integer number) which may be used in 

later system calls which operate on sockets. 

To create a stream socket in the Internet domain the following call might be used: 

s = socket(AF_ INET, SOCK_ STREAM, 0); 

This call would result in a stream socket being created with the TCP protocol 

providing the underlying communication support. To create a datagram socket for 

the Internet domain use the call might be: 

s = socket(AF_INET, SOCK_ DGRAM , 0) ; 

The default protocol (used when the protocol argument to the socket call is 0) should 

be correct for most every situation . However, it is possible to specify a protocol 

other than the default ; this is covered in Selecting specific protocols on page 5a-345. 

There are several reasons a socket call may fail. Aside from the rare occurrence of 

lack of memory (ENOBUFS), a socket request may fail due to a request for an 

unknown protocol (EPROTONOSUPPORT). or a request for a type of socket for 

which there is no supporting protocol (EPROTOTYPE) . 



The Internet module 

Binding local names 

A socket is created without a name. Until a name is bound to a socket, programs 
have no way to reference it and, consequently, no messages may be received on it. 
Communicating programs are bound by an association . In the Internet domain, an 
association is composed of local and foreign Internet addresses, and local and 
foreign port numbers. In most domains, associations must be unique. In the 
Internet domain there may never be duplicate <protocol , local address , local port , 
foreign address , foreign port> tuples. 

The bind system call allows a program to specify half of an association , 
<local address , local port>. while the connect and accept primitives are used to 
complete a socket's association. 

In the Internet domain, binding names to sockets can be fairly complex. 
Fortunately, it is usually not necessary to specifically bind an address and port 
number to a socket, because the connect and send calls will automatically bind an 
appropriate address if they are used with an unbound socket. 

The bind system call is used as follows: 

bind(s , name, namelen) ; 

The bound name is a variable length byte string which is interpreted by the 
supporting protocol(s) . Its interpretation may vary from communication domain to 
communication domain (this is one of the properties which comprise the domain) . 
As mentioned, in the Internet domain names contain an Internet address and port 
number. If one wanted to bind an Internet address , the following code would be 
used: 

#inc l ude "sys/type s.h " 
#inc l ude "netinet/in.h" 

struct sockaddr_in sin ; 

bind(s , (struct sock addr *) &sin , sizeof (sin ) ) ; 

but the selection of what to place in the address sin requires some discussion. We 
will come back to the problem of formulating Internet addresses in Network library 
routines on page Sa-329, when the library routines used in name resolution are 
discussed. 

Sa-321 



Basics 

Sa-322 

Connection establishment 

Connection establishment is usually asymmetric, with one program a client and the 

other a server. 

• The server, when willing to offer its advertised services, binds a socket to a 

well-known address associated with the service and then passively 'listens' on 

its socket. 

It is then possible for an unrelated program to rendezvous with the server. 

• The client requests services from the server by initiating a 'connection' to the 

server's socket. 

On the client side the connect call is used to initiate a connection. Using the Internet 

domain, th is might appear as: 

struct sockaddr_in server; 

connect(s, (struct sockaddr *)&server , sizeof ( s erver ) ) ; 

where server in the example above contains the Internet address and port number 

of the server to which the client program wishes to speak. 

If the client program's socket is unbound at the time of the connect call, the system 

will automatically select and bind a name to the socket if necessary. This is the 

usual way that local addresses are bound to a socket. 

An error is returned if the connection was unsuccessful (any name automatically 

bound by the system, however, remains) . Otherwise, the socket is associated with 

the server and data transfer may begin. Some of the more common errors returned 

when a connection attempt fails are: 

ETIMEDOUT After failing to establish a connection for a period of 
time, the system decided there was no point in retrying 
the connection attempt any more. This usually occurs 
because the destination host is down , or because 
problems in the network resulted in transmissions being 

lost . 

ECONNREFUSED The host refused service for some reason. This is usually 
due to a server program not being present at the 
requested name. 



ENETDOWN or 
EHOSTDOWN 

ENETUNREACH 
or 
EHOSTUNREACH 

The Internet module 

These operational errors are returned based on status 
information delivered to the client host by the 
underlying communication services. 
These operational errors can occur either because the 
network or host is unknown (no route to the network or 
host is present) , or because of status information 
returned by intermediate gateways or switching nodes. 
Many times the status returned is not sufficient to 
distinguish a network being down from a host being 
down, in which case the system indicates the entire 
network is unreachable. 

For the server to receive a cl ient's connection it must perform two steps after 
binding its socket. The first is to indicate a willingness to listen for incoming 
connection requests: 

listen(s , 5); 

The second parameter to the listen call specifies the maximum number of 
outstanding connections which may be queued awaiting acceptance by the server 
program; this number may be limited by the system. Should a connection be 
requested while the queue is full . the connection will not be refused, but rather the 
individual messages which comprise the request will be ignored. This gives a 
harried server time to make room in its pending connection queue while the client 
retries the connection request. Had the connection been returned with the 
ECONNREFUSED error, the client would be unable to tell if the server was up or 
not. As it is now it is still possible to get the ETIMEDOUT error back, though this is 
unlikely. The backlog figure supplied with the listen call is currently limited by the 
system to a maximum of 5 pending connections on any one queue. This avoids the 
problem of programs hogging system resources by setting an infinite backlog, then 
ignoring all connection requests . 

With a socket marked as listening, a server may accept a connection: 

struct sockaddr_ in from; 

frornlen = sizeof (from); 
newsock = a ccept(s, (struct sockaddr * )&from, &fromlen) ; 

A new descriptor is returned on receipt of a connection (along with a new socket) . 
If the server wishes to find out who its client is, it may supply a buffer for the client 
socket's name. The value-result parameter from/en is initialized by the server to 
indicate how much space is associated with from , then modified on return to reflect 
the true size of the name. If the client's name is not of interest, the second 
parameter may be a null pointer. 

Sa-323 



Basics 

5a-324 

Accept normally blocks. That is, accept will not return until a connection is available 
or the system call is interrupted - for example by Escape being pressed. Further, 
there is no way for a program to indicate it will accept connections from only a 
specific individual, or individuals. It is up to the user program to consider who the 
connection is from and close down the connection if it does not wish to speak to 
the program. If the server program wants to accept connections on more than one 
socket, or wants to avoid blocking on the accept call, there are alternatives; they 
will be considered in Advanced topics on page 5a-343 . 

Data transfer 

With a connection established, data may begin to flow. To send and receive data 
there are a number of possible calls. With the peer entity at each end of a 
connection anchored, a user can send or receive a message without specifying the 
peer. In this case the socketread and socketwrite system calls are usable: 

socketwrite(s , buf, sizeof (buf)); 
socketread(s, buf , sizeof (buf) ) ; 

In addition to socketread and socketwrite, the calls send and recv may be used: 

send (s, buf, sizeof (buf), flags); 
recv (s, buf, sizeof (buf ), flags); 

While send and recv are virtually identical to socketread and socketwrite, the extra flags 
argument is important. The flags , defined in "sys/socket.ft", may be specified as a 
non-zero value if one or more of the following is required: 

MSG_OOB 

MSG_PEEK 

MSG_DONTROUTE 

send/receive out-of-band data 

look at data without reading 

send data without routing packets 

• Out-of-band data is a notion specific to stream sockets, and one which we will 
not immediately consider. 

• The option to have data sent without routing applied to the outgoing packets 
is currently used only by the routing table management program, and is 
unlikely to be of interest to the casual user. 

• The ability to preview data is , however, of interest. When MSG_PEEK is 
specified with a recv call, any data present is returned to the user, but treated as 
still 'unread'. That is , the next socketread or recv call applied to the socket will 
return the data previously previewed. 



The Internet module 

Discarding sockets 

Once a socket is no longer of interest, it may be discarded by applying a socketclose 
to the descriptor: 

s ocketclose(s) ; 

If data is associated with a socket which promises reliable delivery ( eg a stream 
socket) when a close takes place, the system will continue to attempt to transfer 
the data . However, after a fairly long period of time, if the data is still undelivered, 
it will be discarded. Should a user have no use for any pending data , it may perform 
a shutdown on the socket prior to closing it. This call is of the form: 

shutdown(s, how); 

where how is 0 if the user is no longer interested in reading data, I if no more data 
will be sent, or 2 if no data is to be sent or received. 

When a client or server machine crashes, the socket stays open on the machine 
that hasn't crashed. Afterwards , under RISC OS, socketwrite or send calls will result in 
an event being generated (see The internet event on page 5a-341) and a return error of 
EPIPE, socketread or recv calls will return an EOF indication. 

Connectionless sockets 

To this point we have been concerned mostly with sockets which follow a 
connection oriented model. However, there is also support for connectionless 
interactions typical of the datagram facilities found in contemporary packet 
switched networks. A datagram socket provides a symmetric interface to data 
exchange. While programs are still likely to be client and server, there is no 
requirement for connection establishment. Instead, each message includes the 
destination address . 

Datagram sockets are created as before. If a particular local address is needed, the 
bind operation must precede the first data transmission . Otherwise, the system will 
set the local address and/or port when data is first sent. 

To send data , the sendto primitive is used: 

send to(s, buf, buflen , flags , (struct sockaddr *) &to, tolen); 

• The s, buf, buflen, and flags parameters are used as before. 

• The to and tolen values are used to indicate the address of the intended 
recipient of the message. 

When. using an unreliable datagram interface, it is unlikely that any errors will be 
reported to the sender. When information is present locally to recognize a message 
that can not be delivered (for instance when a network is unreachable). the call will 
return -I and the global value errno will contain an error number. 

Sa-325 



Basics 

5a-326 

To receive messages on an unconnected datagram socket, the recvfrom primitive is 
provided: 

recvfrom(s , buf, buflen , flags , (struct sockaddr *)&from, &fromlen); 

• Once again, the from/en parameter is handled in a value-result fashion, initially 

containing the size of the from buffer, and modified on return to indicate the 
actual size of the address from which the datagram was received. 

In addition to the two calls mentioned above, datagram sockets may also use the 
connect call to associate a socket with a specific destination address. In this case, 
any data sent on the socket will automatically be addressed to the connected peer, 
and only data received from that peer will be delivered to the user. Only one 
connected address is permitted for each socket at one time; a second connect will 
change the destination address, and a connect to a null address (family 
AF _UNSPEC) will disconnect. Connect requests on datagram sockets return 
immediately, as this simply results in the system recording the peer's address (as 
compared to a stream socket, where a connect request initiates establishment of 
an end to end connection) . Accept and listen are not used with datagram sockets. 

While a datagram socket is connected, errors from recent send calls may be 
returned asynchronously. These errors may be reported on subsequent operations 
on the socket, or a special socket option used with getsockopt, SO_ERROR, may be 
used to interrogate the error status . A select for reading or writing will return true 
when an error indication has been received. The next operation will return the 

error, and the error status is cleared. Other of the less important details of 
datagram sockets are described in Advanced topics on page 5a-343. 

Input/output multiplexing 

One last facility often used in developing applications is the ability to multiplex i/o 
requests among multiple sockets. This is done using the select call : 

#include •sys/time .h" 
#include •sys /types .h" 

fd_ set readmask, writemask , exceptmask; 

struct timeval timeout; 

select(nfds, &readmask, &writemask , &exceptmask, &timeout); 



The Internet module 

Select takes as arguments pointers to three sets : 

• one for the set of socket descriptors for which the caller wishes to be able to 
read data on 

• one for those descriptors to which data is to be written 

• one for which exceptional conditions are pending 

(Out-of-band data is the only exceptional condition currently implemented by 

the socket. If the user is not interest~d in certain conditions - ie read, write, or 
exceptions - the corresponding argument to the select should be a null pointer. 

Each set is actually a structure containing an array of long integer bit masks; the 
size of the array is set by the definition FD_SETSIZE. The array must be long 
enough to hold one bit for each of FD_SETSIZE descriptors. 

The macros FD_SET(fd, &mask) and FD_CLR(fd, &mask) have been provided for 

adding and removing descriptor fd in the set mask. The set should be zeroed before 

use, and the macro FD_ZERO(&mask) has been provided to clear the set mask. 

The parameter nfds in the select call specifies the range of descriptors (ie one plus 

the value of the largest descriptor) to be examined in a set. 

A timeout value may be specified if the selection is not to last more than a 
predetermined period of time. If the fields in timeout are set to 0, the selection takes 

the form of a poll , returning immediately. If the last parameter is a null pointer, the 
selection will block indefinitely. 

Select normally returns the number of descriptors selected; if the select call returns 

due to the timeout expiring, then the value 0 is returned. If the select terminates 

because of an error or interruption, a -1 is returned with the error number in errno, 

and with the socket descriptor masks unchanged. 

Assuming a successful return , the three sets will indicate which descriptors are 

ready to be read from, written to, or have exceptional conditions pending. The 
status of a socket descriptor in a select mask may be tested with the 
FD_ISSET(fd, &mask) macro, which returns a non-zero value if fd is a member of the 

set mask, and 0 if it is not. 

To determine if there are connections waiting on a socket to be used with an accept 

call, select can be used, followed by a FD_ISSET(fd, &mask) macro to check for read 
readiness on the appropriate socket. If FD_ISSET returns a non-zero value, 
indicating permission to read, then a connection is pending on the socket. 

5a-327 



Basics 

5a-328 

As an example, to read data from two sockets, sl and s2 as it is available from each 

and with a one-second t imeout , the following code might be used: 

#include • sys/time.h' 

#include • sys/types.h" 

fd_set read_ template; 

struct timeval wait ; 

for (;;) { 

wait.tv_sec = l; 
wait.tv_usec = O; 

FD_ZERO(&read_ template); 

/* one second •/ 

FD_ SET(sl , &read_ template ) ; 

FD_ SET(s2 , &read_template) ; 

nb = select(FD_ SETSIZE,&read_template , (fd_ set *)0, (fd_ set *)0 , &wait); 

if (nb <= 0) { 
An error occurred during the select, or the select timed out. 

if (FD_ ISSET(sl, &read_ template)) 

Socket #I is ready lo be read from . 

if (FD_ISSET(s2, &read_ template)) 

Socket #2 is ready Lo be read from. 

Select provides a synchronous multiplexing scheme. Asynchronous notification of 
output completion, input availability, and exceptional conditions is possible 
through use of the Internet events described in The Internet event on page 5a-34 l . 



The Internet module 

Network library routines 

The discussion in the previous part of this tutorial indicated the possible need to 

locate and construct network addresses when using the communication facilities 
in a distributed environment. To aid in this task a number of routines have been 

provided in the lnetlib library. In this section we will consider the routines provided 
to manipulate network addresses. 

Locating a service on a remote host requires many levels of mapping before client 
and server may communicate: 

• A service is assigned a name which is intended for human consumption; eg 
'the login server on host mo net'. 

• This name. and the name of the peer host. must then be translated into 
network addresses which are not necessarily suitable for human consumption . 

• Finally, the address must then used in locating a physical location and route to 
the service. 

The specifics of these three mappings are likely to vary between network 
architectures. For instance, it is desirable for a network to not require hosts to be 
named in such a way that their physical location is known by the client host . 
Instead. underlying services in the network may discover the actual location of the 

host at the time a client host wishes to communicate. This ability to have hosts 
named in a location independent manner may induce overhead in connection 
establishment, as a discovery process must take place, but allows a host to be 
physically mobile without requiring it to notify its clientele of its current location. 

Standard routines are provided for mapping: 

• host names to network addresses 

• network names to network numbers 

• protocol names to protocol numbers 

• service names to port numbers and the appropriate protocol to use in 
communicating with the server program. 

The file "netdb.h" must be included when using any of these routines. 

Sa-329 



Network library routines 

5a-330 

Host names 

An Internet host name to address mapping is represented by the hostent structure: 

struct hos tent 
char *h _name; / * official name of host */ 

char **h_ aliases; /* alias list */ 

int h_addrtype; /* host address type (eg AF_ INET) *! 

int h _length; ! * length of address * / 

char **h_ addr_list; /* list of addresses , null terminated * / 

}; 

#define h_addr h_addr_list[O) / * first address, network byte order*/ 

The routine gethostbynarne takes an Internet host name and returns a hostent 

structure, while the routine gethostbyaddr maps Internet host addresses into a hostent 

structure. 

The official name of the host and its public aliases are returned by these routines , 

along with the address type (family) and a null terminated list of variable length 

addresses. This list of addresses is required because it is possible for a host to 

have many addresses. all having the same name. The h_addr definition is provided 

for backward compatibility, and is defined to be the first address in the list of 

addresses in the hostent structure. 

The database for these calls is provided by the file InetDBase:hosts . When using 

gethostbynarne, only one address will be returned, but all listed aliases will be 

included. 

Network names 

As for host names , routines for mapping network names to numbers , and back. are 

provided. These routines return a netent structure: 

! * 
* Assumption here is that a network number 

* fits in 32 bits probably a poor one. 

* ! 
struct netent 

char *n _ name; /* official name of net */ 

char **n_aliases; /* alias list */ 

int n_addrtype; !* net address type */ 

int n_net; /* network number, host byte order */ 

} ; 

The routines getnetbynarne, getnetbynurnber, and getnetent are the network counterparts 

to the host routines described above. The routines extract their information from 

I netD Base: networks. 



The Internet module 

Protocol names 

For protocols, which are defined in InetDBase:protocols, the protoent structure defines 

the protocol-name mapping used with the routines getprotobyname, getprotobynumber, 

and getprotoent: 

struct protoent 

} ; 

char 
char 
int 

Service names 

*p_name; 
**p_aliases; 
p__proto; 

/ * official protocol name * / 

/* alias list * / 
/* protocol number * / 

Information regarding services is a bit more complicated. A service is expected to 

reside at a specific port and employ a particular communication protocol. This view 

is consistent with the Internet domain, but inconsistent with other network 
architectures. Further, a service may reside on multiple ports. If this occurs, the 

higher level library routines will have to be bypassed or extended. Services 
available are contained in the file InetDBase:services. A service mapping is described 
by the servent structure: 

struct servent 

}; 

char *s_name; 
char **s_aliases; 

int 
char 

s__port; 
*s_proto; 

/ * official service name */ 

/ * alias list * / 
/ * port number , network byte order */ 

/* protocol to use */ 

The routine getservbyname maps service names to a servent structure by specifying a 
service name and, optionally, a qualifying protocol. Thus the call : 

sp = getservbyname ("telnet" , (char *) 0) ; 

returns the service specification for a telnet server using any protocol, while the 

call: 

sp = getservbyname ("telnet", "tcp") ; 

returns only that telnet server which uses the TCP protocol. The routines 
getservbyport and getservent are also provided. The getservbyport routine has an 
interface similar to that provided by getservbyname; an optional protocol name may 
be specified to qualify lookups . 

Sa-331 



Network library routines 

Sa-332 

Miscellaneous 

With the support routines described above. an Internet application program 

should rarely have to deal directly with addresses. This allows services to be 

developed as much as possible in a network independent fashion. It is clear. 

however, that purging all network dependencies is very difficult. So long as the user 

is required to supply network addresses when naming services and sockets there 

will always some network dependency in a program. For example, the normal code 

included in client programs. such as the remote login program. is of the form 

shown in the example program in Figure 123.8 on page Sa-333. (This example will 

be considered in more detail in ClienUserver model on page Sa-334.) 

If we wanted to make the remote login program independent of the Internet 

protocols and addressing scheme we would be forced to add a layer of routines 

which masked the network dependent aspects from the mainstream login code. 

For the current facilities available in the system this does not appear to be 

worthwhile. 

Aside from the address-related data base routines, there are several other routines 

available in the Inetlib and Unixlib libraries which are of interest to users. These 

are intended mostly to simplify manipulation of names and addresses. The table 

below summarizes the Unixlib routines for manipulating variable length byte 

strings, and the lnetlib routines for handling byte swapping of network addresses 

and values: 

Call 
bcmp(sl. s2. n) 

bcopy(sl, s2, n) 

bzero(base, n) 

htonl(val) 

htons(val) 

ntohl(val) 

ntohs(val) 

Synopsis 

compare byte-strings; 0 if same, not 0 otherwise 

copy n bytes from s I to s2 

zero-fill n bytes starting at base 

convert 32-bit quantity from host to network byte order 

convert 16-bit quantity from host to network byte order 

convert 32-bit quantity from network to host byte order 

convert 16-bit quantity from network to host byte order 

The byte swapping routines are provided because the operating system expects 

addresses to be supplied in network order. On some architectures, such as ARMs 

and VAXes. host byte ordering is different than network byte ordering. 

Consequently, programs are sometimes required to byte swap quantities. The 

library routines which return network addresses provide them in network order so 

that they may simply be copied into the structures provided to the system. This 

implies users should encounter the byte swapping problem only when interpreting 

network addresses. For example. if an Internet port is to be printed out the 

following code would be required: 

printf ("port number %d\n", ntohs ( sp->s_port) ) ; 



The Internet modU/e 

#include <stdio.h> 

#include "sys/types.h" 

#include "sys/socket.h" 
#include "netinet/in.h " 
#include "netdb.h" 

main(argc , argv) 

int argc ; 
char *argv[]; 

struct sockaddr_in server; 
struct servent *sp; 
struct hostent *hp; 

int s; 

sp getservbyname("login " , " tcp"); 

if (sp == NULL) { 
fprintf(stderr, "rlogin: tcp/login: unknown service\n " ); 

exit(l); 

hp= gethostbyname(argv[l]) ; 

if (hp == NULL) { 
fprintf(stderr , "rlogin: %s : unknown host\n " , argv [ l)); 

exit (2); 

bzero( (char *)&server, sizeof (server)); 

bcopy(hp->h_addr , (char *)&server.sin_ addr, hp->h_length); 

server.sin_ family = hp->h_ addrtype ; 

server.sin_port = sp->s_port ; 

s = socket(AF_INET , SOCK_STREAM, 0); 

if (s < 0) { 

xperror ( "rlogin : socket") ; 

exit(3) ; 

/* Connect does the bind() for us */ 

if (connect(s, (char *)&server, sizeof (server )) < 0) { 

xperror ( " r l ogin : connect") ; 

exit(S); 

Figure 123.8 Remote login clien t code 

(On machines where unneeded the byte swapping routines are defined as null 
macros. 

5a-333 



Client/server model 

Client/server model 

5a-334 

The most commonly used paradigm in constructing distributed applications is the 
client/server model. In this scheme client applications request services from a 
server program. This implies an asymmetry in establishing communication 

between the client and server which has been examined in Basics on page 5a-319. In 
this part of the tutorial we will look more closely at the interactions between client 
and server, and consider some of the problems in developing client and server 
applications. 

The client and server require a well known set of conventions before service may be 
rendered (and accepted) . This set of conventions comprises a protocol which must 
be implemented at both ends of a connection. Depending on the situation , the 
protocol may be symmetric or asymmetric. In a symmetric protocol, either side 
may play the master or slave roles . In an asymmetric protocol , one side is 
immutably recognized as the master. with the other as the slave. An example of a 
symmetric protocol is the TELNET protocol used in the Internet for remote 
terminal emulation . An example of an asymmetric protocol is the Internet file 
transfer protocol , FTP. No matter whether the specific protocol used in obtaining a 
service is symmetric or asymmetric, when accessing a service there is a 'client 
program' and a 'server program'. We will first consider the properties of server 

programs. then client programs. 

A server program normally listens at a well known address for service requests . 
That is , the server program remains dormant until a connection is requested by a 
client's connection to the server's address. At such a t ime the server program 
'wakes up' and services the cl ient, performing whatever appropriate actions the 
client requests of it . 

Servers 

Most servers are accessed at well known Internet addresses. For example, the BSD 
UNIX remote login server's main loop is of the form shown in Figure I 23 .9 on 
page 5a-335. (Although this example is a little strange in not being a RISC OS 
application, it still contains a number of relevant and useful points.) 

The first step taken by the server is to look up its service definition: 

sp = getservbyname("login" , "tcp"); 

if (sp == NULL) { 
fprintf(stderr, "rlogind : tcp/login: unknown service\n') ; 

exit(l); 

The result of the getservbyname call is used in later portions of the code to define the 

Internet port at which it listens for service requests (indicated by a connection) . 



The Internet module 

main(argc, argv) 
int argc; 
char * argv [ J 

int f; 
struct sockaddr_in from ; 
struct servent *sp; 

sp = getservbyname("login " , "tcp"); 

if (sp == NULL) { 
fprintf(stderr, "rlogind: tcp/login: unknown service\n") ; 

exit (1); 

sin.sin_port = sp->s_port; 

f = socket(AF_INET , SOCK_STREAM, 0); 

if (bind(f, (struct sockaddr *) &sin, sizeof (sin)) < 0) { 

listen(f. 5); 

for (;;) { 

int g , len = sizeof (from); 

g = accept(f, (struct sockaddr *)&from, &len); 

if (g < 0) { 
if (errno != EINTR) 

xperror("rlogind: accept"); 

continue ; 

doit(g , &from); 

close (g); 

Figure 123.9 Remote login server 

Once a server has established a pristine environment, it creates a socket and 
begins accepting service requests . The bind call is required to insure the server 
listens at its expected location. 

5a-335 



Client/server model 

The main body of the loop is fairly simple: 

for (;;) { 

int g, len = sizeof (from); 

g = accept(f, (struct sockaddr *)&from , &len); 

if (g < 0) { 

if (errno != EINTR) 
xperror ( "rlogind: accept " ) ; 

continue; 

doit (g, &from); 
close(g); 

An accept call blocks the server until a client requests service. This call could return 
a failure status if the call is interrupted, for example by an Escape. Therefore, the 
return value from accept is checked to insure a connection has actually been 
established, and an error report is printed if an error has occurred. 

With a connection in hand, the server then invokes the main body of the remote 
login protocol processing. The address of the client is also handed the doit routine 
because it requires it in authenticating clients. 

Clients 

Sa-336 

The client side of the remote login service was shown earlier in Figure 123.8 on 
page 5a-333. One can see the separate, asymmetric roles of the client and server 
clearly in the code. The server is a passive entity, listening for client connections , 
while the client program is an active entity, initiating a connection when invoked. 

Let us consider more closely the steps taken by the client remote login program. 
As in the server program, the first step is to locate the service definition for a 

remote login: 

sp = getservbyname( "login", "tcp"); 

if (sp == NULL) { 
fprintf(stderr, "rlogin: tcp / login: unknown service \ n"); 

exit(l); 

Next the destination host is looked up with a getftostbyname call : 

hp= gethostbyname(argv[l]) 

if (hp == NULL) { 
fprintf(stderr, "rlogin: %s: unknown host \ n" , argv[l)); 

exit(2); 



The Internet module 

With this accomplished, all that is required is to establish a connection to the 
server at the requested host and start up the remote login protocol. The address 

buffer is cleared, then filled in with the Internet address of the foreign host and the 
port number at which the login program resides on the foreign host: 

bzero(( c har * ) &server, sizeof (server)) ; 

b copy(hp- >h_addr , (char*) &server.sin_ addr , hp->h_l e ngth ); 

server.sin_ family = hp->h_ addrtype; 

server.sin__port = sp->s__port; 

A socket is created, and a connection initiated. Note that connect implicitly 
performs a bind call . since sis unbound. 

s = socket(hp->h_addrtype, SOCK_ STREAM , 0) : 

if (s < 0) { 

xperror ( "rlogin: socket " ) : 

exit(3); 

if (connect (s , (struct sockaddr * ) &server , sizeof (server ) ) < 0) { 

xperror( "rlogin: c onnect") : 
exit(4); 

The details of the remote login protocol will not be considered here. 

Connectionless servers 

While connection-based services are the norm, some services are based on the use 
of datagram sockets. One. in particular. is the 4.3BSD UNIX 'rwho' service which 
provides users with status information for hosts connected to a local area network. 
This service, while predicated on the ability to broadcast information to all hosts 
connected to a particular network, is of interest as an example usage of datagram 

sockets. 

A user on any machine running the rwho server may find out the current status of a 
machine with the ruptirne program. The output generated is illustrated in 
Figure 123.10 on page Sa-338. 

Status information for each host is periodically broadcast by rwho server programs 
on each machine. The same server program also receives the status information 
and uses it to update a database. This database is then interpreted to generate the 
status information for each host. Servers operate autonomously, coupled only by 
the local network and its broadcast capabilities. 

Note that the use of broadcast for such a task is fairly inefficient, as all hosts must 
process each message, whether or not using an rwho server. Unless such a service 

is sufficiently universal and is frequently used, the expense of periodic broadcasts 
outweighs the simplicity. 

Sa-337 



Client/server model 

5a-338 

arpa up 9 : 45, 5 users , load 1.15 , 1. 39 ' 1. 31 

cad up 2+12:04 , 8 users , load 4. 67, 5 .1 3 ' 4. 59 

cald er up 10 : 10, 0 user s, l oad 0.27 , 0 .1 5, 0.1 4 

dali up 2+06 : 28 , 9 users , load 1.04 , 1. 20 , 1. 65 

degas up 25+09 : 48, 0 users , load 1. 49 ' 1. 43 ' 1. 41 

ear up 5+00 : 05 , 0 users , load 1. 51 , 1. 5 4 , 1. 5 6 

ernie down 0:24 

esvax down 17:04 

ingres down 0 : 26 

kim up 3+09:16 , 8 users , load 2 . 03 , 2. 4 6, 3 .11 

mat i sse up 3+06:18 , 0 users, load 0.03, 0. 03 ' 0 . 05 

med ea up 3+09 : 39, 2 users, load 0.35 , 0.37 , 0.50 

merlin down 19+15:37 

miro up 1+07:20, 7 users , load 4. 5 9 , 3.28, 2.12 

monet up 1+00 : 43 , 2 users , load 0. 22' 0. 09 , 0 . 07 

oz down 16 : 09 
statvax up 2+15:57 , 3 users , load 1. 52 ' 1. 81 , 1. 86 

ucbva x up 9: 34' 2 users, loa d 6.08 , 5.16 , 3.28 

Figure 123.10 ruptime output 

The rwho server, in a simplified form , is pictured in Figure 123.11 on page 5a-339. 

There are two separate tasks performed by the server. The first task is to act as a 

receiver of status information broadcast by other hosts on the network. This job is 

carried out in the main loop of the program. Packets received at the rwho port are 
interrogated to insure they've been sent by another rwho server program, then are 

time stamped with their arrival time and used to update a file indicating the status 

of the host . When a host has not been heard from for an extended period of time, 

the database interpretation routines assume the host is down and indicate such 

on the status reports . This algorithm is prone to error as a server may be down 

while a host is actually up, but serves our current needs. 

The second task performed by the server is to supply information regarding the 

status of its host. This involves periodically acquiring system status information, 

packaging it up in a message and broadcasting it on the local network for other 
rwho servers to hear. The supply function onalrm is triggered by a timer, which it 
sets itself. Locating the system status information is somewhat involved, but 
uninteresting. Deciding where to transmit the resultant packet is somewhat 
problematical , however. 

Status information must be broadcast on the local network. For networks which do 

not support the notion of broadcast another scheme must be used to simulate or 
replace broadcasting. One possibility is to enumerate the known neighbours 
(based on the status messages received from other rwho servers) . This , 
unfortunately, requires some bootstrapping information, for a server will have no 
idea what machines are its neighbours until it receives status messages from them. 

Therefore, if all machines on a net are freshly booted, no machine will have any 

known neighbours and thus never receive, or send, any status information. This is 

the identical problem faced by the routing table management program in 



main () 

onalnn () 

The Internet module 

sp = getservbynarne ("who", "udp"); 

net = getnetbynarne ( "localnet") ; 

sin.sin_addr inet_makeaddr(INADDR_ANY, net); 

sin.sin_port = sp->s_port; 

s = socket(AF_INET, SOCK_DGRAM, 0); 

on = l; 
if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on)) < 0) { 

xperror ( "setsockopt SO_BROADCAST") ; 

exit(l); 

bind(s, (struct sockaddr *) &sin, sizeof (sin)); 

onalnn (); 
for (;;) { 

struct whod wd; 

int cc, whod, len = sizeof (from); 

cc = recvfrom(s , (char *)&wd, sizeof (struct whod), 0, 

(struct sockaddr *)&from, &len); 

if (cc <= 0) { 
if (cc < 0 && errno != EINTR) 

xperror ( 11 rwhod: recv") ; 
continue; 

if (from.sin_port != sp->s_port) { 

fprintf(stderr, "rwhod: %d: bad from port" , 

ntohs(from.sin_port)) ; 

continue; 

if (!verify(wd.wd_hostnarne)) 

fprintf(stderr , "rwhod: malfonned host name from 

%x", ntohl(from.sin_addr.s_addr)); 

continue; 

(void) sprintf (path, "%s /whod . %s", RWHODIR, wd. wd_hostnarne) ; 

whod = open(path, O_WRONLY I O_CREAT I O_TRUNC, 0666); 

(void) time(&wd.wd_recvtime); 

(void) write(whod , (char *)&wd , cc); 

(void) close(whod); 

/* Broadcast our status to other rwho servers, and then use 

* OS_CallAfter to re-enter this function after a given interval. 

Figure 123.11 rwho server 

5a-339 



Client/server model 

5a-340 

propagating routing status information. The standard solution, unsatisfactory as it 
may be, is to inform one or more servers of known neighbours and request that 
they always communicate with these neighbours. If each server has at least one 
neighbour supplied to it, status information may then propagate through a 

neighbour to hosts which are not (possibly) directly neighbours. If the server is 

able to support networks which provide a broadcast capability, as well as those 

which do not, then networks with an arbitrary topology may share status 
information t . 

It is important that software operating in a distributed environment not hav~ any 
site-dependent information compiled into it. This would require a separate copy of 
the server at each host and make maintenance a severe headache. 4.3BSD 
attempts to isolate host-specific information from applications by providing 

system calls which return the necessary information:t:. 

A mechanism exists, in the form of a socketioctl call, for finding the collection of 
networks to which a host is directly connected. Further, a local network 
broadcasting mechanism has been implemented at the socket level. Combining 
these two features allows a program to broadcast on any directly connected local 
network which supports the notion of broadcasting in a site independent manner. 
This allows 4.3BSD to solve the problem of deciding how to propagate status 
information in the case of rwfw, or more generally in broadcasting. Such status 

information is broadcast to connected networks at the socket level, where the 
connected networks have been obtained via the appropriate socketioctl calls. The 
specifics of such broadcastings are complex, however, and will be covered in 
Broadcasting and determining network configuration on page Sa-348. 

t One must, however, be concerned about 'loops'. That is, if a host is connected 
to multiple networks, it will receive status information from itself. This can 

lead to an endless. wasteful, exchange of information. 

* An example of such a system call is the getftostname call which returns the host's 
'official' name. 



The Internet module 

The Internet event 

(This description of the Internet event supersedes the old description on 
page 1-159.) 

Under 4.3 BSD, signals are used to notify processes of specific events. Under 
RISC OS, the Internet event performs a similar function: 

Internet event 

RO= 19 
RI = event subcode: 

I ~ a socket has input waiting to be read 
2 ~ an urgent event has occurred, such as the arrival of out-of-band data 
3 ~ socket connection is broken 
4 ~ a RevARP server has replied to a RevARP request 

R2 =socket descriptor (if RI = I, 2, or 3), or IP address of replying server (if RI = 4) 
R3 =IP address of requesting station (if RI = 4) 

This event is generated when certain Internet events occur: 

#define Internet_Event 19 

#define Socket_Async_Event 1 
#def i ne socket_Ur ge n t _Event 2 
#define Socket_Broken_Event 3 
#def i ne RarpReply 4 

• The event lnternet_EvenUSocket_Async_Event allows an event handler within a 
program to run when a socket has input waiting to be read; normally the event 
handler will make a recv call to read expected data , or an accept call to receive an 
expected call. 

• The event lnternet_EvenUSocket_Urgent_Event allows an event handler to run if 
some urgent event, such as the arrival of out-of-band data , occurs. 

• The event Internet_EvenUSocket_Broken_Event allows an event handler to run if a 
socket connection is broken. 

• The event Internet_EvenURarpReply allows an event handler to run if a Rev ARP 
server has replied to a RevARP request . 

Note that event subcodes I, 2 and 3 are approximately equivalent to the UNIX 
SIGIO, SIGURG and SIGPIPE signals respectively, and are generated under 
equivalent circumstances. 

Sa-341 



The Internet event 

Sa-342 

Using the Internet event 

Use of the event facility requires these steps: 

You must set up an event handler (see Events on page 1-145). and then claim 

the event vector using the SW! OS_Claim (page 1-66). 

2 You must enable the Internet event using the SW! OS_Byte 14 (page 1-150) . 

3 You must make a socketioctl FIOASYNC call f.or every socket that you require to 

generate the event Internet_Event/Socket_Async_Event: 
/ * Allow receipt of asynchronous I/O events */ 

#include •sys/ioctl.h" 

int s; 
int on = l; 

s = socket(AF_INET, SOCK_STREAM , 0); 

if (socketioctl(s , FIOASYNC, &on) < 0) 

xperror("socketioctl error"); 

return (-1) ; 

The Internet module only generates this event for a socket once you've made 

this call. 



The Internet module 

Advanced topics 

A number of facilities have yet to be discussed. For most users of the 
communication system the mechanisms already described will suffice in 
constructing distributed applications . However. others will find the need to utilise 

some of the features which we consider in this section. 

Out-of-band data 

The stream socket abstraction includes the notion of out-of-band data. 
Out-of-band data is a logically independent transmission channel associated with 
each pair of connected stream sockets. Out-of-band data is delivered to the user 
independently of normal data. 

The abstraction defines that the out-of-band data facilities must support the 
reliable delivery of at least one out-of-band message at a time. This message may 
contain at least one byte of data, and at least one message may be pending 
delivery to the user at any one time. For communications protocols which support 
only in-band signalling (ie the urgent data is delivered in sequence with the 
normal data). the system normally extracts the data from the normal data stream 
and stores it separately. This allows users to choose between receiving the urgent 
data in order and receiving it out of sequence without having to buffer all the 
intervening data. 

It is possible to 'peek' (via MSG_PEEK) at out-of-band data. The Internet event 
Socket_Urgent_Event (see page 5a-341) is generated when the protocol is notified of 
its existence. If multiple sockets may have out-of-band data awaiting delivery, a 
select call for exceptional conditions may be used to determine those sockets with 
such data pending. Neither the event nor the select indicate the actual arrival of 
the out-of-band data , but only notification that it is pending. 

In addition to the information passed, a logical mark is placed in the data stream 

to indicate the point at which the out-of-band data was sent. The remote login and 
remote shell applications use this facility to propagate signals between client and 
server programs. When a signal flushes any pending output from the remote 
program(s). all data up to the mark in the data stream is discarded . 

Sa-343 



Advanced topics 

Sa-344 

To send an out-of-band message the MSG_OOB flag is supplied to a send or sendto 

calls, while to receive out-of-band data MSG_OOB should be indicated when 

performing a recvfrom or recv call . To find out if the read pointer is currently pointing 

at the mark in the data stream, the SIOCATMARK socketioctl is provided: 

socketioctl(s, SIOCATMARK , &yes); 

If yes is a 1 on return , the next read will return data after the mark. Otherwise 

(assuming out-of-band data has arrived). the next read will provide data sent by 

the client prior to transmission of the out-of-band signal. The routine used in the 

remote login program to flush output - for example on an Escape - is shown in 

Figure 123.12 below. It reads the normal data up to the mark (to discard it), then 

reads the out-of-band byte. 

#include • sys/ioctl.h ' 
#include •sys/file.h ' 

#include "kernel.h' 
#include • swis.h ' 

char waste[BUFSIZ]; /*global rather than auto; doesn't go on SVC stack* / 

oob () { 
char mark ; 
_kernel_ swi_ regs r; 

for (;;) { 

if (socketioctl(rem , SIOCATMARK , &mark) < 0) { 

xperror( 11 ioctl") ; 
break; 

if (mark) 
break; 

(void) socketread(rem, waste, sizeof (waste)); 

if (recv(rem , &mark, 1, MSG_ OOB) < 0) 

xperror ( • recv • ) ; 

Figure 123.12 Flushing 110 on receipt of out-of-band data 



The Internet module 

A program may also read or peek at the out-of-band data without first reading up 
to the mark. This is more difficult when the underlying protocol delivers the urgent 
data in-band with the normal data , and only sends notification of its presence 
ahead of time (eg the TCP protocol used to implement streams in the Internet 
domain) . With such protocols, the out-of-band byte may not yet have arrived when 
a recv is done with the MSG_OOB flag. In that case, the call will return an error of 
EWOULDBLOCK. Worse, there may be enough in-band data in the input buffer 
that normal flow control prevents the peer from sending the urgent data until the 
buffer is cleared. The program must then read enough of the queued data that the 
urgent data may be delivered. 

Certain programs that use multiple bytes of urgent data and must handle multiple 
urgent signals (eg telnet) need to retain the position of urgent data within the 
stream. This treatment is available as a socket-level option, SO_OOBINLINE; see 
setsockopt for usage. With this option. the position of urgent data (the 'mark') is 
retained, but the urgent data immediately follows the mark within the normal data 
stream returned without the MSG_OOB flag. Reception of multiple urgent 
indications causes the mark to move, but no out-of-band data are lost. 

Selecting specific protocols 

If the third argument to the socket call is 0, socket will select a default protocol to use 
with the returned socket of the type requested. The default protocol is usually 
correct, and alternate choices are not usually available. However, when using 'raw' 
sockets to communicate directly with lower-level protocols or hardware interfaces, 
the protocol argument may be important for setting up demultiplexing. For 
example, raw sockets in the Internet family may be used to implement a new 
protocol above IP, and the socket will receive packets only for the protocol 
specified. To obtain a particular protocol one determines the protocol number as 
defined within the communication domain . For the Internet domain one may use 
one of the library routines discussed in section 3, such as getprotobyname: 

#inc lude "sys/type s.h " 
#include "sys/socket.h " 
#include "netinet / in . h " 
#include "netdb . h" 

pp= getprotobyname("newtcp"); 
s = socket(AF_ INET , SOCK_STREAM , pp->p_proto); 

This would result in a sockets using a stream based connection, but with protocol 
type of 'newtcp' instead of the default 'tcp.' 

Sa-345 



Advanced topics 

Address binding 

Sa-346 

As was mentioned in the earlier section Basics, binding addresses to sockets in the 
Internet domain can be fairly complex. As a brief reminder, these associations are 
composed of local and foreign addresses, and local and foreign ports. Port 

numbers are allocated out of separate spaces, one for each system and one for 
each domain on that system. Through the bind system call, a program may specify 

half of an association, the <local address , local port> part, while the connect and 
accept primitives are used to complete a socket's association by specifying the 
<foreign address, foreign port> part. Since the association is created in two steps 
the association uniqueness requirement indicated previously could be violated 

unless care is taken. Further, it is unrealistic to expect user programs to always 
know proper values to use for the local address and local port since a host may 
reside on multiple networks and the set of allocated port numbers is not directly 
accessible to a user. 

To simplify local address binding in the Internet domain the notion of a 'wildcard' 
address has been provided. When an address is specified as INADDR_ANY (a 

manifest constant defined in "netineUin.ft"). the system interprets the address as 
'any valid address' . For example, to bind a specific port number to a socket, but 
leave the local address unspecified, the following code might be used: 

#include "sys /types.h" 
#include "netinet/in.h" 

struct sockaddr_ in sin; 

s = socket(AF_INET, SOCK_STREAM , 0) ; 

sin .sin_family = AF_INET; 
sin.sin_addr.s_ addr = htonl(INADDR_ANY); 

sin.sin_port = htons(MYPORT); 

bind(s, (struct sockaddr *) &sin , sizeof (sin)); 

Sockets with wildcarded local addresses may receive messages directed to the 
specified port number, and sent to any of the possible addresses assigned to a 
host . For example, if a host has addresses 128.32.0.4 and I 0.0.0. 78, and a socket is 
bound as above, the program will be able to accept connection requests which are 
addressed to 128.32.0.4 or 10.0.0.78. If a server program wished to only allow hosts 
on a given network connect to it, it would bind the address of the host on the 
appropriate network. 



The Internet module 

In a similar fashion. a local port may be left unspecified (specified as zero). in 
which case the system will select an appropriate port number for it . For example, 
to bind a specific local address to a socket, but to leave the local port number 
unspecified: 

h p = gethostbyname (hostname ): 

if (hp == NULL) { 

bcopy(hp->h_addr, (char *) sin . sin_addr, hp->h_ length) : 

s i n.sin__port = htons(O); 
bind(s, (struct sockaddr *) &sin , sizeof (sin)) ; 

The system selects the local port number based on two criteria. The first is that 
'privileged' Internet ports below IPPORT_RESERVED (I 024) must be specifically 
requested by a program. whereas higher values are used by RISC OS when it 
chooses a port number, the program not having specified one. The second is that 
the port number is not currently bound to some other socket. In order to find a free 
Internet port number in the privileged range the rresvport library routine may be 
used as follows to return a stream socket with a privileged port number: 

int !port IPPORT_RESERVED - 1 ; 
int s ; 

s = r resvpor t (&lport ); 
if (s < 0) { 

if (errn o == EAGAIN) 
fprintf(stderr , •socket: all ports in use\n") : 

else 
x perror ( "rresvport : socket•) ; 

The restriction on allocating ports was done to allow programs executing in a 
'secure' environment to perform authentication based on the originating address 
and port number. The port number and network address of the machine from which 
the user is Jogging in can be determined either by the from result of the accept call, 
or from the getpeernarne call. 

In certain cases the algorithm used by the system in selecting port numbers is 
unsuitable for an application. This is because associations are created in a two 
step process. For example, the Internet file transfer protocol, FTP, specifies that 
data connections must always originate from the same local port. However, 
duplicate associations are avoided by connecting to different foreign ports. In this 
situation the system would disallow binding the same local address and port 

Sa-347 



Advanced topics 

number to a socket if a previous data connection's socket still existed. To override 

the default port selection algorithm, an option call must be performed prior to 
address binding: 

int on = 1; 

setsockopt(s, SOL_SOCKET, SO_ REUSEADDR, &on, sizeof(on)); 

bind(s, (struct sockaddr *) &sin, sizeof (sin)); 

With the above call , local addresses may be bound which are already in use. This 
does not violate the uniqueness requirement as the system still checks at connect 
time to be sure any other sockets with the same local address and port do not have 
the same foreign address and port. If the association already exists, the error 
EADDRINUSE is returned. 

Broadcasting and determining network configuration 

5a-348 

By using a datagram socket, it is possible to send broadcast packets on many 
networks supported by the system. The network itself must support broadcast; the 

system provides no simulation of broadcast in software. Broadcast messages can 
place a high load on a network since they force every host on the network to service 
them. Consequently, the ability to send broadcast packets has been limited to 
sockets which are explicitly marked as allowing broadcasting. Broadcast is typically 
used for one of two reasons: it is desired to find a resource on a local network 
without prior knowledge of its address, or important functions such as routing 
require that information be sent to all accessible neighbours. 

To send a broadcast message, a datagram socket should be created: 

s = socket(AF_INET, SOCK_DGRAM, 0) ; 

The socket is marked as allowing broadcasting, 

int on = l; 

setsockopt(s, SOL_SOCKET, SO_BROADCAST , &on, sizeof (on)); 

and at least a port number should be bound to the socket: 

sin.sin_ family = AF_ INET; 

sin.sin_addr.s_addr = htonl(INADDR_ANY); 

sin.sin_port = htons(MYPORT) ; 

bind(s, (struct sockaddr *) &sin , sizeof (sin)); 

The destination address of the message to be broaqcast depends on the 
network(s) on which the message is to be broadcast. The Internet domain supports 
a shorthand notation for broadcast on the local network, the address 

INADDR_BROADCAST (defined in "netineUin.h") . To determine the list of addresses 

for all reachable neighbours requires knowledge of the networks to which the host 
is connected. Since this information should be obtained in a host-independent 



The Internet module 

fashion and may be impossible to derive, RISC OS provides a method of retrieving 
this information from the system data structures. The SIOCGIFCONF socketioctl call 
returns the interface configuration of a host in the form of a single ifconf structure; 
this structure contains a 'data area' which is made up of an array of ifreq structures. 
one for each network interface to which the host is connected. These structures are 
defined in "neUif.h" as follows : 

struct ifconf 
int 
union 

ifc_len; 

caddr_t ifcu_buf; 
struct ifreq *ifcu_req; 

ifc_ifcu; 
}; 

/* size of associated buffer * / 

/* buffer address * / #define ifc_ buf ifc_ifcu .ifcu_buf 

#define ifc_req ifc_ifcu . ifcu_req /* array of structures returned */ 

#define IFNAMSIZ 16 

struct ifreq { 
char 
union { 

ifr_naroe[IFNAMSIZ); / * if name , eg "enO" */ 

struct sockaddr ifru_ addr; 
struct sockaddr ifru_dstaddr ; 
struct sockaddr ifru_broadaddr ; 
short ifru_flags; 
caddr_t ifru_data; 

ifr_ ifru; 
}; 

#define ifr_addr 
#define ifr_ dstaddr 
#define ifr_broadaddr 
#define ifr_flags 
#define ifr_data 

ifr 
ifr 
ifr 
ifr 
ifr 

ifru . ifru addr - -
ifru.ifru dstaddr - -

- ifru.ifru _ broadaddr 

- ifru. ifru _flags 
_ifru.ifru_data 

/ * address * ! 
/ * other end 
/ * broadcast 
/ * flags * / 
/* for use by 

The actual call which obtains the interface configuration is 

struct ifconf ifc; 
char buf[BUFSIZ); 

ifc.ifc_len = sizeof (buf); 
ifc.ifc_buf = buf ; 
if (socketioctl (s, SIOCGIFCONF, (char *) &ifc) < 0) { 

of p-to-p 
address * / 

interface 

link 

*/ 

*/ 

After this call buf will contain one ifreq structure for each network to which the host 
is connected, and ifc .ifc_len will have been modified to reflect the number of bytes 
used by the ifreq structures. 

Sa-349 



Advanced topics 

5a-350 

;..;:;·· 

For each structure there exists a set of 'interface flags ' which tell whether the 

network corresponding to that interface is up or down, point to point or broadcast, 

etc. The SIOCGIFFLAGS socketioctl retrieves these flags for an interface specified by 

an ifreq structure as follows : 

struct ifreq *ifr; 

ifr = ifc.ifc_ req; 

for (n = ifc.ifc_len I sizeof (struct ifreq); --n >= O; ifr++) 

/* 
• We must be careful that we don't use an interface 

• devoted to an address family other than those intended; 

* if we were interested in NS interfaces , the 

* AF_INET would be AF_NS. 

*/ 

if (ifr->ifr_ addr.sa_family != AF_INET) 

continue; 

if (ioctl(s, SIOCGIFFLAGS , (char*) ifr) < 0) { 

/* 
* Skip boring cases. 

*/ 

if ((ifr->ifr_flags & IFF_ UP) == 0 I I 
(ifr->ifr_flags & IFF_ LOOPBACK) I I 

(ifr->ifr_flags & (IFF_ BROADCAST I IFF_POINTTOPOINT)) == 0) 

continue; 

Once the flags have been obtained, the broadcast address must be obtained. In the 

case of broadcast networks this is done via the SIOCGIFBRDADDR socketioctl , while 

for point-to-point networks the address of the destination host is obtained with 

SIOCGIFDSTADDR. 

struct sockaddr dst; 

if (ifr->ifr_ flags & IFF_ POINTTOPOINT) { 

if (socketioctl (s , SIOCGIFDSTADDR, (char *) ifr) < 0) { 

bcopy( (char *) ifr->ifr_dstaddr, (char *) &dst, 

sizeof (ifr->ifr_dstaddr)) ; } 

else if (ifr->ifr_ flags & IFF_BROADCAST) { 

if (socketioctl (S , SIOCGIFBRDADDR, (char *) ifr) < 0) { 

bcopy((char *) ifr->ifr_broadaddr , (char*) &dst, 

sizeof (ifr->ifr_broadaddr)); 



The Internet module 

After the appropriate socketioctl's have obtained the broadcast or destination 
address (now in dst) . the sendto call may be used: 

sendto(s, buf , buflen, 0, (struct sockaddr *)&dst , sizeof (dst)); 

In the above loop one sendto occurs for every interface to which the host is 
connected that supports the notion of broadcast or point-to-point addressing. If a 
program only wished to send broadcast 11Jessages on a given network, code similar 
to that outlined above would be used, but the loop would need to find the correct 
destination address. 

Received broadcast messages contain the sender's address and port, as datagram 
sockets are bound before a message is allowed to go out. 

Socket options 

It is possible to set and get a number of options on sockets via the setsockopt and 
getsockopt system calls. These options include such things as marking a socket for 
broadcasting, not to route, to linger on close, etc. The general forms of the calls 
are: 

setsockopt(s , leve l, optname , optval , optlen) ; 

and 

getsockopt(s, level , optname, optval, optlen) ; 

The parameters to the calls are as follows : s is the socket on which the option is to 
be applied. Level specifies the protocol layer on which the option is to be applied; 
in most cases this is the 'socket level'. indicated by the symbolic constant 
SOL_SOCKET, defined in "sys/socket.fr" . The actual option is specified in optname, and 
is a symbolic constant also defined in "sys/socket.fr" . Optval and opt/en point to the 
value of the option (in most cases. whether the option is to be turned on or off). 
and the length of the value of the option, respectively. For getsockopt, opt/en is a 
value-result parameter, initially set to the size of the storage area pointed to by 
optval, and modified upon return to indicate the actual amount of storage used. 

Sa-351 



Multitasking 

Multitasking 

Sa-352 

An example should help clarify things. It is sometimes useful to determine the type 
(eg stream, datagram, etc) of an existing socket; programs under inetd (described 
below) may need to perform this task. This can be accomplished as follows via the 
SO_TYPE socket option and the getsockopt call : 

#include "sys/types.h " 

#include "sys/socket.h " 

int type , size ; 

size= sizeof (int ); 

if (getsockopt(s, SOL_ SOCKET , SO_ TYPE , (char *) &type , &si ze) < 0) { 

After the getsockopt call , type will be set to the value of the socket type, as defined in 
"sys/socket.fr" . If. for example, the socket were a datagram socket, type would have the 
value corresponding to SOCK_DGRAM. 

The examples in this tutorial - and in the earlier Introductory tutorial - assume that 
they are written for a pre-emptive multitasking environment such as Unix. In such 
cases. it doesn't matter if a call may not return for an arbitrary length of time, as it 
will not prevent other software from running. However, RISC OS is a co-operative 
multitasking environment. which relies on a program return ing control to the 
operating system before other programs can run . It is therefore vital that all the 
calls that your program makes immediately return control to you. 

These are the different ways you can do this: 

• Before making a call that might block, call select with a zero t imeout to 
determine if the socket is ready for the call. If the socket is ready, then make 
the call. Otherwise give back control to RISC OS, and retry later on. 

Using the select call is described in the earlier tutorials; see also its description 
on page 5a-433 . 

• Before you first use a socket, mark it as non-blocking. Any call that would 
otherwise block no longer does so. but instead returns an EWOULDBLOCK 
error. If you get that error returned, you should give back control to RISC OS. 
and retry later on . 

See Non-blocking sockets on page 5a-353. 



The Internet module 

• Use the Internet event to receive notification of when data is available on a 
socket, and an appropriate event handler to handle the resultant 1/0 - which 
will not block, since it does not have to wait for data. The event handler must 
be in a module so that it is paged into memory when the event occurs. 

See Interrupt driven socket 110 on page 5a-354, and The Internet event on 
page 5a-341. 

Some of the above methods require you to give back control to RISC OS, and retry 
later on: 

• With a desktop application , you do so by calling Wimp_Poll ; however, there is 
no guarantee how long it will be until control returns to your application. 

• An alternative is to use OS_Ca!IAfter or OS_CallEvery to arrange for an address 
to be called after a given time delay; in this case, the address must be within a 
module so that it is paged in when called. 

Non-blocking sockets 

When writing modules, or programs to run under the Wimp, you may often find it 
convenient to make use of sockets which do not block. That is, 1/0 requests which 
cannot complete immediately and would therefore cause the program to be 
suspended awaiting completion are not executed, and an error code is returned. 
Once a socket has been created via the socket call, it may be marked as non-blocking 
by socketioctl as follows : 

#include • sys/ioctl.h" 

int s; 
int on = l; 

s = socket(AF_INET , SOCK_STREAM , 0); 

if (socketioctl(s, FIONBIO, &on) < 0) 
xperror ( • socket ioctl • ) ; 
return(-1) ; 

When performing non-blocking 1/0 on sockets, one must be careful to check for the 
error EWOULDBLOCK (stored in the global variable errno). which occurs when an 
operation would normally block, but the socket it was performed on is marked as 
non-blocking. In particular, accept , connect, send, recv, read , and write can all return 
EWOULDBLOCK, and programs should be prepared to deal with such return 
codes. If an operation such as a send cannot be done in its entirety, but partial 
writes are sensible (for example, when using a stream socket), the data that can be 
sent immediately will be processed, and the return value will indicate the amount 
actually sent. 

5a-353 



Multitasking 

Sa-354 

Interrupt driven socket VO 

The event lnternet_Event!Socket_Async_Event allows a program to be notified via an 

event when a socket has data waiting to be read. The steps required to use the 
Socket_Async_Event facility are described in The Internet event on page 5a-34 l . 

Sample code to allow a given program to receive information on pending 1/0 
requests as they occur for a sockets is given in Figure 123.13 on page 5a-354. With 
the addition of code to the handler to process the Socket_Urgent_Event event 
subcode, this code can also be used to prepare for receipt of 
lnternet_Event!Socket_ U rgent_Event events. 

#include "kernel.h" 
#include •swis.h" 

main(char *argv, int argc) 
{ 

if (claim_eventv()) 
exit(l); /*Failed immediately , so nothing to tidy*/ 

if (event_enable()) { 
disable_release_eventv(); 
exit (2); 

/* Release events etc */ 

/* Event handler now installed and working */ 

disable_release_eventv(); /* On exit */ 

exit(O) 

static _kernel_oserror *claim_eventv(void) 

_kernel_swi_regs r; 

r . r[O] EventV; 
r.r[l] = (int)event_entry_name; /*entry veneer compiled by CMHG*/ 

r.r[2] = (int)module_wsp; 

return (_kernel_swi(XOS_ Bit I OS_Claim, &r, &r)); 

static _kernel_oserror *event_enable(void) 

_kernel_swi_regs r; 
r.r[O] = Event_ Enable; 
r.r[l] = Internet_Event; 
return (_kernel_ swi(XOS_ Bit I OS_Byte, &r, &r)); 

Figure 123.13 Use of asynchronous notification of l/O requests 



The Internet module 

stat i c void disable_ release_eventv(void) 

_kernel_swi_regs r; 
r.r[O] = Event_Disable; 

r.r[l] = Internet_Event; 
(void) _ kernel_swi(OS_Byte, &r , &r); 

EventV; r . r [ O] 
r.r[l] 
r.r[2] 

(int)event_entry_name; / *entry veneer compiled by CMHG* / 

(int) module_wsp; 
(void) _kernel_swi(XOS_Bit I OS_Release , &r, &r); 

return ; 

int Internet_event_handler(_kernel_swi_regs *r, void *pw) 

/* 
• cmhg event handler, for which event_entry_name is the veneer function 

• Parameters: 
r pointer to registers block 
pw "R12" value established by module initialisation 

• Returns: 

• 
*/ 

0 => interrupt "claimed" 
!O => interrupt not "c laimed " 

UNUSED (pw); 

/ * cmhg will only pass through this event anyway * / 

if (r->r[O] == Internet_ Event) 
{ 

/* if notification of asynchronous I/O * / 
if (r->r[l] Socket_Async_ Event && 

(r->r[2] == my_atpsock I I r->r[2] == my_routedsock)) 

return 1; 

process_input(r->r[2]); 
return O; 

static void process_input(int sock) 

/ * 
• Process input on a socket : event has been received to indicate I/O is 

* 11 available 11 on this socket 
* / 

Figure 123.13 Use of asynchronous notification of 110 requests (continued) 

5a-355 



Protocols 

Protocols 

5a-356 

ICMP 

Name 

ICMP - Internet Control Message Protocol 

Synopsis 

#include "sys /socket .h" 

int socket(AF_INET, SOCK_RAW, proto); 

int proto; 

Description 

ICMP is the error and control message protocol used by IP and the Internet 

protocol family. It may be accessed through a 'raw socket' for network monitoring 

and diagnostic functions. The proto parameter to the socket call to create an ICMP 

socket is obtained from getprotobyname. ICMP sockets are connectionless. and are 

normally used with the sendto and recvfrom calls, though the connect call may also be 

used to fix the destination for future packets (in which case the recv and send system 

calls may be used) . 

Outgoing packets automatically have an IP header prepended to them (based on 

the destination address). Incoming packets are received with the IP header and 

options intact. 

A socket operation may fail with one of the following errors returned: 

jEISCONN] when trying to establish a connection on a 
socket which already has one, or when trying 
to send a datagram with the destination 
address specified and the socket is already 
connected; 

IENOTCONNI when trying to send a datagram, but no 
destination address is specified, and the 
socket hasn't been connected; 

[ENOBUFS] 

IEADDRNOTAVAILI 

when the system runs out of memory for an 
internal data structure; 

when an attempt is made to create a socket 
with a network address for which no network 
interface exists. 



The Internet module 

IP 

Name 

IP - .Internet Protocol 

Synopsis 

#include "sys / socket.h" 

int socket(AF_INET, SOCK_RAW, proto); 
int proto; 

Description 

IP is the transport layer protocol used by the Internet protocol family. Options may 
be set at the IP level when using higher-level protocols that are based on IP (such 
as TCP and UDP) . It may also be accessed through a 'raw socket' when developing 
new protocols, or special purpose applications . 

A single generic option is supported at the IP level , IP _OPTIONS, that may be used 
to provide IP options to be transmitted in the IP header of each outgoing packet. 
Options are set with setsockopt and examined with getsockopt. The format of IP options 
to be sent is that specified by the IP protocol specification, with one exception: the 
list of addresses for Source Route options must include the first-hop gateway at 
the beginning of the list of gateways. The first-hop gateway address will be 
extracted from the option list and the size adjusted accordingly before use. IP 
options may be used with any socket type in the Internet family. 

Raw IP sockets are connectionless, and are normally used with the sendto and 
recvfrom calls, though the connect call may also be used to fix the destination for 
future packets (in which case the recv and send system calls may be used) . 

If proto is 0, the default protocol IPPROTO_RAW is used for outgoing packets, and 
only incoming packets destined for that protocol are received. If proto is non-zero, 
that protocol number will be used on outgoing packets and to filter incoming 
packets. 

If proto is IPPROTO_RAW (or 0, which defaults to that) outgoing packets do not have 
an IP header prepended to them, but go out 'as is' . Otherwise outgoing packets 
automatically have an IP header prepended to them (based on the destination 
address and the protocol number the socket is created with) . Incoming packets are 
received with IP header and options intact. 

Sa-357 



IP 

Sa-358 

A socket operation may fail with one of the following errors returned: 

[EISCONN] when trying to establish a connection on a 
socket which already has one, or when trying 
to send a datagram with the destination 
address specified and the socket is already 
connected; 

IENOTCONN] when trying to send a datagram, but no 
destination address is specified, and the 
socket hasn't been connected; 

IENOBUFS] 

IEADDRNOTAVAIL] 

when the system runs out of memory for an 
internal data structure; 

when an attempt is made to create a socket 
with a network address for which no network 
interface exists. 

The following errors specific to IP may occur when setting or getting IP options : 

IEINVAL] an unknown socket option name was given ; 

IEINVAL] the IP option field was improperly formed ; 
an option field was shorter than the 
minimum value or longer than the option 
buffer provided. 



The Internet module 

TCP 

Name 

TCP - Internet Transmission Control Protocol 

Synopsis 

#inc lude "sys / socke t.h" 

int socket(AF_INET, SOCK_STREAM , 0 ) ; 

Description 

The TCP protocol provides reliable, flow-controlled , two-way transmission of data. 
It is a byte-stream protocol used to support the SOCK_STREAM abstraction. TCP 
uses the standard Internet address format and, in addition, provides a per-host 
collection of 'port addresses'. Thus, each address is composed of an Internet 
address specifying the host and network, with a specific TCP port on the host 
identifying the peer entity. 

Sockets utilising the tcp protocol are either 'active' or 'passive' . Active sockets 
initiate connections to passive sockets. By default TCP sockets are created active; 
to create a passive socket the listen socket call must be used after binding the 
socket with the bind system call. Only passive sockets may use the accept call to 
accept incoming connections . Only active sockets may use the connect call to 
initiate connections. 

Passive sockets may ·underspecify' their location to match incoming connection 
requests from multiple networks. This technique, termed 'wildcard addressing', 
allows a single server to provide service to clients on multiple networks. To create 
a socket which listens on all networks, the Internet address INADDR_ANY must be 
bound. The TCP port may still be specified at this time; if the port is not specified 
the system will assign one. Once a connection has been established the socket's 
address is fixed by the peer entity's location . The address assigned to the socket is 
the address associated with the network interface through which packets are being 
transmitted and received. Normally this address corresponds to the peer entity's 
network. 

TCP supports one socket option which is set with setsockopt and tested with 
getsockopt. Under most circumstances, TCP sends data when it is presented; when 
outstanding data has not yet been acknowledged, it gathers small amounts of 
output to be sent in a single packet once an acknowledgement is received. For a 
small number of clients, such as window systems that send a stream of mouse 

Sa-359 



TCP 

5a-360 

events which receive no replies, this packetisation may cause significant delays . 

Therefore, TCP provides a boolean option , TCP _NODELAY, to defeat this 

algorithm. The option level for the setsockopt call is the protocol number for TCP. 

available from getprotobyriarne. 

Options a~ the IP transport level may be used with TCP. Incoming connection 

requests that are source-routed are noted, and the reverse source route is used in 

responding. 

A socket operation may fail with one of the following errors returned: 

[EISCONNI when trying to establish a connection on a 
socket which already has one; 

[ENOBUFSI 

[ETIMEDOUTI 

[ECONNRESETI 

[ ECONNREFUSED I 

[ EADDRINUSE I 

[EADDRNOTAVAILI 

when the system runs out of memory for an 
internal data structure; 

when a connection was dropped due to 
excessive retransmissions ; 

when the remote peer forces the connection 
to be closed; 

when the remote peer actively refuses 
connection establishment (usually because 
no program is listening to the port) ; 

when an attempt is made to create a socket 
with a port which has already been 
allocated; 

when an attempt is made to create a socket 
with a network address for which no network 
interface exists. 



1 ne mremer moawe 

UDP 

Name 

UDP - Internet User Datagram Protocol 

Synopsis 

#include "sys / socket.h" 

int socket(AF_INET, SOCK_DGRAM, 0); 

Description 

UDP is a simple, unreliable datagram protocol which is used to support the 
SOCK_DGRAM abstraction for the Internet protocol family. UDP sockets are 
connectionless, and are normally used with the sendto and recvfrom calls, though the 
connect call may also be used to fix the destination for future packets (in which 
case the recv and send system calls may be used) . 

UDP address formats are identical to those used by TCP. In particular UDP provides 
a port identifier in addition to the normal Internet address format. Note that the 
UDP port space is separate from the TCP port space (ie a UDP port may not be 
'connected' to a TCP port). In addition broadcast packets may be sent (assuming 
the underlying network supports this) by using a reserved 'broadcast address' ; this 
address is network interface dependent . 

Options at the IP transport level may be used with UDP. 

Sa-361 



UDP 

Sa-362 

A socket operation may fail with one of the following errors returned: 

IEISCONNI when trying to establish a connection on a 
socket which already has one, or when trying 
to send a datagram with the destination 
address specified and the socket is already 
connected; 

IENOTCONNI when trying to send a datagram, but no 
destination address is specified, and the 
socket hasn't been connected; 

IENOBUFSI 

IEADDRINUSEI 

IEADDRNOTAVAILI 

when the system runs out of memory for an 
internal data structure; 

when an attempt is made to create a socket 
with a port which has already been 
allocated; 

when an attempt is made to create a socket 
with a network address for which no network 
interface exists. 



The Internet module 

Library calls 
INDEX 

The following symbols are exported by Socklib, Inetlib and Unixlib: 

Symbol from See on page 

accept Socklib ACCEPT 5a-367 

access Unixlib ACCESS 5a-369 

bcmp Unixlib BSTRING 5a-373 

bcopy Unixlib BSTRING 5a-373 

bind Socklib BIND 5a-371 

bzero Unixlib BSTRING 5a-373 

chdir Unixlib CHOIR 5a-375 

ch mod Unixlib CHM OD 5a-376 

close Unixlib CLOSE 5a-377 

connect Socklib CONNECT 5a-378 

endhostent Inetlib GETHOSTBYNAME 5a-390 

endnetent Inetlib GETNETENT 5a-394 

endprotoent Inetlib GETPROTOENT 5a-399 

endpwent Unixlib GETPWENT 5a-401 

endservent Inetlib GETSERVENT 5a-403 

errno Socklib ERRNO 5a-380 

filestat Unixlib FILESTAT 5a-384 

flushinput Unixlib FLUSH INPUT 5a-385 

fstat Unixlib FSTAT 5a-386 

getdtablesize Unixlib GETDTABLESIZE 5a-387 

getegid Unixlib GETEGID 5a-388 

geteuid Unixlib GETUID 5a-41 I 

getgroups Unixlib GETGROUPS 5a-389 

gethostbyaddr lnetlib GETHOSTBYNAME 5a-390 

gethostbyname Inetlib GETHOSTBYNAME 5a-390 

gethostent Inetlib GETHOSTBYNAME 5a-390 

gethostname Unixlib GETHOSTNAME 5a-392 

get login Unixlib GETLOGIN 5a-393 

getnetbyaddr Inetlib GETNETENT 5a-394 

getnetbyname Inetlib GETNETENT 5a-394 

Sa-363 



INDEX 

~=,::::m:::~:::::::'<':~;;:::: 

Symbol from See on page 

getnetent Inetlib GETNETENT 5a-394 

getpass Unixlib GETPASS 5a-396 

getpeername Socklib GETPEERNAME 5a-397 

getpid Unixlib GETPID 5a-398 

getprotobyname Inetlib GETPROTOENT 5a-399 

getprotobynumber Inetlib GETPROTOENT 5a-399 

getprotoent Inetlib GETPROTOENT 5a-399 

getpwent Unixlib GETPWENT 5a-401 

getpwnam Unixlib GETPWENT 5a-401 

getpwuid Unixlib GETPWENT 5a-401 

getservbyname lnetlib GETSERVENT 5a-403 

getservbyport lnetlib GETSERVENT 5a-403 

getservent lnetlib GETSERVENT 5a-403 

getsockname Socklib GETSOCKNAME 5a-405 

getsockopt Socklib GETSOCKOPT 5a-406 

getsta bl es ize Socklib G ETSTABLESIZE 5a-409 

gettimeofday Unixlib GETTIMEOFDAY 5a-410 

getuid Unixlib GETUID 5a-41 I 

getvarhostname Unixlib GETVAR 5a-412 

getvarusername Unixlib GETVAR 5a-412 

getwd Unixlib GETWD 5a-413 

herror Unixlib HERROR 5a-414 

_host_stayopen Inetlib GETHOSTBYNAME 5a-390 

htonl lnetlib BYTEORDER 5a-374 

htons Inetlib BYTEORDER 5a-374 

index Unixlib STRING 5a-449 

inet_addr Inetlib !NET 5a-415 

- inet_error Socklib - INET_ERROR 5a-417 

inet~lnaof lnetlib !NET 5a-415 

inet_makeaddr Inetlib INET 5a-415 

inet_netof lnetlib !NET 5a-415 

inet_network Inetlib INET 5a-415 

inet_ntoa Inetlib !NET 5a-415 

ioctl Unixlib IOCTL 5a-418 

kill file Unixlib KILLFILE 5a-419 

listen Socklib LISTEN 5a-420 

5a-364 



The Internet module 

Symbol from See on page 

!seek Unixlib LS EEK 5a-422 

- makecall Socklib - MAKE CALL 5a-423 

namisipadr Inetlib NAMISIPADR 5a-424 

_net_stayopen Inetlib GETNETENT 5a-394 

ntohl Inetlib BYTEORDER 5a-374 

ntohs Inetlib BYTEORDER 5a-374 

osreadc Unixlib OSREADC 5a-426 

_proto_stayopen Inetlib GETPROTOENT 5a-399 

_pwbuf Unixlib - PWBUF 5a-427 

read Unixlib READ 5a-428 

readdir Unixlib READ DIR 5a-429 

readv Unixlib READ 5a-428 

recv Socklib RECV 5a-430 

recvfrom Socklib RECV 5a-430 

recvmsg Socklib RECV 5a-430 

rind ex Unixlib STRING 5a-449 

rresvport Inetlib RRESVPORT 5a-432 

select Socklib SELECT 5a-433 

send Socklib SEND 5a-435 

sendmsg Socklib SEND 5a-435 

sendto Socklib SEND 5a-435 

_serv _stayopen Inetlib GETSERVENT 5a-403 

sethostent Inetlib GETHOSTBYNAME 5a-390 

setnetent Inetlib GETNETENT 5a-394 

setprotoent Inetlib GETPROTOENT 5a-399 

setpwent Unixlib GETPWENT 5a-401 

setservent Inetlib GETSERVENT 5a-403 

setsockopt Socklib GETSOCKOPT 5a-406 

shutdown Socklib SHUTDOWN 5a-437 

socket Socklib SOCKET 5a-438 

socket close Socklib SOCKETCLOSE 5a-441 

socket ioctl Socklib SOCKETIOCTL 5a-442 

socketread Socklib SOCKETREAD 5a-443 

socketreadv Socklib SOCKETREAD 5a-443 

socketstat Socklib SOCKETSTAT 5a-445 

socketwrite Socklib SOCKETWRITE 5a-447 

Sa-365 



INDEX 

Symbol from See on page 

socketwritev Srklib SOCKETWRITE 5a-447 

strcasecmp U ixlib STRING 5a-449 

strncasecmp Unixlib STRING 5a-449 

sys_errlist Unixlib XPERROR 5a-454 

sys_nerr Unixlib XPERROR 5a-454 

unlink Unixlib UNLINK' 5a-450 

_varnamebuf Unixlib _VARNAMEBUF 5a-45 l 

write Unixlib WRITE 5a-452 

writev Unixlib WRITE 5a-452 

xgets Unixlib XGETS 5a-453 

xperror Unixlib XPERROR 5a-454 

xputchar u r ixlib XPUTCHAR 5a-455 

5a-366 



The Internet module 

ACCEPT 

Name 

accept - accept a connection on a socket 

Synopsis 

#include "sys/socket.h" 
#include "sys / types.h" 

int accept(s, addr, addrlen) 
int s; 
struct sockaddr *addr; 
int *addrlen; 

Description 

The argument s is a socket that has been created with socket, bound to an address 
with bind. and is listening for connections after a listen . Accept extracts the first 
connection on the queue of.pending connections, creates a new socket with the 
same properties of s, and allocates a new socket descriptor for the socket. If no 
pending connections are present on the queue, and the socket is not marked as 
non-blocking, accept blocks the caller until a connection is present. If the socket is 
marked non-blocking and no pending connections are present on the queue, accept 
returns an error as described below. The accepted socket may not be used to 
accept more connections. The original socket s remains open. 

The argument addr is a result parameter that is filled in with the address of the 
connecting entity, as known to the communications layer. The exact format of the 
addr parameter is determined by the domain in which the communication is 
occurring (eg Internet) . The addrlen is a value-result parameter; it should initially 
contain the amount of space pointed to by addr; on return it will contain the actual 
length (in bytes) of the address returned. This call is used with connection-based 
socket types, currently with SOCK_STREAM. 

Return value 

The call returns - I on error. If it succeeds, it returns a non-negative integer that is 
a descriptor for the accepted socket. 

Sa-367 



ACCEPT 

Sa-368 

Errors 

The call will fail if: 

[EBADFI 

[EOPNOTSUPPI 

[EFAULTI 

[EWOULDBLOCKI 

See also 

The descriptor is invalid. 

The referenced socket is not of type 

SOCK_STREAM. 

The addr parameter is invalid. 

The socket is marked non-blocking and no 
connections are present to be accepted. 

bind (page 5a-371) , connect (page 5a-378). listen (page 5a-420) , 

select (page 5a-433) , socket (page 5a-438) 

Exported by 

Socklib 



The Internet module 

ACCESS 

Name 

access - determine accessibility of file 

Synopsis 

#include "sys /fcntl.h " 

#define R_OK 4 / * test for read permission * / 
#define W_OK 2 I* test for write permission * / 
#define X_OK 1 !* execute permission, ignored 

#define F_OK 0 I* test 

int access(path, mode) 
char *path; 
int mode; 

for presence of file * I 
*/ 

Description 

Access checks the given file path for accessibility according to mode, which is an 
inclusive or of the bits R_OK, W _OK and X_OK, defined in syslfcntl.h. Specifying 
mode as F _OK (ie 0) tests whether the directories leading to the file can be searched 
and the file exists. 

Notice that only access bits are checked. A directory may be indicated as writable 
by access, but an attempt to open it for writing will fail (although files may be 
created there); a file may look executable, but executing it will fail unless it is in 
proper format. 

Return value 

Errors 

If path cannot be found or if any of the desired access modes would not be granted, 
then a -I value is returned; otherwise a 0 value is returned. 

Access to the file is denied if one or more of the following are true: 

IENOENTI The named file does not exist. 

IEACCESI Permission bits of the file mode do not 
permit the requested access. The 
permission is checked with respect to the 
'owner' read and write mode bits. 

Sa-369 



ACCESS 

Sa-370 

See also 

chmod (page 5a-376) , filestat (page 5a-384) 

Exported by 

Unixlib 



The Internet module 

BIND 

Name 

bind - bind a name to a socket 

Synopsis 

#include "sys / socket.h" 
#include "sys / types.h" 

int bind(s, name, namelen) 
int s; 
s truct sockaddr *name; 
int namelen; 

Description 

Bind assigns a name to an unnamed socket. When a socket is created with socket it 

exists in a name space (address family) but has no name assigned. Bind requests 

that name be assigned to the socket. 

The rules used in name binding vary between communication domains. 

Return value 

Errors 

If the bind is successful, a 0 value is returned. A return value of -I indicates an 

error, which is further specified in the global errno. 

The call will fail if: 

IEBADF] 

IEADDRNOTAVAIL] 

IEADDRINUSE] 

IEINVAL] 

IEFAULT] 

s is not a valid descriptor. 

The specified address is not available from the local 
machine. 

The specified address is already in use. 

The socket is already bound to an address. 

The name parameter is invalid. 

Sa-371 



BIND 

5a-372 

See also 

connect (page 5a-378), listen (page 5a-420). socket (page 5a-438), 

getsockname (page 5a-405) 

Exported by 

Socklib 



Name 

bcmp, bcopy, bzero - byte string operations 

Synopsis 

void bcopy(src, dst, length) 

char *src, *dst; 
int length; 

int bcmp(bl, b 2 , length) 

char *bl, *b2; 
int length; 

char *bzero(b, length) 
char *b; 
int length; 

Description 

The Internet module 

BSTRING 

The functions bcopy, bcmp and bzero operate on variable length strings of bytes. They 

do not check for null bytes as the routines in string do. 

Bcopy copies length bytes from string src to the string dst . 

Bcmp compares byte string b I against byte string b2, returning zero if they are 

identical, non-zero otherwise. Both strings are assumed to be length bytes long. 

Bzero places length null (0) bytes in the string b. 

Exported by 

Unixlib 

Sa-373 



BYTEORDER 

5a-374 

BYTEORDER 

Name 

htonl , htons . ntohl. ntohs - convert values between host and network byte order 

Synopsis 

int htons(hostshort); 
int hostshort; 

int ntohs(netshort); 

int netshort; 

#include "sy s / types.h" 

u_long htonl(hostlong); 

u_long hostlong; 

u_long ntohl(netlong); 

u_long netlong; 

Description 

These routines convert 16 and 32 bit quantities between network byte order and 

host byte order. 

These routines are most often used in conjunction with Internet addresses and 

ports as returned by getfwstbyname and getservent. 

See also 

gethostbyname (page 5a-390). getservent (page 5a-403) 

Exported by 

Inetlib 



The Internet module 

CHOIR 

Name 

chdir - change current working directory 

Synopsis 

int chdir(path) 
char *path; 

Description 

Path is the pathname of a directory. Chdir causes this directory to become the 

current working directory, the starting point for incomplete path names. If path 

specifies a different filing system, it also selects that as the current filing system. If 

path is a null string, the directory is set to the user root directory. 

Return value 

Upon completion, a value of O is returned. 

Errors 

Chdir will fail and the current working directory will be unchanged if the named 

directory does not exist . 

Exported by 

Unixlib 

Sa-375 



CHMOD 

Sa-376 

CH MOD 

Name 

chmod - change mode of file 

Synopsis 

int chmod(path, mode) 

char *path; 
int mode; 

Description 

The file whose name is given by path has its read and write attributes changed to 

those in mode. Modes are constructed by or'ing together some combination of the 

following: 

!READ 
!WRITE 

00400 
00200 

read by owner 
write by owner 

Other bits acted on by the Unix version of this command are ignored. 

Return value 

Errors 

Upon successful completion, a value of 0 is returned. Otherwise, a value of-I is 

returned and emw is set to indicate the error. 

Chrnod will fail and the file mode will be unchanged if: 

IENOENT] The named file does not exist. 

See also 

access (page 5a-369) 

Exported by 

Unixlib 



Name 

close - delete a descriptor 

Synopsis 

int close(d) 
int d; 

Description 

The Internet module 

CLOSE 

Close is a synonym for socketclose; see page 5a-44 l . The call is provided mainly so that 

you do not need to rename close calls in code that you are porting. 

See also 

socketclose (page 5a-44 l) 

Exported by 

Unixlib 

Sa-377 

[ ... 



CONNECT 

5a-378 

CONNECT 

Name 

connect - initiate a connection on a socket 

Synopsis 

#include "sys / socket . h" 

#include "sys / types.h" 

int connect(s, name, namelen) 

int s; 
struct sockaddr *name; 

int narnelen; 

Description 

The parameters is a socket. If it is of type SOCK_DGRAM. then this call specifies 

the peer with which the socket is to be associated; this address is that to which 

datagrams are to be sent, and the only address from which datagrams are to be 

received. If the socket is of type SOCK_STREAM, then this call attempts to make a 

connection to another socket. The other socket is specified by name, which is an 

address in the communications space of the socket. Each communications space 

interprets the name parameter in its own way. Generally, stream sockets may 

successfully connect only once; datagram sockets may use connect multiple times to 

change their association . Datagram sockets may dissolve the association by 

connecting to an invalid address, such as a null address. 

Return value 

Errors 

If the connection or binding succeeds, then 0 is returned. Otherwise a - I is 

returned, and a more specific error code is stored in errno. 

The call fails if: 

IEBADF] 

IEADDRNOTAVAILI 

IEAFNOSUPPORTI 

IEISCONNI 

s is not a valid descriptor. 

The specified address is not available on 

this machine. 

Addresses in the specified address family 

cannot be used with this socket. 

The socket is already connected. 



See also 

[ETIMEDOUT] 

[ECONNREFUSED] 

[ ENETUNREACH] 

[EADDRINUSE] 

[EFAULT] 

[ EINPROGRESS] 

[EALREADY] 

The Internet module 

Connection establishment timed out 

without establishing a connection. 

The attempt to connect was forcefully 

rejected. 

The network isn 't reachable from this host . 

The address is already in use. 

The name parameter was invalid. 

The socket is non-blocking and the 

connection cannot be completed 
immediately. 

The socket is non-blocking and a previous 

connection attempt has not yet been 

completed. 

accept (page 5a-367) , select (page 5a-433) , socket (page 5a-438), 

getsockname (page 5a-405) 

Exported by 

Socklib 

Sa-379 



ERRNO 

5a-380 

ERRNO 

Name 

errno - global error variable 

Synopsis 

int errno; 

Description 

The global error variable errno is used by several libraries - including Socklib - to 

provide diagnostics for errors when making calls . Typically, when an error occurs 

the call returns -1 , and errno is set to a value that indicates the reason for the error. 

Possible values errno may take are: 

Value Name Meaning 

0 Error 0 

EPERM Not owner 

2 ENO ENT No such file or directory 

3 ESRCH No such process 

4 EINTR Interrupted system call 

5 EIO 110 error 

6 ENXIO No such device or address 

7 E2BIG Arg list too long 

8 ENO EXEC Exec format error 

9 EBADF Bad file number 

10 ECHILD No children 

I I EAGAIN Resource temporarily unavailable 

12 ENOMEM Not enough memory 

13 EACCES Permission denied 

14 EFAULT Bad address 

15 ENOTBLK Block device required 

16 EBUSY Device busy 

17 EEXIST File exists 

18 EXDEV Cross-device link 

19 ENO DEV No such device 

20 ENOTDIR Not a directory 

21 EIS DIR Is a directory 



The Internet module 

Value Name Meaning 

22 EINVAL Invalid argument 

23 ENFILE File table overflow 

24 EMFILE Too many open files 

·25 ENOTTY Inappropriate 1/0 control operation 

26 ETXTBSY Text file busy 

27 EFBIG File too large 

28 ENOS PC No space left on device 

29 ESPIPE Illegal seek 

30 EROFS Read-only file system 

31 EMLINK Too many links 

32 EPIPE Broken pipe 

33 EDOM Argument value error 

34 ERAN GE Result out of range 

35 EWOULDBLOCK Operation would block 

36 EINPROGRESS Operation now in progress 

37 EAL READY Operation already in progress 

38 ENOTSOCK Socket operation on non-socket 

39 EDESTADDRREO Destination address required 

40 EMSGSIZE Message too long 

41 EPROTOTYPE Protocol wrong type for socket 

42 ENOPROTOOPT Option not supported by protocol 

43 EPROTONOSUPPORT Protocol not supported 

44 ESOCKTNOSUPPORT Socket type not supported 

45 EOPNOTSUPP Operation not supported on socket 

46 EPFNOSUPPORT Protocol family not supported 

47 EAFNOSUPPORT Address family not supported by protocol 

family 

48 EADDRINUSE Address already in use 

49 EADDRNOTAVAIL Can't assign requested address 

50 ENETDOWN Network is down 

5I ENETUNREACH Network is unreachable 

52 ENETRESET Network dropped connection on reset 

53 ECONNABORTED Software caused connection abort 

54 ECONNRESET Connection reset by peer 

55 ENOBUFS No buffer space available 

56 EISCONN Socket is already connected 

Sa-381 



ERRNO 
:--:·::·:···~~:;:.": ::::::=:::r ~="" ''"':~m~=~-

Value Name Meaning 

57 ENOTCONN Socket is not connected 

58 ESHUTDOWN Can't send after socket shutdown 

59 ETOOMANYREFS Too many references: can't splice 

60 ETIMEDOUT Connection timed out 

61 EREFUSED Connection refused 

62 ELOOP Too many levels of symbolic links 

63 ENAMETOOLONG File name too long 

64 EHOSTDOWN Host is down 

65 EHOSTUNREACH Host is unreachable 

66 ENOTEMPTY Directory not empty 

67 EPROCLIM Too many processes 

68 EUSERS Too many users 

69 EDOUOT Disc quota exceeded 

70 EST ALE Stale NFS file handle 

71 ERE MOTE Too many levels of remote in path 

72 ENOSTR Not a stream device 

73 ETIME Timer expired 

74 ENOSR Out of stream resources 

75 ENOMSG No message of desired type 

76 EBADMSG Not a data message 

77 EIDRM Identifier removed 

78 EDEADLK Deadlock situation detected/avoided 

79 ENOLCK No record locks available 

80 ENO MSG No suitable message on queue 

81 EIDRM Identifier removed from system 

82 ELIBVER Wrong version of shared library 

83 ELIBACC Permission denied (shared library) 

84 ELIBLIM Shared libraries nested too deeply 

85 ELIBNOENT Shared library file not found 

86 ELIBNOEXEC Shared library exec format error 

87 ENOSYS Function not implemented 

For details of the errors individual calls may return, see their documentation. 

Sa-382 



See also 

_inet_error (page 5a-4 l 7). xperror (page 5a-454) 

Exported by 

Socklib 

I lit:: II ltt::ll n:::t ti IVUUlt;; 

Sa-383 



FILE STAT 

Sa-384 

FILESTAT 

Name 

filestat - get file status 

Synopsis 

int filestat(path, type) 

char *path; 
char *type; 

Description 

Filestat obtains information about the file patft. Read or write permission of the 

named file is not required, but all directories listed in the path name leading to the 

file must be reachable. The file is searched for using the path held in the RISC OS 

system variable File$Patft . If patft contains wildcards, only the first file matching the 

wildcard specification is read. 

On exit, type contains the file 's object type: 

0 Not found 
File found 

2 Directory found 
3 Image file found (ie both file and directory) 

Return value 

Upon successful completion the length of the file is returned. Otherwise, a value of 

- I is returned and errno is set to indicate the error. 

Errors 

Filestat will fail if: 

IENOENTI 

See also 

access (page 5a-369) 

Exported by 

Unixlib 

The named file does not exist 



I I It: II llt:l I lt:l I I IVUUIW 

FLUSH INPUT 

Name 

flushinput - flushes the input buffer 

Synopsis 

void flushinput() 

Description 

Flusftinput flushes the current RISC OS input buffer. The contents of the buffer are 

discarded. 

Exported by 

Unixlib 

Sa-385 



FSTAT 

5a-386 

Name 

fstat - get socket status 

Synopsis 

int fstat(sd, buf) 
int sd; 
char *buf; 

Description 

FSTAT 

Fstat is a synonym for socketstat; see page 5a-445. The call is provided mainly so that 

you do not need to rename /stat calls in code that you are porting. 

See also 

socketstat (page 5a-445) 

Exported by 

Unixlib 



I lit:: II IU:;fll IC:l II IVUUI~ 

GETDTABLESIZE 

Name 

getdtablesize - get descriptor table size 

Synopsis 

int getdtablesize() 

Description 

Getdtablesize is a synonym for getstablesize; see page 5a-409. The call is provided 

mainly so that you do not need to rename getdtablesize calls in code that you are 

porting. 

See also 

getstablesize (page 5a-409) 

Exported by 

Unixlib 

Sa-387 



GETEGID 

Sa-388 

GETEGID 

Name 

getegid - get group identity 

Synopsis 

int getegid () 

Description 

Getegid returns the effective group ID of the current process. 

As RISC OS has no concept of group IDs, the Unixlib version of this call always 

returns 9999. The call is provided mainly so that you do not need to remove calls to 

getegid from code that you are porting. 

See also 

getuid (page 5a-4 l l) 

Exported by 

Unixlib 



I flt: II Ill::// 11::1 fl IVUUll:: 

GETGROUPS 

Name 

getgroups - get group access list 

Synopsis 

int getgroups(gidsetlen, gidset) 
int gidsetlen, *gidset; 

Description 

Getgroups gets the current group access list of the user process and stores it in the 

array gidset. The parameter gidsetlen indicates the number of entries that may be 

placed in gidset. Getgroups returns the actual number of groups returned in gidset. No 

more than NGROUPS, as defined in "syslparam.h" , will ever be returned. 

Note that the gidset array should be of type gid_t , but remains integer for 

compatibility with earlier BSD Unix systems. 

As RISC OS has no concept of group access lists, the Unixlib version of this call 

always places the single group ID 9999 in the array gidset, and returns I. The call is 

provided mainly so that you do not need to remove calls to getgroups from code that 

you are porting. 

Return value 

This call always returns I , which is the number of groups in the group set. 

Exported by 

Unixlib 

Sa-389 



GETHOSTBYNAME 

Sa-390 

Name 

GETHOSTBYNAME 

gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent - get network 

host entry 

Synopsis 

void sethostent(stayopen) 

int stayopen; 

void endhostent() 

#include "netdb.h" 

struct hostent *gethostbynarne(name) 

char *name; 

struct hostent *gethostbyaddr(addr, len, type) 

char *addr; 
int len, type; 

struct hostent *gethostent() 

Description 

Gethostbyname and gethostbyaddr each return a pointer to an object describing an 

Internet host referenced by name or by address, respectively. The calls query 

. entries in a local data base file , setup as InetDBase:hosts . The information is returned 

in the following structure: 

struct hos tent 
char *h_name; 
char **h_aliases; 
int h_addrtype; 
int h _length; 
char **h_addr_list; 

} ; 

#define h_ addr h_addr_list[O] 



1 ne mcernec moawe 

The members of this structure are: 

h_name Official name of the host . 

h_aliases A zero terminated array of alternate names for the 

host. 

h_addrtype The type of address being returned; currently always 

AF_INET. 

h_length 

h_addr_list 

h_addr 

The length , in bytes, of the address. 

A zero terminated array of network addresses for the 

host. Host addresses are returned in network byte 

order. 
The first address in h_addr_list . 

Gethostent reads the next line of InetDBase:hosts, opening the file if necessary. 

Sethostent opens and rewinds the file . If the stayopen argument is non-zero, the hosts 

data base will not be closed after each call to gethostbyname or gethostbyaddr. 

Endhostent closes the file . 

The _host_stayopen symbol is exported for internal use only. You must not use it in 

your own code. 

Return value 

Bugs 

Error return status from gethostbyname and gethostbyaddr is indicated by return of a 

null pointer. 

All information is contained in a static area so it must be copied if it is to be saved. 

Exported by 

Inetlib 

Sa-391 



GETHOSTNAME 

Sa-392 

GETHOSTNAME 

Name 

gethostname - get name of current host 

Synopsis 

int gethostnarne(name, namelen) 

char *name; 
int narnelen; 

Description 

Gethostname returns the standard Internet host name for the current processor, as 

set in the system variable Inet$HostName. The parameter name/en specifies the size of 

the name array. The returned name is null~terminated unless insufficient space is 

provided. 

If the system variable Inet$HostName is not set, or if it is set to the null string, then 

the call attempts to set it to 'ARM_NoName', and -whether or not successful -this 

is also the name returned in the name array. 

Return value 

Bugs 

A zero value is always returned. 

Host names are limited to MAXHOSTNAMELEN (from "sys!param .h") characters, 

currently 64. 

All information is contained in a static area so it must be copied if it is to be saved. 

Exported by 
Unixlib 



t ne mrerner moawe 

GETLOGIN 

Name 

getlogin - get login name 

Synopsis 

char *getlogin() 

Description 
I 

Getlogin is a synonym for getvarusernarne; see page 5a-4 l 2. The call is provided mainly 

so that you do not need to rename getlogin calls in code that you are porting. 

See also 

getvarusername (page 5a-4 l 2) 

Exported by 

Unixlib 

Sa-393 



GETNETENT 

5a-394 

GETNETENT 

Name 

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry 

Synopsis 

void setnetent(stayopen) 

int stayopen; 

void endnetent ( ) 

#include "netdb.h" 

struct netent *getnetent() 

struct netent *getnetbyname(name) 

char *name; 

struct netent *getnetbyaddr(net, type) 

int net, type; 

Description 

Getnetent , getnetbyname, and getnetbyaddr each return a pointer to an object with the 

following structure containing the broken-out fields of a line in the network data 

base, lnetDBase:networks . 

struct netent 
char 
char 
int 
unsigned long 

} ; 

*n_name; 
**n_aliases; 
n_addrtype; 
n_net; 

The members of this structure are: 

n_name The official name of the network. 

n_aliases A zero terminated list of alternate names for the 

n_addrtype 

n_net 

network. 

The type of the network number returned; currently 

only AF _INET. 

The network number. Network numbers are returned 

in machine byte order. 



The lnterner moawe 

Getnetent reads the next line of inetDBase:networks, opening the file if necessary. 

Setnetent opens and rewinds the file . If the stayopen argument is non-zero, the net 

data base will not be closed after each call to getnetbyname or getnetbyaddr. 

Endnetent closes the file. 

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file 

until a matching net name or net address and type is found, or until EOF is 

encountered. Network numbers are supplied in host order. 

The _net_stayopen symbol is exported for internal use only. You must not use it in 

your own code. 

Return value 

A Null pointer (0) is returned on EOF or error. 

Bugs 

All information is contained in a static area so it must be copied if it is to be saved. 

Exported by 

Inetlib 

5a-395 



GETPASS 

5a-396 

GETPASS 

Name 

getpass - read a password 

Synopsis 

char *getpass(prompt) 
char *prompt; 

Description 

Bugs 

Getpass reads a password from the current input stream, after prompting with the 

null-terminated string prompt and disabling echoing. A pointer is returned to a 

null-terminated string of at most 8 characters. 

The return value points to static data whose content is overwritten by each call. 

Exported by 

Unixlib 



GETPEERNAME 

Name 

getpeername - get name of connected peer 

Synopsis 

#include "sys / socket.h" 

#include "sys / types.h" 

int getpeernarne(s, name, narnelen) 

int s; 
struct sockaddr *name; 

int *narnelen; 

Description 

Getpeername returns the name of the peer connected to socket s. The name/en 

parameter should be initialized to indicate the amount of space pointed to by 

name. On return it contains the actual size of the name returned (in bytes) . The 

name is truncated if the buffer provided is too small. 

Return value 

A 0 is returned if the call succeeds, -I if it fails . 

Errors 

The call succeeds unless: 

[EBADFI 

[ENOTCONNI 

[ENOBUFSI 

[EFAULT] 

See also 

The arguments is not a valid descriptor. 

The socket is not connected. 

Insufficient resources were available in the 

system to perform the operation . 

The name parameter was invalid. 

accept (page 5a-367). bind (page 5a-371). socket (page 5a-438). 

getsockname (page 5a-405) 

Exported by 

Socklib 

Sa-397 



GETPID 

5a-398 

GETPID 

Name 

getpid - get process identification 

Synopsis 

int getpid ( ) 

Description 

Getpid returns the process ID of the current process. Most often it is used to 

generate uniquely-named temporary files . 

As RISC OS has no concept of process IDs. the Unixlib version of this call always 

returns 9999. The call is provided mainly so that you do not need to remove calls to 

getpid from code that you are porting. 

Exported by 

Unixlib 



Name 

The Internet module 

··'7· 

GETPROTOENT 

getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get 

protocol entry 

Synopsis 

void setprotoent(stayopen) 

int stayopen; 

void endprotoent() 

#include "netdb.h" 

struct protoent *getprotoent() 

struct protoent *getprotobyname(name) 

char *name; 

struct protoent *getprotobynumber(proto) 

int proto; 

Description 

Getprotoent, getprotobyname, and getprotobynumber each return a pointer to an object 

with the following structure containing the broken-out fields of a line in the 

Internet protocol data base, lnetDBase:protocols. 

struct protoent 
char 
char 
int 

} ; 

*p_narne; 
**p_aliases; 
p_proto; 

The members of this structure are: 

p_name The official name of the protocol. 

p_aliases A zero terminated list of alternate names for the 

protocol. 

p_proto The protocol number. 

Getprotoent reads the next line of InetDBase:protocols, opening the file if necessary. 

Setprotoent opens and rewinds the file . If the stayopen argument is non-zero, the 

protocol data base will not be closed after each call to getprotobyname. 

Endprotoent closes the file . 

Sa-399 



GETPROTOENT 

Sa-400 

Getprotobyname and getprotobynumber sequentially search from the beginning of the 

file until a matching protocol name or protocol number is found , or until EOF is 

encountered. 

The _proto_stayopen symbol is exported for internal use only. You must not use it in 

your own code. 

Return value 

A Null pointer (0) is returned on EOF or error. 

Bugs 

All information is contained in a static area so it must be copied if it is to be saved. 

See also 

Protocols on page 5a-3 56 

Exported by 

lnetlib 



The Internet module 

GETPWENT 

Name 

getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry 

Synopsis 

v oid s e tpwen t () 

v oid endpwe n t ( ) 

#inc lude "pwd .h " 

s truct passwd *ge tpwuid(uid ) 

i n t uid; 

struct passwd *getpwnam(narne ) 

char *name; 

struct pass wd *get pwent() 

Description 

Getpwent, getpwuid and getpwnam each return a pointer to an object with the following 

structure. 

struct passwd 
char 
char 
union 
union 
int 
char 
char 

/* see getpwent(3) */ 

); 

*pw_ narne; 
*pw_passwd ; 
uid_ t _uid ; int _padl; 

gid_ t _gid; int _pad2 ; 

pw_quota; 
*pw_ comrnent; 
*pw_gecos ; 

char *pw_dir ; 
char *pw_ shell ; 

#define pw_uid _uid._uid 

#define pw_gid _ gid. _ gid 

_uid ; 
_gid ; 

The fields pw_passwd, pw_quota , pw_comment, pw_gecos, pw_dir and pw_shell are unused. 

Getpwuid sets pw_name to the name returned by getvarusername. or to 'root' if none is 

returned; and it sets pw_uid to 32767, and pw_gid to 9999. 

Getpwnam sets pw_name to name, pw_uid to 32767, and pw_gid to 9999. 

Getpwent does the same as getpwuid the first time it is ever called , and the first time 

it is called after a call to setpwent or endpwent. It otherwise returns a NULL pointer (0) . 

Sa-401 



GETPWENT 

5a-402 

Bugs 

Setpwent and endpwent have no effect other than altering the behaviour of getpwent 

(see above) . 

These calls are provided mainly so that you do not need to remove them from code 

that you are porting. 

All information is contained in a static area so it must be copied if it is to be saved. 

See also 

getlogin (page 5a-393). getvarusername (page 5a-412) 

Exported by 

Unixlib 



Name 

The Internet module 

GETSERVENT 

getservent, getservbyport, getservbyname, setservent, endservent - get service 
entry 

Synopsis 

void setservent(stayopen) 
int stayopen; 

void endservent() 

#include "netdb.h" 

struct servent *getservent() 

struct servent *getservbyname(name, proto) 
char *name, *proto; 

struct servent *getservbyport(port, proto) 
int port; 
char *proto; 

Description 

Getservent, getservbyname, and getservbyport each return a pointer to an object with the 
following structure containing the broken~out fields of a line in the network 
services data base, lnetDBase:services. 

struct servent 
char 
char 
int 
char 

} i 

*s_name; 
**s_aliases; 
s_port; 
*s_proto; 

The members of this structure are: 
s_name 

s_aliases 

s_port 

s_proto 

The official name of the service. 

A zero terminated list of alternate names for the 
service. 
The port number at which the service resides . Port 
numbers are returned in network byte order. 

The name of the protocol to use when contacting the 
service. 

Sa-403 



GETSERVENT 

5a-404 

Getservent reads the next line of the file, opening the file if necessary. 

Setservent opens and rewinds the file. If the stayopen argument is non-zero, the 
services data base will not be closed after each call to getservbyname or getservbyport. 

Endservent closes the file . 

Getservbyname and getservbyport sequentially search from the beginning of the file 

until a matching protocol name or port number is found, or until EOF is 
encountered. If a protocol name is also supplied (non-NULL) . searches must also 

match the protocol. 

The _serv_stayopen symbol is exported for internal use only. You must not use it in 
your own code. 

Return value 

A Null pointer (0) is returned on EOF or error. 

Bugs 

All information is contained in a static area so it must be copied if it is to be saved. 

See also 

getprotoent (page 5a-399) 

Exported by 

Inetlib 



The Internet module 

GETSOCKNAME 

Name 

getsockname - get socket name 

Synopsis 

#include "sys / socket.h" 
#include "sys / types.h" 

int getsockname(s, name, namelen) 
int s; 
struct sockaddr *name; 
int *narnelen; 

Description 

Getsockname returns the current name for the specified socket. The namelen parameter 
should be initialized to indicate the amount of space pointed to by name. On return 
it contains the actual size of the name returned (in bytes) . 

Return value 

A 0 is returned if the call succeeds, - I if it fails . 

Errors 

The call succeeds unless: 

[EBADF] 

[ENOBUFS] 

[EFAULT] 

See also 

The argument s is not a valid descriptor. 

Insufficient resources were available in the 
system to perform the operation. 

The name parameter was invalid. 

bind (page 5a-371). socket (page 5a-438) 

Exported by 

Socklib 

Sa-405 



GETSOCKOPT 

5a-406 

GETSOCKOPT 

Name 

getsockopt, setsockopt - get and set options on sockets 

Synopsis 

int getsockopt(s, level, optname, optval, optlen) 
int s, level, optname; 
void *optval; 
int *optlen; 

int setsockopt(s, level, optname, optval, optlen) 

int s, level, optname; 
void *optval; 
int optlen; 

Description 

Getsockopt and setsockopt manipulate options associated with a socket. Options may 

exist at multiple protocol levels; they are always present at the uppermost 'socket' 

level. 

When manipulating socket options the level at which the option resides and the 

name of the option must be specified. To manipulate options at the 'socket' level , 

level is specified as SOL_SOCKET. To manipulate options at any other level the 
protocol number of the appropriate protocol controlling the option is supplied. 

For example, to indicate that an option is to be interpreted by the TCP protocol , 
level should be set to the protocol number of TCP (see GETPROTOENT on 
page 5a-399) . 

The parameters optval and opt/en are used to access option values for setsockopt. For 

getsockopt they identify a buffer in which the value for the requested option(s) are to 
be returned. For getsockopt, optlen is a value-result parameter, initially containing the 

size of the buffer pointed to by optval, and modified on return to indicate the actual 

size of the value returned. If no option value is to be supplied or returned, optval 
may be supplied as 0. 

Optnarne and any specified options are passed uninterpreted to the appropriate 
protocol module for interpretation. The include file "sys/socket.fr" contains 
definitions for 'socket' level options, described below. Options at other protocol 

levels vary in format and name. 



The Internet module · 

Most socket-level options take an int parameter for optval. For setsockopt, the 
parameter should be non-zero to enable a boolean option, or zero if the option is 
to be disabled. SO_LINGER uses a struct linger parameter, defined in "sys/socket.fr", 
which specifies the desired state of the option and the linger interval (see below) . 

Th~ following options are recognized at the socket level. Except as noted, each may 
be examined with getsockopt and set with setsockopt. 

SO_REUSEADDR toggle local address reuse 

SO_KEEPALIVE 

SO_DONTROUTE 

SO_LINGER 

SO_BROADCAST 

SO_OOBINLINE 

SO_SNDBUF 

SO_RCVBUF 

SO_TYPE 

SO_ERROR 

toggle keep connections alive 

toggle routing bypass for outgoing 
messages 

linger on close if data present 

toggle permission to transmit broadcast 
messages 

toggle reception of out-of-band data in band 

set buffer size for output 

set buffer size for input 

get the type of the socket (get only) 

get and clear error on the socket (get only) 

SO_REUSEADDR indicates that the rules used in validating addresses supplied in 
a bind call should allow reuse of local addresses. SO_KEEPALIVE enables the 
periodic transmission of messages on a connected socket. Should the connected 
party fail to respond to these messages, the connection is considered broken and 
programs using the socket are notified via an Internet_EvenUSocket_Broken_Event 
event, provided they have enabled it (see The Internet event on page 5a-341 ). 
SO_DONTROUTE indicates that outgoing messages should bypass the standard 
routing facilities. Instead, messages are directed to the appropriate network 
interface according to the network portion of the destination address. 

SO_LINGER controls the action taken when unsent messages are queued on 
socket and a socketclose is performed. If the socket promises reliable delivery of data 
and SO_LINGER is set, the system will block on the socketclose attempt until it is 
able to transmit the data or until it decides it is unable to deliver the information 
(a timeout period, termed the linger interval, is specified in the setsockopt call when 
SO_LINGER is requested) . If SO_LINGER is disabled and a socketclose is issued, the 
system will process the socketclose in a manner that allows control to return to the 
caller as quickly as possible. 

The option SO_BROADCAST requests permission to send broadcast datagrams on 
the socket. With protocols that support out-of-band data , the SO_OOBINLINE 
option requests that out-of-band data be placed in the normal data input queue as 
received; it will then be accessible with recv calls without the MSG_OOB flag. 
SO_SNDBUF and SO_RCVBUF are options to adjust the normal buffer sizes 

Sa-407 



GETSOCKOPT 

Sa-408 

allocated for output and input buffers , respectively. The buffer size may be 
increased for high-volume connections, or may be decreased to limit the possible 
backlog of incoming data. The system places an absolute limit on these values. 
Finally, SO_TYPE and SO_ERROR are options used only with setsockopt. SO_TYPE 
returns the type of the socket, such as SOCK_STREAM. SO_ERROR returns any 
pending error on the socket and clears the error status. It may be used to check for 
asynchronous errors on connected datagram sockets or for other asynchronous 
errors . 

Return value 

A 0 is returned if the call succeeds, -I if it fails. 

Errors 

The call succeeds unless: 

See also 

IEBADF] 

IENOPROTOOPT] 

IEFAULT] 

The argument s is not a valid descriptor. 

The option is unknown at the level 
indicated. 

The address pointed to by optval is invalid. 
For getsockopt, this error may also be returned 
if optlen is invalid. 

ioctl (page 5a-418). socketioctl (page 5a-442). socket (page 5a-438). 
getprotoent (page 5a-399) 

Exported by 

Socklib 



The Internet module 

GETSTABLESIZE 

Name 

getstablesize - get descriptor table size 

Synopsis 

int getstablesi ze() 

Description 

The Internet module has a fixed size descriptor table , which is guaranteed to have 
at least 96 slots. The entries in the descriptor table are numbered with small 
integers starting at 0. The call getstablesize returns the size of this table. 

See also 

getdtablesize (page 5a-387). close (page 5a-377) , socketclose (page 5a-441), 
select (page 5a-433) 

Exported by 

Socklib 

Sa-409 



GETTIMEOFDAY 

Sa-410 

GETTIMEOFDAY 

Name 

gettimeofday - get date and time 

Synopsis 

#include "sys/time.h" 

int gettimeofday(tp, tzp) 
struct timeval *tp; 
struct timezone *tzp; 

Description 

The system's notion of the current Greenwich time and the current time zone is 
obtained with the gettimeofday call. The time is expressed in seconds and 
microseconds since midnight (0 hour), January I, 1970. If tzp is zero, the time zone 
information will not be returned or set. 

The structures pointed to by tp and tzp are defined in "sys/time.fr" as: 

struct timeval 
long tv _sec; /* seconds since Jan. 1 , 1970 * / 

long tv_usec; /* and microseconds * / 

} ; 

struct timezone 
int tz _minuteswest; /* of Greenwich */ 

int tz_dsttime; /* type of dst correction to apply */ 

} ; 

The timezone structure indicates the local time zone (measured in minutes of time 
westward from Greenwich) , and a flag that, if nonzero, indicates that Daylight 
Saving time applies locally during the appropriate part of the year. 

Return value 

A zero value is always returned. If the date is unset or out of the representable 
range, then tv_sec is -1. 

Exported by 

Unixlib 



Name 

getuid, geteuid - get user identity 

Synopsis 

int getuid () 

int geteuid ( ) 

Description 

The Internet module 

GETUID 

Getuid returns the real user ID of the current process, geteuid the effective user ID. 

As RISC OS has no concept of user IDs, the Unixlib version of this call always 
returns 32767. The call is provided mainly so that you do not need to remove calls 
to getuid and geteuid from code that you are porting. 

See also 

getegid (page 5a-388) 

Exported by 

Unixlib 

Sa-411 



GETVAR 

5a-412 

GETVAR 

Name 

getvarhostname, getvarusername - get host and user names from system variables 

Synopsis 

char *getvarhostname() 

char *getvarusername() 

Description 

Getvarhostname returns the standard Internet host name for the current processor, as 

set in the system variable lnet$HostName. If the variable is not set, or if it is set to 

the null string, then the call first attempts to set it to 'ARM_NoName' . 

Getvarusername returns the current user name, as previously set in the system 
variable Inet$UserName. If lnet$UserName is not set, or if it is set to the null string, 

getvarusername returns a NULL pointer (0) . 

The returned name is null-terminated. 

Return value 

Bugs 

If the call fails, then a NULL pointer (0) is returned. 

Host names are limited to MAXHOSTNAMELEN (from "sys/param.h") characters, 
currently 64. 

The return value points to static data whose content is overwritten by each call. 

See also 

getlogin (page 5a-393) 

Exported by 

Unixlib 



Name 

getwd - get current working directory pathname 

Synopsis 

char *getwd(pathname) 
char *pathname; 

Description 

The Internet module 

GETWD 

Getwd copies the pathname of the current working directory to pathname and returns 
a pointer to the result. 

Exported by 

Unixlib 

Sa-413 



HERROR 

Sa-414 

HERROR 

Name 

herror - obsolete call 

Synopsis 

Description 

Herror is now obsolete, and you must not use it in your code. It is exported from 
Unixlib only to ensure backwards compatibility. 

Exported by 

Unixlib 



Name 

The Internet module 

INET 

inet_addr, inet_network. inet_ntoa, inet_makeaddr, inet_lnaof. inet_netof -
Internet address manipulation routines 

Synopsis 

#include "sy s / types.h" 

u_long inet_addr(cp) 
char *cp; 

u_long i net_network(cp) 
char *cp; 

#include "netinet / in.h" 

char *inet_ntoa(in) 
struct in_a ddr in; 

struct in_addr inet_makeaddr(net, lna) 
int net, lna; 

int inet_lnaof(in) 
struct in_addr in; 

int ine t_netof(in) 
struct in_addr in; 

Description 

The routines inet_addr and inet_network each interpret character strings representing 
numbers expressed in the Internet standard '.' notation, returning numbers 
suitable for use as Internet addresses and Internet network numbers. respectively. 
The routine inet_ntoa takes an Internet address and returns an ASCII string 
representing the address in '.' notation . The routine inet_rnakeaddrtakes an Internet 
network number and a local network address and constructs an Internet address 
from it . The routines inet_netof and inet_lnaof break apart Internet host addresses , 
returning the network number and local network address part, respectively. 

All Internet address are returned in network order (bytes ordered from left to right) . 
All network numbers and local address parts are returned as machine format 
integer values. 

Sa-415 



/NET 

Sa-416 

Internet addresses 

Values specified using the '.' notation take one of the following forms : 

a.b.c.d 
a.b.c 
a.b 
a 

When four parts are specified, each is interpreted as a byte of data and assigned, 
from left to right , to the four bytes of an Internet address. 

When a three part address is specified, the last part is interpreted as a 16-bit 
quantity and placed in the right-most two bytes of the network address. This makes 
the three part address format convenient for specifying Class B network addresses 
as '128.net .host' . 

When a two part address is supplied, the last part is interpreted as a 24-bit 
quantity and placed in the right-most three bytes of the network address. This 
makes the two part address format convenient for specifying Class A network 
addresses as 'net.host'. 

When only one part is given , the value is stored directly in the network address 
without any byte rearrangement. 

All numbers supplied as 'parts' in a '.' notation may be decimal , octal, or 
hexadecimal, as specified in the C language (ie a leading Ox or OX implies 
hexadecimal ; otherwise, a leading 0 implies octal ; otherwise, the number is 
interpreted as decimal). 

Return value 

The value -I is returned by inet_addr and inet_network for malformed requests . 

Bugs 

The string returned by inet_ntoa resides in a static memory area. 

See also 

gethostbyname (page Sa-390) , getnetent (page Sa-394) 

Exported by 

Inetlib 



The Internet module 

INET_ERROR 

Name 

_inet_error - global error variable 

Synopsis 

#include "kernel.h" 

_kernel_oserror inet_error 

Description 

The global error structure _inet_mor is used exclusively by the Socklib library. It 
contains the most recent error block returned from a call into the Internet module, 
and is set by the function makecall(). 

Exported by 

Socklib 

5a-417 



IOCTL 

5a-418 

Name 

ioctl - control device 

Synopsis 

#include "sys/ioctl.h" 

int ioctl(d, request, argp) 
int d; 
int request; 
void *argp; 

Description 

IOCTL 

Ioctl is a synonym for socketioctl; see page 5a-442 . The call is provided mainly so that 

you do not need to rename ioctl calls in code that you are porting. 

See also 

socketioctl (page 5a-442) 

Exported by 

Unixlib 



Name 

killfile - remove directory entry 

Synopsis 

v oid killfile(path) 
char *path; 

Description 

The Internet module 

KILLFILE 

Kil/file removes the entry for the object path from its directory. The call fails if the 
object is locked against deletion. or if it is a directory which is not empty, or if it is 
already open . 

No value is returned. 

This call is now deprecated, and we recommend you instead use unlink in your 
code. Kil/file is exported from Unixlib only to ensure backwards compatibility. 

See also 

unlink (page 5a-450) 

Exported by 

Unixlib 

Sa-419 

._,._::;: 



LISTEN 

Sa-420 

LISTEN 

Name 

listen - listen for connections on a socket 

Synopsis 

int listen(s, backlog) 
int s, backlog; 

Description 

To accept connections, a socket is first created with socket , a willingness to accept 
incoming connections and a queue limit for incoming connections are specified 
with listen , and then the connections are accepted with accept. The listen call applies 
only to sockets of type SOCK_STREAM. 

The backlog parameter defines the maximum length the queue of pending 
connections may grow to. If a connection request arrives with the queue full the 
client may receive an error with an. indication of ECONNREFUSED, or, if the 
underlying protocol supports retransmission , the request may be ignored so that 
retries may succeed. 

Return value 

Errors 

Bugs 

A 0 return value indicates success; -I indicates an error. 

The call fails if: 

IEBADF] 

IEOPNOTSUPP] 

The arguments is not a valid descriptor. 

The socket is not of a type that supports the 
operation listen . 

The backlog is currently limited (silently) to 5 and negative numbers are replaced 
by 0. 

It is not the queue length - this is currently defined by: 

(backlog x 3)/2 + I 



The Internet module 

See also 

accept (page 5a-367). connect (page 5a-378). socket (page 5a-438) 

Exported by 

Socklib 

Sa-421 



LSEEK 

Sa-422 

Name 

!seek - move read/write pointer 

Synopsis 

long lseek(d, offset, whence) 
int d; 
long offset; 
int whence; 

Description 

LS EEK 

Lseek sets the file pointer of d. Since you cannot seek on sockets, the Unixlib version 

of !seek always fails and the file pointer remains unchanged . 

Return value 

A value of-I is always returned. 

Errors 

Errno is always set to indicate the error. 

[ESPIPEJ dis associated with a pipe or a socket. 

Exported by 

Unixlib 



The Internet module 

MAKE CALL 

Name 

_makecall - wrapper for SW! calls 

Synopsis 

#include kernel.h 

int _makecall(swinum, in, out) 
int swinum 
_kernel_swi_regs *in, *out 

Description 

Makecall provides a wrapper for calling SW!s, and is used by Socklib for all 
Socket_ ... SW!s calls it makes. The first thing m.akecall does is to issue the SW!. Its 
subsequent action depends on whether or not the SW! returns an error: 

• If the SWI does not return an error, the global error variable emw is set to zero, 
and the return value of m.akecall is the value that was in RO on exit from the SWI. 

• If the SWI returns an error, m.akecall copies the returned error block into the 
global error structure _inet_error. It then sets errno from the SWI's returned error 
number, converting standard Internet errors (ie those returned by the SWI in 
the range &20EOO - &20E7F) to the values used in C by subtracting &20EOO. If 
- after that - the value of emw is still greater than EREMOTE, m.akecall then sets 
errno to ESRCH. Finally, m.akecall returns a value of - 1. 

Exported by 

Socklib 

5a-423 



NAMISIPADR 

5a-424 

NAMISIPADR 

Name 

namisipadr - get network host entry 

Synopsis 

#include "netdb.h" 

struct hostent *narnisipadr(name) 
char* name 

Description 

Namisipadr takes an Internet address and returns a pointer to an object describing 

an Internet host. The Internet address is a character string representing numbers 

expressed in the Internet standard'.' notation; for more details see Internet addresses 

on page 5a-4 l 6. The information is returned in the following structure: 

struct hostent 
char 
char 
int 
int 
char 

} ; 

*h_narne; 
**h_aliases; 
h_addrtype; 
h_length; 
**h_addr_list; 

#define h_addr h_addr_list[O] 

The members of this structure are: 

h_name Official name of the host. 

h_aliases 

h_addrtype 

h_length 

h_addr_list 

h_addr 

Return value 

A zero terminated array of alternate names for the 
host. 
The type of address being returned; currently always 
AF_INET. 

The length, in bytes, of the address. 

A zero terminated array of network addresses for the 
host. Host addresses are returned in network byte 
order. 
The first address in h_addr_list. 

Error return status from namisipadr is indicated by return of a null pointer. 



The Internet module 

Bugs 

All information is contained in a static area so it must be copied if it is to be saved. 

See also 

inet_addr (page 5a-415) , gethostbyname (page 5a-390) 

Exported by 

Inetlib 

5a-425 



OSREADC 

5a-426 

OSREADC 

Name 

osreadc - reads a character from the current input stream 

Synopsis 

int osreadc () 

Description 

Osreadc is a veneer to OS_ReadC (page 1-852), which reads a character from the 

current input stream. 

Return value 

Osreadc returns the ASCII code of the key pressed, or EOF if Escape was pressed. 

See also 

xgets (page 5a-453) 

Exported by 

Unixlib 



The Internet module 

PWBUF 

Name 

_pwbuf - symbol for internal use only 

Synopsis 

Description 

The _pwbuf symbol is exported for internal use only. You must not use it in your 
own code. 

Exported by 

Unixlib 

Sa-427 



READ 

5a-428 

Name 

read, readv - read input 

Synopsis 

int read(d, buf, nbytes) 
int d; 
char *buf; 
int nbytes; 

#include "sys / types.h" 
#include "sys / uio.h" 

int readv(d, iov, iovcnt) 
int CC, d; 
struct iovec *iov; 
int iovcnt; 

Description 

READ 

Read is a synonym for socketread. and readv a synonym for socketreadv; see page 5a-443 . 

These calls are provided mainly so that you do not need to rename read and readv 

calls in code that you are porting. 

See also 

socketread and socketreadv (page 5a-443) 

Exported by 

Unixlib 



The Internet module 

READDIR 

Name 

readdir - read a directory 

Synopsis 

int readdir(path, buf, len, name, offset) 
char *path, *buf; 
int len, name, offset; 

Description 

Readdir reads an entry from the directory patft which match the wildcard name name; 
it is returned in the buffer buf (which is of length /en) . The offset gives the directory 
entry from which to start searching; it should be zero to start searching from the 
start of the directory. 

If patft (which may contain wildcards) is a null string, then the currently-selected 
directory is read. If name is a null string then '*' is used, and all files will be 
matched. 

Return value 

Bugs 

This call returns the offset from which you should continue searching to read more 
entries; or -I if no entry was read, or there are no more entries after the one read 
by this call. 

This implementation of readdir is not a direct replacement or emulation of the Unix 
readdir function . You should bear this especially in mind if you are porting software. 

Exported by 

Unixlib 

Sa-429 



RECV 

Sa-430 

RECV 

Name 

recv. recvfrom, recvmsg - receive a message from a socket 

Synopsis 

int recv(s, buf, len, flags) 
int s; 
char *buf; 
int len, flags; 

#include "sys/socket.h" 
#include "sys / types.h" 

int recvfrom(s, buf, len, flags, from, fromlen) 

int s; 
char *buf; 
int len, flags; 
struct sockaddr *from; 
int *fromlen; 

#include "sys / uio.h" 

int recvmsg(s, msg, flags) 
int s; 
struct msghdr *msg; 
int flags; 

Description 

Recv, recvfrom, and recvmsg are used to receive messages from a socket. 

The recv call is normally used only on a connected socket, while recvfrom and recvmsg 

may be used to receive data on a socket whether it is in a connected state or not. 

If from is non-zero, the source address of the message is filled in . Fromlen is a 

value-result parameter. initialized to the size of the buffer associated with from, and 

modified on return to indicate the actual size of the address stored there. The 

length of the message is returned in cc. If a message is too long to fit in the 

supplied buffer, excess bytes may be discarded depending on the type of socket the 

message is received from (see socket on page 5a-438) . 

If no messages are available at the socket, the receive call waits for a message to 

arrive. unless the socket is non-blocking (see socketioctl on page 5a-442) in which 

case a cc of - I is ·returned with the external variable errno set to EWOULDBLOCK. 



The Internet module 

The select call may be used to determine when more data arrives. 

The flags argument to a recv call is formed by or'ing one or more of the values, 

#define 
#define 

MSG_ OOB 
MSG_ PEEK 

Oxl 
Ox2 

/* process out-of-band d ata */ 

/ * peek at incoming message */ 

The recvmsg call uses a msghdr structure to minimize the number of directly supplied 
parameters. This structure has the following form, as defined in "sys/socket.ft" : 

struct msghdr { 

}; 

caddr_ t 
int 
struct iovec 
int 
caddr_t 
int 

msg_ narne; / * 
msg_ namelen ; / * 

*rnsg_iov ; / * 

msg:.._iovlen ; / * 

msg_accrights ; / * 

msg_ accrightslen; 

optional address * / 

size of address * / 

scatter / gather array * / 

# elements in msg_ iov * / 

access rights sent / received * / 

Here msg_name and msg_namelen specify the destination address if the socket is 
unconnected; msg_name may be given as a null pointer if no names are desired or 
required. The msg_iov and msg_iovlen describe the scatter gather locations , as 
described in socketread on page 5a-443. A buffer to receive any access rights sent 
along with the message is specified in msg_accrights, which has length 
msg_accrightslen. Access rights are currently limited to integer values. If access rights 
are not being transferred, the msg_accrights field should be set to NULL. 

- . Return value 

These calls return the number of bytes received, or - I if an error occurred. 

Errors 

The calls fail if: 

[EBADF] 

I EWOULDBLOCK] 

[EFAULT] 

See also 

The argument s is an invalid descriptor. 

The socket is marked non-blocking and the 
receive operation would block. 

The data was specified to be received into an 
invalid address. 

socketread (page 5a-443), send (page 5a-435), select (page 5a-433) , 
getsockopt (page 5a-406). socket (page 5a-438) 

Exported by 
Socklib 

5a-431 



RRESVPORT 

5a-432 

RRESVPORT 

Name 

rresvport - routine for returning a stream to a remote command 

Synopsis 

int rresvport(port); 
int *port; 

Description 

Rresvport is a routine which returns a descriptor to a socket with an address in the 

privileged port space bound to it. Privileged Internet ports are those in the range 0 

to 1023. 

Return value 

Rresvport returns a valid, bound socket descriptor on success. It returns - I on error 

with the global value emto set according to the reason for failure (see ERRNO on 

page Sa-380) . The error code EAGAIN is overloaded to mean 'All network ports in 

use' . 

Exported by 

Inetlib 



The Internet module 

SELECT 

Name 

select - synchronous socket 1/0 multiplexing 

Synopsis 

#include "sys / types.h" 
#include "sys / time.h" 

int select (nfds,readfds,writefds,exceptfds,timeout) 
int nfds; 
fd_set *readfds, *writefds, *exceptfds; 
struct timeval *timeout; 

FD_SET(fd, &fdset) 
FD_CLR(fd, &fdset) 
FD_ISSET(fd, &fdset) 
FD_ZERO(&fdset) 
int fd; 
fd_set fdset; 

Description 

Select examines the socket descriptor sets whose addresses are passed in readfds. 
writefds , and exceptfds to see if some of their descriptors are ready for reading, are 
ready for writing, or have an exceptional condition pending, respectively. The first 
nfds descriptors are checked in each set; ie the descriptors from 0 through nfds-1 in 
the descriptor sets are examined. On return, select replaces the given descriptor sets 
with subsets consisting of those descriptors that are ready for the requested 
operation . The total number of ready descriptors in all the sets is returned in 
nfound. 

The descriptor sets are stored as bit fields in arrays of integers. The following 
macros are provided for manipulating such descriptor sets: FD_ZERO(&fdset) 
initializes a descriptor set fdset to the null set. FD_SET(fd, &fdset) includes a 
particular descriptor fd in fdset. FD_CLR(fd, &fdset) removes fd from fdset. FD_ISSET(fd, 
&fdset) is nonzero if fd is a member of fdset, zero otherwise. The behaviour of these 
macros is undefined if a descriptor value is less than zero or greater than or equal 
to FD_SETSIZE. which is normally at least equal to the maximum number of 
descriptors supported by the system. 

Sa-433 



SELECT 

5a-434 

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the 

selection to complete. If timeout is a zero pointer, the select blocks indefinitely. To 

affect a poll , the timeout argument should be non-zero, pointing to a zero-valued 

timeval structure. 

Any of readfds , writefds, and exceptfds may be given as zero pointers if no descriptors 

are of interest. 

Return value 

Errors 

Select returns the number of ready descriptors that are contained in the descriptor 

sets, or -I if an error occurred. If the time limit expires then select returns 0. If select 

returns with an error, the descriptor sets will be unmodified. 

An error return from select indicates: 

IEBADFI 

IEINVALI 

One of the descriptor sets specified an 
invalid descriptor. 

The specified time limit is invalid. One of its 
components is negative or too large. 

See also 

accept (page 5a-367). connect (page 5a-378). socketread (page 5a-443). 

socketwrite (page 5a-44 7 

Exported by 

Socklib 



SEND 

Name 

send, sendto, sendmsg- send a message from a socket 

Synopsis 

int send(s, msg, len, flags) 
int s; 
char *msg; 
int len, flags; 

#include "sys/socket.h" 
#include "sys /types.h " 

int sendto(s, msg, len, flags, to, tolen) 
int s; 
char *msg; 
int len, flags; 
struct sockaddr *to; 
int tolen; 

#include "sys / uio.h" 

int sendmsg(s, msg, flags) 
int s; 
struct msghdr *msg; 
int flags; 

Description 

Send, sendto, and sendmsg are used to transmit a message to another socket. Send 
may be used only when the socket is in a connected state, while sendto and sendmsg 
may be used at any time. 

The address of the target is given by to with to/en specifying its size. The length of 
the message is given by !en. If the message is too long to pass atomically through 
the underlying protocol, then the error EMSGSIZE is returned, and the message is 
not transmitted. 

No indication of failure to deliver is implicit in a send. Return values of-I indicate 
some locally detected errors. 

Sa-435 



SEND 

Sa-436 

If no messages space is available at the socket to hold the message to be 

transmitted, then send normally blocks, unless the socket has been placed in 

non-blocking VO mode. The select call (page 5a-433) may be used to determine 

when it is possible to send more data. 

The flags parameter may be set to MSG_OOB (otherwise 0) to send 'out-of-band' 

data on sockets that support this notion (eg SOCK_STREAM); the underlying 

protocol must also support 'out-of-band' data. 

See recv for a description of the msghdr structure. 

Return value 

The call returns the number of characters sent, or -I if an error occurred. 

Errors 

The call fails if: 

[EBADF] 

[EFAULT] 

[EMSGSIZE] 

[EWOULDBLOCK] 

[ENOBUFS] 

[ENOBUFS] 

See also 

An invalid descriptor was specified. 

An invalid address was specified for a 
parameter. 

The socket requires that message be sent 

atomically, and the size of the message to be 

sent made this impossible. 

The socket is marked non-blocking and the 

requested operation would block. 

The system was unable to allocate an 
internal buffer. The operation may succeed 

when buffers become available. 

The output queue for a network interface 
was full. This generally indicates that the 
interface has stopped sending, but may be 
caused by transient congestion. 

recv (page 5a-430), select (page 5a-433). getsockopt (page 5a-406), 

socket (page 5a-438). socketwrite (page 5a-447) 

Exported by 

Socklib 



SHUTDOWN 

Name 

shutdown - shut down part of a full-duplex connection 

Synopsis 

int shutdown(s, how) 
int s, how; 

Description 

The shutdown call causes all or part of a full-duplex connection on the socket 
associated withs to be shut down . If ftow is 0, then further receives will be 
disallowed. If ftow is I, then further sends will be disallowed. If ftow is 2, then further 
sends and receives will be disallowed. 

Return value 

A 0 return value indicates success; - I indicates an error. 

Errors 

The call fails if: 

See also 

IEBADFI 

IENOTCONNI 

IENOTSOCKI 

s is not a valid descriptor. 

The specified socket is not connected. 

s is a file, not a socket. 

connect (page 5a-378). socket (page 5a-438) 

Exported by 

Socklib 

Sa-437 



SOCKET 

5a-438 

SOCKET 

Name 

socket - create an endpoint for communication 

Synopsis 

int socket(domain, type, protocol) 

int domain, type, protocol; 

Description 

Socket creates an endpoint for communication and returns a descriptor. 

The domain parameter specifies a communications domain within which 

communication will take place; this selects the protocol family which should be 

used. The protocol family generally is the same as the address family for the 

addresses supplied in later operations on the socket. The currently understood 

format under RISC OS is 

PF_INET (Internet protocols) . 

The socket has the indicated type, which specifies the semantics of communication. 

Currently defined types under RISC OS are: 

SOCK_STREAM 
SOCK_DGRAM 
SOCK_RAW 

A SOCK_STREAM type provides sequenced, reliable. two-way connection based 

byte streams. An out-of-band data transmission mechanism may be supported. A 

SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages 

of a fixed (typically small) maximum length) . SOCK_RAW sockets provide access to 

internal network protocols and interfaces. 

The protocol specifies a particular protocol to be used with the socket. Normally only 

a single protocol exists to support a particular socket type within a given protocol 

family. However, it is possible that many protocols may exist, in which case a 

particular protocol must be specified in this manner. The protocol number to use is 

particular to the 'communication domain' in which communication is to take 

place; see Protocols on page 5a-356. 

Sockets of type SOCK_STREAM are full-duplex byte streams. A stream socket must 

be in a connected state before any data may be sent or received on it. A connection 

to another socket is created with a connect call. Once connected, data may be 



transferred using some variant of the send and recv calls. When .a session has been 
completed a socketclose may be performed. Out-of-band data may also be 
transmitted as described in send and received as described in recv. 

The communications protocols used to implement a SOCK_STREAM insure that 
data is not lost or duplicated. If a piece of data for which the peer protocol has 
buffer space cannot be successfully transmitted within a reasonable length of time, 
then the connection is considered broke,n and calls will indicate an error with - I 
returns and with ETIMEDOUT as the specific code in the global variable errno. The 
protocols optionally keep sockets 'warm' by forcing transmissions roughly every 
minute in the absence of other activity. An error is then indicated if no response 
can be elicited on an otherwise idle connection for a extended period (eg 5 
minutes). An lnternet_EvenUSocket_Broken_Event event occurs if a program sends on a 
broken stream, provided the program has enabled the event (see The Internet event 
on page 5a-341 ) 

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to 
correspondents named in send calls. Datagrams are generally received with recvfrom, 
which returns the next datagram with its return address. 

The operation of sockets is controlled by socket level options. These options are 
defined in the file "sys/socket.ft". Setsockopt and getsockopt are used to set and get 
options, respectively. 

Return value 

Errors 

A-I is returned if an error occurs, otherwise the return value is a descriptor 
referencing the socket. 

The socket call fails if: 
[EPROTONOSUPPORT] 

[EMFILE] 
[EACCES[ 

[ENOBUFS[ 

The protocol type or the specified protocol 
is not supported within this domain. 
The socket descriptor table is full. 

Permission to create a socket of the 
specified type and/or protocol is denied. 

Insufficient buffer space is available. The 
socket cannot be created until sufficient 
resources are freed . 

Sa-439 



SOCKET 

5a-440 

See also 

accept (page 5a-367). bind (page 5a-371), connect (page 5a-378), 

getsockname (page 5a-405) , getsockopt (page 5a-406). socketioctl (page 5a-442) , 

listen (page 5a-420). socketread (page 5a-443). recv (page 5a-430). 

select (page 5a-433). send (page 5a-435), shutdown (page Sa-437). 

socketwrite (page Sa-44 7) 

Exported by 

Socklib 



I lit: II llt:::ll IC:l II IVUUlt:: 

SOCKETCLOSE 

Name 

socketclose - close an open socket 

Synopsis 

int socketclose(s) 
int s; 

Description 

Socketclose closes an open socket, and releases any resources, including queued 
data , associated with it . 

Because RISC OS uses a global descriptor table , you can close another program's 
socket. You must therefore take care that the socket descriptor passed belongs to 
your program. 

If an application terminates under RISC OS without closing an open socket, then 
that socket will remain open indefinitely, needlessly consuming resources . You 
therefore must ensure your applications close all sockets before quitting. 

Return value 

Upon successful completion, a value of 0 is returned. Otherwise, a value of-I is 
returned and the global integer variable errno is set to indicate the error. 

Errors 

The call will fail if: 

[EBADFI 

See also 

s is not a valid descriptor. 

close (page 5a-377), accept (page 5a-367). socket (page 5a-438) 

Exported by 

Socklib 

Sa-441 



SOCKETIOCTL 

5a-442 

SOCKETIOCTL 

Name 

socketioctl - control an open socket 

Synopsis 

int socketioctl(s, request, argp) 

int s; 
unsigned long request; 
void *argp; 

Description 

Socketioctl is used to alter the operating characteristics of an open socket, s. The 

parameter request specifies the socketioctl command, and has encoded within it 

both the size of the argument pointed to by argp, and whether the argument is an 

'in' parameter or an 'out' parameter. Macros and defines used in specifying a 

socketioctl request are located in the header file "syslioctl.h". 

Return value 

If an error has occurred, a value of-I is returned and errno is set to indicate the 

error. 

Errors 

The call will fail if: 

[EBADFI 

[ENOTTYI 

[EINVALI 

Exported by 

Socklib 

s is not a valid descriptor. 

The specified request does not apply to the 
kind of object that the descriptor d 

references. 

Request or argp is not valid. 



The Internet module 

SOCKETREAD 

Name 

socketread, socketreadv - read input 

Synopsis 

int socketread(d, buf, nbytes) 
int d; 
char *buf; 
int nbytes; 

#include "sys/types.h" 
#include "sys/uio.h" 

int socketreadv(d, iov, iovcnt) 
int cc, d; 
struct iovec *iov; 
int iovcnt; 

Description 

Socketread attempts to read nbytes of data from the object referenced by the 
descriptor d into the buffer pointed to by buf. Socketreadv performs the same action, 
but scatters the input data into the iovcnt buffers specified by the members of the 
iov array: iovjO]. iovl I]. ... , iovjiovcnt-1 ]. 

For socketreadv, the iovec structure is defined as 

struct iovec { 
caddr_t iov_base; 
int iov_len; 

} ; 

Each iovec entry specifies the base address and length of an area in memory where 
data should be placed. Socketreadv will always fill an area completely before 
proceeding to the next. 

Upon successful completion, socketread and socketreadv return the number of bytes 
actually read and placed in the buffer. The system guarantees to read the number 
of bytes requested if the descriptor references a normal file that has that many 
bytes left before the end-of-file, but in no other case. 

If the returned value is 0, then end-of-file has been reached. 

5a-443 



SOCKETREAD 

Sa-444 

Return value 

Errors 

If successful, the number of bytes actually read is returned. Otherwise, a -I is 

returned and the global variable errno is set to indicate the error. 

Socketread and socketreadv will fail if one or more of the following are true: 

IEBADF] Dis not a valid socket descriptor open for 

reading. 

IEFAULTI 

IEIOI 

IEINTRI 

[EINVALI 

[EWOULDBLOCKI 

Buf points outside the allocated address 

space. 

An 1/0 error occurred while reading from the 

socket. 

A read from a slow device was interrupted 

before any data arrived. 

The pointer associated with d was negative. 

The socket was marked for non-blocking 1/0, 

and no data were ready to be read. 

In addition , socketreadv may return one of the following errors: 

IEINVALI Iovcnt was Jess than or equal to 0, or greater 

than 16. 

[EINVALI 

[EINVALI 

[EFAULTI 

One of the iov_len values in the iov array was 

negative. 

The sum of the iov_len values in the iov array 

overflowed a 32-bit integer. 

Part of the iov points outside the program's 

allocated address space. 

See also 

select (page 5a-433), socket (page 5a-438) 

Exported by 

Socklib 



The Internet module 

SOCKETSTAT 

Name 

socketstat - get socket status 

Synopsis 

#include "sys / types .h" 
#include "sys/stat .h" 

int socketstat(s, buf) 
int s; 
struct stat *buf; 

Description 

Socketstat obtains information about the socket descriptors. 

Buf is a pointer to a stat structure into which information is placed concerning the 
socket. The contents of the structure pointed to by buf are: 

struct stat { 

dev_ t st_dev; /* device inode resides on */ 

ino_t st_ino; / * this inode 's number * / 

u - short st_mode; / * protection * / 

short st_ nlink; /* number or hard links to the file * / 

uid_t st_uid; / * user-id of owner */ 

gid_t st_gid ; / * group-id of owner */ 

dev_t st_rdev; / * device type , for in ode t hat is device * / 

off _t st_ size; /* total size of file * / 

time - t st_atime ; / * file last access time * / 

int st_sparel; 
time _ t st_mtirne; /* file last modify time * / 

int st_spare2 ; 
time_t st_c time ; / * file last status change time */ 

int st_spare3 ; 
long st_blksize; /* optimal blocksize for file system i/o */ 

long st_blocks; / * actual number of blocks allocated * / 

long st_spare4(2J ; 
}; 

The st_blksize field may be either updated or preserved, depending on the socket's 
protocol. All other fields have little or no meaning for sockets, and are preserved. 

Return value 

Upon successful completion a value of 0 is returned. Otherwise, a value of-I is 
returned and errno is set to indicate the error. 

Sa-445 



SOCKETSTAT 

Sa-446 

Errors 

Socketstat will fail if one or more of the following are true: 

IEBADF] sis not a valid descriptor. 

Exported by 

Socklib 



The Internet module 

SOCKETWRITE 

Name 

socketwrite, socketwritev- write output 

Synopsis 

int socketwrite(d, buf, nbytes) 
int d; 
char *buf; 
int nbytes; 

#include "sys /types.h" 
#include "sys / uio.h" 

int socketwritev(d, iov, iovcnt) 
int d; 
struct iovec *iov; 
int iovcnt; 

Description 

Socketwrite attempts to write nbytes of data to the object referenced by the descriptor 
d from the buffer pointed to by buf. Socketwritev performs the same action , but 
gathers the output data from the iovcnt buffers specified by the members of the iov 
array: iov[O]. iov[ I]. .. ., iov[iovcnt-1 ]. 

For socketwritev, the iovec structure is defined as 

struct iovec { 
caddr_t iov_base; 
int iov_len; 

} ; 

Each iovec entry specifies the base address and length of an area in memory from 
which data should be written. Socketwritev will always write a complete area before 
proceeding to the next. 

Sockets are subject to flow control, so socketwrite and socketwritev may write fewer 
bytes than requested; the return value must be noted, and the remainder of the 
operation should be retried when possible. 

Return value 

Upon successful completion the number of bytes actually written is returned. 
Otherwise a -I is returned and the global variable errno is set to indicate the error. 

5a-447 



SOCKETWRITE 

Sa-448 

Errors 

Socketwrite and socketwritev will fail and the file pointer will remain unchanged if one 

or more of the following are true: 

[EBADF] Dis not a valid descriptor open for writing. 

[EPIPE] 

[EFAULT] 

[EINVAL] 

[EIO] 

[EWOULDBLOCK] 

An attempt is made to write to a socket of 
type SOCK_STREAM that is not connected 
to a peer socket. 

Part of iov or data to be written to the socket 
points outside the program's allocated 
address space. 

The pointer associated with d was negative. 

An VO error occurred while reading from or 
writing to the socket. 

The socket was marked for non-blocking 1/0, 
and no data could be written immediately. 

In addition , socketwritev may return one of the following errors: 

[EINVAL] lovcnt was less than or equal to 0, or greater 
than 16. 

[EINVAL ] 

[EINVAL] 

One of the iov_len values in the iov array was 
negative. 

The sum of the iov_len values in the iov array 
overflowed a 32-bit integer. 

See also 

select (page 5a-433) 

Exported by 

Socklib 



The Internet module 

STRING 

Name 

strcasecmp, strncasecmp, index, rindex - string operations 

Synopsis 

int strcasecrnp(sl, s2) 
char *sl, *s2; 

int strncasecrnp(sl, s 2 , n) 
char *sl, *s2; 
int n 

char *index(s, c) 
char *s, c; 

char *rindex(s, c) 
char *s, c; 

Description 

These functions operate on null-terminated strings. They do not check for overflow 
of any receiving string. 

Strcasecmp compares its arguments and returns an integer of I or 0, according as sl 
is lexicographically not equal to, or equal to s2 . Strncasecmp makes the same 
comparison but looks at at most n characters. 

Index (rindex) returns a pointer to the first (last) occurrence of character c in strings, 
or zero if c does not occur in the string. 

Exported by 

Unixlib 

5a-449 



UNLINK 

5a-450 

Name 

unlink - remove directory entry 

Synopsis 

int unlink(path) 
char *path; 

Description 

UNLINK 

Unlink removes the entry for the object path from its directory. The call fails if the 

object is locked against deletion, or if it is a directory which is not empty, or if it is 

already open . 

Return value 

A value of 0 is always returned. 

Exported by 

Unixlib 



The Internet module 

_ VARNAMEBUF 

Name 

_varnamebuf - call for internal use only 

Synopsis 

Description 

The _varnamebuf symbol is exported for internal use only. You must not use it in 

your own code. 

Exported by 

Unixlib 

Sa-451 



WRITE 

Sa-452 

Name 

write. writev - write output 

Synopsis 

int write(d, buf, nbytes) 

int d; 
char *buf; 
int nbytes; 

#include "sys / types.h" 
#include "sys / uio.h" 

int writev(d, iov, iovcnt) 
int d; 
struct iovec *iov; 
int iovcnt; 

Description 

WRITE 

Write is a synonym for socketwrite, and writev a synonym for socketwritev; see 

page 5a-447. These calls are provided mainly so that you do not need to rename 

write and writev calls in code that you are porting. 

See also 

socketwrite and socketwritev (page 5a-44 7) 

Exported by 

Unixlib 



Name 

xgets - get a string from a stream 

Synopsis 

char *xgets(s) 
char *s; 

Description 

1 ne mcemec moawe 

XGETS 

Xgets reads a string into s from the current input stream. The string is terminated by 
a return character, which is replaced ins by a linefeed character; or by EOF. The last 
character read into s is followed by a null character. Xgets returns its argument. 

Exported by 

Unixlib 

Sa-453 



XPERROR 

5a-454 

XPERROR 

Name 

xperror, sys_errlist, sys_nerr - system error messages 

Synopsis 

void xperror(s) 
canst char *s; 

char *sys_errlist[]; 

int sys_nerr; 

Description 

Xperror produces a short error message on the current output stream describing the 

last error encountered during a call to the system from a C program. First the 

argument strings is printed, then a colon, then the message and a new-line. Most 

usefully, the argument string is the name of the program which incurred the error. 

The error number is taken from the external variable errno , which is set when errors 

occur but not cleared when non-erroneous calls are made. 

To simplify variant formatting of messages, the vector of message strings sys_errlist 

is provided; errno can be used as an index in this table to get the message string 

without the newline. Sys_nerr is the number of messages provided for in the table; 

it should be checked because new error codes may be added to the system before 

they are added to the table. Indeed, xperror makes such a check, and outputs a 

default message string if errno exceeds sys_nerr. 

See also 

errno (page 5a-380) 

Exported by 

Unixlib 



Name 

xputchar - put character or word on a stream 

Synopsis 

char xputchar(c) 
char c; 

Description 

The Internet moawe 

XPUTCHAR 

Xputcfrar appends the character c to the current output stream. It returns the 
character written. 

Exported by 

Unixlib 

Sa-455 



Service calls 

Service calls 
This section documents the service calls that are used to communicate between 

network device drivers and the rest of RISC OS. Unfortunately, you need to know 

and understand the Driver Control Interface specification before you can follow all 

the details of these descriptions, and that is beyond the scope of this manual to 

document. See The software in detail on page 5a-282. 

Driver information blocks 

Sa-456 

A device driver identifies each logical interface it controls by a driver information block. 

These are used by a number of the service calls that follow, and have the following 

structure: 

Offset Value 

0 The base of the device driver's allocated SW! chunk 

4 Pointer to the device driver's unique short name, null terminated 

(eg 'en', 'ppp') 

8 The unit number 

12 Pointer to 6 bytes giving the hardware address of the interface 

16 Pointer to the device driver's title , null terminated (eg 'Ether3') 

20 Pointer to a string describing the physical location of the interface, null 

terminated (eg 'Network Expansion Slot', 'Expansion Slot 0, port #I ') 

24 Bitfield specifying physical slot: 

bits 0 - 7 slot number: 0 - 7 ~ physical expansion card slot 
8 ~ network expansion card slot 
128 ~ parallel port 
129 ~Serial port (eg PPP) 
130 ~ Econet socket 
I 31 ~ PCMCIA card 

bits 8 - 15 reserved for device driver's use: may be used where 
one card provides multiple independent interfaces 

bits 16 - 20 physical PCMCIA slot , used when slot number is 131 

bits 21 -31 reserved - must be zero 



t ne mcernec moawe 

Offset Value 

28 Bitfield giving characteristics of device driver; meaning when set is: 

bit 0 multicast reception is supported 

bit I 

bit 2 

bit 3 

bit 4 
bit 5 

bit 6 

bit 7 

bit 8 

bit 9 

bit 10 

promiscuous reception is supported 

interface receives its own transmitted packets 

station number required 

interface can receive erroneous packets 

interface has a hardware address 

driver can alter interface's hardware address 

interface is a point to point link 

driver supplies standard statistics 

driver supplies extended statistics 

interface is virtual (ie a software emulation of 
hardware) ; refer to the Driver Control Interface 
specification 

bits 11 - 31 reserved - must be zero 
Each driver information block must be held as static data . In this way, protocol 
modules can identify an interface simply by comparing the addresses of driver 
information blocks, rather than by laboriously comparing fields within the block. 

This does mean that any use of the *RMTidy command will kill any network stack 
on the machine. In practice this is unlikely to be a great problem, since this 
command has long been deprecated. 

The service call Service_DCIDriverStatus (page 5a-459) provides a mechanism for a 
device driver module that is re-initialised (via *RMReinit) to pass the new address 
of its driver information block to a protocol module. 

Sa-457 



Service_EnumerateNetworkDrivers (Service Call &98) 

Sa-458 

Service_EnumerateNetworkDrivers 
{Service Call &98) 

Issued to obtain a linked list of all active network device drivers 

On entry 

RO = pointer to head of linked list of network device drivers 

RI = &98 (reason code) 

On exit 

Use 

RO = pointer to new head of linked list of network device drivers 

RI preserved to pass on call 

This service call is issued to obtain a linked list of all active network device driver 

modules in the system. When the service call is first issued, RO is a null pointer. 

When a device driver receives this call , it should chain an entry to the head of the 

linked list for each logical interface it controls. Each entry is as follows : 

Offset Value 

0 Pointer to the next entry in the linked list ; the last entry is null 

4 Pointer to the driver information block for this entry 

These entries are transient objects: the device drivers should allocate the space for 

them from RMA using OS_Module 6 (page 1-233), and the program that issued the 

service call should free them back into RMA using OS_Module 7 (page 1-234) after 

the call returns. However, the driver information blocks referenced by each entry in 

the linked list must be static data; see Driver information blocks on page 5a-456. 

You must not claim this service call. 



I lit:: II llt::ll lt::l II IVUUlt: 

Service_DCIDriverStatus 
(Service Call &90) 

Issued by a network device driver module once initialised, and when finalising 

On entry 

RO = pointer to driver information block for starting/terminating driver 
RI = &9D (reason code) 
R2 = status (0 ~ starting, I ~ terminating) 
R3 = DCI version supported x I 00 ( eg 403 for version 4.03) 

On exit 

Use 

RO - R3 preserved 

This service call is issued by a network device driver module once it has initialised 
and is ready to accept SWI calls (R2 = 0). and when it is finalising and can no longer 
accept SWI calls (R2 = I) . If the device driver controls multiple logical interfaces, it 
issues this service call once for each interface. 

When a protocol module receives this service call from a driver that is starting up 
(ie R2 = 0). it should add the driver to its list of device drivers . When a protocol 
module receives the call from a driver that is terminating (ie R2 = I). it should scan 
its list of device drivers for a driver information block matching the one addressed 
by RO, and remove the corresponding driver from the list. 

You may instead decide to keep a terminating driver on the list, but to mark it as 
inactive in case it later restarts . If you do this, you must not match driver 
information blocks by comparing their addresses, as when a driver restarts the 
block may well be in a different location. You instead have to match fields within 
the driver information block: the short name and unit number (at offsets 4 and 8 
respectively) together uniquely identify a driver information block, and so a match 
of them is sufficient. 

You must not claim this service call. 

Sa-459 



Service_ DC/FrameTypeFree (Service Call &9E) 

Sa-460 

Service_DCIFrameTypeFree 
(Service Call &9E) 

This Service Call requires you to use the Driver Control Interface, and so is beyond 

the scope of th is manual to document. See The software in detail on page Sa-282 . 



1 ne mcernec moawe 

Service_DCI Protocol Status 
(Service Call &9 F) 

Issued by a protocol module once it has initialised, and when it is finalising 

On entry 

RO = protocol module's private word pointer 
RI = &9F (reason code) 
R2 = status (0 ==> starting, I ==> terminating) 
R3 = DCI version supported x I 00 ( eg 403 for version 4.03) 
R4 = pointer to protocol module's title string 

On exit 

Use 

RO - R4 preserved 

This service call is issued by a protocol module once it has initialised and is ready 
to accept SWI calls (R2 = 0) , and when it is finalising and can no longer accept SW! 
calls (R2 = I) . 

The title string pointed to by R4 should be identical to the title string in the 
protocol module's header. This string is not used anywhere else in the DC!. (It is 
intended for use by modules that rely on the protocol module, but which do not 
communicate with it via the DCI ; these modules need to have the name of 
significant protocol modules built into them.) 

When a terminating protocol module issues this service call, it must continue 
handling receive events for all frame types it has not explicitly relinquished, until 
the service call returns. Once the call has returned , device drivers should have 
deleted all references to the protocol module which issued the service call. 

This supersedes the unnamed service call &41200, which was never part of any 
formal DC! specification, but which used to be issued during finalisation of the 
Internet module. 

You must not claim this service call. 

Sa-461 



Service_lntemetStatus (Service Call &BO) 

5a-462 

Service I nternetStatus 
(Service Call &BO) 

Issued by the Internet module when an interface address has been changed 

On entry 

RO= 0 (subreason code) 
RI =&BO (reason code) 

On exit 

Use 

RO, RI preserved 

This service call is issued by the Internet module upon successful completion of an 

SIOCSIFADDR socketioctl() call ; ie when an interface address has been changed. 

You must not claim this service call. 



SWI calls 

The Internet module 

There is a direct SWI equivalent to each call available in Socklib. In fact when you 
make a call to Socklib, all that happens is that the parameters you pass are loaded 
into the ARM processor's registers , and the relevant SWI is issued; any returned 
RISC OS error block is converted to a C error number. 

Calling the SWls 

You may wish to issue the SWis yourself - say if you're programming in BASIC. The 
table below shows you how each Socket_ ... SWI corresponds to the Socklib calls 
documented elsewhere in this chapter, giving the name and number of the SWI, the 
equivalent Socklib call , and the page on which it is documented: 

SWI name SWI no Socklib call Page 

Socket_Accept &41203 accept 5a-367 

Socket_Bind &41201 bind 5a-371 

Socket_ Close &41210 socket close 5a-441 

Socket_ Connect &41204 connect 5a-378 

Socket_Creat &41200 socket 5a-438 

Socket_ Getpeername &4120E getpeername 5a-397 

Socket_ Getsockname &4120F getsockname 5a-405 

Socket_ Getsockopt &41200 getsockopt 5a-406 

Socket_ Gettsize &41218 getstablesize 5a-409 

Socket_ Ioctl &41212 socket ioctl 5a-442 

Socket_Listen &41202 listen 5a-420 

Socket_Read &41213 socket read 5a-443 

Socket_Readv &41216 socketreadv 5a-443 

Socket_Recv &41205 recv 5a-430 

Socket_Recvfrom &41206 recvfrom 5a-430 

Socket_Recvmsg &41207 recvmsg 5a-430 

Socket_ Select &41211 select 5a-433 

Socket_ Send &41208 send 5a-435 

Socket_Sendmsg &4120A sendmsg 5a-435 

Socket_Sendto &41209 sendto 5a-435 

Socket_Sendtosm &41219 Reserved for internal use 

Socket_Setsockopt &4120C setsockopt 5a-406 

Socket_ Shutdown &41208 shutdown 5a-437 

Socket_ Stat &41215 socketstat 5a-445 

Sa-463 



Calling the SW/s 

SWI name 

Socket_ Write 

Socket_ Writev 

SWI no 

&41214 

&41217 

Socklib call 
socketwrite 

socketwritev 

Page 

5a-447 

5a-447 

Passing parameters 

Errors 

5a-464 

When calling a Socket_ .. . SWI, you pass the parameters from the corresponding 

Socklib call in registers RO upwards : the first parameter in RO, the second in RI . 

and so on. 

Say you wish to call Socket_Accept. The equiva'lent call is accept: 

int accept(s, addr, addrlen) 

Therefore when calling the SWI , you would pass the parameters in RO, addr in RI. 

and addrlen in R2 . 

Any returned value is passed back in RO: since the accept call returns an int, this will 

be returned in RO for Socket_Accept. 

Errors from Socket_ . . . SW! calls are indicated in the standard way used by 

RISC OS: 

• If the V (overflow) flag is clear on return from a SWI, then no error occurred and 

the desired action was performed. 

• If the V flag is set, then an error occurred, and RO points to an error block, the 

first word of which contains an error number in the Internet module's reserved 

range of error numbers (&20EOO - &20EFF). The rest of the error block consists 

of a null-terminated error message. 

The lower half of the error numbers (ie &20EOO - &20E7F) are used for standard 

Internet errors. These are &20EOO greater than the corresponding Unix error 

number placed in the errno variable after a Socklib call . For example, EINVAL is 

returned from Socket_ . . . SWI calls as &20E16, but is returned from Socklib calls as 

& 16 - as defined in the C header files . 

The upper half of the error numbers (ie &20E80 - &20EFF) are used for errors that 

are specific to DCI4 and later. 

For a full description of how Socklib library calls deal with errors returned from 

Socket_ ... SWls, see the description of _makecall on page 5a-423 . 



*Commands 

Enables or disables various protocol checksums 

Syntax 

* I netChecksurn [ilu lt OnlOff] 

Parameters 

Use 

i 

u 

t 

On 

Off 

set IP checksum usage 

set UDP checksum usage 

set TCP checksum usage 

enable checksums 

disable checksums 

The Internet module 

*lnetChecksum 

*lnetChecksum enables or disables various protocol checksums, or reports the 
current state of the checksums if you pass no parameters. You should not alter 
these values unless you know what you are doing. 

Example 
*InetChecksum 
IP checksums are off , UDP checksums are off , TCP c h ecksums are on 

*InetChecksum u On 

Related commands 

None 

Sa-465 



*lnetGateway 

Sa-466 

*lnetGateway 

May be used to enable or to disable IP layer packet forwarding 

Syntax 

*InetGateway [OnlOff] 

Parameters 

Use 

On 

Off 

enable IP layer packet forwarding 

disable IP layer packet forwarding 

*lnetGateway may be used to enable or to disable IP layer packet forwarding (ie 

gateway operation) if multiple network interfaces are present. With no parameters, 

the current forwarding status is reported. 

The default state is off. 

Example 
*InetGateway 

Packet forwarding not in operation 

*InetGateway On 

Related commands 

None 



The Internet module 

*lnetlnfo 

Displays Internet module internal statistics 

Syntax 

*Inetinfo [ r ] [i] [p] 

Parameters 

Use 

r 

i 

p 

give details of internal resource usage (the default) 

give details of interfaces fitted 

give details of protocols 

* lnetlnfo displays information and statistics about the current state of the Internet 
module, which forms a part of the AUN software. Most of the information 
displayed is runic in nature. It is presented mainly as an aid to trouble-shooting, 
should you require it . 

Example 
*Inetinfo r 

Resource usage: 

Sockets 
Active 10 

Packet forwarding n ot in operation 

Related commands 

None 

Sa-467 



Sa-468 



124 Acorn Access 

Introduction and Overview 
Acorn Access is Acorn 's entry level product for AUN networking. It provides peer to 
peer networking using TCP/IP protocols, allowing sharing of resources such as 
discs and printers. 

From RISC OS 3.6 onwards, Access is supplied as a part of the operating system. 

Access components 

There are three main modules that make up Access: Freeway, ShareFS and 
RemotePrinterSupport. 

Freeway 

Freeway provides the protocols used by Access so it knows what shared resources 
are available and can display windows showing them. 

• The interfaces used by Freeway are for internal use only; you must not use 
them in your own code. 

ShareFS 

ShareFS is a filing system that is used to share resources, both granting other 
hosts access to your machine, and vice versa. 

• ShareFS provides * Commands that you can use to share your own filing 
systems with other Access users . The use of these is described in * Commands 
on page 5a-471. 

• It also provides SWis that you can use to add a Share option to a Filer's icon 
bar menu; see the section Writing Filers so they integrate with Access on page 5a-470. 

RemotePrinterSupport 

RemotePrinterSupport provides the support needed to share printers over an 
Access network. 

• The interfaces used by RemotePrinterSupport are for internal use only; you 
must not use them in your own code. 

Sa-469 



Writing filing systems so they integrate with Access 

Writing filing systems so they integrate with Access 

The Access • Commands call standard entry points to filing systems when making 

them shared. You do not need to take any special steps to make a filing system 

work with Access; any filing system will work, provided it conforms to the 

specifications in the chapters Writing a filing system on page 2-521 and page 5a-259; 

and (where applicable) Writing a FileCore module on page 2-587 and page 5a-263. 

Writing Filers so they integrate with Access 

5a-470 

For a Filer to integrate with Access, it needs to provide a Share menu option, and 

take appropriate action when the option is chosen. This is done using a SW! 

interface to ShareFS. 

These SWis are subject to change as the range of Acorn networking products is 

expanded and updated, so we don't document them here. Should you wish to write 

a Filer to integrate with Access, you should contact Acorn Customer Services. 



*Commands 
*Desktop_ShareFSFiler 

Command to start up ShareFS Filer 

Syntax 

*Desktop_ShareFSFiler 

Parameters 

None 

Use 

*Desktop_ .. . commands are used by the Desktop to start up ROM-resident 
Desktop utilities that appear automatically on the icon bar. However, they are for 
internal use only, and you should not use them; use *Desktop instead. 

See page 3-280 for further details of *Desktop_ .. . commands . 

Related commands 

*Desktop (page 3-278) 

Sa-471 



"Dismount 

Sa-472 

*Dismount 

Ensures that it is safe to finish using a remote shared disc 

Syntax 

*Dismount :disc_name 

Parameters 

Use 

disc_name the name of the remote shared disc 

*Dismount ensures that it is safe to finish using a remote shared disc by closing all 

its files, unsetting all its directories and libraries, and discarding its local caches. 

*Dismount is useful before finishing sharing a particular disc. However, the 

*Shutdown command is usually to be preferred, especially when switching off the 

computer. 

Example 

*Dismount :Maths 

Related commands 

*Shutdown (page 2-186) 



Acorn Access 

*Free 

Displays the total free space remaining on a remote shared disc 

Syntax 

*Free :disc_name 

Parameters 

disc_name the name of the remote shared disc 

Use 

*Free displays the total free space remaining on a remote shared disc. 

Example 

*Free :Maths 
Bytes free &00504400 
Bytes used &02413c00 

Related commands 

None 

5260288 
37829632 

Sa-473 



*FwShow 

Sa-474 

*FwShow 

Displays all currently known Freeway objects 

Synt,ax 

*FwShow 

Parameters 

None 

Use 

*FwShow displays all currently known Freeway objects. Local objects are prefixed 

with a '*'. 

Example 

*FwShow 
No remote nets 

Type 2: 

Type 5: (Hosts) 
*Narne=794148708 

Narne=528163826 
Narne=873634028 

Type 1: (Discs) 
Narne=English 
Narne=Science 

*Narne=Maths 

Related commands 

None 

Holder=l.97.238.89 

Holder=l.97.238.93 

Holder=l.97.238.88 

Holder=l.97 . 238.93 
Holder=l.97.238.88 

Holder=l.97.238.89 



Acom Access 

*Share 

Makes a local directory available as a shared disc 

Syntax 
*Share directory [disc_name] [-protected] [ -cdrorn] [-noicon] 

Parameters 

Use 

directory 

disc_name 

-protected 

-cdrorn 

-no icon 

a valid pathname specifying a directory 

the name to use for the shared disc 

causes the directory to be shared protected, rather than 
the default of unprotected 

indicates that the shared directory is on a CD-ROM 

prevents an icon appearing for the shared disc 

*Share makes a local directory available as a shared disc. If no name is given for 
the shared disc, then the name of the directory is used, or - for the root directory
the name of the disc itself. 

If the directory is shared unprotected, then remote users have read and write 
access to all objects beneath it. If the directory is shared protected, then remote 
users' access to an object beneath it is determined by that object's public access 
attributes. 

Example 

*Share ADFS : :Maths.$ Maths -protected 

Related commands 

*Shares, *UnShare 

Sa-475 



*ShareFS 

5a-476 

*ShareFS 

Selects the Shared Filing System as the current filing system 

Syntax 

*ShareFS 

Parameters 

Use 

None 

*ShareFS selects the Shared Filing System as the filing system for subsequent 

operations. Remember that it is not necessary to switch filing systems if you use 

the full pathnames of objects. For example, you can refer to ADFS objects (on a 

local disc) when ShareFS is the current filing system. 

Example 

*ShareFS 

Related commands 

*ADFS, *Net, *RAM, *ResourceFS 



Acom Access 

*ShareFSlcon 

Adds an icon to the icon bar for a remote shared disc 

Syntax 

*ShareFSicon disc_name 

Parameters 

disc_name the name of the remote shared disc 

Use 

*ShareFSlcon adds an icon to the icon bar for a remote shared disc. 

Example 

*ShareFSicon Maths 

Related commands 

None 

Sa-477 



*ShareFSWindow 

5a-478 

*ShareFSWindow 

Changes or reports the size of the ShareFS transmission window 

Syntax 

*ShareFSWindow [size] 

Parameters 

Use 

size the size of the ShareFS transmission window 

*ShareFSWindow changes the size of the ShareFS transmission window, or - with 

no parameter - reports its current size. You should not change the size unless you 

know what you are doing. 

Example 

*ShareFSWindow 
Current ShareFS window size: 2 

Related commands 

None 



Acom Access 

*Shares 

*Shares lists the local directories currently made available as shared discs 

Syntax 

*Shares 

Parameters 

None 

Use 

*Shares lists the local directories currently made available as shared discs , 
showing the full *Share command with which it was shared. 

Example 

*Shares 
Share ADFS::Maths.$ .Maths -protected 

Related commands 

*Share 

Sa-479 



*UnShare 

5a-480 

*UnShare 

* UnShare makes a local directory no longer available as a shared disc 

Syntax 

*UnShare disc_name 

Parameters 

disc_name the name of the remote shared disc 

Use 

* UnShare makes a local directory no longer available as a shared disc. 

Example 

*Unshare Maths 

Related commands 

*Share 



Part 17 - The desktop 

5a-481 



Sa-482 



125 The desktop 

Introduction and Overview 
Major changes were made to the desktop in RISC OS 3.5, many of them to improve 
its appearance. This introduction outlines those changes; the rest of the chapter 
details the changes they have introduced to the programmers' interface. 
Incidentally, some of the changes below are entirely handled by RISC OS, and so 
have introduced no new interfaces. 

Desktop appearance 

There have been sprite and template changes to give a 30 appearance to the 
windows. You should refer to the RISC OS 3 Style Guide for more information in 
this area. 

The desktop now uses a proportional font in the desktop and can tile the window 
backgrounds with a texture. 

The Filer 

The Filer was changed so that: 

• the directory displays can have a variable column width 

• all text uses the current desktop font 

• filenames of up to 63 characters can be displayed, rather than I 0 as before 

• objects are dragged as an icon rather than as an outline 

• open directories are differentiated using a new icon. 

New error system 

The Wimp error messages were changed to be more helpful, consistent and user 
friendly. Applications can now provide a more suitable wording on Error messages 
and buttons. 

The Pinboard 

The Pinboard was changed to support outline fonts. The *Backdrop command was 
extended so you can remove a backdrop. 

Sa-483 



Terminology 

DragASprite 

DragASprite was changed so that the dragged sprite will by default be dithered (ie 

semi-transparent) . You can then see the area underneath a drag, and hence where 

you are moving a large sprite. 

The Watchdog 

Currently, if a program goes into an 'infinite loop' ( eg it keeps posting an error box 

without poll ing) there is no way to stop it. The Wimp now has a watchdog triggered 

by a hot-key combination, which can be used to kill such rogue programs. 

Terminology 

Sa-484 

Throughout this chapter, when we refer to the desktop's system font , we are referring 

to text that the Wimp outputs using VDU calls (as in earlier versions). and not to 

text output using the outline System.Fixed font . 



I Tit:: Uf:ll::ilUUJJ 

Technical Details 

The desktop font 

In previous versions of RISC OS, the Wimp plotted text in icons using the 
OS_ Write ... calls and VDU commands; this uses the system font, which is a 
bit-mapped fixed width font . From RISC OS 3.5 onwards the Wimp can instead call 
the Font Manager, and use a single proportionally spaced outline font for text output. 

In this chapter. we shall refer to the current font used by the Wimp as the desktop 
font . whether it be an outline font or the system font . 

If painting an outline font generates an error for any reason, then the Wimp does 
not report an error, but reverts to the system font . This avoids loops where 
reporting an outline font error generates the same error itself. 

The WIMPSymbol font 

There are some characters that are present in the system font and used in the 
desktop, but are not present in most outline fonts . A new font named WJMPSymbol 
has been created that holds outline versions of the most commonly used such 
characters. It only has these characters defined: 

Code Character Source 

&80 ./ Selwyn, &62 

&84 ~ Selwyn, &63 

&88 <= Sydney, &DC 

&89 ~ Sydney, &DE 

&BA .u. Sydney, &DF 

&8B 11 Sydney, &DD 

If the Wimp is using an outline font . it switches to the WIMPSymbol font when 
outputting these characters. 

Sa-485 

··<c:,;;:.::S 



Templates 

Templates 

5a-486 

Templates and outline fonts 

When designing templates, you should ensure that they work with the system font, 

with Homerton Medium at 12 point, and (preferably) with Trinity Medium at 12 

point. 

Where text may change, ensure there is enough space for a 'worst case'. To help 

you in this , you may find it useful to know that the widest Homerton character is 

'@', and the widest alphanumeric character is 'W'. In Trinity the corresponding 

characters are ' . .. · (amongst others) , and w·. 

You should be aware that you can no longer use spaces to align columns (such as 

those in the Filer's Full Info output). Instead you must use a separate icon for each 

column. or use the new SWI Wimp_TextOp 2 (see page 5a-502) within a redraw 

loop. 

20 and 30 templates 

There is a CMOS bit that users can set to indicate whether they prefer to use a 20 

or 30 desktop (see CMOS RAM allocation on page 5a-73) . 

We do not require your application to provide both 20 and 30 templates. Should 

you choose to do so, you should select the appropriate set by examining this bit at 

startup, and whenever there is a mode change. 

Sprite area control block pointers 

When the Wimp loads a template, it now forces the sprite area control block 

pointer in any window definitions to I. This is because some template editors do 

not set this field correctly, but the Wimp now uses it to search for a tiling sprite 

(see Tiled window backdrops on page 5a-488); an invalid value can have disastrous 

consequences. 



Menus 

The desktop 

The Wimp works out menu widths for you, even for outline fonts . Your application 
need not worry about setting the correct width for a menu entry- except for a 
writable field , when the supplied width will be used as minimum. Menus will be 
just wide enough to contain the title , and all of the entries, in the menu. 

Shortcuts 

In menus. keyboard shortcuts must be displayed right-aligned. Previously this was 
done by using spaces to align the shortcuts, but this is no longer possible with 
outline fonts . From RISC OS 3.5 onwards the Wimp automatically finds and right 
aligns any shortcut at the end of a menu entry, using simple rules . 

For the Wimp to recognise a menu entry as having a shortcut, both the following 
must be true: 

• The menu entry must be non-writable. 

• It must contain at least one space. 

and at least one of the following must also be true: 

• The string after the last space must start with no more than one of the patterns 
in the Modifiers list , held in the Wimp's Messages file . In the UK this list is: 

n " "n n" 
• The entry must end with a pattern from the KeyNames list, also held in the 

Wimp's Messages file . This list consists of: 

Esc ESC Fl F2 F3 F4 F5 F6 F7 F8 F9 FIO Fl I Fl2 Print PRINT Break BREAK 
Pause PAUSE Tab TAB Return RETURN Insert INSERT Home HOME PageUp 
PAGE UP Delete DELETE Copy COPY End END PageDown PAGE DOWN Enter 
ENTER Up UP Down DOWN Left LEFT Right RIGHT Select SELECT Menu 
MENU Adjust ADJUST 

If the above conditions are satisfied, the Wimp right aligns everything after the last 
space. 

By holding the lists in the Wimp's messages file , they can be internationalised, so 
(for example) the modifiers could be a whole word rather than just a symbol. We 
encourage you to follow the guidelines in the RISC OS 3 Style Guide for giving 
shortcuts. 

Sa-487 



Icon bar icons that use text 

Icon bar icons that use text 

Some applications put icons on the icon bar that have text as well as a sprite. 

Obviously the width of such icons can change as the desktop font is changed. From 

RISC OS 3.5 onwards , the Wimp calculates the width of all text and sprite icons 

that it places on the icon bar. 

Where the text of an icon is fixed, you should specify the icon 's width to be the 

same as the sprite's. The Wimp then calculates the actual width to make all the text 

readable, both on the icon's creation and on a font change. 

Where the text may change (for example if it is used to display a status). you must 

instead handle things yourself. You must measure the length of all potential 

strings using Wimp_TextOp I (page 5a-500). and hence find the maximum width of 

the icon. You must then create the icon with this width, disabling the Wimp's 

auto-sizing by including an ·x· in the icon's validation string. When you receive 

Message_FontChanged (page 5a-507) to tell you the desktop font has changed, 

you must recalculate the widths. and resize the icon by calling Wimp_Resizelcon 

(page 5a-505). 

An alternative to the above is to delete and recreate the icon each time the text 

changes, and rely upon the Wimp to auto-size it (ie don't include an 'X' in the icon's 

validation string) . However, this causes much redrawing of the whole icon bar, and 

so is deprecated. 

Tiled window backdrops 

5a-488 

If the Wimp finds a sprite named ti 1 e_l in either a window's sprite area or its 

own (eg loaded with *IconSprites). then this is used to tile the background of a 

window that normally has colour I as its background. To improve performance the 

Wimp sprite pool is also searched for a sprite named ti 1 e_l - xx, where xx is the 

number of bits per pixel for the current screen mode; if one is found, this avoids 

the overhead of converting the tiling sprite between different pixel depths. 

Tiling sprites must not have a palette. 

There is a CMOS bit to enable and disable this feature; see CMOS RAM allocation on 

page 5a-73. 



The desktop 

The Wimp's error system 

Introduction 

Considerable changes were made to the Wimp's error system in RISC OS 3.5. The 
sections below provide an overview of the changes; Wimp_ReportError on 
page 5a-492 details how the programmers' interface has changed. 

General 

Many applications use the Wimp's error system to relay information just as much 
as to raise errors , so we now refer to the dialogue boxes as reports rather than as 
error boxes. To reflect tlhis, the title bar has been changed to say 'Message from' 
rather than 'Error from' . 

The appearance of reports has been improved, and messages have been changed 
to be more helpful, consistent and user friendly. Applications can now provide 
more suitable wording 1for messages. 

The 'OK' button has bef n changed so it instead says 'Continue', provided the 
calling application is aware of the new error system. (Old applications will still use 
an 'OK' button .). This ~utton is the default, and can be selected by pressing the 
Return key. The 'Cance~· button has not changed its wording. 

However, you do not have to use just these buttons, and can add to them or 
replace them with any number of buttons that use any words that fit . In the rare 
event that your buttons do not fit on the standard window, the Wimp automatically 
makes it wider to accommodate them; but the buttons themselves are a fixed size, 
at least under RISC OS 3.5 and 3.6. 

New service calls make it easy to hook into your own buttons, and in particular to 
make your buttons ther selves open reports - say to give debugging information, 
or extra help. 

Sa-489 



The Wimp's error system 

5a-490 

Report categorisation 

RISC OS 3.5 introduces a new scheme to categorise reports. Each category uses a 

different sprite in the report , taken from the Wimp's Sprites resource file . 

• A program. report indicates an error that should not normally occur. It strongly 

implies that a program somewhere (whether system or application) contains a 

bug. The user need not know the details of the cause, although an expert user 

might be interested. It' s quite possible that the application will have to be 

terminated, or even that the machine will have to be reset . 

The other types of errors are referred to as running reports. They are errors that , sadly, 

are to be expected in the normal running of the machine, or which have to be 

understood by the user. Of these: 

• An error report indicates that something serious or unfortunate has happened, 

even though it might not be a program's fault. Examples include hardware 

faults, corrupt or absent files or discs, and running out of a resource such as 

memory or disc space. 

• An information report is more an information bulletin than an error. No evasive 

action is typically required of the user. 

• A question report asks a question of the user. For instance, this might be used 

when the user is trying to quit with unsaved data. 

Backward compatibility 

There are two main problems faced by applications which wish to use the new error 

system, and yet still work on earlier versions of RISC OS (ie 3.1 and before) : 

. • The 'Continue' button will be labelled 'OK' under earlier versions of RISC OS, 

and so the text of the report needs to change 

• Custom buttons are not supported under earlier versions of RISC OS. 

The first problem is easily solved by using alternative files for the text of reports . 

You should use lines similar to the following in your !Run file : 

Set App$Dir <0bey$Dir> 

Set App$Messages <0bey$Dir>.NewMessages 

RMEnsure WindowManager 3.21 Set App$Messages <0bey$Dir> . OldMessages 

and then in your code, instead of opening <Obey$Dir>.Messages as is customary, 

you should open App$Messages. 



The caret 

The desktop 

The second problem is more involved. Let's say you wish to display a report that 
has 'Discard'. 'Cancel' and 'Save' buttons: 

• Under earlier versions of RISC OS this would need custom code. 

• Using the new error system, you can display this report using the extensions to 
Wimp_ReportError. 

However, if you try to use the same extensions under an earlier version of 
RISC OS, it will ignore your custom buttons. and instead display an 'OK' 
button. Furthermore, when the user clicks on 'OK' a value of I is returned. 
rather than values of 3 upwards expected from your custom buttons. 

The only workround is to switch conditionally between the two methods, either by 
use of an environment variable as above, or by examining the version number 
returned by Wimp_Initialise. This maintains backwards compatibility, but uses the 
more efficient new features when possible. 

A final issue is that report categorisation is not supported by earlier versions of 
RISC OS, although this has no side affects on actual behaviour. just on appearance 
- since the old warning sprite appears for all errors. 

The Wimp sets the caret to colour I I (ie red) in I6 and 32bpp modes . 

Finding other applications 

Some supplied applications have been moved, for example between the RISC OS 
ROM image and the disc; in future releases they may move again. If your software 
uses another RISC OS application !App, it must not assume App's location. but 
should instead find it by reading the value of the App$Dir system variable. 

Changes to existing SWls 

Wimp_CreateWindow (page 3-89) 

The new 30 window surrounds introduced in RISC OS 3.5 ignore the scroll bar 
inner and outer colours declared in bytes 36 and 37 of the window block. 20 
windows still behave as in earlier versions of RISC OS. 

Wimp_Createlcon (page 3-96) 

The (K)eys command now restricts the caret to icons in the same ESG group from 
RISC OS 3.5 onwards , rather than cycling through all icons - just as we advised 
would happen in the RISC OS 3 Programmer's Reference Manual. 

Sa-491 



0 

3 

Changes to existing SW/s 

sr1211~ 

I 
: oPr 

. cw 
-,\> 

7 

5a-492 

Wimp_CreateMenu (page 3-156) 

Bytes 4 - 7 of each menu item may contain a submenu pointer or window handle, 

or -I if neither. The way they are distinguished changed in RISC OS 3.5: 

• A submenu pointer has bit 0 clear 

• A window handle has bit 0 set , but is not equal to -1. 

However, you should not rely upon this in your code, as it may be subject to further 

change. 

Wimp_ReportError (page 3-179) 

This call was extended in RISC OS 3.5 to support the new types of error report. If 

bit 8 of the flags word passed in RI is set, the new types are being used, and 

specified using both further flag bits and other parameters passed in R3 - R5. 

The new flag bits in RI are: 

Bits Meaning 

8 Set ~ use new types of error report , as given by bits 9 - 11 and R3 - R5 

9 - 11 0 ~old error sprite (non classified). I ~ information report , 

2 ~ error report . 3 ~ program report . 4 ~ question 

The values passed in R3 - R5 (ignored unless bit 8 of RI is set) are: 

R3 = pointer to sprite name 
R4 = pointer to sprite area, or I to use the Wimp sprite area 

R5 = pointer to list of text for additional buttons. comma separated and 

control character terminated; or 0 if none 

For consistent results, all sprites you use should be defined in a 16 colour mode. 

If no sprite name is passed in R3, or the error is an old style one, then the Wimp 

tries ! app as a sprite name. This is a desperate measure which may not 

internationalise well. 

The strings passed in R5 are the text of additional buttons to create. If the dialogue 

box does not have a Continue or Cancel button (ie bits 0 and I of RI are clear on 

entry). then the first additional button is the default one. If the first additional 

button is pressed. it always returns 3 in RI - even if it is the default. Any further 

buttons return 4, 5, and so on. The Continue button is the rightmost one, followed 

by the Cancel one, followed by any additional buttons in the order they are 

specified, with the Describe button (if added by RISC OS - see below) appearing at 

the extreme left. 



The desktop 

Serious errors 

Certain potentially serious error numbers are treated slightly differently. This 
happens if one or more of the following are true: 

• Bit 31 of the error number is set, indicating an exception such as a data abort 
·has occurred. 

• Bits 24 - 29 of the error number have the binary value 011011, meaning the 
error lies in a previously unused range of error numbers now reserved for 
program errors 

• The error number is on a list hard-coded into the Wimp, specifying some 150 
errors used in earlier versions of RISC OS that are now classified as program 
errors . 

These errors are always generated as a program report. The report always has a 
Cancel button, but the label on it is instead Quit. The error text is replaced by 'App 

may have gone wrong. Click Quit to stop App'. If the program did not request a 
Cancel/Quit button, but it is pressed, then the Wimp terminates the application 
without re-entering it . It does so by calling its exit handler, since the error handler 
may call Wimp_ReportError again, which would be confusing or may even go into 
an infinite loop. A Describe button is added; if this is pressed then the report is 
replaced by that originally provided by the application (ie the Describe button 
disappears) . 

Wimp_ReadSyslnfo (page 3-218) 

This call accepts the following new system information index values from 
RISC OS 3.5 onwards: 

RO on entry On exit 

8 RO = font handle of desktop font, or zero if Wimp is currently using 

9 

11 

system font 
RI =symbol font handle, or undefined if RO= 0 

RO = pointer to Wimp toolsprite control block 

RO = maximum size of application space 

DragASprite_Start (page 3-300) 

This call was changed in RISC OS 3.5 so that the dragged sprite is by default 
dithered, and hence appears semi-transparent. A new bit has been added to the 
flags word in RO to control this feature . If bit 8 is clear (as should be the case for all 
existing applications) then dithering occurs; if it is set then it is disabled. 

Sa-493 



Changes to existing commands 

Changes to existing commands 

5a-494 

*Desktop_ ... (page 3-280) 

The range of available *Desktop_ . . . commands has changed in both RISC OS 3.5 

and 3.6, as the range of ROM-based applications has changed . Some applications 

(eg !Palette) are no longer used, others have been added (eg the Display Manager). 

and others have moved between the ROM and the hard disc. 

All such commands are - as ever - for internal use only, and so we don't list here 

the *Desktop_ ... commands available in each version of RISC OS. If you do need 

such a list. type *Help Desktop_ . . 

*Desktop_SetPalette (page 3-281) 

This command is not available from RISC OS 3.5 onwards. 

*Backdrop (page 3-295) 

From RISC OS 3.5 onwards, *Backdrop supports an extra parameter: - Remov e . Its 

syntax is now: 

*BackDr op [ - Centre l - Scale l-Tile l-Remov e ] [fi lename ] 

The new - Remove parameter removes the current backdrop. 



The desktop 

Service Calls 
Service_ErrorStarting 

(Service Call &400CO) 

Issued immediately after Wimp_ReportError is called 

On entry 

RI = &400CO (reason code) 
R2 - R7 =values of RO - R5 (respectively) intended for Wimp_ReportError -

see page 3-179 and page 5a-492 

On exit 

Use 

RI preserved to pass on call 
R2 - R7 =values of RO - R5 (respectively) actually passed to Wimp_ReportError -

see page 3-179 and page 5a-492 

This service call is issued immediately after Wimp_ReportError is called, and 
before Service_ WimpReportError I (page 3-77) is issued. It allows you to change 
the parameters passed to Wimp_ReportError by altering the values in R2 - R7. You 
must not alter any memory to which these registers point on entry; you should 
instead make a copy of the memory, alter that, and change the relevant register to 
point to your copy. 

If you are adding to the list of additional buttons, you must append your new 
buttons rather than insert them. This avoids any confusion over button numbering 
should other clients add their own buttons. You should obviously keep track of the 
position of any buttons you have added. 

This service call is only issued by RISC OS 3.5 and later. 

You must pass this service call on. 

Sa-495 



Service_ErrorButtonPressed (Service Call &400C1) 

5a-496 

Service_ErrorButton Pressed 
{Service Call &400C1) 

Issued when any button on the error report is pressed 

On entry 

RO=O 
RI = &400CI (reason code) 
R2 =button number (I ::::} OK, 2::::} Cancel, 3::::} rightmost additional button ... ) 

R3 = pointer to button list as it appeared on the error report 

On exit 

Use 

RO = 0 to return to application 
RI preserved to pass on call 
R2 =button number to return (normally unchanged) 

or 

RO = I to redisplay error report 
RI = 0 to claim call 
R2 = pointer to block holding values for new report : words in same order as 

registers passed to Wimp_ReportError - see page 3-179 and page 5a-492 

This service call is issued when any button on an error report is pressed. You might 

use it to recognise if one of your additional buttons has been pressed by checking 

the button number. (Note that other clients may have added extra buttons after 

yours, and so the list may differ from when the initial Service_ErrorStarting call was 

issued. Button numbers should remain constant, though.) You can then take 

appropriate action, such as displaying an extra report. 

This service call is only issued by RISC OS 3.5 and later. 

You must claim the call if you are going to redisplay the error report. 



The desktop 

Service_ErrorEnding 
(Service Call &400C2) 

Issued immediately before an error report closes 

On entry 

RI = &400C2 (reason code) 
R2 = button number being returned to application 

On exit 

Use 

RI = 0 to claim call 
R2 = button number to return to application 

This service call is issued immediately before an error report closes, after 
Service_ WimpReportError 0 (page 3-77) has already been issued. It allows you to 
alter the button number that is returned to the application that created the error 
report . This is only of real use if you have dealt with the error yourself in some way. 

If you do change the button number, you should claim the call; otherwise you 
should pass it on. 

This service call is only issued by RISC OS 3.5 and later. 

Sa-497 



SW/ Calls 

SWI Calls 

Sa-498 

Wimp_ TextOp 
(SWI &400F9) 

Manipulates and displays text using the current desktop font 

On entry 

RO = reason code and flags : 
bits 0 - 7 reason code 
bits 8 - 31 flags (reason code dependent) 

Other registers depend upon the reason code 

On exit 

RO corrupted or used to return data 
Other registers typically preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This SWI provides a number of calls to manipulate and display text using the 

current desktop font . 

The particular action of Wimp_ TextOp is given by a reason code in bits 0 - 7 of RO 

as follows: 

RO Action 

0 Sets the colour to use for text plotting with Wimp_TextOp 2 

Page 

5a-500 
0 



RO Action 

Gets the width of a string for the current desktop font 

2 Plots text on the screen using the current desktop font 

This call is only available from RISC OS 3.5 onwards. 

Related SWls 

None 

Related vectors 

None 

The desktop 

Page 

5a-50I 
I 

5a-5Ql. 
2 

Sa-499 



Wimp_ TextOp 0 (SW/ &400F9) 

Sa-500 

Wimp_ TextOp 0 
(SWI &400F9) 

Sets the colour to use for text plotting with Wimp_TextOp 2 

On entry 

RO= 0 (reason code) 
RI =foreground colour (&BBGGRROO) 
R2 =background colour (&BBGGRROO) 

On exit 

Use 

RO corrupted 
RI , R2 preserved 

This call sets the colour to use for text plotting with Wimp_TextOp 2 (page 5a-502) . 

If an outline font is in use , this sets up the values for the next call to Font_Paint 

(page 3-429) . If the system font is being used, then this sets up the colours by 

calling ColourTrans_SetGCOL (page 3-351). which will affect future graphics as well 

as text. 

This call is only available from RISC OS 3.5 onwards. 



The desktop 

Wimp_ TextOp 1 
(SWI &400F9) 

Gets the width of a string for the current desktop font 

On entry 

RO= I (reason code) 
RI =pointer to control character terminated string 
R2 = number of characters to include, or 0 for whole string 

On exit 

Use 

RO = width of string for current font, in OS units 
RI, R2 preserved 

This call gets the width of a string for the current desktop font. The width returned 
is that of the first 11 characters where R2 = 11. If there are less than 11 characters in 
the string or R2 :::; 0 then the full string width is returned. 

This call might be made before plotting the string in an icon, or before using 
Wimp_TextOp 2 (page 5a-502) . For instance, it is used by the Filer when calculating 
the widths of the columns in a directory display. 

This call is only available from RISC OS 3.5 onwards. 

Sa-501 



Wimp_ TextOp 2 (SW/ &400F9) 

5a-502 

Wimp_ TextOp 2 
(SWI &400F9) 

Plots text on the screen using the current desktop font 

On entry 

RO = reason code and flags : 
bits 0 - 7 = 2 (reason code) 
bits 8 - 29 reserved (must be zero) 
bit 30 set~ vertically justify text so baseline matches that of system font 

bit 31 set ~ right justify text to position given by R4 and R5 

RI =pointer to null terminated string 
R2 . R3 reserved (must be - I ) 
R4 =bottom left x coordinate. in screen OS units 
R5 =bottom lefty coordinate. in screen OS units 

On exit 

Use 

RO corrupted 
RI - R5 preserved 

This call plots text on the screen using the current desktop font. If bit 31 of RO is 

set, then the text is right-justified to the given position. If bit 30 is set then the text 

will be vertically justified so that the baseline will be the same as for the system 

font. 

This call should be made from a redraw loop; as such Wimp_SetColour 

(page 3-194) or Wimp_TextOp 0 (page 5a-500) is used to determine what colours 

are used for the text. Because an outline font may be used, the background colour 

must be set. so that the antialiasing colours may be found. 

This call does not preserve the current font , nor the font colours. 

This call is only available from RISC OS 3.5 onwards . 



Sets the state of the watchdog 

The desktop 

Wimp_SetWatchdogState 
(SWI &400FA) 

On entry 

RO= state (0 ~disable, I ~enable) 
RI =code word, or 0 if none 

On exit 

RO, RI preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SW! is not re-entrant 

This call sets the state of the watchdog, and is intended for use by screenlocks and 
protection mechanisms. 

When disabling the watchdog a code word may be supplied, in which case the 
watchdog may only be re-enabled by supplying the same code word. In this way, 
another program may not turn the watchdog back on. If RI was zero on disabling, 
no code word is required when re-enabling. 

This call is only available from RISC OS 3.5 onwards . 

Related SWls 

None 

Related vectors 

None 

Sa-503 



Wimp_Extend (SW/ &400FB) 

Wimp_Extend 
(SWI &400FB) 

This call is for internal use only; you must not use it in your own code. 

Sa-504 



The desktop 

Wimp_Resizelcon 
(SWI &400FC) 

Resizes or moves an icon that has already been created 

On entry 

RO= window handle (-I for iconbar) 
RI =icon handle 
R2 - R5 = new icon bounding box 

On exit 

RO - R5 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SW! is not re-entrant 

This call resizes an icon that has already been created. As the icon's bounding box 
is given, this call may also be used to move an icon . 

Although general purpose, it is most likely to be used by an application needing to 
resize icons after a font changed message. It does not invalidate the area of the 
icon, although this is not necessary on a font change since the message is always 
followed by a redraw request. 

An error is given if either of the window or icon handle are invalid. 

This call is only available from RISC OS 3.5 onwards. 

5a-505 



Wimp_Resizelcon (SW/ &400FC) 

Sa-506 

Related SWls 

None 

Related vectors 

None 



The desktop 

Messages 

Wimp messages 

Message_.FontChanged ( &400CF) 

This message is used by the Wimp to inform all tasks that the desktop font has 
changed. This message is only used by RISC OS 3.5 and later. 

Tasks that change the desktop font 

Any task that changes the desktop font (see *Configure WimpFont on page 5a-508) 
must call Wimp_SendMessage to request that the Wimp broadcast this message. 
The message itself must include no message data (ie the block is 20 bytes long) . 

Informing tasks of a change to the desktop font 

The Wimp checks for a change in the desktop font at desktop startup, at a mode 
change, and whenever a task requests that this message be broadcast. It does so by 
examining the CMOS bits and system variables used by *Configure Wimp Font (see 
page 5a-508) . 

If it detects a change it loses the current font, and attempts to find the new font 
with the font manager. If successful , then it selects that font ; otherwise it reverts to 
the system font . The Wimp then broadcasts Message_FontChanged to all tasks, 
with one word of message data: 

Rl+20 Font handle. or 0 for system font 

Tasks can use the font handle as they see fit . 

The Wimp then issues redraw requests to all windows, so that old applications 
which do not understand this message will still appear correctly. 

Sa-507 



*Commands 

*Commands 

Sa-508 

*Configure WimpFont 

Sets the configured value for the font to use on the desktop 

Syntax 

*Configure WimpFont n 

Parameters 

Use 

n A number 0 - 15 specifying the font to use: 
0 =>use Wimp$Font . .. variables (see below) 
I => use System font 
2 - 15 =>use font from ResourceFS (see below) 

*Configure WimpFont sets the configured value for the font to use on the desktop. 

A parameter of I sets the System font. 

Parameters 2 - 15 set a font from ResourceFS, used at a size of 12 points. Starting 

at Resources:$. Fonts, every directory which has a descendant IntMetric* 

(eg. IntMetrics , IntMetricO) is numbered consecutively, starting from 2. So 

on a standard RISC OS 3.5 system the mapping would be: 

Value 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Font 

Corpus.Bold 
Corpus.Bold.Oblique 
Corpus.Medium 
Corpus.Medium.Oblique 
Homerton.Bold 
Homerton.Bold.Oblique 
Homerton.Medium 
Homerton.Medium.Oblique 
Trinity.Bold 
Trinity.Bold.Italic 
Trinity.Medium 
Trinity.Medium.Italic 
WIMPSymbol 

You must not assume this mapping, since fonts can be added to ResourceFS. 



The desktop 

A parameter of 0 tells RISC OS to find the font and size to use from system 
variables : 

Wimp$Font 

Wimp$FontSize 

Wimp$FontWidth 

the name of the font to use 

the size (height) of the font in l16 ths of a point 

the width of the font in YI6 ths of a point 

The font size and width are both optional. If the size is unset, a value of 192 is used 
(ie 12 point); if the width is unset, it is the same as the size. 

This command is only available from RISC OS 3.5 onwards. 

Examples 

*Configure WimpFont 1 

*Configure WimpFont 8 

Set Wimp$Font NewHall.Medium 
Set Wimp$FontWidth 160 
*Configure WimpFont 0 

Use system font 

Use l 2pt Homerton.Medium from 
ResourceFS (assuming standard mapping) 

Set variables specifying NewHall font, 
and width of 16916 points (ie 10 point) 
Use system variables to set font 

Sa-509 



*WimpKil/Sprite 

5a-510 

*WimpKillSprite 

Removes a given sprite from the Wimp's RAM sprite pool 

Syntax 

*WirnpKillSprite sprite_name 

Parameters 

Use 

sprite_name name of a sprite in the Wimp sprite pool 

*WimpKillSprite removes the given sprite from the Wimp's RAM sprite pool. It 

should be used with care, as deleting certain sprites will cause some applications 

to fail. 

An error is given if the sprite to be removed is not in the Wimp's RAM sprite pool. 

This command is only available from RISC OS 3.5 onwards. 

Example 

*WirnpKillSprite file_fff 



126 Drag An Object 

Introduction and Overview 
In RISC OS 3.6 the DragAnObject module was introduced. It provides SW! calls 
similar to those provided by the DragASprite module, save that you can use them 
to make the pointer drag any object around the screen. To do so. you must specify 
a SW! or a CI assembler function to render the object. 

Since not all users will prefer this effect to dragging an outline - whether for 
aesthetics or performance - there is a bit in the CMOS RAM used to indicate their 
preference. (See CMOS RAM allocation on page 5a-73.) You should examine that bit 
before using this module; if it shows that the user would prefer to drag outlines. 
oblige them ! 

To drag an object: 

Find or create a SW! or a CI assembler function to render the object to the 
screen . For example, you might use the SW! DrawFile_Render (page 5a-522) to 
render a Draw file . 

2 Set up any registers I parameters you need to pass to the SW! I function ; and 
any workspace they may point to, including - if necessary - the object itself. 

3 Call the SW! DragAnObject_Start (see page 5a-5 I 2) . This renders your object 
into its own workspace - so you can dispose of any workspace required by the 
rendering SW! I function whenever you like - and then starts a Wimp drag. 

4 When the Wimp sends you an indication that your drag has finished, you 
should call the SW! DragAnObject_Stop (see page 5a-5 l 5). 

Sa-511 



SW/calls 

SWI calls 

Sa-512 

Starts dragging an object 

DragAnObject_Start 
{SWI &49C40) 

On entry 

RO= flags 
RI =renderer called to render the object: 

SWI number (RO bit 16 = 0 on entry). or pointer to CI assembler function 

R2 = pointer to block holding registers I parameters to pass to SWI I function 

R3 =pointer to 16-byte block containing box 
R4 =pointer to optional 16-byte block containing bounding box (see flags) 

On exit 

RO - R4 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call starts dragging an object. To do so, it uses the given SWI I function to 

render your object twice into workspace that it claims. It then combines the two 

images into a single masked image, so only those pixels rendered will be used for 

the drag. It finally starts a Wimp drag of the masked image, and frees any 

workspace not needed for the drag itself. 

You may dispose of any workspace used by the rendering SWI I function as soon as 

this call returns. If there is insufficient memory available to start the drag, the call 

reverts to a normal drag of a dotted outline. 



The flags given in RO have the following meanings: 

Bits Meaning 

0 - I Horizontal location of object in box: 
00 left 
01 centre 
10 right 

2 - 3 Vertical location of object iii box: 
00 bottom 
01 centre 
10 top 

4 - 5 Drag bounding box is: 
00 whole screen 
0 I display area of window that the pointer's over 
I 0 specified in block pointed to by R4 

6 Bounding box applies to: 
0 the box 

the pointer 

7 Control of drop-shadow: 
0 don't do a drop-shadow 

make a drop shadow 

8 Control of dithering: 
0 dither the dragged object 

don't dither the dragged object 

9 - 15 Reserved for future use - should be set to 0 

16 Rendering is done by: 
0 a SWI (see below) 

a CI assembler function (see below) 

17 If the renderer is a function, it is called in: 
0 User mode 

Drag An Object 

I SVC mode (use for modules; also allows access to statics) 

18 - 31 Reserved for future use - should be set to 0 

The type of renderer is set by bit 16 of the flags: 

• If the bit is clear then the renderer is a SW!. The block pointed to by R2 should 
be ten words long. These ten words are loaded into RO - R9, and the SWI is 

then called from SVC mode. 

• If the bit is set then the renderer is a CI assembler function , which is called in 
an APCS-conformant manner. The block pointed to by R2 should be four words 

long; these are loaded into RO - R3 (known as al - a4 in the APCS) and passed 

Sa-513 



DragAnObject_Start (SW/ &49C40) 

Sa-514 

as parameters to the function . RIO is set to the stack limit for a full descending 

stack (known as sl in the APCS). RI 3 is the stack pointer (known as sp in the 

APCS). and Rl4 is the link register (known as lr in the APCS) . 

For modules, you should set bit 17 to request that the function be called in 

SVC mode. This also allows access to statics. 

The blocks pointed to by R3 and - optionally - R4 have the following format : 

Offset Use 

0 

4 

8 

12 

Related SWls 

x-low l box 
y-low bottom-left (x-low, y-low) is inclusive 

x-high top-right (x-high, y-high) is exclusive 

y-high . 

DragASprite_Start (page 3-300), DragAnObject_Stop (page 5a-5 l 5) 

Related vectors 

None 



Drag An Object 

DragAnObject_Stop 
(SWI &49C41) 

Terminates any current drag operation, and releases workspace 

On entry 

On exit 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call terminates any current drag operation, and releases any workspace still 
claimed to do a drag. You should make this call when your application receives the 
User_Drag_Box reason code from Wimp_Poll (see page 3-115) during a drag. 

Related SWls 

DragAnObject_Start (page 5a-5 l 2) 

Related vectors 

None 

5a-515 



Example programs 

Example programs 

SWI renderer 

Code renderer 

Sa-516 

The following code fragments show how you might call DragAnObject_Start 

from C: 

void start_drag( ... ) 

_kernel_swi_regs regs, render; 

/* Set up registers for Wimp_Ploticon renderer * / 

render.r[l] = (int) &icon; 

render.r[4] =0; 
render.r[S] =0; 

/* Set up 
regs.r[OJ 
regs.r[l] 
regs.r[2] 
regs.r[3] 

registers for DragAnObject_Start .. . */ 

some flags; 
Wimp_Ploticon; 
(int) &render; 
(int) &bbox; 

/* ... and call i t*/ 
_kernel_swi(DragAnObject_Start,&regs , &regs); 

void _my_render (data) 

/* do the render */ 

void start_drag( . .. ) 

_kernel_swi_ regs regs; 
int render[4]; 

/* Set up registers for _my_ render renderer; render[O] - render[3] * / 

/* will be passed to the function as parameters */ 

render[O] = (int) data; /* as required by renderer */ 

/* Set up regi sters for DragAnObject_Start ... */ 

/* (tell it we're a function and a module) */ 

regs.r[O] some_flags + (1<<16) + (1<<17); 

regs. r [ 1] (int) _my _render; 

regs.r[2) (int) &render; 

regs.r[3) (int) &bbox; 

/* ... and call it*/ 
_kernel _swi(DragAnObject_Start,&regs,&regs) ; 



127 Draw file renderer 

Introduction and Overview 
DrawFile is a module that renders Draw files . You can do so either to the screen, or 
to a printer driver during printing. This makes it easy for you to support imported 
Draw files in your applications. 

You can render a Draw file using either a SWI (DrawFile_Render; see page 5a-522) 
or a* command (*Render; see page 5a-527) . Both provide similar facilities; in 
particular, they allow arbitrary transformations. The SWI DrawFile_BBox (see 
page 5a-524) allows you to determine a Draw file's bounding box before rendering 
it . 

You can also declare the fonts within a Draw file when printing, without having to 
scan through the file yourself, by calling the SWI DrawFile_DeclareFonts (see 
page 5a-525) . 

Finally, there are service calls that the above SWis issue if they encounter unknown 
objects within a Draw file . This provides a hook for modules that extend the Draw 
file format to support any new object types they may define. The service calls are 
Service_DrawObjectRender (page 5a-520) and Service_DrawObjectDeclareFonts 
(page 5a-521) . 

Sa-517 



Technical details 

Technical details 

Differences between DrawFile output and ! Draw output 

Sa-518 

Text 

There are some small differences between the output of the DrawFile module and 

that of ! Draw: 

A text line that uses a font which can't be found is rendered in the system font at a 

size to fit its bounding box. 

Transformed text 

Transformed text lines in the system font are supported. 

A transformed text line that uses a font which can't be found is rendered in the 

system font at a size to fit its bounding box; its transformation is ignored. 

Text areas 

In a text area , if you change (for example) the margin size (\M command), the 

change doesn't take effect until the next output line. In Draw this refers to printable 

characters; but in DrawFile it includes colour and font change commands as well. 

(This is because DrawFile uses the Font Manager to remember the current font and 

colours.) This means that line breaks can happen at slightly different places when 

using DrawFile. 

The following commands cause output to occur: 

B C U V digits 

The following do not: 

!;ADFLMP 

By preceding the former with the latter, the problem can be avoided. 

Sprite colours 

For a sprite without a palette, the colours used are the Wimp colours , found by 

using Wimp_ReadPalette. 



Draw file renderer 

Errors 
The errors the DrawFile module provides are 

Error name Error Meaning 
number 

Error_DrawFileNotDraw &20COO The file is not a Draw file (as 
recognised by the first 4 characters 
'D', 'r' , 'a', 'w'). 

Error_DrawFileVersion &20COI The file specifies a format version 
number which is not understood . 

Error_DrawFileFontTab &20C02 The file contains more than one 
font table. 

Error_DrawFileBadFontNo &20C03 A text line (or transformed text 
line) uses a font that is not in the 
font table object. 

Error_DrawFileBadMode &20C04 The file contains a sprite defined in 
a mode which is not recognised. 

Error_DrawFileBadFile &20C05 The size of an object in the file is 
larger than the size of the file 
allows. 

Error_DrawFileBadGroup &20C06 The size of an object in a group is 
greater than the size of the group 
allows. 

Error_DrawFileBadTag &20C07 The size of a tagged object's data is 
larger than the size of the tagged 
object allows. 

Error_DrawFileSyntax &20C08 A text area has an illegal or 
unrecognised command sequence 
in it. 

Error_DrawFileFontNo &20C09 An attempt was made to set a font 
(with a \<digit> command) which 
had no definition (\F command) . 

Error_DrawFileAreaVer &20COA The text area version command (\!) 
has specified a version which is not 
understood. 

Error_DrawFileNoAreaVer &20COB There is a text area with no version 
(\!) command. 

Sa-519 



Service calls 

Service calls 

5a-520 

Service_DrawObjectRender 
(Service Call &45540) 

Issued when the SW! DrawFile_Render encounters an unrecognised object 

On entry 

RO = object type 
RI = &45540 (reason code) 
R2 = pointer to block giving render state: 

+O pointer to unknown object (see Objects on page 4-459 and 5a-657) 

+4 pointer to Draw file data, as passed to DrawFile_Render 

+8 pointer to font table object, or 0 if none found yet 

+ 12 flags , as passed to DrawFile_Render 
+ 16 pointer to transformation matrix, as passed to DrawFile_Render 

+20 pointer to clipping rectangle, as passed to DrawFile_Render 

+24 flatness, as passed to DrawFile_Render 
+28 pointer to error block, or 0 if no error yet 

On exit 

Use 

RI = 0 if claimed, otherwise preserved 

This service call is issued when the SW! DrawFile_Render encounters an object 

with a type it doesn't recognise, and so cannot process. If a module recognises the 

unknown object type, it should claim the service call and itself render the object. 

If the module encounters an error during rendering, it should examine the error 

pointer word in the passed render state block: 

• If the word is zero, the declaring module should store its own error pointer in 

the word. 

• If the word is non-zero, it is already storing an earlier error pointer, which you 

should not overwrite. 

The DrawFile module attempts to render all objects. When it has finished it 

examines the error pointer word, and if it is non-zero returns the stored error. 



Draw file renderer 

Service_DrawObjectDeclareFonts 
{Service Call &45541) 

Issued when the SW! DrawFile_DeclareFonts encounters an unrecognised object 

On entry 

RO = object type 
RI= &45541 (reason code) 
R2 = pointer to declare font state block 

+O pointer to unknown object (see Objects on page 4-459 and 5a-657) 
+4 pointer to Draw file data, as passed to DrawFile_DeclareFonts 
+B pointer to font table object, or 0 if none found yet 
+ 12 flags , as passed to DrawFile_DeclareFonts 
+ 16 pointer to error block, or 0 if no error yet 

On exit 

Use 

RI = 0 if claimed, otherwise preserved 

This service call is issued when the SW! DrawFile_DeclareFonts encounters an 
object with a type it doesn't recognise, and so cannot process. If a module 
recognises the unknown object type, it should claim the service call and itself 
declare any fonts in the object. 

If the module encounters an error while declaring the fonts, it should examine the 
error pointer word in the passed font state block: 

• If the word is zero, the declaring module should store its own error pointer in 
the word. 

• If the word is non-zero, it is already storing an earlier error pointer, which you 
should not overwrite. 

The DrawFile module attempts to declare fonts for all objects. When it has finished 
it examines the error pointer word, and if it is non-zero returns the stored error. 

Sa-521 



SW/ calls 

SWI calls 

Sa-522 

Renders a Draw file to the screen 

DrawFile Render 
(SWI &45540) 

On entry 

RO= flags : 
bit 0 set ==> render the bounding boxes around objects as dotted red 

rectangles 
bit I set ==> do not render the objects themselves 
bit 2 set ==> R5 is used as the flatness parameter 

RI =pointer to Draw file data 
R2 = size of Draw file data , in bytes 
R3 = pointer to transformation matrix, or 0 for identity 
R4 =pointer to clipping rectangle in OS units , or 0 if no clipping rectangle set up 

R5 =flatness with which to render lines (if bit 2 of RO set on entry) 

On exit 

RO - R5 preserved 

Interrupts 

Interrupt status in undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call renders a Draw file to the screen. Its position is given by the x- and 

y-translations in the transformation matrix, which uses the same format as Draw 

(see Transformation matrix on page 3-526). 



Draw file renderer 

Hence to render a non-rotated I: I Draw file at screen coordinates (x. y) OS units, 
the transformation matrix is: 

( 

1<:16 

256 xx 

1 <: 16) 
256xy 

The effects of calling the module with the matrix not of the form: 

( 

+f 0 ) 
0 +f 

x y 

(ie a translation and a magnification) should not be relied on for underlined text. 

If no transformation matrix is given (ie R3 = 0), the unit matrix is used, and so the 
Draw file is rendered with its bottom left corner at screen coordinates (0. 0) . 

The clipping rectangle is typically a redraw rectangle returned by the Wimp on a 
redraw window request. If R4 = 0, then the whole Draw file is rendered. If non-zero, 
only objects which intersect the clipping rectangle are rendered. 

All output calls used when rendering are ones that the printer drivers handle 
correctly, so you can also use this call to output Draw files when printing. 

Just as for all other screen output calls, if you make this call in a Wimp redraw loop 
(ie after calling Wimp_RedrawWindow) you cannot use Wimp_ReportError to 
report any error that is returned - since this might lead to an infinite loop of error 
boxes and redraws of the rectangle covered by the error box. This restriction does 
not apply to printing redraw loops (ie after calling PDriver_DrawPage). 

Related SWls 

DrawFile_BBox (page 5a-524). DrawFile_DeclareFonts (page 5a-525) 

Related vectors 

None 

Sa-523 



DrawFile_BBox (SW/ &45541) 

Sa-524 

DrawFile_BBox 
(SWI &45541) 

Returns the bounding box (in Draw units) a given Draw file will occupy 

On entry 

RO =flags: all bits reserved (must be 0) 
RI =pointer to Draw file data 
R2 =size of Draw file data, in bytes 
R3 = pointer to transformation matrix, or 0 for identity 

R4 =pointer to 4 word buffer to hold the bounding box of the Draw file 

(xO, yO, xi , yl) in internal Draw units 

On exit 

RO - R4 preserved 

Interrupts 

Interrupt status in undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns the bounding box (in Draw units) the given Draw file would 

occupy, were it to be plotted with the given transformation. 

Related SWls 

DrawFile_Render (page 5a-522). DrawFile_DeclareFonts (page 5a-525) 

Related vectors 

None 



Draw file renderer 

DrawFile_DeclareFonts 
(SWI &45542) 

Declares all fonts in a Draw file by calling PDriver_DeclareFont 

On entry 

RO= flags : 
bit 0 set ~ do not download font (passed to PDriver_DeclareFont) 

RI =pointer to Draw file data 
R2 =size of Draw file data, in bytes 

On exit 

RO - R2 preserved 

Interrupts 

Interrupt status in undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call declares all fonts in a Draw file by calling PDriver_DeclareFont (see 
page 3-638) . If the printer driver you are using supports PDriver_DeclareFont you 
should call this SW! once for each Draw file to be printed, at the point where you 
would normally declare fonts (see Declare the fonts your document uses on page 3-559). 
This saves you having to scan the Draw file yourself to see which fonts it uses. It is 
your responsibility to make the final call to PDriver_DeclareFont to indicate the 
end of the list of fonts . 

All fonts are declared as 'kerned'. since this includes the non-kerned case. 

5a-525 



DrawFile_DeclareFonts (SW/ &45542) 

Related SWls 

DrawFile_Render (page 5a-522). DrawFile_BBox (page 5a-524) 

Related vectors 

None 

Sa-526 



Draw file renderer 

*Commands 
*Render 

Displays the contents of a Draw file 

Syntax 

*Render [-file] filename [mOO mOl mlO mll m20 m21] 
[-bbox] [-suppress] [-flatness flatness] 

Parameters 

Use 

[-file] filename 

mOO, mOl, mlO, mll 

m20, m21 

-bbox 

-suppress 

-flatness flatness 

a valid pathname specifying the Draw file to be 
rendered 

four decimal numbers giving the first four 
elements of the transformation matrix, which 
specify the transformation 

two decimal numbers giving the other two 
elements of the transformation matrix, which 
specify the translation in OS units 

render the bounding boxes around objects as 
dotted red rectangles 

suppress the rendering of the objects 
themselves 

a decimal number giving the flatness used to 
render curved paths, in OS units 

*Render displays the contents of a Draw file . You can optionally transform the 
output with a transformation matrix, render the bounding boxes around objects as 
dotted red rectangles, suppress the rendering of the objects themselves, and 
change the flatness used to render curved paths . In doing so, the file is checked for 
consistency. 

Note that you must quote any negative arguments; see the example below. 

Sa-527 



*Render 

Sa-528 

Example 

*Render adfs: : MHardy . $.DrawFile 0 " -1.5 " 1.5 0 0 800 - bbox -flatness .5 

Related commands 

None 



128 RISC OS boot applications 

Introduction and Overview 
A boot application sets the machine up whenever the computer is reset , giving 
users and applications control over the start up, configuration and use of the 
desktop. It also works interactively when a user double clicks on its icon. 

RISC OS 3.5's boot application is named !Boot. RISC OS 3.6 introduced a wider 
range of boot applications (eg !Boot for booting from disc, !ArmBoot and 
!ShareBoot for booting from a remote machine or server on a network) . You can 
use boot applications to boot older machines. 

A boot application provides: 

• startup files that applications can modify 

• facilities to link applications into the Apps icon's directory display 

• desktop boot saving 

• locations for saving application-specific choices 

• computer configuration using !Configure, which is held as a sub application 

• hard disc locking with a password, as a part of !Configure 

• !System, !Scrap and !Fonts as sub applications that are unseen by the user. 

This chapter details the facilities provided by boot applications for integrating 
applications into the desktop, and that will continue to be supported in the future . 
Unless otherwise stated, all such facilit ies are available from RISC OS 3.5 onwards . 

Although a search Jhrough a boot application will doubtless reveal features that 
are not documentea here, you must not use them if you wish your application to 
work under future Jersions of RISC OS. 

The user interface iJ described in the RISC os 3 User Guide. 

Sa-529 



Technical details 

Technical details 

Writing to a boot application 

Amongst other things, this chapter tells you ways you can add to the files in a boot 

application. When doing so you must be aware that you may not have write 

permission, especially if the boot application is on a remote file server. If you try to 

write to a boot application, and the write fails. your software should fail gracefully, 

giving a suitable error message. 

Starting the boot application 

The kernel determines which boot application to run depending on the configured 

Boot state, filing system, drive/file server, and so on. It then tries to find the boot 

application. If it fails. it saves the resultant error message in the system variable 

Boot$Error; if it succeeds. it runs the boot application. 

Environment set up 

Sa-530 

The Boot$ ... variables 

Once a boot application has been found and run. it sets up a number of system 

variables as it first starts: 

Variable 

Boot$Dir 

Boot$0SVersion 

Boot$Path 

Boot$State 

Boot$ToBeLoaded 

Boot$ToBeTasks 

Boot$Unique 

Comments 

The boot application's directory 

The major version of RISC OS on the booting 
computer: for example '200'. '31 o·. '350' . or '360' 

Comma separated list of boot application 
directory(s). each with a trailing '.' 

The stage of booting: 'commands' or 'desktop' 

PreDesk directory (see page 5a-536) 

Tasks directory (see page 5a-539) 

'Local' if the boot file is local; a unique identifier 

for the machine if the boot file is remote 

(The RISC OS 3.5 !Boot application does not set the Boot$State and Boot$Unique 

variables.) 



RISC OS boot applications 

The Choices$ ... variables 

It then uses these variables to set up other variables giving the location(s) of 

Choices directory(s). which are used by applications - including the Boot 
application itself - to store start-up files, user preferences, and so on: 

Comments 

Most recently used Choices directory 
Variable 
Choices$Dir 

Choices$Path Comma separated list of Choices directory(s) from 
which to read, each with a trailing '.' 

Choices$Write Choices directory to which to write 

Choices directories 

A boot application may have multiple Choices directories, and so store different 

choices for different machines , such as remote network stations. Each Choices 

directory can have the same structure beneath it, varied as required by the different 
machine(s) using each one. 

RISC OS 3.6's network boot applications set the Choices$ ... variables to use the 
directory Boot: MchConfig. <Boot$Unique> out of preference, if it exists; 

failing that, to use Boot: Utils . RO<Boot$0SVersion>Hook if that exists, or 

otherwise to use Boot: Choices . Remote network stations will thus look for 
machine-specific choices; then either for RISC OS version-specific choices, or for 

system-wide choices. Network managers can hence use these different directories 

to support a mix of versions of RISC OS, and to provide machine-specific 
exceptions to the general setup. 

For example, with the boot application Net: : Server.$. ! ArmBoot , these 
directories might be named: 

• Machine-specific choices: 
Net: : Server. $ . ! ArrnBoot. MchConf ig. Stn12 8 ! 0 0 5 or: 
Net: : Server.$. ! ArmBoot. MchConfig. E12 68AFB etc 

• RISC OS version-specific choices: 
Net: : Server.$. ! ArrnBoot. Utils. R02 OOHook or: 
Net : :Server.$. !ArrnBoot.Utils.R0310Hook etc 

• System-wide choices: 
Net: :Server.$. !ArrnBoot.Choices 

You must not access the Choices directories by evaluating their full pathnames 

yourself, as the internal structure of boot applications is liable to change in future 

versions . You mist instead use the methods described in the sections below. 

5a-531 



Loading CMOS 

Loading CMOS 
After setting these system variables, the next thing of interest the boot application 

does is to look for the file: 

<Boot$Dir> .MchConfig. <Boot$Unique> . !RO<Boot$0SVersion>CMOS 

If it exists , the boot application uses the *LoadCMOS command to load the 

contents of the file into CMOS RAM . 

Files used before the desktop is started 

The boot application then runs things before the desktop is entered. It uses two 

locations for this: 

• The PreDesktop file is an Obey file . It creates various useful aliases for 

common tasks. 

You can add to this file as necessary, in the manner described below. If you 

only need to use an Obey file, this is the preferred method to use. 

• The PreDesk directory holds files and directories all of which are run after the 

PreDesktop file . 

Adding files and directories here gives you much more flexibility over how they 

are run. You should use this method if your needs are not met by the 

PreDesktop file. 

For full details, see the sections below. 

The PreDesktop file 

5a-532 

The PreDesktop file contains the command line setup sequence. It gets invoked 

using Obey -c where possible, so that filing system or network software can be 

reloaded during its execution . 

Accessing the file 

The PreDesktop file must always be accessed as: 

<Choices $Write>. Boot.PreDesktop 

This is to preserve future compatibility, should the structure of boot applications 

change. 



RISC OS boot applications 

Format of the file 

The file has been divided into well defined sections for ease of maintenance, and 
to make it easy for scripts to install and remove application-specific entries. Each 
section starts with a header: 

I Start Company Application Version Sec tion 

and ends with a footer : 

I End 

As an example, the Aliases section supplied by !Boot in RISC OS 3.5 looks like this: 

!Start Acorn !Boot 0.25 Aliases 

commands and comments ... 
!End 

Scripts that scan the file should be extremely lax in what they accept. They should 
accept any amount of white space between each element (including before and 
after the 'I' that introduces the header/footer), ignore case, and ignore the version 
numbers used by other applications. 

When writing to the file scripts should use the exact syntax in the above example; 
see Adding to the file on page 5a-533. 

Sections 

The sections supplied by a boot application are: 

• Comments 

• Aliases 

• Paths 

• Options 

• ResApps 

• Miscellaneous options . 

These are described in more detail below, starting with Comments on page 5a-534. 

Adding to the file 

Wherever possible, you should split anything you add into the same sections as 
above, each of which includes a header and footer. Each application should 
provide a script to install its sections. For each section, the script must: 

Search for the boot application's corresponding section. 

2 Add the new section after the boot application's corresponding section. 
I 

Sa-533 



The PreDesktop file 

Sa-534 

So a finished file might look like this: 

!Start Acorn !Boot 0.25 Comments 

comments ... 
I End 
!Start Acorn !Boot 0.25 Aliases 

commands and comments ... 
I End 
!Start Acorn !Boot 0.25 Paths 

commands and comments ... 
I End 
IStart Acorn !Boot 0.25 Options 

commands and comments ... 
I End 
!Start MySWHouse !MyApp 1 . 10 Options 

commands and comments ... 
I End 
!Start Acorn !Boot 0.25 ResApps 

commands and comments ... 
I End 
!Start Acorn !Boot 0.25 Miscellaneous options 

commands and comments ... 
I End 

It is courteous to also supply a script to remove the entries. 

Comments 

The function of this section should be obvious! 

Aliases 

This section sets aliases. 

A boot application's section adds several aliases that you may find useful yourself: 

Alias 

The first alias set is for Alias itself, so that the following command: 

Alias alias command 

sets the alias alias for the command c ommand. 

Unalias 

This makes the command Unalias to remove an alias: 

Unalias alias 



Paths 

RISC OS boot applications 

Path 

The next alias gives a convenient way to set setting of paths: 

Path path full_path 

so you can refer to a full pathname ful l_pa thres t using the shorthand 
path: rest. For example: 

Path lib ADFS::HardDisc4.$.Library. 

would enable the following convenient commands: 

*Dir lib: 
/lib: cc 

PathMacro 

PathMacro works similarly to Path, except the system variable set is a macro 
variable. For example: 

Set Thing$Dir <0bey$Dir> 
PathMacro Thing <Thing$Dir> . 

To enable Thing: to be a reference to <Thing$Dir>. 

This section is used to set standard paths and directories . 

Run$Path is defined here to include the Library directory held within the boot 
application . This allows you to use the various commands held in the library, and 
defined in * Commands on page 5a-54 l. 

Options 

This section has been set aside for options that do not have any other place to be 
set. 

ResApps 

This section uses the AddApp library command (see page 5a-54 l) to register 
applications with ResourceFS for display in Resources:$.Apps. 

A boot application's ResApps section registers all applications in Boot: " . Apps : 

AddApp Boot: " .Apps. !* 

Miscellaneous options 

This section is used for any setup that does not obviously belong in any of the 
above sections. An example might be loading and binding a novel system beep. 

5a-535 



The PreDesk directory 

The PreDesk directory 

Sa-536 

Accessing the directory 

The PreDesk directory must always be accessed as: 

<Boot$ToBeLoaded> 

This is to preserve future compatibility, should the structure of boot applications 

change. 

Adding files and subdirectories 

Your application ! App may add a single file or subdirectory named App. You 

should only do so if the PreDesktop file does not meet your needs, since if too 

many applications use this directory, it may become full. 

Your application may modify its own file(s) as it sees fit . 

Action taken on files and subdirectories 

RISC OS 3.60 

Under RISC OS 3.60, the files held within the PreDesk directory are acted on as 

follows : 

• Any files of type Obey are run using *Obey -c, or *Obey for versions of RISC OS 

where the -c flag is not supported. 

• Any files of type Absolute are run. 

• Any files of type Sprite are loaded using * lconSprites. 

• Any files of type Module are loaded using *RMLoad. 

• Any files of type BASIC are run using *BASIC -quit. 

• Any files of type Utility are run. 

All other files are loaded using *Load. 

Then any directories are run; this searches for the file ! Run in the directory, and 

runs it if found. 



RISC OS boot applications 

RISC OS 3.50 

Under RISC OS 3.50, the files and directories held within the PreDesk directory are 
acted on in the following order: 

Any files of type Module are run using *RMLoad. 

2 Any files of type Sprite are run using *IconSprites. 

3 Any files of type Obey are run using •obey -c. 

4 Any directories are run using *Run; this searches for the file ! Run in the 
directory, and runs it if found. 

All other files are ignored. 

Files used once the desktop is started 

Desktop saving 

The method for saving the desktop from the Task Manager remains the same as 
before, and is still the preferred way for applications to set themselves up and 
start. You should continue to use desktop saving provided it meets your needs. 

If it does not meet your needs, you should read the sections below. 

Other files 

Earlier sections described how boot applications provide a file and a directory that 
are used to run things before the desktop is entered. They provide a similar file and 
directory that your application can use to start itself and/or any associated tasks: 

• The Desktop file is a file of type Desktop, run as the desktop is entered. It boots 
important system resources. 

You can add to this file as necessary, in the manner described below. If you 
only need to use a Desktop file, but cannot use the Task Manager's desktop 
boot file , then it is preferable to use this file rather than adding to the Tasks 
directory. 

• The Tasks directory holds files all of which the Desktop file starts as Wimp 
tasks, including the desktop boot file saved from the Task Manager. 

You should only add files here if your needs are met neither by the Task 
Manager's desktop boot file , nor by the Desktop file . 

For full details . see the sections below. 

Sa-537 



The Desktop file 

The Desktop file 

5a-538 

Accessing the file 

The Desktop file must always be accessed as: 

<Choices$Write> .Boot.Desktop 

This is to preserve future compatibility, should the structure of boot applications 

change. 

Format of the file 

The file has the same format as the PreDesktop file . It is split into sections using 

headers and footers with the same syntax. See Format of the file on page 5a-533 . 

Sections 

The sections supplied by a boot application are: 

• Auto tasks 

• Completion 

The Auto tasks section is described in more detail below. 

Adding to the file 

You should add sections to the Desktop file in just the same way as for the 

PreDesktop file . See Adding to the file on page 5a-533. 

Note that you should only add an Auto tasks section. There should be no Completion 

section in the file apart from that provided by the boot application itself. 

Auto tasks 

This section boots all the system resources held in Boot: Resources : 

Repeat Filer_Boot Boot:Resources -Applications -Tasks 

This includes such things as !System, !Scrap and !Fonts. 

It then runs all the files in the Tasks directory as Wimp tasks: 

Repeat Filer_Run <Boot$ToBeTasks> -Tasks 



RISC OS boot applications 

.,.m.,. 

The Tasks directory 

Accessing the directory 

The Tasks directory must always be accessed as: 

<Boot $ToBeTasks > 

This is to preserve future compatibility, should the structure of boot applications 
change. ' 

Adding files and subdirectories 

Your application ! App may add a single file or subdirectory named App. You 
should only do so if the Desktop file does not meet your needs, since if too many 
applications use this directory, it may become full. 

Your application may modify its own file(s) as it sees fit . 

Action taken on files 

The files and directories held within the Tasks directory are run using Filer_Run. 

Storing application choices 

Your application ! App can create its own Choices directory, and use it to store 
user preferences. 

Accessing the directory 

Your application ! App must always access its Choices directory as: 

<Cho i c e s$Wri te> . App 

This is to preserve future compatibility, should the structure of boot applications 
change. 

Adding files and subdirectories 

Your application ! App may add any files or subdirectories it needs to. It may 
modify its own file(s) as it sees fit . 

Sa-539 



Changes to existing * Commands 

Changes to existing * Commands 

*Logon (page 2-378) 

You should note that from RISC OS 3.6 onwards, the Boot application aliases the 

*Logan command to •safeLogon, described on page 5a-550. (Although this is not 

strictly a change to the *Logan command, most people will see it as such.) 

In the unlikely event you need to force the use of the standard *Logan command, 

you must do so by using the '%' character to skip alias checking (see CLI effects on 

page 1-924). rather than by unsetting the variable Alias$Logon. This ensures that 

the change only applies to your command line, and does not alter the environment 

other programs expect to find. 

The BootCommands module 

5a-540 

A boot application uses various commands not provided by RISC OS 3.1 or earlier. 

In RISC OS 3.5, these are provided by the boot application's Library subdirectory, 

which is added to the run path when the boot application is first run. In 

RISC OS 3.6 most of these are instead provided by a new module named 

BootCommands. 

The advantage of the BootCommands module is that it avoids the need to load the 

commands over the network if a station is using a remote boot application. 

Booting is thus made faster. 



RISC OS boot applications 

*Commands 
*AddApp 

Adds entries in Resources:$.Apps for all applications matching a wildcard pattern 

Syntax 

*AddApp [directory.]pattern 

Parameters 

Use 

directory 

pattern 

a valid pathname specifying a directory 

wildcarded pattern to match 

• AddApp adds entries in Resources:$.Apps for all applications matching the 
wildcard pattern in the given directory, or in the curreDt directory if none is 
specified. If nothing matches the pattern, no error is generated ; the command just 
returns. 

You must not use this command to add applications that are already held in 
ResourceFS. 

This command is provided either by the boot application's Library subdirectory 
(which is added to the run path when the boot application is first run). or by the 
BootCommands module added in RISC OS 3.6. 

Example 

*AddApp adfs::MHardy.$.MyApps.* 

Related commands 

None 

5a-541 



*AppSize 

5a-542 

*AppSize 

Moves memory into or out of the RMA 

Syntax 

AppSize size[K] 

Parameters 

Use 

size[K] number of (kilo)bytes of memory desired for applications 

* AppSize moves memory into or out of the RMA, attempting to move the 

difference between the current size of application workspace and the given desired 

size. In RISC OS 3.1 and earlier, the memory was transferred to/from the 

application workspace (hence the name of the command) ; from RISC OS 3.5 

onwards, memory is transferred to/from the free pool. 

This command is used at startup to shrink the RMA to its smallest possible size by 

setting the desired application size to a large value, and should not be used by 

other applications. 

This command is provided either by the boot application's Library subdirectory 

(which is added to the run path when the boot application is first run), or by the 

BootCommands module added in RISC OS 3.6. 

Example 

AppSize 514000K 

Related commands 

None 



RISC OS boot applications 

*Do 

Passes a command to XOS_GSTrans , and then passes it to the CLI 

Syntax 

*Do command 

Parameters 

Use 

command command to have GSTrans'd before execution 

*Do passes a command to XOS_GSTrans, and then passes it to the CLI. 

It is useful when the command being invoked does not itself GSTrans its 
parameters , but you wish to pass parameters using GS string format (eg system 
variables) . For more details, see GS string operations on page 1-442. 

This command is provided either by the boot application's Library subdirectory 
(which is added to the run path when the boot application is first run). or by the 
BootCommands module added in RISC OS 3.6. 

-. Example 

*Do BadCrnd <0bey$Dir> Expands Obey$Dir before calling BadCmd 

Related commands 

None 

5a-543 



*FontMerge 

Sa-544 

*FontMerge 

Merges new fonts into an existing !Fonts directory 

Syntax 

FontMerge source [destination] 

Parameters 

Use 

source 

destination 

source directory of fonts to merge 

destination directory of fonts to merge 

*FontMerge merges new fonts into an existing !Fonts directory. The first thing it 

does is to work out the destination for the merge. 

If no destination is given, the third-from-last element of Font$Path is used. This 

may seem a bit strange, but consider what Font$Path will look like: 

Font$Path(Macro): 
ADFS: :HardDisc4.$. !Boot.Resources. !Fonts . , <Font$Prefix>.,Resources:$.Fonts. 

The last element is in the Resource filing system, which cannot be used as the 

destination . The next-to-last element is <Font$Prefix>; this is provided for 

backwards compatibility, so it is not a good idea to use it as the destination. The 

third-from-last element is therefore the one used. 

*FontMerge can automatically create and use an overflow directory should the 

original destination become full. For a directory !Fonts, the overflow directories are 

!Fonts I, !Fonts2, and so on. *FontMerge checks for the presence of such overflow 

directories, and uses the highest numbered one as the initial destination . 

Once *FontMerge has worked out the destination, it merges the fonts , creating 

overflow directories as necessary. It automatically processes font messages files, 

generating them for all languages given in the source and destination. 

*FontMerge can be run from desktop applications. It initialises itself as a Wimp 

task to generate Wimp error boxes if it has an error; it calls Hourglass_Percentage 

as it does the merge. 

This command is provided by the boot application's Library subdirectory (which is 

added to the run path when the boot application is first run) . *FontMerge is a 

directory, and should be left as such. This is to enable *FontMerge to be localised 



RISC OS boot applications 

for a particular country simply by replacing the messages file inside the FontMerge 

directory. Even though *FontMerge is a directory and not a file, you use it just like 

any other command line program. 

Example 

*FontMerge adfs: :FontVendor.$. !Fonts 

Related commands 

None 

5a-545 



*I ff here 

5a-546 

*lfThere 

Checks for the presence of a given object, and executes one command if it exists, or 

another if it does not 

Syntax 

*IfThere object_spec Then true_command [Else false_command] 

Parameters 

Use 

object_spec 

true_ command 

false_command 

a valid (wildcarded) pathname specifying a file or 
directory 

command to execute if obj ect_spec is matched 

command to execute if obj ect_spec is not matched 

* Ifrhere checks for the presence of the given object, and executes the true 

command if it exists, or the optional false command if it does not. 

The check is done using OS_File 17 (page 2-35) . Note that non-files (eg directories 

and partitions) will still cause the true command to execute. 

This command is provided either by the boot application's Library subdirectory 

(which is added to the run path when the boot application is first run). or by the 

BootCommands module added in RISC OS 3.6. 

Example 

*IfThere adfs::MHardy.$.Run Then Delete adfs: :MHardy.$.Run 

Related commands 

None 



RISC OS boot applications 

*LoadCMOS 

Loads a file into the computer's CMOS RAM 

Syntax 

*LoadCMOS filename 

Parameters 

Use 

filename a valid pathname specifying a file 

*LoadCMOS loads a file into the computer's CMOS RAM, preserving only the 
station number, the current year, and the DST flag. All other configured values are 

replaced by those stored in the file. 

This command is used by boot applications to load a station's CMOS RAM at 
startup time, thus ensuring the machine is always in the same state. The boot 
application searches for the file : 

<Boot$Dir> .MchConfig. <Boot$Unique> .!RO<Boot$0SVersion>CMOS 

and, if it finds the file, uses this command to load it . Note that the location of 
saved CMOS files is subject to change in future versions of boot applications. 

This command is provided by the BootCommands module added in RISC OS 3.6. 

Unlike most other commands documented in this chapter, it is not a standard part 

of the RISC OS 3.5 boot application. 

Example 

*LoadCMOS adfs: :MHardy.$.Safe.MyCMOS 

Related commands 

None 

Sa-547 



"Repeat 

Sa-548 

*Repeat 

Scans a given directory, applying a command to everything it finds 

Syntax 

*Repeat command directory [-Directories] [-Applicati.ons] 

[-Filesl-Type file_type] [-CormnandTail cmdtail] [-Tasks] 

Parameters 

Use 

command 

directory 

-Directories 

- Applications 

-Files 

- Type 

file_type 

-CormnandTail 

cmdtail 

-Tasks 

command to apply to objects in the given directory 

a valid pathname specifying a directory 

apply the command only to directories 

apply the command only to applications 

apply the command only to files 

apply the command only to files of type f i 1 e_ type 

a number (in hexadecimal by default) or text description 

of the file type to match. The command *Show 
File$Type* displays a list of valid file types. 

postfix the found object with cmdtail 

command tail to apply to objects in the given directory 

apply the command as a Wimp task 

*Repeat scans the given directory applying a command to everything it finds, 

within the limits of the other parameters. The command executed is : 

command found_object [cmdtail] 

This utility does not recurse. Only those objects identified at the top level have the 

command applied to them. 

This command is provided either by the boot application's Library subdirectory 

(which is added to the run path when the boot application is first run), or by the 

BootCommands module added in RISC OS 3.6. 

The Library-based version uses the Scrap directory, and hence there must be some 

free space on the file system holding !Scrap for it to work. The BootCommands 

version does not have this limitation . 



M/;;Jv l.l;;J DOOi i::tpp11r.;i:11/Ufll:i 

Example 

*Repeat Filer_Boot Boot:Resources -Applications -Tasks 

Related commands 

None 

Sa-549 



*Safelogon 

5a-550 

*Safelogon 

Logs you on to a file server if you are not already logged on 

Syntax 
*SafeLogon [[:Jfile_server_numberl : file_server_name] user_name [[ : Return]password] 

Parameters 

Use 

file_server_number 

file_server_name 

user_name 

password 

the file server number to log on to 

the file server name to log on to 

as issued by the network manager 

as set by the user 

*SafeLogon logs you on to a file server if you are not already logged on. 

The command first checks to see if the current temporary filing system is NetFS, 
and the given user is already logged on to the given file server; if so, the command 
exits immediately. Otherwise the command passes on a *Logan command to the 
current temporary filing system, leaving the command line tail unaltered. 

This means that - unlike *Logan - *SafeLogon will not log you off a file server, and 
then immediately log you back on . 

This command is provided by the BootCommands module added in RISC OS 3.6. 
Unlike most other commands documented in this chapter, it is not a standard part 
of the RISC OS 3.5 boot application . 

Example 

*SafeLogon :fs guest 

Related commands 

*Logan 



129 The colour picker 

Introduction and Overview 
The new hardware supported by RISC OS 3.5 supports a much greater pixel depth 

than previous versions, and can display up to 16 million colours. The colour picker 

module is a utility that allows users to pick a colour from this immense choice. 

This utility should be used by all applications that need to choose colours. 

This chapter describes how a client application and the colour picker module 

interact. 

Unless stated otherwise, all the facilities described in this chapter are available 

from RISC OS 3.5 onwards. 

Terminology used 

The colour picker module provides a colour picker dialogue for applications to use; 

different types of dialogue are available. The dialogue is not a Wimp task. The 

colour picker makes use of the Wimp filter mechanism to receive events for its 

dialogues. 

A colour picker client is an application which use the colour picker. All clients must 

be Wimp tasks . 

A colour descriptor is a structure giving the full details of a colour. It is defined on 

page 5a-554. 

Sa-551 



Technical details 

Technical details 

How the colour picker works 

Typical usage 

The colour picker works as follows : 

• The client application communicates with the colour picker by calling SW!s. 

• Whenever a client opens a new colour picker dialogue, the colour picker 
module installs a Wimp pre-filter and post-filter box around that client 
application. 

• The colour picker module then maintains the colour dialogue by intercepting 
Wimp events directed to it, and passing the user's colour choices to the client 
using Wimp messages. 

• Once the dialogue is opened, it is identified in all SW!s and messages by a 
handle. This avoids confusion if multiple clients are using the colour picker at 
once. 

From the cl ient's point of view, a typical colour selection looks like this: 

Client receives colour selection request by user 
Client prepares structure describing dialogue 
Client issues the SWI ColourPicker_OpenDialogue and resumes polling the Wimp 

User makes colour selection 
Client receives the message Message_ColourPickerColourChoice 
Client applies colour information 
Client receives the message Message_ColourPickerCloseDialogueRequest 
Client issues the SWI ColourPicker_CloseDialogue 

SWls and messages used 

SW ls 

5a-552 

The full range of SW!s that clients may use are as follows : 

• ColourPicker_OpenDialogue (page 5a-559) - Creates and opens a colour 
picker dialogue for a client. 

• ColourPicker_CloseDialogue (page 5a-562) - Closes a colour picker dialogue 
which is in progress. 

• ColourPicker_UpdateDialogue (page 5a-563) - Updates some or all of the 
contents of a colour picker dialogue. 

• ColourPicker_ReadDialogue (page 5a-565) - Reads the current state of a 
colour picker dialogue without changing it . 



The colour picker 

• ColourPicker_HelpReply (page 5a-568) - Makes the colour picker respond to a 

Message_HelpRequest with its own help text . 

Messages 

Dialogue types 

The messages that the client may receive are: 

• Message_ColourPickerColourChoice (page 5a-570) - issued whenever the user 

makes a definite choice of colour. 

• Message_ColourPickerColourChanged (page 5a-570)-optionally issued when 

the colour displayed in the dialogue changes. 

• Message_ColourPickerCloseDialogueRequest (page Sa-571) - optionally 

issued when the user dismisses the dialogue. 

• Message_ColourPickerOpenParentRequest (page Sa-571) - issued when the 

user opens a toolbox dialogue's parent by clicking Adjust or Shift-Adjust on its 

Close icon. 

• Message_ColourPickerResetColourRequest (page 5a-57 l) - issued when the 

user requests the colours be reset to those currently in effect. 

This message is not issued by RISC OS 3.5. 

When the client calls ColourPicker_OpenDialogue (page Sa-559) to create and 

open the colour picker dialogue. it can choose between different types of dialogue: 

• A normal dialogue has OK and Cancel buttons. and issues 

Message_ColourPickerColourChoice (page 5a-570) when OK is used. 

• A toolbox dialogue has no OK and Cancel buttons. but has Back and Close icons 

on its window. It never issues Message_ColourPickerColourChoice; the client 

can call ColourPicker_ReadDialogue (page 5a-565) to read the colour when it 

needs to , or monitor the colour continuously by making the dialogue issue 

Message_ColourPickerColourChanged (page 5a-570) . 

• A menu dialogue is like a normal dialogue. but the ColourPicker opens it using 

Wimp_CreateMenu; it is therefore automatically closed by the Wimp when the 

user clicks elsewhere. 

• A subrnenu dialogue is like a menu dialogue. except that it is attached to an open 

menu tree. and hence created using Wimp_CreateSubMenu. 

Transient dialogues 

Because the closing of menu and submenu dialogues is h~ndled by the Wimp 

rather than the colour picker. they are classed as transient dialogues . 

5a-553 



Colour descriptors 

Colour descriptors 

5a-554 

Colours are passed to and from the colour picker as a colour descriptor, which is a 
structure of two or more words. 

The colour is always held in a word as a 24 bit RGB value; the simplest form of a 
colour descriptor has no extra information. However, the descriptor may also hold 
data giving a colour model, the colour value as represented in that model, and 
optional extra data. Clients may store the entite colour descriptor, and make full 
use of the information it stores. 

A colour descriptor has this structure: 

Offset Data 

0 0 
I red value (0 - &FF) 
2 green value (0 - &FF) 
3 blue value (0 - &FF) 
4 a word giving the size of the optional extension to the block, in bytes 

The optional extension consists of: 

Offset Data 

8 colour model number: 0 ~ RGB, I ~ CMYK, 2 ~ HSV 
12 colour model dependent data (see below) 

An application may treat the colour descriptor as a self contained block to be 
stored away, and retrieved for use later with the colour picker. 

Colour model dependent data 

All colour model dependent data uses fixed point 32 bit numbers, with 16 bits 
below the point, and 16 bits above the point. Offsets given below are relative to the 
start of the colour model dependent data. 

RGB (model number 0) 

The extra data is: 

Offset Data 

0 Red value 
4 Green value 
8 Blue value 

All values should be in the range &00000000 - &000 I 0000. 



CMYK (model number I) 

The extra data is: 

Offset Data 

0 Cyan value 
4 Magenta value 
8 Yellow value 
12 Key (black) value 

All values should be in the range &00000000 - &00010000. 

HSV (model number 2) 

The extra data is : 

Offset Data 

0 Hue angle 
4 Saturation percentage 
8 Value percentage 

The colour picker 

The Hue should be in the range &00000000 - &0167FFFF The Saturation and Value 

should be in the range &00000000 - &00010000. 

Wimp events and the client 

Wimp events directed to the colour picker are also sent to the client. They can be 

distinguished by the window handle in the event block. 

These events have already been fully processed by the colour picker. They are sent 

to the client merely as a 'hook' for unusual circumstances where special action is 

required. This won't normally be necessary, and the client should ignore these 

events, just as it should any events it does not understand. 

For example, if it is told of a r~quest for help by a User_Message event (of type 

Message_HelpRequest) that has the colour picker's window handle. it should not 

supply help, since the colour picker will already have done so. 

5a-555 



Service Calls 

Service Calls 

5a-556 

Service_ColourPickerloaded 
(Service Call &93) 

This service call is for internal use only; you must not use it in your code. 



SWI calls 

The colour picker 

ColourPicker_RegisterModel 
(SWI &47700) 

This call is for internal use only; you must not use it in your own code. 

5a-557 



ColourPicker_DeregisterModel (SW/ &47701) 

Colou rPicker _DeregisterModel 
(SWI &47701) 

This call is for internal use only; you must not use it in your own code. 

5a-558 



The colour picker 

ColourPicker_OpenDialogue 
(SWI &47702) 

Creates and opens a colour picker dialogue for a client 

On entry 

RO= flags : 
bits 0, I =dialogue type: 

0 ~ normal dialogue, I ~ menu dialogue 
2 ~ toolbox dialogue, 3 ~ submenu dialogue 

all other bits reserved (must be set to 0) 
RI =pointer to a colour picker block (see below) 

On exit 

RO = dialogue handle 
RI= window handle 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call creates and opens a colour picker dialogue for a client, so that a user can 
choose a colour. The flags in RO set the type of dialogue (see Dialogue types on 
page 5a-553). and hence whether or not the dialogue is transient. 

5a-559 



Co/ourPicker_OpenDia/ogue (SW/ &47702) 

5a-560 

The colour picker block specifies the initial settings for the dialogue. This block is also 

used by other colour picker SWis. Its format is as follows : 

Offset Meaning 

O flags: 

4 

8 
12 
16 
20 
24 
28 
32 

Bit 
0 

2 - 3 

4 
5 

Meaning 
I => dialogue has a None button 
I => dialogue has the None button selected 
dialogue button type, defining when 
Message_ColourPickerColourChanged is issued for it: 
0 => never issued; I => issued on any change, except during 
drags, which give a message at drag end; 2 => issued on any 
change, including during drags 
I => dialogue ignores Message_HelpRequest messages 
I => dialogue does not pass on unhandled key presses to the 
Wimp (RISC OS 3.6 onwards) 

pointer to the title to be used, or 0 for a default title 
x coordinate of top left of the visible area of the dialogue 
reserved (must be &80000000) 
reserved (must be &7FFFFFFF) 
y coordinate of top left of the visible area of the dialogue 
reserved (must be 0) 
reserved (must be 0) 
colour descriptor (see page 5a-554) 

Bits 0 and I of the flags control whether a None button appears between the colour 

patch and the Cancel button , and whether it is initially selected. 

If the dialogue ignores Message_HelpRequest messages (page 3-244) directed to 

it , the client may send the Wimp message Message_HelpReply (page 3-245) to 

respond with its own text, or it may pass the message to the SWI 
ColourPicker_HelpReply (page 5a-568) to force the colour picker to reply with its 

own text. The client can hence replace the colour picker's help text for some or all 
parts of the dialogue. 

If bit 4 is set, it is up to the calling application - rather than the dialogue - to pass 

on unhandled key presses to the Wimp. This bit is ignored under RISC OS 3.5. 

The returned dialogue handle is used as an argument to the other ColourPicker 

SWis. and also in the Wimp messages that the ColourPicker module sends to the 
application to provide feedback on the user's selection of a colour. 



Related SWls 

ColourPicker_CloseDialogue (page 5a-562) 

Related vectors 

None 

The colour picker 

Sa-561 



Co/ourPicker_CloseDialogue (SW/ &47703) 

Sa-562 

ColourPicker_CloseDialogue 
(SWI &47703) 

Closes a colour picker dialogue which is in progress 

On entry 

RO= flags : all bits reserved (must be set to 0) 
RI =dialogue handle 

On exit 

RO , RI preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call closes a colour picker dialogue which is in progress. This may either be 
done by the client, or by the Wimp if the dialogue was set to be transient when 
created (see Transient dialogues on page 5a-553) . 

It is normally called in response to Message_ColourPickerCloseDialogueRequest 
(see page 5a-571) . 

Related SWls 

ColourPicker_OpenDialogue (page 5a-559) 

Related vectors 

None 



The colour picker 

ColourPicker_UpdateDialogue 
{SWI &47704) 

Updates some or all of the contents of a colour picker dialogue 

On entry 

RO= flags : 
Bit 
0 

2 
3 
4 
5 

Part of dialogue to update when set 
whether the dialogue has a None button 
whether the dialogue has the None button selected 
the button type of the dialogue 
the visible area of the dialogue (RISC OS 3.6 onwards) 
reserved (must be clear) 
the window title 

6 colour setting, from the colour descriptor's initial RGB triplet only 
7 the colour model and setting, from the colour descriptor's model 

dependent data only (including optional data) 
8 whether the dialogue ignores Message_HelpRequest events 
9 whether the dialogue passes on unhandled key presses to the 

Wimp (RISC OS 3.6 onwards) 
all other bits reserved (must be set to 0) 

RI = dialogue handle 
R2 =pointer to a colour picker block (see page 5a-560) 

On exit 

RO - R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Sa-563 



ColourPicker_ UpdateDialogue (SW/ &47704) 

Sa-564 

Use 

This call updates some or all of the contents of the colour picker dialogue whose 

handle is given. Only the parts of the box indicated by the flags word are updated. 

The new values are taken from the passed colour picker block; all other parts of the 

block are ignored. The block need only be large enough to hold the highest offset 

field required. 

The None button may be added or removed, and its setting adjusted. The title , 

setting and colour model may also be adjusted independently of each other. 

If you are changing the visible area (ie bit 3 is set). you must fill in offsets 8 - 20 

inclusive of the colour picker block (see page 5a-560). including the reserved 

words . This is for future compatibility. 

If bit 7 is set then bit 6 is ignored; the colour model is updated, and the RGB triplet 

is calculated from the data in the colour model block. If bit 6 is set and bit 7 is clear, 

then the colour setting is updated from the colour descriptor's initial RGB triplet 

and the colour model left unchanged, even if the current colour model isn 't that in 

the colour descriptor. 

Related SWls 

ColourPicker_OpenDialogue (page 5a-559) 

Related vectors 

None 



The colour picker 

ColourPicker_ReadDialogue 
(SWI &47705) 

Reads the current state of a colour picker dialogue without changing it 

On entry 

RO= flags : all bits reserved (must be set to 0) 
RI =dialogue handle 
R2 =pointer to a buffer to hold a colour picker block (see page 5a-560). 

or 0 to read required size 

On exit 

RO preserved 
RI= window handle 
R2 =required size of buffer (if 0 on entry) ; else preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SW! is not re-entrant 

This call reads the current state of a colour picker dialogue without changing it. The 
state is returned as a colour picker block in the given buffer, which is assumed to be 
large enough to hold it. Because the size of the block may change when the colour 
model changes, you should always call this SW! twice: once to read the required 
size, then again to read the state of the colour picker dialogue. 

5a-565 



Co/ourPicker_ReadDialogue (SW/ &47705) 

5a-566 

Related SWls 

None 

Related vectors 

None 



The colour picker 

ColourPicker_SetColour 
(SWI &47706) 

This call is reserved for future expansion; you must not use it in your own code. 

Sa-567 



ColourPicker_HelpReply (SW/ &47707) 

Sa-568 

ColourPicker_HelpReply 
(SWI &47707) 

Makes the colour picker respond to a Message_HelpRequest with its own help text 

On entry 

RO= flags : all bits reserved (must be zero) 
RI =pointer to Message_HelpRequest message block (page 3-244), as returned 

from Wimp_Poll (page 3-115) 

On exit 

RO, RI preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call makes the colour picker respond to a Message_HelpRequest with its own 

help text . It is typically used by a client that wishes to replace part of the colour 

picker's help system. 

Such a client would, on creating and opening a colour picker dialogue, force it to 

ignore help requests (see page 5a-559) . The client would then selectively respond 

to help requests itself, or use this call to make the colour picker respond instead. 

Related SWls 

ColourPicker_OpenDialogue (page 5a-559) 

Related vectors 

None 



The colour picker 

ColourPicker_ModelSWI 
(SWI &47708) 

This call is for internal use only; you must not use it in your own code. 

Sa-569 



Messages 

Messages 

Colour picker messages 

5a-570 

These Wimp messages are generated by the Colour Picker in response to Wimp 

events on the colour picker dialogue. For more details about Wimp messages, see 

Wimp_SendMessage on page 3-196, and Messages on page 3-230. 

Message_ ColourPickerColourChoice ( &47700) 

This message is issued to the client whenever the user makes a definite choice of 

colour, by clicking Select or Adjust on the OK button of the dialogue. The format of 

the message block is: 

Rl+20 dialogue handle 
Rl+24 flags : 

bit 0 set==> None chosen 
Rl+28 ... colour descriptor chosen (see page 5a-554) 

The colour descriptor gives the state of the dialogue so that a sensible default may 

be given next time the dialogue is used. When flags bit 0 is set, signifying that 
None was chosen, the colour descriptor will still be present. 

The message may or may not be followed by a 
Message_ColourPickerCloseDialogueRequest. 

Message_ ColourPickerColourChanged ( &47701) 

This optional message is issued to the client when the colour displayed in the 

dialogue changes. 

The format of the message block is: 

Rl+20 dialogue handle 
Rl+24 flags : 

Rl+28 . .. 

bit 0 set ==> None chosen 
bit I set ==> drag in progress 

colour descriptor chosen (see page 5a-554) 

The client specifies when this message is to be sent (if at all) using button type flags, 

passed to ColourPicker_OpenDialogue (page 5a-559) as it creates and opens the 

dialogue. 



The colour picker 

Message_ColourPickerCloseDialogueRequest (&47702) 

This message is issued to the client when the user dismisses the dialogue by 
clicking Select on the OK or Cancel icons or by using the Close icon of a toolbox 
dialogue. The client should respond by calling ColourPicker_CloseDialogue 
(page 5a-562) with the given handle. The format of the message block is: 

Rl+20 dialogue handle 

This message is not issued for transient dialogues (see Transient dialogues on 
page 5a-553); the ColourPicker will instead automatically close the dialogue itself. 

Message_ ColourPickerOpenParentRequest ( &47703) 

This message is issued when the user opens a toolbox dialogue's parent by clicking 
Adjust or Shift-Adjust on its Close icon. If the colour picker has a parent dialogue 
box, the client should ensure that window is open and brought to the front. The 
format of the message block is: 

Rl+20 dialogue handle 

In the former case (ie Adjust), the message will be followed by a 
Message_ColourPickerCloseDialogueRequest. 

Message_ ColourPickerResetColourRequest ( &47704) 

This message is issued to the client whenever the user clicks Adjust on the Cancel 
button of the dialogue. The format of the message block is: 

RI +20 dialogue handle 

The client should respond by calling ColourPicker_UpdateDialogue (page 5a-563). 
to reset the dialogue so that it displays the colour currently in effect. This is the 
last colour selected by clicking Adjust on the dialogue's OK icon, or failing that, the 
colour the dialogue showed when first opened. 

This message is not issued under RISC OS 3.5. 

5a-571 



*Commands 
... ~:-:· 

*Commands 
*Model List 

Lists all the loaded colour models 

Syntax 

*Mode lList 

Parameters 

None 

Use 

*ModelList lists all the loaded colour models. 

Example 
*ModelList 

0: RGB 

The "physicist's model :• the quantity of each primary colour (red , green, blue) . 

l : CMYK 

The •printer ' s model : • the quantity of each secondary colour (cyan, magenta, yellow), alo ngwith the key (black) , 

2: HSV 

The •artist's model:" hue (or "tint"), saturation (or "shade " ) and value (or " tone " ). 

Related commands 

None 

Related vectors 

None 

Sa-572 



130 Printing 

Introduction 
The printing system has been extended un er RISC OS 3.5, mainly to support the 
vastly greater number of colours available~ new version of !Printers ( 1.22) has 
also been released for use under RISC OS , incorporating all changes relevant to 
the older hardware and operating system. urther changes have been made in 
RISC OS 3.6, largely to support printing JP s . 

This chapter describes the few resultant ch nges the above have made in the 
programmer's interface. It does not describ in detail the rather more considerable 
internal changes made to the printing syst m. 

Sa-573 



Overview 

Overview 

Trapping of output calls 

SpriteV 

The printing system still works in the same way as before, intercepting the same 

calls. Support has been added to track extensions made in RISC OS, such as the 

use of mode specifiers, new sprite formats and wide translation tables. Because of 

this , the information in Trapping of output calls on page 3-563 is still correct; calls 

documented there as being processed by the printer drivers are still correctly 

handled. 

There are some new calls handled by the printer drivers; these are documented 

below. 

Treatment of SpriteOp reason codes 

JPEG SWls 

Sa-574 

The table on page 3-577 shows the printer driver's treatment of each SpriteOp 

reason code in RISC OS 3. The table below shows the same information for the new 

reason code added in RISC OS 3.6: 

Reason Meaning Printer driver's treatment 
code 

17 Check the validity of a sprite area Passed on 

RISC OS 3.6 provides calls to output JPEG images. The printer driver interacts with 

these calls using a mechanism broadly similar to that used for font output. When 

printing starts, the printer driver issues the SWI JPEG_PDriverlntercept 

(page 5a-l 58) . The JPEG code then alters its SW! handling so that: 

• It processes certain SW!s itself, as normal. 

• It passes certain SWls to the printer driver using the SW! PDriver_JPEGSWI 

(page 5a-58 l ). The printer driver may then : 

I process the call 

2 fault the call. 

The JPEG code does not process such SWis itself. 



The table below shows how each SWI is handled: 

JPEG SWI Meaning Processing 

Info 
Gives information on a JPEG 

Processed by JPEG code as usual 
image held in a buffer 

File Info 
Gives information on a JPEG 

Processed by JPEG code as usual 
image held in a file 

Decompresses, scales, and 
Passed to printer driver and 

Plot Scaled plots on the screen a JPEG 
processed by it 

image held in a buffer 

Decompresses, scales, and Passed to printer driver and faulted by 
Plot File Scaled plots on the screen a JPEG it: file operations are not allowed 

image held in a file when printing 

Decompresses, transforms, and 
Passed to printer driver and 

Plot Transformed plots on the screen a JPEG 
processed by it 

image held in a buffer 

Plot File 
Decompresses, transforms, and Passed to printer driver and faulted by 

Transformed 
plots on the screen a JPEG it: file operations are not allowed 

image held in a file when printing 

Requests that SpriteExtend 
PDriver Intercept passes on all calls to JPEG Processed by JPEG code as usual 

plotting SWls 

5a-575 



Technical details 

Technical details 

The structure of the printing system 

Front and back ends merged 

In RISC OS 3.6, the front and back ends of the Printers application have been 
merged. It is important for future compatibility that any software you write does 

not assume the internal structure of the Printers application, as it may change 

again in subsequent releases of RISC OS. 

New printer dumper 

Colour input 

New strip types 

5a-576 

In RISC OS 3.6, a new printer dumper has been added for printers using Epson's 

Esc/P2 control language. The dumper's name is PDumperE2; its number is 6. 

The range of colour documents 'understood' as inputs remains unchanged on 
RISC OS 3 systems, save that PDriverDP has been extended to take in 8bpp, full 

palette sprites. 

Support for new types of colour document has been added to the printing system 

as it has been added to other parts of RISC OS. So from RISC OS 3.5 onwards, 
16/32 bpp true colour sprites are handled. From RISC OS 3.6 onwards, new type 

sprites of up to 8bpp with a palette and JPEG images - both files, and inserts in 

Draw files - are also handled. 

In order to support the improved colour output facilities some extra strip types 

have been defined from RISC OS 3.5 onwards, and all calls that use strip types 
have been extended to support them. The table below should replace that on 
page 3-665: 

Value Meaning 

0 monochrome 
grey scale 

2 256 colour 
3 Multiple pass 24 bit colour 
4 Single pass 16 bit colour 
5 Single pass 24 bit colour 

(RISC OS 3 only) 
(RISC OS 3.5 or later) 
(RISC OS 3.5 or later) 



Multiple pass 24 bit colour allows true colour output under RISC OS 3. Colour 
output is limited to 24bpp, and caches some very small colour conversion tables 
for optimum performance. 

Single pass 16 and 24 bit colour strips only work under RISC OS 3.5 or later. Using 
a single pass gives faster output than using multiple passes. 16 bit colour renders 
internally using 16 bits of information; this is slightly faster than 24 bits, and 
requires less memory - but the images produced may contain slightly less colour 
information, depending on how the printer output palette has been defined. 
Attempting to use these strip types under RISC OS 3 will cause error messages 
from modules such as ColourTrans and from OS_SpriteOp calls; however, !Printers 
does not allow this , and so this is not a problem in normal use. 

Pre-scanning of rectangles 

NewSWls 

From RISC OS 3.6 onwards the printer driver may choose to make a pre-scanning 
pass of the print rectangles that the application wants printed, provided the 
application is aware this may happen. Under RISC OS 3.6, when the bit image 
drivers are plotting a JPEG image they must do a pre-scan pass to ascertain 
memory requirements. In future , pre-scanning may be used for other purposes. 

Whether or not the printer driver chooses to perform a pre-scan pass should be 
transparent to your application , which need only respond to all returned plotting 
rectangles as normal. A pre-scan pass should not increase printing times 
significantly provided that the majority of work your application does for each 
rectangle is to make plotting calls, which are simply 'swallowed' during the 
pre-scan . 

Your application should not rely on information such as ColourTrans tables 
remaining valid between the pre-scan pass and the real pass . 

From RISC OS 3.5 onwards you can enumerate the available strip types by calling 
PDriver_MiscOp with the new reason code of &80000002; for details see 
page 5a-580. 

From RISC OS 3.6 onwards, there is a new SW! PDriver_)PEGSWI used to pass on 
JPEG SWis to the printer drivers. For details, see page 5a-58 l . 

5a-577 



Changes to existing SW/s 

Changes to existing SWls 

PDriver _Info (page 3-602) 

Sa-578 

A new bit has been added in RISC OS 3.6 to the features word returned in R3 that 

describes the printer driver: 

Bit(s) 

13 

Value Meaning 

0 it does not expect a flag byte to be passed in RO for 

PDriver_DrawPage (see below for details) . 

it expects a flag byte to be passed in RO for 
PDriver_DrawPage (see below for details) . 

PDriver _DrawPage (page 3-626) 

The meaning of RO has been altered in RISC OS 3.6; the top byte now holds flags . 

Currently only a single bit is used, to support pre-scanning. On entry: 

RO= number of copies to print, and flags : 
bits 0 - 23 =number of copies to print 
bit 24 set ==> application knows about pre-scan of rectangles by printer 

driver 
bits 25 - 31 reserved (must be zero) 

and on exit: 

RO= zero if finished ; else more rectangles to be printed, and: 

bit 24 set ==> this rectangle is for pre-scan only 

We recommend that before calling this SWI you should first call PDriver_Info (see 

above) to check if the printer driver expects to receive the flag byte: 

• If it does , you should set any relevant flags when calling this SWI (ie set bit 24). 

even if you believe you don't need to for the particular document you are 

printing. This ensures future compatibility. 

• If it does not , you must not set any of the flags when calling this SWI , 

otherwise you will get a very large number of copies output! 

PDriver _ GetRectangle (page 3-628) 

The meaning of RO on exit has been extended in RISC OS 3.6 in the same way as for 

PDriver_DrawPage: 

RO =zero if finished ; else more rectangles to be printed, and: 

bit 24 set ==> this rectangle is for pre-scan only 



PDumperReason_SetDriver (page 3-668) 

Extra bits have been added to the configuration word: 

Bit Meaning when set 

4 Printer does black removal (PDumperLJ) - RISC OS 3.5 onwards 
5 Printer supports colour (PDumperLJ) - RISC OS 3.6 onwards 

PDumperReason_AbortJob (page 3-674) 

This call has been extended from RISC OS 3.5 onwards so that the printer dumper 
can reset the printer should a print job be terminated (eg by Escape). R3 on entry 
has an extra bit flag from RISC OS 3.5 onwards, which if set also causes R4 to be 
used: 

R3 bit 24 set =:} reset printer 
R4 =pointer to copy of PDriverDP and dumper configuration data (see page 3-668) 

- only if bit 24 of R3 is set 

If a printer dumper is called with this bit set it must output to file the appropriate 
graphics termination and reset sequences to ensure the printer is in a sensible 
state. 

This avoids problems where a job cancelled in the middle of a graphics sequence 
might leave the printer awaiting the rest of the sequence: the printer then hangs , 
and possibly even wrecks the next print job by treating its start as the end of the 
missing sequence. 

Postscript restriction on 16 or 32bpp sprites with a mask 

When the Postscript printer driver plots a 16 or 32bpp sprite with a mask to a 
colour printer, the masked pixels are white (not transparent). and so overwrite any 
graphics underneath the sprite. This is because the Postscript imaging model does 
not directly support a bitmap mask; the method used to emulate it for sprites with 
up to 8 bits per pixel does not generalise to sprites with a large number of colours. 

This limitation only applies when output is to a colour printer; on black-and-white 
printers the sprite is reduced to 256 shades of grey, and the mask is transparent. 

I 
New palette file format in PDumperSupport 

PDumperSupport has been enhanced in RISC OS 3.5 to allow better control over 
the quality of the printed image. To do so it uses a new format of palette file . In 
order to minimise prompting for the disc, these palette files are loaded into RMA 
and made available through ResourceFS. You can modify a palette file using the 
!RePRO tool, available from Oak Solutions. 

Sa-579 



SW/ Calls 

SWI Calls 

Sa-580 

PDriver_MiscOp 
(SWI &8015A) 

Returns a bit mask showing which strip types a printer dumper supports 

On entry 

RO= &80000002 (reason code) 

RI =number of printer dumper for which to obtain strip types bitmask 

On exit 

Use 

RO = supported strip types bit mask (if dumper loaded), otherwise preserved 

This call returns a bit mask showing which strip types a printer dumper supports 

(see page 5a-576) . If bit 11 of the mask is set, then it shows that the printer dumper 

can output strip type 11. 

The new RISC OS 3 dumpers described in this chapter return 2_1111 , and the 

RISC OS 3.5 dumpers return 2_110111. Older dumpers return 2_111 . 



PDriver_JPEGSWI 
(SWI &80150) 

Passes JPEG SW!s to the printer driver 

On entry 

R8 = JPEG SW! number modulo 64 
All other registers as for original JPEG_ . . . call 

On exit 

R8 corrupted (JPEG SWI's original R8 preserved by SpriteExtend) 
All other registers preserved 

Interrupts 

Interrupt state is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call passes JPEG SWis to the printer driver, once the printer driver has called 
JPEG_PDriverlntercept (page 5a- l 58) to enable interception . See JPEG SWls on 
page 5a-574. 

This call is for internal use only; you must not use it in your own code. 

Related SWls 

JPEG_PDriverlntercept (page 5a- I 58) 

Related vectors 

None 

5a-581 



5a-582 



131 Internationalisation 

Introduction and Overview 
This chapter describes some minor changes to the various internationalisation 
modules, all made in RISC OS 3.5. 

International module 

All calls (page 3-763 onwards) 

The International module has been enhanced so that from RISC OS 3.5 onwards 
the strings it returns are terminated. 

New countries 

The following extra countries are supported from RISC OS 3.5 onwards: 

Territory manager 

Finland, Denmark, Austria , Belgium, Japan, MiddleEast, Netherlands, 
Switzerland, Wales . 

Territory_Register (page 3-793) 

From RISC OS 3.5, on entry to a territory module's SW! handler RO is now always 
set to the current territory number. (If the SW! was called with a territory number of 
- I to indicate the current territory, the territory manager resolves this before 
calling the SW! handler.) 

On exit RO should be preserved unless it is explicitly used to return a value from 
the SW!. 

Territory_ ConvertTimeToOrdinals (page 3-815) 
Territory_ConvertTimeStringToOrdinals (page 3-817) 
Territory_ConvertOrdinalsToTime (page 3-819) 
Territory_SelectKeyboardHandler (page 3-823) 
Territory _ReadCalendarlnformation (page 3-839) 

From RISC OS 3.5 onwards, these calls return the current territory in RO on exit. 

Sa-583 



New Message Trans SW/ 

New MessageTrans SWI 

Sa-584 

A new SWI was added to MessageTrans in RISC OS 3.5: 

• MessageTrans_Dictionary returns a pointer to the kernel 's MessageTrans 
dictionary. This call is for internal use only; see page 5a-585. 



SWI calls 

lntemationalisation 

MessageTrans_Dictionary 
(SWI &41509) 

Returns a pointer to the kernel 's MessageTrans dictionary 

On entry 

On exit 

RO = pointer to the kernel's MessageTrans dictionary 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call returns a pointer to the kernel 's MessageTrans dictionary. (This is not the 

same as the OS_PrettyPrint dictionary, as described on page 1-518.) 

Since the contents of this dictionary are liable to change with each successive 

release of RISC OS, this call is for internal use only; you must not use it in your own 

code. 

This call is only available from RISC OS 3.5 onwards. 

Related SWls 

None 

Related vectors 

None 

5a-585 



Sa-586 



Part 18 - Miscellaneous 

Sa-587 



5a-588 



132 Sound 

Introduction and Overview 

Hardware 

From RISC OS 3.6 onwards the SoundDMA module has been extended to support 

16 bit sound, as well as the 8 bit µ-law sound used by all earlier vers ions of 
RISC OS. This module is also supplied with the 16 bit Audio Card upgrade for the 
Rise PC. 

Machines using the new architecture all output sound using the VIDC20 video 

controller - whether it is a separate chip, or integrated into the ARM 7500 chip. 
VIDC20 provides two different types of sound output: 

• It provides 8 bit µ-law sound on 8 channels; this is fully backward compatible 
with the sound provided by VIDC I under earlier versions of RISC OS. 

This is output as an analogue signal , via internal sound DACs (digital-to
analogue converters) - just as with VIDCl . 

• It also provides 16 bit linear stereo sound (ie CD-style) . 

This is output as digital data , and requires an external DAC. The 16 bit Audio 
Card upgrade for the Rise PC provides such a DAC; one is fitted as standard to 
later designs of computer. 

You may only use one of these types of sound output at a time; when 16 bit sound 

is fitted , the circuitry for 8 bit sound is disconnected or absent. 

Configuration 

The type of hardware fitted is set in CMOS RAM (see CMOS RAM allocation on 
page 5a-73)using the new command *Configure SoundSystem (page 5a-608) . The 
configured sound hardware must match the actual hardware present, or you will 

get no sound output, and may get other unpredictable results . This configuration 

is read only when the SoundDMA module is initialised; hence you cannot adjust 
the hardware configuration without also re-initialising the SoundDMA module. 

Under RISC OS 3.5, the default configuration is for an 8 bit sound system (ie no 

external 16 bit DAC is fitted) . Under RISC OS 3.6 the kernel can detect the presence 

of 16 bit sound hardware and sets the default configuration accordingly: for a 16 bit 

sound system if it detects the hardware, and for an 8 bit sound system otherwise. 

Sa-589 



Technical details 

Technical details 
The way the new SoundDMA module works depends on which type of VIDC20 
sound output it is configured to use: 8 bit or 16 bit. You can determine how the 

sound system is configured by calling the new SWI Sound_Mode 0 (page 5a-596) . 

8 bit sound output 

When the new SoundDMA module uses VIDC20's 8 bit sound output, it works just 
as on earlier versions of RISC OS. The standard VIDC20 internal µ-law DACs are 
used, as with VIDC I and earlier versions of RISC OS. 

16 bit sound output 

5a-590 

The new features of the SoundDMA module become available when it is using 
VIDC20's 16 bit sound output. 

16 bit sound is generated by a linear handler. which places 16 bit linear stereo sound 
samples in the sound DMA buffer. The SoundDMA module is responsible for 
requesting the linear handler to fill the buffer, and for outputting the data from this 
buffer to the external 16 bit DAC. 

As before, the maximum size of the sound DMA buffer is one page, which is 
4 Kbytes under RISC OS 3.6. Thus the maximum number of 16 bit stereo samples 
in the buffer is I K, since each stereo pair takes up 32 bits (ie 4 bytes) . 

Sample rates 

Sample rates for the 16 bit sound system are set and stored using a sample rate 
index: 

• The sample rate index is an integer in the range I - nsr (the number of sample 
rates) . As the index increases, so does the corresponding sample rate. 

You should not assume any particular value for nsr, nor any particular binding 
of index values to sample rates. Both may be affected by the sound hardware's 
configuration , and by future hardware or software developments. 

For maximum portability and future compatibility, you should always fully 
determine the sample rates available from the sound system before using it: 

• You can find the value of nsr by calling Sound_SampleRate 0 (page 5a-604) . 

• Once you have done this, you can then use Sound_SampleRate 2 
(page 5a-606) to enumerate the available sample rates, or to find a match for a 

required sample rate. 



·::.::.:; 

Sound 

Other reason codes for Sound_SampleRate allow you to read and set the sample 

index, and hence the sample rate: 

• You can read the current sample rate index, and the corresponding sample 
rate , by calling Sound_SampleRate 1 (page 5a-605) . 

• You can set the current sample rate index by calling Sound_SampleRate 3 
(page 5a-607) . 

Oversampling 

Any digital sound system can generate an undesirable high-pitched noise that is 
correlated with the main signal ; this is a by-product of the digital-to-analogue 
conversion process, and is more audible at lower sample rates. This high frequency 
image of the output analogue signal is sometimes inaccurately called the alias . 

This effect can be reduced by a technique called oversampling. Extra samples are 
added between existing samples (typically by interpolation) ; the new sample is 
then played back at a higher rate, thus making the image noise less audible. A side 
effect can be a slight reduction in amplitude of higher frequencies; however in 
most cases this slight loss of 'treble' is outweighed in subjective terms by the 
benefit of reduced image noise level 

You can make the RISC OS 16 bit sound system automatically use oversampling at 
all sample rates up to and including 25kHz: 

• You can configure your preference using *Configure SoundSystem 
(page 5a-608) 

• Applications can enable or disable oversampling, overriding the configured 
preference, by calling the new SWI Sound_Mode I (page 5a-597) . 

The output data stream is oversampled by a factor of two, by simple linear 
interpolation, before it reaches the DACs. This consumes a small amount of 

processor time on each sound system interrupt: at worst approximately 3% of a 30 
MHz ARM6 I 0 processor with a selected sample rate of 25 kHz. 

Note that when you are using oversampling the maximum number of samples a 
linear handler can place in the sound OMA buffer is halved to 512, so there is room 
for the extra interpolated samples. 

Sa-591 



Changes to existing SW/s 

Support for 8 bit sound 

The new SoundDMA module also supports 8 bit µ-law sound. The sound is 
generated in the same way as before: the 8 bit Channel Handler generates µ-law 
data which it places in the sound DMA buffer. (For full details see The Sound system 
on page 4-3.) The SoundDMA module converts this data from multiple channels in 
8 bit µ-law format to two stereo channels in 16 bit linear format. It then calls the 
linear handler (if any) to fill the DMA buffer with its own sound data; the linear 
handler can either overwrite the converted 8 bit sound data already in the buffer, or 
can merge it with its own sound data. All linear handlers should allow the user to 
configure their preference for this . 

Restrictions of the 8 bit emulation 

This conversion of 8 bit sound to 16 bit sound is transparent, and in general no 
difference from the old 8 bit sound system will be apparent. However: 

• Although the 16 bit sound system provides many of the sample periods 
possible under the old 8 bit sound system - including the default period of 
48µs used by the standard voice generators and many applications - there are 
a few less commonly used periods for which it can only provide a close match. 

• The 8 bit samples must fit within the sound DMA buffer when they are 
converted to 16 bit stereo sound, and hence must total less than a page in size. 
This means that the number of 8 bit samples is limited to I K without 
oversampling, or 512 with oversampling. Again, this is not a problem with the 
8 bit default of 208 samples per channel. 

Changes to existing SWls 

Sa-592 

Sound_Configure (page 4-18) 

When the computer is configured for 16 bit sound , this call affects both 16 bit 
sound and the emulated 8 bit sound: 

• RO gives the number of channels for 8 bit sound, just the same as ever. It is 
ignored by the 16 bit sound system, which always has two channels (the left 
and right stereo pair) . 

• RI was originally defined as the 'sample length (in bytes per channel) '. You 
should now think of RI as giving 'the number of samples per channel ' for both 
8 and 16 bit sound. The two definitions are effectively the same for 8 bit sound, 
but the new definition also covers 16 bit sound. 

• R2 sets the sample period for both 8 bit and 16 bit sound. However, the new 
SW! Sound_SampleRate (page 5a-602) is the preferred way to control sample 
rates for 16 bit sound. 



Linear handlers 

Sound 

When you have 16 bit sound configured, the values of RO and RI must be such that 
8 bit, converted 8 bit and 16 bit sound data can all fit within a page, which is the 
maximum size of the sound OMA buffer. If not , the number of samples is set to the 
highest value for which all three types of data will fit . Also , not all sample periods 
can be provided; in such cases the sample period is set to the closest match. As 
always, you can check the number of samples and sample period actually set by 
calling Sound_ Configure with null parameters. 

Registering linear handlers 

A linear handler registers itself with SoundOMA by calling the new SW! 
Sound_LinearHandler I (page 5a-598). When registering, you give the address of 
the handler code - which is called to fill the sound OMA buffer - and a parameter 
passed to the handler in RO. Typically the parameter will be a pointer to a data area 
containing any information the handler may need to perform its task. The address 
and parameter of the previous linear handler (if any) are returned. 

Only one linear handler can be registered with the SoundOMA module. You should 
therefore only register your linear handler immediately before starting to play 
sound, and should re-register the previous handler as soon as you have finished. 

You can find which linear handler is currently registered by calling 
Sound_LinearHandler O (page 5a-600) . 

How linear handlers are called 

The handler is passed the address of the sound OMA buffer for it to fill with 16 bit 
linear stereo sound data . Each sample is stored in a word as a pair of signed (2 's 
complement) 16 bit values , with the right channel data in bits 0 - 15, and the left 
channel data in bits 16 - 31 . A flag indicates if the buffer already contains sound 
data converted from multiple channels in 8 bit µ-law format ; see Support for 8 bit 
sound on page 5a-592 for more details of the action the linear handler should take 
in this case. 

5a-593 



Linear handlers 

Sa-594 

The full conditions for entry and exit are as follows: 

On entry 

RO = parameter passed in R2 to Sound_LinearHandler I when registering 

RI =pointer to quadword-aligned sound OMA buffer 
R2 = pointer to word immediately after sound OMA buffer 
R3 =flags: 

bits O - 2 
0 

initial buffer content indicator: 
data in buffer is invalid and must be overwritten 
data in buffer has been converted from multiple channels 
in 8 bit µ-law format, and is not all 0. 

2 data in buffer is all 0: if handler would generate silent 
output, it may simply return. 

3 - 7 reserved 
bits 8 - 31 reserved, and should be ignored 

R4 =sample rate for playback, measured in units of !11024 Hz; for example 20 kHz 
(20000 Hz) would be passed as 20000 x 1024, which is 20480000 

On exit 

RO - RI 0 may be corrupted 
RI I , Rl2, Rl3 must be preserved 

Interrupts 

Interrupts may be enabled during execution of the handler 

Processor mode 

Handler may be called in either IRO mode or SVC mode 
Processor mode must be preserved on exit 



SWI calls 

Sound 

Sound_Mode 
(SWI &40144) 

Examines and controls the 16 bit sound system's configuration 

On entry 

RO = reason code 
Other registers depend on reason code 

On exit 

Registers depend on reason code 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call examines and controls the 16 bit sound system's configuration. 

The particular action of Sound_Mode is given by the reason code in RO as follows: 

RO Action 

0 Reads the current sound system configuration 

Enables or disables automatic oversampling 

Related SWls 

None 

Related vectors 

None 

Page 

5a-596 

5a-597 

5a-595 



Sound_Mode O (SW/ &40144) 

Sa-596 

Reads the·current sound system configuration 

Sound_Mode O 
(SWI &40144) 

On entry 

RO= O (reason code) 

On exit 

Use 

RO = sound system capabilities: 
0 ~the sound system only supports 8 bit µ-law sound; RI is 0. and R2 

preserved 
I ~ the sound system supports 16 bit sound. and also 8 bit µ-law sound 

by emulation; other registers as below 
RI =the configuration stored in SoundSystem bits at offset 132 of CMOS RAM 

(see CMOS RAM allocation on page 5a-73) : 
bits 0 - I 16 bit sound control configuration. from bits 5 - 6 
bits 2 - 3 reserved 
bit 4 16 bit sound quality configuration. from bit 7 
bits 5 - 31 reserved 

This call reads the current sound system configuration. Any new sound 
applications you write - particularly those capable of 16 bit sound output - should 

always call this SWI to determine whether the configured sound output hardware 

supports 16 bit sound output. 

• If the configured hardware does not support 16 bit sound output, RO is 0 on 
return. You should only use the original sound system SWls - in particular 
Sound_ Configure - to determine and control sound output parameters such 
as sampling rate. Other Sound_Mode reason codes are not available. nor are 
SWls in the range &40145 - &4017F inclusive. The sound system will behave in 
a fully backward compatible manner. 

• If the configured hardware does support 16 bit sound output. RO is I on return. 
You can use all Sound_Mode reason codes. and the Sound_LinearHandler and 
Sound_SampleRate SWis. RI gives an indication of any external sound clock 
hardware facilities present, and the configured state of automatic 
oversampling. A subset of the original sound system's sample rates are 

available; see Restrictions af the 8 bit emulation on page 5a-592. 



Enables or disables automatic oversampling 

Sound 

Sound_Mode 1 
(SWI &40144) 

On entry 

RO= I (reason code) 
RI =new state of automatic linear 2x oversampling: 0 ~disabled, I ~enabled 

On exit 

Use 

RO preserved 
RI = previous state of automatic linear 2x oversampling: 0 ~disabled, 

I~ enabled 

This call enables or disables automatic linear 2x oversampling, overriding the 
default set in CMOS RAM by *Configure SoundSystem (page Sa-608) . 

For a description of oversampling, see Oversampling on page Sa-591 . 

Sa-597 



Sound_LinearHandler (SW/ &40145) 

Sa-598 

Sound_LinearHandler 
(SWI &40145) 

Examines and controls the 16 bit linear stereo sound handler 

On entry 

RO = reason code 
Other registers depend on reason code 

On exit 

RO preserved 
Other registers depend on reason code 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call examines and controls the 16 bit linear stereo sound handler. 

The particular action of Sound_LinearHandler is given by the reason code in RO as 
follows : 

RO Action 

0 Returns the current 16 bit linear stereo sound handler 

Registers or removes the 16 bit linear stereo sound handler 

You must not use this call unless 16 bit sound hardware is configured, as 
determined by a preceding call of Sound_Mode 0 (see page 5a-596) . 

Page 

5a-600 
5a-601 



Related SWls 

None 

Related vectors 

None 

Sound 

Sa-599 



Sound_LinearHandlerO (SW/ &40145) 

Sa-600 

Sound_LinearHandler O 
(SWI &40145) 

Returns the current 16 bit linear stereo sound handler 

On entry 

RO = 0 (reason code) 

On exit 

Use 

RO preserved 
RI =pointer to current handler code, or 0 if no handler is installed 
R2 = parameter passed in RO to current handler, or - I if no handler is installed 

This call returns the current 16 bit linear stereo sound handler, giving the address 
of the handler code, and the parameter passed to it in RO. 



Sound 

Sound_LinearHandler 1 
(SWI &40145) 

Registers or removes the 16 bit linear stereo sound handler 

On entry 

RO= I (reason code) 
RI =pointer to new handler code, or 0 to remove the handler 
R2 = parameter passed in RO to handler, or - I if removing the handler 

On exit 

Use 

RO preserved 
RI =pointer to previous handler code, or 0 if no handler was installed 
R2 = parameter passed in RO to previous handler, or - I if no handler was installed 

This call registers or removes the 16 bit linear stereo sound handler. When 
registering, you give the address of the handler code - which is called to fill the 
sound DMA buffer - and a parameter passed to the handler in RO. The address and 
parameter of the previous linear handler (if any) are returned. 

Only one linear handler can be registered with the SoundDMA module. You should 
therefore only register your linear handler immediately before starting to play 
sound, and should re-register the previous handler as soon as you have finished. 

Sa-601 



Sound_SampleRate (SW/ &40146) 

Sa-602 

Determine/control sound sample rate 

Sound_SampleRate 
(SWI &40146) 

On entry 

RO = reason code 
Other registers depend on reason code 

On exit 

RO preserved 
Other registers depend on reason code 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call controls the sound sample rate. 

The particular action of Sound_SampleRate is given by the reason code in RO as 
follows : 

RO Meaning Page 

0 Reads the number of available sample rates 5a-604 

I Reads the current sample rate index, and the 5a-605 
corresponding sample rate 

2 Reads the sample rate corresponding to a sample rate 5a-606 
index 

3 Sets the current sample rate index 5a-607 

You must not use this call unless 16 bit sound hardware is configured, as 
determined by a preceding call of Sound_Mode 0 (see page 5a-596). 



Related SWls 

None 

Related vectors 

None 

Sa-603 



Sound_SampleRate 0 (SW/ &40146) 

5a-604 

Sound_SampleRate 0 
{SWI &40146) 

Reads the number of available sample rates 

On entry 

RO= 0 (reason code) 

On exit 

Use 

RO preserved 
RI =number of available sample rates , or nsr (see page 5a-590) 

This call reads the number of available sample rates , or nsr. 

You need to know this value to ensure that the sample rate index you must pass to 
most other Sound_SampleRate reason codes is in the required range I - nsr (see 
Sample rates on page 5a-590) . 



;;;>ouna 
;;:,:-=->. 

Sound_SampleRate 1 
{SWI &40146) 

Reads the current sample rate index, and the corresponding sample rate 

On entry 

RO= I (reason code) 

On exit 

Use 

RO preserved 
RI =current sample rate index, in the range I - nsr (see page 5a-590) 

R2 =current sample rate, in units of Vio24 Hz 

This call reads the current sample rate index, and the corresponding sample rate , 

measured in units of \11024 Hz. For example a sample rate of 20 kHz (20000 Hz) 

would be returned in R2 as 20000 x 1024, which is 20480000. 

Sa-605 



Sound_SampleRate 2 (SW/ &40146) 

5a-606 

Sound_SampleRate 2 
(SWI &40146) 

Reads the sample rate corresponding to a sample rate index 

On entry 

RO= 2 (reason code) 
RI =sample rate index to be read, in the range I - nsr (see page Sa-590) 

On exit 

Use 

RO, RI preserved 
R2 =sample rate corresponding to the given sample rate index, in units of Yio24 Hz 

This call reads the sample rate corresponding to a sample rate index, in units of 

Y1024 Hz. For example a sample rate of 20 kHz (20000 Hz) would be returned in R2 
as 20000 x I 024, which is 20480000. 

Once you have called Sound_SampleRate 0 to find the number of available sample 

rates (nsr). you can then : 

• Enumerate the available sample rates by repeatedly making this call with RI 
set to all valid indexes (ie I - nsr inclusive) . 

• Find a particular sample rate (or the closest approximation , if acceptable) by 
using this call in a 'binary chop' algorithm, s ince sample rates increase 
monotonically with increasing sample rate index. 



Sets the current sample rate index 

Sound 

Sound_SampleRate 3 
(SWI &40146) 

On entry 

RO= 3 (reason code) 
RI =new sample rate index, in the range I - nsr (see page 5a-590) 

On exit 

Use 

RO preserved 
RI =previous sample rate index 
R2 =previous sample rate , in units of Vio24 Hz 

This call sets the current sample rate index. 

It returns the previous sample rate index, and the corresponding sample rate 
measured in units of \11024 Hz. For example a sample rate of 20 kHz (20000 Hz) 
would be returned in R2 as 20000 x 1024, which is 20480000. 

Sa-607 



*Commands 

*Commands 

Sa-608 

*Configure SoundSystem 

Sets the configured value for the type of sound hardware to use 

Syntax 

*Configure SoundSystem 8bit I 16bit [oversampled] I n 

Parameters 

8bit 

16bit 

oversampled 

n 

Use 

standard 8 bit µ-law sound, as on older hardware 

standard 16 bit sound, as on newer hardware or Acorn 
16 bit Audio Card 

perform sample interpolation to keep sample rate over 
24kHz 

value 0 - 7 to store in SoundSystem bits of CMOS RAM 
(at offset 132, bits 5 - 7: see CMOS RAM allocation on 
page 5a-73) 

*Configure SoundSystem sets the configured value for the type of sound hardware 
to use, and whether to use oversampling for 16 bit sound. 

For a description of oversampling, see Oversampling on page 5a-59 I. 

Example 

*Configure SoundSystem 16bit oversampled 

Related commands 

None 



133 CompressJPEG 

Introduction and Overview 
The CompressJPEG module is available from RISC OS 3.6 onwards. It provides 
SWls with which you can compress raw image data into a JPEG image. It is a port of 
release 5 of the Independent JPEG Group's software. 

The module is not in the RISC OS 3.6 ROM, but is instead held in the System 
application. If you wish to use the module in a program, you should first use the 
following command to ensure it is loaded: 

RMEnsure CompressJPEG 0.00 RMLoad System:Modules.JCompMod 

To compress raw image data into a JPEG image, you start by calling 
CompressJPEG_Start (page 5a-61 l). which sets up the compression environment. 
You then compress each row of the source image with a separate call to 
CompressJPEG_WriteLine (page 5a-613) . Finally you finish the compression by 
calling CompressJPEG_Finish (page 5a-614) . 

Sa-609 



Technical details 

Technical details 

How JPEG images are compressed 

5a-610 

JPEG files encode colour pictures as YUV (Y = intensity, U and V are colour) data. 

Compressing involves the following steps: 

• Convert RGB data to YUV. 

• Throw away 3 out of 4 of the U and V pixels. 

• Convert 8x8 tiles of Y, U and V values through a Discrete Cosine Transform, 

into an 8x8 square of frequency coefficients. 

• Discard coefficients which are zero, or close to zero. This will tend to change 

the visual appearance of the picture very little. 

• Reduce the accuracy with which the remaining coefficients are held (known as 

'quantisation') . Again, this changes the appearance very little. The amount by 

which this is done, controls the compression factor of the image. By now, most 

of the coefficients will be zero. 

• Reorder the 64 coefficients in a zig-zag order, which increases the average 

length of runs of zeros in the coefficient block. 

• Huffman-encode the resulting stream of values. 

(Incidentally, decompression involves reversing these steps.) 



SWI calls 

CompressJPEG 

CompressJPEG_Start 
(SWI &4A500) 

Starts the JPEG compression process, setting up various parameters for it 

On entry 

RO = pointer to buffer for JPEG data 
RI =size of JPEG data buffer 
R2 = pointer to block of parameters : 

+O width of image in pixels 
+4 height of image in pixels 
+8 quality value (0 - 100): lower quality results in a smaller image 
+ 12 number of 8 bit components in source: 

3 ~ 24 bit colour, I ~ 8 bit greyscale 
+16 horizontal DP! of image, or 0 if unknown 
+20 vertical DP! of image, or 0 if unknown 

R3 = pointer to workspace area , or 0 for the CompressJPEG module to allocate its 
own workspace from the RMA 

R4 = size of workspace area (if R3 =!- 0) 

On exit 

RO = JPEG tag, to be passed to other CompressJPEG SW!s 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 
This call starts the JPEG compression process, setting up various parameters for it . 

Sa-611 



CompressJPEG_Start (SW/ &4A500) 

5a-612 

The buffer for the JPEG data should be as large as possible, since the JPEG 

compression routines cannot guarantee to compress the image by a fixed amount. 

If you wish to supply your own workspace area, its required size for a colour (24 bit) 

image is: 

20000 +((image width rounded up to a multiple of 16) x 30) 

and its required size for a greyscale (8bit) image is: 

20000 +((image width rounded up to a multiple of 16) x 9) 

An error is returned if the workspace area becomes full. 

Related SWls 

CompressJPEG_ WriteLine (page 5a-6 l 3). CompressJPEG_Finish (page 5a-6 l 4) 

Related vectors 

None 



CompressJPEG 

CompressJ PEG_ Writeline 
(SWI &4A501) 

Compresses one row of source pixels into the JPEG buffer 

On entry 

RO= JPEG tag 
RI =pointer to a row of pixels: 

For colour: a buffer of continuous RGB values - ie a byte stream of 
the format R, G, B, R, G, B .. . 

For greyscale: a buffer of continuous 8 bit gray values 

On exit 

RO, RI preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call compresses one row of source pixels into the JPEG buffer. It should be 

called once for each row of the source data. 

An error is returned if the JPEG buffer becomes full. 

Related SWls 

CompressJPEG_Start (page 5a-6 I I). CompressJPEG_Finish (page 5a-6 I 4) 

Related vectors 

None 

Sa-613 



CompressJPEG_Finish (SW/ &4A502) 

Sa-614 

CompressJ PEG_Finish 
{SWI &4A502) 

Finishes the JPEG compression process, returning the size of the complete image 

On entry 

RO= JPEG tag 

On exit 

RO = size of JPEG image within the buffer 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call finishes the JPEG compression process , returning the size of the complete 

image. Any workspace claimed by the Compress)PEG module for the compression 

is released. 

Related SWls 

Compress)PEG_Start (page 5a-61 l). CompressJPEG_WriteLine (page 5a-613) 

Related vectors 

None 



CompressJPEG 

Example program 
The pseudo-code below shows you how you might convert a 32 bpp sprite into a 
JPEG: 

/* Pseudo C code for converting a 32bpp sprite to a JPEG */ 

Allocate buffer for JPEG = JPEG_buffer; 
Allocate buffer for workspace = workspace_buffer ; 
Allocate buffer for line of source pixels = line_buffer; 

argument_block arguments ; 
arguments .width = sprite_width_in_pixels ; 
arguments.height = sprite_height_ in_pixels; 
arguments.quality = quality; 
arguments.components = 3; 
arguments.horizontal_ dpi = O; 
arguments.vertical_ dpi = O; 

sprite_pointer = start_ of_data_within_sprite; 

JPEG_tag = CornpressJPEG_ Start(JPEG_buffer , JPEG_buffer_size, arguments , 

workspace_buffer, workspace_buffer_ size); 

for loop = 1 to sprite_height_in_pixels { 
convert_ sprite_data_to_rgb(sprite_pointer , line_buffer) ; 
CornpressJPEG_WriteLine(JPEG_tag , line_buffer); 
sprite_pointer += sprite_width_in_words; 

CornpressJPEG_ Finish(JPEG_tag) ; 

Sa-615 



Sa-616 



134 Expansion card support 

Introduction and Overview 
The expansion card interface has been enhanced in several ways for RISC OS 3.5. It 
now supports: 

• 32 bit wide data paths 

• a directly mapped area of l 6MB per card. known as EASI space 

• an interface dedicated to a network card 

• Direct Memory Addressing (OMA). 

This chapter covers the changes that have been made in order to support these 
enhancements; all these changes apply from RISC OS 3.5onwards. 

Sa-617 



Technical details 

Technical details 

Using EASI space 

Sa-618 

EASI space is an extension of the existing space giving a directly mapped area of 

l 6MB for each expansion card. The address of this space is set in the RISC OS 

ROM. 

ROMs in EASI space 

The expansion card bus is electrically capable of having ROMs (or EPROMs) 

connected, which RISC OS can then read. The ROMs are only 8 bits wide and are 

copied once at start up into RAM. 

Under earlier versions of RISC OS, this was always done using a loader and paging 

register. However, from RISC OS 3.5 onwards there is no need for this if a ROM is 

mapped into EASI space, since RISC OS does the loading itself. Mapping a ROM 

into EASI space has other advantages: access to the entire ROM address space is 

faster, and not having loaders frees -up ROM space. 

The format for a ROM in EASI space is the same as that for a ROM in the normal 

expansion card space; it must contain the same ECid information . However, since 

the size restriction is lifted there is no need to have a second Chunk directory 

accessed through the loader. Note that although the ROM is in the EASI space, the 

interrupt relocations are still relative to the base of expansion card space. 

Determining where a ROM is to be loaded 

RISC OS will cope with a ROM in only one of expansion card space and EASI space, 

not both at once. When determining which is present, it first checks for a ROM in 

expansion card space by reading location 0. If bit I is low it assumes there is a 

ROM in expansion card space, and does not access EASI space. 

If you wish to use a ROM in EASI space, it is vital that your expansion card either 

does not respond to reads of location 0, or provides data with bit I set high. Failure 

to do this will make RISC OS read spurious data as it attempts to load a 

non-existent ROM from expansion card space, and ignores the ROM in EASI space. 

It also follows that you must not map read-sensitive hardware into location 0, or 

its state may be altered as RISC OS attempts to load ROMs at boot time. 



Expansion card support 

Finding EASI space 

You can read the logical and physical addresses of the area and its size by calling 
Podule_Readlnfo (page 5a-623) . The returned addresses are stable as long as the 
machine configuration is stable, and therefore only need be read once, after a 
res~t . 

The network card 

ROMs on the network card 

RISC OS 3.5 - and later versions - loads the ROM on a network card itself, in a 
similar manner to RO Ms mapped into EASI space. For this loader to work, it is vital 
that your network card conforms to the current hardware specification. 

The format for a ROM on a network card is also the same as that for a ROM in the 
normal expansion card space. It must contain the same ECid information; the 
interrupt relocations must be present and all be set to zero. Since the loader is 
effectively loaded before the enumeration begins, there is again no need to have a 
second Chunk directory. 

SWls and the network card 

Most SWls work with the network card, simply by quoting its ROM section when 
calling (see ROM sections on page 5a-620) . You should note the following: 

• Podule_ReadBytes (page 4-143) reads the network ROM image using the 
loader built in to RISC OS. 

• Podule_ WriteBytes (page 4-144) will not accept the network ROM section, 
because its ROM space is treated as read only. 

• Podule_CallLoader (page 4-145) will not accept the network ROM section, 
because the loader isn't valid. 

• Podule_RawRead (page 4-147) and Podule_RawWrite (page 4-148) access the 
network card's device address space. 

• Calls such as Podule_HardwareAddress (page 4-150) and 
Podule_HardwareAddresses (page 4-154) return the device address. 

Sa-619 



ROM sections 

ROM sections 

New ROM section numbers 

Sa-620 

ROM section numbers have been allocated for a further four expansion cards. and 

for the network card. The network card is the highest numbered one, and is last in 

the printout from *Podules. 

The new numbers are: 

ROM section Meaning 

4 Expansion card 4 
5 Expansion card 5 
6 Expansion card 6 
7 Expansion card 7 
8 Network card 

New ways of specifying the ROM section 

All expansion card SWis (with the single exception of Podule_RetumNumber) use 

R3 to specify which expansion card or extension ROM to access. Some calls can 

access both, and are documented as accepting a ROM section number; others can 

access only expansion cards, and are documented as accepting an expansion card 

slot number (ie a subset of ROM sections) . 

As well as ROM section numbers. these SWls now also accept a hardware base 

address (as returned by Podule_HardwareAddress or Podule_HardwareAddress) . 

whether or not it is combined with a CMOS address. 

The 'formal definition' of what is acceptable in R3 is as follows (demonstrated by 

the following pseudo code): 

CASE 
WHEN Value = -1: System ROM==> Error 'System ROM not acceptable as 

Expansion Card or Extension ROM number " 

WHEN Value <= -2 AND>= -16 : Extension ROM(-Value-1) 

WHEN Value>= 0 AND<= 31: Expansion Card(Value) 

WHEN Value AND &FFE73000 &03240000 : Expansion Card( (Value AND &C000)>>14) 

WHEN Value AND &FFE73000 &03270000 : Expansion Card(4+(Value AND &C000)>>14) 

WHEN Value AND &FFFF3FFF &03000000 : Expansion Card( (Value AND &C000)>>14) 

WHEN Value AND &FFFF3FFF &03030000: Expansion Card(4+(Value AND &C000)>>14) 

WHEN Val ue>= &70 AND <=&7F: Expansion Card((Value AND &C)>>2) 

WHEN Value>= &3C AND <=&4F : Expansion Card(7-((Value AND &C)>>2)) 

WHEN Value= EASILogicalBase(O .. 7) : Expansion Card(O .. 7) 

WHEN Value= EASIPhysicalBase(O .. 7): Expansion Card(O . . 7) 

OTHERWISE Error 'Bad Expansion Card or Extension ROM number" 

ENDCASE 



Expansion card support 

Changes to the combined hardware address 

The definition of the combined hardware address has had to be changed to allow 

for the introduction both of the network card and of processors with 32 bit 

addressing. 

The combined hardware address consists of the base address of CMOS RAM and 

the base address of an expansion card or extension ROM, OR'd together. The bits 

that are set in one address can be guaranteed unused in the other, because the two 

addresses are so widely separated. By using two different masks, the two addresses 

can be extracted. 

In earlier versions of RISC OS: 

• All expansion cards had a base address above & IOOO, and so the lower I 2 bits 

of the combined address were used for the CMOS base address. 

• The processor used 26 bit addressing, so the top 6 bits of the combined 

address were unused 

However, under RISC OS 3.5 and later: 

• The network card has a base address below & I 000, and so now only the lower 

I 0 bits of the combined address are used for the CMOS base address (which is 

still sufficient) . 

• The processor supports 32 bit addressing, so the combined address now uses 

all 32 bits. 

The new definition is thus: 

Meaning Bits 

0-9 
I 2 - 32 

base address of CMOS RAM - expansion cards only (I 0 bits) 
bits 12 - 32 of base address of expansion card/extension ROM 

All this has really done is to move the boundary between the two parts of the 

combined address. Existing expansion cards and extension ROMs will continue to 

work, because their base address under RISC OS 3. 5 will still only have bits 12 - 25 

set, as before. 

These changes apply both to SWis returning combined hardware addresses , and to 

the entry points for loaders. Entry points in new expansion cards should now 

extract the hardware base address by masking the incoming register value thus: 

LDR Rmv, =2 00000000000000000000001111111111 

BIC Rba, Rha, Rmv 

or thus: 

LDR Rmv, =2 11111111111111111111110000000000 

AND Rba, Rha, Rmv 

5a-621 



Simple expansion card descriptions 

and should obtain the CMOS base address thus: 

LDR Rmv, =2_11111111111111111111110000000000 

BIC Rea, Rha, Rrnv 

or thus: 

LDR Rmv, =2 00000000000000000000001111111111 

AND Rea, Rha, Rrnv 

Simple expansion card descriptions 

Some expansion cards use only a simple ECid, where the product is identified by a 

4 bit ID field unique to that product. However, there is no way of providing a textual 

description of the product. Support for this has been added from RISC OS 3.5 

onwards. 

The description is held in the file : 

Resourees:$.Resourees.Podule.Messages 

It is looked up as a token consisting of the string Simple followed by a single 

hexadecimal digit giving the ID field (which must be I - F). For example, the line 

that is looked up for an ID field of I is: 

Simplel:Aeorn Econet 

This method is used to extend *Podules (to return a description of simple 

expansion cards. The description can also be read using Podule_Readinfo. 

New chunk type for device data 

5a-622 

A new chunk type has been defined for device data (see Operating System Identity Byte 

on page 4-128) . The value 9 indicates a two byte chunk used to store a CRC of the 

ROM, typically only used by proprietary diagnostic and test software. 



SWI calls 

Expansion card support 

Podule Readlnfo 
(SWI &40280) 

This call returns a selection of data specific to a given expansion card 

On entry 

RO = bitmask of required results (see below) 
RI =pointer to buffer to receive word aligned word results 
R2 = length in bytes of buffer 
R3 =ROM section (see page 4-133 and page 5a-620) 

On exit 

RO, RI preserved 
R2 = length of results 
R3 preserved 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call returns a selection of data specific to the given expansion card. The 

information required is specified by bit flags . The data is returned in single words , 

which are placed into the user supplied buffer at word intervals, in the same order 

as the bit flags (ie data for the lowest bit set is at the lowest address). 

5a-623 



Podule_Readlnfo (SW/ &40280) 

5a-624 

The bit flags are: 

Bit 

0 

2 
3 
4 
5 
6 
7 
8 
9 
10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 - 31 

Value to return when set 

Expansion card/Extension ROM number 
Normal (synchronous) base address of hardware 

CMOS address 
CMOS size in bytes 
Extension ROM or network ROM base address 

Expansion card ID 
Expansion card product type 
Combined hardware address 
Pointer to description (zero for no description) 

Address of EASI space 
Size of the EASI space in bytes 
Logical number of the primary OMA channel 

Logical number of the secondary OMA channel 

Address of Interrupt Status Register 
Address of Interrupt Request Register 
Address of Interrupt Mask Register 
Interrupt Mask value 
Device Vector number (for IRG) 
Address of FIG as Interrupt Status Register 
Address of FIG as Interrupt Request Register 

Address of FIG as Interrupt Mask Register 
FIG as Interrupt Mask value 
Device Vector number (for FIG as IRG) 
Address of Fast Interrupt Status Register 
Address of Fast Interrupt Request Register 
Address of Fast Interrupt Mask Register 

Fast Interrupt Mask value 
Ethernet address (low 32 bits) 
Ethernet address (high 16 bits) 
Address of MEMC space (zero for no space) 

Reserved (must be zero) - error if set 

The description strings may be in temporary buffers (for example, MessageTrans 

error buffers) so it is wise to copy them to private workspace before calling any 

otherSWis. 

When updating any of the nine interrupt registers it is essential that both IRG and 

FIG are disabled for the duration. 

This SWI supersedes other expansion card SWis such as Podule_HardwareAddress. 

This call is only available from RISC OS 3.5 onwards. 



Expansion card support 

Related SWls 

Podule_ReadID (page 4-138). Podule_ReadHeader (page 4-139), 

Podule_HardwareAddress (page 4-150), 
Podule_HardwareAddresses (page 4-154). Podule_ReturnNumber (page 4-156) 

Related vectors 

None 

Sa-625 



Podule_SetSpeed (SW/ &4028E) 

Sa-626 

Podule_SetSpeed 
(SWI &4028E) 

Changes the speed of access to expansion card hardware 

On entry 

RO = new speed required : 
0 ~ No change, I ~ IOMD+ timing type A, 2 ~ IOMD+ timing type B 

3 ~ IOMD+ timing type C, 4 ~ IOMD+ timing type D 

R3 =ROM section (see page 4-133 and page 5a-620) 

On exit 

RO = previous speed setting 
R3 preserved 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call changes the speed of access to expansion card hardware. The kernel 

initialises all expansion cards' access speed to type A. 

This call is only available from RISC OS 3.5 onwards. 

Related SWls 

None 

Related vectors 

None 



Expansion card support 

Application Notes 
Reading the machine supplied value for the Ethernet address should ideally be 

carried out using the following code. Note that this is not the only way to get the 

required result . but it is the recommended way: 

GetEthernetAddress 

Entry; 
R3 ==> Any recognisable part of podule addressing 

Exit; 
RO ==> 
Rl ==> 

STMFD 
MOY 
MOV 
MOY 
SWI 
LDMVCFD 
MOV 
MOV 

Loop 
SWI 
BVS 
TEQ 
BEQ 
TEQ 
BNE 
TEQ 
BNE 
SUB 
MOV 
SWI 
LDMVCFD 

ErrorExit 
CMP 

Low 32 bits of the Ethernet address 

High 16 bits of the Ethernet address 

sp ! , { r0-r2, r4, lr ) 

rO, &18000000 

rl, sp 
r2, #8 
XPodule_ Readinf o 
sp!, { r0-r2, r4, pc) 

r4, rO 
rO, #0 

XPodule_ EnumerateChunks 

ErrorExit 
rO, #0 
ErrorExit 
r2, #&F7 
Loop 
rl, #6 
ErrorExit 
rO , rO , #1 
r2 , sp 
XPodule_ ReadChunk 

sp ! , { r0-r2, r4, pc ) 

Bits for read high and low 

Point to the buffer 
Size of buffer 

Return with results if OK 

Save the original error 

Start at the first chunk 

End of list, so not found 

Ethernet Address? 

Wrong size is a failure 

Back to the chunk we liked 

Pass in the data pointer 

Return with results if OK 

Set V 

STR 
pc, #&80000000 
r4, [ sp, #0 ] Original error Podule_ Readinfo 

LDMFD sp ! , { r0-r2, r4, pc ) 

Sa-627 



Sa-628 



135 Joystick module 

Introduction and Overview 
The Joystick module has been extended in RISC OS 3.6 to provide support for 

PC-style analogue joysticks, as well as the Atari-style digital joysticks supported by 

earlier versions of RISC OS. 

Support has also been added for calls used with analogue input devices on older 

Acorn machines. 

5a-629 



Technical details 

Technical details 

Changes to existing SWls 

Joystick_Read (page 4-208) 

Joystick_Read has been extended to support reason codes. In RISC OS 3.6 these 

are used to specify the format in which to return the read values: 8 bit , or 16 bit 

(available for analogue only) . For full details. see page 5a-639. 

New SWls 

Joystick calibration 

Different analogue joysticks will output different voltages when in the same 

position . Two new SWis have been added to calibrate the voltages, so that all 

analogue joysticks return consistent values when their position is read. These are: 

• Joystick_CalibrateTopRight (page 5a-642) 

• Joystick_CalibrateBottomLeft (page 5a-642) 

OS_Byte calls 

You should also see OS_Byte calls on page 5a-63 l for details of OS_Byte calls 

added. 

Acorn 1/0 expansion card compatibility 

5a-630 

Previously, analogue input devices could be connected to a RISC OS computer 

using the Acorn 1/0 Podule's ADC port. 

Pinout of connectors 

The old 1/0 Podule and the new joystick interface use the same type of connector. 

However, the pinout used by a PC-style joystick - and hence by the new joystick 

interface - differs from that used by the 1/0 Podule's ADC port. You will therefore 

need an adaptor cable to connect devices intended for the old 1/0 Podule to the 

new joystick interface. 



Joystick module 

Backward compatibility of software 

The I/O Podule provides various OS_Byte calls and the BASIC ADVAL command to 

support its ADC port. If there is no 1/0 Podule present then the Joystick module 

provides the same calls, which instead access the joystick interface (provided it has 

be~n configured for analogue input) . 

OS_Byte calls 

The OS_Byte calls provided are: 

• OS_Byte 16 (page 5a-632), which stores the number of channels to be sampled 

• OS_Byte 17 (page 5a-633). which returns to the caller, doing nothing (rather 

than forcing an ADC conversion, as on the I/O Podule) 

• OS_Byte 128, 0-4 (page 5a-634). which returns the switch state and last 

channel converted, or a channel's uncalibrated position 

• OS_Byte 188 (page 5a-636), which reads the current channel 

• OS_Byte 189 (page 5a-637), which reads the number of channels to be 

sampled 

• OS_Byte 190 (page 5a-638), which reads the resolution of conversion. 

Differences between the 1/0 Podule's hardware and the joystick interface's 

hardware mean that not all the OS_Byte calls provide identical functionality in 

both implementations. However, the vast majority of I/O Podule software should 

still run using the joystick interface, without change. 

The BASIC ADVAL keyword 

ADVAL is a BASIC function that takes a single parameter. The Joystick module adds 

support for parameters 0 - 4: 

• ADVAL (0) returns an integer giving the state of switch 0 on joysticks 0 (in 

bit 0) and I (in bit I). 

• ADVAL (I) returns an integer giving the raw position of channel I; this is 

uncalibrated, in the range 0 - 65535. 

Similarly, ADVAL (2), (3) and (4) return respectively the raw position of 

channel 2, 3 and 4. 

All other ADVAL parameters continue to work in the same way as always; they are 

documented in the BBC BASIC Reference Manual. 

Sa-631 



SW/ calls 

SWI calls 

Sa-632 

Stores the number of channels to be sampled 

On entry 

RO= 16 (reason code) 
RI =number of channels to be sampled (0 - 4) 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

OS_Byte16 
(SWI &06) 

This call stores the number of channels to be sampled. If the value passed is 

greater than 4, it is stored as 4. This stored value can be read using OS_Byte 189. 

(On the 1/0 Podule this call also set the number of channels to be sampled; but 

this is not possible on the joystick interface's hardware.) 

Related SWls 

OS_Byte 189 (page 5a-637) 

Related vectors 

None 



Returns to the caller, doing nothing 

On entry 

RO= I 7 (reason code) 

Joystick module 

OS_Byte 17 
(SWI &06) 

RI =channel number on which to force ADC conversion (0 - 4) - not implemented 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call returns to the caller. doing nothing. 

(On the VO Podule this call forced an ADC conversion on the given channel; but 

this is not possible on the joystick interface's hardware.) 

Related SWls 

None 

Related vectors 

None 

5a-633 



OS_Byte 128, 0-4 (SW/ &06) 

5a-634 

OS_Byte 128, 0-4 
(SWI &06) 

Returns the switch state and last channel converted, or a channel 's uncalibrated 
position 

On entry 

RO= 128 (reason code) 
RI =sub-reason code: 

O return switch state and number of last channel converted 
I - 4 channel number for which to return position 

On exit 

RO preserved 
RI =state of switch 0 on joysticks 0 (in bit 0) and I (in bit I) - if RI = I on entry; 

or low byte of 16 bit uncalibrated position for channel given in RI on entry 
R2 = number of last channel converted - if RI = I on entry; 

or high byte of 16 bit uncalibrated position for channel given in RI on 
entry 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns the switch state and last channel converted, or a channel's 
uncalibrated position, depending on the value passed in R4: 

• If R4 is zero on entry, this call returns the state of one switch on each of the 
first two joysticks; the reason only two values are returned is for backward 
compatibility with the 1/0 Podule software. This call also returns the number 
of the last channel used for ADC conversion. 



Joystick module 

• If R4 is a channel number on entry (ie I - 4) , this call instead returns the 

uncalibrated position of that channel, in the range 0 - 65535 . 

(On the 1/0 Podule this call does the same.) 

For details of other OS_Byte 128 sub-reason codes, see page 1-166. 

Related SWls 

None 

Related vectors 

None 

Sa-635 



OS_Byte 188 (SW/ &06) 

Sa-636 

Reads the current channel 

On entry 

RO= 188 (reason code) 

On exit 

RO preserved 
RI =current channel (I - 4) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call reads the current channel. 

(On the 110 Podule this call does the same.) 

Related SWls 

None 

Related vectors 

None 

OS_Byte 188 
(SWI &06) 



Reads the number of channels to be sampled 

On entry 

RO= 189 (reason code) 

On exit 

RO preserved 
RI =number of channels to be sampled (0 - 4) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

Joystick module 

OS_Byte 189 
(SWI &06) 

This call reads the number of channels to be sampled, as stored using OS_Byte 16. 

(On the 1/0 Podule this call does the same.) 

Related SWls 

OS_Byte 16 (page 5a-632) 

Related vectors 

None 

Sa-637 



OS_Byte 190 (SW/ &06) 

Sa-638 

Reads the resolution of conversion 

On entry 

RO= 190 (reason code) 

On exit 

RO preserved 
RI = 0 (default conversion , which is 16 bit) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

OS_Byte 190 
(SWI &06) 

This call reads the resolution of conversion. This is always returned as 0, meaning 

the default for the hardware, which is 16 bit. 

(On the 110 Podule this call can return 0 for the default (which for its hardware is 

12 bit). or 8 for 8 bit conversion, or 12 for 12 bit conversion; however, hardware 

limitations mean that conversion can only be guaranteed to 8 bits.) 

Related SWls 

None 

Related vectors 

None 



Returns the state of a joystick 

On entry 

RO= joystick number and reason code: 

--J--·-·· ·· ·-- -· -

Joystick_ Read 
(SWI &43F40) 

bits 0 - 7 joystick number (0 ==>first joystick, I ==> second, etc) 
bits 8 - 15 reason code 
bits 16 - 31 reserved (must be zero) 

On exit 

Registers depend on reason code 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This SW! is used to obtain the state of the requested joystick. The format in which 
the state is returned is set by the reason code in bits 8 - 15 of RO: 

Reason 

0 

Meaning Page 

Returns the 8 bit state of a digital or analogue joystick 5a-640 

Returns the 16 bit state of an analogue joystick 5a-641 

Related SWls 

None 

Related vectors 

None 

Sa-639 



Joystick_Read O (SW/ &43F40) 

5a-640 

Joystick_Read 0 
(SWI &43F40) 

Returns the 8 bit state of a digital or analogue joystick 

On entry 

RO= joystick number and reason code: 
bits 0 - 7 joystick number (0 ~first joystick, I ~ second, etc) 

bits 8 - 15 0 (reason code) 
bits 16 - 31 reserved (must be zero) 

On exit 

Use 

RO = 8 bit joystick state: 
bits O - 7 

bits 8 - 15 

bits 16- 23 

bits 24 - 31 

signed Yvalue in the range-127 (down) to 127 (up) ; 

for a single switch joystick, -64 ~down, 0 ~ rest, and 

64~up 

signed X value in the range -127 (left) to 127 (right); 

for a single switch joystick, -64 ~ left, 0 ~ rest , and 

64 ~right 
switches (eg fire buttons) starting in bit 16; 
unimplemented switches return 0 
reserved 

This reason code returns the 8 bit state of a digital or analogue joystick. 

For an analogue joystick, this call reads the last conversion made; it does not force 

a conversion itself. Furthermore, conversions are not started until you first call this 

SW!. That first call always returns X = 0, Y = 0, and no switches closed, since there 

is no completed conversion to read. 

Applications which are only interested in state (up, down, left, right) should not 

simply test the bytes for positive, negative or zero. We recommend that the 'at rest' 

state should span a middle range, say from -32 to 32, since you cannot always rely 

upon analogue joysticks to produce a particular value when at rest . 

This reason code is available from RISC OS 3 onwards. (In earlier versions of the 

RISC OS 3 Programmer's Reference Manual it was referred to simply as Joystick_Read , 

since reason codes were not in use.) 



Returns the 16 bit state of an analogue joystick 

Joystick_Read 1 
(SWI &43F40) 

On entry 

RO= joystick number and reason code: 
bits 0 - 7 joystick number (0 ==>first joystick, I ==> second, etc) 
bits 8 - 15 I (reason code) 
bits 16 - 31 reserved (must be zero) 

On exit 

Use 

RO = 16 bit joystick position: 
bits 0 - 7 signed Yvalue in the range 0 (down) to 65535 (up) 
bits 8 - 15 signed X value in the range 0 (left) to 65535 (right) 

RI =joystick switch state: 
bits 0 - 7 switches (eg fire buttons) starting in bit O; 

unimplemented switches return 0 
bits 8 - 31 reserved 

This reason code returns the 16 bit state of an analogue joystick. 

For an analogue joystick, this call reads the last conversion made; it does not force 
a conversion itself. Furthermore, conversions are not started until you first call this 
SW!. That first call always returns X = 0, Y = 0, and no switches closed, since there 
is no completed conversion to read. 

Applications which are only interested in state (up, down, left, right) should not 
simply test the bytes for minimum, middle, and maximum values. We recommend 
that the 'at rest' state should span a middle range, say from 24576 ( &6000) to 40960 
( &AOOO). since you cannot always rely upon analogue joysticks to produce a 
particular value when at rest . 

This reason code is available from RISC OS 3.6 onwards. 

5a-641 



Joystick_ Calibrate TopRight (SW/ &43F41) 

Sa-642 

Joystick_CalibrateTopRight 
{SWI &43F41) 

Calibrates analogue joysticks to return the full range of values 

On entry 

On exit 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call calibrates analogue joysticks to return the full range of values. You should 

make this call with all joysticks held in the top right position . 

To calibrate, you must call both this SWI and Joystick_CalibrateBottomLeft. Once 

you have called one of this pair of SWis , Joystick_Read (page 5a-639) and the 

ADVAL command return an error, until you have completed the process of 

calibration by calling the other one of the pair. The read calls will then return their 

full range of values. 

Related SWls 

Joystick_CalibrateBottomLeft (page 5a-643) 



JoysrtcK moawe 

Joystick_CalibrateBottomleft 
(SWI &43F42) 

Calibrates analogue joysticks to return the full range of values 

On entry 

On exit 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

_ . Re-entrancy 

Use 

Not defined 

This call calibrates analogue joysticks to return the full range of values. You should 
make this call with all joysticks held in the bottom left position. 

To calibrate. you.must call both this SW! and Joystick_CalibrateTopRight. Once you 
have called one of this pair of SW!s, Joystick_Read (page 5a-639) and the ADVAL 
command return an error, until you have completed the process of calibration by 
calling the other one of the pair. The read calls will then return their full range of 
values. 

Related SWls 

Joystick_CalibrateTopRight (page 5a-642) 

Sa-643 



5a-644 



136 Monitor power saving 

Introduction and Overview 
Government agencies and independent organisations worldwide are involved in 
setting limits or goals for power consumption in office equipment, in order to slow 
the growth in overall demand for electric power. Desktop computers are one of 
these agencies' primary targets, especially their displays, which are a significant 
portion of their power consumption. 

VESA (the Video Electronics Standards Association) has produced a proposed 
standard called Display Power Management Signalling (DPMS), which provides a 
common means for a display controller to send a signal to the display that makes 
it enter various power management states. DPMS is likely to be adopted by most 
major monitor manufacturers . 

Where the monitor supports this mechanism, RISC OS 3.5 and later versions can 
use it. This has been done by incorporating DPMS into the code used in RISC OS 3 
to blank the screen after the computer has been left untouched for a certain 
amount of time. 

Sa-645 



Technical Details 

Technical Details 

Sa-646 

The DPMS power saving states are distinguished by the presence or absence of 

pulses on the horizontal and vertical sync lines. 

State . Power Recover Horiz. Vert. Video 

saving time sync sync 

On None None Pulses Pulses Pulses 

Stand by Minimal Short No Pulses Blanked 
Pulses 

Suspend Substantial Longer Pulses No Blanked 
Pulses 

Off Maximum System No No Blanked 
Dependent Pulses Pulses 

To be compliant with DPMS, displays do not necessarily have to have all four 

states, but they must implement at least one reduced power consumption state. 

From RISC OS 3.5 onwards t~e screen blanking mechanism has been extended so 

that it can select any of the power states above: 

• The existing RISC OS 3 Jcreen blanking mechanism (ie blanking the video 

whilst leaving the sync pulses active) must still be possible. This is to avoid 

problems with older monitors which do not support DPMS and require the 

presence of sync pulses. 

• Screen blanking must be able to select all three reduced power states, since 

the DPMS proposed standard does not specify which of the three states a 

DPMS monitor must support. 

Controlling DPMS power saving states 

The DPMS power saving state to enter during screen blanking for a particular 

monitor is configured by an optional line in its Modelnfo file (see Modelnfo files on 

page Sa- I 04 ). The different states are specified using the values 0 - 3: 

Value 

0 

I 

2 

3 

Meaning 

DPMS disabled - screen blank just blanks video. 

Screen blank enters 'Stand-by' mode. 

Screen blank enters 'Suspend' mode. 

Screen blank enters 'Off' mode. 

There is no simple user interface to set or alter this value. 



Monitor power saving 

The power saving state is actually set by a video control parameter; see 
Service_ModeExtension on page 5a-124. The control index is 11, and the value is in the 
range 0 to 3, with the same meanings as above. The line in the Modelnfo file makes 
the ScreenModes module append such an entry to all VIDC lists it passes to the 
kernel. 

5a-647 



Sa-648 



137 The Toolbox modules 

Introduction and Overview 
The Acorn CIC++ product introduced the RISC OS Toolbox, which makes it much 
easier to write consistent, high-quality desktop applications whose user interface 
complies with the RISC OS 3 Style Guide. The key parts of the Toolbox are: 

• A number of object modules, each of which provides code that handles an object 
(ie a part of the user interface of a desktop application such as a window, or a 
menu, or an icon on the icon bar) and the components that make up that object 
(such as menu entries, buttons and sliders) 

• ResEdit, which is an interactive editor for designing the different objects in the 
application's user interface, and saving them to a resource file 

• ResTest, which is an application to check the appearance and behaviour of all 
the objects in a resource file 

• The Toolbox module itself, which is at the core of the system; it provides a 
layer of abstraction between an application and the Wimp, loads objects from 
resource files, and calls the code in object modules 

• The TinyStubs module, which provides TinySupport_ ... SW!s for internal use 
within the Toolbox. 

Advantages of the Toolbox 
Using the Toolbox has a number of advantages. In particular: 

• The object modules provide much of the code needed to handle your user 
interface, so you don't need to write the code yourself 

• ResEdit and ResTest provide a much quicker and easier way of designing user 
interfaces than the past method, which involved designing window templates 
and creating other components of your user interface (such as menus) in your 
application's code. 

• The Toolbox modules support multiple applications, so their code can be 
shared, avoiding unnecessary duplication of code, and hence cutting down on 
memory usage. 

Sa-649 



Toolbox modules in RISC OS 

Toolbox modules in RISC OS 

To cut down still further on the memory requirement of applications written to use 

the Toolbox, the RISC OS 3.6 ROM contains all its modules (ie the Toolbox module 

itself. the TinyStubs module, and each of the object modules) . Toolbox 

applications therefore don't need to load the modules into RAM, and much of their 

user interface is implemented by shared code that runs from ROM. The object 

modules supplied are: 

Module 
ColourMenu 

ColourDbox 

DCS 

File Info 

FontDbox 

FontMenu 

Icon bar 

Menu 

PrintDbox 
Proglnfo 

SaveAs 

Scale 
Window 

Provides 
a menu for selecting a desktop colour 

a dialogue box for selecting any colour 

a dialogue box for discard/cancel/save for unsaved data. and 
a dialogue box for handling quit with unsaved data 

a dialogue box showing information on a given file 

a dialogue box for selecting font characteristics 

a menu for selecting a font 

an icon on the left or right of the iconbar 

a Wimp menu 

a dialogue box for selecting print options 

a dialogue box for showing program information 

a dialogue box for saving data by icon drag 

a dialogue box for selecting a scale factor 

a Wimp window 

Toolbox documentation 

The Toolbox is documented in the User Interface Toolbox guide, supplied with 

Acorn CIC++. 

Writing applications to use the Toolbox 

Sa-650 

To write applications that use the Toolbox, you will need to purchase Acorn CIC++. 

so that you have: 

• documentation 

• the means to create resource files (ie ResEdit) 

• a binary distribution licence for the Toolbox modules so you can supply them 

with your application. and it can hence run on RISC OS 3. I and 3.5. 



The Toolbox modules 

Applications communicate with the Toolbox using standard RISC OS mechanisms 
such as SWls (known as Toolbox methods) and Wimp events (known as Toolbox events) . 
You therefore don't have to write Toolbox applications using the languages 
supplied with Acorn CIC++ (ie C, C++, and ARM assembler); you can use other 
languages such as BASIC. 

Sa-651 



Sa-652 



Appendixes 

5a-653 



5a-654 



138 Appendix A: Warnings on the use 
of ARM assembler 

Early versions of ARM 7 series processors corrupt the cache when code performs a 
store multiple to the last word in a cache line, which is in the cache, but is not 
written through the write buffer. These processors are fitted only to a very few 
Acorn computers. 

To work round this problem, all areas of memory that can be cached must also use 
the write buffer. This requires that: 

• All page tables that mark pages/sections as cacheable must also mark them as 
bufferable. 

• The control register must never be set up such that the cache is on, but the 
write buffer is disabled. 

• When the cache is disabled it is also flushed (as advised in the ARM710 
datasheet) . 

You must ensure that your own code follows these guidelines. 

RISC OS does not contravene these guidelines , except for versions of ROMPatch 
supplied with RISC OS 3. 5, a fixed version of which has been supplied with the very 
few processor upgrades that may show this fault. 

5a-655 



Sa-656 



139 

Draw files 

Objects 

Appendix B: File formats 

The Draw file format (see page 4-457) has been extended in RISC OS 3.6: 

A new object has been defined for including JPEG images within a Draw file . It uses 
the same object header as other Draw objects; see page 4-459. The rest of the data 
for the object is as follows : 

JPEG object 

Object type number 16 

Size 

4 
4 
4 
4 
24 
4 
n 
0 - 3 

Description 

width of image, in Draw units 
height of image, in Draw units 
x pixel density, in dpi 
y pixel density, in dpi 
transformation matrix 
length n of the JPEG image data 
JPEG image data in JFJF format 
up to 3 bytes. to pad to a word boundary 

The first four words can be derived from information returned by JPEG_Info 
(page 5a-146) . The transformation matrix is as described in Font_Paint (see 
page 3-429). in the same format used elsewhere in the Draw module and for other 
Draw file objects. 

For more details of JPEG images , see JPEG images on page 5a- I 43 , and CompressJPEG 

on page 5a-609. 

The Draw applications supplied with RISC OS 2 and RISC OS 3 do not use this 
object type. 

5a-657 



5a-658 



140 Appendix C: Errata and 
omissions for RISC OS 3 PRM 

This appendix contains a number of errata and omissions for the RISC OS 3 
Programmer's Reference Manual, together with clarification of some text. 

Unless otherwise specified, the comments below for any given operation or call 
refer to all versions of RISC OS that support it. 

lnsV, RemV, CnpV (page 1-88) 

The documentation for each of these vectors states that 'it must be called with 
interrupts disabled ... therefore code on the vector can only be entered with 
interrupts disabled and is not re-entrant.' 

From RISC OS 3 onwards, the default owner of the vector is the buffer manager, 
which disables interrupts itself. Calling code need no longer disable interrupts, 
and code claiming the vector should no longer assume that interrupts are disabled 
on entry. 

PaletteV (page 1-104) 

An undocumented reason code was added in RISC OS 3; this is R4 = 6. The reason 
code is reserved for internal use. 

Device numbers (page 1-118) 

For models using the 82C710 or 82C711 peripheral controller (eg the A5000). 
device numbers 11 and 12 were transposed. They should read: 

11 Floppy disc interrupt from 82C710/711 
12 IDE hard disc interrupt 

Events (page 1-145) 

Events may not be received in the order in which they are generated. 

Internet receive event and Internet transmission status event (page 1-160) 

These events are not used by DCI4 versions of the Internet module, such as the one 
in RISC OS 3.6. 

Sa-659 



5a-660 

Code offset (page 1-214) 

RI is undefined on entry in the case of a configuration keyword. 

Help and command keyword table (page 1-213) 

If the byte I of the information word is such that the final parameter is GSTrans'd, 

the command tail passed to the module will have a trailing space. 

SWI handler code (page 1-217) 

The SWI handler code is not passed the value of R9 specified by the caller. The 

RISC OS SWI despatcher corrupts R9 before calling a module's SWI handler code. 

and on exit from the handler restores R9 to the value specified by the caller. 

This may be fixed in future versions of RISC OS so that the SWI despatcher passes 

R9 uncorrupted to and from the SW! handler code. In preparation for this, you 

should ensure that any SW! handler code does not incorrectly corrupt R9. 

(Currently this would be hidden by the SWI despatcher preserving R9 around the 

SWI handler code.) 

Also. the example code on page 1-219 is wrong; it makes a SWI call in SVC mode 

without preserving R14 , and then uses the corrupted Rl4 to return . It should read: 

.UnknownSWIError 
STMFD Rl3 ! , {Rl4} ; Push Rl4 to call SWI in SVC 

ADR RO, ErrToken 

MOV Rl, #0 
MOV R2, #0 
ADR R4, ModuleTitle From module header 

SWI "XMessageTrans_ErrorLookup" 

LDMFD Rl3 !, {Rl4} Pull Rl4 

ORRS PC, Rl4, #Overflow_Flag 

OS_Module 20(page1-248) 

This reason code is not available in RISC OS 2. 

Unused SWI (page 1-291) 

The first paragraph of this description should read: 

This handler is called by the default owner of the UKSWIV. (When a SWI is called. 

RISC OS first checks if it is a kernel SWI; it then checks if it is a module SWI by 

looking at its hash table constructed from the headers of initialised modules. It 

then calls UKSWIV; this allows a user routine on that vector to try to deal with the 

SWI. If there is no such routine. or the one(s) that is present passes the call on. 

then the default owner of the vector - which is the kernel - calls the Unused SWI 

handler.) 



Appendix C: Errata and· omissions for RISC OS 3 PRM 

The default handler returns the error 'SWI &xxxxxxxx not known', or just 'SWI not 
known' if the SWI was called from an IRO process. 

OS_ReadVarVal (page 1-309) 

If you are checking for the existence/length of a variable (ie bit 31 of R2 is set on 
entry). RO is corrupted on exit. 

Transient CallBacks (page 1-292) 

You must not rely on any relationship between the order in which Transient 
CallBacks are added and the order in which they are called. 

Transient CallBacks are not called between successive lines of an Obey file , nor 
when screen scrolling is disabled by the Scroll Lock or Ctrl-Shift keys . 

OS_RemoveTickerEvent (page 1-433) 

You cannot use this call to remove a ticker event from within that event's own code. 
Instead, your ticker event must call OS_AddCallBack (page 1-319) to add a 
transient CallBack that makes the call to OS_RemoveTickerEvent. 

OS_CheckModeValid (page 1-715) 

For all versions of RISC OS, this call returns -2 to indicate there is 'insufficient 
memory' if the currently allocated amount of screen memory is too little for the 
specified mode. It does not take into account whether the area could grow. 

File operations (page 1-747) 

You may get unpredictable results when using *ScreenLoad to load a sprite that 
was not created by *ScreenSave. The same applies to the equivalent SWls . 

Pixel translation table (page 1-752) 

A number of calls that use a pixel translation table specify it as optional. You can 
only omit it if the sprite you are plotting has the same number of bits per pixel as 
the current screen mode. We recommend you always supply a table, and leave it to 
RISC OS to ignore it if it is unnecessary. 

Creating sprites (page 1-747) 

If you try to create a sprite with a palette, the palette is incorrect if it is for a 
different number of bits per pixel to that used by the current mode. The best 
workround is to create the sprite without a palette, and then to add the palette. 

5a-661 



Sa-662 

OS_SpriteOp (page 1-761) 

OS_SpriteOp is not re-entrant. 

OS_SpriteOp 60 (page 1-811) 

The purpose of the save area is to preserve your own context should anyone switch 

output away from you. 

OS_HeapSort (page 1-937) 

In the section Advanced features. it states that bit 3 I may optionally be used in 

conjunction with bit 30. In fact, setting bit 30 (ie build word-array of pointers 

pointed to by RI from R4,R5) also causes the bit 31 action to be taken (ie sort true 

objects pointed to by R4 after sorting the pointers). Thus if you wish to sort only 

the pointers and not the records to which they point, you must build the pointer 

array yourself, rather than setting bit 30 to have this call build it. 

llC_Con~rol (page 1-944) 

RO is corrupted on exit. 

FileSwitch (page 2-9) 

All calls that open a file for writing when it cannot be written to ( eg write-protected 

media, no write access, locked filing system) do not generate an error. The error is 

not generated until an attempt is actually made to write to the file . 

Special fields (page 2-12) 

The root directory $ was omitted from the example, which should read: 

net#MJHardy::discl.$.mike 

#MJHardy: :discl.$.mike 

-net#MJHardy-:discl.$.mike 

-#MJHardy-:discl.$.mike 

File$Path and Run$Path (page 2-16), 
Using other path variables (page 2-17) 

When using path variables you must remember that they may specify multiple 

objects. and hence there are clear limitations . Reading an object specified by a 

correctly constructed path will always work; but writing or deleting objects using a 

path may be undefined in behaviour, and may hence be disallowed. 



Appendix C: Errata and omissions for RISC OS 3 PRM 

Filing system numbers (page 2-19) 

The entry for DOSFS refers to a stand alone filing system called DOSFS, released 
with certain versions of the PC Emulator. All image filing systems (including the 
DOSFS supplied in RISC OS 3 onwards) use a filing system number of 0 to 
distinguish them from ordinary filing systems. 

OS_FSControl 41 (page 2-123) 
OS_FSControl 42 (page 2-124) 

These calls return incorrect information for NetFS. 

Disc formats (page 2-197) 

The 'perfect' disc formats referred to in this section may not always be attainable. 
For example. the 710/711 controllers cannot achieve a gap! of more than 255 bytes. 
and hence use a good alternative. See also FileCore_DiscFormat (page 2-234) and 
ADFS_ VetFormat (page 2-287) for a description of the process used to negotiate an 
attainable format . 

Entries (page 2-210) 

The NewDirAtts are as follows : 

Bit Meaning when set 

0 Object has owner read access 
I Object has owner write access 
2 Object is locked 
3 Object is a directory 
4 Object has public read access 
5 Object has public write access 
6 Reserved (must be zero) 
7 Reserved (must be zero) 

FileCore_MiscOp (page 2-238) 

The cross references to the various reason codes should read: 

Value Meaning Page 

0 Mount 2-240 
Poll changed 2-242 

2 Lock drive 2-243 
3 Unlock drive 2-244 
4 Poll period 2-245 
5 Eject disc 2-246 

5a-663 



Sa-664 

Software protection schemes (page 2-263) 

Limitations of disc controllers place further restrictions on using 128 byte sectors: 

• Always create the master disc with a machine that has a 1772 disc controller 

• Only read a single 128 byte sector at a time. 

ADFS_SetlDEController (page 2-293) 

In the versions of ADFS supplied before RISC OS 3.5, R4 must be I on entry (ie the 

interrupt status must be in bit 0) . 

DOSFS (page 2-317) 

The mapping of DOS attributes to RISC OS attributes is not described in this 

chapter. It is as follows: 

If a DOS file is read only, its RISC OS attributes are LWR; otherwise they are RW. If 

a RISC OS file is locked, it is a read only file when transferred to DOS; otherwise it 

is a reacl/write file . 

Other attributes are preserved where possible, using a mechanism that is subject 

to change and so not documented. 

Directory structure (page 2-408) 

This section - and others in the chapter - describe the Apps and Fonts directories 

as containing 'ROM-resident' objects. This is not so for all versions of RISC OS; 

some or all of these objects may be on disc. 

os_serialOp (page 2-459) 

1\vo reason codes were added to OS_SerialOp in RISC OS 3, but were not 

documented in the RISC OS 3 Programmers Reference Manual . These are described 

later in this chapter: 

• OS_SerialOp 7 (page 5a-682) is for internal use only. 

• OS_SerialOp 8 (page 5a-683) reads/writes the serial input buffer threshold 

value. It is provided as a replacement for OS_Byte 203 (page 2-453) , and you 

should use it in preference. 

Redirection (page 2-486) 
printer: (page 2-487) 

When using *Copy to send a file to the printer: system device, you should 

ensure you are using the F copy option . For example: 

*Copy myfile printer: -CF-V 



Appena1x c.;: t:rrata ana omissions tor RISC OS 3 PRM 

Free_Register (page 2-512) 

The free space routine should exit using the instruction: 

LDMIA R13 ! , {PC} 

FSEntry_Open and lmageEntry_Open (page 2-531) 
The documentation states that- for FSEntry_Open - reason code I is only used by 
RISC OS 2. It can in fact be called by other versions of RISC OS under certain very 
specific conditions. 

FSEntry_Func 33 (page 2-577) 

The heading for this section should read 'FSEntry_Func 33 and 
lmageEntry_Func 33', since this entry point can be called for an image filing 
system - as stated in its description. 

Descriptor block flags (page 2-588) 

Under RISC OS 2, bit 2 when set means that the FileCore module supports 
background operations. The bit is reserved (as documented) only from RISC OS 3 
onwards. 

Wherever possible, you should make hard discs support mount like floppies do, 
and hence set bit 4. If you do not do so, FileCore may have trouble mounting discs 
that use an alien format, as it then has no way of determining their geometry, and 
so has to make some assumptions that may be invalid 

Returning errors (page 2-593) 

This section should read: 

If there is no error then RO must be zero on exit and the V flag clear. If there is an 
error then V must be set and RO must be one of the following: 

Value 
<&100 
Bit 30 set, bit 31 clear 
Bit 30 clear, bit 31 set 

Meaning 
internal FileCore error number 
pointer to error block 
disc error bits: 

bits 0 - 20 =disc byte address I 256 
bits 21 - 23 =drive 
bits 24 - 29 =disc error number 

For a list of internal FileCore error numbers, see the section entitled Returning errors 
on page 2-590. 

5a-665 



Sa-666 

MiscOp entry (page 2-595) 

When this entry point is called. RI 2 is a pointer to your FileCore module's private 

word. All other registers are as documented (ie the same values as were passed to 

FileCore_MiscOp) . In general, all FileCore_MiscOp calls are passed straight 

through to your FileCore module, which should implement their full functionality; 

however, FileCore counts lock/unlock calls itself, and only calls your module when 

it should actually lock or unlock the drive. 

Port numbers (page 2-640) 

The following port numbers are also reserved: 

Port Allocation 
&AO SJ Research *FAST protocol (file server management) 

&AF SJ Research Nexus net finder reply port 

Service_EconetDying (page 2-643) 

When this service call is issued, the Econet module is already being finalised. and 

you may not make further calls to it. Resources such as ports , CBs etc are no longer 

valid, and you may dispose of any relevant local workspace. 

Layout of windows (page 3-10) 

The last line of page 3-13 should read: 

work_area_pixel_at_origin_x = scroll_offset_x - visible_area_min_x 

work_area_pixel_at_origin_y = scroll_offset_y- visible_area_max_y 

Similarly, the 'entire formula' given near the top of the next page should read: 

work area x = screen_x + (scroll_offset_x - visible_area_min_x) 
work area y = screen_y + (scroll_offset_y- visible_area_max_y) 

Misc icons (page 3-33) 

There is no 'acorn' icon; the Task Manager uses the 'switcher' icon referred to in Icon 

bar icons on page 3-32. 

Wimp_lnitialise (page 3-87) 

The description of R3 on entry is wrong, and should read: 

R3 =pointer to a list of message numbers terminated by a 0 word (not if RO is less 

than 300). If Wimp version number is ~310 then a null pointer indicates 

that no messages are important to this task, whereas a null list indicates 

that all messages are important; this is the reverse of what you might 

expect. 



Appendix c: Errata and omissions tor RISC OS 3 PRM 

Wimp_Createlcon (page 3-96) 

Icon validation strings are order dependent; they are scanned from left to right . 

If you use 2 icons with the ·s· validation string they must both be the same size. 

Wimp_Poll (page 3-115) 

From RISC OS 3 onwards. on exit, if RO is 18 (User_Message_Recorded) then R2 is 
set to the task handle of the sender. 

Wimp_DecodeMenu (page 3-161) 

The returned string is terminated. 

Wimp_ReadPalette (page 3-192) 

From RISC OS 3 onwards. if R2 is 'TRUE' on entry (ie &45555254). then the returned 
palette entries are 24 bit rather than 12 bit: ie &bbggrrnn rather than &bOrOgOnn. 
This saves having to copy the top nibbles into the bottom nibbles before making 
ColourTrans calls . 

Wimp_SpriteOp (page 3-201) · 

RI is corrupted on exit. 

Message_RAMFetch (page 3-256) 

The versions of !Edit supplied before RISC OS 3.5 only respond to this message if 
it is sent as a User_Message_Recorded (ie if acknowledgement is requested). 

Message_Windowlnfo (page 3-258) 

The section heading for this message should read 'Message_Windowlnfo ... ·. not 
'Message_ Windowlnf . . . ·. The description of the message should read: 

Rl+20 
RI+24 
RI+28 

Rl+36 

window handle 
reserved (must be 0) 
string giving trailing part of sprite name to use. null terminated 
- sprite name used is ic_string 
string giving title to use. null terminated; this should be as short 
as possible. and may be truncated by the iconiser (eg Pinboard 
truncates at a space or at the I 0th character. whichever is shorter) 

Sa-667 



Sa-668 

TaskWindow_lnput (page 3-266) 

Location RI +24 of the message block holds the input data itself, not a pointer to it. 

The data needs no terminator, because its length is held in Rl+20. 

TaskWindow_Ego (page 3-266) 
TaskWindow_Morio (page 3-266) 

The versions of !Edit supplied before RISC OS 3.5 only respond to these messages 

if they are sent as a User_Message (ie if no acknowledgement is requested) . 

TaskWindow_NewTask (page 3-267) 

The versions of !Edit supplied before RISC OS 3.5 only respond to this message if 

it is sent as a User_Message (ie if no acknowledgement is requested) . 

The command passed in this message is only the head of the command that must 

be issued via Wimp_StartTask. The full command is: 

command xxxxxxxx yyyyyyyy nb there is a trailing space! 

where xxxxxxxx and yyyyyyyy are the task and txt parameters passed when 

creating the task window (see *TaskWindow on page 3-326) . 

Filter_RegisterPostFilter (page 3-308) 

Under RISC OS 3, if a filter routine sets RO to -I to claim an event and prevent it 

being passed to its task, then that event is not passed on to any further post filters . 

From RISC OS 3.5 onwards, claiming an event does not prevent other post filters 

from being called, but does still prevent the event being passed to the task. 

TaskWindow (page 3-321) 

Changing screen mode from task windows can have unpredictable results. 

*TaskWindow (page 3-326) 

See TaskWindow_NewTask above for correct information on how to respond to this 

message. 

ColourTrans_SelectTable (page 3-346) 

The cross reference to ColourTrans_GenerateTable should refer to page 3-397, not 

page 3-346. 



Appendix C: Errata and omissions for RISC OS 3 PRM 

ColourTrans_SelectTable (page 3-346) 
ColourTrans_ GenerateTable (page 3-397) 

If RO is 256 on entry, it is assumed not to point to a sprite area , but RI is still 
assumed to point to a sprite. This special value is useful if you need to use sprites 
that are not held in a sprite area. For example, Draw uses it for sprites that are held 
in a Draw file without a preceding sprite area control block. 

Thus RO is only assumed to be a pointer if it is greater than 256. 

*Fontlnstall (page 3-512) 

Fontlnstall will only rescan a directory already on the path if it moves to the head 
of the path . The best way to force a re-scan after changing a directory known to the 
Font Manager is to call *FontRemove, then *Fontlnstall. 

*LoadFontCache (page 3-516) 
*SaveFontCache (page 3-517) 

A saved font cache is only valid if RMA usage is the same as when it was saved, 
since it contains absolute pointers to RISC OS modules and their workspace. If 
RMA usage has altered ( eg the cache is loaded to a different address, or the Font 
Manager's workspace is in a different location) you will get no error on loading the 
cache; but you will get many subsequent errors. These calls are therefore 
deprecated. 

Winding rules (page 3-526) 

The first sentence of the description of the even-odd winding rule should read: 

Even-odd means that an area is filled if a ray from that area to outside the path's 
bounding box crosses an odd number of paths. 

Line thickness (page 3-531) 

The second bullet point should read: 

• If the thickness is n, then the line will be drawn with a thickness of n/2 user 
coordinates translated to pixels on either side of the theoretical line position. 

DrawV when printing (page 3-571) 

The rounding of coordinates is printer driver specific. Some drivers may not output 
paths that are less than one output device pixel wide. However, paths of width 0 
(ie 'as thin as possible') should always result in output. 

5a-669 



Sa-670 

Service_PDriverChanged (page 3-601) 

This service call is only issued when the PDriver sharer module has selected a new 

printer driver. This means it is not issued if the currently selected printer driver is 

deselected, but no new one is selected. 

PDriver_SelectJob (page 3-613) 

Under RISC OS 3. I and earlier, R7 is corrupted on exit. 

PDriver _Reset (page 3-621) 

The state of the printer driver after this call is not necessarily the same as it is after 

initialisation. For example, the Postscript printer driver does not know of any fonts 

(see PDriver_MiscOp on page 3-645). 

PDriver_Selectlllustration (page 3-634) 

We now recommend that the user should explicitly choose when a print job is to be 

saved to file for use as an illustration in another document. Only if the user has 

made that choice should you call this SW!; you should call PDriver_SelectJob for all 

other printing. 

PDriver_EnumerateDrivers (page 3-644) 

The values on exit are: 

RO = handle to enumerate next driver, or zero if no more 

RI =printer driver number (page 3-595) if RO':/. 0, or undefined if no more 

Printer definition files (page 3-697) 

To aid recovery from aborted jobs, we recommend that form feed strings always 

contain a form feed, page end strings a full printer reset, and end of text job strings 

both a form feed and full printer reset . 

General points, and Epson and IBM compatible printers (page 3-699) 

The printer type is used to differentiate between printer definitions. If you try to 

overload a printer definition with one having the same printer type, the old data is 

retained. This avoids any delays that might occur if the user tries to load the same 

file twice. 

It follows that if you make minor alterations to a definition and wish to load it in 

place of or beside the original, you must change the printer type. 



Appendix C: Errata and omissions for RISC OS 3 PRM 

Loading and setting the current territory (page 3-787) 

The description in this section is wrong, and should read: 

Each computer running RISC OS has a configured value for the current territory, set 
using *Configure Territory (see page 3-846). and stored in its CMOS RAM . On a 
reset or a power-on, RISC OS will try to load this territory as follows: 

It will load any territory modules in ROM. (Typically there is only one, for the 
territory into which the computer has been sold.) If one of these is the 
configured territory, no further action is taken. 

2 Otherwise. it will look on the configured device (ie the configured filesystem and 
drive) for the module&. !Territory.Territory, and load it. 

3 If successful. it will then search for the directory .. . !Territory.Messages. and 
load any modules it contains. The directory should exist. even if it contains no 
modules. 

At the end of this process: 

• If the configured territory is in ROM, only those territory modules in ROM will 
be loaded 

• If the configured territory is not in ROM, both those territory modules in ROM 
and another territory module (hopefully the configured one) will be loaded. 

RISC OS then selects as the current territory either the configured territory, or - if it 
is not present - a default territory from ROM. 

Sound_Speaker (page 4-23) 
*Speaker (page 4-62) 

These commands may not work on all machines. particularly those that use the 
headphone socket to mute the loudspeaker. 

Squash_Compress (page 4-102) 
Squash_Decompress (page 4-104) 

The input and output pointers for these calls must be word-aligned. 

_kernel_swi (page 4-274) 
_kernel_swi_c (page 4-274) 

If you use these functions to call a SW! that returns an error longer than 148 bytes, 
the register dump area is corrupted; even longer errors may corrupt other vital 
system data. You should ensure that no error will be returned - or workround this 
problem by instead using the internal function _swix, which is documented in the 
C library header files. 

5a-671 



Sa-672 

*Obey (page 4-350) 

Recursive calls of *Obey are only possible to a limited depth (currently 20, 

although you should not rely upon this) . 

Draw files (page 4-457) 

There are some errors in the documentation of Draw file formats, as follows: 

• The font table object (page 4-459) may contain multiple <font number, 

font name> pairs, which follow immediately after each other; ie the padding to 

a word boundary only occurs at the end of the object. 

In RISC OS 3.5 and earlier, the Draw application expects the font table object 

to be the first object in the file; we suggest that any Draw files you generate 

obey this restriction. From RISC OS 3.6 onwards , Draw merely expects that the 

font table object precedes any text objects or transformed text objects that use 

it. 

• The translation part of the transformation matrix must be zero for a 

transformed text object (page 4-468). 

• The description of transformed sprite objects (page 4-469) should refer to 'EIG 

factors ', not to 'eigen factors' . 

Font files (page 4-470) 

There are some errors in the documentation of font file formats, as follows : 

• The heading lntMetrics I lntMetn files on page 4-470 should read lntMetrics I 

lntMetricn files . 

• The section entitled Scaffold data on page 4-478 should start: 

Size 

I or 2 

Description 

character code of 'base' scaffold entry (0 =>none) 

• In the section entitled Character data on page 4-480 , the lines: 

If character flags bit 3 is set: 
bit 4 set => composite character 
bit 5 set => with an accent as well 

would be clearer were they to read: 

If character flags bit 3 is set: 
bit 4 set => composite base character follows 
bit 5 set => composite accent character follows 



Appendix C: Errata and omissions for RISC OS 3 PRM 

On the next page, the line: 
if character flags bits 3 or 4 are clear: 

should read: 
if character flags bit 3 is clear, or bit 3 is set and bits 4 and 5 are clear: 

and the final line of the section: 
Word-aligned at the end of the character data. 

should read: 
Word-aligned at the end of the chunk. 

5a-673 



Printer server protocol interface 

Printer server protocol interface 
The printer server protocol interface was omitted from the RISC OS 3 Programmer's 
Reference Manual. It is currently as follows . 

NetPrint status protocol 

5a-674 

Status enquiry packet 

To request the current state of a printer server the client sends an 8 byte status 
enquiry packet to port &9F: 

Byte Meaning 

I - 6 printer name, padded with spaces 
7 reason code (I ::::} status request, 6 ::::} name request) 
8 reserved (must be zero) 

Status request 

If the reason code is I (status request) the printer server should check the printer 
name. The check should be case insensitive, but with accents significant, 
preferably using Territory_Collate (see page 3-834) : 

• If the name matches the name of a printer connected to the server ( eg 
'PScrpt') , the server should send its status. 

• If the name matches the string 'PRINT or 'SPOOL', the server should send the 
status of the user's default printer. (With Acorn's !Spooler software, this is the 
most recently used printer, or the first listed printer if none has yet been used) . 

• If the name matches neither of the above cases, the server should not reply. 

The status reply, if any, must be sent to port &9E: 

Byte Meaning 

status: 0 ::::} Ready, I ::::} Busy, 2 ::::} Jammed, 6 ::::} Offline; 
all other values reserved 

2 station number for Busy status, or 0 
3 net number for Busy status , or 0 

If the server is Busy, the second and third byte of the status packet are the station 
and net number with which it is busy. If the server is Busy with no particular 
station , or if the status is not Busy, these bytes should both be set to zero. 

Using the name 'PRINT' is deprecated because it makes it difficult for a printer 
server that supports multiple logical printers. Wherever possible you should use 
the printer's name. 



Appendix C: Errata and omissions for RISC OS 3 PRM 

Name request 

If the status enquiry reason code is 6 (name request) then the client is asking the 
printer server for its name. The name sent by the client is 'PRINT' or 'SPOOL', but it 
is not necessary to check this . The server must reply to port &9E: 

Byte Meaning 
I - 6 printer name, padded with spaces 

If the printer server supports multiple logical printers it may send multiple replies 
with different names. If the client discards duplicate replies then it should take 
account of the name in the packet as well as the station and net numbers. 

Flag bytes 

For all status packets the flag byte currently has no meaning. Clients should send a 
flag byte of zero, and servers should send back the flag byte that they received from 
the client. 

NetPrint printing protocol 

Finding the status before printing 

Before starting to print, the client should ideally send a status enquiry to the server 
to ensure it is ready (see above) . 

Establishing the connection 

The connection is then established using packets where the flag byte is relevant. It 
has this meaning: 

Bits Meaning 
O sequence bit 
I, 2 modes 
3 - 6 task id 
7 reserved (must be zero) 

The client first sends a zero or one byte packet to port &DI on the server, with the 
flag byte's sequence bit clear, and its mode bits set to 2_0 I. The task id bits of this 
packet's flag byte - and its data - are used to negotiate how to send the print data. 
Their possible values are dependent on the version of NetFS in use, and are as 
follows : 

• If the flag byte's task id is 2_0000, then the client will only send data in &50 
byte blocks. 
If any byte is sent it should be zero, but is ignored. 

5a-675 



NetPrint printing protocol 

Sa-676 

• If the flag byte's task id is 2_1000, then the client code is both asking for the 
allocation of a task id by the server, and trying to establish if the server can 
accept large blocks of data (up to the size returned by SWI Econet_PacketSize) 
or only small ones (up to &50 bytes) . 

If a non-zero byte is sent, the client is also seeking to negotiate a features mask 
with the server. The bits show the features the client supports: 

Bit Meaning when set 

0 t Use reply port &DO (allows local loopback etc to work) 
1 Print data is compressed (not yet implemented) 
2 Use dynamic port for data packets 
3 - 6 Reserved 
7 More features in extension packet (not yet implemented) 

t This bit must always be set if any other bits are set. 

• Other values of the flag byte's task id are reserved. 

If the server is unwilling to accept the print it doesn't send a reply. If it is willing 
then it replies as follows: 

• If the client's task id was 2_0000, the server sends back a single zero byte to 
port &DI , with the flag byte the same as that it received from the client. 

• If the client's task id was 2_1000, the server uses the flag byte to respond to 
the request for large packets and task id .. . 

• If the server isn't willing to assign task ids - and hence accept more than 
one connection from a single client - it sends back the client's (illegal) 
task id of 2_IOOO (see below); otherwise it sends back a task id chosen 
from the ranges 2_000I to 2_0I l l , or 2_1001to2_1111. 

• If the server can accept large blocks of data it sets the mode bits to 2_10, 
else it sets them to 2_01 . 

. . . and it uses the byte(s) it sends back to respond to any request for a features 
mask: 
• If the client did not request a features mask, or the server does not support 

any features, it sends back a single zero byte to port &D 1. 
• If the client requested a features mask, and the server supports this, it 

ANDs its own mask with that sent by the client. If bit 2 is clear, the server 
sends the single mask byte to port &DO; if it is set, the server gets a 
dynamic port using Econet_AllocatePort, and sends two bytes to 
port &DO: the mask followed by the port. 

The connection is now established. The client then examines the final flag byte 
sent by the server, changing a task id of 2_1000 to 2_0000. This version of the flag 
byte is the one that will be used when sending the data. 



Appendix C: Errata and omissions for RISC OS 3 PRM 

Sending the data 

The client then sends the data in blocks, the size of which can vary from zero bytes 
up to the maximum established by the connect protocol. The data is sent to the 
dynamic port returned at connection time, if any; otherwise it is sent to port &DI . 
The flag byte for each block is the same as that negotiated when connecting (see 
above), save that the sequence bit is toggled for each block. This is to avoid 
duplicate data packets ; the server discards and ignores any packets that have the 
same sequence bit as that previously received. 

Acknowledging the data 

Each time the server receives a new block and is ready to accept another, it must 
acknowledge the received block with a one byte packet. If the features mask 
negotiated in the connect protocol had bit 0 set, the reply is sent to port &DO , and 
the byte gives the status: 

Value Meaning 

0 Ready (send next data packet) 
Busy (don't send next data packet yet) 

Otherwise the reply is a zero byte sent to port &DI . 

The packet's flag byte must match that received from the client. Again, the 
sequence bit is used to avoid duplicates; if the flag byte of an acknowledgement 
received by the client does not match the packet it most recently sent, it is a 
duplicate of a reply to the previous packet, and so is discarded. 

Closing the connection 

Port claiming 

When the client wants to close the connection, it sends a data packet with the 
mode bits set to 2_11 . The data for this last packet must be terminated by an &03. 

NetPrint claims ports &DO, &DI and &9E with Econet_ClaimPort. A printer server 
should claim port &9F. 

Sa-677 



Deprecated calls 

Deprecated calls 
This section lists calls , often provided for backwards compatibility, that are now 
deprecated in favour of other calls. Much of this information is already in other 
parts of the PRM. but has been gathered together for reference. 

VDU calls 

Many of the VDU calls that are present in RISC OS have been superseded by either 
the OS_Plot call or other SWis. Instead of using the VDU call, you should call the 
relevant SWI. 

Examples 
• You should use OS_Plot instead of VDU 25 . 

• You should use the standard printer driver interfaces to direct output to the 
printer, instead of calling VDU 2 and VDU 3. 

• You should ColourTrans SWis to set text and graphics colours instead of 
calling VDU 17 and VDU 18. 

• You should use the font manager instead of calling VDU 23,25-26. 

• You should use OS_SpriteOp SWls instead of VDU 23 ,27 

OS_Byte/OS_ Word calls 

Sa-678 

Many of the OS_Byte and OS_ Word calls are very archaic, and are only present in 
RISC OS for backwards compatibility with older 8 bit machines. Many of these calls 
have been superseded by RISC OS SW!s which you should use instead . 

It is worth noting that many of the OS_Byte calls are either not necessary or there 
are SW! equivalents. In future versions of the operating system OS_Byte may be 
removed altogether. and the useful calls be coded as proper RISC OS SWis. The 
same applies to OS_ Word calls. 

OS_Byte examples 
• OS_Byte 7 and 8 are used to specify the serial port's baud rates for receiving 

and sending data. These calls have been superseded by OS_SerialOp 5 and 6. 

• OS_Byte 128 is used for reading the position/state of the mouse. It has been 
superseded by OS_Mouse. 

• OS_Byte 71 selects the keyboard or alphabet. It has been replaced by the 
concept of territories. You should call the Territory manager for doing this sort 
of operation. 



Appendix C: Errata and omissions for RISC OS 3 PRM 

• All the OS_Bytes that refer to buffers (such as 15 to flush a buffer) have been 
replaced by the relevant software vectors. 

• The OS_Byte calls that refer to the escape key (such as 125 to set Escape 
condition) are usually irrelevant. and should not be used on a multi-tasking 
operating system. An exception is OS_Byte 229, which may be useful to 
temporarily alter the Escape key status between successive Wimp polls. 

• OS_Byte 143 should not be used for issuing service calls; OS_ServiceCall 
should be used instead. 

• OS_Byte 160 reads a VDU variable; it has been superseded by 
OS_ReadVduVariables. 

OS_Word examples 

FileSwitch 

• OS_ Word 9 should no longer be used to read the logical colour of a pixel. You 
should use OS_ReadPoint instead. 

• OS_ Word 11 should no longer be used to read the palette. OS_ReadPalette 
should be used instead. 

• OS_ReadVduVariables should be used instead of OS_ Word 13 to read current 
and previous graphics cursor positions. 

• OS_ Word 21,0 should no longer be used for setting the pointer shape etc. You 
should use OS_SpriteOp 36 (set pointer shape) instead. 

Service_StartUpFS has been removed . 

As noted before. OS_Byte calls are deprecated. For example: 

• OS_Byte 127 is deprecated, and you should use OS_Args 5 instead. 

• You should no longer use OS_Byte 139 to set filing system options. *Opt I is 
no longer supported anyway. For the *Opt 4 usage you should instead use 
OS_FSControl 48. (This is in preference to OS_FSControl I 0 which - although 
it is the direct equivalent - requires some state to be set up with the •Dir 
command before calling it .) 

5a-679 



System extension/application SW/s 

Many OS_GBPB calls are also deprecated: 

• You should not use OS_GBPB 5 to read the name and boot option of a disc. 
You should instead use OS_FSControl 37 (canonicalise path) and/or 
OS_FSControl 47 (read boot option), 

• You should no longer call OS_GBPB 6 or 7 to read a directory name and 
privilege byte. OS_FSControl 37 (canonicalise path) provides an alternative for 
reading directory names; privilege bytes are no longer supported. 

• You should use OS_GBPB 9 in preference to OS_GBPB 8. 

Finally, as hinted above, you should use OS_FSControl 48 in preference to 
OS_FSControl 10. 

System extension/application SWls 

Sa-680 

RISC OS implements many SW!s for application and system extension (ie 
modules) development. Although theses SW!s are present and usable in the OS, 
some of them are archaic and have alternatives that should be used. 

Econ et 

With the event of AUN, most of the immediate operations are no longer supported. 
The only immediate operation supported under AUN is Econet_MachinePeek. If an 
application wishes to be AUN compatible then they should not attempt to 
implement the other immediate operations. 

Time and date 

You should no longer use SWis such as OS_ConvertDateAndTime and 
OS_ConvertStandardDateAndTime. You should instead use the SWis provided by 
the Territory manager. 

Font Manager 

When scanning a string for information ( eg the width of the string or the caret 
position) you should call Font_ScanString instead of calls such as 
Font_StringWidth, Font_ Caret, Font_StringBBox etc. However, Font_ScanString is 
a RISC OS 3 only SWI. 

When setting font colours you should use ColourTrans_SetFontColours instead of 
Font_SetFontColours. 

When calling Font_Paint with control sequences to set the colour, you should use 
control sequence 19 instead of 17 and 18. Again, control sequence 19 is only 
available with RISC OS 3. 



Appendix C: Errata and omissions for RISC OS 3 PRM 

You should not normally use the calls Font_SetFontMax (and the equivalent 
•configure FontMax). Font_ReadFontMax. Font_SetScaleFactor, 
Font_ReadScaleFactor, and Font_SetThresholds. In doing so , you would be 
overriding the values set up by users and/or managed by the Wimp. 

ColourTrans 

Applications should not use GCOLs; they should instead deal with RGB palette 
entries and colour numbers. 

If you must set a GCOL you should call ColourTrans_SetGCOL, or 
ColourTrans_ReturnColourNumber and OS_SetColour; you should not call 
ColourTrans_ReturnGCOL and then set the colour. 

5a-681 



SW/ Calls 

SWI Calls 

Sa-682 

OS_SerialOp 7 
(SWI &57) 

This reason code is for system use only; you must not use it in your own code. 



Appendix C: Errata and omissions for RISC OS 3 PRM 

Read/write serial input buffer threshold value 

On entry 

RO= 8 (reason code) 
RI =-I to read or new value to write 

On exit 

RO preserved 
RI =value before being overwritten 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

OS_SerialOp 8 
(SWI &57) 

The serial input routine attempts to halt input when the amount of free space left 
in the input buffer falls below a certain level. This call allows the value at which 
input is halted to be read or changed. 

OS_SerialOp 0 can be used to examine or change the handshaking method. 

The default value in RISC OS 3.5 is 17 characters, but this is subject to change and 
should not be relied upon. 

Related SWls 

OS_Byte 203 (page 2-453) 

Related vectors 

SerialV 

5a-683 



5a-684 



RU 

Vo 

ACJ25 Ac 

-


